Wray Buntine

Marko Grobelnik

Dunja Mladeni¢

John Shawe-Taylor (Eds.)

Machine Learning and
Knowledge Discovery
in Databases

European Conference, ECML PKDD 2009
Bled, Slovenia, September 2009
Proceedings, Part I

LNAI 5782

Lecture Notes in Artificial Intelligence 5782
Edited by R. Goebel, J. Siekmann, and W. Wahlster

Subseries of Lecture Notes in Computer Science

Wray Buntine Marko Grobelnik
Dunja Mladeni¢ John Shawe-Taylor (Eds.)

Machine Learning and
Knowledge Discovery
in Databases

European Conference, ECML PKDD 2009
Bled, Slovenia, September 7-11, 2009
Proceedings, Part I1

@ Springer

Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jorg Siekmann, University of Saarland, Saarbriicken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbriicken, Germany

Volume Editors

Wray Buntine

NICTA

Locked Bag 8001, Canberra, 2601, Australia
and

Helsinki Institute of IT

Finland

E-mail: wray.buntine @nicta.com.au

Marko Grobelnik

Dunja Mladenié

Jozef Stefan Institute

Jamova 39, 1000 Ljubljana, Slovenia

E-mail: {marko.grobelnik,dunja.mladenic} @ijs.si

John Shawe-Taylor

University College London

Gower St., London, WCI1E 6BT, UK
E-mail: jst@cs.ucl.ac.uk

Library of Congress Control Number: 2009933615

CR Subject Classification (1998): 1.2, H.2.8, H.3, G.3, H.5, G.2, 1.7
LNCS Sublibrary: SL 7 — Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-642-04173-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-04173-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12754656 06/3180 543210

Preface

The year 2008 was the first year that the previously separate European Con-
ferences on Machine Learning (ECML) and the Conference on Principles and
Practice of Knowledge Discovery in Databases (PKDD) were merged into a uni-
fied event. This is a natural evolution after eight consecutive years of their being
collocated after the first joint conference in Freiburg in 2001. The European
Conference on Machine Learning (ECML) traces its origins to 1986, when the
first European Working Session on Learning was held in Orsay, France followed
by the second European Working Session on Learning held in Bled, the locati-
on of this year’s ECML PKDD 2009 conference. The European Conference on
Principles and Practice of Knowledge Discovery in Databases (PKDD) was first
held in 1997 in Trondheim, Norway. Over the years, the ECML/PKDD series
has evolved into one of the largest and most selective international conferences in
machine learning and data mining, the only one that provides a common forum
for the two closely related fields. In 2009, ECML PKDD conference was held
during September 7-11 in Bled, Slovenia.

The conference used a hierarchical reviewing process. We nominated 26 Area
Chairs, each of them responsible for one sub-field or several closely related rese-
arch topics. Suitable areas were selected on the basis of the submission statistics
for ECML PKDD 2008 and from last year’s International Conference on Machi-
ne Learning (ICML 2008) and International Conference on Knowledge Discovery
and Data Mining (KDD 2008) to ensure a proper load balance among the Area
Chairs. A joint Program Committee (PC) was nominated consisting of some 300
renowned researchers, mostly proposed by the Area Chairs. In order to make best
use of the reviewing capabilities we initially only requested that two reviews be
sought. However, in the event of an inconsistency between the two assessments
a third review was requested. Papers receiving two very positive reviews were
considered for inclusion in the two special issues of Machine Learning and Data
Mining and Knowledge Discovery appearing in time for the conference. A fur-
ther review was also sought for these papers in order to assess their suitability to
appear in journal form. Aleksander Kolcz was the Best Papers Chair responsible
for overseeing the selection of papers for these special issues.

ECML PKDD 2009 received 679 abstract submissions resulting in a final total
of 422 papers that were submitted and not withdrawn during the reviewing
process. Based on the reviews, and on discussions among the reviewers, the
Area Chairs provided a recommendation for each paper with a ranking of the
borderline papers. The three Program Chairs made the final program decisions
after merging the opinions of the 26 Area Chairs.

All accepted papers were of equal status with an oral presentation, poster pre-
sentation and 16 pages in the proceedings, with the exception of those accepted
for the special issues of journals that were only allocated a single page abstract

VI Preface

in the proceedings. We have selected a total of 106 papers of which 14 were be
equally divided between the two special issues. The acceptance rate for all pa-
pers is therefore 25%, in line with the high-quality standards of the conference
series. It is inevitable with such a low acceptance rate that some good papers
were rejected and we hope that authors of these papers were not discouraged by
their disappointment. We are, however, confident that the accepted papers are
of a high quality, making a very exciting and stimulating conference. In addition
to research papers, 15 demo papers were accepted, each having 4 pages in the
proceedings and demo of the system during the poster session. In addition to the
paper and poster/demo sessions, ECML PKDD 2009 also featured five invited
talks, ten workshops, six tutorials, and the ECML PKDD discovery challenge
and industrial track. The selection of Invited Speakers covered a broad range
from theoretical to leading application-orientated research. Together they made
a very strong addition to the conference program. We are grateful to Shai Ben-
David (University of Waterloo, Canada), Nello Cristianini (University of Bristol,
UK), Mark Greaves (Vulcan Inc.), Rosie Jones (Yahoo! Research), Ralf Stein-
berger (European Commission - Joint Research Centre) for their participation
in ECML PKDD 2009. The abstracts of their presentations are included in this
volume.

This year we continued to promote an Industrial Track chaired by Marko
Grobelnik (Jozef Stefan Institute, Slovenia) and Natasa Milié¢-Frayling (Micro-
soft Research, Cambridge, UK) consisting of selected talks with a strong indu-
strial component presenting research from the area covered by the ECML PKDD
conference. We have also included a Demonstration Track chaired by Alejandro
Jaimes Larrarte, providing a venue for exciting exemplars of applications of novel
technologies.

As in recent years, the conference proceedings were available on-line to con-
ference participants during the conference. We are grateful to Springer for ac-
commodating this access channel for the proceedings.

As in previous years we will continue with the recently established tradition
of videorecording the event, ensuring an enduring record of the event made ac-
cessible at http://videolectures.net/. Mitja Jermol is the Video Chair overseeing
this aspect of the organization.

This year’s Discovery Challenge was coordinated by Andreas Hotho together
with Folke Eisterlehner and Robert Jaschke. It involved three tasks in the area
of tag recommendation.

We are all indebted to the Area Chairs, Program Committee members and
external reviewers for their commitment and hard work that resulted in a rich
but selective scientific program for ECML PKDD 2009. We are particularly gra-
teful to those reviewers who helped with additional reviews at a very short notice
to assist us in a small number of difficult decisions. We further thank the Work-
shop and Tutorial Chairs Ravid Ghani and Cédric Archambeau for selecting
and coordinating the ten workshops and six tutorials that accompany the con-
ference; the workshop organizers, tutorial presenters, and the organizers of the
discovery challenge, the Industrial and Demonstration Tracks; the Video Chair;

Preface VII

the Publicity Chair David Hardoon; and Richard van de Stadt and CyberChair-
PRO for highly competent and flexible support when confronted by novel featu-
res in our handling of the papers. Special thanks are due to the Local Chair, Tina
Anzi¢, for the many hours spent ensuring the success of the conference. Finally,
we are grateful to the Steering Committee and the ECML PKDD community
that entrusted us with the organization of the ECML PKDD 2009.

Most of all, however, we would like to thank all the authors who trusted
us with their submissions, thereby contributing to the main yearly European-
focussed international event in the life of our expanding research community.

June 2009 Dunja Mladeni¢
Wray Buntine

Marko Grobelnik

John Shawe-Taylor

Organization

General Chair

Dunja Mladeni¢ Jozef Stefan Institute, Slovenia

Program Chairs

Wray Buntine Helsinki Institute of I'T, Finland;
NICTA, Australia

Marko Grobelnik Jozef Stefan Institute, Slovenia

John Shawe-Taylor University College London, UK

Local Chair

Tina Anzic Jozef Stefan Institute, Slovenia

Tutorial Chair

Cédric Archambeau University College London, UK

Workshop Chair

Rayid Ghani Accenture Technology Labs, USA

Discovery Challenge Chairs

Robert Jaschke University of Kassel, Germany
Andreas Hotho University of Kassel, Germany
Folke Eisterlehner University of Kassel, Germany

Industrial Track Chairs

Marko Grobelnik Jozef Stefan Institute, Slovenia
Natasa Mili¢-Frayling Microsoft Research Cambridge, UK
Demo Chair

Alejandro Jaimes Larrarte Telefonica Research, Spain

X Organization

Best Paper Chair

Aleksander Kolcz

Publicity Chair

David Hardoon

Video Chair

Mitja Jermol

Steering Committee

Walter Daelemans
Katharina Morik
Joost N. Kok
Dunja Mladeni¢
Andrzej Skowron

Area Chairs

Francis Bach
Francesco Bonchi
Toon Calders
Walter Daelemans
Johannes Fiirnkranz
Joao Gama
Eamonn Keogh
Alek Kolcz

Stan Matwin
Claire Nedellec
David Silver

Gerd Stumme
Michael Witbrock

Microsoft Live Labs, USA

University College London, UK

Jozef Stefan Institute, Slovenia

Bart Goethals
Johannes Fiirnkranz
Stan Matwin

Tobias Scheffer
Mgyra Spiliopoulou

Hendrik Blockeel
Pavel Brazdil
Nitesh Chawla
Tijl De Bie
Thomas Gértner
Bart Goethals
Joost Kok

Jure Leskovec
Taneli Mielikainen
Martin Scholz
Steffen Staab
Luis Torgo
Stefan Wrobel

Program Committee

Ameen Abu-Hanna
Osman Abul

Lada Adamic
Abdullah Al Mueen
Enrique Alfonseca
Erick Alphonse
Carlos Alzate
Massih-Reza Amini
Gennady Andrienko
Annalisa Appice
Hiroki Arimura
Andrew Arnold
Sitaram Asur
Martin Atzmueller
Nathalie Aussenac-Gilles
Paulo Azevedo

Lars Backstrom
Tony Bagnall
Roberto Basili
Vladimir Batagelj
Ron Bekkerman
Marc Bellemare
Paul Bennett
Bettina Berendt
Tanya Berger-Wolf
Michael Berthold
Sourangshu Bhattacharya
Concha Bielza
Misha Bilenko
Stephan Bloehdorn
Christian Bockermann
Mario Boley
Christian Borgelt
Karsten Borgwardt
Henrik Bostrom
Guillaume Bouchard
Jean-Francois Boulicaut
Janez Brank

Ulf Brefeld

Bjorn Bringmann
Paul Buitelaar

Rui Camacho
Stephane Canu

Organization

Olivier Cappe

Andre Carvalho
Carlos Castillo

Ciro Cattuto

Vineet Chaoji

Sanjay Chawla

David Cieslak
Philipp Cimiano
Lucchese Claudio
Vincent Claveau
Fabrice Colas
Antoine Cornuejols
Christophe Costa Florencio
Fabrizio Costa

Bruno Cremilleux
Padraig Cunningham
Alfredo Cuzzocrea
Florence D’Alche-Buc
Claudia d’Amato
Gautam Das
Kamalika Das

Jesse Davis

Alneu de Andrade Lopes
Jeroen de Bruin
Marco de Gemmis
Jeroen De Knijf
Thomas Degris-Dard
Jose del Campo-Avila
Krzysztof Dembczynski
Laura Dietz

Carlos Diuk

Kurt Driessens

Pierre Dupont
Jennifer Dy

Saso Dzeroski
Charles Elkan

Tapio Elomaa
Damien Ernst
Floriana Esposito
Fazel Famili

Nicola Fanizzi
Amir-massoud Farahmand
Ad Feelders

XI

XII Organization

Xiaoli Fern
Daan Fierens
Ilias Flaounas
George Forman
Blaz Fortuna
Eibe Frank
Jordan Frank
Mohamed Gaber
Dragan Gamberger
Gemma Garriga
Gilles Gasso
Eric Gaussier
Ricard Gavalda
Floris Geerts
Peter Geibel
Lise Getoor
Olivier Gevaert
Rayid Ghani
Fosca Gianotti
Melanie Gnasa,
Henrik Grosskreutz
Amit Gruber
Vincent Guigue
Robert Gwadera
Larry Hall

Zaid Harchaoui
Hannes Heikinheimo
Iris Hendrickx
Mark Herbster
Tom Heskes
Melanie Hilario

Alexander Hinneburg

Susanne Hoche
Frank Hoppner
Geoff Holmes
Tamas Horvath
Bettina Hoser
Veronique Hoste
Andreas Hotho
Eyke Hiillermeier
Inaki Inza

Mariya Ishteva
Robert Jaeschke
Longin Jan Latecki
Nathalie Japkowicz

Szymon Jaroszewicz
Thorsten Joachims
Alipio Jorge

Felix Jungermann
Matti Kaariainen
Alexandros Kalousis
Murat Kantarcioglu
Samuel Kaski
Philip Kegelmeyer
Kristian Kersting
Svetlana Kiritchenko
Igor Kononenko
Anna Koop

Walter Kosters
Wojciech Kotlowski
Stefan Kramer
Andreas Krause
Yuval Krymolowski
Miroslav Kubat
Ravi Kumar

James Kwok

Bill Lampos

Niels Landwehr
Mark Last

Nada Lavrac
Lihong Li

Jessica Lin

Charles Ling

Huan Liu

XiaoHui Liu
Eneldo Loza Mencia
Peter Lucas

Elliot Ludvig
Yiming Ma

Sofus Macskassy
Michael Madden
Donato Malerba
Bradley Malin

Lluis Marquez
Michael May

Prem Melville

Rosa Meo

Pauli Miettinen
Roser Morante
Fabian Morchen

Katharina Morik
Flavia Moser

Fabien Moutarde
Klaus-Robert Miiller
Ion Muslea

Amedeo Napoli

Olfa Nasraoui

Vivi Nastase

James Neufeld
Alexandru Niculescu-Mizil
Siegfried Nijssen
Joakim Nivre

Blaz Novak

Ann Nowe
Alexandros Ntoulas
Andreas Nuernberger
Guillaume Obozinski
Arlindo Oliveira
Martijn van Otterlo
Gerhard Paass
Cosmin Paduraru
Georgios Paliouras
Themis Palpanas
Junfeng Pan

Rong Pan

Andrea Passerini
Mykola Pechenizkiy
Dmitry Pechyony
Dino Pedreschi
Kristiaan Pelckmans
Jose-Maria Pena
Ruggero Pensa
Raffaele Perego
Bernhard Pfahringer
Christian Plagemann
Barnabas Poczos
Doina Precup
Philippe Preux

Kai Puolamaki

Peter van der Putten
Sampo Pyysalo
Predrag Radivojac
Troy Raeder Davood Rafiei
Chedy Raissi

Shyam Rajaram

Organization

Alain Rakotomamonjy
Liva Ralaivola

Jan Ramon

Chotirat Ratanamahatana
Chandan Reddy
Ehud Reiter

Elisa Ricci

Martin Riedmiller
Celine Robardet
Marko Robnik-Sikonja
Pedro Rodrigues
Teemu Roos

Fabrice Rossi

Volker Roth

Celine Rouveirol
Ulrich Rueckert
Stefan Riiping

Yvan Saeys

Lorenza Saitta

Scott Sanner

Vitor Santos Costa
Craig Saunders
Yucel Saygin

Lars Schmidt-Thieme
Jouni Seppanen
Shashi Shekhar

Jin Shieh

Stefan Siersdorfer
Tomi Silander
Ricardo Silva

Ozgur Simsek

Ajit Singh

Sergej Sizov

Carlos Soares
Maarten van Someren
Yang Song

Elaine Sousa

Myra Spiliopoulou
Karsten Steinhaeuser
David Stern

Jan Struyf

Jiang Su

Masashi Sugiyama
Johan Suykens
Vojtech Svatek

XIIT

X1V Organization

Sandor Szedmak
Nikolaj Tatti
Evimaria Terzi
Gerald Tesauro
Hanghang Tong
Volker Tresp

Koji Tsuda

Ville Tuulos
Rasmus Ulslev Pedersen
Dries Van Dyck
Stijn Vanderlooy
Sergei Vassilvitskii
Cor Veenman
Paola Velardi
Shankar Vembu
Celine Vens
Jean-Philippe Vert
Ricardo Vilalta
Michalis Vlachos
Christel Vrain
Jilles Vreeken

Additional Reviewers

Dima Alberg
Anelia Angelova
Mohammad Aziz
Michele Berlingerio
Marenglen Biba
Alexander Binder
Zoran Bosni¢
Christos Boutsidis
Fabian Buchwald
Markus Bundschus
Wray Buntine
Lijuan Cai
Michelangelo Ceci
Weiwei Cheng
Joaquim Costa
Dave DeBarr
Marcos Domingues
Jun Du

Charles Elkan
Daan Fierens
Nuno A. Fonseca

Christian Walder
Xiaoyue Wang
Markus Weimer
David Wingate
Michael Wurst
Dragomir Yankov
Lexiang Ye

Jie Yin

Francois Yvon
Menno van Zaanen
Bianca Zadrozny
Osmar Zaiane
Mikhail Zaslavskiy
Gerson Zaverucha
Filip Zelezny
Justin Zhan

Bin Zhang
Zhi-Hua Zhou
Qiang Zhu
Xijaojin Zhu
Albrecht Zimmermann

Dmitriy Fradkin
Thomas Gabel

Zeno Gantner
Robby Goetschalckx
Habiba

Niina Haiminen
Katja Hansen
Andreas Hapfelmeier
Jingrui He
Raymond Heatherly
Thibault Helleputte
James Henderson
Yi Huang

Ali Inan

Tsuyoshi Ide
Szymon Jaroszewicz
Takafumi Kanamori
Alexandros Karatzoglou
Hisashi Kashima
Tsuyoshi Kato
Maarten Keijzer

Evan Kirshenbaum
Arto Klami

Thoralf Klein
Marius Kloft

Arne Koopman

Da Kuang

Mayank Lahiri
Tobias Lang

Lieven De Lathauwer
Gayle Leen

Jens Lehmann

Guy Lever

Biao Li

Nan Li

Shuyan Li

Yu-Feng Li

Yuan Li

Grigorios Loukides
Jose A. Lozano
Juan Luo

Hamid Reza Maei
Michael Mampaey
Alain-Pierre Manine
Leandro Marinho
Eneldo Loza Mencia
Joao Mendes-Moreira
Olana Missura
Matteo Mordacchini
Marianne Mueller
Eileen A. Ni
Martijn van Otterlo
Aline Paes

Indranil Palit
Sang-Hyeun Park
Aritz Perez

Claudia Perlich
Georgios Petasis
Dimitrios Pierrakos

Organization

Fabio Pinelli
Cristiano Pitangui
Troy Raeder

Alain Rakotomamonjy
Steffen Rendle
Achim Rettinger
Francgois Rioult

Jan Rupnik

Jarkko Salojérvi
Leander Schietgat
Jana Schmidt
Armin Shmilovici
Dayvid Silver
Karsten Steinh&user
Erik Strumbelj

Jan Struyf

Ilija Subasié¢

Taiji Suzuki
Takashi Takenouchi
Nicola Tonellotto
Grigorios Tsoumakas
Mikalai Tsytsarau
Stijn Vanderlooy
Guy Van den Broeck
Sicco Verwer
Ricardo Vilalta
Dimitrios Vogiatzis
Petar Vracar

Chris Watkins
Joerg Wicker

Eric Wiewiora
Fuxiao Xin

Xingwei Yan
Xingwei Yang
Monika Zakova
De-Chuan Zhan
Indre Zliobaite

XV

Sponsors

We wish to express our gratitude to the sponsors of ECML PKDD 2009 for their
essential contribution to the conference. We wish to thank Jozef Stefan Institute,
Slovenia, for providing financial and organizational means for the conference; the
European Office of Aerospace Research and Development, a detachment of U.S.
Air Force Office of Scientific Research (EOARD) for generous financial support;
Pascal European Network of Excellence (PASCALZ2) for sponsoring the Invited
Speaker program and the videorecording of the conference; Slovenia Research
Agency (ARRS); Google for supporting a Poster Reception; Microsoft Research
Ltd., Cambridge, UK for supporting the Industrial track; Yahoo! Research, Quin-
telligence, Hewlett-Packard Labs, and ACTIVE European Integrated project for
their financial support; the Machine Learning Journal for supporting the Stu-
dent Best Paper Award; the Data Mining and Knowledge Discovery Journal for
supporting the Student Best Paper Award; Nokia for sponsoring the Discovery
Challenge Awards and the Best Demo Award.

@O Institut
”Jozef Stefan”
® Ljubljana, Slovenija

- "3 PASCALZ

Javna agencija Microsoft’
) Sierlmitiidtin GO 81@ Re searc h
YaHoO!

RESEARCH =

QUINTELLIGENCE (LABShP]

@ 4d) ~} - 14 - =
Y %i%% (CICERRIC N Data Mining and
AACTIVE s | earning B nowledge Discovery

NOKIA

Connecting People

Table of Contents — Part 11

Regular Papers

Decomposition Algorithms for Training Large-Scale Semiparametric
Support Vector Machines
Sangkyun Lee and Stephen J. Wright

A Convex Method for Locating Regions of Interest with Multi-instance
Learningot
Yu-Feng Li, James T. Kwok, Ivor W. Tsang, and Zhi-Hua Zhou

Active Learning for Reward Estimation in Inverse Reinforcement
Learningo
Manuel Lopes, Francisco Melo, and Luis Montesano

Simulated Iterative Classification a New Learning Procedure for Graph
Labelingo
Francis Maes, Stéphane Peters, Ludovic Denoyer, and
Patrick Gallinari

Graph-Based Discrete Differential Geometry for Critical Instance
Filtering oot
Elena Marchiort

Integrating Novel Class Detection with Classification for
Concept-Drifting Data Streams i,
Mohammad M. Masud, Jing Gao, Latifur Khan, Jiawei Han, and

Bhavani Thuraisingham

Neural Networks for State Evaluation in General Game Playing........
Daniel Michulke and Michael Thielscher

Learning to Disambiguate Search Queries from Short Sessions
Lilyana Mihalkova and Raymond Mooney

Dynamic Factor Graphs for Time Series Modeling
Piotr Mirowski and Yann LeCun

On Feature Selection, Bias-Variance, and Bagging
M. Arthur Munson and Rich Caruana

Efficient Pruning Schemes for Distance-Based Outlier Detection.
Nguyen Hoang Vu and Vivekanand Gopalkrishnan

15

31

47

63

79

95

XX Table of Contents — Part I1

The Sensitivity of Latent Dirichlet Allocation for Information
Retrievalo
Laurence A.F. Park and Kotagiri Ramamohanarao

Efficient Decoding of Ternary Error-Correcting Output Codes for
Multiclass Classification i
Sang-Hyeun Park and Johannes Firnkranz

The Model of Most Informative Patterns and Its Application to
Knowledge Extraction from Graph Databases........................
Frédéric Pennerath and Amedeo Napoli

On Discriminative Parameter Learning of Bayesian Network
Classifiersot
Franz Pernkopf and Michael Wohlmayr

Mining Spatial Co-location Patterns with Dynamic Neighborhood
Constraingt
Feng Qian, Qinming He, and Jiangfeng He

Classifier Chains for Multi-label Classification
Jesse Read, Bernhard Pfahringer, Geoff Holmes, and Eibe Frank

Dependency Tree Kernels for Relation Extraction from Natural
Language Text
Frank Reichartz, Hannes Korte, and Gerhard Paass

Statistical Relational Learning with Formal Ontologies................
Achim Rettinger, Matthias Nickles, and Volker Tresp

Boosting Active Learning to Optimality: A Tractable Monte-Carlo,
Billiard-Based Algorithm i
Philippe Rolet, Michéle Sebag, and Olivier Teytaud

Capacity Control for Partially Ordered Feature Sets
Ulrich Riickert

Reconstructing Data Perturbed by Random Projections When the
Mixing Matrix Is Known o
Yingpeng Sang, Hong Shen, and Hui Tian

Identifying the Original Contribution of a Document via Language
Modeling
Benyah Shaparenko and Thorsten Joachims

Relaxed Transfer of Different Classes via Spectral Partition
Xiaoziao Shi, Wei Fan, Qiang Yang, and Jiangtao Ren

Mining Databases to Mine Queries Faster
Arno Siebes and Diyah Puspitaningrum

Table of Contents — Part 1T XXI

MACs: Multi-Attribute Co-clusters with High Correlation
Information 398

Kelvin Sim, Vivekanand Gopalkrishnan, Hon Nian Chua, and
See-Kiong Ng

Bi-directional Joint Inference for Entity Resolution and Segmentation
Using Imperatively-Defined Factor Graphs 414
Sameer Singh, Karl Schultz, and Andrew McCallum

Latent Dirichlet Allocation for Automatic Document Categorization.... 430
Istvdn Biré and Jdacint Szabo

New Regularized Algorithms for Transductive Learning 442
Partha Pratim Talukdar and Koby Crammer

Enhancing the Performance of Centroid Classifier by ECOC and Model
Refinement 458
Songbo Tan, Gaowei Wu, and Xueqi Cheng

Optimal Online Learning Procedures for Model-Free Policy
Evaluation 473
Tsuyoshi Ueno, Shin-ichi Maeda, Motoaki Kawanabe, and Shin Ishii

Kernels for Periodic Time Series Arising in Astronomy................ 489
Gabriel Wachman, Roni Khardon, Pavlos Protopapas, and
Charles R. Alcock

K-Subspace Clustering. ... i 506
Dingding Wang, Chris Ding, and Tao Li

Latent Dirichlet Bayesian Co-Clustering 522
Pu Wang, Carlotta Domeniconi, and Kathryn Blackmond Laskey

Variational Graph Embedding for Globally and Locally Consistent

Feature Extraction 538
Shuang-Hong Yang, Hongyuan Zha, S. Kevin Zhou, and
Bao-Gang Hu

Protein Identification from Tandem Mass Spectra with Probabilistic
Language Modeling i 554
Yiming Yang, Abhay Harpale, and Subramaniam Ganapathy

Causality Discovery with Additive Disturbances: An
Information-Theoretical Perspective 570
Kun Zhang and Aapo Hyvdrinen

Subspace Regularization: A New Semi-supervised Learning Method 586
Yan-Ming Zhang, Xinwen Hou, Shiming Xiang, and Cheng-Lin Lw

XXII Table of Contents — Part I1

Heteroscedastic Probabilistic Linear Discriminant Analysis with
Semi-supervised Extension i 602
Yu Zhang and Dit-Yan Yeung

Semi-Supervised Multi-Task Regression 617
Yu Zhang and Dit-Yan Yeung

A Flexible and Efficient Algorithm for Regularized Fisher Discriminant
AnNalysis . ..o 632
Zhihua Zhang, Guang Dai, and Michael I. Jordan

Debt Detection in Social Security by Sequence Classification Using

Both Positive and Negative Patterns 648
Yanchang Zhao, Huaifeng Zhang, Shanshan Wu, Jian Pei,
Longbing Cao, Chengqi Zhang, and Hans Bohlscheid

Learning the Difference between Partially Observable Dynamical

SYStemS ..o 664
Sami Zhioua, Doina Precup, Francois Laviolette, and
Josée Desharnais

Universal Learning over Related Distributions and Adaptive Graph
Transduction i 678
Erheng Zhong, Wei Fan, Jing Peng, Olivier Verscheure, and
Jiangtao Ren

The Feature Importance Ranking Measure 694
Alexander Zien, Nicole Kramer, Séren Sonnenburg, and
Gunnar Rdtsch

Demo Papers

OTTHO: On the Tip of My THOught 710
Pierpaolo Basile, Marco de Gemmis, Pasquale Lops, and
Giovanni Semeraro

Protecting Sensitive Topics in Text Documents with PROTEXTOR 714
Chad Cumby
Enhanced Web Page Content Visualization with Firefox 718

Lorand Dali, Delia Rusu, and Dunja Mladenic¢
ClusTR: Exploring Multivariate Cluster Correlations and Topic

Luigi Di Caro and Alejandro Jaimes

Visual OntoBridge: Semi-automatic Semantic Annotation Software 726
Miha Grear and Dungja Mladenic

Table of Contents — Part 11

Semi-automatic Categorization of Videos on VideoLectures.net

Miha Grear, Dunja Mladenic, and Peter Kese

Discovering Patterns in Flows: A Privacy Preserving Approach with

the ACSM Prototypeot e e

Stéphanie Jacquemont, Francois Jacquenet, and Marc Sebban

Using Temporal Language Models for Document Dating

Nattiya Kanhabua and Kjetil Norvag

Omiotis: A Thesaurus-Based Measure of Text Relatedness

George Tsatsaronis, Iraklis Varlamis, Michalis Vazirgiannis, and
Kjetil Norvag

Found in Translation i

Marco Turchi, Ilias Flaounas, Omar Ali, Tijl De Bie,
Tristan Snowsill, and Nello Cristianini

A Community-Based Platform for Machine Learning

Experimentation

Joaquin Vanschoren and Hendrik Blockeel

TeleCom Vis: Exploring Temporal Communities in Telecom Networks . . .

Qi Ye, Bin Wu, Lijun Suo, Tian Zhu, Chao Han, and Bai Wang

Author Index

Table of Contents — Part 1

Invited Talks (Abstracts)

Theory-Practice Interplay in Machine Learning — Emerging Theoretical
Challengeso 1
Shai Ben-David

Are We There Yet? ... oo 2
Nello Cristianini

The Growing Semantic Web i 3
Mark Greaves

Privacy in Web Search Query Log Mining 4
Rosie Jones

Highly Multilingual News Analysis Applications 5
Ralf Steinberger

Machine Learning Journal Abstracts

Combining Instance-Based Learning and Logistic Regression for
Multilabel Classification i, 6
Weiwei Cheng and Eyke Hiillermeier

On Structured Output Training: Hard Cases and an Efficient
ALLernativeo 7
Thomas Gartner and Shankar Vembu

Sparse Kernel SVMs via Cutting-Plane Training 8
Thorsten Joachims and Chun-Nam John Yu

Hybrid Least-Squares Algorithms for Approximate Policy Evaluation . .. 9
Jeff Johns, Marek Petrik, and Sridhar Mahadevan

A Self-training Approach to Cost Sensitive Uncertainty Sampling 10
Alexander Liu, Goo Jun, and Joydeep Ghosh

Learning Multi-linear Representations of Distributions for Efficient
Inference. o 11
Dan Roth and Raghans Samdani

Cost-Sensitive Learning Based on Bregman Divergences............... 12
Raul Santos-Rodriguez, Alicia Guerrero-Curieses,
Rocio Alaiz-Rodriguez, and Jesus Cid-Sueiro

XXVI Table of Contents — Part I

Data Mining and Knowledge Discovery Journal
Abstracts

RTG: A Recursive Realistic Graph Generator Using Random Typing . . .

Leman Akoglu and Christos Faloutsos

Taxonomy-Driven Lumping for Sequence Mining

Francesco Bonchi, Carlos Castillo, Debora Donato, and
Aristides Gionis

On Subgroup Discovery in Numerical Domains

Henrik Grosskreutz and Stefan Riiping

Harnessing the Strengths of Anytime Algorithms for Constant Data

SEICAIILS .« . vttt

Philipp Kranen and Thomas Seidl

Identifying the Components,

Matthijs van Leeuwen, Jilles Vreeken, and Arno Siebes

Two-Way Analysis of High-Dimensional Collinear Data

Ilkka Huopaniemi, Tommi Suvitaival, Janne Nikkild,
Matej Oresic, and Samuel Kaski

A Fast Ensemble Pruning Algorithm Based on Pattern Mining

Process . ..o

Qiang-Li Zhao, Yan-Huang Jiang, and Ming Xu

Regular Papers

Evaluation Measures for Multi-class Subgroup Discovery

Tarek Abudawood and Peter Flach

Empirical Study of Relational Learning Algorithms in the Phase

Transition Framework

Erick Alphonse and Aomar Osmani

Topic Significance Ranking of LDA Generative Models................

Loulwah AlSumait, Daniel Barbard, James Gentle, and
Carlotta Domeniconi

Communication-Efficient Classification in P2P Networks

Hock Hee Ang, Vivekanand Gopalkrishnan, Wee Keong Ng, and
Steven Hoi

A Generalization of Forward-Backward Algorithm....................

Ai Azuma and Yuji Matsumoto

13

29

30

31

32

33

34

35

51

67

83

99

Table of Contents — Part I XXVII

Mining Graph Evolution Rules 115
Michele Berlingerio, Francesco Bonchi, Bjorn Bringmann, and
Aristides Gionis

Parallel Subspace Sampling for Particle Filtering in Dynamic Bayesian
NetWOTKS .« oottt 131
Eva Besada-Portas, Sergey M. Plis, Jesus M. de la Cruz, and
Terran Lane

Adaptive XML Tree Classification on Evolving Data Streams.......... 147
Albert Bifet and Ricard Gavalda

A Condensed Representation of Itemsets for Analyzing Their Evolution
over Time . .. oo 163
Mirko Boettcher, Martin Spott, and Rudolf Kruse

Non-redundant Subgroup Discovery Using a Closure System 179
Mario Boley and Henrik Grosskreutz

PLSI: The True Fisher Kernel and beyond: IID Processes, Information
Matrix and Model Identification in PLST 195
Jean-Cédric Chappelier and Emmanuel Eckard

Semi-supervised Document Clustering with Simultaneous Text
Representation and Categorization, 211
Yanhua Chen, Lijun Wang, and Ming Dong

One Graph Is Worth a Thousand Logs: Uncovering Hidden Structures
in Massive System Event Logs L. 227
Michal Aharon, Gilad Barash, Ira Cohen, and Eli Mordechai

Conference Mining via Generalized Topic Modeling 244
Ali Daud, Juanzi Li, Lizhu Zhou, and Faqir Muhammad

Within-Network Classification Using Local Structure Similarity 260
Christian Desrosiers and George Karypis

Multi-task Feature Selection Using the Multiple Inclusion Criterion
(MIC) oot 276
Paramuveer S. Dhillon, Brian Tomasik, Dean Foster, and Lyle Ungar

Kernel Polytope Faces Pursuit o L. 290
Tom Diethe and Zakria Hussain

Soft Margin Treest e 302
Jorge Diez, Juan José del Coz, Antonio Bahamonde, and
Oscar Luaces

Feature Weighting Using Margin and Radius Based Error Bound
Optimization in SVMS 315
Huyen Do, Alexandros Kalousis, and Melanie Hilario

XXVIII Table of Contents — Part I

Margin and Radius Based Multiple Kernel Learning 330
Huyen Do, Alexandros Kalousis, Adam Woznica, and
Melanie Hilario

Inference and Validation of Networks 344
Ilias N. Flaounas, Marco Turchi, Tijl De Bie, and Nello Cristianini

Binary Decomposition Methods for Multipartite Ranking 359
Johannes Furnkranz, Eyke Hiillermeier, and Stijn Vanderlooy

Leveraging Higher Order Dependencies between Features for Text
Classification e 375
Murat C. Ganiz, Nikita I. Lytkin, and William M. Pottenger

Syntactic Structural Kernels for Natural Language Interfaces to
Databasesot 391
Alessandra Giordani and Alessandro Moschitti

Active and Semi-supervised Data Domain Description 407
Nico Gornitz, Marius Kloft, and Ulf Brefeld

A Matrix Factorization Approach for Integrating Multiple Data
VWS ot 423

Derek Greene and Pddraig Cunningham

Transductive Classification via Dual Regularization 439
Quanquan Gu and Jie Zhou

Stable and Accurate Feature Selection 455
Gokhan Gulgezen, Zehra Cataltepe, and Lei Yu

Efficient Sample Reuse in EM-Based Policy Search 469
Hirotaka Hachiya, Jan Peters, and Masashi Sugiyama

Applying Electromagnetic Field Theory Concepts to Clustering with
Constraints 485
Huseyin Hakkoymaz, Georgios Chatzimilioudsis,
Dimitrios Gunopulos, and Heikki Mannila

An /1 Regularization Framework for Optimal Rule Combination 501
Yanjun Han and Jue Wang

A Generic Approach to Topic Models............... 517
Gregor Heinrich

Feature Selection by Transfer Learning with Linear Regularized
Models . ..o 533
Thibault Helleputte and Pierre Dupont

Integrating Logical Reasoning and Probabilistic Chain Graphs......... 548
Arjen Hommersom, Nivea Ferreira, and Peter J.F. Lucas

Table of Contents — Part I XXIX

Max-Margin Weight Learning for Markov Logic Networks 564
Tuyen N. Huynh and Raymond J. Mooney

Parameter-Free Hierarchical Co-clustering by n-Ary Splits 580
Dino Ienco, Ruggero G. Pensa, and Rosa Meo

Mining Peculiar Compositions of Frequent Substrings from Sparse Text
Data Using Background Texts i, 596
Daisuke Ikeda and Finoshin Suzuki

Minimum Free Energy Principle for Constraint-Based Learning
Bayesian Networks 612
Takasht Isozaki and Maomi Ueno

Kernel-Based Copula Processes i, 628
Sebastian Jaimungal and Eddie K.H. Ng

Compositional Models for Reinforcement Learning 644
Nicholas K. Jong and Peter Stone

Feature Selection for Value Function Approximation Using Bayesian
Model Selectionov o 660
Tobias Jung and Peter Stone

Learning Preferences with Hidden Common Cause Relations 676
Kristian Kersting and Zhao Xu

Feature Selection for Density Level-Sets............ 692
Marius Kloft, Shinichi Nakajima, and Ulf Brefeld

Efficient Multi-start Strategies for Local Search Algorithms 705
Levente Kocsis and Andrds Gyorgy

Considering Unseen States as Impossible in Factored Reinforcement

Learning oot 721
Olga Kozlova, Olivier Sigaud, Pierre-Henri Wuillemin, and
Christophe Meyer

Relevance Grounding for Planning in Relational Domains 736
Tobias Lang and Marc Toussaint

Author Index 753

Decomposition Algorithms for Training
Large-Scale Semiparametric Support Vector
Machines

Sangkyun Lee and Stephen J. Wright

Computer Sciences Department, University of Wisconsin-Madison,
1210 W. Dayton St., Madison, WI 53706, USA
{sklee, swright}@cs.wisc.edu

Abstract. We describe a method for solving large-scale semiparametric
support vector machines (SVMs) for regression problems. Most of the
approaches proposed to date for large-scale SVMs cannot accommodate
the multiple equality constraints that appear in semiparametric prob-
lems. Our approach uses a decomposition framework, with a primal-dual
algorithm to find an approximate saddle point for the min-max formu-
lation of each subproblem. We compare our method with algorithms
previously proposed for semiparametric SVMs, and show that it scales
well as the number of training examples grows.

Keywords: semiparametric SVM, regression, decomposition, primal-
dual gradient projection.

1 Introduction

Support Vector Machines (SVMs) are the most widely used nonparametric meth-
ods in machine learning, which aims to find a function that performs well in
classifying or fitting given data. The power of SVM lies in the fact that it does
not require the user to define the class of functions from which the observations
might have been generated. In a sense, this is also a weakness, in that prior
knowledge of the function class is often available for use. Semiparametric SVM
formulations introduce parametric components into the model of the classify-
ing / regression function, alongside the nonparametric contribution. The basis
functions in the parametric part of the model can be chosen to embed prior
knowledge and can be used for analyzing the effects of certain covariates, thus
giving semiparametric SVM the potential advantages of both parametric and
nonparametric methods.

Despite the benefits, semiparametric models have not drawn much attention
from the machine learning community, possibly in part because the optimization
problems arising from semiparametric SVMs are harder to solve than those gen-
erated by standard SVMs. This paper describes an efficient approach for finding
solutions to large-scale semiparametric SVM problems. We focus on the formula-
tion of semiparametric SVM regression first introduced in [I], which gives rise to

W. Buntine et al. (Eds.): ECML PKDD 2009, Part II, LNAI 5782, pp. 1-{I4] 2009.
(© Springer-Verlag Berlin Heidelberg 2009

@cs.wisc.edu

2 S. Lee and S.J. Wright

a dual problem which is a convex quadratic program (QP) with several equality
constraints as well as bound constraints.

To motivate our description of solvers for semiparametric SVMs, we discuss
first the state of the art for solvers that tackle the standard SVM dual formula-
tion, which is

1
min 2XTQX +pl'x st. ylx=0, 0<x<(C1, (1)

where x, y, and 1 := (1,1,...,1) are column vectors of length n. Many effec-
tive algorithms for this problem solve a sequence of subproblems, each of which
updates some subvector of x while leaving the remaining elements unchanged.
These algorithms can be categorized into two distinct groups. In the first group,
the subvector is very short, typically containing just two components. Since the
subproblem can be solved analytically for such a small number of variables, no
numerical solver is needed. The subproblems are inexpensive, but many itera-
tions are usually needed to reach a solution with acceptable quality. Sequential
Minimal Optimization (SMO) [2] and its variants such as LIBSVM [3] fall into
this category. In the second group of solvers, the subvectors are longer, requiring
the subproblems to be solved with a QP solver that exploits the structure of the
application. Although we face the burden of designing an efficient, robust QP
solver, methods in the second group often show faster convergence than those
in the first group. Successful instances of methods in the second group include
SVM'9" 4] and GPDT [5l6]. The QP solvers used in the second group can be
applied to the full problem, thus solving it in one “outer” iteration, though this
approach is not usually effective for large data sets.

In general, the methods in both groups discussed above are specialized to han-
dle the single equality constraint in (Il) along with the bound constraints. The
analytic subproblem solution in SMO can be acquired only when the subprob-
lem has up to one (or two in case of the modified SMO [7]) equality constraint.
The subproblem selection algorithm of SvMlight strongly depends upon the ex-
istence of a single equality constraint; the same is true of GPDT, which uses a
projection algorithm from [8]. Semiparametric SVMs, however, require solution
of the following generalization of (I):

1
min F(x) := 2xTQX +pTx st. Ax=0b, 0 <x<C1, (2)

where A € R* X" and b € R, where K > 1 is the number of parametric
basis functions that we wish to include in the model. For semiparametric SVM
regression, Smola, Frief}; and Scholkopf [I] proposed to apply a primal-dual in-
terior point method based on the code LOQO. The size of problems that can be
handled is thus limited by the need to perform a full evaluation of the matrix @
and the need for repeated factorizations of matrices of about this size. (The ap-
proach could however be used as the inner loop of a decomposition method in the
second group discussed above.) Kienzle and Scholkopf [9] suggested a Minimal
Primal Dual (MPD) algorithm. This algorithm use a variant of the method of

Decomposition Algorithms for Training Large-Scale Semiparametric SVMs 3

multipliers to formulate a sequence of convex quadratic programs of dimension
n with bound constraints only (no equalities), which are solved by a method
that selects a single component for updating at each iteration. (In this sense, it
is akin to the methods in the first group described above.) We give further de-
tails on MPD as we introduce our methods below. This approach does not scale
well as the size n of the problem grows, but its performance can be improved
by embedding it in a decomposition framework, as described below. We include
both MPD and its decomposition variants in our computational tests of Sect.

In this paper, we propose an approach that is related to MPD but that differs
in several ways. First, it is a primal-dual approach; we alternate between steps in
a subvector of x and steps in the Lagrange multipliers for the constraints Ax = b.
Second, subvectors of x with more than 1 element are allowed. Third, two-metric
gradient projection techniques are used in taking steps in the x components.
Throughout, we take account of the fact that n may be very large, that @
cannot practically be computed and stored in its entirety, and that operations
involving even modest-sized submatrices of Q are expensive.

We compare our approach computationally with MPD as stand-alone solvers,
and also in a decomposition framework.

The remainder of the paper is structured as follows. In the next section, we
define the semiparametric SVM regression problem and show that its dual has
the form (@)). Section B outlines the decomposition framework, while Sect. @l
describes the primal-dual method that we propose for solving the subproblems
that arise from decomposition. Section [presents some computational results.

2 Semiparametric SVM Regression

We consider a regression problem for data {(t;,y;)}, where t; € R" are
feature vectors and y; € IR are outcomes. We wish to find a function A that
minimizes e-insensitive loss function ¢.(h;t,y) := max{0, |y — h(t)| — €}, while
maximizing the margin as in [10]. Following [I9], we formulate the semipara-
metric SVM regression problem as follows:

M
L
min w w+C i+ & 3a
Jmin >(eite) (3a)

K
sty — (w,d(t;)) — Z,ijj(ti) <e+¢& fori=1,...,.M (3b)
j=1

K
(w,p(t:) + > Biy(t:) —yi <e+ & fori=1,....M (3
j=1

£>0,6>0. (3d)

where ¢ is a feature mapping function which defines a positive semidefinite kernel
K(ti, t5) = (o(ti), ¢(t;)), for all 4,7 € {1,..., M}, while {1;}/2, are the basis
functions for the parametric part of the model function. The model function is

4 S. Lee and S.J. Wright

defined as an extended linear model of parametric and nonparametric parts, that

is, h(t) = (w,6(t)) + S0 | Bi1;(t). We typically have K < M. If K =1 and

11 is a constant function, we recover the standard SVM regression problem.
The Wolfe-dual of (B]) has the form (2)), where

X = L?*} € R*M for the dual vectors a and a* of BH) and (Bd), resp.,

P = [Eiyla'"aein7€+y17"'7e+y]\/f]T GIRQM)
” —y;y;k(ti, t;) otherwise ’
b=0 |

and

Yi(ty) -0 Yi(tm) —Pa(ta) - —Pa(tm)
A ¢2(.t1) ¢2(_tM) —wz.(tl) b2 (tnr) c RE<2M

Mh) ¢K<tM) —wfé(tl) —¢K.(tM)

Introducing 1 as the Lagrange multipliers for the constraints Ax = b in (2)), the
Karush-Kuhn-Tucker (KKT) optimality conditions for (), stated here for later
reference, are as follows:

(@x+p+ATn), >0 if x; =0 (4a)
(@x+p+ ATn)i <0 ifx; =C (4b)
(Qx+p+ATy). =0 if x; € (0,C) (4c)
Ax=1b (4d)
0<x<C1. (4e)

If the kernel function k is positive semidefinite, the Hessian matrix @ of (@) is
also positive semidefinite, by definition. Therefore the objective function F(-) of
@) is convex, and as we only have linear constraints, the dual objective of (2
is a concave function in terms of the dual variable . Therefore the primal-dual
pair (x,n) satisfying the conditions in () is the saddle point of ([2]). Moreover,
7 agrees with 8 in (B) since n is the double dual variable of 3 (refer [I1] for
details.) As our primal-dual solver discussed in Sect. @l provides the optimal value
of m, there is no need to compute 3 separately.

3 Decomposition Framework

In this section we outline the decomposition strategy, giving details of two key
aspects.

Decomposition Algorithms for Training Large-Scale Semiparametric SVMs 5

3.1 Subproblem Definition

The convex quadratic program (2)) becomes harder to solve as the number of
variables n := 2M grows (where M is the number of data points), as the Hessian
Q in (@) is dense and poorly conditioned for typical choices of the kernel function
k. The decomposition framework can alleviate these difficulties by working with
asubset xg, B C {1,2,...,n} of the variables at a time, fixing the other variables
xn, N ={1,2,...,n}\ B at their current values. We usually choose the number
of elements ng in B to be much smaller than n. By partitioning the data objects
p, A, and @ in the obvious way, we obtain the following subproblem at outer
iteration k:

. 1
min f(xp) = 2X£QBBXB + (Qanxi + ps) x5 (5)
st. Apxp = —Aij’i[+ b, 0<xp<C1,

where xj“v contains the current values of the A’ components. This problem has
the same form as (2]); we discuss solution methods in Sect. @l

Since our emphasis in this paper is computational, we leave a convergence
theory for this decomposition framework for future work. Suffice for the present
to make a few remarks. If B is chosen so that the columns of Ap corresponding
to components of xp that are away from their bounds in (Bl form a full-row-
rank matrix, and if appropriate two-sided projections of Qg are positive defi-
nite, then (B)) has a primal-dual solution (xj,n*) that corresponds to a solution
(x*,n*) = (x5, x4, n*) of @), when x}, = x}. Perturbation results can be used
to derive a local convergence theory, and it may be possible to derive a global
theory from appropriate generalizations of the results in [12].

3.2 'Working Set Selection

The selection of working set B at each outer iteration is inspired by the approach
of Joachims [4], later improved by Serafini and Zanni [6]. The size of the working
set is fixed at some value ng, of which up to n. are allowed to be “fresh” indices
while the remainder are carried over from the current working set. Given the
current primal-dual iterate (x*+1,n*+1), we find the indices corresponding to
the nonzero components d; obtained from the following problem:

mailn (VE(x") + (nkH)TA)T d

0<d; <1 if xk1 =0,
-1<d; <0 if xFt =,
s.t. (6)
—-1<d; <1 if x¥*1 ¢ (0,0),

#{d;|d; # 0} < nc.

Note that the objective function of (@) is a linearization of the Lagrangian func-
tion of F' at the current primal-dual pair (x**1 n**1). Our approach is moti-
vated by the KKT conditions [}, and indeed can be solved by simply sorting

6 S. Lee and S.J. Wright

the violations of these conditions. It contrasts with previous methods [4I6/12], in
which the equality constraints are enforced explicitly in the working set selection
subproblem. Our approach has no requirements on the size of n., yet it is still
effective when 111 is close to the optimal value n*.

Earlier analysis of decomposition algorithms based on working set selection
schemes has been performed by Lin [I3], who shows linear convergence for the
case of a single constraint, under positive definiteness assumptions on Q. Tseng
and Yun [12] proposed a decomposition framework for a formulation similar
to ([@) that includes multiple equality constraints. They present a convergence
analysis which assumes that the subproblems at each step of decomposition are
solved exactly, although they do not discuss techniques for solving the subprob-
lem. Their working set selection algorithm requires relatively high complexity
(O(K3n?)) in general, compared with the O(n log n) complexity of our approach.

The (up to) n. new components from (@) are augmented to a total of ngp
entries by adding indices from the previous working set BB according to a certain
priority. We choose the indices of the off-bounds components (0 < xi—”‘l < C)
first, and then those of lower and upper bounds. We reduce n. as the change
between two consecutive working sets decreases, as in [6]. We observe that adap-
tive reduction of n. provides better convergence of the Lagrange multiplier n*,
and helps avoid zigzagging between two working sets without making further
progress. Adaptive reduction also helps not to degrade the benefit of optimizing
many new components in a single decomposition step.

Our decomposition framework is summarized in Algorithm [I1

Algorithm 1. Decomposition Framework

1. Initialization. Choose an initial point x' of (@) (possibly infeasible), initial guess
of the Lagrange multiplier ', positive integers nsg > K and 0 < n. < np, and
convergence tolerance tolD. Choose an initial working set B and set k «— 1.

2. Subproblem. Solve the subproblem (B]) for the current working set B, to obtain

solution x’gﬂ together with Lagrange multiplier n**! of the equality constraints. Set
k41 _ (k41 _k

X = (xB) XN)'

3. Gradient Update. Evaluate the gradient of the Lagrangian of ([2)), by incrementally

updating VF, as indicated here:

VRS 4 A = VPG + | 5 | x0T

4. Convergence Check. If the maximal violation of the KKT conditions {@) falls
below tolD, terminate with the primal-dual solution (x**1 n+1).

5. Working Set Update. Find a new working set B as described in Sect.
6. Set k «+— k+ 1 and go to step 2.

Decomposition Algorithms for Training Large-Scale Semiparametric SVMs 7

4 Subproblem Solver

Recalling that the decomposition framework requires both a primal solution xp
and Lagrange multipliers 1 to be obtained for the subproblem (&), we consider
the following min-max formulation of (B]):

in L 7
mox min L(xs,n) , (7)

where @ = {x e R"¥|0 <x < (1} and
L(xp,n) = f(x5) + 1" (Apxs + Anxf) -

In this section we describe a primal-dual approach for solving (), in which
steps are taken in xp and 1 in an alternating fashion. Scalings that include
second-order information are applied to both primal and dual steps. We call the
approach PDSG (for “Primal-Dual Scaled Gradient”).

Our approach can be viewed as an extreme variant of the method of multi-
pliers [I4], in which we do not attempt to minimize the augmented Lagrangian
between updates of the Lagrange multiplier estimates, but rather take a single
step along a partial, scaled, and projected gradient direction in the primal space.
In describing the general form of each iteration, we use superscripts £ to denote
iteration counts, bearing in mind that they refer to the inner iterations of the
decomposition framework (and hence are distinct from the superscripts k of the
previous section, which denote outer iterations).

x?l — x5+ s(x5,1n°) (8a)

't =ttt) (8b)

where s(-,-) and t(-,-) are steps, defined below. In computational testing,
we found PDSG to be superior to methods more like traditional method-of-
multiplier approaches, which would take multiple steps in xpz in between succes-
sive steps in 7).

Primal Step. In the ¢-th iteration of the subproblem solver, we choose a small
sub-working set YW C B containing at most nyy elements (where nyy is a user-
defined parameter), containing those indices in B that are among the ny, most-
violated KKT conditions (4al)-[d) for the subproblem (Bl). We define the further
subset W* by selecting those indices i € W* that are not at one of their bounds
0 and C. We then construct the block-diagonal ng x ng matrix H*, as follows:

Qij + 70i; if i € W’ and j € W*

gt) Qi if i = j and i € WO\ W! o)
* 00 if i = j and i ¢ W*
0 otherwise,

where 0;; = 1 if i = j and 0 otherwise, while 7 is a small positive parameter (we
use 7 = 107®) chosen to ensure that the “block” part of H* is numerically non-
singular. Since we apply the inverse of this matrix to the gradient in computing

8 S. Lee and S.J. Wright

the step, the components of the matrix-vector product that correspond to the
oo entries will evaluate to zero. Specifically, we obtain the search direction as
follows:

dl = XZB —Pq (XZB - (He)_l vst(XZBa ne)> (10)

where IPq(+) is a projection operator to the set 2, which is trivial to compute
since this set is defined by simple bounds. This is essentially the two-metric
gradient projection search direction [I5] applied to the subvector defined by W*.
Given this direction, the primal step s from (8al) is defined to be

s(xp,n') = apd’ | (11)

where ay € IR is the unconstrained minimizer of L(-,n*) along the line segment
connecting xfg to xeB +d’.

Dual Update. The step in the dual variable) is a Newton-like step in the dual
objective function for (Bl), which is

g(n) := min L(xs,mn).

This is a piecewise quadratic concave function. Since its second derivative does
not exist, we cannot take a true Newton step. However, we use a slight modifica-
tion of the procedure in Kienzle and Schoélkopf [9] to form a diagonal approxima-
tion G to this matrix. Their procedure progressively updates G by applying one
step of Gauss-Jacobi-like procedure at each iteration of the MPD optimization
scheme. Unlike MPD, our modification estimates G both internally and exter-
nally to the optimization loop. The external estimation ensures us to have an
approximation with a certain quality before performing any dual updates. We
refer the reader to [9] for additional details. The dual step ¢ in (8D) is thus
simply

105) = ~G IV, Lixg). (12)

Our subproblem algorithm is summarized in Algorithm

Algorithm 2. Subproblem solver: PDSG

1. Initialization. Given a index set B, choose initial points x5 and n'. Choose ny
such that 1 < nyy < np. Choose small positive convergence tolerance tolS. Set £ «— 1.

2. Sub-Working Set Selection. Construct W* (with at most ny elements) and W*
as described above.

3. Primal-Dual Update. Take the primal step according to (8a) and (II]), then the
dual step according to (8h) and ([I2)).

4. Convergence Check. If the maximal KKT violation of the current primal-dual

pair (x?l, 7°*1) is less than tol8, exit. Otherwise, go to step 2.

Decomposition Algorithms for Training Large-Scale Semiparametric SVMs 9
5 Experiments

We report on computational experiments that show the intrinsic benefits of the
PDSG approach, as well as the benefits of the decomposition strategy, when ap-
plied to a simple semiparametric SVM regression problem. We compare PDSG
with the MPD algorithm of Kienzle and Schélkopf [9], which has slightly better
performance and lower memory requirement than the interior-point-based ap-
proach used in [I]. We also show the advantage of semiparametric modeling on
a real world problem.

Implementations. We implemented both the decomposition framework (Algo-
rithm [T)) and the PDSG subproblem solver (Algorithm [2)) in C++. The code was
developed by modifying the GPDT code of Serafini, Zanghirati, and Zanni [5],
and retains many features of this code. Our code caches once-computed kernel
entries for reuse, with the least-recently-used (LRU) replacement strategy. For
efficiency, our subproblem solver exploits warm starting; the most recent val-
ues of the primal and dual variables are used as the starting points in the next
invocation of the subproblem solver. We also implemented the MPD solver [9]
in C++, again basing the implementation on GPDT. Our codes can be invoked
either with the decomposition framework, or in “stand-alone” mode, in which
the solver is applied directly to the stated problem.

5.1 Toy Problem

For the semiparametric regression test problem, we choose the modified Mexican
hat function studied in [I9]:

w(t) = sin(t) 4 sinc (27 (t — 5))

To generate data, we sample the function w at uniform random points t; € IR
in the interval [0,10], making M samples in total. The observations y;’s are
corrupted with additive Gaussian noise (; with mean 0 and standard deviation
0.2, that is, y; = w(t;) + ¢;. In the training process, we use Gaussian kernel
k(z,y) = exp(—7||z — y||*) with v = 0.25, and set the insensitivity width e of
the loss function to € = 0.05, as in [I]. The optimal tradeoff parameter value of
C = 0.5 is found by 10-fold cross validation (CV) in [I] using very small samples
(M = 50). Since we are interested in the convergence behavior of algorithms
with larger samples, we performed computational experiments with C' = 0.1,
C =1, and C = 10. Our model is h(t) = (w, ¢(t)) + EjK:l Bi;(t), with two
basis functions 1 (t) = sin(¢) and 12(t) = sinc (2w (¢ — 5)) as in [9].

The size of the sample dataset M is varied from 500 to 100000. The subprob-
lem size ng and the maximum number of new components in each subproblem n,
are fixed to 500 and 100, respectively, as these values gave good performance on
the largest data set. Similarly, we fix the sub-working set size nyy to 2. (We tried

! GPDT is available at http://mloss.org/software/view/54/

http://mloss.org/software/view/54/

10 S. Lee and S.J. Wright

1)

Total cputime in seconds (C:

= D:PDSG C=0.1
= = =D:PDSG C=1.0
<= = D:PDSG C=10
MPD C=0.1
3 - = ~MPD C=1.0
— = MPDC=10

o o
Training size M Training size M

Fig. 1. Left plot shows total runtimes using solvers PDSG and MPD in stand-alone
mode and inside of the decomposition framework (D:PDSG and D:MPD) with C' = 1.
Right plot shows the total runtimes of D:PDSG (our proposed method) and MPD with
different C values. For larger number of training examples M, updating of the full
gradient in Step 3 of Algorithm [Il dominates the computation, blurring the distinction
between PDSG and MPD as subproblem solvers (left plot). D:PDSG outperforms MPD
for all C values tried (right plot). Stand-alone algorithms are run only for training-set
size up to 10000 because of their high computational cost.

various other values between 1 and 25, but 2 was slightly better than several
alternatives.) In each setting, we use a kernel cache of 400MB in size.

Growth of the total runtime of the algorithms with increasing size of the data
set is shown in Fig.[Il When the decomposition framework is used, the stopping
threshold values are set to tolD = 0.001 and tolS = 0.0005. In stand-alone
settings, we set tolS = 0.001. We impose a slightly tighter threshold on sub-
problem solvers inside the decomposition framework to reduce the number of
decomposition steps. Outer iterations in the decomposition framework become
more costly as the number of variables increases, mainly because the full gra-
dient update in Step 3 of Algorithm [I] becomes more expensive. The benefit of
using decomposition framework becomes larger as the dataset size grows. For
instance, D:PDSG is about 100 times faster than MPD when M = 10000. In de-
composition settings, using PDSG as the inner solver found the solution two to
three times faster than using MPD as the inner solver on average. Our proposed
method D:PDSG shows quite stable scaling behavior for different values of C'.

Convergence and Complexity. The different convergence behavior of PDSG and
MPD is illustrated in Fig.[2l Here both solvers are asked to solve a semiparamet-
ric regression problem discussed above with 1000 samples, in stand-alone mode.
In the top and middle plots, the dual and primal infeasibility, respectively, are
more rapidly reduced with PDSG than with MPD. (Note that since we project
the iterates x* to the bound constraints set, the KKT condition (&d) is always
satisfied.) The bottom plot of Fig. [2 shows the changes of the first Lagrange
multiplier (the coefficient of the first basis function). In that, MPD is showing
the typical behavior of the method of multipliers: sudden changes are made,

Decomposition Algorithms for Training Large-Scale Semiparametric SVMs 11

w

PDSG
- — —MPD

)
T

KKT violation (4a)—(4c)

r

L

o

~
IS
5
N
2

Time (sec)

5

Noow

S o

~=—T
AN
|
|

‘

|
|
|
|
=
3
o

=5
J

KKT violation (4d)

L L [Il S,

)
~oF
s
5
N
2

Time (sec)

Multiplier

Time (sec)

Fig. 2. Convergence of PDSG and MPD in stand-alone mode (Mexican hat, dataset
size M=1000). PDSG requires about 2 seconds to reach convergence, whereas MPD
takes about 14 seconds. (Top) maximum violation of the dual feasibility conditions
@a), (@h), @d). (Middle) maximum violation of the primal equality constraints (4d]).
(Bottom) convergence of the first Lagrange multiplier to its optimal value of 1. The
horizontal axis represents elapsed CPU time.

but time gaps between such changes are rather large. In contrast, PDSG keeps
making changes to the multiplier, resulting in a faster approach to the optimal

value.
When the sub-working-set size nyy is smaller than the working-set size ng of

the subproblem (@), PDSG has computational complexity O(Kng), the same as
MPD, where K is the number of equality constraints in (2]). Dual updates in
Algorithm Rlrequires O(Knp) operations; all primal updates are done in O(ng).
The effect of increasing K on the total time taken by D:PDSG is shown in Fig. 3l
We use the basis functions

cos(jmt) 7i=0,2,4,...
Yit)=q . " .
sin(jt) j=1,3,5,...

and datasets of size M = 1000 randomly sampled from the Mexican hat function.
Other settings are the same as the previous experiment. As expected, we observe
linear scaling of total runtime with K.

5.2 Milan Respiratory Illness Dataset

We consider a dataset from the study on the effect of air pollution on respiratory
illness in Milan, Italy, during 1980-89 [I6]. This dataset consists of daily records
of environmental conditions and the number of deaths due to respiratory diseases

2 Available at http://www.uow.edu.au/~mwand/webspr/data.html

http://www.uow.edu.au/~mwand/webspr/data.html

12 S. Lee and S.J. Wright

Total cputime in seconds
N @ IS a @ ~ @
3 3 S 3 3 S 3
X

3>
¥

o
3
%

2 4 6 8 10 12 14 16 18 20
Number of equality constraints K

Fig. 3. Total solution time for D:PDSG with increasing number of equality constraints
K. Measurements are averaged over 10 repetitions with different random datasets
(M=1000) sampled from the Mexican hat function, and error bars (hardly visible)
show the standard deviations. The time complexity of D:PDSG is O(uKng) where u
is the number of outer iterations. Solver time appears to increase linearly with K.

(total 3652 records, 9 features). All features are scaled linearly to the range [0, 1].
We construct a test set by holding out 20% of randomly chosen records from the
dataset, using the remaining records for training.

We hypothesize a simple semiparametric model to predict the number of res-
piratory deaths, inspired by [16]:

hsp(t) = <’LU7 ¢(t)> + /Gl(ttemp) + /82(tSO2) + /83(ttemp)2 + /84(1:802)2 + /85 3

where the features ticmp and tso, correspond to mean temperature and SOq
level of the day, respectively. Our purpose is to study how those two elements
affect the respiratory illness.

We fit our semiparametric model to the training data, and compare its pre-
diction performance on the test set to that of a nonparametric model

hup(t) = (w, 6(t)) + B1 -

With Gaussian kernel (7 = 25.0) and e-insensitive loss function (e = 0.01), we
perform 10-fold CV on the training set to determine the best balancing parame-
ter C for each of semiparametric and nonparametric models independently.

The results are shown in Table[Il The semiparametric model attained smaller
prediction error on the test set than the nonparametric model, indicating that the
embedding of prior knowledge in hg, while retaining the power of nonparametric
approaches is beneficial. Moreover, the parametric components in the trained
semiparametric model

hep(t) = (w*, ¢(#)) —0.30(fremp) +0.26(ts0,) +0.22(tromp) > —0.07(ts0,)* +0.22 .

Decomposition Algorithms for Training Large-Scale Semiparametric SVMs 13

Table 1. Nonparametric and semiparametric regression on Milan dataset. The loss
penalty parameter C' is determined by cross validation. Comparing the prediction per-
formance on the test set by mean square error (MSE) values, the semiparametric model
performed better than the nonparametric model by 2.8%. No significant difference of
the number of support vectors (SVs) was found between the two methods.

Model C' Fraction of SVs Training Time (s) Test Error (MSE)
Nonparametric (hnp) 0.025 46.7% 1.17 0.019368
Semiparametric (hsp) 0.01 46.9% 5.35 0.018828

reveal that (i) deaths are lower in the middle of the temperature range, and (ii)
there is an almost linear increase of death rate with SO level. These results
broadly agree with the outcomes of [16], which were acquired from completely
different statistical analysis techniques. It is difficult to perform model interpre-
tation of this type with nonparametric approaches.

6 Conclusions

We have presented a new method for semiparametric SVM regression problems,
which extends a number of previous approaches in being able to handle multiple
equality constraints. Our method combines a decomposition framework with
a primal-dual scaled gradient solver for the subproblems. Computational tests
indicate that the approach improves on previously proposed methods.

Future work includes reducing the cost of the full gradient update by using
a randomized sampling procedure for the components of the gradient, as has
been tried in a different context in [I7]. While the concept is simple, it is not
straightforward to implement this technique in conjunction with caching of ker-
nel entries, which is so important to efficient implementation of SVM solvers
based on QP formulations. Other research topics include devising a more ef-
fective update strategy for the dual variables 7 in the subproblem solver, and
theoretical analyses both of the decomposition framework (including the working
set selection technique) and the subproblem solver.

Acknowledgements

The authors acknowledge the support of NSF Grants CCF-0430504, DMS-
0427689, CNS-0540147, and DMS-0914524. The first author was supported in
part by Samsung Scholarship from the Samsung Foundation of Culture.

References

1. Smola, A.J., Frie, T.T., Scholkopf, B.: Semiparametric support vector and linear
programming machines. In: Advances in Neural Information Processing Systems
11, pp. 585-591. MIT Press, Cambridge (1999)

14

10.

11.

12.

13.

14.

15.

16.

17.

