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Preface

The year 2008 was the first year that the previously separate European Con-
ferences on Machine Learning (ECML) and the Conference on Principles and
Practice of Knowledge Discovery in Databases (PKDD) were merged into a uni-
fied event. This is a natural evolution after eight consecutive years of their being
collocated after the first joint conference in Freiburg in 2001. The European
Conference on Machine Learning (ECML) traces its origins to 1986, when the
first European Working Session on Learning was held in Orsay, France followed
by the second European Working Session on Learning held in Bled, the locati-
on of this year’s ECML PKDD 2009 conference. The European Conference on
Principles and Practice of Knowledge Discovery in Databases (PKDD) was first
held in 1997 in Trondheim, Norway. Over the years, the ECML/PKDD series
has evolved into one of the largest and most selective international conferences in
machine learning and data mining, the only one that provides a common forum
for the two closely related fields. In 2009, ECML PKDD conference was held
during September 7–11 in Bled, Slovenia.

The conference used a hierarchical reviewing process. We nominated 26 Area
Chairs, each of them responsible for one sub-field or several closely related rese-
arch topics. Suitable areas were selected on the basis of the submission statistics
for ECML PKDD 2008 and from last year’s International Conference on Machi-
ne Learning (ICML 2008) and International Conference on Knowledge Discovery
and Data Mining (KDD 2008) to ensure a proper load balance among the Area
Chairs. A joint Program Committee (PC) was nominated consisting of some 300
renowned researchers, mostly proposed by the Area Chairs. In order to make best
use of the reviewing capabilities we initially only requested that two reviews be
sought. However, in the event of an inconsistency between the two assessments
a third review was requested. Papers receiving two very positive reviews were
considered for inclusion in the two special issues of Machine Learning and Data
Mining and Knowledge Discovery appearing in time for the conference. A fur-
ther review was also sought for these papers in order to assess their suitability to
appear in journal form. Aleksander Kolcz was the Best Papers Chair responsible
for overseeing the selection of papers for these special issues.

ECML PKDD 2009 received 679 abstract submissions resulting in a final total
of 422 papers that were submitted and not withdrawn during the reviewing
process. Based on the reviews, and on discussions among the reviewers, the
Area Chairs provided a recommendation for each paper with a ranking of the
borderline papers. The three Program Chairs made the final program decisions
after merging the opinions of the 26 Area Chairs.

All accepted papers were of equal status with an oral presentation, poster pre-
sentation and 16 pages in the proceedings, with the exception of those accepted
for the special issues of journals that were only allocated a single page abstract
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in the proceedings. We have selected a total of 106 papers of which 14 were be
equally divided between the two special issues. The acceptance rate for all pa-
pers is therefore 25%, in line with the high-quality standards of the conference
series. It is inevitable with such a low acceptance rate that some good papers
were rejected and we hope that authors of these papers were not discouraged by
their disappointment. We are, however, confident that the accepted papers are
of a high quality, making a very exciting and stimulating conference. In addition
to research papers, 15 demo papers were accepted, each having 4 pages in the
proceedings and demo of the system during the poster session. In addition to the
paper and poster/demo sessions, ECML PKDD 2009 also featured five invited
talks, ten workshops, six tutorials, and the ECML PKDD discovery challenge
and industrial track. The selection of Invited Speakers covered a broad range
from theoretical to leading application-orientated research. Together they made
a very strong addition to the conference program. We are grateful to Shai Ben-
David (University of Waterloo, Canada), Nello Cristianini (University of Bristol,
UK), Mark Greaves (Vulcan Inc.), Rosie Jones (Yahoo! Research), Ralf Stein-
berger (European Commission - Joint Research Centre) for their participation
in ECML PKDD 2009. The abstracts of their presentations are included in this
volume.

This year we continued to promote an Industrial Track chaired by Marko
Grobelnik (Jožef Stefan Institute, Slovenia) and Nataša Milić-Frayling (Micro-
soft Research, Cambridge, UK) consisting of selected talks with a strong indu-
strial component presenting research from the area covered by the ECML PKDD
conference. We have also included a Demonstration Track chaired by Alejandro
Jaimes Larrarte, providing a venue for exciting exemplars of applications of novel
technologies.

As in recent years, the conference proceedings were available on-line to con-
ference participants during the conference. We are grateful to Springer for ac-
commodating this access channel for the proceedings.

As in previous years we will continue with the recently established tradition
of videorecording the event, ensuring an enduring record of the event made ac-
cessible at http://videolectures.net/. Mitja Jermol is the Video Chair overseeing
this aspect of the organization.

This year’s Discovery Challenge was coordinated by Andreas Hotho together
with Folke Eisterlehner and Robert Jäschke. It involved three tasks in the area
of tag recommendation.

We are all indebted to the Area Chairs, Program Committee members and
external reviewers for their commitment and hard work that resulted in a rich
but selective scientific program for ECML PKDD 2009. We are particularly gra-
teful to those reviewers who helped with additional reviews at a very short notice
to assist us in a small number of difficult decisions. We further thank the Work-
shop and Tutorial Chairs Ravid Ghani and Cédric Archambeau for selecting
and coordinating the ten workshops and six tutorials that accompany the con-
ference; the workshop organizers, tutorial presenters, and the organizers of the
discovery challenge, the Industrial and Demonstration Tracks; the Video Chair;
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the Publicity Chair David Hardoon; and Richard van de Stadt and CyberChair-
PRO for highly competent and flexible support when confronted by novel featu-
res in our handling of the papers. Special thanks are due to the Local Chair, Tina
Anžič, for the many hours spent ensuring the success of the conference. Finally,
we are grateful to the Steering Committee and the ECML PKDD community
that entrusted us with the organization of the ECML PKDD 2009.

Most of all, however, we would like to thank all the authors who trusted
us with their submissions, thereby contributing to the main yearly European-
focussed international event in the life of our expanding research community.

June 2009 Dunja Mladenić
Wray Buntine

Marko Grobelnik
John Shawe-Taylor
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João Gama Bart Goethals
Eamonn Keogh Joost Kok
Alek Kolcz Jure Leskovec
Stan Matwin Taneli Mielikainen
Claire Nedellec Martin Scholz
David Silver Steffen Staab
Gerd Stumme Luis Torgo
Michael Witbrock Stefan Wrobel



Organization XI

Program Committee

Ameen Abu-Hanna
Osman Abul
Lada Adamic
Abdullah Al Mueen
Enrique Alfonseca
Erick Alphonse
Carlos Alzate
Massih-Reza Amini
Gennady Andrienko
Annalisa Appice
Hiroki Arimura
Andrew Arnold
Sitaram Asur
Martin Atzmueller
Nathalie Aussenac-Gilles
Paulo Azevedo
Lars Backstrom
Tony Bagnall
Roberto Basili
Vladimir Batagelj
Ron Bekkerman
Marc Bellemare
Paul Bennett
Bettina Berendt
Tanya Berger-Wolf
Michael Berthold
Sourangshu Bhattacharya
Concha Bielza
Misha Bilenko
Stephan Bloehdorn
Christian Bockermann
Mario Boley
Christian Borgelt
Karsten Borgwardt
Henrik Bostrom
Guillaume Bouchard
Jean-François Boulicaut
Janez Brank
Ulf Brefeld
Bjorn Bringmann
Paul Buitelaar
Rui Camacho
Stephane Canu

Olivier Cappe
Andre Carvalho
Carlos Castillo
Ciro Cattuto
Vineet Chaoji
Sanjay Chawla
David Cieslak
Philipp Cimiano
Lucchese Claudio
Vincent Claveau
Fabrice Colas
Antoine Cornuejols
Christophe Costa Florencio
Fabrizio Costa
Bruno Cremilleux
Padraig Cunningham
Alfredo Cuzzocrea
Florence D’Alche-Buc
Claudia d’Amato
Gautam Das
Kamalika Das
Jesse Davis
Alneu de Andrade Lopes
Jeroen de Bruin
Marco de Gemmis
Jeroen De Knijf
Thomas Degris-Dard
Jose del Campo-Avila
Krzysztof Dembczynski
Laura Dietz
Carlos Diuk
Kurt Driessens
Pierre Dupont
Jennifer Dy
Saso Dzeroski
Charles Elkan
Tapio Elomaa
Damien Ernst
Floriana Esposito
Fazel Famili
Nicola Fanizzi
Amir-massoud Farahmand
Ad Feelders



XII Organization

Xiaoli Fern
Daan Fierens
Ilias Flaounas
George Forman
Blaz Fortuna
Eibe Frank
Jordan Frank
Mohamed Gaber
Dragan Gamberger
Gemma Garriga
Gilles Gasso
Eric Gaussier
Ricard Gavalda
Floris Geerts
Peter Geibel
Lise Getoor
Olivier Gevaert
Rayid Ghani
Fosca Gianotti
Melanie Gnasa
Henrik Grosskreutz
Amit Gruber
Vincent Guigue
Robert Gwadera
Larry Hall
Zaid Harchaoui
Hannes Heikinheimo
Iris Hendrickx
Mark Herbster
Tom Heskes
Melanie Hilario
Alexander Hinneburg
Susanne Hoche
Frank Höppner
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Slovenia, for providing financial and organizational means for the conference; the
European Office of Aerospace Research and Development, a detachment of U.S.
Air Force Office of Scientific Research (EOARD) for generous financial support;
Pascal European Network of Excellence (PASCAL2) for sponsoring the Invited
Speaker program and the videorecording of the conference; Slovenia Research
Agency (ARRS); Google for supporting a Poster Reception; Microsoft Research
Ltd., Cambridge, UK for supporting the Industrial track; Yahoo! Research, Quin-
telligence, Hewlett-Packard Labs, and ACTIVE European Integrated project for
their financial support; the Machine Learning Journal for supporting the Stu-
dent Best Paper Award; the Data Mining and Knowledge Discovery Journal for
supporting the Student Best Paper Award; Nokia for sponsoring the Discovery
Challenge Awards and the Best Demo Award.



Table of Contents – Part II

Regular Papers

Decomposition Algorithms for Training Large-Scale Semiparametric
Support Vector Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Sangkyun Lee and Stephen J. Wright

A Convex Method for Locating Regions of Interest with Multi-instance
Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Yu-Feng Li, James T. Kwok, Ivor W. Tsang, and Zhi-Hua Zhou

Active Learning for Reward Estimation in Inverse Reinforcement
Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Manuel Lopes, Francisco Melo, and Luis Montesano

Simulated Iterative Classification a New Learning Procedure for Graph
Labeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
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Abstract. We describe a method for solving large-scale semiparametric
support vector machines (SVMs) for regression problems. Most of the
approaches proposed to date for large-scale SVMs cannot accommodate
the multiple equality constraints that appear in semiparametric prob-
lems. Our approach uses a decomposition framework, with a primal-dual
algorithm to find an approximate saddle point for the min-max formu-
lation of each subproblem. We compare our method with algorithms
previously proposed for semiparametric SVMs, and show that it scales
well as the number of training examples grows.

Keywords: semiparametric SVM, regression, decomposition, primal-
dual gradient projection.

1 Introduction

Support Vector Machines (SVMs) are the most widely used nonparametric meth-
ods in machine learning, which aims to find a function that performs well in
classifying or fitting given data. The power of SVM lies in the fact that it does
not require the user to define the class of functions from which the observations
might have been generated. In a sense, this is also a weakness, in that prior
knowledge of the function class is often available for use. Semiparametric SVM
formulations introduce parametric components into the model of the classify-
ing / regression function, alongside the nonparametric contribution. The basis
functions in the parametric part of the model can be chosen to embed prior
knowledge and can be used for analyzing the effects of certain covariates, thus
giving semiparametric SVM the potential advantages of both parametric and
nonparametric methods.

Despite the benefits, semiparametric models have not drawn much attention
from the machine learning community, possibly in part because the optimization
problems arising from semiparametric SVMs are harder to solve than those gen-
erated by standard SVMs. This paper describes an efficient approach for finding
solutions to large-scale semiparametric SVM problems. We focus on the formula-
tion of semiparametric SVM regression first introduced in [1], which gives rise to
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2 S. Lee and S.J. Wright

a dual problem which is a convex quadratic program (QP) with several equality
constraints as well as bound constraints.

To motivate our description of solvers for semiparametric SVMs, we discuss
first the state of the art for solvers that tackle the standard SVM dual formula-
tion, which is

min
x

1
2
xT Qx + pT x s.t. yT x = 0, 0 ≤ x ≤ C1 , (1)

where x, y, and 1 := (1, 1, . . . , 1) are column vectors of length n. Many effec-
tive algorithms for this problem solve a sequence of subproblems, each of which
updates some subvector of x while leaving the remaining elements unchanged.
These algorithms can be categorized into two distinct groups. In the first group,
the subvector is very short, typically containing just two components. Since the
subproblem can be solved analytically for such a small number of variables, no
numerical solver is needed. The subproblems are inexpensive, but many itera-
tions are usually needed to reach a solution with acceptable quality. Sequential
Minimal Optimization (SMO) [2] and its variants such as LIBSVM [3] fall into
this category. In the second group of solvers, the subvectors are longer, requiring
the subproblems to be solved with a QP solver that exploits the structure of the
application. Although we face the burden of designing an efficient, robust QP
solver, methods in the second group often show faster convergence than those
in the first group. Successful instances of methods in the second group include
SVMlight[4] and GPDT [5,6]. The QP solvers used in the second group can be
applied to the full problem, thus solving it in one “outer” iteration, though this
approach is not usually effective for large data sets.

In general, the methods in both groups discussed above are specialized to han-
dle the single equality constraint in (1) along with the bound constraints. The
analytic subproblem solution in SMO can be acquired only when the subprob-
lem has up to one (or two in case of the modified SMO [7]) equality constraint.
The subproblem selection algorithm of SVMlight strongly depends upon the ex-
istence of a single equality constraint; the same is true of GPDT, which uses a
projection algorithm from [8]. Semiparametric SVMs, however, require solution
of the following generalization of (1):

min
x

F (x) :=
1
2
xT Qx + pT x s.t. Ax = b, 0 ≤ x ≤ C1, (2)

where A ∈ IRK×n and b ∈ IRK , where K ≥ 1 is the number of parametric
basis functions that we wish to include in the model. For semiparametric SVM
regression, Smola, Frieß, and Schölkopf [1] proposed to apply a primal-dual in-
terior point method based on the code LOQO. The size of problems that can be
handled is thus limited by the need to perform a full evaluation of the matrix Q
and the need for repeated factorizations of matrices of about this size. (The ap-
proach could however be used as the inner loop of a decomposition method in the
second group discussed above.) Kienzle and Schölkopf [9] suggested a Minimal
Primal Dual (MPD) algorithm. This algorithm use a variant of the method of
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multipliers to formulate a sequence of convex quadratic programs of dimension
n with bound constraints only (no equalities), which are solved by a method
that selects a single component for updating at each iteration. (In this sense, it
is akin to the methods in the first group described above.) We give further de-
tails on MPD as we introduce our methods below. This approach does not scale
well as the size n of the problem grows, but its performance can be improved
by embedding it in a decomposition framework, as described below. We include
both MPD and its decomposition variants in our computational tests of Sect. 5.

In this paper, we propose an approach that is related to MPD but that differs
in several ways. First, it is a primal-dual approach; we alternate between steps in
a subvector of x and steps in the Lagrange multipliers for the constraints Ax = b.
Second, subvectors of x with more than 1 element are allowed. Third, two-metric
gradient projection techniques are used in taking steps in the x components.
Throughout, we take account of the fact that n may be very large, that Q
cannot practically be computed and stored in its entirety, and that operations
involving even modest-sized submatrices of Q are expensive.

We compare our approach computationally with MPD as stand-alone solvers,
and also in a decomposition framework.

The remainder of the paper is structured as follows. In the next section, we
define the semiparametric SVM regression problem and show that its dual has
the form (2). Section 3 outlines the decomposition framework, while Sect. 4
describes the primal-dual method that we propose for solving the subproblems
that arise from decomposition. Section 5 presents some computational results.

2 Semiparametric SVM Regression

We consider a regression problem for data {(ti,yi)}M
i=1 where ti ∈ IRN are

feature vectors and yi ∈ IR are outcomes. We wish to find a function h that
minimizes ε-insensitive loss function �ε(h; t,y) := max{0, |y − h(t)| − ε}, while
maximizing the margin as in [10]. Following [1,9], we formulate the semipara-
metric SVM regression problem as follows:

min
w,β,ξ,ξ∗

1
2
wT w + C

M∑
i=1

(ξi + ξ∗
i ) (3a)

s.t. yi − 〈w, φ(ti)〉 −
K∑

j=1

βjψj(ti) ≤ ε + ξi for i = 1, . . . ,M (3b)

〈w, φ(ti)〉+
K∑

j=1

βjψj(ti)− yi ≤ ε + ξ∗
i for i = 1, . . . ,M (3c)

ξ ≥ 0, ξ∗ ≥ 0 . (3d)

where φ is a feature mapping function which defines a positive semidefinite kernel
κ(ti, tj) := 〈φ(ti), φ(tj)〉, for all i, j ∈ {1, . . . ,M}, while {ψj}K

j=1 are the basis
functions for the parametric part of the model function. The model function is
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defined as an extended linear model of parametric and nonparametric parts, that
is, h(t) = 〈w, φ(t)〉 +

∑K
j=1 βjψj(t). We typically have K � M . If K = 1 and

ψ1 is a constant function, we recover the standard SVM regression problem.
The Wolfe-dual of (3) has the form (2), where

x =
[

α
α∗

]
∈ IR2M for the dual vectors α and α∗ of (3b) and (3c), resp.,

p = [ε− y1, . . . , ε− yM , ε + y1, . . . , ε + yM ]T ∈ IR2M ,

Qij =

{
yiyjκ(ti, tj) if 1 ≤ i, j ≤M , or M + 1 ≤ i, j ≤ 2M
−yiyjκ(ti, tj) otherwise

,

b = 0 ,

and

A =

⎡⎢⎢⎢⎣
ψ1(t1) · · · ψ1(tM ) −ψ1(t1) · · · −ψ1(tM )
ψ2(t1) · · · ψ2(tM ) −ψ2(t1) · · · −ψ2(tM )

...
. . .

...
...

. . .
...

ψK(t1) · · · ψK(tM ) −ψK(t1) · · · −ψK(tM )

⎤⎥⎥⎥⎦ ∈ IRK×2M .

Introducing η as the Lagrange multipliers for the constraints Ax = b in (2), the
Karush-Kuhn-Tucker (KKT) optimality conditions for (2), stated here for later
reference, are as follows:(

Qx + p + AT η
)
i
≥ 0 if xi = 0 (4a)(

Qx + p + AT η
)
i
≤ 0 if xi = C (4b)(

Qx + p + AT η
)
i
= 0 if xi ∈ (0, C) (4c)

Ax = b (4d)
0 ≤ x ≤ C1 . (4e)

If the kernel function κ is positive semidefinite, the Hessian matrix Q of (2) is
also positive semidefinite, by definition. Therefore the objective function F (·) of
(2) is convex, and as we only have linear constraints, the dual objective of (2)
is a concave function in terms of the dual variable η. Therefore the primal-dual
pair (x,η) satisfying the conditions in (4) is the saddle point of (2). Moreover,
η agrees with β in (3) since η is the double dual variable of β (refer [11] for
details.) As our primal-dual solver discussed in Sect. 4 provides the optimal value
of η, there is no need to compute β separately.

3 Decomposition Framework

In this section we outline the decomposition strategy, giving details of two key
aspects.
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3.1 Subproblem Definition

The convex quadratic program (2) becomes harder to solve as the number of
variables n := 2M grows (where M is the number of data points), as the Hessian
Q in (2) is dense and poorly conditioned for typical choices of the kernel function
κ. The decomposition framework can alleviate these difficulties by working with
a subset xB, B ⊂ {1, 2, . . . , n} of the variables at a time, fixing the other variables
xN , N = {1, 2, . . . , n} \B at their current values. We usually choose the number
of elements nB in B to be much smaller than n. By partitioning the data objects
p, A, and Q in the obvious way, we obtain the following subproblem at outer
iteration k:

min
xB

f(xB) :=
1
2
xT
BQBBxB + (QBNxk

N + pB)T xB (5)

s.t. ABxB = −ANxk
N + b, 0 ≤ xB ≤ C1,

where xk
N contains the current values of the N components. This problem has

the same form as (2); we discuss solution methods in Sect. 4.
Since our emphasis in this paper is computational, we leave a convergence

theory for this decomposition framework for future work. Suffice for the present
to make a few remarks. If B is chosen so that the columns of AB corresponding
to components of xB that are away from their bounds in (5) form a full-row-
rank matrix, and if appropriate two-sided projections of QBB are positive defi-
nite, then (5) has a primal-dual solution (x∗

B,η
∗) that corresponds to a solution

(x∗,η∗) = (x∗
B,x

∗
N ,η∗) of (2), when xk

N = x∗
N . Perturbation results can be used

to derive a local convergence theory, and it may be possible to derive a global
theory from appropriate generalizations of the results in [12].

3.2 Working Set Selection

The selection of working set B at each outer iteration is inspired by the approach
of Joachims [4], later improved by Serafini and Zanni [6]. The size of the working
set is fixed at some value nB, of which up to nc are allowed to be “fresh” indices
while the remainder are carried over from the current working set. Given the
current primal-dual iterate (xk+1,ηk+1), we find the indices corresponding to
the nonzero components di obtained from the following problem:

min
d

(
∇F (xk+1) + (ηk+1)T A

)T
d

s.t.

0 ≤ di ≤ 1 if xk+1
i = 0,

−1 ≤ di ≤ 0 if xk+1
i = C,

−1 ≤ di ≤ 1 if xk+1
i ∈ (0, C),

#{di|di 
= 0} ≤ nc.

(6)

Note that the objective function of (6) is a linearization of the Lagrangian func-
tion of F at the current primal-dual pair (xk+1,ηk+1). Our approach is moti-
vated by the KKT conditions (4), and indeed can be solved by simply sorting
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the violations of these conditions. It contrasts with previous methods [4,6,12], in
which the equality constraints are enforced explicitly in the working set selection
subproblem. Our approach has no requirements on the size of nc, yet it is still
effective when ηk+1 is close to the optimal value η∗.

Earlier analysis of decomposition algorithms based on working set selection
schemes has been performed by Lin [13], who shows linear convergence for the
case of a single constraint, under positive definiteness assumptions on Q. Tseng
and Yun [12] proposed a decomposition framework for a formulation similar
to (2) that includes multiple equality constraints. They present a convergence
analysis which assumes that the subproblems at each step of decomposition are
solved exactly, although they do not discuss techniques for solving the subprob-
lem. Their working set selection algorithm requires relatively high complexity
(O(K3n2)) in general, compared with the O(n log n) complexity of our approach.

The (up to) nc new components from (6) are augmented to a total of nB
entries by adding indices from the previous working set B according to a certain
priority. We choose the indices of the off-bounds components (0 < xk+1

i < C)
first, and then those of lower and upper bounds. We reduce nc as the change
between two consecutive working sets decreases, as in [6]. We observe that adap-
tive reduction of nc provides better convergence of the Lagrange multiplier ηk,
and helps avoid zigzagging between two working sets without making further
progress. Adaptive reduction also helps not to degrade the benefit of optimizing
many new components in a single decomposition step.

Our decomposition framework is summarized in Algorithm 1.

Algorithm 1. Decomposition Framework
1. Initialization. Choose an initial point x1 of (2) (possibly infeasible), initial guess
of the Lagrange multiplier η1, positive integers nB ≥ K and 0 < nc < nB, and
convergence tolerance tolD. Choose an initial working set B and set k ← 1.

2. Subproblem. Solve the subproblem (5) for the current working set B, to obtain
solution xk+1

B together with Lagrange multiplier ηk+1 of the equality constraints. Set
xk+1 = (xk+1

B ,xk
N ).

3. Gradient Update. Evaluate the gradient of the Lagrangian of (2), by incrementally
updating ∇F , as indicated here:

∇F (xk+1) + (ηk+1)T A = ∇F (xk) +
»

QBB
QNB

–
(xk+1

B − xk
B) + (ηk+1)T A .

4. Convergence Check. If the maximal violation of the KKT conditions (4) falls
below tolD, terminate with the primal-dual solution (xk+1, ηk+1).

5. Working Set Update. Find a new working set B as described in Sect. 3.2.
6. Set k ← k + 1 and go to step 2.
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4 Subproblem Solver

Recalling that the decomposition framework requires both a primal solution xB
and Lagrange multipliers η to be obtained for the subproblem (5), we consider
the following min-max formulation of (5):

max
η

min
xB∈Ω

L(xB,η) , (7)

where Ω = {x ∈ IRnB |0 ≤ x ≤ C1} and

L(xB,η) := f(xB) + ηT (ABxB + ANxk
N ) .

In this section we describe a primal-dual approach for solving (7), in which
steps are taken in xB and η in an alternating fashion. Scalings that include
second-order information are applied to both primal and dual steps. We call the
approach PDSG (for “Primal-Dual Scaled Gradient”).

Our approach can be viewed as an extreme variant of the method of multi-
pliers [14], in which we do not attempt to minimize the augmented Lagrangian
between updates of the Lagrange multiplier estimates, but rather take a single
step along a partial, scaled, and projected gradient direction in the primal space.
In describing the general form of each iteration, we use superscripts � to denote
iteration counts, bearing in mind that they refer to the inner iterations of the
decomposition framework (and hence are distinct from the superscripts k of the
previous section, which denote outer iterations).

x�+1
B ← x�

B + s(x�
B,η

�) (8a)

η�+1 ← η� + t(x�+1
B ,η�) , (8b)

where s(·, ·) and t(·, ·) are steps, defined below. In computational testing,
we found PDSG to be superior to methods more like traditional method-of-
multiplier approaches, which would take multiple steps in xB in between succes-
sive steps in η.

Primal Step. In the �-th iteration of the subproblem solver, we choose a small
sub-working set W� ⊂ B containing at most nW elements (where nW is a user-
defined parameter), containing those indices in B that are among the nW most-
violated KKT conditions (4a)-(4c) for the subproblem (5). We define the further
subset W̄� by selecting those indices i ∈ W� that are not at one of their bounds
0 and C. We then construct the block-diagonal nB × nB matrix H�, as follows:

H�
ij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Qij + τδij if i ∈ W̄� and j ∈ W̄�

Qii if i = j and i ∈ W� \ W̄�

∞ if i = j and i /∈ W�

0 otherwise,

(9)

where δij = 1 if i = j and 0 otherwise, while τ is a small positive parameter (we
use τ = 10−8) chosen to ensure that the “block” part of H� is numerically non-
singular. Since we apply the inverse of this matrix to the gradient in computing
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the step, the components of the matrix-vector product that correspond to the
∞ entries will evaluate to zero. Specifically, we obtain the search direction as
follows:

d� := x�
B − IPΩ

(
x�
B −

(
H�

)−1∇xBL(x�
B,η

�)
)

(10)

where IPΩ(·) is a projection operator to the set Ω, which is trivial to compute
since this set is defined by simple bounds. This is essentially the two-metric
gradient projection search direction [15] applied to the subvector defined by W�.
Given this direction, the primal step s from (8a) is defined to be

s(x�
B,η

�) = α�d
� , (11)

where α� ∈ IR is the unconstrained minimizer of L(·,η�) along the line segment
connecting x�

B to x�
B + d�.

Dual Update. The step in the dual variable η is a Newton-like step in the dual
objective function for (5), which is

g(η) := min
xB∈Ω

L(xB,η).

This is a piecewise quadratic concave function. Since its second derivative does
not exist, we cannot take a true Newton step. However, we use a slight modifica-
tion of the procedure in Kienzle and Schölkopf [9] to form a diagonal approxima-
tion G to this matrix. Their procedure progressively updates G by applying one
step of Gauss-Jacobi-like procedure at each iteration of the MPD optimization
scheme. Unlike MPD, our modification estimates G both internally and exter-
nally to the optimization loop. The external estimation ensures us to have an
approximation with a certain quality before performing any dual updates. We
refer the reader to [9] for additional details. The dual step t in (8b) is thus
simply

t(x�+1
B ,η�) = −G−1∇ηL(x�+1

B ,η�). (12)

Our subproblem algorithm is summarized in Algorithm 2.

Algorithm 2. Subproblem solver: PDSG
1. Initialization. Given a index set B, choose initial points x1

B and η1. Choose nW
such that 1 ≤ nW ≤ nB. Choose small positive convergence tolerance tolS. Set �← 1.

2. Sub-Working Set Selection. Construct W� (with at most nW elements) and W̄�

as described above.

3. Primal-Dual Update. Take the primal step according to (8a) and (11), then the
dual step according to (8b) and (12).

4. Convergence Check. If the maximal KKT violation of the current primal-dual
pair (x�+1

B , η�+1) is less than tolS, exit. Otherwise, go to step 2.



Decomposition Algorithms for Training Large-Scale Semiparametric SVMs 9

5 Experiments

We report on computational experiments that show the intrinsic benefits of the
PDSG approach, as well as the benefits of the decomposition strategy, when ap-
plied to a simple semiparametric SVM regression problem. We compare PDSG
with the MPD algorithm of Kienzle and Schölkopf [9], which has slightly better
performance and lower memory requirement than the interior-point-based ap-
proach used in [1]. We also show the advantage of semiparametric modeling on
a real world problem.

Implementations. We implemented both the decomposition framework (Algo-
rithm 1) and the PDSG subproblem solver (Algorithm 2) in C++. The code was
developed by modifying the GPDT code of Serafini, Zanghirati, and Zanni [5]1,
and retains many features of this code. Our code caches once-computed kernel
entries for reuse, with the least-recently-used (LRU) replacement strategy. For
efficiency, our subproblem solver exploits warm starting; the most recent val-
ues of the primal and dual variables are used as the starting points in the next
invocation of the subproblem solver. We also implemented the MPD solver [9]
in C++, again basing the implementation on GPDT. Our codes can be invoked
either with the decomposition framework, or in “stand-alone” mode, in which
the solver is applied directly to the stated problem.

5.1 Toy Problem

For the semiparametric regression test problem, we choose the modified Mexican
hat function studied in [1,9]:

ω(t) = sin(t) + sinc (2π(t− 5)) .

To generate data, we sample the function ω at uniform random points ti ∈ IR
in the interval [0, 10], making M samples in total. The observations yi’s are
corrupted with additive Gaussian noise ζi with mean 0 and standard deviation
0.2, that is, yi = ω(ti) + ζi. In the training process, we use Gaussian kernel
κ(x, y) = exp(−γ||x − y||2) with γ = 0.25, and set the insensitivity width ε of
the loss function to ε = 0.05, as in [1]. The optimal tradeoff parameter value of
C = 0.5 is found by 10-fold cross validation (CV) in [1] using very small samples
(M = 50). Since we are interested in the convergence behavior of algorithms
with larger samples, we performed computational experiments with C = 0.1,
C = 1, and C = 10. Our model is h(t) = 〈w, φ(t)〉 +

∑K
j=1 βjψj(t), with two

basis functions ψ1(t) = sin(t) and ψ2(t) = sinc (2π(t− 5)) as in [9].
The size of the sample dataset M is varied from 500 to 100000. The subprob-

lem size nB and the maximum number of new components in each subproblem nc
are fixed to 500 and 100, respectively, as these values gave good performance on
the largest data set. Similarly, we fix the sub-working set size nW to 2. (We tried

1 GPDT is available at http://mloss.org/software/view/54/

http://mloss.org/software/view/54/
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Fig. 1. Left plot shows total runtimes using solvers PDSG and MPD in stand-alone
mode and inside of the decomposition framework (D:PDSG and D:MPD) with C = 1.
Right plot shows the total runtimes of D:PDSG (our proposed method) and MPD with
different C values. For larger number of training examples M , updating of the full
gradient in Step 3 of Algorithm 1 dominates the computation, blurring the distinction
between PDSG and MPD as subproblem solvers (left plot). D:PDSG outperforms MPD
for all C values tried (right plot). Stand-alone algorithms are run only for training-set
size up to 10000 because of their high computational cost.

various other values between 1 and 25, but 2 was slightly better than several
alternatives.) In each setting, we use a kernel cache of 400MB in size.

Growth of the total runtime of the algorithms with increasing size of the data
set is shown in Fig. 1. When the decomposition framework is used, the stopping
threshold values are set to tolD = 0.001 and tolS = 0.0005. In stand-alone
settings, we set tolS = 0.001. We impose a slightly tighter threshold on sub-
problem solvers inside the decomposition framework to reduce the number of
decomposition steps. Outer iterations in the decomposition framework become
more costly as the number of variables increases, mainly because the full gra-
dient update in Step 3 of Algorithm 1 becomes more expensive. The benefit of
using decomposition framework becomes larger as the dataset size grows. For
instance, D:PDSG is about 100 times faster than MPD when M = 10000. In de-
composition settings, using PDSG as the inner solver found the solution two to
three times faster than using MPD as the inner solver on average. Our proposed
method D:PDSG shows quite stable scaling behavior for different values of C.

Convergence and Complexity. The different convergence behavior of PDSG and
MPD is illustrated in Fig. 2. Here both solvers are asked to solve a semiparamet-
ric regression problem discussed above with 1000 samples, in stand-alone mode.
In the top and middle plots, the dual and primal infeasibility, respectively, are
more rapidly reduced with PDSG than with MPD. (Note that since we project
the iterates xk to the bound constraints set, the KKT condition (4e) is always
satisfied.) The bottom plot of Fig. 2 shows the changes of the first Lagrange
multiplier (the coefficient of the first basis function). In that, MPD is showing
the typical behavior of the method of multipliers: sudden changes are made,



Decomposition Algorithms for Training Large-Scale Semiparametric SVMs 11

Fig. 2. Convergence of PDSG and MPD in stand-alone mode (Mexican hat, dataset
size M=1000). PDSG requires about 2 seconds to reach convergence, whereas MPD
takes about 14 seconds. (Top) maximum violation of the dual feasibility conditions
(4a), (4b), (4c). (Middle) maximum violation of the primal equality constraints (4d).
(Bottom) convergence of the first Lagrange multiplier to its optimal value of 1. The
horizontal axis represents elapsed CPU time.

but time gaps between such changes are rather large. In contrast, PDSG keeps
making changes to the multiplier, resulting in a faster approach to the optimal
value.

When the sub-working-set size nW is smaller than the working-set size nB of
the subproblem (5), PDSG has computational complexity O(KnB), the same as
MPD, where K is the number of equality constraints in (2). Dual updates in
Algorithm 2 requires O(KnB) operations; all primal updates are done in O(nB).
The effect of increasing K on the total time taken by D:PDSG is shown in Fig. 3.
We use the basis functions

ψj(t) =

{
cos(jπt) j = 0, 2, 4, . . .
sin(jπt) j = 1, 3, 5, . . .

and datasets of size M = 1000 randomly sampled from the Mexican hat function.
Other settings are the same as the previous experiment. As expected, we observe
linear scaling of total runtime with K.

5.2 Milan Respiratory Illness Dataset

We consider a dataset2 from the study on the effect of air pollution on respiratory
illness in Milan, Italy, during 1980–89 [16]. This dataset consists of daily records
of environmental conditions and the number of deaths due to respiratory diseases
2 Available at http://www.uow.edu.au/∼mwand/webspr/data.html

http://www.uow.edu.au/~mwand/webspr/data.html
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Fig. 3. Total solution time for D:PDSG with increasing number of equality constraints
K. Measurements are averaged over 10 repetitions with different random datasets
(M=1000) sampled from the Mexican hat function, and error bars (hardly visible)
show the standard deviations. The time complexity of D:PDSG is O(uKnB) where u
is the number of outer iterations. Solver time appears to increase linearly with K.

(total 3652 records, 9 features). All features are scaled linearly to the range [0, 1].
We construct a test set by holding out 20% of randomly chosen records from the
dataset, using the remaining records for training.

We hypothesize a simple semiparametric model to predict the number of res-
piratory deaths, inspired by [16]:

hsp(t) = 〈w, φ(t)〉+ β1(ttemp) + β2(tSO2) + β3(ttemp)2 + β4(tSO2)
2 + β5 ,

where the features ttemp and tSO2 correspond to mean temperature and SO2
level of the day, respectively. Our purpose is to study how those two elements
affect the respiratory illness.

We fit our semiparametric model to the training data, and compare its pre-
diction performance on the test set to that of a nonparametric model

hnp(t) = 〈w, φ(t)〉+ β1 .

With Gaussian kernel (γ = 25.0) and ε-insensitive loss function (ε = 0.01), we
perform 10-fold CV on the training set to determine the best balancing parame-
ter C for each of semiparametric and nonparametric models independently.

The results are shown in Table 1. The semiparametric model attained smaller
prediction error on the test set than the nonparametric model, indicating that the
embedding of prior knowledge in hsp while retaining the power of nonparametric
approaches is beneficial. Moreover, the parametric components in the trained
semiparametric model

hsp(t) = 〈w∗, φ(t)〉−0.30(ttemp)+0.26(tSO2)+0.22(ttemp)2−0.07(tSO2)
2+0.22 .



Decomposition Algorithms for Training Large-Scale Semiparametric SVMs 13

Table 1. Nonparametric and semiparametric regression on Milan dataset. The loss
penalty parameter C is determined by cross validation. Comparing the prediction per-
formance on the test set by mean square error (MSE) values, the semiparametric model
performed better than the nonparametric model by 2.8%. No significant difference of
the number of support vectors (SVs) was found between the two methods.

Model C Fraction of SVs Training Time (s) Test Error (MSE)

Nonparametric (hnp) 0.025 46.7% 1.17 0.019368

Semiparametric (hsp) 0.01 46.9% 5.35 0.018828

reveal that (i) deaths are lower in the middle of the temperature range, and (ii)
there is an almost linear increase of death rate with SO2 level. These results
broadly agree with the outcomes of [16], which were acquired from completely
different statistical analysis techniques. It is difficult to perform model interpre-
tation of this type with nonparametric approaches.

6 Conclusions

We have presented a new method for semiparametric SVM regression problems,
which extends a number of previous approaches in being able to handle multiple
equality constraints. Our method combines a decomposition framework with
a primal-dual scaled gradient solver for the subproblems. Computational tests
indicate that the approach improves on previously proposed methods.

Future work includes reducing the cost of the full gradient update by using
a randomized sampling procedure for the components of the gradient, as has
been tried in a different context in [17]. While the concept is simple, it is not
straightforward to implement this technique in conjunction with caching of ker-
nel entries, which is so important to efficient implementation of SVM solvers
based on QP formulations. Other research topics include devising a more ef-
fective update strategy for the dual variables η in the subproblem solver, and
theoretical analyses both of the decomposition framework (including the working
set selection technique) and the subproblem solver.
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Abstract. In content-based image retrieval (CBIR) and image screening, it is of-
ten desirable to locate the regions of interest (ROI) in the images automatically.
This can be accomplished with multi-instance learning techniques by treating
each image as a bag of instances (regions). Many SVM-based methods are suc-
cessful in predicting the bag labels, however, few of them can locate the ROIs.
Moreover, they are often based on either local search or an EM-style strategy, and
may get stuck in local minima easily. In this paper, we propose two convex opti-
mization methods which maximize the margin of concepts via key instance gen-
eration at the instance-level and bag-level, respectively. Our formulation can be
solved efficiently with a cutting plane algorithm. Experiments show that the pro-
posed methods can effectively locate ROIs, and they also achieve performances
competitive with state-of-the-art algorithms on benchmark data sets.

1 Introduction

With the rapid expansion of digital image collections, content-based image retrieval
(CBIR) has attracted more and more interest. The main difficulty of CBIR lies in the
gap between the high-level image semantics and the low-level image features. Much
endeavor has been devoted to bridging this gap, it remains unsolved yet. Generally, the
user first poses in the query and relevance feedback process several labeled images that
are relevant/irrelevant to an underlying target concept. Then the CBIR system attempts
to retrieve all images from the database that are relevant to the concept. It is noteworthy
that although the user feeds whole images to the system, usually s/he is only interested
in some regions, i.e., regions of interest (ROIs), in the images.

For medical and military applications which require a fast scanning of huge amount
of images to detect suspect areas, it is very desirable if ROIs can be identified and ex-
hibited when suspected images are presented to the examiner. Even in common CBIR
scenarios, considering that the system usually returns a lot of images, the explicit identi-
fication of ROIs may help the user in recognizing images s/he really wants more quickly.

W. Buntine et al. (Eds.): ECML PKDD 2009, Part II, LNAI 5782, pp. 15–30, 2009.
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In multi-instance learning [6], the training examples are bags each containing many
instances. A bag is positively labeled if it contains at least one positive instance, and
negatively labeled otherwise. The task is to learn a model from the training bags for
correctly labeling unseen bags. Multi-instance learning is difficult because that, unlike
conventional supervised learning tasks where all the training instances are labeled, here
the labels of the individual instances are unknown. It is obvious that if a whole image
is regarded as a bag with its regions being regarded as instances, the problem of de-
termining whether an image is relevant to a target concept or not can be viewed as a
multi-instance problem. So, it is not surprising that multi-instance learning has been
found very useful in tasks involving image analysis.

In general, three kinds of multi-instance learning approaches can be used to locate the
ROIs. The first is the Diverse Density (DD) algorithm [15] and its variants, e.g., EM-DD
[26] and multi-instance logistic regression [19]. These methods apply gradient search
with multiple restarts to identify an instance which maximizes the diverse density, that
is, an instance close to every positive bags while far from negative bags. The instance
is then regarded as the prototype of the target concept. It is obvious that DD can be
applied to locate ROIs. A serious problem with this kind of methods is the huge time
cost, since they have to perform gradient search starting from every instance in every
positive bag.

The second approach is the CkNN-ROI algorithm [29], which is a variant of Citation-
kNN [23]. This approach uses Citation-kNN to predict whether a bag is positive or not.
It takes the minimum distance between the nearest pair of instances from two bags as
the distance between bags, and then utilizes citers of the neighbors to improve perfor-
mance. Subsequently, each instance in a positive bag is regarded as a bag and a score
is calculated by considering its distance to other bags, from which the key instance can
be decided. The time complexity of CkNN-ROI is mainly dominated by the calculation
of neighbors, and is much more efficient than DD. However, this algorithm is based on
heuristics and the theoretical justification has not been established yet.

The third approach is MI-SVM [1]. While many SVM-based multi-instance learn-
ing methods have been developed [1,3,4], to the best of our knowledge, MI-SVM is
the only one that can locate the ROIs. The MI-SVM locates ROI (also referred to as
the key instance) with an EM-style procedure. It first starts with a SVM using some
multi-instance kernel [8] and picks the key instances according to the SVM prediction,
and the SVM is then retrained with respect to the key instance assignment; the proce-
dure is repeated until convergence. Empirical study shows that MI-SVM is efficient and
works well on many multi-instance data sets. In fact, MI-SVM can be viewed as a con-
strained concave-convex programming (CCCP) method whose convergence has been
well-studied [5]. Each MI-SVM iteration only involves the solving of a convex opti-
mization problem, however, the optimization problem as a whole is still non-convex
and suffers from local minima.

In this paper, we focus on SVM-based methods and propose the KI-SVM (key-
instance support vector machine) algorithm. We formulate the problem as a convex
optimization problem. At each iteration, KI-SVM generates a violated key instance as-
signment and then combines them via efficient multiple kernel learning. It is noteworthy
that it involves a series of standard SVM subproblems that can be solved with various



A Convex Method for Locating Regions of Interest with Multi-instance Learning 17

state-of-the-art SVM implementations in a scalable and efficient manner, such as SVM-
perf [10], LIBSVM [7], LIBLINEAR [9] and CVM [21]. Two variants of the KI-SVM,
namely, Ins-KI-SVM and Bag-KI-SVM, are proposed for locating the key instances at
the instance-level and bag-level, respectively.

The rest of the paper is organized as follows. Section 2 briefly introduces MI-SVM.
Section 3 proposes our KI-SVM method. Experimental results are reported in Section 4.
The last section concludes the paper.

2 Multi-instance Support Vector Machines

In the sequel, we denote the transpose of a vector/matrix (in both the input and feature
spaces) by the superscript ′. The zero vector and the vector of all ones are denoted as
0,1 ∈ R

n, respectively. Moreover, the inequality v = [v1, · · · , vk]′ ≥ 0 means that
vi ≥ 0 for i = 1, · · · , k.

In multi-instance classification, we are given a set of training bags {(B1, y1), · · · ,
(Bm, ym)}, where Bi = {xi,1,xi,2, · · · ,xi,mi} is the ith bag containing instances
xi,j’s, mi is the size of bag Bi, and yi ∈ {±1} is its bag label. Suppose the deci-
sion function is denoted as f(x). As is common in the traditional MI setting, we take
f(Bi) = max1≤j≤mi f(xi,j). Furthermore, xi,l = arg maxxi,j f(xi,j) is viewed as
the key instance of a positive bag Bi. For simplification, we assume that the decision
function is a linear model, i.e., f(x) = w′φ(x), where φ is the feature map induced by
some kernel k.

The goal is to find f that minimizes the structural risk functional

Ω(‖w‖p) + C
∑m

i=1
�

(
−yi max

1≤j≤mi

w′φ(xi,j)
)
, (1)

where Ω can be any strictly monotonically increasing function, �(·) is a monotonically
increasing loss function, and C is a regularization parameter that balances the empiri-
cal risk functional and the model complexity. In this paper, we focus on Ω(‖w‖p) =
1
2 ||w||2 and the squared hinge loss. So, (1) becomes:

min
w,ρ,ξ

1
2
||w||22 − ρ +

C

2

m∑
i=1

ξ2
i (2)

s.t yi max
1≤j≤mi

w′φ(xi,j) ≥ ρ− ξi, i = 1 · · · ,m, (3)

where ξ = [ξ1, · · · , ξm]′. This, however, is a non-convex problem because of the max
operator for positive bags.

Andrews et al. [1] proposed two heuristic extensions of the support vector machines,
namely, the mi-SVM and MI-SVM, for this multi-instance learning problem. The mi-
SVM treats the MI learning problem in a supervised learning manner, while the MI-
SVM focuses on finding the key instance in each bag. Later, Cheung and Kwok [5]
proposed the use of the constrained concave-convex programming (CCCP) method,
which has well-studied convergence properties, for this optimization problem. How-
ever, while each iteration only involves the solving of a convex optimization problem,
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the optimization problem as a whole is non-convex and so still suffers from the problem
of local minima.

3 KI-SVM

In this section, we propose two versions of KI-SVM, namely the Ins-KI-SVM (instance-
level KI-SVM) and Bag-KI-SVM (bag-level KI-SVM).

3.1 Mathematical Formulation

Let p be the number of positive bags. Without loss of generality, we assume that the
positive bags are ordered before negative bags, i.e., yi = 1 for all 1 ≤ i ≤ p and −1
otherwise. Moreover, let Ji =

∑i
t=1 mt.

For a positive bag Bi, we use a binary vector di = [di,1, · · · , di,mi ]′ ∈ {0, 1}mi

to indicate which instance in Bi is its key instance. Here, followed the tradi-
tional multi-instance setup, we assume that each positive bag has only one key in-
stance, so

∑mi

j=1 di,j = 11. In the following, let d = [d1, · · · ,dp], and Δ be
its domain. Moreover, note that max1≤j≤mi w′φ(xi,j) in (3) can be written as
maxdi

∑mi

j=1 di,jw′φ(xi,j) in this case.
For a negative bag Bi, all its instances are negative and the corresponding constraint

(3) can be replaced by−w′φ(xi,j) ≥ ρ−ξi for every instance in Bi. Moreover, we relax
the problem by allowing the slack variable ξi to be different for different instances of
bagBi. This leads to a set of slack variables {ξs(i,j)}i=1,··· ,m;j=1,··· ,mi , where s(i, j) =
Ji−1−Jp + j+p is the indexing function that numbers these slack variables from p+1
to N = Jm − Jp + p.

Combining all these together, (2) can be rewritten as:

(Ins-KI-SVM) min
w,ρ,ξ,d

1
2
||w||22 − ρ +

C

2

p∑
i=1

ξ2
i +

λC

2

m∑
i=p+1

mi∑
j=1

ξ2
s(i,j)

s.t.
mi∑
j=1

w′di,jφ(xi,j) ≥ ρ− ξi, i = 1, · · · , p,

−w′φ(xi,j) ≥ ρ− ξs(i,j), i = p + 1, · · · ,m,

j = 1, · · · ,mi, (4)

where λ balances the slack variables from the positive and negative bags.
Note that each instance in a negative bag leads to a constraint in (4). Potentially, this

may result in a large number of constraints in optimization. Here, we consider another
variant that simply represents each negative bag in the constraint by the mean of its
instances. It has been shown that this representation is reasonable and effective in many
cases [8,24]. Thus, we have the following optimization problem:

1 In many cases the standard assumption of multi-instance learning, that is, the positive label is
triggered by a key instance, does not hold. Instead, the positive label may be triggered by more
than one key instances [22,24,30]. Suppose the number of key instances is v, we can simply
set

∑mi
j=1 di,j = v, and thus our proposal can also handle this situation with a known v.
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(Bag-KI-SVM) min
w,ρ,ξ,d

1
2
||w||22 − ρ +

C

2

p∑
i=1

ξ2
i +

λC

2

m∑
i=p+1

ξ2
i

s.t.
mi∑
j=1

w′di,jφ(xi,j) ≥ ρ− ξi, i = 1, · · · , p,

−w′
∑mi

j=1 φ(xi,j)
mi

≥ ρ− ξi, i = p + 1, · · · ,m. (5)

Hence, instead of a total of
∑m

i=p+1 mi constraints for the negative bags in (4), there
are now only m−p corresponding constraints in (5). As (4) considers each instance (in
a negative bag) as one constraint, while (5) only represents the whole negative bag as
a constraint. Therefore, we will refer to the formulations in (4) and (5) as the instance-
level KI-SVM (Ins-KI-SVM) and bag-level KI-SVM (Bag-KI-SVM), respectively.

As (4) and (5) are similar in form, we consider in the following a more general
optimization problem for easier exposition:

min
w,ρ,ξ,d

1
2
||w||22 − ρ +

C

2

p∑
i=1

ξ2
i +

λC

2

r∑
i=p+1

ξ2
i

s.t.
mi∑
j=1

w′di,jφ(xi,j) ≥ ρ− ξi, i = 1, · · · , p,

−w′ψ(x̂i) ≥ ρ− ξi, i = p + 1, · · · , r. (6)

It is easy to see that both the Ins-KI-SVM and Bag-KI-SVM are special cases of (6).
Specifically, when r = N , and ψ(x̂s(i,j)) = φ(xi,j) for the second constraint, (6)

reduces to the Ins-KI-SVM. Alternatively, when r = m, and ψ(x̂i) =
∑ mi

j=1 φ(xi,j)
mi

for
the second constraint, then (6) becomes the Bag-KI-SVM.

By using the method of Lagrange multipliers, the Lagrangian can be obtained as:

L(w, ρ, ξ,d,α)

=
1
2
||w||22 − ρ +

C

2

p∑
i=1

ξ2
i +

λC

2

r∑
i=p+1

ξ2
i −

p∑
i=1

αi(
mi∑
j=1

w′di,jφ(xi,j)− ρ + ξi)

−
r∑

i=p+1

αi(−w′ψ(x̂i)− ρ + ξi).

By setting the partial derivatives with respect to the w, ρ, ξ to zeros, we have

∂L

∂w
= w −

p∑
i=1

αi

mi∑
j=1

di,jφ(xi,j) +
r∑

i=p+1

αiψ(x̂i) = 0,

∂L

∂ρ
= −1 +

r∑
i=1

αi = 0,
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∂L

∂ξi
= Cξi − αi = 0, ∀i = 1, · · · , p,

∂L

∂ξi
= λCξi − αi = 0, ∀i = p + 1, · · · , r.

Then, the dual of (6) can be obtained as

min
d∈Δ

max
α∈A

− 1
2 (α� ŷ)′

(
Kd + E

)
(α� ŷ), (7)

where α = [α1, · · · , αr]′ ∈ R
r is the vector of Lagrange multipliers, A =

{α |
∑r

i=1 αi = 1, αi ≥ 0}, ŷ = [1p,−1r−p] ∈ R
r, � denotes the element-wise

product of two matrices, E ∈ R
r×r is a diagonal matrix with diagonal entries

Ei,i =
{ 1

C i = 1, · · · , p,
1

λC otherwise,

and Kd ∈ R
r×r is the kernel matrix where Kd

ij = (ψd
i )′(ψd

j ) with

ψd
i =

{∑mi

j=1 di,jφ(xi,j)′ i = 1, · · · , p,
ψ(x̂i) i = p + 1, · · · , r. (8)

Note that (7) is a mixed-integer programming problem, and so is computationally in-
tractable in general.

3.2 Convex Relaxation

The main difficulty of (7) lies in the variables d which is hard to optimize in general. But
once the d is given, the inner problem of (7) will become a standard SVM which could
be solved in an efficient manner. This simple observation motivates us to avoid opti-
mizing d, alternatively, to learn the optimal combination of some d’s. Further observed
that each d corresponds to a kernel Kd, learning the optimal convex combination will
become multiple kernel learning (MKL) [13] which is convex and efficient in general.

In detail, we consider a minimax relaxation [14] by exchanging the order of mind
and maxα. According to the minimax inequality [12], (7) can be lower-bounded by

max
α∈A

min
d∈Δ

−1
2
(α� ŷ)′

(
Kd + E

)
(α� ŷ)

= max
α∈A

{
max

θ
−θ

s.t. θ ≥ 1
2
(α� ŷ)′

(
Kdt + E

)
(α� ŷ), ∀dt ∈ Δ

}
. (9)

By introducing the dual variable μt ≥ 0 for each constraint, then its Lagrangian is

−θ +
∑

t:dt∈Δ

μt

(
θ − 1

2
(α� ŷ)′

(
Kdt + E

)
(α� ŷ)

)
.
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Algorithm 1. Cutting plane algorithm for KI-SVM
1: Initialize d to d0, and set C = {d0}.
2: Run MKL for the subset of kernel matrices selected in C and obtain α from (10). Let o1 be

the objective value obtained.
3: Find a constraint (indexed by d̂) violated by the current solution and set C = d̂

⋃
C.

4: Set o2 = o1. Run MKL for the subset of kernel matrices selected in C and obtain α from
(10). Let o1 be the objective value obtained.

5: Repeat steps 3-4 until | o2−o1
o2
| < ε.

It can be further noted that
∑

μt = 1 by setting the derivative w.r.t. θ to zero. Let μ be
the vector of μt’s, and M be the simplex {μ |

∑
μt = 1, μt ≥ 0}. Then (9) becomes

max
α∈A

min
μ∈M

−1
2
(α� ŷ)′

( ∑
t:dt∈Δ

μtKdt + E
)
(α� ŷ) (10)

= min
μ∈M

max
α∈A

−1
2
(α� ŷ)′

( ∑
t:dt∈Δ

μtKdt + E
)
(α� ŷ). (11)

Here, we can interchange the order of the max and min operators as the objective in
(10) is concave in α and convex in μ [13]. It is noteworthy that (11) can be regarded as
multiple kernel learning (MKL) [13], where the kernel matrix to be learned is a convex
combination of the base kernel matrices {Kdt : dt ∈ Δ}. However, the number of
feasible vectors dt ∈ Δ is exponential, the set of base kernels is also exponential in
size and so direct MKL is still computationally intractable.

In this paper, we apply the cutting plane method [11] to handle this exponential
number of constraints. The cutting plane algorithm is described in Algorithm 1. First,
as in [1], we initialize d0 as the average value, i.e., {di,j = 1/mi, i = 1, · · · , p; j =
1, · · · ,mi} and initialize the working set C to {d0}. Since the size of C (and thus the
number of base kernel matrices) is no longer exponential, one can perform MKL with
the subset of kernel matrices in C, obtain α from (10) and record the objective value o1
in step 2. In step 3, an inequality constraint in (9) (which is indexed by a particular d̂)
that is violated by the current solution is then added to C. In step 4, we first set o2 = o1,
then we perform MKL again and record the new objective value o1. We repeat step 3
and step 4 until the gap between o1 and o2 is small enough. ε is simply set as 0.001 in
our experiments.

Two important issues need to be addressed in the cutting plane algorithm, i.e., how
to efficiently solve the MKL problem in Steps 2 and 4 and how to efficiently find
the a violated constraint in Step 3? These will be addressed in Sections 3.3 and 3.4,
respectively.

3.3 MKL on Subset of Kernel Matrices in C
In recent years, a number of MKL methods have been developed in the literature
[2,13,17,18,20,25]. In this paper, an adaptation of the SimpleMKL algorithm [18] is
used to solve the MKL problem in Algorithm 1.
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Specifically, suppose that the current C = {d1, · · · ,dT }. Recall that the feature map
induced by the base kernel matrix Kdt is given in (8). As in the derivation of the Sim-
pleMKL algorithm, we consider the following optimization problem that corresponds
to the MKL problem in (11).

min
μ∈M,w,ξ

1
2

T∑
t=1

||wt||2
μt

− ρ +
C

2

p∑
i=1

ξ2
i +

λC

2

r∑
i=p+1

ξ2
i

s.t.
T∑

t=1

⎛⎝ mi∑
j=1

w′
td

t
i,jφ(xi,j)

⎞⎠ ≥ ρ− ξi, i = 1, · · · , p,

−
T∑

t=1

w′
tψ(x̂i) ≥ ρ− ξi, i = p + 1, · · · , r. (12)

It is easy to verify that its dual is

max
α∈A,θ

−1
2
α′Eα− θ

s.t. θ ≥ 1
2
(α� ŷ)′Kdt(α� ŷ) t = 1, . . . , T,

which is the same as (9). Following SimpleMKL, we solve (11) (or, equivalently, (12))
iteratively. First, by fixing the mixing coefficients μ = [μ1, · · · , μT ]′ of the base kernel
matrices and we solve the SVM’s dual

max
α∈A

− 1
2 (α� ŷ)′

( ∑T
t=1 μtKdt + E

)
(α� ŷ).

Then, by fixing α, we use the reduced gradient method to update μ. These two steps
are iterated until convergence.

3.4 Finding a Violated Constraint

While the cutting plane algorithm only needs to find a violated constraint in each itera-
tion, it is customary to find the most violated constraint. In the context of (9), we then
have to find the d̂ that maximizes

max
d∈Δ

∑r

i,j=1
αiαj ŷiŷj(ψd

i )′(ψd
j ). (13)

However, this is a concave QP and so can not be solved efficiently. Note, however, that
while the use of the most violated constraint may lead to faster convergence, the cutting
plane method only requires a violated constraint at each iteration. Hence, we propose
in the following a simple and efficient method for finding a good approximation of the
most violated d̂.

First, note that maximizing (13) could be rewritten as ‖
∑r

i=1 αi ŷiψ
d
i ‖2. Using the

definition of ψd
i in (8), this can be rewritten as

max
d∈Δ

∥∥∥∥∥∥
p∑

i=1

αi

mi∑
j=1

di,jφ(xi,j)−
r∑

i=p+1

αiψ(x̂i)

∥∥∥∥∥∥
2

. (14)
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The key is to replace the �2-norm above with the infinity-norm. For simplicity, let
φ(x) = [x(1), x(2), · · · , x(g)]′ and ψ(x̂) = [x̂(1), x̂(2), · · · , x̂(g)]′, where g is the di-
mensionality of φ(x) and ψ(x̂). Then, we have

max
d∈Δ

∥∥∥∥∥∥
p∑

i=1

αi

mi∑
j=1

di,jψ(x̂i,j)−
r∑

i=p+1

αiψ(x̂i)

∥∥∥∥∥∥
∞

= max
l=1,··· ,g

max
d∈Δ

∣∣∣∣∣
p∑

i=1

αi

mi∑
j=1

di,jx
(l)
i,j −

r∑
i=p+1

αix̂
(l)
i

∣∣∣∣∣. (15)

The absolute sign for each inner subproblem (defined on the lth feature)

max
d∈Δ

∣∣∣∣∣
p∑

i=1

αi

mi∑
j=1

di,jx
(l)
i,j −

r∑
i=p+1

αix̂
(l)
i

∣∣∣∣∣. (16)

can be removed by writing as the maximum of:

max
d∈Δ

p∑
i=1

αi

mi∑
j=1

di,jx
(l)
i,j −

r∑
i=p+1

αix̂
(l)
i , (17)

and

max
d∈Δ

−
p∑

i=1

αi

mi∑
j=1

di,jx
(l)
i,j +

r∑
i=p+1

αix̂
(l)
i . (18)

Recall that each di,j ∈ {0, 1}. Hence, by setting the key instance of (the positive) bag

Bi to be the one corresponding to argmax1≤j≤mi x
(l)
i,j , i.e.,

di,j =

{
1 j = argmax1≤j′≤mi x

(l)
i,j′ ,

0 otherwise,

the maximum in (17) can be obtained as

p∑
i=1

αi max
1≤j≤mi

x
(l)
i,j −

r∑
i=p+1

αix̂
(l)
i . (19)

Similarly, for (18), we set the key instance of (the positive) bag Bi to be the one corre-
sponding to arg min1≤j≤mi x

(l)
i,j , i.e.,

di,j =

{
1 j = argmin1≤j′≤mi x

(l)
i,j′ ,

0 otherwise,

then the maximum in (18) is obtained as

−
p∑

i=1

αi min
1≤j≤mi

x
(l)
i,j +

r∑
i=p+1

αix̂
(l)
i . (20)



24 Y.-F. Li et al.

Algorithm 2. Local search for d. Here, obj(d) is the objective value in (13).
1: Initialize d = arg maxd∈{d1,··· ,dT ,d̂} obj(d), v = obj(d).

2: if d = d̂ then
3: return d;
4: end if
5: for i = 1 : p do
6: d′

l = dl,∀l �= i.
7: for j = 1 : mi do
8: Set d′

i,j = 1, d′
i,q = 0 ∀q �= j

9: if obj(d′) > v then
10: d = d′ and v = obj(d′).
11: end if
12: end for
13: end for
14: return d;

These two candidate values (i.e., (19) and (20)) are then compared, and the larger value
is the solution of the lth subproblem in (16). With g features, there are thus a total of
2g candidates for d̂. By evaluating the objective values for these 2g candidates, we can
obtain the solution of (15) and thus the key instance assignment d̂.

Note that for all the positive bags, both max1≤j≤mi x
(l)
i,j and min1≤j≤mi x

(l)
i,j can

be pre-computed. Moreover, this pre-processing takes O(gJp) time and space only.
When a new α is obtained by SimpleMKL, the processing above takes O(2gr) time.
Therefore, d̂ can be solved efficiently without the use of any numeric optimization
solver.

However, a deficiency of this infinity-norm approximation is that the d̂ obtained
may not always correspond to a violated constraint. As the cutting plane algorithm only
requires the addition of a violated constraint at each iteration, a simple local search is
used to refine the d̂ solution (Algorithm 2). Specifically, we iteratively update the key
instance assignment for each positive bag, while keeping the key instance assignments
for all the other positive bags fixed. Finally, the d that leads to the largest objective
value in (13) will be reported.

3.5 Prediction

On prediction, each instance x can be treated as a bag, and its output from the KI-SVM
is given by f(x) =

∑T
t=1 μt

∑N
i=1 αiŷi(ψdt

i )′φ(x).

4 Experiments

In this section, we evaluate the proposed methods on both CBIR image data and bench-
mark data sets of multi-instance learning.
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Table 1. Some statistics of the image data set

concept #images average #ROIs per image
castle 100 19.39
firework 100 27.23
mountain 100 24.93
sunset 100 2.32
waterfall 100 13.89

4.1 Locating ROI in Each Image

We employ the image database that has been used by Zhou et al. [29] in studying the
ROI detection performance of multi-instance learning methods. This database consists
of 500 COREL images from five image categories: castle, firework, mountain, sunset
and waterfall. Each category corresponds to a target concept to be retrieved. Moreover,
each image is of size 160×160, and is converted to the multi-instance feature represen-
tation by using the bag generator SBN [16]. Each region (instance) in the image (bag)
is of size 20 × 20. Some of these regions are labeled manually as ROIs. A summary of
the data set is shown in Table 1.

The one-vs-rest strategy is used. In particular, a training set of 50 images is created
by randomly sampling 10 images from each of the five categories. The remaining 450
images constitute a test set. The training/test partition is randomly generated 30 times,
and the average performance is recorded.

The proposed KI-SVMs are compared with the MI-SVM [1] and two other SVM-
based methods in multi-instance learning, namely the mi-SVM [1] and the SVM with a
multi-instance kernel (MI-Kernel) [8]. Moreover, we further compare with three state-
of-art methods on locating the ROIs, namely, Diverse Density (DD) [15], EM-DD [26]
and CkNN-ROI [29]. For the MI-SVM, mi-SVM, MI-Kernel and KI-SVMs, the RBF
kernel is used and the parameters are selected using cross-validation on the training sets.
Experiments are performed on a PC with 2GHz Intel Xeon(R)2-Duo running Windows
XP with 4GB memory.

Following [29], we evaluate the success rate, i.e., the ratio of the number of successes
divided by the total number of relevant images. For each relevant image in the database,
if the ROI returned by the algorithm is a real ROI, then it is counted as a success. For
a fair comparison, all the SVM-based methods are only allowed to identify one ROI,
which is the region in the image with maximum prediction value.

Table 2 shows the success rates (with standard deviations) of the various meth-
ods. Besides, we also show the rank of each method in terms of its success rate.
As can be seen, among all the SVM-based methods, Ins-KI-SVM achieves the
best performance on all five concepts. As for its performance comparison with
the other non-SVM type methods, Ins-KI-SVM is still always better than DD and
CkNN-ROI, and is comparable to EM-DD. In particular, EM-DD achieves the
best performance on two out of five categories, while Ins-KI-SVM achieves the best
performance on the other three. As can be seen, the proposed Bag-KI-SVM also achieves
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Table 2. Success rate (%) in locating ROIs. The number in parentheses is the relative rank of the
algorithm on the corresponding data set (the smaller the rank, the better the performance).

Method castle firework mountain sunset waterfall total rank

Ins-KI-SVM 64.74 (2) 83.70 (1) 76.78 (2) 66.85 (1) 63.41 (1) 7
±6.64 ±15.43 ±5.46 ±6.03 ±10.56

Bag-KI-SVM 60.63 (3) 54.00 (4) 72.70 (3) 47.78 (4) 45.04 (2) 16
±7.53 ±22.13 ±7.66 ±13.25 ±21.53

SVM MI-SVM 56.63 (4) 58.04 (3) 67.63 (5) 33.30 (6) 33.30 (5) 23
methods ±5.06 ±20.31 ±8.43 ±2.67 ±8.98

mi-SVM 51.44 (6) 40.74 (6) 67.37 (6) 32.19 (7) 22.04 (7) 32
±4.93 ±4.24 ±4.48 ±1.66 ±4.97

MI-Kernel 50.52 (7) 36.37 (8) 65.67 (7) 32.15 (8) 19.93 (8) 38
±4.46 ±7.92 ±5.18 ±1.67 ±4.65

DD 35.89 (8) 38.67 (7) 68.11 (4) 57.00 (2) 37.78 (4) 25
±15.23 ±30.67 ±7.54 ±18.40 ±29.61

non-SVM EM-DD 76.00 (1) 79.89 (2) 77.22 (1) 53.56 (3) 44.33 (3) 10
methods ±4.63 ±19.25 ±13.29 ±16.81 ±15.13

CkNN-ROI 51.48 (5) 43.63 (5) 60.59 (8) 34.59 (5) 30.48 (6) 29
±4.59 ±12.40 ±4.38 ±2.57 ±6.34

Fig. 1. ROIs located by (from left to right) DD, EM-DD, CkNN-ROI, MI-SVM, mi-SVM, MI-
Kernel, Ins-KI-SVM and Bag-KI-SVM. Each row shows one category (top to bottom: castle,
firework, mountain, sunset and waterfall).

highly competitive performance with the other state-of-the-art multi-instance learn-
ing methods. Fig. 1 shows some example images with the located ROIs. It can
be observed that Ins-KI-SVM can correctly identify more ROIs than the other
methods.

Each multi-instance algorithm typically has higher confidences (i.e., higher predic-
tion value on the predicted ROI) on some bags than in others. In the next experiment,
instead of reporting one ROI in each image, we vary a threshold on the confidence so
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castle firework mountain

sunset waterfall (legend)

Fig. 2. Success rates when different number of top-confident bags are considered

Table 3. Average wall clock time per query (in seconds)

non-SVM-based methods SVM-based methods
DD EM-DD CkNN-ROI MI-SVM mi-SVM MI-Kernel Ins-KI-SVM Bag-KI-SVM

155.02 15.91 0.003 6.03 6.39 3.04 19.47 5.57

that more than one ROIs can be detected. Fig. 2 shows how the success rate varies when
different number of top-confident bags are considered. As can be seen, the proposed
Ins-KI-SVM and Bag-KI-SVM achieve highly competitive performance. In particular,
Ins-KI-SVM is consistently better than all the other SVM-based methods across all the
settings.

Table 3 compares the average query time for the various methods. As can be seen,
DD is the slowest since it has to perform gradient descent with multiple restarts. EM-
DD is about ten times faster than DD as it involves a much smaller DD optimization at
each step. Moreover, note that both the Ins-KI-SVM and mi-SVM work at the instance
level while MI-SVM and Bag-KI-SVM work at the bag level. Therefore, MI-SVM and
Bag-KI-SVM are in general faster than Ins-KI-SVM and mi-SVM. On the other hand,
CkNN-ROI is very efficient as it pre-computes the distances and only needs to compute
the citer and reference information when locating ROIs. Moreover, unlike CkNN-ROI
which uses the standard Euclidean distance, MI-Kernel needs to compute a small kernel
matrix. Therefore, MI-Kernel is slower than CkNN-ROI but is still faster than the other
SVM methods in that it only needs to solve the SVM once. However, although CkNN-
ROI and MI-Kernel are fast, their performance is much inferior to those of the proposed
KI-SVMs, as shown in Table 2.
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Table 4. Testing accuracy (%) on the multi-instance classification benchmark data sets

Methods Musk1 Musk2 Elephant Fox Tiger
SVM-based Methods Ins-KI-SVM 84.0 84.4 83.5 63.4 82.9

Bag-KI-SVM 88.0 82.0 84.5 60.5 85.0
MI-SVM 77.9 84.3 81.4 59.4 84.0
mi-SVM 87.4 83.6 82.0 58.2 78.9

MI-Kernel 88.0 89.3 84.3 60.3 84.2
Non-SVM-based Methods DD 88.0 84.0 N/A N/A N/A

EM-DD 84.8 84.9 78.3 56.1 72.1

4.2 Multi-instance Classification

Finally, we evaluate the proposed KI-SVM methods on five multi-instance classifica-
tion data sets2 that have been popularly used in the literature [1,5,6,8,28]. These in-
clude Musk1, Musk2, Elephant, Fox and Tiger. The Musk1 data set contains 47 positive
and 45 negative bags, Musk2 contains 39 positive and 63 negative bags, and each of
the remaining three data sets contains 100 positive and 100 negative bags. Details of
these data sets can be found in [1,6]. The RBF kernel is used and the parameters are
determined by cross-validation on the training set. Comparison is made with the MI-
SVM [1], mi-SVM [1], SVM with MI-Kernel [8], DD [15] and EM-DD [26]. Ten-fold
cross-validation is used to measure the performance3. The average test accuracies of the
various methods are shown in Table 4. As can be seen, the performance of KI-SVMs
are competitive with all these state-of-the-art methods.

5 Conclusion

Locating ROI is an important problem in many real-world image involved applications.
In this paper, we focus on SVM-based methods, and propose two convex optimiza-
tion methods, Ins-KI-SVM and Bag-KI-SVM, for locating ROIs in images. The KI-
SVMs are efficient and based on convex relaxation of the multi-instance SVM. They
maximize the margin via generating the most violated key instance step by step, and
then combines them via efficient multiple kernel learning. Experiments show that KI-
SVMs achieve excellent performance in locating ROIs. The performance of KI-SVMs
on multi-instance classification is also competitive with other state-of-the-art methods.

The current work assumes that the bag labels are triggered by single key instances.
However, it is very likely that some labels are triggered by several instances together
instead of a single key instance. Moreover, some recent studies disclosed that in multi-
instance learning the instances should not be treated as i.i.d. samples [27,28]. To identify
key instances or key instance groups under these considerations will be studied in the
future.

2 http://www.cs.columbia.edu/∼andrews/mil/datasets.html
3 The accuracies of these methods were taken from their corresponding literatures. All of them

were obtained by ten-fold cross-validation.
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Abstract. Inverse reinforcement learning addresses the general prob-
lem of recovering a reward function from samples of a policy provided by
an expert/demonstrator. In this paper, we introduce active learning for
inverse reinforcement learning. We propose an algorithm that allows the
agent to query the demonstrator for samples at specific states, instead
of relying only on samples provided at “arbitrary” states. The purpose
of our algorithm is to estimate the reward function with similar accu-
racy as other methods from the literature while reducing the amount
of policy samples required from the expert. We also discuss the use of
our algorithm in higher dimensional problems, using both Monte Carlo
and gradient methods. We present illustrative results of our algorithm in
several simulated examples of different complexities.

1 Introduction

We address the general problem of learning from demonstration. In this class of
problems, an agent is given a set of sample situation-action pairs by a demon-
strator, from which it must recover the overall demonstrated behavior and/or
corresponding task description. In this paper we are particularly interested in
recovering the task description. In other words, the agent infers the underly-
ing task that the demonstrator is trying to solve. From this task description,
the agent can then construct its own policy to solve the recovered task. One
interesting aspect of this approach is that it can accommodate for differences
between the demonstrator and the learner [1]. The learner is not just replicating
the observed trajectory, but is inferring the “reason” behind such behavior.
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We formalize our problem using Markov decision processes (MDP). Within
this formalism, the demonstration consists of a set of state-action pairs and the
compact task representation takes the form of a reward function. Learning from
demonstration in MDPs has been explored in different ways in the literature
[2, 3, 4], and is usually known as inverse reinforcement learning. The seminal
paper [3] gives the first formal treatment of inverse reinforcement learning as
well as several algorithms to compute a reward description from a demonstration.
This problem has since been addressed in several other works [4, 5, 6, 7, 8].