S. Lee and S.J. Wright

. Platt, J.C.: Fast training of support vector machines using sequential minimal

optimization. In: Scholkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel
Methods - Support Vector Learning, pp. 185-208. MIT Press, Cambridge (1999)
Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines (April
2009) version 2.89, http://www.csie.ntu.edu.tw/~cjlin/libsvm

Joachims, T.: Making large-scale support vector machine learning practical. In:
Scholkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel Methods - Support
Vector Learning, pp. 169-184. MIT Press, Cambridge (1999)

. Serafini, T., Zanghirati, G., Zanni, L.: Gradient projection methods for large

quadratic programs and applications in training support vector machines. Opti-
mization Methods and Software 20(2-3), 353-378 (2004)

Serafini, T., Zanni, L.: On the working set selection in gradient projection-based
decomposition techniques for support vector machines. Optimization Methods and
Software 20, 583-596 (2005)

Keerthi, S.S., Gilbert, E.G.: Convergence of a generalized smo algorithm for svm
classifier design. Machine Learning 46(1-3), 351-360 (2002)

Dai, Y.H., Fletcher, R.: New algorithms for singly linearly constrained quadratic
programs subject to lower and upper bounds. Mathematical Programming, Series
A 106, 403-421 (2006)

Kienzle, W., Scholkopf, B.: Training support vector machines with multiple equality
constraints. In: Gama, J., Camacho, R., Brazdil, P.B., Jorge, A.M., Torgo, L. (eds.)
ECML 2005. LNCS (LNAI), vol. 3720, pp. 182-193. Springer, Heidelberg (2005)
Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin
classifiers. In: COLT 1992: Proceedings of the fifth annual workshop on Computa-
tional learning theory, pp. 144-152. ACM, New York (1992)

Scholkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Reg-
ularization, Optimization, and Beyond. MIT Press, Cambridge (2001)

Tseng, P., Yun, S.: A coordinate gradient descent method for linearly constrained
smooth optimization and support vector machines training. Published online in
Computational Optimization and Applications (October 2008)

Lin, C.J.: Linear convergence of a decomposition method for support vector ma-
chines. Technical report, Department of Computer Science and Information Engi-
neering, National Taiwan University (2001)

Bertsekas, D.P.: Nonlinear Programming, 2nd edn. Athena Scientific, Belmont
(1999)

Gafni, E.M., Bertsekas, D.P.: Two-metric projection methods for constrained op-
timization. STAM Journal on Control and Optimization 22, 936-964 (1984)
Vigotti, M.A., Rossi, G., Bisanti, L., Zanobetti, A., Schwartz, J.: Short term effects
of urban air pollution on respiratory health in Milan, Italy, 1980-1989. Journal of
Epidemiology Community Health 50, s71-s75 (1996)

Shi, W., Wahba, G., Wright, S.J., Lee, K., Klein, R., Klein, B.: LASSO-
Patternsearch algorithm with application to opthalmology data. Statistics and its
Interface 1, 137-153 (2008)

http://www.csie.ntu.edu.tw/~cjlin/libsvm

A Convex Method for Locating Regions of Interest with
Multi-instance Learning

Yu-Feng Li', James T. Kwok?, Ivor W. Tsang?, and Zhi-Hua Zhou'!

! National Key Laboratory for Novel Software Technology

Nanjing University, Nanjing 210093, China
{liyf, zhouzh}@lamda.nju.edu.cn

2 Department of Computer Science and Engineering

Hong Kong University of Science and Technology, Hong Kong, China
jamesk@cse.ust.hk
3 School of Computer Engineering
Nanyang Technological University, Singapore 639798
IvorTsang@ntu.edu.sg

Abstract. In content-based image retrieval (CBIR) and image screening, it is of-
ten desirable to locate the regions of interest (ROI) in the images automatically.
This can be accomplished with multi-instance learning techniques by treating
each image as a bag of instances (regions). Many SVM-based methods are suc-
cessful in predicting the bag labels, however, few of them can locate the ROIs.
Moreover, they are often based on either local search or an EM-style strategy, and
may get stuck in local minima easily. In this paper, we propose two convex opti-
mization methods which maximize the margin of concepts via key instance gen-
eration at the instance-level and bag-level, respectively. Our formulation can be
solved efficiently with a cutting plane algorithm. Experiments show that the pro-
posed methods can effectively locate ROIs, and they also achieve performances
competitive with state-of-the-art algorithms on benchmark data sets.

1 Introduction

With the rapid expansion of digital image collections, content-based image retrieval
(CBIR) has attracted more and more interest. The main difficulty of CBIR lies in the
gap between the high-level image semantics and the low-level image features. Much
endeavor has been devoted to bridging this gap, it remains unsolved yet. Generally, the
user first poses in the query and relevance feedback process several labeled images that
are relevant/irrelevant to an underlying target concept. Then the CBIR system attempts
to retrieve all images from the database that are relevant to the concept. It is noteworthy
that although the user feeds whole images to the system, usually s/he is only interested
in some regions, i.e., regions of interest (ROIs), in the images.

For medical and military applications which require a fast scanning of huge amount
of images to detect suspect areas, it is very desirable if ROIs can be identified and ex-
hibited when suspected images are presented to the examiner. Even in common CBIR
scenarios, considering that the system usually returns a lot of images, the explicit identi-
fication of ROIs may help the user in recognizing images s/he really wants more quickly.

W. Buntine et al. (Eds.): ECML PKDD 2009, Part II, LNAI 5782, pp. 15-30] 2009.
© Springer-Verlag Berlin Heidelberg 2009

16 Y.-F. Li et al.

In multi-instance learning [6], the training examples are bags each containing many
instances. A bag is positively labeled if it contains at least one positive instance, and
negatively labeled otherwise. The task is to learn a model from the training bags for
correctly labeling unseen bags. Multi-instance learning is difficult because that, unlike
conventional supervised learning tasks where all the training instances are labeled, here
the labels of the individual instances are unknown. It is obvious that if a whole image
is regarded as a bag with its regions being regarded as instances, the problem of de-
termining whether an image is relevant to a target concept or not can be viewed as a
multi-instance problem. So, it is not surprising that multi-instance learning has been
found very useful in tasks involving image analysis.

In general, three kinds of multi-instance learning approaches can be used to locate the
ROIs. The first is the Diverse Density (DD) algorithm [[15] and its variants, e.g., EM-DD
[26] and multi-instance logistic regression [19]]. These methods apply gradient search
with multiple restarts to identify an instance which maximizes the diverse density, that
is, an instance close to every positive bags while far from negative bags. The instance
is then regarded as the prototype of the target concept. It is obvious that DD can be
applied to locate ROIs. A serious problem with this kind of methods is the huge time
cost, since they have to perform gradient search starting from every instance in every
positive bag.

The second approach is the CkKNN-ROI algorithm [29], which is a variant of Citation-
kNN [23]. This approach uses Citation-kNN to predict whether a bag is positive or not.
It takes the minimum distance between the nearest pair of instances from two bags as
the distance between bags, and then utilizes citers of the neighbors to improve perfor-
mance. Subsequently, each instance in a positive bag is regarded as a bag and a score
is calculated by considering its distance to other bags, from which the key instance can
be decided. The time complexity of CkNN-ROI is mainly dominated by the calculation
of neighbors, and is much more efficient than DD. However, this algorithm is based on
heuristics and the theoretical justification has not been established yet.

The third approach is MI-SVM [[1]. While many SVM-based multi-instance learn-
ing methods have been developed [113/4]], to the best of our knowledge, MI-SVM is
the only one that can locate the ROIs. The MI-SVM locates ROI (also referred to as
the key instance) with an EM-style procedure. It first starts with a SVM using some
multi-instance kernel [§]] and picks the key instances according to the SVM prediction,
and the SVM is then retrained with respect to the key instance assignment; the proce-
dure is repeated until convergence. Empirical study shows that MI-SVM is efficient and
works well on many multi-instance data sets. In fact, MI-SVM can be viewed as a con-
strained concave-convex programming (CCCP) method whose convergence has been
well-studied [S]. Each MI-SVM iteration only involves the solving of a convex opti-
mization problem, however, the optimization problem as a whole is still non-convex
and suffers from local minima.

In this paper, we focus on SVM-based methods and propose the KI-SVM (key-
instance support vector machine) algorithm. We formulate the problem as a convex
optimization problem. At each iteration, KI-SVM generates a violated key instance as-
signment and then combines them via efficient multiple kernel learning. It is noteworthy
that it involves a series of standard SVM subproblems that can be solved with various

A Convex Method for Locating Regions of Interest with Multi-instance Learning 17

state-of-the-art SVM implementations in a scalable and efficient manner, such as SVM-
perf [10], LIBSVM [7], LIBLINEAR [9]] and CVM [21]]. Two variants of the KI-SVM,
namely, Ins-KI-SVM and Bag-KI-SVM, are proposed for locating the key instances at
the instance-level and bag-level, respectively.

The rest of the paper is organized as follows. Section 2 briefly introduces MI-SVM.
Section 3 proposes our KI-SVM method. Experimental results are reported in Section 4.
The last section concludes the paper.

2 Multi-instance Support Vector Machines

In the sequel, we denote the transpose of a vector/matrix (in both the input and feature
spaces) by the superscript . The zero vector and the vector of all ones are denoted as
0,1 € R™, respectively. Moreover, the inequality v = [vq,--- ,v;]" > 0 means that
v; >0fori=1,--- k.

In multi-instance classification, we are given a set of training bags {(B1,41), - ,
(Bm, Ym)}, where B; = {x;1,Xi2, -+ ,Xim,} is the ith bag containing instances
X; ;’s, m; is the size of bag B;, and y; € {£1} is its bag label. Suppose the deci-
sion function is denoted as f(x). As is common in the traditional MI setting, we take
f(B;) = maxi<j<m, f(x;,). Furthermore, x;; = argmaxy, ; f(x;;) is viewed as
the key instance of a positive bag B;. For simplification, we assume that the decision
function is a linear model, i.e., f(x) = W’ ¢$(x), where ¢ is the feature map induced by
some kernel k.

The goal is to find f that minimizes the structural risk functional

2wl + Y e (< max W)) m
where {2 can be any strictly monotonically increasing function, £(-) is a monotonically
increasing loss function, and C' is a regularization parameter that balances the empiri-
cal risk functional and the model complexity. In this paper, we focus on 2(||w||,) =
5 |[w|[? and the squared hinge loss. So, (I) becomes:

N R C X .o
_ : 2
min [fwllz—p+, ;:151 ©)
.) / N>)g— €& 4 =1-...
Sty max woxij) > p—& i=1--,m, A3)
where & = [£1,- -+, &) This, however, is a non-convex problem because of the max

operator for positive bags.

Andrews et al. [[1]] proposed two heuristic extensions of the support vector machines,
namely, the mi-SVM and MI-SVM, for this multi-instance learning problem. The mi-
SVM treats the MI learning problem in a supervised learning manner, while the MI-
SVM focuses on finding the key instance in each bag. Later, Cheung and Kwok [3]
proposed the use of the constrained concave-convex programming (CCCP) method,
which has well-studied convergence properties, for this optimization problem. How-
ever, while each iteration only involves the solving of a convex optimization problem,

18 Y.-F. Li et al.

the optimization problem as a whole is non-convex and so still suffers from the problem
of local minima.

3 KI-SVM

In this section, we propose two versions of KI-SVM, namely the Ins-KI-SVM (instance-
level KI-SVM) and Bag-KI-SVM (bag-level KI-SVM).

3.1 Mathematical Formulation

Let p be the number of positive bags. Without loss of generality, we assume that the
positive bags are ordered before negative bags, i.e., y; = 1forall1 <4 < pand —1
otherwise. Moreover, let J; = Z;Zl my.

For a positive bag B;, we use a binary vector d; = [d; 1, ,dim,]" € {0,1}"™
to indicate which instance in B; is its key instance. Here, followed the tradi-
tional multi-instance setup, we assume that each positive bag has only one key in-
stance, so Z;n:l dij = 1. In the following, let d = [di,---,dp], and A be
its domain. Moreover, note that maxi<j<m, W¢(x;;) in (3) can be written as
maxq, ;) di jw'¢(x; ;) in this case.

For a negative bag B, all its instances are negative and the corresponding constraint
can be replaced by —w’¢(x; ;) > p—&; for every instance in B;. Moreover, we relax
the problem by allowing the slack variable &; to be different for different instances of
bag B;. This leads to a set of slack variables {£s(; j) i=1,... msj=1,-- ,m.» Where s(i, j) =
Ji—1 — Jp+J +pis the indexing function that numbers these slack variables from p+ 1
toN =Jp —J, +p.

Combining all these together, (@) can be rewritten as:

R C .5 M = &,
(Ins-KI-SVM) min - [IWl3 = p+ ;@- +7 i:;l;&sm

S.t. Zwldi,jd)(xi,j) >p—¢&, i=1,---,p,
j=1
~Wo(xij) > p—Esg), i=p+ 1, m,
=1, ,mq @

where) balances the slack variables from the positive and negative bags.

Note that each instance in a negative bag leads to a constraint in). Potentially, this
may result in a large number of constraints in optimization. Here, we consider another
variant that simply represents each negative bag in the constraint by the mean of its
instances. It has been shown that this representation is reasonable and effective in many
cases [8124]]. Thus, we have the following optimization problem:

! In many cases the standard assumption of multi-instance learning, that is, the positive label is
triggered by a key instance, does not hold. Instead, the positive label may be triggered by more
than one key instances [22124130]. Suppose the number of key instances is v, we can simply
set Z;":ll d;,; = v, and thus our proposal can also handle this situation with a known v.

A Convex Method for Locating Regions of Interest with Multi-instance Learning 19

D m

/\C'
(Bag-KI-SVM) min ||W||2 p+ Zf + > &
w,p,€,d i=p+1
Zwldi,j¢(xi,j) 2p—&, i=1,---,p,
j=1
(i
7w’zj_1r,f(2 >p—&, i=p+1l,---,m. (5

Hence, instead of a total of > " ~ 1™ constraints for the negative bags in (@), there
are now only m — p corresponding constraints in (3). As (@) considers each instance (in
a negative bag) as one constraint, while (3) only represents the whole negative bag as
a constraint. Therefore, we will refer to the formulations in (@) and (@) as the instance-
level KI-SVM (Ins-KI-SVM) and bag-level KI-SVM (Bag-KI-SVM), respectively.

As @) and (@) are similar in form, we consider in the following a more general
optimization problem for easier exposition:

T

min ||w||2 p+ 25 +)\C Zf

w,p,€,d A
Zwldingb(xiyj) >Zp—=&, i=1,--,p,
j=1
_w”(/J()A(i)ZP—fi, i=p+1,---,7 (6)

It is easy to see that both the Ins-KI-SVM and Bag-KI-SVM are special cases of (6).
Specifically, when » = N, and (X,(; jy) = ¢(x; ;) for the second constraint, @

reduces to the Ins-KI-SVM. Alternatively, when r = m, and ¢ (%X;) = 25 ¢(xl 7) for

the second constraint, then (6) becomes the Bag-KI-SVM.
By using the method of Lagrange multipliers, the Lagrangian can be obtained as:

K(W p,€.d,)
p)\C T P m;
||W||2 p+ Z& Mg =Y) wdio(xis) —p+8&)
i=p+1 =1 j=1
- Z ai(=w'(%;) — p+ &)
i=p+1

By setting the partial derivatives with respect to the w, p, £ to zeros, we have

T

P m;
=w— Z (% Z di,jo(xi,5) + Z @i (i) = 0,
i=1 =1 i=p+1

oL
= 71 + o = 0,
ap ;

20 Y.-F. Li et al.

gé-l,: :Cgi_ai:O7Vi:17"'ap7
gz =XC¢ —a; =0,Vi=p+1,---,r

Then, the dual of (6) can be obtained as

: 1 o\ (Ked o
- Ki+E) 7
min max 2(a®y)(+E)(a0y),)
where @ = [a1, -+ ,a,] € R" is the vector of Lagrange multipliers, A =
{a] 22:1 a; = 1,a; > 0}, y = [1,,—1,—p] € R", ® denotes the element-wise
product of two matrices, E € R"*" is a diagonal matrix with diagonal entries

1.
E’Lz—{ci 1_17'."71)7
yo Otherwise,

and K9 € R"*" is the kernel matrix where K& = (15)/ (14) with

d __ Zﬂz di,‘(b(Xi")/i: 17 » Dy

Note that (Z) is a mixed-integer programming problem, and so is computationally in-
tractable in general.

3.2 Convex Relaxation

The main difficulty of (7)) lies in the variables d which is hard to optimize in general. But
once the d is given, the inner problem of (7)) will become a standard SVM which could
be solved in an efficient manner. This simple observation motivates us to avoid opti-
mizing d, alternatively, to learn the optimal combination of some d’s. Further observed
that each d corresponds to a kernel K9, learning the optimal convex combination will
become multiple kernel learning (MKL) [13] which is convex and efficient in general.
In detail, we consider a minimax relaxation [14] by exchanging the order of ming
and max,. According to the minimax inequality [12], () can be lower-bounded by

. 1 AN/ d A~
- K'+E)
mepps — (@0 (K1 E)@oy)

:max{max—H
acA 0
1 AN/ dt ~
s.t. 922(a®y) K“+E)(a0y), Vd, € A}, 9)

By introducing the dual variable i, > 0 for each constraint, then its Lagrangian is

-0+ > ut(g, ;(aQy)’(KdUrE)(a@y)).

A Convex Method for Locating Regions of Interest with Multi-instance Learning 21

Algorithm 1. Cutting plane algorithm for KI-SVM

1: Initialize d to do, and set C = {do}.

2: Run MKL for the subset of kernel matrices selected in C and obtain « from (I0). Let o1 be
the objective value obtained.

3: Find a constraint (indexed by d) violated by the current solution and set C = d Uc.

4: Set 02 = o01. Run MKL for the subset of kernel matrices selected in C and obtain a from
(I0). Let 01 be the objective value obtained.

5: Repeat steps 3-4 until [*2 ' [<'e.

It can be further noted that > iy = 1 by setting the derivative w.r.t. § to zero. Let p be
the vector of p;’s, and M be the simplex {g | >yt = 1, puy > 0}. Then (@) becomes

. 1 AN/ d, 5
max min — (@) (tdEE:A’utK +E) (a®Y) (10)
) 1 d,
=m0 (30 mKt+B)@oy) v

Here, we can interchange the order of the max and min operators as the objective in
(I0) is concave in « and convex in w [13]. It is noteworthy that can be regarded as
multiple kernel learning (MKL) [[13]], where the kernel matrix to be learned is a convex
combination of the base kernel matrices {K9¢ : d; € A}. However, the number of
feasible vectors d; € A is exponential, the set of base kernels is also exponential in
size and so direct MKL is still computationally intractable.

In this paper, we apply the cutting plane method [[L1]] to handle this exponential
number of constraints. The cutting plane algorithm is described in Algorithm [l First,
as in [[1], we initialize d¢ as the average value, i.e., {d;; = 1/m;,i = 1,--- ,p;j =
1,---,m;} and initialize the working set C to {do}. Since the size of C (and thus the
number of base kernel matrices) is no longer exponential, one can perform MKL with
the subset of kernel matrices in C, obtain « from (I0Q) and record the objective value 0y
in step 2. In step 3, an inequality constraint in (9) (which is indexed by a particular d)
that is violated by the current solution is then added to C. In step 4, we first set oo = 01,
then we perform MKL again and record the new objective value o;. We repeat step 3
and step 4 until the gap between o; and oy is small enough. € is simply set as 0.001 in
our experiments.

Two important issues need to be addressed in the cutting plane algorithm, i.e., how
to efficiently solve the MKL problem in Steps 2 and 4 and how to efficiently find
the a violated constraint in Step 3? These will be addressed in Sections and
respectively.

3.3 MKL on Subset of Kernel Matrices in C

In recent years, a number of MKL methods have been developed in the literature
[2013117018120425]. In this paper, an adaptation of the SimpleMKL algorithm [18§]] is
used to solve the MKL problem in Algorithm [l

22 Y.-F. Li et al.

Specifically, suppose that the current C = {dj, - - - , dr}. Recall that the feature map
induced by the base kernel matrix K9t is given in (8). As in the derivation of the Sim-

pleMKL algorithm, we consider the following optimization problem that corresponds
to the MKL problem in (IT).

t=1 i=1 i=p+1
T m;
s.t Z ngdqub(x”) >p—&,i=1, . D,
t=1 \j=1
T
N Wik = p— &, i=p+1l T (12)

t=1

It is easy to verify that its dual is

1
max — o’'Ea—0
ac Al 2

1
st. 0> 2(a®y)’Kdt(a@y) t=1,...,T,

which is the same as (). Following SimpleMKL, we solve (IT)) (or, equivalently, (I12))
iteratively. First, by fixing the mixing coefficients g = [u1, - - - , | of the base kernel
matrices and we solve the SVM’s dual

max ~1(a ©y) (L, uKY + E)(@oy).

Then, by fixing o, we use the reduced gradient method to update p. These two steps
are iterated until convergence.

3.4 Finding a Violated Constraint

While the cutting plane algorithm only needs to find a violated constraint in each itera-
tion, it is customary to find the most violated constraint. In the context of (), we then

have to find the d that maximizes
T

st (Y (8
1316&2(ig=1 aza]yzy] (1/11) (1/]_]) (13)

However, this is a concave QP and so can not be solved efficiently. Note, however, that
while the use of the most violated constraint may lead to faster convergence, the cutting
plane method only requires a violated constraint at each iteration. Hence, we propose
in the following a simple and efficient method for finding a good approximation of the
most violated d.

First, note that maximizing (I3) could be rewritten as || Y7_, o §i1|2. Using the
definition of w? in (8), this can be rewritten as

T

p m;
max ;ai;di,qu(xi,j)fz a(Xi)|| - (14)

1=p+1 9

A Convex Method for Locating Regions of Interest with Multi-instance Learning 23

The key is to replace the /5-norm above with the inﬁnity-norm. For simplicity, let
p(x) = [z, 2P ... 2@] and p(x) = [V, 23, ... 2], where g is the di-
mensionality of ¢(x) and ¢ (x). Then, we have

T

max Zalzduw Xij) Z a;(X;)

i=p+1 oo
= maxqgleai(ZQZZd”x Z a:c (15)
i=p+1
The absolute sign for each inner subproblem (defined on the [th feature)
“ (l)
gleai(Zalzdwx Z ;T (16)
_p+1
can be removed by writing as the maximum of:
(O
WX 2 %Zduz Za , a7
i=p

and
+(0
max —ZQZZd,jx Z oy, (18)
j= i=p+1
Recall that each d; ; € {0, 1}. Hence, by setting the key instance of (the positive) bag

B; to be the one corresponding to arg maxi<j<m; xilg, ie.,

) l
d = 17 =argmaxi<j'<m, xg ;,,
1,7 — . ’
0 otherwise,

the maximum in (I7) can be obtained as

P
«; max CEJ Z afc (19)

‘ 1<j<m;
=1 i=p+1
Similarly, for (I8)), we set the key instance of (the positive) bag B; to be the one corre-

. . n .
sponding to arg mini<j<m, ¢, ;, 1.,

4,3

. . l
d = 1j =argmini<ji<m,; x;;/,
! 0 otherwise,

then the maximum in (I8) is obtained as

_ . +(0
Soes g, e 3 o

24 Y.-F. Li et al.

Algorithm 2. Local search for d. Here, 0bj(d) is the objective value in (I3).
1: Initialize d = argmaxyc g, ... 4,4 00i(d), v = obj(d).
2: if d = d then

3 return d;

4: end if

S5:fori=1:pdo

6 d) =dy,Vl#i.

7 for j =1:m;do

8: Setd; ; =1,d;,=0Vqg#j

9: if obj(d") > v then

10: d =d’ and v = obj(d’).

11: end if

12: end for

13: end for

14: return d;

These two candidate values (i.e., (I9) and (20)) are then compared, and the larger value
is the solution of the Ith subproblem in (I6). With g features, there are thus a total of
2g candidates for d. By evaluating the objective values for these 2¢g candidates, we can
obtain the solution of and thus the key instance assignment d.

Note that for all the positive bags, both maxi<;<m; zz(lj) and minj<j<m,; xilg can
be pre-computed. Moreover, this pre-processing takes O(g.J,) time and space only.
When a new « is obtained by SimpleMKL, the processing above takes O(2gr) time.
Therefore, d can be solved efficiently without the use of any numeric optimization
solver.

However, a deficiency of this infinity-norm approximation is that the d obtained
may not always correspond to a violated constraint. As the cutting plane algorithm only
requires the addition of a violated constraint at each iteration, a simple local search is
used to refine the d solution (Algorithm D). Specifically, we iteratively update the key
instance assignment for each positive bag, while keeping the key instance assignments
for all the other positive bags fixed. Finally, the d that leads to the largest objective
value in will be reported.

3.5 Prediction

On prediction, each instance x can be treated as a bag, and its output from the KI-SVM

is given by f(x) = Y2y e Sope g cidii(hi) d(x).

4 Experiments

In this section, we evaluate the proposed methods on both CBIR image data and bench-
mark data sets of multi-instance learning.

A Convex Method for Locating Regions of Interest with Multi-instance Learning 25

Table 1. Some statistics of the image data set

concept #images average #ROIs per image

castle 100 19.39
firework 100 27.23
mountain 100 24.93
sunset 100 2.32
waterfall 100 13.89

4.1 Locating ROI in Each Image

We employ the image database that has been used by Zhou et al. [29] in studying the
ROI detection performance of multi-instance learning methods. This database consists
of 500 COREL images from five image categories: castle, firework, mountain, sunset
and waterfall. Each category corresponds to a target concept to be retrieved. Moreover,
each image is of size 160 x 160, and is converted to the multi-instance feature represen-
tation by using the bag generator SBN [[16]. Each region (instance) in the image (bag)
is of size 20 x 20. Some of these regions are labeled manually as ROIs. A summary of
the data set is shown in Table[T]

The one-vs-rest strategy is used. In particular, a training set of 50 images is created
by randomly sampling 10 images from each of the five categories. The remaining 450
images constitute a test set. The training/test partition is randomly generated 30 times,
and the average performance is recorded.

The proposed KI-SVMs are compared with the MI-SVM [1]] and two other SVM-
based methods in multi-instance learning, namely the mi-SVM [1]] and the SVM with a
multi-instance kernel (MI-Kernel) [8]. Moreover, we further compare with three state-
of-art methods on locating the ROIs, namely, Diverse Density (DD) [15], EM-DD [26]
and CkNN-ROI [29]. For the MI-SVM, mi-SVM, MI-Kernel and KI-SVMs, the RBF
kernel is used and the parameters are selected using cross-validation on the training sets.
Experiments are performed on a PC with 2GHz Intel Xeon(R)2-Duo running Windows
XP with 4GB memory.

Following [29], we evaluate the success rate, i.e., the ratio of the number of successes
divided by the total number of relevant images. For each relevant image in the database,
if the ROI returned by the algorithm is a real RO, then it is counted as a success. For
a fair comparison, all the SVM-based methods are only allowed to identify one ROI,
which is the region in the image with maximum prediction value.

Table [2] shows the success rates (with standard deviations) of the various meth-
ods. Besides, we also show the rank of each method in terms of its success rate.
As can be seen, among all the SVM-based methods, Ins-KI-SVM achieves the
best performance on all five concepts. As for its performance comparison with
the other non-SVM type methods, Ins-KI-SVM is still always better than DD and
CEKNN-ROI, and is comparable to EM-DD. In particular, EM-DD achieves the
best performance on two out of five categories, while Ins-KI-SVM achieves the best
performance on the other three. As can be seen, the proposed Bag-KI-SVM also achieves

26 Y.-F. Li et al.

Table 2. Success rate (%) in locating ROIs. The number in parentheses is the relative rank of the
algorithm on the corresponding data set (the smaller the rank, the better the performance).

Method ‘ castle firework mountain sunset waterfall ‘ total rank
Ins-KI-SVM | 64.74 (2) 83.70(1) 76.78(2) 66.85(1) 63.41(1) 7

+6.64 +15.43 +5.46 +6.03 +10.56
Bag-KI-SVM| 60.63 (3) 54.00(4) 72.770(3) 47.78(4) 45.04(2) 16
+7.53 +22.13 +7.66 +13.25 +21.53
SVM MI-SVM | 56.63 (4) 58.04(3) 67.63(5) 33.30(6) 33.30(5) 23
methods +5.06 +20.31 +8.43 +2.67 +8.98
mi-SVM | 51.44 (6) 40.74(6) 6737(6) 32.19(7) 22.04(7) 32

+4.93 +4.24 +4.48 +1.66 +4.97
MI-Kernel | 50.52(7) 36.37(8) 65.67(7) 32.15@) 19.93(8) 38
+4.46 +7.92 +5.18 +1.67 +4.65
DD 35.89(8) 38.67(7) 68.11(4) 57.00(2) 37.78(4) 25
+15.23 +30.67 +7.54 +18.40 +29.61
non-SVM EM-DD 76.00 (1) 79.89(2) 77.22(1) 5356(3) 44333 10
methods +4.63 +19.25 +13.29 +16.81 +15.13

CkNN-ROI | 51.48(5) 43.63(5) 60.59(8) 34.59(5) 30.48(6) 29
+4.59 +12.40 +4.38 +2.57 +6.34

P T T T T T
Pl o ol ol ol ol ol

Fig. 1. ROIs located by (from left to right) DD, EM-DD, CkKNN-ROI, MI-SVM, mi-SVM, MI-
Kernel, Ins-KI-SVM and Bag-KI-SVM. Each row shows one category (top to bottom: castle,
firework, mountain, sunset and waterfall).

P

highly competitive performance with the other state-of-the-art multi-instance learn-
ing methods. Fig. [I] shows some example images with the located ROIs. It can
be observed that Ins-KI-SVM can correctly identify more ROIs than the other
methods.

Each multi-instance algorithm typically has higher confidences (i.e., higher predic-
tion value on the predicted ROI) on some bags than in others. In the next experiment,
instead of reporting one ROI in each image, we vary a threshold on the confidence so

A Convex Method for Locating Regions of Interest with Multi-instance Learning 27

a7

Success Rate
Success Rate
Success Rate
o
=

05

10 0 30 40 60 70 80 S0 u'qa 10 W 30 40 60 T0 80 S0
Thireshiold Thireshiold

firework mountain

ADD
S EMDD

5 5 A lenneroi
g E: SMISVM
g g Ami-SVM
i k - mi
s KI-5VM
@ Bag-KI-5VM
» T?\omhuld i "
sunset waterfall (legend)

Fig. 2. Success rates when different number of top-confident bags are considered

Table 3. Average wall clock time per query (in seconds)

non-SVM-based methods SVM-based methods
DD EM-DD CiNN-ROI | MI-SVM mi-SVM MI-Kernel Ins-KI-SVM Bag-KI-SVM
155.02 1591 0.003 6.03 6.39 3.04 19.47 5.57

that more than one ROIs can be detected. Fig.[2lshows how the success rate varies when
different number of top-confident bags are considered. As can be seen, the proposed
Ins-KI-SVM and Bag-KI-SVM achieve highly competitive performance. In particular,
Ins-KI-SVM is consistently better than all the other SVM-based methods across all the
settings.

Table 3] compares the average query time for the various methods. As can be seen,
DD is the slowest since it has to perform gradient descent with multiple restarts. EM-
DD is about ten times faster than DD as it involves a much smaller DD optimization at
each step. Moreover, note that both the Ins-KI-SVM and mi-SVM work at the instance
level while MI-SVM and Bag-KI-SVM work at the bag level. Therefore, MI-SVM and
Bag-KI-SVM are in general faster than Ins-KI-SVM and mi-SVM. On the other hand,
CENN-ROI is very efficient as it pre-computes the distances and only needs to compute
the citer and reference information when locating ROIs. Moreover, unlike CkNN-ROI
which uses the standard Euclidean distance, MI-Kernel needs to compute a small kernel
matrix. Therefore, MI-Kernel is slower than CKNN-ROI but is still faster than the other
SVM methods in that it only needs to solve the SVM once. However, although CkNN-
ROI and MI-Kernel are fast, their performance is much inferior to those of the proposed
KI-SVMs, as shown in Table

28 Y.-F. Li et al.

Table 4. Testing accuracy (%) on the multi-instance classification benchmark data sets

Methods Muskl Musk2 Elephant Fox Tiger
SVM-based Methods Ins-KI-SVM 84.0 84.4 835 634 829
Bag-KI-SVM 88.0 82.0 84.5 605 85.0
MI-SVM 7719 843 81.4 594 84.0
mi-SVM 874 83.6 82.0 582 789
MI-Kernel 88.0 89.3 843 60.3 84.2
Non-SVM-based Methods DD 88.0 84.0 N/A N/A NA
EM-DD 84.8 849 783 56.1 72.1

4.2 Multi-instance Classification

Finally, we evaluate the proposed KI-SVM methods on five multi-instance classifica-
tion data setﬂ that have been popularly used in the literature [11506U8128]. These in-
clude Muskl, Musk2, Elephant, Fox and Tiger. The Muskl data set contains 47 positive
and 45 negative bags, Musk2 contains 39 positive and 63 negative bags, and each of
the remaining three data sets contains 100 positive and 100 negative bags. Details of
these data sets can be found in [[1l6]. The RBF kernel is used and the parameters are
determined by cross-validation on the training set. Comparison is made with the MI-
SVM [1]], mi-SVM [1], SVM with MI-Kernel [§]], DD [15] and EM-DD [26]]. Ten-fold
cross-validation is used to measure the performanceﬁ. The average test accuracies of the
various methods are shown in Table 4l As can be seen, the performance of KI-SVMs
are competitive with all these state-of-the-art methods.

5 Conclusion

Locating ROI is an important problem in many real-world image involved applications.
In this paper, we focus on SVM-based methods, and propose two convex optimiza-
tion methods, Ins-KI-SVM and Bag-KI-SVM, for locating ROIs in images. The KI-
SVMs are efficient and based on convex relaxation of the multi-instance SVM. They
maximize the margin via generating the most violated key instance step by step, and
then combines them via efficient multiple kernel learning. Experiments show that KI-
SVMs achieve excellent performance in locating ROIs. The performance of KI-SVMs
on multi-instance classification is also competitive with other state-of-the-art methods.
The current work assumes that the bag labels are triggered by single key instances.
However, it is very likely that some labels are triggered by several instances together
instead of a single key instance. Moreover, some recent studies disclosed that in multi-
instance learning the instances should not be treated as i.i.d. samples [27/28]. To identify
key instances or key instance groups under these considerations will be studied in the
future.
% http://www.cs.columbia.edu/~andrews/mil/datasets.html
3 The accuracies of these methods were taken from their corresponding literatures. All of them
were obtained by ten-fold cross-validation.

A Convex Method for Locating Regions of Interest with Multi-instance Learning 29

Acknowledgements

This research was supported by the National Science Foundation of China (60635030,
60721002), the National High Technology Research and Development Program of
China (2007AA01Z169), the Jiangsu Science Foundation (BK2008018), Jiangsu 333
High-Level Talent Cultivation Program, the Research Grants Council of the Hong
Kong Special Administrative Region (614907), and the Singapore NTU AcRF Tier-1
Research Grant (RG15/08).

References

10.

11.

12.

13.

14.

. Andrews, S., Tsochantaridis, I., Hofmann, T.: Support vector machines for multiple-instance

learning. In: Becker, S., Thrun, S., Obermayer, K. (eds.) Advances in Neural Information
Processing Systems 15, pp. 577-584. MIT Press, Cambridge (2003)

. Bach, ER., Lanckriet, G.R.G., Jordan, M.1.: Multiple kernel learning, conic duality, and the

SMO algorithm. In: Proceedings of the 21st International Conference on Machine Learning,
Banff, Canada, pp. 41-48 (2004)

. Bi,J., Chen, Y., Wang, J.Z.: A sparse support vector machine approach to region-based im-

age categorization. In: Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, San Diego, CA, pp. 1121-1128 (2005)

. Chen, Y., Wang, J.Z.: Image categorization by learning and reasoning with regions. Journal

of Machine Learning Research 5, 913-939 (2004)

. Cheung, P.M., Kwok, J.T.: A regularization framework for multiple-instance learning. In:

Proceedings of the 23rd International Conference on Machine Learning, Pittsburgh, PA, pp.
193-200 (2006)

. Dietterich, T.G., Lathrop, R.H., Lozano-Pérez, T.: Solving the multiple instance problem

with axis-parallel rectangles. Artificial Intelligence 89(1-2), 31-71 (1997)

. Fan, R.E., Chen, P.H., Lin, C.J.: Working set selection using second order information for

training support vector machines. Journal of Machine Learning Research 6, 1889-1918
(2005)

. Girtner, T., Flach, P.A., Kowalczyk, A., Smola, A.J.: Multi-instance kernels. In: Proceedings

of the 19th International Conference on Machine Learning, Sydney, Australia, pp. 179-186
(2002)

. Hsieh, C.J., Chang, K.W., Lin, C.J., Keerthi, S.S., Sundararajan, S.: A dual coordinate de-

scent method for large-scale linear SVM. In: Proceedings of the 25th International Confer-
ence on Machine Learning, Helsinki, Finland, pp. 408-415 (2008)

Joachims, T.: Training linear SVMs in linear time. In: Proceedings to the 12th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, Philadelphia, PA, pp. 217-226
(2006)

Kelley, J.E.: The cutting plane method for solving convex programs. Journal of the
SIAM 8(4), 703-712 (1960)

Kim, S.-J., Boyd, S.: A minimax theorem with applications to machine learning, signal pro-
cessing, and finance. SIAM Journal on Optimization 19(3), 1344-1367 (2008)

Lanckriet, G.R.G., Cristianini, N., Bartlett, P., El Ghaoui, L., Jordan, M.L.: Learning the
kernel matrix with semidefinite programming. Journal of Machine Learning Research 5,
27-72 (2004)

Li, Y.-F, Tsang, L.W., Kwok, J.T., Zhou, Z.-H.: Tighter and convex maximum margin clus-
tering. In: Proceeding of the 12th International Conference on Artificial Intelligence and
Statistics, Clearwater Beach, FL, pp. 344-351 (2009)

30

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Y.-F. Li et al.

Maron, O., Lozano-Pérez, T.: A framework for multiple-instance learning. In: Jordan, M.I.,
Kearns, M.J., Solla, S.A. (eds.) Advances in Neural Information Processing Systems 10, pp.
570-576. MIT Press, Cambridge (1998)

Maron, O., Ratan, A.L.: Multiple-instance learning for natural scene classification.
In: Proceedings of the 15th International Conference on Machine Learning, Madison, WI,
pp. 341-349 (1998)

Rakotomamonjy, A., Bach, F., Canu, S., Grandvalet, Y.: More efficiency in multiple ker-
nel learning. In: Proceedings of the 24th International Conference on Machine Learning,
Corvalis, OR, pp. 775-782 (2007)

Rakotomamonjy, A., Bach, FR., Canu, S., Grandvalet, Y.: SimpleMKL. Journal of Machine
Learning Research 9, 2491-2521 (2008)

Ray, S., Craven, M.: Supervised versus multiple instance learning: an empirical comparison.
In: Proceedings of the 22nd International Conference on Machine Learning, Bonn, Germany,
pp. 697-704 (2005)

Sonnenburg, S., Ritsch, G., Schifer, C., Scholkopf, B.: Large scale multiple kernel learning.
Journal of Machine Learning Research 7, 1531-1565 (2006)

Tsang, I.W., Kwok, J.T., Cheung, P.: Core vector machines: fast SVM training on very large
data sets. Journal of Machine Learning Research 6, 363-392 (2006)

Wang, H.Y., Yang, Q., Zha, H.: Adaptive p-posterior mixture-model kernels for multiple
instance learning. In: Proceedings of the 25th International Conference on Machine Learning,
Helsinki, Finland, pp. 1136-1143 (2008)

Wang, J., Zucker, J.D.: Solving the multiple-instance problem: A lazy learning approach. In:
Proceedings of the 17th International Conference on Machine Learning, Stanford, CA, pp.
1119-1125 (2000)

Xu, X., Frank, E.: Logistic regression and boosting for labeled bags of instances. In: Dai, H.,
Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS (LNAI), vol. 3056, pp. 272-281. Springer,
Heidelberg (2004)

Xu, Z., Jin, R., King, 1., Lyu, M.R.: An extended level method for efficient multiple kernel
learning. In: Koller, D., Schuurmans, D., Bengio, Y., Bottou, L. (eds.) Advances in Neural
Information Processing Systems 21, pp. 1825-1832. MIT Press, Cambridge (2009)

Zhang, Q., Goldman, S.A.: EM-DD: An improved multiple-instance learning technique. In:
Dietterich, T.G., Becker, S., Ghahramani, Z. (eds.) Advances in Neural Information Process-
ing Systems 14, pp. 1073-1080. MIT Press, Cambridge (2002)

Zhou, Z.-H., Sun, Y.-Y., Li, Y.-F.: Multi-instance learning by treating instances as non-
i.i.d. samples. In: Proceedings of the 26th International Conference on Machine Learning,
Montreal, Canada (2009)

Zhou, Z.-H., Xu, J.-M.: On the relation between multi-instance learning and semi-supervised
learning. In: Proceedings of the 24th International Conference on Machine Learning,
Corvalis, OR, pp. 1167-1174 (2007)

Zhou, Z.-H., Xue, X.-B., Jiang, Y.: Locating regions of interest in CBIR with multi-instance
learning techniques. In: Proceedings of the 18th Australian Joint Conference on Artificial
Intelligence, Sydney, Australia, pp. 92-101 (2005)

Zhou, Z.-H., Zhang, M.-L.: Multi-instance multi-label learning with application to scene
classification. In: Scholkopf, B., Platt, J., Hofmann, T. (eds.) Advances in Neural Information
Processing Systems 19, pp. 1609-1616. MIT Press, Cambridge (2007)

Active Learning for Reward Estimation in
Inverse Reinforcement Learning*

Manuel Lopes!, Francisco Melo?, and Luis Montesano®

! Instituto de Sistemas e Robética - Instituto Superior Técnico
Lisboa, Portugal
macl@isr.ist.utl.pt
2 Carnegie Mellon University
Pittsburgh, PA, USA
fmelo@cs.cmu.edu
3 Universidad de Zaragoza
Zaragoza, Spain
lmontesa@unizar.es

Abstract. Inverse reinforcement learning addresses the general prob-
lem of recovering a reward function from samples of a policy provided by
an expert/demonstrator. In this paper, we introduce active learning for
inverse reinforcement learning. We propose an algorithm that allows the
agent to query the demonstrator for samples at specific states, instead
of relying only on samples provided at “arbitrary” states. The purpose
of our algorithm is to estimate the reward function with similar accu-
racy as other methods from the literature while reducing the amount
of policy samples required from the expert. We also discuss the use of
our algorithm in higher dimensional problems, using both Monte Carlo
and gradient methods. We present illustrative results of our algorithm in
several simulated examples of different complexities.

1 Introduction

We address the general problem of learning from demonstration. In this class of
problems, an agent is given a set of sample situation-action pairs by a demon-
strator, from which it must recover the overall demonstrated behavior and/or
corresponding task description. In this paper we are particularly interested in
recovering the task description. In other words, the agent infers the underly-
ing task that the demonstrator is trying to solve. From this task description,
the agent can then construct its own policy to solve the recovered task. One
interesting aspect of this approach is that it can accommodate for differences
between the demonstrator and the learner [I]. The learner is not just replicating
the observed trajectory, but is inferring the “reason” behind such behavior.

* Work partially supported by the ICTI and FCT, under the CMU-Portugal Program,
the (POS_C) program that includes FEDER funds and the projects PTDC/EEA-
ACR/70174/2006, (FP6-IST-004370) RobotCub and (FP7-231640) Handle.

W. Buntine et al. (Eds.): ECML PKDD 2009, Part II, LNAI 5782, pp. 31-446] 2009.
© Springer-Verlag Berlin Heidelberg 2009

32 M. Lopes, F. Melo, and L. Montesano

We formalize our problem using Markov decision processes (MDP). Within
this formalism, the demonstration consists of a set of state-action pairs and the
compact task representation takes the form of a reward function. Learning from
demonstration in MDPs has been explored in different ways in the literature
[2,BL4], and is usually known as inverse reinforcement learning. The seminal
paper [3] gives the first formal treatment of inverse reinforcement learning as
well as several algorithms to compute a reward description from a demonstration.
This problem has since been addressed in several other works [41[5L[6L78].

The general IRL problem poses several interesting challenges to be dealt with.
On one hand, the process of searching for the “right” reward function typically
requires the underlying MDP to be solved multiple times, making this process
potentially computationally expensive in large problems. Furthermore, it is un-
reasonable to assume that the desired policy is completely specified, as this is
impractical in problems with more than a few dozen states, or that there is no
noise in the demonstration. Finally, the IRL problem is ill-posed, in the sense
that there is not a single reward function that renders a given policy optimal
and also there are usually multiple optimal policies for the same reward func-
tion [9]. This means that, even if the desired policy is completely specified to
the learner, the problem remains ill-posed, as additional criteria are necessary
to disambiguate between multiple rewards yielding the same optimal policy.

Probabilistic sample-based approaches to the IRL problem [45l[6] partly ad-
dress these issues, alleviating the requirement for complete and correct demon-
stration while restricting the set of possible solution rewards. These approaches
allow the solution to IRL to be “better conditioned” by increasing the size of
the demonstration and are robust to suboptimal actions in the demonstration].
However, this will typically require a large amount of data (samples) for a good
estimate of the reward function to be recovered.

In this paper we propose the use of active learning to partly mitigate the
need for large amounts of data during learning. We adopt a Bayesian approach
to IRL, following [6]. The idea behind active learning is to reduce the data
requirements of learning algorithms by actively selecting potentially informative
samples, in contrast with random sampling from a predefined distribution [I0].
In our case we use this idea to reduce the number of samples required from the
expert, and only ask the expert to demonstrate the desired behavior at the most
informative states. We compute the posterior distribution over possible reward
functions and use this information to actively select the states whose action the
expert should provide. Experimental results show that our approach generally
reduces the amount of data required to learn the reward function. Also, it is
more adequate in terms of interaction with the expert, as it requires the expert
to illustrate the desired behavior on fewer instances.

! By considering demonstrations in which suboptimal actions can also be sampled,
the learner is provided with a ranking of actions instead of just an indication of
the optimal actions. Demonstrations are thus “more informative”, enforcing a more
constrained set of possible reward functions than in the general case where only
optimal policies are provided. This, in turn, simplifies the search problem.

Active Learning for Reward Estimation in IRL 33

2 Background

In this section we review some background material on MDPs and inverse rein-
forcement learning.

2.1 Markov Decision Processes

A Markov decision process (MDP) is a tuple (X, A, P, r,v), where X represents
the finite state-space, A the finite action space, P the transition probabilities, r
the reward function and is v a discount factor. P, (x,y) denotes the probability
of transitioning from state = to state y when action a is taken. The purpose of
the agent is to choose the action sequence {A;} maximizing

o0
V(z)=E thr(Xt7At) | Xo ==

t=0
A policy is a mapping © : X x A — [0,1], where mw(x,a) is the probability
of choosing action a € A in state x € X. Associated with any such policy
there is a value-function V™, V7™ (z) = Ex [> 20 v'r(Xs, Ar) | Xo = «] ,where
the expectation is now taken with respect to policy 7. For any given MDP there
exists at least one policy 7* such that

VT (x) > V™ (x).

Any such policy is an optimal policy for that MDP and the corresponding value
function is denoted by V*.
Given any policy 7, the following recursion holds

VT (z) =rx(x) +7 Y Prla,y)V"(y)
yeX

where Pr(z,y) = >, ca7(®,a)Pu(z,y) and r(z) = >, 4 m(z,a)r(x,a). For
the particular case of the optimal policy 7*, the above recursion becomes

V() = max |r(z,0) +7 Y Pa(z,9)V"(y)
yeX

We also define the Q-function associated with a policy 7 as
Q" (w,a) = r(2,0) +7 3 Pula,)V (y)
yeX

Sometimes, it will be convenient to write the above expressions using vector
notation, leading to the expressions

V™ =r; ++4P, V" Q. =r,+vP, V" (1a)
V* = maj‘([ra + fyPaV*] Q: =r, + ’YPaV*’ (1b)
ac

where r, and Q, denote the ath columns of matrices r and Q, respectively.

34 M. Lopes, F. Melo, and L. Montesano

2.2 Bayesian Inverse Reinforcement Learning

As seen above, an MDP describes a sequential decision making problem in which
an agent must choose its actions so as to maximize the total discounted reward.
In this sense, the reward function in an MDP encodes the task of the agent.

Inverse reinforcement learning (IRL) deals with the problem of recovering the
task representation (i.e., the reward function) given a demonstration of the task
to be performed (i.e., the desired policy). In this paper, similarly to [6], IRL is
cast as an inference problem, in which the agent is provided with a noisy sample
of the desired policy from which it must estimate a reward function explaining
the policy.

Our working assumption is that there is one reward function, 7¢arget, that
the demonstrator wants the agent to maximize. We denote the corresponding
optimal Q-function by QF,, .- Given this reward function, the demonstrator will
choose an action a € A in state x € X with probability

enQ:argct (z,a)

ZbEA enQ:arget (Ivb) ’

(2)

P [Ademo =a | Xdemo = 7, rtarget] =

where 7 is a non-negative constant.
We consider the demonstration as a sequence D of state-action pairs,

D ={(z1,a1), (z2,0a2),...,(Tn,an)},

From (@), for any given r-function, the likelihood of a pair (z,a) € X x A is
given by
(nQ; (.a)

S peq €MD)

where we denoted by Q% (z,a) the optimal Q-function associated with reward
r. The constant 1 can be seen as a confidence parameter that translates the
confidence of the agent on the demonstration. Note that, according to the above
likelihood model, evaluating the likelihood of a state-action pair given a reward
r requires the computation of Q. This can be done, for example, using dynamic
programming, which requires knowledge of the transition probabilities P. In the
remainder of the paper, we assume these transtion probabilities are known.

Assuming independence between the state-action pairs in the demonstration,
the likelihood of the demonstration D is

L.(D)= [Lelxia).

(zi,a;)€D

L.(z,a) =P|(x,a) | r] =

Given a prior distribution P [r] over the space of possible reward functions, we
have
P[r| D] x L. (D)P[r].

The posterior distribution takes into account the demonstration and prior in-
formation and will provide the information used to actively select samples to

Active Learning for Reward Estimation in IRL 35

be included in the demonstration. From this distribution we can extract several
policies and rewards, for instance the mean policy 7mp:

mp(z,a) = /7'(7«(.%'7 a)P [r | D] dr, (3)
or the maxzimum a posteriori

r* =maxP[r | D], 4)
We conclude this section by describing two methods used to address the IRL
problem within this Bayesian framework.

2.3 Two Methods for Bayesian IRL

So far, we cast the IRL problem as an inference problem. In the continuation
we describe two methods to address this inference problem, one that directly
approximates the maximum given in ([) and another that estimates the complete
posterior distribution P [r | D] .

Gradient-based IRL. The first approach considers a uniform prior over the
space of possible rewards. This means that maximizing P [r | D] is equivalent
to maximizing the likelihood L, (D). To this purpose, we implement a gradient-
ascent algorithm on the space of rewards, taking advantage of the structure of
the underlying MDP. A similar approach has been adopted in [4].

We start by writing the log-likelihood of the demonstration given r:

A(D) = Y log(Lp(zi,ai)). (5)

(zi,a;)ED
We can now write
1 OL,(z; az)
VA (D = ’ 6
[()]ma Z L ((L‘Z’al) 67'1@ ()
(zi,a;)ED

To compute V., L,.(x,a), we observe that

dL,
dQ*

Computing the derivative of L, with respect to each component of Q* yields

dQ*

V,Ly(x,a) = e (z,a). (7)

(x,a)

dL,

aQ*, (x,a) =nL,(x,a) (6yb(x7 a) — L, (y, b)éy(m))7

with 2,y € X and a,b € A. In the above expression, §,(v) denotes the Kronecker
delta function.

36 M. Lopes, F. Melo, and L. Montesano

To compute df:, we recall that Q = ry +yPo(I—yPr) " Ir «. We also note
that, except for those points in reward space where the policy is not differentiable
with respect to r — corresponding to situations in which a small change in a
particular component of the reward function induces a change in a component
of the policy, — the policy remains unchanged under a small variation in the
reward function. We thus consider the approximation jTQ (z,a) ~ gg; (z,a)
that ignores the dependence of the policy on r. The gradlent estimate thus
obtained corresponds to the actual gradient except near those reward functions
on which the policy is not differentiabld?. Considering the above approximation,

and letting T =1 — vP,+, we have
0Q*

Or

(z,a) = b6,u(z,a) + Z Po(z,y) T Yy, 2)7* (2, u), (8)
yeX

with z,y,z € X and a,u € A.

Putting everything together, the method essentially proceeds by considering
some initial estimate r¢o and then use the gradient computation outlined above
to perform the update

iyl =1 + Olth/l” (D)

MCMC IRL. The second approach, proposed in [6], uses the Monte-Carlo
Markov chain (MCMC) algorithm to approximate the posterior P [r | D]. The
MCMC algorithm thus generates a set of sample reward functions, {ri,...,rny},
distributed according to the target distribution, P [r | D]. Then,

P[r| D]~ NZ(STTZ (9)

In the MCMC algorithm, these samples correspond to a sample trajectory of
a Markov chain designed so that its invariant distribution matches the target
distribution, P [r | D] [L1].

We implement PoLIcYWALK, an MCMC algorithm described in [6]. In this
particular variation, the reward space is discretized into a uniform grid and
the MCMC samples jump between neighboring nodes in this grid (see Fig. [II).
In other words, a new sample is obtained from the current sample to one of
the neighboring nodes in the grid. The new sample is accepted according to the
ratio between the posterior probabilities of the current and new samples. Reward
functions with higher (posterior) probability are thus selected more often than
those with lower probability, and the method is guaranteed to sample according
to the true posterior distribution.

A problem with this method is that, for large-dimensional problems, it gen-
erally requires a large number of sample rewards to ensure that the estimate
of P[r | D] is accurately represented by the sample set. We refer to the result

2 Tt is noteworthy that Rademacher’s theorem guarantees that the set of such reward
functions is null-measured. We refer to [4] for further details.

Active Learning for Reward Estimation in IRL 37

Fig. 1. Representation of the PoLiIcYWALK variation of MCMC. We refer to [6] for
details.

in [6], in which the number of samples N required to ensure an estimation error
bounded by & must be O(M?1og(1/¢)), where M is the dimension of the reward
function. This means that the number of samples grows (roughly) quadratically
with the dimension of the reward space. Furthermore, this result assumes that
[I"lloc < 1/M. As noted in [6], this condition on 7 can be ensured by rescaling
the reward function, which does not affect the optimal policy. It does, however,
affect the likelihood function and, consequently, P [| D]. Whenever such rescal-
ing is not possible or convenient and the rewards can only be bounded by some
value C, the previous lower-bound on the sample size roughly deteriorates to
O(M®e? log(1/¢)), which quickly becomes prohibitive for large M.

3 Active Learning for Reward Estimation

In the previous section we discussed two possible (Bayesian) approaches to the
IRL problem. In these approaches, the agent is provided with a demonstration
D, cousisting of pairs (z;,a;) of states and corresponding actions. From this
demonstration the agent must identify the underlying target task.

In the active learning setting, we now assume that, after some initial batch
of data D, the agent has the possibility to query the expert for the action at
particular states chosen by the agent. In this section we propose a criterion to
select such states and discuss how this can be used within the IRL framework.
We also discuss on-line versions of the methods in the previous section that are
able to cope with the successive additional data provided by the expert as a
result of the agent’s queries.

3.1 Active Sampling

The active learning strategies presented below rely on the uncertainty about the
parameter to be estimated to select new data points. As discussed in Section [2]
the parameter to be estimated in the IRL setting is the task description, i.e., the
reward function. Unfortunately, the relation between rewards and policies is not
one-to-one, making active learning in this setting more complex than in other
settings.

This is easily seen by thinking of a scenario in which all possible reward func-
tions give rise to the same policy in a given state x (this can be the case if there is

38 M. Lopes, F. Melo, and L. Montesano

only one action available in state x). This means that a large uncertainty in the
reward function does not necessarily translate into uncertainty in terms of which
action to choose in state x. Therefore, in some scenarios it may not be possible
to completely disambiguate the reward function behind the demonstration.

In our setting, we have access to an estimate of the posterior distribution
over the space of possible reward functions, P [r | D]. From this distribution, the
agent should be able to choose a state and query the expert about the corre-
sponding action in such a way that the additional sample is as useful /informative
as possible. Notice that the posterior distribution, P [r | D], does not differenti-
ate between states (it is a distribution over functions) and, as such, a standard
variance criterion cannot be used directly.

We are interested in finding a criterion to choose the states to query the
demonstrator so as to recover the correct reward (or, at least, the optimal target
behavior) while requiring significantly less data than if the agent was provided
with randomly chosen state-action pairs. To this purpose, we define the set
Raza(p) as the set of reward functions r such that 7, (z,a) = p. Now for each pair
(x,a) € X x A, the distribution P [r | D] in turn induces a distribution over the
possible values p for 7(x, a). This distribution can be characterized by means of
the following density

fiza(p) =P [m(z,a) = p| D] = P[r € Rea(p) | DI (10)

Using the above distribution, the agent can now query the demonstrator about
the correct action in states where the uncertainty on the policy is larger, i.e., in
states where i, exhibits larger “spread”.

One possibility is to rely on some measure of entropy associated with [iyg.
Given that i, corresponds to a continuous distribution, the appropriate con-
cept is that of differential entropy. Unfortunately, as is well-known, differential
entropy as a measure of uncertainty does not exhibit the same appealing prop-
erties as its discrete counterpart. To tackle this difficulty, we simply consider a
partition of the interval I = [0,1] into K subintervals Iy, with I, = (1, F'],
k=0,...,K—1,and Iy = [0,1/K]. We can now define a new discrete probability
distribution

foalk) =P [r(e,0) € 1 | D = [paalo)dp. k=100 K.

Iy,

The distribution p,, thus defined is a discretized version of the density in (I0),
for which we can compute the associated (Shannon) entropy, H (f1zq). As such,
for each state x € X, we define the mean entropy as

H(I) = |.il| ZH(,Uza) = |jl| Zk,uma(k) log,um(k)

and let the agent query the expert about the action to be taken at the state x*
given by

r* = argmax H(z),
zeX

Active Learning for Reward Estimation in IRL 39
with ties broken arbitrarily. Given the estimate (@) for P [r | D], this yields
1
poa(k) = ZZ: Ly, (mi(x, a)), (11)

where 7; is the policy associated with the ith reward sampled in the MC method
and I, is the indicator function for the set Ij,. This finally yields

> I, (mi(w,a)) log > I (mi(z, @)

H(z) ~ — N

1

|A|N i,a,k

It is worth mentioning that, in the context of IRL, there are two main sources
of uncertainty in recovering the reward function. One depends on the natural
ambiguity of the problem: for any particular policy, there are typically multiple
reward functions that solve the IRL problem. This type of ambiguity appear
even with perfect knowledge of the policy, and is therefore independent of the
particular process by which states are sampled. The other source of uncertainty
arises from the fact that the policy is not accurately specified in certain states.
This class of ambiguity can be addressed by sampling these states until the policy
is properly specified. Our entropy-based criterion does precisely this.

3.2 Active IRL

We conclude this section by describing how the active sampling strategy above
can be combined with the IRL methods in Section

Algorithm 1. General active IRL algorithm
Requlre Initial demo D
: Estimate P [r | D] using general MC algorithm
for all z € X do
Compute H(z)
end for
Query action for * = arg max, H(x)
Add new sample to D
Return to (Il

The fundamental idea is simply to use the data from an initial demonstration
to compute a first posterior P [r | D], use this distribution to query further states,
recompute P [r | D], and so on. This yields the general algorithm summarized
in Algorithm [l We note that running MCMC and recompute P [r | D] at each
iteration is very time consuming, even more so in large-dimensional problems.
For efficiency, step[Il can take advantage of several optimizations of MCMC such
as sequential and hybrid monte-carlo.

In very large dimensional spaces, however, the MC-based approach becomes
computationally too expensive. We thus propose an approximation to the gen-
eral Algorithm [I] that uses the gradient-based algorithm in Section [Z.3] The idea

40 M. Lopes, F. Melo, and L. Montesano

Algorithm 2. Active gradient-based IRL algorithm

Requ1re Initial demo D
: Compute r* as in @)
Estimate P [r | D] in a neighborhood of r*
for all z € X do
Compute H(z)
end for
Query action for z* = arg max, H ()
Add new sample to D
Return to[d]

behind this method is to replace steplin Algorithm[Il by two steps, as seen in Al-
gorithm [2l The algorithm thus proceeds by computing the maximum-likelihood
estimate r* as described in Section 23] It then uses Monte-Carlo sampling to
approximate P [r | D] in a neighborhood B:(r*) of r* and uses this estimate to
compute H(z) as in Algorithm [II The principle behind this second approach
is that the policy m.~ should provide a reasonable approximation to the tar-
get policy. Therefore, the algorithm can focus on estimating P [r | D] only in a
neighborhood of 7*. As expected, this significantly reduces the computational
requirements of the algorithm.

It is worth mentioning that the first method, relying on standard MC sam-
pling, eventually converges to the true posterior distribution as the number of
samples goes to infinity. The second method first reaches a local maximum of
the posterior and then only estimates the posterior around that point. If the
posterior is unimodal, it is expectable that the second method brings significant
advantages in computational terms; however, if the posterior is multimodal, this
local approach might not be able properly represent the posterior distribution. In
any case, as discussed in Section [2.3] in high-dimensional problems, the MCMC
method requires a prohibitive amount of samples to provide accurate estimates,
rendering such approach inviable.

4 Simulations

We now illustrate the application of the proposed algorithms in several problems
of varying complexity.

4.1 Finding the Maximum of a Quadratic Function

We start by a simple problem of finding the maximum of a quadratic function.
Such a problem can be described by the MDP in Fig. 2] where each state cor-
responds to a discrete value between —1 and 1. The state-space thus consists of
21 states and 2 actions that we denote a; and a,. Each action moves the agent
deterministically to the contiguous state in the corresponding direction (a; to the
left, a, to the right). For simplicity, we consider a reward function parameterized
using a two-dimensional parameter vector 6, yielding

Active Learning for Reward Estimation in IRL 41
23 (¢28 Qr Qy ar a,
—
o OC) (o Coy "ooe (03) (09) (10)0 @
—>
a; ap a; aj ap aj
Fig. 2. Simple MDP where the agent must find the maximum of a function

r(z) = 01(z — 62)%,

corresponding to a quadratic function with a (double) zero at 62 and concavity
given by 6#,. For the MDP thus defined, the optimal policy either moves the
agent toward the state in which the maximum is attained (if #; < 0) or toward
one of the states +1 (if §; > 0).

For our IRL problem, we consider the reward function, r(z) = —(z — 0.15)2,
for which the agent should learn the parameter 8 from a demonstration. The
initial demonstration consisted on the optimal actions for the extreme states:

D ={(-1.0,a,),(-0.9,a,),(—0.8,a,),(0.8,a;),(0.9,a;), (1.0, a;) }

and immediately establishes that 6, < 0.

Figure Bl presents the results obtained using Algorithm [Il with the confidence
parameter in the likelyhood function set to 7 = 500 and N = 400 in the MCMC
estimation. The plots on the left represent the reward functions sampled in the
MCMC step of the algorithm and the plots on the right the corresponding aver-
age policy mp. In the depicted run, the queried states were x = 0 at iteration 1,
x = 0.3 at iteration 2, x = 0.1 at iteration 3, and x = 0.2 at iteration 4. It is
clear from the first iteration that the initial demonstration only allows the agent
to place 62 somewhere in the interval [—0.8,0.8] (note the spread in the sampled
reward functions). Subsequent iterations show the distribution to concentrate
on the true value of 5 (visible in the fact that the sampled rewards all exhibit
a peak around the true value). Also, the policy clearly converges to the optimal
policy in iteration 5 and the corresponding variance decreases to 0.

We conclude by noting that our algorithm is roughly implementing the bisec-
tion method, known to be an efficient method to determine the maximum of a
function. This toy example provides a first illustration of our active IRL algo-
rithm at work and the evolution of the posterior distributions over r along the
iterations of the algorithm.

4.2 Puddle World

We now illustrate the application of our algorithm in a more complex prob-
lem. This problem is known in the reinforcement learning literature as the pud-
dle world. The puddle world consists in a continuous-state MDP in which an
agentmust reach a goal region while avoiding a penalty region (the “puddle”), as

42 M. Lopes, F. Melo, and L. Montesano

1.0 . -

0.8+

0.7+

0.6

0.5

0.4

031

e

.0 L L L L L
-1.0 -08 -06 -04 -0.2 0 0.

1.0 —r —
09} _

0.8+

- L
04 06 08 1

0.7+

0.6+

0.5+

0.4t

0.3+

0.21

0.1+

0.0 L L L L L L L —
-10 -08 -06 -04 -02 0 02 04 06 08 1

10 —

0.9F

0.8

0.7

0.6

0.5

0.4

0.3

0.2F

0.1

—0.20 LB AR
-1.0 -08 —06 —04 —02 00 02 04 06 08 1.0

0.0 L L L L L L
-1.0 -08 -06 -04 -0.2 0 02 04 06 08 1

Fig. 3. Sample iterations (1°°, 2°¢ and 5") of Algorithm [l in the problem of Fig.
On the left are samples obtained from P [r | D] and on the right the corresponding 7p,
showing the mean the and variance of the optimal action for each state (1- move right,
0- move left).

depicted in Fig. [This example illustrates our active IRL algorithm at work in
a more complex problem that can still visualized.

The MDP has a continuous state-space, consisting of the unit square, and
a discrete action-space that includes the four actions N (north), S (south), F
(east), and W (west). Each action moves the agent 0.05 in the corresponding
direction. Since the MDP has a continuous state-space, exact solution methods
are not available. We adopt a batch approximate RL method known as fitted

Active Learning for Reward Estimation in IRL 43

Penalty zone & 5
(puddle) N
- 4 Goal 3

1
I 2

I
! 1

1
! 0

!
/ -1
/ 1.0

’
Agent - -
o — — —
(a)

Fig. 4. Representation of the puddle world and a possible value function

Q-iteration that essentially samples the underlying MDP and uses regression to
approximate the optimal @Q-function [I2]. The fact that we must resort to func-
tion approximation implies that the exact optimal policy cannot be recovered
but only an approximation thereof. This will somewhat impact the ability of our
algorithm to properly estimate the posterior P [r | D].

In the puddle world, the reward function can be represented as

T(I) = Tgoal exp((x - H’goal)2/a) + T'puddle eXp((X - iu’puddle)2/a)v

where 7goa1 and 7puddle represent the reward and maximum penalty received in
the goal position and in the center of the puddle, respectively. The parameters
Hgoar and piy, 441 define the location of the goal and puddle, respectively. The
parameter « is fixed a priori and roughly defines the width of both regions. For
our IRL problem, the agent should learn the parameters fy,a1, Hpuddies Tgoal, and
Tpuddle from a demonstration.

Figure Bl presents two sample iterations of Algorithm [l To solve the MDP we
ran fitted Q-iteration with a batch of 3,200 sample transitions. We ran MCMC
with N = 800. Notice that after the first iteration (using the initial demonstra-
tion), the MCMC samples are already spread around the true parameters. At
each iteration, the algorithm is allowed to query the expert in 10 states. In the
depicted run, the algorithm queried states around the goal region — to pinpoint
the goal region — and around the puddle — to pinpoint the puddle region.

4.3 Random Scenarios

We now illustrate the application of our approach in random scenarios with dif-
ferent complexity. We also discuss the scalability of our algorithm and statistical
significance of the results.

These general MDPs in this section consist of squared grid-worlds with varying
number of states. At each state, the agent has 4 actions available (N, S, E, W),
that moves the agent in the corresponding direction. We divide our results in
two classes, corresponding to parameterized rewards and general rewards.

44 M. Lopes, F. Melo, and L. Montesano

o o o Bt
08t [y e
o L
0.6 - 0.6 ; :
)) -
04l 04l
. o
02} , 02}
o
00t , 00t
o 6 o o o
—02| ~02
6 o o o o o o 6 o o o o o o o
—0a | Iy
o o o
~0.6 | Iy
o o o o o
—0s | 1 —os|
o o o
g5 =05 =01 =6z o0 oz 04 06 05 Lo Lo 08 —05 —04 =0z 00 02z 04 06 05 10
(a) Iteration 1. (b) Iteration 3.

Fig.5. Two sample iterations of Algorithm [Il The red stars () represent the target
values for the parameters p,,,; and g, 4q.- The green and blue dots (-) represents the
sampled posterior distribution over possible value of these parameters. The circles (o)
denotes the states included in the demonstration.

Parameterized Rewards. We start by considering a simple parameterization
of the reward function of the form 6, (z). Therefore, the only parameter to be
learnt is the position of the goal state z* in the grid.

We applied Algorithm 2] to a 15 x 15 grid-world. The estimation in step 2] of
the algorithm uses N = 15. At each iteration, the agent is allowed to query the
expert in 10 states. Figure shows the error between the estimated policy
and the target policy as a function of the size of the demonstration, averaged
over 50 independent trials. Our approach clearly outperforms random sampling,
attaining the same error while requiring about 1/3 of the samples.

We conclude by noting that we chose to run Algorithm [2]in this scenarion since
(as discussed in Section[2.3] the MCMC component in Algorithm [Mdoes not scale
well with the number of states. Indeed, for a similar scenario with 100 states,
the MCMC-based algorithm required around 12,000 MC samples, for each of
which an MDP must be solved. In that same 100-state scenarion, Algorithm
required around 50 gradient steps and then 20 MC samples to compute the local
approximation of the posterior, thus requiring a total of 70 MDPs to be solved.

Non-parameterized reward. We now consider a more general situation, in
which the reward function is a vector r in the |X|-dimensional unit square. In
this case, the reward value is merely a real-valued function r : X — [0;1], and
the problem is significantly more complex than in the previous case.

We applied Algorithm Pl to a 10 x 10 grid-world. The estimation in step [2] of
the algorithm uses N = 40. At each iteration, the agent is allowed to query the
expert in 2 states. Figure shows the error between the estimated policy and
the target policy as a function of the size of the demonstration, averaged over 50
independent trials. In this case, it is clear that there is no apparent advantage
in using the active learning approach. Whatever small advantage there may be
is clearly outweighed by the added computational cost.

Active Learning for Reward Estimation in IRL 45

Policy Loss vs # Samples Policy Loss vs # Samples

. RndomS mp
AtiveS mp

.. Rndom S mp

50 100 150 (! ' ' 0 ' " 100

Fig. 6. Performance of Algorithm [2] comparing active sampling vs. random sampling
as a function of the demonstration size. @ Results with parameterized rewards in a
15 x 15 grid-world. @ Results with general (non-parameterized) rewards in a 10 x 10
grid-world.

These results illustrate, in a sense, some of the issues already discussed in
Section Bl When considering a non-parameterized form for the reward function
and a prior over possible rewards that is state-wise independent, there is not
enough structure in the problem to generalize the observed policy from observed
states to non-observed states. In fact, the space of general (non-parameterized)
reward functions has enough degrees of freedom to yield any possible policy. In
this case, any sampling criterion will, at best, provide only a mild advantage
over uniform sampling. On the other hand, when using parameterized rewards
or a prior that weights positively ties between the reward in different states
(e.g., an Ising prior [6]), the policy in some states restricts the possible policies
on other states. In this case, sampling certain states can certainly contribute to
disambiguate the policy in other states, bringing significant advantages to an
active sampling approach over a uniform sampling approach.

5 Conclusions

In this paper we introduced the first active learning algorithm explicitly designed
to estimate rewards from a noisy and sampled demonstration of an unknown
optimal policy. We used a full Bayesian approach and estimate the posterior
probability of each action in each state, given the demonstration. By measuring
the state-wise entropy in this distribution, the algorithm is able to select the po-
tentially most informative state to be queried to the expert. This is particularly
important when the cost of providing a demonstration is high.

As discussed in Section [l our results indicate that the effectiveness of active
learning in the described IRL setting may greatly depend on the prior knowl-
edge about the reward function or the policy. In particular, when considering

46 M. Lopes, F. Melo, and L. Montesano

parameterized policies or priors that introduce relations (in terms of rewards)
between different states, our approach seems to lead to encouraging results. In
the general (non-parameterized) case, or when the prior “decorrelates” the re-
ward in different states, we do not expect active learning to bring a significant
advantage. We are currently conducting further experiments to gain a clearer
understanding on this particular issue.

We conclude by noting that active learning has been widely applied to numer-
ous settings distinct from IRL. In some of these settings there are even theoretical
results that state the improvements or lack thereof arising from considering ac-
tive sampling instead of random sampling [10]. To the extent of our knowledge,
ours is the first paper in which active learning is applied within the context
of IRL. As such, many new avenues of research naturally appear. In particular,
even if the ambiguities inherent to IRL problems make it somewhat distinct from
other settings, we believe that it should be possible (at least in some problems)
to theoretically asses the usefulness of active learning in IRL.

References

1. Lopes, M., Melo, F., Kenward, B., Santos-Victor, J.: A computational model of
social-learning mechanisms. Adaptive Behavior (to appear, 2009)

2. Melo, F., Lopes, M., Santos-Victor, J., Ribeiro, M.: A unified framework for
imitation-like behaviors. In: Proc. 4th Int. Symp. Imitation in Animals and Ar-
tifacts (2007)

3. Ng, A., Russell, S.: Algorithms for inverse reinforcement learning. In: Proc. 17th
Int. Conf. Machine Learning, pp. 663-670 (2000)

4. Neu, G., Szepesvari, C.: Apprenticeship learning using inverse reinforcement learn-
ing and gradient methods. In: Proc. 23rd Conf. Uncertainty in Artificial Intelli-
gence, pp. 295-302 (2007)

5. Abbeel, P., Ng, A.: Apprenticeship learning via inverse reinforcement learning. In:
Proc. 21st Int. Conf. Machine Learning, pp. 1-8 (2004)

6. Ramachandran, D., Amir, E.: Bayesian inverse reinforcement learning. In: Proc.
20th Int. Joint Conf. Artificial Intelligence, pp. 2586—2591 (2007)

7. Syed, U., Schapire, R., Bowling, M.: Apprenticeship learning using linear program-
ming. In: Proc. 25th Int. Conf. Machine Learning, pp. 1032-1039 (2008)

8. Ziebart, B., Maas, A., Bagnell, J., Dey, A.: Maximum entropy inverse reinforcement
learning. In: Proc. 23rd AAAI Conf. Artificial Intelligence, pp. 1433-1438 (2008)

9. Ng, A.Y., Harada, D., Russell, S.: Policy invariance under reward transformations:
Theory and application to reward shaping. In: Proc. 16th Int. Conf. Machine Learn-
ing, pp. 278-287 (1999)

10. Settles, B.: Active learning literature survey. CS Tech. Rep. 1648, Univ. Wisconsin-
Madison (2009)

11. Andrieu, C., de Freitas, N., Doucet, A., Jordan, M.: An introduction to MCMC
for machine learning. Machine Learning 50, 5-43 (2003)

12. Timmer, S., Riedmiller, M.: Fitted Q-iteration with CMACs. In: Int. Symp. Ap-
proximate Dynamic Programming and Reinforcement Learning (2007)

Simulated Iterative Classification
A New Learning Procedure for Graph Labeling

Francis Maes, Stéphane Peters, Ludovic Denoyer, and Patrick Gallinari

LIP6 - University Pierre et Marie Curie
104 avenue du Président Kennedy, Paris, France

Abstract. Collective classification refers to the classification of inter-
linked and relational objects described as nodes in a graph. The Itera-
tive Classification Algorithm (ICA) is a simple, efficient and widely used
method to solve this problem. It is representative of a family of methods
for which inference proceeds as an iterative process: at each step, nodes
of the graph are classified according to the current predicted labels of
their neighbors. We show that learning in this class of models suffers
from a training bias. We propose a new family of methods, called Simu-
lated ICA, which helps reducing this training bias by simulating inference
during learning. Several variants of the method are introduced. They are
both simple, efficient and scale well. Experiments performed on a series
of 7 datasets show that the proposed methods outperform representative
state-of-the-art algorithms while keeping a low complexity.

1 Introduction

A fundamental assumption that underlies most existing work in machine learn-
ing is that data is independently and identically distributed (i.i.d.). Web pages
classification, WebSpam detection, community identification in social networks
and peer-to-peer files analysis are typical applications where data is naturally
organized according to a graph structure. In these applications, the elements to
classify (Web pages or users of files for example) are interdependent: the label of
one element may have a direct influence on other labels in the graph. Problems
involving the classification of graph nodes are generally known as graph labeling
problems [5] or as collective classification problems [II]. Due to the irrelevancy
of the 4.i.d. assumption, new models have been proposed recently to perform
machine learning on such networked data.

Different variants of the graph labeling problem have been investigated. For
inductive graph labeling, training and test are performed in distinct steps. The
goal here is to learn classifiers able to label any node in new graphs or sub-
graphs. This is an extension of the classical supervised classification task to
interdependent data. Typical applications include email classification, region or
object labeling in images or sequence labeling. For transductive graph labeling,
node labeling is performed in a single step where both labeled and unlabeled
data are considered simultaneously. This corresponds to applications like Web-
Spam detection or social network analysis. Note that some problems like web

W. Buntine et al. (Eds.): ECML PKDD 2009, Part II, LNAI 5782, pp. 47-62] 2009.
(© Springer-Verlag Berlin Heidelberg 2009

48 F. Maes et al.

Fig. 1. Two examples of graph labeling problems. Left: categorization of scientific
articles related by citation links. Right: classification of Web pages into relevant and
non-relevant pages for a given query.

page classification may be handled under either the inductive or the transductive
settings. In this article, we focus on the inductive graph labeling problem and
we will use the name collective classification for this setting.

Graph labeling is often a hard problem and performing exact inference is
generally prohibitive. Practical algorithms then rely on approximate inference
methods. Many collective classification algorithms make use of local classifiers.
Inference then amounts at iteratively labeling nodes: each iteration takes into ac-
count labels predicted at preceding steps. Several such local classifier techniques
have been proposed [I6/15]. Among them, the Iterative Classification Algorithm
(ICA) has received a growing interest in the past years. It has been shown to be
more robust and accurate than most alternative solutions, it is simple to under-
stand and scales well w.r.t. the size of data, making it possible to label graphs
containing thousands to millions of nodes.

Like most local collective classification methods, training and inference for
ICA are performed differently. For the former, a local classifier is trained clas-
sically, using as inputs some node characteristics and its correct neighboring
labels. Inference, on the opposite, is an iterative process, where the node labels
are repeatedly re-estimated, given the current estimated labels of neighbors.
Prediction errors on labels may then propagate during the iterations and the
classifier will then have difficulties to generalize correctly. This is mainly caused
by the bias between training — which assume perfect labels for neighboring nodes
— and inference — which may iterate over wrong labels. In this paper, we build
on this idea and introduce methods for reducing this training bias. The Sim-
ulated Iterative Classification (SICA) models proposed here introduce different
ways to simulate the inference process during learning. The local classifier be-
ing trained on situations close to test ones, this will allow reducing the bias
of classical ICA. We present different variants of this SiCA algorithm. We also
introduce the SIcA™ algorithm with pass-dependent classifiers, which relies on
the idea of using a different local classifier for each iteration of the algorithm.

Simulated Iterative Classification 49

The underlying idea of this last model is similar to the one developed for the
Stacked Learning method [8], however it proceeds differently, replacing the cross
validation steps used for stacked learning by inference simulation. This family
of techniques provides computationally efficient algorithms which outperform
many other methods and which can be used for large scale graph labeling.

The contributions of this paper are twofold. Firstly, we propose a new col-
lective classification algorithm. Its inference procedure is similar to ICA. Its
learning procedure incorporates inference simulation avoiding the training bias
of ICA. The SicA model has the same low inference complexity than ICA but
provides higher performance. Several variants of the SICA method are introduced
and compared. Secondly, we present a set of experiments on seven graph labeling
datasets showing the efficiency of our approach.

The paper is structured as follows. Section [2lis an overview of related work.
Section [3] defines the graph labeling problem formally and describes ICA.
Section Ml introduces our contribution: Simulated ICA. We demonstrate the ef-
ficiency of the proposed approach with several experiments and comparisons
with state-of-the-art models in Section Bl Finally, we conclude and discuss the
generality of the proposed approach in Section

2 Related Work

Two main directions have been developed independently for learning to label
graphs.

The first one has been proposed for semi-supervised learning and is sometimes
called learning on data manifolds [20]. The graph here reflects the intrinsic struc-
ture of the data and describes local constraints among data points [19]. Graph
labeling is formalized as the minimization of an objective function over both
labeled and unlabeled nodes. This objective function aims at finding a classifier
corresponding to a good balance between an error minimization term defined on
the labeled nodes and a local smoothness constraint which imposes close scores
for connected nodes. All these methods rely on transductive learning. Different
type of models have been developed along this idea:

— Models based on label propogation [212] only operate on the node labels
without considering any other node feature. The labels are propagated iter-
atively from the labeled nodes to the rest of the graph. The models mainly
differ by the regularization function they rely on.

— Models taking into account both the structure of the graph and the node
features. Belkin et al. [3] developed a general framework allowing the use
of both local node features and weighted links. Other models have been
proposed by Zhang et al. [I8] for web page classification. They have been
adapted by Abernethy et al. [I] for the WebSpam detection task.

The second direction sometimes called collective or relational classification di-
rectly attacks the problem of graph labeling. It makes use of different models like
ICA, Gibbs sampling, Relaxation Labeling and Loopy Belief Propagation (see

50 F. Maes et al.

[I6/15] for a review and a comparison of these methods). There are two main
groups of methods:

— Local classifier based methods make use of a local classifier for classifying a
node knowing both its content and the labels of its neighbors. For exam-
ple, the Iterative Classification model [16] iteratively uses the base classifier
during a fixed number of iterations. Gibbs sampling [9] aims at finding the
best set of labels, by sampling each node label iteratively according to the
probability distribution given by the local classifier.

— Global models try to optimize a global function over the graph. Since this is
NP-hard, these methods propose different approximation algorithms in order
to reduce the complexity of the optimization. The more popular methods are
Loopy Belief Propagation [I3] and Relaxation Labeling [10].

Note that methods of this second family are generally used in an inductive set-
ting. They also suffer from the same training label bias as ICA since training and
test operate differently. Finally, it is worth emphasizing Stacked Graphical Learn-
ing [8I12], a collective classification method developed independently. It makes
use of a chain of classifiers, used iteratively to label the nodes. Each classifier
uses as input the output of the preceding one. The originality of this algorithm
comes from the way it learns the stacked classifiers using a cross-validation based
approach. In the context of graph labeling, this algorithm was successfully used
for WebSpam classification [6] or for layout document structuring [7].

Graph labeling problem is an instance of the more general framework of struc-
tured prediction or structured output classification [17]. In principle, any general
structured prediction methods could be applicable to solve the graph labeling
problem. However they have a high computational complexity and are not used
for practical applications, especially on a large scale.

3 Supervised Graph Labeling

We use the following notations in the remainder of the paper. A directed graph
is a couple G = (X, E) where X = (1,...,zy) is a set of nodes and F =
{(4,7)}ijen..np2 is a set of directed edges. We denote (G,Y) the labeled graph
G where Y = (y1,...,yn) is the set of labels, with y; the label corresponding
to node z;. Nodes in X are described through feature vectors x; € R? where d
is the number of features. We consider here the multiclass single-label problem:
labels belong to a predefined set of possible labels £ = (1, ...,1;) where L is the
number of possible labeldl.

For example, in a document classification task, nodes x; may be documents
described with vectors of word frequencies, edges (7, j) may correspond to cita-
tion links and labels y; may be document categories.

We consider the inductive graph labeling problem. Given a training labeled
directed graph (G,Y), the aim is to learn a model that is able to label the nodes

! Depending on the communities, labels may also be called classes or categories in the
literature.

Simulated Iterative Classification 51

Input: A labeled graph (G,Y)
Input: A multiclass learning algorithm A
Output: A base classifier P(yi|z:, N (z:))
foreach z; € X do

submit training example ((z:, N (z:)),y:) to A
end
return the classifier trained by A

Algorithm 1. ICA Learning algorithm

of any new graph G’. Note that this framework is rather general, since undirected
graph can be seen as particular cases of directed graph and since G may contain
multiple disconnected components, i.e. multiple different training graphs.

3.1 Iterative Classification

ICA is a graph labeling method based on iterative classification of graph nodes
given both their local features and the labels of neighboring nodes. Let A (z;)
be the set of labels of neighbors of z;. Typically, neighboring nodes are those
directly connected to x;, i.e:

N(wi) ={y; | (i,5) € EYU{y; | (,7) € E}

ICA relies on the assumption that the probability P(y; = l|x;, G) of a label can
be approximated by the local probability P(y;|z;, N'(x;)), which only depends
on the associated content x; and on the set of neighboring labels. Note that,
since the number of neighboring labels A (z;) is variable and depends on node
x;, neighbors information needs to be encoded as a fixed-length vector to en-
able the use of usual classification techniques. This is detailed and illustrated in
Section

Learning. The learning procedure of ICA is given in Algorithm [l
P(y;|zi, N(x;)) is estimated by a multiclass classifier. Possible multiclass base
classifiers include neural networks, decision trees, naive Bayes or support vector
machines. The base classifier is learned thanks to a learning algorithm A given
a labeled training graph (G,Y"). Learning the base classifier simply consists in
creating one classification example per node in the graph and then running A. In
these classification examples, inputs are pairs (z;, N'(x;)) and outputs are cor-
rect labels y; € L. Note that both batch learning algorithms and online learning
algorithms may be used in conjunction with ICA.

Inference. ICA performs inference in two steps, as illustrated in Algorithm
The first step, bootstrapping, predicts an initial label for all the nodes of the
graph. This step may either be performed by the base classifier — by removing
neighboring labels information — or by another classifier trained to predict labels
given the local features only. The second step is the iterative classification process

52 F. Maes et al.

Input: A unlabeled graph G = (V, E)
Input: A classifier P(y;|x;, N (z;))
Output: The set of predicted labels Y
// Bootstrapping
foreach z; € X do
yi — argmax;c P(y; = l|z:)
end
// Iterative Classification
repeat
Generate ordering O over nodes of G.
foreach i € O do
yi — argmax;c » P(ys = l|@s, N (24))
end
until all labels have stabilized or a threshold number of iterations have elapsed
return Y

Algorithm 2. ICA Inference algorithm

itself, which re-estimates the labels of each node several times, picking them in a
random order and using the base classifier. ICA inference may converge exactly;
if none of the labels change during an iteration, the algorithm stops. Otherwise,
inference is usually stopped after a given number of iterations.

The main advantage of ICA is that both training and inference have linear
complexities w.r.t. the number of nodes of the graphs. Furthermore, even if it
is not guaranteed to converge, ICA has shown to behave well in practice and to
give nice performance on a wide range of real-world problems [I5].

4 Simulated ICA

When using ICA to infer the labels of a directed graph G, the base classifier is
used repeatedly to predict the label of a node given its content and neighboring
labels. Since it is very rare to reach perfect classification, the base classifier
of ICA often makes some prediction errors during inference. Since prediction
errors become inputs for later classification problems, ICA raises an important
bias between training and inference; in the former case, neighboring labels are
always correct, while they may be noisy in the latter case. This training/inference
bias is illustrated in Figure

The training/inference bias raised by ICA corresponds to a general problem
that appears as soon as predictions become inputs for later classification prob-
lems. In the context of collective classification, the authors of Stacked Learning
[8] identified the same training/inference bias. Both the Simulated ICA approach
detailed below and Stacked Learning are motivated by the same concern: learn-
ing with intermediary predictions that are adapted towards the natural bias of
the classifier.

Simulated Iterative Classification 53

Learning situation Inference situations

(B) (B) @
@ @
© © ® ©

§ ® @
@
® © ® ©

Fig. 2. Illustration of the learning/inference bias of ICA. Left: during training, only
perfect neighboring labels are considered. Right: during inference, several neighboring
labels may be wrong due to classification errors.

4.1 Learning Algorithm

In order to remove the learning/inference bias of ICA, the base classifier should
be trained on situations representative of what happens during inference. In
other words, the base classifier should be trained with corrupted neighboring
labels. Furthermore, these labels should be biased towards the natural bias of
inference: errors that are more frequent during inference should appear more
during learning. Simulated ICA (SicA) relies on a simple, but powerful, idea
to make training examples representative of inference behavior: simulation. We
propose to simulate inference during learning, in order to create the training
examples representative of the real use of the base classifier.

The general scheme of the Simulated ICA learning procedure is given by
Algorithm Bl S1CA is an iterative learning algorithm which repeatedly runs ICA
inference, using labels which are sampled based on the currently learned classifier
P(y;|xi, N(z;)). This sampling operation can be performed in different ways,
which are detailed in Section At each inference step, one training example is
submitted to the learning algorithm 4, to train the base classifier for predicting
the correct label y; given the node x; and the current neighboring labels. The
key property of training examples in SICA is that they rely on currently predicted
neighboring labels instead of assuming perfectly labeled neighbors, as it is the
case of ICA.

Similarly to classical ICA, both batch and stochastic learning algorithms may
be used inside SICA. In our experiments, we used stochastic descent learning
algorithm to update the parameters of the base classifier.

4.2 Sampling Methods

When learning with SicA, the aim of simulation is to generate a maximum
number of situations that are representative of ICA’s inference behavior. Sica
therefore relies on a sampling operation, whose role is to select the labels y; used
during learning. We propose three sampling strategies:

54 F. Maes et al.

Input: A labeled graph (G,Y)
Input: A multiclass learning algorithm A
Output: A classifier P(y;|z:, N (z:))
repeat
// Bootstrapping
foreach z; € X do
yi — argmax;cp P(yi = l|z;)
end
// Iterative Classification
repeat
Generate ordering O over nodes of G.
foreach i € O do
sample y; given P(y; = l|zi, N'(x;))
submit training example ((z;, N (z:)),y:) to A
end
until iterative classification terminates
until learning has converged or a threshold number of iterations have elapsed
return the classifier trained by A

Algorithm 3. Simulated ICA Learning algorithm

— SICA-DET (Deterministic). The simplest way to perform sampling in
SICA consist in selecting the labels y; that are predicted by the current
classifier P(y;|z;, N'(x;)). Formally, the sampling operation used in SiCA-
DET is defined as follows:

y; = argmax P(y; = l|z;, N'(x;))
leL

— S1cA-UNI (Uniform Noise). In order to increase the range of generated in-
ference situations, one simple variant of SiCA called SICA-UNI, consists in
introducing stochasticity into the inference process by selecting labels ran-
domly with a small probability. Formally, the sampling operation used in
SI1CA-UNI is defined as follows:

- Jarandom label I € £ with probability e
vi= argmax;c» P(y; = l|z;, N'(x;)) with probability 1 — e
where € € [0,1] is a parameter controlling the tradeoff between random
sampling and SICA-DET style sampling.

— SicA-PRrOB (Probabilistic). Instead of using uniform noise, a more natural
alternative consists in sampling labels from the P(y;|z;, N'(z;)) distribution:

y; = sample [€ £ from P(y; = |z, N (z;))

The advantages of SICA-PROB and SICA-UNI over SICA-DET are twofold. Firstly,
stochasticity enables to generate a wider range of inference situations and thus

Simulated Iterative Classification 55

creates more training examples for the base classifier. This may thus lead to more
robust classifiers, especially when using few training nodes. Secondly, stochastic-
ity may contribute to make training conditions closer to test conditions. In this
sense, simulating the inference procedure with additional noise is an alternative
to the cross-validation approach of Stacked Learning. In both cases, the aim is
to learn with intermediary predictions that correctly reflect the behavior of the
model on testing data. Stacked Learning creates the intermediary predictions
by cross-validation, while we propose to directly modify the predicted labels on
training data. We show in Section [bl that SicA-PROB and SicA-UNI frequently
outperform Stacked Learning experimentally.

4.3 One Classifier Per Pass

ICA operates in several passes, where each node of the graph is re-estimated
during one pass. Since the problem of first estimating the labels may slightly
differ from the problem of re-estimating the labels at the second pass or at the
third pass, the current pass number may have a direct influence on the base
classifier. Instead of learning a unique classifier P(y;|x;, N'(x;)), SICA can be
modified to take the current pass number, ¢, into account, by learning a classifier
P(yilzi, N(zi),1).

Stca-DET, SicA-UNI and SICA-PROB can be modified by learning one distinct
classifier per pass. This leads to three new variants of SICA that are denoted
Sicat-DET, SicAT-UNI and SICAT-PROB in the remainder of this paper. As
an example, our experiments use SICA with 5 maximum inference passes, which
leads to a set of 5 slightly different classifiers, each one specialized for a given
inference pass. Concretely, using one classifier per pass makes it possible to
learn finer inference-dependent behavior. This idea is similar to stacking: in
both SicA™ and Stacked Learning, there is one classifier per inference pass and
each of these classifiers is trained to compensate the errors of previous classifiers.

StcA and SICA™ both perform learning and inference in the same way. The
only difference concerns the number of parameters which is multiplied by the
number of inference passes by using one disctinct classifier per pass.

5 Experiments

In this section, we describe experimental comparisons between Simulated ICA
and various state-of-the-art models for inductive graph labeling.

5.1 Datasets

We performed experiments on four datasets of webpages and on three datasets
of scientific articles, whose characteristics are summarized in Table [l In the
former datasets, nodes correspond to webpages, links represent web hyperlinks
and the aim is to predict the category of each webpage. In the latter datasets,
nodes are scientific articles, links are citation links and the aim is to predict the

56 F. Maes et al.

Table 1. This table shows different charasteristics (numbers of nodes, links, features
and classes) of the seven different datasets used in our experiments. The four first
datasets are small scale graphs from WEBKB, the two following ones are medium scale
graphs and the last one is our large scale dataset.

Dataset Nodes Links Features Classes
Small scale — WEBKB
CORNELL 195 304 1703 5
TEXAS 187 328 1703 5
WASHINGTON 230 446 1703 5
‘WISCONSIN 265 530 1703 5
Medium scale
CITESEER 3312 4715 3703 6
CoRra-1I 2708 5429 1433 7
Large scale
CORA-II 36954 136024 11816 11

category of each article. All nodes are described by feature vectors, with features
that correspond to the most frequent words and that indicate whether or not
the associated words appear. CORA-II was introduced by A. McCallum and was
preprocessed by keeping only the words appearing in at least 10 documentsZ.
The other datasets were preprocessed by Getoor et al’.

5.2 Experimental Setup

State-of-the-art models. In order to evaluate Simulated ICA, we have im-
plemented three state-of-the-art graph labeling models: Iterative Classification
(Ica), Gibbs Sampling (Gs) and Stacked Learning. Our implementation of
Stacked Learning uses 5-fold cross-validation during learning to create the inter-
mediary predictions. STACK?2 is the simplest Stacked Learning model, where the
labels are first estimated based on the content only and are then re-estimated
by taking both the initial predictions and the content into account. STACK3
is a Stacked Learning model with three stacks: labels are first estimated using
STACK2 and are then re-estimated with a classifier that uses both the content and
the predictions of STACK2. Similarly, STACK4 and STACK5 are Stacked Learning
models that respectively rely on STACK3 and STACK4 to provide intermediary
predictions.

Baselines. We have also compared Simulated ICA with two baselines named
Content-Only (Co) and Optimistic (OPT). The former is a classifier ignoring
the graph structure and taking only the content of nodes into account during
classification. The latter is a classifier which assumes the availability of perfect
neighboring labels for each node, during both training and inference. Note that

2 CoRA-II is available at http://www.cs.umass.edu/~mccallum/code-data.html
3 Datasets available at http://www.cs.umd.edu/~sen/1bc-proj/LBC.html} sce [14]
for more details.

http://www.cs.umass.edu/~mccallum/code-data.html
http://www.cs.umd.edu/~sen/lbc-proj/LBC.html

Simulated Iterative Classification 57

is 1

in 1

the 1

Content what 0

{words) bryan 1

kelly o

kitchen 1

Bryan is garden 0
kitchen A 1
Predecessors g | 4

(label frequencies) c 2

A 1

Successors 8 2

(label frequencies) c 0

Fig. 3. A feature function to jointly describe content of nodes and neighboring labels.
Feature vectors contain three parts. The first one describes the content of the node
and the other two describe the labels of the node neighbors. For each label, there is a
feature which counts the number of predecessor (resp. successors) with this label.

due to this dependency, the OPT baseline is not a “true model” able to generalize
to new unlabeled graphs.

Base classifier. In order to make the comparison fair, we used the same base
classifier, the same learning algorithm and the same tuning procedure for all
models. The base classifiers are L2-regularized maximum-entropy classifiers [4]
learned with stochastic gradient descent. For each model, we tried ten different
regularizer values and kept the best-performing ones.

In order to take simultaneously the content of nodes and their neighboring
labels, the base classifiers rely on a feature function that jointly maps contents
and associated neighboring labels to scalar vectors. The feature function used in
our experiments is illustrated in Figure Bl

Data splitting. In order to evaluate the generalization abilities of the models,
we have split each dataset into one training graph and one testing graph. As
[16], we have used a random sampling strategy: both the training and the testing
graphs are random subsets of the whole graphs. When splitting graphs randomly,
it is often the case that some links connect train nodes to test nodes. The simplest
way to deal with these train-test links is simply to ignore them; this approach
is called Test Links Only. Since many links may be discarded with the Test
Links Only approach, we have also adopted the alternative approach proposed
by [14] called Complete Links in which no link is suppressed and in which we
assume, during inference, to know the correct labels of training nodes connected
to testing nodes. For the purpose of comparison with [14], we used 10-folds cross-
validation with the Complete Links strategy. Note that, if we used 10-folds with
Test Links Only, 90% of the links involving testing nodes would be discarded.
In order to make the average number of links connected to testing nodes and to
training nodes equal, we used Test Links Only with two-fold cross-validation.

58 F. Maes et al.

Table 2. This table shows the accuracy of different models on CorA-I, CITESEER and
the four WEBKB databases. The graphs were split randomly into two folds by using
Test Links Only strategy. We used 50% of the dataset as a training set and took the
mean test accuracy over ten runs.

Small scale — WEBKB Medium scale
CORNELL TEXAS WASHINGTON WISCONSIN CoORA-I CITESEER

Co 71.79 82.14 80.52 85.21 74.73 71.73

Ica 72.91 82.46 81.22 84.76 78.69 73.14

Gs 73.02 82.67 81.04 84.98 78.67 72.8

STACK2 73.02 82.35 81.74 84.38 78.85 73.25
STACK3 73.02 82.46 81.13 84.76 79.73 73.34
STACK4 73.02 82.67 81.3 84.83 79.53 73.25
STACKbH 72.91 82.35 81.13 84.76 79.81 73.22
SiICA-DET 73.53 82.24 81.83 85.21 78.77 72.92
S1cA-UNI 74.24 83.21 82.35 85.36 79.29 73.21
S1cA-PROB 74.04 83.42 82.43 85.74 79.32 73.47
Sicat-DET 71.48 80.32 80 83.32 79.18 73.59
Sicat-UNI 72.71 82.35 81.13 84.45 79.59 73.70
Sicat-PRrROB 73.42 82.35 81.91 85.06 80.01 74.02
OpT 72.5 82.78 82.17 84.46 83.16 76.18

5.3 Results

In our experiments, the parameters was the same as these in [16] for the baselines
(Co, OpT, Ica, Gs and STACK): the maximum number of training iterations
was set to 100, for Iterative Classification we used a maximum of 100 inference
passes and for Gibbs Sampling we performed 1000 samples of each node label.
For the SiCcA inference, we used a maximum of 5 passes. Moreover, we fixed the
uniform noise percentage in SICA-UNI and S1cA™-UNI to 10%.

Comparisons with state-of-the-art models. We compared the six variants
of SicA described in Section M with the baselines described previously on the
small and medium scale datasets. Firstly, we have split each dataset into two
halves by using the Test Links Only strategy. Each experiment was performed
10 times with different random splits and we report the mean test accuracies
in Table Bl As expected, SicA models outperform IcA on all datasets. More
interestingly, our models also outperform Gibbs Sampling and Stacked Learning
in nearly all cases. In particular, the SICA-UNI and SICA-PROB models that rely
on stochasticity outperform Stacked Learning on five datasets out of six, whereas
this tendency is less clear for SICA-DET. As discussed in Section 4, adding a
perturbation to the predicted labels proves to be a good alternative to the heavy
cross-validation based prediction process adopted by Stacked Learning. Among
the two perturbation approaches, SICA-PROB most-of-time reaches better results
than S1CcA-UNI. A deeper comparison of these sampling approaches in given
below. Using one classifier per pass (SIcAT-DET, SicA*-UNI and SicaA*-PROB)

Simulated Iterative Classification 59

Table 3. This table shows the accuracy of different models on CorA-I, CITESEER and
the four WEBKB databases. Here, the graphs were split randomly into ten folds by
using Complete Links strategy. Then, we did a 10-folds cross-validation and took the
mean test accuracy.

Small scale - WEBKB Medium scale

CORNELL TEXAS WASHINGTON WISCONSIN CoORA-I CITESEER
Co 79.5 86.64 84.35 89.4 77.43 72.98
Ica 79.47 87.22 85.65 89.79 88.52 77.63
Gs 80.5 87.22 85.22 89.79 88.18 77.47
STACK2 78.92 89.91 87.39 89.42 88.07 76.72
STACK3 78.42 88.27 88.26 89.03 88.18 77.35
STACK4 78.97 88.3 86.96 89.8 88.4 77.23
STACKbH 78.45 88.83 87.83 89.42 88.4 77.08
SICA-DET 81.55 87.75 85.65 89.79 88.37 76.27
S1cA-UNI 81.55 88.27 85.65 89.79 88.26 76.48
S1cA-PROB 81.53 87.75 86.52 90.16 88.37 76.33
Sicat-DET 79.5 86.7 84.78 89.42 88.74 77.75
S1IcAT-UNI 80.03 86.70 86.52 89.42 88.63 77.93
Sicat-PRrROB 81.05 87.22 85.65 89.79 88.66 78.02
opT 79.97 87.75 86.09 89.77 88.85 78.08

improves over the basic versions of SICA on the two medium scale datasets (+
0.69% on CORA-I and + 0.55% on CITESEER). On the small datasets, using
one classifier per pass slightly deteriorates the results. We believe that this is
due to estimation problems related to the large number of parameters on these
approaches.

The second set of experiments aims at comparing our results to those of [16].
Here, each dataset was split into ten folds by using the Complete Links strategy.
Table [gives the 10-fold cross-validation accuracies (90% training nodes and
10% testing nodes) for all models and all datasets. As previously, our models
most-of-the-time outperform IcA and Gs. On small datasets, Stacked Learning
is competitive with our models. However, these results should be taken with
a grain of salt, since, when using 90% training nodes with Complete Links, a
large majority of testing-node neighbors are in the training set. Consequently,
the various methods that take wrong labels into account during learning (SiCA
and Stacked Learning) have a more limited interest in this case.

Impact of the uniform noise percentage. Next, we evaluated the impact
of uniform noise percentage on SiCA-UNI. Figure[d] compares the three sampling
methods on our two medium scale datasets. With a reasonable noise percentage
(below 40%), the accuracy of SICA-UNI is between that of SICA-DET and that
of SicA-PROB. Once more, this confirms the contribution of stochasticity in the
simulation process of SICA.

In most cases, SICA-PROB outperforms SIiCA-UNI. SICA-PROB has another
key advantage over the latter: it does not rely on additional hyper-parameter,

60 F. Maes et al.

74.2 T T T T 81 T T T T
74 =
738 | | 8
736 B 79 F g B
2 73.4 —
S 732 i 78 | i
>3
3 _7®r 1 77+ -
< 728 | R
726 | SICA+-Prob —— . 76 SICA+-Prob —— E
704 L SICA+-Uni | SICA+-Uni
: SICA+-Det - 75 | SICA+-Det -------- S
722 ICA 1 ICA
72 1 1 1 1 74 1 1 1
0 20 40 60 80 100 0 20 40 60 80 100
% Noise % Noise

Fig. 4. Accuracy for varying percentage of uniform noise in SicA-UNI on CITESEER
(on the left) and COrA-I (on the right)

Table 4. Test accuracies and training/inference time on CORA-II. The first two
columns give the mean test accuracy of the models with the Test Links Only and
Complete Links splitting strategies. The last two columns show approximate training
time and inference time. The results for STACK5 are incomplete due to the excessive
time requirement of this method (since we average our results over 10 runs and try
10 different regularizer values, the experiment would need more than three months to
complete).

Test Links Only Complete Links Training time Inference time

Co 49 49 2 min 300 ms
Ica 51.9 58.05 6 min 20 s

Gs 44.43 55.42 6 min 10 min
STACK2 54.46 56.28 13 min 1s
STACK3 56.07 57.99 1h 1.5s
STACK4 56.67 58.52 4.5 h 2s
STACKbS - - 20 h 2.5s
SICA-DET 56.02 58.52 5 min 4s
S1cA-UNI 56.20 59.57 3 min 4s
Si1cA-PROB 56.3 59.14 3 min 4
S1cAT-DET 55.5 58.87 5 min 4s
S1cAT-UNI 56.25 59.56 3 min 4s
SicAt-ProB 56.2 58.91 2 min 4s

OprT 66.40 67.71 3.5 min 600 ms

which makes its tuning much easier. With a too high noise percentage, informa-
tion in neighboring labels becomes irrelevant and thus accuracy drops down to
the one of a Content-Only classifier.

Large scale. In order to show that our model can deal with large-scale graphs,
we performed a set of experiments on the CORA-II database. For each model,

Simulated Iterative Classification 61

we performed 10 runs with 20% training nodes and 80% training nodes selected
randomly. The mean test accuracies are reported in Table [The first two
columns give scores respectively for Test Links Only and Complete Links. The
last two columns give the CPU time needed to train a single model and the time
needed to fully label the test grap}H. Experiments were performed on standard
3.2 Ghz computer.

Our approaches clearly outperform Ica and Gs on CORA-II (up to +3% im-
provement) and behave similarly to Stacked Learning with a much lower training
time. Indeed, since each stack involves making 5 folds and learning a model on
each sub-fold recursively, STACK models have a training time which is exponen-
tial w.r.t. the number of stacks. Instead, all our models — that use 5 inference
passes — were learned in a few minutes.

6 Conclusion

In this paper, we have introduced the Simulated Iterative Classification Algo-
rithm (S1CA), a new learning algorithm for ICA. The core idea of SIiCA is to
simulate ICA’s inference during learning. We argued that simulation is a sim-
ple and efficient way to create training examples that are representative of real
inference situations. We have shown that the proposed approach outperforms
state-of-the-art models (Iterative Classification, Gibbs Sampling and Stacked
Learning) on a wide range of datasets. Furthermore, we have shown that the
model scales well, which makes it possible to label graphs containing thousands
to millions of nodes.

Our future work will primarily focus on generalizing the idea of simulation
during learning to semi-supervised graph labeling problems. We believe that
one promising approach is to develop (fast and scalable) incremental inference
algorithms, that takes both the labeled and the unlabeled nodes into account,
and to learn them using simulation.

One key characteristic of ICA is that it relies on a classifier whose inputs de-
pend on its previous predictions. Although this paper is focused on supervised
graph labeling problems, we believe that the proposed idea of simulating infer-
ence during learning is relevant to a wider class of problems where predictions
become inputs for later classification problems. In order to tackle error propaga-
tion problems in such algorithms involving classifier chains, simulation is a key
solution, which appears to be both simple and efficient.

Acknowledgement

We would like to thank the French National Research Agency (ANR) for financial
support under the project MADSPAM 2.0.

4 Note that SicA models were carefully optimized in our implementation, which ex-
plains their relative low training times.

62

F. Maes et al.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Abernethy, J., Chapelle, O., Castillo, C.: Witch: A new approach to web spam
detection. Technical report, Yahoo! Research (2008)

Agarwal, S.: Ranking on graph data. In: ICML 2006, pp. 25-32. ACM, New York
(2006)

Belkin, M., Niyogi, P., Sindhwani, V.: Manifold regularization: A geometric frame-
work for learning from labeled and unlabeled examples. Journal of Machine Learn-
ing Research 7, 2399-2434 (2006)

Berger, A.L., Pietra, S.D., Della Pietra, V.J.: A maximum entropy approach to
natural language processing. Computational Linguistics 22(1), 3971 (1996)
Castillo, C., Davison, B.D., Denoyer, L., Gallinari, P. (eds.): Proceedings of the
Graph Labelling Workshop and Web Spam Challenge (2007)

Castillo, C., Donato, D., Gionis, A., Murdock, V., Silvestri, F.: Know your neigh-
bors: web spam detection using the web topology. In: SIGIR 2007, pp. 423-430.
ACM, New York (2007)

Chidlovskii, B., Lecerf, L.: Stacked dependency networks for layout document
structuring. In: SAC, pp. 424-428 (2008)

Cohen, W.W., de Carvalho, V.R.: Stacked sequential learning. In: IJCAI,
pp. 671-676 (2005)

Hastings, W.K.: Monte carlo sampling methods using markov chains and their
applications. Biometrika 57(1), 97-109 (1970)

Hummel, R.A., Zucker, S.W.: On the foundations of relaxation labeling processes,
pp. 585-605 (1987)

Jensen, D., Neville, J., Gallagher, B.: Why collective inference improves relational
classification. In: ACM SIGKDD 2004, pp. 593-598. ACM, New York (2004)
Kou, Z., Cohen, W.W.: Stacked graphical models for efficient inference in markov
random fields. In: SDM (2007)

Kschischang, F.R., Frey, B.J.: Iterative decoding of compound codes by probability
propagation in graphical models. IEEE Journal on Selected Areas in Communica-
tions 16, 219-230 (1998)

Lu, Q., Getoor, L.: Link-based classification using labeled and unlabeled data.
In: ICML: Workshop from Labeled to Unlabeled Data (2003)

Macskassy, S.A., Provost, F.: Classification in networked data: A toolkit and a
univariate case study. J. Mach. Learn. Res. 8, 935-983 (2007)

Sen, P., Namata, G.M., Bilgic, M., Getoor, L., Gallagher, B., Eliassi-Rad, T.:
Collective classification in network data. Technical Report CS-TR-4905, University
of Maryland, College Park (2008)

Taskar, B., Chatalbashev, V., Koller, D., Guestrin, C.: Learning structured predic-
tion models: A large margin approach. In: ICML 2005, Bonn, Germany (2005)
Zhang, T., Popescul, A., Dom, B.: Linear prediction models with graph regular-
ization for web-page categorization. In: KDD 2006: Proceedings of the 12th ACM
SIGKDD, pp. 821-826. ACM, New York (2006)

Zhou, D., Scholkopf, B.: Regularization on discrete spaces. In: Kropatsch, W.G.,
Sablatnig, R., Hanbury, A. (eds.) DAGM 2005. LNCS, vol. 3663, pp. 361-368.
Springer, Heidelberg (2005)

Zhou, D., Scholkopf, B., Hofmann, T.: Semi-supervised learning on directed graphs.
In: NIPS, pp. 1633-1640. MIT Press, Cambridge (2005)

Zhu, X., Ghahramani, Z.: Learning from labeled and unlabeled data with label
propagation. Technical report (2002)

Graph-Based Discrete Differential Geometry for
Critical Instance Filtering

Elena Marchiori

Department of Computer Science, Radboud University, Nijmegen, The Netherlands

Abstract. Graph theory has been shown to provide a powerful tool for
representing and tackling machine learning problems, such as cluster-
ing, semi-supervised learning, and feature ranking. This paper proposes
a graph-based discrete differential operator for detecting and eliminating
competence-critical instances and class label noise from a training set in
order to improve classification performance. Results of extensive exper-
iments on artificial and real-life classification problems substantiate the
effectiveness of the proposed approach.

1 Introduction

In graph-based data analysis, a dataset is represented as a graph, where the
vertices are the instances of the dataset and the edges encode a pairwise rela-
tionship between instances. For instance, the nearest neighbor relation between
points of a finite set in the Euclidean space can be described by the popular near-
est neighbor (proximity) graph [3I27]. Concepts and methods from graph theory
are then used for extracting knowledge from such a representation. In particular,
the graph Laplacian provides a natural interpretation to the geometric structure
of datasets. It has been used in machine learning for tackling diverse tasks such
as dimensionality reduction and clustering, e.g., [4129], feature selection, e.g.,
[19134], and semi-supervised learning, e.g., [35136].

This paper shows how the graph Laplacian operator can be directly used for
filtering competence-critical instances and class label noise from a training set,
in order to improve test accuracy.

Research on instance selection focusses mainly on three types of filtering
techniques [8]: competence preservation, competence enhancement, and hybrid
approaches. Competence preservation algorithms, e.g., [II14], remove irrelevant
points, that is, that do not affect the classification accuracy of the training
set. Competence enhancement methods, e.g., [23I26128/31], remove noisy points,
such as those with a wrong class label, as well as points close to the decision
boundary, yielding to smoother decision boundaries, in order to increase clas-
sifier accuracy. Hybrid methods, e.g., [8I20124/25/32], aim at finding a subset of
the training set that is both noise free and does not contain irrelevant points.
Alternative methods use prototypes instead of instances of the training set, see
for instance [21].

W. Buntine et al. (Eds.): ECML PKDD 2009, Part II, LNAI 5782, pp. 63-78] 2009.
(© Springer-Verlag Berlin Heidelberg 2009

64 E. Marchiori

The algorithm proposed here belongs to the so-called competence enhance-
ment methods. It differs from previous methods for this task in the way it ex-
tracts information from the neighborhood of an instance in order to measure its
relevance. Indeed, while previous methods are based on ‘static’ measures, such
as being correctly classified, the proposed method uses a ‘differential’ measure,
defined by means of a graph Laplacian operator. Specifically, we consider the
graph-based representation of two class dependent K nearest neighbor (KNN)
relations defined over pairs of instances: the within- and between- class KNN.
The between-class KNN graph is used to define a graph Laplacian operator.
The within-class KNN graph is used to define the within-class degree function,
mapping vertices to their degree.

The application of the Laplacian operator to such function, called Laplace
scoring, provides such differential measure of instance relevance. It measures
the flow of the within-class degree function at each vertex of the between-class
KNN graph. Vertices with negative Laplace score are either close to the KNN
decision boundary or are outliers. This motivates the introduction of a simple
Laplace-based instance filtering algorithm, which removes instances having neg-
ative Laplace score.

To the best of our knowledge, this work presents the first attempt to perform
class noise instance filtering using a graph-based differential approach.

In order to test comparatively the effectiveness of this approach, extensive
experiments on artificial and real-life data sets are conducted. We consider three
classifiers: the KNN classifier without instance filtering, with the popular Wil-
son’s editing [31], and with Laplace filtering. Results of the experiments indicate
best test accuracy performance of Laplace filtering over the other methods, as
well as superior robustness with respect to the presence of class noise in the
training set.

Furthermore, comparison of Laplacian filtering with state-of-the-art editing
algorithms indicate similar or improved generalization performance of the 1-NN.

Finally, we investigate the use of Laplacian filtering for improving the perfor-
mance of classifiers other than 1-NN. We consider SVMs with RBF kernels. These
are related to NN methods, because each RBF measures the distance of a test
instance to one of the training instances. SVM training keeps certain training in-
stances as support vectors, and discards others. In this way, SVM/RBF may also
be viewed as a competence-enhancement filtering method. We investigate the ef-
fect of Laplacian filtering as pre-processing step by performing experiments on
datasets with different levels of added class noise. Results of these experiments
show that at all considered levels of class noise, Laplacian filtering has no signifi-
cant positive effect on the generalization performance of SVMs with RBF kernel.

In general, the results substantiate the effectiveness of graph Laplacian oper-
ators for tackling the class noise filtering problem. Therefore this contribution
adds yet another successful application of such powerful graph-based framework
in machine learning.

We begin by setting the stage with the notation and main concepts used in
this study.

Graph-Based Discrete Differential Geometry for Critical Instance Filtering 65

2 Background

In this paper we use X to denote a dataset of n instances X = {x1,...,z,}, where
x; is a real-valued vector of dimension m. Let C' denote the set of class labels of X,
and let [: X — C the function mapping each instance x; to its class label I(x;).

A graph G = (V, E) consists of a finite set V' and a subset E C V x V. The
elements of V' are the wvertices of the graph and those of F are the edges of the
graph. In this work we consider undirected graphs, that is, such that for each
edge (u,v) € E we have also (v,u) € E. We say that u and v are adjacent
vertices, denoted by u ~ v, if (u,v) € E. The degree function d of a graph is
defined by d(u) = [{v | uw ~ v}|, where |S| denotes the cardinality of a set S.

The graph normalized Laplacian can be defined as follows. Suppose |V| = n.
Consider the n x n matrix L, defined as

du) ifu=w,

L(u,v) =< =1 if (u,v) € E,
0 otherwise.

The (normalized) Laplacian of G is the n X n matrix

1 if w =v and d(u) # 0,
1 .

E(u’ 1}) = \/d(u)d(v) if (U7 ’U) S .E7
0 otherwise.

The graph Laplacian operator £ maps real-valued functions on vertices to real-
valued functions on vertices, defined by

1 f(uw) f(w)
L(f)(u) = B '
(f)(w) V() > <\/d(u) \/d(v)>

u~v

3 Laplacian Instance Filtering

Denote by | a generic element of C'. Let X; be the subset of X consisting of
those instances having class label equal to I. Define K NN(z,1) to be the set of
K nearest neighbors of x computed among those instance in X;, excluding x.

Define the following two graphs. The within-class KNN graph, denoted by
Gue = (V, Eye), such that V = X, and

Eye ={(zi,z;) | x; € KNN(z;,(x;)) or z; € KNN(z;,1(z;))}

G represents the (symmetric) nearest neighbor relation between points of the
same class in the training set.

Analogously, define the between-class KNN graph, denoted by Gy = (V, Epe),
such that V = X,

Eve={(zi,z;) | (x; € KNN(z;,1) and | # I(x;)) or (x; € KNN(x;,1) and I # I(z;))}.

66 E. Marchiori

Gpe represents the (symmetric) KNN relation between points of each pair of
different classes in the training set. Note that this relation differs from the nearest
unlike neighbor relation (NUN) [15] because it considers all pairs of different
classes, while NUN considers one class versus the union of all the other classes.
Clearly, for binary classification problems the two relations coincide.

The within- and between-class graphs with K = 1 for a toy binary classifica-
tion problem are shown in Figure [

Let £ be the Laplacian operator of Gp.. Let g denote the within-class degree
function, mapping vertex 7 to its degree in Gye. g(%) can be viewed as an estimate
of the density of points of class label [(x;) around z;, since the more instances
with label [(x;) are close to x;, the larger the ¢(i) will be [34].

We define the Laplace score, denoted by Score, to be the real-valued function
on vertices such that

Score(u) = L(g)(u).

This function assigns a small score to an instance whose neighbors from different
classes (that is, its adjacent vertices in Gp.) are in a region containing many
points of their own class, and few points of classes different from their one.

The within-class degree and Laplace score of instances for the considered toy
classification example are shown in Figure[Il Observe that in this example points
with negative Laplace score are close to the one nearest neighbor class decision
boundary. This motivates the introduction of the simple Algorithm [for class
noise filtering, which removes from the training set those instances with negative
Laplace score.

The time complexity of this algorithm is dominated by the cost of building
the between- and within-class graphs, which is quadratic in the size of the train-
ing set. However, this bound can be reduced to O(nlog(n)) (for small input
dimension) by using metric trees or other spatial data structures, as shown for

[]
i 06" @ g9
4 : ® 10® =
0.8) 0.5
0.4
5 ™ s " os
® 04

Fig. 1. Graphs and Laplace score with K = 1 of a training set for a toy binary

classification problem in the real plane

Laplace score

8

10

Graph-Based Discrete Differential Geometry for Critical Instance Filtering 67

Algorithm 1. Laplace instance filtering
Input: training data X of size n
number K of nearest neighbors
Output: subset S of X
Gpe = between-class KNN graph of X
Gye = within-class KNN graph of X
g = degree function of G
for i =1tondo

Score(i) = L(g)(3)
end for
S ={z; € X | Score(i) > 0}

example in [I8], as well as structures optimized for a data and query distri-
bution [5/9].

Application of Laplace instance filtering to an instance of the XOR classifica-
tion problem is illustrated in Figure 2l Points filtered out by the algorithm are
highlighted with circles.

Fig. 2. Application of Laplace filtering with K = 1 to an instance, with class noise
examples, of the XOR classification problem in the real plane. The points removed
have filled markings.

3.1 Justification

The score of an instance can be interpreted as a discrete divergence measure.
This can be shown by using discrete analogous of differential operators. To this
end, we use the results contained in [36].
Indeed, consider the graph gradient operator, mapping real-valued functions

of the vertices into real-valued functions on edges.

o(v) o(u)

(Vo) (u,v) = — .

d(v) d(u)
Observe that in this definition, before computing the variation of ¢ between two
adjacent vertices, the function value is split at each vertex along its adjacent edges.

68 E. Marchiori

The graph gradient can also be defined at vertex v, as

Vo(u) ={(Vo)(u,v) | (u,v) € E}.

The graph divergence maps real-valued functions of the edges into real-valued
functions on vertices.

@ =30) =)

u~v

The divergence measures the net outflow of function 1 at each vertex.
The following equality relates the graph divergence and Laplacian operators:

1

L(g) = —div (V9).

By instantiating the above formula with the graph Laplacian of Gp. and the
within-class degree function g we obtain

1
Score = 72div (Vg).

Therefore, the Laplace instance score is a measure of negative divergence. An
instance having high divergence value (hence small Score value) can be consid-
ered critical, since there is a high flow of within-class degree at that instance in
a neighborhood characterized by means of the between-class graph.

4 Experiments

In order to assess comparatively the accuracy performance of the proposed filter-
ing method, we conduct extensive experiments on 19 Machine Learning datasets,
using the K-nearest neighbor classifier (KNN) with no training set pre-processing
[13], here called No-filtering, with Laplace instance filtering, and with the pop-
ular Wilson’s filtering algorithm. The latter one removes those instances that
do not agree with the majority of its K nearest neighbors. We consider three
instances of each algorithm obtained by setting the number K of neighbors to
1,3, 5, respectively, resulting in a total of nine classifiers.

Cross validation is applied to each dataset. Specifically, for each partition of
the dataset, each filtering algorithm is applied to the training set X from which
a subset S is returned. The KNN classifier that uses only points of S is applied
to the test set.

4.1 Datasets

We consider 3 artificial datasets (Banana, g50c, gl0n) and 16 real-life ones, with
different characteristics as shown in Table [Il These datasets have been used in
previous studies on model selection for (semi)supervised learning.

Specifically, Raetsch’s binary classification benchmark datasets have been
used in [22]: they consists of 1 artificial and 12 real-life datasets from the UCI,

Graph-Based Discrete Differential Geometry for Critical Instance Filtering 69

Table 1. Datasets used in the experiments. CL. = number of classes, TR = training
set, TE = test set, VA = number of variables, Cl.Inst. = number of instances in each
class.

DATASET CL|VA|TR |CL.INsT.|TE |CL.INST.
1 BANANA 2 |2 [400 |212-188 |4900(2712-2188
2 B.CANCER |2 |9 (200 [140-60 |77 |56-21

3 DIABETES (2 |8 (468 |300-168 (300 [200-100
4 GERMAN 2 |20 [700 [478-222 |300 |222-78

5 HEART 2 (13 (170 |93-77 100 |57-43

6 IMAGE 2 |18 [1300|560-740 [{1010{430-580
7 RINGNORM (2 |20 [400 |196-204 [7000{3540-3460
8 F.SoLAR 2 9 |666 |293-373 |400 [184-216
9 SPLICE 2 |60 [1000(525-475 |2175|1123-1052
10 TuyroID (2 |5 [140 |97-43 75 |53-22

11 TITANIC 2 (3 |150 |104-46 |2051[1386-66
12 TWONORM |2 |20 |400 |186-214 |7000|3511-3489
13 WAVEFORM|[2 |21 [400 |279-121 |4600({3074-1526
14 IRIS 3 |4 (120 [40-40-40|30 |10-10-10
15 BREAST-W |2 |9 |546 |353-193 |137 |91-46

16 Bupra 2 |6 (276 [119-157 |69 |26-43

17 Pima 2 |8 |615 [398-217 |153 |102-51
18 ¢G50 2 |50 |550 |252-248 |50 [23-27

19 G10N 2 |10 [550 [245-255 |50 |29-21

DELVE and STATLOG benchmark repositories. For each experiment, the 100
(20 for Splice and Image) partitions of each dataset into training and test set
available in the repository are used here.

Two artificial binary classification problems from Chapelle’s benchmark
datasets [I1], g50c and gl0n, are generated from two standard normal multi-
variate Gaussians. In g50c, the labels correspond to the Gaussians, and the
means are located in a 50-dimensional space such that the Bayes’ error is 5%. In
contrast, g10n is a deterministic problem in 10 dimensions, where the decision
function traverses the centers of the Gaussians, and depends on only two of the
input dimensions. For each experiment, the 10 partitions of each dataset into
training and test set available in the repository are used.

Finally, four standard benchmark datasets from the UCI Machine Learning
repository are used: Iris, Bupa, Pima, and Breast-W. For each experiment, 100
partitions of each dataset into training and test set are used. Each partition
randomly divides the dataset into training and test set, equal to 80% and 20%
of the data, respectively.

4.2 Results

Results of the experiments are summarized in Table (also plotted in
the first row of Figure [B]). The table contains average accuracy results of the

70 E. Marchiori

Table 2. A(M) = average (median) results over datasets. S = +/- number of times
Laplace average accuracy is significantly better (+) or significantly worse (-) than the
other algorithm, according to a paired t-test at 0.01 significance level. W = a 4’
indicates Laplace significantly better than the other algorithm at a 0.01 significance
level according to a Wilcoxon test for paired samples.

LAPLACE WILSON NoO-FILTERING
1 3 5 1 3 5 1 3 5
1 BANANA 88.5(88.9(88.7||87.8 |88.2 |88.3 ||86.4 |87.9(88.3
2 B.CANCER ||70.6|73.0|74.2((69.4 |73.4 |73.6 ||67.3 |68.5|71.2
3 DIABETES 73.9|74.0|73.8(|72.7 [73.2 |73.6 ||69.9 |72.4|72.6
4 GERMAN 74.0|74.0|73.1(|73.0 {73.9 {73.9||70.5 |73.1|74.1
5 HEART 81.6(82.6(82.9(|80.6 |82.0 |82.7 ||76.8 |80.5|81.8
6 IMAGE 94.9192.3(90.8{(95.8 {94.6 |94.1 |[96.6 |95.7]95.1
7 RINGNORM ||67.3|63.2(61.0(|54.8 |51.2 [50.6 {|64.9 [59.5|56.7
8 F.SoLAR 64.0/64.6(64.7(/61.4 [62.8 |62.7 ||60.7 |62.3|62.2
9 SPLICE 73.3|76.4|77.1(|68.4 [68.2 [66.7 ||71.1 |72.6|73.3
10 TaYROID {|94.3]91.9(89.5({94.0 {91.9 |89.5 ||95.6 |93.8(92.6
11 TITANIC 77.2|\77.0|77.2(|67.3 [72.574.5(|66.9 |72.3|74.0
12 TWONORM [|95.5/96.6(96.9(|94.1 {95.9 |96.4 |[93.3 |95.596.2
13 WAVEFORM||86.2(87.4(87.3||85.4 |86.9 |87.5 ||84.1 |86.3|87.3

14 Iris 95.2(95.1]94.8|96.1 [95.5 [95.8{|95.6 [95.1(95.8
15 BREAST-W ||97.1(97.3(97.1|{96.9 |97.2 |96.9 ||96.2 |97.1|97.4
16 Bura 65.8(69.2(68.4(/63.5 [67.0 |67.4||61.2 |64.3|66.5
17 P1MA 72.5|74.2]75.0((69.6 |73.1 |73.8 |67.3 |69.9|72.0
18 G50 85.6(89.8(91.2(|82.2 [87.2 192.4||79.6 |88.4(92.0
19 ¢10 74.6(79.0(80.8|74.0 |79.2 80.0 ||75.2 |78.4|78.2
A 80.6(81.4(81.3(|78.3 |79.7 {80.0 ||77.9 [79.7|80.4
M 77.379.0(80.8|74.0 |79.2 |80.0 ||75.2 |78.4|78.2
S N/A|N/A|N/A||14/2]|15/3|11/2||113/2|7/3 |11/5
W N/A|N/A|N/A(+ |+ |+ + |+ |+

algorithms on each classification task, their average and median, the outcome
of a paired t-test on the results of each classification task, and the outcome of
a paired Wilcoxon test on the (average) results of the entire set of classification
tasks.

Results of a paired t-test at a 0.01 significance level shows improved accuracy
performance of Laplace (see row ‘S’ in Table [2)) on the majority of the datasets.
Application of the non parametric Wilcoxon test for paired samples at a 0.01
significance level to the average results on the entire set of classification tasks,
indicates that KNN with Laplace filtering outperforms the other algorithms.

In summary, the experimental analysis indicates effectiveness of Laplace-based
instance filtering and robustness with respect to the presence of high number of
variables, training examples, noise and irrelevant variables.

We turn now to the experimental analysis of classifier robustness with respect
to the presence of class noise.

Graph-Based Discrete Differential Geometry for Critical Instance Filtering 71

1h classite

| == Nofberrg
| —#— wimon
| —8—Lagiace

average test accuracy

original training ssts

3N classfiar

average test accuracy

average test accuracy

{11 S P S S S S S S S SR
W B2TAT O 3 41001 51813 110 B12W15
datazet id

1h8 classitne

i'-ﬁ—'r;:m':'x.-.j
00t —#—wison
| —m— Legiace

average test accuracy

e

TTE T 217G 3 41911 51813 110 6341215
dataset id

0% clags nolse acded

e
S

average tost accuracy

0
() SV, S i
TWB 27179341911 51813

datazet id
20% class noise added
3 classfien

average test accuracy

TR 21T T 3 0 41011 518 11310 6123415

dataset id

1M classitoer

average test accuracy

L S S T
W27 38T 94 510 11813 61011151204

dataset id

PTIE 217 73 § 41911 518 11310 6121415
dataset id

average tost accuracy

sed id

SHN classifier

= B

average test accuracy
s e s

—0— Ho-f20ring
B Wk
=l Lapdace

average test accuracy

'S
TTEIOT 217 93 41911 51813 110 8141215

SHN dasufier

—o— Nodaenng
4 Wiscn

\

1882 71793 41011 51813 110 6121415

SHN classifier

= B

average test accuracy
s e s

—0— ho-f20ring
B Wk
=l Lapdace

fvif.}

[p— T ———

average btest accuracy
S8

Fig. 3. Average test accuracy performance of the

4.3 Robustness to Class Noise

y L3
WE2TT N0 41911 518 11310 8121415
datazet id

SHN chassifier

6 317 36 79 4 518 11513 61011151214
dataset id
methods

In order to analyze experimentally the robustness of the methods with respect
to the presence of class noise in the training set, all experiments are repeated
with modified training sets. The new training sets are obtained by changing the
class labels of a given percentage « of randomly selected instances.

Figure [3 shows plots of the average accuracy of the nine KNN classifiers
using the original datasets and those obtained by adding v% class noise, with

72 E. Marchiori

Table 3. Results of experiments on ML benchmark datasets of HMN-EI, ICF, DROP3,
and Laplace filtering

[Dataset [[HMN-EI[JICF [[DROP3[[LAPLACE]

BANANA 88.6 86.1 ||87.6 ||88.5
B.CANCER [|69.2 67.0(/69.7 ||70.6
DIABETES ||73.5 69.8 ||72.3 [|73.9
GERMAN 72.9 68.6 ||72.0 {|74.0
HEART 81.6 76.7((80.2 ||81.6
IMAGE 92.7 93.8 ||95.1 {|94.9
RINGNORM [|65.6 61.2((54.7 ||67.3
F.SoLAR 64.7 61.0 ||61.4 {|64.0
SPLICE 70.7 66.3 (|67.6 |[73.3
THYROID |[|93.2 91.91(92.7 ||94.3
TITANIC 76.0 67.5((67.7 ||77.2
TWONORM [(95.9 89.2((94.3 [|95.5
WAVEFORM|(85.4 82.11((84.9 ||86.2

IrIS 95.4 95.31195.8 |[95.2
BREAST-W {[96.9 95.4 |(196.8 [|97.1
Bupa 64.5 60.9 {|63.1 |[65.8
Pimva 71.7 67.91(69.4 ||72.5
G50 86.8 82.2 (|82.8 ||85.6
G10 79.2 73.0(|75.0 ||74.6

Average [|80.2 ||76.6(|78.1 [|80.6
Median 79.2 73.0(|75.0 ||77.3
S 10/2 ||18/0([13/0 |IN/A
W ~ + |+ N/A

~v = 10, 20, 40. The Figure contains four rows, one for each value of 7 (the original
training set corresponds to setting v = 0). Each row contains three plots, one for
each value of K. Each plot shows average test accuracy of No-filtering, Laplace,
and Wilson algorithms for the specific value of K and +.

In all the considered cases, the average test accuracy curve of Laplace dom-
inates those of the other two algorithms, with more improvement for higher
values of K. Indeed, in all these cases, KNN with Laplace filtering outperforms
significantly the other classifiers.