The general IRL problem poses several interesting challenges to be dealt with.
On one hand, the process of searching for the “right” reward function typically
requires the underlying MDP to be solved multiple times, making this process
potentially computationally expensive in large problems. Furthermore, it is un-
reasonable to assume that the desired policy is completely specified, as this is
impractical in problems with more than a few dozen states, or that there is no
noise in the demonstration. Finally, the IRL problem is ill-posed, in the sense
that there is not a single reward function that renders a given policy optimal
and also there are usually multiple optimal policies for the same reward func-
tion [9]. This means that, even if the desired policy is completely specified to
the learner, the problem remains ill-posed, as additional criteria are necessary
to disambiguate between multiple rewards yielding the same optimal policy.

Probabilistic sample-based approaches to the IRL problem [4, 5, 6] partly ad-
dress these issues, alleviating the requirement for complete and correct demon-
stration while restricting the set of possible solution rewards. These approaches
allow the solution to IRL to be “better conditioned” by increasing the size of
the demonstration and are robust to suboptimal actions in the demonstration1.
However, this will typically require a large amount of data (samples) for a good
estimate of the reward function to be recovered.

In this paper we propose the use of active learning to partly mitigate the
need for large amounts of data during learning. We adopt a Bayesian approach
to IRL, following [6]. The idea behind active learning is to reduce the data
requirements of learning algorithms by actively selecting potentially informative
samples, in contrast with random sampling from a predefined distribution [10].
In our case we use this idea to reduce the number of samples required from the
expert, and only ask the expert to demonstrate the desired behavior at the most
informative states. We compute the posterior distribution over possible reward
functions and use this information to actively select the states whose action the
expert should provide. Experimental results show that our approach generally
reduces the amount of data required to learn the reward function. Also, it is
more adequate in terms of interaction with the expert, as it requires the expert
to illustrate the desired behavior on fewer instances.

1 By considering demonstrations in which suboptimal actions can also be sampled,
the learner is provided with a ranking of actions instead of just an indication of
the optimal actions. Demonstrations are thus “more informative”, enforcing a more
constrained set of possible reward functions than in the general case where only
optimal policies are provided. This, in turn, simplifies the search problem.
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2 Background

In this section we review some background material on MDPs and inverse rein-
forcement learning.

2.1 Markov Decision Processes

A Markov decision process (MDP) is a tuple (X ,A, P, r, γ), where X represents
the finite state-space, A the finite action space, P the transition probabilities, r
the reward function and is γ a discount factor. Pa(x, y) denotes the probability
of transitioning from state x to state y when action a is taken. The purpose of
the agent is to choose the action sequence {At} maximizing

V (x) = E

[ ∞∑
t=0

γtr(Xt, At) | X0 = x

]
.

A policy is a mapping π : X × A → [0, 1], where π(x, a) is the probability
of choosing action a ∈ A in state x ∈ X . Associated with any such policy
there is a value-function V π, V π(x) = Eπ [

∑∞
t=0 γtr(Xt, At) | X0 = x] ,where

the expectation is now taken with respect to policy π. For any given MDP there
exists at least one policy π∗ such that

V π∗
(x) ≥ V π(x).

Any such policy is an optimal policy for that MDP and the corresponding value
function is denoted by V ∗.

Given any policy π, the following recursion holds

V π(x) = rπ(x) + γ
∑
y∈X

Pπ(x, y)V π(y)

where Pπ(x, y) =
∑

a∈A π(x, a)Pa(x, y) and rπ(x) =
∑

a∈A π(x, a)r(x, a). For
the particular case of the optimal policy π∗, the above recursion becomes

V ∗(x) = max
a∈A

⎡⎣r(x, a) + γ
∑
y∈X

Pa(x, y)V ∗(y)

⎤⎦ .

We also define the Q-function associated with a policy π as

Qπ(x, a) = r(x, a) + γ
∑
y∈X

Pa(x, y)V π(y)

Sometimes, it will be convenient to write the above expressions using vector
notation, leading to the expressions

Vπ = rπ + γPπVπ Qπ
a = ra + γPaVπ (1a)

V∗ = max
a∈A

[ra + γPaV∗] Q∗
a = ra + γPaV∗, (1b)

where ra and Qa denote the ath columns of matrices r and Q, respectively.
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2.2 Bayesian Inverse Reinforcement Learning

As seen above, an MDP describes a sequential decision making problem in which
an agent must choose its actions so as to maximize the total discounted reward.
In this sense, the reward function in an MDP encodes the task of the agent.

Inverse reinforcement learning (IRL) deals with the problem of recovering the
task representation (i.e., the reward function) given a demonstration of the task
to be performed (i.e., the desired policy). In this paper, similarly to [6], IRL is
cast as an inference problem, in which the agent is provided with a noisy sample
of the desired policy from which it must estimate a reward function explaining
the policy.

Our working assumption is that there is one reward function, rtarget, that
the demonstrator wants the agent to maximize. We denote the corresponding
optimal Q-function by Q∗

target. Given this reward function, the demonstrator will
choose an action a ∈ A in state x ∈ X with probability

P [Ademo = a | Xdemo = x, rtarget] =
eηQ∗

target(x,a)∑
b∈A eηQ∗

target(x,b) , (2)

where η is a non-negative constant.
We consider the demonstration as a sequence D of state-action pairs,

D = {(x1, a1), (x2, a2), . . . , (xn, an)} ,

From (2), for any given r-function, the likelihood of a pair (x, a) ∈ X × A is
given by

Lr(x, a) = P [(x, a) | r] =
eηQ∗

r(x,a)∑
b∈A eηQ∗

r(x,b) ,

where we denoted by Q∗
r(x, a) the optimal Q-function associated with reward

r. The constant η can be seen as a confidence parameter that translates the
confidence of the agent on the demonstration. Note that, according to the above
likelihood model, evaluating the likelihood of a state-action pair given a reward
r requires the computation of Q∗

r . This can be done, for example, using dynamic
programming, which requires knowledge of the transition probabilities P. In the
remainder of the paper, we assume these transtion probabilities are known.

Assuming independence between the state-action pairs in the demonstration,
the likelihood of the demonstration D is

Lr(D) =
∏

(xi,ai)∈D
Lr(xi, ai).

Given a prior distribution P [r] over the space of possible reward functions, we
have

P [r | D] ∝ Lr(D)P [r] .

The posterior distribution takes into account the demonstration and prior in-
formation and will provide the information used to actively select samples to
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be included in the demonstration. From this distribution we can extract several
policies and rewards, for instance the mean policy πD:

πD(x, a) =
∫

πr(x, a)P [r | D] dr, (3)

or the maximum a posteriori

r∗ = max
r

P [r | D] , (4)

We conclude this section by describing two methods used to address the IRL
problem within this Bayesian framework.

2.3 Two Methods for Bayesian IRL

So far, we cast the IRL problem as an inference problem. In the continuation
we describe two methods to address this inference problem, one that directly
approximates the maximum given in (4) and another that estimates the complete
posterior distribution P [r | D] .

Gradient-based IRL. The first approach considers a uniform prior over the
space of possible rewards. This means that maximizing P [r | D] is equivalent
to maximizing the likelihood Lr(D). To this purpose, we implement a gradient-
ascent algorithm on the space of rewards, taking advantage of the structure of
the underlying MDP. A similar approach has been adopted in [4].

We start by writing the log-likelihood of the demonstration given r:

Λr(D) =
∑

(xi,ai)∈D
log(Lr(xi, ai)). (5)

We can now write

[∇rΛr(D)]xa =
∑

(xi,ai)∈D

1
Lr(xi, ai)

∂Lr(xi, ai)
∂rxa

. (6)

To compute ∇rLr(x, a), we observe that

∇rLr(x, a) =
dLr

dQ∗ (x, a)
dQ∗

dr
(x, a). (7)

Computing the derivative of Lr with respect to each component of Q∗ yields

dLr

dQ∗
yb

(x, a) = ηLr(x, a)
(
δyb(x, a)− Lr(y, b)δy(x)

)
,

with x, y ∈ X and a, b ∈ A. In the above expression, δu(v) denotes the Kronecker
delta function.



36 M. Lopes, F. Melo, and L. Montesano

To compute dQ∗

dr , we recall that Q∗
a = ra + γPa(I− γPπ∗)−1rπ∗ . We also note

that, except for those points in reward space where the policy is not differentiable
with respect to r — corresponding to situations in which a small change in a
particular component of the reward function induces a change in a component
of the policy, — the policy remains unchanged under a small variation in the
reward function. We thus consider the approximation dQ∗

drzu
(x, a) ≈ ∂Q∗

∂rzu
(x, a)

that ignores the dependence of the policy on r. The gradient estimate thus
obtained corresponds to the actual gradient except near those reward functions
on which the policy is not differentiable2. Considering the above approximation,
and letting T = I− γPπ∗ , we have

∂Q∗

∂rzu
(x, a) = δzu(x, a) + γ

∑
y∈X

Pa(x, y)T−1(y, z)π∗(z, u), (8)

with x, y, z ∈ X and a, u ∈ A.
Putting everything together, the method essentially proceeds by considering

some initial estimate r0 and then use the gradient computation outlined above
to perform the update

rt+1 = rt + αt∇rΛrt(D)

MCMC IRL. The second approach, proposed in [6], uses the Monte-Carlo
Markov chain (MCMC) algorithm to approximate the posterior P [r | D]. The
MCMC algorithm thus generates a set of sample reward functions, {r1, . . . , rN},
distributed according to the target distribution, P [r | D]. Then,

P [r | D] ≈ 1
N

N∑
i=1

δ(r, ri). (9)

In the MCMC algorithm, these samples correspond to a sample trajectory of
a Markov chain designed so that its invariant distribution matches the target
distribution, P [r | D] [11].

We implement PolicyWalk, an MCMC algorithm described in [6]. In this
particular variation, the reward space is discretized into a uniform grid and
the MCMC samples jump between neighboring nodes in this grid (see Fig. 1).
In other words, a new sample is obtained from the current sample to one of
the neighboring nodes in the grid. The new sample is accepted according to the
ratio between the posterior probabilities of the current and new samples. Reward
functions with higher (posterior) probability are thus selected more often than
those with lower probability, and the method is guaranteed to sample according
to the true posterior distribution.

A problem with this method is that, for large-dimensional problems, it gen-
erally requires a large number of sample rewards to ensure that the estimate
of P [r | D] is accurately represented by the sample set. We refer to the result
2 It is noteworthy that Rademacher’s theorem guarantees that the set of such reward

functions is null-measured. We refer to [4] for further details.
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δ

r-Space
δ

Fig. 1. Representation of the PolicyWalk variation of MCMC. We refer to [6] for
details.

in [6], in which the number of samples N required to ensure an estimation error
bounded by ε must be O(M2 log(1/ε)), where M is the dimension of the reward
function. This means that the number of samples grows (roughly) quadratically
with the dimension of the reward space. Furthermore, this result assumes that
‖r‖∞ ≤ 1/M . As noted in [6], this condition on r can be ensured by rescaling
the reward function, which does not affect the optimal policy. It does, however,
affect the likelihood function and, consequently, P [r | D]. Whenever such rescal-
ing is not possible or convenient and the rewards can only be bounded by some
value C, the previous lower-bound on the sample size roughly deteriorates to
O(M6e2M log(1/ε)), which quickly becomes prohibitive for large M .

3 Active Learning for Reward Estimation

In the previous section we discussed two possible (Bayesian) approaches to the
IRL problem. In these approaches, the agent is provided with a demonstration
D, consisting of pairs (xi, ai) of states and corresponding actions. From this
demonstration the agent must identify the underlying target task.

In the active learning setting, we now assume that, after some initial batch
of data D, the agent has the possibility to query the expert for the action at
particular states chosen by the agent. In this section we propose a criterion to
select such states and discuss how this can be used within the IRL framework.
We also discuss on-line versions of the methods in the previous section that are
able to cope with the successive additional data provided by the expert as a
result of the agent’s queries.

3.1 Active Sampling

The active learning strategies presented below rely on the uncertainty about the
parameter to be estimated to select new data points. As discussed in Section 2,
the parameter to be estimated in the IRL setting is the task description, i.e., the
reward function. Unfortunately, the relation between rewards and policies is not
one-to-one, making active learning in this setting more complex than in other
settings.

This is easily seen by thinking of a scenario in which all possible reward func-
tions give rise to the same policy in a given state x (this can be the case if there is
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only one action available in state x). This means that a large uncertainty in the
reward function does not necessarily translate into uncertainty in terms of which
action to choose in state x. Therefore, in some scenarios it may not be possible
to completely disambiguate the reward function behind the demonstration.

In our setting, we have access to an estimate of the posterior distribution
over the space of possible reward functions, P [r | D]. From this distribution, the
agent should be able to choose a state and query the expert about the corre-
sponding action in such a way that the additional sample is as useful/informative
as possible. Notice that the posterior distribution, P [r | D], does not differenti-
ate between states (it is a distribution over functions) and, as such, a standard
variance criterion cannot be used directly.

We are interested in finding a criterion to choose the states to query the
demonstrator so as to recover the correct reward (or, at least, the optimal target
behavior) while requiring significantly less data than if the agent was provided
with randomly chosen state-action pairs. To this purpose, we define the set
Rxa(p) as the set of reward functions r such that πr(x, a) = p. Now for each pair
(x, a) ∈ X ×A, the distribution P [r | D] in turn induces a distribution over the
possible values p for π(x, a). This distribution can be characterized by means of
the following density

μ̄xa(p) = P [π(x, a) = p | D] = P [r ∈ Rxa(p) | D] . (10)

Using the above distribution, the agent can now query the demonstrator about
the correct action in states where the uncertainty on the policy is larger, i.e., in
states where μ̄xa exhibits larger “spread”.

One possibility is to rely on some measure of entropy associated with μ̄xa.
Given that μ̄xa corresponds to a continuous distribution, the appropriate con-
cept is that of differential entropy. Unfortunately, as is well-known, differential
entropy as a measure of uncertainty does not exhibit the same appealing prop-
erties as its discrete counterpart. To tackle this difficulty, we simply consider a
partition of the interval I = [0, 1] into K subintervals Ik, with Ik = ( k

K , k+1
K ],

k = 0, . . . , K−1, and I0 = [0, 1/K]. We can now define a new discrete probability
distribution

μxa(k) = P [π(x, a) ∈ Ik | D] =
∫

Ik

μ̄xa(p)dp, k = 1, . . . , K.

The distribution μxa thus defined is a discretized version of the density in (10),
for which we can compute the associated (Shannon) entropy, H(μxa). As such,
for each state x ∈ X , we define the mean entropy as

H̄(x) =
1
|A|

∑
a

H(μxa) = − 1
|A|

∑
a,k

μxa(k) log μxa(k)

and let the agent query the expert about the action to be taken at the state x∗

given by
x∗ = argmax

x∈X
H̄(x),
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with ties broken arbitrarily. Given the estimate (9) for P [r | D], this yields

μxa(k) ≈ 1
N

∑
i

IIk
(πi(x, a)), (11)

where πi is the policy associated with the ith reward sampled in the MC method
and IIk

is the indicator function for the set Ik. This finally yields

H̄(x) ≈ − 1
|A|N

∑
i,a,k

IIk
(πi(x, a)) log

∑
i IIk

(πi(x, a))
N

.

It is worth mentioning that, in the context of IRL, there are two main sources
of uncertainty in recovering the reward function. One depends on the natural
ambiguity of the problem: for any particular policy, there are typically multiple
reward functions that solve the IRL problem. This type of ambiguity appear
even with perfect knowledge of the policy, and is therefore independent of the
particular process by which states are sampled. The other source of uncertainty
arises from the fact that the policy is not accurately specified in certain states.
This class of ambiguity can be addressed by sampling these states until the policy
is properly specified. Our entropy-based criterion does precisely this.

3.2 Active IRL

We conclude this section by describing how the active sampling strategy above
can be combined with the IRL methods in Section 2.3.

Algorithm 1. General active IRL algorithm
Require: Initial demo D
1: Estimate P [r | D] using general MC algorithm
2: for all x ∈ X do
3: Compute H̄(x)
4: end for
5: Query action for x∗ = arg maxx H̄(x)
6: Add new sample to D
7: Return to 1

The fundamental idea is simply to use the data from an initial demonstration
to compute a first posterior P [r | D], use this distribution to query further states,
recompute P [r | D], and so on. This yields the general algorithm summarized
in Algorithm 1. We note that running MCMC and recompute P [r | D] at each
iteration is very time consuming, even more so in large-dimensional problems.
For efficiency, step 1 can take advantage of several optimizations of MCMC such
as sequential and hybrid monte-carlo.

In very large dimensional spaces, however, the MC-based approach becomes
computationally too expensive. We thus propose an approximation to the gen-
eral Algorithm 1 that uses the gradient-based algorithm in Section 2.3. The idea
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Algorithm 2. Active gradient-based IRL algorithm
Require: Initial demo D
1: Compute r∗ as in (4)
2: Estimate P [r | D] in a neighborhood of r∗

3: for all x ∈ X do
4: Compute H̄(x)
5: end for
6: Query action for x∗ = arg maxx H̄(x)
7: Add new sample to D
8: Return to 1

behind this method is to replace step 1 in Algorithm 1 by two steps, as seen in Al-
gorithm 2. The algorithm thus proceeds by computing the maximum-likelihood
estimate r∗ as described in Section 2.3. It then uses Monte-Carlo sampling to
approximate P [r | D] in a neighborhood Bε(r∗) of r∗ and uses this estimate to
compute H(x) as in Algorithm 1. The principle behind this second approach
is that the policy πr∗ should provide a reasonable approximation to the tar-
get policy. Therefore, the algorithm can focus on estimating P [r | D] only in a
neighborhood of r∗. As expected, this significantly reduces the computational
requirements of the algorithm.

It is worth mentioning that the first method, relying on standard MC sam-
pling, eventually converges to the true posterior distribution as the number of
samples goes to infinity. The second method first reaches a local maximum of
the posterior and then only estimates the posterior around that point. If the
posterior is unimodal, it is expectable that the second method brings significant
advantages in computational terms; however, if the posterior is multimodal, this
local approach might not be able properly represent the posterior distribution. In
any case, as discussed in Section 2.3, in high-dimensional problems, the MCMC
method requires a prohibitive amount of samples to provide accurate estimates,
rendering such approach inviable.

4 Simulations

We now illustrate the application of the proposed algorithms in several problems
of varying complexity.

4.1 Finding the Maximum of a Quadratic Function

We start by a simple problem of finding the maximum of a quadratic function.
Such a problem can be described by the MDP in Fig. 2, where each state cor-
responds to a discrete value between −1 and 1. The state-space thus consists of
21 states and 2 actions that we denote al and ar. Each action moves the agent
deterministically to the contiguous state in the corresponding direction (al to the
left, ar to the right). For simplicity, we consider a reward function parameterized
using a two-dimensional parameter vector θ, yielding
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−0.9−1.0 −0.8 0.8 0.9 1.0

al

ar ar ar ar ar

ar

ar

alalalalal

al

Fig. 2. Simple MDP where the agent must find the maximum of a function

r(x) = θ1(x− θ2)2,

corresponding to a quadratic function with a (double) zero at θ2 and concavity
given by θ1. For the MDP thus defined, the optimal policy either moves the
agent toward the state in which the maximum is attained (if θ1 < 0) or toward
one of the states ±1 (if θ1 > 0).

For our IRL problem, we consider the reward function, r(x) = −(x − 0.15)2,
for which the agent should learn the parameter θ from a demonstration. The
initial demonstration consisted on the optimal actions for the extreme states:

D = {(−1.0, ar), (−0.9, ar), (−0.8, ar), (0.8, al), (0.9, al), (1.0, al)}

and immediately establishes that θ1 < 0.
Figure 3 presents the results obtained using Algorithm 1, with the confidence

parameter in the likelyhood function set to η = 500 and N = 400 in the MCMC
estimation. The plots on the left represent the reward functions sampled in the
MCMC step of the algorithm and the plots on the right the corresponding aver-
age policy πD. In the depicted run, the queried states were x = 0 at iteration 1,
x = 0.3 at iteration 2, x = 0.1 at iteration 3, and x = 0.2 at iteration 4. It is
clear from the first iteration that the initial demonstration only allows the agent
to place θ2 somewhere in the interval [−0.8, 0.8] (note the spread in the sampled
reward functions). Subsequent iterations show the distribution to concentrate
on the true value of θ2 (visible in the fact that the sampled rewards all exhibit
a peak around the true value). Also, the policy clearly converges to the optimal
policy in iteration 5 and the corresponding variance decreases to 0.

We conclude by noting that our algorithm is roughly implementing the bisec-
tion method, known to be an efficient method to determine the maximum of a
function. This toy example provides a first illustration of our active IRL algo-
rithm at work and the evolution of the posterior distributions over r along the
iterations of the algorithm.

4.2 Puddle World

We now illustrate the application of our algorithm in a more complex prob-
lem. This problem is known in the reinforcement learning literature as the pud-
dle world. The puddle world consists in a continuous-state MDP in which an
agentmust reach a goal region while avoiding a penalty region (the “puddle”), as
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Fig. 3. Sample iterations (1st, 2nd and 5th) of Algorithm 1 in the problem of Fig. 2.
On the left are samples obtained from P [r | D] and on the right the corresponding πD,
showing the mean the and variance of the optimal action for each state (1- move right,
0- move left).

depicted in Fig. 4. This example illustrates our active IRL algorithm at work in
a more complex problem that can still visualized.

The MDP has a continuous state-space, consisting of the unit square, and
a discrete action-space that includes the four actions N (north), S (south), E
(east), and W (west). Each action moves the agent 0.05 in the corresponding
direction. Since the MDP has a continuous state-space, exact solution methods
are not available. We adopt a batch approximate RL method known as fitted
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Fig. 4. Representation of the puddle world and a possible value function

Q-iteration that essentially samples the underlying MDP and uses regression to
approximate the optimal Q-function [12]. The fact that we must resort to func-
tion approximation implies that the exact optimal policy cannot be recovered
but only an approximation thereof. This will somewhat impact the ability of our
algorithm to properly estimate the posterior P [r | D].

In the puddle world, the reward function can be represented as

r(x) = rgoal exp
(
(x− μgoal)

2/α
)

+ rpuddle exp
(
(x − μpuddle)

2/α
)
,

where rgoal and rpuddle represent the reward and maximum penalty received in
the goal position and in the center of the puddle, respectively. The parameters
μgoal and μpuddle define the location of the goal and puddle, respectively. The
parameter α is fixed a priori and roughly defines the width of both regions. For
our IRL problem, the agent should learn the parameters μgoal, μpuddle, rgoal, and
rpuddle from a demonstration.

Figure 5 presents two sample iterations of Algorithm 1. To solve the MDP we
ran fitted Q-iteration with a batch of 3, 200 sample transitions. We ran MCMC
with N = 800. Notice that after the first iteration (using the initial demonstra-
tion), the MCMC samples are already spread around the true parameters. At
each iteration, the algorithm is allowed to query the expert in 10 states. In the
depicted run, the algorithm queried states around the goal region — to pinpoint
the goal region — and around the puddle — to pinpoint the puddle region.

4.3 Random Scenarios

We now illustrate the application of our approach in random scenarios with dif-
ferent complexity. We also discuss the scalability of our algorithm and statistical
significance of the results.

These general MDPs in this section consist of squared grid-worlds with varying
number of states. At each state, the agent has 4 actions available (N , S, E, W ),
that moves the agent in the corresponding direction. We divide our results in
two classes, corresponding to parameterized rewards and general rewards.
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(b) Iteration 3.

Fig. 5. Two sample iterations of Algorithm 1. The red stars (∗) represent the target
values for the parameters μgoal and μpuddle. The green and blue dots (·) represents the
sampled posterior distribution over possible value of these parameters. The circles (◦)
denotes the states included in the demonstration.

Parameterized Rewards. We start by considering a simple parameterization
of the reward function of the form δx∗(x). Therefore, the only parameter to be
learnt is the position of the goal state x∗ in the grid.

We applied Algorithm 2 to a 15× 15 grid-world. The estimation in step 2 of
the algorithm uses N = 15. At each iteration, the agent is allowed to query the
expert in 10 states. Figure 6(b) shows the error between the estimated policy
and the target policy as a function of the size of the demonstration, averaged
over 50 independent trials. Our approach clearly outperforms random sampling,
attaining the same error while requiring about 1/3 of the samples.

We conclude by noting that we chose to run Algorithm 2 in this scenarion since
(as discussed in Section 2.3, the MCMC component in Algorithm 1 does not scale
well with the number of states. Indeed, for a similar scenario with 100 states,
the MCMC-based algorithm required around 12, 000 MC samples, for each of
which an MDP must be solved. In that same 100-state scenarion, Algorithm 2
required around 50 gradient steps and then 20 MC samples to compute the local
approximation of the posterior, thus requiring a total of 70 MDPs to be solved.

Non-parameterized reward. We now consider a more general situation, in
which the reward function is a vector r in the |X |-dimensional unit square. In
this case, the reward value is merely a real-valued function r : X → [0; 1], and
the problem is significantly more complex than in the previous case.

We applied Algorithm 2 to a 10× 10 grid-world. The estimation in step 2 of
the algorithm uses N = 40. At each iteration, the agent is allowed to query the
expert in 2 states. Figure 6(a) shows the error between the estimated policy and
the target policy as a function of the size of the demonstration, averaged over 50
independent trials. In this case, it is clear that there is no apparent advantage
in using the active learning approach. Whatever small advantage there may be
is clearly outweighed by the added computational cost.
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(a) (b)

Fig. 6. Performance of Algorithm 2 comparing active sampling vs. random sampling
as a function of the demonstration size. (a) Results with parameterized rewards in a
15× 15 grid-world. (b) Results with general (non-parameterized) rewards in a 10× 10
grid-world.

These results illustrate, in a sense, some of the issues already discussed in
Section 3.1. When considering a non-parameterized form for the reward function
and a prior over possible rewards that is state-wise independent, there is not
enough structure in the problem to generalize the observed policy from observed
states to non-observed states. In fact, the space of general (non-parameterized)
reward functions has enough degrees of freedom to yield any possible policy. In
this case, any sampling criterion will, at best, provide only a mild advantage
over uniform sampling. On the other hand, when using parameterized rewards
or a prior that weights positively ties between the reward in different states
(e.g., an Ising prior [6]), the policy in some states restricts the possible policies
on other states. In this case, sampling certain states can certainly contribute to
disambiguate the policy in other states, bringing significant advantages to an
active sampling approach over a uniform sampling approach.

5 Conclusions

In this paper we introduced the first active learning algorithm explicitly designed
to estimate rewards from a noisy and sampled demonstration of an unknown
optimal policy. We used a full Bayesian approach and estimate the posterior
probability of each action in each state, given the demonstration. By measuring
the state-wise entropy in this distribution, the algorithm is able to select the po-
tentially most informative state to be queried to the expert. This is particularly
important when the cost of providing a demonstration is high.

As discussed in Section 4, our results indicate that the effectiveness of active
learning in the described IRL setting may greatly depend on the prior knowl-
edge about the reward function or the policy. In particular, when considering
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parameterized policies or priors that introduce relations (in terms of rewards)
between different states, our approach seems to lead to encouraging results. In
the general (non-parameterized) case, or when the prior “decorrelates” the re-
ward in different states, we do not expect active learning to bring a significant
advantage. We are currently conducting further experiments to gain a clearer
understanding on this particular issue.

We conclude by noting that active learning has been widely applied to numer-
ous settings distinct from IRL. In some of these settings there are even theoretical
results that state the improvements or lack thereof arising from considering ac-
tive sampling instead of random sampling [10]. To the extent of our knowledge,
ours is the first paper in which active learning is applied within the context
of IRL. As such, many new avenues of research naturally appear. In particular,
even if the ambiguities inherent to IRL problems make it somewhat distinct from
other settings, we believe that it should be possible (at least in some problems)
to theoretically asses the usefulness of active learning in IRL.
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Abstract. Collective classification refers to the classification of inter-
linked and relational objects described as nodes in a graph. The Itera-
tive Classification Algorithm (ICA) is a simple, efficient and widely used
method to solve this problem. It is representative of a family of methods
for which inference proceeds as an iterative process: at each step, nodes
of the graph are classified according to the current predicted labels of
their neighbors. We show that learning in this class of models suffers
from a training bias. We propose a new family of methods, called Simu-
lated ICA, which helps reducing this training bias by simulating inference
during learning. Several variants of the method are introduced. They are
both simple, efficient and scale well. Experiments performed on a series
of 7 datasets show that the proposed methods outperform representative
state-of-the-art algorithms while keeping a low complexity.

1 Introduction

A fundamental assumption that underlies most existing work in machine learn-
ing is that data is independently and identically distributed (i.i.d.). Web pages
classification, WebSpam detection, community identification in social networks
and peer-to-peer files analysis are typical applications where data is naturally
organized according to a graph structure. In these applications, the elements to
classify (Web pages or users of files for example) are interdependent: the label of
one element may have a direct influence on other labels in the graph. Problems
involving the classification of graph nodes are generally known as graph labeling
problems [5] or as collective classification problems [11]. Due to the irrelevancy
of the i.i.d. assumption, new models have been proposed recently to perform
machine learning on such networked data.

Different variants of the graph labeling problem have been investigated. For
inductive graph labeling, training and test are performed in distinct steps. The
goal here is to learn classifiers able to label any node in new graphs or sub-
graphs. This is an extension of the classical supervised classification task to
interdependent data. Typical applications include email classification, region or
object labeling in images or sequence labeling. For transductive graph labeling,
node labeling is performed in a single step where both labeled and unlabeled
data are considered simultaneously. This corresponds to applications like Web-
Spam detection or social network analysis. Note that some problems like web
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Fig. 1. Two examples of graph labeling problems. Left: categorization of scientific
articles related by citation links. Right: classification of Web pages into relevant and
non-relevant pages for a given query.

page classification may be handled under either the inductive or the transductive
settings. In this article, we focus on the inductive graph labeling problem and
we will use the name collective classification for this setting.

Graph labeling is often a hard problem and performing exact inference is
generally prohibitive. Practical algorithms then rely on approximate inference
methods. Many collective classification algorithms make use of local classifiers.
Inference then amounts at iteratively labeling nodes: each iteration takes into ac-
count labels predicted at preceding steps. Several such local classifier techniques
have been proposed [16,15]. Among them, the Iterative Classification Algorithm
(ICA) has received a growing interest in the past years. It has been shown to be
more robust and accurate than most alternative solutions, it is simple to under-
stand and scales well w.r.t. the size of data, making it possible to label graphs
containing thousands to millions of nodes.

Like most local collective classification methods, training and inference for
ICA are performed differently. For the former, a local classifier is trained clas-
sically, using as inputs some node characteristics and its correct neighboring
labels. Inference, on the opposite, is an iterative process, where the node labels
are repeatedly re-estimated, given the current estimated labels of neighbors.
Prediction errors on labels may then propagate during the iterations and the
classifier will then have difficulties to generalize correctly. This is mainly caused
by the bias between training – which assume perfect labels for neighboring nodes
– and inference – which may iterate over wrong labels. In this paper, we build
on this idea and introduce methods for reducing this training bias. The Sim-
ulated Iterative Classification (Sica) models proposed here introduce different
ways to simulate the inference process during learning. The local classifier be-
ing trained on situations close to test ones, this will allow reducing the bias
of classical ICA. We present different variants of this Sica algorithm. We also
introduce the Sica

+ algorithm with pass-dependent classifiers, which relies on
the idea of using a different local classifier for each iteration of the algorithm.
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The underlying idea of this last model is similar to the one developed for the
Stacked Learning method [8], however it proceeds differently, replacing the cross
validation steps used for stacked learning by inference simulation. This family
of techniques provides computationally efficient algorithms which outperform
many other methods and which can be used for large scale graph labeling.

The contributions of this paper are twofold. Firstly, we propose a new col-
lective classification algorithm. Its inference procedure is similar to ICA. Its
learning procedure incorporates inference simulation avoiding the training bias
of ICA. The Sica model has the same low inference complexity than ICA but
provides higher performance. Several variants of the Sica method are introduced
and compared. Secondly, we present a set of experiments on seven graph labeling
datasets showing the efficiency of our approach.

The paper is structured as follows. Section 2 is an overview of related work.
Section 3 defines the graph labeling problem formally and describes ICA.
Section 4 introduces our contribution: Simulated ICA. We demonstrate the ef-
ficiency of the proposed approach with several experiments and comparisons
with state-of-the-art models in Section 5. Finally, we conclude and discuss the
generality of the proposed approach in Section 6.

2 Related Work

Two main directions have been developed independently for learning to label
graphs.

The first one has been proposed for semi-supervised learning and is sometimes
called learning on data manifolds [20]. The graph here reflects the intrinsic struc-
ture of the data and describes local constraints among data points [19]. Graph
labeling is formalized as the minimization of an objective function over both
labeled and unlabeled nodes. This objective function aims at finding a classifier
corresponding to a good balance between an error minimization term defined on
the labeled nodes and a local smoothness constraint which imposes close scores
for connected nodes. All these methods rely on transductive learning. Different
type of models have been developed along this idea:

– Models based on label propogation [21,2] only operate on the node labels
without considering any other node feature. The labels are propagated iter-
atively from the labeled nodes to the rest of the graph. The models mainly
differ by the regularization function they rely on.

– Models taking into account both the structure of the graph and the node
features. Belkin et al. [3] developed a general framework allowing the use
of both local node features and weighted links. Other models have been
proposed by Zhang et al. [18] for web page classification. They have been
adapted by Abernethy et al. [1] for the WebSpam detection task.

The second direction sometimes called collective or relational classification di-
rectly attacks the problem of graph labeling. It makes use of different models like
ICA, Gibbs sampling, Relaxation Labeling and Loopy Belief Propagation (see
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[16,15] for a review and a comparison of these methods). There are two main
groups of methods:

– Local classifier based methods make use of a local classifier for classifying a
node knowing both its content and the labels of its neighbors. For exam-
ple, the Iterative Classification model [16] iteratively uses the base classifier
during a fixed number of iterations. Gibbs sampling [9] aims at finding the
best set of labels, by sampling each node label iteratively according to the
probability distribution given by the local classifier.

– Global models try to optimize a global function over the graph. Since this is
NP-hard, these methods propose different approximation algorithms in order
to reduce the complexity of the optimization. The more popular methods are
Loopy Belief Propagation [13] and Relaxation Labeling [10].

Note that methods of this second family are generally used in an inductive set-
ting. They also suffer from the same training label bias as ICA since training and
test operate differently. Finally, it is worth emphasizing Stacked Graphical Learn-
ing [8,12], a collective classification method developed independently. It makes
use of a chain of classifiers, used iteratively to label the nodes. Each classifier
uses as input the output of the preceding one. The originality of this algorithm
comes from the way it learns the stacked classifiers using a cross-validation based
approach. In the context of graph labeling, this algorithm was successfully used
for WebSpam classification [6] or for layout document structuring [7].

Graph labeling problem is an instance of the more general framework of struc-
tured prediction or structured output classification [17]. In principle, any general
structured prediction methods could be applicable to solve the graph labeling
problem. However they have a high computational complexity and are not used
for practical applications, especially on a large scale.

3 Supervised Graph Labeling

We use the following notations in the remainder of the paper. A directed graph
is a couple G = (X,E) where X = (x1, . . . , xN ) is a set of nodes and E =
{(i, j)}i,j∈[1..N ]2 is a set of directed edges. We denote (G, Y ) the labeled graph
G where Y = (y1, . . . , yN) is the set of labels, with yi the label corresponding
to node xi. Nodes in X are described through feature vectors xi ∈ R

d where d
is the number of features. We consider here the multiclass single-label problem:
labels belong to a predefined set of possible labels L = (l1, ..., lL) where L is the
number of possible labels1.

For example, in a document classification task, nodes xi may be documents
described with vectors of word frequencies, edges (i, j) may correspond to cita-
tion links and labels yi may be document categories.

We consider the inductive graph labeling problem. Given a training labeled
directed graph (G, Y ), the aim is to learn a model that is able to label the nodes
1 Depending on the communities, labels may also be called classes or categories in the

literature.
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Input: A labeled graph (G, Y )
Input: A multiclass learning algorithm A
Output: A base classifier P (yi|xi,N (xi))
foreach xi ∈ X do

submit training example ((xi,N (xi)), yi) to A
end
return the classifier trained by A

Algorithm 1. ICA Learning algorithm

of any new graph G′. Note that this framework is rather general, since undirected
graph can be seen as particular cases of directed graph and since G may contain
multiple disconnected components, i.e. multiple different training graphs.

3.1 Iterative Classification

ICA is a graph labeling method based on iterative classification of graph nodes
given both their local features and the labels of neighboring nodes. Let N (xi)
be the set of labels of neighbors of xi. Typically, neighboring nodes are those
directly connected to xi, i.e:

N (xi) = {yj | (i, j) ∈ E} ∪ {yj | (j, i) ∈ E}

ICA relies on the assumption that the probability P (yi = l|xi, G) of a label can
be approximated by the local probability P (yi|xi,N (xi)), which only depends
on the associated content xi and on the set of neighboring labels. Note that,
since the number of neighboring labels N (xi) is variable and depends on node
xi, neighbors information needs to be encoded as a fixed-length vector to en-
able the use of usual classification techniques. This is detailed and illustrated in
Section 5.

Learning. The learning procedure of ICA is given in Algorithm 1.
P (yi|xi,N (xi)) is estimated by a multiclass classifier. Possible multiclass base
classifiers include neural networks, decision trees, naive Bayes or support vector
machines. The base classifier is learned thanks to a learning algorithm A given
a labeled training graph (G, Y ). Learning the base classifier simply consists in
creating one classification example per node in the graph and then running A. In
these classification examples, inputs are pairs (xi,N (xi)) and outputs are cor-
rect labels yi ∈ L. Note that both batch learning algorithms and online learning
algorithms may be used in conjunction with ICA.

Inference. ICA performs inference in two steps, as illustrated in Algorithm 2.
The first step, bootstrapping, predicts an initial label for all the nodes of the
graph. This step may either be performed by the base classifier – by removing
neighboring labels information – or by another classifier trained to predict labels
given the local features only. The second step is the iterative classification process
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Input: A unlabeled graph G = (V, E)
Input: A classifier P (yi|xi,N (xi))
Output: The set of predicted labels Y

// Bootstrapping

foreach xi ∈ X do
yi ← argmaxl∈L P (yi = l|xi)

end

// Iterative Classification

repeat
Generate ordering O over nodes of G.
foreach i ∈ O do

yi ← argmaxl∈L P (yi = l|xi,N (xi))
end

until all labels have stabilized or a threshold number of iterations have elapsed
return Y

Algorithm 2. ICA Inference algorithm

itself, which re-estimates the labels of each node several times, picking them in a
random order and using the base classifier. ICA inference may converge exactly;
if none of the labels change during an iteration, the algorithm stops. Otherwise,
inference is usually stopped after a given number of iterations.

The main advantage of ICA is that both training and inference have linear
complexities w.r.t. the number of nodes of the graphs. Furthermore, even if it
is not guaranteed to converge, ICA has shown to behave well in practice and to
give nice performance on a wide range of real-world problems [15].

4 Simulated ICA

When using ICA to infer the labels of a directed graph G, the base classifier is
used repeatedly to predict the label of a node given its content and neighboring
labels. Since it is very rare to reach perfect classification, the base classifier
of ICA often makes some prediction errors during inference. Since prediction
errors become inputs for later classification problems, ICA raises an important
bias between training and inference; in the former case, neighboring labels are
always correct, while they may be noisy in the latter case. This training/inference
bias is illustrated in Figure 2.

The training/inference bias raised by ICA corresponds to a general problem
that appears as soon as predictions become inputs for later classification prob-
lems. In the context of collective classification, the authors of Stacked Learning
[8] identified the same training/inference bias. Both the Simulated ICA approach
detailed below and Stacked Learning are motivated by the same concern: learn-
ing with intermediary predictions that are adapted towards the natural bias of
the classifier.
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Fig. 2. Illustration of the learning/inference bias of ICA. Left: during training, only
perfect neighboring labels are considered. Right: during inference, several neighboring
labels may be wrong due to classification errors.

4.1 Learning Algorithm

In order to remove the learning/inference bias of ICA, the base classifier should
be trained on situations representative of what happens during inference. In
other words, the base classifier should be trained with corrupted neighboring
labels. Furthermore, these labels should be biased towards the natural bias of
inference: errors that are more frequent during inference should appear more
during learning. Simulated ICA (Sica) relies on a simple, but powerful, idea
to make training examples representative of inference behavior: simulation. We
propose to simulate inference during learning, in order to create the training
examples representative of the real use of the base classifier.

The general scheme of the Simulated ICA learning procedure is given by
Algorithm 3. Sica is an iterative learning algorithm which repeatedly runs ICA
inference, using labels which are sampled based on the currently learned classifier
P (yi|xi,N (xi)). This sampling operation can be performed in different ways,
which are detailed in Section 4.2. At each inference step, one training example is
submitted to the learning algorithm A, to train the base classifier for predicting
the correct label yi given the node xi and the current neighboring labels. The
key property of training examples in Sica is that they rely on currently predicted
neighboring labels instead of assuming perfectly labeled neighbors, as it is the
case of ICA.

Similarly to classical ICA, both batch and stochastic learning algorithms may
be used inside Sica. In our experiments, we used stochastic descent learning
algorithm to update the parameters of the base classifier.

4.2 Sampling Methods

When learning with Sica, the aim of simulation is to generate a maximum
number of situations that are representative of ICA’s inference behavior. Sica

therefore relies on a sampling operation, whose role is to select the labels yi used
during learning. We propose three sampling strategies:
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Input: A labeled graph (G, Y )
Input: A multiclass learning algorithm A
Output: A classifier P (yi|xi,N (xi))
repeat

// Bootstrapping

foreach xi ∈ X do
yi ← argmaxl∈L P (yi = l|xi)

end

// Iterative Classification

repeat
Generate ordering O over nodes of G.
foreach i ∈ O do

sample yi given P (yi = l|xi,N (xi))
submit training example ((xi,N (xi)), yi) to A

end

until iterative classification terminates

until learning has converged or a threshold number of iterations have elapsed
return the classifier trained by A

Algorithm 3. Simulated ICA Learning algorithm

– Sica-Det (Deterministic). The simplest way to perform sampling in
Sica consist in selecting the labels yi that are predicted by the current
classifier P (yi|xi,N (xi)). Formally, the sampling operation used in Sica-

Det is defined as follows:

yi = argmax
l∈L

P (yi = l|xi,N (xi))

– Sica-Uni (Uniform Noise). In order to increase the range of generated in-
ference situations, one simple variant of Sica called Sica-Uni, consists in
introducing stochasticity into the inference process by selecting labels ran-
domly with a small probability. Formally, the sampling operation used in
Sica-Uni is defined as follows:

yi =

{
a random label l ∈ L with probability ε

argmaxl∈L P (yi = l|xi,N (xi)) with probability 1− ε

where ε ∈ [0, 1] is a parameter controlling the tradeoff between random
sampling and Sica-Det style sampling.

– Sica-Prob (Probabilistic). Instead of using uniform noise, a more natural
alternative consists in sampling labels from the P (yi|xi,N (xi)) distribution:

yi = sample l ∈ L from P (yi = l|xi,N (xi))

The advantages of Sica-Prob and Sica-Uni over Sica-Det are twofold. Firstly,
stochasticity enables to generate a wider range of inference situations and thus
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creates more training examples for the base classifier. This may thus lead to more
robust classifiers, especially when using few training nodes. Secondly, stochastic-
ity may contribute to make training conditions closer to test conditions. In this
sense, simulating the inference procedure with additional noise is an alternative
to the cross-validation approach of Stacked Learning. In both cases, the aim is
to learn with intermediary predictions that correctly reflect the behavior of the
model on testing data. Stacked Learning creates the intermediary predictions
by cross-validation, while we propose to directly modify the predicted labels on
training data. We show in Section 5 that Sica-Prob and Sica-Uni frequently
outperform Stacked Learning experimentally.

4.3 One Classifier Per Pass

ICA operates in several passes, where each node of the graph is re-estimated
during one pass. Since the problem of first estimating the labels may slightly
differ from the problem of re-estimating the labels at the second pass or at the
third pass, the current pass number may have a direct influence on the base
classifier. Instead of learning a unique classifier P (yi|xi,N (xi)), Sica can be
modified to take the current pass number, t, into account, by learning a classifier
P (yi|xi,N (xi), t).

Sica-Det, Sica-Uni and Sica-Prob can be modified by learning one distinct
classifier per pass. This leads to three new variants of Sica that are denoted
Sica

+
-Det, Sica

+
-Uni and Sica

+
-Prob in the remainder of this paper. As

an example, our experiments use Sica with 5 maximum inference passes, which
leads to a set of 5 slightly different classifiers, each one specialized for a given
inference pass. Concretely, using one classifier per pass makes it possible to
learn finer inference-dependent behavior. This idea is similar to stacking: in
both Sica

+ and Stacked Learning, there is one classifier per inference pass and
each of these classifiers is trained to compensate the errors of previous classifiers.

Sica and Sica
+ both perform learning and inference in the same way. The

only difference concerns the number of parameters which is multiplied by the
number of inference passes by using one disctinct classifier per pass.

5 Experiments

In this section, we describe experimental comparisons between Simulated ICA
and various state-of-the-art models for inductive graph labeling.

5.1 Datasets

We performed experiments on four datasets of webpages and on three datasets
of scientific articles, whose characteristics are summarized in Table 1. In the
former datasets, nodes correspond to webpages, links represent web hyperlinks
and the aim is to predict the category of each webpage. In the latter datasets,
nodes are scientific articles, links are citation links and the aim is to predict the
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Table 1. This table shows different charasteristics (numbers of nodes, links, features
and classes) of the seven different datasets used in our experiments. The four first
datasets are small scale graphs from WebKB, the two following ones are medium scale
graphs and the last one is our large scale dataset.

Dataset Nodes Links Features Classes

Small scale – WebKB

Cornell 195 304 1703 5
Texas 187 328 1703 5
Washington 230 446 1703 5
Wisconsin 265 530 1703 5

Medium scale
CiteSeer 3312 4715 3703 6
Cora-I 2708 5429 1433 7

Large scale
Cora-II 36954 136024 11816 11

category of each article. All nodes are described by feature vectors, with features
that correspond to the most frequent words and that indicate whether or not
the associated words appear. Cora-II was introduced by A. McCallum and was
preprocessed by keeping only the words appearing in at least 10 documents2.
The other datasets were preprocessed by Getoor et al3.

5.2 Experimental Setup

State-of-the-art models. In order to evaluate Simulated ICA, we have im-
plemented three state-of-the-art graph labeling models: Iterative Classification
(Ica), Gibbs Sampling (Gs) and Stacked Learning. Our implementation of
Stacked Learning uses 5-fold cross-validation during learning to create the inter-
mediary predictions. Stack2 is the simplest Stacked Learning model, where the
labels are first estimated based on the content only and are then re-estimated
by taking both the initial predictions and the content into account. Stack3
is a Stacked Learning model with three stacks: labels are first estimated using
Stack2 and are then re-estimated with a classifier that uses both the content and
the predictions of Stack2. Similarly, Stack4 and Stack5 are Stacked Learning
models that respectively rely on Stack3 and Stack4 to provide intermediary
predictions.

Baselines. We have also compared Simulated ICA with two baselines named
Content-Only (Co) and Optimistic (Opt). The former is a classifier ignoring
the graph structure and taking only the content of nodes into account during
classification. The latter is a classifier which assumes the availability of perfect
neighboring labels for each node, during both training and inference. Note that
2

Cora-II is available at http://www.cs.umass.edu/~mccallum/code-data.html
3 Datasets available at http://www.cs.umd.edu/~sen/lbc-proj/LBC.html, see [14]

for more details.

http://www.cs.umass.edu/~mccallum/code-data.html
http://www.cs.umd.edu/~sen/lbc-proj/LBC.html
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Fig. 3. A feature function to jointly describe content of nodes and neighboring labels.
Feature vectors contain three parts. The first one describes the content of the node
and the other two describe the labels of the node neighbors. For each label, there is a
feature which counts the number of predecessor (resp. successors) with this label.

due to this dependency, the Opt baseline is not a “true model” able to generalize
to new unlabeled graphs.

Base classifier. In order to make the comparison fair, we used the same base
classifier, the same learning algorithm and the same tuning procedure for all
models. The base classifiers are L2-regularized maximum-entropy classifiers [4]
learned with stochastic gradient descent. For each model, we tried ten different
regularizer values and kept the best-performing ones.

In order to take simultaneously the content of nodes and their neighboring
labels, the base classifiers rely on a feature function that jointly maps contents
and associated neighboring labels to scalar vectors. The feature function used in
our experiments is illustrated in Figure 3.

Data splitting. In order to evaluate the generalization abilities of the models,
we have split each dataset into one training graph and one testing graph. As
[16], we have used a random sampling strategy: both the training and the testing
graphs are random subsets of the whole graphs. When splitting graphs randomly,
it is often the case that some links connect train nodes to test nodes. The simplest
way to deal with these train-test links is simply to ignore them; this approach
is called Test Links Only. Since many links may be discarded with the Test
Links Only approach, we have also adopted the alternative approach proposed
by [14] called Complete Links in which no link is suppressed and in which we
assume, during inference, to know the correct labels of training nodes connected
to testing nodes. For the purpose of comparison with [14], we used 10-folds cross-
validation with the Complete Links strategy. Note that, if we used 10-folds with
Test Links Only, 90% of the links involving testing nodes would be discarded.
In order to make the average number of links connected to testing nodes and to
training nodes equal, we used Test Links Only with two-fold cross-validation.
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Table 2. This table shows the accuracy of different models on Cora-I, CiteSeer and
the four WebKB databases. The graphs were split randomly into two folds by using
Test Links Only strategy. We used 50% of the dataset as a training set and took the
mean test accuracy over ten runs.

Small scale – WebKB Medium scale
Cornell Texas Washington Wisconsin Cora-I CiteSeer

Co 71.79 82.14 80.52 85.21 74.73 71.73
Ica 72.91 82.46 81.22 84.76 78.69 73.14
Gs 73.02 82.67 81.04 84.98 78.67 72.8

Stack2 73.02 82.35 81.74 84.38 78.85 73.25
Stack3 73.02 82.46 81.13 84.76 79.73 73.34
Stack4 73.02 82.67 81.3 84.83 79.53 73.25
Stack5 72.91 82.35 81.13 84.76 79.81 73.22

Sica-Det 73.53 82.24 81.83 85.21 78.77 72.92
Sica-Uni 74.24 83.21 82.35 85.36 79.29 73.21

Sica-Prob 74.04 83.42 82.43 85.74 79.32 73.47
Sica

+
-Det 71.48 80.32 80 83.32 79.18 73.59

Sica
+
-Uni 72.71 82.35 81.13 84.45 79.59 73.70

Sica
+
-Prob 73.42 82.35 81.91 85.06 80.01 74.02

Opt 72.5 82.78 82.17 84.46 83.16 76.18

5.3 Results

In our experiments, the parameters was the same as these in [16] for the baselines
(Co, Opt, Ica, Gs and Stack): the maximum number of training iterations
was set to 100, for Iterative Classification we used a maximum of 100 inference
passes and for Gibbs Sampling we performed 1000 samples of each node label.
For the Sica inference, we used a maximum of 5 passes. Moreover, we fixed the
uniform noise percentage in Sica-Uni and Sica

+
-Uni to 10%.

Comparisons with state-of-the-art models. We compared the six variants
of Sica described in Section 4 with the baselines described previously on the
small and medium scale datasets. Firstly, we have split each dataset into two
halves by using the Test Links Only strategy. Each experiment was performed
10 times with different random splits and we report the mean test accuracies
in Table 2. As expected, Sica models outperform Ica on all datasets. More
interestingly, our models also outperform Gibbs Sampling and Stacked Learning
in nearly all cases. In particular, the Sica-Uni and Sica-Prob models that rely
on stochasticity outperform Stacked Learning on five datasets out of six, whereas
this tendency is less clear for Sica-Det. As discussed in Section 4, adding a
perturbation to the predicted labels proves to be a good alternative to the heavy
cross-validation based prediction process adopted by Stacked Learning. Among
the two perturbation approaches, Sica-Prob most-of-time reaches better results
than Sica-Uni. A deeper comparison of these sampling approaches in given
below. Using one classifier per pass (Sica

+
-Det, Sica

+
-Uni and Sica

+
-Prob)
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Table 3. This table shows the accuracy of different models on Cora-I, CiteSeer and
the four WebKB databases. Here, the graphs were split randomly into ten folds by
using Complete Links strategy. Then, we did a 10-folds cross-validation and took the
mean test accuracy.

Small scale – WebKB Medium scale
Cornell Texas Washington Wisconsin Cora-I CiteSeer

Co 79.5 86.64 84.35 89.4 77.43 72.98
Ica 79.47 87.22 85.65 89.79 88.52 77.63
Gs 80.5 87.22 85.22 89.79 88.18 77.47

Stack2 78.92 89.91 87.39 89.42 88.07 76.72
Stack3 78.42 88.27 88.26 89.03 88.18 77.35
Stack4 78.97 88.3 86.96 89.8 88.4 77.23
Stack5 78.45 88.83 87.83 89.42 88.4 77.08

Sica-Det 81.55 87.75 85.65 89.79 88.37 76.27
Sica-Uni 81.55 88.27 85.65 89.79 88.26 76.48

Sica-Prob 81.53 87.75 86.52 90.16 88.37 76.33
Sica

+
-Det 79.5 86.7 84.78 89.42 88.74 77.75

Sica
+
-Uni 80.03 86.70 86.52 89.42 88.63 77.93

Sica
+
-Prob 81.05 87.22 85.65 89.79 88.66 78.02

Opt 79.97 87.75 86.09 89.77 88.85 78.08

improves over the basic versions of Sica on the two medium scale datasets (+
0.69% on Cora-I and + 0.55% on CiteSeer). On the small datasets, using
one classifier per pass slightly deteriorates the results. We believe that this is
due to estimation problems related to the large number of parameters on these
approaches.

The second set of experiments aims at comparing our results to those of [16].
Here, each dataset was split into ten folds by using the Complete Links strategy.
Table 3 gives the 10-fold cross-validation accuracies (90% training nodes and
10% testing nodes) for all models and all datasets. As previously, our models
most-of-the-time outperform Ica and Gs. On small datasets, Stacked Learning
is competitive with our models. However, these results should be taken with
a grain of salt, since, when using 90% training nodes with Complete Links, a
large majority of testing-node neighbors are in the training set. Consequently,
the various methods that take wrong labels into account during learning (Sica

and Stacked Learning) have a more limited interest in this case.

Impact of the uniform noise percentage. Next, we evaluated the impact
of uniform noise percentage on Sica-Uni. Figure 4 compares the three sampling
methods on our two medium scale datasets. With a reasonable noise percentage
(below 40%), the accuracy of Sica-Uni is between that of Sica-Det and that
of Sica-Prob. Once more, this confirms the contribution of stochasticity in the
simulation process of Sica.

In most cases, Sica-Prob outperforms Sica-Uni. Sica-Prob has another
key advantage over the latter: it does not rely on additional hyper-parameter,
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Fig. 4. Accuracy for varying percentage of uniform noise in Sica-Uni on CiteSeer

(on the left) and Cora-I (on the right)

Table 4. Test accuracies and training/inference time on Cora-II. The first two
columns give the mean test accuracy of the models with the Test Links Only and
Complete Links splitting strategies. The last two columns show approximate training
time and inference time. The results for Stack5 are incomplete due to the excessive
time requirement of this method (since we average our results over 10 runs and try
10 different regularizer values, the experiment would need more than three months to
complete).

Test Links Only Complete Links Training time Inference time
Co 49 49 2 min 300 ms
Ica 51.9 58.05 6 min 20 s
Gs 44.43 55.42 6 min 10 min

Stack2 54.46 56.28 13 min 1 s
Stack3 56.07 57.99 1 h 1.5 s
Stack4 56.67 58.52 4.5 h 2 s
Stack5 - - 20 h 2.5 s

Sica-Det 56.02 58.52 5 min 4 s
Sica-Uni 56.20 59.57 3 min 4 s

Sica-Prob 56.3 59.14 3 min 4 s
Sica

+
-Det 55.5 58.87 5 min 4 s

Sica
+
-Uni 56.25 59.56 3 min 4 s

Sica
+
-Prob 56.2 58.91 2 min 4 s

Opt 66.40 67.71 3.5 min 600 ms

which makes its tuning much easier. With a too high noise percentage, informa-
tion in neighboring labels becomes irrelevant and thus accuracy drops down to
the one of a Content-Only classifier.

Large scale. In order to show that our model can deal with large-scale graphs,
we performed a set of experiments on the Cora-II database. For each model,
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we performed 10 runs with 20% training nodes and 80% training nodes selected
randomly. The mean test accuracies are reported in Table 4. The first two
columns give scores respectively for Test Links Only and Complete Links. The
last two columns give the CPU time needed to train a single model and the time
needed to fully label the test graph4. Experiments were performed on standard
3.2 Ghz computer.

Our approaches clearly outperform Ica and Gs on Cora-II (up to +3% im-
provement) and behave similarly to Stacked Learning with a much lower training
time. Indeed, since each stack involves making 5 folds and learning a model on
each sub-fold recursively, Stack models have a training time which is exponen-
tial w.r.t. the number of stacks. Instead, all our models – that use 5 inference
passes – were learned in a few minutes.

6 Conclusion

In this paper, we have introduced the Simulated Iterative Classification Algo-
rithm (Sica), a new learning algorithm for ICA. The core idea of Sica is to
simulate ICA’s inference during learning. We argued that simulation is a sim-
ple and efficient way to create training examples that are representative of real
inference situations. We have shown that the proposed approach outperforms
state-of-the-art models (Iterative Classification, Gibbs Sampling and Stacked
Learning) on a wide range of datasets. Furthermore, we have shown that the
model scales well, which makes it possible to label graphs containing thousands
to millions of nodes.

Our future work will primarily focus on generalizing the idea of simulation
during learning to semi-supervised graph labeling problems. We believe that
one promising approach is to develop (fast and scalable) incremental inference
algorithms, that takes both the labeled and the unlabeled nodes into account,
and to learn them using simulation.

One key characteristic of ICA is that it relies on a classifier whose inputs de-
pend on its previous predictions. Although this paper is focused on supervised
graph labeling problems, we believe that the proposed idea of simulating infer-
ence during learning is relevant to a wider class of problems where predictions
become inputs for later classification problems. In order to tackle error propaga-
tion problems in such algorithms involving classifier chains, simulation is a key
solution, which appears to be both simple and efficient.
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Graph-Based Discrete Differential Geometry for
Critical Instance Filtering

Elena Marchiori

Department of Computer Science, Radboud University, Nijmegen, The Netherlands

Abstract. Graph theory has been shown to provide a powerful tool for
representing and tackling machine learning problems, such as cluster-
ing, semi-supervised learning, and feature ranking. This paper proposes
a graph-based discrete differential operator for detecting and eliminating
competence-critical instances and class label noise from a training set in
order to improve classification performance. Results of extensive exper-
iments on artificial and real-life classification problems substantiate the
effectiveness of the proposed approach.

1 Introduction

In graph-based data analysis, a dataset is represented as a graph, where the
vertices are the instances of the dataset and the edges encode a pairwise rela-
tionship between instances. For instance, the nearest neighbor relation between
points of a finite set in the Euclidean space can be described by the popular near-
est neighbor (proximity) graph [3,27]. Concepts and methods from graph theory
are then used for extracting knowledge from such a representation. In particular,
the graph Laplacian provides a natural interpretation to the geometric structure
of datasets. It has been used in machine learning for tackling diverse tasks such
as dimensionality reduction and clustering, e.g., [4,29], feature selection, e.g.,
[19,34], and semi-supervised learning, e.g., [35,36].

This paper shows how the graph Laplacian operator can be directly used for
filtering competence-critical instances and class label noise from a training set,
in order to improve test accuracy.

Research on instance selection focusses mainly on three types of filtering
techniques [8]: competence preservation, competence enhancement, and hybrid
approaches. Competence preservation algorithms, e.g., [1,14], remove irrelevant
points, that is, that do not affect the classification accuracy of the training
set. Competence enhancement methods, e.g., [23,26,28,31], remove noisy points,
such as those with a wrong class label, as well as points close to the decision
boundary, yielding to smoother decision boundaries, in order to increase clas-
sifier accuracy. Hybrid methods, e.g., [8,20,24,25,32], aim at finding a subset of
the training set that is both noise free and does not contain irrelevant points.
Alternative methods use prototypes instead of instances of the training set, see
for instance [21].

W. Buntine et al. (Eds.): ECML PKDD 2009, Part II, LNAI 5782, pp. 63–78, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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The algorithm proposed here belongs to the so-called competence enhance-
ment methods. It differs from previous methods for this task in the way it ex-
tracts information from the neighborhood of an instance in order to measure its
relevance. Indeed, while previous methods are based on ‘static’ measures, such
as being correctly classified, the proposed method uses a ‘differential’ measure,
defined by means of a graph Laplacian operator. Specifically, we consider the
graph-based representation of two class dependent K nearest neighbor (KNN)
relations defined over pairs of instances: the within- and between- class KNN.
The between-class KNN graph is used to define a graph Laplacian operator.
The within-class KNN graph is used to define the within-class degree function,
mapping vertices to their degree.

The application of the Laplacian operator to such function, called Laplace
scoring, provides such differential measure of instance relevance. It measures
the flow of the within-class degree function at each vertex of the between-class
KNN graph. Vertices with negative Laplace score are either close to the KNN
decision boundary or are outliers. This motivates the introduction of a simple
Laplace-based instance filtering algorithm, which removes instances having neg-
ative Laplace score.

To the best of our knowledge, this work presents the first attempt to perform
class noise instance filtering using a graph-based differential approach.

In order to test comparatively the effectiveness of this approach, extensive
experiments on artificial and real-life data sets are conducted. We consider three
classifiers: the KNN classifier without instance filtering, with the popular Wil-
son’s editing [31], and with Laplace filtering. Results of the experiments indicate
best test accuracy performance of Laplace filtering over the other methods, as
well as superior robustness with respect to the presence of class noise in the
training set.

Furthermore, comparison of Laplacian filtering with state-of-the-art editing
algorithms indicate similar or improved generalization performance of the 1-NN.

Finally, we investigate the use of Laplacian filtering for improving the perfor-
mance of classifiers other than 1-NN. We consider SVMs with RBF kernels. These
are related to NN methods, because each RBF measures the distance of a test
instance to one of the training instances. SVM training keeps certain training in-
stances as support vectors, and discards others. In this way, SVM/RBF may also
be viewed as a competence-enhancement filtering method. We investigate the ef-
fect of Laplacian filtering as pre-processing step by performing experiments on
datasets with different levels of added class noise. Results of these experiments
show that at all considered levels of class noise, Laplacian filtering has no signifi-
cant positive effect on the generalization performance of SVMs with RBF kernel.

In general, the results substantiate the effectiveness of graph Laplacian oper-
ators for tackling the class noise filtering problem. Therefore this contribution
adds yet another successful application of such powerful graph-based framework
in machine learning.

We begin by setting the stage with the notation and main concepts used in
this study.
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2 Background

In this paper we useX to denote a dataset of n instances X = {x1, . . . , xn}, where
xi is a real-valued vector of dimension m. Let C denote the set of class labels of X ,
and let l : X → C the function mapping each instance xi to its class label l(xi).

A graph G = (V,E) consists of a finite set V and a subset E ⊂ V × V . The
elements of V are the vertices of the graph and those of E are the edges of the
graph. In this work we consider undirected graphs, that is, such that for each
edge (u, v) ∈ E we have also (v, u) ∈ E. We say that u and v are adjacent
vertices, denoted by u ∼ v, if (u, v) ∈ E. The degree function d of a graph is
defined by d(u) = |{v | u ∼ v}|, where |S| denotes the cardinality of a set S.

The graph normalized Laplacian can be defined as follows. Suppose |V | = n.
Consider the n× n matrix L, defined as

L(u, v) =

⎧⎨⎩d(u) if u = v,
−1 if (u, v) ∈ E,
0 otherwise.

The (normalized) Laplacian of G is the n× n matrix

L(u, v) =

⎧⎪⎨⎪⎩
1 if u = v and d(u) 
= 0,
−1√

d(u)d(v)
if (u, v) ∈ E,

0 otherwise.

The graph Laplacian operator L maps real-valued functions on vertices to real-
valued functions on vertices, defined by

L(f)(u) =
1√
d(u)

∑
u∼v

(
f(u)√
d(u)

− f(v)√
d(v)

)
.

3 Laplacian Instance Filtering

Denote by l a generic element of C. Let Xl be the subset of X consisting of
those instances having class label equal to l. Define KNN(x, l) to be the set of
K nearest neighbors of x computed among those instance in Xl, excluding x.

Define the following two graphs. The within-class KNN graph, denoted by
Gwc = (V,Ewc), such that V = X , and

Ewc = {(xi, xj) | xj ∈ KNN(xi, l(xi)) or xi ∈ KNN(xj , l(xj))}.

Gwc represents the (symmetric) nearest neighbor relation between points of the
same class in the training set.

Analogously, define the between-class KNN graph, denoted by Gbc = (V,Ebc),
such that V = X ,

Ebc={(xi, xj) | (xj ∈ KNN(xi, l) and l 
= l(xi)) or (xi ∈ KNN(xj , l) and l 
= l(xj))}.
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Gbc represents the (symmetric) KNN relation between points of each pair of
different classes in the training set. Note that this relation differs from the nearest
unlike neighbor relation (NUN) [15] because it considers all pairs of different
classes, while NUN considers one class versus the union of all the other classes.
Clearly, for binary classification problems the two relations coincide.

The within- and between-class graphs with K = 1 for a toy binary classifica-
tion problem are shown in Figure 1.

Let L be the Laplacian operator of Gbc. Let g denote the within-class degree
function, mapping vertex i to its degree in Gwc. g(i) can be viewed as an estimate
of the density of points of class label l(xi) around xi, since the more instances
with label l(xi) are close to xi, the larger the g(i) will be [34].

We define the Laplace score, denoted by Score, to be the real-valued function
on vertices such that

Score(u) = L(g)(u).

This function assigns a small score to an instance whose neighbors from different
classes (that is, its adjacent vertices in Gbc) are in a region containing many
points of their own class, and few points of classes different from their one.

The within-class degree and Laplace score of instances for the considered toy
classification example are shown in Figure 1. Observe that in this example points
with negative Laplace score are close to the one nearest neighbor class decision
boundary. This motivates the introduction of the simple Algorithm 1 for class
noise filtering, which removes from the training set those instances with negative
Laplace score.

The time complexity of this algorithm is dominated by the cost of building
the between- and within-class graphs, which is quadratic in the size of the train-
ing set. However, this bound can be reduced to O(n log(n)) (for small input
dimension) by using metric trees or other spatial data structures, as shown for

Fig. 1. Graphs and Laplace score with K = 1 of a training set for a toy binary
classification problem in the real plane
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Algorithm 1. Laplace instance filtering
Input: training data X of size n
number K of nearest neighbors
Output: subset S of X
Gbc = between-class KNN graph of X
Gwc = within-class KNN graph of X
g = degree function of Gwc

for i = 1 to n do
Score(i) = L(g)(i)

end for
S = {xi ∈ X | Score(i) ≥ 0}

example in [18], as well as structures optimized for a data and query distri-
bution [5,9].

Application of Laplace instance filtering to an instance of the XOR classifica-
tion problem is illustrated in Figure 2. Points filtered out by the algorithm are
highlighted with circles.

Fig. 2. Application of Laplace filtering with K = 1 to an instance, with class noise
examples, of the XOR classification problem in the real plane. The points removed
have filled markings.

3.1 Justification

The score of an instance can be interpreted as a discrete divergence measure.
This can be shown by using discrete analogous of differential operators. To this
end, we use the results contained in [36].

Indeed, consider the graph gradient operator, mapping real-valued functions
of the vertices into real-valued functions on edges.

(∇φ)(u, v) =
φ(v)
d(v)

− φ(u)
d(u)

.

Observe that in this definition, before computing the variation of φ between two
adjacent vertices, the function value is split at each vertex along its adjacent edges.
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The graph gradient can also be defined at vertex v, as

∇φ(u) = {(∇φ)(u, v) | (u, v) ∈ E}.

The graph divergence maps real-valued functions of the edges into real-valued
functions on vertices.

(div ψ)(u) =
∑
u∼v

1√
d(v)

(ψ(u, v)− ψ(v, u)).

The divergence measures the net outflow of function ψ at each vertex.
The following equality relates the graph divergence and Laplacian operators:

L(φ) = −1
2
div (∇φ).

By instantiating the above formula with the graph Laplacian of Gbc and the
within-class degree function g we obtain

Score = −1
2
div (∇g).

Therefore, the Laplace instance score is a measure of negative divergence. An
instance having high divergence value (hence small Score value) can be consid-
ered critical, since there is a high flow of within-class degree at that instance in
a neighborhood characterized by means of the between-class graph.

4 Experiments

In order to assess comparatively the accuracy performance of the proposed filter-
ing method, we conduct extensive experiments on 19 Machine Learning datasets,
using the K-nearest neighbor classifier (KNN) with no training set pre-processing
[13], here called No-filtering, with Laplace instance filtering, and with the pop-
ular Wilson’s filtering algorithm. The latter one removes those instances that
do not agree with the majority of its K nearest neighbors. We consider three
instances of each algorithm obtained by setting the number K of neighbors to
1, 3, 5, respectively, resulting in a total of nine classifiers.

Cross validation is applied to each dataset. Specifically, for each partition of
the dataset, each filtering algorithm is applied to the training set X from which
a subset S is returned. The KNN classifier that uses only points of S is applied
to the test set.

4.1 Datasets

We consider 3 artificial datasets (Banana, g50c, g10n) and 16 real-life ones, with
different characteristics as shown in Table 1. These datasets have been used in
previous studies on model selection for (semi)supervised learning.

Specifically, Raetsch’s binary classification benchmark datasets have been
used in [22]: they consists of 1 artificial and 12 real-life datasets from the UCI,
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Table 1. Datasets used in the experiments. CL = number of classes, TR = training
set, TE = test set, VA = number of variables, Cl.Inst. = number of instances in each
class.

Dataset CL VA TR Cl.Inst. TE Cl.Inst.

1 Banana 2 2 400 212-188 4900 2712-2188

2 B.Cancer 2 9 200 140-60 77 56-21

3 Diabetes 2 8 468 300-168 300 200-100

4 German 2 20 700 478-222 300 222-78

5 Heart 2 13 170 93-77 100 57-43

6 Image 2 18 1300 560-740 1010 430-580

7 Ringnorm 2 20 400 196-204 7000 3540-3460

8 F.Solar 2 9 666 293-373 400 184-216

9 Splice 2 60 1000 525-475 2175 1123-1052

10 Thyroid 2 5 140 97-43 75 53-22

11 Titanic 2 3 150 104-46 2051 1386-66

12 Twonorm 2 20 400 186-214 7000 3511-3489

13 Waveform 2 21 400 279-121 4600 3074-1526

14 Iris 3 4 120 40-40-40 30 10-10-10

15 Breast-W 2 9 546 353-193 137 91-46

16 Bupa 2 6 276 119-157 69 26-43

17 Pima 2 8 615 398-217 153 102-51

18 g50 2 50 550 252-248 50 23-27

19 g10n 2 10 550 245-255 50 29-21

DELVE and STATLOG benchmark repositories. For each experiment, the 100
(20 for Splice and Image) partitions of each dataset into training and test set
available in the repository are used here.

Two artificial binary classification problems from Chapelle’s benchmark
datasets [11], g50c and g10n, are generated from two standard normal multi-
variate Gaussians. In g50c, the labels correspond to the Gaussians, and the
means are located in a 50-dimensional space such that the Bayes’ error is 5%. In
contrast, g10n is a deterministic problem in 10 dimensions, where the decision
function traverses the centers of the Gaussians, and depends on only two of the
input dimensions. For each experiment, the 10 partitions of each dataset into
training and test set available in the repository are used.

Finally, four standard benchmark datasets from the UCI Machine Learning
repository are used: Iris, Bupa, Pima, and Breast-W. For each experiment, 100
partitions of each dataset into training and test set are used. Each partition
randomly divides the dataset into training and test set, equal to 80% and 20%
of the data, respectively.

4.2 Results

Results of the experiments are summarized in Table 2 (also plotted in
the first row of Figure 3). The table contains average accuracy results of the
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Table 2. A(M) = average (median) results over datasets. S = +/- number of times
Laplace average accuracy is significantly better (+) or significantly worse (-) than the
other algorithm, according to a paired t-test at 0.01 significance level. W = a ’+’
indicates Laplace significantly better than the other algorithm at a 0.01 significance
level according to a Wilcoxon test for paired samples.

Laplace Wilson No-Filtering

1 3 5 1 3 5 1 3 5

1 Banana 88.5 88.9 88.7 87.8 88.2 88.3 86.4 87.9 88.3

2 B.Cancer 70.6 73.0 74.2 69.4 73.4 73.6 67.3 68.5 71.2

3 Diabetes 73.9 74.0 73.8 72.7 73.2 73.6 69.9 72.4 72.6

4 German 74.0 74.0 73.1 73.0 73.9 73.9 70.5 73.1 74.1

5 Heart 81.6 82.6 82.9 80.6 82.0 82.7 76.8 80.5 81.8

6 Image 94.9 92.3 90.8 95.8 94.6 94.1 96.6 95.7 95.1

7 Ringnorm 67.3 63.2 61.0 54.8 51.2 50.6 64.9 59.5 56.7

8 F.Solar 64.0 64.6 64.7 61.4 62.8 62.7 60.7 62.3 62.2

9 Splice 73.3 76.4 77.1 68.4 68.2 66.7 71.1 72.6 73.3

10 Thyroid 94.3 91.9 89.5 94.0 91.9 89.5 95.6 93.8 92.6

11 Titanic 77.2 77.0 77.2 67.3 72.5 74.5 66.9 72.3 74.0

12 Twonorm 95.5 96.6 96.9 94.1 95.9 96.4 93.3 95.5 96.2

13 Waveform 86.2 87.4 87.3 85.4 86.9 87.5 84.1 86.3 87.3

14 Iris 95.2 95.1 94.8 96.1 95.5 95.8 95.6 95.1 95.8

15 Breast-W 97.1 97.3 97.1 96.9 97.2 96.9 96.2 97.1 97.4

16 Bupa 65.8 69.2 68.4 63.5 67.0 67.4 61.2 64.3 66.5

17 Pima 72.5 74.2 75.0 69.6 73.1 73.8 67.3 69.9 72.0

18 g50 85.6 89.8 91.2 82.2 87.2 92.4 79.6 88.4 92.0

19 g10 74.6 79.0 80.8 74.0 79.2 80.0 75.2 78.4 78.2

A 80.6 81.4 81.3 78.3 79.7 80.0 77.9 79.7 80.4

M 77.3 79.0 80.8 74.0 79.2 80.0 75.2 78.4 78.2

S n/a n/a n/a 14/2 15/3 11/2 13/2 7/3 11/5

W n/a n/a n/a + + + + + +

algorithms on each classification task, their average and median, the outcome
of a paired t-test on the results of each classification task, and the outcome of
a paired Wilcoxon test on the (average) results of the entire set of classification
tasks.

Results of a paired t-test at a 0.01 significance level shows improved accuracy
performance of Laplace (see row ‘S’ in Table 2) on the majority of the datasets.
Application of the non parametric Wilcoxon test for paired samples at a 0.01
significance level to the average results on the entire set of classification tasks,
indicates that KNN with Laplace filtering outperforms the other algorithms.

In summary, the experimental analysis indicates effectiveness of Laplace-based
instance filtering and robustness with respect to the presence of high number of
variables, training examples, noise and irrelevant variables.

We turn now to the experimental analysis of classifier robustness with respect
to the presence of class noise.
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Fig. 3. Average test accuracy performance of the methods

4.3 Robustness to Class Noise

In order to analyze experimentally the robustness of the methods with respect
to the presence of class noise in the training set, all experiments are repeated
with modified training sets. The new training sets are obtained by changing the
class labels of a given percentage γ of randomly selected instances.

Figure 3 shows plots of the average accuracy of the nine KNN classifiers
using the original datasets and those obtained by adding γ% class noise, with
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Table 3. Results of experiments on ML benchmark datasets of HMN-EI, ICF, DROP3,
and Laplace filtering

Dataset HMN-EI ICF DROP3 Laplace

Banana 88.6 86.1 87.6 88.5

B.Cancer 69.2 67.0 69.7 70.6

Diabetes 73.5 69.8 72.3 73.9

German 72.9 68.6 72.0 74.0

Heart 81.6 76.7 80.2 81.6

Image 92.7 93.8 95.1 94.9

Ringnorm 65.6 61.2 54.7 67.3

F.Solar 64.7 61.0 61.4 64.0

Splice 70.7 66.3 67.6 73.3

Thyroid 93.2 91.9 92.7 94.3

Titanic 76.0 67.5 67.7 77.2

Twonorm 95.9 89.2 94.3 95.5

Waveform 85.4 82.1 84.9 86.2

Iris 95.4 95.3 95.8 95.2

Breast-W 96.9 95.4 96.8 97.1

Bupa 64.5 60.9 63.1 65.8

Pima 71.7 67.9 69.4 72.5

G50 86.8 82.2 82.8 85.6

G10 79.2 73.0 75.0 74.6

Average 80.2 76.6 78.1 80.6

Median 79.2 73.0 75.0 77.3

S 10/2 18/0 13/0 n/a

W ∼ + + n/a

γ = 10, 20, 40. The Figure contains four rows, one for each value of γ (the original
training set corresponds to setting γ = 0). Each row contains three plots, one for
each value of K. Each plot shows average test accuracy of No-filtering, Laplace,
and Wilson algorithms for the specific value of K and γ.

In all the considered cases, the average test accuracy curve of Laplace dom-
inates those of the other two algorithms, with more improvement for higher
values of K. Indeed, in all these cases, KNN with Laplace filtering outperforms
significantly the other classifiers.

These results substantiate robustness of the Laplace-based instance filtering
approach for KNN with respect to the presence of class noise.

5 Comparison with Other Methods

5.1 Editing Algorithms

In order to compare the performance of the proposed method with that of state-
of-the-art editing algorithms, we report in Figure 3 the test accuracy results of



Graph-Based Discrete Differential Geometry for Critical Instance Filtering 73

the 1-NN classifier, achieved by the state-of-the-art instance editing algorithms
recently investigated in [20]: Iterative Case Filtering (ICF) [7], Decremental Reduc-
tion Optimization (DROP3) [32,33], and Hit Miss Network Editing (HMN-EI) [20].

ICF first applies E-NN noise reduction iteratively until it cannot remove any
point, and next iteratively removes points. At each iteration all points for which
the so-called reachability set is smaller than the coverage one are deleted. The
reachability of a point x consists of the points inside the largest hyper-sphere
containing only points of the same class as x. The coverage of x is defined as the
set of points that contain x in their reachability set.

DROP3 first applies a pre-processing step which discards points of X misclas-
sified by their K nearest neighbors, and then removes a point x from X if the
accuracy of the KNN rule on the set of its associates does not decrease. Each
point has a list of K nearest neighbors and a list of associates, which are updated
each time a point is removed from X . A point y is an associate of x if x belongs
to the set of K nearest neighbors of y. If x is removed then the list of K nearest
neighbors of each of its associates y is updated by adding a new neighbor point
z, and y is added to the list of associates of z. The removal rule is applied to the

Table 4. Results of SVM/RBF with Laplace pre-processing (LAPLACE) and without
(SVM-RBF) at different levels of class noise γ

γ = 0 γ = 20 γ = 40
svm-rbf laplace svm-rbf laplace svm-rbf laplace

1 89.3 89.3 87.3 87.4 65.7 66.0

2 73.1 72.9 71.1 71.1 62.5 63.1

3 76.5 76.5 74.4 74.4 64.9 64.5

4 76.2 76.4 73.3 73.3 65.7 66.1

5 83.9 84.1 81.1 81.6 64.5 65.4

6 96.5 96.5 92.9 92.9 78.7 78.9

7 98.2 98.1 96.5 96.2 81.3 79.0

8 66.8 66.8 65.0 65.1 57.9 58.4

9 88.8 88.6 83.3 83.3 68.0 68.2

10 95.2 95.0 91.5 91.9 76.4 76.4

11 77.3 77.2 76.1 75.9 67.1 68.0

12 97.5 97.5 96.5 96.9 88.0 89.5

13 89.8 89.8 87.1 87.3 74.2 75.9

14 95.8 95.8 95.1 95.6 90.6 91.0

15 94.2 95.0 96.2 96.2 90.2 90.8

16 70.5 70.7 64.2 64.6 54.9 54.9

17 75.6 75.8 72.9 73.0 64.7 64.7

18 95.8 95.8 93.4 92.6 78.6 81.6

19 94.2 95.0 88.4 89.0 69.8 68.2

A 86.1 86.2 83.5 83.6 71.8 72.1

M 89.3 89.3 87.1 87.3 68.0 68.2

S 0/0 0/0 0/0 0/0 0/0 2/0

W ∼ ∼ ∼ ∼ ∼ ∼
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points sorted in decreasing order of distance from their nearest neighbor from
the other classes (nearest enemy).

HMN-EI is an iterative heuristic algorithm based on a directed graph-based rep-
resentation of the training set, called hit miss network. Topological properties of
such network are used for designing an iterative algorithm that removes points
considered irrelevant or harmful to the 1-NN generalization performance. The em-
pirical error on the training set is used as criterion for terminating the iterative
process.

Results in Figure 3 show that test accuracy of Laplace filtering is similar or
better than the one of these state-of-the-art methods. However, observe that
editing algorithms also reduce storage, while Laplace filtering is specifically de-
signed for removing critical instances. In order to reduce also storage reduction,
one could use Laplace instance filtering as pre-processing step, followed by the
application of a competence preservation algorithm, such as [1].

5.2 SVM with RBF Kernels and Optimized Parameters

A family of classifiers different from KNN, whose training process results in the
selection of a subset of the training set, are the Support Vector Machines (SVMs).
They map training points x into a higher (possibly infinite) dimensional feature
space by the function θ. Then SVM finds a linear separating hyperplane with
the maximal margin in this higher dimensional feature space. Given a training
set of real-valued instance-label pairs (xi, l(xi)), i = 1, . . . , n the support vec-
tor machines (SVM) [6,12] require the solution of the following optimization
problem:

min
w,b,ξ

wTw + C

n∑
i=1

ξi

such that l(xi)(wT ξ(xi) + b) ≥ 1− ξi and ξi ≥ 0.

C > 0 is the penalty parameter of the empirical error term. Furthermore,
K(x, y) = ξ(x)T ξ(y) is called the kernel function. In particular, SVMs with
Radial Basis Function (RBF) kernel use K(x, y) = e−σ||x−y||2. The set of points
with ξi > 0 are called support vectors. They uniquely identify the separating
hyperplane.

It is interesting to investigate whether the use of Laplacian filtering as pre-
processing step improves the performance of SVMs with RBF kernel and opti-
mized parameters.

To this aim, the experimental evaluation described in the previous section is
used. Specifically, first cross-validation is applied to search for the given training
set for the optimal values of the soft-margin C parameter and the RBF parameter
σ1. Next, Laplacian filtering with K = 1 and Euclidean distance is applied for
discarding critical instances from the training set. Finally, a SVM with RBF

1 In the experiments we use the Matlab functions implemented by S. Hashemi of
LIBSVM’s library [10].
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kernel is trained on the selected instances, using the given optimal values for σ
and C.

Results of experiments are reported in Table 4. The new training sets are
obtained by changing the class labels of a given percentage γ of randomly selected
instances. We consider γ = 0, 20, 40. Laplace filtering does not appear to affect
significantly the test accuracy at the considered levels of class noise. This result
is not very surprising, since SVMs with RBF kernel and ’optimized’ parameters
selection have in general good generalization accuracy in the presence of noise.

6 Conclusions and Future Work

This paper introduced a graph differential operator for scoring instances of a
training set. We showed how this scoring is related to the flow of the within-
class density in the between-class KNN graph, and observed empirically that
instances with negative score are close to the class decision boundary or are
outliers. This observation motivated the design of a simple algorithm for class
noise instance filtering which removes instances having negative score.

We performed extensive experiments on artificial and real-life datasets and
analyzed the test accuracy of KNN classifier without filtering, with a traditional
filtering algorithm, and with Laplace filtering. The results indicated superior
performance of Laplace filtering over the other algorithms. Experiments with
modified training sets obtained by permuting the class label of a percentage of
their instances were conducted, to investigate robustness of the approach to the
presence of class noise. Results of the experiments substantiated the robustness
of Laplacian filtering, which achieved significantly better test accuracy perfor-
mance than the other algorithms, at each of the considered levels of class noise.
Comparison of Laplacian filtering with state-of-the-art editing algorithms indi-
cated similar or improved generalization performance of the 1-NN.

Finally, we investigated whether the use of Laplacian filtering as pre-
processing step improves the performance of classifiers other than KNN. We con-
sidered SVMs with RBF kernels. These are related to NN methods, because each
RBF measures the distance of a test instance to one of the training instances.
SVM training keeps certain training instances as support vectors, and discards
others. In this way, SVM/RBF may be view as a competence-enhancement filter-
ing method. Results of extensive experiments seemed to indicate no significant
effect of Laplacian filtering on the generalization performance of SVM with RBF
kernel. The benefits of noise reduction are much more apparent for kNN because
it does not really have an induction step and uses examples directly for classifi-
cation. SVMs with RBF kernel and equipped with cross validation for selecting
optimal values of their parameters, provide a rather powerful tool for selecting
the centers and parameters of the RBF’s, which is robust to the presence of
noise.

In summary, these results show that Laplacian instance filtering provides a
simple yet effective tool for improving accuracy performance of nearest neighbor
classifiers.
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We conclude with a discussion of issues and future research directions.
The Laplacian filtering algorithm does not takes into account the effect of

removing one instances on the remaining ones. An adaptive approach, consisting
in removing the instance having the largest negative score, and then updating
the score of the remaining instances, and so on, could possibly improve the
effectiveness of the algorithm. However, such an approach would increase the
algorithmic complexity of the algorithm.

In the present algorithm, instances with negative Laplacian score are consid-
ered critical. Replacing such ”rule of the thumb” with an incremental procedure
for selecting a cutoff value will possibly have a beneficial effect. Such a procedure
could be based on the leave-one-out error of the original training set, using the
KNN classifier with actual set of instances incrementally constructed starting
from a core subset consisting of instances with high score.

In those cases where the underlying metric is corrupted (e.g., due to irrele-
vant features), instance selection methods that directly depend on the underlying
similarity measure, such as Laplacian filtering, may possibly fail to improve the
classification performance of the KNN classifier. In such cases hybridization with
metric learning techniques (cf. e.g., [17,16]), could help to overcome this draw-
back. In the metric learning approach the goal is typically to change the metric
in order to repair the KNN classifier. We are investigating an hybridization of
Laplacian filtering with Weinberger’s et al. method [30], for effective repairing
of the metric and removal of critical instances.

Another important issue in instance filtering is scalability. Recently, an in-
stance selection method based on distributed computing has been proposed for
speeding up execution of the algorithm without affecting training set accuracy
[2]. It is interesting to investigate whether this approach can be used also to
speed up execution of Laplace filtering, in order to allow its applicability to very
large datasets.
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Abstract. In a typical data stream classification task, it is assumed that
the total number of classes are fixed. This assumption may not be valid
in a real streaming environment, where new classes may evolve. Tradi-
tional data stream classification techniques are not capable of recognizing
novel class instances until the appearance of the novel class is manu-
ally identified, and labeled instances of that class are presented to the
learning algorithm for training. The problem becomes more challenging
in the presence of concept-drift, when the underlying data distribution
changes over time. We propose a novel and efficient technique that can
automatically detect the emergence of a novel class in the presence of
concept-drift by quantifying cohesion among unlabeled test instances,
and separation of the test instances from training instances. Our ap-
proach is non-parametric, meaning, it does not assume any underlying
distributions of data. Comparison with the state-of-the-art stream clas-
sification techniques prove the superiority of our approach.

1 Introduction

It is a major challenge to data mining community to mine the ever-growing
streaming data. There are three major problems related to stream data clas-
sification. First, it is impractical to store and use all the historical data for
training, since it would require infinite storage and running time. Second, there
may be concept-drift in the data, meaning, the underlying concept of the data
may change over time. Third, novel classes may evolve in the stream. There
are many existing solutions in literature that solve the first two problems, such
as single model incremental learning algorithms [1,2,11], and ensemble classi-
fiers [3,5,9]. However, most of the existing techniques are not capable of detect-
ing novel classes in the stream. On the other hand, our approach can handle
both concept-drift, and detect novel classes at the same time.

Traditional classifiers can only correctly classify instances of those classes
with which they have been trained. When a new class appears in the stream,
all instances belonging to that class will be misclassified until the new class
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c© Springer-Verlag Berlin Heidelberg 2009



80 M.M. Masud et al.

has been manually identified by some experts and a new model is trained with
the labeled instances of that class. Our approach provides a solution to this
problem by incorporating a novel class detector within a traditional classifier
so that the emergence of a novel class can be identified without any manual
intervention. The proposed novel class detection technique can benefit many
applications in various domains, such as network intrusion detection and credit
card fraud detection. For example, in the problem of intrusion detection, when
a new kind of intrusion occurs, we should not only be able to detect that it
is an intrusion, but also that it is a new kind of intrusion. With the intrusion
type information, human experts would be able to analyze the intrusion more
intensely, find a cure, set an alarm in advance and make the system more secure.

We propose an innovative approach to detect novel classes. It is different
from traditional novelty (or anomaly/outlier) detection techniques in several
ways. First, traditional novelty detection techniques [4,6,10] work by assuming
or building a model of normal data, and simply identifying data points as out-
liers/anomalies that deviate from the “normal” points. But our goal is not only
to detect whether a single data point deviates from the normality, but also to
discover whether a group of outliers have any strong bond among themselves.
Second, traditional novelty detectors can be considered as a “one-classs” model,
which simply distinguish between normal and anomalous data, but cannot dis-
tinguish between two different kinds of anomalies. But our model is a “multi-
class” model, meaning, it can distinguish among different classes of data and
at the same time can detect presence of a novel class data, which is a unique
combination of a traditional classifier with a novelty detector.

Our technique handles concept-drift by adapting an ensemble classification
approach, which maintains an ensemble of M classifiers for classifying unlabeled
data. The data stream is divided into equal-sized chunks, so that each chunk
can be accommodated in memory and processed online. We train a classification
model from each chunk as soon as it is labeled. The newly trained model replaces
one of the existing models in the ensemble, if necessary. Thus, the ensemble
evolves, reflecting the most up-to-date concept in the stream.

The central concept of our novel class detection technique is that each class
must have an important property: the data points belonging to the same class
should be closer to each other (cohesion) and should be far apart from the data
points belonging to other classes (separation). Every time a new data chunk ap-
pears, we first detect the test instances that are well-separated from the training
data (i.e. outliers). Then filtering is applied to remove the outliers that possibly
appear as a result of concept-drift. Finally, if we find strong cohesion among
those filtered outliers, we declare a novel class. When the true labels of the novel
class(es) arrive and a new model is trained with the labeled instances, the exist-
ing ensemble is updated with that model. Therefore, the ensemble of models is
continuously enriched with new classes.

We have several contributions. First, we provide a detailed understanding
of the characteristic of a novel class, and propose a new technique that can
detect novel classes in the presence of concept-drift in data streams. Second, we
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establish a framework for incorporating novel class detection mechanism into
a traditional classifier. Finally, we apply our technique on both synthetic and
real-world data and obtain much better results than state-of the art stream
classification algorithms.

The rest of the paper is organized as follows. Section 2 discusses related work.
Section 3 provides an overview of our approach and Section 4 discusses our
approach in detail. Section 5 then describes the datasets and experimental eval-
uation of our technique. Section 6 concludes with discussion and suggestions for
future work.

2 Related Work

Our work is related to both stream classification and novelty detection. There
have been many works in stream data classification. There are two main ap-
proaches - single model classification, and ensemble classification. Some single-
model techniques have been proposed to accommodate concept drift [1,2,11].
However, Our technique follows the ensemble approach. Several ensemble tech-
niques for stream data mining have been proposed [3,5,9]. These ensemble ap-
proaches require simple operations to update the current concept, and they are
found to be robust in handling concept-drift. Although these techniques can
efficiently handle concept-drift, none of them can detect novel classes in the
data stream. On the other hand, our technique is not only capable of handling
concept-drift, but also able to detect novel classes in data streams. In this light,
our technique is also related to novelty detection techniques.

A comprehensive study on novelty detection has been discussed in [4]. The au-
thors categorize novelty detection techniques into two categories: statistical and
neural network based. Our technique is related to the statistical approach. Sta-
tistical approaches are of two types: parametric, and non-parametric. Parametric
approaches assume that data distributions are known (e.g. Gaussian), and try to
estimate the parameters (e.g. mean and variance) of the distribution. If any test
data falls outside the normal parameters of the model, it is declared as novel [6].
Our technique is a non-parametric approach. Non-parametric approaches like
parzen window method [10] estimate the density of training data and reject pat-
terns whose density is beyond a certain threshold. K-nearest neighbor (K-NN)
based approaches for novelty detection are also non-parametric [12]. All of these
techniques for novelty detection only consider whether a test instance is suffi-
ciently close (or far) from the training data based on some appropriate metric
(e.g., distance, density etc.). Our approach is different from these approaches
in that we not only consider separation from normal data but also consider co-
hesion among the outliers. Besides, our model assimilates a novel class into the
existing model, which enables it to distinguish future instances of that class from
other classes. On the other hand, novelty detection techniques just remember the
“normal” trend, and do not care about the similarities or dissimilarities among
the anomalous instances.

A recent work in data stream mining domain [7] describes a clustering ap-
proach that can detect both concept-drift and novel class. This approach
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assumes that there is only one ‘normal’ class and all other classes are novel.
Thus, it may not work well if more than one classes are to be considered as
‘normal’ or ‘non-novel’, but our approach can handle any number of existing
classes. This makes our approach more effective in detecting novel classes than
[7], which is justified by the experimental results.

3 Overview

Algorithm 1 outlines a summary of our technique. The data stream is divided
into equal sized chunks. The latest chunk, which is unlabeled, is provided to the
algorithm as input. At first it detects if there is any novel class in the chunk
(line 1). The term “novel class” will be defined shortly. If a novel class is found,
we detect the instances that belong to the class(es) (line 2). Then we use the
ensemble L = {L1, ..., LM} to classify the instances that do not belong to the
novel class(es). When the data chunk becomes labeled, a new classifier L′ trained
using the chunk. Then the existing ensemble is updated by choosing the best
M classifiers from the M + 1 classifiers L ∪ {L′} based on their accuracies on
the latest labeled data chunk. Our algorithm will be mentioned henceforth as

Algorithm 1. MineClass
Input: Dn: the latest data chunk

L: Current ensemble of best M classifiers
Output: Updated ensemble L
1: found ← DetectNovelClass(Dn,L) (algorithm 2, section 4.3)
2: if found then Y ← Novel instances(Dn), X ← Dn − Y else X ← Dn

3: for each instance x ∈ X do Classify(L,x)
4: /*Assuming that Dn is now labeled*/
5: L′ ← Train-and-create-inventory(Dn) (section 4.1)
6: L ← Update(L,L′,Dn)

“MineClass”, which stands for Mining novel Classes in data streams. MineClass
should be applicable to any base learner. The only operation that is specific
to a learning algorithm is Train-and-create-inventory. We will illustrate this
operation for two base learners.

3.1 Classifiers Used

We apply our novelty detection technique on two different classifiers: decision
tree, and K-NN. We keep M classification models in the ensemble. For decision
tree classifier, each model is a decision tree. For K-NN, each model is usually
the set of training data itself. However, storing all the raw training data is
memory-inefficient and using them to classify unlabeled data is time-inefficient.
We reduce both the time and memory requirement by building K clusters with
the training data, saving the cluster summaries as classification models, and
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discarding the raw data. This process is explained in details in [5]. The cluster
summaries are mentioned henceforth as “pseudopoint”s. Since we store and use
only K pseudopoints, both the time and memory requirements become functions
of K (a constant number). The clustering approach followed here is a constraint-
based K-means clustering where the constraint is to minimize cluster impurity
while minimizing the intra-cluster dispersion. A cluster is considered pure if it
contains instances from only one class. The summary of each cluster consists
of the centroid, and the frequencies of data points of each class in the cluster.
Classification is done by finding the nearest cluster centroid from the test point,
and assigning the class, that has the highest frequency, to the test point.

3.2 Assumptions

We begin with the definition of “novel” and “existing” class.

Definition 1 (Existing class and Novel class). Let L be the current ensem-
ble of classification models. A class c is an existing class if at least one of the
models Li ∈ L has been trained with the instances of class c. Otherwise, c is a
novel class.

We assume that any class has the following essential property:

Property 1. A data point should be closer to the data points of its own class
(cohesion) and farther apart from the data points of other classes (separation).

Our main assumption is that the instances belonging to a class c is generated
by a an underlying generative model θc, and the instances in each class are
independently identically distributed. With this assumption, we can reasonably
argue that the instances which are close together are supposed to be generated

Fig. 1. (a) A decision tree and (b) corresponding feature space partitioning. FS(X)
denotes the feature space defined by a leaf node X. The shaded areas show the used
spaces of each partition. (c) A Novel class (denoted by x) arrives in the unused space.
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by the same model, i.e., belong to the same class. We now show the basic idea
of novel class detection using decision tree in figure 1. We introduce the notion
of used space to denote a feature space occupied by any instance, and unused
space to denote a feature space unused by an instance. According to property
1(separation), a novel class must arrive in the unused spaces. Besides, there must
be strong cohesion (e.g. closeness) among the instances of the novel class. Thus,
the two basic principles followed by our approach are: keeping track of the used
spaces of each leaf node in a decision tree, and finding strong cohesion among
the test instances that fall into the unused spaces.

4 Novel Class Detection

We follow two basic steps for novel class detection. First, the classifier is trained
such that an inventory of the used spaces (described in section 3.2) is created
and saved. This is done by clustering and and saving the cluster summary as
“pseudopoint” (to be explained shortly). Secondly, these pseudopoints are used
to detect outliers in the test data, and declare a novel class if there is strong
cohesion among the outliers.

4.1 Saving the Inventory of Used Spaces During Training

The general idea of creating the inventory is to cluster the training data, and save
the cluster centroids and other useful information as pseudopoints. These pseudo-
points keep track of the use spaces. The way how this clustering is done may be
specific to each base learner. For example, for decision tree, clustering is done at
each leafnode of the tree, since we need to keep track of the used spaces for each leaf
node separately. For the K-NN classifier discussed in section 3.1, already existing
pseudopoints are utilized to store the inventory.

It should be noted here that K-means clustering appears to be the best choice
for saving the decision boundary and computing the outliers. Density-based clus-
tering could also be used to detect outliers but it has several problems. First,
we would have to save all the raw data points at the leaf nodes to apply the
clustering. Second, the clustering process would take quadratic time, compared
to linear time for K-means. Finally, we would have to run the clustering algo-
rithm for every data chunk to be tested. However, the choice of parameter K in
K-means algorithm has some impact on the overall outcome, which is discussed
in the experimental results.

Clustering: We build total K clusters per chunk. For K-NN, we utilize the
existing clusters that were created globally using the approach discussed in
section 3.1. For decision tree, clustering is done locally at each leaf node as
follows. Suppose S is the chunk-size. During decision tree training, when we
reach a leaf node li, we build ki = (ti/S) ∗ K clusters in that leaf, where ti
denotes the number of training instances that ended up in leaf node li.

Storing the cluster summary information: For each cluster, we store the
following summary information in memory: i) Weight, w: Defined as the
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total number of points in the cluster. ii) Centroid, ζ. iii) Radius, R: Defined
as the maximum distance between the centroid and the data points belonging
to the cluster. iv) Mean distance, μd: The mean distance from each point
to the cluster centroid. The cluster summary of a cluster Hi will be referred to
henceforth as a “pseudopoint” ψi. So, w(ψi) denotes the weight of pseudopoint
ψi. After computing the cluster summaries, the raw data are discarded. Let Ψj

be the set of all pseudopoints stored in memory for a classifier Lj .

4.2 Outlier Detection and Filtering

Each pseudopoint ψi corresponds to a hypersphere in the feature space hav-
ing center ζ(ψi) and radius R(ψi). Thus, the pseudopoints ‘memorize’ the used
spaces. Let us denote the portion of feature space covered by a pseudopoint ψi

as the “region” of ψi or RE(ψi). So, the union of the regions covered by all the
pseudopoints is the union of all the used spaces, which forms a decision boundary
B(Lj) = ∪ψi∈ΨjRE(ψi), for a classifier Lj . Now, we are ready to define outliers.

Definition 2 (Routlier). Let x be a test point and ψmin be the pseudopoint
whose centroid is nearest to x. Then x is an Routlier (i.e., raw outlier) if it is
outside RE(ψmin), i.e., its distance from ζ(ψmin) is greater than R(ψmin).

In other words, any point x outside the decision boundary B(Lj) is an Routlier
for the classifier Lj. For K-NN, Routliers are detected globally by testing x
against all the psuedopoints. For decision tree, x is tested against only the
psueodpoints stored at the leaf node where x belongs.

Filtering: According to definition 2, a test instance may be erroneously con-
sidered as an Routlier because of one or more of the following reasons: i) The
test instance belongs to an existing class but it is a noise. ii) There has been
a concept-drift and as a result, the decision boundary of an existing class has
been shifted. iii) The decision tree has been trained with insufficient data. So,
the predicted decision boundary is not the same as the actual one.

Due to these reasons, the outliers are filtered to ensure that any outlier that
belongs to the existing classes does not end up in being declared as a new class
instance. The filtering is done as follows: if a test instance is an Routlier to all
the classifiers in the ensemble, then it is considered as a filtered outlier. All other
Routliers are filtered out.

Definition 3 (Foutlier). A test instance is an Foutlier (i.e., filtered outlier) if
it is an Routlier to all the classifiers Li in the ensemble L.

Intiuitively, being an Foutlier is a necessary condition for being in a new class.
Because, suppose an instance x is not an Routlier to some classifier Li in the
ensemble. Then x must be inside the decision boundary B(Li). So, it violates
property 1 (separation), and therefore, it cannot belong to a new class. Although
being an Foutlier is a necessary condition, it is not sufficient for being in a new
class, since it does not guarantee the property 1 (cohesion). So, we proceed to the
next step to verify whether the Foutliers satisfy both cohesion and separation.
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4.3 Detecting Novel Class

We perform several computations on the Foutliers to detect the arrival of a new
class. First, we discuss the general concepts of these computations and later we
describe how these computations are carried out efficiently. For every Foutlier,
we define a λc-neighborhood as follows:

Definition 4 (λc-neighborhood). The λc-neighborhood of an Foutlier x is the
set of N -nearest neighbors of x belonging to class c.

Here N is a user defined parameter. For brevity, we denote the λc-neighborhood
of an Foutlier x as λc(x). Thus, λ+(x) of an Foutlier x is the set of N in-
stances of class c+, that are closest to the outlier x. Similarly, λo(x) refers to the
set of N Foutliers that are closest to x. This is illustrated in figure 2, where the
Foutliers are shown as black dots, and the instances of class c+ and class c−
are shown with the corresponding symbols. λ+(x) of the Foutlier x is the set of
N (= 3) instances belonging to class c+ that are nearest to x (inside the circle),
and so on. Next, we define the N -neighborhood silhouette coefficient, (N -NSC).

Fig. 2. λc-neighborhood with N=3

Definition 5 (N -NSC). Let a(x) be the average distance from an Foutlier
x to the instances in λo(x), and bc(x) be the average distance from x to the
instances in λc(x) (where c is an existing class). Let bmin(x) be the minimum
among all bc(x). Then N -NSC of x is given by:

N -NSC(x) =
bmin(x) − a(x)

max(bmin(x), a(x))
(1)

According to the definition, the value of N -NSC is between -1 and +1. It is
actually a unified measure of cohesion and separation. A negative value indicates
that x is closer to the other classes (less separation) and farther away from its
own class (less cohesion). We declare a new class if there are at least N ′ (> N )
Foutliers, whose N -NSC is positive. In fact, we prove that this is a necessary
and sufficient condition for a new class. This proof is omitted here due to space
limitation, but can be obtained from [8].

It should be noted that the larger the value of N , the greater the confidence
with which we can decide whether a novel class has arrived. However, if N is



Integrating Novel Class Detection 87

too large, then we may also fail to detect a new class if the total number of
instances belonging to the novel class in the corresponding data chunk is ≤ N .
We experimentally find an optimal value of N , which is explained in section 5.

Computing the set of novel class instances: Once we detect the presence
of a novel class, the next step is to find those instances, and separate them from
the existing class data. According to the necessary and sufficient condition, a
set of Foutlier instances belong to a novel class if following three conditions
satisfy: i) all the Foutliers in the set have positive N -NSC, ii) all the Foutliers
in the set have λo(x) within the set, and iii) cardinality of the set ≥ N . Let G
be such a set. Note that finding the exact set G is computationally expensive, so
we follow an approximation. Let G′ be the set of all Foutliers that have positive
N -NSC. If |G′| ≥ N , then G′ is an approximation of G. It is possible that some
of the data points in G′ may not actually be a novel class instance or vice versa.
However, in our experiments, we found that this approximation works well.

Speeding up the computation: Computing N -NSC for every Foutlier in-
stance x takes quadratic time in the number of Foutliers. In order to make
the computation faster, we also create Ko pseudopoints from Foutliers using
K-means clustering and perform the computations on the pseudopoints (re-
ferred to as Fpseudopoints), where Ko = (No/S) ∗K. Here S is the chunk size
and No is the number of Foutliers. Thus, the time complexity to compute the
N -NSC of all of the Fpseudopoints is O(Ko ∗ (Ko + K)), which is constant,
since both Ko and K are independent of the input size. Note that N -NSC of a
Fpseudopoint is actually an approximate average of the N -NSC of each Foutlier
in that Fpseudopoint. By using this approximation, although we gain speed, we
also lose some precision. However, this drop in precision is negligible when we
keep sufficient number of pseudopoints, as shown in the exprimental results. The
novel class detection process is summarized in algorithm 2 (DetectNovelClass).

This algorithm can detect one or more novel classes concurrently (i.e., in
the same chunk) as long as each novel class follows property 1 and contains
at least N instances. This is true even if the class distributions are skewed.
However, if more than one such novel classes appear concurrently, our algorithm
will identify the instances belonging to those classes as novel, without imposing
any distinction among dissimilar novel class instances (i.e., it will treat them
simply as “novel”). But the distinction will be learned by our model as soon
those instances are labeled, and a classifier is trained with them.

Time complexity: Lines 1-3 of algorithm 2 requires O(KSL) time where S is
the chunk size. Line 4 (clustering) requires O(KS) time, and the last for loop
(5-10) requires O(K2L) time. Thus, the overall time complexity of algorithm 2
is O(KS + KSL + K2L) = O(K(S + SL + KL)). Assuming that S >> KL,
the complexity becomes O(KS), which is linear in S. Thus, the overall time
complexity (per chunk) of MineClass algorithm (algorithm 1) is O(KS+fc(LS)+
ft(S)), where fc(n) is the time required to classify n instances and ft(n) is the
time required to train a classifier with n training instances.
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Algorithm 2. DetectNovelClass(D,L)
Input: D: An unlabeled data chunk

L: Current ensemble of best M classifiers
Output: true, if novel class is found; false, otherwise
1: for each instance x ∈ D do
2: if x is an Routlier to all classifiers Li ∈ L

then FList ← FList ∪ {x} /* x is an Foutlier*/
3: end for
4: Make Ko=(K ∗ |FList|/|D|) clusters with the instances in FList using K-means

clustering, and create Fpseudopoints
5: for each classifier Li ∈ L do
6: Compute N -NSC(ψj) for each Fpseudopoint ψj

7: Ψp ← the set of Fpseudopoints having positive N -NSC(.).
8: w(Ψp) ← sum of w(.) of all Fpseudopoints in Ψp.
9: if w(Ψp) > N then NewClassVote++

10: end for
11: return NewClassVote > M - NewClassV ote /*Majority voting*/

Impact of evolving class labels on ensemble classification: As the reader
might have realized already, arrival of novel classes in the stream causes the
classifiers in the ensemble to have different sets of class labels. For example,
suppose an older (earlier) classifier Li in the ensemble has been trained with
classes c0 and c1, and a newer (later) classifier Lj has been trained with classes
c1, and c2, where c2 is a new class that appeared after Li had been trained. This
puts a negative effect on voting decision, since the older classifier mis-classifies
instances of c2. So, rather than counting votes from each classifier, we selectively
count their votes as follows: if a newer classifier Lj classifies a test instance x as
class c, but an older classifier Li does not have the class label c in its model, then
the vote of Li will be ignored if x is found to be an outlier for Li. An opposite
scenario occurs when the oldest classifier Li is trained with some class c′, but
none of the later classifiers are trained with that class. This means class c′ has
been outdated, and, in that case, we remove Li from the ensemble. In this way
we ensure that older classifiers have less impact in the voting process. If class c′

later re-appears in the stream, it will be automatically detected again as a novel
class (see definition 1).

5 Experiments

We evaluate our proposed method on a number of synthetic and real datasets,
but due to space limitations, we report results on four datasets.

5.1 Data Sets

Specific details of the data sets can be obtained from [8].
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Synthetic data generation: There are two types of synthetic data: synthetic
data with only concept-drift (SynC) and synthetic data with concept-drift and
novel-class (SynCN). SynC is generated using moving hyperplane, which con-
tains 2 classes and 10 numeric attributes. SynCN is generated using Gaussian
distribution, which contains 10 classes and 20 numeric attributes.

Real datasets: The two real datasets used in the experiments are the 10%
version of the KDDCup 99 network intrusion detection, and Forest Cover dataset
from UCI repository. We have used the 10% version of the KDDcup dataset,
where novel classes appear more frequently than the full version, hence it is more
challenging. KDDcup dataset contains around 490,000 instances, 23 classes, and
34 numeric attributes. Forest Cover dataset contains 7 classes, 54 attributes and
around 581,000 instances. We arrange the Forest Cover dataset so that in any
chunk at most 3 and at least 2 classes co-occur, and new classes appear randomly.
All datasets are normalized to have attribute values within [0,1].

5.2 Experimental Setup

We implement our algorithm in Java. The code for decision tree has been
adapted from the Weka machine learning open source repository (http://www.
cs.waikato.ac.nz/ml/weka/). The experiments were run on an Intel P-IV ma-
chine with 2GB memory and 3GHz dual processor CPU. Our parameter settings
are as follows, unless mentioned otherwise: i) K (number of pseudopoints per
chunk) = 50, ii) N = 50, iii) M (ensemble size) = 6, iv) Chunk-size = 1,000 for
synthetic datasets, and 4,000 for real datasets. These values of parameters are
tuned to achieve an overall satisfactory performance.

Baseline method: To the best of our knowledge, there is no approach that can
classify data streams and detect novel class. So, we compare MineClass with a
combination of two baseline techniques: OLINDDA [7], and Weighted Classifier
Ensemble (WCE) [9], where the former works as novel class detector, and the
latter performs classification. For each chunk, we first detect the novel class
instances using OLINDDA. All other instances in the chunk are assumed to be
in the existing classes, and they are classified using WCE. We use OLINDDA
as the novelty detector, since it is a recently proposed algorithm that is shown
to have outperformed other novelty detection techniques in data streams [7].

However, OLINDDA assumes that there is only one “normal” class, and all
other classes are “novel”. So, it is not directly applicable to the multi-class nov-
elty detection problem, where any combination of classes can be considered as the
“existing” classes. We propose two alternative solutions. First, we build parallel
OLINDDA models, one for each class, which evolve simultaneously. Whenever
the instances of a novel class appear, we create a new OLINDDA model for
that class. A test instance is declared as novel, if all the existing class models
identify this instance as novel. We will refer to this baseline method as WCE-
OLINDDA PARALLEL. Second, we initially build an OLINDDA model with
all the available classes. Whenever a novel class is found, the class is absorbed into
the existing OLINDDA model. Thus, only one “normal” model is maintained

(http://www.cs.waikato.ac.nz/ml/weka/).
(http://www.cs.waikato.ac.nz/ml/weka/).
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throughout the stream. This will be referred to as WCE-OLINDDA SINGLE.
In all experiments, the ensemble size and chunk-size are kept the same for both
these techniques. Besides, the same base learner is used for WCE and MC.
The parameter settings for OLINDDA are: i) number of data points per clus-
ter (Nexcl) = 15, ii) least number of normal instances needed to update the
existing model = 100, iii) least number of instances needed to build the initial
model = 30. These parameters are chosen either according to the default values
used in [7] or by trial and error to get an overall satisfactory performance. We
will henceforth use the acronyms MC for MineClass, W-OP for WCE-
OLINDDA PARALLEL and W-OS for WCE-OLINDDA SINGLE.

5.3 Performance Study

Evaluation approach: We use the following performance metrics for evalua-
tion: Mnew = % of novel class instances Misclassified as existing class, Fnew = %
of existing class instances Falsely identified as novel class, ERR = Total misclas-
sification error (%)(including Mnew and Fnew). We build the initial models in
each method with the first M chunks. From the M+1st chunk onward, we first
evaluate the performances of each method on that chunk, then use that chunk
to update the existing model. The performance metrics for each chunk for each
method are saved and averaged for producing the summary result.

Results: Figures 3(a)-(d) show the ERR for decision tree classifier of each ap-
proach up to a certain point in the stream in different datasets. K-NN classifier
also has similar results. For example, at X axis = 100, the Y values show the
average ERR of each approach from the beginning of the stream to chunk 100.
At this point, the ERR of MC, W-OP, and W-OS are 1.7%, 11.6% and 8.7%,
respectively, for the KDD dataset (figure 3(c)). The arrival of novel a class in
each dataset is marked by a cross (x) on the top border in each graph at the
corresponding chunk. For example, on the SynCN dataset (figure 3(a)), W-OP
and W-OS misses most of the novel class instances, which results in the spikes
in their curves at the respective chunks (e.g. at chunks 12, 24, 37 etc.). W-OS
misses almost 99% of the novel class instances. Similar spikes are observed for
both W-OP and W-OS at the chunks where novel classes appear for KDD and
Forest Cover datasets. For example, many novel classes appear between chunks
9-14 in KDD, most of which are missed by both W-OP and W-OS. Note that
there is no novel class for SynC dataset. MC correctly detects most of these
novel classes. Thus, MC outperforms both W-OP and W-OS in all datasets.

Table 1 summarizes the error metrics for each of the techniques in each dataset
for decision tree, and K-NN. The columns headed by ERR, Mnew and Fnew

report the average of the corresponding metric on an entire dataset. For example,
while using decision tree in the SynC dataset, MC, W-OP and W-OS have almost
the same ERR, which are 11.6%, 13.0%, and 12.5%, respectively. This is because
SynC simulates only concept-drift, and both MC and WCE handle concept-drift
in a similar manner. In SynCN dataset with decision tree, MC, W-OP, and W-OS
have 0%, 89.4%, and 99.7% Mnew, respectively. Thus, W-OS misses almost all of
the novel class instances, whereas W-OP detects only 11% of them. MC correctly
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Fig. 3. Error comparison on (a) SynCN, (b) SynC, (c) KDD and (d) Forest Cover

detects all of the novel class instances. It is interesting that all approaches have
lower error rates in SynCN than SynC. This is because SynCN is generated
using Gaussian distribution, which is naturally easier for the classifiers to learn.
W-OS miss-predicts almost all of the novel class instances in all datasets. The
comparatively better ERR rate for W-OS over W-OP can be attributed to the
lower false positive rate of W-OS, which occurs since almost all instances are
identified as “normal” by W-OS. Again, the overall error (ERR) of MC is much
lower than other methods in all datasets and for all classifiers. K-NN also has
similar results for all datasets.

Figures 4(a)-(d) illustrate how the error rates of MC change for different
parameter settings on KDD dataset and decision tree classifier. These parameters
have similar effects on other datasets, and K-NN classifier. Figure 4(a) shows
the effect of chunk size on ERR, Fnew , and Mnew rates for default values of
other parameters. Mnew reduces when chunk size is increased. This is desirable,
because larger chunks reduce the risk of missing a novel class. But Fnew rate
slightly increases since the risk of identifying an existing class instance as novel
also rises a little. These changes stabilizes from chunk size 4,000 (for Synthetic
dataset, it is 1,000). That is why we use these values in our experiments. Figure
4(b) shows the effect of number of clusters (K) on error. Increasing K generally
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Table 1. Performance comparison

Classifier Dataset
ERR Mnew Fnew

MC W-OP W-OS MC W-OP W-OS MC W-OP W-OS

Decision tree
SynC 11.6 13.0 12.5 0.0 0.0 0.0 0.0 1.0 0.6
SynCN 0.6 6.1 5.2 0.0 89.4 99.7 0.0 0.6 0.0
KDD 1.7 11.6 8.7 0.7 26.7 99.4 1.5 7.0 0.0
Forest Cover 7.3 21.8 8.7 9.8 18.5 99.4 1.7 15.0 0.0

K-NN
SynC 11.7 13.1 12.6 0.0 0.0 0.0 0.0 1.0 0.6
SynCN 0.8 5.8 5.6 0 90.1 99.7 0.9 0.6 0.0
KDD 2.3 10.0 7.0 2.7 29.0 99.4 2.2 7.1 0.0
Forest Cover 5.4 19.2 8.9 1.0 18.5 94.0 4.5 15.0 0.3

reduces error rates, because outliers are more correctly detected, and as a result,
Mnew rate decreases. However, Fnew rate also starts increasing slowly, since more
test instances are becoming outliers (although they are not). The combined effect
is that overall error keeps decreasing up to a certain value (e.g. K=50), and
then becomes almost flat. This is why we use K=50 in our experiments. Figure
4(c) shows the effect of ensemble size (M) on error rates. We observe that the
error rates decrease up to a certain size (=6), and become stable since then.
This is because when M is increased from a low value (e.g., 2), classification
error naturally decreases up to a certain point because of the reduction of error
variance [9]. Figure 4(d) shows the effect of N on error rates. The x-axis in this
chart is drawn in a logarithmic scale. Naturally, increasing N up to a certain
point (e.g. 20) helps reducing error, since we know that a higher value of N gives
us a greater confidence in declaring a new class (see section 4.3). But a too large
value of N increases Mnew and ERR rates, since a new class is missed by the
algorithm if it has less than N instances in a data chunk. We have found that
any value between 20 to 100 is the best choice for N .

Running time: Table 2 compares the running times of MC, W-OP, and W-OS
on each dataset for decision tree. K-NN also shows similar performances. The
columns headed by “Time (sec)/chunk ” show the average running times (train
and test) in seconds per chunk, the columns headed by “Points/sec” show how
many points have been processed (train and test) per second on average, and the
columns headed by “speed gain” shows the ratio of the speed of MC to that of
W-OP and W-OS, respectively. For example, MC is 2,095, and 105 times faster
than W-OP on KDD dataset, and Forest Cover dataset, respectively. Also, MC
is 203 and 27 times faster than W-OP and W-OS, respectively, on the SynCN
dataset. W-OP and W-OS are slower on SynCN than on SynC dataset because
SynCN dataset has more attributes (20 vs 10) and classes (10 vs 2). W-OP is
relatively slower than W-OS since W-OP maintains C parallel models, where
C is the number of existing classes, whereas W-OS maintains only one model.
Both W-OP and W-OS are relatively faster on Forest Cover than KDD since
Forest Cover has less number of classes, and relatively less evolution than KDD.
The main reason for this extremely slow processing of W-OP and W-OS is that
the number of clusters for each OLINDDA model keeps increasing linearly with
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Table 2. Running time comparison in all datasets

Dataset Time(sec)/chunk Points/sec Speed gain
MC W-OP W-OS MC W-OP W-OS MC over W-OP MC over W-OS

SynC 0.18 0.81 0.19 5,446 1,227 5,102 4 1
SynCN 0.27 52.9 7.34 3,656 18 135 203 27
KDD 0.95 1369.5 222.8 4,190 2 17 2,095 246
Forest Cover 2.11 213.1 10.79 1,899 18 370 105 5

the size of the data stream, causing both the memory requirement and running
time to increases linearly. But the running time and memory requirement of MC
remains the same over the entire length of the stream.

6 Conclusion

We have presented a novel technique to detect new classes in concept-drifting
data streams. Most of the novelty detection techniques either assume that there
is no concept-drift, or build a model for a single “normal” class and consider
all other classes as novel. But our approach is capable of detecting novel classes
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in the presence of concept-drift, and even when the model consists of multiple
“existing” classes. Besides, our novel class detection technique is non-parametric,
meaning, it does not assume any specific distribution of data. We also show
empirically that our approach outperforms the state-of-the art data stream based
novelty detection techniques in both classification accuracy and processing speed.

It might appear to readers that in order to detect novel classes we are in fact
examining whether new clusters are being formed, and therefore, the detection
process could go on without supervision. But supervision is necessary for classifi-
cation. Without external supervision, two separate clusters could be regarded as
two different classes, although they are not. Conversely, if more than one novel
classes appear in a chunk, all of them could be regarded as a single novel class
if the labels of those instances are never revealed. In future, we would like to
apply our technique in the domain of multiple-label instances.
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Abstract. Unlike traditional game playing, General Game Playing is
concerned with agents capable of playing classes of games. Given the rules
of an unknown game, the agent is supposed to play well without human
intervention. For this purpose, agent systems that use deterministic game
tree search need to automatically construct a state value function to
guide search. Successful systems of this type use evaluation functions
derived solely from the game rules, thus neglecting further improvements
by experience. In addition, these functions are fixed in their form and
do not necessarily capture the game’s real state value function. In this
work we present an approach for obtaining evaluation functions on the
basis of neural networks that overcomes the aforementioned problems. A
network initialization extracted from the game rules ensures reasonable
behavior without the need for prior training. Later training, however,
can lead to significant improvements in evaluation quality, as our results
indicate.

1 Introduction

Developing an agent for a specific game allows to include game-specific knowledge
as data structures (e.g. as in [15]) or manually designed features (like in today’s
chess programs [10]). These specializations, however, restrict the agent in that it
cannot adapt to game modifications, let alone play completely different games.

In contrast, General Game Playing (GGP) is concerned with the development
of systems that understand the rules of previously unknown games and learn
to play these games well without human intervention. As such systems cannot
benefit from prior knowledge, they have to be endowed with high-level cognitive
abilities such as general strategic thinking and abstract reasoning. This makes
GGP a good example of a challenging problem which encompasses a variety of
AI research areas, including knowledge representation and reasoning, heuristic
search, planning and learning.

To allow for comparison of GGP agent systems, the Game Description Lan-
guage (GDL) has become standard. It allows to describe arbitrary deterministic
n -player games with complete information by giving a formal axiomatization of
their rules. Progress can be seen at the GGP competition held annually at the
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AAAI Conference [8], where the following two different approaches have been re-
cently established in the development of general game playing agents: simulation-
based approaches [6, 7] employ probabilistic look-ahead search in Monte-Carlo
fashion, while knowledge-based systems refine domain knowledge (the game rules)
in order to extract an evaluation function (or state value function) for assessing
the leaf nodes in a depth-limited search tree [11, 2, 13]. Evaluation functions
used in the latter type of systems share, however, two major disadvantages:

– They are fixed in their form and do not necessarily capture the real state
value function of the game.

– They are determined solely on the basis of the game rules; later experience
is ignored.

While the former problem can be solved by using any general function approxi-
mator, the latter one can be addressed by employing learning algorithms. Though
neural networks represent a solution to the two issues, their training is known to
be both time consuming and not converging in general. However, an initializa-
tion as done in [16, 3] allows for a sound state evaluation without prior training.
In this paper we present an algorithm that, on the basis of C-IL2P [3], trans-
forms the game rules to a set of neural networks that can be employed for state
evaluation and need not be trained. Learning abilities, however, are retained,
and experiments indicate a significant increase in evaluation quality in this case.

The rest paper is organized as follows. In section 2, we give a brief introduction
on the fields encompassed by our approach. This is followed, in section 3, by a
presentation of the transformation process of domain knowledge to a state value
function. In section 4, we present experimental results. These are discussed in
section 5. We conclude in section 6.

2 Background

2.1 Running Example: Pentago

For illustration purposes we use the game Pentago1 as an example throughout
this paper. Pentago is a two-player game played on a 6x6 board. The players take
turn in first marking a cell that is blank, followed by rotating (either clockwise
or counterclockwise) one of the four 3x3 quadrants of the board. The player wins
who first achieves a line (horizontal, vertical, or diagonal) with five of his marks.
If no blank cell is left on the board and nobody has won, the game ends in a
draw. Figure 1 shows a final board position which is won for the white player.
The four quadrants can be distinguished by their background color.

2.2 GDL

The Game Description Language (GDL) [12] has become the standard lan-
guage for GGP, allowing for the definition of deterministic n-player games with
1 The complete set of rules for this game, and for all others mentioned in this paper,

can be found at http://www.general-game-playing.de/game_db/doku.php

http://www.general-game-playing.de/game_db/doku.php
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Fig. 1. White wins a match of Pentago

complete information. Examples are popular games like Tic-Tac-Toe, Chess, or
Checkers.

GDL allows to give modular, logic-based specifications of games which are
interpreted as finite state machines subject to certain restrictions. Each player
has a specific role in a game. An actual match corresponds to traversing the
finite state machine until a terminal state is reached. A goal function is defined
on the set of terminal states that determines the outcome for each player. For the
formal specification of the goal, the language uses the keyword goal in axioms
of the form

(<= (goal ?role ?value) goalcondition)

where ?role is the role the player occupies and ?value gives the goal value (in
the interval [0, 100] by convention) for this player if goalcondition is fulfilled.
(<= (goal white 100) (line white)) in Pentago thus exemplifies a goal con-
dition where “white” (the player with the role “white”) wins 100 points in
case there is a line of white marks in the current state. While the roles in a
game are defined as ground facts, the auxiliary relation line can be resolved
down to facts holding in a state. These facts, called fluents, have the form
(fluent arg_1 ... arg_n) and can be queried with the keyword true. We
refer to [12] for the complete specification of GDL.

2.3 Knowledge-Based State Value Functions

Existing knowledge-based GGP agents, such as [11, 2, 13], employ different ap-
proaches to construct a state value function that gives a degree of preference of
non-terminal states to guide search in an instance of the game (a match). For
this purpose they analyze the game description and extract position features
to be used in the value function. The automatic construction of an evaluation
function takes place in three phases as follows.

In the first phase, game-specific features are identified. To begin with, all
of the above mentioned systems attempt to detect static structures (that is,
which do not depend on the current state of a game) such as successor relations.
E.g., (succ 2 3) may define the constant 3 as the successor of 2 in a specific
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ordering, which then may be used to define an ordering over possible values
for a variable which appears somewhere in the game rules. Note that this is a
syntactic rather than a lexical property.2 Successor relations are typically used
to represent quantities, counters, or coordinates. On the other hand, constants
without any underlying order often represent markers (like in Pentago) or pieces
(unique markers as the king in Chess).

These identified static structures can then be used to detect high-level struc-
tures. For example, a fluent with arguments from a successor relation may be
interpreted as a board, where the other arguments of this fluent either describe
the contents of the individual cells (e.g., markers or quantities) or identify a
specific instance of the board. The Pentago board, for example, is represented
by (cellholds ?q ?x ?y ?player), where ?x and ?y appear in a successor
relation and where an instance of this fluent holds for every pair (?x, ?y) in
every state. Thus, ?x and ?y can be identified as coordinates. Because specific
instances ?x and ?y can occur together with several instances of ?q, the latter
must be part of the coordinates as well. But ?q does not occur in an underlying
order, so that this argument is identified as marking different instances of the
board. The remaining argument ?player, then, must describe the contents of
the board cell. Thus, with the coordinates (?x ?y), with the four possible values
for ?q, and with ?player describing the board content, as a high-level structure
of Pentago one can identify four 3x3 boards, one for each quadrant.

In a similar fashion, quantities and other structural elements can be detected.
The identified structures can be combined arithmetically in order to construct
features out of them. In this way, a knowledge-based GGP system can measure,
for example, the distance of a pawn to the promotion rank in chess-like games,
or the difference in the number of pieces each player has still on the board in
the game of checkers, etc.

Other, game-independent features may be added, such as “mobility,” which is
a measure of how much control a player has in a given game state by counting the
number of available moves. Another feature may be “material,” characterizing
an advantage in the number of markers or pieces on a board (if applicable).

In the second phase of the automatic construction of an evaluation function,
useful features are selected. Common conditions for selecting a feature are sta-
bility (e.g., the absence of wild oscillation over its domain) [2], an estimation for
the effort it takes to compute a high-level feature, correlation with winning or
losing terminal states, and the appearance in the goal formulas of a game [13].

In the third and last phase, the selected features are combined in a single
state value function. Either the features are combined with fixed or estimated
weights according to some predefined scheme, or the goal function of the game
is fuzzified [13]. In the latter case, comparison relations that occur in the goal
function of the game can be substituted by the features detected in the first
phase. In this way, a boolean winning condition of having more markers than

2 This can be identified by checking whether the relation in question is a singleton
for each constant in any argument position, and whether its graph representation is
acyclic.
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the opponent, for example, can be mapped onto an arithmetic condition. This
allows the player to prefer a lead with a higher margin to one with a smaller
margin.

2.4 Neuro-Symbolic Integration

Symbolic knowledge offers the advantage to draw precise conclusions, provided
there is a sound and sufficiently large knowledge base. Often, however, the knowl-
edge base is insufficient, incorrect, or simply unavailable. Learning systems, on
the other hand, can adapt to various domains, but require prior training and
are prone to errors due to indiscriminate or too few learning examples as well
as bad initialization. Neuro-Symbolic Integration attempts to unify both views
to maintain their advantages while eliminating drawbacks by exploiting syner-
gies. KBANN (Knowledge-Based Artificial Neural Network [16]) was the first
approach to convincingly utilize both paradigms. Initialized with an “approx-
imately correct” propositional domain theory, the network was automatically
generated and trained and eventually led to a correction of the initial theory.
Furthermore, KBANN learned much faster than randomly initialized nets and
was able to qualitatively outperform any other algorithm during training as well
as afterwards. While KBANN allowed the application of a standard learning
algorithm, the algorithm still had some weaknesses that made it more complex
than necessary and limited its application to domain theories with only a small
number of rules and antecedents per rule.

In [9] it was shown that three-layer recurrent neural networks can represent
propositional logic programs without any restrictions regarding the number of
rules or antecedents. Learning via backpropagation, however, was not intended.
Though it was possible to enhance this result to some extent to first-order logic
(see [1] for an overview), it remains an open question whether this purely the-
oretical algorithm can be put into practice for a problem domain that is as
challenging as GGP.

A combined approach was finally presented in [4], allowing an intuitive one-
to-one transformation of propositional logic to neural nets while maintaining
learning capabilities. We will use a more general version [3] by the same author.

3 From Domain Knowledge to State Values

Using the standard approaches explained above to identify and select features
for state evaluation, we pay particular attention to the construction of the value
function. As described, existing GGP systems use evaluation functions which
are mathematical combinations of individual features. Though weights or similar
measures of influence are determined during the analysis of the game rules, the
functions are structurally fixed prior to the analysis and only cover a small part of
the space of possible state value functions, which may not include useful (let alone
optimal) value functions for the game at hand. Moreover, these functions remain
static and do not adapt to playing experience. This is partly due to the one-
time challenge situation enforced by the GGP championship rules that propose
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games as unique and non-repeating within the contest [8]. As a consequence,
learning over matches is not applicable within this context. Nevertheless, the
ability to adapt would allow for constant refinement of the evaluation function
if the underlying formulas for the heuristics were designed in a dynamic way.

For this purpose, we will use neural networks as an established method to
approximate functions. The idea is that by applying a neuro-symbolic translation
algorithm, we can transform a ground-instantiated goal condition encoded in
GDL to a bipolar neural net with a sigmoidal activation function that exactly
captures its behavior and need not be trained. In this way, we would obtain a
baseline state value function that is correct for all terminal states and provides a
measure of preference for all non-terminal states by calculating fluent-wise their
similarity to goal states.

3.1 Goal Conditions as Propositional Proof Trees

Consider the set of rules of a specific game defined in GDL. The given goal for-
mulas define for every terminal state and for every role ?p in the game a goal
value ?gv. For any specific rule of the form (<= (goal ?p ?gv) conditions),
the given conditions can be evaluated for any current (terminal or non-terminal)
state. We can ground-instantiate a goal clause by iteratively substituting every
free variable by the ground terms obtained from the signature of the game de-
scription. Algorithm prop(argument) (see Table 1) transforms a ground-instan-
tiated goal condition to a propositional proof tree.

As some of the facts are static (that is, do not depend on the current state
such as successor relations), they can instantly be proved to be false or true and
subsequently be replaced by a propositional false or true. Naturally, this may
lead to other simplifications, which can easily be implemented and hence shall
not be explained further.

By calling prop on a ground-instantiated goal condition, we can thus obtain
a propositional proof tree whose edges are either identities or negations, whose
leafs are queries of facts in the current state, and whose non-leaf nodes are either
conjunctions or disjunctions.

Table 1. Transforming a single goal condition to a propositional proof tree

if argument is then
a fact (true fact) return fact
a negated argument (not argument) return ¬prop(argument)
the head of a clause (<= h b_1) return

∨
1≤i≤n prop(bi)

...
(<= h b_n)

the body of a clause (c_1, ..., c_n) return
∧

1≤i≤n prop(ci)
an inequality (distinct x1 x2) return false if x1 = x2, else true
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3.2 Propositional Proof Trees as Neural Networks

As has been shown in [16, 9], it is possible to encode propositional logic as a
neural network. The two algorithms, however, were developed under different
considerations. While [16] was mainly concerned with eliminating disadvantages
of neural nets by the use of logic (namely, indifferent initialization, convergence
problems, and long training time), [9] translated logic programs to neural nets
so as to benefit from advantages of the different representation. An algorithm
that got rid of the problems of each of the two approaches is described in [3] and
will be used here with some modifications. The original algorithm was used for
logic programs where literals in the body of a clause were interpreted as their
conjunctions, while clauses with the same head were interpreted as disjunctions
of their bodies. Therefore, we use the rules for encoding multiple clauses with
the same head for disjunctions, and literals within a clause as rules for conjunc-
tions. Furthermore, the net was built up as a recurrent net to implement the
immediate consequent operator of the logic program. As this stepwise fashion is
not needed, we build up a simpler feed-forward architecture that is similar to
the propositional proof tree.

Consider a layered feed-forward neural net with the following properties: if
neuron i is a successor of neuron j (e.g. there is a directed connection from
neuron j to neuron i), then the output of neuron i is defined as oi = h(

∑
j wijoj),

where h(x) is the bipolar activation function h(x) = 2
1+e−βx − 1. We define the

interval (Amin, 1] to denote truth and [−1, Amax) to denote falsity. Without loss
of generality we set Amin = −Amax. Then we can translate every node of the
propositional proof tree to a neuron by calling the following algorithm on the
root of the tree and an “empty” neural net:

1 prop_to_net (node , net) {

2 if (count_children (node) > 0) {

3 for each (c in children(node)) {

4 if (is_positive (c))

5 add_conn(net , node , c, W);

6 else

7 add_conn(net , node , c, -W);

8 prop_to_net (c, net);

9 }

10 add_conn(net , node , bias , threshold_weight (node));

11 }

12 else

13 mark_as_input_node (net , node);

14 }

Basically, the algorithm does the following: for each non-leaf node (line 2) in the
propositional tree an edge is added from the node to each of its children with
weight W if the child is positive (that is, not negated; line 5) and −W otherwise
(line 7). The algorithm is called recursively for each child of the current node
(line 8), and a connection to the bias unit (whose output is always 1) is added
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so as to function as a threshold. Its weight is determined by the type of the node
(conjunction or disjunction) and the number n of its children:

thresholddisj(n) = (1+Amin)∗(n−1)
2 ∗W (1)

thresholdconj(n) = (1+Amin)∗(1−n)
2 ∗W (2)

Leafs of the tree are marked as input nodes (line 13) and used to evaluate the
current state s in the match: if fact holds in s, the node returns 1, else −1.

Amin / Amax and W are subject to some restrictions to ensure logically sound
behavior:

Amin >
max(disj, conj)− 1
max(disj, conj) + 1

(3)

W ≥ 2
β
∗ ln(1 + Amin)− ln(1−Amin)

max(disj, conj)(Amin − 1) + Amin + 1
(4)

Here, disj is the largest number of children that a disjunction node in the tree
has, while conj is the largest number of children a conjunction node has. Param-
eter β controls the steepness of the activation function h(x) and is usually set
to 1. Note that the absolute weight wij of each connection has to be increased
by a small random float to avoid symmetry effects when learning.

Encoding the goal conditions as neural network thus maintains the logical
sound behavior of an automated proof procedure (for a proof see again [3])
while enabling it to perform “soft computing” and to adapt to experience via a
standard backpropagation algorithm.

Practical Aspects of C-IL2P. Though the algorithm is logically sound, its
application in the GGP domain is not as straightforward. Recall that the inter-
val [−1, Amax) denotes falsity and (Amin, 1] truth of a fact. A neuron’s output
representing a conjunction is thus higher than Amin iff the output of all positive
preceding neurons is higher than Amin and of its negative preceding neurons is
lower than Amax. Due to the monotonicity of the activation function, we know
the output of a neuron to be lower if fewer of its antecedents are fulfilled. A
problem, however, arises if no or few antecedents are fulfilled: in these cases the
absolute value of the neuronal activation is high and, because of the squashing
of the activation function, the output of the neuron stays approximately the
same. In other words, for conjunction neurons with few fulfilled antecedents the
derivative h′(x) = 1 − h(x)2 is near zero and small changes in the input (e.g.
one preceding neuron changing from −1 to +1) therefore have only little impact
on the output of the neuron. While these differences of the output are small but
still recognizable in the case of just one neuron, they eventually become smaller
than machine precision after passing through several neurons. As a consequence,
the neural network loses its ability to effectively guide search as it erroneously
evaluates several states to the same value although there is a difference in their
state value.
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Regarding the network parameters, there are two reasons for this behavior.
The first is the restriction of Amin (equation 3): while for a small number of rule
antecedents k, Amin may be set to a small value as well, higher k fix it near 1
with the result that the intervals for truth and falsity become too small to, e.g.,
distinguish one neuronal state representing false from another. In the same way
one can argue that with a high Amin the “forbidden zone” [Amax, Amin] (the
interval of output values “between false and true”) becomes very large, resulting
in a loss of output space, i.e., output resolution of the neuron.

Another reason is the restriction of the weight W (equation 4): for high values
of W the space of activation values is larger, the absolute neuronal input is more
likely far away from zero and thus its derivative close to zero. High absolute
weights therefore contribute to the problem.

We are, however, not interested in a strict propositional evaluation of a goal
condition, but in a degree of preference between states. Specifically, the following
two conditions have to be satisfied:

– A terminal state fulfilling the underlying goal function will yield the greatest
possible network output.

– Any state will yield a smaller value than another one if it constitutes a
worse matching of the corresponding goal function, that is, it is fluent-wise
less similar to the state pattern that corresponds to the goal function.

Therefore, we calculate the lower bound lA = max(disj,conj)−1
max(disj,conj)+1 for Amin and set it

such that it enables the smallest possible weight. With Amin ∈ (l, 1) , obviously
the following condition is satisfied:

Amin = (lA − 1) ∗ α + 1 (5)
α ∈ (0, 1) (6)

We numerically determined W to be minimal for 0.15 ≤ α ≤ 0.3 and set it
to α = 0.2. As this is not enough, we additionally ignore the weight condition
(equation 4) and set it to a fixed value W = 1.

3.3 From Neural Networks to State Values

To finally obtain a state value, we map the output of the neural networks
oplayer,gv ∈ [−1, 1] to values in [0, 1] and multiply these with the correspond-
ing goal value. In this way, we obtain the share vplayer,gv(s) that each pair of
network and goal value contributes to the state value. The normalized sum of
these shares then forms our value function in the interval [0, 100].

vplayer,gv(s) = oplayer,gv(s)+1
2 ∗ gvp (7)

Vplayer(s) =
∑

gv∈GV vplayer,gv(s)∑
gv∈GV gvp ∗ 100 (8)

With the selection of p ∈ [1,∞) we can choose the degree to which higher goal
values are more influential on the state value function. For p = 1 every goal value
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is considered linearly and for p → ∞ only the highest goal value is considered,
resulting in a riskier behavior.

As we have to ensure that any calculated state value is better than a real loss
(where gv = 0) and worse than a real win (gv = 100), the final state value is set
to V (s)′ = V (s) ∗ 0.98 + 1.

3.4 Increasing Flexibility

The resulting set of neural networks can be enhanced in several ways. Any feature
obtained by domain analysis or designed manually can be introduced in the
networks by adding an input node for it, normalizing the output of the node to
[−1, 1], and connecting it to the output nodes of all networks for a player. In
much the same way, spatial or quantitative comparisons in the goal conditions
can be substituted by a more detailed feature to increase expressiveness.

3.5 Learning

As result of the transformation we get a set of neural networks to which back-
propagation learning can be applied. To train these neural networks, we use
terminal states sterm from past matches which can be obtained by self-play or
are a by-product of probabilistic look-ahead searches as applied in Monte-Carlo
search [6, 7]. The goal value of the terminal state indicates the corresponding
network which then can be trained by presenting value 1 as signal for the output
neuron. All other networks are trained with −1.

We can further increase the amount of available examples by applying the
TD(λ) algorithm as used, e.g., in TD-Gammon [15]. By assuming the prede-
cessors of a terminal state to likely leading to the goal value of the terminal
state, we can use these predecessors as weaker but still valid training examples.
We therefore discount the training signal relative to the distance to the termi-
nal state in order to weaken the impact of the predecessor state on the neural
network.

The training signal t(s) for the k-th predecessor of the terminal state sterm−k

is calculated thus:
t(sterm−k) = t(sterm) ∗ λk (9)

The parameter λ ∈ [0, 1] controls the speed of decay of the training signal.
The network corresponding to the terminal state is thus trained with the sig-
nals 1, λ, λ2, . . . for the terminal state, its predecessor, the predecessor of the
predecessor, and so on.

We further enhance TD(λ) to include domain knowledge by checking the
predecessors of the terminal state subject to learning whether they inevitably
lead to a terminal state with the same goal value. This is done by employing
a full-depth game tree search and, in case the search yields a positive answer,
substituting a potentially flawed training signal by a provably correct and more
expressive one. Note that the required tree search was already performed during
the match and can be reused here.
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Assuming sterm leads to a goal value gv(sterm) we can thus train the corre-
sponding neural network with the following signal:

t(sterm−k) =
{

1 : minimax(sterm−k) = gv(sterm)
λk : else

}
(10)

Altogether, the network training over several states of one match has two major
benefits:

– The network prefers stable features over wildly oscillating ones. The impor-
tance of this concept has been discussed in [2] and is implicitly included
here.

– The learned patterns match states preceding the terminal states. Along with
feedforward search during matches the algorithm thus exhibits a behavior
comparable to bidirectional search.

3.6 Transformation of Pentago Rules

For better understanding we will explain the approach in the domain of the
game Pentago by showing the result of the transformation for the winning goal
condition for the player with the role “white”. The goal condition in this game is
given as (<= (goal white 100) (line white)). A white line, according to the
rules, can be a white row, column, or diagonal. As the three cases are analogous,
we will just concentrate on white winning with a row. The definition of auxiliary
predicate (row ?player), after substituting ?player by white, is:

(<= (row white)
(role white)
(true (cellholds ?q1 ?x1 ?y1 white))
(globalindex ?q1 ?x1 ?y1 ?x1g ?yg)
(succ ?x1g ?x2g)
...
(succ ?x4g ?x5g)
...
(true (cellholds ?q5 ?x5 ?y5 white))
(globalindex ?q5 ?x5 ?y5 ?x5g ?yg))

Hence, a white row is implied by a conjunction of the following facts. The expres-
sion cellholds is a fluent which describes the contents of individual cells in a
game state. Relation globalindex is essentially a function which translates the
local quadrant coordinates ?q1, ?x1, and ?y1 to the global coordinates ?x1g and
?yg. Predicate succ describes a successor relation that connects five instances of
cellholds such that the global x-coordinate of the second cell is a successor of
the global x-coordinate of the first cell, and so on. All cellholds fluents need to
refer to the same y-coordinate ?yg. The head of the above clause, row(white),
is implied if there exists an instantiation for the 21 free variables such that each
of the atoms in the body holds.
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To translate this goal condition to a neural network, we have to ground-
instantiate the rule. A naive ground instantiation would yield at least 321 in-
stances, as each domain of the variables has a size greater or equal to 3. While
instantiations of this size cannot be handled efficiently, the inherent structure
of the rule can be easily exploited. Because successor relations are functional,
each variable ?xg2, ..., ?xg5 is in fact a function of ?xg1. The domain of
?xg1 shrinks accordingly, indicating that the starting point of a row must have
x-coordinate 1 or 2; if it started at 3, the penultimate cell in the row would have
no successor.

The globalindex relation is functional and injective as well, allowing to bring
down the number of different ground instances of the rule to 12, where all vari-
ables are functions of the global coordinates A1, A2, B1, . . . , F2. With these
twelve possible rows on the board we end up with a proof tree consisting of a
disjunction of the rows with each of them being a conjunction of five adjacent
cells. The role relation can be statically evaluated to true and thus immediately
omitted in the conjunctions.

The resulting net consists of an input layer with 36 nodes of the form
(true (cellholds ?q ?x ?y white)), a first hidden layer representing the 12
instances of the row rule as a conjunction of five adjacent cells, and a second
hidden layer representing the generalized row rule as a disjunction of the twelve
ground-instantiated ones. A similar structure is added for the possibility of a
vertical or a diagonal white line, resulting in a total of three neurons in the third
hidden layer. The output node would then again be a disjunction of these three
cases.

4 Experiments

For testing purposes we implemented a standard General Game Player according
to the approach described above. To evaluate its quality and efficiency, we let
it play against “Fluxplayer” [13], the best non-simulation based system, ranked
at least third in the three recent AAAI GGP World Championships 2006-2008.
We refer to the agents with “Neuro” and “Fluxplayer” respectively throughout
the experiments.