These results substantiate robustness of the Laplace-based instance filtering
approach for KNN with respect to the presence of class noise.

5 Comparison with Other Methods

5.1 Editing Algorithms

In order to compare the performance of the proposed method with that of state-
of-the-art editing algorithms, we report in Figure [3] the test accuracy results of

Graph-Based Discrete Differential Geometry for Critical Instance Filtering 73

the 1-NN classifier, achieved by the state-of-the-art instance editing algorithms
recently investigated in [20]: Iterative Case Filtering (ICF) [7], Decremental Reduc-
tion Optimization (DROP3) [32I33], and Hit Miss Network Editing (HMN-EI) [20].

ICF first applies E-NN noise reduction iteratively until it cannot remove any
point, and next iteratively removes points. At each iteration all points for which
the so-called reachability set is smaller than the coverage one are deleted. The
reachability of a point = consists of the points inside the largest hyper-sphere
containing only points of the same class as z. The coverage of x is defined as the
set of points that contain z in their reachability set.

DROP3 first applies a pre-processing step which discards points of X misclas-
sified by their K nearest neighbors, and then removes a point x from X if the
accuracy of the KNN rule on the set of its associates does not decrease. Each
point has a list of K nearest neighbors and a list of associates, which are updated
each time a point is removed from X. A point y is an associate of z if belongs
to the set of K nearest neighbors of y. If x is removed then the list of K nearest
neighbors of each of its associates y is updated by adding a new neighbor point
z, and y is added to the list of associates of z. The removal rule is applied to the

Table 4. Results of SVM/RBF with Laplace pre-processing (LAPLACE) and without
(SVM-RBF) at different levels of class noise ~y

v=0 v =20 v =40
SVM-RBF|LAPLACE||SVM-RBF|LAPLACE||SVM-RBF [LAPLACE
89.3 89.3 87.3 87.4 65.7 66.0
73.1 72.9 71.1 71.1 62.5 63.1
76.5 76.5 74.4 74.4 64.9 64.5
76.2 76.4 73.3 73.3 65.7 66.1
83.9 84.1 81.1 81.6 64.5 65.4
96.5 96.5 92.9 92.9 78.7 78.9
98.2 98.1 96.5 96.2 81.3 79.0
66.8 66.8 65.0 65.1 57.9 58.4
88.8 88.6 83.3 83.3 68.0 68.2
95.2 95.0 91.5 91.9 76.4 76.4
77.3 7.2 76.1 75.9 67.1 68.0
97.5 97.5 96.5 96.9 88.0 89.5
89.8 89.8 87.1 87.3 74.2 75.9
95.8 95.8 95.1 95.6 90.6 91.0
94.2 95.0 96.2 96.2 90.2 90.8
70.5 70.7 64.2 64.6 54.9 54.9
75.6 75.8 72.9 73.0 64.7 64.7
95.8 95.8 93.4 92.6 78.6 81.6
94.2 95.0 88.4 89.0 69.8 68.2
86.1 86.2 83.5 83.6 71.8 72.1
89.3 89.3 87.1 87.3 68.0 68.2
0/0 0/0 0/0 0/0 0/0 2/0

~ ~ ~ ~ ~ ~

émg} = e = O 00 N O O R W
© 00 O Ui W N~ O

74 E. Marchiori

points sorted in decreasing order of distance from their nearest neighbor from
the other classes (nearest enemy).

HMN-EI is an iterative heuristic algorithm based on a directed graph-based rep-
resentation of the training set, called hit miss network. Topological properties of
such network are used for designing an iterative algorithm that removes points
considered irrelevant or harmful to the 1-NN generalization performance. The em-
pirical error on the training set is used as criterion for terminating the iterative
process.

Results in Figure Bl show that test accuracy of Laplace filtering is similar or
better than the one of these state-of-the-art methods. However, observe that
editing algorithms also reduce storage, while Laplace filtering is specifically de-
signed for removing critical instances. In order to reduce also storage reduction,
one could use Laplace instance filtering as pre-processing step, followed by the
application of a competence preservation algorithm, such as [I].

5.2 SVM with RBF Kernels and Optimized Parameters

A family of classifiers different from KNN, whose training process results in the
selection of a subset of the training set, are the Support Vector Machines (SVMs).
They map training points x into a higher (possibly infinite) dimensional feature
space by the function . Then SVM finds a linear separating hyperplane with
the maximal margin in this higher dimensional feature space. Given a training
set of real-valued instance-label pairs (z;,1(x;)),7 = 1,...,n the support vec-
tor machines (SVM) [6/12] require the solution of the following optimization
problem:

n
T
C .
pigetu O 6

i=1
such that I(z;)(w? é(z;) +b) > 1 —¢& and & > 0.

C > 0 is the penalty parameter of the empirical error term. Furthermore,
K(z,y) = &(x)T€(y) is called the kernel function. In particular, SVMs with
Radial Basis Function (RBF) kernel use K (z,y) = e=olle=vll* The set of points
with & > 0 are called support vectors. They uniquely identify the separating
hyperplane.

It is interesting to investigate whether the use of Laplacian filtering as pre-
processing step improves the performance of SVMs with RBF kernel and opti-
mized parameters.

To this aim, the experimental evaluation described in the previous section is
used. Specifically, first cross-validation is applied to search for the given training
set for the optimal values of the soft-margin C parameter and the RBF parameter
ofl. Next, Laplacian filtering with K = 1 and Euclidean distance is applied for
discarding critical instances from the training set. Finally, a SVM with RBF

! In the experiments we use the Matlab functions implemented by S. Hashemi of
LIBSVM’s library [10].

Graph-Based Discrete Differential Geometry for Critical Instance Filtering 75

kernel is trained on the selected instances, using the given optimal values for o
and C.

Results of experiments are reported in Table 4l The new training sets are
obtained by changing the class labels of a given percentage v of randomly selected
instances. We consider v = 0, 20, 40. Laplace filtering does not appear to affect
significantly the test accuracy at the considered levels of class noise. This result
is not very surprising, since SVMs with RBF kernel and ’optimized’ parameters
selection have in general good generalization accuracy in the presence of noise.

6 Conclusions and Future Work

This paper introduced a graph differential operator for scoring instances of a
training set. We showed how this scoring is related to the flow of the within-
class density in the between-class KNN graph, and observed empirically that
instances with negative score are close to the class decision boundary or are
outliers. This observation motivated the design of a simple algorithm for class
noise instance filtering which removes instances having negative score.

We performed extensive experiments on artificial and real-life datasets and
analyzed the test accuracy of KNN classifier without filtering, with a traditional
filtering algorithm, and with Laplace filtering. The results indicated superior
performance of Laplace filtering over the other algorithms. Experiments with
modified training sets obtained by permuting the class label of a percentage of
their instances were conducted, to investigate robustness of the approach to the
presence of class noise. Results of the experiments substantiated the robustness
of Laplacian filtering, which achieved significantly better test accuracy perfor-
mance than the other algorithms, at each of the considered levels of class noise.
Comparison of Laplacian filtering with state-of-the-art editing algorithms indi-
cated similar or improved generalization performance of the 1-NN.

Finally, we investigated whether the use of Laplacian filtering as pre-
processing step improves the performance of classifiers other than KNN. We con-
sidered SVMs with RBF kernels. These are related to NN methods, because each
RBF measures the distance of a test instance to one of the training instances.
SVM training keeps certain training instances as support vectors, and discards
others. In this way, SVM/RBF may be view as a competence-enhancement filter-
ing method. Results of extensive experiments seemed to indicate no significant
effect of Laplacian filtering on the generalization performance of SVM with RBF
kernel. The benefits of noise reduction are much more apparent for kNN because
it does not really have an induction step and uses examples directly for classifi-
cation. SVMs with RBF kernel and equipped with cross validation for selecting
optimal values of their parameters, provide a rather powerful tool for selecting
the centers and parameters of the RBF’s, which is robust to the presence of
noise.

In summary, these results show that Laplacian instance filtering provides a
simple yet effective tool for improving accuracy performance of nearest neighbor
classifiers.

76 E. Marchiori

We conclude with a discussion of issues and future research directions.

The Laplacian filtering algorithm does not takes into account the effect of
removing one instances on the remaining ones. An adaptive approach, consisting
in removing the instance having the largest negative score, and then updating
the score of the remaining instances, and so on, could possibly improve the
effectiveness of the algorithm. However, such an approach would increase the
algorithmic complexity of the algorithm.

In the present algorithm, instances with negative Laplacian score are consid-
ered critical. Replacing such "rule of the thumb” with an incremental procedure
for selecting a cutoff value will possibly have a beneficial effect. Such a procedure
could be based on the leave-one-out error of the original training set, using the
KNN classifier with actual set of instances incrementally constructed starting
from a core subset consisting of instances with high score.

In those cases where the underlying metric is corrupted (e.g., due to irrele-
vant features), instance selection methods that directly depend on the underlying
similarity measure, such as Laplacian filtering, may possibly fail to improve the
classification performance of the KNN classifier. In such cases hybridization with
metric learning techniques (cf. e.g., [I7U16]), could help to overcome this draw-
back. In the metric learning approach the goal is typically to change the metric
in order to repair the KNN classifier. We are investigating an hybridization of
Laplacian filtering with Weinberger’s et al. method [30], for effective repairing
of the metric and removal of critical instances.

Another important issue in instance filtering is scalability. Recently, an in-
stance selection method based on distributed computing has been proposed for
speeding up execution of the algorithm without affecting training set accuracy
[2]. Tt is interesting to investigate whether this approach can be used also to
speed up execution of Laplace filtering, in order to allow its applicability to very
large datasets.

References

1. Angiulli, F.: Fast condensed nearest neighbor rule. In: ICML 2005: Proceedings
of the 22nd international conference on Machine learning, pp. 25-32. ACM, New
York (2005)

2. Angiulli, F., Folino, G.: Distributed nearest neighbor-based condensation of very
large data sets. IEEE Trans. on Knowl. and Data Eng. 19(12), 1593-1606 (2007)

3. Barnett, V.: The ordering of multivariate data. J. Roy. Statist. Soc., Ser. A 139(3),
318-355 (1976)

4. Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding
and clustering. In: Advances in Neural Information Processing Systems 14, pp.
585-591. MIT Press, Cambridge (2002)

5. Beygelzimer, A., Kakade, S., Langford, J.: Cover trees for nearest neighbor. In:
ICML 2006: Proceedings of the 23rd international conference on Machine learning,
pp. 97-104. ACM, New York (2006)

6. Boser, B.E., Guyon, .M., Vapnik, V.N.: A training algorithm for optimal margin
classifiers. In: COLT 1992: Proceedings of the fifth annual workshop on Computa-
tional learning theory, pp. 144-152. ACM, New York (1992)

7.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Graph-Based Discrete Differential Geometry for Critical Instance Filtering 7

Brighton, H., Mellish, C.: On the consistency of information filters for lazy learn-
ing algorithms. In: Zytkow, J.M., Rauch, J. (eds.) PKDD 1999. LNCS (LNAI),
vol. 1704, pp. 283-288. Springer, Heidelberg (1999)

. Brighton, H., Mellish, C.: Advances in instance selection for instance-based learning

algorithms. Data Mining and Knowledge Discovery (6), 153-172 (2002)

. Cayton, L., Dasgupta, S.: A learning framework for nearest neighbor search. In:

NIPS, vol. 20 (2007)

Chang, C., Lin, C.: LIBSVM: a library for support vector machines (2001),
http://www.csie.ntu.edu.tw/~cjlin/libsvm

Chapelle, O., Zien, A.: Semi-supervised classification by low density separation.
In: Proceedings of the Tenth International Workshop on Artificial Intelligence and
Statistics, pp. 57-64 (2005)

Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273-297
(1995)

Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Transactions on
Information Theory 13, 21-27 (1967)

Dasarathy, B.V.: Minimal consistent set (mcs) identification for optimal nearest
neighbor decision systems design. IEEE Transactions on Systems, Man, and Cy-
bernetics 24(3), 511-517 (1994)

Dasarathy, B.V.: Nearest unlike neighbor (nun): An aid to decision confidence
estimation. Opt. Eng. 34(9), 2785-2792 (1995)

Domeniconi, C., Gunopulos, D., Peng, J.: Large margin nearest neighbor classifiers.
IEEE Transactions on Neural Networks 16(4), 899-909 (2005)

Domeniconi, C., Peng, J., Gunopulos, D.: Locally adaptive metric nearest neigh-
bor classification. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 24(9), 1281-1285 (2002)

Grother, P.J., Candela, G.T., Blue, J.L.: Fast implementation of nearest neighbor
classifiers. Pattern Recognition 30, 459-465 (1997)

He, X., Cai, D., Niyogi, P.: Laplacian score for feature selection. In: Advances in
Neural Information Processing Systems 18 (2005)

Marchiori, E.: Hit miss networks with applications to instance selection. Journal
of Machine Learning Research 9, 997-1017 (2008)

Pekalska, E., Duin, R.P.W., Paclik, P.: Prototype selection for dissimilarity-based
classifiers. Pattern Recognition 39(2), 189-208 (2006)

Rétsch, G., Onoda, T., Miiller, K.-R.: Soft margins for AdaBoost. Machine Learn-
ing 42(3), 287-320 (2001)

Sénchez, J.S., Pla, F., Ferri, F.J.: Prototype selection for the nearest neighbour
rule through proximity graphs. Pattern Recognition Letters 18, 507-513 (1997)
Sebban, M., Nock, R., Lallich, S.: Boosting neighborhood-based classifiers. In:
ICML, pp. 505-512 (2001)

Sebban, M., Nock, R., Lallich, S.: Stopping criterion for boosting-based data reduc-
tion techniques: from binary to multiclass problem. Journal of Machine Learning
Research 3, 863-885 (2002)

Shin, H., Cho, S.: Neighborhood property based pattern selection for support vector
machines. Neural Computation (19), 816-855 (2007)

Toussaint, G.T.: Proximity graphs for nearest neighbor decision rules: recent
progress. In: Interface 2002, 34th Symposium on Computing and Statistics, pp.
83-106 (2002)

http://www.csie.ntu.edu.tw/~cjlin/libsvm

78

28.

29.

30.

31.

32.

33.

34.

35.

36.

E. Marchiori

Vezhnevets, A., Barinova, O.: Avoiding boosting overfitting by removing ” confus-
ing” samples. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S.,
Mladenié, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 430—
441. Springer, Heidelberg (2007)

von Luxburg, U.: A tutorial on spectral clustering. Statistics and Computing 17(4),
395416 (2007)

Weinberger, K.Q., Saul, L.K.: Distance metric learning for large margin nearest
neighbor classification. Journal of Machine Learning Research 10, 207-244 (2009)
Wilson, D.L.: Asymptotic properties of nearest neighbor rules using edited data.
IEEE Transactions on Systems, Man and Cybernetics (2), 408-420 (1972)
Randall Wilson, D., Martinez, T.R.: Instance pruning techniques. In: Proc. 14th
International Conference on Machine Learning, pp. 403—411. Morgan Kaufmann,
San Francisco (1997)

Wilson, D.R., Martinez, T.R.: Reduction techniques for instance-based learning
algorithms. Machine Learning 38(3), 257—286 (2000)

Zhao, Z., Liu, H.: Spectral feature selection for supervised and unsupervised learn-
ing. In: ICML 2007: Proceedings of the 24th international conference on Machine
learning, pp. 1151-1157. ACM Press, New York (2007)

Zhou, D.; Huang, J., Scholkopf, B.: Learning from labeled and unlabeled data on
a directed graph. In: ICML 2005: Proceedings of the 22nd international conference
on Machine learning, pp. 1036-1043. ACM Press, New York (2005)

Zhou, D., Scholkopf, B.: Regularization on discrete spaces. In: Kropatsch, W.G.,
Sablatnig, R., Hanbury, A. (eds.) DAGM 2005. LNCS, vol. 3663, pp. 361-368.
Springer, Heidelberg (2005)

Integrating Novel Class Detection with
Classification for Concept-Drifting Data Streams

Mohammad M. Masud!, Jing Gao?,
Latifur Khan!, Jiawei Han?, and Bhavani Thuraisingham®

! University of Texas, Dallas
2 University of Illinois, Urbana Champaign
mehedy@utdallas.edu, jinggao3Quiuc.edu,
lkhan@utdallas.edu, hanj@cs.uiuc.edu, bhavani.thuraisingham@utdallas.edu

Abstract. In a typical data stream classification task, it is assumed that
the total number of classes are fixed. This assumption may not be valid
in a real streaming environment, where new classes may evolve. Tradi-
tional data stream classification techniques are not capable of recognizing
novel class instances until the appearance of the novel class is manu-
ally identified, and labeled instances of that class are presented to the
learning algorithm for training. The problem becomes more challenging
in the presence of concept-drift, when the underlying data distribution
changes over time. We propose a novel and efficient technique that can
automatically detect the emergence of a novel class in the presence of
concept-drift by quantifying cohesion among unlabeled test instances,
and separation of the test instances from training instances. Our ap-
proach is non-parametric, meaning, it does not assume any underlying
distributions of data. Comparison with the state-of-the-art stream clas-
sification techniques prove the superiority of our approach.

1 Introduction

It is a major challenge to data mining community to mine the ever-growing
streaming data. There are three major problems related to stream data clas-
sification. First, it is impractical to store and use all the historical data for
training, since it would require infinite storage and running time. Second, there
may be concept-drift in the data, meaning, the underlying concept of the data
may change over time. Third, novel classes may evolve in the stream. There
are many existing solutions in literature that solve the first two problems, such
as single model incremental learning algorithms [II2ITT], and ensemble classi-
fiers [359]. However, most of the existing techniques are not capable of detect-
ing novel classes in the stream. On the other hand, our approach can handle
both concept-drift, and detect novel classes at the same time.

Traditional classifiers can only correctly classify instances of those classes
with which they have been trained. When a new class appears in the stream,
all instances belonging to that class will be misclassified until the new class

W. Buntine et al. (Eds.): ECML PKDD 2009, Part II, LNAI 5782, pp. 79-{94] 2009.
(© Springer-Verlag Berlin Heidelberg 2009

80 M.M. Masud et al.

has been manually identified by some experts and a new model is trained with
the labeled instances of that class. Our approach provides a solution to this
problem by incorporating a novel class detector within a traditional classifier
so that the emergence of a novel class can be identified without any manual
intervention. The proposed novel class detection technique can benefit many
applications in various domains, such as network intrusion detection and credit
card fraud detection. For example, in the problem of intrusion detection, when
a new kind of intrusion occurs, we should not only be able to detect that it
is an intrusion, but also that it is a new kind of intrusion. With the intrusion
type information, human experts would be able to analyze the intrusion more
intensely, find a cure, set an alarm in advance and make the system more secure.

We propose an innovative approach to detect novel classes. It is different
from traditional novelty (or anomaly/outlier) detection techniques in several
ways. First, traditional novelty detection techniques [4J6I10] work by assuming
or building a model of normal data, and simply identifying data points as out-
liers/anomalies that deviate from the “normal” points. But our goal is not only
to detect whether a single data point deviates from the normality, but also to
discover whether a group of outliers have any strong bond among themselves.
Second, traditional novelty detectors can be considered as a “one-classs” model,
which simply distinguish between normal and anomalous data, but cannot dis-
tinguish between two different kinds of anomalies. But our model is a “multi-
class” model, meaning, it can distinguish among different classes of data and
at the same time can detect presence of a novel class data, which is a unique
combination of a traditional classifier with a novelty detector.

Our technique handles concept-drift by adapting an ensemble classification
approach, which maintains an ensemble of M classifiers for classifying unlabeled
data. The data stream is divided into equal-sized chunks, so that each chunk
can be accommodated in memory and processed online. We train a classification
model from each chunk as soon as it is labeled. The newly trained model replaces
one of the existing models in the ensemble, if necessary. Thus, the ensemble
evolves, reflecting the most up-to-date concept in the stream.

The central concept of our novel class detection technique is that each class
must have an important property: the data points belonging to the same class
should be closer to each other (cohesion) and should be far apart from the data
points belonging to other classes (separation). Every time a new data chunk ap-
pears, we first detect the test instances that are well-separated from the training
data (i.e. outliers). Then filtering is applied to remove the outliers that possibly
appear as a result of concept-drift. Finally, if we find strong cohesion among
those filtered outliers, we declare a novel class. When the true labels of the novel
class(es) arrive and a new model is trained with the labeled instances, the exist-
ing ensemble is updated with that model. Therefore, the ensemble of models is
continuously enriched with new classes.

We have several contributions. First, we provide a detailed understanding
of the characteristic of a novel class, and propose a new technique that can
detect novel classes in the presence of concept-drift in data streams. Second, we

Integrating Novel Class Detection 81

establish a framework for incorporating novel class detection mechanism into
a traditional classifier. Finally, we apply our technique on both synthetic and
real-world data and obtain much better results than state-of the art stream
classification algorithms.

The rest of the paper is organized as follows. Section [2] discusses related work.
Section [B] provides an overview of our approach and Section [discusses our
approach in detail. Section [l then describes the datasets and experimental eval-
uation of our technique. Section [0l concludes with discussion and suggestions for
future work.

2 Related Work

Our work is related to both stream classification and novelty detection. There
have been many works in stream data classification. There are two main ap-
proaches - single model classification, and ensemble classification. Some single-
model techniques have been proposed to accommodate concept drift [TI2I1T].
However, Our technique follows the ensemble approach. Several ensemble tech-
niques for stream data mining have been proposed [3J5/9]. These ensemble ap-
proaches require simple operations to update the current concept, and they are
found to be robust in handling concept-drift. Although these techniques can
efficiently handle concept-drift, none of them can detect novel classes in the
data stream. On the other hand, our technique is not only capable of handling
concept-drift, but also able to detect novel classes in data streams. In this light,
our technique is also related to novelty detection techniques.

A comprehensive study on novelty detection has been discussed in [4]. The au-
thors categorize novelty detection techniques into two categories: statistical and
neural network based. Our technique is related to the statistical approach. Sta-
tistical approaches are of two types: parametric, and non-parametric. Parametric
approaches assume that data distributions are known (e.g. Gaussian), and try to
estimate the parameters (e.g. mean and variance) of the distribution. If any test
data falls outside the normal parameters of the model, it is declared as novel [6].
Our technique is a non-parametric approach. Non-parametric approaches like
parzen window method [10] estimate the density of training data and reject pat-
terns whose density is beyond a certain threshold. K-nearest neighbor (K-NN)
based approaches for novelty detection are also non-parametric [12]. All of these
techniques for novelty detection only consider whether a test instance is suffi-
ciently close (or far) from the training data based on some appropriate metric
(e.g., distance, density etc.). Our approach is different from these approaches
in that we not only consider separation from normal data but also consider co-
hesion among the outliers. Besides, our model assimilates a novel class into the
existing model, which enables it to distinguish future instances of that class from
other classes. On the other hand, novelty detection techniques just remember the
“normal” trend, and do not care about the similarities or dissimilarities among
the anomalous instances.

A recent work in data stream mining domain [7] describes a clustering ap-
proach that can detect both concept-drift and novel class. This approach

82 M.M. Masud et al.

assumes that there is only one ‘normal’ class and all other classes are novel.
Thus, it may not work well if more than one classes are to be considered as
‘normal’ or ‘non-novel’, but our approach can handle any number of existing
classes. This makes our approach more effective in detecting novel classes than
[7], which is justified by the experimental results.

3 Overview

Algorithm [outlines a summary of our technique. The data stream is divided
into equal sized chunks. The latest chunk, which is unlabeled, is provided to the
algorithm as input. At first it detects if there is any novel class in the chunk
(line 1). The term “novel class” will be defined shortly. If a novel class is found,
we detect the instances that belong to the class(es) (line 2). Then we use the
ensemble L = {Lq,..., Ly} to classify the instances that do not belong to the
novel class(es). When the data chunk becomes labeled, a new classifier L’ trained
using the chunk. Then the existing ensemble is updated by choosing the best
M classifiers from the M + 1 classifiers L U {L’} based on their accuracies on
the latest labeled data chunk. Our algorithm will be mentioned henceforth as

Algorithm 1. MineClass
Input: D,: the latest data chunk
L: Current ensemble of best M classifiers
Output Updated ensemble L
: found <+ DetectNovelClass(D,,L) (algorithm 2] section [£3))
if found then Y < Novel instances(D,), X < D, —Y else X «— D,
for each instance € X do Classify(L,z)
/*Assuming that D,, is now labeled*/
L’ «— Train-and-create-inventory(D,,) (section 1)
L «— Update(L,L’,D,,)

“MineClass”, which stands for Mining novel Classes in data streams. MineClass
should be applicable to any base learner. The only operation that is specific
to a learning algorithm is Train-and-create-inventory. We will illustrate this
operation for two base learners.

3.1 Classifiers Used

We apply our novelty detection technique on two different classifiers: decision
tree, and K-NN. We keep M classification models in the ensemble. For decision
tree classifier, each model is a decision tree. For K-NN, each model is usually
the set of training data itself. However, storing all the raw training data is
memory-inefficient and using them to classify unlabeled data is time-inefficient.
We reduce both the time and memory requirement by building K clusters with
the training data, saving the cluster summaries as classification models, and

Integrating Novel Class Detection 83

discarding the raw data. This process is explained in details in [5]. The cluster
summaries are mentioned henceforth as “pseudopoint”s. Since we store and use
only K pseudopoints, both the time and memory requirements become functions
of K (a constant number). The clustering approach followed here is a constraint-
based K-means clustering where the constraint is to minimize cluster impurity
while minimizing the intra-cluster dispersion. A cluster is considered pure if it
contains instances from only one class. The summary of each cluster consists
of the centroid, and the frequencies of data points of each class in the cluster.
Classification is done by finding the nearest cluster centroid from the test point,
and assigning the class, that has the highest frequency, to the test point.

3.2 Assumptions
We begin with the definition of “novel” and “existing” class.

Definition 1 (Existing class and Novel class). Let L be the current ensem-
ble of classification models. A class ¢ is an existing class if at least one of the
models L; € L has been trained with the instances of class c. Otherwise, ¢ is a
novel class.

We assume that any class has the following essential property:

Property 1. A data point should be closer to the data points of its own class
(cohesion) and farther apart from the data points of other classes (separation,).

Our main assumption is that the instances belonging to a class ¢ is generated
by a an underlying generative model 6., and the instances in each class are
independently identically distributed. With this assumption, we can reasonably
argue that the instances which are close together are supposed to be generated

Used space
& P Unused space Movel class
I]
H OXEMM
st b H
HHHH LN
HHREXH
HHR
b T
F3(A) xx®
e+ e+
4 +4+4
++ ++
FRre PR
B Y y oI
2
bttt bt
A B i B 5 we F5(B) AN B0 I B 5
bt [F e+ttt
+++
0.0 Hy H

Fig.1. (a) A decision tree and (b) corresponding feature space partitioning. FS(X)
denotes the feature space defined by a leaf node X. The shaded areas show the used
spaces of each partition. (¢) A Novel class (denoted by x) arrives in the unused space.

84 M.M. Masud et al.

by the same model, i.e., belong to the same class. We now show the basic idea
of novel class detection using decision tree in figure [Il We introduce the notion
of used space to denote a feature space occupied by any instance, and unused
space to denote a feature space unused by an instance. According to property
[Mi(separation), a novel class must arrive in the unused spaces. Besides, there must
be strong cohesion (e.g. closeness) among the instances of the novel class. Thus,
the two basic principles followed by our approach are: keeping track of the used
spaces of each leaf node in a decision tree, and finding strong cohesion among
the test instances that fall into the unused spaces.

4 Novel Class Detection

We follow two basic steps for novel class detection. First, the classifier is trained
such that an inventory of the used spaces (described in section B.2) is created
and saved. This is done by clustering and and saving the cluster summary as
“pseudopoint” (to be explained shortly). Secondly, these pseudopoints are used
to detect outliers in the test data, and declare a novel class if there is strong
cohesion among the outliers.

4.1 Saving the Inventory of Used Spaces During Training

The general idea of creating the inventory is to cluster the training data, and save
the cluster centroids and other useful information as pseudopoints. These pseudo-
points keep track of the use spaces. The way how this clustering is done may be
specific to each base learner. For example, for decision tree, clustering is done at
each leaf node of the tree, since we need to keep track of the used spaces for each leaf
node separately. For the K-NN classifier discussed in section 3.1l already existing
pseudopoints are utilized to store the inventory.

It should be noted here that K-means clustering appears to be the best choice
for saving the decision boundary and computing the outliers. Density-based clus-
tering could also be used to detect outliers but it has several problems. First,
we would have to save all the raw data points at the leaf nodes to apply the
clustering. Second, the clustering process would take quadratic time, compared
to linear time for K-means. Finally, we would have to run the clustering algo-
rithm for every data chunk to be tested. However, the choice of parameter K in
K-means algorithm has some impact on the overall outcome, which is discussed
in the experimental results.

Clustering: We build total K clusters per chunk. For K-NN, we utilize the
existing clusters that were created globally using the approach discussed in
section Bl For decision tree, clustering is done locally at each leaf node as
follows. Suppose S is the chunk-size. During decision tree training, when we
reach a leaf node l;, we build k; = (¢;/5) * K clusters in that leaf, where ¢;
denotes the number of training instances that ended up in leaf node ;.

Storing the cluster summary information: For each cluster, we store the
following summary information in memory: i) Weight, w: Defined as the

Integrating Novel Class Detection 85

total number of points in the cluster. ii) Centroid, (. iii) Radius, R: Defined
as the maximum distance between the centroid and the data points belonging
to the cluster. iv) Mean distance, pg: The mean distance from each point
to the cluster centroid. The cluster summary of a cluster H; will be referred to
henceforth as a “pseudopoint” ;. So, w(v;) denotes the weight of pseudopoint
;. After computing the cluster summaries, the raw data are discarded. Let ¥;
be the set of all pseudopoints stored in memory for a classifier L;.

4.2 OQOutlier Detection and Filtering

Each pseudopoint); corresponds to a hypersphere in the feature space hav-
ing center ((¢;) and radius R(¢);). Thus, the pseudopoints ‘memorize’ the used
spaces. Let us denote the portion of feature space covered by a pseudopoint v;
as the “region” of ¥; or RE(v;). So, the union of the regions covered by all the
pseudopoints is the union of all the used spaces, which forms a decision boundary
B(Lj) = Uy, ew, RE(¢;), for a classifier L;. Now, we are ready to define outliers.

Definition 2 (Routlier). Let = be a test point and Vi, be the pseudopoint
whose centroid is nearest to x. Then x is an Routlier (i.e., raw outlier) if it is
outside RE(Vmin), i.e., its distance from ((Vmin) is greater than R(Ymin)-

In other words, any point z outside the decision boundary B(L,) is an Routlier
for the classifier L;. For K-NN, Routliers are detected globally by testing x
against all the psuedopoints. For decision tree, z is tested against only the
psueodpoints stored at the leaf node where x belongs.

Filtering: According to definition 2] a test instance may be erroneously con-
sidered as an Routlier because of one or more of the following reasons: i) The
test instance belongs to an existing class but it is a noise. ii) There has been
a concept-drift and as a result, the decision boundary of an existing class has
been shifted. iii) The decision tree has been trained with insufficient data. So,
the predicted decision boundary is not the same as the actual one.

Due to these reasons, the outliers are filtered to ensure that any outlier that
belongs to the existing classes does not end up in being declared as a new class
instance. The filtering is done as follows: if a test instance is an Routlier to all
the classifiers in the ensemble, then it is considered as a filtered outlier. All other
Routliers are filtered out.

Definition 3 (Foutlier). A test instance is an Foutlier (i.e., filtered outlier) if
it 1s an Routlier to all the classifiers L; in the ensemble L.

Intiuitively, being an Foutlier is a necessary condition for being in a new class.
Because, suppose an instance x is not an Routlier to some classifier L; in the
ensemble. Then = must be inside the decision boundary B(L;). So, it violates
property [Il (separation), and therefore, it cannot belong to a new class. Although
being an Foutlier is a necessary condition, it is not sufficient for being in a new
class, since it does not guarantee the property[Il (cohesion). So, we proceed to the
next step to verify whether the Foutliers satisfy both cohesion and separation.

86 M.M. Masud et al.

4.3 Detecting Novel Class

We perform several computations on the Foutliers to detect the arrival of a new
class. First, we discuss the general concepts of these computations and later we
describe how these computations are carried out efficiently. For every Foutlier,
we define a A.-neighborhood as follows:

Definition 4 (A.-neighborhood). The A -neighborhood of an Foutlier is the
set of N'-nearest neighbors of x belonging to class c.

Here N is a user defined parameter. For brevity, we denote the \.-neighborhood
of an Foutlier x as A.(z). Thus, A\ (z) of an Foutlier x is the set of N in-
stances of class ¢4, that are closest to the outlier . Similarly, A\, (z) refers to the
set of N Foutliers that are closest to x. This is illustrated in figure[2] where the
Foutliers are shown as black dots, and the instances of class ¢ and class c—
are shown with the corresponding symbols. A} (z) of the Foutlier x is the set of
N (= 3) instances belonging to class ¢4 that are nearest to z (inside the circle),
and so on. Next, we define the A-neighborhood silhouette coefficient, (NV-NSC).

Ax)
A o)

®

Fig. 2. \.-neighborhood with N'=3

Definition 5 (N-NSC). Let a(z) be the average distance from an Foutlier
x to the instances in A\,(x), and b.(x) be the average distance from x to the

instances in A.(x) (where ¢ is an existing class). Let byin(z) be the minimum
among all b.(x). Then N-NSC of x is given by:

bmin (JC) - a(:c)
max(bmin(‘r)ﬂ a(a:))

N-NSC(z) = (1)
According to the definition, the value of N-NSC is between -1 and +1. It is
actually a unified measure of cohesion and separation. A negative value indicates
that x is closer to the other classes (less separation) and farther away from its
own class (less cohesion). We declare a new class if there are at least N’ (> N)
Foutliers, whose N-NSC is positive. In fact, we prove that this is a necessary
and sufficient condition for a new class. This proof is omitted here due to space
limitation, but can be obtained from [g].

It should be noted that the larger the value of A/, the greater the confidence
with which we can decide whether a novel class has arrived. However, if N is

Integrating Novel Class Detection 87

too large, then we may also fail to detect a new class if the total number of
instances belonging to the novel class in the corresponding data chunk is < .
We experimentally find an optimal value of A/, which is explained in section

Computing the set of novel class instances: Once we detect the presence
of a novel class, the next step is to find those instances, and separate them from
the existing class data. According to the necessary and sufficient condition, a
set of Foutlier instances belong to a novel class if following three conditions
satisfy: i) all the Foutliers in the set have positive N-NSC, ii) all the Foutliers
in the set have A,(x) within the set, and iii) cardinality of the set > A. Let G
be such a set. Note that finding the exact set G is computationally expensive, so
we follow an approximation. Let G’ be the set of all Foutliers that have positive
N-NSC. If |G’| > N, then G’ is an approximation of G. It is possible that some
of the data points in G’ may not actually be a novel class instance or vice versa.
However, in our experiments, we found that this approximation works well.

Speeding up the computation: Computing N-NSC for every Foutlier in-
stance z takes quadratic time in the number of Foutliers. In order to make
the computation faster, we also create K, pseudopoints from Foutliers using
K-means clustering and perform the computations on the pseudopoints (re-
ferred to as Fpseudopoints), where K, = (N,/S) « K. Here S is the chunk size
and N, is the number of Foutliers. Thus, the time complexity to compute the
N-NSC of all of the Fpseudopoints is O(K, * (K, + K)), which is constant,
since both K, and K are independent of the input size. Note that A/-NSC of a
Fpseudopoint is actually an approximate average of the A'-NSC of each Foutlier
in that Fpseudopoint. By using this approximation, although we gain speed, we
also lose some precision. However, this drop in precision is negligible when we
keep sufficient number of pseudopoints, as shown in the exprimental results. The
novel class detection process is summarized in algorithm 2] (DetectNovelClass).

This algorithm can detect one or more novel classes concurrently (i.e., in
the same chunk) as long as each novel class follows property [Il and contains
at least N instances. This is true even if the class distributions are skewed.
However, if more than one such novel classes appear concurrently, our algorithm
will identify the instances belonging to those classes as novel, without imposing
any distinction among dissimilar novel class instances (i.e., it will treat them
simply as “novel”). But the distinction will be learned by our model as soon
those instances are labeled, and a classifier is trained with them.

Time complexity: Lines 1-3 of algorithm 2l requires O(K SL) time where S is
the chunk size. Line 4 (clustering) requires O(K S) time, and the last for loop
(5-10) requires O(K?L) time. Thus, the overall time complexity of algorithm
is O(KS + KSL + K?L) = O(K(S + SL + KL)). Assuming that S >> KL,
the complexity becomes O(KS), which is linear in S. Thus, the overall time
complexity (per chunk) of MineClass algorithm (algorithm/[I]) is O(K S+ f.(LS)+
fi(S)), where f.(n) is the time required to classify n instances and f;(n) is the
time required to train a classifier with n training instances.

88 M.M. Masud et al.

Algorithm 2. DetectNovelClass(D,L)

Input: D: An unlabeled data chunk
L: Current ensemble of best M classifiers
Output: true, if novel class is found; false, otherwise
1: for each instance x € D do
2: if = is an Routlier to all classifiers L; € L
then FList < FList U {z} /* x is an Foutlier*/
3: end for
Make Ko=(K * |FList|/|D|) clusters with the instances in F List using K-means
clustering, and create Fpseudopoints
for each classifier L; € L do
Compute N -NSC(v;) for each Fpseudopoint 1);
U, « the set of Fpseudopoints having positive N-NSC(.).
w(¥p) «— sum of w(.) of all Fpseudopoints in ¥,.
if w(¥,) > N then NewClassVote++
: end for
: return NewClassVote > M - NewClassVote /*Majority voting*/

b

—_
2oL XS

Impact of evolving class labels on ensemble classification: As the reader
might have realized already, arrival of novel classes in the stream causes the
classifiers in the ensemble to have different sets of class labels. For example,
suppose an older (earlier) classifier L; in the ensemble has been trained with
classes ¢o and ¢1, and a newer (later) classifier L; has been trained with classes
c1, and ca, where co is a new class that appeared after L; had been trained. This
puts a negative effect on voting decision, since the older classifier mis-classifies
instances of ¢o. So, rather than counting votes from each classifier, we selectively
count their votes as follows: if a newer classifier L; classifies a test instance z as
class ¢, but an older classifier L; does not have the class label ¢ in its model, then
the vote of L; will be ignored if z is found to be an outlier for L;. An opposite
scenario occurs when the oldest classifier L; is trained with some class ¢/, but
none of the later classifiers are trained with that class. This means class ¢’ has
been outdated, and, in that case, we remove L; from the ensemble. In this way
we ensure that older classifiers have less impact in the voting process. If class ¢’
later re-appears in the stream, it will be automatically detected again as a novel
class (see definition [I).

5 Experiments

We evaluate our proposed method on a number of synthetic and real datasets,
but due to space limitations, we report results on four datasets.

5.1 Data Sets

Specific details of the data sets can be obtained from [g].

Integrating Novel Class Detection 89

Synthetic data generation: There are two types of synthetic data: synthetic
data with only concept-drift (SynC) and synthetic data with concept-drift and
novel-class (SynCN). SynC is generated using moving hyperplane, which con-
tains 2 classes and 10 numeric attributes. SynCN is generated using Gaussian
distribution, which contains 10 classes and 20 numeric attributes.

Real datasets: The two real datasets used in the experiments are the 10%
version of the KDD Cup 99 network intrusion detection, and Forest Cover dataset
from UCI repository. We have used the 10% version of the KDDcup dataset,
where novel classes appear more frequently than the full version, hence it is more
challenging. KDDcup dataset contains around 490,000 instances, 23 classes, and
34 numeric attributes. Forest Cover dataset contains 7 classes, 54 attributes and
around 581,000 instances. We arrange the Forest Cover dataset so that in any
chunk at most 3 and at least 2 classes co-occur, and new classes appear randomly.
All datasets are normalized to have attribute values within [0,1].

5.2 Experimental Setup

We implement our algorithm in Java. The code for decision tree has been
adapted from the Weka machine learning open source repository |(http://www.
cs.waikato.ac.nz/ml/weka/) . The experiments were run on an Intel P-IV ma-
chine with 2GB memory and 3GHz dual processor CPU. Our parameter settings
are as follows, unless mentioned otherwise: i) K (number of pseudopoints per
chunk) = 50, ii) A" = 50, iii) M (ensemble size) = 6, iv) Chunk-size = 1,000 for
synthetic datasets, and 4,000 for real datasets. These values of parameters are
tuned to achieve an overall satisfactory performance.

Baseline method: To the best of our knowledge, there is no approach that can
classify data streams and detect novel class. So, we compare MineClass with a
combination of two baseline techniques: OLIN DDA [7], and Weighted Classifier
Ensemble (WCE) [9], where the former works as novel class detector, and the
latter performs classification. For each chunk, we first detect the novel class
instances using OLIN DDA. All other instances in the chunk are assumed to be
in the existing classes, and they are classified using WCE. We use OLINDDA
as the novelty detector, since it is a recently proposed algorithm that is shown
to have outperformed other novelty detection techniques in data streams [7].
However, OLIN DDA assumes that there is only one “normal” class, and all
other classes are “novel”. So, it is not directly applicable to the multi-class nov-
elty detection problem, where any combination of classes can be considered as the
“existing” classes. We propose two alternative solutions. First, we build parallel
OLIN DDA models, one for each class, which evolve simultaneously. Whenever
the instances of a novel class appear, we create a new OLIN DDA model for
that class. A test instance is declared as novel, if all the existing class models
identify this instance as novel. We will refer to this baseline method as WCE-
OLINDDA PARALLEL. Second, we initially build an OLIN DDA model with
all the available classes. Whenever a novel class is found, the class is absorbed into
the existing OLIN DDA model. Thus, only one “normal” model is maintained

(http://www.cs.waikato.ac.nz/ml/weka/).
(http://www.cs.waikato.ac.nz/ml/weka/).

90 M.M. Masud et al.

throughout the stream. This will be referred to as WCE-OLINDDA SINGLE.
In all experiments, the ensemble size and chunk-size are kept the same for both
these techniques. Besides, the same base learner is used for WCE and MC.
The parameter settings for OLINDDA are: i) number of data points per clus-
ter (Nezer) = 15, ii) least number of normal instances needed to update the
existing model = 100, iii) least number of instances needed to build the initial
model = 30. These parameters are chosen either according to the default values
used in [7] or by trial and error to get an overall satisfactory performance. We
will henceforth use the acronyms MC for MineClass, W-OP for WCE-
OLINDDA PARALLEL and W-0OS for WCE-OLINDDA SINGLE.

5.3 Performance Study

FEvaluation approach: We use the following performance metrics for evalua-
tion: M,,c, = % of novel class instances Misclassified as existing class, Fje, = %
of existing class instances Falsely identified as novel class, ERR = Total misclas-
sification error (%)(including M,,e,, and Fer). We build the initial models in
each method with the first M chunks. From the M 41 chunk onward, we first
evaluate the performances of each method on that chunk, then use that chunk
to update the existing model. The performance metrics for each chunk for each
method are saved and averaged for producing the summary result.

Results: FiguresBla)-(d) show the ERR for decision tree classifier of each ap-
proach up to a certain point in the stream in different datasets. K-NN classifier
also has similar results. For example, at X axis = 100, the Y values show the
average ERR of each approach from the beginning of the stream to chunk 100.
At this point, the ERR of MC, W-OP, and W-OS are 1.7%, 11.6% and 8.7%,
respectively, for the KDD dataset (figure Blc)). The arrival of novel a class in
each dataset is marked by a cross (x) on the top border in each graph at the
corresponding chunk. For example, on the SynCN dataset (figure Bla)), W-OP
and W-OS misses most of the novel class instances, which results in the spikes
in their curves at the respective chunks (e.g. at chunks 12, 24, 37 etc.). W-OS
misses almost 99% of the novel class instances. Similar spikes are observed for
both W-OP and W-OS at the chunks where novel classes appear for KDD and
Forest Cover datasets. For example, many novel classes appear between chunks
9-14 in KDD, most of which are missed by both W-OP and W-OS. Note that
there is no novel class for SynC dataset. MC correctly detects most of these
novel classes. Thus, MC outperforms both W-OP and W-OS in all datasets.
Table [lsummarizes the error metrics for each of the techniques in each dataset
for decision tree, and K-NN. The columns headed by ERR, Me, and Fjeqy
report the average of the corresponding metric on an entire dataset. For example,
while using decision tree in the SynC dataset, MC, W-OP and W-OS have almost
the same ERR, which are 11.6%, 13.0%, and 12.5%, respectively. This is because
SynC simulates only concept-drift, and both MC and WCE handle concept-drift
in a similar manner. In SynCN dataset with decision tree, MC, W-OP, and W-OS
have 0%, 89.4%, and 99.7% M,,c.,, respectively. Thus, W-OS misses almost all of
the novel class instances, whereas W-OP detects only 11% of them. MC correctly

Integrating Novel Class Detection 91

a c
18 18 SHCSODHC
MC —o— MC ———
| W-OP - | W-OP
15 W-0S —— 15 W05 ——
~ 12 12
&
w2 9
>
< 6 A 6 -
3 A 3 A
0 ; T T T 0 T T T T
0 20 40 60 80 100 0 20 40 60 80 100
Chunk no Chunk no
b d
35 35
MC —e— MC —e—
30 1 W-OP - 30 A Ww-op
W-0S —— ; e W-0S ——
25 A 25 A : S,
220 _ 20 4
215 15
<
10 4 10 4
5 5 A
0 T T T T 0 T T T T
0 20 40 60 80 100 0 20 40 60 80 100
Chunk no Chunk no

Fig. 3. Error comparison on (a) SynCN, (b) SynC, (c¢) KDD and (d) Forest Cover

detects all of the novel class instances. It is interesting that all approaches have
lower error rates in SynCN than SynC. This is because SynCN is generated
using Gaussian distribution, which is naturally easier for the classifiers to learn.
W-OS miss-predicts almost all of the novel class instances in all datasets. The
comparatively better ERR rate for W-OS over W-OP can be attributed to the
lower false positive rate of W-OS, which occurs since almost all instances are
identified as “normal” by W-OS. Again, the overall error (ERR) of MC is much
lower than other methods in all datasets and for all classifiers. K-NN also has
similar results for all datasets.

Figures [fa)-(d) illustrate how the error rates of MC change for different
parameter settings on KDD dataset and decision tree classifier. These parameters
have similar effects on other datasets, and K-NN classifier. Figure d{(a) shows
the effect of chunk size on ERR, Fj ey, and M, rates for default values of
other parameters. M, reduces when chunk size is increased. This is desirable,
because larger chunks reduce the risk of missing a novel class. But F),., rate
slightly increases since the risk of identifying an existing class instance as novel
also rises a little. These changes stabilizes from chunk size 4,000 (for Synthetic
dataset, it is 1,000). That is why we use these values in our experiments. Figure
[@i(b) shows the effect of number of clusters (K) on error. Increasing K generally

92 M.M. Masud et al.

Table 1. Performance comparison

Classifier Dataset ERR Mnew Frew
MC W-OP W-0S MC W-OP W-0S MC W-OP W-0S
SynC 11.6 13.0 12,5 0.0 0.0 0.0 0.0 1.0 0.6
Decision tree SynCN 0.6 6.1 5.2 0.0 8.4 99.7 0.0 0.6 0.0
KDD 1.7 116 87 0.7 267 994 15 7.0 0.0
Forest Cover 7.3 21.8 87 9.8 185 994 1.7 150 0.0
SynC 11.7 13.1 12.6 0.0 0.0 0.0 0.0 1.0 0.6
K-NN SynCN 0.8 5.8 56 0 90.1 99.7 09 0.6 0.0
KDD 2.3 10.0 7.0 2.7 290 994 22 7.1 0.0

Forest Cover 5.4 19.2 89 1.0 185 94.0 45 150 0.3

reduces error rates, because outliers are more correctly detected, and as a result,
M Tate decreases. However, Fi,.q, rate also starts increasing slowly, since more
test instances are becoming outliers (although they are not). The combined effect
is that overall error keeps decreasing up to a certain value (e.g. K=50), and
then becomes almost flat. This is why we use K =50 in our experiments. Figure
[i(c) shows the effect of ensemble size (M) on error rates. We observe that the
error rates decrease up to a certain size (=6), and become stable since then.
This is because when M is increased from a low value (e.g., 2), classification
error naturally decreases up to a certain point because of the reduction of error
variance [9]. Figure @(d) shows the effect of A on error rates. The x-axis in this
chart is drawn in a logarithmic scale. Naturally, increasing N up to a certain
point (e.g. 20) helps reducing error, since we know that a higher value of A gives
us a greater confidence in declaring a new class (see section [£3)). But a too large
value of N increases M., and ERR rates, since a new class is missed by the
algorithm if it has less than A instances in a data chunk. We have found that
any value between 20 to 100 is the best choice for N.

Running time: Table 2] compares the running times of MC, W-OP, and W-OS
on each dataset for decision tree. K-NN also shows similar performances. The
columns headed by “Time (sec)/chunk ” show the average running times (train
and test) in seconds per chunk, the columns headed by “Points/sec” show how
many points have been processed (train and test) per second on average, and the
columns headed by “speed gain” shows the ratio of the speed of MC to that of
W-OP and W-OS, respectively. For example, MC is 2,095, and 105 times faster
than W-OP on KDD dataset, and Forest Cover dataset, respectively. Also, MC
is 203 and 27 times faster than W-OP and W-OS, respectively, on the SynCN
dataset. W-OP and W-OS are slower on SynCN than on SynC dataset because
SynCN dataset has more attributes (20 vs 10) and classes (10 vs 2). W-OP is
relatively slower than W-OS since W-OP maintains C' parallel models, where
C is the number of existing classes, whereas W-OS maintains only one model.
Both W-OP and W-OS are relatively faster on Forest Cover than KDD since
Forest Cover has less number of classes, and relatively less evolution than KDD.
The main reason for this extremely slow processing of W-OP and W-OS is that
the number of clusters for each OLINDDA model keeps increasing linearly with

Integrating Novel Class Detection 93

a C
6 6
ERR —=—
Fnew I
— Mpew ——
S 4 4
8
5
u*—:‘ 2 2
0 T T T T 0 T T T T T
05 1 2 3 4 5 2 4 6 8 10 12
Chunk size (in thousands) Ensemble size (M)
b d
10 10
ERR —=— ERR ——
] Frew —— | Frew ——
—_ 8 Mncw - 8 Mncw —
1S3
S 6
=
5 4 4
=}
[s3)
2 A 2
0 : ‘ ol ‘ : :
2 20 50 100 20 100 500 2000
Number of clusters (K) Min-points (N)
Fig. 4. Sensitivity to different parameters
Table 2. Running time comparison in all datasets
Dataset Time(sec)/chunk Points/sec Speed gain
MC W-OP W-OS MC W-OP W-0OS MC over W-OP MC over W-OS
SynC 0.18 081 0.19 5,446 1,227 5,102 4 1
SynCN 0.27 529 7.34 3,656 18 135 203 27
KDD 0.95 1369.5 222.8 4,190 2 17 2,095 246
Forest Cover 2.11 213.1 10.79 1,899 18 370 105 5

the size of the data stream, causing both the memory requirement and running
time to increases linearly. But the running time and memory requirement of MC
remains the same over the entire length of the stream.

6 Conclusion

We have presented a novel technique to detect new classes in concept-drifting
data streams. Most of the novelty detection techniques either assume that there
is no concept-drift, or build a model for a single “normal” class and consider
all other classes as novel. But our approach is capable of detecting novel classes

94 M.M. Masud et al.

in the presence of concept-drift, and even when the model consists of multiple
“existing” classes. Besides, our novel class detection technique is non-parametric,
meaning, it does not assume any specific distribution of data. We also show
empirically that our approach outperforms the state-of-the art data stream based
novelty detection techniques in both classification accuracy and processing speed.

It might appear to readers that in order to detect novel classes we are in fact
examining whether new clusters are being formed, and therefore, the detection
process could go on without supervision. But supervision is necessary for classifi-
cation. Without external supervision, two separate clusters could be regarded as
two different classes, although they are not. Conversely, if more than one novel
classes appear in a chunk, all of them could be regarded as a single novel class
if the labels of those instances are never revealed. In future, we would like to
apply our technique in the domain of multiple-label instances.

Acknowledgment

This research was funded in part by NASA grant NNX08AC35A.

References

1. Chen, S., Wang, H., Zhou, S., Yu, P.: Stop chasing trends: Discovering high order
models in evolving data. In: Proc. ICDE, pp. 923-932 (2008)

2. Hulten, G., Spencer, L., Domingos, P.: Mining time-changing data streams. In:
Proc. ACM SIGKDD, pp. 97-106 (2001)

3. Kolter, J., Maloof, M.: Using additive expert ensembles to cope with concept drift.
In: Proc. ICML, pp. 449-456 (2005)

4. Markou, M., Singh, S.: Novelty detection: A review-part 1: Statistical approaches,
part 2: Neural network based approaches. Signal Processing 83 (2003)

5. Masud, M.M., Gao, J., Khan, L., Han, J., Thuraisingham, B.: A practical approach
to classify evolving data streams: Training with limited amount of labeled data.
In: Proc. ICDM, pp. 929-934 (2008)

6. Roberts, S.J.: Extreme value statistics for novelty detection in biomedical signal
processing. In: Proc. Int. Conf. on Advances in Medical Signal and Information
Processing, pp. 166-172 (2000)

7. Spinosa, E.J., de Leon, A.P., de Carvalho, F., Gama, J.: Olindda: a cluster-based
approach for detecting novelty and concept drift in data streams. In: Proc. 2007
ACM symposium on Applied computing, pp. 448-452 (2007)

8. University of Texas at Dallas Technical report UTDCS-13-09 (June 2009),
http://www.utdallas.edu/~mmm058000/reports/UTDCS-13-09. pdf

9. Wang, H., Fan, W., Yu, P., Han, J.: Mining concept-drifting data streams using
ensemble classifiers. In: Proc. ACM SIGKDD, pp. 226-235 (2003)

10. yan Yeung, D., Chow, C.: Parzen-window network intrusion detectors. In: Proc.
International Conference on Pattern Recognition, pp. 385-388 (2002)

11. Yang, Y., Wu, X., Zhu, X.: Combining proactive and reactive predictions for data
streams. In: Proc. ACM SIGKDD, pp. 710-715 (2005)

12. Yang, Y., Zhang, J., Carbonell, J., Jin, C.: Topic-conditioned novelty detection.
In: Proc. ACM SIGKDD, pp. 688-693 (2002)

http://www.utdallas.edu/~mmm058000/reports/UTDCS-13-09.pdf

Neural Networks for State Evaluation
in General Game Playing

Daniel Michulke and Michael Thielscher

Department of Computer Science
Dresden University of Technology
{daniel.michulke,mit}@inf.tu-dresden.de

Abstract. Unlike traditional game playing, General Game Playing is
concerned with agents capable of playing classes of games. Given the rules
of an unknown game, the agent is supposed to play well without human
intervention. For this purpose, agent systems that use deterministic game
tree search need to automatically construct a state value function to
guide search. Successful systems of this type use evaluation functions
derived solely from the game rules, thus neglecting further improvements
by experience. In addition, these functions are fixed in their form and
do not necessarily capture the game’s real state value function. In this
work we present an approach for obtaining evaluation functions on the
basis of neural networks that overcomes the aforementioned problems. A
network initialization extracted from the game rules ensures reasonable
behavior without the need for prior training. Later training, however,
can lead to significant improvements in evaluation quality, as our results
indicate.

1 Introduction

Developing an agent for a specific game allows to include game-specific knowledge
as data structures (e.g. as in [15]) or manually designed features (like in today’s
chess programs [10]). These specializations, however, restrict the agent in that it
cannot adapt to game modifications, let alone play completely different games.

In contrast, General Game Playing (GGP) is concerned with the development
of systems that understand the rules of previously unknown games and learn
to play these games well without human intervention. As such systems cannot
benefit from prior knowledge, they have to be endowed with high-level cognitive
abilities such as general strategic thinking and abstract reasoning. This makes
GGP a good example of a challenging problem which encompasses a variety of
AT research areas, including knowledge representation and reasoning, heuristic
search, planning and learning.

To allow for comparison of GGP agent systems, the Game Description Lan-
guage (GDL) has become standard. It allows to describe arbitrary deterministic
n-player games with complete information by giving a formal axiomatization of
their rules. Progress can be seen at the GGP competition held annually at the

W. Buntine et al. (Eds.): ECML PKDD 2009, Part II, LNAI 5782, pp. 95-{110] 2009.
(© Springer-Verlag Berlin Heidelberg 2009

96 D. Michulke and M. Thielscher

AAAT Conference [8], where the following two different approaches have been re-
cently established in the development of general game playing agents: simulation-
based approaches [0l [7] employ probabilistic look-ahead search in Monte-Carlo
fashion, while knowledge-based systems refine domain knowledge (the game rules)
in order to extract an evaluation function (or state value function) for assessing
the leaf nodes in a depth-limited search tree [I1l (2 [[3]. Evaluation functions
used in the latter type of systems share, however, two major disadvantages:

— They are fixed in their form and do not necessarily capture the real state
value function of the game.

— They are determined solely on the basis of the game rules; later experience
is ignored.

While the former problem can be solved by using any general function approxi-
mator, the latter one can be addressed by employing learning algorithms. Though
neural networks represent a solution to the two issues, their training is known to
be both time consuming and not converging in general. However, an initializa-
tion as done in [I6] [3] allows for a sound state evaluation without prior training.
In this paper we present an algorithm that, on the basis of C-IL?P [3], trans-
forms the game rules to a set of neural networks that can be employed for state
evaluation and need not be trained. Learning abilities, however, are retained,
and experiments indicate a significant increase in evaluation quality in this case.

The rest paper is organized as follows. In section 2, we give a brief introduction
on the fields encompassed by our approach. This is followed, in section 3, by a
presentation of the transformation process of domain knowledge to a state value
function. In section 4, we present experimental results. These are discussed in
section 5. We conclude in section 6.

2 Background

2.1 Running Example: Pentago

For illustration purposes we use the game Pentagdy as an example throughout
this paper. Pentago is a two-player game played on a 6x6 board. The players take
turn in first marking a cell that is blank, followed by rotating (either clockwise
or counterclockwise) one of the four 3x3 quadrants of the board. The player wins
who first achieves a line (horizontal, vertical, or diagonal) with five of his marks.
If no blank cell is left on the board and nobody has won, the game ends in a
draw. Figure [1l shows a final board position which is won for the white player.
The four quadrants can be distinguished by their background color.

2.2 GDL

The Game Description Language (GDL) [12] has become the standard lan-
guage for GGP, allowing for the definition of deterministic n-player games with

! The complete set of rules for this game, and for all others mentioned in this paper,
can be found at http://www.general-game-playing.de/game_db/doku.php

http://www.general-game-playing.de/game_db/doku.php

Neural Networks for State Evaluation in General Game Playing 97

Ol s
] O 5
Cle O “

e 0@ 2
O @ 2

. 1

Fig. 1. White wins a match of Pentago

complete information. Examples are popular games like Tic-Tac-Toe, Chess, or
Checkers.

GDL allows to give modular, logic-based specifications of games which are
interpreted as finite state machines subject to certain restrictions. Each player
has a specific role in a game. An actual match corresponds to traversing the
finite state machine until a terminal state is reached. A goal function is defined
on the set of terminal states that determines the outcome for each player. For the
formal specification of the goal, the language uses the keyword goal in axioms
of the form

(<= (goal ?7role 7value) goalcondition)

where ?role is the role the player occupies and ?value gives the goal value (in
the interval [0,100] by convention) for this player if goalcondition is fulfilled.
(<= (goal white 100) (line white)) in Pentago thus exemplifies a goal con-
dition where “white” (the player with the role “white”) wins 100 points in
case there is a line of white marks in the current state. While the roles in a
game are defined as ground facts, the auxiliary relation line can be resolved
down to facts holding in a state. These facts, called fluents, have the form
(fluent arg_1 ... arg_n) and can be queried with the keyword true. We
refer to [12] for the complete specification of GDL.

2.3 Knowledge-Based State Value Functions

Existing knowledge-based GGP agents, such as [I1] 2] [13], employ different ap-
proaches to construct a state value function that gives a degree of preference of
non-terminal states to guide search in an instance of the game (a match). For
this purpose they analyze the game description and extract position features
to be used in the value function. The automatic construction of an evaluation
function takes place in three phases as follows.

In the first phase, game-specific features are identified. To begin with, all
of the above mentioned systems attempt to detect static structures (that is,
which do not depend on the current state of a game) such as successor relations.
E.g., (succ 2 3) may define the constant 3 as the successor of 2 in a specific

98 D. Michulke and M. Thielscher

ordering, which then may be used to define an ordering over possible values
for a variable which appears somewhere in the game rules. Note that this is a
syntactic rather than a lexical propertyE Successor relations are typically used
to represent quantities, counters, or coordinates. On the other hand, constants
without any underlying order often represent markers (like in Pentago) or pieces
(unique markers as the king in Chess).

These identified static structures can then be used to detect high-level struc-
tures. For example, a fluent with arguments from a successor relation may be
interpreted as a board, where the other arguments of this fluent either describe
the contents of the individual cells (e.g., markers or quantities) or identify a
specific instance of the board. The Pentago board, for example, is represented
by (cellholds 7q 7x 7y 7player), where 7x and 7y appear in a successor
relation and where an instance of this fluent holds for every pair (7%, ?y) in
every state. Thus, ?x and 7y can be identified as coordinates. Because specific
instances 7x and 7y can occur together with several instances of 7q, the latter
must be part of the coordinates as well. But 7q does not occur in an underlying
order, so that this argument is identified as marking different instances of the
board. The remaining argument ?player, then, must describe the contents of
the board cell. Thus, with the coordinates (?x ?y), with the four possible values
for 7q, and with ?player describing the board content, as a high-level structure
of Pentago one can identify four 3x3 boards, one for each quadrant.

In a similar fashion, quantities and other structural elements can be detected.
The identified structures can be combined arithmetically in order to construct
features out of them. In this way, a knowledge-based GGP system can measure,
for example, the distance of a pawn to the promotion rank in chess-like games,
or the difference in the number of pieces each player has still on the board in
the game of checkers, etc.

Other, game-independent features may be added, such as “mobility,” which is
a measure of how much control a player has in a given game state by counting the
number of available moves. Another feature may be “material,” characterizing
an advantage in the number of markers or pieces on a board (if applicable).

In the second phase of the automatic construction of an evaluation function,
useful features are selected. Common conditions for selecting a feature are sta-
bility (e.g., the absence of wild oscillation over its domain) [2], an estimation for
the effort it takes to compute a high-level feature, correlation with winning or
losing terminal states, and the appearance in the goal formulas of a game [13].

In the third and last phase, the selected features are combined in a single
state value function. Either the features are combined with fixed or estimated
weights according to some predefined scheme, or the goal function of the game
is fuzzified [13]. In the latter case, comparison relations that occur in the goal
function of the game can be substituted by the features detected in the first
phase. In this way, a boolean winning condition of having more markers than

2 This can be identified by checking whether the relation in question is a singleton
for each constant in any argument position, and whether its graph representation is
acyclic.

Neural Networks for State Evaluation in General Game Playing 99

the opponent, for example, can be mapped onto an arithmetic condition. This
allows the player to prefer a lead with a higher margin to one with a smaller
margin.

2.4 Neuro-Symbolic Integration

Symbolic knowledge offers the advantage to draw precise conclusions, provided
there is a sound and sufficiently large knowledge base. Often, however, the knowl-
edge base is insufficient, incorrect, or simply unavailable. Learning systems, on
the other hand, can adapt to various domains, but require prior training and
are prone to errors due to indiscriminate or too few learning examples as well
as bad initialization. Neuro-Symbolic Integration attempts to unify both views
to maintain their advantages while eliminating drawbacks by exploiting syner-
gies. KBANN (Knowledge-Based Artificial Neural Network [16]) was the first
approach to convincingly utilize both paradigms. Initialized with an “approx-
imately correct” propositional domain theory, the network was automatically
generated and trained and eventually led to a correction of the initial theory.
Furthermore, KBANN learned much faster than randomly initialized nets and
was able to qualitatively outperform any other algorithm during training as well
as afterwards. While KBANN allowed the application of a standard learning
algorithm, the algorithm still had some weaknesses that made it more complex
than necessary and limited its application to domain theories with only a small
number of rules and antecedents per rule.

In [9] it was shown that three-layer recurrent neural networks can represent
propositional logic programs without any restrictions regarding the number of
rules or antecedents. Learning via backpropagation, however, was not intended.
Though it was possible to enhance this result to some extent to first-order logic
(see [1] for an overview), it remains an open question whether this purely the-
oretical algorithm can be put into practice for a problem domain that is as
challenging as GGP.

A combined approach was finally presented in [4], allowing an intuitive one-
to-one transformation of propositional logic to neural nets while maintaining
learning capabilities. We will use a more general version [3] by the same author.

3 From Domain Knowledge to State Values

Using the standard approaches explained above to identify and select features
for state evaluation, we pay particular attention to the construction of the value
function. As described, existing GGP systems use evaluation functions which
are mathematical combinations of individual features. Though weights or similar
measures of influence are determined during the analysis of the game rules, the
functions are structurally fixed prior to the analysis and only cover a small part of
the space of possible state value functions, which may not include useful (let alone
optimal) value functions for the game at hand. Moreover, these functions remain
static and do not adapt to playing experience. This is partly due to the one-
time challenge situation enforced by the GGP championship rules that propose

100 D. Michulke and M. Thielscher

games as unique and non-repeating within the contest [8]. As a consequence,
learning over matches is not applicable within this context. Nevertheless, the
ability to adapt would allow for constant refinement of the evaluation function
if the underlying formulas for the heuristics were designed in a dynamic way.

For this purpose, we will use neural networks as an established method to
approximate functions. The idea is that by applying a neuro-symbolic translation
algorithm, we can transform a ground-instantiated goal condition encoded in
GDL to a bipolar neural net with a sigmoidal activation function that exactly
captures its behavior and need not be trained. In this way, we would obtain a
baseline state value function that is correct for all terminal states and provides a
measure of preference for all non-terminal states by calculating fluent-wise their
similarity to goal states.

3.1 Goal Conditions as Propositional Proof Trees

Consider the set of rules of a specific game defined in GDL. The given goal for-
mulas define for every terminal state and for every role 7p in the game a goal
value ?7gv. For any specific rule of the form (<= (goal ?p ?gv) conditions),
the given conditions can be evaluated for any current (terminal or non-terminal)
state. We can ground-instantiate a goal clause by iteratively substituting every
free variable by the ground terms obtained from the signature of the game de-
scription. Algorithm prop(argument) (see Table[I]) transforms a ground-instan-
tiated goal condition to a propositional proof tree.

As some of the facts are static (that is, do not depend on the current state
such as successor relations), they can instantly be proved to be false or true and
subsequently be replaced by a propositional false or true. Naturally, this may
lead to other simplifications, which can easily be implemented and hence shall
not be explained further.

By calling prop on a ground-instantiated goal condition, we can thus obtain
a propositional proof tree whose edges are either identities or negations, whose
leafs are queries of facts in the current state, and whose non-leaf nodes are either
conjunctions or disjunctions.

Table 1. Transforming a single goal condition to a propositional proof tree

if argument is then

a fact (true fact) return fact

a negated argument (not argument) return —prop(argument)

the head of a clause (<= h b_1) return \/, ., prop(b;)
(<= h b_n)

the body of a clause (c_1, ..., c_n) return A\,_,.,, prop(c:)

an inequality (distinct x1 x2) return false if x1 = x2, else true

Neural Networks for State Evaluation in General Game Playing 101

3.2 Propositional Proof Trees as Neural Networks

As has been shown in [16] @], it is possible to encode propositional logic as a
neural network. The two algorithms, however, were developed under different
considerations. While [16] was mainly concerned with eliminating disadvantages
of neural nets by the use of logic (namely, indifferent initialization, convergence
problems, and long training time), [9] translated logic programs to neural nets
so as to benefit from advantages of the different representation. An algorithm
that got rid of the problems of each of the two approaches is described in [3] and
will be used here with some modifications. The original algorithm was used for
logic programs where literals in the body of a clause were interpreted as their
conjunctions, while clauses with the same head were interpreted as disjunctions
of their bodies. Therefore, we use the rules for encoding multiple clauses with
the same head for disjunctions, and literals within a clause as rules for conjunc-
tions. Furthermore, the net was built up as a recurrent net to implement the
immediate consequent operator of the logic program. As this stepwise fashion is
not needed, we build up a simpler feed-forward architecture that is similar to
the propositional proof tree.

Consider a layered feed-forward neural net with the following properties: if
neuron 7 is a successor of neuron j (e.g. there is a directed connection from
neuron j to neuron), then the output of neuron i is defined as o; = h(zj W;j0j),

where h(z) is the bipolar activation function h(z) = | +82, s= — 1. We define the
interval (Anin, 1] to denote truth and [—1, Ajaz) to denote falsity. Without loss
of generality we set A,,;n = —Amaz- Then we can translate every node of the
propositional proof tree to a neuron by calling the following algorithm on the

root of the tree and an “empty” neural net:

1 prop_to_net (node, net) {

2 if (count_children (node) > 0) {

3 for each (c in children(node)) {
4 if (is_positive (c))

5 add_conn(net, node, c, W);

6 else

7 add_conn (net, node, c, -W);
8 prop_to_net (c, net);

9 }

10 add_conn (net, node, bias, threshold_weight (node));
11 }

12 else

13 mark_as_input_node (net, node);
14 }

Basically, the algorithm does the following: for each non-leaf node (line 2) in the
propositional tree an edge is added from the node to each of its children with
weight W if the child is positive (that is, not negated; line 5) and —W otherwise
(line 7). The algorithm is called recursively for each child of the current node
(line 8), and a connection to the bias unit (whose output is always 1) is added

102 D. Michulke and M. Thielscher

so as to function as a threshold. Its weight is determined by the type of the node
(conjunction or disjunction) and the number n of its children:

+Apmin)*(n—

a 2) (D * W (1)
+Amin)*(1—n

(1 2) (1) W (2)

thresholdg;s;(n)
thresholdcon;(n)

Leafs of the tree are marked as input nodes (line 13) and used to evaluate the
current state s in the match: if fact holds in s, the node returns 1, else —1.

Anmin | Amaz and W are subject to some restrictions to ensure logically sound
behavior:

max(disj, conj) — 1

Anin > (3)

max(disj, conj) + 1

6 max(disj, conj)(Amin — 1) + Amin + 1

Here, disj is the largest number of children that a disjunction node in the tree
has, while conj is the largest number of children a conjunction node has. Param-
eter 3 controls the steepness of the activation function h(z) and is usually set
to 1. Note that the absolute weight w;; of each connection has to be increased
by a small random float to avoid symmetry effects when learning.

Encoding the goal conditions as neural network thus maintains the logical
sound behavior of an automated proof procedure (for a proof see again [3])
while enabling it to perform “soft computing” and to adapt to experience via a
standard backpropagation algorithm.

Practical Aspects of C-IL?P. Though the algorithm is logically sound, its
application in the GGP domain is not as straightforward. Recall that the inter-
val [—1, Ajnaz) denotes falsity and (Ap,in, 1] truth of a fact. A neuron’s output
representing a conjunction is thus higher than A,,;, iff the output of all positive
preceding neurons is higher than A,,;, and of its negative preceding neurons is
lower than A,,q,. Due to the monotonicity of the activation function, we know
the output of a neuron to be lower if fewer of its antecedents are fulfilled. A
problem, however, arises if no or few antecedents are fulfilled: in these cases the
absolute value of the neuronal activation is high and, because of the squashing
of the activation function, the output of the neuron stays approximately the
same. In other words, for conjunction neurons with few fulfilled antecedents the
derivative h/(z) = 1 — h(z)? is near zero and small changes in the input (e.g.
one preceding neuron changing from —1 to +1) therefore have only little impact
on the output of the neuron. While these differences of the output are small but
still recognizable in the case of just one neuron, they eventually become smaller
than machine precision after passing through several neurons. As a consequence,
the neural network loses its ability to effectively guide search as it erroneously
evaluates several states to the same value although there is a difference in their
state value.

Neural Networks for State Evaluation in General Game Playing 103

Regarding the network parameters, there are two reasons for this behavior.
The first is the restriction of A, (equation [B]): while for a small number of rule
antecedents k, A,,;, may be set to a small value as well, higher k fix it near 1
with the result that the intervals for truth and falsity become too small to, e.g.,
distinguish one neuronal state representing false from another. In the same way
one can argue that with a high A,,;, the “forbidden zone” [A;az, Amin] (the
interval of output values “between false and true”) becomes very large, resulting
in a loss of output space, i.e., output resolution of the neuron.

Another reason is the restriction of the weight W (equationH): for high values
of W the space of activation values is larger, the absolute neuronal input is more
likely far away from zero and thus its derivative close to zero. High absolute
weights therefore contribute to the problem.

We are, however, not interested in a strict propositional evaluation of a goal
condition, but in a degree of preference between states. Specifically, the following
two conditions have to be satisfied:

— A terminal state fulfilling the underlying goal function will yield the greatest
possible network output.

— Any state will yield a smaller value than another one if it constitutes a
worse matching of the corresponding goal function, that is, it is fluent-wise
less similar to the state pattern that corresponds to the goal function.

Therefore, we calculate the lower bound I4 = zzigzzzizggﬁ for A,,in and set it

such that it enables the smallest possible weight. With A,,;, € (I,1) , obviously
the following condition is satisfied:

AmiRZ(lA—l)*a—i-l (5)
a € (0,1) (6)

We numerically determined W to be minimal for 0.15 < a < 0.3 and set it
to = 0.2. As this is not enough, we additionally ignore the weight condition
(equation M) and set it to a fixed value W = 1.

3.3 From Neural Networks to State Values

To finally obtain a state value, we map the output of the neural networks
Oplayer,gv € [—1,1] to values in [0,1] and multiply these with the correspond-
ing goal value. In this way, we obtain the share vpiqyer go(s) that each pair of
network and goal value contributes to the state value. The normalized sum of
these shares then forms our value function in the interval [0, 100].

Oplayer,gv(8)+1

Uplayer,gv (5) = 2 * gvp (7)
Vilager (s) = 2758¥ "evere) 100 (8)

> guecv 9VP

With the selection of p € [1,00) we can choose the degree to which higher goal
values are more influential on the state value function. For p = 1 every goal value

104 D. Michulke and M. Thielscher

is considered linearly and for p — co only the highest goal value is considered,
resulting in a riskier behavior.

As we have to ensure that any calculated state value is better than a real loss
(where gv = 0) and worse than a real win (gv = 100), the final state value is set
to V(s) = V(s) *0.98 + 1.

3.4 Increasing Flexibility

The resulting set of neural networks can be enhanced in several ways. Any feature
obtained by domain analysis or designed manually can be introduced in the
networks by adding an input node for it, normalizing the output of the node to
[-1,1], and connecting it to the output nodes of all networks for a player. In
much the same way, spatial or quantitative comparisons in the goal conditions
can be substituted by a more detailed feature to increase expressiveness.

3.5 Learning

As result of the transformation we get a set of neural networks to which back-
propagation learning can be applied. To train these neural networks, we use
terminal states Stern from past matches which can be obtained by self-play or
are a by-product of probabilistic look-ahead searches as applied in Monte-Carlo
search [0] [7]. The goal value of the terminal state indicates the corresponding
network which then can be trained by presenting value 1 as signal for the output
neuron. All other networks are trained with —1.

We can further increase the amount of available examples by applying the
TD(A) algorithm as used, e.g., in TD-Gammon [I5]. By assuming the prede-
cessors of a terminal state to likely leading to the goal value of the terminal
state, we can use these predecessors as weaker but still valid training examples.
We therefore discount the training signal relative to the distance to the termi-
nal state in order to weaken the impact of the predecessor state on the neural
network.

The training signal ¢(s) for the k-th predecessor of the terminal state sierm—k
is calculated thus:

t(sterm—k) = t(sterm) *)\k (9)

The parameter A € [0, 1] controls the speed of decay of the training signal.
The network corresponding to the terminal state is thus trained with the sig-
nals 1,\,A?,... for the terminal state, its predecessor, the predecessor of the
predecessor, and so on.

We further enhance TD(A) to include domain knowledge by checking the
predecessors of the terminal state subject to learning whether they inevitably
lead to a terminal state with the same goal value. This is done by employing
a full-depth game tree search and, in case the search yields a positive answer,
substituting a potentially flawed training signal by a provably correct and more
expressive one. Note that the required tree search was already performed during
the match and can be reused here.

Neural Networks for State Evaluation in General Game Playing 105

Assuming Sierm leads to a goal value gv(sierm) we can thus train the corre-
sponding neural network with the following signal:

1: mintmaz(Sterm—k) = gV(Sterm
t(Stermfk) — {/\k olse (t k) g (t)} (10)

Altogether, the network training over several states of one match has two major
benefits:

— The network prefers stable features over wildly oscillating ones. The impor-
tance of this concept has been discussed in [2] and is implicitly included
here.

— The learned patterns match states preceding the terminal states. Along with
feedforward search during matches the algorithm thus exhibits a behavior
comparable to bidirectional search.

3.6 Transformation of Pentago Rules

For better understanding we will explain the approach in the domain of the
game Pentago by showing the result of the transformation for the winning goal
condition for the player with the role “white”. The goal condition in this game is
given as (<= (goal white 100) (line white)). A white line, according to the
rules, can be a white row, column, or diagonal. As the three cases are analogous,
we will just concentrate on white winning with a row. The definition of auxiliary
predicate (row ?player), after substituting ?player by white, is:

(<= (row white)
(role white)
(true (cellholds 7ql ?x1 7yl white))
(globalindex 7ql ?7x1 7yl 7xlg ?yg)
(succ 7xlg 7x2g)

(succ 7x4g 7x5g)

(true (cellholds 795 ?x5 ?7y5 white))
(globalindex 7q5 ?7x5 ?7y5 ?7x5g ?7yg))

Hence, a white row is implied by a conjunction of the following facts. The expres-
sion cellholds is a fluent which describes the contents of individual cells in a
game state. Relation globalindex is essentially a function which translates the
local quadrant coordinates 7q1, 7x1, and ?y1 to the global coordinates ?x1g and
?yg. Predicate succ describes a successor relation that connects five instances of
cellholds such that the global x-coordinate of the second cell is a successor of
the global x-coordinate of the first cell, and so on. All cellholds fluents need to
refer to the same y-coordinate ?yg. The head of the above clause, row(white),
is implied if there exists an instantiation for the 21 free variables such that each
of the atoms in the body holds.

106 D. Michulke and M. Thielscher

To translate this goal condition to a neural network, we have to ground-
instantiate the rule. A naive ground instantiation would yield at least 32! in-
stances, as each domain of the variables has a size greater or equal to 3. While
instantiations of this size cannot be handled efficiently, the inherent structure
of the rule can be easily exploited. Because successor relations are functional,
each variable 7xg2, ..., 7xgb is in fact a function of ?xgl. The domain of
7xgl shrinks accordingly, indicating that the starting point of a row must have
x-coordinate 1 or 2; if it started at 3, the penultimate cell in the row would have
Nno SUCCEeSSOr.

The globalindex relation is functional and injective as well, allowing to bring
down the number of different ground instances of the rule to 12, where all vari-
ables are functions of the global coordinates Al, A2, B1, ..., F2. With these
twelve possible rows on the board we end up with a proof tree consisting of a
disjunction of the rows with each of them being a conjunction of five adjacent
cells. The role relation can be statically evaluated to true and thus immediately
omitted in the conjunctions.

The resulting net consists of an input layer with 36 nodes of the form
(true (cellholds ?7q 7x 7y white)), a first hidden layer representing the 12
instances of the row rule as a conjunction of five adjacent cells, and a second
hidden layer representing the generalized row rule as a disjunction of the twelve
ground-instantiated ones. A similar structure is added for the possibility of a
vertical or a diagonal white line, resulting in a total of three neurons in the third
hidden layer. The output node would then again be a disjunction of these three
cases.

4 Experiments

For testing purposes we implemented a standard General Game Player according
to the approach described above. To evaluate its quality and efficiency, we let
it play against “Fluxplayer” [13], the best non-simulation based system, ranked
at least third in the three recent AAAT GGP World Championships 2006-2008.
We refer to the agents with “Neuro” and “Fluxplayer” respectively throughout
the experiments.

4.1 Experimental Setup

The tests were run on a dual-processor system at 3.16 GHz with 768 MB RAM
available for each agent. The roles were switched after each match, thus forming
pairs of matches in which each agent had the first move once. Both agents used
«-f3-search. For learning, we used all “solved” states that could be proven to lead
to a terminal state with the same goal value. If the number of these states was
less than 10% of the states occurring in the match, “unsolved” states were used
in addition. In this way, at least 10% of the match states were used for training.
To distinguish solved from unsolved states, we reused the values calculated in
the match. Unsolved states were discounted by the factor of A = 0.8 and the
learning rate was set to 0.001.

Neural Networks for State Evaluation in General Game Playing 107

Table 2. Average Goal Value achieved

Pentago 3D-Tic-Tac-Toe

#Matches Fluxplayer Neuro Fluxplayer Neuro

Init 1-ply 300 57.33 42.67 50 50
Learning 1-ply 5x500 25.72 74.28 50 50
Init Real-Time 300 48.36 51.64 38.67 61.33
Learning Real-Time 5x500 45.46 54.54 45.5 545

The tests were run in two different games: Pentago and a 3D version of Tic-
Tac-Toe where the first player to achieve a line of four marks in a 4x4x4 cube
wins. The results can be seen in Table 2l For each of the two games we examined
the two dimensions Init vs Learning and I-ply vs Real-Time:

Init 1-ply. The quality of the initialized evaluation function was determined in
300 matches with a search depth of 1 and newly initialized networks in each
match.

Learning 1-ply. The improvement of evaluation accuracy through learning was
determined by running 500 consecutive matches, starting with a newly ini-
tialized network and searching with depth 1. The test was run 5 times to
minimize possible random effects.

Init Real-Time. The quality of the initialized evaluation function in a real-
time scenario was determined in 300 matches with newly initialized networks
in each match. Each system had 100 seconds before a match started and 5
seconds for each move.

Learning Real-Time. The improvement of playing strength through learning
in a real-time scenario was determined by running 500 consecutive matches
starting with a newly initialized network. Each system had 100 seconds be-
fore a match started and 5 seconds for each move. The test was run 5 times
to minimize possible random effects.

4.2 Results

As can be seen, the 1-ply performance differs in the two games. In Pentago,
Neuro wins 43% in the initial scenario, but reaches 74% when learning, showing
that the initialized networks are near a local optimum.

In 3D-Tic-Tac-Toe, however, the player who has the first move has such a big
advantage that it can enforce a win, resulting in a 50% win rate each. As no
examples for how to win as non-starting player are available, learning has no
impact on the win rate.

The real-time performance of Neuro in both games is at least equal to that
of Fluxplayer. In Pentago, the initial real-time performance lies at roughly 52%.
This can be partly attributed to a state evaluation rate approximately twice as
high as that of Fluxplayer. The result is improved by another 3% with learning.

In 3D-Tic-Tac-Toe, the initial real-time performance with a 61% win rate
is significantly higher than that of Fluxplayer. For this game, Neuro examines

108 D. Michulke and M. Thielscher

30-Tic-Tac-Toa

121 181 241

Fig. 2. Evolution of Win Rate in the Learning Real-Time Scenario

about 30% less states than Fluxplayer. The results show that learning decreases
the win rate, which might indicate overfitting.

In general, it can be seen that learning has a positive effect if done with
caution. Figure 2] depicts the evolution of the win rate in each game by plotting
the moving maximum, average and minimum of the recent 10 pairs of matches.
Obviously, learning did not converge. However, Neuro achieved in each test run
in both games at least a 70% win rate over at least 20 matches at some point
throughout the experiments, indicating its potential.

5 Discussion

As can be seen from our initial experiments, the neural approach to General
Game Playing can prove advantageous when compared to the currently best
non-simulation based system. The relative evaluation quality and, in particular,
the real-time performance both depend on the type of the game. Given that
the system works in principle while still being in an early development stage
regarding possible optimizations, it is likely to outperform the current version of
Fluxplayer after thorough parameter tuning and full exploitation of its learning
and extension capabilities.

We have seen that learning leads to a significant boost in evaluation quality in
the 1-ply scenario in Pentago. On the other hand, it only had a small effect in the
real-time scenarios, indicating an overfitting of the network. The drop in win-
rate in Pentago when switching from “learning 1-ply” to “learning real-time” as
well as the lack of convergence of the win rates support this explanation.

While the initial results look promising and should be put on a broader em-
pirical basis, there are some further theoretical problems related to the ideas
presented in this paper. The major disadvantage of the approach is that it re-
quires the use of ground-instantiated fluents. Depending on the complexity of
the game, the number of ground instances is subject to combinatorial explosion
and can thus easily become too large to be handled by a neural network in an
efficient manner. Although there are possibilities to encode first-order logic in
neural networks to some degree, current results are not convincing, as they are
bound by machine precision for real numbers [I4] or have not yet been applied
to non-toy examples.

Neural Networks for State Evaluation in General Game Playing 109

For this reason, we employ several techniques to limit or work around the
problem for the time being.

— By exploiting domain constraints, we limit the number or the domain of free
variables as demonstrated in the Pentago example.

— Clauses like (<= ¢ (a ?x) (b 7x)), where variable bindings hold over more
than just one antecedent, or clauses with too many possible ground instances,
are redirected to the automated theorem proving system. In this case, we do
not transform the clause, but add it as an input node.

Other problems are directly related to learning and can be seen as a consequence
of the induction principle. For example, we have to assume the training states
to be distributed among the game tree and opponents to play near optimal to
avoid overfitting or biasing of the networks.

6 Conclusions

We have presented a method that overcomes the major restrictions of today’s
knowledge-based GGP systems. It allows to derive a state value function from the
goal definition for a game, provided it can be ground-instantiated with reasonable
effort. The goal conditions are used to initialize neural networks such that they
need not be trained. The evaluation function can then benefit from training with
states extracted from past matches, as our experimental results have shown.

6.1 Future Work

The overall evaluation quality is primarily based on the initial evaluation quality
and its increase through training, making both the main areas of possible im-
provement. As none of the parameters used in the experiments were optimized,
an analytical parameter determination of the C-IL? P parameters (A, W) and
an autonomous adaptation of the learning parameters (learning rate, discount
factor, ...) to specific games could further improve evaluation quality.

Furthermore, we intend to exploit the newly gained flexibility by adding new
connections or hidden layer nodes to allow for the emergence of new features or
by integrating features generated by other means. In fact, the connection weights
of the networks offer a utility feedback for those features that could give rise to
feature generation algorithms like in [5].

For the future, we intend to conduct further experiments in other games,
address the above issues, and implement a complete GGP system on the basis
of the approach.

References

[1] Bader, S., Hitzler, P.: Dimensions of neural-symbolic integration — a structured
survey. In: We Will Show Them: Essays in Honour of Dov Gabbay. Kings College
Publications, pp. 167-194 (2005)

110

2]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

D. Michulke and M. Thielscher

Clune, J.: Heuristic evaluation functions for general game playing. In: Proceedings
of the AAAT National Conference on Artificial Intelligence, Vancouver, pp. 1134—
1139. AAAI Press, Menlo Park (2007)

d’Avila Garcez, A., Broda, K., Gabbay, D.: Neural Symbolic Learning Systems.
Springer, Heidelberg (2002)

d’Avila Garcez, A., Zaverucha, G., de Carvalho, L.: Logical inference and inductive
learning in artificial neural networks. In: Proceedings of the ECAI Workshop on
Neural Networks and Structured Knowledge (1996)

Fawcett, T.: Feature Discovery for Problem Solving Systems. PhD thesis, Univer-
sity of Massachusetts, Amherst (1993)

Finnsson, H.: Cadia-player: A general game playing agent. Master’s thesis, School
of Computer Science, Reykjavik University (2007)

Finnsson, H., Bjornsson, Y.: Simulation-based approach to general game play-
ing. In: Proceedings of the AAAI National Conference on Artificial Intelligence,
Chicago, pp. 259-264. AAAI Press, Menlo Park (2008)

Genesereth, M., Love, N., Pell, B.: General game playing: Overview of the AAAI
competition. AT Magazine 26, 62-72 (2005)

Holldobler, S., Kalinke, Y.: Towards a massively parallel computational model
for logic programming. In: Proceedings of the ECAI Workshop on Combining
Symbolic and Connectionist Processing, pp. 68-77 (1994)

Hsu, F.: Behind Deep Blue: Building the Computer that Defeated the World Chess
Champion. Princeton University Press, Princeton (2002)

Kuhlmann, G., Dresner, K., Stone, P.: Automatic Heuristic Construction in a
Complete General Game Player. In: Proceedings of the AAAT National Conference
on Artificial Intelligence, Boston, pp. 1457-1462. AAAI Press, Menlo Park (2008)
Love, N., Hinrichs, T., Haley, D., Schkufza, E., Genesereth, M.: General Game
Playing: Game Description Language Specification. Technical Report LG—2006—
01, Stanford Logic Group, Computer Science Department, Stanford University,
353 Serra Mall, Stanford, CA 94305 (2006), http://games.stanford.edu
Schiffel, S., Thielscher, M.: Fluxplayer: A successful general game player. In: Pro-
ceedings of the AAAI National Conference on Artificial Intelligence, Vancouver,
pp. 1191-1196. AAAI Press, Menlo Park (2007)

Hitzler, P., Bader, S., Witzel, A.: Towards a massively parallel computational
model for logic programming. In: Proceedings of the IJCAI Workshop on Neural-
Symbolic Learning and Reasoning (2005)

Tesauro, G.: Temporal difference learning and TD-gammon. Communications of
the ACM 38, 58-68 (1995)

Towell, G., Shavlik, J., Noordenier, M.: Refinement of approximate domain the-
ories by knowledge based neural network. In: Proceedings of the AAAI National
Conference on Artificial Intelligence, pp. 861-866 (1990)

http://games.stanford.edu

Learning to Disambiguate Search Queries
from Short Sessions

Lilyana Mihalkova and Raymond Mooney

The University of Texas, Austin
Department of Computer Sciences
1 University Station C0500
Austin, Texas 78712-0233
{lilyanam,mooney}@cs.utexas.edu

Abstract. Web searches tend to be short and ambiguous. It is therefore
not surprising that Web query disambiguation is an actively researched
topic. To provide a personalized experience for a user, most existing work
relies on search engine log data in which the search activities of that par-
ticular user, as well as other users, are recorded over long periods of time.
Such approaches may raise privacy concerns and may be difficult to im-
plement for pragmatic reasons. We present an approach to Web query
disambiguation that bases its predictions only on a short glimpse of user
search activity, captured in a brief session of 4—6 previous searches on
average. Our method exploits the relations of the current search session
to previous similarly short sessions of other users in order to predict
the user’s intentions and is based on Markov logic, a statistical rela-
tional learning model that has been successfully applied to challenging
language problems in the past. We present empirical results that demon-
strate the effectiveness of our proposed approach on data collected from
a commercial general-purpose search engine.

1 Introduction

Personalizing a user’s Web search experience has become a vibrant area of re-
search in recent years. One of the most actively researched topics in this area
is Web query disambiguation, or automatically determining the intentions and
goals of a user who enters an ambiguous query. This is not surprising, given the
frequency of ambiguous searches and the unwillingness of users to enter long and
descriptive queries. For example, Jansen and Spink [I] found that about 30% of
search queries, submitted to several engines, consisted of a single word. Further-
more, Sanderson [2] reports that anywhere between roughly 7% and 23% of the
queries frequently occurring in the logs of two search engines are ambiguous,
with the average length of ambiguous queries being close to one.

Ambiguity exists not only in cases such as the all-too-familiar “jaguar” ex-
ample (which can be a cat, car, or operating system), but also in searches that
do not appear ambiguous on the surface. Queries that are commonly considered
unambiguous often become ambiguous as a result of the wealth of Web sources,

W. Buntine et al. (Eds.): ECML PKDD 2009, Part II, LNAI 5782, pp. 1114127 2009.
(© Springer-Verlag Berlin Heidelberg 2009

112 L. Mihalkova and R. Mooney

which examine different aspects of a given topic. For example, as we observed
in our data, a search for “texas™l] may be prompted by at least two different
kinds of intentions. In one session, a user who had first searched for “george w.
bush” proceeded to search for “texas” and selected www.tea.state.tx.us| thus
indicating an interest in Texas government agencies. In another session, the user
intended to learn about travel to Texas because repeated searches for “georgia
travel” were followed by a search for “texas” and a click to www.tourtexas.com.
This indicates that even a query, such as “texas” that normally refers to a single
entity, may become ambiguous.

Most approaches to Web query disambiguation leverage a user’s previous in-
teractions with the search engine to predict her intentions when entering an
ambiguous query. Typically, the actions of each user are logged over long peri-
ods of time, e.g., [Bl45]. While techniques that assume the availability of long
search histories for each user are applicable in some situations, in many cases
such approaches may raise privacy concerns and may be difficult to implement
for pragmatic reasons. After the release of AOL query log data allowed journal-
ists to identify one user based on her searches [6], many people have become
especially wary of having their search histories recorded. To address such con-
cerns, we present an approach that bases its predictions only on short glimpses
of user search activity, captured in a brief search session. Our approach relates
the current search session to previous short sessions of other users based on the
search activity in these sessions. Crucially, our approach does not assume the
availability of user identifiers of any sort (i.e. IP addresses, login names, etc.)
and thus such information, which could allow user searches to be tracked over
long periods of time, does not need to be recorded when our approach is used.

As an example, consider the query “scrubs,” which could refer either to the
popular television show or to a type of medical uniform. Table [Il juxtaposes the
users’ actions in two sessions. The sessions are short, with each containing only
two searches preceding the ambiguous query; nevertheless, this short glimpse of
the users’ actions is sufficient to provide an accurate idea of the users’ intentions
because by examining historical data, one may discover that people who search
for radio stations are probably “ordinary” users and would therefore be interested
in the television show. On the other hand, by relating Session 2 to sessions of
other users who searched for medical-related items, we may be able to predict
that the second user has more specialized interests.

Our proposed approach is appealing also from a pragmatic standpoint because
it does not require search engines to store, manage, and protect long user-specific
histories. Identifying users across search sessions is another difficulty arising from
methods based on long user-specific search histories. One possibility, to require
users to log in before providing personalized search, may be cumbersome. The
alternative of using as an identifier the IP address of the computer from which
the search was initiated is also unsatisfactory, especially in cases when entire
organizations share the same IP address or when all members of a household

! We write these queries in lower-case because this is how they were typed by the
searchers in our data set.

www.tea.state.tx.us
www.tourtexas.com

Learning to Disambiguate Search Queries from Short Sessions 113

Table 1. Two sessions in which the users searched for the query “scrubs”

—Search Session 1— —Search Session 2—
98.7 fm — |www.star987.com/main.html| huntsville hospital — www.huntsvillehospital.org
kroq — www.kroq.com/ ebay.com — lebay . com
scrubs — [scrubs-tv.com scrubs — lwww.scrubs. com

search from the same computer. Disambiguation techniques that explicitly do
not use such identifiers and instead rely only on information from brief sessions
avoid such difficulties.

When so little is known about a searcher, the problem of query disambigua-
tion becomes very challenging. In fact, it has previously been argued that “it
is difficult to build an appropriate user profile even when the user history is
rich” [5]. We develop an approach that successfully leverages the small amount
of information about a user captured in a short search session to improve the
ranking of the returned search results. Our approach is based on statistical rela-
tional learning (SRL) [8] and exploits the relations between the session in which
the ambiguous query is issued and previous sessions.

SRL addresses the problem of learning from multi-relational data models that
support probabilistic reasoning. SRL is appealing for our problem because, first,
the data is inherently relational—there are several types of entities: queries,
clicked URLs, and sessions, which relate to each other in a variety of ways,
e.g., two sessions may be related by virtue of containing clicks to the same
URLs; queries may be related by sharing words. Second, data recording human
interactions with a search engine is likely to be noisy. SRL models allow for
probabilistic inference, helpful when reasoning from noisy data.

We used Markov logic networks (MLNs) [9]. An MLN consists of a set of
weighted formulae in first-order logic and defines a Markov network when pro-
vided with a set of constants. The probability of a possible world decreases
exponentially in the weight of formulae it fails to satisfy. We chose MLNs be-
cause of their generality, their successful application to other language-related
tasks, e.g., [LTIT2IT3], and the availability of a well-maintained code base [14].

2 Related Work

Personalized search is an important problem that has been studied under many
settings and assumptions. We review some of this research and draw distinctions
between previous work and ours.

Several authors have proposed techniques addressing the case where, for each
particular user, a relatively long history of that user’s interactions with the
search engine is available. Sugiyama et al. [3] present a personalization method
that builds a user preference model by modeling separately the long-term and
“today’s” user interests. In addition to relying on long-term records of user
activity, their approach also uses the content of browsed pages. In contrast, we
are interested in a more light-weight approach that does not necessarily use
page content. Sun et al. [4] use spectral methods to perform personalization by

www.star987.com/main.html
www.huntsvillehospital.org
www.kroq.com/
ebay.com
scrubs-tv.com
www.scrubs.com

114 L. Mihalkova and R. Mooney

organizing the data into a three-dimensional tensor comprised of users, queries,
and clicked pages. These tensor-based methods are unlikely to be effective in our
case because of data sparsity. A comprehensive empirical study of Web search
personalization techniques is presented by Dou et al. [5]. These techniques also
use longer-term histories (up to 12 days) of the same user. The authors find
that the best-performing methods are based on the intuition that the Web pages
most relevant to a user are those clicked frequently in the past by that user or by
related users, where user similarity is measured by estimating user membership
in a pre-defined set of categories. Such a strategy is unlikely to work in our
setting because the sessions in our data represent one-time interactions that
usually do not contain repeated clicks to the same URL. Joachims [I5] and
Radlinski and Joachims [I6] use a clever method for deriving constraints about
user preferences by observing whether or not the user clicked on or skipped over
particular search results. These preferences are then used to train a system for
ranking search results. All work discussed in this paragraph assumes that long-
term information about each user is available. In contrast, we study the setting
where personalization is performed based on records of very short interactions
with the search engine.

To the best of our knowledge, the only previous work that targets query dis-
ambiguation from short sessions is that of Almeida and Almeida [I7] in which
users are identified as belonging to a set of communities in order to determine
their interests. The authors experimented with data from online bookstore search
sites for computer science literature, and their approach is tailored for situations
when user interests fall into a small set of categories, organizing users into 10
communities. While in a more restricted application of search, such as special-
ized book search, this small number of communities may be sufficient to model
different aspects of user interests, if, as in our case, the goal is to disambiguate
queries in a general-purpose search engine, a small number of communities is
likely to be insufficient to effectively model the variety of user interests, and
allowing for more communities may be prohibitively costly. Privacy-aware Web
personalization has been addressed by Krause and Horvitz [18], whose method
considers the privacy cost of a given piece of user information and explicitly
models the improvement in personalization versus the cost of the used informa-
tion. While the ability to trade off performance with cost is highly desirable,
their method relies on more information about the user than is available to us.

Query disambiguation is also related to determining user goals and intentions,
as done by the TaskPredictor [I9], which learns to predict the current task of
a user based on the properties of the currently open window, or of an arriving
e-mail message. Because training this system requires potentially sensitive in-
formation, it is intended to be run on the user’s local machine. Another project
[20] that relies on sensitive user information studies ways for personalizing Web
search by constructing a user profile from long-term observations on the user’s
activities, ranging from browsing history to e-mail.

An orthogonal issue is producing a diverse set of documents for a given query.
Recent work includes that of Chen and Karger [21], whose technique ranks results

Learning to Disambiguate Search Queries from Short Sessions 115

so as to cover as many different aspects of interest as possible, and that of Yue
and Joachims [22] whose technique is based on structural SVMs. A related area
is that of clustering search results in groups of common topics. Wang and Zhai
[23] use search log data to learn useful aspects of queries in order to cluster
them. The ability to disambiguate user intent complements these contributions
because it would allow the most relevant cluster, or the most relevant results
from a diverse set, to be placed ahead of all others on the search page.
Collaborative filtering, where the goal is to suggest items that would be of
interest to a user, based on that and other users’ previous preferences, is also
related. Early comparative studies of collaborative filtering algorithms include
[24125]. More recently, Popescul et al. [26] and Melville et al. [27] proposed ap-
proaches that combine collaborative and content-based information in forming
recommendations. These were not applied to personalizing Web search.

3 Background

This section provides some necessary background on first-order logic and MLNs.

First-order logic uses 4 types of symbols—constants, variables, predicates,
and functions [2§]. Constants describe the objects in the environment, e.g.,
www . ecmlpkdd2009.net| and 1acadc00158440d9 are constants representing a url
and a sessionld. Predicates represent relations, such as ClickOn, and can be
thought of as functions that evaluate to true or false. A term is a constant, a
variable, or a function applied to terms. Ground terms contain no variables. An
atom is a predicate applied to terms. A positive (negative) literal is a (negated)
atom. For example, C1ickOn (www.ecmlpkdd2009.net|, 1acadc00158440d9) is a
ground positive literal. Its value is true iff www.ecmlpkdd2009.net| is clicked in
session 1acadc00158440d9. A possible world is a truth assignment to all possible
ground literals in an environment. A first-order formula uses conjunction (A) and
disjunction (V) to combine positive and negative literals into a logical statement.
A grounding is a ground formula or literal.

A Markov logic network (MLN) [9] consists of a set of first-order formulae,
each of which has an associated weight. MLNs can be viewed as relational analogs
to Markov networks whose features are expressed in first-order logic. In this way
MLNSs combine the expressivity of first-order logic with the ability of probabilistic
graphical models to reason under uncertainty.

Let X be the set of all possible ground literals in the environment, F be the set
of all first-order formulae in the MLN, and w; be the weight of formula f; € F.
Then, the probability of a particular truth assignment x to X is given by

PSS)

S exp(4, e p wini (x7)
ings of f; that are true given the truth assignment x to X. Intuitively w; deter-
mines how much less likely a world is in which a grounding of f; is not satisfied
than one in which it is satisfied. The first-order formulae are called the struc-
ture. By grounding the formulae of an MLN with the constants in the environ-
ment, one defines a Markov network, over which inference can be performed to

) [9], where n;(x) is the number of ground-

www.ecmlpkdd2009.net
www.ecmlpkdd2009.net
www.ecmlpkdd2009.net

116 L. Mihalkova and R. Mooney

determine the probability that each of a set of unknown ground literals is true,
given the truth values of a set of evidence ground literals. In our case, the ev-
idence literals, which we define in Section dl provide information on the user
activity in the current session and how it relates to previous search sessions,
and the goal is to predict the probability that each grounding of the clickOn
predicate is true. Several algorithms are available to perform inference over a
ground MLN. We used MC-SAT [10], which has been demonstrated to give good
performance.

4 Proposed Approach

Our general approach follows that of previous applications of MLNs to specific
problems, e.g., [I2]: we hand-coded the structure of the model as a set of first-
order formulae and learned weights for these formulae from the data. The key
idea behind our approach is to relate the current, active, session A in which
an ambiguous query @ is issued to previous, background, sessions from histori-
cal data, where it is assumed that both the active session and the background
sessions are short. Sessions are related by sharing various types of information.
We define the following predicates to capture these relationships. Since every
training/testing example refers to a single (Q,A) pair, A and @ are implicit in
the example and do not need to appear as arguments of the predicates.

-result(r): r is a search result for Q.

-choseResult(s, r): Background session s clicked on r after searching for Q.
-clickOn(r): User in session A clicks on result r in response to the search for Q.
-sharesClick(s,d): Sessions s and A share a click to URL with hostname d.
-sharesKeywordBtwnClicks(s, k): Background session s and A share a keyword
k, found in the hostnames of clicked URLs in each of the sessions.
-sharesKeywordBtwnClickAndSearch(s,k): Background session s and A share
a keyword k, found in the hostname of a clicked URL in A and a search in s.
-sharesKeywordBtwnSearchAndClick(s,k): Background session s and A share
a keyword k, found in a search in A and the hostname of a clicked URL in s.
-sharesKeywordBtwnSearches(s,k): Sessions s and A share a keyword k that
appeared in searches in both sessions.

-clicksShareKeyword(r, d, k): Keyword k appears in the hostname of both re-
sult r and previous click d from session A.

-clickAndSearchShareKeyword(r, s, k): Keyword k appears in the hostname of
result r and in previous search query s from session A.

Fig. [l illustrates the predicates used to relate two sessions. The last two pred-
icates capture information local to the active session. In the active session A,
only the clicks and searches temporally preceding Q are used. For the predicates
in which a keyword relates two sessions, we used only keywords that appeared
at least 100 times (i.e., we removed keywords appearing less than 0.00083% of
the time) and at most 10,000 times (i.e., we removed the top 61 most popular

Learning to Disambiguate Search Queries from Short Sessions 117

N
;;dBtqueq_;:;hAndgligk[E|]

=B “vhovspiﬁa'],-link com

Active Session sharesKeywordBtwnC

lresKeywordBtwnClicks .-~

A scrubs tv com .-
Ll gv-e.bay com’

Fig. 1. An illustration of predicates that relate sessions. Tokens in boxes represent
queries, whereas tokens preceded by an arrow represent the clicked result. The active
session, on the left, is related to some of the background sessions, on the right, by shared
clicks or keywords. Not all possible relations are drawn.

’ §h§re§click

qungesult ,»/

keywords) over our training data. This was done to avoid rare or misspelled
keywords and to make the size of the data more manageable.

The goal is to predict the clickOn(r) predicate, given as evidence the values
of the remaining ones. The search results available for a given query are then
ranked by the predicted probability that the user will click on each of them.

4.1 Model Structure

This section describes the formulae used in our MLN models.

Collaborative Formulae: The collaborative formulae, shown in lines 1-5 of
Table 2, draw inferences about the interests of the active user based on the
choices made by related users from background sessions. For example, formula 1
establishes a relationship between the event that the active user chooses result r
and the event that the user in a previous session s, related to the active session
by sharing a click to a URL with hostname d, chose result r after searching for
the current ambiguous query. This formula exploits one type of relation between
the active session and background sessions to provide evidence of the active

Table 2. Formulae included in the model

: result(r) A sharesClick(s, d) A choseResult(s, r) A clickOn(r)

: result(r) A sharesKeywordBtwnClicks(s, k) A choseResult(s,r) A clickOn(r)

: result(r) A sharesKeywordBtwnClickAndSearch(s, k) A choseResult(s, r) A clickOn(r)
: result(r) A sharesKeywordBtwnSearchAndClick(s, k) A choseResult(s, r) A clickOn(r)
: result(r) A sharesKeywordBtwnSearches(s, k) A choseResult(s, r) A clickOn(r)

: result(r) A choseResult(s,r) A clickOn(r)

: result(r) A clicksShareKeyword(r, d,k) A clickOn(r)

: result(r) A clickAndSearchShareKeyword(r, s,k) A clickOn(r)

: result(rl) Aresult(r2) Arl # r2 A clickOn(rl) = —clickOn(r2)

© 00~ O Uk Wi~

118 L. Mihalkova and R. Mooney

user’s intentions. This formula is always false when one of the first three evi-
dence predicates is false, and in such cases it does not influence the probability
that a particular search result is chosen; i.e., this formula plays a role only for
background sessions that share clicks with the active session and chose a partic-
ular result . The larger the number of such sessions, the stronger the belief that
the active user will also pick r. Formulae 2-5 encode analogous dependencies
using each of the remaining session-relating predicates.

Popularity Formula: Formula 6 in Table [2] encodes the intuition that the user
will click the result that was the most popular among background users that
searched for this ambiguous query. As before, the result for which there are the
largest number of clicks in background data, and thus the largest number of
groundings of this formula that are not falsified by the evidence, will have the
largest probability of being clicked.

Local Formulae: Formulae 7-8 in Table 2] use information local to the active
session to predict the user’s preferences. Formula 7 (8) states that the user will
click a result that shares keywords with a previous result (search) from the active
session. We clarify that keywords were not extracted from the pages to which a
URL points, but only from the URL itself because we are interested in developing
a light-weight re-ranker. Because in our setting sessions are very short, we do not
expect the local formulae to contribute much to the overall model performance.
We include them in order to verify this.

Balance Formula: Formula 9 in Table2lsets up a competition among the possible
results by stating that if the user clicks one of the results, the user will not click
another one. This formula prevents all possible results from obtaining a very
high probability of being clicked. This makes the model more discriminating and
allows the same set of weights to perform well even as the number of groundings
of the other formulae varies widely across active sessions.

These formulae encode “rules of thumb” and useful features, which we expect
will hold in general, but may sometimes be violated, e.g., the balance formula is
violated when a user clicks more than one result for a query. The ability of MLNs
to combine such varied sources of information effectively and in a principled way
is one of the main considerations that motivated our choice of model. Using these
formulae, we defined three MLNs:

MLN 1 — Purely Collaborative: Contains only the collaborative formulae
(1-5) and the balance formula (9).

MLN 2 — Collaborative and Popularity: Contains formulae 1-6 and the
balance formula (9).

MLN 3 — Collaborative, Popularity, and Local: Contains all formulae. It
can be viewed as a mixed collaborative-content-based model, e.g., [26/27].

4.2 Weight Learning

To learn weights for the structures defined above, we used the contrastive diver-
gence algorithm (CD) described by Lowd and Domingos [29]. CD can be viewed

Learning to Disambiguate Search Queries from Short Sessions 119

as a voted-perceptron-like gradient descent algorithm in which the gradient for
updating the weight of formula C; is computed as the difference between the
number of true groundings of C; in the data and the expected number of true
groundings of C;, where the expectation is computed by carrying out a small
number of MCMC steps over the model using the currently learned weights. Like
Lowd and Domingos [29], we computed the expectations with MC-SAT [10]. We
used the implementations of these algorithms in the Alchemy package [14], ex-
cept that we adapted the existing implementation of CD so that learning can
proceed in an online fashion, considering examples of sessions containing am-
biguous queries one by one. This was done because otherwise our data was too
large to fit in memory. We set the learning rate to 0.001 and the initial weight of
formulae to 0.1 and kept all other parameters at their default values. Parameter
values were selected on a validation set, strictly disjoint from our test set.

5 Data and Methodology

We used data provided by Microsoft Research containing anonymized query-log
records collected from MSN Search in May 2006. The data consists of time-
stamped records for individual short sessions, the queries issued in them, the
URLs clicked for each query, the number of results available for each query and
the position of each result in the ranked results. We removed queries for which
nothing was clicked. The average number of clicked results per session, over all
sessions in the data, is 3.28. The data does not specify what criteria were used
to organize a set of user interactions into a session; e.g., we do not know how
multiple open tabs in a browser were treated. Although some of the sessions
may belong to the same users, the data excludes this information through the
lack of user-specific identifiers. This dataset therefore perfectly mirrors the sce-
nario of disambiguating user intent from short interactions that we address in
this research. Because there is a one-to-one correspondence between users and
sessions, we will use these two terms interchangeably.

The data has two main limitations. First, it does not state which search queries
are ambiguous. Automatically detecting ambiguity from user behavior is an in-
teresting research question but is not the focus of this work. We therefore em-
ployed a simple heuristic to obtain a (possibly noisy) set of ambiguous queries,
using DMOZ (www.dmoz.org): a query string is considered ambiguous if, over all
URLs clicked after searching for this string, at least two fall in different top-
level DMOZ categories. This heuristic does not require human effort beyond
that already invested in constructing DMOZ. We did not include DMOZ cate-
gory information into our models because many Web pages are not classified in
the hierarchy. We limited ourselves to strings containing up to two words, thus
obtaining 6, 360 distinct ambiguous query strings. Limiting the length of poten-
tially ambiguous queries to two was motivated by the fact that most ambiguity
occurs in short queries. For example Sanderson [2] found that the average length

www.dmoz.org

120 L. Mihalkova and R. Mooney

of ambiguous queries in two search log datasets ranges from 1.02 to 1.26 words.
Queries of length at most two constituted 43.7% of all queries in our data. Of
these queries, using the above method, we identified 2.4% as ambiguous, which
agrees with the statistics reported by Sanderson, who found that between 0.8%
and 3.9% of all queries are ambiguous [2] &

Another limitation is that our data does not list all URLs presented to the
user after a search but just the clicked ones. To overcome this, we assumed that
the set of all URLs clicked after searching for a particular ambiguous query
string, over the entire dataset, was the set of results presented to the user. Our
approach contrasts with that used in previous work, e.g., that of Dou et al. [5], in
which missing possible results lists are generated by separately querying the MSN
search engine (on which data was collected) for each query. Although the queries
were performed less than a month after the data was collected, the authors found
that 676 queries from 4,639 “lost the clicked web pages in downloaded search
results.” Because in our case almost 3 years have passed since the MSNO6 data
was collected, we preferred the simpler approach based on the available data.
With this method, the average number of possible results for an ambiguous
query string was 9.10. Figure] (a) shows the distribution over the number of
ambiguous queries for which we have a particular number of possible results.
Although this heuristic is imperfect, it is likely to bias the results against our
proposed solution—since every possible result was found to be relevant by at
least one user, our systems cannot get high scores by simply separating the
useful results from the totally irrelevant ones.

Figure [2 (b) shows the distribution over the number of clicks preceding an
ambiguous query in our test data. As can be seen, our test sessions, are indeed
very short. Several of the predicates we define use keywords. To generate a list of
keywords, we performed a pass over all training sessions. Any token separated by
spaces was considered a keyword. As mentioned in Section] we then kept key-
words that appeared at least 100 times and at most 10,000 times. To determine
which keywords occur in a given hostname, we first use the non-alphanumeric
characters in the hostname to break it down into pieces and then match each
piece with keywords such that as much of the piece is covered as possible, using
the smallest number of keywords.

To ensure a fair evaluation, the data was split into training and testing peri-
ods. The training period was used for training, validation, keyword generation,
and idf [30] calculations (idfs were used by one of the baselines) and consisted of
the first 25 days of data. The remaining 6 days were reserved for testing. Sessions
that started in the training period and ended in the test period were discarded
to avoid contaminating the test data. As validation/testing examples we used
sessions that contained an ambiguous query from the training/testing periods
respectively. To decrease the amount of random noise in the results, we removed
from the test set sessions that contained no relational evidence, i.e., we re-
moved the sessions that contain no true groundings of the sharesKeyword/Click

2 In the Introduction, we cited Sanderson’s findings for frequently occurring queries,
whereas here we refer to his findings over all queries.

Learning to Disambiguate Search Queries from Short Sessions 121

3500
3000
2500
2000
1500
1000

500

Numbe o Sessonsw h Tha Many C ck

>
s
2.
=
£
=
2
<
°
3
£
H

1 10 100
s =) ~ % w % . - _ -
Number of Possible Results for Ambiauous Querv Number of Distinct Clicks Before Ambiguous Query

(a) (b)

Fig. 2. Histograms showing (a) the distribution over the number of possible results
available for an ambiguous query and (b) the distribution over the number of clicks
preceding an ambiguous query in the test data. The X axis in (b) is drawn in log-scale.

predicates introduced in Section[d In this way we obtained 11,234 test sessions,
which constitutes 72% of the available test sessions. The distribution over the
number of previous clicks in these sessions is shown in Figure 2] (b). As can be
seen, the peak is at 3 distinct clicks before the ambiguous query.

During testing, only the information preceding the ambiguous query in the
active test session is provided. The set of possible results for this ambiguous
query string is given, and the goal is to rank these results based on how likely it
is that they represent the intent of the user. The user may click more than one
result after searching for a string. This behavior might be indicative of at least
two possible scenarios: either the user is performing an exploratory search and all
clicked results were relevant, or the user was dissatisfied with the results and kept
clicking until finding a useful one. Since the data does not indicate which of these
scenarios was the case, we treated all results clicked by the user after searching
for the ambiguous query as relevant to his or her intentions. This presents yet
another source of noise, and in the future we plan to explore approaches similar
to the implicit feedback techniques described by Radlinski and Joachims [16] to
disentangle these possibilities, although the exact method introduced by these
authors would not be applicable to our data because it requires the availability
of an ordered list of the results returned to the user by the search engine.

Learning was performed as described in Section To evaluate the learned
models, we used Alchemy’s implementation [14] of the MC-SAT algorithm [10]
for inference. During inference, we ran for 1,000 burn-in steps and 10,000 sam-
pling steps. All other inference parameters were kept at their Alchemy defaults.

Evaluation Metrics: For evaluation purposes, query disambiguation can be
viewed as an information retrieval problem: rank the set of possible results so
that the URLs reflecting the user’s intentions appear as close to the top as
possible. Thus, we used standard information retrieval metrics to evaluate the
performance of our system [30] (Chapter 8):

(MAP) Area under the precision-recall curve, which is identical to the Mean
Average Precision metric, commonly used in IR. The MAP score is computed
over a set of test instances T as follows: MAP(T) = Iflfl Y ter ‘étl > rer, PQr,

122 L. Mihalkova and R. Mooney

where R; is the set of possible results for the ¢-th test instance and PQr is the
precision of the top r results: P@r = Num relevant docf among the top
(AUC-ROC) Area under the ROC Curve, which can be viewed as repre-
senting the mean average true negative rate. Using the notation from above,
this metric is computed as follows: AUC-ROC(T) = ‘}‘ Yier u%” > rer, TN@r,

where TN@r is the true negative rate of the top r results, defined as TNQr =
Num irrelevant docs in positions >7
Total num irrelevant docs

Intuitively, the MAP measures how close the relevant URLs are to the top.
One disadvantage of this metric in our case is that it is insensitive to the number
of results to be ranked. For example, ranking a relevant result in the second
position obtains the same score both when the number of possibilities is 2 and
when it is 100, even though in the second case the task is clearly more difficult.
Assuming that the user starts scanning the page of returned results from top to
bottom and does not consider any results appearing after the relevant ones, the
AUC-ROC intuitively represents the percentage of irrelevant results that were
not seen by the user. Thus, a random ranker would obtain an AUC-ROC of
0.5. Another useful characteristic of this measure is that unlike the MAP, it is
sensitive to the number of possible results that are to be ranked.

A final issue is how to break ties when a relevant result has the same score as
some irrelevant results. We report the average case in which the relevant result
is placed in the middle position within the group of results with equal scores.
For the most interesting systems, we also report the worst case in which the
relevant result is placed last within the group of results that share scores. This is
motivated by the goal of performing effective personalization consistently. The
best case is not interesting because for it perfect performance can be obtained
by giving all results the same score.

Systems Compared: We compared the MLNs from Section [] to:

Random: Ranks the possible results randomly.

Collaborative-Pearson: Implements a standard collaborative filtering algo-
rithm [25] that weights each previous user based on the Pearson correlation
between the preferences (i.e. clicks) of that user and the active user. We consid-
ered a clicked result to have rating 1, and an unclicked result that was clicked
by another user for the same query to have rating 0, and all other results to be
unrated. The n closest neighbors are chosen (we used n = 30 following [25]), and
the prediction that a given result is selected is formed as a weighted average of
the deviations from the mean of each neighbor.

Collaborative-Cosine: Identical to Collaborative-Pearson except that it
computes the similarity between the active user and a previous user as the cosine
similarity between the idf-weighted vectors of their clicked results.

Learning to Disambiguate Search Queries from Short Sessions 123

Popularity: Ranks each result according to the number of previous sessions
that searched for the ambiguous query and chose it.

6 Results

Table [(a) presents the performance when ties among results with the same
score are broken as in the average case. The Collaborative-Pearson baseline
performs no better than Random on AUC-ROC and only slightly better than
Random on MAP. Switching to cosine similarity in Collaborative-Cosine
gives modest (but significant at the 99.996% level according to a paired t-test)
improvements. The Popularity baseline is very strong and outperforms the
other baselines, as well as MLN 1. However, combining popularity with re-
lational information in MLN 2 leads to significant gains in performance, and
MLN 2 achieves a significantly higher AUC-ROC score. MLN 2, our strongest
model, highlights the main advantage of using MLNs: we were able to signifi-
cantly improve MLIN 1 by incorporating a reliable source of information simply
by adding the popularity formula to the model. Finally, as expected, we ob-
serve that adding local formulae in MLN 3 does not improve performance. This
demonstrates that the interactions of the active user prior to the ambiguous
query are not directly helpful for determining intent and occurs as a result of
the brevity of sessions in our data (cf. Figure 2l (b)). The inefficacy of local for-
mulae may also be due to the fact that a session may continue when the user
is dissatisfied with the results obtained so far. It is interesting to contrast this
result with the findings of Dou et al. [5] who experimented with much longer

Table 3. (a) Results over all test sessions that contain an ambiguous query when
ties in ranking are broken as in the (a) average case and (b) worst case. Numbers
in bold present significant improvements over all preceding systems at the 99.996%
level with a paired t-test. Additional significant differences are: in (a) MLN 1 is a
significant improvement over all baselines except Popularity, and MLN 2 improves
significantly over all preceding systems except for Popularity also in terms of MAP;
in (a), there is no significant difference between the MAP scores of Popularity and
MLN 2; in (a) and (b) the MAP score of Popularity is significantly higher than that
of MLN 1.

System MAP AUC-ROC

léaﬁdgm o 0.317 0-503 System MAP AUC-ROC
ollaborative-Pearson 0.333 0.50 Popularity 0.380 0.525

Collaborative-Cosine 0.360 0.521 MLN 1 0373 0.563

Popularity 0.389 0.575 MLN 2 0.385 0.586
MLN 1 0.375 0.563 MLN 3 0.355 0.572
MLN 2 0.386 0.587 ‘ ‘

MLN 3 0.366 0.583
(a) (b)

124 L. Mihalkova and R. Mooney

065

Popularity —— Popularity ——
MLN2 —— 1

06+ MLN2 ——
055

i ~

045}
04t
035

. 03
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

AUC-ROC in Average Case tie-breaking
AUC ROC nWo's Case eb eakng

floor(KL divergence from uniform distribution) floor(KL divergence from uniform distribution)
(a) (b)

Fig. 3. AUC-ROC when ranking ties are broken so as to simulate the (a) average
case and (b) worst case for different bins of KL divergence of the distribution over
possible results to uniform

sessions (up to 12 days) and reported that the previous interactions of the active
user presented a very strong signal for personalization purposes. This emphasizes
a fundamental difference in our assumptions about the data compared to previ-
ous research: because in our case user-specific session information is so limited,
we cannot rely on only using the past preferences of the active user and must
instead exploit relations to other, historical, users.

Next, we analyze in more detail the performance of the MLN systems to that
of Popularity, which is the strongest baseline. Table B (b) presents the per-
formance over all test sessions when ties in ranking are broken as in the worst
case. As can be seen, Popularity’s AUC-ROC score decreases sharply, whereas
the MLN models maintain their performance to almost the same level as in the
average case. This behavior is observed partly because Popularity introduces
many more ties among the scores of possible results than do the MLN models. In
particular, averaged over all test sessions, the ratio between the number of pos-
sible results and the number of distinct scores for Popularity was 1.8, whereas
for MLIN2 it was just 1.02. These results indicate that Popularity’s behavior
is erratic and can, for the same user and the same query, lead to rankings that
vary highly in quality. This kind of behavior can give the perception of poor
quality to a frequent user. On the other hand, the MLN models are consistent,
maintaining the quality of their rankings in the worst case.

Finally, we compare the performance of Popularity to that of MLIN 2 while
varying the degree to which some of the possible results for an ambiguous query
dominate in popularity over the rest. We formalized this as follows. Let gg be the
empirical distribution over the results clicked for an ambiguous query Q. This
distribution was measured empirically on the training data, i.e., for every am-
biguous query, we determined from the training sessions the proportion of time
each potential search result was clicked. We then separated the test examples into
bins, such that bin i contains all test sessions s for which | K Ly, |juniform] = %,
where () is the ambiguous query in session s and K Ly, ||uniform 15 the KL diver-
gence of g to the uniform distribution. In other words, bin 0 contains the ses-
sions in which the possible results for the ambiguous query were all chosen with

Learning to Disambiguate Search Queries from Short Sessions 125

roughly the same frequency. Higher-numbered bins contain sessions in which one
of the search results strongly dominates in popularity over the other possibilities.
When this is the case, predicting just based on the popularity of a result gives
good performance. The more challenging scenario occurs in the lower-numbered
bins where the preferences over possible results are more uniformly distributed.
Figure [l compares Popularity to MLN 2 when ties in ranking are broken for
the average and worst cases. MLIN 2 maintains a lead over Popularity until
the last two bins in which the distribution over possible results is furthest from
uniform. As we expect, the difference between the performance of the two sys-
tems shrinks as we move to higher-numbered bins, and MLN 2 has a greater
advantage over Popularity in the lower-numbered bins in which the need to
disambiguate is more pressing. The sharp drop in accuracy observed in bin 7 is
due to the fact that one of the ambiguous queries occurring in sessions in this bin
was overwhelmingly followed by clicks to what seems to be a newly appearing
Web page during the test period. That page was selected only 3 times in the
training period while the most popular page in the training period was selected
more than 2000 times. As a final but important note, inference over the learned
models was very efficient and completed in the order of a second.

7 Conclusions and Future Work

We addressed Web query disambiguation in the challenging setting when the only
information available about any particular user is that captured in a short search
session of 4-6 previous searches on average. Using the language of MLNs, we
developed an approach that draws heavily on different types of relations between
search sessions and demonstrated that our approach significantly outperforms
several natural baselines by successfully combining the inferences of collaborative
and popularity formulae. In this way, we provided evidence that despite the
sparseness and noise inherently present in a short search session, it is possible
to output meaningful predictions about a searcher’s underlying interests.

Here our goal was a light-weight approach to Web query disambiguation. In
the future, we would like to experiment with richer sources of information, such
as the actual content of clicked pages. A second avenue for future work involves
improving supervision by discovering ways to decrease the amount of noise in
the data and developing learning algorithms that are more tolerant to noise.

Acknowledgment

We thank Tuyen Huynh, Joe Reisinger, and the anonymous reviewers for their
helpful comments. This research is supported by a gift from Microsoft Research
and by ARO grant W911NF-08-1-0242. Experiments were run on the Mastodon
Cluster, provided by NSF Grant ETA-0303609.

126 L. Mihalkova and R. Mooney
References
1. Jansen, B.J., Spink, A.: How are we searching the World Wide Web? A comparison

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

of nine search engine transaction logs. Information Processing and Management 42,
248-263 (2006)

. Sanderson, M.: Ambiguous queries: Test collections need more sense. In: SIGIR

2008 (2008)

. Sugiyama, K., Hatano, K., Yoshikawa, M.: Adaptive web search based on user

profile constructed without any effort from users. In: WWW 2004 (2004)

. Sun, J., Zeng, H., Liu, H., Lu, Y., Chen, Z.: CubeSVD: A novel approach to

personalized web search. In: WWW 2005 (2005)

. Dou, Z., Song, R., Wen, J.: A large-scale evaluation and analysis of personalized

search strategies. In: WWW 2007 (2007)

. Barbaro, M., Zeller, T.: A face is exposed for AOL searcher no. 4417749. New

York Times (August 2006),
http://www.nytimes.com/2006/08/09/technology/09ao0l.html?ex=1312776000
(Accessed on October 16, 2008)

. Conti, G.: Googling considered harmful. In: New Security Paradigms Workshop,

Dagstuhl, Germany (September 2006)

. Getoor, L., Taskar, B. (eds.): Introduction to Statistical Relational Learning. MIT

Press, Cambridge (2007)

. Richardson, M., Domingos, P.: Markov logic networks. Machine Learning 62 (2006)

Poon, H., Domingos, P.: Sound and efficient inference with probabilistic and de-
terministic dependencies. In: AAAT 2006 (2006)

Singla, P., Domingos, P.: Entity resolution with Markov logic. In: ICDM 2006
(2006)

Poon, H., Domingos, P.: Joint inference in information extraction. In: AAAI 2007
(2007)

Wu, F., Weld, D.: Automatically refining the Wikipedia infobox ontology. In:
WWW 2008 (2008)

Kok, S., Singla, P., Richardson, M., Domingos, P.: The Alchemy system for statis-
tical relational AI. Technical report, Department of Computer Science and Engi-
neering, University of Washington (2005),
http://www.cs.washington.edu/ai/alchemy

Joachims, T.: Optimizing search engines using clickthrough data. In: KDD 2002
(2002)

Radlinski, F., Joachims, T.: Query chains: Learning to rank from implicit feedback.
In: KDD 2005 (2005)

Almeida, R.B., Almeida, V.A.F.: A community-aware search engine. In:. WWW
2004 (2004)

Krause, A., Horvitz, E.: A utility-theoretic approach to privacy and personaliza-
tion. In: AAAT 2008 (2008)

Shen, J., Li, L., Dietterich, T.G., Herlocker, J.L.: A hybrid learning system for
recognizing user tasks from desktop activities and email messages. In: TUI 2006
(2006)

Teevan, J., Dumais, S.T., Horvitz, E.: Personalizing search via automated analysis
of interests and activities. In: SIGIR 2005 (2005)

Chen, H., Karger, D.R.: Less is more: Probabilistic models for retrieving fewer
relevant documents. In: SIGIR 2006 (2006)

http://www.nytimes.com/2006/08/09/technology/09aol.html?ex=1312776000
http://www.cs.washington.edu/ai/alchemy

22.

23.

24.

25.

26.

27.

28.

29.

30.

Learning to Disambiguate Search Queries from Short Sessions 127

Yue, Y., Joachims, T.: Predicting diverse subsets using structural SVMs. In: ICML
2008 (2008)

Wang, X., Zhai, C.: Learn from web search logs to organize search results. In:
SIGIR 2007 (2007)

Breese, J.S., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms
for collaborative filtering. Technical Report MSR-TR-98-12, Microsoft Research
(1998)

Herlocker, J., Konstan, J., Borchers, A., Riedl, J.: An algorithmic framework for
performing collaborative filtering. In: SIGIR 1999 (1999)

Popescul, A., Ungar, L.H., Pennock, D.M., Lawrence, S.: Probabilistic models for
unified collaborative and content-based recommendation in sparse-data environ-
ments. In: UAT 2001 (2001)

Melville, P., Mooney, R.J., Nagarajan, R.: Content-boosted collaborative filtering
for improved recommendations. In: AAAT 2002 (2002)

Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Pren-
tice Hall, Upper Saddle River (2003)

Lowd, D., Domingos, P.: Efficient weight learning for Markov logic networks.
In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladeni¢, D.,
Skowron, A. (eds.) PKDD 2007. LNCS (LNAI), vol. 4702, pp. 200-211. Springer,
Heidelberg (2007)

Manning, C.D., Raghavan, P., Schutze, H.: Introduction to Information Retrieval.
Cambridge University Press, Cambridge (2008)

Dynamic Factor Graphs
for Time Series Modeling

Piotr Mirowski and Yann LeCun

Courant Institute of Mathematical Sciences, New York University,
719 Broadway, New York, NY 10003 USA
{mirowski, yann}@cs.nyu.edu
http://cs.nyu.edu/~mirowski/

Abstract. This article presents a method for training Dynamic Fac-
tor Graphs (DFG) with continuous latent state variables. A DFG in-
cludes factors modeling joint probabilities between hidden and observed
variables, and factors modeling dynamical constraints on hidden vari-
ables. The DFG assigns a scalar energy to each configuration of hidden
and observed variables. A gradient-based inference procedure finds the
minimum-energy state sequence for a given observation sequence. Be-
cause the factors are designed to ensure a constant partition function,
they can be trained by minimizing the expected energy over training
sequences with respect to the factors’ parameters. These alternated in-
ference and parameter updates can be seen as a deterministic EM-like
procedure. Using smoothing regularizers, DFGs are shown to reconstruct
chaotic attractors and to separate a mixture of independent oscillatory
sources perfectly. DFGs outperform the best known algorithm on the
CATS competition benchmark for time series prediction. DFGs also suc-
cessfully reconstruct missing motion capture data.

Keywords: factor graphs, time series, dynamic Bayesian networks, re-
current networks, expectation-maximization.

1 Introduction

1.1 Background

Time series collected from real-world phenomena are often an incomplete picture
of a complex underlying dynamical process with a high-dimensional state that
cannot be directly observed. For example, human motion capture data gives
the positions of a few markers that are the reflection of a large number of joint
angles with complex kinematic and dynamical constraints. The aim of this article
is to deal with situations in which the hidden state is continuous and high-
dimensional, and the underlying dynamical process is highly non-linear, but
essentially deterministic. It also deals with situations in which the observations
have lower dimension than the state, and the relationship between states and
observations may be non-linear. The situation occurs in numerous problems in
speech and audio processing, financial data, and instrumentation data, for such

W. Buntine et al. (Eds.): ECML PKDD 2009, Part II, LNAI 5782, pp. 128-143] 2009.
(© Springer-Verlag Berlin Heidelberg 2009

http://cs.nyu.edu/~mirowski/

Dynamic Factor Graphs for Time Series Modeling 129

tasks as prediction and source separation. It applies in particular to univariate
chaotic time series which are often the projection of a multidimensional attractor
generated by a multivariate system of nonlinear equations.