4.1 Experimental Setup

The tests were run on a dual-processor system at 3.16 GHz with 768 MB RAM
available for each agent. The roles were switched after each match, thus forming
pairs of matches in which each agent had the first move once. Both agents used
α-β-search. For learning, we used all “solved” states that could be proven to lead
to a terminal state with the same goal value. If the number of these states was
less than 10% of the states occurring in the match, “unsolved” states were used
in addition. In this way, at least 10% of the match states were used for training.
To distinguish solved from unsolved states, we reused the values calculated in
the match. Unsolved states were discounted by the factor of λ = 0.8 and the
learning rate was set to 0.001.
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Table 2. Average Goal Value achieved

Pentago 3D-Tic-Tac-Toe
#Matches Fluxplayer Neuro Fluxplayer Neuro

Init 1-ply 300 57.33 42.67 50 50
Learning 1-ply 5x500 25.72 74.28 50 50
Init Real-Time 300 48.36 51.64 38.67 61.33
Learning Real-Time 5x500 45.46 54.54 45.5 54.5

The tests were run in two different games: Pentago and a 3D version of Tic-
Tac-Toe where the first player to achieve a line of four marks in a 4x4x4 cube
wins. The results can be seen in Table 2. For each of the two games we examined
the two dimensions Init vs Learning and 1-ply vs Real-Time:

Init 1-ply. The quality of the initialized evaluation function was determined in
300 matches with a search depth of 1 and newly initialized networks in each
match.

Learning 1-ply. The improvement of evaluation accuracy through learning was
determined by running 500 consecutive matches, starting with a newly ini-
tialized network and searching with depth 1. The test was run 5 times to
minimize possible random effects.

Init Real-Time. The quality of the initialized evaluation function in a real-
time scenario was determined in 300 matches with newly initialized networks
in each match. Each system had 100 seconds before a match started and 5
seconds for each move.

Learning Real-Time. The improvement of playing strength through learning
in a real-time scenario was determined by running 500 consecutive matches
starting with a newly initialized network. Each system had 100 seconds be-
fore a match started and 5 seconds for each move. The test was run 5 times
to minimize possible random effects.

4.2 Results

As can be seen, the 1-ply performance differs in the two games. In Pentago,
Neuro wins 43% in the initial scenario, but reaches 74% when learning, showing
that the initialized networks are near a local optimum.

In 3D-Tic-Tac-Toe, however, the player who has the first move has such a big
advantage that it can enforce a win, resulting in a 50% win rate each. As no
examples for how to win as non-starting player are available, learning has no
impact on the win rate.

The real-time performance of Neuro in both games is at least equal to that
of Fluxplayer. In Pentago, the initial real-time performance lies at roughly 52%.
This can be partly attributed to a state evaluation rate approximately twice as
high as that of Fluxplayer. The result is improved by another 3% with learning.

In 3D-Tic-Tac-Toe, the initial real-time performance with a 61% win rate
is significantly higher than that of Fluxplayer. For this game, Neuro examines
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Fig. 2. Evolution of Win Rate in the Learning Real-Time Scenario

about 30% less states than Fluxplayer. The results show that learning decreases
the win rate, which might indicate overfitting.

In general, it can be seen that learning has a positive effect if done with
caution. Figure 2 depicts the evolution of the win rate in each game by plotting
the moving maximum, average and minimum of the recent 10 pairs of matches.
Obviously, learning did not converge. However, Neuro achieved in each test run
in both games at least a 70% win rate over at least 20 matches at some point
throughout the experiments, indicating its potential.

5 Discussion

As can be seen from our initial experiments, the neural approach to General
Game Playing can prove advantageous when compared to the currently best
non-simulation based system. The relative evaluation quality and, in particular,
the real-time performance both depend on the type of the game. Given that
the system works in principle while still being in an early development stage
regarding possible optimizations, it is likely to outperform the current version of
Fluxplayer after thorough parameter tuning and full exploitation of its learning
and extension capabilities.

We have seen that learning leads to a significant boost in evaluation quality in
the 1-ply scenario in Pentago. On the other hand, it only had a small effect in the
real-time scenarios, indicating an overfitting of the network. The drop in win-
rate in Pentago when switching from “learning 1-ply” to “learning real-time” as
well as the lack of convergence of the win rates support this explanation.

While the initial results look promising and should be put on a broader em-
pirical basis, there are some further theoretical problems related to the ideas
presented in this paper. The major disadvantage of the approach is that it re-
quires the use of ground-instantiated fluents. Depending on the complexity of
the game, the number of ground instances is subject to combinatorial explosion
and can thus easily become too large to be handled by a neural network in an
efficient manner. Although there are possibilities to encode first-order logic in
neural networks to some degree, current results are not convincing, as they are
bound by machine precision for real numbers [14] or have not yet been applied
to non-toy examples.
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For this reason, we employ several techniques to limit or work around the
problem for the time being.

– By exploiting domain constraints, we limit the number or the domain of free
variables as demonstrated in the Pentago example.

– Clauses like (<= c (a ?x) (b ?x)), where variable bindings hold over more
than just one antecedent, or clauses with too many possible ground instances,
are redirected to the automated theorem proving system. In this case, we do
not transform the clause, but add it as an input node.

Other problems are directly related to learning and can be seen as a consequence
of the induction principle. For example, we have to assume the training states
to be distributed among the game tree and opponents to play near optimal to
avoid overfitting or biasing of the networks.

6 Conclusions

We have presented a method that overcomes the major restrictions of today’s
knowledge-based GGP systems. It allows to derive a state value function from the
goal definition for a game, provided it can be ground-instantiated with reasonable
effort. The goal conditions are used to initialize neural networks such that they
need not be trained. The evaluation function can then benefit from training with
states extracted from past matches, as our experimental results have shown.

6.1 Future Work

The overall evaluation quality is primarily based on the initial evaluation quality
and its increase through training, making both the main areas of possible im-
provement. As none of the parameters used in the experiments were optimized,
an analytical parameter determination of the C-IL2P parameters (Amin, W ) and
an autonomous adaptation of the learning parameters (learning rate, discount
factor, . . . ) to specific games could further improve evaluation quality.

Furthermore, we intend to exploit the newly gained flexibility by adding new
connections or hidden layer nodes to allow for the emergence of new features or
by integrating features generated by other means. In fact, the connection weights
of the networks offer a utility feedback for those features that could give rise to
feature generation algorithms like in [5].

For the future, we intend to conduct further experiments in other games,
address the above issues, and implement a complete GGP system on the basis
of the approach.
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Abstract. Web searches tend to be short and ambiguous. It is therefore
not surprising that Web query disambiguation is an actively researched
topic. To provide a personalized experience for a user, most existing work
relies on search engine log data in which the search activities of that par-
ticular user, as well as other users, are recorded over long periods of time.
Such approaches may raise privacy concerns and may be difficult to im-
plement for pragmatic reasons. We present an approach to Web query
disambiguation that bases its predictions only on a short glimpse of user
search activity, captured in a brief session of 4–6 previous searches on
average. Our method exploits the relations of the current search session
to previous similarly short sessions of other users in order to predict
the user’s intentions and is based on Markov logic, a statistical rela-
tional learning model that has been successfully applied to challenging
language problems in the past. We present empirical results that demon-
strate the effectiveness of our proposed approach on data collected from
a commercial general-purpose search engine.

1 Introduction

Personalizing a user’s Web search experience has become a vibrant area of re-
search in recent years. One of the most actively researched topics in this area
is Web query disambiguation, or automatically determining the intentions and
goals of a user who enters an ambiguous query. This is not surprising, given the
frequency of ambiguous searches and the unwillingness of users to enter long and
descriptive queries. For example, Jansen and Spink [1] found that about 30% of
search queries, submitted to several engines, consisted of a single word. Further-
more, Sanderson [2] reports that anywhere between roughly 7% and 23% of the
queries frequently occurring in the logs of two search engines are ambiguous,
with the average length of ambiguous queries being close to one.

Ambiguity exists not only in cases such as the all-too-familiar “jaguar” ex-
ample (which can be a cat, car, or operating system), but also in searches that
do not appear ambiguous on the surface. Queries that are commonly considered
unambiguous often become ambiguous as a result of the wealth of Web sources,
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which examine different aspects of a given topic. For example, as we observed
in our data, a search for “texas”1 may be prompted by at least two different
kinds of intentions. In one session, a user who had first searched for “george w.
bush” proceeded to search for “texas” and selected www.tea.state.tx.us, thus
indicating an interest in Texas government agencies. In another session, the user
intended to learn about travel to Texas because repeated searches for “georgia
travel” were followed by a search for “texas” and a click to www.tourtexas.com.
This indicates that even a query, such as “texas” that normally refers to a single
entity, may become ambiguous.

Most approaches to Web query disambiguation leverage a user’s previous in-
teractions with the search engine to predict her intentions when entering an
ambiguous query. Typically, the actions of each user are logged over long peri-
ods of time, e.g., [3,4,5]. While techniques that assume the availability of long
search histories for each user are applicable in some situations, in many cases
such approaches may raise privacy concerns and may be difficult to implement
for pragmatic reasons. After the release of AOL query log data allowed journal-
ists to identify one user based on her searches [6], many people have become
especially wary of having their search histories recorded. To address such con-
cerns, we present an approach that bases its predictions only on short glimpses
of user search activity, captured in a brief search session. Our approach relates
the current search session to previous short sessions of other users based on the
search activity in these sessions. Crucially, our approach does not assume the
availability of user identifiers of any sort (i.e. IP addresses, login names, etc.)
and thus such information, which could allow user searches to be tracked over
long periods of time, does not need to be recorded when our approach is used.

As an example, consider the query “scrubs,” which could refer either to the
popular television show or to a type of medical uniform. Table 1 juxtaposes the
users’ actions in two sessions. The sessions are short, with each containing only
two searches preceding the ambiguous query; nevertheless, this short glimpse of
the users’ actions is sufficient to provide an accurate idea of the users’ intentions
because by examining historical data, one may discover that people who search
for radio stations are probably “ordinary” users and would therefore be interested
in the television show. On the other hand, by relating Session 2 to sessions of
other users who searched for medical-related items, we may be able to predict
that the second user has more specialized interests.

Our proposed approach is appealing also from a pragmatic standpoint because
it does not require search engines to store, manage, and protect long user-specific
histories. Identifying users across search sessions is another difficulty arising from
methods based on long user-specific search histories. One possibility, to require
users to log in before providing personalized search, may be cumbersome. The
alternative of using as an identifier the IP address of the computer from which
the search was initiated is also unsatisfactory, especially in cases when entire
organizations share the same IP address or when all members of a household

1 We write these queries in lower-case because this is how they were typed by the
searchers in our data set.

www.tea.state.tx.us
www.tourtexas.com
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Table 1. Two sessions in which the users searched for the query “scrubs”

—Search Session 1— —Search Session 2—
98.7 fm → www.star987.com/main.html huntsville hospital → www.huntsvillehospital.org
kroq → www.kroq.com/ ebay.com → ebay.com
scrubs → scrubs-tv.com scrubs → www.scrubs.com

search from the same computer. Disambiguation techniques that explicitly do
not use such identifiers and instead rely only on information from brief sessions
avoid such difficulties.

When so little is known about a searcher, the problem of query disambigua-
tion becomes very challenging. In fact, it has previously been argued that “it
is difficult to build an appropriate user profile even when the user history is
rich” [5]. We develop an approach that successfully leverages the small amount
of information about a user captured in a short search session to improve the
ranking of the returned search results. Our approach is based on statistical rela-
tional learning (SRL) [8] and exploits the relations between the session in which
the ambiguous query is issued and previous sessions.

SRL addresses the problem of learning from multi-relational data models that
support probabilistic reasoning. SRL is appealing for our problem because, first,
the data is inherently relational—there are several types of entities: queries,
clicked URLs, and sessions, which relate to each other in a variety of ways,
e.g., two sessions may be related by virtue of containing clicks to the same
URLs; queries may be related by sharing words. Second, data recording human
interactions with a search engine is likely to be noisy. SRL models allow for
probabilistic inference, helpful when reasoning from noisy data.

We used Markov logic networks (MLNs) [9]. An MLN consists of a set of
weighted formulae in first-order logic and defines a Markov network when pro-
vided with a set of constants. The probability of a possible world decreases
exponentially in the weight of formulae it fails to satisfy. We chose MLNs be-
cause of their generality, their successful application to other language-related
tasks, e.g., [11,12,13], and the availability of a well-maintained code base [14].

2 Related Work

Personalized search is an important problem that has been studied under many
settings and assumptions. We review some of this research and draw distinctions
between previous work and ours.

Several authors have proposed techniques addressing the case where, for each
particular user, a relatively long history of that user’s interactions with the
search engine is available. Sugiyama et al. [3] present a personalization method
that builds a user preference model by modeling separately the long-term and
“today’s” user interests. In addition to relying on long-term records of user
activity, their approach also uses the content of browsed pages. In contrast, we
are interested in a more light-weight approach that does not necessarily use
page content. Sun et al. [4] use spectral methods to perform personalization by

www.star987.com/main.html
www.huntsvillehospital.org
www.kroq.com/
ebay.com
scrubs-tv.com
www.scrubs.com
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organizing the data into a three-dimensional tensor comprised of users, queries,
and clicked pages. These tensor-based methods are unlikely to be effective in our
case because of data sparsity. A comprehensive empirical study of Web search
personalization techniques is presented by Dou et al. [5]. These techniques also
use longer-term histories (up to 12 days) of the same user. The authors find
that the best-performing methods are based on the intuition that the Web pages
most relevant to a user are those clicked frequently in the past by that user or by
related users, where user similarity is measured by estimating user membership
in a pre-defined set of categories. Such a strategy is unlikely to work in our
setting because the sessions in our data represent one-time interactions that
usually do not contain repeated clicks to the same URL. Joachims [15] and
Radlinski and Joachims [16] use a clever method for deriving constraints about
user preferences by observing whether or not the user clicked on or skipped over
particular search results. These preferences are then used to train a system for
ranking search results. All work discussed in this paragraph assumes that long-
term information about each user is available. In contrast, we study the setting
where personalization is performed based on records of very short interactions
with the search engine.

To the best of our knowledge, the only previous work that targets query dis-
ambiguation from short sessions is that of Almeida and Almeida [17] in which
users are identified as belonging to a set of communities in order to determine
their interests. The authors experimented with data from online bookstore search
sites for computer science literature, and their approach is tailored for situations
when user interests fall into a small set of categories, organizing users into 10
communities. While in a more restricted application of search, such as special-
ized book search, this small number of communities may be sufficient to model
different aspects of user interests, if, as in our case, the goal is to disambiguate
queries in a general-purpose search engine, a small number of communities is
likely to be insufficient to effectively model the variety of user interests, and
allowing for more communities may be prohibitively costly. Privacy-aware Web
personalization has been addressed by Krause and Horvitz [18], whose method
considers the privacy cost of a given piece of user information and explicitly
models the improvement in personalization versus the cost of the used informa-
tion. While the ability to trade off performance with cost is highly desirable,
their method relies on more information about the user than is available to us.

Query disambiguation is also related to determining user goals and intentions,
as done by the TaskPredictor [19], which learns to predict the current task of
a user based on the properties of the currently open window, or of an arriving
e-mail message. Because training this system requires potentially sensitive in-
formation, it is intended to be run on the user’s local machine. Another project
[20] that relies on sensitive user information studies ways for personalizing Web
search by constructing a user profile from long-term observations on the user’s
activities, ranging from browsing history to e-mail.

An orthogonal issue is producing a diverse set of documents for a given query.
Recent work includes that of Chen and Karger [21], whose technique ranks results
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so as to cover as many different aspects of interest as possible, and that of Yue
and Joachims [22] whose technique is based on structural SVMs. A related area
is that of clustering search results in groups of common topics. Wang and Zhai
[23] use search log data to learn useful aspects of queries in order to cluster
them. The ability to disambiguate user intent complements these contributions
because it would allow the most relevant cluster, or the most relevant results
from a diverse set, to be placed ahead of all others on the search page.

Collaborative filtering, where the goal is to suggest items that would be of
interest to a user, based on that and other users’ previous preferences, is also
related. Early comparative studies of collaborative filtering algorithms include
[24,25]. More recently, Popescul et al. [26] and Melville et al. [27] proposed ap-
proaches that combine collaborative and content-based information in forming
recommendations. These were not applied to personalizing Web search.

3 Background

This section provides some necessary background on first-order logic and MLNs.
First-order logic uses 4 types of symbols—constants, variables, predicates,

and functions [28]. Constants describe the objects in the environment, e.g.,
www.ecmlpkdd2009.net and 1acadc00158440d9 are constants representing a url
and a sessionId. Predicates represent relations, such as ClickOn, and can be
thought of as functions that evaluate to true or false. A term is a constant, a
variable, or a function applied to terms. Ground terms contain no variables. An
atom is a predicate applied to terms. A positive (negative) literal is a (negated)
atom. For example, ClickOn(www.ecmlpkdd2009.net, 1acadc00158440d9) is a
ground positive literal. Its value is true iff www.ecmlpkdd2009.net is clicked in
session 1acadc00158440d9. A possible world is a truth assignment to all possible
ground literals in an environment. A first-order formula uses conjunction (∧) and
disjunction (∨) to combine positive and negative literals into a logical statement.
A grounding is a ground formula or literal.

A Markov logic network (MLN) [9] consists of a set of first-order formulae,
each of which has an associated weight. MLNs can be viewed as relational analogs
to Markov networks whose features are expressed in first-order logic. In this way
MLNs combine the expressivity of first-order logic with the ability of probabilistic
graphical models to reason under uncertainty.

Let X be the set of all possible ground literals in the environment, F be the set
of all first-order formulae in the MLN, and wi be the weight of formula fi ∈ F .
Then, the probability of a particular truth assignment x to X is given by

P (X = x) =
exp

(∑
fi∈F wini(x)

)
∑

x′ exp
(∑

fi∈F wini(x′)
) [9], where ni(x) is the number of ground-

ings of fi that are true given the truth assignment x to X. Intuitively wi deter-
mines how much less likely a world is in which a grounding of fi is not satisfied
than one in which it is satisfied. The first-order formulae are called the struc-
ture. By grounding the formulae of an MLN with the constants in the environ-
ment, one defines a Markov network, over which inference can be performed to

www.ecmlpkdd2009.net
www.ecmlpkdd2009.net
www.ecmlpkdd2009.net
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determine the probability that each of a set of unknown ground literals is true,
given the truth values of a set of evidence ground literals. In our case, the ev-
idence literals, which we define in Section 4, provide information on the user
activity in the current session and how it relates to previous search sessions,
and the goal is to predict the probability that each grounding of the clickOn
predicate is true. Several algorithms are available to perform inference over a
ground MLN. We used MC-SAT [10], which has been demonstrated to give good
performance.

4 Proposed Approach

Our general approach follows that of previous applications of MLNs to specific
problems, e.g., [12]: we hand-coded the structure of the model as a set of first-
order formulae and learned weights for these formulae from the data. The key
idea behind our approach is to relate the current, active, session A in which
an ambiguous query Q is issued to previous, background, sessions from histori-
cal data, where it is assumed that both the active session and the background
sessions are short. Sessions are related by sharing various types of information.
We define the following predicates to capture these relationships. Since every
training/testing example refers to a single (Q,A) pair, A and Q are implicit in
the example and do not need to appear as arguments of the predicates.

-result(r): r is a search result for Q.
-choseResult(s, r): Background session s clicked on r after searching for Q.
-clickOn(r): User in session A clicks on result r in response to the search for Q.
-sharesClick(s, d): Sessions s and A share a click to URL with hostname d.
-sharesKeywordBtwnClicks(s, k): Background session s and A share a keyword
k, found in the hostnames of clicked URLs in each of the sessions.
-sharesKeywordBtwnClickAndSearch(s,k): Background session s and A share
a keyword k, found in the hostname of a clicked URL in A and a search in s.
-sharesKeywordBtwnSearchAndClick(s,k): Background session s and A share
a keyword k, found in a search in A and the hostname of a clicked URL in s.
-sharesKeywordBtwnSearches(s, k): Sessions s and A share a keyword k that
appeared in searches in both sessions.
-clicksShareKeyword(r, d, k): Keyword k appears in the hostname of both re-
sult r and previous click d from session A.
-clickAndSearchShareKeyword(r, s, k): Keyword k appears in the hostname of
result r and in previous search query s from session A.

Fig. 1 illustrates the predicates used to relate two sessions. The last two pred-
icates capture information local to the active session. In the active session A,
only the clicks and searches temporally preceding Q are used. For the predicates
in which a keyword relates two sessions, we used only keywords that appeared
at least 100 times (i.e., we removed keywords appearing less than 0.00083% of
the time) and at most 10, 000 times (i.e., we removed the top 61 most popular
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Fig. 1. An illustration of predicates that relate sessions. Tokens in boxes represent
queries, whereas tokens preceded by an arrow represent the clicked result. The active
session, on the left, is related to some of the background sessions, on the right, by shared
clicks or keywords. Not all possible relations are drawn.

keywords) over our training data. This was done to avoid rare or misspelled
keywords and to make the size of the data more manageable.

The goal is to predict the clickOn(r) predicate, given as evidence the values
of the remaining ones. The search results available for a given query are then
ranked by the predicted probability that the user will click on each of them.

4.1 Model Structure

This section describes the formulae used in our MLN models.

Collaborative Formulae: The collaborative formulae, shown in lines 1-5 of
Table 2, draw inferences about the interests of the active user based on the
choices made by related users from background sessions. For example, formula 1
establishes a relationship between the event that the active user chooses result r
and the event that the user in a previous session s, related to the active session
by sharing a click to a URL with hostname d, chose result r after searching for
the current ambiguous query. This formula exploits one type of relation between
the active session and background sessions to provide evidence of the active

Table 2. Formulae included in the model

1: result(r) ∧ sharesClick(s, d) ∧ choseResult(s, r) ∧ clickOn(r)
2: result(r) ∧ sharesKeywordBtwnClicks(s, k) ∧ choseResult(s, r) ∧ clickOn(r)
3: result(r) ∧ sharesKeywordBtwnClickAndSearch(s, k) ∧ choseResult(s, r) ∧ clickOn(r)
4: result(r) ∧ sharesKeywordBtwnSearchAndClick(s, k) ∧ choseResult(s, r) ∧ clickOn(r)
5: result(r) ∧ sharesKeywordBtwnSearches(s, k) ∧ choseResult(s, r) ∧ clickOn(r)
6: result(r) ∧ choseResult(s, r) ∧ clickOn(r)
7: result(r) ∧ clicksShareKeyword(r, d, k) ∧ clickOn(r)
8: result(r) ∧ clickAndSearchShareKeyword(r, s, k) ∧ clickOn(r)
9: result(r1) ∧ result(r2) ∧ r1 �= r2 ∧ clickOn(r1) ⇒ ¬clickOn(r2)
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user’s intentions. This formula is always false when one of the first three evi-
dence predicates is false, and in such cases it does not influence the probability
that a particular search result is chosen; i.e., this formula plays a role only for
background sessions that share clicks with the active session and chose a partic-
ular result r. The larger the number of such sessions, the stronger the belief that
the active user will also pick r. Formulae 2-5 encode analogous dependencies
using each of the remaining session-relating predicates.

Popularity Formula: Formula 6 in Table 2 encodes the intuition that the user
will click the result that was the most popular among background users that
searched for this ambiguous query. As before, the result for which there are the
largest number of clicks in background data, and thus the largest number of
groundings of this formula that are not falsified by the evidence, will have the
largest probability of being clicked.

Local Formulae: Formulae 7-8 in Table 2 use information local to the active
session to predict the user’s preferences. Formula 7 (8) states that the user will
click a result that shares keywords with a previous result (search) from the active
session. We clarify that keywords were not extracted from the pages to which a
URL points, but only from the URL itself because we are interested in developing
a light-weight re-ranker. Because in our setting sessions are very short, we do not
expect the local formulae to contribute much to the overall model performance.
We include them in order to verify this.

Balance Formula: Formula 9 in Table 2 sets up a competition among the possible
results by stating that if the user clicks one of the results, the user will not click
another one. This formula prevents all possible results from obtaining a very
high probability of being clicked. This makes the model more discriminating and
allows the same set of weights to perform well even as the number of groundings
of the other formulae varies widely across active sessions.

These formulae encode “rules of thumb” and useful features, which we expect
will hold in general, but may sometimes be violated, e.g., the balance formula is
violated when a user clicks more than one result for a query. The ability of MLNs
to combine such varied sources of information effectively and in a principled way
is one of the main considerations that motivated our choice of model. Using these
formulae, we defined three MLNs:

MLN 1 – Purely Collaborative: Contains only the collaborative formulae
(1-5) and the balance formula (9).
MLN 2 – Collaborative and Popularity: Contains formulae 1-6 and the
balance formula (9).
MLN 3 – Collaborative, Popularity, and Local: Contains all formulae. It
can be viewed as a mixed collaborative-content-based model, e.g., [26,27].

4.2 Weight Learning

To learn weights for the structures defined above, we used the contrastive diver-
gence algorithm (CD) described by Lowd and Domingos [29]. CD can be viewed
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as a voted-perceptron-like gradient descent algorithm in which the gradient for
updating the weight of formula Ci is computed as the difference between the
number of true groundings of Ci in the data and the expected number of true
groundings of Ci, where the expectation is computed by carrying out a small
number of MCMC steps over the model using the currently learned weights. Like
Lowd and Domingos [29], we computed the expectations with MC-SAT [10]. We
used the implementations of these algorithms in the Alchemy package [14], ex-
cept that we adapted the existing implementation of CD so that learning can
proceed in an online fashion, considering examples of sessions containing am-
biguous queries one by one. This was done because otherwise our data was too
large to fit in memory. We set the learning rate to 0.001 and the initial weight of
formulae to 0.1 and kept all other parameters at their default values. Parameter
values were selected on a validation set, strictly disjoint from our test set.

5 Data and Methodology

We used data provided by Microsoft Research containing anonymized query-log
records collected from MSN Search in May 2006. The data consists of time-
stamped records for individual short sessions, the queries issued in them, the
URLs clicked for each query, the number of results available for each query and
the position of each result in the ranked results. We removed queries for which
nothing was clicked. The average number of clicked results per session, over all
sessions in the data, is 3.28. The data does not specify what criteria were used
to organize a set of user interactions into a session; e.g., we do not know how
multiple open tabs in a browser were treated. Although some of the sessions
may belong to the same users, the data excludes this information through the
lack of user-specific identifiers. This dataset therefore perfectly mirrors the sce-
nario of disambiguating user intent from short interactions that we address in
this research. Because there is a one-to-one correspondence between users and
sessions, we will use these two terms interchangeably.

The data has two main limitations. First, it does not state which search queries
are ambiguous. Automatically detecting ambiguity from user behavior is an in-
teresting research question but is not the focus of this work. We therefore em-
ployed a simple heuristic to obtain a (possibly noisy) set of ambiguous queries,
using DMOZ (www.dmoz.org): a query string is considered ambiguous if, over all
URLs clicked after searching for this string, at least two fall in different top-
level DMOZ categories. This heuristic does not require human effort beyond
that already invested in constructing DMOZ. We did not include DMOZ cate-
gory information into our models because many Web pages are not classified in
the hierarchy. We limited ourselves to strings containing up to two words, thus
obtaining 6, 360 distinct ambiguous query strings. Limiting the length of poten-
tially ambiguous queries to two was motivated by the fact that most ambiguity
occurs in short queries. For example Sanderson [2] found that the average length

www.dmoz.org
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of ambiguous queries in two search log datasets ranges from 1.02 to 1.26 words.
Queries of length at most two constituted 43.7% of all queries in our data. Of
these queries, using the above method, we identified 2.4% as ambiguous, which
agrees with the statistics reported by Sanderson, who found that between 0.8%
and 3.9% of all queries are ambiguous [2].2

Another limitation is that our data does not list all URLs presented to the
user after a search but just the clicked ones. To overcome this, we assumed that
the set of all URLs clicked after searching for a particular ambiguous query
string, over the entire dataset, was the set of results presented to the user. Our
approach contrasts with that used in previous work, e.g., that of Dou et al. [5], in
which missing possible results lists are generated by separately querying the MSN
search engine (on which data was collected) for each query. Although the queries
were performed less than a month after the data was collected, the authors found
that 676 queries from 4, 639 “lost the clicked web pages in downloaded search
results.” Because in our case almost 3 years have passed since the MSN06 data
was collected, we preferred the simpler approach based on the available data.
With this method, the average number of possible results for an ambiguous
query string was 9.10. Figure 2 (a) shows the distribution over the number of
ambiguous queries for which we have a particular number of possible results.
Although this heuristic is imperfect, it is likely to bias the results against our
proposed solution—since every possible result was found to be relevant by at
least one user, our systems cannot get high scores by simply separating the
useful results from the totally irrelevant ones.

Figure 2 (b) shows the distribution over the number of clicks preceding an
ambiguous query in our test data. As can be seen, our test sessions, are indeed
very short. Several of the predicates we define use keywords. To generate a list of
keywords, we performed a pass over all training sessions. Any token separated by
spaces was considered a keyword. As mentioned in Section 4, we then kept key-
words that appeared at least 100 times and at most 10, 000 times. To determine
which keywords occur in a given hostname, we first use the non-alphanumeric
characters in the hostname to break it down into pieces and then match each
piece with keywords such that as much of the piece is covered as possible, using
the smallest number of keywords.

To ensure a fair evaluation, the data was split into training and testing peri-
ods. The training period was used for training, validation, keyword generation,
and idf [30] calculations (idfs were used by one of the baselines) and consisted of
the first 25 days of data. The remaining 6 days were reserved for testing. Sessions
that started in the training period and ended in the test period were discarded
to avoid contaminating the test data. As validation/testing examples we used
sessions that contained an ambiguous query from the training/testing periods
respectively. To decrease the amount of random noise in the results, we removed
from the test set sessions that contained no relational evidence, i.e., we re-
moved the sessions that contain no true groundings of the sharesKeyword/Click

2 In the Introduction, we cited Sanderson’s findings for frequently occurring queries,
whereas here we refer to his findings over all queries.



Learning to Disambiguate Search Queries from Short Sessions 121

(a) (b)

Fig. 2. Histograms showing (a) the distribution over the number of possible results
available for an ambiguous query and (b) the distribution over the number of clicks
preceding an ambiguous query in the test data. The X axis in (b) is drawn in log-scale.

predicates introduced in Section 4. In this way we obtained 11, 234 test sessions,
which constitutes 72% of the available test sessions. The distribution over the
number of previous clicks in these sessions is shown in Figure 2 (b). As can be
seen, the peak is at 3 distinct clicks before the ambiguous query.

During testing, only the information preceding the ambiguous query in the
active test session is provided. The set of possible results for this ambiguous
query string is given, and the goal is to rank these results based on how likely it
is that they represent the intent of the user. The user may click more than one
result after searching for a string. This behavior might be indicative of at least
two possible scenarios: either the user is performing an exploratory search and all
clicked results were relevant, or the user was dissatisfied with the results and kept
clicking until finding a useful one. Since the data does not indicate which of these
scenarios was the case, we treated all results clicked by the user after searching
for the ambiguous query as relevant to his or her intentions. This presents yet
another source of noise, and in the future we plan to explore approaches similar
to the implicit feedback techniques described by Radlinski and Joachims [16] to
disentangle these possibilities, although the exact method introduced by these
authors would not be applicable to our data because it requires the availability
of an ordered list of the results returned to the user by the search engine.

Learning was performed as described in Section 4.2. To evaluate the learned
models, we used Alchemy’s implementation [14] of the MC-SAT algorithm [10]
for inference. During inference, we ran for 1,000 burn-in steps and 10,000 sam-
pling steps. All other inference parameters were kept at their Alchemy defaults.

Evaluation Metrics: For evaluation purposes, query disambiguation can be
viewed as an information retrieval problem: rank the set of possible results so
that the URLs reflecting the user’s intentions appear as close to the top as
possible. Thus, we used standard information retrieval metrics to evaluate the
performance of our system [30] (Chapter 8):

(MAP) Area under the precision-recall curve, which is identical to the Mean
Average Precision metric, commonly used in IR. The MAP score is computed
over a set of test instances T as follows: MAP(T ) = 1

|T |
∑

t∈T
1

|Rt|
∑

r∈Rt
P@r,



122 L. Mihalkova and R. Mooney

where Rt is the set of possible results for the t-th test instance and P@r is the
precision of the top r results: P@r = Num relevant docs among the top r

r .
(AUC-ROC) Area under the ROC Curve, which can be viewed as repre-

senting the mean average true negative rate. Using the notation from above,
this metric is computed as follows: AUC-ROC(T ) = 1

|T |
∑

t∈T
1

|Rt|
∑

r∈Rt
TN@r,

where TN@r is the true negative rate of the top r results, defined as TN@r =
Num irrelevant docs in positions >r

Total num irrelevant docs .

Intuitively, the MAP measures how close the relevant URLs are to the top.
One disadvantage of this metric in our case is that it is insensitive to the number
of results to be ranked. For example, ranking a relevant result in the second
position obtains the same score both when the number of possibilities is 2 and
when it is 100, even though in the second case the task is clearly more difficult.
Assuming that the user starts scanning the page of returned results from top to
bottom and does not consider any results appearing after the relevant ones, the
AUC-ROC intuitively represents the percentage of irrelevant results that were
not seen by the user. Thus, a random ranker would obtain an AUC-ROC of
0.5. Another useful characteristic of this measure is that unlike the MAP, it is
sensitive to the number of possible results that are to be ranked.

A final issue is how to break ties when a relevant result has the same score as
some irrelevant results. We report the average case in which the relevant result
is placed in the middle position within the group of results with equal scores.
For the most interesting systems, we also report the worst case in which the
relevant result is placed last within the group of results that share scores. This is
motivated by the goal of performing effective personalization consistently. The
best case is not interesting because for it perfect performance can be obtained
by giving all results the same score.

Systems Compared: We compared the MLNs from Section 4 to:

Random: Ranks the possible results randomly.

Collaborative-Pearson: Implements a standard collaborative filtering algo-
rithm [25] that weights each previous user based on the Pearson correlation
between the preferences (i.e. clicks) of that user and the active user. We consid-
ered a clicked result to have rating 1, and an unclicked result that was clicked
by another user for the same query to have rating 0, and all other results to be
unrated. The n closest neighbors are chosen (we used n = 30 following [25]), and
the prediction that a given result is selected is formed as a weighted average of
the deviations from the mean of each neighbor.

Collaborative-Cosine: Identical to Collaborative-Pearson except that it
computes the similarity between the active user and a previous user as the cosine
similarity between the idf -weighted vectors of their clicked results.
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Popularity: Ranks each result according to the number of previous sessions
that searched for the ambiguous query and chose it.

6 Results

Table 3 (a) presents the performance when ties among results with the same
score are broken as in the average case. The Collaborative-Pearson baseline
performs no better than Random on AUC-ROC and only slightly better than
Random on MAP. Switching to cosine similarity in Collaborative-Cosine
gives modest (but significant at the 99.996% level according to a paired t-test)
improvements. The Popularity baseline is very strong and outperforms the
other baselines, as well as MLN 1. However, combining popularity with re-
lational information in MLN 2 leads to significant gains in performance, and
MLN 2 achieves a significantly higher AUC-ROC score. MLN 2, our strongest
model, highlights the main advantage of using MLNs: we were able to signifi-
cantly improve MLN 1 by incorporating a reliable source of information simply
by adding the popularity formula to the model. Finally, as expected, we ob-
serve that adding local formulae in MLN 3 does not improve performance. This
demonstrates that the interactions of the active user prior to the ambiguous
query are not directly helpful for determining intent and occurs as a result of
the brevity of sessions in our data (cf. Figure 2 (b)). The inefficacy of local for-
mulae may also be due to the fact that a session may continue when the user
is dissatisfied with the results obtained so far. It is interesting to contrast this
result with the findings of Dou et al. [5] who experimented with much longer

Table 3. (a) Results over all test sessions that contain an ambiguous query when
ties in ranking are broken as in the (a) average case and (b) worst case. Numbers
in bold present significant improvements over all preceding systems at the 99.996%
level with a paired t-test. Additional significant differences are: in (a) MLN 1 is a
significant improvement over all baselines except Popularity, and MLN 2 improves
significantly over all preceding systems except for Popularity also in terms of MAP;
in (a), there is no significant difference between the MAP scores of Popularity and
MLN 2; in (a) and (b) the MAP score of Popularity is significantly higher than that
of MLN 1.

System MAP AUC-ROC

Random 0.317 0.502
Collaborative-Pearson 0.333 0.502
Collaborative-Cosine 0.360 0.521

Popularity 0.389 0.575

MLN 1 0.375 0.563
MLN 2 0.386 0.587

MLN 3 0.366 0.583

System MAP AUC-ROC

Popularity 0.380 0.525
MLN 1 0.373 0.563

MLN 2 0.385 0.586

MLN 3 0.355 0.572

(a) (b)
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Fig. 3. AUC-ROC when ranking ties are broken so as to simulate the (a) average
case and (b) worst case for different bins of KL divergence of the distribution over
possible results to uniform

sessions (up to 12 days) and reported that the previous interactions of the active
user presented a very strong signal for personalization purposes. This emphasizes
a fundamental difference in our assumptions about the data compared to previ-
ous research: because in our case user-specific session information is so limited,
we cannot rely on only using the past preferences of the active user and must
instead exploit relations to other, historical, users.

Next, we analyze in more detail the performance of the MLN systems to that
of Popularity, which is the strongest baseline. Table 3 (b) presents the per-
formance over all test sessions when ties in ranking are broken as in the worst
case. As can be seen, Popularity’s AUC-ROC score decreases sharply, whereas
the MLN models maintain their performance to almost the same level as in the
average case. This behavior is observed partly because Popularity introduces
many more ties among the scores of possible results than do the MLN models. In
particular, averaged over all test sessions, the ratio between the number of pos-
sible results and the number of distinct scores for Popularity was 1.8, whereas
for MLN2 it was just 1.02. These results indicate that Popularity’s behavior
is erratic and can, for the same user and the same query, lead to rankings that
vary highly in quality. This kind of behavior can give the perception of poor
quality to a frequent user. On the other hand, the MLN models are consistent,
maintaining the quality of their rankings in the worst case.

Finally, we compare the performance of Popularity to that of MLN 2 while
varying the degree to which some of the possible results for an ambiguous query
dominate in popularity over the rest. We formalized this as follows. Let qQ be the
empirical distribution over the results clicked for an ambiguous query Q. This
distribution was measured empirically on the training data, i.e., for every am-
biguous query, we determined from the training sessions the proportion of time
each potential search result was clicked. We then separated the test examples into
bins, such that bin i contains all test sessions s for which �KLqQ||uniform� = i,
where Q is the ambiguous query in session s and KLqQ||uniform is the KL diver-
gence of qQ to the uniform distribution. In other words, bin 0 contains the ses-
sions in which the possible results for the ambiguous query were all chosen with
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roughly the same frequency. Higher-numbered bins contain sessions in which one
of the search results strongly dominates in popularity over the other possibilities.
When this is the case, predicting just based on the popularity of a result gives
good performance. The more challenging scenario occurs in the lower-numbered
bins where the preferences over possible results are more uniformly distributed.
Figure 3 compares Popularity to MLN 2 when ties in ranking are broken for
the average and worst cases. MLN 2 maintains a lead over Popularity until
the last two bins in which the distribution over possible results is furthest from
uniform. As we expect, the difference between the performance of the two sys-
tems shrinks as we move to higher-numbered bins, and MLN 2 has a greater
advantage over Popularity in the lower-numbered bins in which the need to
disambiguate is more pressing. The sharp drop in accuracy observed in bin 7 is
due to the fact that one of the ambiguous queries occurring in sessions in this bin
was overwhelmingly followed by clicks to what seems to be a newly appearing
Web page during the test period. That page was selected only 3 times in the
training period while the most popular page in the training period was selected
more than 2000 times. As a final but important note, inference over the learned
models was very efficient and completed in the order of a second.

7 Conclusions and Future Work

We addressed Web query disambiguation in the challenging setting when the only
information available about any particular user is that captured in a short search
session of 4–6 previous searches on average. Using the language of MLNs, we
developed an approach that draws heavily on different types of relations between
search sessions and demonstrated that our approach significantly outperforms
several natural baselines by successfully combining the inferences of collaborative
and popularity formulae. In this way, we provided evidence that despite the
sparseness and noise inherently present in a short search session, it is possible
to output meaningful predictions about a searcher’s underlying interests.

Here our goal was a light-weight approach to Web query disambiguation. In
the future, we would like to experiment with richer sources of information, such
as the actual content of clicked pages. A second avenue for future work involves
improving supervision by discovering ways to decrease the amount of noise in
the data and developing learning algorithms that are more tolerant to noise.
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Abstract. This article presents a method for training Dynamic Fac-
tor Graphs (DFG) with continuous latent state variables. A DFG in-
cludes factors modeling joint probabilities between hidden and observed
variables, and factors modeling dynamical constraints on hidden vari-
ables. The DFG assigns a scalar energy to each configuration of hidden
and observed variables. A gradient-based inference procedure finds the
minimum-energy state sequence for a given observation sequence. Be-
cause the factors are designed to ensure a constant partition function,
they can be trained by minimizing the expected energy over training
sequences with respect to the factors’ parameters. These alternated in-
ference and parameter updates can be seen as a deterministic EM-like
procedure. Using smoothing regularizers, DFGs are shown to reconstruct
chaotic attractors and to separate a mixture of independent oscillatory
sources perfectly. DFGs outperform the best known algorithm on the
CATS competition benchmark for time series prediction. DFGs also suc-
cessfully reconstruct missing motion capture data.

Keywords: factor graphs, time series, dynamic Bayesian networks, re-
current networks, expectation-maximization.

1 Introduction

1.1 Background

Time series collected from real-world phenomena are often an incomplete picture
of a complex underlying dynamical process with a high-dimensional state that
cannot be directly observed. For example, human motion capture data gives
the positions of a few markers that are the reflection of a large number of joint
angles with complex kinematic and dynamical constraints. The aim of this article
is to deal with situations in which the hidden state is continuous and high-
dimensional, and the underlying dynamical process is highly non-linear, but
essentially deterministic. It also deals with situations in which the observations
have lower dimension than the state, and the relationship between states and
observations may be non-linear. The situation occurs in numerous problems in
speech and audio processing, financial data, and instrumentation data, for such
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tasks as prediction and source separation. It applies in particular to univariate
chaotic time series which are often the projection of a multidimensional attractor
generated by a multivariate system of nonlinear equations.

The simplest approach to modeling time series relies on time-delay embed-
ding: the model learns to predict one sample from a number of past samples
with a limited temporal span. This method can use linear auto-regressive mod-
els, as well as non-linear ones based on kernel methods (e.g. support-vector
regression [13,14]), neural networks (including convolutional networks such as
time delay neural networks [7,18]), and other non-linear regression models. Un-
fortunately, these approaches have a hard time capturing hidden dynamics with
long-term dependency because the state information is only accessible indirectly
(if at all) through a (possibly very long) sequence of observations [2].

To capture long-term dynamical dependencies, the model must have an in-
ternal state with dynamical constraints that predict the state at a given time
from the states and observations at previous times (e.g. a state-space model).
In general, the dependencies between state and observation variables can be ex-
pressed in the form of a Factor Graph [5] for sequential data, in which a graph
motif is replicated at every time step. An example of such a representation of a
state-space model is shown in Figure 1a. Groups of variables (circles) are con-
nected to a factor (square) if a dependency exists between them. The factor can
be expressed in the negative log domain: each factor computes an energy value
that can be interpreted as the negative log likelihood of the configuration of
the variables it connects with. The total energy of the system is the sum of the
factors’ energies, so that the maximum likelihood configuration of variables can
be obtained by minimizing the total energy.

Figure 1a shows the structure used in Hidden Markov Models (HMM) and
Kalman Filters, including Extended Kalman Filters (EKF) which can model
non-linear dynamics. HMMs can capture long-term dependencies, but they are
limited to discrete state spaces. Discretizing the state space of a high-dimensional
continuous dynamical process to make it fit into the HMM framework is of-
ten impractical. Conversely, EKFs deal with continuous state spaces with non-
linear dynamics, but much of the machinery for inference and for training the

(a) 1st order Markov DFG (b) 2nd order Markov DFG

Fig. 1. (a) A simple Dynamical Factor Graph with a 1st order Markovian property,
as used in HMMs and state-space models such as Kalman Filters. (b) A Dynamic
Factor Graph where dynamics depend on the past two values of both latent state Z
and observed variables Y .
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parameters is linked to the problem of marginalizing over hidden state distri-
butions and to propagating and estimating the covariances of the state distri-
butions. This has lead several authors to limit the discussion to dynamics and
observation functions that are linear, radial-basis functions networks [19,4] or
single-hidden layer perceptrons [6]. More recently, Gaussian Processes with dy-
namics on latent variables have been introduced [20], but they suffer from a
quadratic dependence on the number of training samples.

1.2 Dynamical Factor Graphs

By contrast with current state-space methods, our primary interest is to model
processes whose underlying dynamics are essentially deterministic, but can be
highly complex and non-linear. Hence our model will allow the use of complex
functions to predict the state and observations, and will sacrifice the probabilistic
nature of the inference. Instead, our inference process (including during learning)
will produce the most likely (minimum energy) sequence of states given the
observations. We call this method Dynamic Factor Graph (DFG), a natural
extension of Factor Graphs specifically tuned for sequential data.

To model complex dynamics, the proposed model allows the state at a given
time to depend on the states and observationsover severalpast time steps. The cor-
responding DFG is depicted in Figure 1b. The graph structure is somewhat similar
to that of Taylor and Hinton’s Conditional Restricted Boltzmann Machine [17].
Ideally, training a CRBM would consist in minimizing the negative log-likelihood
of the data under the model. But computing the gradient of the log partition
function with respect to the parameters is intractable, hence Taylor and Hinton
propose to use a form of the contrastive divergence procedure, which relies on
Monte-Carlo sampling. To avoid costly sampling procedures, we design the fac-
tors in such a way that the partition function is constant, hence the likelihood of
the data under the model can be maximized by simply minimizing the average en-
ergy with respect to the parameters for the optimal state sequences. To achieve
this, the factors are designed so that the conditional distributions of state Z(t)
given previous states and observation1, and the conditional distribution of the ob-
servation Y (t) given the state Z(t) are both Gaussians with a fixed covariance.

In a nutshell, the proposed training method is as follows. Given a training
observation sequence, the optimal state sequence is found by minimizing the
energy using a gradient-based minimization method. Second, the parameters of
the model are updated using a gradient-based procedure so as to decrease the
energy. These two steps are repeated over all training sequences. The procedure
can be seen as a sort of deterministic generalized EM procedure in which the
latent variable distribution is reduced to its mode, and the model parameters
are optimized with a stochastic gradient method. The procedure assumes that
the factors are differentiable with respect to their input variables and their pa-
rameters. This simple procedure will allow us to use sophisticated non-linear
1 Throughout the article, Y (t) denotes the value at time t of multivariate time series Y ,

and Yt−1
t−p ≡ {Y (t− t), Y (t− 2), . . . , Y (t− p)} a time window of p samples preceding

the current sample. Z(t) denotes the hidden state at time t.



Dynamic Factor Graphs for Time Series Modeling 131

models for the dynamical and observation factors, such as stacks of non-linear
filter banks (temporal convolutional networks). It is important to note that the
inference procedure operates at the sequence level, and produces the most likely
state sequence that best explains the entire observation. In other words, future
observations may influence previous states.

In the DFG shown in Figure 1a, the dynamical factors compute an energy term
of the form Ed(t) = ||Z(t) − f (X(t), Z(t− 1)) ||2, which can seen as modeling
the state Z(t) as f(X(t), Z(t−1)) plus some Gaussian noise variable with a fixed
variance ε(t) (inputs X(t) are not used in experiments in this article). Similarly,
the observation factors compute the energy Eo(t) = ||Y (t) − g(Z(t))||2, which
can be interpreted as Y (t) = g (Z(t)) + ω(t), where ω(t) is a Gaussian random
variable with fixed variance.

Our article is organized in three additional sections. First, we explain the
gradient-based approximate algorithm for parameter learning and determinis-
tic latent state inference in the DFG model (2). We then evaluate DFGs on
toy, benchmark and real-world datasets (3). Finally, we compare DFGs to pre-
vious methods for deterministic nonlinear dynamical systems and to training
algorithms for Recurrent Neural Networks (4).

2 Methods

The following subsections detail the deterministic nonlinear (neural networks-
based) or linear architectures of the proposed Dynamic Factor Graph (2.1) and
define the EM-like, gradient-based inference (2.2) and learning (2.4) algorithms,
as well as how DFGs are used for time-series prediction (2.3).

2.1 A Dynamic Factor Graph

Similarly to Hidden Markov Models, our proposed Dynamic Factor Graph con-
tains an observation and a dynamical factors/models (see Figure 1a), with cor-
responding observed outputs and latent variables.

The observation model g links latent variable Z(t) (an m-dimensional vector)
to the observed variable Y (t) (an n-dimensional vector) at time t under Gaussian
noise model ω(t) (because the quadratic observation error is minimized). g can
be nonlinear, but we considered in this article linear observation models, i.e. an
n×m matrix parameterized by a weight vector Wo. This model can be simplified
even further by imposing each observed variable yi(t) of the multivariate time
series Y to be the sum of k latent variables, with m = k × n, and each latent
variable contributing to only one observed variable. In the general case, the
generative output is defined as:

Y (t) = Y ∗(t) + ω(t), where Y ∗(t) ≡ g (Wo, Z(t)) (1)

In its simplest form, the linear or nonlinear dynamical model f establishes a
causal relationship between a sequence of p latent variables Zt−1

t−p and latent
variable Z(t), under Gaussian noise model ε(t) (because the quadratic dynamic
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Fig. 2. Energy-based graph of a DFG with a 1st order Markovian architecture and
additional dynamical dependencies on past observations. Observations Y (t) are inferred
as Y ∗(t) from latent variables Z(t) using the observation model parameterized by Wo.
The (non)linear dynamical model parameterized by Wd produces transitions from a
sequence of latent variables Zt−1

t−p and observed output variables Yt−1
t−p to Z(t) (here

p = 1). The total energy of the configuration of parameters and latent variables is the
sum of the observation Eo(.) and dynamic Ed(.) errors.

error is minimized). (2) thus defines pth order Markovian dynamics (see Figure
1a where p = 1). The dynamical model is parameterized by vector Wd.

Z(t) = Z∗(t) + ε(t), where Z∗(t) ≡ f
(
Wd,Zt−1

t−p

)
(2)

Typically, one can use simple multivariate autoregressive linear functions to map
the state variables, or can also resort to nonlinear dynamics modeled by a Convo-
lutional Network [8] with convolutions (FIR filters) across time, as in Time-Delay
Neural Networks [7,18].

Other dynamical models, different from the Hidden Markov Model, are also
possible. For instance, latent variables Z(t) can depend on a sequence of p past
latent variables Zt−1

t−p and p past observations Yt−1
t−p, using the same error term

ε(t), as explained in (3) and illustrated on Figure 1b.

Z(t) = Z∗(t) + ε(t), where Z∗(t) ≡ f
(
Wd,Zt−1

t−p,Y
t−1
t−p

)
(3)

Figure 2 displays the interaction between the observation (1) and dynamical (3)
models, the observed Y and latent Z variables, and the quadratic error terms.

2.2 Inference in Dynamic Factor Graphs

Let us define the following total (4), dynamical (5) and observation (6) energies
(quadratic errors) on a given time interval [ta, . . . , tb], where respective weight
coefficients α, β are positive constants (in this article, α = β = 0.5):
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E
(
Wd,Wo,Y

tb
ta

)
=

tb∑
t=ta

[αEd(t) + βEo(t)] (4)

Ed(t) ≡ min
Z

Ed

(
Wd,Zt−1

t−p, Z(t)
)

(5)

Eo(t) ≡ min
Z

Eo (Wo, Z(t), Y (t)) (6)

Inferring the sequence of latent variables {Z(t)}t in (4) and (5) is equivalent to
simultaneous minimization of the sum of dynamical and observation energies at
all times t:

Ed

(
Wd,Zt−1

t−p, Z(t)
)

= ||Z∗(t)− Z(t)||22 (7)

Eo (Wo, Z(t), Y (t)) = ||Y ∗(t)− Y (t)||22 (8)

Observation and dynamical errors are expressed separately, either as Normalized
Mean Square Errors (NMSE) or Signal-to-Noise Ratio (SNR).

2.3 Prediction in Dynamic Factor Graphs

Assuming fixed parameters W of the DFG, two modalities are possible for the
prediction of unknown observed variables Y .

– Closed-loop (iterated) prediction: when the continuation of the time series is
unknown, the only relevant information comes from the past. One uses the
dynamical model to predict Z∗(t) from Yt−1

t−p and inferred Zt−1
t−p, set Z(t) =

Z∗(t), use the observation model to compute prediction Y ∗(t) from Z(t), and
iterate as long as necessary. If the dynamics depend on past observations,
one also needs to rely on predictions Y ∗(t) in (3).

– Prediction as inference: this is the case when only some elements of Y are un-
known (e.g. estimation of missing motion-capture data). First, one infers la-
tent variables through gradient descent, and simply does not backpropagate
errors from unknown observations. Then, missing values y∗i (t) are predicted
from corresponding latent variables Z(t).

2.4 Training of Dynamic Factor Graphs

Learning in an DFG consists in adjusting the parameters W =
[
WT

d ,W
T
o

]
in

order to minimize the loss L(W,Y, Z̃):

L(W, Y, Z) = E (W, Y ) + Rz(Z) + R (W) (9)
Z̃ = argminZL(W̃,Y, Z) (10)

W̃ = argminWL(W,Y, Z̃) (11)

where R(W) is a regularization term on the weights Wd and Wo, and Rz(Z)
represents additional constraints on the latent variables further detailed. Min-
imization of this loss is done iteratively in an Expectation-Maximization-like
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fashion in which the states Z play the role of auxiliary variables. During in-
ference, values of the model parameters are clamped and the hidden variables
are relaxed to minimize the energy. The inference described in part (2.2) and
equation (10) can be considered as the E-step (state update) of a gradient-based
version of the EM algorithm. During learning, model parameters W are opti-
mized to give lower energy to the current configuration of hidden and observed
variables. The parameter-adjusting M-step (weight update) described by (11) is
also gradient-based.

In its current implementation, the E-step inference is done by gradient descent
on Z, with learning rate ηz typically equal to 0.5. The convergence criterion is
when energy (4) stops decreasing. The M-step parameter learning is implemented
as a stochastic gradient descent (diagonal Levenberg-Marquard) [9] with indi-
vidual learning rates per weight (re-evaluated every 10000 weight updates) and
global learning rate ηw typically equal to 0.01. These parameters were found by
trial and error on a grid of possible values.

The state inference is not done on the full sequence at once, but on mini-
batches (typically 20 to 100 samples), and the weights get updated once after
each mini-batch inference, similarly to the Generalized EM algorithm. During
one epoch of training, the batches are selected randomly and overlap in such a
way that each state variable Z(t) is re-inferred at least a dozen times in different
mini-batches. This learning approximation echoes the one in regular stochastic
gradient with no latent variables and enables to speed up the learning of the
weight parameters.

The learning algorithm turns out to be particularly simple and flexible. The
hidden state inference is however under-constrained, because of the higher di-
mensionality of the latent states and despite the dynamical model. For this rea-
son, this article proposes to (in)directly regularize the hidden states in several
ways.

First, one can add to the loss function an L1 regularization term R(W) on the
weight parameters. This way, the dynamical model becomes “sparse” in terms
of its inputs, e.g. the latent states. Regarding the term Rz(Z), an L2 norm on
the hidden states Z(t) limits their overall magnitude, and an L1 norm enforces
their sparsity both in time and across dimensions. Respective regularization
coefficients λw and λz typically range from 0 to 0.1.

Pseudo-code of the EM-like Learning and Inference in DFGs

for each epoch k
for each subsequence I in [1, T]
repeat
for each time index t within I

forward-propagate Z(t) through f to get Z*(t)
forward-propagate Z(t) through g to get Y*(t)
back-propagate errors from ||Z(t)-Z*(t)||, add to dZ(t)
back-propagate errors from ||Y(t)-Y*(t)||, add to dZ(t)

update latent states Z(I) using gradients dZ(I)
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until convergence, when energy E(I) stops decreasing
for each time index t within I
back-propagate errors from ||Z(t)-Z*(t)||, add to dW
back-propagate errors from ||Y(t)-Y*(t)||, add to dW

update parameters W using gradients dW

2.5 Smoothness Penalty on Latent Variables

The second type of constraints on the latent variables is the smoothness penalty.
In an apparent contradiction with the dynamical model (2), this penalty forces
two consecutive variables zi(t) and zi(t+1) to be similar. One can view it as an
attempt at inferring slowly varying hidden states and at reducing noise in the
states (which is particularly relevant when observation Y is sampled at a high
frequency). By consequence, the dynamics of the latent states are smoother and
simpler to learn. Constraint (12) is easy to derivate w.r.t. a state zi(t) and to
integrate into the gradient descent optimization (10):

Rz

(
Zt+1

t

)
=

∑
i

(zi(t)− zi(t + 1))2 (12)

In addition to the smoothness penalty, we have investigated the decorrelation
of multivariate latent variables Z(t) = (z1(t), z2(t), . . . , zm(t)). The justification
was to impose to each component zi to be independent, so that it followed its
own dynamics, but we have not obtained satisfactory results yet. As reported in
the next section, the interaction of the dynamical model, weight sparsification
and smoothness penalty already enables the separation of latent variables.

3 Experimental Evaluation

First, working on toy problems, we investigate the latent variables that are in-
ferred from an observed time series. We show that using smoothing regularizers,
DFGs are able to perfectly separate a mixture of independent oscillatory sources
(3.1), as well as to reconstruct the Lorenz chaotic attractor in the inferred state
space (3.2). Secondly, we apply DFGs to two time series prediction and mod-
eling problems. Subsection (3.3) details how DFGs outperform the best known
algorithm on the CATS competition benchmark for time series prediction. In
(3.4) we reconstruct realistic missing human motion capture marker data in a
walk sequence.

3.1 Asynchronous Superimposed Sine Waves

The goal is to model a time series constituted by a sum of 5 asynchronous
sinusoids: y(t) =

∑5
j=1 sin(λjt) (see Fig. 3a). Each component xj(t) can be con-

sidered as a “source”, and y(t) is a mixture. This problem has previously been
tackled by employing Long-Short Term Memory (LSTM), a special architecture
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Fig. 3. (a) Superposition of five asynchronous sinusoids: y(t) =
∑5

j=1 sin(λjt) where
λ1 = 0.2, λ2 = 0.311, λ3 = 0.42, λ4 = 0.51 and λ5 = 0.74. Spectrum analysis shows
that after learning and inference, each reconstructed state zi isolates only one of the
original sources xj , both on the training (b) and testing (c) datasets.

of Recurrent Neural Networks that needs to be trained by genetic optimiza-
tion [21].

After EM training and inference of hidden variables Z(t) of dimension m = 5,
frequency analysis of the inferred states on the training (Fig. 3b) and testing
(Fig. 3c) datasets showed that each latent state zi(t) reconstructed one individual
sinusoid. In other words, the 5 original sources from the observation mixture
y(t) were inferred on the 5 latent states. The observation SNR of 64dB, and
the dynamical SNR of 54dB, on both the training and testing datasets, proved
both that the dynamics of the original time series y(t) were almost perfectly
reconstructed. DFGs outperformed LSTMs on that task since the multi-step
iterated (closed-loop) prediction of DFG did not decrease in SNR even after
thousands of iterations, contrary to [21] where a reduction in SNR was already
observed after around 700 iterations.

As architecture for the dynamical model, 5 independent Finite Impulse Re-
sponse (FIR) filters of order 25 were chosen to model the state transitions: each
of them acts as a band-pass filter and models an oscillator at a given frequency.
One can hypothesize that the smoothness penalty (12), weighted by a small co-
efficient of 0.01 in the state regularization term Rz(Z) helped shape the hidden
states into perfect sinusoids. Note that the states or sources were made inde-
pendent by employing five independent dynamical models for each state. This
specific usage of DFG can be likened to Blind Source Separation from an unique
source, and the use of independent filters for the latent states (or sources) echoes
the approach of BSS using linear predictability and adaptive band-pass filters.

3.2 Lorenz Chaotic Data

As a second application, we considered the 3-variable (x1, x2, x3) Lorenz dy-
namical system [12] generated by parameters ρ = 16, b = 4, r = 45.92 as in
[13] (see Fig. 4a). Observations consisted in one-dimensional time series y(t) =∑3

j=1 xj(t).



Dynamic Factor Graphs for Time Series Modeling 137

Fig. 4. Lorenz chaotic attractor (left) and the reconstructed chaotic attractor from
the latent variables Z(t) = {z1(t), z2(t), z3(t)} after inference on the testing dataset
(right)

The DFG was trained on 50s (2000 samples) and evaluated on the following
40s (1600 samples) of y. Latent variables Z(t) = (z1(t), z2(t), z3(t)) had dimen-
sion m = 3, as it was greater than the attractor correlation dimension of 2.06 and
equal to the number of explicit variables (sources). The dynamical model was
implemented as a 3-layered convolutional network. The first layer contained 12
convolutional filters covering 3 time steps and one latent component, replicated
on all latent components and every 2 time samples. The second layer contained
12 filters covering 3 time steps and all previous hidden units, and the last layer
was fully connected to the previous 12 hidden units and 3 time steps. The dy-
namical model was autoregressive on p = 11 past values of Z, with a total of
571 unique parameters. “Smooth” consecutive states were enforced (12), thanks
to the state regularization term Rz(Z) weighted by a small coefficient of 0.01.
After training the parameters of DFG, latent variables Z were inferred on the
full length of the training and testing dataset, and plotted in 3D values of triplets
(z1(t), z2(t), z3(t)) (see Fig. 4b).

The 1-step dynamical SNR obtained with a training set of 2000 samples was
higher than the 1-step prediction SNR reported for Support Vector Regression
(SVR) [13] (see Table 1). According to the Takens theorem [16], it is possible to
reconstruct an unknown (hidden) chaotic attractor from an adequately long win-
dow of observed variables, using time-delay embedding on y(t), but we managed
to reconstruct this attractor on the latent states (z1(t), z2(t), z3(t)) inferred both
from the training or testing datasets (Fig. 4). Although one of the “wings” of
the reconstructed butterfly-shaped attractor is slightly twisted, one can clearly
distinguish two basins of attraction and a chaotic orbit switching between one
and the other. The reconstructed latent attractor has correlation dimensions
1.89 (training dataset) and 1.88 (test dataset).
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Table 1. Comparison of 1-step prediction error using Support Vector Regression, with
the errors of the dynamical and observation models of DFGs, measured on the Lorenz
test dataset and expressed as signal-to-noise ratios

Architecture SVR DFG

Dynamic SNR 41.6 dB 46.2 dB
Observation SNR - 31.6 dB

Table 2. Prediction results on the CATS competition dataset comparing the best
algorithm (Kalman Smoothers [15]) and Dynamic Factor Graphs. E1 and E2 are un-
normalized MSE, measured respectively on all five missing segments or on the first four
missing segments.

Architecture Kalman smoother DFG

E1 (5 segments) 408 390

E2 (4 segments) 346 288

3.3 CATS Time Series Competition

Dynamic Factor Graphs were evaluated on time series prediction problems us-
ing the CATS benchmark dataset [10]. The goal of the competition was the
prediction of 100 missing values divided into five groups of 20, the last group
being at the end of the provided time series. The dataset presented a noisy
and chaotic behaviour commonly observed in financial time series such as stock
market prices.

In order to predict the missing values, the DFG was trained for 10 epochs on
the known data (5 chunks of 980 points each). 5-dimensional latent states on
the full 5000 point test time series were then inferred in one E-step, as described
in section 2.3. The dynamical factor was the same as in section 3.2. As shown
in Table 2, the DFG outperformed the best results obtained at the time of the
competition, using a Kalman Smoother [15], and managed to approximate the
behavior of the time series in the missing segments.

3.4 Estimation of Missing Motion Capture Data

Finally, DFGs were applied to the problem of estimating missing motion capture
data. Such situations can arise when “the motion capture process [is] adversely
affected by lighting and environmental effects, as well as noise during recording”
[17]. Motion capture data2 Y consisted of three 49-dimensional time series rep-
resenting joint angles derived from 17 markers and coccyx, acquired on a subject
walking and turning, and downsampled to 30Hz. Two sequences of 438 and 3128
samples were used for training, and one sequence of 260 samples for testing.
2 We used motion capture data from the MIT database as well as sample Matlab code

for motion playback and conversion, developped or adapted by Taylor, Hinton and
Roweis, available at: http://www.cs.toronto.edu/~gwtaylor/

http://www.cs.toronto.edu/~gwtaylor/
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Table 3. Reconstruction error (NMSE) for 4 sets of missing joint angles from motion
capture data (two blocks of 65 consecutive frames, about 2s, on either the left leg or
entire upper body). DFGs are compared to standard nearest neighbors matching.

Method Nearest Neighb. DFG

Missing leg 1 0.77 0.59

Missing leg 2 0.47 0.39

Missing upper body 1 1.24 0.9

Missing upper body 2 0.8 0.48

We reproduced the experiments from [17], where Conditional Restricted Boltz-
man Machines (CRBM) were utilized. On the test sequence, two different sets
of joint angles were erased, either the left leg (1) or the entire upper body (2).
After training the DFG on the training sequences, missing joint angles yi(t) were
inferred through the E-step inference. The DFG was the same as in sections 3.2
and 3.3, but with 147 hidden variables (3 per observed variable) and no smooth-
ing. Table 3 shows that DFGs significantly outperformed nearest neighbor inter-
polation (detailed in [17]), by taking advantage of the motion dynamics modeled
through dynamics on latent variables. Contrary to nearest neighbors match-
ing, DFGs managed to infer smooth and realistic leg or upper body motion.
Videos comparing the original walking motion sequence, and the DFG- and
nearest neighbor-based reconstructions are available at http://cs.nyu.edu/
~mirowski/pub/mocap/. Figure 5 illustrates the DFG-based reconstruction (we
did not include nearest neighbor interpolation resuts because the reconstructed
motion was significantly more “hashed” and discontinuous).

4 Discussion

In this section, we establish a comparison with other nonlinear dynamical sys-
tems with latent variables (4.1) and suggest that DFGs could be seen as an
alternative method for training Recurrent Neural Networks (4.2).

4.1 Comparison with Other Nonlinear Dynamical Systems with
Latent States

An earlier model of nonlinear dynamical system with hidden states is the Hid-
den Control Neural Network [11], where latent variables Z(t) are added as an
additional input to the dynamical model on the observations. Although the dy-
namical model is stationary, the latent variable Z(t) modulates its dynamics,
enabling a behavior more complex than in pure autoregressive systems. The
training algorithm iteratively optimizes the weights W of the Time-Delay Neu-
ral Network (TDNN) and latent variables Z, inferred as
Z̃ ≡ argminZ

∑
t ||Y (t)− fW̃ (Y (t− 1), Z) ||2.

The latter algorithm is likened to approximate maximum likelihood estima-
tion, and iteratively finds a sequence of dynamic-modulating latent variables and

http://cs.nyu.edu/~mirowski/pub/mocap/
http://cs.nyu.edu/~mirowski/pub/mocap/
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Fig. 5. Application of a DFG for the reconstruction of missing joint angles from motion
capture marker data (1 test sequence of 260 frames at 30Hz). 4 sets of joint angles were
alternatively “missing” (erased from the test data): 2 sequences of 65 frames, of either
left leg or the entire upper body. (a) Subsequence of 65 frames at the beginning of
the test data. (b) Reconstruction result after erasing the left leg markers from (a).
(c) Reconstruction results after erasing the entire upper body markers from (a). (d)
Subsequence of 65 frames towards the end of the test data. (e) Reconstruction result
after erasing the left leg markers from (d). (f) Reconstruction results after erasing the
entire upper body markers from (d).
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learns dynamics on observed variables. DFGs are more general, as they allow the
latent variables Z(t) not only to modulate the dynamics of observed variables,
but also to generate the observations Y (t), as in DBNs. Moreover, [11] does
not introduce dynamics between the latent variables themselves, whereas DFGs
model complex nonlinear dynamics where hidden states Z(t) depend on past
states Yt−1

t−p and observations Zt−1
t−p. Because our method benefits from highly

complex non-linear dynamical factors, implemented as multi-stage temporal con-
volutional networks, it differs from other latent states and parameters estimation
techniques, which generally rely on radial-basis functions [19,4].

The DFG introduced in this article also differs from another, more recent,
model of DBN with deterministic nonlinear dynamics and explicit inference of
latent variables. In [1], the hidden state inference is done by message passing
in the forward direction only, whereas our method suggests hidden state infer-
ence as an iterative relaxation, i.e. a forward-backward message passing until
“equilibrium”.

In a limit case, DFGs could be restricted to a deterministic latent variable
generation process like in [1]. One can indeed interpret the dynamical factor as
hard constraints, rather than as an energy function. This can be done by setting
the dynamical weight α to be much larger than the observation weight β in (4).

4.2 An Alternative Inference and Learning for Recurrent Neural
Networks

An alternative way to model long-term dependencies is to use recurrent neural
networks (RNN). The main difference with the proposed DFG model is that
RNN use fully deterministic noiseless mappings for the state dynamics and the
observations. Hence, there is no other inference procedure than running the
network forward in time. Unlike with DFG, the state at time t is fully deter-
mined by the previous observations and states, and does not depend on future
observations.

Exact gradient descent learning algorithms for Recurrent Neural Networks
(RNN), such as Backpropagation Through Time (BPTT) or Real-Time Recur-
rent Learning (RTRL) [22], have limitations. The well-known problem of van-
ishing gradients is responsible for RNN to forget, during training, outputs or
activations that are more than a dozen time steps back in time [2]. This is not
an issue for DFG because the inference algorithm effectively computes “virtual
targets” for the function f at every time step.

The faster of the two algorithms, BPTT, requires O (T |W|) weight updates
per training epoch, where |W| is the number of parameters and T the length of
the training sequence. The proposed EM-like procedure, which is dominated by
the E-step, requires O (aT |W|) operations per training epoch, where a is the
average number of E-step gradient descent steps before convergence (a few to a
few dozens if the state learning rate is set properly).

Moreover, because the E-step optimization of hidden variables is done on
mini-batches, longer sequences T simply provide with more training examples
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and thus facilitate learning; the increase in computational complexity is linear
with T .

5 Conclusion

This article introduces a new method for learning deterministic nonlinear dynam-
ical systems with highly complex dynamics. Our approximate training method
is gradient-based and can be likened to Generalized Expectation-Maximization.

We have shown that with proper smoothness constraints on the inferred latent
variables, Dynamical Factor Graphs manage to perfectly reconstruct multiple
oscillatory sources or a multivariate chaotic attractor from an observed one-
dimensional time series. DFGs also outperform Kalman Smoothers and other
neural network techniques on a chaotic time series prediction tasks, the CATS
competition benchmark. Finally, DFGs can be used for the estimation of missing
motion capture data. Proper regularization such as smoothness or a sparsity
penalty on the parameters enable to avoid trivial solutions for high-dimensional
latent variables. We are now investigating the applicability of DFG to learning
genetic regulatory networks from protein expression levels with missing values.

Acknowledgments. The authors wish to thank Marc’Aurelio Ranzato for fruit-
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Abstract. We examine the mechanism by which feature selection im-
proves the accuracy of supervised learning. An empirical bias/variance
analysis as feature selection progresses indicates that the most accurate
feature set corresponds to the best bias-variance trade-off point for the
learning algorithm. Often, this is not the point separating relevant from
irrelevant features, but where increasing variance outweighs the gains
from adding more (weakly) relevant features. In other words, feature se-
lection can be viewed as a variance reduction method that trades off the
benefits of decreased variance (from the reduction in dimensionality) with
the harm of increased bias (from eliminating some of the relevant fea-
tures). If a variance reduction method like bagging is used, more (weakly)
relevant features can be exploited and the most accurate feature set is
usually larger. In many cases, the best performance is obtained by using
all available features.

1 Introduction

In a collaboration with ecologists, we were faced with the following challenge:
learn accurate models for the presence and absence of bird species from noisy ob-
servational data collected by volunteers watching bird feeders. Trying many dif-
ferent supervised learning algorithms (SVMs, boosted trees, neural nets, ...), we
found that bagged decision trees yielded the best performance for the task. The
resulting models were large, complicated, and used almost all of the 200 features
available to the learning algorithm. Since the ultimate goal was to gain ecolog-
ical understanding about avian population dynamics, we ran forward stepwise
feature selection to find the smallest feature set yielding excellent performance.

To our surprise, after 30 steps of feature selection performance was still inferior
to the performance when using all features and the gap was closing slowly as more
features were added (see Figure 1). Unlike most learning algorithms, bagging
appeared to perform remarkably well with many noisy features.

In this paper we examine how feature selection improves the accuracy of super-
vised learning through the lens of bias/variance analysis. We run feature selection
for nineteen data sets and compare the bias-variance decompositions of single
and bagged decision trees for many different feature subset sizes. The results

W. Buntine et al. (Eds.): ECML PKDD 2009, Part II, LNAI 5782, pp. 144–159, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



On Feature Selection, Bias-Variance, and Bagging 145

 0.35

 0.355

 0.36

 0.365

 0.37

 0.375

 0.38

 0.385

 0  5  10  15  20  25  30

R
M

S

# features

European Starling

bagging
all features

Fig. 1. Bagging performance with forward stepwise feature selection. The all features
line shows performance of bagging with all 200 features.

show that the most accurate feature sets correspond to the best bias-variance
trade-off point, and this depends on the learning algorithm. Particularly with
high variance algorithms such as decision trees, this is usually not the separat-
ing point between relevant and irrelevant features. With too many variables, the
increase in variance outweighs the potential gains of adding (weakly) relevant
features. When bagging is used, however, the increases in variance are small,
which makes the reduction in bias beneficial for many more features. In many
cases, the best bagging performance is obtained by using all available features.