The simplest approach to modeling time series relies on time-delay embed-
ding: the model learns to predict one sample from a number of past samples
with a limited temporal span. This method can use linear auto-regressive mod-
els, as well as non-linear ones based on kernel methods (e.g. support-vector
regression [13[14]), neural networks (including convolutional networks such as
time delay neural networks [7/I8]), and other non-linear regression models. Un-
fortunately, these approaches have a hard time capturing hidden dynamics with
long-term dependency because the state information is only accessible indirectly
(if at all) through a (possibly very long) sequence of observations [2].

To capture long-term dynamical dependencies, the model must have an in-
ternal state with dynamical constraints that predict the state at a given time
from the states and observations at previous times (e.g. a state-space model).
In general, the dependencies between state and observation variables can be ex-
pressed in the form of a Factor Graph [B] for sequential data, in which a graph
motif is replicated at every time step. An example of such a representation of a
state-space model is shown in Figure [[al Groups of variables (circles) are con-
nected to a factor (square) if a dependency exists between them. The factor can
be expressed in the negative log domain: each factor computes an energy value
that can be interpreted as the negative log likelihood of the configuration of
the variables it connects with. The total energy of the system is the sum of the
factors’ energies, so that the maximum likelihood configuration of variables can
be obtained by minimizing the total energy.

Figure [Tal shows the structure used in Hidden Markov Models (HMM) and
Kalman Filters, including Extended Kalman Filters (EKF) which can model
non-linear dynamics. HMMs can capture long-term dependencies, but they are
limited to discrete state spaces. Discretizing the state space of a high-dimensional
continuous dynamical process to make it fit into the HMM framework is of-
ten impractical. Conversely, EKFs deal with continuous state spaces with non-
linear dynamics, but much of the machinery for inference and for training the

Y(-2) Y(r-1) Y1) Y(H'])
Y1) Y0) yml) °‘zflf)?;t‘°"
observation g
model g M8 Z(1-2) Z(t-1) 20 o 1(r+l)
dynamical Z(t-2) dynanmal Z(t-1) Z(t) Z(t+1)
model f model f
(a) 1°* order Markov DFG (b) 2™ order Markov DFG

Fig.1. (a) A simple Dynamical Factor Graph with a 1°* order Markovian property,
as used in HMMs and state-space models such as Kalman Filters. (b) A Dynamic
Factor Graph where dynamics depend on the past two values of both latent state Z
and observed variables Y.

130 P. Mirowski and Y. LeCun

parameters is linked to the problem of marginalizing over hidden state distri-
butions and to propagating and estimating the covariances of the state distri-
butions. This has lead several authors to limit the discussion to dynamics and
observation functions that are linear, radial-basis functions networks [19/4] or
single-hidden layer perceptrons [6]. More recently, Gaussian Processes with dy-
namics on latent variables have been introduced [20], but they suffer from a
quadratic dependence on the number of training samples.

1.2 Dynamical Factor Graphs

By contrast with current state-space methods, our primary interest is to model
processes whose underlying dynamics are essentially deterministic, but can be
highly complex and non-linear. Hence our model will allow the use of complex
functions to predict the state and observations, and will sacrifice the probabilistic
nature of the inference. Instead, our inference process (including during learning)
will produce the most likely (minimum energy) sequence of states given the
observations. We call this method Dynamic Factor Graph (DFG), a natural
extension of Factor Graphs specifically tuned for sequential data.

To model complex dynamics, the proposed model allows the state at a given
time to depend on the states and observations over several past time steps. The cor-
responding DFG is depicted in Figure[IDl The graph structure is somewhat similar
to that of Taylor and Hinton’s Conditional Restricted Boltzmann Machine [17].
Ideally, training a CRBM would consist in minimizing the negative log-likelihood
of the data under the model. But computing the gradient of the log partition
function with respect to the parameters is intractable, hence Taylor and Hinton
propose to use a form of the contrastive divergence procedure, which relies on
Monte-Carlo sampling. To avoid costly sampling procedures, we design the fac-
tors in such a way that the partition function is constant, hence the likelihood of
the data under the model can be maximized by simply minimizing the average en-
ergy with respect to the parameters for the optimal state sequences. To achieve
this, the factors are designed so that the conditional distributions of state Z(t)
given previous states and observatiorﬂ, and the conditional distribution of the ob-
servation Y (¢) given the state Z(t) are both Gaussians with a fixed covariance.

In a nutshell, the proposed training method is as follows. Given a training
observation sequence, the optimal state sequence is found by minimizing the
energy using a gradient-based minimization method. Second, the parameters of
the model are updated using a gradient-based procedure so as to decrease the
energy. These two steps are repeated over all training sequences. The procedure
can be seen as a sort of deterministic generalized EM procedure in which the
latent variable distribution is reduced to its mode, and the model parameters
are optimized with a stochastic gradient method. The procedure assumes that
the factors are differentiable with respect to their input variables and their pa-
rameters. This simple procedure will allow us to use sophisticated non-linear

! Throughout the article, Y () denotes the value at time of multivariate time series Y,
and Y[~ ={Y(t—1),Y(t—2),...,Y(t — p)} a time window of p samples preceding
the current sample. Z(t) denotes the hidden state at time ¢.

Dynamic Factor Graphs for Time Series Modeling 131

models for the dynamical and observation factors, such as stacks of non-linear
filter banks (temporal convolutional networks). It is important to note that the
inference procedure operates at the sequence level, and produces the most likely
state sequence that best explains the entire observation. In other words, future
observations may influence previous states.

In the DFG shown in Figure[Tal the dynamical factors compute an energy term
of the form E4(t) = ||Z(t) — f(X(t),Z(t — 1)) ||?, which can seen as modeling
the state Z(t) as f(X(t), Z(t—1)) plus some Gaussian noise variable with a fixed
variance €(t) (inputs X (t) are not used in experiments in this article). Similarly,
the observation factors compute the energy E,(t) = ||Y (t) — g(Z(t))||?, which
can be interpreted as Y'(t) = g (Z(t)) + w(t), where w(t) is a Gaussian random
variable with fixed variance.

Our article is organized in three additional sections. First, we explain the
gradient-based approximate algorithm for parameter learning and determinis-
tic latent state inference in the DFG model (). We then evaluate DFGs on
toy, benchmark and real-world datasets ([B]). Finally, we compare DFGs to pre-
vious methods for deterministic nonlinear dynamical systems and to training
algorithms for Recurrent Neural Networks ().

2 Methods

The following subsections detail the deterministic nonlinear (neural networks-
based) or linear architectures of the proposed Dynamic Factor Graph (21 and
define the EM-like, gradient-based inference (22 and learning (24) algorithms,
as well as how DFGs are used for time-series prediction (Z3)).

2.1 A Dynamic Factor Graph

Similarly to Hidden Markov Models, our proposed Dynamic Factor Graph con-
tains an observation and a dynamical factors/models (see Figure [Tal), with cor-
responding observed outputs and latent variables.

The observation model g links latent variable Z(t) (an m-dimensional vector)
to the observed variable Y (¢) (an n-dimensional vector) at time ¢ under Gaussian
noise model w(t) (because the quadratic observation error is minimized). g can
be nonlinear, but we considered in this article linear observation models, i.e. an
n X m matrix parameterized by a weight vector W,,. This model can be simplified
even further by imposing each observed variable y;(t) of the multivariate time
series Y to be the sum of k£ latent variables, with m = k x n, and each latent
variable contributing to only one observed variable. In the general case, the
generative output is defined as:

Y () = Y*(t) + w(t), where Y*(£) = g (W, Z(t)) 1)

In its simplest form, the linear or nonlinear dynamical model f establishes a

causal relationship between a sequence of p latent variables Z’z:; and latent

variable Z(t), under Gaussian noise model €(t) (because the quadratic dynamic

132 P. Mirowski and Y. LeCun

Yt 1)

E,t1) 2

HY*(t 1) v(e I)HE

Tre

g(W,.2(r 1))

SWoz; ¥)]

tp

Fig. 2. Energy-based graph of a DFG with a 1°* order Markovian architecture and
additional dynamical dependencies on past observations. Observations Y (t) are inferred
as Y*(t) from latent variables Z(t) using the observation model parameterized by W
The (non)linear dynamical model parameterized by Wy produces transitions from a
sequence of latent variables Zi:; and observed output variables Yﬁ:; to Z(t) (here
p = 1). The total energy of the configuration of parameters and latent variables is the

sum of the observation F,(.) and dynamic Eq4(.) errors.

error is minimized). (2) thus defines p** order Markovian dynamics (see Figure
[[a where p = 1). The dynamical model is parameterized by vector Wy.

Z(t) = Z*(t) + €(t), where Z*(t) = f (Wa,Z;_}) (2)

Typically, one can use simple multivariate autoregressive linear functions to map
the state variables, or can also resort to nonlinear dynamics modeled by a Convo-
lutional Network [§] with convolutions (FIR filters) across time, as in Time-Delay
Neural Networks [7/18].

Other dynamical models, different from the Hidden Markov Model, are also
possible. For instance, latent variables Z(t) can depend on a sequence of p past
latent variables Zi:; and p past observations Yf:zlj, using the same error term
€(t), as explained in @) and illustrated on Figure [1Hl

Z(t) = Z*(t) + €(t), where Z*(t) = f (Wq, Zi2), YIZ)) (3)

t—p>

Figure 2 displays the interaction between the observation () and dynamical (3))
models, the observed Y and latent Z variables, and the quadratic error terms.

2.2 Inference in Dynamic Factor Graphs

Let us define the following total @), dynamical [B) and observation (Bl) energies
(quadratic errors) on a given time interval [t,,...,ty], where respective weight
coefficients «, 3 are positive constants (in this article, « = 3 = 0.5):

Dynamic Factor Graphs for Time Series Modeling 133

E(Wa, W, Yi*) = Z [aEq(t) + BE,(t)] (4)
E(t) = min Eg (Wa,Zi~,, Z(t)) (5)
E,(t) = min E, (W, Z(t), Y (1)) (6)

Inferring the sequence of latent variables {Z(t)}, in (@) and (@) is equivalent to
simultaneous minimization of the sum of dynamical and observation energies at
all times t¢:

Eq(Wa, Zi=p,, Z(t)) = [|12°(t) = Z(0)l13 (7)
Eo (W, Z(1),Y (1) = |[Y"(t) = Y (1)][3 (8)

Observation and dynamical errors are expressed separately, either as Normalized
Mean Square Errors (NMSE) or Signal-to-Noise Ratio (SNR).

2.3 Prediction in Dynamic Factor Graphs

Assuming fixed parameters W of the DFG, two modalities are possible for the
prediction of unknown observed variables Y.

— Closed-loop (iterated) prediction: when the continuation of the time series is
unknown, the only relevant information comes from the past. One uses the
dynamical model to predict Z*(¢) from Yi:; and inferred Zi:;, set Z(t) =
Z*(t), use the observation model to compute prediction Y*(¢) from Z(t), and
iterate as long as necessary. If the dynamics depend on past observations,
one also needs to rely on predictions Y*(¢) in (3).

— Prediction as inference: this is the case when only some elements of Y are un-
known (e.g. estimation of missing motion-capture data). First, one infers la-
tent variables through gradient descent, and simply does not backpropagate
errors from unknown observations. Then, missing values y; (¢) are predicted
from corresponding latent variables Z(t).

2.4 Training of Dynamic Factor Graphs

Learning in an DFG consists in adjusting the parameters W = [WdT,WOT] in
order to minimize the loss L(W,Y, Z):

LW,Y,Z)=E(W,Y)+R.(Z)+ R(W) 9)
Z = argming L(W,Y, Z) (10)
W = argminwL(W,Y, Z) (11)

where R(W) is a regularization term on the weights W, and W,,, and R.(Z)
represents additional constraints on the latent variables further detailed. Min-
imization of this loss is done iteratively in an Expectation-Maximization-like

134 P. Mirowski and Y. LeCun

fashion in which the states Z play the role of auxiliary variables. During in-
ference, values of the model parameters are clamped and the hidden variables
are relaxed to minimize the energy. The inference described in part (2.2) and
equation ([I0) can be considered as the E-step (state update) of a gradient-based
version of the EM algorithm. During learning, model parameters W are opti-
mized to give lower energy to the current configuration of hidden and observed
variables. The parameter-adjusting M-step (weight update) described by (I is
also gradient-based.

In its current implementation, the E-step inference is done by gradient descent
on Z, with learning rate 7, typically equal to 0.5. The convergence criterion is
when energy (@) stops decreasing. The M-step parameter learning is implemented
as a stochastic gradient descent (diagonal Levenberg-Marquard) [9] with indi-
vidual learning rates per weight (re-evaluated every 10000 weight updates) and
global learning rate n,, typically equal to 0.01. These parameters were found by
trial and error on a grid of possible values.

The state inference is not done on the full sequence at once, but on mini-
batches (typically 20 to 100 samples), and the weights get updated once after
each mini-batch inference, similarly to the Generalized EM algorithm. During
one epoch of training, the batches are selected randomly and overlap in such a
way that each state variable Z(t) is re-inferred at least a dozen times in different
mini-batches. This learning approximation echoes the one in regular stochastic
gradient with no latent variables and enables to speed up the learning of the
weight parameters.

The learning algorithm turns out to be particularly simple and flexible. The
hidden state inference is however under-constrained, because of the higher di-
mensionality of the latent states and despite the dynamical model. For this rea-
son, this article proposes to (in)directly regularize the hidden states in several
ways.

First, one can add to the loss function an L; regularization term R(W) on the
weight parameters. This way, the dynamical model becomes “sparse” in terms
of its inputs, e.g. the latent states. Regarding the term R.(Z), an Ly norm on
the hidden states Z(t) limits their overall magnitude, and an L; norm enforces
their sparsity both in time and across dimensions. Respective regularization
coefficients A, and A, typically range from 0 to 0.1.

Pseudo-code of the EM-like Learning and Inference in DFGs

for each epoch k
for each subsequence I in [1, TI]
repeat

for each time index t within I
forward-propagate Z(t) through f to get Zx(t)
forward-propagate Z(t) through g to get Y*(t)
back-propagate errors from ||Z(t)-Zx(t) ||, add to dZ(t)
back-propagate errors from ||Y(t)-Yx(t) ||, add to dZ(t)

update latent states Z(I) using gradients dZ(I)

Dynamic Factor Graphs for Time Series Modeling 135

until convergence, when energy E(I) stops decreasing
for each time index t within I
back-propagate errors from ||Z(t)-Z*(t) ||, add to dW
back-propagate errors from ||Y(t)-Y*(t)||, add to dW
update parameters W using gradients dW

2.5 Smoothness Penalty on Latent Variables

The second type of constraints on the latent variables is the smoothness penalty.
In an apparent contradiction with the dynamical model (2]), this penalty forces
two consecutive variables z;(t) and z;(t + 1) to be similar. One can view it as an
attempt at inferring slowly varying hidden states and at reducing noise in the
states (which is particularly relevant when observation Y is sampled at a high
frequency). By consequence, the dynamics of the latent states are smoother and
simpler to learn. Constraint (I2]) is easy to derivate w.r.t. a state z;(¢) and to
integrate into the gradient descent optimization (I0):

R (ZiM) =) (z(t) — zit +1))° (12)

%

In addition to the smoothness penalty, we have investigated the decorrelation
of multivariate latent variables Z(t) = (z1(t), 22(t), . .., zm(¢)). The justification
was to impose to each component z; to be independent, so that it followed its
own dynamics, but we have not obtained satisfactory results yet. As reported in
the next section, the interaction of the dynamical model, weight sparsification
and smoothness penalty already enables the separation of latent variables.

3 Experimental Evaluation

First, working on toy problems, we investigate the latent variables that are in-
ferred from an observed time series. We show that using smoothing regularizers,
DFGs are able to perfectly separate a mixture of independent oscillatory sources
B, as well as to reconstruct the Lorenz chaotic attractor in the inferred state
space ([B.2). Secondly, we apply DFGs to two time series prediction and mod-
eling problems. Subsection (3] details how DFGs outperform the best known
algorithm on the CATS competition benchmark for time series prediction. In
B4) we reconstruct realistic missing human motion capture marker data in a
walk sequence.

3.1 Asynchronous Superimposed Sine Waves

The goal is to model a time series constituted by a sum of 5 asynchronous
sinusoids: y(t) = Z?Zl sin(\;t) (see Fig.Bh). Each component z,(t) can be con-
sidered as a “source”, and y(¢) is a mixture. This problem has previously been
tackled by employing Long-Short Term Memory (LSTM), a special architecture

136 P. Mirowski and Y. LeCun

4

£ | -Z, £ : -2,

1 i la Z & 2,

= ol ||l |[| || |I ol ¢ .z, & 2

= Oﬁfw v u‘ m LJ[J @ 3 o 3
] z o !

o i {1 —Z5 o - : =y

oo 1200 1400 0 05 10 05 1

Time t (sec) Frequency (rad/s) Frequency (rad/s)

(a) (b) (c)

Fig. 3. (a) Superposition of five asynchronous sinusoids: y(t) = 23:1 sin(A;t) where
A1 = 0.2, A2 = 0.311, A3 = 0.42, Ay = 0.51 and A5 = 0.74. Spectrum analysis shows
that after learning and inference, each reconstructed state z; isolates only one of the
original sources z;j, both on the training (b) and testing (c) datasets.

of Recurrent Neural Networks that needs to be trained by genetic optimiza-
tion [21].

After EM training and inference of hidden variables Z(t) of dimension m = 5,
frequency analysis of the inferred states on the training (Fig. Bb) and testing
(Fig.Bk) datasets showed that each latent state z;(t) reconstructed one individual
sinusoid. In other words, the 5 original sources from the observation mixture
y(t) were inferred on the 5 latent states. The observation SNR of 64dB, and
the dynamical SNR of 54dB, on both the training and testing datasets, proved
both that the dynamics of the original time series y(¢) were almost perfectly
reconstructed. DFGs outperformed LSTMs on that task since the multi-step
iterated (closed-loop) prediction of DFG did not decrease in SNR even after
thousands of iterations, contrary to [2I] where a reduction in SNR was already
observed after around 700 iterations.

As architecture for the dynamical model, 5 independent Finite Impulse Re-
sponse (FIR) filters of order 25 were chosen to model the state transitions: each
of them acts as a band-pass filter and models an oscillator at a given frequency.
One can hypothesize that the smoothness penalty (I2]), weighted by a small co-
efficient of 0.01 in the state regularization term R, (Z) helped shape the hidden
states into perfect sinusoids. Note that the states or sources were made inde-
pendent by employing five independent dynamical models for each state. This
specific usage of DFG can be likened to Blind Source Separation from an unique
source, and the use of independent filters for the latent states (or sources) echoes
the approach of BSS using linear predictability and adaptive band-pass filters.

3.2 Lorenz Chaotic Data

As a second application, we considered the 3-variable (z1, 22, x3) Lorenz dy-
namical system [12] generated by parameters p = 16,b = 4, = 45.92 as in
[13] (see Fig. k). Observations consisted in one-dimensional time series y(t) =

Z?:l zj(t).

Dynamic Factor Graphs for Time Series Modeling 137

80 1 ;
60 05
i\lw1 0
& 40
-05.
20 1
0. 5
0 0 - 1
-20 -05 -~
0 217 05 0
X 2 1 z,

Fig. 4. Lorenz chaotic attractor (left) and the reconstructed chaotic attractor from
the latent variables Z(t) = {z1(¢),22(t), 23(t)} after inference on the testing dataset
(right)

The DFG was trained on 50s (2000 samples) and evaluated on the following
40s (1600 samples) of y. Latent variables Z(t) = (z1(t), z2(t), 23(t)) had dimen-
sion m = 3, as it was greater than the attractor correlation dimension of 2.06 and
equal to the number of explicit variables (sources). The dynamical model was
implemented as a 3-layered convolutional network. The first layer contained 12
convolutional filters covering 3 time steps and one latent component, replicated
on all latent components and every 2 time samples. The second layer contained
12 filters covering 3 time steps and all previous hidden units, and the last layer
was fully connected to the previous 12 hidden units and 3 time steps. The dy-
namical model was autoregressive on p = 11 past values of Z, with a total of
571 unique parameters. “Smooth” consecutive states were enforced (I2)), thanks
to the state regularization term R,(Z) weighted by a small coefficient of 0.01.
After training the parameters of DFG, latent variables Z were inferred on the
full length of the training and testing dataset, and plotted in 3D values of triplets
(21(t), 22(t), 23(t)) (see Fig. Eb).

The 1-step dynamical SNR obtained with a training set of 2000 samples was
higher than the 1-step prediction SNR reported for Support Vector Regression
(SVR) [13] (see Table[d]). According to the Takens theorem [I6], it is possible to
reconstruct an unknown (hidden) chaotic attractor from an adequately long win-
dow of observed variables, using time-delay embedding on y(t), but we managed
to reconstruct this attractor on the latent states (21 (¢), 22(¢), 23(¢)) inferred both
from the training or testing datasets (Fig. M. Although one of the “wings” of
the reconstructed butterfly-shaped attractor is slightly twisted, one can clearly
distinguish two basins of attraction and a chaotic orbit switching between one
and the other. The reconstructed latent attractor has correlation dimensions
1.89 (training dataset) and 1.88 (test dataset).

138 P. Mirowski and Y. LeCun

Table 1. Comparison of 1-step prediction error using Support Vector Regression, with
the errors of the dynamical and observation models of DFGs, measured on the Lorenz
test dataset and expressed as signal-to-noise ratios

ARCHITECTURE SVR DFG
DynaMmic SNR 41.6 dB 46.2 dB
OBSERVATION SNR - 31.6 dB

Table 2. Prediction results on the CATS competition dataset comparing the best
algorithm (Kalman Smoothers [I5]) and Dynamic Factor Graphs. F1 and F» are un-
normalized MSE, measured respectively on all five missing segments or on the first four
missing segments.

ARCHITECTURE KALMAN SMOOTHER DFG
E1 (5 SEGMENTS) 408 390
E2 (4 SEGMENTS) 346 288

3.3 CATS Time Series Competition

Dynamic Factor Graphs were evaluated on time series prediction problems us-
ing the CATS benchmark dataset [I0]. The goal of the competition was the
prediction of 100 missing values divided into five groups of 20, the last group
being at the end of the provided time series. The dataset presented a noisy
and chaotic behaviour commonly observed in financial time series such as stock
market prices.

In order to predict the missing values, the DFG was trained for 10 epochs on
the known data (5 chunks of 980 points each). 5-dimensional latent states on
the full 5000 point test time series were then inferred in one E-step, as described
in section 23] The dynamical factor was the same as in section As shown
in Table 2] the DFG outperformed the best results obtained at the time of the
competition, using a Kalman Smoother [15], and managed to approximate the
behavior of the time series in the missing segments.

3.4 Estimation of Missing Motion Capture Data

Finally, DFGs were applied to the problem of estimating missing motion capture
data. Such situations can arise when “the motion capture process [is] adversely
affected by lighting and environmental effects, as well as noise during recording”
[17]. Motion capture data? Y consisted of three 49-dimensional time series rep-
resenting joint angles derived from 17 markers and coccyx, acquired on a subject
walking and turning, and downsampled to 30Hz. Two sequences of 438 and 3128
samples were used for training, and one sequence of 260 samples for testing.

2 We used motion capture data from the MIT database as well as sample Matlab code
for motion playback and conversion, developped or adapted by Taylor, Hinton and
Roweis, available at: http://www.cs.toronto.edu/~gwtaylor/

http://www.cs.toronto.edu/~gwtaylor/

Dynamic Factor Graphs for Time Series Modeling 139

Table 3. Reconstruction error (NMSE) for 4 sets of missing joint angles from motion
capture data (two blocks of 65 consecutive frames, about 2s, on either the left leg or
entire upper body). DFGs are compared to standard nearest neighbors matching.

METHOD NEAREST NEIGHB. DFG
MISSING LEG 1 0.77 0.59
MISSING LEG 2 0.47 0.39
MISSING UPPER BODY 1 1.24 0.9

MISSING UPPER BODY 2 0.8 0.48

We reproduced the experiments from [I7], where Conditional Restricted Boltz-
man Machines (CRBM) were utilized. On the test sequence, two different sets
of joint angles were erased, either the left leg (1) or the entire upper body (2).
After training the DFG on the training sequences, missing joint angles y;(t) were
inferred through the E-step inference. The DFG was the same as in sections
and B3] but with 147 hidden variables (3 per observed variable) and no smooth-
ing. Table Bl shows that DFGs significantly outperformed nearest neighbor inter-
polation (detailed in [I7]), by taking advantage of the motion dynamics modeled
through dynamics on latent variables. Contrary to nearest neighbors match-
ing, DFGs managed to infer smooth and realistic leg or upper body motion.
Videos comparing the original walking motion sequence, and the DFG- and
nearest neighbor-based reconstructions are available at http://cs.nyu.edu/
“mirowski/pub/mocap/. Figure [illustrates the DFG-based reconstruction (we
did not include nearest neighbor interpolation resuts because the reconstructed
motion was significantly more “hashed” and discontinuous).

4 Discussion

In this section, we establish a comparison with other nonlinear dynamical sys-
tems with latent variables (4I) and suggest that DFGs could be seen as an
alternative method for training Recurrent Neural Networks ([4.2)).

4.1 Comparison with Other Nonlinear Dynamical Systems with
Latent States

An earlier model of nonlinear dynamical system with hidden states is the Hid-
den Control Neural Network [II], where latent variables Z(t) are added as an
additional input to the dynamical model on the observations. Although the dy-
namical model is stationary, the latent variable Z(t) modulates its dynamics,
enabling a behavior more complex than in pure autoregressive systems. The
training algorithm iteratively optimizes the weights W of the Time-Delay Neu-
ral Network (TDNN) and latent variables Z, inferred as

7 = argming ¥, |V (t) — fo (Yt — 1), 2)|2.

The latter algorithm is likened to approximate maximum likelihood estima-
tion, and iteratively finds a sequence of dynamic-modulating latent variables and

http://cs.nyu.edu/~mirowski/pub/mocap/
http://cs.nyu.edu/~mirowski/pub/mocap/

140 P. Mirowski and Y. LeCun

— reconstructed left arm
—— reconstructed right arm
— reconstructed torso

— reconstructed left arm
reconstructed right arm
— reconstructed torso

388883

Fig. 5. Application of a DFG for the reconstruction of missing joint angles from motion
capture marker data (1 test sequence of 260 frames at 30Hz). 4 sets of joint angles were
alternatively “missing” (erased from the test data): 2 sequences of 65 frames, of either
left leg or the entire upper body. (a) Subsequence of 65 frames at the beginning of
the test data. (b) Reconstruction result after erasing the left leg markers from (a).
(c¢) Reconstruction results after erasing the entire upper body markers from (a). (d)
Subsequence of 65 frames towards the end of the test data. (e) Reconstruction result
after erasing the left leg markers from (d). (f) Reconstruction results after erasing the
entire upper body markers from (d).

Dynamic Factor Graphs for Time Series Modeling 141

learns dynamics on observed variables. DFGs are more general, as they allow the
latent variables Z(¢) not only to modulate the dynamics of observed variables,
but also to generate the observations Y (¢), as in DBNs. Moreover, [11] does
not introduce dynamics between the latent variables themselves, whereas DFGs
model complex nonlinear dynamics where hidden states Z(t) depend on past
states Y,f:ll, and observations Zi:zl,. Because our method benefits from highly
complex non-linear dynamical factors, implemented as multi-stage temporal con-
volutional networks, it differs from other latent states and parameters estimation
techniques, which generally rely on radial-basis functions [T9/4].

The DFG introduced in this article also differs from another, more recent,
model of DBN with deterministic nonlinear dynamics and explicit inference of
latent variables. In [I], the hidden state inference is done by message passing
in the forward direction only, whereas our method suggests hidden state infer-
ence as an iterative relaxation, i.e. a forward-backward message passing until
“equilibrium”.

In a limit case, DFGs could be restricted to a deterministic latent variable
generation process like in [I]. One can indeed interpret the dynamical factor as
hard constraints, rather than as an energy function. This can be done by setting
the dynamical weight o to be much larger than the observation weight 3 in ().

4.2 An Alternative Inference and Learning for Recurrent Neural
Networks

An alternative way to model long-term dependencies is to use recurrent neural
networks (RNN). The main difference with the proposed DFG model is that
RNN use fully deterministic noiseless mappings for the state dynamics and the
observations. Hence, there is no other inference procedure than running the
network forward in time. Unlike with DFG, the state at time ¢ is fully deter-
mined by the previous observations and states, and does not depend on future
observations.

Exact gradient descent learning algorithms for Recurrent Neural Networks
(RNN), such as Backpropagation Through Time (BPTT) or Real-Time Recur-
rent Learning (RTRL) [22], have limitations. The well-known problem of van-
ishing gradients is responsible for RNN to forget, during training, outputs or
activations that are more than a dozen time steps back in time [2]. This is not
an issue for DFG because the inference algorithm effectively computes “virtual
targets” for the function f at every time step.

The faster of the two algorithms, BPTT, requires O (T |W/|) weight updates
per training epoch, where |W/| is the number of parameters and T the length of
the training sequence. The proposed EM-like procedure, which is dominated by
the E-step, requires O (aT |[W|) operations per training epoch, where a is the
average number of E-step gradient descent steps before convergence (a few to a
few dozens if the state learning rate is set properly).

Moreover, because the E-step optimization of hidden variables is done on
mini-batches, longer sequences T' simply provide with more training examples

142 P. Mirowski and Y. LeCun

and thus facilitate learning; the increase in computational complexity is linear
with T

5 Conclusion

This article introduces a new method for learning deterministic nonlinear dynam-
ical systems with highly complex dynamics. Our approximate training method
is gradient-based and can be likened to Generalized Expectation-Maximization.

We have shown that with proper smoothness constraints on the inferred latent
variables, Dynamical Factor Graphs manage to perfectly reconstruct multiple
oscillatory sources or a multivariate chaotic attractor from an observed one-
dimensional time series. DFGs also outperform Kalman Smoothers and other
neural network techniques on a chaotic time series prediction tasks, the CATS
competition benchmark. Finally, DFGs can be used for the estimation of missing
motion capture data. Proper regularization such as smoothness or a sparsity
penalty on the parameters enable to avoid trivial solutions for high-dimensional
latent variables. We are now investigating the applicability of DFG to learning
genetic regulatory networks from protein expression levels with missing values.

Acknowledgments. The authors wish to thank Marc’ Aurelio Ranzato for fruit-
ful discussions and Graham Williams for his feedback and dataset.

References

1. Barber, D.: Dynamic bayesian networks with deterministic latent tables. In: Ad-
vances in Neural Information Processing Systems NIPS 2003, pp. 729-736 (2003)

2. Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient
descent is difficult. IEEE Transactions on Neural Networks 5, 157-166 (1994)

3. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via
the EM algorithm. Journal of the Royal Statistical Society B 39, 1-38 (1977)

4. Ghahramani, Z., Roweis, S.: Learning nonlinear dynamical systems using an EM al-
gorithm. In: Advances in Neural Information Processing Systems NIPS 1999 (1999)

5. Kschischang, F., Frey, B., Loeliger, H.-A.: Factor graphs and the sum-product
algorithm. IEEE Transactions on Information Theory 47, 498-519 (2001)

6. Ilin, A., Valpola, H., Oja, E.: Nonlinear dynamical Factor Analysis for State Change
Detection. IEEE Transactions on Neural Networks 15(3), 559-575 (2004)

7. Lang, K., Hinton, G.: The development of the time-delay neural network architec-
ture for speech recognition. Technical Report CMU-CS-88-152, Carnegie-Mellon
University (1988)

8. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proceedings of the IEEE 86, 2278-2324 (1998a)

9. LeCun, Y., Bottou, L., Orr, G., Muller, K.: Efficient backprop. In: Orr, G.B.,
Miiller, K.-R. (eds.) NIPS-WS 1996. LNCS, vol. 1524, p. 9. Springer, Heidelberg
(1998b)

10. Lendasse, A., Oja, E., Simula, O.: Time series prediction competition: The CATS
benchmark. In: Proceedings of IEEE International Joint Conference on Neural
Networks IJCNN, pp. 1615-1620 (2004)

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Dynamic Factor Graphs for Time Series Modeling 143

Levin, E.: Hidden control neural architecture modeling of nonlinear time-varying
systems and its applications. IEEE Transactions on Neural Networks 4, 109-116
(1993)

Lorenz, E.: Deterministic nonperiodic flow. Journal of Atmospheric Sciences 20,
130-141 (1963)

Mattera, D., Haykin, S.: Support vector machines for dynamic reconstruction of
a chaotic system. In: Scholkopf, B., Burges, C.J.C., Smola, A.J. (eds.) Advances
in Kernel Methods: Support Vector Learning, pp. 212-239. MIT Press, Cambridge
(1999)

Muller, K., Smola, A., Ratsch, G., Scholkopf, B., Kohlmorgen, J., Vapnik, V.:
Using support vector machines for time-series prediction. In: Scholkopf, B., Burges,
C.J.C., Smola, A.J. (eds.) Advances in Kernel Methods: Support Vector Learning,
pp. 212-239. MIT Press, Cambridge (1999)

Sarkka, S., Vehtari, A., Lampinen, J.: Time series prediction by kalman smoother
with crossvalidated noise density. In: Proceedings of IEEE International Joint Con-
ference on Neural Networks IJCNN, pp. 1653-1657 (2004)

Takens, F.: Detecting strange attractors in turbulence. Lecture Notes in Mathe-
matics, vol. 898, pp. 336-381 (1981)

Taylor, G., Hinton, G., Roweis, S.: Modeling human motion using binary latent
variables. In: Advances in Neural Information Processing Systems NIPS 2006
(2006)

Wan, E.: Time series prediction by using a connectionist network with internal
delay lines. In: Weigend, A.S., Gershenfeld, N.A. (eds.) Time Series Prediction:
Forecasting the Future and Understanding the Past, pp. 195-217. Addison-Wesley,
Reading (1993)

Wan, E., Nelson, A.: Dual kalman filtering methods for nonlinear prediction, es-
timation, and smoothing. In: Advances in Neural Information Processing Systems
(1996)

Wang, J., Fleet, D., Hertzmann, A.: Gaussian process dynamical models. In: Ad-
vances in Neural Information Processing Systems, NIPS 2006 (2006)

Wierstra, D., Gomez, F., Schmidhuber, J.: Modeling systems with internal state
using Evolino. In: Proceedings of the 2005 Conference on Genetic and Evolutionary
Computation, pp. 1795-1802 (2005)

Williams, R., Zipser, D.: Gradient-based learning algorithms for recurrent networks
and their computational complexity. In: Backpropagation: Theory, Architectures
and Applications, pp. 433-486. Lawrence Erlbaum Associates, Mahwah (1995)

On Feature Selection, Bias-Variance, and
Bagging

M. Arthur Munson' and Rich Caruana?

! Cornell University, Ithaca NY 14850, USA
mmunson@cs.cornell.edu
2 Microsoft Corporation
rcaruana@microsoft.com

Abstract. We examine the mechanism by which feature selection im-
proves the accuracy of supervised learning. An empirical bias/variance
analysis as feature selection progresses indicates that the most accurate
feature set corresponds to the best bias-variance trade-off point for the
learning algorithm. Often, this is not the point separating relevant from
irrelevant features, but where increasing variance outweighs the gains
from adding more (weakly) relevant features. In other words, feature se-
lection can be viewed as a variance reduction method that trades off the
benefits of decreased variance (from the reduction in dimensionality) with
the harm of increased bias (from eliminating some of the relevant fea-
tures). If a variance reduction method like bagging is used, more (weakly)
relevant features can be exploited and the most accurate feature set is
usually larger. In many cases, the best performance is obtained by using
all available features.

1 Introduction

In a collaboration with ecologists, we were faced with the following challenge:
learn accurate models for the presence and absence of bird species from noisy ob-
servational data collected by volunteers watching bird feeders. Trying many dif-
ferent supervised learning algorithms (SVMs, boosted trees, neural nets, ...), we
found that bagged decision trees yielded the best performance for the task. The
resulting models were large, complicated, and used almost all of the 200 features
available to the learning algorithm. Since the ultimate goal was to gain ecolog-
ical understanding about avian population dynamics, we ran forward stepwise
feature selection to find the smallest feature set yielding excellent performance.

To our surprise, after 30 steps of feature selection performance was still inferior
to the performance when using all features and the gap was closing slowly as more
features were added (see Figure [I). Unlike most learning algorithms, bagging
appeared to perform remarkably well with many noisy features.

In this paper we examine how feature selection improves the accuracy of super-
vised learning through the lens of bias/variance analysis. We run feature selection
for nineteen data sets and compare the bias-variance decompositions of single
and bagged decision trees for many different feature subset sizes. The results

W. Buntine et al. (Eds.): ECML PKDD 2009, Part II, LNAI 5782, pp. 144{I59] 2009.
(© Springer-Verlag Berlin Heidelberg 2009

On Feature Selection, Bias-Variance, and Bagging 145

European Starling
0.385 T T

T T T

038 [all paiorad
0.375
0.37
0.365 |-
0.36 -
0.355 |-

0.35 1 1 1 1 1
0 5 10 15 20 25 30

features

RMS

Fig. 1. Bagging performance with forward stepwise feature selection. The all features
line shows performance of bagging with all 200 features.

show that the most accurate feature sets correspond to the best bias-variance
trade-off point, and this depends on the learning algorithm. Particularly with
high variance algorithms such as decision trees, this is usually not the separat-
ing point between relevant and irrelevant features. With too many variables, the
increase in variance outweighs the potential gains of adding (weakly) relevant
features. When bagging is used, however, the increases in variance are small,
which makes the reduction in bias beneficial for many more features. In many
cases, the best bagging performance is obtained by using all available features.

While it is known that ensemble methods improve the base learner’s ability to
ignore irrelevant features [II2], little is known about their effects on weak /noisy
features. To explore this, we generate synthetic data and randomly damage vary-
ing percentages of the feature values. The results show that bagging dramatically
improves the ability of decision trees to profitably use noisy features.

2 Background

This section reviews feature selection and bagging, and situates the current paper
in the context of prior work.

2.1 Feature Selection

Four reasons are traditionally given to motivate feature selection [3]: better pre-
dictive performance; computational efficiency from working with fewer inputs;
cost savings from having to measure fewer features; and simpler, more intelligi-
ble models. Different types of feature selection exist to satisfy varying balances
of these competing goals under a variety of data regimes. This work focuses on
forward stepwise feature selection (FSFS) [4] and correlation-based feature fil-
tering (CFF). FSFS is preferred when getting the best performance from the
smallest feature set possible is important — as long as it is computationally
feasible. For large data sets with hundreds or thousands of features, simple filter

146 M.A. Munson and R. Caruana

methods like CFF are affordable and often surprisingly competitive. In the NIPS
2003 Feature Selection Challenge, “[s]everal high ranking participants obtain|ed]
good results using only filters, even simple correlation coefficients” ([5], p. 6).
The main drawback to univariate filters like CFF is that they estimate the value
of a feature in isolation, ignoring a) possible interactions with other features, and
b) redundant information contained in features ranked higher (already selected).

Starting from an empty selected set, FSFS measures the benefit of adding each
individual feature to the selected set. The benefit is measured by training a model
using only the selected features (including the feature under consideration). The
most beneficial (or least harmful) feature is added to the selected set, and the
process is repeated for all remaining unselected features. The search stops after
a fixed number of steps, once performance has stopped improving, or after all
features have been selected. If feasible, the learning algorithm used in wrapper-
based feature selection usually is the same algorithm to be used with the reduced
feature set.

It is important for the search process to measure performance using data
withheld during training to ensure good performance estimates. Additionally,
the search process itself can potentially overfit this withheld data, so a third
data set should be used to get an unbiased estimate of the selected subsets’
performance [6]. The FSFS experiments below use a validation set to decide
which feature to add, and a test set to measure the final performance.

CFF ranks the set of features by their individual correlation with the class
label. Our experiments with large data sets use the magnitude of Pearson’s
correlation coeflicient as the ranking criterion. The absolute correlation of feature
x; with the label y is:

v 122 =2 g) (Y —)l
V@ —)2y — y)?

where 7 indexes over examples and = ; and y are the respective means of z ;
and y Features above a cutoff point are retained, while the others are dis-
carded. Common strategies for selecting cutoff points include statistical tests
of significance and cross-validated model performance at different ranks. We are
interested in the performance at varying rank-levels, so we do not need to choose
a cutoff.

Some researchers have looked at bias-variance estimates in the context of
feature selection, but typically only for the final feature set selected (e.g. [7]).
Van der Putten and van Someran [§] use bias-variance analysis to understand
the wide performance spread of contestants in the 2000 ColL challenge. They
compare the bias-variance decompositions of a single subset (the top 7 features)
against the original feature set, and find that feature selection is important for
their problem (the decrease in variance outweighs the increase in bias).

! The high dimensional data sets we use are all binary classification problems with
binary and/or continuous features, so Pearson’s correlation coefficient is reasonable.
Spearman’s rank correlation would be a reasonable alternative for non-binary prob-
lems or nominal-valued features.

On Feature Selection, Bias-Variance, and Bagging 147

2.2 Bagging

Bagging [9] is a meta-learning algorithm that repeatedly creates sub-samples of
the training data and trains a model (e.g. decision tree) on each sample. To make
predictions, the bagged model averages the predictions of the constituent models.
Bagging frequently improves the performance of a learning algorithm, and rarely
hurts it. Bauer and Kohavi [I0] showed empirically that the main benefit from
bagging is a reduction in the variance of the underlying models. Bagging works
best when models have good performance and make uncorrelated mistakes [I1].

Several pieces of work exist that address features and bagging. We mention
them here to avoid confusion and clarify the differences. (These techniques are
not used in the experiments below.) First, feature bagging generates diverse sim-
ple models by training individual models with random samples of the features
instead of (or in addition to) random samples of training examples [12/13], and
is particularly useful for building ensembles with simple learners that are inher-
ently stable [2]. In ensemble feature selection [14] multiple good feature sets are
sought such that a) a good simple model can be built from each set, and b) the
simple models are maximally diverse from each other. Finally, feature selection
using ensembles [15] uses statistics derived from tree ensembles to rank features.
More generally, ensembles have been used in feature selection to find more stable
feature subsets [16/17].

3 Methodology

3.1 Learning Algorithms

To handle the wide range of data sizes, we used two different decision tree pack-
ages. In all cases bagging used 25 trees per ensemble, and training samples were
drawn with replacement.

For data sets with small to medium dimensionality (< 200 features), we used
minimum message length (MML) decision trees implemented in Buntine’s IND
package [18]. IND’s MML trees use a Bayesian splitting rule with Wallace’s MML
tree prior [I9] and use a small amount of pre-pruning to limit node expansions
unwarranted by the tree’s posterior probability. Predictions are smoothed by
getting a prediction from the leaf and each of its ancestors on the path to the root;
these fine- to coarse-grained predictions are combined in a weighted average. See
Buntine [20] for full details.

We selected MML trees because the Bayesian smoothing makes them rela-
tively low variance, so in our experience the individual trees perform well and
seem to be resilient to spurious and noisy features. Thus, they are less likely to
require feature selection to achieve good performance (vs. a less sophisticated
decision tree like ID3), making them a strong baseline method. At the same
time, they are not aggressively pruned and are large trees, making them good
candidates for bagging

2 Experiments with other very different tree methods such as C4.5 yield similar results.

148 M.A. Munson and R. Caruana

For the high-dimensionality data sets, we used FESTﬁ, a decision tree package
optimized for sparse data. To prevent overfitting, we tuned the maximum tree
depth parameter in FEST to maximize performance of a single tree, using all
features, on the validation fold of each data set. We tried depths of 1 through
10, and then the powers of 2 from 16 through 1024. The best performing depth
was used for both single and bagged tree models.

A single FEST tree makes predictions from negative to positive infinity. We
calibrated the predictions by fitting a sigmoid to convert them to probabili-
ties [21I]. Validation data was used to fit the calibrating sigmoid.

3.2 Performance Metrics

Model performance was measured using zero-one loss and squared error. Note that
the models described above predict a probability distribution for an example, indi-
cating the likelihood of the example belonging to each class. When the model needs
to pick a single class (i.e. for zero-one loss), the class with the largest probability is
chosen. A loss of zero represents perfect prediction for these measures.

Zero-one loss is the percentage of predictions that do not predict the correct
class. It equals 1 — accuracy, and is often simply called the error rate for a
classification model.

Mean squared error (MSE) is the average squared difference between the true pre-
diction and the model’s prediction. Let denote an example, and let p(zx) and
q(zk) be the true and predicted probability, respectively, that x is class k. Then:

MSE zan DD (k) — glax))?
r k

where K is the number of classes for the task[
Zero-one loss frequently has high variance, so MSE was used as the perfor-
mance metric during FSFS when deciding which feature to add.

3.3 Data Sets

We used 19 classification tasks in our experiments: American Goldfinch pres-
ence/absence at bird feeders (AMEGFI), Lark Bunting presence/absence in the
plains east of the Rocky Mountains (BUNTING), forest cover-type (COVTYPE),
Pima Indians Diabetes (PIMA), letter recognition (LETTERS), mushroom identifi-
cation (MUSHROOM), land classification from satellite images (SATIMAGE, Statlog
dataset), sonar classification (SONAR), soybean disease classification (SOYBEAN),
spam detection (SPAMBASE and SPAMTRECE), cardiac abnormalities (SPECTF),

3 http://www.cs.cornell.edu/~nk/fest/

4 Normalizing by K is not strictly necessary, but places MSE on the same scale re-
gardless of the number of classes.

5 Created from TREC 2005 Spam Public Corpora. Nikos Karampatziakis, personal
communication.

http://www.cs.cornell.edu/~nk/fest/

On Feature Selection, Bias-Variance, and Bagging 149

Table 1. Summary of datasets

Data Set # Samples # Features # Classes Max Depth

amegfi 23948 195 2

bunting 20998 175 2

covtype 11 30,000 54 7

letters 20,000 16 26

medis 14199 63 2

mgbh 22157 100 2

mushroom f 8124 22 2

pima 768 8 2

satimage 6535 36 6

sonar T 208 60 2

soybean f 683 35 19

spambase 4601 57 2

spectf t 266 44 2

thyroid { 3772 27 5

cryst 5,498 1341 2 4
digits 70,000 779 2 16-1024
real-sim 72,309 20,958 2 256-1024
spamtrec 87,688 405,915 2 256-1024
tis 13,375 927 2 5-6

t: Available from UCI Machine Learning Repository [22].
1: First 30,000 examples from full data set.

hyper-thyroid conditions (THYROID), two medical prediction tasks (MEDIS and
MG5H), protein crystallography diffraction pattern analysis (CRYST@ hand-
written digit recognition (DIGITEEl real vs. simulated auto racing and aviation
text categorization (REAL- SIM@ and finding translation initiation sites (TISE).

Table [[] summarizes the data sets; high-dimensional data sets are listed below
the line along with the maximum tree depth(s) chosen during parameter tun-
ing. Data sets were chosen to cover a range of sizes (number of examples) and
dimensionalities (number of features). We used the first 30,000 points from the
COVTYPE data set to make the experiments more affordable.

Each data set was divided into five folds. For FSFS, three folds were used for
training, one for validation (to pick which feature to add), and one for testing
final performance. For CFF, feature ranks were computed from the three training
folds. The description for SATIMAGE warns against using cross-validation; for
that data set we used the given train/test split instead of cross-validation and

Shttp://ajbcentral .com/CrySis/dataset.html) unscaled version

7 MNIST data set converted to binary classification (class 0 = digits 5 or below; class
1 = rest). Original available from http://yann.lecun.com/exdb/mnist/

8 http://csie.ntu.edu.tw/~cjlin/libsvmtools/datasets

® http://datam.i2r.a-star.edu.sg/datasets/krbd/| (Kent Ridge Biomedical Data
Repository)

http://ajbcentral.com/CrySis/dataset.html
http://yann.lecun.com/exdb/mnist/
http://csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
http://datam.i2r.a-star.edu.sg/datasets/krbd/

150 M.A. Munson and R. Caruana

pulled 435 examples from the train set to use as a validation set (about 10% of
training).

3.4 Bias-Variance Decomposition

The bias-variance decomposition (BVD) of loss is a useful tool for understanding
the performance characteristics of a learning algorithm. The squared error for a
single example x can be decomposed into the sum of noise, bias, and variance [23],
all non-negative. The noise is the intrinsic error / uncertainty for ’s correct pre-
diction, regardless of learning algorithm. Bias measures how closely the learning
algorithm’s average prediction (considering all possible training sets of a fixed
size) matches the optimal prediction (the Bayes rate prediction). Finally, the
variance of an algorithm is how much the algorithm’s prediction fluctuates over
different possible training sets of a given size.

We adopt the notation and definitions from Domingos [24] to formally express
these quantities. Let L(t,y) denote the squared loss of the prediction y for test
example x which has the true value ¢. Further let Ep[] be the expectation over the
distribution of possible data sets of a fixed size; similarly, E,[] is the expectation
over the distribution of possible true values for z (in a stochastic domain), and
Ep]] is over the joint distribution of D and ¢. Then expected squared loss for
x can be decomposed as:

Ep4[L(t,y)] =N(z) + B(z) + V(z), N(x) =E[L(t, y.)]
B(z) =L(y«, ym)
V(z) =Ep[L(ym,y)]

where y is the prediction from a model trained on data drawn from D, y, is the
optimal prediction that minimizes Ei[L(t, y.)], and y,, is the main prediction
that minimizes Ep[L(y, ym)]. For squared loss y,, is the mean prediction of the
algorithm across possible training data sets. The expected bias and variance are
computed by averaging over multiple test examples.

To estimate bias and variance on real data sets, we follow the same basic sam-
pling procedure used by Bauer and Kohavi [10], since Bouckaert [25] shows that
bootstrap sampling results in less reliable bias-variance estimates. The train and
validation sets are pooled to create D. Twenty samples of size |D|/2 are drawn
from D without replacement. Each sample is used to train a model that makes
predictions on the test set. This empirical distribution of the algorithm’s predic-
tions is used to compute expected bias and variance. To improve the estimates of
bias and variance, we repeat this process for each fold and average the estimates.

In practice, we cannot know vy, for real data so we follow previous authors
[10/24] in using y. = t. As a result, the bias and noise cannot be separated and
are combined in one term for our estimates.

There are multiple proposals for the bias-variance decomposition of zero-one
loss [26/24]. In the results below we focus on the decomposition for squared er-
ror because feature selection hill climbing used MSE. We did, however, compute

On Feature Selection, Bias-Variance, and Bagging 151

the bias and variance of zero-one loss; the results were qualitatively identical to
those obtained using the squared error decomposition.

4 Bias-Variance of Feature Selection

We estimated the bias-variance decomposition for all the data sets in Table [T
at multiple feature set sizes, for both single and bagged decision trees. Feature
subset orderings were found using forward stepwise feature selection (FSFS, top
of table) and correlation coefficients (CFF, bottom of table). FSFS evaluated
performance using single trees or bagged trees, to match the algorithm used in
the final comparison. After establishing subset orderings (and tuning the maxi-
mum tree depth for the high dimensional data sets), the training and validation
sets were pooled as described in Sect. B4 Bias-variance estimates were made
at several points along the subset ordering sequence. The entire experiment was
repeated across 5-folds and the 5 estimates averaged

The results cluster into two categories. Figure [2] shows representative results
for two of the data sets. The total height of each bar is the error for the number of
features on the x-axis. The pair of bars for each number of features correspond to
using a single tree (left in pair) and using bagged trees (right in pair). Each bar
is subdivided into portions that are due to a) the variance of the algorithm, and
b) the bias of the algorithm. The bias portion also contains any noise inherent
in the domain. For comparison’s sake, results are shown for both mean squared
error (left column) and zero-one loss (right column). For the moment we focus
on patterns in the total error. Detailed observations about bias and variance are
below.

Feature selection does not improve the performance of single or bagged trees
on data sets in category one. Consider the graphs for COVTYPE (top row of
Figure [2). Both bagging and the single tree perform as well (or better) using
all features (right side of graph) than when using a subset (interior of graph).
The graphs in Figure Bl show qualitatively similar results: feature selection does
not improve the accuracy of single or bagged trees. (The results for zero-one loss
are qualitatively the same as for squared error, and are omitted for most of the
data sets.)

The second category, however, contains data sets on which feature selection
improves single tree accuracy but does not improve bagging’s accuracy. Look-
ing at MEDIS (bottom row of Figure [2), the single tree achieves the minimum
loss between five and ten features. Bagging, on the other hand, first reaches its
minimum loss around 50 features, at which point the loss flattens out and stays
roughly constant. The graphs in Figure d (except BUNTING — see discussion

10 When validation data was needed to calibrate predictions, we set aside 10% of the
training sample drawn from the pooled data. Thus, the calibration data varied with
each training sample.

1 The PIMA, SONAR, SPECTF, and THYROID data sets exhibited substantial variance in
the results, so we repeated the 5-fold cross-validation five times using different seeds
to divide the data into folds.

152 M.A. Munson and R. Caruana

covtype covtype

[variance [variance
[bias/noise 035 F [bias/noise

2
2 3
= S
S
— Nt no oo oo — Nt no oo oo
— AN < o — AN < o
features # features
medis medis
0.1~ 0.16
[variance [variance
0.095 [bias/noise 015 - [bias/noise
0.09 0.14 -
0.085
2 013
m 8
22} -
g 0.08 -
S 012
0.075
0.11 -
0.07
0.065 0.1
0.06 0.09
— NNt noooSoo9Om — NNt NoOoOo 9009 m
= Q& F R B0 = Q& F R T
features # features

Fig. 2. Bias-variance decomposition of squared error and zero-one error for typical data
sets. Left bar in pair: single tree; right bar: bagging. To better show interesting parts
of graphs, the y-axes do not start at 0.

below) contain similar results. While single trees eventually lose performance as
more features are added, bagging maintains or improves its performance with
more features.

It is worth noting that for data sets in both categories (CRYST, LETTERS,
MEDIS, PIMA, SATIMAGE, SONAR, SPAMBASE, SPECTF, TIS), bagging perfor-
mance continues to improve as more features are added after the performance of
single trees has plateaued (category 1) or peaked (category 2). In other words,
bagging performance flattens further to the right in the graphs. Bagging seems
to be capable of extracting information from noisy features as well as ignoring
irrelevant ones. Section [B] explores this issue further.

For all the data sets, bias decreases as more features are added. This makes
intuitive sense since extra features can be thought of as extra degrees of freedom.
The decrease is largest for the first few features; after that, the bias levels off
as the algorithms become sufficiently flexible. Although the bias error is very

On Feature Selection, Bias-Variance, and Bagging 153

amegfi cryst digits
021 - 0.13 025 -
[variance [variance [variance
W bias/oise 0.125 = [bias/noise I bias/noise
02
0.15 -
5]
@
=
0.1 -
0.05
-"28888883 = = 2
EE8E3 2828g¢gQ
features # features # features
letters mushroom real-sim
0.035 — 0.003 02
[variance [variance [variance
0.03 [bias/noise [bias/noise 0.18 - [bias/noise
N 0.0,025 -
0.16
0.025
0.002 - 0.14
w
w002 2 012
g 00,015 [=
0.015 0.1
0.01 oot 0.08
L 0.06
0.005 0.0,005
0.04
0 0
— N Tno®o oY e —NmtnoooaToXa
features # features # features
satimage soybean spambase
0.1 - 0.045 - 0.16
[variance [variance [variance
0.00 - W bias/oise 0.04 W bias/noise 014 B bias/noise
0.035
0.03
m 0.025
7]
= 0.02
0.015
0.01
0.005
—N Mt nongs 2R 0 —aemtnongn gy : —amTnS3223%
features # features # features
spamtrec thyroid tis
0.16 0.009 - 0.15
[variance [variance [variance
014 b [bias/noise B bias/noise 0.14 - [bias/noise
0.008 0.13
0127 0.12
0.007 :
- 0.1 - 0.11
m
2 oosh 2 000 0.1
0.06 - o0
i 0.005 0.08
0.04 - 0.07
0.004
0.02 0.06
o gSSMMMMMMMMMY 0.003 005
=RESH —n o w222 grn
_mmqw2§$§§§ — & T w2 w g =dmsz34
features # features # features

Fig. 3. Bias-variance decomposition of squared error for feature selection on data sets
where feature selection does not improve performance (category 1). Left bar in pair:
single tree; right bar: bagging.

154 M.A. Munson and R. Caruana

mgS pima sonar
0.08 0.19 - 0.26
[variance [variance [variance a
[bias/noise 0.185 - [bias/noise [bias/noise

0.075 1 024

0.07 0.18
022

0.065 0.175

MSE

0.17 0.2

MSE

0.06 [~

0.165
0.055 -

0.16

0.155

0.045 —

—amTnooo2220228
—SAARFAROE RS 0.15

—a TN oSoo 2R
=d & F w3

~ 8 o %+ »n o~ ®

features # features # features
spectf bunting

02 02

[variance [variance

0.19 b W bias/noise n 0.19 W bias/noise

0.18

0.17

MSE

0.16

0.15

0.14

0.13

— oY w w2y

features # features

Fig. 4. Bias-variance decomposition of squared error for feature selection on data sets
where feature selection helps single trees (category 2). Left bar in pair: single tree; right
bar: bagging.

similar for single trees and bagged trees, bagging does sometimes reduce bias
slightly. This corroborates findings in other studies [10].

Counter to bias, variance increases with the number of features. However,
this effect is much stronger for single trees than for bagged trees. Whereas the
variance for bagging quickly asymptotes to a small amount, the variance for
single trees grows quickly and may not asymptote. This is bagging’s primary
advantage.

In data sets where the performance of single trees levels off (e.g. COVTYPE),
the algorithm’s bias and variance asymptote so that adding more features does
not hurt. Usually bagging’s variance stabilizes earlier and to a lower amount,
which allows it to reach lower error and benefit from additional bias decreases
as more features are added.

In data sets where the single tree performance gets worse with too many fea-
tures (e.g. MEDIS), the variance increases outstrip the initial benefits of reduced
bias. This rarely happens to bagging because its variance typically asymptotes
to a small amount of error.

Figures Bl and E] contain three anomalies, one large and two small. The most
important anomaly is the graph for BUNTING, which does not fit into either cat-
egory described above. On this data set, both single trees and bagging hit peak

On Feature Selection, Bias-Variance, and Bagging 155

performance between 5 and 20 features, after which their performance degrades.
Thinking that perhaps this domain was just extremely noisy and that more
averaging would eliminate bagging’s overfitting, we re-ran feature selection on
one fold using 100 trees instead of 25. With 100 trees, bagging’s performance was
slightly better at all points along the x-axis (compared to bagging with 25 trees),
but still overfit past 20 features and to the same degree. Further investigation
revealed that this data set contains several features that can be combined to
create semi-unique identifiers for individual examples in the training set. All the
trees in the ensemble effectively memorize these identifiers and then do poorly on
the validation and test data. This can be seen in the bias-variance decomposition.
Although the variance has asymptoted, the bias for bagging stops decreasing
and begins increasing. With the extra features, the trees in the ensemble more
consistently construct unique identifiers for training examples and lose diversity
in their incorrect predictions

The other two anomalies are that single decision trees perform (slightly) better
than the bagged tree ensemble for the MUSHROOM and SOYBEAN data sets. For
MUSHROOM, the single tree is extremely confident in the class probabilities it
assigns, and always picks the right class (zero-one loss is 0%). Bagging also always
picks the right class, but the randomization from sub-sampling the training data
plus averaging results in slightly less confident class probabilities (probability
mass is pushed away from the extremes). This small bias away from extreme
values has a small effect on squared error. SOYBEAN has a different problem. This
small data set has 19 classes. Cross-validation and bagging sampling reduces the
number of cases for some classes in the training samples so that probability
estimates become less reliable and MML pre-pruning prevents leaf expansions,
yielding trees that are too small.

Throughout this section (and most of the paper), noise and bias have been
conflated since we do not have a way to separate them on real data. We hy-
pothesize that the large decreases in bias—coinciding with adding the first few
features—is partly due to decreases in noise. Intuitively, the Bayes optimal error
rate, given only a single feature as an information source, may be quite bad
(effectively high noise). As more information becomes available (more features),
the Bayes rate should improve as uncertainty decreases.

To summarize this section, these graphs show that bagging is resilient to noisy
features. Feature selection usually is unnecessary to get good performance from
bagged models. Further, picking the best subset size (using cross-validation, for

12° A more detailed explanation follows. The task in BUNTING is to predict the presence
or absence of a Lark Bunting. Data are collected at multiple sites; in particular,
repeat observations are made at sites over time. Identifying the site is incredibly
useful for predicting presence or absence, but is not ecologically interesting. Thus,
the five data folds were partitioned by site (i.e. all examples from a site appear in
a single fold). Most features are tied to location (e.g. habitat), so the decision trees
can easily learn to map inputs to sites in the training set using only a few features.
Trees that do this make bad predictions on the validation and test folds. If the folds
are created by assigning examples to folds instead of sites (spreading sites across
train/valid/test), bagging does not overfit while a single tree does.

156 M.A. Munson and R. Caruana

example) is not equivalent to choosing the informative features and discarding
irrelevant features. Rather, a discarded feature may be weakly informative (or
correlated with a feature already selected) but cause too much variance when
selected for the extra information to improve accuracy. The fact that discarded
features are sometimes informative was previously noted and exploited to im-
prove model accuracy by using discarded features as extra model outputs during
training [27].

5 Noisy Informative Features

In the experiments above, bagging’s performance continues to improve after
the single tree’s performance peaks or plateaus. This suggests that ensemble
methods are not only resilient to irrelevant features [I], but also better able to
take advantage of features containing useful but noisy information.

We generated synthetic data to study whether bagging improves the base
learner’s ability to use weak features. A binary classification problem was derived
from the equation:

v =X1 + XoX3 + X? + sign(Xs + Xg)

The class label is 1 when v > 0, and 0 otherwise. Each X is a univariate Gaussian
variable with 0 mean and unit variance. The sign(z) function returns 1 if z > 0
and -1 otherwise. This function was chosen to be challenging for decision tree
learning algorithms.

We generated 5,000 examples using the above function, randomly corrupted
some of the inputs to generate weak features, split the data set into 5 folds, and
ran a bias-variance analysis using the procedure outlined in Sect. B4l A feature
was corrupted by permuting a fraction of its values, chosen randomly among the
examples. For example, at the 0.1 corruption level, 10% of the values in corrupted
features are shuffled. This was repeated 20 times, creating 20 noisy versions of
each corrupted feature. Half of the X; features were corrupted, independently of
each other, while the other X; were left intact. Single decision trees and bagged
decision trees were trained using the intact features and the noisy duplicates,
but not the original versions of the corrupted features. To avoid experimental
bias, this process was repeated for all (g) combinations of choosing 3 features to
corrupt, and the results averaged.

Figure Bl shows the results for different corruption levels. The far left column,
core, is the error obtained when training using only the unblemished 6 original
features, and shows the best performance obtainable on this data set for these
algorithms (i.e. when the ideal feature set is used). The 0.0 column shows the
performance obtained using only the 3 intact features, without any corrupted
features. Performances that beat this baseline indicate an algorithm is learning
something useful from noisy features. Finally, the far right column (1.0) shows
the performance when the corrupted features are pure noise (irrelevant features).

On Feature Selection, Bias-Variance, and Bagging 157

damaged damaged

[] variance [variance
[bias/noise

[bias/noise
0.3

0.25
2
[59] Q
g - 0.2
= = ’
S
0.15
0.1
0.05
oA vnenx e goxaad e
eSS = oo~
fraction feature values corrupted fraction feature values corrupted

Fig. 5. Bias-variance decompositions for DAMAGED data sets with corrupted feature
values. Left bar in pair: single tree; right bar: bagging. Note that the y-axes do not
start at 0.

We make the following observations. First, at low corruption levels both sin-
gle and bagged trees learn something useful from the noisy features. For bagged
trees, performance is close to that of using the ideal feature set. Second, noisy
features increase the bias (because noise is lumped in with bias in our empirical
decomposition) of both single and bagged trees (vs. core), and increase the vari-
ance of single trees. Third, the main effect of increasing the corruption level is to
increase the bias/noise component. Finally, the extra variance in the single trees
means that the benefits of noisy features are quickly lost as the corruption level
increases. At least for this synthetic task, the problem is more pronounced for
squared error. In contrast, the bagged trees are remarkably resilient to damaging
the feature values, and are able to extract useful information when as much as
80% of the values are corrupted.

6 Conclusions

Our experiments show that feature selection finds the feature set that represents
the best trade-off between the bias of having too few features and the variance of
having too many features. Because of this, most feature selection algorithms are
not reliable methods for determining which features are relevant and irrelevant
to a given problem: the threshold for feature inclusion/exclusion depends on
the learning algorithm. Ultimately this limits the utility of feature selection for
discovering which factors are important and unimportant in problems such as
the avian analysis that originally motivated this work.

A by-product of our analysis is the discovery that when feature selection is
too expensive to be feasible or effective, bagging provides a viable alternative to
protect from the overfitting that can occur when models are trained with too

15

8 M.A. Munson and R. Caruana

many features [The bagged models always benefit from using at least as many
features as the individual unbagged models. In fact, when models will be bagged,
any amount of feature selection often is detrimental, and it is better to train the
base models using all available features. One interpretation of our results is that
feature selection is best viewed as a model regularization method instead of as
a means of distinguishing relevant from irrelevant inputs.

Acknowledgments. We thank the anonymous reviewers for helpful comments
on paper drafts. This work was supported by NSF Award 0612031.

References

1.

11.

12.

13.

13

Ali, K.M., Pazzani, M.J.: Error reduction through learning multiple descriptions.
Machine Learning 24(3), 173-202 (1996)

Bay, S.D.: Combining nearest neighbor classifiers through multiple feature sub-
sets. In: ICML 1998: Proceedings of the 15th International Conference on Machine
Learning, pp. 37-45. Morgan Kaufmann Publishers Inc., San Francisco (1998)
Guyon, 1., Elisseeff, A.: An introduction to variable and feature selection. Journal
of Machine Learning Research 3, 1157-1182 (2003)

Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artificial Intelli-
gence 97(1-2), 273-324 (1997)

Guyon, I., Gunn, S., Ben-Hur, A., Dror, G.: Result analysis of the NIPS 2003
feature selection challenge. In: Advances in Neural Information Processing Systems
17, pp. 545-552. MIT Press, Cambridge (2005)

Reunanen, J.: Overfitting in making comparisons between variable selection meth-
ods. Journal of Machine Learning Research 3, 1371-1382 (2003)

Loughrey, J., Cunningham, P.: Using early-stopping to avoid overfitting in wrapper-
based feature selection employing stochastic search. Technical Report TCD-CS-
2005-37, Trinity College Dublin, Department of Computer Science (May 2005)
van der Putten, P., van Someren, M.: A bias-variance analysis of a real world
learning problem: The CoIL challenge 2000. Machine Learning 57(1-2), 177-195
(2004)

Breiman, L.: Bagging predictors. Machine Learning 24(2), 123-140 (1996)

. Bauer, E., Kohavi, R.: An empirical comparison of voting classification algorithms:
Bagging, boosting, and variants. Machine Learning 36(1-2), 105-139 (1999)
Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F.
(eds.) MCS 2000. LNCS, vol. 1857, pp. 1-15. Springer, Heidelberg (2000)

Ho, T.K.: The random subspace method for constructing decision forests. IEEE
Transactions on Pattern Analysis and Machine Intelligence 20, 832-844 (1998)
Bryll, R., Gutierrez-Osuna, R., Quek, F.: Attribute bagging: Improving accuracy
of classifier ensembles by using random feature subsets. Pattern Recognition 36(6),
1291-1302 (2003)

Of course, feature rankers like CFF are less expensive than training a single bagged
tree ensemble. Even with a ranker, however, there is the problem of choosing a cutoff
threshold for which features to include — which typically requires training models
for multiple candidate threshold levels. Thus, carefully choosing a threshold could
easily cause a feature ranker to be more computationally expensive than training a
single ensemble.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

On Feature Selection, Bias-Variance, and Bagging 159

Opitz, D.W.: Feature selection for ensembles. In: AAAT 1999: Proceedings of the
16th National Conference on Artificial Intelligence, pp. 379-384. American Asso-
ciation for Artificial Intelligence, Menlo Park (1999)

Tuv, E., Borisov, A., Torkkola, K.: Feature selection using ensemble based ranking
against artificial contrasts. In: International Joint Conference on Neural Networks,
pp. 2181-2186 (2006)

Saeys, Y., Abeel, T., Peer, Y.: Robust feature selection using ensemble feature
selection techniques. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML
PKDD 2008, Part II. LNCS (LNAI), vol. 5212, pp. 313-325. Springer, Heidelberg
(2008)

Tuv, E.: Ensemble learning. In: Guyon, 1., Gunn, S., Nikravesh, M., Zadeh, L.A.
(eds.) Feature Extraction: Foundations, and Applications. Studies in Fuzziness and
Soft Computing, vol. 207, pp. 187-204. Springer, Heidelberg (2006)

Buntine, W., Caruana, R.: Introduction to IND and recursive partitioning. Tech-
nical Report FIA-91-28, NASA Ames Research Center (October 1991)

Wallace, C.S., Patrick, J.D.: Coding decision trees. Machine Learning 11(1), 7-22
(1993)

Buntine, W.: Learning classification trees. Statistics and Computing 2(2), 63-73
(1992)

Platt, J.C.: Probabilistic outputs for support vector machines and comparison
to regularized likelihood methods. In: Smola, A.J., Bartlett, P.J., Schoelkopf, B.,
Schuurmans, D. (eds.) Advances in Large Margin Classifiers, pp. 61-74. MIT Press,
Cambridge (2000)

Asuncion, A., Newman, D.: UCI machine learning repository (2007)

Geman, S., Bienenstock, E., Doursat, R.: Neural networks and the bias/variance
dilemma. Neural Computation 4(1), 1-58 (1992)

Domingos, P.: A unified bias-variance decomposition and its applications. In: Pro-
ceedings of the 17th International Conference on Machine Learning, pp. 231-238.
Morgan Kaufmann, San Francisco (2000)

Bouckaert, R.R.: Practical bias variance decomposition. In: Wobcke, W., Zhang,
M. (eds.) AI 2008. LNCS (LNAI), vol. 5360, pp. 247-257. Springer, Heidelberg
(2008)

Kohavi, R., Wolpert, D.H.: Bias plus variance decomposition for zero-one loss
functions. In: Proceedings of the Thirteenth International Conference on Machine
Learning. Morgan Kaufmann, San Francisco (1996)

Caruana, R., de Sa, V.R.: Benefitting from the variables that variable selection
discards. Journal of Machine Learning Research 3, 1245-1264 (2003)

Efficient Pruning Schemes for
Distance-Based Outlier Detection

Nguyen Hoang Vu and Vivekanand Gopalkrishnan

Nanyang Technological University, 50 Nanyang Avenue, Singapore
ng0001vu@ntu.edu.sg, asvivek@ntu.edu.sg

Abstract. Outlier detection finds many applications, especially in do-
mains that have scope for abnormal behavior. In this paper, we present
a new technique for detecting distance-based outliers, aimed at reducing
execution time associated with the detection process. Our approach oper-
ates in two phases and employs three pruning rules. In the first phase, we
partition the data into clusters, and make an early estimate on the lower
bound of outlier scores. Based on this lower bound, the second phase
then processes relevant clusters using the traditional block nested-loop
algorithm. Here two efficient pruning rules are utilized to quickly discard
more non-outliers and reduce the search space. Detailed analysis of our
approach shows that the additional overhead of the first phase is offset
by the reduction in cost of the second phase. We also demonstrate the
superiority of our approach over existing distance-based outlier detection
methods by extensive empirical studies on real datasets.

1 Introduction

The problem of detecting abnormal events, also called outliers, has been widely
studied in different research communities as rare classes mining [I], exception
mining [2], outlier detection [3/4], etc. Researchers have developed several super-
vised and unsupervised techniques to mine outliers in static databases and also
recently in data streams [9]. Unsupervised outlier detection can be further clas-
sified as distance-based [5J64/7], density-based [3I8/9] and deviation-based [10].
In this paper, we focus on distance-based outliers which have been popularly de-
fined as: (a) data points from which there are fewer than p points that are within
distance [4], (b) top n data points whose distance to their corresponding k"
nearest neighbor are largest [7], and (c) top n data points whose total distance
to their corresponding k nearest neighbors are largest [6]. As these definitions
indicate, a significant amount of distance computations need to be performed in
order to verify whether a data point is an outlier or not. This leads to high execu-
tion times and has motivated many attempts to produce efficient algorithms to
mine outliers. Among them, outstanding work by Bay and Schwabacher [I1] and
Ghoting et al. [12] aim to reduce execution time by utilizing a simple pruning
nested-loop algorithm.

Reducing time complexity of outlier detection techniques in general generates
many benefits for various applications where the speed of detecting deviations

W. Buntine et al. (Eds.): ECML PKDD 2009, Part II, LNAI 5782, pp. 160-I75] 2009.
(© Springer-Verlag Berlin Heidelberg 2009

Pruning Schemes for Outlier Detection 161

plays a critical role (e.g., fraud detection, intrusion detection). To illustrate our
point, let us consider a system in which data arrives in batches and each batch of
data is stored in buffer memory. It may be assumed that the buffer size is large
enough to accommodate each batch but if many batches are stored at the same
time, buffer will overflow. Such scenario is very popular in applications dealing
with data streams [I3I9]. The task of the system is to identify abnormal records
in each batch. The buffer is automatically flushed when this monitoring process is
done. However, if the speed of the detection technique is slower than the speed of
arrival of batches, we may lose data because of the problem of buffer overflows.
Therefore, developing a fast detection algorithm becomes a necessity since it
leads to higher throughput for the system. Additionally, the higher throughput
will also yield higher detection accuracy since data loss is avoided.

Motivated by this issue, we focus on reducing the execution time and present
a two-phased MultI-Rule Outlier (MIRO) detection approach. Based on the de-
finition [6], we develop an outlier scoring criterion. Then in the first phase, we
partition the data into clusters, and make an early estimate on the lower bound
of outlier scores. This phase prunes clusters that cannot have outliers, and the
second phase then processes the remaining clusters using the traditional block
nested-loop algorithm. Here two pruning rules are utilized: a) first triangular
inequality on the data point’s outlier score is used, and then b) the outlier score
is compared with the minimum score required to be an outlier. The second check
is similar to that of ORCA [I1]. However, while ORCA starts with a cutoff of 0,
in MIRO the initial cutoff is obtained from the first phase, and hence converges
faster. Though the pruning rules seem simple, their combined effect is strong and
efficiently reduces the search space. The main contributions of this work can be
summarized as follows:

— We analyze the problem of outlier detection from the outlier score perspective
and introduce the concepts of global and local outlier score functions. This
gives a summary classification of all existing detection techniques.

— We demonstrate a huge improvement in execution time by using multiple
pruning rules in two phases, compared with outstanding existing nested-loop
distance-based methods, ORCA [II] and RBRP [12]. Since ORCA, RBRP
and MIRO use the same notion of outlier (Section [2), outliers identified by
the three techniques are exactly the same.

— We illustrate the effectiveness of our pruning rules on the overall detection
process and give a detailed theoretical analysis on how those rules lead to
the superior performance of MIRO. With extremely low CPU cost, MIRO
is very suitable for detecting outliers in streaming environments as well as
other real-time applications.

The rest of this paper is organized as follows. We compare related work, and
describe the problem formally in the next section. Then we present our MIRO
approach in Section [3 and theoretically analyze its complexity in Section [4]
Then we empirically compare our approach with other current-best approaches
using real-world datasets in Section [Bl Finally, we conclude in Section [0 with
directions for future work.

162 N.H. Vu and V. Gopalkrishnan
2 Literature Review

2.1 Background

Consider a dataset DS with N data points in dim dimensions. While most of
these data points are normal, some are abnormal (outlier), and our task is to
mine these outliers. Assume a metric distance function D exists, using which we
can measure the dissimilarity in dim space between two arbitrary data points.
A general approach that has been used by most of the existing outlier detection
methods [B43] is to assign an outlier score (based on the distance function) to
each individual data point, and then design the detection process based on this
score. The use of the outlier score is analogous to the mapping of the multi-
dimensional dataset to R space (the set of real numbers). In other words, we can
define the outlier score function (F,,;) which maps each data point in DS to a
unique value in R.

Among existing approaches to outlier detection problem, we can classify F,:
into global and local score functions. An outlier score function is called global
when the the value it assigns to a data point p € DS, can be used to compare
globally with other data points. More specifically, for two arbitrary data points
p1 and py in DS, Fuu(p1) and Fly(p2) can be compared with each other, and
if Fout(p1) > Fout(p2), p1 has a larger possibility than ps to be an outlier. The
definitions proposed by Angiulli et al. [6], Breunig et al. [3], and Ramaswamy et
al. [7] straightforwardly adhere to this category. On the other hand, the definition
of Ng and Knorr [4] can be converted to this category by taking the inverse of
the number of neighbors within distance r of each data point. In contrast, a local
outlier score function assigns to each data point p, a score that can only be used
to compare within some local neighborhood. An example of such function was
proposed in [§], where the local comparison space is the set of data points lying
within the circle centered by p and the radius is user-defined. The choice of a
global or local outlier score function clearly affects later stages of the algorithm
design process. In this work, we employ a global outlier function based on [6],
although the ideas employed in MIRO can also be adapted to use other functions.
The intuition and quality of detection results of the chosen outlier definition are
based on solid foundations as shown by prior work [G/TI]. This definition is
also employed in other popular techniques on outlier detection [I2]. Therefore,
in this paper we do not again demonstrate how well MIRO does in terms of
actually discovering abnormalities in real data. Instead, we focus on showing its
superiority in terms of CPU cost.

Let us denote the set of k nearest neighbors of a data point p in DS as kN N,,.
We can now define F,,; as follows.

Definition 1. [OUTLIER SCORE FUNCTION]. The dissimilarity of a point p with
respect to its k nearest neighbors is known by its cumulative neighborhood dis-
tance. This is defined as the total distance from p to its k nearest neighbors in
DS. In other words, we have: Fo,u.(p) = ZmekNNp D(p,m).

Pruning Schemes for Outlier Detection 163

Table 1. Definitions of symbols

Symbol Definition

DS The dataset
N Number of points in the dataset
dim Dimensionality of the data space

D(p1,p2) Distance function between points p1 and p
kNN, set of k nearest neighbors of a data point p
n Number of outliers to be mined

Fout Outlier Score Function

This definition has been proven by Angiulli et al. [6] to be more intuitive than
the definition used by Ramaswamy et al. [7]. Given two positive integers k and
n, our task is to mine top n outliers that have the largest outlier scores based
on the chosen F,,;. For ease of reference, symbols used in the definitions are
presented in Table [

2.2 Related Work

Work in distance-based outlier detection was pioneered by Knorr and Ng in 1998
[]. According to their proposal, outliers are points from which there are fewer
than p other points within distance r. In order to detect such outliers, they intro-
duced a nested-loop and a cell-based algorithm. The nested-loop algorithm has
time complexity O(N?) and hence is usually not suitable for applications with a
large dataset. On the other hand, the cell-based algorithm has time complexity
linear with NV, but exponential with the number of dimensions dim. In practice,
this can only work efficiently when dim < 4, so it is not suitable in applications
on high-dimensional datasets.

Ramaswamy et al. [7] had a different view of the problem. Instead of counting
the r-neighborhood of a data point, their technique only takes the data point’s
distance to its k" nearest neighbor into account. They proposed three algo-
rithms: nested-loop with O(N?) time complexity, and index-based and
partition-based algorithms. The most efficient among these - the partition-based
algorithm, partitions the dataset, and computes the upper and lower bounds of
outlier scores for each partitiond. Keeping track of the minimum lower bound
computed so far, the algorithm terminates bound computations of partitions
whose upper bound score is lower than this minimum bound. This effectively
reduces the search space, and then index-based or nested-loop algorithms can
be used on the remaining partitions to detect outliers. In Section @l we prove
that the theoretical complexity of the partition-based strategy is also quadratic
to the dataset size. In general, early distance-based approaches were usually in-
volved in time-consuming computations of nearest neighbors. Later techniques
aim to reduce this time complexity by various means. Among these, approaches
for pruning the outlier search space and distance computation reduction tech-

1 Alternatively called clusters, micro-clusters.

164 N.H. Vu and V. Gopalkrishnan

niques are dominant. Computation reduction approaches [JII2TTI6] usually fix
the desired number of outliers to a certain value (e.g., top n outliers), and deploy
data structures similar to those used in Ramaswamy’s index-based algorithm.

Bay and Schwabacher [IT] provide detailed analysis for this type of algorithm,
and discover that, in average case, the time complexity becomes linear with
the data set size. However, their proposed technique, ORCA, depends on some
assumptions: the data is in random order and the values of the data points are
independent. The analysis provided also depends on the outlier score cutoff ¢
which is initialized to 0. However, domain knowledge or a training phase can
help to achieve a better cutoff. More specifically, the authors suggest that by
training a subset of the original data set, an initial cutoff threshold can be
obtained. During testing phase, the training set is placed at the top of the data
set so that the cutoff threshold calculated during training phase can be retrieved
very soon, and hence the pruning occurs at the very first stage of the detection
process. The linear time complexity presented in [I1] can only be obtained if the
cutoff threshold ¢ converges to O(v/N) quickly [I2]. However this occurs only
when the dataset contains many outliers. Recognizing this limitation, Ghoting et
al. [I2] proposes RBRP, an algorithm which finds approzimate nearest neighbors
for every normal data point but exact ones for outliers. By avoiding expensive
computations to find the exact nearest neighbors for normal records, RBRP
works in O(N - IgN) time. The approach first clusters the dataset, and then
searches for a data point’s approximate nearest neighbors in its own cluster and
neighboring clusters.

While the above mentioned techniques attempt to reduce execution time of
the detection process, Tao et al. [14] aims at reducing I/O cost without any
heuristic to minimize the CPU cost. Furthermore, it uses the notion of outliers
introduced in [4], which has been shown to be difficult to apply in practice [7].
Hence, we choose not to compare our technique against the one in [I4].

3 The MIRO Detection Approach

Our approach operates in two phases and employs three pruning rules. In the
first phase, we partition D.S into clusters, and compute upper and lower bounds
of the outlier score for each cluster. Based on these bounds, some clusters are
pruned, and the remaining candidates are sent for final processing in the tradi-
tional block nested-loop algorithm. Here two pruning rules are utilized: a) first
triangular inequality on the data point’s outlier score is used (R;), and then b)
the outlier score is compared with the minimum score required to be an outlier
(R2). The second check is similar to that of ORCA [II], however in MIRO the
initial cutoff is obtained from the first phase (instead of using 0 as in [I1]), and
hence converges faster. The additional overhead of the first phase is offset by
the reduction in cost of the second phase. While preprocessing by clustering has
been proposed in RBRP, our preprocessing phase incorporates the pruning of
unnecessary clusters while RBRP’s does not. Additionally, the use of the simple
triangular inequality in the second phase and the precomputation of the initial

Pruning Schemes for Outlier Detection 165

Algorithm 1. CLUSTER
Input: M: the number of clusters, it: the number of iterations, DS: the dataset
to be clustered
Output: B: the set of clusters
1 Set Y = KMeans(M,it, DS)
2 foreach cluster y € Y do
3 if Y > M then

4 CC’luster(M, it,y)
5 else if Lf‘cl > 1 then
6 Set V' = KMeans(uLyclJ,it,y)
7 foreach cluster y' € Y’ do
8 Add ¢y to B
9 else
10 Add y to B

cutoff of outlier score before this phase commences, generates the distinct advan-
tages of MIRQO’s nested-loop compared to that of ORCA. The detailed process
is described below.

3.1 Cluster Based Pruning

In this phase, we first cluster the dataset DS (using Algorithm [) and subse-
quently identify upper and lower bounds of the outlier score for each resultant
cluster (using Algorithm [2). Algorithm [lis in fact based on the clustering algo-
rithm of RBRP [12], however we have made some modifications. We denote the
expected number of data points per cluster as n.. By changing n., we can control
the degree of homogeneity of clusters, i.e., points that are close to each other in
space are likely assigned to the same cluster. It is noted that in our approach, n,
has the same role as the parameter BinSize of RBRP. Compared to the original
algorithm [12], the cost of clustering is saved for those resultant clusters y having

1 < |y|/me < M, since a) they are re-clustered only once with the number of

clusters being LL?CJ < M and b) the time complexity of K-Means algorithm is

proportional to the number of clusters produced. Hence, our clustering algorithm
takes less time than that of RBRP.

Let C be the set of clusters obtained as a result of applying Algorithm [on
DS with predetermined values of M and it. For each cluster C; € C, let |C;]
denote its cardinality (or the number of data points allocated to C;), oc, its
centroid, and r¢, its radius. l¢,, uc, are the estimated lower and upper bounds
of the outlier scores of all data points in C; respectively. These bounds are only
estimations since the true bounds can only be known when the true scores of
member data points are identified. A data point p by itself is also a cluster C;
with oc, = p, re; =0, lo, = ue; = Fout (D).

166 N.H. Vu and V. Gopalkrishnan

Definition 2. [DISTANCE BETWEEN CLUSTERS]
The minimum distance between clusters C; and C; is

minDis(C;, C;) = max{D(oc,,0c,) —rc; —rc;,0},
and mazimum distance between clusters C; and Cj; is
maxDis(Cy,C;) = D(oc,,0¢,) +rc, + ¢, -

Given a cluster C; € C, we now need to find clusters that potentially contain
k nearest neighbors for every point in C;. So we first find a set of clusters,
Ming,, closest to C; in terms of minDis(), containing at least k data points,
ie., Ming, C C\C;, s.t. minDis(Cj, C;) < minDis(Cy, C;) VC; € Ming,,Cy €
C\ {C;U Minc,}, the total number of data points in Minc, > k.

Similarly, we identify a set of clusters, Maxc,, closest to C; in terms of
maxDis(), which also contains at least k data points in total.

Consider a data point p € C;. To compute the lower bound of its outlier
score, we have to find the closest clusters to p in terms of minDis(). In order
to do this we consider all clusters closest to C; as well as other data points in
C; (as clusters). So we choose Min, = Minc,|JC; \ p. In order to estimate the
cumulative distance from p to its k£ nearest neighbors, we order Min,, and choose
the top z clusters M; ... M, s.t. Ef:_ll M; <k <>, M,. Now the lower bound
of the outlier score of p can be computed as I, = Z'i:ll |M;| - minDis(p, M;) +
(k — Y220 |My]) - minDis(p, M,).

Similarly we can compute the upper bound of p’s outlier score,
up, = S22 My - maxDis(p, My) + (k — 3721 |My|) - maxDis(p, M), where
{My ... M.} are the top z clusters in Maz, defined as Maxzc, |JC; \ p.

Definition 3. [BOUNDS OF A CLUSTER'S OUTLIER SCORE|. The upper and
lower bounds of a cluster’s outlier score in terms of its contained points are
given as: uc, = mazx{uy,p € C;} and lc, = min{l,,p € C;}, respectively.

We now use a simple heuristic to prune clusters that do not contain outliers:
pick clusters with the largest lower bounds of outlier scores, until we have a
total of at least n data points. Let the last cluster picked be C,. Clusters whose
upper bounds of outlier scores are smaller than /-, cannot contain outliers,
and are therefore pruned. This heuristic constitutes the first pruning phase and
is presented in Algorithm [2 The value l¢, is passed as an initial seed to the
second pruning phase for faster pruning. While the above heuristic correctly
prunes clusters containing data points which are all non-outliers, it may allow
clusters containing some non-outliers. This happens for all clusters C;, where
le, <lc, < uc;. This is undesirable, since not all data points in these clusters
are potential outliers. In order to resolve this issue, we propose another heuristic
called Ppoints which prunes all points p € Cj,up < lc,. Time complexity of
MIRO with and without Ppents is discussed in Section [L.1]

Pruning Schemes for Outlier Detection 167

Algorithm 2. PRUNECLUSTERS

1 lg;,uc; < estimateBounds V;C; € C
2 Identify Co, lc,

3 Prune Ciluc, <lc,

4 Return l¢,,C

3.2 Nested-Loop Algorithm

After the lower bound on the outlier score is obtained from the first phase,
we process the remaining clusters using the traditional nested-loop algorithm
similar to ORCA [I1]. In the second phase of MIRO (Algorithm B]) we employ
two pruning rules (R; in line 9 and Ry in line 13 of Algorithm [B)). Similar to
[11], we check if the outlier score of the data point is smaller than the current
cutoff ¢ on the outlier score (rule Ry). However, while ORCA initializes ¢ as 0,
in our second phase, we converge faster by choosing ¢ from the first clustering
phase (with or without Ppoints)-

Let us consider an arbitrary data point ¢. If ¢ > kD(p, q) + Fout(q), then by
our definition of outlier score and using triangular inequality, we can show that
¢>3mernn, D0,m) = Fout(p), ie., ¢ > Foue(p). Therefore p is not an outlier
and can be pruned. Despite its simplicity, this pruning rule is extremely efficient
in the final processing phase as shown in Section [l By using the combination
of two pruning rules, the execution time is further reduced, creating a huge
advantage over ORCA and RBRP [12]. It is also noted that by reserving Minc,
and Maxc, for each remaining cluster C;, we are able to limit the search space
for each data point p € C;. More specifically, to process p, in the worst case we
only have to scan C; U{U¢, carine. C1} YU, enrare. C2}- The search space is
therefore much smaller than the ofiginal dataset DS.

4 Theoretical Analysis

In addition to the notations stated in Table[Il we define the following new terms
for analysis: (a) p; is the probability that a cluster will be pruned during the
first phase, and (b) p is the probability that a data point will be pruned by rule
R; before it is scanned with the (k+ 1) data point among the remaining ones.
It is also noted that in practice, n. < k and n < N. In the following discussion,
we present detailed time and space complexity analysis for MIRO.

4.1 Time Complexity of MIRO

The execution time cost of the first phase without Ppgints includes (a) the cost of
clustering (Scpuster), (b) the cost of computing upper and lower bounds outlier
score for all clusters (Spounds), and (c) the pruning cost (Spruning). The expected
clustering cost is O(N -logN) according to [12]. Now, for a cluster C;, we need to
identify Minc, and Mazc,. Since the mean size of each cluster is n., on average

168 N.H. Vu and V. Gopalkrishnan

Algorithm 3. FINALPROCESSING

1 Set ¢,C «— PruneClusters()
2 Set TopOut «—)
3 foreach remaining cluster C; € C do

4 Set A — C; U {U01 €Ming, Ci}u {U02 €Mazc, C2}
5 foreach data point p € C; do
6 foreach cluster C; € A do
7 foreach data point ¢ € C; do
8 if ¢ # p then
9 if (¢ — Fout(q))/k > D(p, q) then
10 Mark p as non-outlier
11 Process next data point in C;
12 Update p’s k nearest neighbors using ¢
13 if Fout(p) < c then
14 Mark p as non-outlier
15 Process next data point in C;
16 if p is outlier then
17 Update TopOut with p
18 if Min(TopOut) > c then
19 Set ¢ «— Min(TopOut)

we have |Ming,| = = [k/n.]. A nalve approach sorts all clusters and
extracts [k/n.| clusters for Minc,/Mazc,, at a cost of O(flv ~log(é\£)). However,
we note that only [k/n.| clusters need to be reserved for Ming, as well as
Mazc,. Therefore a better approach is that for each cluster C;, we compute
the minimum/maximum distance from C; to C; and insert the result into the
corresponding set. This approach leads to an total cost of O(5- [fc] . 711\1 (N 1))

ne
over all clusters, which can be simplified to O() To estimate the cost of
computing upper and lower bounds of the outher score for each cluster Cj,
we compute the cost of measuring the same bounds for each individual data
point p € C;. To obtain p’s bounds, we also need to extract n. + u“c — 1]

clusters (including zero-radius ones) from a set of n. + uc] clusters. Since the
number of items extracted is nearly no different from the total set of items, we
apply the naive sorting approach discussed above. As a consequence, the total
cost incurred is O((n. + ffc]) -log(n. + (Ti])), ie., O(n¢ - log(n.)). Hence,
the cost of computing C;’s bounds = O(n.? - log(n.)). Therefore, Spounds =
O(YN - n.2 - log(n.)) + 0(711\122) = O(N - n¢ - log(ng)) + O(r]f?) To prune the

clugtcers, we need to compute /¢, and scan the whole set of clusters to check
their corresponding upper bounds. To compute l¢,, we need to extract [n/n.]
clusters with largest lower bounds from a set of N/n. clusters. In other words,
Spruning = O([1 1 711\7)+ O(i\i). Overall, the approximate overhead incurred by

the first phase is:

Pruning Schemes for Outlier Detection 169

Sphasel = Scluster + Sbounds + Spruning = O(N . lOgN) + O(N cNe - log(nc)) +
O(N)+0(IM1- M)+ 0(Y) =O(N -logN) + O(N - n - log(nc)) + O(N2) +

o[1+1)-).

After the first phase, the number of remaining clusters is (1 — py) - TJLVC , which
implies that the total number of remaining data points is n. - (1 — p1) - 711\1 =
(1 —p1) - N. Among them, the total number of data points pruned out by the
rule R; with no more than k distance computations is pa - (1 — p1) - N. On the
other hand, for each of the data points left, we need to scan the entire cluster
C; as well as Minc, and Maxc, in the worst case, i.e., the corresponding cost is
O(ne+2-n¢- [k/nc]), which simplifies to O(3 - n. + 2 - k). Hence the execution

time of the second phase in the worst case can be expressed as:

Sphase2 = O(kp2(1*p1)N+(3nc+2k)(1*1’2)(1*171)]\7)
=0((3-nc-(1—p2) +k-(2=p2))- (1 —p1)- N).

Hence, the approximate cost of the whole algorithm is:

Sphaser + Sphasez = O(N - logN) + O(N - ne - log(nc)) + O(¥2) +
O(((;ﬂ+1).Tfl\i)+0((3.nc.(17p2)+k.(2,p2)).(1,p1),N)_

We can also reclassify the whole detection process into a more detailed se-
quence of operations: (a) clustering, (b) identifying neighboring clusters for all
clusters, (¢) computing the bounds for clusters (we consider the process for each
cluster as a operation, so we have N/n. operations), (d) pruning clusters (N/n.
operations on average) and (e) final processing step ((1 — p1) - N operations on
average). Among them, the cost of the operations (a) and (b) are loglinear and
quadratic w.r.t. N, respectively. On the other hand, each of the remaining op-
erations incurs costs independent of N. Furthermore, when p; has large values,
the execution time of the second phase becomes very small which compensates
the overhead incurred by the first phase. In addition, when p, receives a large
value, a larger portion of the remaining data points after the first phase require
no more than & distance computations to be identified as normal records, and
a smaller number of these remaining points require more than k distance com-
putations. This fact leads to another reduction of execution time. Besides, the
pre-computation of cutoff ¢ helps contribute to further reduction of the execu-
tion time. Therefore, practically each of the operations performed in item (e)
takes nearly constant time. By applying the accounting method of amortized
analysis, we expect the expensive cost of operations (a) and (b) would be com-
pensated by the remaining inexpensive ones, i.e., the amortized running time of
each individual operation is inexpensive and non-quadratic w.r.t. N. In the ex-
periments carried out in Section [l we always have max(p1,p2)> 0.7 which leads
to the practical linear execution time w.r.t V. It is also noted that based on our
analysis, this quadratic overhead w.r.t. N is common for techniques that uti-
lize similar partition-based strategy such as [7], which though using less pruning
rules than MIRO, still reports linear execution time performance w.r.t N.

170 N.H. Vu and V. Gopalkrishnan

Time complexity with Ppoints. In the above analysis, we assume that the
Points heuristic (c.f., Section BI)) is not used for the first phase. In contrast, if
this heuristic is considered, we prune all points whose upper bound of outlier
score is less than the cutoff obtained by the clustering phase, so Spruning has to be
recomputed. Particularly, after applying [, for pruning out clusters, we perform
an additional scan on the set of clusters left. The mean number of clusters to
scan is therefore (1 —pq) - 711\1 , and the expected cost for scanning each cluster is
n¢. Consequently, the additional cost is O((1 — py) - 711\1 -ne) =01 —p1) - N).

From the above analysis, it can be seen that the cost of Sppese1 does not
change theoretically whether Ppyints is used or not. But Ppoints is only effective
if it does indeed help to prune out more data points after the first phase. We
will examine that in Section

4.2 Space Complexity of MIRO

As mentioned earlier, minimizing I/O cost is neither a focus of techniques in
[ITUT2I6] nor of MIRO. Hence, in general MIRO uses space for: (a) storing the
data points, and (b) storing the clusters created. Furthermore, the spatial cost
for storing each cluster C; can be simplified to the cost of storing its major
components which include: (a) its member data points, and (b) Minc, as well
as Maxc,. This is simplified by space-efficient hash indexes, therefore each C;
takes O(n. + 2 - u“c]) space on average. Hence, the space complexity of MIRO

is O(N) + O(i\i “(ne+2- [f})), which can be simplified to O(N).

4.3 Analysis of Parameters Used

Cluster size. For a fixed dataset size, as the average cluster size n. decreases,
the total number of clusters will increase. Since the size of each cluster C; be-
comes smaller, in order to compute the bounds of C;, we need to include more
clusters in Minc, as well as Mazc,. In other words, more clusters are required
for computing C;’s bounds. That increases Spounds and leads to the increase in
the overall execution time of our algorithm. In the extreme case, when n, = 1,
the first phase degrades to scanning the entire dataset, i.e., the total execution
time becomes a normal nested-loop algorithm and the execution time saved dur-
ing the second phase becomes insufficient to compensate this overhead. On the
other hand, as n. increases, there are less clusters than before. Since the size of
each cluster becomes larger, we need to consider fewer clusters in the process of
computing clusters’ bounds on the outlier score. But that does not directly lead
to a decrease in cost of computing bounds since we need to process more data
points per cluster. Furthermore, as n. increases and exceeds k, the lower bound
score lc, becomes smaller since we only need to use data points in a cluster C;
to compute its bounds (the assumption here is that in general a cluster contains
data that are relatively homogeneous). That means less clusters are pruned after
the first phase hence the execution time will increase. Overall, we should choose
a reasonable value of n. such that the average number of data points per cluster
is neither too small nor too large compared to k. More specifically, we need to

Pruning Schemes for Outlier Detection 171

identify a threshold for n. such that as n. increases above as well as decreases
below this threshold, the execution time of MIRO will increase. Consequently,
picking this threshold to be n. will be a wise choice. From the above analysis, we
conclude that the impact of n. over the overall performance of MIRO is complex
and identification of reasonable values for n. by analytical methods is practically
infeasible. Through empirical study carried out in Section B we show that k/5
is a possible candidate value.

Number of nearest neighbors. As the number of nearest neighbors taken
into account for the computation of outlier score, k, increases, the value that
F,.: assigns to each individual data point p in DS will increase correspondingly.
This in turn leads to an increase in the lower bound /¢, , and hence more clusters
may be pruned by the first phase of MIRO. However, as demonstrated before, an
increase of k results in having to consider more clusters when computing outlier
score bounds for an arbitrary cluster. Therefore, the cost of computing cluster’s
bounds will increase. The increase of k creates a two-fold effect: (a) a decrease
in execution time since more data points are pruned, and (b) an increase in
execution time due to the increase in the cost of computing clusters’ bounds.
Our experimental result in SectionBlshows that MIRO’s execution time increases
as k increases, i.e., the latter factor outperforms the former one.

5 Empirical Results and Analyses

In order to assess the effectiveness of our proposed technique, we performed ex-
tensive experiments on four real and high-dimensional datasets CorelHistogram,
Covertype, Servef and Landsatf]. All of these are original datasets except for
Server which is extracted from KDD Cup 1999 data, using the procedure pro-
vided in [I4]. For each set of input parameters that affect the performance of the
corresponding algorithm, we ran the experiment ten times. The results presented
are from average outcomes obtained from multiple runs. It is noted that we set
M = 10 and it = 5 throughout all experiments. Through the empirical studies,
we demonstrate:

— The efficiency of MIRO in reducing the execution time of the traditional
nested-loop algorithm. We measure the scalability of MIRO’s execution time
against the dataset size (IV) as well as the number of nearest neighbors (k)
used. In the latter case, we present MIRO’s performance with and without
Ppoints. The result is then compared with ORCA [II] and RBRP [I2] to
highlight the merit of our method.

— The pruning power of MIRO, in both phases of processing, with and without
Ppoints- In addition, we also assess the effect of k£ on the pruning quality. The
sensitivity of MIRO’s execution time with respect to the cluster size (n.) is
also presented.

2 http://www.ics.uci.edu/~mlearn/MLRepository.html
3 http://vision.ece.ucsb.edu

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://vision.ece.ucsb.edu

172 N.H. Vu and V. Gopalkrishnan

Execution time v/s. N: First we evaluate the scalability of execution time
of three distance-based outlier detection techniques MIRO, RBRP and ORCA
w.r.t the dataset size N. In this experiment, we chose the number of outliers
mined n = 30, number of nearest neighbors & = 50, set the size of each cluster
ne = 20, and varied N. We chose the implementation of MIRO without Ppints
since the efficiency of Ppints is highlighted in a later part of this section. We
observe from the result (Figure [[) that MIRO scales better than RBRP and
ORCA on all datasets, although its theoretical asymptotic time complexity is
quadratic in N. This agrees with the amortized analysis in Section [£1] In order
to analyze the cause of MIRO’s efficiency, we also compare the execution time
with and without the first phase.

Execution time and MIRO’s pruning power v/s. k: We now analyze the
effect of the number of nearest neighbors (k) on execution time. This experiment
is conducted on the entire datasets, and n = 30, n. = 20 as in the previous case.
The results (Figure[Z) show that the execution time for every technique increases
with &, but MIRO scales better (with and without Ppe;nts) compared to RBRP
and ORCA. The reason is once again attributed to the effective pruning power
of MIRO in both phases of processing. It is also clear that by using Ppoints, we
are able to obtain better or equal performance in term of execution time. This
observation is further analyzed later when we discuss the effect of k¥ on MIRO’s
pruning power.

3000

x 10

14
——MIRO ——MIRO ,/
2500} | ~ B ~RBRP N 2 | - & -RBRP ,
_ - ¥ -ORCA e _ - ¥ -ORCA /
O} X 210 /V
o -7 o ,
£ 2000 % £ ’
- .
] ~ B § . ¥ y:|
2 - . 2 - .
g v o--s NS .
i 9--9 __p--% 4 4 vV .-
-4 -
1000 -8
/ 2 o --B--1
500 o .
1 2 3 4 5 6 0 1 2 4 5 6

Dataset Size (N)

(a) CorelHistogram

4000

——MIRO v ——MIRO _-Y
35007 | & -ReRP , 30007 | — & -ReRP -
& 3000} L= ¥ “ORCA / & 2500
2 _.v A~ o
£ 2500 -7 g £ 2000
5 go-—"V 7 5
S2000p -~ -7 5 1500
§ Y -4 8
Ws00p __-87 & 10005
[-
1000 5003
0

500
1

15 2 25
Dataset Size (N)

(c) Landsat

x10°

3500

3
Dataset Size (N)

(b) Covertype

15 2 25 3 35 4 45 5
Dataset Size (N) x10°

(d) Server

Fig. 1. Execution time vs. the dataset size N

4000

Pruning Schemes for Outlier Detection

—— MIRO -y —— MIRO
3500 i -v i
S MIRO WP % , MIRO with P ¥
a000l| - & - rERP _x - B -RBRP -7
O _ ¢ -ORCA g 5 2 ||-¥-0ORcA T
2 2500 - o 215 V__V,‘V
< - - < e
§ 2000 - H v
£ -2 2
2 1500 _Ba- § T
X - X - -
I ot?”u g uy o -a--&-9--F ai
100 Ehd
: 055 - 09—~
500 - L |
0 ‘ ‘

20 30 40 50 60 70 80
Number of Nearest Neighbors (k)

(a) CorelHistogram

8000

90

100

x10°
25

0
20 30 40 50 60 70 80 9 100
Number of Nearest Neighbors (k)

(b) Covertype

7000

173

——MRO R4 ——MRO i
7000 i i
S MIROWR P, ~ 6000 ... MIROwith P /]
6000| = & -RBRP e o - B -RBRP ’
2 ||-v-ORcA A @ 50007 _ g -oRca IR
@ 5000 - o
b4 - v
£ , £ 4000 v -
< 4000 o < .
2 N < 3000 ¥ __a--1
8 3000 '3 8 ¥ P
I ‘. i 2000 " a7
’ - I -
100t 7 o7
Y- P
20 30 40 50 60 70 8 9 100 20 30 40 50 60 70 8 9 100

Number of Nearest Neighbors (k)

(c¢) Landsat

Number of Nearest Neighbors (k)

(d) Server

Fig. 2. Execution time vs. the number of nearest neighbors k

Figure [3] presents two pruning probabilities in one plot for each dataset: the
probability of pruning a cluster in the first phase (p;), and the probability that
a data point will be pruned out by rule Ry before it is scanned with the (k+ 1)
data point among the remaining ones (p3), as the number of nearest neighbors
is varied. In all cases, very high values of p; and/or ps are achieved, with p;
increasing when Ppoints is utilized. While we do not obtain high values for both
p1 and ps at the same time, we observe that in every case at least one of them re-
ceives a value greater than 0.7. This reflects a very high efficiency in pruning and
explains why MIRO takes less execution time compared to RBRP and ORCA.
In addition, the value of p; tends to increase as k increases (except in the case
of Landsat dataset), which means more clusters will be pruned after the first
phase when k receives higher value. This agrees with the discussion in Section
43l Furthermore, when p; without Ppoints already has relatively large value,
applying Ppoints does not help much in increasing the pruning power of the first
phase. This point is reflected by the tendency of p; with and without Ppoints
to converge towards each other as p; increases. We also observe that when the
pruning effect without using Ppoints is low, i.e., when p; is low, there will be a
significant improvement in execution time if Ppinss is employed instead. This
can be attributed to the fact that adjoining clusters’ lower and upper outlier
score bounds are too interleaved with each other which creates redundancy if
we include the whole of each candidate cluster in the final processing step. In

174 N.H. Vu and V. Gopalkrishnan

1 1
V-V~ -V - -¥--% -y
0.8 0.8
206 206
] S v
© © ~
a 2 V- - - -
o ° V-V -w -
& 04 & 04 VX
p, without P o p, without P ..o ‘\
02 Py Wt P s 0.2 Py Wt P ‘\
-v-P, -V -P \
\
0 0 -
20 30 40 50 60 70 80 90 100 20 30 40 50 60 70 80 90 100
Number of Nearest Neighbors (k) Number of Nearest Neighbors (k)
(a) CorelHistogram (b) Covertype
1 1
P~] P, without Ppolms
0.8 _ 0.8 p, with P
P, without Ppoims 1 points
i -V -P
Z 06 [Py WP 206 2
))
g V¥R g
$ 04 £ o4
o U 4
FoR X y
/ \ 7\ //
’ \ ’ v
02 02 , . , N
’ \ / \ /’
ER Tl el AT e
20 30 40 50 60 70 80 9 100 20 3 40 50 60 70 80 90 100
Number of Nearest Neighbors (k) Number of Nearest Neighbors (k)
(c) Landsat (d) Server

Fig. 3. MIRO’s pruning power vs. the number of nearest neighbors k

contrast, if the value of p; is already high, which means ¢, has been identified
wisely, using Ppoints may not improve MIRO’s performance by much, although
the pruning effect obtained is still equal or better. The reason is that increase
in pruning power in such cases is not enough to compensate the additional time
spent to run Ppeints. However, it is noted that when p; receives a higher value,
the cost of executing Ppoints, which is O((1 — p1) - N), becomes lower. There-
fore, it can be concluded that applying Ppints does not degrade performance by
much, but may lead to significantly better performance.

Execution time v/s. n.: For studying the effect of the average cluster size
(n.) on the execution time of MIRO, we set n = 30 while varying k. For each
value of k, we run MIRO with n. > 1 and < k£ and note the value of n. which
yields smallest CPU cost. The result obtained suggests that n. should be k/5.
A good selection of n. helps to balance the tradeoff between the time spent on
computing clusters’ bounds, as well as the pruning effect of the first phase of
MIRO. In practice, we can also determine n. by performing a training process
on a subset of the original dataset with n. = k/5 as the initial seed.

6 Conclusions

This work contributes to outlier detection research by proposing a new combina-
tion of several pruning strategies to produce an efficient distance-based outlier

Pruning Schemes for Outlier Detection 175

detection technique. The proposed technique, MIRO, consists of two pruning
phases of processing which lead to amortized efficiency. During the first phase, a
partition-based technique is employed to extract candidate clusters for the later
processing step. Furthermore, an additional benefit of the first phase is that we
are able to compute an initial value of the outlier cutoff threshold which is uti-
lized in the nested-loop phase. In the second phase of MIRO, two pruning rules
are employed to further reduce the overall temporal cost. In future work, we are
considering to extend our analysis on more large and high-dimensional datasets
to better study the full benefits of MIRO. We are also examining the possibility
of applying the partition-based strategy to outlier detection problems where a
local outlier score function is utilized. This will help us in building a general
framework for creating faster detection techniques regardless of whether a local
or global score function is employed.

References

1. Joshi, M.V., Agarwal, R.C., Kumar, V.: Mining needle in a haystack: Classifying

rare classes via two-phase rule induction. In: SIGMOD Conference, pp. 91-102
2001

2. éuzuk)i, E., Zytkow, J.M.: Unified algorithm for undirected discovery of exception
rules. In: Zighed, D.A., Komorowski, J., Zytkow, J.M. (eds.) PKDD 2000. LNCS
(LNAI), vol. 1910, pp. 169-180. Springer, Heidelberg (2000)

3. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: Identifying density-based
local outliers. In: SIGMOD Conference, pp. 93-104 (2000)

4. Knorr, E.M., Ng, R.T.: Algorithms for mining distance-based outliers in large
datasets. In: VLDB, pp. 392-403 (1998)

5. Aggarwal, C.C., Yu, P.S.: An effective and efficient algorithm for high-dimensional
outlier detection. VLDB Journal 14(2), 211-221 (2005)

6. Angiulli, F., Pizzuti, C.: Outlier mining in large high-dimensional data sets. IEEE
Transactions on Knowledge and Data Engineering 17(2), 203-215 (2005)

7. Ramaswamy, S., Rastogi, R., Shim, K.: Efficient algorithms for mining outliers
from large data sets. In: SIGMOD Conference, pp. 427-438 (2000)

8. Papadimitriou, S., Kitagawa, H., Gibbons, P.B., Faloutsos, C.: LOCI: Fast outlier
detection using the local correlation integral. In: ICDE, pp. 315-324 (2003)

9. Nguyen, H.V., Vivekanand, G., Praneeth, N.: Online Outlier Detection Based on
Relative Neighbourhood Dissimilarity. In: Bailey, J., Maier, D., Schewe, K.-D.,
Thalheim, B., Wang, X.S. (eds.) WISE 2008. LNCS, vol. 5175, pp. 50-61. Springer,
Heidelberg (2008)

10. Arning, A., Agrawal, R., Raghavan, P.: A linear method for deviation detection in
large databases. In: KDD, pp. 164-169 (1996)

11. Bay, S.D., Schwabacher, M.: Mining distance-based outliers in near linear time
with randomization and a simple pruning rule. In: KDD, pp. 29-38 (2003)

12. Ghoting, A., Parthasarathy, S., Otey, M.E.: Fast mining of distance-based outliers
in high dimensional datasets. In: SDM (2006)

13. Guha, S., Meyerson, A., Mishra, N., Motwani, R., O’Callaghan, L.: Clustering
data streams: Theory and practice. IEEE Transactions on Knowledge and Data
Engineering 15(3), 515-528 (2003)

14. Tao, Y., Xiao, X., Zhou, S.: Mining distance-based outliers from large databases
in any metric space. In: KDD, pp. 394-403 (2006)

The Sensitivity of Latent Dirichlet Allocation for
Information Retrieval

Laurence A.F. Park and Kotagiri Ramamohanarao

Department of Computer Science and Software Engineering,
The University of Melbourne, 3010, Australia

Abstract. It has been shown that the use of topic models for Infor-
mation retrieval provides an increase in precision when used in the ap-
propriate form. Latent Dirichlet Allocation (LDA) is a generative topic
model that allows us to model documents using a Dirichlet prior. Using
this topic model, we are able to obtain a fitted Dirichlet parameter that
provides the maximum likelihood for the document set. In this article,
we examine the sensitivity of LDA with respect to the Dirichlet para-
meter when used for Information retrieval. We compare the topic model
computation times, storage requirements and retrieval precision of fitted
LDA to LDA with a uniform Dirichlet prior. The results show there there
is no significant benefit of using fitted LDA over the LDA with a constant
Dirichlet parameter, hence showing that LDA is insensitive with respect
to the Dirichlet parameter when used for Information retrieval.

Keywords: latent Dirichlet allocation, probabilistic latent semantic
analysis, query expansion, thesaurus.

1 Introduction

Topic models allow us to represent documents as collections of topics, rather
than collections of words. It has been shown that the use of topic models for
Information retrieval on large documents provides a significant increase in pre-
cision when used in an appropriate form [112].

Latent Dirichlet Allocation (LDA) [3] is a generative topic model that allows
us to model documents using a Dirichlet prior. By changing the Dirichlet para-
meter, we are able to control the number of topics that the model assigns to each
word and document. By setting a small Dirichlet parameter, a small number of
topics are assigned to each word; by increasing the parameter, we increase the
distribution of topics to each word.

The original LDA model [3] provided a means of fitting the Dirichlet parame-
ter, when given a document set. This fitting processes requires that the docu-
ment models be recomputed until the maximum likelihood Dirichlet parameter
is found. Later LDA models [4J5] have avoided fitting the Dirichlet parameter
by simply providing an estimate of the parameter and computing the document
models once.

In this article, we investigate the effect of fitting the Dirichlet parameter for
Information retrieval. We examine the change in storage and retrieval precision

W. Buntine et al. (Eds.): ECML PKDD 2009, Part II, LNAI 5782, pp. 176-{I88] 2009.
(© Springer-Verlag Berlin Heidelberg 2009

The Sensitivity of Latent Dirichlet Allocation for Information Retrieval 177

obtained by changing the Dirichlet parameter, and hence observe the sensitivity
of the LDA topic models with respect to the Dirichlet parameter when used for
Information retrieval. We make the following contributions:

— a method of computing LDA term-term relationships, allowing us to use
LDA in an efficient and effective Information retrieval setting in Section [Z.3]
and

— a detailed comparison of document retrieval using both fitted and unfitted
LDA in Section [

The article will proceed as follows: Section 2] describes the LDA topic model and
presents a derivation of probabilistic term relationships using LDA. Section [3]
presents the information retrieval model used for efficient and effective retrieval
using topic models. Section [provides a comprehensive set of experiments com-
paring the effectiveness of the fitted and unfitted LDA query expansion models.

2 Probabilistic Topic Models

The language modelling method of information retrieval assumes that each doc-
ument is generated from a statistical document model. To create the document,
a set number of terms are sampled from the document model.

The simplest document model is a multinomial distribution across all terms,
where each term has a non-zero probability of being sampled. Terms that are
related to the document will have higher probabilities, while those that are not
related will have low probabilities.

In this section, we will examine two popular document modelling methods,
called probabilistic latent semantic analysis and latent Dirichlet allocation, that
assume that the models are dependent on a set of underlying topics.

2.1 Probabilistic Latent Semantic Analysis

The simple document model mentioned assumes that each term is independent.
Using this model will result in over-fitting the document set and lead to poor
generalisation.

Probabilistic latent semantic analysis (PLSA) [6] introduces a set of hidden
topics into the document model, so rather than directly estimating the term
distribution for each document, we estimate the topic distribution over all doc-
uments and the probabilistic relationship of each document and term to each
topic. PLSA uses the following document generation model:

1. To set the number of words in the document (document length), take a
sample N, where N ~ Poisson(§), and ¢ is th average document length. We
now have a document with N empty word slots.

2. For each of the N word slots w;:

(a) Select a topic z; by sampling the distribution Multinomial(¢y,), condi-
tioned on the document d,, where P(z;|d,) = ¢in-

178 L.A.F. Park and K. Ramamohanarao

(b) Select a term t, by sampling the distribution Multinomial(/;) condi-
tioned on the topic z;, where P(tz]2;) = Be.i-

Using this method of document construction, we obtain the probability of sam-
pling term ¢, in document d,, as:

P(t,|d,) ZP ta|2) P(zildn)

where P(z;|dy,) = ¢in and P(ty|2;) = By, From this we can compute the set of
term-term relationships [1]:

22 Plta|zi) P(ty|2i) P(2i)
2. P(tylz) P(z5)

and use these relationships for query term expansion.

P(talty) = (1)

2.2 Latent Dirichlet Allocation

A criticism of the PLSA approach to document modelling is that we need to
compute the multinomial distribution ¢; which provides the probability of sam-
pling a topic for a given document (P(z;|d)). If a new document appears, we are
unable to include it, since we do not have a ¢; distribution for it.

Latent Dirichlet allocation [3] avoids this problem by conditioning the topic
selection on a Dirichlet distribution, rather than on the specific document. Latent
Dirichlet Allocation (LDA) uses the following document model:

1. To set the number of words in the document (document length), take a
sample N, where N ~ Poisson(§). We now have a document with N empty
word slots.

2. Given the set @« = {a1,...,ax}, where o; > 0 for all i, take the sample
0 ={01,...,0r}, where 6 ~ Dirichlet(c).

3. For each of the N word slots w;:

(a) Select a topic z; by sampling the distribution Multinomial(f).
(b) Select a term t, by sampling the distribution Multinomial(/;) condi-
tioned on the topic z;, where P(t;|z) = By,i-

We can see that rather than the topic being sampled based on a document
dependent multinomial distribution, LDA samples the topic from a multinomial
distribution () generated from a Dirichlet space.

This gives us the likelihood function for a document:

P(d|o, B) = /(H > P(wy = ty]z)P (zi|t9)> P(6a)df

n=1 1

Note that P(w,, = t;|z;) = P(tz]z), since each document is considered a bag of
words. By multiplying the likelihood of each document, we obtain the likelihood
of the collection. Therefore, given a document collection, we are able to compute
the a and [that are most likely used to generate the document collection by
maximising the likelihood function.

The Sensitivity of Latent Dirichlet Allocation for Information Retrieval 179

2.3 LDA Probabilistic Term Relationships

It has been shown that direct use of topic models for Information retrieval on
large document sets lead to huge index storage requirements and slow query
times [I]. A more effective and efficient method of Information retrieval using
topic models is to use the knowledge of each topic in the form of a query expan-
sion. Therefore, to use LDA in this form, we must first compute the probabilistic
relationships of each term pair, given the set of topics.

Once we obtain the LDA « and 3 for the document set, we are able to compute
the LDA relationship between each term using the following:

P(tylty,a) = ZP te, zilty,)
= ZP t1|ziatyva)P(Zi|tyaa)
= ZP (te|zi, @) P(zilty,) (2)

where P(tg|zi,ty) = P(tz|z;), assuming that t; and t, are conditionally inde-
pendent given z;. and:

P(ts]zi, o) = Bai (3)
The posterior distribution is computed using Bayes’ theorem:

P(zifty, @) = P(ty|;izl)|§)(zi|a)
P(ty|z, o) P(zi|a)
Zj P(tyazj|a)
P(ty|zi’a)P(Zi|a)

B E_j P(ty|z;, o) P(z;]a) (4)

From this equation, we can obtain P(t,|z;,) from (3, but we need to derive
an equation for P(z;|a). We know that z; is a sample from the multinomial
distribution with parameter 8, therefore we can show:

P(zi]a) = /P(Zi79|a)d9
_ / P(21]0, @) P(6]a)do
— / P(z|0)P(0]a)do 5)

where P(z;]0,a) = P(z;]6), assuming that z; and « are conditionally indepen-
dent given 6.

180 L.A.F. Park and K. Ramamohanarao

Since P(z;|0) = 6;, we can simply replace the probability function in equation
with a function of ¢;(f) that simply returns the ith element of 6:

P(zi]a) = / 6:(0) P(6]a)df

= Ep(gja)[9:(0)]
=Ep(g|a)[0i]

We know that 6 ~ Dirichlet(«), therefore:

Q;
2ok Ok

By substituting equation [6] into equation @l we obtain:

Epgja) 0] =

Pt o) 52,
325 Pltylz,) 5277,
P(ty|zi, a)a;

B Zj P(tylz;, a)ay

and finally we substitute equation [3] to obtain:

P(zi |t1l7 a) =

Platyc) = 5% (7
J >

By substituting equation [7] into 2, we can obtain a closed solution for our term
relationships:

P(ty|ty, a) = ZP (tz]zi, @) P(zilty,)
By,ici
= Z/Bm,z Y
- 225 By.aay
_ > Ba,ilBy.ici (8)
> By

Therefore, we are able to obtain the probabilistic relationships between each term
using the o and 3 values computed by fitting the LDA model to our document
collection. It is also easy to see the equivalence of equation[§land the PLSA term
relationships in equation [l

2.4 Exchangeable and Uniform Dirichlet Distribution

An exchangeable Dirichlet prior implies that any of the Dirichlet prior para-
meters can be exchanged without affecting the distribution. To achieve this, an
exchangeable Dirichlet prior must contain all equal elements.

The Sensitivity of Latent Dirichlet Allocation for Information Retrieval 181

When using an exchangeable Dirichlet prior («; = a for all ¢), the Dirichlet
distribution simplifies to:

A further specialisation of the Dirichlet prior is the Uniform Dirichlet prior
(a; = 1 for all i), which is an exchangeable Dirichlet with a = 1:

We can see that the probability is independent of the value of # and therefore
uniform across all values of 6.

To examine the term relationships produced when using an exchangeable
Dirichlet distribution, we add the constraint that «; = a for all i. By doing
so, then we obtain the term relationship probabilities:

> BailBy,icti
Pltalty, o) > By
> BeiByaa
a Zj By.ja
_ > i Br,iBy,i
Zj By.i

Therefore, when using an exchangeable Dirichlet prior for LDA, the term re-
lationship probabilities become independent of . When examining the term
relationship probabilities using a uniform Dirichlet prior, we obtain the same
equation. Note that although a does not appear in equation @ the values of
0 are still affected by the choice of «, therefore we would not obtain the same
term relationships for when choosing either an exchangeable or uniform Dirichlet
prior.

9)

182 L.A.F. Park and K. Ramamohanarao

When using a uniform Dirichlet prior, the topic distribution obtains a uniform
prior and can be modelled using a multinomial distribution. It has been shown
that under this condition, LDA is equivalent to probabilistic latent semantic
analysis (PLSA) [7].

3 Topic Based Query Expansion

Information retrieval systems obtain their fast query times by building a fast
query term lookup index over a sparse set of term frequencies. When a query
is provided, the index lists corresponding to the query terms are extracted and
combined to obtain the document scores. If term frequencies are stored, the index
becomes sparse, and hence we will be able to process the index lists efficiently.

When using topic models such as LDA, every term has a probabilistic rela-
tionship to every document, and hence the data is not sparse. If we were to
store these values in the document index, we would obtain a large dense index
containing long index lists that would take substantial time to process.

Rather than store the topic model probabilities in the document index, it was
found that it is more efficient to store these values as term relationships in a
thesaurus and store the term frequencies in the document index [II89IT0]. By
doing so, we obtain a compact document index for fast retrieval and control over
the query time by using the topic models in the form of of a thesaurus for query
expansion.

By using the index-thesaurus combination, we compute each document score
using:

54(Q) = pSa(E) + (1 — u)Sa(Q)

where @) is the set of query terms, F is the set of weighted expansion terms
computed by applying the query terms to the topic model thesaurus (as shown
n [I12]), Sq() is the document scoring function for document d and p € [0, 1] is
the query mixing parameter to combine the original query terms to the expansion
terms.

In the following experiments, we chose Sq() to be the state-of-the-art BM25
probabilistic document scoring function [I1].

4 Comparison of Fitted and Unfitted LDA Term
Expansion

Now that we have shown how to compute the LDA term relationships using
the LDA topic models, we will proceed to investigate their effectiveness. In this
section, we will examine the precision obtained by LDA and examine if there is
a statistically significant increase when fitting the Dirichlet parameter.

To build the LDA thesaurus, we first compute the set of 3, ; values for the
given document set using the LDA-C softward] (which assumes an exchangeable

! http://www.cs.princeton.edu/~blei/lda-c/

The Sensitivity of Latent Dirichlet Allocation for Information Retrieval 183

Table 1. Statistics related to the LDA thesauruses used to store the probabilistic term
relationships. Note that the Dirichlet parameter was set to the value of a = 1, making
the unfitted form of LDA equivalent to PLSA.

Document set File size Build time Dirichlet «
Fitted Unfitted Fitted Unfitted Fitted Unfitted
AP2 112 MB 87 MB 2 days 57 minutes 0.020 1
FR2 30 MB 29 MB 1 day 17 minutes 0.021 1
WSJ2 107 MB 90 MB 2.5 days 61 minutes 0.022 1
ZIFF2 52 MB 42 MB 2 days 32 minutes 0.033 1

Dirichlet prior) and then compute the thesaurus values using equation @ Our
experiments will compare the LDA with the Dirichlet parameter fitted to the
document set (fitted LDA) to LDA with a uniform Dirichlet prior (a« = 1)
representing the unfitted LDA.

Ezxperiment 1: Effect of the number of topics and terms on Average Precision.
The LDA thesaurus build time is dependent on the number of terms and the
number of topics. Therefore our first set of experiments will examine the effect
of changing the number of terms and topics on the retrieval average precision.
Initial experiments compared the retrieval results using LDA term expansion
when using 1) all terms and 100 topics, 2) 100 topics and terms that appear
in at least 50 documents, and 3) 300 topics and terms that appear in at least
50 documents. Average precision (AP) results were obtained using the ZIFF2
document set from TRECH disk 2, with queries 51 to 200 (used with disk 2 for
TRECs 1, 2 and 3).

We generated AP scores from the 150 queries for mix values of 0.0 to 1.0 in
intervals of 0.1 and term expansions of 10, 20, 50, 100, 200, 500 and 1000. By
applying the two-sided Wilcoxon Signed Rank test to our AP results, we found
that there was no significant difference in the AP of any of the three forms of
LDA term expansion. These results are consistent with the findings when using
PLSA term expansion [I]. Based on these results, we will now only consider
LDA term expansion using 100 topics and only terms that appear in at least 50
documents.

Experiment 2: Thesaurus storage and build time. Before performing any retrieval
experiments, we must first construct the thesaurus containing the probabilistic
term relationships.

Table [shows the thesaurus statistics corresponding to the fitted and unfitted
forms of LDA term relationships for the AP2, FR2, WSJ2 and ZIFF2 document
sets from TREC disk 2. We can see from this table that the fitted thesaurus file
sizes are larger than the corresponding unfitted thesaurus, and that the term

2 http://trec.nist.gov

184 L.A.F. Park and K. Ramamohanarao

Table 2. Mean average precision on FR2 using BM25 with fitted LDA term expansion.
Single and double superscript daggers (1 and 7t) show a significant increase in precision
over unfitted LDA, using the same mix and expansion size, at the 0.1 and 0.05 levels
respectively. Single and double subscript stars (* and *x) show a significant increase in
precision over BM25. Scores in italics show the greatest score for the given expansion
size.

Mix Expansion size
10 20 50 100 200 500 1000

0.0 0.197 0.197 0.197 0.197 0.197 0.197 0.197

0.1 0.198.« 0.198+x 0.1984x 0.198.x 0.199.. 0.2034« 0.2034x
0.2 0.198.+ 0.198.x« 0.2034x 0.2034x 0.204.x 0.2044x 0.204.
0.3 0.198.« 0.199.x 0.204.x 0.2044x 0.2054x 0.2064+ 0.206.x
0.4 0.202.« 0.204.x« 0.2044x 0.2064x 0.2094x 0.2104x 0.21044
0.5 0.2034x 0.204.x 0.207.x 0.2094x 0.212.. 0.2144x 0.2164
0.6 0.2044« 0.2054x 0.209.x 0.2124% 0.2154 0.2184« 0.220.4
0.7 0.2074x 0.2104x 0.2134x 0.215.x 0.221. 0.222.. 0.227.
0.8 0.2094x 0.2124x 0.2154x 0.2234x 0.2264 0.228 s 0.233 4
0.9 0.207.x 0.2054x« 0.211.. 0.212. 0.213 0.219. 0.219.

1.0 0.018 0.023 0.031 0.037 0.036 0.037 0.043

Table 3. Mean average precision on ZIFF2 using BM25 with fitted LDA term expan-
sion. Single and double superscript daggers (and ft) show a significant increase in
precision over unfitted LDA, using the same mix and expansion size, at the 0.1 and
0.05 levels respectively. Single and double subscript stars (x and **) show a significant
increase in precision over BM25. Scores in italics show the greatest score for the given
expansion size.

Mix Expansion size
10 20 50 100 200 500 1000

0.0 0.269 0.269 0.269 0.269 0269 0.269 0.269
0.1 0269, 0.269, 0.269.. 0.269., 0.269,. 0.269.. 0.269,.
0.2 0.269,. 0.269.. 0.269. 0.269 0.269 0.269, 0.269
0.3 0.269" 0.268" 0.268 0.268 0271 0.270 0.270
0.4 0269 0.268 0.268 0.271 0270 0.270 0.270
0.5 0268 0.268 0.271 0.272 0272 0.272 0.272
0.6 0.270 0.268 0270 0271 0272 0.273 02731
0.7 0269 0.269 0270 0.270 0273 0.272 0.280%"
0.8 0.267 0.268" 0.270f 0.2717t 0.278" 0.278" 0.278f
0.9 0.257TT 0.257TT 0.259TT 0.2647T 0.2561T 0.26417 0.2531"
1.0 0.014 0016 0.015 0015 0.014" 0015 0.015

The Sensitivity of Latent Dirichlet Allocation for Information Retrieval 185

Table 4. Mean average precision on AP2 using BM25 with fitted LDA term expansion.
Single and double superscript daggers (1 and 7t) show a significant increase in precision
over unfitted LDA, using the same mix and expansion size, at the 0.1 and 0.05 levels
respectively. Single and double subscript stars (* and *x) show a significant increase in
precision over BM25. Scores in italics show the greatest score for the given expansion
size.

Mix Expansion size
10 20 50 100 200 500 1000

0.0 0271 0271 0271 0271 0271 0271 0.271
0.1 0.272.. 0.272.. 0272.. 0.272,. 0.272.. 0.272.. 0.272..
0.2 0.272.. 0.272.. 0273.. 0.273.. 0.273.. 0.273.. 0.273..
0.3 0.273.. 0.273.. 0.274.. 0.275.. 0.275.. 0.275.. 0.275..
04 0.274.. 0.274,. 0.275.. 0.275.. 0.276.. 0.276.. 0.276..
0.5 0.274s. 0.275.. 0.277.. 0.277.. 0.278.. 0.278.. 0.278..
0.6 0.275.. 0.276.. 0.278.. 0.279.. 0.279.. 0.280.. 0.280..
0.7 0.276.. 0.277.. 0.280.. 0.280,. 0.281.. 0.282.. 0.282..
0.8 0.277.. 0.279.. 0.282.. 0.283.. 0.284,, 0.28}., 0.284..
0.9 0.27911 0.2811, 028111 02821 0.2821 0.28311 0.28211
1.0 0.030 0.031 0037 0039 0039 0038 0.037

relationships take substantially longer to compute (due to the fitting process).
The table also shows the fitted a value, demonstrating that the computed fitted
LDA term relationships are different from the computed unfitted LDA term
relationships.

Ezxperiment 8: Comparison of Average Precision when using fitted and unfitted
LDA query expansion. Our next set of experiments compare the fitted LDA term
expansion precision to unfitted LDA term expansion and the baseline BM25 (no
term expansion). Again, we will use mixing values of 0.0 to 1.0 in intervals of
0.1 and term expansions of 10, 20, 50, 100, 200, 500 and 1000 for both fitted
and unfitted LDA. For this set of experiments we will use the AP2, FR2, WSJ2
and ZIFF2 document sets from TREC disk 2 with queries 51-200. For each of
the document sets, thesauruses were built for fitted and unfitted LDA using 100
topics and only those terms that appear in at least 50 documents. The mean
average precision results are shown in Tables 2 Bl E and [for the documents
sets FR2, ZIFF2, AP2 and WSJ2 respectively.

We can see from table 2l that fitted LDA did not provide a significant increase
in precision over unfitted LDA for any values of mix or expansion size on FR2.
Also, table Bl shows that fitted LDA did not provide a significant increase in
precision over BM25 for most mix values and expansion sizes on ZIFF2.

The AP2 and WSJ2 results in tables Ml and Bl show that the fitted LDA term
expansion provides the greatest mean average precision (MAP) at u = 0.8. We
can also see that the MAP increases as the query expansion size is increased.

186 L.A.F. Park and K. Ramamohanarao

Table 5. Mean average precision on WSJ2 using BM25 with fitted LDA term expan-
sion. Single and double superscript daggers (f and 7t) show a significant increase in
precision over unfitted LDA, using the same mix and expansion size, at the 0.1 and
0.05 levels respectively. Single and double subscript stars (* and *x) show a significant
increase in precision over BM25. Scores in italics show the greatest score for the given
expansion size.