While it is known that ensemble methods improve the base learner’s ability to
ignore irrelevant features [1,2], little is known about their effects on weak/noisy
features. To explore this, we generate synthetic data and randomly damage vary-
ing percentages of the feature values. The results show that bagging dramatically
improves the ability of decision trees to profitably use noisy features.

2 Background

This section reviews feature selection and bagging, and situates the current paper
in the context of prior work.

2.1 Feature Selection

Four reasons are traditionally given to motivate feature selection [3]: better pre-
dictive performance; computational efficiency from working with fewer inputs;
cost savings from having to measure fewer features; and simpler, more intelligi-
ble models. Different types of feature selection exist to satisfy varying balances
of these competing goals under a variety of data regimes. This work focuses on
forward stepwise feature selection (FSFS) [4] and correlation-based feature fil-
tering (CFF). FSFS is preferred when getting the best performance from the
smallest feature set possible is important — as long as it is computationally
feasible. For large data sets with hundreds or thousands of features, simple filter
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methods like CFF are affordable and often surprisingly competitive. In the NIPS
2003 Feature Selection Challenge, “[s]everal high ranking participants obtain[ed]
good results using only filters, even simple correlation coefficients” ([5], p. 6).
The main drawback to univariate filters like CFF is that they estimate the value
of a feature in isolation, ignoring a) possible interactions with other features, and
b) redundant information contained in features ranked higher (already selected).

Starting from an empty selected set, FSFS measures the benefit of adding each
individual feature to the selected set. The benefit is measured by training a model
using only the selected features (including the feature under consideration). The
most beneficial (or least harmful) feature is added to the selected set, and the
process is repeated for all remaining unselected features. The search stops after
a fixed number of steps, once performance has stopped improving, or after all
features have been selected. If feasible, the learning algorithm used in wrapper-
based feature selection usually is the same algorithm to be used with the reduced
feature set.

It is important for the search process to measure performance using data
withheld during training to ensure good performance estimates. Additionally,
the search process itself can potentially overfit this withheld data, so a third
data set should be used to get an unbiased estimate of the selected subsets’
performance [6]. The FSFS experiments below use a validation set to decide
which feature to add, and a test set to measure the final performance.

CFF ranks the set of features by their individual correlation with the class
label. Our experiments with large data sets use the magnitude of Pearson’s
correlation coefficient as the ranking criterion. The absolute correlation of feature
x.j with the label y is:

rj =
|
∑

i(xij − x.j)(yi − y)|√∑
i(xij − x.j)2

∑
i(yi − y)2

where i indexes over examples and x.j and y are the respective means of x.j

and y.1 Features above a cutoff point are retained, while the others are dis-
carded. Common strategies for selecting cutoff points include statistical tests
of significance and cross-validated model performance at different ranks. We are
interested in the performance at varying rank-levels, so we do not need to choose
a cutoff.

Some researchers have looked at bias-variance estimates in the context of
feature selection, but typically only for the final feature set selected (e.g. [7]).
Van der Putten and van Someran [8] use bias-variance analysis to understand
the wide performance spread of contestants in the 2000 CoIL challenge. They
compare the bias-variance decompositions of a single subset (the top 7 features)
against the original feature set, and find that feature selection is important for
their problem (the decrease in variance outweighs the increase in bias).
1 The high dimensional data sets we use are all binary classification problems with

binary and/or continuous features, so Pearson’s correlation coefficient is reasonable.
Spearman’s rank correlation would be a reasonable alternative for non-binary prob-
lems or nominal-valued features.
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2.2 Bagging

Bagging [9] is a meta-learning algorithm that repeatedly creates sub-samples of
the training data and trains a model (e.g. decision tree) on each sample. To make
predictions, the bagged model averages the predictions of the constituent models.
Bagging frequently improves the performance of a learning algorithm, and rarely
hurts it. Bauer and Kohavi [10] showed empirically that the main benefit from
bagging is a reduction in the variance of the underlying models. Bagging works
best when models have good performance and make uncorrelated mistakes [11].

Several pieces of work exist that address features and bagging. We mention
them here to avoid confusion and clarify the differences. (These techniques are
not used in the experiments below.) First, feature bagging generates diverse sim-
ple models by training individual models with random samples of the features
instead of (or in addition to) random samples of training examples [12,13], and
is particularly useful for building ensembles with simple learners that are inher-
ently stable [2]. In ensemble feature selection [14] multiple good feature sets are
sought such that a) a good simple model can be built from each set, and b) the
simple models are maximally diverse from each other. Finally, feature selection
using ensembles [15] uses statistics derived from tree ensembles to rank features.
More generally, ensembles have been used in feature selection to find more stable
feature subsets [16,17].

3 Methodology

3.1 Learning Algorithms

To handle the wide range of data sizes, we used two different decision tree pack-
ages. In all cases bagging used 25 trees per ensemble, and training samples were
drawn with replacement.

For data sets with small to medium dimensionality (< 200 features), we used
minimum message length (MML) decision trees implemented in Buntine’s IND
package [18]. IND’s MML trees use a Bayesian splitting rule with Wallace’s MML
tree prior [19] and use a small amount of pre-pruning to limit node expansions
unwarranted by the tree’s posterior probability. Predictions are smoothed by
getting a prediction from the leaf and each of its ancestors on the path to the root;
these fine- to coarse-grained predictions are combined in a weighted average. See
Buntine [20] for full details.

We selected MML trees because the Bayesian smoothing makes them rela-
tively low variance, so in our experience the individual trees perform well and
seem to be resilient to spurious and noisy features. Thus, they are less likely to
require feature selection to achieve good performance (vs. a less sophisticated
decision tree like ID3), making them a strong baseline method. At the same
time, they are not aggressively pruned and are large trees, making them good
candidates for bagging.2

2 Experiments with other very different tree methods such as C4.5 yield similar results.
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For the high-dimensionality data sets, we used FEST3, a decision tree package
optimized for sparse data. To prevent overfitting, we tuned the maximum tree
depth parameter in FEST to maximize performance of a single tree, using all
features, on the validation fold of each data set. We tried depths of 1 through
10, and then the powers of 2 from 16 through 1024. The best performing depth
was used for both single and bagged tree models.

A single FEST tree makes predictions from negative to positive infinity. We
calibrated the predictions by fitting a sigmoid to convert them to probabili-
ties [21]. Validation data was used to fit the calibrating sigmoid.

3.2 Performance Metrics

Model performance was measured using zero-one loss and squared error. Note that
the models described above predict a probability distribution for an example, indi-
cating the likelihood of the example belonging to each class. When the model needs
to pick a single class (i.e. for zero-one loss), the class with the largest probability is
chosen. A loss of zero represents perfect prediction for these measures.

Zero-one loss is the percentage of predictions that do not predict the correct
class. It equals 1 − accuracy, and is often simply called the error rate for a
classification model.

Mean squared error (MSE) is the average squared difference between the true pre-
diction and the model’s prediction. Let x denote an example, and let p(xk) and
q(xk) be the true and predicted probability, respectively, that x is class k. Then:

MSE ≡ 1
nK

∑
x

∑
k

(p(xk)− q(xk))2

where K is the number of classes for the task.4

Zero-one loss frequently has high variance, so MSE was used as the perfor-
mance metric during FSFS when deciding which feature to add.

3.3 Data Sets

We used 19 classification tasks in our experiments: American Goldfinch pres-
ence/absence at bird feeders (amegfi), Lark Bunting presence/absence in the
plains east of the Rocky Mountains (bunting), forest cover-type (covtype),
Pima Indians Diabetes (pima), letter recognition (letters), mushroom identifi-
cation (mushroom), land classification from satellite images (satimage, Statlog
dataset), sonar classification (sonar), soybean disease classification (soybean),
spam detection (spambase and spamtrec

5), cardiac abnormalities (spectf),
3 http://www.cs.cornell.edu/∼nk/fest/
4 Normalizing by K is not strictly necessary, but places MSE on the same scale re-

gardless of the number of classes.
5 Created from TREC 2005 Spam Public Corpora. Nikos Karampatziakis, personal

communication.

http://www.cs.cornell.edu/~nk/fest/
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Table 1. Summary of datasets

Data Set # Samples # Features # Classes Max Depth

amegfi 23948 195 2
bunting 20998 175 2
covtype †‡ 30,000 54 7
letters † 20,000 16 26
medis 14199 63 2
mg5 22157 100 2
mushroom † 8124 22 2
pima † 768 8 2
satimage † 6535 36 6
sonar † 208 60 2
soybean † 683 35 19
spambase † 4601 57 2
spectf † 266 44 2
thyroid † 3772 27 5
cryst 5,498 1341 2 4
digits 70,000 779 2 16–1024
real-sim 72,309 20,958 2 256–1024
spamtrec 87,688 405,915 2 256–1024
tis 13,375 927 2 5–6

†: Available from UCI Machine Learning Repository [22].
‡: First 30,000 examples from full data set.

hyper-thyroid conditions (thyroid), two medical prediction tasks (medis and
mg5), protein crystallography diffraction pattern analysis (cryst

6), hand-
written digit recognition (digits

7), real vs. simulated auto racing and aviation
text categorization (real-sim

8), and finding translation initiation sites (tis
9.).

Table 1 summarizes the data sets; high-dimensional data sets are listed below
the line along with the maximum tree depth(s) chosen during parameter tun-
ing. Data sets were chosen to cover a range of sizes (number of examples) and
dimensionalities (number of features). We used the first 30,000 points from the
covtype data set to make the experiments more affordable.

Each data set was divided into five folds. For FSFS, three folds were used for
training, one for validation (to pick which feature to add), and one for testing
final performance. For CFF, feature ranks were computed from the three training
folds. The description for satimage warns against using cross-validation; for
that data set we used the given train/test split instead of cross-validation and

6 http://ajbcentral.com/CrySis/dataset.html, unscaled version
7 MNIST data set converted to binary classification (class 0 = digits 5 or below; class

1 = rest). Original available from http://yann.lecun.com/exdb/mnist/
8 http://csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets
9 http://datam.i2r.a-star.edu.sg/datasets/krbd/ (Kent Ridge Biomedical Data

Repository)

http://ajbcentral.com/CrySis/dataset.html
http://yann.lecun.com/exdb/mnist/
http://csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
http://datam.i2r.a-star.edu.sg/datasets/krbd/
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pulled 435 examples from the train set to use as a validation set (about 10% of
training).

3.4 Bias-Variance Decomposition

The bias-variance decomposition (BVD) of loss is a useful tool for understanding
the performance characteristics of a learning algorithm. The squared error for a
single example x can be decomposed into the sum of noise, bias, and variance [23],
all non-negative. The noise is the intrinsic error / uncertainty for x’s correct pre-
diction, regardless of learning algorithm. Bias measures how closely the learning
algorithm’s average prediction (considering all possible training sets of a fixed
size) matches the optimal prediction (the Bayes rate prediction). Finally, the
variance of an algorithm is how much the algorithm’s prediction fluctuates over
different possible training sets of a given size.

We adopt the notation and definitions from Domingos [24] to formally express
these quantities. Let L(t, y) denote the squared loss of the prediction y for test
example x which has the true value t. Further let ED[] be the expectation over the
distribution of possible data sets of a fixed size; similarly, Et[] is the expectation
over the distribution of possible true values for x (in a stochastic domain), and
ED,t[] is over the joint distribution of D and t. Then expected squared loss for
x can be decomposed as:

ED,t[L(t, y)] =N(x) + B(x) + V (x), N(x) =Et[L(t, y∗)]
B(x) =L(y∗, ym)
V (x) =ED[L(ym, y)]

where y is the prediction from a model trained on data drawn from D, y∗ is the
optimal prediction that minimizes Et[L(t, y∗)], and ym is the main prediction
that minimizes ED[L(y, ym)]. For squared loss ym is the mean prediction of the
algorithm across possible training data sets. The expected bias and variance are
computed by averaging over multiple test examples.

To estimate bias and variance on real data sets, we follow the same basic sam-
pling procedure used by Bauer and Kohavi [10], since Bouckaert [25] shows that
bootstrap sampling results in less reliable bias-variance estimates. The train and
validation sets are pooled to create D. Twenty samples of size |D|/2 are drawn
from D without replacement. Each sample is used to train a model that makes
predictions on the test set. This empirical distribution of the algorithm’s predic-
tions is used to compute expected bias and variance. To improve the estimates of
bias and variance, we repeat this process for each fold and average the estimates.

In practice, we cannot know y∗ for real data so we follow previous authors
[10,24] in using y∗ = t. As a result, the bias and noise cannot be separated and
are combined in one term for our estimates.

There are multiple proposals for the bias-variance decomposition of zero-one
loss [26,24]. In the results below we focus on the decomposition for squared er-
ror because feature selection hill climbing used MSE. We did, however, compute
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the bias and variance of zero-one loss; the results were qualitatively identical to
those obtained using the squared error decomposition.

4 Bias-Variance of Feature Selection

We estimated the bias-variance decomposition for all the data sets in Table 1
at multiple feature set sizes, for both single and bagged decision trees. Feature
subset orderings were found using forward stepwise feature selection (FSFS, top
of table) and correlation coefficients (CFF, bottom of table). FSFS evaluated
performance using single trees or bagged trees, to match the algorithm used in
the final comparison. After establishing subset orderings (and tuning the maxi-
mum tree depth for the high dimensional data sets), the training and validation
sets were pooled as described in Sect. 3.4.10 Bias-variance estimates were made
at several points along the subset ordering sequence. The entire experiment was
repeated across 5-folds and the 5 estimates averaged.11

The results cluster into two categories. Figure 2 shows representative results
for two of the data sets. The total height of each bar is the error for the number of
features on the x-axis. The pair of bars for each number of features correspond to
using a single tree (left in pair) and using bagged trees (right in pair). Each bar
is subdivided into portions that are due to a) the variance of the algorithm, and
b) the bias of the algorithm. The bias portion also contains any noise inherent
in the domain. For comparison’s sake, results are shown for both mean squared
error (left column) and zero-one loss (right column). For the moment we focus
on patterns in the total error. Detailed observations about bias and variance are
below.

Feature selection does not improve the performance of single or bagged trees
on data sets in category one. Consider the graphs for covtype (top row of
Figure 2). Both bagging and the single tree perform as well (or better) using
all features (right side of graph) than when using a subset (interior of graph).
The graphs in Figure 3 show qualitatively similar results: feature selection does
not improve the accuracy of single or bagged trees. (The results for zero-one loss
are qualitatively the same as for squared error, and are omitted for most of the
data sets.)

The second category, however, contains data sets on which feature selection
improves single tree accuracy but does not improve bagging’s accuracy. Look-
ing at medis (bottom row of Figure 2), the single tree achieves the minimum
loss between five and ten features. Bagging, on the other hand, first reaches its
minimum loss around 50 features, at which point the loss flattens out and stays
roughly constant. The graphs in Figure 4 (except bunting — see discussion

10 When validation data was needed to calibrate predictions, we set aside 10% of the
training sample drawn from the pooled data. Thus, the calibration data varied with
each training sample.

11 The pima, sonar, spectf, and thyroid data sets exhibited substantial variance in
the results, so we repeated the 5-fold cross-validation five times using different seeds
to divide the data into folds.
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Fig. 2. Bias-variance decomposition of squared error and zero-one error for typical data
sets. Left bar in pair: single tree; right bar: bagging. To better show interesting parts
of graphs, the y-axes do not start at 0.

below) contain similar results. While single trees eventually lose performance as
more features are added, bagging maintains or improves its performance with
more features.

It is worth noting that for data sets in both categories (cryst, letters,

medis, pima, satimage, sonar, spambase, spectf, tis), bagging perfor-
mance continues to improve as more features are added after the performance of
single trees has plateaued (category 1) or peaked (category 2). In other words,
bagging performance flattens further to the right in the graphs. Bagging seems
to be capable of extracting information from noisy features as well as ignoring
irrelevant ones. Section 5 explores this issue further.

For all the data sets, bias decreases as more features are added. This makes
intuitive sense since extra features can be thought of as extra degrees of freedom.
The decrease is largest for the first few features; after that, the bias levels off
as the algorithms become sufficiently flexible. Although the bias error is very
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Fig. 3. Bias-variance decomposition of squared error for feature selection on data sets
where feature selection does not improve performance (category 1). Left bar in pair:
single tree; right bar: bagging.
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Fig. 4. Bias-variance decomposition of squared error for feature selection on data sets
where feature selection helps single trees (category 2). Left bar in pair: single tree; right
bar: bagging.

similar for single trees and bagged trees, bagging does sometimes reduce bias
slightly. This corroborates findings in other studies [10].

Counter to bias, variance increases with the number of features. However,
this effect is much stronger for single trees than for bagged trees. Whereas the
variance for bagging quickly asymptotes to a small amount, the variance for
single trees grows quickly and may not asymptote. This is bagging’s primary
advantage.

In data sets where the performance of single trees levels off (e.g. covtype),
the algorithm’s bias and variance asymptote so that adding more features does
not hurt. Usually bagging’s variance stabilizes earlier and to a lower amount,
which allows it to reach lower error and benefit from additional bias decreases
as more features are added.

In data sets where the single tree performance gets worse with too many fea-
tures (e.g. medis), the variance increases outstrip the initial benefits of reduced
bias. This rarely happens to bagging because its variance typically asymptotes
to a small amount of error.

Figures 3 and 4 contain three anomalies, one large and two small. The most
important anomaly is the graph for bunting, which does not fit into either cat-
egory described above. On this data set, both single trees and bagging hit peak
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performance between 5 and 20 features, after which their performance degrades.
Thinking that perhaps this domain was just extremely noisy and that more
averaging would eliminate bagging’s overfitting, we re-ran feature selection on
one fold using 100 trees instead of 25. With 100 trees, bagging’s performance was
slightly better at all points along the x-axis (compared to bagging with 25 trees),
but still overfit past 20 features and to the same degree. Further investigation
revealed that this data set contains several features that can be combined to
create semi-unique identifiers for individual examples in the training set. All the
trees in the ensemble effectively memorize these identifiers and then do poorly on
the validation and test data. This can be seen in the bias-variance decomposition.
Although the variance has asymptoted, the bias for bagging stops decreasing
and begins increasing. With the extra features, the trees in the ensemble more
consistently construct unique identifiers for training examples and lose diversity
in their incorrect predictions.12

The other two anomalies are that single decision trees perform (slightly) better
than the bagged tree ensemble for the mushroom and soybean data sets. For
mushroom, the single tree is extremely confident in the class probabilities it
assigns, and always picks the right class (zero-one loss is 0%). Bagging also always
picks the right class, but the randomization from sub-sampling the training data
plus averaging results in slightly less confident class probabilities (probability
mass is pushed away from the extremes). This small bias away from extreme
values has a small effect on squared error. soybean has a different problem. This
small data set has 19 classes. Cross-validation and bagging sampling reduces the
number of cases for some classes in the training samples so that probability
estimates become less reliable and MML pre-pruning prevents leaf expansions,
yielding trees that are too small.

Throughout this section (and most of the paper), noise and bias have been
conflated since we do not have a way to separate them on real data. We hy-
pothesize that the large decreases in bias—coinciding with adding the first few
features—is partly due to decreases in noise. Intuitively, the Bayes optimal error
rate, given only a single feature as an information source, may be quite bad
(effectively high noise). As more information becomes available (more features),
the Bayes rate should improve as uncertainty decreases.

To summarize this section, these graphs show that bagging is resilient to noisy
features. Feature selection usually is unnecessary to get good performance from
bagged models. Further, picking the best subset size (using cross-validation, for

12 A more detailed explanation follows. The task in bunting is to predict the presence
or absence of a Lark Bunting. Data are collected at multiple sites; in particular,
repeat observations are made at sites over time. Identifying the site is incredibly
useful for predicting presence or absence, but is not ecologically interesting. Thus,
the five data folds were partitioned by site (i.e. all examples from a site appear in
a single fold). Most features are tied to location (e.g. habitat), so the decision trees
can easily learn to map inputs to sites in the training set using only a few features.
Trees that do this make bad predictions on the validation and test folds. If the folds
are created by assigning examples to folds instead of sites (spreading sites across
train/valid/test), bagging does not overfit while a single tree does.
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example) is not equivalent to choosing the informative features and discarding
irrelevant features. Rather, a discarded feature may be weakly informative (or
correlated with a feature already selected) but cause too much variance when
selected for the extra information to improve accuracy. The fact that discarded
features are sometimes informative was previously noted and exploited to im-
prove model accuracy by using discarded features as extra model outputs during
training [27].

5 Noisy Informative Features

In the experiments above, bagging’s performance continues to improve after
the single tree’s performance peaks or plateaus. This suggests that ensemble
methods are not only resilient to irrelevant features [1], but also better able to
take advantage of features containing useful but noisy information.

We generated synthetic data to study whether bagging improves the base
learner’s ability to use weak features. A binary classification problem was derived
from the equation:

v =X1 + X2X3 + X2
4 + sign(X5 + X6)

The class label is 1 when v ≥ 0, and 0 otherwise. Each Xi is a univariate Gaussian
variable with 0 mean and unit variance. The sign(z) function returns 1 if z > 0
and -1 otherwise. This function was chosen to be challenging for decision tree
learning algorithms.

We generated 5,000 examples using the above function, randomly corrupted
some of the inputs to generate weak features, split the data set into 5 folds, and
ran a bias-variance analysis using the procedure outlined in Sect. 3.4. A feature
was corrupted by permuting a fraction of its values, chosen randomly among the
examples. For example, at the 0.1 corruption level, 10% of the values in corrupted
features are shuffled. This was repeated 20 times, creating 20 noisy versions of
each corrupted feature. Half of the Xi features were corrupted, independently of
each other, while the other Xi were left intact. Single decision trees and bagged
decision trees were trained using the intact features and the noisy duplicates,
but not the original versions of the corrupted features. To avoid experimental
bias, this process was repeated for all

(6
3

)
combinations of choosing 3 features to

corrupt, and the results averaged.
Figure 5 shows the results for different corruption levels. The far left column,

core, is the error obtained when training using only the unblemished 6 original
features, and shows the best performance obtainable on this data set for these
algorithms (i.e. when the ideal feature set is used). The 0.0 column shows the
performance obtained using only the 3 intact features, without any corrupted
features. Performances that beat this baseline indicate an algorithm is learning
something useful from noisy features. Finally, the far right column (1.0) shows
the performance when the corrupted features are pure noise (irrelevant features).
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Fig. 5. Bias-variance decompositions for damaged data sets with corrupted feature
values. Left bar in pair: single tree; right bar: bagging. Note that the y-axes do not
start at 0.

We make the following observations. First, at low corruption levels both sin-
gle and bagged trees learn something useful from the noisy features. For bagged
trees, performance is close to that of using the ideal feature set. Second, noisy
features increase the bias (because noise is lumped in with bias in our empirical
decomposition) of both single and bagged trees (vs. core), and increase the vari-
ance of single trees. Third, the main effect of increasing the corruption level is to
increase the bias/noise component. Finally, the extra variance in the single trees
means that the benefits of noisy features are quickly lost as the corruption level
increases. At least for this synthetic task, the problem is more pronounced for
squared error. In contrast, the bagged trees are remarkably resilient to damaging
the feature values, and are able to extract useful information when as much as
80% of the values are corrupted.

6 Conclusions

Our experiments show that feature selection finds the feature set that represents
the best trade-off between the bias of having too few features and the variance of
having too many features. Because of this, most feature selection algorithms are
not reliable methods for determining which features are relevant and irrelevant
to a given problem: the threshold for feature inclusion/exclusion depends on
the learning algorithm. Ultimately this limits the utility of feature selection for
discovering which factors are important and unimportant in problems such as
the avian analysis that originally motivated this work.

A by-product of our analysis is the discovery that when feature selection is
too expensive to be feasible or effective, bagging provides a viable alternative to
protect from the overfitting that can occur when models are trained with too
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many features.13 The bagged models always benefit from using at least as many
features as the individual unbagged models. In fact, when models will be bagged,
any amount of feature selection often is detrimental, and it is better to train the
base models using all available features. One interpretation of our results is that
feature selection is best viewed as a model regularization method instead of as
a means of distinguishing relevant from irrelevant inputs.
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Abstract. Outlier detection finds many applications, especially in do-
mains that have scope for abnormal behavior. In this paper, we present
a new technique for detecting distance-based outliers, aimed at reducing
execution time associated with the detection process. Our approach oper-
ates in two phases and employs three pruning rules. In the first phase, we
partition the data into clusters, and make an early estimate on the lower
bound of outlier scores. Based on this lower bound, the second phase
then processes relevant clusters using the traditional block nested-loop
algorithm. Here two efficient pruning rules are utilized to quickly discard
more non-outliers and reduce the search space. Detailed analysis of our
approach shows that the additional overhead of the first phase is offset
by the reduction in cost of the second phase. We also demonstrate the
superiority of our approach over existing distance-based outlier detection
methods by extensive empirical studies on real datasets.

1 Introduction

The problem of detecting abnormal events, also called outliers, has been widely
studied in different research communities as rare classes mining [1], exception
mining [2], outlier detection [3,4], etc. Researchers have developed several super-
vised and unsupervised techniques to mine outliers in static databases and also
recently in data streams [9]. Unsupervised outlier detection can be further clas-
sified as distance-based [5,6,4,7], density-based [3,8,9] and deviation-based [10].
In this paper, we focus on distance-based outliers which have been popularly de-
fined as: (a) data points from which there are fewer than p points that are within
distance r [4], (b) top n data points whose distance to their corresponding kth

nearest neighbor are largest [7], and (c) top n data points whose total distance
to their corresponding k nearest neighbors are largest [6]. As these definitions
indicate, a significant amount of distance computations need to be performed in
order to verify whether a data point is an outlier or not. This leads to high execu-
tion times and has motivated many attempts to produce efficient algorithms to
mine outliers. Among them, outstanding work by Bay and Schwabacher [11] and
Ghoting et al. [12] aim to reduce execution time by utilizing a simple pruning
nested-loop algorithm.

Reducing time complexity of outlier detection techniques in general generates
many benefits for various applications where the speed of detecting deviations

W. Buntine et al. (Eds.): ECML PKDD 2009, Part II, LNAI 5782, pp. 160–175, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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plays a critical role (e.g., fraud detection, intrusion detection). To illustrate our
point, let us consider a system in which data arrives in batches and each batch of
data is stored in buffer memory. It may be assumed that the buffer size is large
enough to accommodate each batch but if many batches are stored at the same
time, buffer will overflow. Such scenario is very popular in applications dealing
with data streams [13,9]. The task of the system is to identify abnormal records
in each batch. The buffer is automatically flushed when this monitoring process is
done. However, if the speed of the detection technique is slower than the speed of
arrival of batches, we may lose data because of the problem of buffer overflows.
Therefore, developing a fast detection algorithm becomes a necessity since it
leads to higher throughput for the system. Additionally, the higher throughput
will also yield higher detection accuracy since data loss is avoided.

Motivated by this issue, we focus on reducing the execution time and present
a two-phased MultI-Rule Outlier (MIRO) detection approach. Based on the de-
finition [6], we develop an outlier scoring criterion. Then in the first phase, we
partition the data into clusters, and make an early estimate on the lower bound
of outlier scores. This phase prunes clusters that cannot have outliers, and the
second phase then processes the remaining clusters using the traditional block
nested-loop algorithm. Here two pruning rules are utilized: a) first triangular
inequality on the data point’s outlier score is used, and then b) the outlier score
is compared with the minimum score required to be an outlier. The second check
is similar to that of ORCA [11]. However, while ORCA starts with a cutoff of 0,
in MIRO the initial cutoff is obtained from the first phase, and hence converges
faster. Though the pruning rules seem simple, their combined effect is strong and
efficiently reduces the search space. The main contributions of this work can be
summarized as follows:

– We analyze the problem of outlier detection from the outlier score perspective
and introduce the concepts of global and local outlier score functions. This
gives a summary classification of all existing detection techniques.

– We demonstrate a huge improvement in execution time by using multiple
pruning rules in two phases, compared with outstanding existing nested-loop
distance-based methods, ORCA [11] and RBRP [12]. Since ORCA, RBRP
and MIRO use the same notion of outlier (Section 2), outliers identified by
the three techniques are exactly the same.

– We illustrate the effectiveness of our pruning rules on the overall detection
process and give a detailed theoretical analysis on how those rules lead to
the superior performance of MIRO. With extremely low CPU cost, MIRO
is very suitable for detecting outliers in streaming environments as well as
other real-time applications.

The rest of this paper is organized as follows. We compare related work, and
describe the problem formally in the next section. Then we present our MIRO
approach in Section 3, and theoretically analyze its complexity in Section 4.
Then we empirically compare our approach with other current-best approaches
using real-world datasets in Section 5. Finally, we conclude in Section 6 with
directions for future work.
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2 Literature Review

2.1 Background

Consider a dataset DS with N data points in dim dimensions. While most of
these data points are normal, some are abnormal (outlier), and our task is to
mine these outliers. Assume a metric distance function D exists, using which we
can measure the dissimilarity in dim space between two arbitrary data points.
A general approach that has been used by most of the existing outlier detection
methods [5,4,3] is to assign an outlier score (based on the distance function) to
each individual data point, and then design the detection process based on this
score. The use of the outlier score is analogous to the mapping of the multi-
dimensional dataset to R space (the set of real numbers). In other words, we can
define the outlier score function (Fout) which maps each data point in DS to a
unique value in R.

Among existing approaches to outlier detection problem, we can classify Fout

into global and local score functions. An outlier score function is called global
when the the value it assigns to a data point p ∈ DS, can be used to compare
globally with other data points. More specifically, for two arbitrary data points
p1 and p2 in DS, Fout(p1) and Fout(p2) can be compared with each other, and
if Fout(p1) > Fout(p2), p1 has a larger possibility than p2 to be an outlier. The
definitions proposed by Angiulli et al. [6], Breunig et al. [3], and Ramaswamy et
al. [7] straightforwardly adhere to this category. On the other hand, the definition
of Ng and Knorr [4] can be converted to this category by taking the inverse of
the number of neighbors within distance r of each data point. In contrast, a local
outlier score function assigns to each data point p, a score that can only be used
to compare within some local neighborhood. An example of such function was
proposed in [8], where the local comparison space is the set of data points lying
within the circle centered by p and the radius is user-defined. The choice of a
global or local outlier score function clearly affects later stages of the algorithm
design process. In this work, we employ a global outlier function based on [6],
although the ideas employed in MIRO can also be adapted to use other functions.
The intuition and quality of detection results of the chosen outlier definition are
based on solid foundations as shown by prior work [6,11]. This definition is
also employed in other popular techniques on outlier detection [12]. Therefore,
in this paper we do not again demonstrate how well MIRO does in terms of
actually discovering abnormalities in real data. Instead, we focus on showing its
superiority in terms of CPU cost.

Let us denote the set of k nearest neighbors of a data point p in DS as kNNp.
We can now define Fout as follows.

Definition 1. [Outlier Score Function]. The dissimilarity of a point p with
respect to its k nearest neighbors is known by its cumulative neighborhood dis-
tance. This is defined as the total distance from p to its k nearest neighbors in
DS. In other words, we have: Fout(p) =

∑
m∈kNNp

D(p,m).
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Table 1. Definitions of symbols

Symbol Definition
DS The dataset
N Number of points in the dataset
dim Dimensionality of the data space
D(p1, p2) Distance function between points p1 and p2

kNNp set of k nearest neighbors of a data point p
n Number of outliers to be mined
Fout Outlier Score Function

This definition has been proven by Angiulli et al. [6] to be more intuitive than
the definition used by Ramaswamy et al. [7]. Given two positive integers k and
n, our task is to mine top n outliers that have the largest outlier scores based
on the chosen Fout. For ease of reference, symbols used in the definitions are
presented in Table 1.

2.2 Related Work

Work in distance-based outlier detection was pioneered by Knorr and Ng in 1998
[4]. According to their proposal, outliers are points from which there are fewer
than p other points within distance r. In order to detect such outliers, they intro-
duced a nested-loop and a cell-based algorithm. The nested-loop algorithm has
time complexity O(N2) and hence is usually not suitable for applications with a
large dataset. On the other hand, the cell-based algorithm has time complexity
linear with N , but exponential with the number of dimensions dim. In practice,
this can only work efficiently when dim ≤ 4, so it is not suitable in applications
on high-dimensional datasets.

Ramaswamy et al. [7] had a different view of the problem. Instead of counting
the r-neighborhood of a data point, their technique only takes the data point’s
distance to its kth nearest neighbor into account. They proposed three algo-
rithms: nested-loop with O(N2) time complexity, and index-based and
partition-based algorithms. The most efficient among these - the partition-based
algorithm, partitions the dataset, and computes the upper and lower bounds of
outlier scores for each partition1. Keeping track of the minimum lower bound
computed so far, the algorithm terminates bound computations of partitions
whose upper bound score is lower than this minimum bound. This effectively
reduces the search space, and then index-based or nested-loop algorithms can
be used on the remaining partitions to detect outliers. In Section 4, we prove
that the theoretical complexity of the partition-based strategy is also quadratic
to the dataset size. In general, early distance-based approaches were usually in-
volved in time-consuming computations of nearest neighbors. Later techniques
aim to reduce this time complexity by various means. Among these, approaches
for pruning the outlier search space and distance computation reduction tech-

1 Alternatively called clusters, micro-clusters.



164 N.H. Vu and V. Gopalkrishnan

niques are dominant. Computation reduction approaches [7,12,11,6] usually fix
the desired number of outliers to a certain value (e.g., top n outliers), and deploy
data structures similar to those used in Ramaswamy’s index-based algorithm.

Bay and Schwabacher [11] provide detailed analysis for this type of algorithm,
and discover that, in average case, the time complexity becomes linear with
the data set size. However, their proposed technique, ORCA, depends on some
assumptions: the data is in random order and the values of the data points are
independent. The analysis provided also depends on the outlier score cutoff c
which is initialized to 0. However, domain knowledge or a training phase can
help to achieve a better cutoff. More specifically, the authors suggest that by
training a subset of the original data set, an initial cutoff threshold can be
obtained. During testing phase, the training set is placed at the top of the data
set so that the cutoff threshold calculated during training phase can be retrieved
very soon, and hence the pruning occurs at the very first stage of the detection
process. The linear time complexity presented in [11] can only be obtained if the
cutoff threshold c converges to O(

√
N) quickly [12]. However this occurs only

when the dataset contains many outliers. Recognizing this limitation, Ghoting et
al. [12] proposes RBRP, an algorithm which finds approximate nearest neighbors
for every normal data point but exact ones for outliers. By avoiding expensive
computations to find the exact nearest neighbors for normal records, RBRP
works in O(N · lgN) time. The approach first clusters the dataset, and then
searches for a data point’s approximate nearest neighbors in its own cluster and
neighboring clusters.

While the above mentioned techniques attempt to reduce execution time of
the detection process, Tao et al. [14] aims at reducing I/O cost without any
heuristic to minimize the CPU cost. Furthermore, it uses the notion of outliers
introduced in [4], which has been shown to be difficult to apply in practice [7].
Hence, we choose not to compare our technique against the one in [14].

3 The MIRO Detection Approach

Our approach operates in two phases and employs three pruning rules. In the
first phase, we partition DS into clusters, and compute upper and lower bounds
of the outlier score for each cluster. Based on these bounds, some clusters are
pruned, and the remaining candidates are sent for final processing in the tradi-
tional block nested-loop algorithm. Here two pruning rules are utilized: a) first
triangular inequality on the data point’s outlier score is used (R1), and then b)
the outlier score is compared with the minimum score required to be an outlier
(R2). The second check is similar to that of ORCA [11], however in MIRO the
initial cutoff is obtained from the first phase (instead of using 0 as in [11]), and
hence converges faster. The additional overhead of the first phase is offset by
the reduction in cost of the second phase. While preprocessing by clustering has
been proposed in RBRP, our preprocessing phase incorporates the pruning of
unnecessary clusters while RBRP’s does not. Additionally, the use of the simple
triangular inequality in the second phase and the precomputation of the initial
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Algorithm 1. Cluster

Input: M : the number of clusters, it: the number of iterations, DS: the dataset
to be clustered

Output: B: the set of clusters
Set Y = KMeans(M, it, DS)1

foreach cluster y ∈ Y do2

if |y|
nc

> M then3

Cluster(M, it, y)4

else if |y|
nc

> 1 then5

Set Y ′ = KMeans(� |y|
nc
�, it, y)6

foreach cluster y′ ∈ Y ′ do7

Add y′ to B8

else9

Add y to B10

cutoff of outlier score before this phase commences, generates the distinct advan-
tages of MIRO’s nested-loop compared to that of ORCA. The detailed process
is described below.

3.1 Cluster Based Pruning

In this phase, we first cluster the dataset DS (using Algorithm 1) and subse-
quently identify upper and lower bounds of the outlier score for each resultant
cluster (using Algorithm 2). Algorithm 1 is in fact based on the clustering algo-
rithm of RBRP [12], however we have made some modifications. We denote the
expected number of data points per cluster as nc. By changing nc, we can control
the degree of homogeneity of clusters, i.e., points that are close to each other in
space are likely assigned to the same cluster. It is noted that in our approach, nc

has the same role as the parameter BinSize of RBRP. Compared to the original
algorithm [12], the cost of clustering is saved for those resultant clusters y having
1 < |y|/nc ≤ M , since a) they are re-clustered only once with the number of
clusters being � |y|nc

� ≤ M and b) the time complexity of K-Means algorithm is
proportional to the number of clusters produced. Hence, our clustering algorithm
takes less time than that of RBRP.

Let C be the set of clusters obtained as a result of applying Algorithm 1 on
DS with predetermined values of M and it. For each cluster Ci ∈ C, let |Ci|
denote its cardinality (or the number of data points allocated to Ci), oCi its
centroid, and rCi its radius. lCi , uCi are the estimated lower and upper bounds
of the outlier scores of all data points in Ci respectively. These bounds are only
estimations since the true bounds can only be known when the true scores of
member data points are identified. A data point p by itself is also a cluster Ci

with oCi = p, rCi = 0, lCi = uCi = Fout(p).
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Definition 2. [Distance between clusters]

The minimum distance between clusters Ci and Cj is

minDis(Ci, Cj) = max{D(oCi , oCj )− rCi − rCj , 0},

and maximum distance between clusters Ci and Cj is

maxDis(Ci, Cj) = D(oCi , oCj ) + rCi + rCj .

Given a cluster Ci ∈ C, we now need to find clusters that potentially contain
k nearest neighbors for every point in Ci. So we first find a set of clusters,
MinCi, closest to Ci in terms of minDis(), containing at least k data points,
i.e., MinCi ⊆ C \Ci, s.t. minDis(Cj , Ci) ≤ minDis(Ck, Ci) ∀Cj ∈MinCi, Ck ∈
C \ {Ci

⋃
MinCi}, the total number of data points in MinCi ≥ k.

Similarly, we identify a set of clusters, MaxCi , closest to Ci in terms of
maxDis(), which also contains at least k data points in total.

Consider a data point p ∈ Ci. To compute the lower bound of its outlier
score, we have to find the closest clusters to p in terms of minDis(). In order
to do this we consider all clusters closest to Ci as well as other data points in
Ci (as clusters). So we choose Minp = MinCi

⋃
Ci \ p. In order to estimate the

cumulative distance from p to its k nearest neighbors, we order Minp and choose
the top z clusters M1 . . .Mz s.t.

∑z−1
i=1 Mi < k ≤

∑z
i=1 Mi. Now the lower bound

of the outlier score of p can be computed as lp =
∑z−1

i=1 |Mi| ·minDis(p,Mi) +
(k −

∑z−1
i=1 |Mi|) ·minDis(p,Mz).

Similarly we can compute the upper bound of p’s outlier score,
up =

∑z−1
i=1 |Mi| · maxDis(p,Mi) + (k −

∑z−1
i=1 |Mi|) · maxDis(p,Mz), where

{M1 . . .Mz} are the top z clusters in Maxp defined as MaxCi

⋃
Ci \ p.

Definition 3. [Bounds of a cluster’s outlier score]. The upper and
lower bounds of a cluster’s outlier score in terms of its contained points are
given as: uCi = max{up, p ∈ Ci} and lCi = min{lp, p ∈ Ci}, respectively.

We now use a simple heuristic to prune clusters that do not contain outliers:
pick clusters with the largest lower bounds of outlier scores, until we have a
total of at least n data points. Let the last cluster picked be Co. Clusters whose
upper bounds of outlier scores are smaller than lCo cannot contain outliers,
and are therefore pruned. This heuristic constitutes the first pruning phase and
is presented in Algorithm 2. The value lCo is passed as an initial seed to the
second pruning phase for faster pruning. While the above heuristic correctly
prunes clusters containing data points which are all non-outliers, it may allow
clusters containing some non-outliers. This happens for all clusters Ci, where
lCi ≤ lCo ≤ uCi . This is undesirable, since not all data points in these clusters
are potential outliers. In order to resolve this issue, we propose another heuristic
called Ppoints which prunes all points p ∈ Ci, up < lCo . Time complexity of
MIRO with and without Ppoints is discussed in Section 4.1.
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Algorithm 2. PruneClusters

lCi , uCi ← estimateBounds ∀iCi ∈ C1

Identify Co, lCo2

Prune Ci|uCi < lCo3

Return lCo , C4

3.2 Nested-Loop Algorithm

After the lower bound on the outlier score is obtained from the first phase,
we process the remaining clusters using the traditional nested-loop algorithm
similar to ORCA [11]. In the second phase of MIRO (Algorithm 3) we employ
two pruning rules (R1 in line 9 and R2 in line 13 of Algorithm 3). Similar to
[11], we check if the outlier score of the data point is smaller than the current
cutoff c on the outlier score (rule R2). However, while ORCA initializes c as 0,
in our second phase, we converge faster by choosing c from the first clustering
phase (with or without Ppoints).

Let us consider an arbitrary data point q. If c > kD(p, q) + Fout(q), then by
our definition of outlier score and using triangular inequality, we can show that
c >

∑
m∈kNNq

D(p,m) ≥ Fout(p), i.e., c > Fout(p). Therefore p is not an outlier
and can be pruned. Despite its simplicity, this pruning rule is extremely efficient
in the final processing phase as shown in Section 5. By using the combination
of two pruning rules, the execution time is further reduced, creating a huge
advantage over ORCA and RBRP [12]. It is also noted that by reserving MinCi

and MaxCi for each remaining cluster Ci, we are able to limit the search space
for each data point p ∈ Ci. More specifically, to process p, in the worst case we
only have to scan Ci ∪ {

⋃
C1∈MinCi

C1} ∪ {
⋃

C2∈MaxCi
C2}. The search space is

therefore much smaller than the original dataset DS.

4 Theoretical Analysis

In addition to the notations stated in Table 1, we define the following new terms
for analysis: (a) p1 is the probability that a cluster will be pruned during the
first phase, and (b) p2 is the probability that a data point will be pruned by rule
R1 before it is scanned with the (k+ 1)th data point among the remaining ones.
It is also noted that in practice, nc ≤ k and n� N . In the following discussion,
we present detailed time and space complexity analysis for MIRO.

4.1 Time Complexity of MIRO

The execution time cost of the first phase without Ppoints includes (a) the cost of
clustering (Scluster), (b) the cost of computing upper and lower bounds outlier
score for all clusters (Sbounds), and (c) the pruning cost (Spruning). The expected
clustering cost is O(N · logN) according to [12]. Now, for a cluster Ci, we need to
identify MinCi and MaxCi . Since the mean size of each cluster is nc, on average
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Algorithm 3. FinalProcessing

Set c, C ← PruneClusters()1

Set TopOut← ∅2

foreach remaining cluster Ci ∈ C do3

Set A← Ci ∪ {
S

C1∈MinCi
C1} ∪ {

S
C2∈MaxCi

C2}4

foreach data point p ∈ Ci do5

foreach cluster Cj ∈ A do6

foreach data point q ∈ Cj do7

if q �= p then8

if (c− Fout(q))/k > D(p, q) then9

Mark p as non-outlier10

Process next data point in Ci11

Update p’s k nearest neighbors using q12

if Fout(p) < c then13

Mark p as non-outlier14

Process next data point in Ci15

if p is outlier then16

Update TopOut with p17

if Min(TopOut) > c then18

Set c←Min(TopOut)19

we have |MinCi| = |MaxCi | = �k/nc�. A näıve approach sorts all clusters and
extracts �k/nc� clusters for MinCi/MaxCi , at a cost of O( N

nc
·log( N

nc
)). However,

we note that only �k/nc� clusters need to be reserved for MinCi as well as
MaxCi . Therefore a better approach is that for each cluster Cj , we compute
the minimum/maximum distance from Cj to Ci and insert the result into the
corresponding set. This approach leads to an total cost of O(1

2 ·�
k
nc
�· N

nc
·( N

nc
−1))

over all clusters, which can be simplified to O( N2

nc
2 ). To estimate the cost of

computing upper and lower bounds of the outlier score for each cluster Ci,
we compute the cost of measuring the same bounds for each individual data
point p ∈ Ci. To obtain p’s bounds, we also need to extract nc + � k

nc
− 1�

clusters (including zero-radius ones) from a set of nc + � k
nc
� clusters. Since the

number of items extracted is nearly no different from the total set of items, we
apply the näıve sorting approach discussed above. As a consequence, the total
cost incurred is O((nc + � k

nc
�) · log(nc + � k

nc
�)), i.e., O(nc · log(nc)). Hence,

the cost of computing Ci’s bounds = O(nc
2 · log(nc)). Therefore, Sbounds =

O( N
nc
· nc

2 · log(nc)) + O( N2

nc
2 ) = O(N · nc · log(nc)) + O( N2

nc
2 ). To prune the

clusters, we need to compute lCo and scan the whole set of clusters to check
their corresponding upper bounds. To compute lCo , we need to extract �n/nc�
clusters with largest lower bounds from a set of N/nc clusters. In other words,
Spruning = O(� n

nc
� · N

nc
)+O( N

nc
). Overall, the approximate overhead incurred by

the first phase is:
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Sphase1 = Scluster + Sbounds + Spruning = O(N · logN) +O(N · nc · log(nc)) +
O( N2

nc
2 ) + O(� n

nc
� · N

nc
) + O( N

nc
) = O(N · logN) + O(N · nc · log(nc)) + O( N2

nc
2 ) +

O((� n
nc
�+ 1) · N

nc
).

After the first phase, the number of remaining clusters is (1− p1) · N
nc

, which
implies that the total number of remaining data points is nc · (1 − p1) · N

nc
=

(1 − p1) ·N . Among them, the total number of data points pruned out by the
rule R1 with no more than k distance computations is p2 · (1 − p1) ·N . On the
other hand, for each of the data points left, we need to scan the entire cluster
Ci as well as MinCi and MaxCi in the worst case, i.e., the corresponding cost is
O(nc + 2 · nc · �k/nc�), which simplifies to O(3 · nc + 2 · k). Hence the execution
time of the second phase in the worst case can be expressed as:

Sphase2 = O(k · p2 · (1 − p1) · N + (3 · nc + 2 · k) · (1 − p2) · (1 − p1) · N)
= O((3 · nc · (1− p2) + k · (2− p2)) · (1 − p1) ·N).

Hence, the approximate cost of the whole algorithm is:

Sphase1 + Sphase2 = O(N · logN) + O(N · nc · log(nc)) + O( N2

nc
2 ) +

O((� n
nc
�+ 1) · N

nc
) + O((3 · nc · (1 − p2) + k · (2− p2)) · (1− p1) ·N).

We can also reclassify the whole detection process into a more detailed se-
quence of operations: (a) clustering, (b) identifying neighboring clusters for all
clusters, (c) computing the bounds for clusters (we consider the process for each
cluster as a operation, so we have N/nc operations), (d) pruning clusters (N/nc

operations on average) and (e) final processing step ((1 − p1) ·N operations on
average). Among them, the cost of the operations (a) and (b) are loglinear and
quadratic w.r.t. N , respectively. On the other hand, each of the remaining op-
erations incurs costs independent of N . Furthermore, when p1 has large values,
the execution time of the second phase becomes very small which compensates
the overhead incurred by the first phase. In addition, when p2 receives a large
value, a larger portion of the remaining data points after the first phase require
no more than k distance computations to be identified as normal records, and
a smaller number of these remaining points require more than k distance com-
putations. This fact leads to another reduction of execution time. Besides, the
pre-computation of cutoff c helps contribute to further reduction of the execu-
tion time. Therefore, practically each of the operations performed in item (e)
takes nearly constant time. By applying the accounting method of amortized
analysis, we expect the expensive cost of operations (a) and (b) would be com-
pensated by the remaining inexpensive ones, i.e., the amortized running time of
each individual operation is inexpensive and non-quadratic w.r.t. N . In the ex-
periments carried out in Section 5, we always have max(p1, p2)≥ 0.7 which leads
to the practical linear execution time w.r.t N . It is also noted that based on our
analysis, this quadratic overhead w.r.t. N is common for techniques that uti-
lize similar partition-based strategy such as [7], which though using less pruning
rules than MIRO, still reports linear execution time performance w.r.t N .
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Time complexity with Ppoints. In the above analysis, we assume that the
Ppoints heuristic (c.f., Section 3.1) is not used for the first phase. In contrast, if
this heuristic is considered, we prune all points whose upper bound of outlier
score is less than the cutoff obtained by the clustering phase, so Spruning has to be
recomputed. Particularly, after applying lCo for pruning out clusters, we perform
an additional scan on the set of clusters left. The mean number of clusters to
scan is therefore (1− p1) · N

nc
, and the expected cost for scanning each cluster is

nc. Consequently, the additional cost is O((1 − p1) · N
nc
· nc) = O((1 − p1) ·N).

From the above analysis, it can be seen that the cost of Sphase1 does not
change theoretically whether Ppoints is used or not. But Ppoints is only effective
if it does indeed help to prune out more data points after the first phase. We
will examine that in Section 5.

4.2 Space Complexity of MIRO

As mentioned earlier, minimizing I/O cost is neither a focus of techniques in
[11,12,6] nor of MIRO. Hence, in general MIRO uses space for: (a) storing the
data points, and (b) storing the clusters created. Furthermore, the spatial cost
for storing each cluster Ci can be simplified to the cost of storing its major
components which include: (a) its member data points, and (b) MinCi as well
as MaxCi . This is simplified by space-efficient hash indexes, therefore each Ci

takes O(nc + 2 · � k
nc
�) space on average. Hence, the space complexity of MIRO

is O(N) + O( N
nc
· (nc + 2 · � k

nc
�)), which can be simplified to O(N).

4.3 Analysis of Parameters Used

Cluster size. For a fixed dataset size, as the average cluster size nc decreases,
the total number of clusters will increase. Since the size of each cluster Ci be-
comes smaller, in order to compute the bounds of Ci, we need to include more
clusters in MinCi as well as MaxCi . In other words, more clusters are required
for computing Ci’s bounds. That increases Sbounds and leads to the increase in
the overall execution time of our algorithm. In the extreme case, when nc = 1,
the first phase degrades to scanning the entire dataset, i.e., the total execution
time becomes a normal nested-loop algorithm and the execution time saved dur-
ing the second phase becomes insufficient to compensate this overhead. On the
other hand, as nc increases, there are less clusters than before. Since the size of
each cluster becomes larger, we need to consider fewer clusters in the process of
computing clusters’ bounds on the outlier score. But that does not directly lead
to a decrease in cost of computing bounds since we need to process more data
points per cluster. Furthermore, as nc increases and exceeds k, the lower bound
score lCo becomes smaller since we only need to use data points in a cluster Ci

to compute its bounds (the assumption here is that in general a cluster contains
data that are relatively homogeneous). That means less clusters are pruned after
the first phase hence the execution time will increase. Overall, we should choose
a reasonable value of nc such that the average number of data points per cluster
is neither too small nor too large compared to k. More specifically, we need to
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identify a threshold for nc such that as nc increases above as well as decreases
below this threshold, the execution time of MIRO will increase. Consequently,
picking this threshold to be nc will be a wise choice. From the above analysis, we
conclude that the impact of nc over the overall performance of MIRO is complex
and identification of reasonable values for nc by analytical methods is practically
infeasible. Through empirical study carried out in Section 5, we show that k/5
is a possible candidate value.

Number of nearest neighbors. As the number of nearest neighbors taken
into account for the computation of outlier score, k, increases, the value that
Fout assigns to each individual data point p in DS will increase correspondingly.
This in turn leads to an increase in the lower bound lCo , and hence more clusters
may be pruned by the first phase of MIRO. However, as demonstrated before, an
increase of k results in having to consider more clusters when computing outlier
score bounds for an arbitrary cluster. Therefore, the cost of computing cluster’s
bounds will increase. The increase of k creates a two-fold effect: (a) a decrease
in execution time since more data points are pruned, and (b) an increase in
execution time due to the increase in the cost of computing clusters’ bounds.
Our experimental result in Section 5 shows that MIRO’s execution time increases
as k increases, i.e., the latter factor outperforms the former one.

5 Empirical Results and Analyses

In order to assess the effectiveness of our proposed technique, we performed ex-
tensive experiments on four real and high-dimensional datasets CorelHistogram,
Covertype, Server2 and Landsat3. All of these are original datasets except for
Server which is extracted from KDD Cup 1999 data, using the procedure pro-
vided in [14]. For each set of input parameters that affect the performance of the
corresponding algorithm, we ran the experiment ten times. The results presented
are from average outcomes obtained from multiple runs. It is noted that we set
M = 10 and it = 5 throughout all experiments. Through the empirical studies,
we demonstrate:

– The efficiency of MIRO in reducing the execution time of the traditional
nested-loop algorithm. We measure the scalability of MIRO’s execution time
against the dataset size (N) as well as the number of nearest neighbors (k)
used. In the latter case, we present MIRO’s performance with and without
Ppoints. The result is then compared with ORCA [11] and RBRP [12] to
highlight the merit of our method.

– The pruning power of MIRO, in both phases of processing, with and without
Ppoints. In addition, we also assess the effect of k on the pruning quality. The
sensitivity of MIRO’s execution time with respect to the cluster size (nc) is
also presented.

2 http://www.ics.uci.edu/∼mlearn/MLRepository.html
3 http://vision.ece.ucsb.edu

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://vision.ece.ucsb.edu
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Execution time v/s. N : First we evaluate the scalability of execution time
of three distance-based outlier detection techniques MIRO, RBRP and ORCA
w.r.t the dataset size N . In this experiment, we chose the number of outliers
mined n = 30, number of nearest neighbors k = 50, set the size of each cluster
nc = 20, and varied N . We chose the implementation of MIRO without Ppoints

since the efficiency of Ppoints is highlighted in a later part of this section. We
observe from the result (Figure 1) that MIRO scales better than RBRP and
ORCA on all datasets, although its theoretical asymptotic time complexity is
quadratic in N . This agrees with the amortized analysis in Section 4.1. In order
to analyze the cause of MIRO’s efficiency, we also compare the execution time
with and without the first phase.

Execution time and MIRO’s pruning power v/s. k: We now analyze the
effect of the number of nearest neighbors (k) on execution time. This experiment
is conducted on the entire datasets, and n = 30, nc = 20 as in the previous case.
The results (Figure 2) show that the execution time for every technique increases
with k, but MIRO scales better (with and without Ppoints) compared to RBRP
and ORCA. The reason is once again attributed to the effective pruning power
of MIRO in both phases of processing. It is also clear that by using Ppoints, we
are able to obtain better or equal performance in term of execution time. This
observation is further analyzed later when we discuss the effect of k on MIRO’s
pruning power.
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Fig. 1. Execution time vs. the dataset size N
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Fig. 2. Execution time vs. the number of nearest neighbors k

Figure 3 presents two pruning probabilities in one plot for each dataset: the
probability of pruning a cluster in the first phase (p1), and the probability that
a data point will be pruned out by rule R1 before it is scanned with the (k+1)th

data point among the remaining ones (p2), as the number of nearest neighbors
is varied. In all cases, very high values of p1 and/or p2 are achieved, with p1
increasing when Ppoints is utilized. While we do not obtain high values for both
p1 and p2 at the same time, we observe that in every case at least one of them re-
ceives a value greater than 0.7. This reflects a very high efficiency in pruning and
explains why MIRO takes less execution time compared to RBRP and ORCA.
In addition, the value of p1 tends to increase as k increases (except in the case
of Landsat dataset), which means more clusters will be pruned after the first
phase when k receives higher value. This agrees with the discussion in Section
4.3. Furthermore, when p1 without Ppoints already has relatively large value,
applying Ppoints does not help much in increasing the pruning power of the first
phase. This point is reflected by the tendency of p1 with and without Ppoints

to converge towards each other as p1 increases. We also observe that when the
pruning effect without using Ppoints is low, i.e., when p1 is low, there will be a
significant improvement in execution time if Ppoints is employed instead. This
can be attributed to the fact that adjoining clusters’ lower and upper outlier
score bounds are too interleaved with each other which creates redundancy if
we include the whole of each candidate cluster in the final processing step. In



174 N.H. Vu and V. Gopalkrishnan

20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Number of Nearest Neighbors (k)

P
ro

b
a
b
ili

ty

 

 

p
1
 without P

points

p
1
 with P

points

p
2

(a) CorelHistogram

20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Number of Nearest Neighbors (k)

P
ro

b
a
b
ili

ty

 

 

p
1
 without P

points

p
1
 with P

points

p
2

(b) Covertype

20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Number of Nearest Neighbors (k)

P
ro

b
a
b
ili

ty

 

 

p
1
 without P

points

p
1
 with P

points

p
2

(c) Landsat

20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Number of Nearest Neighbors (k)

P
ro

b
a
b
ili

ty

 

 

p
1
 without P

points

p
1
 with P

points

p
2

(d) Server

Fig. 3. MIRO’s pruning power vs. the number of nearest neighbors k

contrast, if the value of p1 is already high, which means lCo has been identified
wisely, using Ppoints may not improve MIRO’s performance by much, although
the pruning effect obtained is still equal or better. The reason is that increase
in pruning power in such cases is not enough to compensate the additional time
spent to run Ppoints. However, it is noted that when p1 receives a higher value,
the cost of executing Ppoints, which is O((1 − p1) · N), becomes lower. There-
fore, it can be concluded that applying Ppoints does not degrade performance by
much, but may lead to significantly better performance.

Execution time v/s. nc: For studying the effect of the average cluster size
(nc) on the execution time of MIRO, we set n = 30 while varying k. For each
value of k, we run MIRO with nc ≥ 1 and ≤ k and note the value of nc which
yields smallest CPU cost. The result obtained suggests that nc should be k/5.
A good selection of nc helps to balance the tradeoff between the time spent on
computing clusters’ bounds, as well as the pruning effect of the first phase of
MIRO. In practice, we can also determine nc by performing a training process
on a subset of the original dataset with nc = k/5 as the initial seed.

6 Conclusions

This work contributes to outlier detection research by proposing a new combina-
tion of several pruning strategies to produce an efficient distance-based outlier
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detection technique. The proposed technique, MIRO, consists of two pruning
phases of processing which lead to amortized efficiency. During the first phase, a
partition-based technique is employed to extract candidate clusters for the later
processing step. Furthermore, an additional benefit of the first phase is that we
are able to compute an initial value of the outlier cutoff threshold which is uti-
lized in the nested-loop phase. In the second phase of MIRO, two pruning rules
are employed to further reduce the overall temporal cost. In future work, we are
considering to extend our analysis on more large and high-dimensional datasets
to better study the full benefits of MIRO. We are also examining the possibility
of applying the partition-based strategy to outlier detection problems where a
local outlier score function is utilized. This will help us in building a general
framework for creating faster detection techniques regardless of whether a local
or global score function is employed.
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The Sensitivity of Latent Dirichlet Allocation for
Information Retrieval
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Abstract. It has been shown that the use of topic models for Infor-
mation retrieval provides an increase in precision when used in the ap-
propriate form. Latent Dirichlet Allocation (LDA) is a generative topic
model that allows us to model documents using a Dirichlet prior. Using
this topic model, we are able to obtain a fitted Dirichlet parameter that
provides the maximum likelihood for the document set. In this article,
we examine the sensitivity of LDA with respect to the Dirichlet para-
meter when used for Information retrieval. We compare the topic model
computation times, storage requirements and retrieval precision of fitted
LDA to LDA with a uniform Dirichlet prior. The results show there there
is no significant benefit of using fitted LDA over the LDA with a constant
Dirichlet parameter, hence showing that LDA is insensitive with respect
to the Dirichlet parameter when used for Information retrieval.

Keywords: latent Dirichlet allocation, probabilistic latent semantic
analysis, query expansion, thesaurus.

1 Introduction

Topic models allow us to represent documents as collections of topics, rather
than collections of words. It has been shown that the use of topic models for
Information retrieval on large documents provides a significant increase in pre-
cision when used in an appropriate form [1,2].

Latent Dirichlet Allocation (LDA) [3] is a generative topic model that allows
us to model documents using a Dirichlet prior. By changing the Dirichlet para-
meter, we are able to control the number of topics that the model assigns to each
word and document. By setting a small Dirichlet parameter, a small number of
topics are assigned to each word; by increasing the parameter, we increase the
distribution of topics to each word.

The original LDA model [3] provided a means of fitting the Dirichlet parame-
ter, when given a document set. This fitting processes requires that the docu-
ment models be recomputed until the maximum likelihood Dirichlet parameter
is found. Later LDA models [4,5] have avoided fitting the Dirichlet parameter
by simply providing an estimate of the parameter and computing the document
models once.

In this article, we investigate the effect of fitting the Dirichlet parameter for
Information retrieval. We examine the change in storage and retrieval precision
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obtained by changing the Dirichlet parameter, and hence observe the sensitivity
of the LDA topic models with respect to the Dirichlet parameter when used for
Information retrieval. We make the following contributions:

– a method of computing LDA term-term relationships, allowing us to use
LDA in an efficient and effective Information retrieval setting in Section 2.3,
and

– a detailed comparison of document retrieval using both fitted and unfitted
LDA in Section 4.

The article will proceed as follows: Section 2 describes the LDA topic model and
presents a derivation of probabilistic term relationships using LDA. Section 3
presents the information retrieval model used for efficient and effective retrieval
using topic models. Section 4 provides a comprehensive set of experiments com-
paring the effectiveness of the fitted and unfitted LDA query expansion models.

2 Probabilistic Topic Models

The language modelling method of information retrieval assumes that each doc-
ument is generated from a statistical document model. To create the document,
a set number of terms are sampled from the document model.

The simplest document model is a multinomial distribution across all terms,
where each term has a non-zero probability of being sampled. Terms that are
related to the document will have higher probabilities, while those that are not
related will have low probabilities.

In this section, we will examine two popular document modelling methods,
called probabilistic latent semantic analysis and latent Dirichlet allocation, that
assume that the models are dependent on a set of underlying topics.

2.1 Probabilistic Latent Semantic Analysis

The simple document model mentioned assumes that each term is independent.
Using this model will result in over-fitting the document set and lead to poor
generalisation.

Probabilistic latent semantic analysis (PLSA) [6] introduces a set of hidden
topics into the document model, so rather than directly estimating the term
distribution for each document, we estimate the topic distribution over all doc-
uments and the probabilistic relationship of each document and term to each
topic. PLSA uses the following document generation model:

1. To set the number of words in the document (document length), take a
sample N , where N ∼ Poisson(ξ), and ξ is th average document length. We
now have a document with N empty word slots.

2. For each of the N word slots wi:
(a) Select a topic zi by sampling the distribution Multinomial(φn), condi-

tioned on the document dn where P (zi|dn) = φi,n.
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(b) Select a term tx by sampling the distribution Multinomial(βi) condi-
tioned on the topic zi, where P (tx|zi) = βx,i.

Using this method of document construction, we obtain the probability of sam-
pling term tx in document dn as:

P (tx|dn) =
∑

i

P (tx|zi)P (zi|dn)

where P (zi|dn) = φi,n and P (tx|zi) = βx,i. From this we can compute the set of
term-term relationships [1]:

P (tx|ty) =
∑

i P (tx|zi)P (ty|zi)P (zi)∑
j P (ty|zj)P (zj)

(1)

and use these relationships for query term expansion.

2.2 Latent Dirichlet Allocation

A criticism of the PLSA approach to document modelling is that we need to
compute the multinomial distribution φj which provides the probability of sam-
pling a topic for a given document (P (zi|d)). If a new document appears, we are
unable to include it, since we do not have a φj distribution for it.

Latent Dirichlet allocation [3] avoids this problem by conditioning the topic
selection on a Dirichlet distribution, rather than on the specific document. Latent
Dirichlet Allocation (LDA) uses the following document model:

1. To set the number of words in the document (document length), take a
sample N , where N ∼ Poisson(ξ). We now have a document with N empty
word slots.

2. Given the set α = {α1, . . . , αk}, where αi > 0 for all i, take the sample
θ = {θ1, . . . , θk}, where θ ∼ Dirichlet(α).

3. For each of the N word slots wi:
(a) Select a topic zi by sampling the distribution Multinomial(θ).
(b) Select a term tx by sampling the distribution Multinomial(βi) condi-

tioned on the topic zi, where P (tx|zi) = βx,i.

We can see that rather than the topic being sampled based on a document
dependent multinomial distribution, LDA samples the topic from a multinomial
distribution (θ) generated from a Dirichlet space.

This gives us the likelihood function for a document:

P (d|α, β) =
∫ (

N∏
n=1

∑
i

P (wn = tx|zi)P (zi|θ)
)
P (θ|α)dθ

Note that P (wn = tx|zi) = P (tx|zi), since each document is considered a bag of
words. By multiplying the likelihood of each document, we obtain the likelihood
of the collection. Therefore, given a document collection, we are able to compute
the α and β that are most likely used to generate the document collection by
maximising the likelihood function.
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2.3 LDA Probabilistic Term Relationships

It has been shown that direct use of topic models for Information retrieval on
large document sets lead to huge index storage requirements and slow query
times [1]. A more effective and efficient method of Information retrieval using
topic models is to use the knowledge of each topic in the form of a query expan-
sion. Therefore, to use LDA in this form, we must first compute the probabilistic
relationships of each term pair, given the set of topics.

Once we obtain the LDA α and β for the document set, we are able to compute
the LDA relationship between each term using the following:

P (tx|ty, α) =
∑

i

P (tx, zi|ty, α)

=
∑

i

P (tx|zi, ty, α)P (zi|ty, α)

=
∑

i

P (tx|zi, α)P (zi|ty, α) (2)

where P (tx|zi, ty) = P (tx|zi), assuming that tx and ty are conditionally inde-
pendent given zi. and:

P (tx|zi, α) = βx,i (3)

The posterior distribution is computed using Bayes’ theorem:

P (zi|ty, α) =
P (ty|zi, α)P (zi|α)

P (ty|α)

=
P (ty|zi, α)P (zi|α)∑

j P (ty, zj |α)

=
P (ty|zi, α)P (zi|α)∑
j P (ty|zj , α)P (zj |α)

(4)

From this equation, we can obtain P (ty|zi, α) from β, but we need to derive
an equation for P (zj|α). We know that zi is a sample from the multinomial
distribution with parameter θ, therefore we can show:

P (zi|α) =
∫

P (zi, θ|α)dθ

=
∫

P (zi|θ, α)P (θ|α)dθ

=
∫

P (zi|θ)P (θ|α)dθ (5)

where P (zi|θ, α) = P (zi|θ), assuming that zi and α are conditionally indepen-
dent given θ.
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Since P (zi|θ) = θi, we can simply replace the probability function in equation
5 with a function of gi(θ) that simply returns the ith element of θ:

P (zi|α) =
∫

gi(θ)P (θ|α)dθ

= EP (θ|α)[gi(θ)]
= EP (θ|α)[θi]

We know that θ ∼ Dirichlet(α), therefore:

EP (θ|α)[θi] =
αi∑
k αk

(6)

By substituting equation 6 into equation 4, we obtain:

P (zi|ty, α) =
P (ty|zi, α) αiP

k αk∑
j P (ty|zj , α) αjP

k αk

=
P (ty|zi, α)αi∑
j P (ty|zj , α)αj

and finally we substitute equation 3 to obtain:

P (zi|ty, α) =
βy,iαi∑
j βy,jαj

(7)

By substituting equation 7 into 2, we can obtain a closed solution for our term
relationships:

P (tx|ty, α) =
∑

i

P (tx|zi, α)P (zi|ty, α)

=
∑

i

βx,i
βy,iαi∑
j βy,jαj

=
∑

i βx,iβy,iαi∑
j βy,jαj

(8)

Therefore, we are able to obtain the probabilistic relationships between each term
using the α and β values computed by fitting the LDA model to our document
collection. It is also easy to see the equivalence of equation 8 and the PLSA term
relationships in equation 1.

2.4 Exchangeable and Uniform Dirichlet Distribution

An exchangeable Dirichlet prior implies that any of the Dirichlet prior para-
meters can be exchanged without affecting the distribution. To achieve this, an
exchangeable Dirichlet prior must contain all equal elements.
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When using an exchangeable Dirichlet prior (αi = a for all i), the Dirichlet
distribution simplifies to:

P (θ|α) =
Γ (

∑k
i=1 αi)∏k

i=1 Γ (αi)

k∏
i=1

θαi−1
i

=
Γ (

∑k
i=1 a)∏k

i=1 Γ (a)

k∏
i=1

θa−1
i

=
Γ (ka)
Γ (a)k

k∏
i=1

θa−1
i

=
Γ (ka)
Γ (a)k

(
k∏

i=1

θi

)a−1

A further specialisation of the Dirichlet prior is the Uniform Dirichlet prior
(αi = 1 for all i), which is an exchangeable Dirichlet with a = 1:

P (θ|α) =
Γ (k)
Γ (1)k

(
k∏

i=1

θi

)0

=
Γ (k)
1k

= Γ (k)
= (k − 1)!

We can see that the probability is independent of the value of θ and therefore
uniform across all values of θ.

To examine the term relationships produced when using an exchangeable
Dirichlet distribution, we add the constraint that αi = a for all i. By doing
so, then we obtain the term relationship probabilities:

P (tx|ty, α) =
∑

i βx,iβy,iαi∑
j βy,jαj

=
∑

i βx,iβy,ia∑
j βy,ja

=
∑

i βx,iβy,i∑
j βy,j

(9)

Therefore, when using an exchangeable Dirichlet prior for LDA, the term re-
lationship probabilities become independent of α. When examining the term
relationship probabilities using a uniform Dirichlet prior, we obtain the same
equation. Note that although α does not appear in equation 9, the values of
β are still affected by the choice of α, therefore we would not obtain the same
term relationships for when choosing either an exchangeable or uniform Dirichlet
prior.
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When using a uniform Dirichlet prior, the topic distribution obtains a uniform
prior and can be modelled using a multinomial distribution. It has been shown
that under this condition, LDA is equivalent to probabilistic latent semantic
analysis (PLSA) [7].

3 Topic Based Query Expansion

Information retrieval systems obtain their fast query times by building a fast
query term lookup index over a sparse set of term frequencies. When a query
is provided, the index lists corresponding to the query terms are extracted and
combined to obtain the document scores. If term frequencies are stored, the index
becomes sparse, and hence we will be able to process the index lists efficiently.

When using topic models such as LDA, every term has a probabilistic rela-
tionship to every document, and hence the data is not sparse. If we were to
store these values in the document index, we would obtain a large dense index
containing long index lists that would take substantial time to process.

Rather than store the topic model probabilities in the document index, it was
found that it is more efficient to store these values as term relationships in a
thesaurus and store the term frequencies in the document index [1,8,9,10]. By
doing so, we obtain a compact document index for fast retrieval and control over
the query time by using the topic models in the form of of a thesaurus for query
expansion.

By using the index-thesaurus combination, we compute each document score
using:

sd(Q) = μSd(E) + (1− μ)Sd(Q)

where Q is the set of query terms, E is the set of weighted expansion terms
computed by applying the query terms to the topic model thesaurus (as shown
in [1,2]), Sd() is the document scoring function for document d and μ ∈ [0, 1] is
the query mixing parameter to combine the original query terms to the expansion
terms.

In the following experiments, we chose Sd() to be the state-of-the-art BM25
probabilistic document scoring function [11].

4 Comparison of Fitted and Unfitted LDA Term
Expansion

Now that we have shown how to compute the LDA term relationships using
the LDA topic models, we will proceed to investigate their effectiveness. In this
section, we will examine the precision obtained by LDA and examine if there is
a statistically significant increase when fitting the Dirichlet parameter.

To build the LDA thesaurus, we first compute the set of βx,i values for the
given document set using the LDA-C software1 (which assumes an exchangeable
1 http://www.cs.princeton.edu/∼blei/lda-c/
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Table 1. Statistics related to the LDA thesauruses used to store the probabilistic term
relationships. Note that the Dirichlet parameter was set to the value of α = 1, making
the unfitted form of LDA equivalent to PLSA.

Document set File size Build time Dirichlet α

Fitted Unfitted Fitted Unfitted Fitted Unfitted

AP2 112 MB 87 MB 2 days 57 minutes 0.020 1
FR2 30 MB 29 MB 1 day 17 minutes 0.021 1
WSJ2 107 MB 90 MB 2.5 days 61 minutes 0.022 1
ZIFF2 52 MB 42 MB 2 days 32 minutes 0.033 1

Dirichlet prior) and then compute the thesaurus values using equation 9. Our
experiments will compare the LDA with the Dirichlet parameter fitted to the
document set (fitted LDA) to LDA with a uniform Dirichlet prior (α = 1)
representing the unfitted LDA.