Mix Expansion size
10 20 50 100 200 500 1000

0.0 0.257 0.257 0257 0257 0257 0.257 0.257
0.1 0.257.. 0.257.. 0.258.. 0.258,. 0.258,. 0.258.. 0.258,.
0.2 0.258,, 0.258,. 0.258,, 0.258,. 0.258,. 0.258,. 0.259..,
0.3 0.258,. 0.258,. 0.258.. 0.259.. 0.259.. 0.259.. 0.259,,
0.4 0.258,. 0.259,. 0.259.. 0.259.. 0.260.. 0.262.. 0.262,.
0.5 0.259,, 0.259.. 0.259,, 0.259,. 0.262,. 0.263.. 0.263..
0.6 0.259.. 0.259,. 0.260.. 0.263.. 0.264s. 0.265.. 0.265,,
0.7 0.262.. 0.260,.. 0.261.. 0.264s. 0.2664. 0.267.. 0.268,,
0.8 0.262.. 0.262.. 0.264,, 0.267., 0.268.. 0.270,, 0.270,,
0.9 0.260" 0.259T 0.2600 0.262f1 0.26311 0.26011 0.2601%
1.0 0.025 0.025 0.029 0.031 0.033 0.032 0.032

Note that a mix of u = 0 implies that there are no expansion terms used and
hence the score is simply the BM25 score.

Each of the tables contain information about statistical significance tests. For
each run, we have reported statistically significant increases in Average Precision
(AP) using the one sided Wilcoxon signed rank test at the 0.1 and 0.05 levels of
fitted LDA over each of unfitted LDA (using the associated expansion size and
mix) and BM25. We can see from both the AP2 and WSJ2 results that the fitted
LDA thesaurus provides a significant increase in average precision over BM25
for most results where the mix values are between = 0.1 and 0.9. We can also
see that fitted LDA provides a significant increase over unfitted LDA for a mix
of u = 0.9 only for both AP2 and WSJ2.

Given that fitted LDA provides the greatest mean average precision with a mix
of © = 0.8, but does not provide a significant increase in precision over unfitted
LDA for both of the AP2 and WSJ2 document set, we can deduce that we have
not gained any precision advantages from fitting the Dirichlet parameter.

Table [6] contains the mix-expansion pair that provide the greatest MAP for
each method on each data set. Also provided are the precision at 10 and mean
reciprocal rank scores. This table shows little difference between the retrieval
performance of fitted and unfitted LDA.

From this evidence we have obtained, we deduce that the extra computation
required to compute the fitted LDA topic relationships do not provide any ben-
efit over the unfitted LDA topic relationships for the all of the document sets
examined.

The Sensitivity of Latent Dirichlet Allocation for Information Retrieval 187

Table 6. A comparison of the mean average precision (MAP), precision at 10 (Precl0)
and mean reciprocal rank (MRR) of each system on each data set. The mix-expansion
combination shown are those that produce the greatest MAP.

Data Method Mix Expansion MAP Precl0 MRR
Fitted LDA 0.8 200 0.284 0.380 0.562
AP2 Unfitted LDA 0.8 200 0.282 0.382 0.563
BM25 N/A N/A 0.271 0.355 0.537
Fitted LDA 0.8 1000 0.233 0.141 0.368
FR2 Unfitted LDA 0.8 1000 0.234 0.141 0.367
BM25 N/A N/A 0.197 0.117 0.314
Fitted LDA 0.8 500 0.270 0.370 0.625
WSJ2 Unfitted LDA 0.8 500 0.269 0.369 0.625
BM25 N/A N/A 0.257 0.353 0.572
Fitted LDA 0.7 1000 0.280 0.169 0.427
ZIFF2 Unfitted LDA 0.8 500 0.280 0.165 0.460
BM25 N/A N/A 0.269 0.158 0.415

5 Conclusion

Latent Dirichlet allocation (LDA) is a generative topic model that allocates
topics using the Dirichlet distribution. To compute the topic distribution, we
need to obtain the Dirichlet parameter for the document set, which can be either
fitted using maximum likelihood, or estimated.

In this article, we examined the effect of fitting the Dirichlet parameter with
the LDA topic model on the precision for Information retrieval. To do so, we
derived an expression for LDA term-term probabilistic relationships for use as a
query expansion.

We compared the effectiveness of query expansion using fitted and unfitted
LDA on several document sets and found that using fitted LDA did not provide a
significant increase in Average Precision when operating under its peak settings
(mix=0.8). We showed that by not fitting the Dirichlet parameter, we obtained
a 50 to 90 times gain in computational efficiency when computing the topic
models. Considering that the fitted LDA term relationships consume more stor-
age and time to build, we conclude that fitting the Dirichlet parameter provides
no advantage when using LDA for an Information retrieval task, hence showing
that LDA is insensitive with respect to the Dirichlet parameter for Information
retrieval.

References

1. Park, L.A.F., Ramamohanarao, K.: Efficient storage and retrieval of probabilistic
latent semantic information for information retrieval. The International Journal on
Very Large Data Bases 18(1), 141-156 (2009)

188

10.

11.

L.A.F. Park and K. Ramamohanarao

. Park, L.A.F., Ramamohanarao, K.: An analysis of latent semantic term self- cor-

relation. ACM Transactions on Information Systems 27(2), 1-35 (2009)

Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. Journal of Machine
Learning Research 3, 993-1022 (2003)

Griffiths, T.L., Steyvers, M.: Finding scientific topics. Proceedings of the National
Academy of Sciences of the United States of America 101(suppl. 1), 5228-5235
(2004)

Wei, X., Croft, W.B.: LDA-based document models for ad-hoc retrieval. In: SIGIR,
2006: Proceedings of the 29th annual international ACM SIGIR conference on
Research and development in information retrieval, pp. 178-185. ACM, New York
(2006)

Hofmann, T.: Probabilistic latent semantic indexing. In: Proceedings of the 22nd
annual international ACM SIGIR, conference on Research and development in in-
formation retrieval, pp. 50-57. ACM Press, New York (1999)

Girolami, M., Kaban, A.: On an equivalence between PLSI and LDA. In: SIGIR
2003: Proceedings of the 26th annual international ACM SIGIR conference on
Research and development in informaion retrieval, pp. 433-434. ACM Press, New
York (2003)

Park, L.A.F., Ramamohanarao, K.: Query expansion using a collection dependent
probabilistic latent semantic thesaurus. In: Zhou, Z.-H., Li, H., Yang, Q. (eds.)
PAKDD 2007. LNCS (LNAI), vol. 4426, pp. 224-235. Springer, Heidelberg (2007)
Park, L.A.F., Ramamohanarao, K.: Hybrid pre-query term expansion using latent
semantic analysis. In: Rastogi, R., Morik, K., Bramer, M., Wu, X. (eds.) The Fourth
IEEE International Conference on Data Mining, pp. 178-185. IEEE Computer
Society, Los Alamitos (2004)

Park, L.A.F., Ramaohanarao, K.: The effect of weighted term frequencies on prob-
abilistic latent semantic term relationships. In: Amir, A., Turpin, A., Moffat, A.
(eds.) SPIRE 2008. LNCS, vol. 5280, pp. 63-74. Springer, Heidelberg (2008)
Jones, K.S., Walker, S., Robertson, S.E.: A probabilistic model of information re-
trieval: development and comparative experiments, part 2. Information Processing
and Management 36(6), 809-840 (2000)

Efficient Decoding of Ternary Error-Correcting Output
Codes for Multiclass Classification

Sang-Hyeun Park and Johannes Fiirnkranz

TU Darmstadt, Knowledge Engineering Group,
D-64289 Darmstadt, Germany
{park, juffi}@ke.tu-darmstadt.de

Abstract. We present an adaptive decoding algorithm for ternary ECOC ma-
trices which reduces the number of needed classifier evaluations for multiclass
classification. The resulting predictions are guaranteed to be equivalent with the
original decoding strategy except for ambiguous final predictions. The technique
works for Hamming Decoding and several commonly used alternative decoding
strategies. We show its effectiveness in an extensive empirical evaluation consid-
ering various code design types: Nearly in all cases, a considerable reduction is
possible. We also show that the performance gain depends on the sparsity and the
dimension of the ECOC coding matrix.

1 Introduction

Error-correcting output codes (ECOCs) [6] are a well-known technique for handling
multiclass classification problems, i.e., for problems where the target attribute is a cate-
gorical variable with k£ > 2 values. Their key idea is to reduce the k-class classification
problem to a series of n binary problems, which can be handled by a 2-class classi-
fication algorithm, such as a SVM or a rule learning algorithm. Conventional ECOCs
always use the entire dataset for training the binary classifier. Ternary ECOCs [1] are
a generalization of the basic idea, which allows to ignore some examples in the train-
ingset of the corresponding binary classifier. For example, pairwise classification [8l9],
which trains a classifier for each pair of classifiers, is a special case of this framework.

For many common general encoding techniques, the number of binary classifiers
may exceed the number of classes by several orders of magnitude. This allows for
greater distances between the code words, so that the mapping to the closest code word
is not compromised by individual mistakes of a few classifiers. For example, for pair-
wise classification, the number of binary classifiers is quadratic in the number of classes.
Thus, the increase in predictive accuracy comes with a corresponding increase in com-
putational demands at classification time. In previous work [12], we recently proposed
the QWEIGHTED algorithm, a fast decoding method for pairwise classifiers using a
voting aggregation. Our experimental results showed that the quadratic complexity of
the decoding step could be reduced to O(k log k) in practice. In this paper, we present
QUICKECOC, a generalization of the above-mentioned algorithm to allow for quick
decoding of arbitrary ternary ECOC ensembles with various decoding techniques. The
resulting predictions are guaranteed to be equivalent to the original decoding strategy
except for ambiguous final predictions.

W. Buntine et al. (Eds.): ECML PKDD 2009, Part II, LNAI 5782, pp. 1892041 2009.
© Springer-Verlag Berlin Heidelberg 2009

190 S.-H. Park and J. Fiirnkranz

2 ECOC

Error-Correcting Codes (ECC) are a well-known topic in the field of Coding and Infor-
mation Theory [11]. Their main purpose is to detect and correct errors in noisy physical
communication channels. Dietterich and Bakiri [6] adapted this concept for multiclass
classification and named it in this context as Error Correcting Output Codes (ECOC).
They consider classifier predictions as information signals which ideally describe the
correct class for a given instance. Due to external influences (such as, e.g., a too small
sample size) these signals are sometimes wrong, and such errors have to be detected
and corrected. Formally, each class ¢; (i = 1...k) is associated with a so-called code
word cw; € {—1,1}" of length n. In the context of ECOC, all relevant information
is summarized in a so-called coding matrix (m; ;) = M € {—1,1}**", whose i-
th row describes code word cw;, whereas the j-th column represents a classifier f;.
Furthermore, the coding matrix implicitly describes a decomposition scheme of the
original multiclass problem. In each column j the rows contain a (1) for all classes
whose training examples are used as positive examples, and (—1) for all negative ex-
amples for the corresponding classifier f;. For the classification of a test instance z,
all binary classifiers are evaluated and their predictions, which form a prediction vector
p = [fi(z),..., fn(zx)], are compared to the code words. The class ¢* whose associated
code word cw,.- is “nearest” to p according to some distance measure d(.) (such as the
Hamming distance) is returned as the overall prediction, i.e. ¢* = argmin, d(cw,, p).

Later, Allwein et al. [1] extended the ECOC approach to the ternary case, where code
words are now of the form cw; € {—1,0,1}". The additional code m; ; = 0 denotes
that examples of class c; are ignored for training classifier f;. We will say a classifier f;
is incident to a class c¢;, if the examples of ¢; are either positive or negative examples for
fj, i.e., if m; ; # 0. This extension increases the expressive power of ECOCs, so that
now nearly all common multiclass binarization methods can be modelled. This includes
pairwise classification, which could not be modeled previously.

2.1 Code Design

Since the introduction of ECOC, a considerable amount of research has been devoted
to code design (see, e.g., [5/14]]), but without reaching a clear conclusion. We want to
emphasize that our work does not contribute to this discussion, because we will not be
concerned with comparing the predictive quality of different coding schemes. Our goal
is to show that, irrespective of the selected coding scheme, we can achieve a substantial
reduction in prediction time, without changing the predicted outcome.

Nevertheless, we will briefly review common coding schemes, because we will later
demonstrate that our algorithm is applicable to different types of coding schemes. Es-
sentially, one can distinguish between four code families, which we will discuss in the
following four sections.

Exhaustive Ternary Codes. Exhaustive ternary codes cover all possible classifiers in-
volving a given number of classes [. More formally, a (k, [)-exhaustive ternary code
defines a ternary coding matrix M, for which every column j contains exactly [val-
ues, i.e.,) .. |mi ;| = 1. Obviously, in the context of multiclass classification, only
columns with at least one positive (+1) and one negative (—1) class are useful.

Efficient Decoding of Ternary ECOC for Multiclass Classification 191

The number of classifiers for a (k,) exhaustive ternary code is (ll“) (2!=1 — 1), since
the number of binary exhaustive codes is 2/~ — 1 and the number of combinations
to select [row positions from k rows is (’f) These codes are a straightforward gener-
alization of the exhaustive binary codes, which were considered in the first works on
ECOC [6]], to the ternary case. Note that (k, 2)-exhaustive codes correspond to pairwise
classification.

In addition, we define a cumulative version of exhaustive ternary codes, which sub-
sumes all (k,7)-codes with ¢ = 2...1 up to a specific level /. In this case, we speak

of (k,1)-cumulative exhaustive codes, which generate a total of Y. _, (¥)(2~! — 1)

columns. For a dataset with k classes, (k, k)-cumulative exhaustive codes represent the
set of all possible binary classifiers.

Random Codes. We consider two types of randomly generated codes. The first variant
allows to control the probability distribution of the set of possible symbols {—1,0,1}
from which random columns are drawn. By specifying a parameter » € [0, 1], the prob-
ability for the zero symbol is set to p({0}) = r, whereas the remainder is equally
subdivided to the other symbols: p({1}) = p({—1}) = ',”. This type of code allows
to control the sparsity of the coding matrix, which will be useful for evaluating which
factors determine the performance of the QUICKECOC algorithm.

The second random code generation method selects randomly a subset from the set
of all possible classifiers Ng;;. This corresponds to the cumulative ternary code matrix
with [= k. Obviously, this variant guarantees that no duplicate classifiers are generated,
whereas it can occur in the other variant. We do not enforce this, because we wanted to
model and evaluate two interpretations of randomly generated codes: randomly filled
matrices and randomly selected classifiers.

Coding Theory, BCH-Codes. Many different code types were developed within coding
theory. We pick the so-called BCH Codes [3] as a representative, because they have
been studied in depth and have properties which are favourable in practical applications.
For example, the desired minimum Hamming distance of M can be specified, and fast
decoding methods are available. Note, however, that efficient decoding in coding theory
has the goal to minimize the complexity of finding the nearest code word given the
received full code word, while we are interested in minimizing the classifier evaluations
needed for finding the nearest code word respectively class. Although some concepts
of efficient decoding in coding theory seem to be transferable to our setting, they lack,
contrary to QUICKECOC, the capability to be a general purpose decoding method for
arbitrary coding matrices.

A detailed description of this code family is beyond the scope of this paper, but we
refer to [3U11] for a detailed description and further information regarding BCH-Codes.
In our evaluation, we considered binary BCH codes of lengths 7,15,31,63, 127 and
255. Similarly to [6], we randomly selected £ code words from the set of codes, if the
number of classes is k.

The above techniques are general in the sense that they are applicable to every pos-
sible dataset. Often, it is possible to project data-specific relationships or expert knowl-
edge explicitly to the coding matrix (see, e.g., [4]]). We did not consider these types of
codes in this paper, but note that our algorithm is applicable to all code types.

192 S.-H. Park and J. Fiirnkranz

2.2 Decoding

The traditional ECOC framework is accompanied with the Hamming Distance. After
receiving an ensemble of base predictions, the class with the shortest Hamming Dis-
tance is selected as the output. In the meantime, several decoding strategies have been
proposed. Along with the generalisation of ECOCs to the ternary case, Allwein et al
[L] proposed a loss-based strategy. Escalera et al. [7] discussed the shortcomings of
traditional Hamming distance for ternary ECOCs and presented two novel decoding
strategies, which should be more appropriate for dealing with the zero symbol. We con-
sidered all these decoding strategies in our work, and summarize them below.

In the following, let cw; = (m;1,...,M;,) a code word from a ternary ECOC
matrix and p = (p1, ..., pn) be the prediction vector.

Hamming Distance: Describes the number of bit positions in which cw; and p dif-
fer. Zero symbols (m; ; = 0) increase the distance by ; Note that the prediction vector
is considered as a set of binary predictions which can only predict either —1 or 1.

dp(cw;, p) = Z?:1 ‘Mi’jé_pj |
Euclidian Distance: Computes the distance of the two n-dimensional vectors in Euclid-
ian space.

d(ewi,p) = [lew; = pll2 = /Y, (mi; = p;)?

Attenuated Euclidian/Hamming Distance: These measures simply ignore the zero
symbols for computing the distance.

dap(cw;,p) = \/2?21 Imi ;| (mi; — pj)?

| \mi,J;Pj\

dam(cws,p) =377, [mi

Loss based: In loss based decoding we assume that we have given a score-based clas-
sifier f(.).

dr(cw;,p) = 375 l(mij - [;)
where [(.) is the loss function. Typical functions are [(s) = —s and I(s) = e~ *.
Laplace Strategy

EF+1 o dAH(cwi,p)+1

d) = - n
valews,)= o o g S gl + T

where C' is the number of bit positions in which they are equal and E' in which they
differ. 7" is the number of involved classes, in our case T = 2, since we employ binary
classifiers. Thus, the default value of dy, 4(.) is %

Beta Density Distribution Pessimistic Strategy: This measure assumes that the dis-
tance is a Beta-distributed random variable parametrized by C and E of two code words.
It can be seen as a probabilistic version of the Laplace strategy, because its expected
value equals the one from the Laplace strategy. Please refer to [13l7] for a detailed
description.

Efficient Decoding of Ternary ECOC for Multiclass Classification 193

3 Efficient Decoding for ECOC

In this section, we will introduce the QUICKECOC algorithm for efficiently deter-
mining the predicted class without the need to evaluate all binary classifiers. It builds
upon the QWEIGHTED algorithm [12], which is tailored to the special case of pairwise
classification with voting aggregation as a decoding technique. We will first briefly re-
capitulate this algorithm in Section and then discuss the three key modifications
that have to be made: first, Hamming decoding has to be reduced to a voting process
(Section3.2), second, the heuristic for selecting the next classifier has to be adapted to
the case where multiple classifiers can be incident with a pair of classes (Section 3.3)),
and finally the stopping criterion can be improved to take multiple incidences into ac-
count (Section 3.4). We will then present the generalized QUICKECOC algorithm for
Hamming decoding in Section Finally, we will discuss how QUICKECOC can be
adapted to different decoding techniques (Section [3.6)).

3.1 QWeighted for Pairwise Classification

Pairwise classification [8]] tackles the problem of multiclass classification by decom-
posing the main problem into a set of binary problems, one problem for each pair of
classes. At prediction time, all binary classifiers are queried, and each classifier emits a
vote for one of its two classes. The class which receives the maximum amount of votes
is eventually predicted.

Though it can be shown that the training time of pairwise classification is smaller
than in the one-against-all case [9], a quadratic number of classifiers still has to be eval-
uated at classification time. The QWEIGHTED algorithm [12] addresses this problem
by exploiting the fact that usually not all evaluations are necessary to compute the class
with the maximum votes. If one class has received more votes than every other class can
possibly achieve in their remaining evaluations, this class can be safely predicted. The
QWEIGHTED algorithm tries to enforce this situation by always focusing on the class
that has lost the least amount of voting mass. Experiments showed that QWEIGHTED
uses an average runtime of O(k log k) instead of the O(k?) that would be required for
computing the same prediction with all evaluations.

3.2 Reducing Hamming Distances to Voting

Obviously, pairwise classification may be considered as a special case of ternary
ECOCs, where each column of the coding matrix contains exactly one positive (41),
one negative (—1), and k — 2 ignore values (0). Thus, it is natural to ask the the question
whether the QWEIGHTED algorithm can be generalized to arbitrary ternary ECOCs.
To do so, we first have to consider that ECOCs typically use Hamming distance for
decoding, whereas pairwise classification typically uses a simple voting procedureﬂ In

! Other choices for decoding pairwise classifiers are possible (cf., e.g., [16]]), but voting is sur-
prisingly stable. For example, one can show that weighted voting, where each binary vote
is split according to the probability distribution estimated by the binary classifier, minimizes
the Spearman rank correlation with the correct ranking of classes, provided that the classifier
provides good probability estimates [[10].

194 S.-H. Park and J. Fiirnkranz

voting aggregation, the class that receives the most votes from the binary classifiers is
predicted, i.e.,

¢ := argmax Z fig
eK ek
where f; ; is the prediction of the pairwise classifier that discriminates between classes
C; and Cj.
Traditional ECOC with Hamming decoding predicts the class ¢* whose code word
cw.~ has the minimal Hamming Distance dp(cw,+,p) to the prediction vector

p = (p1,...,pn). The following lemma allows to reduce minimization of Hamming
distances to voting aggregation:

Lemma 1. Let v; j := (1 — ‘mi’j;pj ‘) be a voting procedure for classifier j for class
c; then

argmindy (cw;, p) = argmax E Vi j
i=l..n i=l.n °
JEN

Proof. Recall that
~ Jewi, = pal _ < IMia — pal
d . — a — B
wewen) =2, T =R

and let b; o := ‘mig_pal. Since b; , € {0,0.5,1} and

n n n
min b; o — max 1—b;, = max Vi.a
ic€l...k ’ i€l...k ’ icl...k ’
a=1 a=1 a=1
holds, we obtain the statement. O

To be clear, the above used definition of v; ; formalizes a voting procedure, for which
class ¢; receives one vote (+1), if the prediction p; of classifier j equals the correspond-
ing encoding bit m; ; and an half vote (4-0.5) for the case m; ; = 0 where the classifier
was not trained with instances from c;.

This voting schemes differs slightly from the commonly known voting aggrega-
tion. The exact voting aggregation procedure described within the ECOC framework

would be
|mi.; — ;]
vij = |mil - (1 j2 ’

which ignores the zero symbols and is not equivalent with Hamming decoding for arbi-
trary ternary coding matrices (but for e.g. pairwise codes w.r.t final prediction). Never-
theless, it is easy to see, that voting aggregation is equivalent to ECOC decoding using
the Attenuated Hamming distance.

Efficient Decoding of Ternary ECOC for Multiclass Classification 195

3.3 Next Classifier Selection

The QWEIGHTED algorithm always pairs the current favorite (the class with the least
amount of voting loss) with its strongest competitor (the class that has the least amount
of voting loss among all classes with which it has not yet been paired), and evaluates
the resulting classifier. The rationale behind this approach is that the current favorite
can emerge as a winner as quickly as possible. In pairwise classification, the choice of
a classifier for a given pair of classes is deterministic because, obviously, there is only
one classifier that is incident with any given pair of classes.

General ECOC coding matrices, on the other hand, can involve more than two
classes, and, conversely, a pair of classes may be incident to multiple binary classifiers.
This has the consequence that the selection of the next classifier to evaluate has gained
an additional degree of freedom. For example, assume a 4-class problem (A4, B, C, D)
using 3-level ternary exhaustive codes, and classes A and B have currently the great-
est vote amount, we could select one of four different classifiers that discriminate the
classes A and B, namely A|BC, A|BD, AC|B and AD|B.

QUICKECOC uses a selection process which conforms to the key idea of QWEIGH-
TED: Given the current favorite class ¢;,, we select all incident classifiers V;,. Let
K; denote the set of classes, which are involved in the binary classifier f;, but with a
different sign than c;,. In other words, it contains all rows ¢ of column j in the coding
matrix M, for which holds: m; ; # m;, ; A m; ; # 0. We then compute a score

s() = Y k—r(i)

€K

for every classifier ¢; € N, where r(i) is a function which returns the position of
class c; in a ranking, where all classes are increasingly ordered by their current votings
respectively ordered decreasingly by distances. Finally, we select the classifier f;, with
the maximal score s(jo). Roughly speaking, this relates to selecting the classifier which
discriminates c;, to the greatest number of currently highly ranked classes.

We experienced that this simple score based selection was superior among other
tested methods, whose presentation and evaluation we omit here. One point to note is,
that for the special case of pairwise codes, this scheme is identical to the one used by
QWEIGHTED.

3.4 Stopping Criterion

The key idea of the algorithm is to stop the evaluation of binary classifiers as soon as it
is clear which class will be predicted, irrespective of the outcome of all other classifiers.
Thus, the QUICKECOC algorithm has to check whether c;,, the current class with the
minimal Hamming distance to p, can be caught up by other classes at the current state.
If not, ¢;, can be safely predicted.

A straight-forward adaptation of the QWEIGHTED algorithm for pairwise classifica-
tion would simply compute the maximal possible Hamming distance for c;, and com-
pare this distance to the current Hamming distances /; of all other classes ¢; € K'\{c¢;, }.
The maximal possible Hamming distance for ¢;, can be estimated by assuming that all

196 S.-H. Park and J. Fiirnkranz

outstanding evaluations involving c;, will increase its Hamming distance. Thus, we
simply add the number of remaining incident classifiers of ¢;, to its current distance ;.

However, this simple method makes the assumption that all binary classifiers only
increase the Hamming distance of c;,, but not of the other classes. This is unnecessarily
pessimistic, because each classifier will always increase the Hamming distance of all
(or none) of the incident classifiers that have the same sign (positive or negative). Thus,
we can refine the above procedure by computing a separate upper bound of /;, for each
class ¢;. This bound does not assume that all remaining incident classifiers will increase
the distance for ¢;,, but only those where c; and c;, are on different sides of the training
set. For the cases where c¢; was ignored in the training phase, % is added to the distance,
according to the definition of the Hamming distance for ternary code words. If there
exist no class which can overtake c;,, the algorithm returns c¢;, as the prediction.

Note that the stopping criterion can only test whether no class can surpass the current
favorite class. However, there may be other classes with the same Hamming distance.
As the QUICKECOC algorithm will always return the first class that cannot be sur-
passed by other classes, this may not be the same class that is returned by the full
ECOC ensemble. Thus, in the case, where the decoding is not unique, QUICKECOC
may return a different prediction. However, in all cases where the code word minimal
Hamming distance is unique, QUICKECOC will return exactly the same prediction.

3.5 Quick ECOC Algorithm

Algorithm 1 shows the pseudocode of the QUICKECOC algorithm. The algorithm
maintains a vector I = (Iy,...,l) € R¥, where I; indicates the current accumulated
Hamming distance of the associated code word cw; of class ¢; to the currently evalu-
ated prediction bits p. The I; can be seen as lower bounds of the distances dy (cw;, p),
which are updated incrementally in a loop which essentially consists of four steps:

(1) Selection of the Next Classifier

(2) Classifier Evaluation and Update of Bounds !
(3) First Stopping Criterion

(4) Second Stopping Criterion

(1): First, the next classifier is selected. Depending on the current Hamming distance
values, the routine SELECTNEXTCLASSIFIER returns a classifier that pairs the current
favorite 79 = argmin,/; with another class that is selected as described in Section
In the beginning all values [; are zero, so that SELECTNEXTCLASSFIER returns an ar-
bitrary classifier f;.

(2): After the evaluation of f;, I is updated using the Hamming distance projected to
this classifier (as described in Section[3.2) and f; is removed from the set of possible
classifiers.

(3): In line the first stopping criterion is checked. It checks whether the current fa-
vorite class 7o can already be safely determined as the class with the maximum number
of votes, as described in Section[3.4]

(4): At line the algorithm stops when all incident classifiers of c;, have been eval-
uated (this criterion is actually a special case of (3) but it will be useful later). In this
case, since it holds that [;, < [; for all classes c; with /;, fixed and considering that /;

can only increase monotonically, we can safely ignore all remaining evaluations.

Efficient Decoding of Ternary ECOC for Multiclass Classification 197

Algorithm 1. QuickECOC

Require: ECOC Matrix M = (m; ;) € {—1,0,1}**™, binary classifiers fi,.. ., fn,
testing instance * € X
LleRF <0 # Hamming distance vector
2: ¢ <~ NULL , N —{1,...,n}
3: while ¢* = NULL do

4: j < SELECTNEXTCLASSIFIER(M,)
5: p— fi(x) # Evaluate classifier
6: for each i € K do
7: l’L — lz + ‘mig*m
8: M — M\M; , N — N\{j}
9: 1o = argminl;
ieK
10: # First stop Criterion
11: abort < true
12: for each i € K\{io} do
13: EFull < |{] S N|mi,j X Mg, 5 = —1}|
14: eHalfH|{j€N|mi?j #Oandmio,j:OH
15: ifli, + erun + ;eHalf > [; then
16: abort < false
17: # Second stop Criterion
18: if abort or Vj € N.m;, ; = O then
19: " — ¢

20: return c*

3.6 Decoding Adaptions

All decoding methods that we discussed in section 2.2] are compatible with QUICK-
ECOC by applying small modifications. In general, there are two locations where adap-
tations are needed. First, the statistics update step and the first stopping criteria have to
be adapted according to the used distance measure. Second, some decoding strategies
require a special treatment of the zero symbol, which can, in general, be modeled as a
preprocessing step. We will briefly describe the modifications for all considered decod-
ing strategies:

Euclidian Distance: For minimizing the Euclidian distance we can ignore the root
operation and simply substitute the update statement of the pseudocode (line 7) with:
li— 1+ (myj — p)Q. The factor for e ¢ is changed to 1 and the one for ey, to 4.

Att. Euclidian Distance: Similar to the above modifications we change line 7 with:
li < l; 4 |m; j|(m; ; — p)* and set the factor of ey to 4 and remove the occurrences
of e Half-

Loss based linear: For both loss based versions, we assume that we have given a nor-
malizing function w(.) which projects f;(x) from [—oco : oo] to [-1, 1], e.g.,

z>0
z <0

w(x) — {maxzf(m)

x
| min f(z)]

198 S.-H. Park and J. Fiirnkranz

We substitute line 6 with: p < w(f;(z)) and the update procedure with: [; «— I; +
1= , 7 and remove the occurrences of e a1y

Loss based exponential: For the exponential loss, we have to change line 6 as above
and the update step with [; < [; + e P43 In addition, the factor of e, is set to el

and €Half 1O e 1,

Laplace Strategy: This strategy can be used by incorporating a class- respectively row-
based incrementer. Note that each error bit between a code word cw and the prediction
vector p amounts b_&T towards the total distance d, 4 (cw, p), where b is the number of
non-zero bits of cw. This incrementer denoted by I; for class ¢; can be computed as a
preprocessing step from the given ECOC Matrix. So, the update step has to be changed

to l; < l; + I; and the factor of e, changes to I;. Besides, epq;r can be removed.

Beta Density Distribution Pessimistic Strategy: Here, we use an approximation of
the original strategy. First, similar to the Laplace Strategy, an incrementer is used to de-
termine Z; = EE - And second, instead of using a numerical integration to determine
Z;+a;, its standard deviation is added, which is in compliance with the intended seman-
tic of this overall strategy to incorporate the uncertainty. The incrementer I; is again set
during a preprocessing step and we change the update step to I; <« I;+min(1, (I;40;)).
The factor for e, has to be changed to I; and ep4; 5 has to be removed

In general, a distance measure is compatible to QUICKECOC if the distance can be
determined bit-wise or incremental, and the iterative estimate of [; has to be monotoni-
cally increasing, but must never over-estimate the true distance.

4 Experimental Evaluation

In this section, we evaluate the performance of QUICKECOC for a variety of different
codes. In addition, we were interested to see if it works for all decoding methods and
whether we can gain insights on which factors determine its performance.

4.1 Experimental Setup

All experiments were performed within the WEKA [15]] framework using the deci-
sion tree learner J48 with default parameters as a base learner. All evaluations were
performed using 10-fold stratified cross-validation. Our setup consisted of 5 encoding
strategies (BCH Codes and two versions each of exhaustive and random codes), 7 de-
coding methods (Hamming, Euclidian, Att. Euclidian, linear loss-based, exponential
loss-based, Laplacian Strategy and Beta Density Probabilistic Pessimistic) and 7 multi-
class datasets selected from the UCI Machine Repository [2].

% Note that we did not use such a normalizing function in our actual evaluation since we used a
decision tree learner as our base learner. Although the normalization of score based functions,
such as SVMs, is not a trivial task, the sketched function w(.) could be possibly determined
by estimating min f(x) and max f(x) during training time (e.g. saving the largest distances
between instances to the hyperplane for each classifier).

3 Note that this approximation yielded in all our evaluations the same prediction as the original
strategy.

Efficient Decoding of Ternary ECOC for Multiclass Classification 199

For the encoding strategies, we also tried several different parameters. Regarding
the exhaustive codes, we evaluated all (k,!) codes ranging from [= 2 to [= k per
dataset and analogously for the cumulative version. For the generation of the first type
of random codes the zero symbol probability was parametrized by » = 0.2,0.4,0.6,0.8
and the dimension of the coding matrix was fixed to 50 % of the maximum possible
dimension with respect to the number of classes. The second type of random codes
was generated by randomly selecting 20 %, 40 %, 60 % and 80 % from the set of all
valid classifiers respectively columns (all columns of an (k, k) cumulative ternary cod-
ing matrix) without repetition. Regarding BCH Codes, we generated 7, 15, 31,63, 127
and 255-bit BCH codes and randomly selected n rows matching the class count of the
currently evaluated dataset. For the datasets machine and ecoli where the number of
classes is greater than 7, we excluded the evaluation with 7-bit BCH codes.

The datasets were selected to have a rather low number of different classes. The
main reason for this limitation was that for some considered code types the number of
classifiers grows exponentially. Especially for the datasets with the maximum number
of eight classes (machine and ecolt), the cumulative ternary exhaustive codes generates
up to 3025 classifiers. In addition, we evaluated all possible combinations of decoding
methods, code types with various parameters, which we can not present here completely
(in total 1246 experiments) because of lack of space. Nevertheless, we want to stress
that our technique is applicable to larger number of classes (with reasonable codes),
and, as our results will show, the expected gain increases with the number of classes.

Because of the high number of experiments, we cannot present all results in detail,
but will try to focus on the most interesting aspects. In addition to assess the general
performance of QUICKECOC, we will analyze the influence of the sparsity of the code
matrix, of the code length, and of different decoding strategies.

4.2 Reduction in Number of Evaluations

Table 1l shows the reduction in the number of classifier evaluations with QUICKECOC
on all evaluated datasets with Hamming decoding and ternary exhaustive codes. In every
column the average number of classifier evaluations is stated with its corresponding
ratio to the number of generated classifiers in italics (the lower the better). The datasets
are ordered from left to right by ascending class-count. As the level parameter [is
bounded by the class-count k, some of the cells are empty.

Table 1. QUICKECOC performance using Hamming decoding and exhaustive ternary codes

I vehicle derm. auto glass 700 ecoli machine

2 3820.637 7.120.475 7950.379 9990.476 9.48 0.451 11.750.420 11.60 0.414
3 7910.659 26050.434 4286 0.408 43.470.414 41.64 0.397 58850.350 57.90 0.345
4 5650.808 46300.441 11522 0.470 116.450.475 107.03 0.437 199.31 0.407 194.81 0.398
5 43.11 0.479 163.67 0.520 163.98 0.521 148.50 0.471 369.06 0.439 35523 0.423
6 16.54 0.534 114.87 0.529 116.77 0.538 102.41 0.472 394.25 0.454 369.19 0.425
7 3424 0.543 3784 0.601 31.520.500 234.80 0.466 218.09 0.433
8 62.17 0.490 5727 0.451

200 S.-H. Park and J. Fiirnkranz

Table 2. QUICKECOC performance on BCH codes

vehicle derm. auto glass zoo ecoli machine
7 0764 0.774 0.851 0.880 0.834 - -
15 0.646 0.656 0.699 0.717 0.659 0.670 0.648
31 0571 0564 0.607 0.662 0.581 0.602 0.558
63 0.519 0.506 0.567 0.616 0.517 0.540 0.509
127 0.489 0.447 0.522 0.565 0477 0.493 0.459
255 0.410 0380 0.450 0.467 0.397 0.417 0.388

One can clearly see that QUICKECOC is able to reduce the number of classifier
evaluations for all datasets. The percentage of needed evaluations ranges from about
81 % (vehicle, Il = 4) to only 35 % (machine, | = 3). Furthermore, one can observe a
general trend of higher reduction by increasing class-count. This is particularly obvious,
if we compare the reduction on the exhaustive codes (the last line of each column, where
I = k), but can also be observed for individual code sizes (e.g., for [= 3). Although we
have not performed a full evaluation on datasets with a larger amount of classes because
of the exponential growth in the number of classifiers, a few informal and quick tests
supported the trend: the higher the class-count, the higher the reduction.

Another interesting observation is that except for dataset vehicle the exhaustive
ternary codes for level [= 3 consistently lead to the best QUICKECOC performance
over all datasets. A possible explanation based on a “combinatorial trade-off” can be
found in [13], which was omitted here because of space restrictions.

For BCH Codes, we can report also that in all cases a reduction was possible, as one
can see in Table 2l Note that all coding matrices in this case are dense, i.e., no coding
matrix contains a (0). Even in this case, we see that there was no situation, where all
classifiers were needed for multiclass classification. And again, we observe that for
higher dimensions (increasing the BCH bit code) higher reductions can be observed.

We do not show a detailed table of results for random codes, but they will be used in
the following sections.

4.3 Sparsity of Coding Matrices

We define the sparsity of the ECOC matrix as the fraction of (0)-values it contains. Ran-
dom codes provide a direct control over the matrix sparsity (as described in
section[2.T), and are thus suitable for analyzing the influence of the sparsity degree of the
ECOC matrix for QUICKECOC. Note, however, that the observed influences regarding
sparsity and dimension of the matrix on the QUICKECOC performance can also be seen
in the evaluations of the other code types, but not as clearly or structured as here.

Figure[Ilshows QUICKECOC applied to random codes with varying matrix sparsity.
A clear trend can be observed that the higher the sparsity of the coding matrix the better
the reduction for all datasets. Keep in mind that the baseline performance (evaluating
all binary classifiers) is a parallel to the z-axis with the y-value of 1.0. Note that the
absolute reduction tends to be minimal over all considered datasets at datasets with
higher class-counts i.e machine at 80 % sparsity, and the lowest reduction can be seen
for the dataset vehicle with the smallest number of classes n = 4 at 20 % sparsity.

Efficient Decoding of Ternary ECOC for Multiclass Classification 201

0.7

T
vehicle —+—
dermatology ---x---

glass
200 4
ecoli ===
machine

0.6

QuickECOC

I
0.2 0.3 0.4 0.5 0.6 0.7 0.8
ECOC Matrix Sparsity

Fig. 1. QUICKECOC performance of random codes in dependence of sparsity

The main effect of an increase of sparsity on the coding matrices is that for each class
the number of incident classifiers decreases. For sparsity 0, all classes are involved in
all classifiers, for sparsity 0.5, each class is (on average) involved in only half of the
classifiers. This will clearly affect the performance of the QUICKECOC algorithm.
In particular, the second stopping criterion essentially specifies that the true class is
found if all incident classifiers for the favorite class ¢ have been evaluated. Clearly, the
algorithm will terminate faster for higher sparsity levels (ignoring, for the moment, the
possibility that the first stopping criterion may lead to even faster termination).

4.4 Code Length

The second type of random codes, which were generated by randomly selecting a fixed
number from the set of all possible binary classifiers can be seen in Fig.[2l All coding
matrices for a k-class dataset have nearly the same sparsity, which relates to the average
sparsity of (k, k) cumulative exhaustive codes and differ only in the length of the coding
matrix (in percent of the total number of possible binary classifiers). This allows us to
observe the effect of different numbers of classifiers on the QUICKECOC performance.
Here, we can also see an consistent relationship, that higher dimensions lead to better
performance, but the differences are not as remarkable as for sparse matrices.

For a possible explanation, assume a coding matrix with fixed sparsity and we vary
the dimension. For a higher dimension the ratio of number of classifiers per class in-
creases. Thus, on average, the number of incident classifiers for each class also in-
creases. If we now assume that this increase is uniform for all classes, this has the effect
that the distance vector I is multiplied by a positive factor z > 1, ie., It = [x z.
This alone would not change the QUICKECOC performance, but if we consider that
classifiers are not always perfect, we can expect that for higher number of classifiers,
the variance of the overall prediction will be smaller. This smaller variance will lead
to a more reliable voting vectors, which can, in turn, lead to earlier stopping. It also

202 S.-H. Park and J. Fiirnkranz

T

vehicle —+—

dermatology ---x---
auto

0.7 glass -
200
ecoli ===
machine 1@

QuickECOC
=)
o
a
T
L

0.2 0.3 0.4 0.5 0.6 0.7 0.8
ECOC Matrix Dimension

Fig. 2. QUICKECOC performance of random codes in dependence of code length

Table 3. QUICKECOC performance on ecoli with all decoding methods and cumulative
exhaustive ternary codes

Hamming Euclidian A. Euclidian LBL LBE Laplace BDDP |N|

=2 0.420 0.420 0.420 0.399 0.398 0.406 0.426 28
=3 0.331 0.331 0.331 0.335 0.350 0.332 0.333 196

=4 0.377 0.377 0.377 0.383 0402 0.374 0375 686
=5 0.400 0.400 0.400 0.414 0439 0.399 0401 1526
=6 0.421 0.421 0.421 0.437 0466 0419 0418 2394
=7 0.427 0.427 0.427 0.444 0475 0426 0425 2898

=8 0.428 0.428 0.428 0.446 0477 0427 0426 3025

seems reasonable that this effect will not have such a strong impact as the sparsity of
the coding matrix, which we discussed in the previous section.

4.5 Different Decoding Strategies

As previously stated, because of the large number of experiments, we can not give
a complete account of all results. We evaluated all combinations of experiments, that
includes also all mentioned decoding methods. All the previously shown results were
based on Hamming decoding, since it is still one of the commonly used decoding strate-
gies even for ternary ECOC matrices. However, we emphasize, that all observations on
this small subset of results can also be found in the experiments on the other decod-
ing strategies. As an exemplary data point, Table 3] shows an overview of the QUICK-
ECOC performance for all decoding strategies for the dataset ecoli using cumulative
exhaustive ternary codes. It can be seen that the performance is quite comparable on all
datasets. Even the optimal reduction for [= 3 can be found in the results of all decoding
strategies.

Efficient Decoding of Ternary ECOC for Multiclass Classification 203

5 Discussion

At first glance, the results may not be striking, because a saving of a little less than
40 % does not appear to be such a large gain. However, one must put these results in
perspective. For example, for the vehicle dataset with a (4, 3)-exhaustive code, QUICK-
ECOC evaluated 65.9 % of all classifiers (cf. Table [I). A (4, 3)-exhaustive code has
12 classifiers, and each individual class is involved in 75 % of these classifiers (cf. the
example in section 2.1). Thus, on average, QUICKECOC did not even evaluate all the
classifiers that involve the winning class before this class was predicted. Similarly, for
(k, k)-exhaustive codes all classes are involved in all binary classifiers, but nevertheless,
considerable savings are possible. It would be interesting to derive a lower bound on the
possible optimal performance, and to relate these empirical results to such a bound.

One could also argue that in applications where the classification time is crucial, a
parallel approach could be applied much more effectively. Since each classifier defined
by a column of the ECOC matrix can be evaluated independently, the implementation
could be done very easily. QUICKECOC loses this advantage because the choice of the
next classifier to evaluate depends on the results of the previous evaluations. However,
QUICKECOC can still be parallelized on the instance level instead of the classifier
level. Given n processors or n threads we want to utilize, we select n incoming test
instances and apply QUICKECOC for each of them. With this method a higher speed
up can be expected as with a straight-forward parallelization of ECOC.

Another point is that the gains obtained by QUICKECOC are negligible in compar-
ison to what can be gained by more efficient coding techniques. While this is true, we
note that QUICKECOC can obtain gains independent of the used coding technique, and
can thus be combined with any coding technique. In particular in time-critical applica-
tions, where classifiers are trained once in batch and then need to classify on-line on a
stream of in-coming examples, the obtained savings can be decisive.

6 Conclusions

We have shown a general algorithm for reducing the number of classifier evaluations
for ternary ECOC matrices without compromising the overall prediction. It is based on
a similar algorithm that was tailored to pairwise classification. Since ternary ECOCs
subsume nearly all possible binary decomposition schemes, the reduction applies now
to a broader spectrum of applications. For example, data-specific optimal codes can
now also take advantage of reduced classifier evaluations. Regardless of the used code,
QUICKECOC improves the overall prediction efficiency. At first sight, the amount of
improvement may not seem to be as striking as for the pairwise case, where we could
report a reduction from k2 to klogk [12]], but one must keep in mind that in ECOC
codings, each class has a much larger number of incident classifiers, and thus a higher
number of evaluations must be expected to determine the winning class. We observed
that the performance gain increases with higher sparsity of the coding matrix, again
putting pairwise classification at the more efficient end of the spectrum. We also noted
an increase in the performance gain with increasing code lengths of the chosen code.
There might still be some potential for improving our results with better heuris-
tics for the selection of the next classifier, we have not yet thoroughly explored this

204 S.-H. Park and J. Fiirnkranz

parameter. For example, one could try to adapt ideas from active learning for this
process. Furthermore, we consider an in-depth analysis of existing fast decoding meth-
ods in Coding Theory and the investigation of the transferability to the multiclass clas-
sification setting, because they seem to share some similarities.

Acknowledgments. We would like to thank Eyke Hiillermeier and Lorenz Weizsédcker
for helpful suggestions and discussions. This work was supported by the German
Science Foundation (DFG).

References

1. Allwein, E.L., Schapire, R.E., Singer, Y.: Reducing multiclass to binary: A unifying approach
for margin classifiers. Journal of Machine Learning Research 1, 113—-141 (2000)

2. Asuncion, A., Newman, D.: UCI machine learning repository (2007)

3. Bose, R.C., Ray-Chaudhuri, D.K.: On a class of error correcting binary group codes. Infor-
mation and Control 3(1), 68-79 (1960)

4. Cardoso, J.S., da Costa, J.E.P.: Learning to classify ordinal data: The data replication method.
Journal of Machine Learning Research 8, 1393-1429 (2007)

5. Crammer, K., Singer, Y.: On the learnability and design of output codes for multiclass prob-
lems. Machine Learning 47(2-3), 201-233 (2002)

6. Dietterich, T.G., Bakiri, G.: Solving multiclass learning problems via error-correcting output
codes. Journal of Artificial Intelligence Research 2, 263-286 (1995)

7. Escalera, S., Pujol, O., Radeva, P.: Decoding of ternary error correcting output codes.
In: Martinez-Trinidad, J.F., Carrasco Ochoa, J.A., Kittler, J. (eds.) CIARP 2006. LNCS,
vol. 4225, pp. 753-763. Springer, Heidelberg (2006)

8. Friedman, J.H.: Another approach to polychotomous classification. Technical report, Depart-
ment of Statistics, Stanford University, Stanford, CA (1996)

9. Fiirnkranz, J.: Round robin classification. Journal of Machine Learning Research 2, 721-747
(2002)

10. Hillermeier, E., Fiirnkranz, J., Cheng, W., Brinker, K.: Label ranking by learning pairwise
preferences. Artificial Intelligence 172, 1897-1916 (2008)

11. Macwilliams, FJ., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland
Mathematical Library. North Holland, Amsterdam (1983)

12. Park, S.-H., Fiirnkranz, J.: Efficient pairwise classification. In: Kok, J.N., Koronacki, J.,
Lopez de Mantaras, R., Matwin, S., Mladeni¢, D., Skowron, A. (eds.) ECML 2007. LNCS
(LNAI), vol. 4701, pp. 658-665. Springer, Heidelberg (2007)

13. Park, S.-H., Fiirnkranz, J.: Efficient decoding of ternary error-correcting output codes for
multiclass classification. Technical Report TUD-KE-2009-01, TU Darmstadt, Knowledge
Engineering Group (2009)

14. Pimenta, E., Gama, J., de Leon Ferreira de Carvalho, A.C.P.: The dimension of ECOCs
for multiclass classification problems. International Journal on Artificial Intelligence
Tools 17(3), 433—447 (2008)

15. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques, 2nd
edn. Morgan Kaufmann, San Francisco (2005)

16. Wu, T.-F,, Lin, C.-J., Weng, R.C.: Probability estimates for multi-class classification by pair-
wise coupling. Journal of Machine Learning Research 5, 975-1005 (2004)

The Model of Most Informative Patterns
and Its Application to Knowledge Extraction
from Graph Databases

Frédéric Pennerath'? and Amedeo Napoli?

L Supélec, Campus de Metz, 2 rue Edouard Belin 57070 Metz, France
frederic.pennerath@supelec.fr
2 Orpailleur team, LORIA, BP 239, 54506 Vandoeuvre-les-Nancy Cedex, France
amedeo.napoli@loria.fr

Abstract. This article introduces the class of Most Informative Pat-
terns (MIPs) for characterizing a given dataset. MIPs form a reduced
subset of non redundant closed patterns that are extracted from data
thanks to a scoring function depending on domain knowledge. Accord-
ingly, MIPs are designed for providing experts good insights on the con-
tent of datasets during data analysis. The article presents the model of
MIPs and their formal properties wrt other kinds of patterns. Then, two
algorithms for extracting MIPs are detailed: the first directly searches
for MIPs in a dataset while the second screens MIPs from frequent pat-
terns. The efficiencies of both algorithms are compared when applied to
reference datasets. Finally the application of MIPs to labelled graphs,
here molecular graphs, is discussed.

1 Introduction

Given a dataset describing objects by attributes (or items), a frequent itemset is
a subset of attributes such that the number, also called support or frequency, of
objects presenting all of these attributes is not less than some threshold. Since the
first frequent itemset mining algorithm was proposed [I], frequent itemsets have
become a major and prolific model in data-mining that has served many different
applications and has been generalized to many different classes of patterns, like
sequences, trees, or connected graphs (see for instance the Gaston algorithm [2]
later used in Sect. [£.2)). However searching frequent patterns is not an ultimate
objective. Frequent patterns (of any type, even graphs) are generally considered
as the result of an intermediate processing step, usually followed either by the
extraction of frequent association rules, or by the extraction of a set of patterns
of interest wrt some application specific criteria. In any case, resulting rules or
patterns are usually sorted in decreasing order of some score so that only the
head of the sorted list, whose members are sometimes called top-k patterns (like
area-scored top-k patterns [3] later referred in Sect. 2.1]), is considered.

For association rules, many scores are available like confidence or lift. For
frequent patterns, scoring often serves supervised classification problems. Scores

W. Buntine et al. (Eds.): ECML PKDD 2009, Part II, LNAI 5782, pp. 205-1220] 2009.
(© Springer-Verlag Berlin Heidelberg 2009

206 F. Pennerath and A. Napoli

like p-value or information gain are then used to assess the discriminative power
of patterns relatively to two sets of positive and negative examples. Whereas a
direct scoring of patterns may make sense in the framework of machine learn-
ing problems, practical relevance of pattern scoring might be discussed in the
framework of knowledge discovery, where selected rules or patterns are directly
analyzed by experts. In that case two problems occur when providing experts
lists of patterns sorted by decreasing order of score.

First finding a good qualitative scoring function is not an easy task in the
context of knowledge discovery as scoring must predict interest of experts for
patterns. This interest is typically the amount of novel information a pattern
brings to experts relatively to their current state of knowledge but this informa-
tion is obviously hardly assessable. Frequency is an example of a “bad” qualita-
tive scoring function. Because of the anti-monotonic property of frequency, most
frequent patterns tend to be the smallest and thus the least informative as well.
An extreme example is the empty itemset that carries no information but has
the largest possible frequency. However a good scoring function must somehow
integrate frequency as the latter reflects likelihood of patterns, from highly im-
probable to very common. In many applications, the interest of a pattern thus
balances between its frequency and the amount of information contained in its
structure. Such a balance refers to the notion of data representativeness. The
Minimal Description Length principle (MDL) provides a theoretical foundation
to assess representativeness. This principle states the better a model helps to
encode data with a reversible compression scheme, the more this model is rep-
resentative of data. This principle has already been used to identify patterns
representative of data. Data compression then consists in replacing every occur-
rence of these representative patterns by new attributes in datasets of attributes
[] or new vertices in datasets of graphs [5]. However MDL-based patterns are
limited somehow as they do not take easily into account what experts know and
want to know. A better solution is to provide a flexible model that accepts a
large family of scoring functions tunable to experts’ needs.

The second problem is information redundancy among extracted patterns:
Since usual scoring functions are continuous, similar patterns are likely to have
similar scores. Consequently top-k patterns gets saturated by patterns similar to
the pattern of highest score, especially when patterns like graphs exhibit a high
combinatorial power. In practice experts experience difficulties to distinguish
patterns providing them new elements of information as they are flooded with
redundant copies of already analyzed patterns. One way of reducing the number
of useless frequent patterns to consider might consist in introducing additional
constraints that patterns have to meet [6]. A common example of pattern con-
straints is provided by closed patterns: a pattern P is closed if the frequency
of every pattern containing P is strictly smaller than the frequency of P. How-
ever, although constraints might reduce the number of patterns, they remain
insensitive to pattern redundancy.

In this paper we propose to solve both previous problems by a pattern selec-
tion process that outputs a family of patterns we have called Most Informative

The Model of MIP and Its Application to Knowledge Extraction 207

Patterns or MIPs. Intuitively MIPs are defined as local maxima of a scoring
function. This function is only required to satisfy few conditions in order to as-
sess pattern representativeness. The objective of MIP model is that every MIP
reveals one independent element of interest for experts. In practice MIPs appear
in limited number and are not structurally redundant compared to other pattern
families so that experts can directly analyse them. The idea underlying the MIP
model was initially motivated by a selective extraction of patterns from chem-
ical reaction databases [7]. Contributions of this article are the generalization
of this idea into a broad and formal model, the derivation of properties from
the model, and the introduction, comparison, and application of two methods to
extract frequent MIPs from itemset and graph datasets. To this end, the MIP
model and its properties are introduced in Sect. 2] the MIP extraction methods
in Sect. Bl and experiments in Sect. [l

2 Introduction of Most Informative Patterns

2.1 An Example

In order to illustrate the redundancy problem, let consider the simple example
of a dataset containing seven objects described by four attributes from a to d
and whose descriptions are respectively a, b, ab, cd, abc, abd, and abcd. Let as-
sume experts decide to score itemsets with the product of their length and their
frequency (a MDL-related score sometimes called area function [3]). Figure [l
displays resulting frequency and score of every pattern inside the order diagram
of itemsets ordered by subset inclusion. The list of itemsets sorted in decreasing
order of score is: ab (score of 8); abc and abd (6); a and b (5); abed, ac, be, ad,
bd, and cd (4); acd, bed, ¢, and d (3); @ (0). When picking patterns from this
list in that order, experts might ignore abc, abd, a, and b as these patterns are
structurally similar to ab but with a lower score. For the same reason of redun-
dancy, experts might ignore abced, ac, be not as interesting as abe, then ad and

@ (0)
a(5) b (5) c (3) d (3)
P e

ab (8) ac (4) be (4) ad (4) bd V (4)
abc (6) abd (6) acd (3) bed (3)
abed (4)

Fig. 1. Diagram order of itemsets. Every itemset is labeled with (s = f x [) where s,
f and [are resp. its score, frequency and length. Closed patterns are underlined.

208 F. Pennerath and A. Napoli

bd not as good as abd. However experts might consider next pattern cd that has
a higher score than those of all similar patterns acd, bed, ¢ or d. Finally all re-
maining patterns are ignored as they are similar to patterns with better scores.
The fact that cd is retained whereas its score is lower than those of many ignored
patterns illustrates that scoring by itself is a limited approach. Introducing con-
straints may focus the analysis on a limited number of patterns of a particular
type but does not remove pattern redundancy and may discard interesting pat-
terns as well. For instance considering only closed patterns (underlined on Fig.
) keeps redundant patterns like a, b, ab, abc, abd, abed, whereas keeping only
patterns containing item a removes the interesting pattern cd. MIPs formalize
the screening process described on the previous example.

2.2 MIP Definition

Formally let consider a set P of patterns, ordered by a partial ordering relation
<p. A dataset D of objects is then described by a function d : D — P mapping
every object o € D to its description d(o) € P. A pattern P € P is said to
describe an object o if P <p d(0). The support or frequency of a pattern M
is then the number o(P) of objects of D described by P whereas the relative
frequency o, (P) is the fraction of o(P) over the size |D| of the dataset. Support
and relative frequency are non-increasing functions in the pattern order (P, <p):
the smaller a pattern is, the more objects it describes. In addition, the pattern
order is assumed to contain a smallest pattern, called the empty pattern and
denoted (p. One of the simplest examples of pattern order is the power set
P = P(A) of a set A of attributes ordered by the subset inclusion relation
<p=C, the empty pattern being the empty set. Another example of pattern
order is the set of non-isomorphic connected graphs whose vertices and edges
are tagged by labels taken from an arbitrary set £. The ordering relation is then
the isomorphic subgraph relation and the empty pattern is the empty graph.

As mentioned previously, the model of most informative patterns integrates
a scoring function to assess the interest or relevance of a pattern. However only
some functions are of interest to score patterns representative of data. The family
of those so-called informative scoring functions is defined as follows.

Definition 1. Given a dataset D described by patterns from order (P,<p), a
scoring function is a function s : P x [0;1] — S mapping a pattern P of relative
frequency o.(P) in D to a score s(P,o.(P)) whose value is taken from a set S
ordered by a partial ordering relation <g. A scoring function s is said informative
if following statements hold for s:

1. For every non-empty pattern P, partial function s¥ : f +— s(P, f) is a strictly
increasing function of f € [0;1]:
VP € P\{0p},Y(f1, f2) € [0; 1] f1 < fa = s"(f1) <s 57 (f2)

2. For every non-null real number f €]0;1], partial function s’ : P+ s(P, f)
s a strictly increasing function of P € P:

Vf €]0;1],Y(Py, Py) € P?, P <p Py = s7(P)) <g s/ (P)

The Model of MIP and Its Application to Knowledge Extraction 209

3. A pattern of zero frequency can never get a higher score than a pattern of
non-zero frequency:

Y(Py, Py) € P2 3f > 0,8(P1, f) <s 5(P2,0)

The already used area function s, : (P, f) — |P|- f is an example meeting all
requirements of an informative function. This function may be interpreted wrt
the MDL principle as an estimation of the amount of compressed space when
replacing every occurrence of P by a new special symbol (attribute or vertex)
[5]. In section Ml we propose to extend this area function by weighting attributes
of an itemset or vertex/edge labels of a graph pattern with variable gains of
information. The definition of the resulting scoring function is given for graphs
(itemsets being equivalent to a graph whose isolated vertices have attributes as
labels):

Definition 2. The information function s; is defined as:
si i (g,00) — I(g) - or

where the factor I(g) of information related to graph pattern g is the sum of
information carried by every vertex v € V(g) of label 1,(v) and every edge e €
E(g) of label l.(e):

veV(g) ecE(g)

Quantity of information associated to a vertex or edge label is in turn:

Z(l) = _10g2 Z n(l’)

el
where n(l) is the number of vertices or edges in D carrying label [.

However many other informative functions can be considered here. In particular
experts can complement or replace the previous factor I(g) by other terms that
grow with the pattern: number of vertices, edges and cycles of a given type, num-
ber of subgraphs isomorphic to some specific patterns, maximal degree, maximal
length of paths or cycles.

Now the definition of MIPs formalizes the selection process described in the
introductory example:

Definition 3. Given a pattern order (P,<p), a dataset D described by the pre-
vious set of patterns and an informative scoring function s defined on top of D
and of scoring order (S, <s),

— A pattern P’ is a neighbour of pattern P if P’ is an immediate predecessor
or successor of P wrt pattern order (P,<p), i.e. P and P’ are comparable
and no other pattern exists between P and P'.

210 F. Pennerath and A. Napoli

— A pattern P’ € P dominates pattern P € P if P’ is a neighbour of P in
(P, <p) and scores of P and P’ are comparable and verify s(P',o.(P')) >s
s(P,o.(P)).

— A pattern P is a MIP if frequency o.(P) of P is not null and if no pattern
dominates P.

Figure 2l represents diagram of Fig. [[l whose edges have been oriented according
to the dominance relation: an arc drawn from mj to mo means m; dominates
ma (rel. to s,). Itemset abe is thus dominated by ab and dominates ac, be, and

@ (0)
a(5) b (5) c(3) d(3)
ab (8) ac (4) bc (4) ad (4) bd (4) cd (4)
abc (6) abd (6) acd (3) bed (3)
abcd (4)

Fig. 2. Dominance relation between patterns from example of Fig[ll MIPs are bold.

abed. Most informative patterns, in bold, are those pointed by no arc: they are as
expected ab of score 8 and cd of score 4. The extraction of frequent MIPs consists
in finding in dataset D scores and frequencies of all MIPs whose frequency is not
less than some threshold o,,;,. It is noticeable that a frequent pattern P may
not be dominated by any immediate predecessor and any frequent immediate
successor while being dominated by a non-frequent immediate successor. For
instance, patterns ¢ and d of Fig. [are frequent for o,,;, = 3, but are not MIPs
as they are dominated by the non-frequent pattern cd. Now some properties can
be inferred from definitions of informative scoring functions and MIPs.

2.3 Properties

Let first assume the considered pattern order verifies the so-called “finiteness
hypothesis”: for every finite and non-empty dataset, the number of patterns of
non-null frequency is finite and non-null. This is true for standard pattern orders
like the sets of finite itemsets or finite graphs. This hypothesis allows to prove
the following property:

Property 1. The subset of most informative patterns of a finite non-empty
dataset is not empty.

The Model of MIP and Its Application to Knowledge Extraction 211

Proof. This can be proved by contradiction. If every pattern is dominated by
at least one pattern, it is possible to build recursively a sequence of patterns
(P;)i>1 from a pattern P; of positive frequency, such that for every index i > 1,
P; 41 dominates P;. Thanks to the third statement of def. [Il all those patterns
have a positive frequency and thus, according to the finiteness hypothesis, build
a subset of a finite set of patterns. Sequence (P;) is thus finite and contains a
cycle, contradicting the fact (s(P;));>1 is a strictly increasing sequence of scores.

However the extraction of frequent MIPs may produce no patterns if the thresh-
old 0.,in is too high. Another important property is related to closed patterns:

Property 2. FEvery most informative pattern is a closed pattern.

Proof. Let P’ be a MIP relative to an informative scoring function s. If P’ is not
closed, there exists an immediate successor P” of P’ such that o,.(P") = o,.(P’).
Since f = o,.(P’) # 0, the second statement of def. [l applies so that function
sf 1 P s(P, f) is strictly increasing. Since P’ <p P", s/ (P') <g s/(P"),
and thus s(P’) <gs sf(P”). Because o,.(P") = o,.(P'), s/(P") = s(P") and
s(P") <g s(P"). Domination of P” over P’ would contradict the hypothesis P’
is a MIP.

On the example of Fig. @l MIPs abc and cd appear to be closed. Conversely
closed patterns can be seen as a particular case of MIPs:

Property 3. Closed patterns are the most informative patterns relative to the
informative scoring function equal to the identity Id : (P, f) — (P, f) and the
scoring order equal to the product order (P,<p) x ([0;1], <)

Proof. Given a MIP P, let assume P is not closed. At least one immediate suc-
cessor P’ would have the same frequency as P and since by definition P <p P’,
P’ would dominate P according to the definition of product order, contradict-
ing the initial hypothesis. Conversely a closed pattern has a higher frequency
than every immediate successor and is larger (rel. to <p) than every immediate
predecessor, so that it cannot be dominated and thus is a MIP.

Both properties 2] and [3] prove together that closed patterns build the least
restrictive family of most informative patterns (and thus the largest as well)
among every possible choice of informative scoring functions.

3 Extraction of Frequent Most Informative Patterns

We propose two distinct approaches to extract frequent MIPs. The first one is a
one-step extraction of MIPs from datasets, while the second is a two-step process
that screens frequent MIPs from frequent patterns.

! The product order (E; x E2,<12) of two orders (E1,<1) and (FE2, <2) is defined by
(z1,22) <12 (y1,92) iff 21 <1 y1 and 22 <o yo.

212 F. Pennerath and A. Napoli

3.1 Direct Extraction Method

As seen in the previous section, every arc P — P, of the diagram order of
(P, <p) connects a pattern P; to an immediate successor P, of P;. Since every
arc defines a possible relation of dominance, an algorithm extracting frequent
MIPs must potentially look at every arc whose origin P; is frequent. Conse-
quently the direct extraction method explores the pattern order in a DFS man-
ner and when crossing an arc P; — P,, compares scores of P; and P, and if these
scores are comparable and different, withdraw one of the two patterns from the
set of valid MIP candidates. In order to remember which patterns are still valid
candidates, it is required to maintain a mip flag for every frequent pattern, ini-
tialized to true. To this end, a pattern dictionary 7 is used to map a pattern P
to an entry 7 (P) containing the mip flag along with frequency and score of P.
This dictionary uses a trie structure for storing canonical encoding of patterns.
In case of itemsets, this encoding is simply the list of attributes sorted in some
arbitrary order. In case of labeled connected graphs, encoding first assumes to
compute a canonical ordering of vertices of this graph thanks to some state-of-
the-art algorithm like Nauty [8], and then encodes the resulting canonical graph
as a sequence of symbols for accessing the trie. The DFS exploration is performed
thanks to a recursive function detailed on Fig.[Bl This function develop takes
a current pattern P and its entry e in 7 as arguments. Line [I] then computes
in one single pass over D, frequencies of the set S of all immediate successors
of P occurring in D (i.e. of non-null frequency). This operation can be done
efficiently by storing in memory all embeddings of the current pattern in dataset

Function develop(pattern P, entry e)

Data: Dataset D, threshold omin, scoring function s and order (S, <g)
Result: List of frequent MIPs with their scores and frequencies

1 Extract set S = {(P’,0-(P’))} of all imm. succ. P’ of P occur. in D ;
foreach (P',0,) € S do
if 0. > 0min then
Search for entry ¢’ mapped to P’ in 7 ;
if ¢’ does not exist then
Create entry e’ such that e’.score < s(P’,0,.), ¢'.freq <+ o,., and
e’ .mpi « true and map P’ toe’ in T ;
2 Call develop (P, ¢’)

3 if e.score <s €'.score then
e.mpi « false

4 else if e.score >g €'.score then
e’.mpi «— false

5 else if e.score <g s(P’,0;) then
e.mpi «— false

Fig. 3. Recursive procedure for a direct extraction of frequent MIPs

The Model of MIP and Its Application to Knowledge Extraction 213

(using data structures like tid-lists [9] for itemsets or occurrence lists [I0] for
connected graphs). Then line 2] calls recursively the function in order to further
develop every frequent immediate successor P’ of P that has not been expl