Experiment 1: Effect of the number of topics and terms on Average Precision.
The LDA thesaurus build time is dependent on the number of terms and the
number of topics. Therefore our first set of experiments will examine the effect
of changing the number of terms and topics on the retrieval average precision.
Initial experiments compared the retrieval results using LDA term expansion
when using 1) all terms and 100 topics, 2) 100 topics and terms that appear
in at least 50 documents, and 3) 300 topics and terms that appear in at least
50 documents. Average precision (AP) results were obtained using the ZIFF2
document set from TREC2 disk 2, with queries 51 to 200 (used with disk 2 for
TRECs 1, 2 and 3).

We generated AP scores from the 150 queries for mix values of 0.0 to 1.0 in
intervals of 0.1 and term expansions of 10, 20, 50, 100, 200, 500 and 1000. By
applying the two-sided Wilcoxon Signed Rank test to our AP results, we found
that there was no significant difference in the AP of any of the three forms of
LDA term expansion. These results are consistent with the findings when using
PLSA term expansion [1]. Based on these results, we will now only consider
LDA term expansion using 100 topics and only terms that appear in at least 50
documents.

Experiment 2: Thesaurus storage and build time. Before performing any retrieval
experiments, we must first construct the thesaurus containing the probabilistic
term relationships.

Table 1 shows the thesaurus statistics corresponding to the fitted and unfitted
forms of LDA term relationships for the AP2, FR2, WSJ2 and ZIFF2 document
sets from TREC disk 2. We can see from this table that the fitted thesaurus file
sizes are larger than the corresponding unfitted thesaurus, and that the term

2 http://trec.nist.gov
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Table 2. Mean average precision on FR2 using BM25 with fitted LDA term expansion.
Single and double superscript daggers († and ††) show a significant increase in precision
over unfitted LDA, using the same mix and expansion size, at the 0.1 and 0.05 levels
respectively. Single and double subscript stars (∗ and ∗∗) show a significant increase in
precision over BM25. Scores in italics show the greatest score for the given expansion
size.

Mix Expansion size

10 20 50 100 200 500 1000

0.0 0.197 0.197 0.197 0.197 0.197 0.197 0.197
0.1 0.198∗∗ 0.198∗∗ 0.198∗∗ 0.198∗∗ 0.199∗∗ 0.203∗∗ 0.203∗∗
0.2 0.198∗∗ 0.198∗∗ 0.203∗∗ 0.203∗∗ 0.204∗∗ 0.204∗∗ 0.204∗∗
0.3 0.198∗∗ 0.199∗∗ 0.204∗∗ 0.204∗∗ 0.205∗∗ 0.206∗∗ 0.206∗∗
0.4 0.202∗∗ 0.204∗∗ 0.204∗∗ 0.206∗∗ 0.209∗∗ 0.210∗∗ 0.210∗∗
0.5 0.203∗∗ 0.204∗∗ 0.207∗∗ 0.209∗∗ 0.212∗∗ 0.214∗∗ 0.216∗∗
0.6 0.204∗∗ 0.205∗∗ 0.209∗∗ 0.212∗∗ 0.215∗∗ 0.218∗∗ 0.220∗∗
0.7 0.207∗∗ 0.210∗∗ 0.213∗∗ 0.215∗∗ 0.221∗∗ 0.222∗∗ 0.227∗∗
0.8 0 .209 ∗∗ 0 .212 ∗∗ 0 .215 ∗∗ 0 .223 ∗∗ 0 .226 ∗∗ 0 .228 ∗∗ 0 .233 ∗∗
0.9 0.207∗∗ 0.205∗∗ 0.211∗∗ 0.212∗ 0.213 0.219∗ 0.219∗
1.0 0.018 0.023 0.031 0.037 0.036 0.037 0.043

Table 3. Mean average precision on ZIFF2 using BM25 with fitted LDA term expan-
sion. Single and double superscript daggers († and ††) show a significant increase in
precision over unfitted LDA, using the same mix and expansion size, at the 0.1 and
0.05 levels respectively. Single and double subscript stars (∗ and ∗∗) show a significant
increase in precision over BM25. Scores in italics show the greatest score for the given
expansion size.

Mix Expansion size

10 20 50 100 200 500 1000

0.0 0.269 0 .269 0.269 0.269 0.269 0.269 0.269
0.1 0.269∗ 0 .269 ∗ 0.269∗∗ 0.269∗∗ 0.269∗∗ 0.269∗∗ 0.269∗∗
0.2 0.269∗∗ 0 .269 ∗∗ 0.269∗ 0.269 0.269 0.269∗ 0.269
0.3 0.269† 0.268† 0.268 0.268 0.271 0.270 0.270
0.4 0.269 0.268 0.268 0.271 0.270 0.270 0.270
0.5 0.268 0.268 0 .271 0 .272 0.272 0.272 0.272
0.6 0 .270 0.268 0.270 0.271 0.272 0.273 0.273†

0.7 0.269 0.269 0.270 0.270 0.273 0.272 0 .280 ††

0.8 0.267 0.268† 0.270† 0.271†† 0 .278 † 0 .278 † 0.278†

0.9 0.257†† 0.257†† 0.259†† 0.264†† 0.256†† 0.264†† 0.253††

1.0 0.014 0.016 0.015 0.015 0.014† 0.015 0.015
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Table 4. Mean average precision on AP2 using BM25 with fitted LDA term expansion.
Single and double superscript daggers († and ††) show a significant increase in precision
over unfitted LDA, using the same mix and expansion size, at the 0.1 and 0.05 levels
respectively. Single and double subscript stars (∗ and ∗∗) show a significant increase in
precision over BM25. Scores in italics show the greatest score for the given expansion
size.

Mix Expansion size

10 20 50 100 200 500 1000

0.0 0.271 0.271 0.271 0.271 0.271 0.271 0.271
0.1 0.272∗∗ 0.272∗∗ 0.272∗∗ 0.272∗∗ 0.272∗∗ 0.272∗∗ 0.272∗∗
0.2 0.272∗∗ 0.272∗∗ 0.273∗∗ 0.273∗∗ 0.273∗∗ 0.273∗∗ 0.273∗∗
0.3 0.273∗∗ 0.273∗∗ 0.274∗∗ 0.275∗∗ 0.275∗∗ 0.275∗∗ 0.275∗∗
0.4 0.274∗∗ 0.274∗∗ 0.275∗∗ 0.275∗∗ 0.276∗∗ 0.276∗∗ 0.276∗∗
0.5 0.274∗∗ 0.275∗∗ 0.277∗∗ 0.277∗∗ 0.278∗∗ 0.278∗∗ 0.278∗∗
0.6 0.275∗∗ 0.276∗∗ 0.278∗∗ 0.279∗∗ 0.279∗∗ 0.280∗∗ 0.280∗∗
0.7 0.276∗∗ 0.277∗∗ 0.280∗∗ 0.280∗∗ 0.281∗∗ 0.282∗∗ 0.282∗∗
0.8 0.277∗∗ 0.279∗∗ 0 .282 ∗∗ 0 .283 ∗∗ 0 .284 ∗∗ 0 .284 ∗∗ 0 .284 ∗∗
0.9 0 .279 ††

∗∗ 0 .281 †
∗∗ 0.281††

∗∗ 0.282††
∗∗ 0.282††

∗∗ 0.283††
∗∗ 0.282††

∗∗
1.0 0.030 0.031 0.037 0.039 0.039 0.038 0.037

relationships take substantially longer to compute (due to the fitting process).
The table also shows the fitted α value, demonstrating that the computed fitted
LDA term relationships are different from the computed unfitted LDA term
relationships.

Experiment 3: Comparison of Average Precision when using fitted and unfitted
LDA query expansion. Our next set of experiments compare the fitted LDA term
expansion precision to unfitted LDA term expansion and the baseline BM25 (no
term expansion). Again, we will use mixing values of 0.0 to 1.0 in intervals of
0.1 and term expansions of 10, 20, 50, 100, 200, 500 and 1000 for both fitted
and unfitted LDA. For this set of experiments we will use the AP2, FR2, WSJ2
and ZIFF2 document sets from TREC disk 2 with queries 51-200. For each of
the document sets, thesauruses were built for fitted and unfitted LDA using 100
topics and only those terms that appear in at least 50 documents. The mean
average precision results are shown in Tables 2, 3, 4 and 5 for the documents
sets FR2, ZIFF2, AP2 and WSJ2 respectively.

We can see from table 2 that fitted LDA did not provide a significant increase
in precision over unfitted LDA for any values of mix or expansion size on FR2.
Also, table 3 shows that fitted LDA did not provide a significant increase in
precision over BM25 for most mix values and expansion sizes on ZIFF2.

The AP2 and WSJ2 results in tables 4 and 5 show that the fitted LDA term
expansion provides the greatest mean average precision (MAP) at μ = 0.8. We
can also see that the MAP increases as the query expansion size is increased.
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Table 5. Mean average precision on WSJ2 using BM25 with fitted LDA term expan-
sion. Single and double superscript daggers († and ††) show a significant increase in
precision over unfitted LDA, using the same mix and expansion size, at the 0.1 and
0.05 levels respectively. Single and double subscript stars (∗ and ∗∗) show a significant
increase in precision over BM25. Scores in italics show the greatest score for the given
expansion size.

Mix Expansion size

10 20 50 100 200 500 1000

0.0 0.257 0.257 0.257 0.257 0.257 0.257 0.257
0.1 0.257∗∗ 0.257∗∗ 0.258∗∗ 0.258∗∗ 0.258∗∗ 0.258∗∗ 0.258∗∗
0.2 0.258∗∗ 0.258∗∗ 0.258∗∗ 0.258∗∗ 0.258∗∗ 0.258∗∗ 0.259∗∗
0.3 0.258∗∗ 0.258∗∗ 0.258∗∗ 0.259∗∗ 0.259∗∗ 0.259∗∗ 0.259∗∗
0.4 0.258∗∗ 0.259∗∗ 0.259∗∗ 0.259∗∗ 0.260∗∗ 0.262∗∗ 0.262∗∗
0.5 0.259∗∗ 0.259∗∗ 0.259∗∗ 0.259∗∗ 0.262∗∗ 0.263∗∗ 0.263∗∗
0.6 0.259∗∗ 0.259∗∗ 0.260∗∗ 0.263∗∗ 0.264∗∗ 0.265∗∗ 0.265∗∗
0.7 0.262∗∗ 0.260∗∗ 0.261∗∗ 0.264∗∗ 0.266∗∗ 0.267∗∗ 0.268∗∗
0.8 0 .262 ∗∗ 0 .262 ∗∗ 0 .264 ∗∗ 0 .267 ∗∗ 0 .268 ∗∗ 0 .270 ∗∗ 0 .270 ∗∗
0.9 0.260† 0.259† 0.260†

∗ 0.262††
∗∗ 0.263††

∗∗ 0.260††
∗∗ 0.260††

∗∗
1.0 0.025 0.025 0.029 0.031 0.033 0.032 0.032

Note that a mix of μ = 0 implies that there are no expansion terms used and
hence the score is simply the BM25 score.

Each of the tables contain information about statistical significance tests. For
each run, we have reported statistically significant increases in Average Precision
(AP) using the one sided Wilcoxon signed rank test at the 0.1 and 0.05 levels of
fitted LDA over each of unfitted LDA (using the associated expansion size and
mix) and BM25. We can see from both the AP2 and WSJ2 results that the fitted
LDA thesaurus provides a significant increase in average precision over BM25
for most results where the mix values are between μ = 0.1 and 0.9. We can also
see that fitted LDA provides a significant increase over unfitted LDA for a mix
of μ = 0.9 only for both AP2 and WSJ2.

Given that fitted LDA provides the greatest mean average precision with a mix
of μ = 0.8, but does not provide a significant increase in precision over unfitted
LDA for both of the AP2 and WSJ2 document set, we can deduce that we have
not gained any precision advantages from fitting the Dirichlet parameter.

Table 6 contains the mix-expansion pair that provide the greatest MAP for
each method on each data set. Also provided are the precision at 10 and mean
reciprocal rank scores. This table shows little difference between the retrieval
performance of fitted and unfitted LDA.

From this evidence we have obtained, we deduce that the extra computation
required to compute the fitted LDA topic relationships do not provide any ben-
efit over the unfitted LDA topic relationships for the all of the document sets
examined.
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Table 6. A comparison of the mean average precision (MAP), precision at 10 (Prec10)
and mean reciprocal rank (MRR) of each system on each data set. The mix-expansion
combination shown are those that produce the greatest MAP.

Data Method Mix Expansion MAP Prec10 MRR

AP2
Fitted LDA 0.8 200 0.284 0.380 0.562
Unfitted LDA 0.8 200 0.282 0.382 0.563
BM25 N/A N/A 0.271 0.355 0.537

FR2
Fitted LDA 0.8 1000 0.233 0.141 0.368
Unfitted LDA 0.8 1000 0.234 0.141 0.367
BM25 N/A N/A 0.197 0.117 0.314

WSJ2
Fitted LDA 0.8 500 0.270 0.370 0.625
Unfitted LDA 0.8 500 0.269 0.369 0.625
BM25 N/A N/A 0.257 0.353 0.572

ZIFF2
Fitted LDA 0.7 1000 0.280 0.169 0.427
Unfitted LDA 0.8 500 0.280 0.165 0.460
BM25 N/A N/A 0.269 0.158 0.415

5 Conclusion

Latent Dirichlet allocation (LDA) is a generative topic model that allocates
topics using the Dirichlet distribution. To compute the topic distribution, we
need to obtain the Dirichlet parameter for the document set, which can be either
fitted using maximum likelihood, or estimated.

In this article, we examined the effect of fitting the Dirichlet parameter with
the LDA topic model on the precision for Information retrieval. To do so, we
derived an expression for LDA term-term probabilistic relationships for use as a
query expansion.

We compared the effectiveness of query expansion using fitted and unfitted
LDA on several document sets and found that using fitted LDA did not provide a
significant increase in Average Precision when operating under its peak settings
(mix=0.8). We showed that by not fitting the Dirichlet parameter, we obtained
a 50 to 90 times gain in computational efficiency when computing the topic
models. Considering that the fitted LDA term relationships consume more stor-
age and time to build, we conclude that fitting the Dirichlet parameter provides
no advantage when using LDA for an Information retrieval task, hence showing
that LDA is insensitive with respect to the Dirichlet parameter for Information
retrieval.
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Abstract. We present an adaptive decoding algorithm for ternary ECOC ma-
trices which reduces the number of needed classifier evaluations for multiclass
classification. The resulting predictions are guaranteed to be equivalent with the
original decoding strategy except for ambiguous final predictions. The technique
works for Hamming Decoding and several commonly used alternative decoding
strategies. We show its effectiveness in an extensive empirical evaluation consid-
ering various code design types: Nearly in all cases, a considerable reduction is
possible. We also show that the performance gain depends on the sparsity and the
dimension of the ECOC coding matrix.

1 Introduction

Error-correcting output codes (ECOCs) [6] are a well-known technique for handling
multiclass classification problems, i.e., for problems where the target attribute is a cate-
gorical variable with k > 2 values. Their key idea is to reduce the k-class classification
problem to a series of n binary problems, which can be handled by a 2-class classi-
fication algorithm, such as a SVM or a rule learning algorithm. Conventional ECOCs
always use the entire dataset for training the binary classifier. Ternary ECOCs [1] are
a generalization of the basic idea, which allows to ignore some examples in the train-
ingset of the corresponding binary classifier. For example, pairwise classification [8,9],
which trains a classifier for each pair of classifiers, is a special case of this framework.

For many common general encoding techniques, the number of binary classifiers
may exceed the number of classes by several orders of magnitude. This allows for
greater distances between the code words, so that the mapping to the closest code word
is not compromised by individual mistakes of a few classifiers. For example, for pair-
wise classification, the number of binary classifiers is quadratic in the number of classes.
Thus, the increase in predictive accuracy comes with a corresponding increase in com-
putational demands at classification time. In previous work [12], we recently proposed
the QWEIGHTED algorithm, a fast decoding method for pairwise classifiers using a
voting aggregation. Our experimental results showed that the quadratic complexity of
the decoding step could be reduced to O(k log k) in practice. In this paper, we present
QUICKECOC, a generalization of the above-mentioned algorithm to allow for quick
decoding of arbitrary ternary ECOC ensembles with various decoding techniques. The
resulting predictions are guaranteed to be equivalent to the original decoding strategy
except for ambiguous final predictions.

W. Buntine et al. (Eds.): ECML PKDD 2009, Part II, LNAI 5782, pp. 189–204, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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2 ECOC

Error-Correcting Codes (ECC) are a well-known topic in the field of Coding and Infor-
mation Theory [11]. Their main purpose is to detect and correct errors in noisy physical
communication channels. Dietterich and Bakiri [6] adapted this concept for multiclass
classification and named it in this context as Error Correcting Output Codes (ECOC).
They consider classifier predictions as information signals which ideally describe the
correct class for a given instance. Due to external influences (such as, e.g., a too small
sample size) these signals are sometimes wrong, and such errors have to be detected
and corrected. Formally, each class ci (i = 1 . . . k) is associated with a so-called code
word cwi ∈ {−1, 1}n of length n. In the context of ECOC, all relevant information
is summarized in a so-called coding matrix (mi,j) = M ∈ {−1, 1}k×n, whose i-
th row describes code word cwi, whereas the j-th column represents a classifier fj .
Furthermore, the coding matrix implicitly describes a decomposition scheme of the
original multiclass problem. In each column j the rows contain a (1) for all classes
whose training examples are used as positive examples, and (−1) for all negative ex-
amples for the corresponding classifier fj . For the classification of a test instance x,
all binary classifiers are evaluated and their predictions, which form a prediction vector
p = [f1(x), . . . , fn(x)], are compared to the code words. The class c∗ whose associated
code word cwc∗ is “nearest” to p according to some distance measure d(.) (such as the
Hamming distance) is returned as the overall prediction, i.e. c∗ = argminc d(cwc,p).

Later, Allwein et al. [1] extended the ECOC approach to the ternary case, where code
words are now of the form cwi ∈ {−1, 0, 1}n. The additional code mi,j = 0 denotes
that examples of class ci are ignored for training classifier fj . We will say a classifier fj

is incident to a class ci, if the examples of ci are either positive or negative examples for
fj , i.e., if mi,j 
= 0. This extension increases the expressive power of ECOCs, so that
now nearly all common multiclass binarization methods can be modelled. This includes
pairwise classification, which could not be modeled previously.

2.1 Code Design

Since the introduction of ECOC, a considerable amount of research has been devoted
to code design (see, e.g., [5,14]), but without reaching a clear conclusion. We want to
emphasize that our work does not contribute to this discussion, because we will not be
concerned with comparing the predictive quality of different coding schemes. Our goal
is to show that, irrespective of the selected coding scheme, we can achieve a substantial
reduction in prediction time, without changing the predicted outcome.

Nevertheless, we will briefly review common coding schemes, because we will later
demonstrate that our algorithm is applicable to different types of coding schemes. Es-
sentially, one can distinguish between four code families, which we will discuss in the
following four sections.

Exhaustive Ternary Codes. Exhaustive ternary codes cover all possible classifiers in-
volving a given number of classes l. More formally, a (k, l)-exhaustive ternary code
defines a ternary coding matrix M , for which every column j contains exactly l val-
ues, i.e.,

∑
i∈K |mi,j | = l. Obviously, in the context of multiclass classification, only

columns with at least one positive (+1) and one negative (−1) class are useful.
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The number of classifiers for a (k, l) exhaustive ternary code is
(
k
l

)
(2l−1 − 1), since

the number of binary exhaustive codes is 2l−1 − 1 and the number of combinations
to select l row positions from k rows is

(
k
l

)
. These codes are a straightforward gener-

alization of the exhaustive binary codes, which were considered in the first works on
ECOC [6], to the ternary case. Note that (k, 2)-exhaustive codes correspond to pairwise
classification.

In addition, we define a cumulative version of exhaustive ternary codes, which sub-
sumes all (k, i)-codes with i = 2 . . . l up to a specific level l. In this case, we speak
of (k, l)-cumulative exhaustive codes, which generate a total of

∑l
i=2

(
k
i

)
(2i−1 − 1)

columns. For a dataset with k classes, (k, k)-cumulative exhaustive codes represent the
set of all possible binary classifiers.

Random Codes. We consider two types of randomly generated codes. The first variant
allows to control the probability distribution of the set of possible symbols {−1, 0, 1}
from which random columns are drawn. By specifying a parameter r ∈ [0, 1], the prob-
ability for the zero symbol is set to p({0}) = r, whereas the remainder is equally
subdivided to the other symbols: p({1}) = p({−1}) = 1−p

2 . This type of code allows
to control the sparsity of the coding matrix, which will be useful for evaluating which
factors determine the performance of the QUICKECOC algorithm.

The second random code generation method selects randomly a subset from the set
of all possible classifiers Nall. This corresponds to the cumulative ternary code matrix
with l = k. Obviously, this variant guarantees that no duplicate classifiers are generated,
whereas it can occur in the other variant. We do not enforce this, because we wanted to
model and evaluate two interpretations of randomly generated codes: randomly filled
matrices and randomly selected classifiers.

Coding Theory, BCH-Codes. Many different code types were developed within coding
theory. We pick the so-called BCH Codes [3] as a representative, because they have
been studied in depth and have properties which are favourable in practical applications.
For example, the desired minimum Hamming distance of M can be specified, and fast
decoding methods are available. Note, however, that efficient decoding in coding theory
has the goal to minimize the complexity of finding the nearest code word given the
received full code word, while we are interested in minimizing the classifier evaluations
needed for finding the nearest code word respectively class. Although some concepts
of efficient decoding in coding theory seem to be transferable to our setting, they lack,
contrary to QUICKECOC, the capability to be a general purpose decoding method for
arbitrary coding matrices.

A detailed description of this code family is beyond the scope of this paper, but we
refer to [3,11] for a detailed description and further information regarding BCH-Codes.
In our evaluation, we considered binary BCH codes of lengths 7, 15, 31, 63, 127 and
255. Similarly to [6], we randomly selected k code words from the set of codes, if the
number of classes is k.

The above techniques are general in the sense that they are applicable to every pos-
sible dataset. Often, it is possible to project data-specific relationships or expert knowl-
edge explicitly to the coding matrix (see, e.g., [4]). We did not consider these types of
codes in this paper, but note that our algorithm is applicable to all code types.
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2.2 Decoding

The traditional ECOC framework is accompanied with the Hamming Distance. After
receiving an ensemble of base predictions, the class with the shortest Hamming Dis-
tance is selected as the output. In the meantime, several decoding strategies have been
proposed. Along with the generalisation of ECOCs to the ternary case, Allwein et al
[1] proposed a loss-based strategy. Escalera et al. [7] discussed the shortcomings of
traditional Hamming distance for ternary ECOCs and presented two novel decoding
strategies, which should be more appropriate for dealing with the zero symbol. We con-
sidered all these decoding strategies in our work, and summarize them below.

In the following, let cwi = (mi,1, . . . ,mi,n) a code word from a ternary ECOC
matrix and p = (p1, . . . , pn) be the prediction vector.

Hamming Distance: Describes the number of bit positions in which cwi and p dif-
fer. Zero symbols (mi,j = 0) increase the distance by 1

2 . Note that the prediction vector
is considered as a set of binary predictions which can only predict either −1 or 1.

dH(cwi,p) =
∑n

j=1
|mi,j−pj |

2

Euclidian Distance: Computes the distance of the two n-dimensional vectors in Euclid-
ian space.

dE(cwi,p) = ||cwi − p||2 =
√∑n

j=1(mi,j − pj)2

Attenuated Euclidian/Hamming Distance: These measures simply ignore the zero
symbols for computing the distance.

dAE(cwi,p) =
√∑n

j=1 |mi,j |(mi,j − pj)2

dAH(cwi,p) =
∑n

j=1 |mi,j | |mi,j−pj |
2

Loss based: In loss based decoding we assume that we have given a score-based clas-
sifier f(.).

dL(cwi,p) =
∑n

j=1 l(mi,j · fj)

where l(.) is the loss function. Typical functions are l(s) = −s and l(s) = e−s.

Laplace Strategy

dLA(cwi,p) =
E + 1

E + C + T
=

dAH(cwi,p) + 1∑n
j=1 |mi,j |+ T

where C is the number of bit positions in which they are equal and E in which they
differ. T is the number of involved classes, in our case T = 2, since we employ binary
classifiers. Thus, the default value of dLA(.) is 1

2 .

Beta Density Distribution Pessimistic Strategy: This measure assumes that the dis-
tance is a Beta-distributed random variable parametrized byC andE of two code words.
It can be seen as a probabilistic version of the Laplace strategy, because its expected
value equals the one from the Laplace strategy. Please refer to [13,7] for a detailed
description.
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3 Efficient Decoding for ECOC

In this section, we will introduce the QUICKECOC algorithm for efficiently deter-
mining the predicted class without the need to evaluate all binary classifiers. It builds
upon the QWEIGHTED algorithm [12], which is tailored to the special case of pairwise
classification with voting aggregation as a decoding technique. We will first briefly re-
capitulate this algorithm in Section 3.1, and then discuss the three key modifications
that have to be made: first, Hamming decoding has to be reduced to a voting process
(Section 3.2), second, the heuristic for selecting the next classifier has to be adapted to
the case where multiple classifiers can be incident with a pair of classes (Section 3.3),
and finally the stopping criterion can be improved to take multiple incidences into ac-
count (Section 3.4). We will then present the generalized QUICKECOC algorithm for
Hamming decoding in Section 3.5. Finally, we will discuss how QUICKECOC can be
adapted to different decoding techniques (Section 3.6).

3.1 QWeighted for Pairwise Classification

Pairwise classification [8] tackles the problem of multiclass classification by decom-
posing the main problem into a set of binary problems, one problem for each pair of
classes. At prediction time, all binary classifiers are queried, and each classifier emits a
vote for one of its two classes. The class which receives the maximum amount of votes
is eventually predicted.

Though it can be shown that the training time of pairwise classification is smaller
than in the one-against-all case [9], a quadratic number of classifiers still has to be eval-
uated at classification time. The QWEIGHTED algorithm [12] addresses this problem
by exploiting the fact that usually not all evaluations are necessary to compute the class
with the maximum votes. If one class has received more votes than every other class can
possibly achieve in their remaining evaluations, this class can be safely predicted. The
QWEIGHTED algorithm tries to enforce this situation by always focusing on the class
that has lost the least amount of voting mass. Experiments showed that QWEIGHTED

uses an average runtime of O(k log k) instead of the O(k2) that would be required for
computing the same prediction with all evaluations.

3.2 Reducing Hamming Distances to Voting

Obviously, pairwise classification may be considered as a special case of ternary
ECOCs, where each column of the coding matrix contains exactly one positive (+1),
one negative (−1), and k−2 ignore values (0). Thus, it is natural to ask the the question
whether the QWEIGHTED algorithm can be generalized to arbitrary ternary ECOCs.

To do so, we first have to consider that ECOCs typically use Hamming distance for
decoding, whereas pairwise classification typically uses a simple voting procedure.1 In

1 Other choices for decoding pairwise classifiers are possible (cf., e.g., [16]), but voting is sur-
prisingly stable. For example, one can show that weighted voting, where each binary vote
is split according to the probability distribution estimated by the binary classifier, minimizes
the Spearman rank correlation with the correct ranking of classes, provided that the classifier
provides good probability estimates [10].
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voting aggregation, the class that receives the most votes from the binary classifiers is
predicted, i.e.,

c̃ := argmax
i∈K

∑
j 
=i,j∈K

fi,j

where fi,j is the prediction of the pairwise classifier that discriminates between classes
ci and cj .

Traditional ECOC with Hamming decoding predicts the class c∗ whose code word
cwc∗ has the minimal Hamming Distance dH(cwc∗ ,p) to the prediction vector
p = (p1, . . . , pn). The following lemma allows to reduce minimization of Hamming
distances to voting aggregation:

Lemma 1. Let vi,j :=
(
1− |mi,j−pj |

2

)
be a voting procedure for classifier j for class

ci then

argmin
i=1...n

dH(cwi,p) = argmax
i=1...n

∑
j∈N

vi,j

Proof. Recall that

dH(cwi,p) =
n∑

a=1

|cwia − pa|
2

=
n∑

a=1

|mi,a − pa|
2

and let bi,a := |mi,a−pa|
2 . Since bi,a ∈ {0, 0.5, 1} and

min
i∈1...k

n∑
a=1

bi,a → max
i∈1...k

n∑
a=1

1− bi,a = max
i∈1...k

n∑
a=1

vi,a

holds, we obtain the statement. � 

To be clear, the above used definition of vi,j formalizes a voting procedure, for which
class ci receives one vote (+1), if the prediction pj of classifier j equals the correspond-
ing encoding bit mi,j and an half vote (+0.5) for the case mi,j = 0 where the classifier
was not trained with instances from ci.

This voting schemes differs slightly from the commonly known voting aggrega-
tion. The exact voting aggregation procedure described within the ECOC framework
would be

vi,j = |mi,j | ·
(

1− |mi,j − pj |
2

)
which ignores the zero symbols and is not equivalent with Hamming decoding for arbi-
trary ternary coding matrices (but for e.g. pairwise codes w.r.t final prediction). Never-
theless, it is easy to see, that voting aggregation is equivalent to ECOC decoding using
the Attenuated Hamming distance.
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3.3 Next Classifier Selection

The QWEIGHTED algorithm always pairs the current favorite (the class with the least
amount of voting loss) with its strongest competitor (the class that has the least amount
of voting loss among all classes with which it has not yet been paired), and evaluates
the resulting classifier. The rationale behind this approach is that the current favorite
can emerge as a winner as quickly as possible. In pairwise classification, the choice of
a classifier for a given pair of classes is deterministic because, obviously, there is only
one classifier that is incident with any given pair of classes.

General ECOC coding matrices, on the other hand, can involve more than two
classes, and, conversely, a pair of classes may be incident to multiple binary classifiers.
This has the consequence that the selection of the next classifier to evaluate has gained
an additional degree of freedom. For example, assume a 4-class problem (A,B,C,D)
using 3-level ternary exhaustive codes, and classes A and B have currently the great-
est vote amount, we could select one of four different classifiers that discriminate the
classes A and B, namely A|BC, A|BD, AC|B and AD|B.

QUICKECOC uses a selection process which conforms to the key idea of QWEIGH-
TED: Given the current favorite class ci0 , we select all incident classifiers Ni0 . Let
Kj denote the set of classes, which are involved in the binary classifier fj , but with a
different sign than ci0 . In other words, it contains all rows i of column j in the coding
matrix M , for which holds: mi,j 
= mi0,j ∧mi,j 
= 0. We then compute a score

s(j) =
∑
i∈Kj

k − r(i)

for every classifier cj ∈ Ni0 , where r(i) is a function which returns the position of
class ci in a ranking, where all classes are increasingly ordered by their current votings
respectively ordered decreasingly by distances. Finally, we select the classifier fj0 with
the maximal score s(j0). Roughly speaking, this relates to selecting the classifier which
discriminates ci0 to the greatest number of currently highly ranked classes.

We experienced that this simple score based selection was superior among other
tested methods, whose presentation and evaluation we omit here. One point to note is,
that for the special case of pairwise codes, this scheme is identical to the one used by
QWEIGHTED.

3.4 Stopping Criterion

The key idea of the algorithm is to stop the evaluation of binary classifiers as soon as it
is clear which class will be predicted, irrespective of the outcome of all other classifiers.
Thus, the QUICKECOC algorithm has to check whether ci0 , the current class with the
minimal Hamming distance to p, can be caught up by other classes at the current state.
If not, ci0 can be safely predicted.

A straight-forward adaptation of the QWEIGHTED algorithm for pairwise classifica-
tion would simply compute the maximal possible Hamming distance for ci0 and com-
pare this distance to the current Hamming distances li of all other classes ci ∈ K\{ci0}.
The maximal possible Hamming distance for ci0 can be estimated by assuming that all
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outstanding evaluations involving ci0 will increase its Hamming distance. Thus, we
simply add the number of remaining incident classifiers of ci0 to its current distance li0 .

However, this simple method makes the assumption that all binary classifiers only
increase the Hamming distance of ci0 , but not of the other classes. This is unnecessarily
pessimistic, because each classifier will always increase the Hamming distance of all
(or none) of the incident classifiers that have the same sign (positive or negative). Thus,
we can refine the above procedure by computing a separate upper bound of li0 for each
class ci. This bound does not assume that all remaining incident classifiers will increase
the distance for ci0 , but only those where ci and ci0 are on different sides of the training
set. For the cases where ci was ignored in the training phase, 1

2 is added to the distance,
according to the definition of the Hamming distance for ternary code words. If there
exist no class which can overtake ci0 , the algorithm returns ci0 as the prediction.

Note that the stopping criterion can only test whether no class can surpass the current
favorite class. However, there may be other classes with the same Hamming distance.
As the QUICKECOC algorithm will always return the first class that cannot be sur-
passed by other classes, this may not be the same class that is returned by the full
ECOC ensemble. Thus, in the case, where the decoding is not unique, QUICKECOC
may return a different prediction. However, in all cases where the code word minimal
Hamming distance is unique, QUICKECOC will return exactly the same prediction.

3.5 Quick ECOC Algorithm

Algorithm 1 shows the pseudocode of the QUICKECOC algorithm. The algorithm
maintains a vector l = (l1, . . . , lk) ∈ R

k, where li indicates the current accumulated
Hamming distance of the associated code word cwi of class ci to the currently evalu-
ated prediction bits p. The li can be seen as lower bounds of the distances dH(cwi,p),
which are updated incrementally in a loop which essentially consists of four steps:

(1) Selection of the Next Classifier
(2) Classifier Evaluation and Update of Bounds l
(3) First Stopping Criterion
(4) Second Stopping Criterion

(1): First, the next classifier is selected. Depending on the current Hamming distance
values, the routine SELECTNEXTCLASSIFIER returns a classifier that pairs the current
favorite i0 = argminili with another class that is selected as described in Section 3.3.
In the beginning all values li are zero, so that SELECTNEXTCLASSFIER returns an ar-
bitrary classifier fj .
(2): After the evaluation of fj , l is updated using the Hamming distance projected to
this classifier (as described in Section 3.2) and fj is removed from the set of possible
classifiers.
(3): In line 10, the first stopping criterion is checked. It checks whether the current fa-
vorite class i0 can already be safely determined as the class with the maximum number
of votes, as described in Section 3.4.
(4): At line 17, the algorithm stops when all incident classifiers of ci0 have been eval-
uated (this criterion is actually a special case of (3) but it will be useful later). In this
case, since it holds that li0 ≤ li for all classes ci with li0 fixed and considering that li
can only increase monotonically, we can safely ignore all remaining evaluations.
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Algorithm 1. QuickECOC

Require: ECOC Matrix M = (mi,j) ∈ {−1, 0, 1}k×n , binary classifiers f1, . . . , fn,
testing instance x ∈ X

1: l ∈ R
k ⇐ 0 # Hamming distance vector

2: c∗ ← NULL , N ← {1, . . . , n}
3: while c∗ = NULL do
4: j ←SELECTNEXTCLASSIFIER(M, l)
5: p← fj(x) # Evaluate classifier
6: for each i ∈ K do
7: li ← li + |mi,j−p|

2

8: M ←M\Mj , N ← N\{j}
9: i0 = argmin

i∈K
li

10: # First stop Criterion
11: abort← true
12: for each i ∈ K\{i0} do
13: eF ull ← |{j ∈ N |mi,j ×mi0,j = −1} |
14: eHalf ← |{j ∈ N |mi,j �= 0 and mi0,j = 0} |
15: if li0 + eF ull + 1

2
eHalf > li then

16: abort← false
17: # Second stop Criterion
18: if abort or ∀j ∈ N.mi0,j = 0 then
19: c∗ ← ci0

20: return c∗

3.6 Decoding Adaptions

All decoding methods that we discussed in section 2.2 are compatible with QUICK-
ECOC by applying small modifications. In general, there are two locations where adap-
tations are needed. First, the statistics update step and the first stopping criteria have to
be adapted according to the used distance measure. Second, some decoding strategies
require a special treatment of the zero symbol, which can, in general, be modeled as a
preprocessing step. We will briefly describe the modifications for all considered decod-
ing strategies:

Euclidian Distance: For minimizing the Euclidian distance we can ignore the root
operation and simply substitute the update statement of the pseudocode (line 7) with:
li ← li + (mi,j − p)2. The factor for eHalf is changed to 1 and the one for eFull to 4.

Att. Euclidian Distance: Similar to the above modifications we change line 7 with:
li ← li + |mi,j |(mi,j − p)2 and set the factor of eFull to 4 and remove the occurrences
of eHalf .

Loss based linear: For both loss based versions, we assume that we have given a nor-
malizing function w(.) which projects fi(x) from [−∞ : ∞] to [−1, 1], e.g.,

w(x) =

{
x

max f(x) x ≥ 0
x

|min f(x)| x < 0
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We substitute line 6 with: p ← w(fj(x)) and the update procedure with: li ← li +
1−p·mi,j

2 and remove the occurrences of eHalf .2

Loss based exponential: For the exponential loss, we have to change line 6 as above
and the update step with li ← li + e−p·mi,j . In addition, the factor of eFull is set to e1

and eHalf to e−1.

Laplace Strategy: This strategy can be used by incorporating a class- respectively row-
based incrementer. Note that each error bit between a code word cw and the prediction
vector p amounts 1

b+T towards the total distance dLA(cw,p), where b is the number of
non-zero bits of cw. This incrementer denoted by Ii for class ci can be computed as a
preprocessing step from the given ECOC Matrix. So, the update step has to be changed
to li ← li + Ii and the factor of eFull changes to Ii. Besides, eHalf can be removed.

Beta Density Distribution Pessimistic Strategy: Here, we use an approximation of
the original strategy. First, similar to the Laplace Strategy, an incrementer is used to de-
termine Zi = E

E+C . And second, instead of using a numerical integration to determine
Zi+ai, its standard deviation is added, which is in compliance with the intended seman-
tic of this overall strategy to incorporate the uncertainty. The incrementer Ii is again set
during a preprocessing step and we change the update step to li ← li+min(1, (Ii+σi)).
The factor for eFull has to be changed to Ii and eHalf has to be removed.3

In general, a distance measure is compatible to QUICKECOC if the distance can be
determined bit-wise or incremental, and the iterative estimate of li has to be monotoni-
cally increasing, but must never over-estimate the true distance.

4 Experimental Evaluation

In this section, we evaluate the performance of QUICKECOC for a variety of different
codes. In addition, we were interested to see if it works for all decoding methods and
whether we can gain insights on which factors determine its performance.

4.1 Experimental Setup

All experiments were performed within the WEKA [15] framework using the deci-
sion tree learner J48 with default parameters as a base learner. All evaluations were
performed using 10-fold stratified cross-validation. Our setup consisted of 5 encoding
strategies (BCH Codes and two versions each of exhaustive and random codes), 7 de-
coding methods (Hamming, Euclidian, Att. Euclidian, linear loss-based, exponential
loss-based, Laplacian Strategy and Beta Density Probabilistic Pessimistic) and 7 multi-
class datasets selected from the UCI Machine Repository [2].

2 Note that we did not use such a normalizing function in our actual evaluation since we used a
decision tree learner as our base learner. Although the normalization of score based functions,
such as SVMs, is not a trivial task, the sketched function w(.) could be possibly determined
by estimating min f(x) and max f(x) during training time (e.g. saving the largest distances
between instances to the hyperplane for each classifier).

3 Note that this approximation yielded in all our evaluations the same prediction as the original
strategy.



Efficient Decoding of Ternary ECOC for Multiclass Classification 199

For the encoding strategies, we also tried several different parameters. Regarding
the exhaustive codes, we evaluated all (k, l) codes ranging from l = 2 to l = k per
dataset and analogously for the cumulative version. For the generation of the first type
of random codes the zero symbol probability was parametrized by r = 0.2, 0.4, 0.6, 0.8
and the dimension of the coding matrix was fixed to 50 % of the maximum possible
dimension with respect to the number of classes. The second type of random codes
was generated by randomly selecting 20 %, 40 %, 60 % and 80 % from the set of all
valid classifiers respectively columns (all columns of an (k, k) cumulative ternary cod-
ing matrix) without repetition. Regarding BCH Codes, we generated 7, 15, 31, 63, 127
and 255-bit BCH codes and randomly selected n rows matching the class count of the
currently evaluated dataset. For the datasets machine and ecoli where the number of
classes is greater than 7, we excluded the evaluation with 7-bit BCH codes.

The datasets were selected to have a rather low number of different classes. The
main reason for this limitation was that for some considered code types the number of
classifiers grows exponentially. Especially for the datasets with the maximum number
of eight classes (machine and ecoli), the cumulative ternary exhaustive codes generates
up to 3025 classifiers. In addition, we evaluated all possible combinations of decoding
methods, code types with various parameters, which we can not present here completely
(in total 1246 experiments) because of lack of space. Nevertheless, we want to stress
that our technique is applicable to larger number of classes (with reasonable codes),
and, as our results will show, the expected gain increases with the number of classes.

Because of the high number of experiments, we cannot present all results in detail,
but will try to focus on the most interesting aspects. In addition to assess the general
performance of QUICKECOC, we will analyze the influence of the sparsity of the code
matrix, of the code length, and of different decoding strategies.

4.2 Reduction in Number of Evaluations

Table 1 shows the reduction in the number of classifier evaluations with QUICKECOC
on all evaluated datasets with Hamming decoding and ternary exhaustive codes. In every
column the average number of classifier evaluations is stated with its corresponding
ratio to the number of generated classifiers in italics (the lower the better). The datasets
are ordered from left to right by ascending class-count. As the level parameter l is
bounded by the class-count k, some of the cells are empty.

Table 1. QUICKECOC performance using Hamming decoding and exhaustive ternary codes

l vehicle derm. auto glass zoo ecoli machine
2 3.82 0.637 7.12 0.475 7.95 0.379 9.99 0.476 9.48 0.451 11.75 0.420 11.60 0.414
3 7.91 0.659 26.05 0.434 42.86 0.408 43.47 0.414 41.64 0.397 58.85 0.350 57.90 0.345
4 5.65 0.808 46.30 0.441 115.22 0.470 116.45 0.475 107.03 0.437 199.31 0.407 194.81 0.398
5 43.11 0.479 163.67 0.520 163.98 0.521 148.50 0.471 369.06 0.439 355.23 0.423
6 16.54 0.534 114.87 0.529 116.77 0.538 102.41 0.472 394.25 0.454 369.19 0.425
7 34.24 0.543 37.84 0.601 31.52 0.500 234.80 0.466 218.09 0.433
8 62.17 0.490 57.27 0.451
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Table 2. QUICKECOC performance on BCH codes

vehicle derm. auto glass zoo ecoli machine
7 0.764 0.774 0.851 0.880 0.834 - -
15 0.646 0.656 0.699 0.717 0.659 0.670 0.648
31 0.571 0.564 0.607 0.662 0.581 0.602 0.558
63 0.519 0.506 0.567 0.616 0.517 0.540 0.509

127 0.489 0.447 0.522 0.565 0.477 0.493 0.459
255 0.410 0.380 0.450 0.467 0.397 0.417 0.388

One can clearly see that QUICKECOC is able to reduce the number of classifier
evaluations for all datasets. The percentage of needed evaluations ranges from about
81 % (vehicle, l = 4) to only 35 % (machine, l = 3). Furthermore, one can observe a
general trend of higher reduction by increasing class-count. This is particularly obvious,
if we compare the reduction on the exhaustive codes (the last line of each column, where
l = k), but can also be observed for individual code sizes (e.g., for l = 3). Although we
have not performed a full evaluation on datasets with a larger amount of classes because
of the exponential growth in the number of classifiers, a few informal and quick tests
supported the trend: the higher the class-count, the higher the reduction.

Another interesting observation is that except for dataset vehicle the exhaustive
ternary codes for level l = 3 consistently lead to the best QUICKECOC performance
over all datasets. A possible explanation based on a “combinatorial trade-off” can be
found in [13], which was omitted here because of space restrictions.

For BCH Codes, we can report also that in all cases a reduction was possible, as one
can see in Table 2. Note that all coding matrices in this case are dense, i.e., no coding
matrix contains a (0). Even in this case, we see that there was no situation, where all
classifiers were needed for multiclass classification. And again, we observe that for
higher dimensions (increasing the BCH bit code) higher reductions can be observed.

We do not show a detailed table of results for random codes, but they will be used in
the following sections.

4.3 Sparsity of Coding Matrices

We define the sparsity of the ECOC matrix as the fraction of (0)-values it contains. Ran-
dom codes provide a direct control over the matrix sparsity (as described in
section 2.1), and are thus suitable for analyzing the influence of the sparsity degree of the
ECOC matrix for QUICKECOC. Note, however, that the observed influences regarding
sparsity and dimension of the matrix on the QUICKECOC performance can also be seen
in the evaluations of the other code types, but not as clearly or structured as here.

Figure 1 shows QUICKECOC applied to random codes with varying matrix sparsity.
A clear trend can be observed that the higher the sparsity of the coding matrix the better
the reduction for all datasets. Keep in mind that the baseline performance (evaluating
all binary classifiers) is a parallel to the x-axis with the y-value of 1.0. Note that the
absolute reduction tends to be minimal over all considered datasets at datasets with
higher class-counts i.e machine at 80 % sparsity, and the lowest reduction can be seen
for the dataset vehicle with the smallest number of classes n = 4 at 20 % sparsity.
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Fig. 1. QUICKECOC performance of random codes in dependence of sparsity

The main effect of an increase of sparsity on the coding matrices is that for each class
the number of incident classifiers decreases. For sparsity 0, all classes are involved in
all classifiers, for sparsity 0.5, each class is (on average) involved in only half of the
classifiers. This will clearly affect the performance of the QUICKECOC algorithm.
In particular, the second stopping criterion essentially specifies that the true class is
found if all incident classifiers for the favorite class i0 have been evaluated. Clearly, the
algorithm will terminate faster for higher sparsity levels (ignoring, for the moment, the
possibility that the first stopping criterion may lead to even faster termination).

4.4 Code Length

The second type of random codes, which were generated by randomly selecting a fixed
number from the set of all possible binary classifiers can be seen in Fig. 2. All coding
matrices for a k-class dataset have nearly the same sparsity, which relates to the average
sparsity of (k, k) cumulative exhaustive codes and differ only in the length of the coding
matrix (in percent of the total number of possible binary classifiers). This allows us to
observe the effect of different numbers of classifiers on the QUICKECOC performance.
Here, we can also see an consistent relationship, that higher dimensions lead to better
performance, but the differences are not as remarkable as for sparse matrices.

For a possible explanation, assume a coding matrix with fixed sparsity and we vary
the dimension. For a higher dimension the ratio of number of classifiers per class in-
creases. Thus, on average, the number of incident classifiers for each class also in-
creases. If we now assume that this increase is uniform for all classes, this has the effect
that the distance vector l is multiplied by a positive factor x > 1, i.e., l+ = l ∗ x.
This alone would not change the QUICKECOC performance, but if we consider that
classifiers are not always perfect, we can expect that for higher number of classifiers,
the variance of the overall prediction will be smaller. This smaller variance will lead
to a more reliable voting vectors, which can, in turn, lead to earlier stopping. It also
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Fig. 2. QUICKECOC performance of random codes in dependence of code length

Table 3. QUICKECOC performance on ecoli with all decoding methods and cumulative
exhaustive ternary codes

Hamming Euclidian A. Euclidian LBL LBE Laplace BDDP |N |
l = 2 0.420 0.420 0.420 0.399 0.398 0.406 0.426 28
l = 3 0.331 0.331 0.331 0.335 0.350 0.332 0.333 196
l = 4 0.377 0.377 0.377 0.383 0.402 0.374 0.375 686
l = 5 0.400 0.400 0.400 0.414 0.439 0.399 0.401 1526
l = 6 0.421 0.421 0.421 0.437 0.466 0.419 0.418 2394
l = 7 0.427 0.427 0.427 0.444 0.475 0.426 0.425 2898
l = 8 0.428 0.428 0.428 0.446 0.477 0.427 0.426 3025

seems reasonable that this effect will not have such a strong impact as the sparsity of
the coding matrix, which we discussed in the previous section.

4.5 Different Decoding Strategies

As previously stated, because of the large number of experiments, we can not give
a complete account of all results. We evaluated all combinations of experiments, that
includes also all mentioned decoding methods. All the previously shown results were
based on Hamming decoding, since it is still one of the commonly used decoding strate-
gies even for ternary ECOC matrices. However, we emphasize, that all observations on
this small subset of results can also be found in the experiments on the other decod-
ing strategies. As an exemplary data point, Table 3 shows an overview of the QUICK-
ECOC performance for all decoding strategies for the dataset ecoli using cumulative
exhaustive ternary codes. It can be seen that the performance is quite comparable on all
datasets. Even the optimal reduction for l = 3 can be found in the results of all decoding
strategies.
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5 Discussion

At first glance, the results may not be striking, because a saving of a little less than
40 % does not appear to be such a large gain. However, one must put these results in
perspective. For example, for the vehicle dataset with a (4, 3)-exhaustive code, QUICK-
ECOC evaluated 65.9 % of all classifiers (cf. Table 1). A (4, 3)-exhaustive code has
12 classifiers, and each individual class is involved in 75 % of these classifiers (cf. the
example in section 2.1). Thus, on average, QUICKECOC did not even evaluate all the
classifiers that involve the winning class before this class was predicted. Similarly, for
(k, k)-exhaustive codes all classes are involved in all binary classifiers, but nevertheless,
considerable savings are possible. It would be interesting to derive a lower bound on the
possible optimal performance, and to relate these empirical results to such a bound.

One could also argue that in applications where the classification time is crucial, a
parallel approach could be applied much more effectively. Since each classifier defined
by a column of the ECOC matrix can be evaluated independently, the implementation
could be done very easily. QUICKECOC loses this advantage because the choice of the
next classifier to evaluate depends on the results of the previous evaluations. However,
QUICKECOC can still be parallelized on the instance level instead of the classifier
level. Given n processors or n threads we want to utilize, we select n incoming test
instances and apply QUICKECOC for each of them. With this method a higher speed
up can be expected as with a straight-forward parallelization of ECOC.

Another point is that the gains obtained by QUICKECOC are negligible in compar-
ison to what can be gained by more efficient coding techniques. While this is true, we
note that QUICKECOC can obtain gains independent of the used coding technique, and
can thus be combined with any coding technique. In particular in time-critical applica-
tions, where classifiers are trained once in batch and then need to classify on-line on a
stream of in-coming examples, the obtained savings can be decisive.

6 Conclusions

We have shown a general algorithm for reducing the number of classifier evaluations
for ternary ECOC matrices without compromising the overall prediction. It is based on
a similar algorithm that was tailored to pairwise classification. Since ternary ECOCs
subsume nearly all possible binary decomposition schemes, the reduction applies now
to a broader spectrum of applications. For example, data-specific optimal codes can
now also take advantage of reduced classifier evaluations. Regardless of the used code,
QUICKECOC improves the overall prediction efficiency. At first sight, the amount of
improvement may not seem to be as striking as for the pairwise case, where we could
report a reduction from k2 to k log k [12], but one must keep in mind that in ECOC
codings, each class has a much larger number of incident classifiers, and thus a higher
number of evaluations must be expected to determine the winning class. We observed
that the performance gain increases with higher sparsity of the coding matrix, again
putting pairwise classification at the more efficient end of the spectrum. We also noted
an increase in the performance gain with increasing code lengths of the chosen code.

There might still be some potential for improving our results with better heuris-
tics for the selection of the next classifier, we have not yet thoroughly explored this
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parameter. For example, one could try to adapt ideas from active learning for this
process. Furthermore, we consider an in-depth analysis of existing fast decoding meth-
ods in Coding Theory and the investigation of the transferability to the multiclass clas-
sification setting, because they seem to share some similarities.
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Abstract. This article introduces the class of Most Informative Pat-
terns (MIPs) for characterizing a given dataset. MIPs form a reduced
subset of non redundant closed patterns that are extracted from data
thanks to a scoring function depending on domain knowledge. Accord-
ingly, MIPs are designed for providing experts good insights on the con-
tent of datasets during data analysis. The article presents the model of
MIPs and their formal properties wrt other kinds of patterns. Then, two
algorithms for extracting MIPs are detailed: the first directly searches
for MIPs in a dataset while the second screens MIPs from frequent pat-
terns. The efficiencies of both algorithms are compared when applied to
reference datasets. Finally the application of MIPs to labelled graphs,
here molecular graphs, is discussed.

1 Introduction

Given a dataset describing objects by attributes (or items), a frequent itemset is
a subset of attributes such that the number, also called support or frequency, of
objects presenting all of these attributes is not less than some threshold. Since the
first frequent itemset mining algorithm was proposed [1], frequent itemsets have
become a major and prolific model in data-mining that has served many different
applications and has been generalized to many different classes of patterns, like
sequences, trees, or connected graphs (see for instance the Gaston algorithm [2]
later used in Sect. 4.2). However searching frequent patterns is not an ultimate
objective. Frequent patterns (of any type, even graphs) are generally considered
as the result of an intermediate processing step, usually followed either by the
extraction of frequent association rules, or by the extraction of a set of patterns
of interest wrt some application specific criteria. In any case, resulting rules or
patterns are usually sorted in decreasing order of some score so that only the
head of the sorted list, whose members are sometimes called top-k patterns (like
area-scored top-k patterns [3] later referred in Sect. 2.1), is considered.

For association rules, many scores are available like confidence or lift. For
frequent patterns, scoring often serves supervised classification problems. Scores
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like p-value or information gain are then used to assess the discriminative power
of patterns relatively to two sets of positive and negative examples. Whereas a
direct scoring of patterns may make sense in the framework of machine learn-
ing problems, practical relevance of pattern scoring might be discussed in the
framework of knowledge discovery, where selected rules or patterns are directly
analyzed by experts. In that case two problems occur when providing experts
lists of patterns sorted by decreasing order of score.

First finding a good qualitative scoring function is not an easy task in the
context of knowledge discovery as scoring must predict interest of experts for
patterns. This interest is typically the amount of novel information a pattern
brings to experts relatively to their current state of knowledge but this informa-
tion is obviously hardly assessable. Frequency is an example of a “bad” qualita-
tive scoring function. Because of the anti-monotonic property of frequency, most
frequent patterns tend to be the smallest and thus the least informative as well.
An extreme example is the empty itemset that carries no information but has
the largest possible frequency. However a good scoring function must somehow
integrate frequency as the latter reflects likelihood of patterns, from highly im-
probable to very common. In many applications, the interest of a pattern thus
balances between its frequency and the amount of information contained in its
structure. Such a balance refers to the notion of data representativeness. The
Minimal Description Length principle (MDL) provides a theoretical foundation
to assess representativeness. This principle states the better a model helps to
encode data with a reversible compression scheme, the more this model is rep-
resentative of data. This principle has already been used to identify patterns
representative of data. Data compression then consists in replacing every occur-
rence of these representative patterns by new attributes in datasets of attributes
[4] or new vertices in datasets of graphs [5]. However MDL-based patterns are
limited somehow as they do not take easily into account what experts know and
want to know. A better solution is to provide a flexible model that accepts a
large family of scoring functions tunable to experts’ needs.

The second problem is information redundancy among extracted patterns:
Since usual scoring functions are continuous, similar patterns are likely to have
similar scores. Consequently top-k patterns gets saturated by patterns similar to
the pattern of highest score, especially when patterns like graphs exhibit a high
combinatorial power. In practice experts experience difficulties to distinguish
patterns providing them new elements of information as they are flooded with
redundant copies of already analyzed patterns. One way of reducing the number
of useless frequent patterns to consider might consist in introducing additional
constraints that patterns have to meet [6]. A common example of pattern con-
straints is provided by closed patterns: a pattern P is closed if the frequency
of every pattern containing P is strictly smaller than the frequency of P . How-
ever, although constraints might reduce the number of patterns, they remain
insensitive to pattern redundancy.

In this paper we propose to solve both previous problems by a pattern selec-
tion process that outputs a family of patterns we have called Most Informative
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Patterns or MIPs. Intuitively MIPs are defined as local maxima of a scoring
function. This function is only required to satisfy few conditions in order to as-
sess pattern representativeness. The objective of MIP model is that every MIP
reveals one independent element of interest for experts. In practice MIPs appear
in limited number and are not structurally redundant compared to other pattern
families so that experts can directly analyse them. The idea underlying the MIP
model was initially motivated by a selective extraction of patterns from chem-
ical reaction databases [7]. Contributions of this article are the generalization
of this idea into a broad and formal model, the derivation of properties from
the model, and the introduction, comparison, and application of two methods to
extract frequent MIPs from itemset and graph datasets. To this end, the MIP
model and its properties are introduced in Sect. 2, the MIP extraction methods
in Sect. 3, and experiments in Sect. 4.

2 Introduction of Most Informative Patterns

2.1 An Example

In order to illustrate the redundancy problem, let consider the simple example
of a dataset containing seven objects described by four attributes from a to d
and whose descriptions are respectively a, b, ab, cd, abc, abd, and abcd. Let as-
sume experts decide to score itemsets with the product of their length and their
frequency (a MDL-related score sometimes called area function [3]). Figure 1
displays resulting frequency and score of every pattern inside the order diagram
of itemsets ordered by subset inclusion. The list of itemsets sorted in decreasing
order of score is: ab (score of 8); abc and abd (6); a and b (5); abcd, ac, bc, ad,
bd, and cd (4); acd, bcd, c, and d (3); ∅ (0). When picking patterns from this
list in that order, experts might ignore abc, abd, a, and b as these patterns are
structurally similar to ab but with a lower score. For the same reason of redun-
dancy, experts might ignore abcd, ac, bc not as interesting as abc, then ad and

Fig. 1. Diagram order of itemsets. Every itemset is labeled with (s = f × l) where s,
f and l are resp. its score, frequency and length. Closed patterns are underlined.



208 F. Pennerath and A. Napoli

bd not as good as abd. However experts might consider next pattern cd that has
a higher score than those of all similar patterns acd, bcd, c or d. Finally all re-
maining patterns are ignored as they are similar to patterns with better scores.
The fact that cd is retained whereas its score is lower than those of many ignored
patterns illustrates that scoring by itself is a limited approach. Introducing con-
straints may focus the analysis on a limited number of patterns of a particular
type but does not remove pattern redundancy and may discard interesting pat-
terns as well. For instance considering only closed patterns (underlined on Fig.
1) keeps redundant patterns like a, b, ab, abc, abd, abcd, whereas keeping only
patterns containing item a removes the interesting pattern cd. MIPs formalize
the screening process described on the previous example.

2.2 MIP Definition

Formally let consider a set P of patterns, ordered by a partial ordering relation
≤P . A dataset D of objects is then described by a function d : D → P mapping
every object o ∈ D to its description d(o) ∈ P . A pattern P ∈ P is said to
describe an object o if P ≤P d(o). The support or frequency of a pattern M
is then the number σ(P ) of objects of D described by P whereas the relative
frequency σr(P ) is the fraction of σ(P ) over the size |D| of the dataset. Support
and relative frequency are non-increasing functions in the pattern order (P ,≤P):
the smaller a pattern is, the more objects it describes. In addition, the pattern
order is assumed to contain a smallest pattern, called the empty pattern and
denoted ∅P . One of the simplest examples of pattern order is the power set
P = P(A) of a set A of attributes ordered by the subset inclusion relation
≤P=⊆, the empty pattern being the empty set. Another example of pattern
order is the set of non-isomorphic connected graphs whose vertices and edges
are tagged by labels taken from an arbitrary set L. The ordering relation is then
the isomorphic subgraph relation and the empty pattern is the empty graph.

As mentioned previously, the model of most informative patterns integrates
a scoring function to assess the interest or relevance of a pattern. However only
some functions are of interest to score patterns representative of data. The family
of those so-called informative scoring functions is defined as follows.

Definition 1. Given a dataset D described by patterns from order (P ,≤P), a
scoring function is a function s : P × [0; 1] → S mapping a pattern P of relative
frequency σr(P ) in D to a score s(P, σr(P )) whose value is taken from a set S
ordered by a partial ordering relation ≤S. A scoring function s is said informative
if following statements hold for s:

1. For every non-empty pattern P , partial function sP : f "→ s(P, f) is a strictly
increasing function of f ∈ [0; 1]:

∀P ∈ P \ {∅P}, ∀(f1, f2) ∈ [0; 1]2, f1 < f2 ⇒ sP (f1) <S sP (f2)

2. For every non-null real number f ∈]0; 1], partial function sf : P "→ s(P, f)
is a strictly increasing function of P ∈ P:

∀f ∈]0; 1], ∀(P1, P2) ∈ P2, P1 <P P2 ⇒ sf (P1) <S sf (P2)
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3. A pattern of zero frequency can never get a higher score than a pattern of
non-zero frequency:

∀(P1, P2) ∈ P2, �f > 0, s(P1, f) <S s(P2, 0)

The already used area function sa : (P, f) "→ |P | · f is an example meeting all
requirements of an informative function. This function may be interpreted wrt
the MDL principle as an estimation of the amount of compressed space when
replacing every occurrence of P by a new special symbol (attribute or vertex)
[5]. In section 4, we propose to extend this area function by weighting attributes
of an itemset or vertex/edge labels of a graph pattern with variable gains of
information. The definition of the resulting scoring function is given for graphs
(itemsets being equivalent to a graph whose isolated vertices have attributes as
labels):

Definition 2. The information function si is defined as:

si : (g, σr) "→ I(g) · σr

where the factor I(g) of information related to graph pattern g is the sum of
information carried by every vertex v ∈ V (g) of label lv(v) and every edge e ∈
E(g) of label le(e):

I(g) =
∑

v∈V (g)

i(lv(v)) +
∑

e∈E(g)

i(le(e))

Quantity of information associated to a vertex or edge label is in turn:

i(l) = − log2

⎛⎝ n(l)∑
l′∈L

n(l′)

⎞⎠
where n(l) is the number of vertices or edges in D carrying label l.

However many other informative functions can be considered here. In particular
experts can complement or replace the previous factor I(g) by other terms that
grow with the pattern: number of vertices, edges and cycles of a given type, num-
ber of subgraphs isomorphic to some specific patterns, maximal degree, maximal
length of paths or cycles.

Now the definition of MIPs formalizes the selection process described in the
introductory example:

Definition 3. Given a pattern order (P ,≤P), a dataset D described by the pre-
vious set of patterns and an informative scoring function s defined on top of D
and of scoring order (S,≤S),

– A pattern P ′ is a neighbour of pattern P if P ′ is an immediate predecessor
or successor of P wrt pattern order (P ,≤P), i.e. P and P ′ are comparable
and no other pattern exists between P and P ′.



210 F. Pennerath and A. Napoli

– A pattern P ′ ∈ P dominates pattern P ∈ P if P ′ is a neighbour of P in
(P ,≤P) and scores of P and P ′ are comparable and verify s(P ′, σr(P ′)) >S
s(P, σr(P )).

– A pattern P is a MIP if frequency σr(P ) of P is not null and if no pattern
dominates P .

Figure 2 represents diagram of Fig. 1 whose edges have been oriented according
to the dominance relation: an arc drawn from m1 to m2 means m1 dominates
m2 (rel. to sa). Itemset abc is thus dominated by ab and dominates ac, bc, and

Fig. 2. Dominance relation between patterns from example of Fig.1. MIPs are bold.

abcd. Most informative patterns, in bold, are those pointed by no arc: they are as
expected ab of score 8 and cd of score 4. The extraction of frequent MIPs consists
in finding in dataset D scores and frequencies of all MIPs whose frequency is not
less than some threshold σmin. It is noticeable that a frequent pattern P may
not be dominated by any immediate predecessor and any frequent immediate
successor while being dominated by a non-frequent immediate successor. For
instance, patterns c and d of Fig. 1 are frequent for σmin = 3, but are not MIPs
as they are dominated by the non-frequent pattern cd. Now some properties can
be inferred from definitions of informative scoring functions and MIPs.

2.3 Properties

Let first assume the considered pattern order verifies the so-called “finiteness
hypothesis”: for every finite and non-empty dataset, the number of patterns of
non-null frequency is finite and non-null. This is true for standard pattern orders
like the sets of finite itemsets or finite graphs. This hypothesis allows to prove
the following property:

Property 1. The subset of most informative patterns of a finite non-empty
dataset is not empty.
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Proof. This can be proved by contradiction. If every pattern is dominated by
at least one pattern, it is possible to build recursively a sequence of patterns
(Pi)i≥1 from a pattern P1 of positive frequency, such that for every index i ≥ 1,
Pi+1 dominates Pi. Thanks to the third statement of def. 1, all those patterns
have a positive frequency and thus, according to the finiteness hypothesis, build
a subset of a finite set of patterns. Sequence (Pi) is thus finite and contains a
cycle, contradicting the fact (s(Pi))i≥1 is a strictly increasing sequence of scores.

However the extraction of frequent MIPs may produce no patterns if the thresh-
old σmin is too high. Another important property is related to closed patterns:

Property 2. Every most informative pattern is a closed pattern.

Proof. Let P ′ be a MIP relative to an informative scoring function s. If P ′ is not
closed, there exists an immediate successor P ′′ of P ′ such that σr(P ′′) = σr(P ′).
Since f = σr(P ′) 
= 0, the second statement of def. 1 applies so that function
sf : P "→ s(P, f) is strictly increasing. Since P ′ <P P ′′, sf (P ′) <S sf (P ′′),
and thus s(P ′) <S sf (P ′′). Because σr(P ′′) = σr(P ′), sf(P ′′) = s(P ′′) and
s(P ′) <S s(P ′′). Domination of P ′′ over P ′ would contradict the hypothesis P ′

is a MIP.

On the example of Fig. 2, MIPs abc and cd appear to be closed. Conversely
closed patterns can be seen as a particular case of MIPs:

Property 3. Closed patterns are the most informative patterns relative to the
informative scoring function equal to the identity Id : (P, f) "→ (P, f) and the
scoring order equal to the product order (P ,≤P)× ([0; 1],≤)1.

Proof. Given a MIP P , let assume P is not closed. At least one immediate suc-
cessor P ′ would have the same frequency as P and since by definition P <P P ′,
P ′ would dominate P according to the definition of product order, contradict-
ing the initial hypothesis. Conversely a closed pattern has a higher frequency
than every immediate successor and is larger (rel. to <P) than every immediate
predecessor, so that it cannot be dominated and thus is a MIP.

Both properties 2 and 3 prove together that closed patterns build the least
restrictive family of most informative patterns (and thus the largest as well)
among every possible choice of informative scoring functions.

3 Extraction of Frequent Most Informative Patterns

We propose two distinct approaches to extract frequent MIPs. The first one is a
one-step extraction of MIPs from datasets, while the second is a two-step process
that screens frequent MIPs from frequent patterns.
1 The product order (E1 ×E2,≤12) of two orders (E1,≤1) and (E2,≤2) is defined by

(x1, x2) ≤12 (y1, y2) iff x1 ≤1 y1 and x2 ≤2 y2.
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3.1 Direct Extraction Method

As seen in the previous section, every arc P1 → P2 of the diagram order of
(P ,≤P) connects a pattern P1 to an immediate successor P2 of P1. Since every
arc defines a possible relation of dominance, an algorithm extracting frequent
MIPs must potentially look at every arc whose origin P1 is frequent. Conse-
quently the direct extraction method explores the pattern order in a DFS man-
ner and when crossing an arc P1 → P2, compares scores of P1 and P2 and if these
scores are comparable and different, withdraw one of the two patterns from the
set of valid MIP candidates. In order to remember which patterns are still valid
candidates, it is required to maintain a mip flag for every frequent pattern, ini-
tialized to true. To this end, a pattern dictionary T is used to map a pattern P
to an entry T (P ) containing the mip flag along with frequency and score of P .
This dictionary uses a trie structure for storing canonical encoding of patterns.
In case of itemsets, this encoding is simply the list of attributes sorted in some
arbitrary order. In case of labeled connected graphs, encoding first assumes to
compute a canonical ordering of vertices of this graph thanks to some state-of-
the-art algorithm like Nauty [8], and then encodes the resulting canonical graph
as a sequence of symbols for accessing the trie. The DFS exploration is performed
thanks to a recursive function detailed on Fig. 3. This function develop takes
a current pattern P and its entry e in T as arguments. Line 1 then computes
in one single pass over D, frequencies of the set S of all immediate successors
of P occurring in D (i.e. of non-null frequency). This operation can be done
efficiently by storing in memory all embeddings of the current pattern in dataset

Function develop(pattern P , entry e)

Data: Dataset D, threshold σmin, scoring function s and order (S,≤S)
Result: List of frequent MIPs with their scores and frequencies

Extract set S = {(P ′, σr(P ′))} of all imm. succ. P ′ of P occur. in D ;1

foreach (P ′, σ′
r) ∈ S do

if σ′
r ≥ σmin then
Search for entry e′ mapped to P ′ in T ;
if e′ does not exist then

Create entry e′ such that e′.score← s(P ′, σ′
r), e′.freq ← σ′

r, and
e′.mpi← true and map P ′ to e′ in T ;
Call develop (P ′, e′)2

if e.score <S e′.score then3
e.mpi← false

else if e.score >S e′.score then4
e′.mpi← false

else if e.score <S s(P ′, σ′
r) then5

e.mpi← false

Fig. 3. Recursive procedure for a direct extraction of frequent MIPs
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(using data structures like tid-lists [9] for itemsets or occurrence lists [10] for
connected graphs). Then line 2 calls recursively the function in order to further
develop every frequent immediate successor P ′ of P that has not been explored
yet (i.e. that has not already been inserted in T ). In any case, scores of P and
P ′ are compared (lines 3, 4, and 5) to discard dominated patterns from the set
of MIP candidates. At the end of recursion started with the empty pattern as
argument, the algorithm outputs frequent MIPs as patterns contained in T with
a true flag, along with their scores and frequencies.

3.2 Frequent Pattern Screening Method

Another solution is to screen frequent MIPs from frequent patterns produced by
an existing frequent pattern mining algorithm. This screening processes frequent
patterns level by level as a level-wise algorithm like Apriori [1]: level of order
n is the set of frequent patterns with the same length equal to n (i.e. number of
attributes for itemsets and number of edges for graphs). More exactly the algo-
rithm compares the score of every frequent pattern of level n with scores of their
immediate predecessors of level n− 1 for every non-empty level n. Comparison
of scores allows to rule out i) MIP candidates of level n that are dominated by
at least one immediate predecessor and ii) MIP candidates of level n − 1 that
are dominated by at least one frequent immediate successor. This processus is
called the primary screening as it does not exactly produce the set of frequent
MIPs but only the superset of frequent MIP candidates that are not dominated
by any of their immediate predecessors and frequent successors. A secondary
screening is required to rule out MIP candidates that are dominated by at least
one non-frequent immediate successor. The method is summarized on Fig. 4. It
takes as input the set F of frequent patterns wrt threshold σmin and returns the
list I of frequent MIPs. The idea is that lists L−1, L′

−1, L
′′
−1, and L′

0 contain
successive copies of level l − 1 (for the three first lists) and of level l (for L′

0),
where each pattern is tagged by its mip flag, score and frequency. The mip tag

Data: Dataset D, threshold σmin, scoring function s, order (S,≤S), and list F
of frequent patterns with their frequencies

Result: List I of frequent MIPs with scores and frequencies

Partition F into levels (Fl)0≤l≤k of the same length l ; Load F0 into list L−1 ;
for l from 1 to k + 1 do

(Clear lists L′
−1, L′

0, and L′′
−1) ;

if l ≤ k then
Primary screening between L−1 (lev. l − 1) and Fl (lev. l) producing
resp. MIP candidates in lists L′

−1 (lev. l − 1) and L′
0 (lev. l) ;

Rename L′
0 in L−1

Secondary screening of L′
−1 producing MIPs in list L′′

−1 ;
Append L′′

−1 to I
Fig. 4. Algorithm computing frequent MIPs by screening frequent patterns
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initialized to true, may get false during primary filtering at iteration l (from
Fl to L′

0), during primary filtering at iter. l + 1 (from L′
0 = L−1 to L′

−1) or
finally during secondary filtering at iter. l + 1 (from L′

−1 to L′′
−1). At that stage

members of L′′
−1 are necessarily MIPs and are added to I.

Primary filtering consists i) first in loading L−1 into a pattern dictionary T
identical to the one used by the first algorithm (i.e. a pattern is mapped to its
mip flag, score and frequency) ii) then for every pattern P of Fl in computing
every immediate predecessor P ′ of P and retrieving the entry of P ′ from T
(that necessarily exists as P ′ is necessarily frequent) iii) in comparing scores
and updating accordingly mip flags of P and P ′. In case of itemsets, computing
immediate predecessors of P consists in withdrawing any attribute of P but in
case of connected graphs, this requires not only to withdraw any edge of P but
also to ensure the resulting graph is still connected. In other words, only edges
that are not bridges may be withdrawn. Bridge edges can be identified thanks
to a DFS algorithm [11] of complexity linear in the number of edges of P .

Finally secondary filtering consists given any MIP candidate P (i.e. any pat-
tern of L′

−1 with a true mip flag), in computing in one pass over the dataset D
the frequencies of all immediate successors of P occurring at least once in D.
Scores of these successors are then computed one by one until one of these scores
is larger than score of P , otherwise P is output as a MIP.

4 Experiments

Experiments aim at answering two issues. The first is the comparison of algo-
rithm performances on reference itemset datasets, while the second is a practical
and qualitative assessment of MIP relevance on a reference graph dataset.

4.1 Performance Comparison

Both algorithms can be proved to be sound and complete so that they can be
distinguished only by their performance and scalability. A theoretical comparison
of algorithm complexity does not allow to draw conclusions as theoretical bounds
mostly rely on non-assessable measures specific to datasets (like distribution
of frequent patterns over levels, number of MIP candidates that have to be
processed by the secondary filtering. . . ). For this reason, this section proposes
an experimental comparison of both algorithms. In order to ease comparison,
tests have been performed on reference itemset datasets. Compared to other
more complex pattern families like graphs, itemsets have the advantage to be
simple to process so that the risk is reduced to bias performance measurement
by differences of implementation quality.

For a fair comparison, time spent for searching frequent itemset has been in-
cluded in the processing time of the screening process. To this end, a version2 of

2 The used implementation has been written by Bart Goethals and can be downloaded
from http://www.adrem.ua.ac.be/g̃oethals/software/
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Dataset Mushroom Vote Retail Chess

Object number 8124 435 88162 3196
Attribute number 119 17 16470 75
Rel./abs. threshold σmin 4 % / 325 0.2 % / 1 0.01 % / 9 40 % / 1279
Total time for direct extraction (s) 901 1.5 576 6810
Total time for screening MIPs (s) 747 6.8 86 1304
includ. time used by FP-Growth (s) 34 0.5 21 84
N. of frequent patterns 3.957.084 44,073 322,924 6,472,981
N. of freq. closed patterns 15.463 6478 229,303 1,366,834
N. of freq. MIPs 21 7 1045 2

Fig. 5. Test results for various datasets using the area function sa
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Fig. 6. Details of the test results on log-log scales. Figures (c) and (d) focus on the
Mushroom dataset.
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FP-growth [12] has been used as one of the most efficient itemset mining algo-
rithms. Tests have been run on a standard laptop (single thread on Intel Core
2, 1.8 GHz) on four datasets contrasting with each other by their size, density
and purpose. All datasets are from the UCI repository, except Retail that is
provided by Tom Brijs [13]. Table of Fig. 5 compares processing times of both
algorithms and summarizes numbers of patterns when using the area function
sa. The table shows frequent MIPs are very few compared to frequent patterns
(ratio from 2 to 5 decades) and closed frequent patterns (2 to 3 decades) even for
sparse datasets like Mushroom. In case of Chess, almost no MIPs are found
as the dataset describes uncorrelated objects (i.e. winning or loosing chessboard
configurations) that do not share enough common patterns to make some MIPs
emerge. In comparison, datasets Mushroom, Vote or Retail describe set of
objects (resp. mushrooms, senators and customers) that are likely to build fami-
lies sharing common attributes and thus to provide MIPs. Concerning efficiency,
the screening process appears always faster than the direct extraction, expect
for small datasets like Vote. In the latter case, the larger time overhead of the
screening process makes it slower for short processing time (i.e. for small datasets
or large σmin). This overhead can been observed on Fig. 6(a). The figure displays
the evolution of processing times wrt threshold σmin. It shows the screening pro-
cess is always faster than the direct extraction algorithm for low values of σmin,
even if the performance ratio is rather small. Figure 6(b) shows the screening
process requires less memory as this process only requires to store one level of
frequent patterns at a time, while the direct extraction requires to store all fre-
quent patterns. However the ratio is less than a decade, as the screening process
stores levels of frequent patterns by wasting many unused intermediate nodes
in the trie structure, whereas the direct extraction uses every node of the trie
to store a frequent pattern. Distribution of processing time between steps of
the screening process is detailed on Fig. 6(c). For small values of σmin, most of
the time appears to be spent on primary screening. It is interesting to observe
on Fig. 6(d) that the number of MIP candidates does not necessarily increase
when threshold σmin decreases, as other pattern families do. The reason is that
a MIP candidate dominated by a non-frequent successor P gets discarded by the
primary screening as soon as σmin gets less than σr(P ).

4.2 MIP Relevance

MIPs have been used by authors to extract most informative reaction patterns
from chemical reaction databases [7]. Those families of chemical reactions have
shown to be characteristic of independent large families of reactions. However
chemical reaction processing requires to describe too many details so that we
propose a somewhat simpler application that consists in extracting MIPs from
1408 molecular graphs contained in NCI DTP AIDS antiviral active and mod-
erately active datasets (cf dtp.nci.nih.gov/docs/aids/aids data.html) without
taking into account negative examples (i.e. the inactive dataset). MIPs are ex-
tracted in two-steps, first by mining frequent subgraphs by Gaston [2], one of
the most efficient algorithms to perform this task, and then by applying the
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Lmips Lfcps Lfps Score Freq.
rank rank rank si(P ) σ(P ) Comment

1 1 1 76.4 888 Phenyl group
2 217 237 32.3 298 Sulfonyl + phenyl groups
3 224 244 31.8 401 First fragment of carbon skeleton
7 314 365 28 101 Signif. fragm. of AIDS active mol.

15 632 1344 24.2 106 Other significant fragment
53 1615 6765 22.3 116 Azo benzene group
74 2681 11528 21.7 216 Polycyclic aromatic hydrocarbon
80 3775 15046 21.4 107 Double aromatic amine
82 3837 15778 21.3 161 Sulfonic acid + phenyl groups
95 11799 38918 20.1 174 Diol group

111 37083 123812 17.5 249 Ether group
142 45806 211961 13.2 786 Carbonyl group
145 45950 213207 13.1 167 Phenyl + amide groups
152 47109 221915 12.1 270 Amide group
169 50985 237114 8.72 271 Alkene group
176 53288 241210 3.53 107 Sulfide group
177 53329 241261 2.2 211 Imine group
178 53333 241269 1.34 116 Sodium
179 53334 241270 1.27 117 Ammonium group

Fig. 7. The 19 frequent interesting MIPs and their ranks in Lmips, Lfcps, and Lfps

(a) 1st MIP (b) 2nd MIP (c) 7th MIP (d) 53rd MIP (e) 152nd MIP

Fig. 8. Some of the 19 frequent interesting MIPs

screening process to frequent subgraphs wrt to function si. For a threshold
σmin = 100 (7 %), the number of frequent patterns, frequent closed and MIPs are
respectively 262728, 53335, and 179. Test has then consisted in reproducing the
same visual analysis for the three pattern families. To this end, the three set of
frequent patterns, frequent closed patterns and frequent MIPs have been sorted
in decreasing order of scores in three lists Lfps, Lfcps and Lmips. For each list,
the 179 first patterns (i.e. Lmips length) have been visually analyzed: a pattern
has been considered as interesting only if it brings some new obvious pieces of
chemical information (mostly defined in term of functional groups and cycle con-
figurations) compared to previous patterns of higher scores. Whereas 19 MIPs
have been identified as interesting in Lmips, all patterns from rank 2 to 179 in
Lfcps and Lfps appear to be structural variations of the pattern of rank 1 (that
is also the 1st MIP). This pattern is the phenyl ring shown on Fig. 8(a) that
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is common in molecules and is unrelated with the AIDS antiviral application.
This shows how much frequent and even closed patterns are structurally redun-
dant and not adapted to experts’ visual analysis. In comparison the 179 MIPs
provide 19 non-redundant interesting patterns described on Fig. 7. The increas-
ing gap between the ranks of successive MIPs in Lfcps or Lfps gives an idea of the
number of redudant patterns in those lists. Conversely a further analysis shows
that each of the 1000 first closed patterns appears similar to one of the inter-
esting MIPs. In other words, no important information appears to be lost when
considering only the 19 MIPs. Some of these 19 interesting MIPs are represented
on Fig. 8. The 7th MIP (cf Fig. 8(c)) is particularly interesting as it includes
very specific chemical information but still appears in 71 active molecules and 30
moderately active molecules. Other MIPs appear to have various size, frequen-
cies, and types of atoms or bonds. In particular some MIPs appear to represent
well-known functional groups, e.g. amide group on Fig. 8(e).

5 Related Work

Since the advent of frequent itemsets and the Apriori algorithm [1], many meth-
ods have been proposed to reduce the number of frequent patterns to a restricted
subset. Their approaches vary depending on applications these methods serve,
like data compression, data summarization, or supervised classification, patterns
being then used as classification features. The oldest works have proposed con-
densed representations like closed [14] or free [15] patterns in order to reduce
number of patterns. These approaches consist in replacing the set of frequent
patterns along with their frequencies into an equivalent and reduced subset of
patterns. Since then, this approach has been generalized to other functions than
frequency [16]. However in many practical applications, the compression gain
appears insufficient to allow a direct interpretation of condensed representations
by experts, especially when datasets are dense. As their direct analysis is impos-
sible, methods have proposed to summarize set of frequent patterns by clustering
frequent itemsets [17] or even graphs [18]. Other approaches have recently pro-
posed to link pattern mining to constraint programming so that user-defined
constraints can easily be injected into the mining process [6]. Whereas experts
may this way focus on patterns with specific structures, pattern constraints are
generally insensitive to pattern redundancy.

Recent works have been proposed to address specifically the problem of re-
ducing pattern redundancy [4,19,20,21]. Most of these approaches aim at find
a reduced set of patterns that covers (i.e. subsumes) the whole dataset: for in-
stance Siebes et al. [4] use the MDL principle to encode transactions as unions of
itemsets, whereas Bringmann et al. [21] find a basis of patterns, possibly graphs,
whose the various combinations (as conjunctions of patterns) may match every
transaction, one by one. Similarly Hasan et al. [20] proposes to extract from a
graph dataset a basis of orthogonal (i.e. non-redundant) graph patterns with
a large covering of data. In order to achieve coverage of transactions, all those
methods produce patterns that are not defined on an individual basis but all
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together as a set of interdependent patterns. This set is generally defined as an
optimum relative to some global scoring function. Optimizing such a global cri-
terion requires a large amount of processing as the search space (i.e. the power
set of the set of patterns!) is huge. For this reason, a greedy heuristic algorithm
is generally used to select the next best pattern to add to the set under con-
struction. In comparison, the MIP model contrasts on several points: first the
purpose of MIPs is not covering all transactions but finding significant patterns
relatively to user expectation (through a scoring function). Second the MIP
model addresses the redundancy problem with considerations purely based on
pattern space, not on transaction coverage. Third MIPs are defined on an in-
dividual basis, and for this reason, a complete extraction without heuristics is
possible for reasonable frequency thresholds.

6 Conclusion

MIPs provide experts a very reduced set of patterns that are representative of a
dataset and are not redundant compared to other families of patterns like closed
patterns. In addition the model accepts a large choice of scoring functions in
order to reflect representativeness wrt to expert knowledge. The method con-
sisting in screening frequent MIPs from frequent patterns appears more efficient
and more scalable than a direct extraction even if the gain varies from significant
to slight levels, depending on datasets. The model has been tested on datasets
made of itemsets but also of molecular graphs, and chemical reactions. In the
two latter cases, MIPs have shown to provide significant patterns (i.e. molecule
fragments or reaction patterns) characteristic of distinct families of objects (i.e.
families of molecules or chemical reactions). However some MIPs still appear re-
dundant for low level of scores because of noisy variations in the scoring function.
Therefore we plan as a perspective, to screen more severely patterns according
to their score in order to remove these artefacts.
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Abstract. We introduce three discriminative parameter learning algo-
rithms for Bayesian network classifiers based on optimizing either the
conditional likelihood (CL) or a lower-bound surrogate of the CL. One
training procedure is based on the extended Baum-Welch (EBW) algo-
rithm. Similarly, the remaining two approaches iteratively optimize the
parameters (initialized to ML) with a 2-step algorithm. In the first step,
either the class posterior probabilities or class assignments are deter-
mined based on current parameter estimates. Based on these posteriors
(class assignment, respectively), the parameters are updated in the sec-
ond step. We show that one of these algorithms is strongly related to
EBW. Additionally, we compare all algorithms to conjugate gradient
conditional likelihood (CGCL) parameter optimization [1].

We present classification results for frame- and segment-based pho-
netic classification and handwritten digit recognition. Discriminative pa-
rameter learning shows a significant improvement over generative ML
estimation for naive Bayes (NB) and tree augmented naive Bayes (TAN)
structures on all data sets. In general, the performance improvement of
discriminative parameter learning is large for simple Bayesian network
structures which are not optimized for classification.

1 Introduction

There are two avenues for learning statistical classifiers: Generative and discrim-
inative approaches [2,3,4]. In generative classifiers we learn a model of the joint
probability of the features and the corresponding class label and perform predic-
tions by using Bayes rule to determine the class posterior probability. ML esti-
mation is usually used to learn a generative classifier. Discriminative approaches
model the class posterior probability directly. Hence, the class conditional prob-
ability is optimized when we learn the classifier which is most important for
classification accuracy. There are several reasons for using discriminative rather
than generative classifiers, one of which is that the classification problem should
be solved most simply and directly, and never via a more general problem such as
the intermediate step of estimating the joint distribution [5]. However, there are
also a number of reasons why in certain contexts a generative model is preferred
including: parameter tying and domain knowledge-based hierarchical decompo-
sition is facilitated; it is easy to work with structured data; and it is easy to
work with missing features by marginalizing over the unknown variables.

W. Buntine et al. (Eds.): ECML PKDD 2009, Part II, LNAI 5782, pp. 221–237, 2009.
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The expectation-maximization (EM) algorithm is commonly used for gener-
atively learning hidden variable models, e.g. Gaussian mixtures. It optimizes a
globally valid lower bound of the likelihood function [6] which therefore guaran-
tees an increase of the likelihood itself. The straightforward application of the
EM algorithm to optimize the CL is not possible since we have to optimize a
rational function and the constructed lower bounds are only locally valid, i.e. for
current parameter estimates [7]. Due to this fact, convergence is not stringent.
In [4] and [7] a global lower bound for EM-like CL optimization algorithms has
been proposed.

A sufficient (but not necessary) condition for optimal classification is for the
conditional likelihood (CL) to be optimized. Unfortunately, the CL function for
Bayesian networks does not decompose and there is no closed-form solution for
determining its parameters. In current approaches, the structure and/or the pa-
rameters are learned in a discriminative manner by maximizing CL1. Greiner
et al. [1] express general Bayesian networks as standard logistic regression –
they optimize parameters with respect to the conditional likelihood using a con-
jugate gradient method. Similarly, Roos et al. [8] provide conditions for general
Bayesian networks under which the correspondence to logistic regression holds.
An empirical and theoretical comparison of discriminative and generative clas-
sifiers (logistic regression and the NB classifier) is given in [9]. It is shown that
for small sample sizes the generative NB classifier can outperform the discrimi-
natively trained model. An experimental comparison of discriminative and gen-
erative parameter training on both discriminatively and generatively structured
Bayesian network classifiers has been performed in [10].

The CL function is closely related to the maximum mutual information (MMI)
criterion which is popular in the speech community [2,11]. It was proposed for
hidden Markov models (HMM) [2] and attempts to maximize the posterior prob-
ability of the transcriptions given the utterances. In this context, the extended
Baum-Welch (EBW) algorithm [12,13] has been introduced to discriminatively
optimize HMMs. In [14], it has been applied to optimize Gaussian mixture
models.

In this paper, we present three discriminative EM-like parameter learning
methods for Bayesian network classifiers and compare them to conjugate gra-
dient CL optimization [1]. As first method, we introduce EBW for Bayesian
networks. The two remaining approaches are based on optimizing either the CL
or a lower-bound surrogate of it. The algorithms are abbreviated as ECL (ex-
act CL decomposition) and ACL (approximate CL decomposition), respectively.
Our ACL algorithm has been formulated for HMMs in [11]. In fact, we can show
that ECL with Laplace smoothing is closely related to EBW. Both algorithms
(i.e. ECL and ACL) iteratively optimize the parameters (initialized to ML) with
a 2-step algorithm similar as in [11]. In the first step, the class posterior prob-
abilities for ECL (class assignments for ACL, respectively) are calculated based

1 By “discriminative structure learning”, we mean that the aim of optimization is to
maximize a cost function that is suitable for reducing classification errors, such as
conditional likelihood or classification rate.
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on current parameter estimates. Based on these posteriors (class assignments,
respectively), the parameters are updated in the second step. Additionally, we
have to introduce mechanisms to avoid negative values for probabilities. However,
both algorithms do not show a monotone improvement of the objective function
as we have for the conjugate gradient approach [1] and the EBW method. Never-
theless, we obtain excellent results at low computational costs for two phonetic
classification tasks using the TIMIT speech corpus [15] and for handwritten
digit recognition using the MNIST and USPS data sets. Discriminative para-
meter learning significantly outperforms ML parameter estimation for NB and
TAN structures. In general, the performance improvement is larger for simple
structures which are not optimized for classification, i.e. for structures which are
not optimized with respect to the CL or the classification rate (CR) [1].

The paper is organized as follows: In Section 2, we introduce our notation and
briefly review Bayesian networks, ML parameter learning, NB, TAN, and 2-tree
structures. In Section 3, we introduce all discriminative parameter learning algo-
rithms, i.e. ECL, ACL, EBW, and CGCL. In Section 4, we present experimental
results. Section 5 concludes the paper.

2 Bayesian Network Classifiers

A Bayesian network [16] B = 〈G, Θ〉 is a directed acyclic graph G = (Z,E)
consisting of a set of nodes Z and a set of directed edges connecting the nodes.
This graph represents factorization properties of the distribution of a set of
random variables Z = {Z1, . . . , ZN+1}. Each variable in Z has values denoted
by lower case letters {z1, . . . , zN+1}. We use boldface capital letters, e.g. Z, to
denote a set of random variables and correspondingly boldface lower case letters
denote a set of instantiations (values). Without loss of generality, in Bayesian
network classifiers the random variable Z1 represents the class variable C ∈
{1, . . . , |C|}, |C| is the cardinality of C or equivalently the number of classes,
X1:N = {X1, . . . , XN} = {Z2, . . . , ZN+1} denote the set of random variables of
the N attributes of the classifier. In a Bayesian network each node is independent
of its non-descendants given its parents [16]. Conditional independence reduces
computation for exact inference on such a graph. The set of parameters which
quantify the network are represented by Θ. Each node Zj is represented as a local
conditional probability distribution given its parents ZΠj . We use θj

i|h to denote
a specific conditional probability table entry (assuming discrete variables), the
probability that variable Zj takes on its ith value assignment given that its
parents ZΠj take their hth (lexicographically ordered) assignment. That is, θj

i|h =

PΘ

(
zj = i|zΠj = h

)
=

∏|Zj |
i=1

∏
h

(
θj

i|h

)uj
i|h

, where

uj
i|h =

{
1, if zj = i and zΠj = h
0, otherwise . (1)

Hence, h contains the parent configuration assuming that the first element of h,
i.e. h1, relates to the conditioning class and the remaining elements h\h1 denote
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the conditioning on parent attribute values. The training data consists of M inde-
pendent and identically distributed samples S = {zm}M

m=1 = {(cm,xm
1:N )}M

m=1.
The joint probability distribution of the network is determined by the local con-
ditional probability distributions as

PΘ (Z = zm) =
N+1∏
j=1

PΘ

(
Zj = zm

j |ZΠj = zm
Πj

)
=

N+1∏
j=1

|Zj |∏
i=1

∏
h

(
θj

i|h

)uj,m
i|h

, (2)

where uj,m
i|h is the obvious extension of uj

i|h to the mth sample.

2.1 Generative ML Parameter Learning

The parameters of the generative model are learned by maximizing the log like-
lihood of the data which leads to the ML estimation of θj

i|h. The log likelihood
function of a fixed structure of B is

LL (B|S) =
M∑

m=1

logPΘ (Z = zm) =
M∑

m=1

N+1∑
j=1

|Zj |∑
i=1

∑
h

uj,m
i|h log

(
θj

i|h

)
.

It is easy to show that the ML estimate of the parameters is

θj
i|h =

∑M
m=1 u

j,m
i|h∑M

m=1
∑|Zj |

l=1 uj,m
l|h

, (3)

using Lagrange multipliers to constrain the parameters to a valid normalized
probability distribution, i.e.

∑|Zj |
i=1 θj

i|h = 1.

2.2 Structures

In this paper, we restrict our experiments to NB, TAN, and 2-tree classifier
structures. The NB network assumes that all the attributes are conditionally
independent given the class label. This means that, given C, any subset of X is
independent of any other disjoint subset of X. As reported in the literature [17],
the performance of the NB classifier is surprisingly good even if the conditional
independence assumption between attributes is unrealistic or even wrong for
most of the data.

In order to correct some of the limitations of the NB classifier, Friedman
et al. [17] introduced the TAN classifier. A TAN is based on structural augmen-
tations of the NB network, where additional edges are added between attributes
in order to relax some of the most flagrant conditional independence properties
of NB. Each attribute may have at most one other attribute as an additional par-
ent which means that the tree-width of the attribute induced sub-graph is unity,
i.e. we have to learn a 1-tree over the attributes. The maximum number of edges
added to relax the independence assumption between the attributes is N − 1.
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A TAN network is typically initialized as a NB network and additional edges
between attributes are determined through structure learning. An extension of
the TAN network is the k-tree, where each attribute can have a maximum of k
attribute nodes as parents. In this work, TAN and k-tree structures are restricted
such that the class node remains parent-less, i.e. CΠ = ∅.

In the experiments, we apply one generative structure learning algorithm in-
troduced in Friedman et al. [17] for constructing a TAN structure using the con-
ditional mutual information (CMI) [18]. Additionally, we use two discriminative
structure learning algorithms: a simple greedy heuristic [19] and an order-based
greedy algorithm [20]. Both methods consider CR as scoring function.

3 Discriminative CL Parameter Learning

Optimizing CL is tightly connected to good classification performance. Hence,
we want to learn parameters so that CL is maximized. Unfortunately, CL does
not decompose as ML does. Consequently, there is no closed-form solution. The
objective function of the conditional log likelihood (CLL) is

CLL (B|S) = log
M∏

m=1

PΘ (C = cm|X1:N = xm
1:N ) =

M∑
m=1

⎡⎣logPΘ (C = cm,X1:N = xm
1:N )− log

|C|∑
c=1

PΘ (C = c,X1:N = xm
1:N )

⎤⎦ .

(4)

Greiner et al. [1] use a conjugate gradient descent algorithm with line-search
to optimize CLL (B|S). In contrast, we aim to optimize the CL directly us-
ing an iterative EM-like procedure. In the following subsections, we introduce
EBW, ECL, and ACL parameter learning for Bayesian networks. Additionally,
we shortly review CGCL [1]. For the sake of brevity, we only notate instantiations
of the random variables in the probabilities.

3.1 ECL Algorithm

We want to optimize CLL (B|S) (see Eq. (4)) under the constraints

|Zj |∑
i=1

θj
i|h = 1 ∀h, j (5)

using Lagrange multipliers ωj
h. The Lagrangian function is given according to

L (Θ,ω) =
M∑

m=1

⎡⎣logPΘ (cm,xm
1:N )− log

|C|∑
c=1

PΘ (c,xm
1:N )

⎤⎦−
N+1∑
j=1

∑
h

ωj
h

⎛⎝1−
|Zj |∑
i=1

θj
i|h

⎞⎠ .



226 F. Pernkopf and M. Wohlmayr

The derivative of the Lagrangian function is

∂L (Θ,ω)
∂θj

i|h
=

M∑
m=1

⎡⎢⎢⎢⎣ ∂

∂θj
i|h

logPΘ (cm,xm
1:N )−

∂

∂θj
i|h

|C|∑
c=1

PΘ (c,xm
1:N )

|C|∑
c=1

PΘ (c,xm
1:N )

⎤⎥⎥⎥⎦− ωj
h. (6)

For TAN, NB, or 2-tree structures each parameter θj
i|h involves the class node

value, either C = i for j = 1 or C = h1 for j > 1 where h1 denotes the
class instantiation h1 ∈ h. Due to this fact, only one summand remains nonzero

in ∂

∂θj
i|h

|C|∑
c=1

PΘ (c,xm
1:N ) of Eq. (6). We distinguish two cases for deriving the

Lagrangian: class variable (j = 1) and attribute variables (j > 1).

Case 1. For the class variable, i.e. j = 1 and h = ∅, we get

∂L (Θ,ω)
∂θ1

i

=
M∑

m=1

⎡⎣ ∂

∂θ1
i

|C|∑
i=1

u1,m
i log

(
θ1

i

)
− PΘ (i,xm

1:N )
|C|∑
c=1

PΘ (c,xm
1:N )

∂

∂θ1
i

logPΘ (i,xm
1:N )

]
− ωj

h =
M∑

m=1

[
u1,m

i

θ1
i

− Wm
i

θ1
i

]
− ωj

h = 0,

(7)

where we use Eq. (2) for deriving the first term (omitting the sum over j and h)
and we introduced the class posterior Wm

i = PΘ (i|xm
1:N ) as

Wm
i =

PΘ (i,xm
1:N)

|C|∑
c=1

PΘ (c,xm
1:N )

.

Multiplying Eq. (7) by θ1
i and summing over i, we can determine ωj

h as

ωj
h =

M∑
m=1

|C|∑
i=1

[
u1,m

i −Wm
i

]
,

using the constraint of Eq. (5). Finally, we get for the parameters θ1
i

θ1
i =

M∑
m=1

[
u1,m

i − λWm
i

]
M∑

m=1

|C|∑
i=1

[
u1,m

i − λWm
i

] , (8)

where we introduced λ to weight the posterior Wm
i (to be described in the

sequel).
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Case 2. For the attribute variables, i.e. j > 1, we derive correspondingly and
have

∂L (Θ,ω)
∂θj

i|h
=

M∑
m=1

[
uj,m

i|h

θj
i|h

−Wm
h1

vj,m
i|h\h1

θj
i|h

]
− ωj

h = 0,

where Wm
h1

= PΘ (h1|xm
1:N ) is the posterior for class h1 and sample m, and

vj,m
i|h\h1

=
{

1, if zm
j = i and zm

Πj
= h\h1

0, otherwise
.

Employing the constraint from Eq. (5) we obtain the parameters θj
i|h as

θj
i|h =

M∑
m=1

[
uj,m

i|h − λWm
h1
vj,m

i|h\h1

]
M∑

m=1

|Zj |∑
i=1

[
uj,m

i|h − λWm
h1
vj,m

i|h\h1

] . (9)

Again, we introduced λ. Its value is in the range of 0 ≤ λ ≤ 1. If we set λ to
zero the second part of both equations vanishes and we obtain ML parameter
learning (see Section 2.1). In the discriminative parameter learning case (i.e.
λ > 0), parameters θj

i|h are affected by the samples m which have a large absolute

value for the quantity uj,m
i|h − λWm

h1
vj,m

i|h\h1
(resp. u1,m

i − λWm
i ). These are the

training samples belonging to class h1 (resp. i for Eq. (8)) which have a low
probability of being classified as h1 (resp. i) under the current Θ, or the samples
which are not in class h1 (resp. i for Eq. (8)) but which have a large probability
of being classified as h1 (resp. i) [21,3]. Discriminative learning is concerned
with establishing the optimal classification boundary with those samples which
might be easily misclassified. Data samples which are simple to classify do not
contribute much for discriminative parameter learning. In contrast, generative
ML parameter learning optimizes the distribution of the samples belonging to a
certain class irrespective of the samples from other classes.

A solution for Eq. (8) and (9) can be determined by the following iterative
two step algorithm:

1. Estimate the posterior Wm
i (Wm

h1
respectively) using the old parameters Θ.

2. Given Wm
i and Wm

h1
from step 1, update the parameters according to Eq. (8)

and (9).

The parameters Θ can be initialized randomly, however, empirical results showed
that initialization of Θ to the ML estimates leads to better performance. Both
steps are repeated iteratively until a specified number of iterations is reached.
ECL parameter learning is performed once the structure of the Bayesian net-
work is determined. For large values of λ the numerator/denominator in Eq. (8)
and (9) might become negative. To tackle this, we introduce the following two
strategies:
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– Laplace-like smoothing: We introduce a discounting value Dj
h for variable

j and conditioning parent values h for Eq. (9) (similarly for Eq. (8)) and
obtain the parameters according to

θj
i|h =

−Dj
h +

M∑
m=1

[
uj,m

i|h − λWm
h1
vj,m

i|h\h1

]
−|Zj|Dj

h +
M∑

m=1

|Zj |∑
i=1

[
uj,m

i|h − λWm
h1
vj,m

i|h\h1

] , (10)

where

Dj
h = min

i∈|Zj |

{
0,

M∑
m=1

[
uj,m

i|h − λWm
h1
vj,m

i|h\h1

]}
– ML fallback: We set θj

i|h to the ML estimates of Eq. (3) for all i in case

mini∈|Zj |

{∑M
m=1

[
uj,m

i|h − λWm
h1
vj,m

i|h\h1

]}
< 0.

3.2 ACL Algorithm

In the approximated CLL optimization method we can find for the second term
of the CL in Eq. (4), i.e. for the marginalization over C, a lower and an upper
bound according to

log
(
|C|max

i
Fi

)
≥ log

∑
i

Fi ≥ log
(
max

i
Fi

)
.

Using the first inequality, we obtain a lower bound of the objective function

CLL (B|S) ≥
M∑

m=1

[
logPΘ (cm,xm

1:N )− log max
i

PΘ (i,xm
1:N )

]
− log |C|,

where the last term log |C| is constant and can be neglected. Further,

CLL (B|S) ≥
M∑

m=1

logPΘ (cm,xm
1:N )−

|C|∑
c=1

∑
v∈Bc

logPΘ (c,xv
1:N ) , (11)

where the set Bc contains the indices of samples recognized as class c (Bc ≡
{m|cm = arg maxi PΘ (i,xm

1:N )}). Equivalently, we introduce a modified training
data set SW by changing the class label of each sample m to the most probable
class under the current Θ, i.e. SW = {(arg maxi PΘ (C = i,xm

1:N ) ,xm
1:N )}M

m=1.
Thus, we can rewrite the lower bound of the objective function in Eq. (11) as

J (Θ) =
M∑

m=1

[
logPΘ

(
cm,S ,xm,S

1:N

)
− λ logPΘ

(
cm,SW ,xm,SW

1:N

)]
,

where 0 ≤ λ ≤ 1 determines the influence of the discriminative part of the
objective function and the superscripts S and SW refer to the corresponding data
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set. If λ = 0 the ML objective function is obtained (see Section 2.1). Similar as in
Section 3.1, we can use Lagrange multipliers to include the parameter constraint
(see Eq. (5)). The derivative of the Lagrangian leads to the expression for the
parameters θj

i|h according to

θj
i|h =

M∑
m=1

[
uj,m

i|h − λwj,m
i|h

]
|Zj |∑
l=1

M∑
m=1

[
uj,m

l|h − λwj,m
l|h

] , (12)

where wj,m
i|h for the class variable (j = 1) is

w1,m
i =

{
1, if zm

1 = i = argmax
k∈C

PΘ (k,xm
1:N )

0, otherwise

and for the remaining variables (j > 1) we get

wj,m
i|h =

{
1, if zm

j = i and zm
Πj

= {h∗
1 ∪ h\h1}

0, otherwise
,

where we replaced the original class label (i.e. h1) by the most likely class (i.e.
h∗

1 = arg max
k∈C

PΘ (k,xm
1:N )) using the current parameter estimates. The para-

meters θj
i|h can be optimized in a discriminative manner using an algorithm

analog to the iterative method introduced above (see Section 3.1), i.e. we have
the following two steps per iteration:

1. Classify the data set S to establish SW (which directly relates to w1,m
i and

wj,m
i|h ) according to SW = {(arg maxi PΘ (C = i,X1:N = xm

1:N ) ,xm
1:N )}M

m=1.

2. Compute new estimates of the parameters θj
i|h for all i, h, and j by optimizing

J (Θ) according to Eq. (12).

3.3 CGCL Algorithm

The objective function of the conditional log likelihood is given in Eq. (4). As in
[1] we use a conjugate gradient algorithm with line-search which requires both
the objective function and its derivative. In particular, the Polak-Ribiere method
is used [22]. Similar as in Section 3.1, we distinguish two cases for deriving
∂CLL(B|S)

∂θj
i|h

. For TAN, NB, or 2-tree structures each parameter θj
i|h involves the

class node value, either C = i for j = 1 (Case A) or C = h1 for j > 1 (Case B)
where h1 denotes the class instantiation h1 ∈ h. For case A and B we have the
derivatives

∂CLL (B|S)
∂θ1

i

=
M∑

m=1

[
u1,m

i

θ1
i

− Wm
i

θ1
i

]
, and (13)
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∂CLL (B|S)
∂θj

i|h
=

M∑
m=1

[
uj,m

i|h

θj
i|h

−Wm
h1

vj,m
i|h\h1

θj
i|h

]
, (14)

respectively. The probability θj
i|h is constrained to θj

i|h ≥ 0 and
∑|Zj |

i=1 θj
i|h = 1.

We re-parameterize the problem to incorporate the constraints of θj
i|h in the con-

jugate gradient algorithm. Thus, we use different parameters βj
i|h ∈ R according

to

θj
i|h =

exp
(
βj

i|h

)
∑|Zj |

l=1 exp
(
βj

l|h

) .

This requires the gradient ∂CLL(B|S)
∂βj

i|h
which is computed using the chain rule as

∂CLL (B|S)
∂βj

i|h
=

|Zj |X
k=1

∂CLL (B|S)
∂θj

k|h

∂θj
k|h

∂βj
i|h

=
MX

m=1

ˆ
u1,m

i −W m
i

˜
− θ1

i

MX
m=1

|C|X
c=1

ˆ
u1,m

c −W m
c

˜

for Case A and similarly for Case B we get the gradient

∂CLL (B|S)
∂βj

i|h
=

M∑
m=1

[
uj,m

i|h −Wm
h1
vj,m

i|h\h1

]
− θj

i|h

M∑
m=1

|Zj |∑
l=1

[
uj,m

l|h −Wm
h1
vj,m

l|h\h1

]
.

3.4 EBW Algorithm

The EBW algorithm uses the re-estimation equation [12,13] of the form

θj
i|h ←

θj
i|h

(
∂CLL(B|S)

∂θj
i|h

+ D

)
|Zj |∑

l

θj
l|h

(
∂CLL(B|S)

∂θj
l|h

+ D

) . (15)

Considering the derivative in Eq. (14) (similar for Eq. (13)) we obtain

θj
i|h ←

M∑
m=1

[
uj,m

i|h −Wm
h1
vj,m

i|h\h1

]
+ θj

i|hD

M∑
m=1

|Zj |∑
i=1

[
uj,m

i|h − λWm
h1
vj,m

i|h\h1

]
+ D

.

In fact, this equation is related to the parameter estimation equation of ECL
using Laplace smoothing (see Eq. (10)), i.e. no λ is needed and the value of D
is set globally.

The EBW algorithm converges to a local optimum of CLL (B|S) providing a
sufficiently large value for D. Indeed, setting the constant D is not trivial. If it
is chosen too large then training is slow and if it is too small the update may
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fail to increase the objective function. In practical implementations heuristics
have been suggested [13,14]. The derivatives (Eq. (13) and (14)) are sensitive
to small parameter values. Therefore, we use a more robust approximation for
the derivative of Case B (similarly for Case A) as suggested in [23,13]

∂CLL (B|S)
∂θj

i|h
≈

M∑
m=1

uj,m
i|h

|Zj |∑
l=1

M∑
m=1

uj,m
l|h

−

M∑
m=1

Wm
h1
vj,m

i|h\h1

|Zj |∑
l=1

M∑
m=1

Wm
h1
vj,m

l|h\h1

.

Setting D according to D = 1+
∣∣∣∣min
i,h,j

∂CLL(B|S)
∂θj

i|h

∣∣∣∣ shows good performance in our

experiments.

4 Experiments

We present results for frame- and segment-based phonetic classification using
the TIMIT speech corpus [15] and for handwritten digit recognition using the
MNIST [24] and the USPS data. In the following, we list the used structure
learning algorithms for TAN and 2-trees [25]:

– TAN-CMI: Generative TAN structure learning using CMI [17].
– TAN-CR: Discriminative TAN structure learning using naive greedy

heuristic [19].
– TAN-OMI-CR: Discriminative TAN structure learning using the efficient

order-based heuristic [20].
– 2-tree-OMI-CR: Discriminative 2-tree structure learning using the order-

based heuristic.

Once the structure has been determined discriminative parameter optimization
is performed. In particular, we use the ECL and ACL parameter optimization
(see Section 3.1 and 3.2). Additionally, EBW (see Section 3.4) and CGCL (see
Section 3.3) parameter learning have been applied. The parameters are initialized
to the ML estimates for all discriminative parameter learning methods (empirical
results showed it performed better than random initialization). Similar as in [1]
we use cross tuning to estimate the optimal number of iterations for CGCL.
For ECL and ACL we perform 5 iterations — however, the best values are
mostly found after the first iteration in case of ML parameter initialization. The
λ for the best classification rate is empirically obtained in the range of 0.1 to
0.9. EBW uses 200 iterations. As mentioned earlier, this number depends on
the choice of D. Continuous features were discretized using recursive minimal
entropy partitioning [26] where the quantization intervals were determined using
only the training data. Zero probabilities in the conditional probability tables
are replaced with small values (ε = 0.00001). Further, we used the same data
set partitioning for various learning algorithms.
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4.1 Data Characteristics

TIMIT-4/6 Data: This data set is extracted from the TIMIT speech corpus
using the dialect speaking region 4 which consists of 320 utterances from 16 male
and 16 female speakers. Speech frames are classified into either four or six classes
using 110134 and 121629 samples, respectively. Each sample is represented by
20 MFCC and wavelet-based features. We perform classification experiments on
data of male speakers (Ma), female speakers (Fe), and both genders (Ma+Fe),
all in all resulting in 6 distinct data sets (i.e., Ma, Fe, Ma+Fe × 4 and 6 classes).
We use 70% of the data for training and the remaining 30% for testing. More
details are given in [27].

TIMIT-39 Data: The difference to TIMIT-4/6 is as follows: The phonetic tran-
scription boundaries specify a set of frames belonging to a particular phoneme.
From this set of frames – the phonetic segment – a single feature vector is de-
rived. In accordance with [28] 61 phonetic labels are combined into 39 classes,
ignoring glottal stops. For training, 462 speakers from the standard NIST train-
ing set have been used. For testing the remaining 168 speakers from the overall
630 speakers were employed. We derive from each phonetic segment 66 features,
i.e. MFCC’s, Derivatives, and log duration. All together we have 140173 training
samples and 50735 testing samples. Further information is given in [25].

MNIST Data: We present results for the handwritten digit MNIST data [24]
which contains 60000 samples for training and 10000 digits for testing. We down-
sample the gray-level images by a factor of two which results in a resolution of
14× 14 pixels, i.e. 196 features.

USPS Data: This data set contains 11000 uniformly distributed handwritten
digit images from zip codes of mail envelopes. The data set is split into 8000
images for training and 3000 for testing. Each digit is represented as a 16× 16
grayscale image, where each pixel is considered as feature.

4.2 Results

Tables 1, 2, 3, and 4 show the classification rates for TIMIT-39, MNIST, USPS,
and the 6 TIMIT-4/6 data sets for various learning methods2. Additionally,
we provide classification performances for TIMIT-4/6 employing support vector
machines (SVMs) using a radial basis function (RBF) kernel3.

Discriminative parameter learning using ECL, ACL, EBW and CGCL pro-
duces mostly a significantly better classification performance than ML parameter
2 The average CR over the 6 TIMIT-4/6 data sets is determined by weighting the

CR of each data set with the number of samples in the test set. These values are
accumulated and normalized by the total amount of samples in all test sets.

3 The SVM uses two parameters, namely C∗ and σ, where C∗ is the penalty parameter
for the errors of the non-separable case and σ is the variance parameter for the RBF
kernel. We set the values for these parameters to C∗ = 1 and σ = 0.05. The optimal
choice of the parameters and kernel function has been established during extensive
experiments.
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Table 1. Classification results in [%] for TIMIT-39 data with standard deviation. Best
parameter learning results for each structure are emphasized using bold font.

Parameter Learning
Classifier ML ECL ACL EBW CGCL

NB 61.70 ± 0.89 65.70 ± 0.87 65.33 ± 0.87 70.35 ± 0.83 70.33 ± 0.83
TAN-CMI 65.40 ± 0.87 66.33 ± 0.86 66.08 ± 0.86 65.38 ± 0.87 66.31 ± 0.86

TAN-OMI-CR 66.61 ± 0.86 66.94 ± 0.86 67.41 ± 0.86 66.35 ± 0.86 66.87 ± 0.86
TAN-CR 66.78 ± 0.86 67.23 ± 0.86 67.66 ± 0.85 66.73 ± 0.86 67.23 ± 0.86

2-tree-OMI-CR 66.94 ± 0.86 67.54 ± 0.85 67.94 ± 0.85 66.86 ± 0.86 67.06 ± 0.86

Table 2. Classification results in [%] for MNIST data with standard deviation. Best
parameter learning results for each structure are emphasized using bold font.

Parameter Learning
Classifier ML ECL ACL EBW CGCL

NB 83.73 ± 0.37 87.75 ± 0.33 87.73 ± 0.33 91.65 ± 0.28 91.70 ± 0.28
TAN-CMI 91.28 ± 0.28 92.74 ± 0.26 92.77 ± 0.26 93.21 ± 0.25 93.80 ± 0.24

TAN-OMI-CR 92.01 ± 0.27 93.62 ± 0.24 93.46 ± 0.25 93.62 ± 0.24 93.39 ± 0.25
TAN-CR 92.58 ± 0.26 93.86 ± 0.24 93.69 ± 0.24 93.86 ± 0.24 93.94 ± 0.24

2-tree-OMI-CR 92.69 ± 0.26 93.11 ± 0.25 92.98 ± 0.26 92.93 ± 0.26 93.09 ± 0.25

Table 3. Classification results in [%] for USPS data with standard deviation. Best
parameter learning results for each structure are emphasized using bold font.

Parameter Learning
Classifier ML ECL ACL EBW CGCL

NB 87.10 ± 0.61 91.77 ± 0.50 91.83 ± 0.50 94.03 ± 0.43 93.67 ± 0.44
TAN-CMI 91.90 ± 0.50 93.50 ± 0.45 93.60 ± 0.45 92.83 ± 0.47 94.87 ± 0.40

TAN-OMI-CR 92.40 ± 0.48 94.27 ± 0.42 94.07 ± 0.43 93.73 ± 0.44 94.90 ± 0.40
TAN-CR 92.57 ± 0.48 93.93 ± 0.44 94.13 ± 0.43 94.23 ± 0.43 95.83 ± 0.36

2-tree-OMI-CR 94.03 ± 0.43 94.50 ± 0.42 94.60 ± 0.41 94.10 ± 0.43 94.77 ± 0.41

learning on the same classifier structure. Especially, for cases where the struc-
ture of the underlying model is not optimized for classification [1] — the average
improvement of discriminative parameter learning over ML estimation on NB
and generative TAN-CMI structures is large.

In particular, for NB structures the convergent EBW and CGCL methods are
superior compared to ECL and ACL. Analyzing the results of EBW and CGCL
on TAN and 2-tree structures reveal that EBW may overfit the data and cross
tuning in CGCL is too restrictive concerning the number of iterations. Hence,
an alternative regularization method is required. This also explains the good
performance of ECL and ACL on those structures even though both algorithms
do not converge to a local optimum. Cross tuning in CGCL and the selection of
D in EBW is time-consuming. Especially, the choice of D strongly influences the
convergence rate of EBW. For the ECL and ACL methods we have to select λ ∈
[0, . . . , 1]. The best classification rates are mostly obtained after only 1 iteration.
This renders ECL and ACL to be computationally less demanding than EBW
and CGCL. For the discriminative 2-tree, discriminatively learned parameters
do not help to outperform ML estimation using TIMIT-4/6 (contrary on the
remaining data). Again, we suspect overfitting effects since the performance of
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Table 4. Classification results in [%] for TIMIT-4/6 data with standard deviation.
Best parameter learning results for each structure are emphasized using bold font.

Data set Ma+Fe Ma Fe Ma+Fe Ma Fe
Number of Classes 4 4 4 6 6 6

Classifier Average

NB-ML 87.90 88.69 87.67 81.82 82.26 81.93 84.85
± 0.18 ± 0.25 ± 0.25 ± 0.20 ± 0.28 ± 0.28

NB-ECL 91.36 92.13 90.84 84.07 84.75 83.60 87.59
± 0.15 ± 0.21 ± 0.22 ± 0.19 ± 0.27 ± 0.27

NB-ACL 91.19 91.81 90.60 83.67 85.05 83.48 87.40
± 0.16 ± 0.21 ± 0.23 ± 0.19 ± 0.26 ± 0.27

NB-EBW 91.61 92.50 91.15 85.03 86.01 84.54 88.27
± 0.15 ± 0.21 ± 0.22 ± 0.19 ± 0.26 ± 0.27

NB-CGCL 92.12 92.81 91.57 85.41 86.28 85.12 88.69
± 0.15 ± 0.20 ± 0.22 ± 0.18 ± 0.26 ± 0.26

TAN-CMI-ML 89.83 90.20 90.36 82.23 83.20 82.99 86.18
± 0.17 ± 0.23 ± 0.23 ± 0.20 ± 0.28 ± 0.28

TAN-CMI-ECL 90.98 91.32 91.00 83.98 84.79 83.71 87.42
± 0.16 ± 0.22 ± 0.22 ± 0.19 ± 0.27 ± 0.27

TAN-CMI-ACL 91.00 91.36 90.93 83.70 84.46 83.52 87.28
± 0.16 ± 0.22 ± 0.22 ± 0.19 ± 0.27 ± 0.27

TAN-CMI-EBW 91.35 92.01 90.98 83.39 84.45 83.38 87.34
± 0.15 ± 0.21 ± 0.22 ± 0.19 ± 0.27 ± 0.27

TAN-CMI-CGCL 90.96 91.39 90.92 83.06 84.85 84.05 87.22
± 0.16 ± 0.22 ± 0.22 ± 0.20 ± 0.27 ± 0.27

TAN-OMI-CR-ML 91.19 92.15 90.51 84.07 84.68 83.71 87.52
± 0.16 ± 0.21 ± 0.23 ± 0.19 ± 0.27 ± 0.27

TAN-OMI-CR-ECL 91.72 92.45 90.88 84.54 85.01 84.26 87.96
± 0.15 ± 0.21 ± 0.22 ± 0.19 ± 0.27 ± 0.27

TAN-OMI-CR-ACL 91.67 92.49 90.77 84.37 85.09 84.08 87.88
± 0.15 ± 0.21 ± 0.22 ± 0.19 ± 0.26 ± 0.27

TAN-OMI-CR-EBW 91.17 92.48 90.79 83.07 84.15 83.33 87.20
± 0.16 ± 0.21 ± 0.22 ± 0.20 ± 0.27 ± 0.28

TAN-OMI-CR-CGCL 91.37 92.28 90.51 84.00 84.49 83.75 87.54
± 0.15 ± 0.21 ± 0.23 ± 0.19 ± 0.27 ± 0.27

TAN-CR-ML 91.29 91.81 90.52 84.35 84.80 83.93 87.62
± 0.16 ± 0.21 ± 0.23 ± 0.19 ± 0.27 ± 0.27

TAN-CR-ECL 91.69 92.17 90.98 84.63 85.26 84.14 87.97
± 0.15 ± 0.21 ± 0.22 ± 0.19 ± 0.26 ± 0.27

TAN-CR-ACL 91.52 92.07 90.14 84.59 85.01 83.84 87.74
± 0.15 ± 0.21 ± 0.23 ± 0.19 ± 0.27 ± 0.27

TAN-CR-EBW 91.03 92.32 91.07 83.33 84.73 82.90 87.27
± 0.16 ± 0.21 ± 0.22 ± 0.20 ± 0.27 ± 0.28

TAN-CR-CGCL 91.29 92.04 90.52 83.69 84.83 83.91 87.48
± 0.16 ± 0.21 ± 0.23 ± 0.19 ± 0.27 ± 0.27

2-Tree-OMI-CR-ML 91.68 92.28 91.03 84.52 85.43 84.31 88.01
± 0.15 ± 0.21 ± 0.22 ± 0.19 ± 0.26 ± 0.27

2-Tree-OMI-CR-ECL 91.53 92.18 90.98 84.13 85.00 83.81 87.73
± 0.15 ± 0.21 ± 0.22 ± 0.19 ± 0.27 ± 0.27

2-Tree-OMI-CR-ACL 91.57 92.06 90.95 84.34 85.16 84.07 87.83
± 0.15 ± 0.21 ± 0.22 ± 0.19 ± 0.26 ± 0.27

2-Tree-OMI-CR-EBW 91.63 92.28 91.06 84.26 85.22 84.13 87.88
± 0.15 ± 0.21 ± 0.22 ± 0.19 ± 0.26 ± 0.27

2-Tree-OMI-CR-CGCL 91.28 91.79 90.53 83.46 84.48 83.42 87.27
± 0.16 ± 0.21 ± 0.23 ± 0.19 ± 0.27 ± 0.27

SVM-1-5 92.49 93.30 92.14 86.24 87.19 86.19 89.38
± 0.14 ± 0.20 ± 0.21 ± 0.18 ± 0.25 ± 0.25

discriminative parameter learning still improves on the training data. However,
the best classification performances for TIMIT-4/6 are achieved with SVMs.
One reason might be that SVMs are applied to the continuous feature domain.
In contrast to SVMs, a Bayesian network is a generative model. It might be
preferred since it is easy to work with missing features, parameter tying and
knowledge-based hierarchical decomposition is facilitated, and it is easy to work
with structured data.

Figure 1 shows the classification rate of ECL and ACL parameter learning de-
pending on λ for TIMIT-39 on both the training and test data. A NB structure
is used. The best result on the training data was obtained for λ = 0.4, whereby
the corresponding CR on the test set is 65.70% and 65.33% for ECL and ACL,
respectively. For large values of λ the CR drops. For ECL we use Laplace-like
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Fig. 1. Classification rate of TIMIT-39 versus λ using a NB structure

smoothing for cases where the numerator/denominator in Eq. (8) and (9) is
negative, whereas for ACL we use the ML fallback. In general, there is no clear
winner between ECL and ACL parameter optimization. To prevent negative
parameter values during ECL and ACL optimization Laplace-like smoothing
and a ML fallback scheme have been proposed. Since both strategies work best
on different cases we present the best classification rate from either strategy.

5 Conclusion

We present three EM-like discriminative parameter learning algorithms for
Bayesian network classifiers. As first method, we introduce the extended Baum-
Welch algorithm. The two remaining approaches are based on iteratively opti-
mizing either the CL or a lower-bound surrogate of the conditional likelihood.
Both algorithms do not show a monotonously increasing objective function un-
like the extended Baum-Welch approach. Experiments on various phonetic and
handwritten digit classification tasks show that for NB and generatively and
discriminatively learned TAN structures discriminative parameter optimization
algorithms lead to significant improvements compared to the generative ML pa-
rameter estimation. In general, the benefit of discriminative parameter training
is large for simple network structures which are not optimized for classification.

Acknowledgments

The authors thank the anonymous reviewers for many useful comments. This
work was supported by the Austrian Science Fund (Grant number P19737-N15
and S10604-N13). Thanks to Jeff Bilmes for discussions and support in writing
this paper.

References

1. Greiner, R., Su, X., Shen, S., Zhou, W.: Structural extension to logistic regression:
Discriminative parameter learning of belief net classifiers. Machine Learning 59,
297–322 (2005)



236 F. Pernkopf and M. Wohlmayr

2. Bahl, L., Brown, P., de Souza, P., Mercer, R.: Maximum Mutual Information esti-
mation of HMM parameters for speech recognition. In: IEEE Conf. on Acoustics,
Speech, and Signal Proc., pp. 49–52 (1986)

3. Lasserre, J.: Hybrid of generative and discriminative methods for machine learning.
PhD thesis, University of Cambridge (2008)

4. Jebara, T.: Discriminative, generative and imitative learning. PhD thesis, Media
Laboratory, MIT (2001)

5. Vapnik, V.: Statistical learning theory. Wiley & Sons, Chichester (1998)
6. Bishop, C.: Pattern recognition and machine learning. Springer, Heidelberg (2006)
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Abstract. Spatial co-location pattern mining is an interesting and im-
portant issue in spatial data mining area which discovers the subsets of
features whose events are frequently located together in geographic space.
However, previous research literatures for mining co-location patterns as-
sume a static neighborhood constraint that apparently introduces many
drawbacks. In this paper, we conclude the preferences that algorithms
rely on when making decisions for mining co-location patterns with dy-
namic neighborhood constraint. Based on this, we define the mining task
as an optimization problem and propose a greedy algorithm for mining
co-location patterns with dynamic neighborhood constraint. The experi-
mental evaluation on a real world data set shows that our algorithm has
a better capability than the previous approach on finding co-location
patterns together with the consideration of the distribution of data set.

Keywords: Spatial data mining, Spatial co-location patterns, Spatial
neighborhood constraint.

1 Introduction

Spatial co-location pattern mining [1] is an interesting and important issue in
spatial data mining area which discovers the subsets of features (co-locations)
whose events are frequently located together in geographic space. Its application
domains include M-commerce, earth science, biology, public health, transporta-
tion, etc [2]. Take M-commerce as an example, in mobile computing, to provide
location based services, service providers may tend to find services requested
frequently located in spatial proximity.

Previous research literatures [1,2,3,4,5,6,7,8,9] for mining spatial co-location
patterns require two constraints as prerequisite: the neighborhood constraint
for spatial events and the prevalence constraint for spatial feature sets. As a
result, two corresponding thresholds should be given from domain experts to
help describe the constraints. A typical mining approach is carried out by two
steps: identify the neighbor relations of spatial events with the neighborhood
constraint; calculate the values of prevalence measure for different co-location
candidates based on the neighbor relations of their events and find the win-
ners whose values meet the prevalence constraint satisfaction. Apparently, some
drawbacks are introduced by fixing on the neighbor relations early.

W. Buntine et al. (Eds.): ECML PKDD 2009, Part II, LNAI 5782, pp. 238–253, 2009.
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1. It’s hard to choose a definitely appropriate neighborhood threshold, even for
domain experts. Usually, some repetitive trials should be put into practice
to investigate the data sets.

2. The relationship between the neighbor relations and the prevalence measure
is simply split.

3. Event types have different distributions in different areas of the global space.
A static neighborhood threshold is too simple to evaluate their neighbor
relations.

Hence, we suggest in this paper a heuristic approach which postpones the determi-
nation of neighbor relations to the process of the second step. A greedy algorithm
is proposed to carefully select neighbor relations in stead of determining them
through a uniform comparison with a simple distance based threshold. The se-
lection strategy is based on the preferences of finding nontrivial co-locations early
and the dynamic configuration of the spatial framework. Therefore, in our study
of mining spatial co-location patterns, the neighborhood constraint is dynamic.

Related Work. The first general framework of mining spatial co-location pat-
terns was proposed by Huang et al. [1] which adopts the aforementioned two-
step approach. After that, different algorithms were proposed to improve the
efficiency of the mining process, such as partial-join algorithm [3] and join-less
algorithm [2] proposed by Yoo et al., and density based algorithm [4] proposed
by Xiao et al.. In these literatures, the neighborhood constraint is described by
a distance threshold which is the maximal distance allowed for two events to be
neighbors. The work was extended to complex spatial co-location patterns by
Munro et al. [5] and Verhein et al [6]. All these researches are limited to Huang’s
framework and approach.

Other researches deal with the interest measure for the prevalence of spatial
co-location patterns. Huang et al. [7] adjusted the measure to treat the case with
rare events. There was no change with the neighborhood constraint. Another
algorithm was also given by Huang [8] that uses density ratio of different features
to describe the neighborhood constraint together with a clustering approach. A
buffer based model was used to describe the neighborhood constraint by Xiong
et al. [9] that deal with extended spatial object such as lines and polygons.
However, in the above algorithms, once the neighborhood constraint is given by
user, the neighbor relations are determined and never change during the later
process of evaluating the prevalence of co-locations.

On the other hand, in the field of spatial statistics, hypothesis testing meth-
ods are used to identify the correlation patterns. In Salmenkivi’s work [10], the
neighbor relations and prevalence measure were bound together. However, the
work is not cost effective and furthermore can not handle the case of a co-location
with more than two features. Sheng et al. [11] introduced the definition of influ-
ence function based on gaussian kernel to describe the neighborhood constraint.
However, the algorithm assumed a distribution of features on the global space
and it is expensive to compute the value of influence function.
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Contributions. In this paper, we make the following contributions:

1. We conclude the preferences for selecting neighbor relations that are qualified
for finding co-location patterns on early stage.

2. We define the mining task as an optimization problem and propose a greedy
algorithm to mine co-location patterns with dynamic neighborhood
constraint.

3. We also experimentally evaluate the algorithm on a real world data set and
compare it with the previous approach.

The remainder of the paper is organized as follows: In Section 2, the rela-
tionship between neighborhood constraint and prevalence constraint is inves-
tigated together with several observations of the preferences for determining
qualified neighbor relations for finding co-locations early. Section 3 define the
co-location mining task as an optimization problem. A greedy algorithm for min-
ing co-location patterns with dynamic neighborhood constraint is proposed in
Section 4. Section 5 presents the experimental evaluation. And conclusion is
discussed in Section 6.

2 Relationship between Neighborhood Constraint and
Prevalence Constraint

In this section, we investigate the relationship between neighborhood constraint
and prevalence constraint based on Huang’s framework [1].The qualification of
neighbor relations for detecting co-locations and the preferences for selecting
qualified neighbor relations are studied. We first present some basic concepts.

Given a set of spatial features F, a set of their events E, and a neighbor-
hood constraint, the objective of spatial co-location pattern mining is to find
co-location rules in the form of C1 → C2 (p, cp), where C1, C2 ⊆ F, and C1
∩ C2 = ∅ [2]. We denote the co-location as C={C1 ∪ C2}. The interest of
a co-location rule can be measured by the constraints of prevalence (p) and
conditional probability (cp).

The prevalence constraint is described as participation index (Pi) in the
framework which is Pi(C )=minfi∈C{Pr(C, fi)} where fi ∈ F and Pr is par-

ticipation ratio defined as Pr(C,fi)=Number of distinct events of fi in instances of C
Number of events of fi

[2]. Since the conditional probability is similar defined and can be straightly mea-
sured based on prevalence constraint, we skip the discussion of it in the paper.
We call an instance of C as a clique instance (CI (C )) [1] that all events in it
are neighbors to each other based on the neighborhood constraint. In Huang’s
framework, the neighborhood constraint is described by a distance threshold
which is the maximal distance allowed for two events to be neighbors.

To investigate the relationship between neighborhood constraint and preva-
lence constraint, we study an US National Transportation Atlas Database with
Intermodal Terminal Facilities (NTAD-ITF) [12]. Every event in the data set
has a location information with latitude and longitude, and is a facility with
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Table 1. Description of NTAD-ITF with attributes

No. Attribute Description
1 ID Event id.
2 TYPE Name of the function of the primary function of the facility.
3 LATITUDE Latitude for the location of the facility.
4 LONGITUDE Longitude for the location of the facility.

Table 2. Description of NTAD-ITF with event number of facility types

No. Facility Type Abbreviation Number of events
1 RAIL R 2157
2 AIRPORT A 398
3 TRACK T 443
4 PORT P 172
5 INTER PORT I 87

Fig. 1. The value of participation ratio (a), participation index (b,c) and the number
of clique instances for co-locations (d) along with the distance threshold
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Fig. 2. An example to illustrate the relationship between neighborhood constraint and
prevalence constraint

different types such as rail, airport, track, port and inter port. We applied the
join-less algorithm [2] on the data set. The co-located relationships among these
types are investigated. The geographic coordinates were transferred to projec-
tion coordinates using Universal Transverse Mercartor (UTM) projection. The
detailed information about the data set is described in table 1 and table 2.

As the result of the experiments, we plotted the values of participation ra-
tio for co-location {R,A,T} (with abbreviation described in table 2) with dis-
tance threshold (in units of miles) in figure 1(a). It is obvious that the values
of participation ratio increased fast with small distance threshold. When the
distance threshold reached around 20000, the increasing became slow. Figure
1(b,c) plotted the similar behavior for values of participation index along with
distance threshold for different co-locations and their size 2 subsets: {R,A,T}
and {A,T,P}. Moreover, {R,A,T} had a tighter bound to its subsets than that
of {A,T,P}. Figure 1(d) plotted the number of clique instances with distance
threshold for co-locations as figure 1(b). As can be seen from the figure, the num-
ber of clique instances for {R,A,T} increased slowly for small distance threshold
compared with its subsets. But after the distance threshold reaching around
12000, the number increased faster and quickly exceeded the others.

Figure 2 simply illustrates the reason why the curves behave that way in
figure 1. In the figure, each event is uniquely identified by T.i, where T is the
feature type and i is the unique id inside each feature type. For example, A.2
represents the second event of feature A. We first describe the neighborhood
constraint by a small distance threshold which confirms the neighbor relations by
the solid lines. In the right-top table of figure 2, we enumerate the clique instances
of the co-locations as well as the value of participation ratio and participation
index. Despite of a small distance threshold, participation index reach the value
of one. When it comes to a large distance threshold, the neighbor relations are
confirmed by the solid lines and the dashed lines together. As can be seen from
the right-bottom table in figure 2, the number of clique instances increases from
2 to 4 for size 2 co-locations and from 2 to 8 for size 3 co-locations. That is
why in figure 1 (d) the long co-location run faster than the short co-locations as
distance threshold increased. Because long co-locations have exponentially more
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combinations of clique instances than short co-locations based on the same set
of events. On the contrary, the appended clique instances benefitting from the
increasing of distance threshold contribute much less (nothing in the example)
to the value of participation ratio as well as participation index. That is why the
curves in figure 1 (a,b,c) increased slowly for large distance threshold.

Based on the analysis, we conclude the preferences for selecting qualified
neighbor relations that are in favor of finding nontrivial co-locations.

1. Near distance neighbor relations are preferred.
2. Neighbor relations that benefit the value of prevalence measure are preferred.
3. Co-locations whose values of prevalence measure keep tight to that of their

subsets are preferred.
4. A big gap of numbers of clique instances between co-locations and their

subsets implies too much noise.

The first preference is obvious due to Tobler’s first law of geography: everything is
related to everything else but nearby things are more related than distance things
[13]. Since the algorithms tend to find nontrivial co-locations that stand for high
values of prevalence measure on early stage, the second preference promises. We
prove preference 3 by comparing {R,A,T} and {A,T,P} with figure 1 (b,c). Recall
the apriori approach [14] adopted by almost all of the algorithms for mining co-
location patterns presently. The size k candidate co-locations are generated from
their size k-1 subset co-locations as well as their instances. If these candidates are
pruned a lot in the validation process or even in the earlier generated process,
their values of prevalence measure leave far away from that of their size k-1
subsets, as to other shorter subsets. Hence, as can be seen from the figure 1 (b,c),
domain experts may prefer {R,A,T} to {A,T,P} as a nontrivial co-location since
it had a tighter bound value of prevalence measure on its subsets. The fourth
observation may not be a preference but a condition the algorithm is supposed
to stop its trial for those co-locations, since it imposes that the new generated
clique instances benefit from far neighbor relations and they also contribute less
to the value of prevalence measure.

3 Co-location Pattern Mining as an Optimization
Problem

Based on the observations we made on the preferences that algorithms rely on
for finding nontrivial co-locations, we can intuitively define the mining task as an
optimization problem. The problem aims to discover on early stage as much as
co-locations with high values of prevalence measure and near distance neighbor
relations for their instances.

Specifically, we describe the task into a placement problem. Initially, the
events in the spatial framework have no neighbor relation with each other. Then
the neighbor relations are placed back in order to the framework. Once any neigh-
bor relation is placed, the configuration of the framework is refreshed together
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with the reward of the placement. We measure the reward of the placement by
the benefits of values of prevalence measure of the co-locations over the distances
of neighbor relations as follows.

R(α) =
∑
C⊆F

(θ−k · f(C) · t(C) ·
∑

dj∈NC

ΔdjPi(C)
|dj |ω

) (1)

In equation 1, α is a placement and F represents the set of spatial features.
Every candidate co-location C is first weighted by the step function f that is
defined following (k > 2).

f(Ck) =

{
1 if Pi(Ck) ≥ (η · E[Pi(Ck−1)]) where Ck−1 ⊂ Ck

0 otherwise
(2)

Here, Ck is a size k co-location and E[Pi(Ck)] is the average value of prevalence
measure for the co-locations. The function simply prunes the size k co-locations
whose values of prevalence measure leave far away from that of their size k-1
subsets. The coefficient η is used to adjust the extent of value difference which
is between 0 and 1. It is obvious that algorithms only consider the benefit value
as reward when the absolute value of prevalence measure is high enough. This
corresponds to the preference 2 mentioned before.

In equation 1, function t weights the value difference of size k co-locations
with their size k-1 subsets as described following (k > 2). It corresponds to the
third preference mentioned in the last section. Due to the monotonic property
of participation index [1], the value of function t is between 0 and 1.

t(C) =
Pi(Ck)

E[Pi(Ck−1)]
where Ck−1 ⊂ Ck (3)

In equation 1, NC represents the set of neighbor relations that participate in
the instances of co-location C. For each neighbor relation, we calculate the in-
cremental values of prevalence measure of co-locations that benefit from placing
it to the framework. The distance of neighbor relation dj is a penalty to the
value in the equation which corresponds to the first preference. ω is a coefficient
emphasizing the weight of distance to the benefit value which is usually between
0 and 1. And ΔdjPi(C) is the incremental value of Pi(C) from placing dj into
the current framework. Note, the neighbor relations are placed in selected order.
Therefore the values are accumulated to evaluate the reward of placement. θ is
a coefficient to adjust the user’s bias on long co-locations which is between 0
and 1. In the equation, k is the size of the co-location C. The estimations for
both function f and t could be skipped for size 2 co-locations since there are not
comparable values of prevalence measure for them with size 1 co-locations.

As described above, the co-location mining task can be made into a optimiza-
tion problem and the greedy algorithm can be applied to maximize the marginal
gain when select neighbor relations for spatial framework.

di = argmax
di∈D\αi−1

R(di) = argmax
di∈D\αi−1

R(αi−1 ∪ di)−R(αi−1) (4)
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Here, D is the set of neighbor relations and di is the neighbor relation the
greedy algorithm selects in the ith iteration based on i-1 th configuration. To
make the algorithm feasible, we simplify the evaluation of neighbor relations in
each iteration as follows.

R(di) =
1

|di|ω
·

∑
C⊆F

(θ−k · fi−1(C) · ti−1(C) ·ΔiPi(C)) (5)

The deformation of function f and function t indicates that the values of the
functions are calculated based on i-1 th configuration of the spatial framework.

Recall the fourth preference presented in section 2. The ratio of the average
number of clique instances of a co-location’s subsets over the number of clique
instances of itself could give us a signal that whether the evaluation of the co-
location should be stopped. As a constraint to this optimization problem, we
can simply implement this by comparing the value of ratio with a threshold κ.
If the value is below κ, the evaluation of the co-location should be skipped in
the iterations (k > 2) as presented following.

Evaluate(Ck) =

{
1 if E[|CI(Ck−1)|]

|CI(Ck)| ≥ κ where Ck−1 ⊂ Ck

0 otherwise
(6)

The estimation can be easily embedded into equation 1 and equation 5 as a mul-
tiplication factor. If all the co-locations reach the line, the algorithm terminates.
Other estimations can be applied in a similar way, such as defining a maximum
value for the prevalence measure. Actually, as to this heuristic approach, the
user can pause the estimation at any time and check the values of prevalence
measure. Then, the algorithm could go on from the pausing point.

4 A Greedy Algorithm for Co-location Pattern Mining

Thus, a greedy algorithm could be carried out naturally. However, the prob-
lem is still not submodular [15] due to the possible incremental benefits for the
remaining unplaced neighbor relations after refreshing the configuration when
some neighbor relations were selected into the framework. Hence, the lazy eval-
uation approach proposed by Leskovec et al. [15] can not be adopted to speed
up the algorithm.

Despite this, we propose to select a set of neighbor relations at each placing
instead of a single one. We also propose to evaluate the neighbor relations in a
qualified buffer instead of all the neighbor relations. The intuition comes from
the thinking that we are not actually interested in maximizing the final reward
of the placement but to observe as much as nontrivial co-locations. Especially
on early stage, too many re-evaluations exhaust the computation, whereas a
precise rank of the qualified neighbor relations is unnecessary since they will
eventually take part in the early placement. Oppositely, it’s also not necessary
for unqualified neighbor relations to attend in early evaluations.
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Clique Instances after sequentially placing neighbor relations
Selection N.R. {A,B} {A,C} {B,C} {A,B,C}

1
A.1,B.1 A1,B1
A.1,C.2 A.1,C.2

2
B.1,C.2 B.1,C.2 A.1,B.1,C.2
B.1,C.1 B.1,C.1

3
A.2,C.1 A.2,C.1
A.2,B.2 A.2,B.2

4
B.3,C.1 B.3,C.1
A.2,B.3 A.2,B.3 A.2,B.3,C.1

5
A.2,B.1 A.2,B,1 A.2,B.1,C.1
A.2,C.2 A.2,C.2 A.2,B.1,C.2

A.1

B.1

C.2

C.1

A.2

B.3

B.2

Rewards of sequential placements
Placement {A,B} {A,C} {B,C} {A,B,C} Reward

1 1/3 1/2 0 0 0.55
2 1/3 1/2 1/3 1/3 0.95
3 2/3 1 1/3 1/3 1.19
4 1 1 2/3 2/3 1.38
5 1 1 2/3 2/3 1.38

Rank of neighbor relations for sequential configurations
Rank 0 Disance Rank 1 R(d1) Rank 2 R(d2)
A.1,B.1 1 A.1,B.1 0.33 A.1,B.1 X
A.1,C.2 2 A.1,C.2 0.25 A.1,C.2 X
B.1,C,1 2 B.1,C.1 0.17 B.1,C.2 0.22
A.2,B.2 3 A.2,B.2 0.11 B.1,C.1 0.17
B.1,C.2 3 B.1,C.2 0.11 A.2,B.2 0.11
B.3,C.1 3 B.3,C.1 X B.3,C.1 0.11
A.2,B.3 4 A.2,B.3 X A.2,B.3 0.08
A.2,C.1 4 A.2,C.1 X A.2,C.1 X
A.2,B.1 5 A.2,B.1 X A.2,B.1 X
A.2,C.2 5 A.2,C.2 X A.2,C.2 X

Features Events
A A.1, A.2
B B.1, B.2, B.3
C C.1, C.2

Note 1:
1. Weights on the lines indicate neighbor distances;
2. Deepness of lines indicates the order of placement;
3. Other wasted neighbor relations are ignored in the figure.

Coefficients Values
1
0
1

A.2

Rank of neighbor relations for sequential configurations
Rank 3 R(d3) Rank 4 R(d4) Rank 5 R(d5)
A.1,B.1 X A.1,B.1 X A.1,B.1 X
A.1,C.2 X A.1,C.2 X A.1,C.2 X
B.1,C,2 X B.1,C.2 X B.1,C.2 X
B.1,C.1 X B.1,C.1 X B.1,C.1 X
A.2,C.1 0.13 A.2,C.1 X A.2,C.1 X
A.2,B.2 0.11 A.2,B.2 X A.2,B.2 X
B.3,C.1 0.11 B.3,C.1 0.11 B.3,C.1 X
A.2,B.3 0.08 A.2,B.3 0.08 A.2,B.3 X
A.2,B.1 0 A.2,B.1 0 A.2,B.1 0
A.2,C.2 X A.2,C.2 0 A.2,C.2 0

Note 2:
1. Buffer size = 5, selection size = 2;
2. Purple indicates rank buffer in reward order;
3. Green indicates neighbor relations not in the buffer
   but in distance order;
4. Bule indicates clique instances genereated by neighbor
   ralations inside a selection of placing.

Fig. 3. An example to illustrate processes of greedy algorithm for placement problem

An example is illustrated in figure 3 where we select 2 neighbor relations at
each placing step and the buffer size is 5. Initially, the neighbor relations are
sorted in distance order which coarsely estimates their qualifications. Then we
fill the buffer with the first 5 neighbor relations in distance order. The evaluation
is carried out on the buffer and the neighbor relations inside the buffer are sorted
by reward order.

The rewards are calculated following the equation 5 where the values of coef-
ficients are described in figure. Take {B.1,C.1} as an example, its reward can be
calculated by dividing the benefit of Pi({B,C}) by its distance which is (1/3)/2
= 0.17. We select the first 2 neighbor relations in the ranked buffer to place into
the framework. For example, after the first evaluation, the neighbor relations
{A.1,B.2} and {A.1,C.2} are selected into the framework since they gain the
top rewards of 0.33 and 0.25. After that, the statistics for the clique instances
together with the values of prevalence measure are updated.

In the next iteration, the first 2 neighbor relations outside the buffer but
in distance order are chosen to make up the buffer. In the example, they are
{B.3,C.1} and {A.2,B.3}. Then the similar process is implemented in buffer. As
we stated above, possible incremental benefits may be introduced for some neigh-
bor relations. In the example, since the placed neighbor relations {A.1,B.2} and
{A.1,C.2} could enhance {B.1,C.2} with potential benefit of Pi({A,B,C}), its
reward increases and rank position arises. Therefore, iteration by iteration, sets
of qualified neighbor relations are selected into the framework and the algorithm
goes on.

However, it’s unreasonable to calculate the final reward by simply accumu-
lating the evaluated rewards of the selected neighbor relations. The estimated
reward of a selection can be effected by two opposite cases. In the first case,
some neighbor relations in the same selection may share the same benefit. For
example, {B.1,C.2} and {B.1,C.1} share the same benefit of Pi({B,C}) with
value of 1/3 in the second selection. On the contrary, in the second case, some
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clique instances could be generated by neighbor relations inside a selection which
introduces more benefits. In the above example, {A.2,B.3,C.1} is generated by
{B.3,C.1} and {A.2,B.3} inside the fourth selection. Hence, a compromise should
be made to meet both the cases. We give the estimation of the reward for a se-
lection as follows.

R(S) =

∑
di∈S

R(di) · |di|ω

E[|di|ω]
(7)

The estimation equation calculates the weighted mean for the evaluated reward
of each neighbor relation. In the equation, S is the set of neighbor relations
within a selection. And E[|di|ω] is the average value of |di|ω where di is a neighbor
relation within a selection that di ∈ S. As an example in figure 3, the estimated
reward of the first selection can be calculated by adding the weighted rewards of
{A.1,B.1} and {A.1,C.2}, then dividing the sum by their average distance which
is (0.33 × 1 + 0.25 × 2)/(1.5) = 0.55. Therefore, the reward of the placement
can be calculated by accumulating the estimated rewards of the selections.

Actually, there’s no need to know all the distances of neighbor relations in
advance. We only need to keep a set of neighbor relations with the number of
buffer size at each iteration. Hence, two operations are required: initially find the
first bsize shortest neighbor relations for buffer where bsize the buffer size; at
each iteration find the first ssize shortest neighbor relations in the rest neighbor
relations where ssize is the selection size. The detailed algorithms are described
following.

Algorithm 1. Find the first bsize shortest neighbor relations for buffer
for every event e in framework do1

e’ = find distinct nearest neighbor(e);2

insert into queue(make neighbor relation(e, e’ ));3

sort queue();4

while size of buffer < bsize do5

append to buffer(find next shortest neighbor relation());6

return buffer;7

Algorithm 1 first find the nearest neighbor for each event in the spatial frame-
work and insert the neighbor relation into a queue. The event is called the refer-
ence event of the neighbor relation. If the found neighbor relation is duplicated
with an existed one in the queue, it is discarded and the next nearest neighbor for
this event is pursued until a distinct neighbor relation is found (Line 1-3 ). The
process of finding the nearest neighbor can be implemented by plane sweeping
[16]. After that, the queue is sorted in distance order and at each iteration the
shortest neighbor relation outside the buffer is found through invoking method
in algorithm 2 and appended to the buffer. The iteration goes on until the buffer
is full (Line 4-6 ). Finally, the buffer is returned (Line 7).
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Algorithm 2. Find the next shortest neighbor relation
d = pop top neighbor relation in queue();1

e’ = find next distinct nearest neighbor(reference event e of d);2

insert into queue by order(make neighbor relation(e, e’ ));3

return d ;4

Algorithm 2 first pop out the top neighbor relation in the sorted queue (Line
1). For this neighbor relation, the next distinct nearest neighbor of its refer-
ence event is found. This neighbor relation should not be duplicated with those
found before (Line 2). Then the neighbor relation is inserted into the queue
by distance order and finally the answer is returned (Line 3-4). The second
operation can be implemented by invoking algorithm 2 ssize times.

Next, we draw the greedy algorithm for mining co-location patterns following.

Algorithm 3. The greedy algorithm for mining co-location patterns
init buffer(bsize);1

while not reach termination conditions do2

evaluate buffer(θ, η, ω);3

sort buffer by reward order();4

pop top neighbor relations in buffer to framework(ssize);5

update configuration();6

make up buffer(ssize);7

return co-locatins whose prevalence value above prevalence threshold;8

Algorithm 3 first initializes the buffer by invoking the method of algorithm
1 (Line 1). Then the iteration starts by evaluating the buffer. Every neighbor
relation in the buffer is evaluated following equation 5 together with a set of
coefficients (Line 3). Then, the neighbor relations in the buffer are sorted in the
evaluated reward order (Line 4). The top ssize neighbor relations are popped
out and placed into the spatial framework (Line 5). After that, the algorithm
updates the statistical information for the configuration of the spatial framework
which includes the updated clique instances, the values of prevalence measure
and the accumulated reward of the current placement (Line 6). By invoking the
method of algorithm 2, the next ssize shortest neighbor relations are found to
make up the buffer (Line 7). Finally, when termination conditions are met, the
co-locations whose prevalence value above the prevalence threshold are returned
(Line 2,8).

In the process of evaluating neighbor relations, the benefits of values of preva-
lence measure are calculated by first finding new clique instances introduced by
the evaluated neighbor relation. The size 2 clique instances are naturally ready.
Besides, the join approach [1] is used to generate longer clique instances. We
skip the detailed explanation to save the space.
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Table 3. Experimental parameters and their values in experiments

Parameters Description Ex1 Ex2 Ex3 Ex4 Ex5
θ A coefficient in equation 1. 0.2
η A coefficient in equation 2. 0.05
ω A coefficient in equation 1. 0.2

bsize Size of buffer. 1000,1500,2000 500-2000 1000
ssize Size of selection. 75,113,150 100 100-400
sratio Selection ratio from buffer. 0.075 *

5 Experimental Evaluation

In this section, we evaluate the greedy algorithm on a real world data set that is a
US National Transportation Atlas Database with Intermodal Terminal Facilities
(NTAD-ITF) [12]. Detailed information about the data set is described in table
1 and table 2 in section 2. The co-located relationships among the 5 types of
facilities are investigated. A previous efficient algorithm (join-less algorithm [2])
based on Huang’s framework [1] is also evaluated as a comparison.

The algorithms are implemented in C++ and are memory based algorithm.
All the experiments were performed on an Intel Core 2 Duo 2.2GHz E4500
machine with 2G MB main memory, running Windows XP operation system.
Detailed information about experiments is listed in table 3.

5.1 Capability of the Algorithms for Finding Co-location Patterns

We first evaluated the capability of the algorithms for finding co-location
patterns. The capability can be specified in four ways following.

1. Detecting the high values of prevalence measure for co-locations with less
neighbor relations participated in the algorithm.

2. Detecting the high values of prevalence measure for co-locations with less
clique instances involved in the algorithm.

3. Finding the co-location patterns considering the distribution of the data set.

We first compared the capability of our greedy algorithm and the join-less algo-
rithm with the number of neighbor relations and the number of clique instances.
The join-less algorithm was evaluated with several repetitive executions. In each
repetition, the distance threshold was incremented with a uniform value. We
also compared the algorithms with the average distance of the neighbor rela-
tions which partially reflects the distribution of the neighbor relations that the
algorithms selected. Detailed information is described in table 3 (Ex1-Ex3).

Capability with the number of neighbor relations. In the first experiment, we
evaluated the prevalence values of the co-locations {R,A} and {R,A,T} with the
number of neighbor relations as illustrated in figure 4(a) and figure 4(b) respec-
tively. In the figure, different curves represent different algorithms. We plotted
three curves of the greedy algorithm with different buffer sizes but the same
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Fig. 4. The value of prevalence measure with the number of neighbor relations for
co-location {R,A} (a) and co-location {R,A,T} (b)

selection ratio for the buffer. As can be seen from the figure, the greedy algorithm
detected the higher value of prevalence measure with less neighbor relations in-
volved in the calculation due to its preferences of selection. The algorithm tended
to select neighbor relations in the density areas of the spatial framework on early
stage, since they could benefit more values of prevalence measure. For co-location
{R,A,T}, when the number of neighbor relations increased after 3000, the value
difference of the two algorithms became smaller. That’s because when too many
neighbor relations participated in the calculation, many noises as presented in
section 2 were also introduced. Then the greedy algorithm tended to select neigh-
bor relations outside the former density areas. However on early stage, the greedy
algorithm is capable of finding the co-locations with high values of prevalence
measure than join-less algorithm. When buffer size became larger, the greedy
algorithm had a better capability, since more qualified neighbor relations were
participated in the evaluations which refined the selections.

Capability with the number of clique instances. In the second experiment, we
evaluated the prevalence values of the co-locations {R,A} and {R,A,T} with the
number of clique instances as illustrated in figure 5(a) and figure 5(b) respec-
tively. As can be seen from the figure, the greedy algorithm detected the higher
value of prevalence measure with very less clique instances, since the greedy al-
gorithm selected the neighbor relations into the spatial framework that benefit
the values of prevalence measure instead of many noise neighbor relations that
could introduce the clique instances whose events have already participated in
the calculation of the participation ratios.

Capability with the average distance of the neighbor relations. In the third
experiment, we evaluated the number of neighbor relations with the average dis-
tance of the neighbor relations as illustrated in figure 6. As can be seen from
the figure, the average distance of the greedy algorithm increased faster than
join-less algorithm along with the number of neighbor relations. Because in the
selection process of the greedy algorithm, the greedy algorithm not only con-
sidered the distances of the neighbor relations, but also took into account their
quality of detecting high value of prevalence measure which potentially imposes
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Fig. 5. The number of clique instances with the value of prevalence measure for
co-location {R,A} (a) and co-location {R,A,T} (b)

Fig. 6. The average distance of neighbor relations with number of neighbor relations

Fig. 7. The value of accumulated reward with the number of neighbor relations for
different buffer sizes (a) and different selection sizes (b)
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the nontrivial co-locations. Thus, from another point of view, the greedy al-
gorithm tended to select the neighbor relations in density areas of the spatial
framework, sine they could introduce more clique instances together with more
benefit values of prevalence measure. Therefore, our algorithm consider the dis-
tribution of the data set than the previous approach.

5.2 Effects of the Buffer Size and the Selection Size

We evaluated the effects of the buffer size and the selection size to the greedy
algorithm. The reward of the placement was used as a reference. The values
of the rewards were calculated according to equation 7. Detailed information is
described in table 3 (Ex4-Ex5).

Effect of the buffer size. In the fifth experiment, we evaluated the effect of the
buffer size with the accumulated reward as illustrated in figure 8(a). We fixed
the selection size with 100 neighbor relations in the experiment. As can be seen
from the figure, algorithm with larger buffer size derived higher value of reward,
since more qualified neighbor relations participated in the evaluation and rank.
When the buffer size increased from 1500 to 2000, the incremental value of the
reward became small due to more unqualified neighbor relations involved in the
rank. That’s the reason why the buffer strategy is adopted instead of evaluating
all the neighbor relations.

Effect of the selection size. In the sixth experiment, we evaluated the effect of
the selection size with the accumulated reward as illustrated in figure 8(b). We
fixed the buffer size with 1000 neighbor relations in the experiment. The greedy
algorithm with smaller selection size derived higher value of reward, since less
unqualified neighbor relations were involved in the evaluation. When the number
of neighbor relations increased, the value difference became larger due to the
increasing of the number of unqualified neighbor relations.

We skip the discussion of the performance of the algorithms to save the space.
We also skip the discussion of the effects of the coefficients (θ, η, and ω) to the
greedy algorithm to save the space.

6 Conclusion

In this paper, we first proposed the drawbacks introduced by assuming a static
neighborhood constraint for mining co-location patterns which adopted by pre-
vious research literatures. Then, we concluded the preferences that algorithms
rely on when making decisions for mining co-location patterns with dynamic
neighborhood constraint. Based on this, we defined the mining task as an opti-
mization problem and propose a greedy algorithm for mining. The experimental
evaluation on a real world data set shows that our algorithm has a better ca-
pability than previous algorithms on finding co-location patterns together with
the consideration of the distribution of data set. The algorithm is also flexible
for other prevalence constraints besides the participation index [1], such as the
constraint with density ratio [8] and the constraint with buffer overlap [9].
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Abstract. The widely known binary relevance method for multi-label
classification, which considers each label as an independent binary prob-
lem, has been sidelined in the literature due to the perceived inadequacy
of its label-independence assumption. Instead, most current methods in-
vest considerable complexity to model interdependencies between labels.
This paper shows that binary relevance-based methods have much to of-
fer, especially in terms of scalability to large datasets. We exemplify this
with a novel chaining method that can model label correlations while
maintaining acceptable computational complexity. Empirical evaluation
over a broad range of multi-label datasets with a variety of evaluation
metrics demonstrates the competitiveness of our chaining method against
related and state-of-the-art methods, both in terms of predictive perfor-
mance and time complexity.

1 Introduction

The traditional data mining task of single-label classification, also known as
multi-class classification, associates an instance x with a single label l from a
previously known finite set of labels L. A single-label dataset D is composed
of n examples (x1, l1), (x2, l2), · · · , (xn, ln). The multi-label classification task
associates a subset of labels S ⊆ L with each instance. A multi-label dataset D
is therefore composed of n examples (x1, S1), (x2, S2), · · · , (xn, Sn). The multi-
label problem is receiving increased attention and is relevant to many domains
such as text classification [10,2], and genomics [19,16].

A common approach to multi-label classification is by way of problem trans-
formation, whereby a multi-label problem is transformed into one or more single-
label problems. In this fashion, a single-label classifier can be employed to make
single-label classifications, and these are then transformed back into multi-label
representations. Prior problem transformation approaches have employed algo-
rithms such as Support Vector Machines [2], Naive Bayes [5] and k Nearest
Neighbor methods [19].

The alternative to problem transformation is to modify an existing single-label
algorithm directly for the purpose of multi-label classification. Some well known
approaches involve decision trees [16] and AdaBoost [10]. Algorithm adaption
may be as simple as using a problem transformation method internally, or col-
lecting prediction confidences and using a threshold to predict the multi-labels
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associated with prediction confidences that lie above the threshold. Both of these
approaches can be generalised to other single-label classifiers.

By abstracting away from a specific classifier, external problem transforma-
tion allows greater flexibility. Any single-label classifier can be used to suit
requirements. Depending on the problem context, some classifiers may demon-
strate better performance than others. Moreover, external problem transforma-
tion methods can also be implemented specifically to a particular algorithm or
easily integrated with meta or ensemble frameworks.

There are several families of problem transformation methods that can be
found in the multi-label literature. These methods arise from one or more fun-
damental problem transformation approaches that either form the core of more
complex frameworks or are used as modifications to other algorithms. Here we
review two fundamental methods.

The most well known problem transformation method is the binary rele-
vance method (BM) [13,2,19]. BM transforms any multi-label problem into one
binary problem for each label. Hence this method trains |L| binary classifiers
C1, · · · , C|L|. Each classifier Cj is responsible for predicting the 0/1 association
for each corresponding label lj ∈ L.

BM is mentioned throughout the literature but consistently sidelined on the
grounds of its assumption of label independence. That is to say, during its trans-
formation process, BM ignores label correlations that exist in the training data.
The argument is that, due to this information loss, BM’s predicted label sets are
likely to contain either too many or too few labels, or labels that would never
co-occur in practice.

We argue that BM-based methods have a lot to offer. The chaining method
we present in this paper shows that the above issues can be overcome and are
outweighed by the advantages of this method and any methods based closely
upon it.

Another fundamental problem transformation method is the label combination
method, or label power-set method, (CM), which has been the focus of several
recent works [15,8]. The basis of this method is to combine entire label sets
into atomic (single) labels to form a single-label problem for which the set of
possible single labels represents all distinct label subsets in the original multi-
label representation. Each (x, S) is transformed into (x, l) where l is the atomic
label representing a distinct label subset. In this way, CM-based methods directly
take into account label correlations. A disadvantage of these methods, however,
is their worst-case time complexity.

The consensus view in the literature is that it is crucial to take into account
label correlations during the classification process [3,2,15,8,11,18,4]. However as
the size of multi-label datasets grows, most methods struggle with the exponen-
tial growth in the number of possible correlations. Consequently, these methods
are able to be more accurate on small datasets, but are not as applicable to
larger datasets. This necessarily restricts their usefulness as many multi-label
contexts involve large numbers of examples and labels.
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The paper is structured as follows. We outline the advantages of BM-based
methods and present our classifier chains method CC, which overcomes disad-
vantages of the basic binary method. We then introduce an ensemble framework
for classifier chains called ECC. Finally, we demonstrate the performance of our
methods under empirical evaluation on a wide range of datasets with various
evaluation measures.

The main contributions of this paper are:

– We present Classifier Chains (CC) and Ensembles of Classifier Chains (ECC)
– We introduce an evaluation metric and new datasets for multi-label

classification
– We present an extensive experimental evaluation to demonstrate the

effectiveness of using Classifier Chains.

2 In Defence of the Binary Method

Although BM’s disadvantages are widely acknowledged, its advantages are rarely
mentioned. BM is theoretically simple and intuitive. Its assumption of label inde-
pendence makes it suited to contexts where new examples may not necessarily
be relevant to any known labels or where label relationships may change over
the test data; even the label set L may be altered dynamically – making BM ideal
for active learning and data stream scenarios.

However the most important and widely relevant advantage of BM is its low
computational complexity compared to other methods. Given a constant number
of examples, BM scales linearly with the size of the known label set L. This set is
defined in the dataset and generally limited in scope: generally |L| < |X |, where
X is the feature space. If L is very large, or not defined prior to classification,
the problem is better approached as a tag-assignment or hierarchical problem,
which are beyond the scope of this paper.

CM-based methods, on the other hand, have an upper bound complexity of
min(|D|, 2|L|), due to the exponentially expanding number of possible combi-
nations with increasing |L| (D is the training set). All methods which model
all label correlations will suffer this complexity. Note that just modelling all
pair-wise label correlations is O(|L|2).

Although BM involves |L| single label problems, each problem only involves two
classes. Depending on the dataset, CM may have to deal with thousands or tens
of thousands of classes. Other methods of transformation resulting in a single
problem will have to produce decisions involving at least |L| classes, which may
imply greater than linear complexity.

Because BM’s |L| binary problems are separate, under demanding circum-
stances it is conceivable (and desirable) to run each label problem separately,
in either parallel or serial, thus only requiring |D| instances in memory at any
point (over |L| processors, or |L| iterations).

In the next section we present our new binary method, CC, which overcomes
the label independence assumption of BM while maintaining acceptable compu-
tational complexity.
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3 The Classifier Chain Model (CC)

The Classifier Chain model (CC) involves |L| binary classifiers as in BM. Classifiers
are linked along a chain where each classifier deals with the binary relevance
problem associated with label lj ∈ L. The feature space of each link in the chain
is extended with the 0/1 label associations of all previous links. The training
procedure is outlined in Figure 1. Recall the notation for a training example
(x, S), where S ⊆ L is represented by binary feature vector (l1, l2, · · · , l|L|) ∈
{0, 1}|L|, and x is an instance feature vector.

Training(D = {(x1, S1), · · · , (xn, Sn)})
1 for j ∈ 1 · · · |L|
2 do � single-label transformation and training
3 D′ ← {}
4 for (x, S) ∈ D
5 do D′ ← D′ ∪ ((x, l1, · · · , lj−1), lj)
6 � train Cj to predict binary relevance of lj
7 Cj : D′ → lj ∈ {0, 1}

Fig. 1. CC’s training phase for dataset D and label set L

Hence a chain C1, · · · , C|L| of binary classifiers is formed. Each classifier Cj in
the chain is responsible for learning and predicting the binary association of label
lj given the feature space, augmented by all prior binary relevance predictions
in the chain l1, · · · , lj−1. The classification process begins at C1 and propagates
along the chain: C1 determines Pr(l1|x) and every following classifier C2 · · ·C|L|
predicts Pr(lj |xi, l1, . . . , lj−1). This classification process is outlined in Figure 2.

Classify(x)
1 Y ← {}
2 for j ← 1 to |L|
3 do Y ← Y ∪ (lj ← Cj : (x, l1, · · · , lj−1))
4 return (x, Y ) � the classified example

Fig. 2. CC’s prediction phase for a test instance x

This chaining method passes label information between classifiers, allowing
CC to take into account label correlations and thus overcoming the label inde-
pendence problem of BM. However, CC still retains advantages of BM including
low memory and runtime complexity. Although an average of |L|/2 features is
added to each instance, because |L| is invariably limited in practice, this has
negligible consequences on complexity, as demonstrated in Section 6.
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However in terms of computational complexity CC can be very close to BM,
depending on the total number of labels and the complexity of the underlying
learner. BM’s complexity is O(|L| × f(|X |, |D|)), where f(|X |, |D|) is the com-
plexity of the underlying learner. Using the same notation, CC’s complexity is
O(|L| × f(|X | + |L|, |D|)), i.e. a penalty is incurred for having |L| additional
attributes. As demonstrated in the experiments in Section 6, in practice this
penalty tends be small in many cases. For instance, assuming a linear base
learner, CC’s complexity simplifies to O(|L| × |X | × |D|+ |L| × |L| × |D|), where
the first term dominates as long as |L| < |X |, which we expect. In this case the
effective complexity of CC is then O(|L| × |X | × |D|), which is identical to BM’s
complexity. CC’s complexity will be worse than BM’s whenever |L| > |X | holds.

Also, although the chaining procedure implies that CC cannot be parallelized,
it can be serialized and therefore still only requires a single binary problem in
memory at any point in time – a clear advantage over other methods.

The order of the chain itself clearly has an effect on accuracy. Although there
exist several possible heuristics for selecting a chain order for CC, we instead
solve the issue by using an ensemble framework with a different random chain
ordering for each iteration. In the next section, we present this framework.

4 Ensembles of Classifier Chains (ECC)

The classifier presented in this section is an Ensemble of Classifier Chains (ECC).
Ensembles are well known for their effect of increasing overall accuracy and
overcoming over-fitting, as well as allowing parallelism. They have successfully
been used in various multi-label problems [10,8,15,16].

Note that binary methods are occasionally referred to as ensemble methods
because they involve multiple binary models. However, none of these models is
multi-label capable and therefore we use the term ensemble strictly in the sense
of an ensemble of multi-label methods.

ECC trains m CC classifiers C1, C2, · · · , Cm. Each Ck is trained with:

– a random chain ordering (of L); and
– a random subset of D.

Hence each Ck model is likely to be unique and able to give different multi-label
predictions. These predictions are summed by label so that each label receives
a number of votes. A threshold is used to select the most popular labels which
form the final predicted multi-label set.

Each kth individual model (of m models) predicts vector yk = (l1, · · · , l|L|) ∈
{0, 1}|L|. The sums are stored in a vector W = (λ1, · · · , λ|L|) ∈ R

|L| such that
λj =

∑m
k=1 lj ∈ yk. Hence each λj ∈ W represents the sum of the votes for

label lj ∈ L. We then normalise W to Wnorm, which represents a distribution of
scores for each label in [0, 1]. A threshold is used to choose the final multi-label
set Y such that lj ∈ Y where λj ≥ t for threshold t. Hence the relevant labels
in Y represent the final multi-label prediction.



Classifier Chains for Multi-label Classification 259

This is a generic voting scheme and it is straightforward to apply an ensemble
of any multi-label problem transformation method. We can therefore apply BM
under this same scheme to create an Ensemble of the Binary Method (EBM). This
is carried out identically to ECC (except that chain ordering has no effect on BM).
As far as we are aware, this scheme has not been previously evaluated in the
literature.

5 Related Work

Using labels in the feature space has been approached in the past by Godbole
and Sarawagi [2]. In the main contribution of their work, the authors stacked BM
classification outputs along with the full original feature space into a separate
meta classifier, thereby creating a two-stage classification process. Similar to
CC, this process is able to take into account label correlations, but their meta
classifier implies an extra iteration of both training and test data as well as
internal classifications on the training data to acquire the label outputs for this
meta step. In contrast, CC only requires a single training iteration like BM, and
uses labels directly from the training data without any internal classification.
We evaluate and compare Godbole and Sarawagi’s meta-stacking (MS) in our
experimental evaluation.

A method reviewed in [9] maps confidence predictions of a single-label clas-
sifier to actual label subsets (observed in the training data) using Hamming
distance. The subset with the shortest Hamming distance to the predictions is
chosen as the predicted set. This procedure can also be applied to the binary out-
puts of BM. Hence we use this Subset Mapping method (SM) in our experimental
evaluation.

The work in [3] is based upon the binary approach but their algorithm adds
a second part for deriving a low-dimensional shared subspace in order to model
label correlations. This is computationally expensive, despite an approxima-
tion algorithm, which is reflected in their experimental setup where they ran-
domly select 1000 data points for training – relatively small sets. Similarly [11]
uses a computationally complex hypergraph method to model label correlations
and, despite a proposed approximate formulation, induces high computational
complexity.

MLkNN [19] is a nearest-neighbor based method with similar time complexity
to BM. MLkNN performs well against BM, but in [12], it did not perform as well
as RAKEL (see below), which we use in our evaluation.

A boosting algorithm is introduced by [18] that aims to reduce complexity by
reducing redundancy in the learning space and sharing models between labels.
Binary models are trained on subsets of the instance and feature spaces, i.e. a
random forest paradigm is used. This is a good example of how the complexity
of the binary approach can be significantly reduced, and supports the conclusion
of this paper that binary methods have been underrated.

The binary pairwise problem has also been employed for multi-label classifi-
cation. This is the one-vs-one approach, as opposed to the one-vs-rest approach
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used by BM, therefore requiring |L|2 classifiers as opposed to |L|. [7] accompanies
each pairwise classifier with two probabilistic models to isolate the overlapping
feature space. They cite a computational bottleneck for this method for large
datasets. Another pairwise approach [4] works with large datasets when used
with simple and efficient perceptrons, although this method is only able to pro-
vide a ranking and not actual multi-label classification sets. A related approach
is taken in [1] which can conduct classification by using a virtual label to sep-
arate relevant and irrelevant labels. This method performed well against BM in
terms of ranking evaluation, but only marginally in classification.

While label rankings can in most cases be turned into a multi-label classi-
fication, the reverse is not always true. Both BM and CC, for example, cannot
naturally provide prediction confidences, and therefore are unable to provide a
ranking. ECC can output a ranking directly from its voting scheme, although
this ranking is only coincidental as a means to achieve a classification. Ranking
methods and evaluation of ranking performance itself falls outside the scope of
this paper.

Several ensemble approaches have been developed based on the common prob-
lem transformation methods introduced in Section 1, particularly CM due to its
inherent ability to take into account label correlations.

A good example is the RAKEL system by Tsoumakas and Vlahavas [15].
For m iterations of the training data, RAKEL draws a random subset of size k
from all labels L and trains a CM classifier using these labels. A simple voting
process determines the final classification set. Using appropriate values of m and
k, RAKEL was shown to be better than BM and CM.

HOMER [14] is a computationally efficient multi-label classification method
specifically designed for large multi-label datasets. Its efficiency is due to hi-
erarchically splitting up the label set L using a modified k-means algorithm,
and solving each subproblem individually. We note that the authors use Naive
Bayes as their base classifier to further reduce complexity. In our experiments
we use the more computationally demanding SVM s, known for their predictive
performance, particularly on text data.

In [8] we presented EPS: an ensemble method that uses pruning to reduce the
computational complexity of CM, and an instance duplication method to reduce
error rate as compared to CM and other methods. This method proved to be
particularly competitive in terms of efficiency.

6 Experiments

We perform an experimental comparison based on several experimental setups
designed to test a variety of methods in different contexts. Initially we carry out
experiments to justify the value of CC by comparing to related methods and then
later compare ECC to other state-of-the-art methods.

We consider our evaluation one of the most extensive in the multi-label lit-
erature. To the best of our knowledge, our collection of multi-label datasets
represents the largest one so far in multi-label evaluation, and we have used four
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evaluation methods. First we introduce some evaluation measures, the datasets
and relevant statistics, and following this, we review our experimental method
and setup, and then present the results.

6.1 Evaluation Measures

It is essential to include several evaluation measures in multi-label evaluation.
Given the extra label dimension, it is otherwise possible to optimise for certain
evaluation measures. We use four different evaluation measures.

Multi-label classification requires a different measure of accuracy from stan-
dard single-label (multi-class) classification. Recall that for each ith classified
instance, Yi is the predicted set of labels, and Si is the actual set. It is possible
to measure accuracy by example (instance i is correct if Si = Yi), or by indi-
vidual label (each l ∈ Yi is a separate evaluation), but in practice the former
tends to be overly harsh and the latter overly lenient. Instead, we use accuracy
as defined in [13]:

Accuracy =
1
|D|

|D|∑
i=1

|Si ∩ Yi|
|Si ∪ Yi|

Accuracy is micro-averaged across all examples. As a contrast we include macro-
averaged F-measure, where the average is calculated per label and then averaged
across all labels. The F-measure is the harmonic mean between precision and
recall, common to information retrieval. If pj and rj are the precision and recall
for all lj ∈ Yi from lj ∈ Si, the macro-averaged F-measure is:

F1macro =
1
|L|

|L|∑
j=1

2× pj × rj

(pj + rj)

We also evaluate using the average area under the precision recall curve
(AU(PRC)). Instead of setting a fixed threshold, the threshold is varied on the
confidence predictions Wnorm

i (see Section 4) in steps 0.00, 0.02, · · · , 1.00, thus
producing different precision and recall values for each label. The average across
all labels is the average area under the precision recall curve. More information
about this measure can be found in [16].

Finally we introduce the use of log loss, distinct from other measures because it
punishes worse errors more harshly, rewarding conservative prediction. The error
is graded by the confidence at which it was predicted: predicting false positives
with low confidence induces logarithmically less penalty than predicting with
high confidence. Therefore, again, we use the confidence predictions for each
label λ ∈Wnorm

i to compare to the actual value of each label lj ∈ Si:

LogLoss =
1
|D|

|D|∑
i=1

|L|∑
j=1

−max
(
log(λj)lj + log(1− λj)(1 − lj), log

1
|D|

)
We have used a dataset-dependent maximum of log( 1

|D| ) to limit the magnitudes
of penalty. Such a limit, as explained in [9], serves to smooth the values and
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prevent a small subset of poorly predicted labels from greatly distorting the
overall error. Note that, as opposed to the other measures, the best possible
score for the log loss is 0.0.

In the analysis of time complexity we measure train and test times in seconds.

6.2 Datasets

Table 1 displays datasets from a variety of domains and their associated statis-
tics. Label Card inality (LCard) is a standard measure of “multi-labelled-ness”
introduced in [13]. It is simply the average number of labels relevant to each
instance. The Proportion of Dist inct label combinations (PDist) is simply the
number of distinct label subsets relative to the total number of examples:

LCard(D) =
∑|D|

i=1 |Si|
|D| PDist(D) =

|{S|∃(x, S) ∈ D}|
|D|

Table 1. A collection of multi-label datasets and associated statistics; n indicates
numeric attributes. DT is the training split used in some experiments.

|D| |L| |X| LCard(D) PDist(D) Type DT |DT | × |L| × |X|
Scene 2407 6 294n 1.07 0.006 media 1211 2.14E+06
Yeast 2417 14 103n 4.24 0.082 biology 1500 2.16E+06

Medical 978 45 1449 1.25 0.096 text 652 4.25E+07
Slashdot 3782 22 1079 1.18 0.041 text 1891 4.49E+07

Enron 1702 53 1001 3.38 0.442 text 1135 6.02E+07
Reuters 6000 103 500n 1.46 0.147 text 3000 1.55E+08

OHSUMED 13929 23 1002 1.66 0.082 text 6965 1.61E+08
TMC2007 28596 22 500 2.16 0.047 text 21519 2.37E+08
MediaMill 43907 101 120n 4.38 0.149 media 30993 3.76E+08

Bibtex 7395 159 1836 2.40 0.386 text 3698 1.08E+09
IMDB 95424 28 1001 1.92 0.036 text 47712 1.34E+09

Delicious 16105 983 500 19.02 0.981 text 12920 6.35E+09

We strived to include a considerable variety and scale of multi-label datasets. In
total we use 12 datasets, with dimensions ranging from 6 to 983 labels, and from
less than 1,000 examples to almost 100,000. The datasets are roughly ordered
by complexity (|DT | × |L| × |X |) and divided between regular and large sizes.
Included are two new real-world multi-label text collections: Slashdot, which
we collected from http://slashdot.org, and IMDB from http://imdb.org
(data obtained from http://www.imdb.com/interfaces#plain). All datasets
and further information about them can be found at various sources1.

1 http://www.cs.waikato.ac.nz~/jmr30/#datasets and http://mlkd.csd.auth.

gr/multilabel.html#Datasets

http://slashdot.org
http://imdb.org
http://www.imdb.com/interfaces#plain
http://www.cs.waikato.ac.nz~/jmr30/#datasets
http://mlkd.csd.auth.gr/multilabel.html#Datasets
http://mlkd.csd.auth.gr/multilabel.html#Datasets
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6.3 Algorithms

For easy reference, Table 2 lists all the algorithms used in the experiments,
their corresponding abbreviation, and any relevant citation (where citations are
absent, the method has been introduced in this paper).

Table 2. Algorithms used in the experiments, and associated citations

BM-based algorithms Ensemble algorithms
BM Binary Method [13] EBM Ensembles of Binary Method
CM Chaining Method ECC Ensembles of Classifier Chains
SM Subset Mapping [9] EPS Ensembles of Pruned Sets [8]
MS Meta Stacking [2] RAKEL RAndom K labEL subsets [15]

6.4 Setup and Method

Our default experimental setup is as follows. We evaluate all algorithms under
a WEKA-based [17] framework running under Java JDK 1.6 with the following
settings. Support Vector Machines are used as the internal classifier using WEKA’s
SMO implementation with default parameters. Ensemble iterations are set to 10.
Evaluation is done in the form of 5 × 2 fold cross validation on each dataset
and the corrected paired t-test [6] determines significance under a value of 0.05.
The exception to this is the experiments on large datasets where cross validation
is too intensive for some methods, and a train/test split is used instead. These
splits are shown in Table 1 where DT is the training set (and therefore (D \DT )
the test set). Experiments are run on 64 bit machines, allowing up to 2 GB RAM
per ensemble iteration.

The thresholds for all ensemble voting schemes, necessary for determining
accuracy and the macro F-measure, are set as following, where DT is the training
set and a classifier Ht has made predictions for test set DS under threshold t:

t = argmin
{t∈0.00,0.001,··· ,1.00}

∣∣LCard(DT )− LCard(Ht(DS))
∣∣ (1)

This is the closest approximation of the label cardinality of the training set to the
predictions made on the test set. This implies a close balance between precision
and recall and therefore benefits accuracy and F-measure. It also avoids ad-hoc
or arbitrary thresholds or intensive internal cross-validation.

All ensemble methods involve subsampling for the individual models. EBM,ECC,
and EPS subsample the training set (we set 67% for each model), while RAKEL
subsamples the label set according to its k parameter.

For RAKEL we always set parameter k = |L|
2 and for EPS we set p = 1 and n

is set according to the LCard(DT ) training set statistic. Both these algorithms
allow a trade-off between predictive performance and training time costs and
vice versa: using smaller k for RAKEL and higher p EPS will lead to reduced
computational complexity for both algorithms. However, in these experiments
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we optimise for predictive performance. Results in the relevant papers [8] and [15]
show that our choice of parameter values generally provides highest accuracy.
One of the notable advantages of ECC is that it requires no additional parameters
other than the generic ensemble parameters which we set as above.

6.5 Results

Initially we compare standalone CC to BM and BM-related methods: a reproduction
of the MS method, and the SM method. CC is used as the base for determining
statistical significance. Results for accuracy and macro-averaged F-measure are
shown in Table 3 (the other evaluation methods are not appropriate because not
all these methods can supply confidence predictions). Train times are graphed
in Figure 3.

Secondly, we perform an experiment comparing ensemble implementations.
We compare EBM and ECC to the state-of-the-art algorithms EPS and RAKEL.
Statistical significance is taken against ECC. Results for all evaluation measures
are displayed in Table 4 and train times are graphed in Figure 4.

Finally we compare ensembles separately on large datasets, for which we use
train/test splits for evaluation. Results for predictive performance are displayed
in Table 5; train and test times are displayed in Table 6. DNF indicates that the
experiment Did Not Finish within one week under the available resources.

Table 3. Binary Methods - Predictive Performance

Accuracy Macro F-measure
Dataset CC BM SM MS CC BM SM MS
Scene 67.3 59.1 • 63.0 61.9 • 0.696 0.685 0.666 0.694
Yeast 51.5 49.6 50.4 49.8 0.346 0.326 0.327 0.331
Slashdot 46.7 43.4 • 44.7 • 43.6 • 0.327 0.329 0.298 0.328
Medical 75.1 73.0 • 73.1 73.1 • 0.377 0.364 0.321 • 0.370
Enron 39.5 38.6 40.3 38.8 0.198 0.197 0.144 • 0.198
Reuters 39.6 31.9 • 33.6 • 32.4 • 0.245 0.224 • 0.194 • 0.229 •
⊕, • statistically significant improvement or degradation vs. CC.
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Fig. 3. Binary Methods - Train times (average seconds)
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Table 4. Ensemble Methods

Accuracy Log Loss
Dataset ECC EBM EPS RAK. ECC EBM EPS RAK.
Scene 70.8 68.6 • 73.7 ⊕ 72.7 ⊕ 1.32 1.97 • 1.41 1.78 •
Yeast 53.3 52.7 • 54.9 ⊕ 54.3 9.41 11.48 • 9.16 10.26 •
Slashdot 51.0 50.9 50.9 51.4 3.45 3.94 • 3.81 • 4.41 •
Medical 77.6 76.7 75.1 • 76.2 1.87 1.93 2.08 • 2.19
Enron 44.6 44.2 44.5 45.9 10.84 11.00 12.15 • 12.00 •
Reuters 44.7 36.0 • 49.6 ⊕ 45.3 7.52 8.33 • 7.09 ⊕ 8.23 •

Macro F-measure AU(PRC)
Dataset ECC EBM EPS RAK. ECC EBM EPS RAK.
Scene 0.742 0.729 • 0.763 0.750 0.778 0.706 • 0.780 0.736 •
Yeast 0.362 0.364 0.420 ⊕ 0.413 ⊕ 0.645 0.618 • 0.643 0.623 •
Slashdot 0.343 0.346 0.336 0.353 0.514 0.464 • 0.498 0.443 •
Medical 0.386 0.382 0.324 • 0.377 0.789 0.782 0.752 • 0.744 •
Enron 0.201 0.201 0.155 • 0.206 0.488 0.481 • 0.440 • 0.453 •
Reuters 0.286 0.264 • 0.264 • 0.282 0.347 0.311 • 0.378 ⊕ 0.330 •
⊕, • statistically significant improvement or degradation vs. ECC.
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7 Discussion

7.1 The Value of Classifier Chains

The value of CC’s chaining method can be seen in Table 3 where it is compared to
related classifiers. CC improves convincingly over both the default BM method and
related methods MS and SM 10 out of 12 times, and in many cases the difference
is statistically significant. Hence the results justify using CC as a base method.

The training times of BM and CM (Figure 3) support the theory presented in
Section 2. BM is naturally the fastest. This complexity is exceeded only marginally
by CC. On smaller datasets, the effect is even negligible, and tiny variances in
runtime conditions cause CC to run marginally faster in some cases - similarly to
SM. SM also involves only minimal overhead over BM. Not surprisingly, because of
MS’s two-stage stacking process, its train times are about twice that of BM.
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Table 5. Large Datasets - Ensembles - Predictive Performance

Accuracy Log Loss
Dataset ECC EBM EPS RAK. ECC EBM EPS RAK.
OHSUMED 41.1 41.39 41.98 41.55 5.36 5.35 6.17 6.65
TMC2007 53.03 52.74 52.30 52.85 5.70 6.02 4.87 5.82
Bibtex 35.50 35.10 34.13 DNF 11.95 11.88 12.73 DNF
MediaMill 40.39 39.80 38.20 31.40 25.37 27.05 26.52 29.97
IMDB 24.88 1.92 DNF 2.06 13.34 21.30 DNF 20.61
Delicious 17.93 16.93 9.41 DNF 119.92 128.30 133.34 DNF

Macro F-measure AU(PRC)
Dataset ECC EBM EPS RAK. ECC EBM EPS RAK.
OHSUMED 0.378 0.379 0.376 0.398 0.495 0.499 0.506 0.501
TMC2007 0.551 0.548 0.561 0.557 0.620 0.620 0.614 0.620
Bibtex 0.324 0.313 0.257 DNF 0.437 0.433 0.423 DNF
MediaMill 0.395 0.366 0.338 0.309 0.523 0.518 0.482 0.413
IMDB 0.221 0.075 DNF 0.080 0.329 0.023 DNF 0.025
Delicious 0.154 0.133 0.038 DNF 0.182 0.158 0.095 DNF

Table 6. Large Datasets - Ensembles - Train and Test Times

Train Times (seconds) Test Times (seconds)
ECC EBM EPS RAK. ECC EBM EPS RAK.

OHSUMED 5E3 5E3 8E3 5E3 2E2 7E1 2E4 3E3
TMC2007 5E4 5E4 3E3 3E4 9E1 9E1 2E3 3E3
Bibtex 3E3 2E3 7E3 DNF 2E3 2E3 1E4 DNF
MediaMill 1E5 2E5 6E4 2E5 1E3 7E2 2E5 2E5
IMDB 4E5 3E5 DNF 3E5 2E3 9E2 DNF 1E4
Delicious 1E5 1E5 3E2 DNF 1E4 6E3 1E2 DNF

Shown in E notation where 5E3 ≈ 5000 seconds.

7.2 Ensemble Methods on Regular Datasets

In Table 4, we see that ECC competes well against the other ensemble methods.
Although in some cases these methods demonstrate better performance than
ECC, such gains are not paralleled under all evaluation measures. Under both log
loss and AUPRC, ECC improves over other methods in four out of six cases, and
the improvement is for the most part statistically significant.

As expected, the timing results again weigh in favour of EBM and ECC, es-
pecially for small |L|. This is shown in Figure 4. An exception is the Medical
dataset which has a very high |L| : |D| ratio, spiking ECC’s build time. EPS’s
reductions to complexity are considerable in some cases, but sporadic and not
theoretically bounded as low as those of the BM-based methods, which are closely
related to the dataset constants |L| and |D|.
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7.3 Ensemble Methods on Large Datasets

We presented ECC as an efficient method for multi-label classification, so the
experiment on large datasets is important to justify this claim. Results are dis-
played in Table 5. Although the t-test could not be used on the train-test evalua-
tion, we can still see overall superiority for ECC, even more so on regular datasets.
ECC shows a clear majority of wins over the CM-based methods on all measures of
predictive performance. EBM also performs particularly well in this experiment,
indicating that, particularly on larger datasets, the disadvantages of BM-based
methods are outweighed by the large number of examples they can train on.

Only the ECC method performs satisfactorily on the IMDB dataset under the
experiment setup. The other methods suffer problems. EPS’s pruning mechanism
fails and the individual models of EBM and RAKEL predict too many empty sets.
The different chain orderings prevent this effect in ECC.

Again the BM-based methods show an overall advantage in time costs (Table 6).
These datasets are much larger than those typically approached in the literature.
Although ECC and EBM are not always the fastest, they are the most consistent,
and are the only methods to complete on every dataset under the time and
memory constraints of the experiment. Again, EPS’s reductions to training time
are in some cases effective, but not reliable. For example, on IMDB, where there
are few outlying label combinations to prune (indicated by a low PDist value),
EPS’s pruning mechanism is ineffective, resulting in DNF. On Delicious, the
effect is the opposite: EPS prunes away far too much information, resulting in
particularly poor predictive performance. This is arguably an improvement over
RAKEL (DNF), but only about half as accurate as the binary methods.

7.4 Summary

CM-based methods and other methods that intensively model label correlations
obviously have a place in multi-label classification, especially for datasets of
relatively small dimensions. On larger datasets, however, not only does it become
computationally challenging to model all label correlations, but there are no
significant predictive advantages in doing so. These other methods work hard to
model the label correlations in the training data but end up sacrificing individual
label accuracy. ECC models correlations using an approach which is efficient and
not prone to over-fitting, and for this reason performs strongly over a wide range
of datasets and evaluation measures.

8 Conclusions

This paper presented a novel chaining method for multi-label classification. We
based this method on the binary relevance method, which we argued has many
advantages over more sophisticated current methods, especially in terms of time
costs. By passing label correlation information along a chain of classifiers, our
method counteracts the disadvantages of the binary method while maintaining
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acceptable computational complexity. An ensemble of classifier chains can be
used to further augment predictive performance.

Using a variety of multi-label datasets and evaluation measures, we carried
out empirical evaluations against a range of algorithms. Our classifier chains
method proved superior to related methods, and in an ensemble scenario was
able to improve on state-of-the-art methods, particularly on large datasets. De-
spite other methods using more complex processes to model label correlations,
ensembles of classifier chains can achieve better predictive performance and are
efficient enough to scale up to very large problems.
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Abstract. The automatic extraction of relations from unstructured nat-
ural text is challenging but offers practical solutions for many problems
like automatic text understanding and semantic retrieval. Relation ex-
traction can be formulated as a classification problem using support vec-
tor machines and kernels for structured data that may include parse trees
to account for syntactic structure. In this paper we present new tree ker-
nels over dependency parse trees automatically generated from natural
language text. Experiments on a public benchmark data set show that
our kernels with richer structural features significantly outperform all
published approaches for kernel-based relation extraction from depen-
dency trees. In addition we optimize kernel computations to improve the
actual runtime compared to previous solutions.

1 Introduction

Current search engines usually are not effective for complex queries, e.g. “com-
posers born in Berlin”. The retrieved documents among others contain composers
who stayed some time in Berlin or have the name “Berlin”. Obviously the internal
representation of text in a search index as a sequence of words is insufficient to
recover semantics from unstructured text. An important step towards automatic
knowledge discovery is to extract semantic relations between entities.

Information extraction tackles this goal in two steps. First entity or phrase
taggers detect objects of different types, such as persons, descriptions or pro-
nouns, mentioned in the text. Some of these techniques have reached a suffi-
cient performance level on many datasets [18]. They offer the basis for the next
step: the extraction of relations that exist between the recognized entities, e.g.
composer-born-in(John White, Berlin).

An early approach to relation extraction is based on patterns [6], usually
expressed as regular expressions for words with wildcards. The underlying hy-
pothesis assumes that terms sharing similar linguistic contexts are connected
by similar semantic relations. Various authors follow this approach, e.g. [1] use
frequent itemset mining to extract word patterns and [7] employ logic-based
frequent structural patterns for relation extraction.

Syntactic parse trees provide extensive information on syntactic structure
and can, for instance, represent the relation between subject, verb and object
in a sentence. For feature-based methods only a limited number of structural
details may be compared. On the other hand, kernel-based methods offer efficient
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solutions that allow to explore a much larger (often exponential, or in some cases,
infinite) characteristics of trees in polynomial time, without the need to explicitly
represent the features. [20] and [4] proposed kernels for dependency trees inspired
by string kernels. [2] investigated a kernel that computes similarities between
nodes on the shortest path of a dependency tree that connect the entities. All
these kernels are used as input for a kernel classifier.

In this paper we extend current dependency tree kernels by including richer
structural features. To tackle the different shortcomings of previous work we use
the ordering properties as well as the labeling of nodes in dependency trees in a
novel fashion to create kernels which consider most of the available information in
dependency trees. To allow the usage of more substructure properties while main-
taining an acceptable runtime we propose two new computation algorithms tai-
lored for relation extraction tree kernels. Our new kernels are shown to outperform
all previously published kernels in classification quality by a significant margin on
a public benchmark. Our kernels reach F-measures of 77%− 80% on selected re-
lations which is sufficient for some applications like information retrieval.

The remainder of the paper is organized as follows. In the next section we
describe dependency parse trees used for relation classification. Subsequently we
give a generic description of the current dependency parse trees in the literature.
The following two sections outline our new kernels for relation extraction, the
All-Pairs Dependency Tree Kernel as well as the Dependency Path Tree Kernel.
Next we describe different versions of the algorithms optimized for efficiency. For
the experiments we re-implemented existing kernels and compare them to our
new kernels on a benchmark dataset. We close with a summary and conclusions.

2 Dependency Parse Trees

A dependency tree is a structured representation of the grammatical dependency
between the words of a sentence by a labeled directed tree [11]. Structure is
determined by the relation between a word (a head) and its dependents. The
dependent in turn can be the head for other words yielding a tree structure. Each
node in the tree corresponds to a word in the sentence with arrows pointing from
the head to the dependents.

Dependency trees may be typed, specializing the “dependent” relation into
many subtypes, e.g. as “auxiliary”, “subject”, “object”, while in the untyped
case there is only a “dependent” relation. In this paper we consider untyped
dependency trees only, generated by the Stanford Parser [10] from the sentences
of a text. As an example consider the two sentences a = “Recently Obama
became the president of the USA” and b = “Ballmer is the CEO of Microsoft”
which have the tree representations as shown in figure 1.

2.1 Notation

Let w = w1 w2 . . . wn be a sequence of words, a natural language sentence with
words wj ∈ W . The parser will generate a representation of the sentence w as
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b1
2 : is

b2
1 : Ballmer

b3
4 : CEO

b4
3 : the

b5
5 : of

b6
6 : Microsoft

a1
3 : became

a2
1 : Recently

a3
2 : Obama

a4
5 : president

a5
4 : the

a6
6 : of

a7
8 : USA

a8
7 : the

To(a): To(b):

Fig. 1. The dependency trees of the two example sentences. The nodes are labeled with
the position of the word in the sentence and the word itself. A thick border marks an
entity mention.

a labeled rooted connected tree T (w) = (V,E) with nodes V = {v1, . . . , vn}
and edges in E ⊂ V × V . Each node vi is labeled with a corresponding word
wρ(vi) in the sentence w, where ρ(vi) is a bijective function mapping a node
vi to the index j of it corresponding word wj ∈ W in w. For example in figure
1 we have ρ(a4) = 5. For each node v ∈ V the ordered sequence of its m
children ch(v) = (u1, . . . , um) with ui ∈ V satisfies ρ(ui) < ρ(ui+1) for all
i ∈ {1, . . . ,m− 1}. The node a1 =“became” in figure 1, for instance, has

ch(a1) = (a2 = “Recently”, a3 = “Obama”, a4 = “president”)

as ordered sequence of child nodes. With the order induced by ρ we get an
ordered tree To(w).

For a sequence s = (sj)j∈[1:k] of length k the set of all possible subsequence
index sets can be denoted as Ik. Each ordered sequence o(i) = i = (i1, . . . , im)
of a subset i ⊂ I of the indices I of a sequence s = (sj)j∈I implies a subsequence
(si1 , . . . , sim) which we denote by s (i), which is inline with the notation of [17].
Therefore we can write the subsequence of children referenced by i from a node
v of an ordered tree as ch (v, i). In figure 1, for example, ch(a1) = (a2, a3, a4)
has the index set {1, 2, 3}. The subset {1, 3} in its representation as ordered
sequence (1, 3) defines the subsequence ch(a1, (1, 3)) = (a2 = “Recently”, a4 =
“president”) of child nodes of a1.

We consider relations connecting entities or objects, which in this paper are
collectively called entities. We assume that these entities have been extracted in
a prior step, e.g. by named entity recognition tools. They are treated as a single
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word in the sentence w, e.g. the two words “Barack Obama” will be merged to a
new word “Barack Obama”. Note that there may be different types τ of entities
relevant for a relation, e.g. persons, locations or organisations which can be used
as a feature associated with a entity.

Let e(w) = (e1(w), . . . , em(w)) be the subsequence of w of all entity mentions
in w, i.e. each word ei(w) is an entity mention. Let R be a binary target relation
between entities. An instance of the relation R in a sentence w is given by
(w, (ei(w), ej(w))), i 
= j, for two entity mentions ei(w) and ej(w) in e(w) if the
sentence semantically supports the relation between the two entity mentions,
i.e. (ei(w), ej(w)) ∈ R. It is important to see that the same sentence w can
support the same relation R between different pairs of entity mentions. The
pairs (ei(w), ej(w)) of different components of e(w) where the relation does not
hold are negative examples of the target relation.

The example sentence a in figure 1 contains the two entities e1(a) = a2 =
“Obama” and e2(a) = a8 = “USA” whereas sentence b contains e1(b) = b1 =
“Ballmer” and e2(b) = b6 = “Microsoft”. For the target relation role, where
a person entity e1 has some role in an organization entity e2, both sentences
contain a positive example e.g. (e1(a), e2(a)) ∈ role, which may be used as
training examples.

In a rooted tree T = (V,E) with root r(T ) ∈ V the lowest common ancestor
lca(v, w) of two nodes v, w ∈ V is the lowest node in T which has both v, w as
descendents. We define the set of nodes sub(v, w) of two nodes v, w as the set
containing all nodes of complete subtree of a tree T rooted in lca(v, w). In a
directed tree T we define the implied path p(u, v) between two nodes u, v as the
sequence (u, . . . , lca(u, v), . . . , v) of nodes where u, . . . are the nodes on the path
from the lca(u, v) to u , analogous for v.

Relation extraction aims at learning a relation R from a number of posi-
tive and negative instances of the relation in natural language sentences. As
a classifier we use Support Vector Machines (SVMs) [8]. They can compare
complex structures, e.g. trees, by kernels, which efficiently evaluate the relevant
differences. Given the kernel function, the SVM tries to find a hyperplane that
separates positive from negative examples of the relation and at the same time
maximizes the separation (margin) between them. This type of max-margin sep-
arator has been shown both empirically and theoretically resistant to overfitting
and to provide good generalization performance on new examples.

3 Dependency Tree Kernel

The Dependency Tree Kernel (DTK) [4] is based on the work of [20]. A node ker-
nel Δ(u, v) measures the similarity of two tree nodes u, v and its substructures.
Then the tree kernel can be expressed as the node kernel of the two correspond-
ing root nodes. Nodes may be described by different features, which are compiled
in table 1. This is the feature set of [4], where word is the word itself, POS and
general-POS are part-of-speech-tags, the chunk tag is the phrase the word is
contained in, like noun or verb phrases. If the word describes an entity, the cor-
responding entity type and the mention is provided. For example “Obama” is
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Table 1. List of features which may be assigned to every node in a tree. The index
corresponds to k in fk

v , hence f5
v denotes the “entity type” of the node v.

Feature Index k Feature Name Possible Feature Values

1 word Obama, president,. . .
2 POS NN, NNP,. . .
3 general-POS noun, verb, adj,. . .
4 chunk tag NP, VP, ADJP,. . .
5 entity type person, location, GPE,. . .
6 mention type name, nominal, pronoun
7 WordNet hypernym corporate executive, city,. . .
8 relation argument 1, 2 or n/a

an entity with entity type “person” and mention type “name”. If this entity is
part of the current relation, the relation argument is set to 1 or 2 depending on
the entity’s role in the relation. Finally the WordNet hypernym is provided if
there is one. That is a superordinate grouping word, e.g. the hypernym of “red”
is “color”. Unfortunately, in [4] the authors do not describe how the hypernyms
are selected if there are more than one, which is a problem, because most words
have different meanings, e.g. “bank” (credit institute or furniture). To tackle
this problem an automatic disambiguation of words[15] is needed. So, in our
experiments we exclude this feature. A specific subset of feature indices may be
designated by the set fm.

To compare the relations in two instances X = (x, (x1, x2)), Y = (y, (y1, y2))
[4] proposes to compare the subtrees induced by the relation arguments x1, x2
and y1, y2 in the two sentences, i.e. the least common ancestor of the relation
argument nodes

KDTK(u, v) = Δ(lca(x1, x2), lca(y1, y2)) (1)

In order to compute the node kernel Δ, we first define a matching function
mat(u, v) → {0, 1} which checks whether two nodes u, v are comparable at all.

mat(u, v) =

{
1 if ∀k ∈ fm : fk

u = fk
v

0 otherwise

where fk
v is the k-th feature of the node v. The set fm consists of the indices

of the features used in the matching function. Based on observations in [4] this
set is defined as fm = {3, 5, 8}. Thus, two nodes u and v match, if the features
general-POS, entity type and relation argument are equal.

The similarity function sim(u, v) → (0,∞] counts the number of common
features of the two nodes. In [4] there are 8 features (Table 1), hence d = 8 but
in our setup d = 7 because the hypernym feature is not considered.

sim(u, v) =
d∑

k=1

comp(fk
u , f

k
v ) comp(fk

u , f
k
v ) =

{
1 if fk

u = fk
v

0 otherwise
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We define the node kernel Δ(u, v) over two nodes u and v as the sum of the
node similarity and their children similarity C(ch(u), ch(v))

Δ(u, v)

{
0 if mat(u, v) = 0
sim(u, v) + C(ch(u), ch(v)) otherwise

(2)

The child subsequence kernel C(s, t) uses a modified version of the String Sub-
sequence Kernel of [17] to recursively compute the sum of node kernel values of
subsequences of node sequences s and t:

C(s, t) =
∑

i∈I|s|, j∈I|t|,

|i|=|j|

λd(i)+d(j) Δ′(s(i), t(j)) M(s(i), t(j)) (3)

where s, t are sequences of nodes and s(i) and t(j) are the subsequences of nodes
implied by the index sets i, j. Furthermore the parameter 0 < λ ≤ 1 is a penalty
factor for lengths and gaps of the subsequences, and d(i) = max(i)−min(i)+ 1
is the covered distance of the index sequence i. The function Δ′ over two node
sequences of length n computes the sum over the node kernels

Δ′ ((s1, . . . , sn), (t1, . . . , tn)) =
n∑

k=1

Δ (sk, tk)

Furthermore, M represents a filter for non-matching sequences:

M((s1, . . . , sn), (t1, . . . , tn)) =
n∏

k=1

mat(sk, tk)

Less formally, the function C(s, t) sums up the similarities of all subsequences in
which every node matches its corresponding node. The similarity of a sequence
is given by the sum of the single node similarities provided by Δ(u, v).

4 Extended Kernels

The Dependency Tree kernel forms the foundation for our proposed kernels con-
sidering a richer feature space described in the following section.

4.1 All-Pairs Dependency Tree Kernel

The dependency tree kernel [4] discards a possible relation if only one node in
the subsequence does not “match” its corresponding node. We propose to use
all pairs of possible combinations in the subtrees to tackle this restriction of the
dependency tree kernel which can be done by generalizing the approaches of [14].
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We define the All-Pairs Dependency Tree Kernel (All-Pairs-DTK), which sums
up the node kernels of all possible combinations of nodes contained in the two
subtrees implied by the relation argument nodes as

KAll-Pairs(X,Y ) =
∑

u∈Vx

∑
v∈Vy

Δ(u, v) (4)

where Vx = sub(x1, x2) and Vy = sub(y1, y2) are sets containing the nodes of
the complete subtrees rooted at the respective lowest common ancestors. The
consideration of all possible pairs of nodes ensure that no valuable information
which resides in subtrees in which only the corresponding root does not match is
discarded. However this could lead to the problem that some irrelevant subtrees
are also compared which in turn leads to some noise in the kernel computation.

This Kernel is structurally comparable to the Partial Tree Kernel (PTK)
described in [14]. The main difference is that the PTK does not support feature
vectors linked to nodes and therefore discards important information available
for our task (see table 1 for features associated with nodes). Another important
difference is that our node kernel computes the sum of all node kernels of the
matching subsequences, while the PTK builds a product of the node kernels.

Because Δ computes the similarity of two nodes and their substructures, Δ
is likely to be called multiple times for the same nodes during the computation
of KAll-Pairs. Due to its computational cost we implemented a cache to limit the
number of times Δ has to be calculated to exactly |Vx| · |Vy| times.

It is clear that KAll-Pairs is a kernel, because it is a sum and product of valid
kernels, which has been shown to be also a valid kernel. [17]

4.2 Dependency Path Tree Kernel

In [2] the authors argue that the information expressing a relation between two
entities is almost exclusively concentrated in the dependency path between them.
Motivated by this they propose the Shortest Path Kernel for relation extraction.
This kernel compares the nodes on the path between the two relation argument
entities in the dependency tree. Our experiments revealed that this kernel per-
forms almost as well as the Dependency Tree Kernel which shows that the path
contains almost as much information as the whole subtree. However this kernel
has some restrictions, like the condition that the path in both trees needs to
have the same length, as otherwise the relation is discarded. Moreover the ker-
nel computes a product of the node similarities, yielding zero similarity if only
one node pair is completely dissimilar.

To avoid these constraints we propose a second new kernel combining the SPK
with the DTK utilizing the main ideas of the Subsequence Kernel [3],[17]. The
Dependency Path Tree Kernel (Path-DTK) not only measures the similarity of
the root nodes and its descendents as in [4] or only the similarities of nodes
on the path [2], it considers the similarities of all nodes (and substructures)
using the node kernel on the path connecting the two relation argument entity
nodes. To this end the pairwise comparison is performed using the ideas of the
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subsequence kernel from [17], therefore relaxing the “same length” restriction of
the SPK.

In order to integrate these features into our kernel we need to define how
the nodes on the dependency path contribute to the overall kernel. We use a
variant of the Subsequence Kernel for the computation of the path subsequence
sums of the single node kernels. In our benchmark training data (ACE 2003)
the dependency paths include up to 28 nodes. So for a computationally feasible
solution we need a limitation on the maximum subsequence length and hence the
number of possible subsequences. We introduce an additional parameter q which
acts as an upper bound on the index distance d(i). In contrast to a limitation on
the length of a sequence, this allows us to compute much longer subsequences
because the number of possible combinations is very much reduced.

Besides q we define another parameter μ with 0 < μ ≤ 1 as a factor that penal-
izes gaps on the path. The Dependency Path Tree Kernel is then defined as:

KPath-DTK(X,Y ) =
∑

i∈I|x|, j∈I|y| ,

|i|=|j|, d(i),d(j)≤q

μd(i)+d(j) Δ′(x(i), y(j)) M(x(i), y(j)) (5)

where x and y are the implied paths path(x1, x2) and path(y1, y2) between the
relation arguments of the instances and x(i) is the subsequence of x implied
by the ordered sequence i = o(i) of the index set i analogous for j. In the
examples in figure 1 this leads to the dependency paths x = (a3, a1, a4, a6, a7)
and y = (b2, b1, b3, b5, b6).

The Dependency Path Tree Kernel effectively compares the nodes from paths
with different lengths while maintaining the ordering information and consid-
ering the similarities of substructures. The path as well as the substructures
turned out to hold valuable information in dependency trees. The Dependency
Path Tree Kernel accounts for both which makes it a flexible kernel for relation
extraction.

This kernel KPath-DTK also consists of only sums and products of a valid
kernel [20], so KPath-DTK is also a valid kernel. [17]

5 Efficient Computation

The runtime of the kernels is highly dependent on the algorithm used to count the
matching subsequences. To reduce the exponential runtime needed for naive enu-
meration [20] adapted the recursive algorithm of the String Subsequence Kernel
[12] to dependency trees. This algorithm needs O(mn3) operations for sequence
lengths n,m with n ≤ m. Another approach to the subsequence computation
for strings running in O(mn2) was proposed by [17]. We adapted this solution
for the computation of C(s, t) as denoted in pseudocode in algorithm 1 which
leads to an O(mn2) solution for the computation of the child node subsequences
C(s, t).

However, because we observed in our benchmark data an average inner node
child count of 1.72, another approach based on a caching strategy is useful. Let
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Algorithm 1. Compute C(s, t) in O(mn2) with sequence lengths n ≤ m

1. k ← 0, m← |s|, n← |t|, p← min(m, n)
2. for i = 1 : m do
3. for j = 1 : n do
4. if mat(s(i), t(j)) = 1 then
5. DPS(i, j)← λ2

6. DQS(i, j)← λ2 Δ(s(i), t(j))
7. k← k + DQS(i, j)
8. else
9. DPS(i, j)← 0

10. DQS(i, j)← 0
11. end if
12. end for
13. end for
14. DP (0 : m, 0)← 0, DQ(0 : m, 0)← 0, DP (0, 1 : n)← 0, DQ(0, 1 : n)← 0
15. for l = 2 : p do
16. for i = 1 : m do
17. for j = 1 : n do
18. DP (i, j)← DPS(i, j)+λ DP (i−1, j)+λ DP (i, j−1)−λ2 DP (i−1, j−1)
19. DQ(i, j)← DQS(i, j)+λ DQ(i−1, j)+λ DQ(i, j−1)−λ2 DQ(i−1, j−1)
20. if mat(s(i), t(j)) = 1 then
21. DPS(i, j)← λ2 DP (i− 1, j − 1)
22. DQS(i, j)← λ2 DQ(i− 1, j − 1) + Δ(s(i), t(j)) DPS(i, j)
23. k← k + DQS(i, j)
24. end if
25. end for
26. end for
27. end for
28. return k

Algorithm 2. Compute C(s, t) with prepared index sequences SI

1. k ← 0, m← |s|, n← |t|, p← min(m, n)
2. for q = 1 : p do
3. for i ∈ SIm,q do
4. for j ∈ SIn,q do
5. x← 0
6. for r = 1 : q do
7. if mat(s(i(r)), t(j(r))) = 0 then
8. goto 4 // jump to next index sequence j
9. end if

10. x← x + Δ(s(i(r)), t(j(r)))
11. end for
12. k← k + x λd(i)+d(j)

13. end for
14. end for
15. end for
16. return k
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Table 2. Averaged over 5 measurements, this table shows the relative empirical run-
times of the DTK with the different subsequence algorithms

Algorithm Theoretical runtime Relative empirical runtime Std. dev.

Algorithm 2
∑n

q=1 q
(

m
q

) (
n
q

)
1 –

Algorithm 1 mn + mn2 3.2204 0.0345

Zelenko mn3 2.9338 0.0363

SIp,q = {o(i)|i ∈ Ip ∧ |i| ≤ q} be the set of all ordered index subsequences of
length q with highest index p. We can write the child subsequence kernel C(s, t)
as

C(s, t) =
min(m,n)∑

q=1

∑
i∈SIm,q

∑
j∈SIn,q

λd(i)+d(j) Δ′(s(i), t(j)) M(s(i), t(j)) (6)

with m = |s| and n = |t|. This reformulation of the child subsequence kernel
allows an efficient computation by utilizing a cache for the Δ function. The
computation procedure is described in algorithm 2. It is easy to see that the
worst case runtime (if all nodes match) of this algorithm for n ≤ m is

O

(
n∑

q=1

q ·
(
n

q

)
·
(
m

q

))

However, for n,m ≤ 4 this approach needs less operations than the O(mn3) solu-
tion proposed by [20]. For n,m ≤ 3 it also needs less operations than algorithm 1,
which has an exact runtime of O(mn + mn2). For 95% of the occurring calcula-
tions of C(s, t) during the kernel computations on the benchmark dataset it holds
that n,m ≤ 3. Our experiments on the benchmark data set show that – though
it explicitly enumerates all subsequence combinations – algorithm 2 has a better
practical runtime than the two other solutions, as can be seen in table 2. Another
interesting result is that the theoretically fastest approach (Algorithm 1) is even
slower than the Zelenko algorithm on our dataset.

6 Related Work

There are several ways to tackle the problem of relation extraction. Prominent
solution strategies have been mentioned in the introduction. Among the first
who proposed kernel methods for relation extraction on shallow parse trees was
[20]. The resulting kernel was then generalized to be able to handle dependency
trees by [4]. [2] suggested a kernel for relation extraction which only considers
the shortest path between the two entity nodes which nevertheless yielded good
performance. Besides work on tree kernels for relation extraction there have
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been tree kernels proposed for other tasks like question classification [14] which
have shown improvements over bag-of-words approaches. Considering features
associable with words [5] proposed to use semantic background knowledge from
various sources like WordNet, FrameNet and PropBank to enhance the DTK of
[4] and showed good results.

7 Experiments

In this section we present the results of the experiments with kernel-based
methods for relation extraction. Throughout this section we will compare our ap-
proaches with other state-of-the-art kernels considering their classification qual-
ity on the publicly available benchmark dataset ACE-2003 [13] which has been
commonly used for the evaluation of relation extraction systems in previous
work.

7.1 Technical Realization

We implemented our tree-kernels in Java and used Joachim’s [9] SVMlight with
the JNI Kernel Extension1. Each experiment was splitted into different tasks
to allow distributed processing for better efficiency, e.g. each fold of the cross
validation was computed on a different machine. Depending on the kernel and
the relation this resulted in training times of minutes for the simple kernels to
12 hours for the advanced kernels. We also employed a standard grid-search
to optimize the parameters of all kernels as well as the SVM-parameter C. The
parameter optimization followed a strict protocol of exclusively utilizing training
data to avoid a biased comparison. We only report the best configurations in the
result tables. Because the implementations of the other kernels were unavailable
and the experimental setup is critical for a fair comparison of the different kernels
we implemented all other state of the art kernels for relation extraction, using the
implementation details from the original papers. This allows for a comprehensive
comparison of our approach with state-of-the-art kernels.

7.2 Benchmark Dataset

The ACE-2003 corpus consists of 519 news documents from different sources
splitted in a test and training set containing 176825 words in 9256 sentences.
In all documents entities and the relations between them were annotated by
humans annotators. The entities are annotated by the types named (e.g. “Barack
Obama”) , nominal (e.g. “government”) and pronominal (e.g. “he”). There are
5 top level relation types role, part, near, social and at (see table 3), which are
further differentiated into 24 subtypes.

1 Available from www.aifb.uni-karlsruhe.de/WBS/sbl/software/jnikernel/
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Table 3. A list of relation types and the respective frequencies in the ACE-2003 corpus.
On the left side the number of relations between named entities is counted.

Named–Named All Entity Types
Relation # Training # Test # Training # Test.

At 481 106 1602 389
Near 44 14 220 70
Part 265 64 749 163
Role 732 155 2927 712
Social 55 4 611 112

7.3 Experimental Setup

As currently neither nominal nor pronominal co-reference resolution can be done
with sufficient quality we restricted our experiments to named–named relations,
where named entity recognition approachesmay be used to extract the arguments.
Nevertheless our kernels without any modification could also applied to the all
types setting aswell. Throughout our experimentswe conducted classification tests
on the five top level relations of the dataset. For each class in each fold we trained
a separate SVM following the one vs. all scheme for multi-class classification.

7.4 Evaluation Metrics

We use the standard evaluation measures for classification accuracy: precision,
recall and f-measure defined as follows:

Prec =
TP

TP + FP
Rec =

TP

TP + FN
F =

2 · Prec · Rec

Prec + Rec

with the number of true positive (TP), false positive (FP) and false negative
(FN) of the classification. Because we have a multi class classification problem
we report macro (per class) and micro (per instance) averaged evaluation scores
as well as results for each individual class of the different kernels [19]. For each
experiment we used a 5-times repeated 5-fold cross-validation. Based on this we
can compute the average for all metrics and report the standard error for the
F-scores. The use of a 5-times repeated CV allows to estimate the significance
of the difference in classification performance of the different kernels.

7.5 Results

Table 4 gives a quick overview of the overall classification performance of the
different kernels on the benchmark dataset. In this table the classification perfor-
mance of the Dependency Tree Kernel (DTK)[4], Shortest Path Kernel (SPK)[2],
All-Pairs Dependency Tree Kernel (All-Pairs-DTK) and Dependency Path Tree
Kernel (Path-DTK) on the 5-times repeated 5-Fold CV is shown. The All-Pairs-
DTK outperforms the SPK by 5.9% Fmicro and 23.5% Fmacro with a significance
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Table 4. Table of results with 5-times repeated 5 fold cross validation. The values in
parenthesis denote the standard error over the five different CV runs.

Kernel q μ λ C Precision Recall Fmicro Fmacro

SPK [2] – – – 1 79.8% 46.4% 58.6%(0.14) 34.2%(0.14)
DTK [4] – – 0.65 100 71.7% 53.7% 61.4%(0.32) 44.5%(0.63)
All-Pairs-DTK – – 0.6 60 73.1% 57.8% 64.5%(0.26) 57.7%(0.54)
Path-DTK 1 0.5 0.5 10 80.2% 61.2% 69.4%(0.09) 57.3%(0.40)

Table 5. Table of results on the pre-specified testset

Kernel q μ λ C Precision Recall Fmicro Fmacro

SPK [2] – – – 1 74.7% 34.4% 47.1% 25.0%
DTK [4] – – 0.65 100 79.5% 44.0% 56.7% 36.9%
All-Pairs-DTK – – 0.6 60 80.2% 49.6% 61.3% 40.6%
Path-DTK 1 0.5 0.5 10 76.7% 52.8% 62.5% 41.3%

Table 6. Table of results for the single top-level relations with 5-times repeated 5 fold
cross validation

Kernel Relation Precision Recall F-score Std. error

SPK [4]

At 78.1% 41.8% 54.5% (0.34)
Near 10.0% 0.5% 0.9% (0.78)
Part 76.8% 25.4% 38.1% (0.76)
Role 81.4% 62.9% 71.0% (0.16)
Social 54.0% 3.6% 6.8% (0.06)

DTK [2]

At 65.2% 47.4% 54.9% (0.52)
Near 52.9% 29.1% 37.3% (2.20)
Part 71.8% 41.8% 52.8% (0.67)
Role 78.4% 67.1% 72.3% (0.30)
Social 11.5% 3.6% 5.5% (0.73)

All-Pairs-DTK

At 65.2% 54.0% 59.1% (0.28)
Near 93.2% 71.8% 80.9% (1.57)
Part 70.0% 43.4% 53.6% (0.48)
Role 79.1% 67.8% 73.0% (0.44)
Social 39.6% 15.6% 22.2% (2.08)

Path-DTK

At 73.4% 58.0% 64.8% (0.05)
Near 90.9% 50.5% 64.9% (2.19)
Part 85.5% 49.8% 62.9% (0.67)
Role 83.4% 71.9% 77.2% (0.13)
Social 42.4% 10.6% 16.8% (1.34)
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Table 7. The results of different parameters with 5-fold CV on a single seed on the
training data in the optimization phase

Kernel q μ λ C Prec Rec Fmicro Fmacro

SPK

1 79.1% 46.6% 58.7% 33.9%
10 79.2% 46.5% 58.6% 33.9%
60 78.8% 46.6% 58.6% 33.9%
100 9.9% 46.0% 16.3% 21.4%

DTK

0.65 1 88.3% 35.4% 50.5% 26.9%
0.65 10 73.7% 53.1% 61.7% 43.7%
0.65 60 72.7% 54.8% 62.5% 45.4%
0.65 100 72.7% 54.9% 62.5% 45.5%
0.6 1 87.8% 34.3% 49.3% 26.3%
0.6 10 73.0% 52.9% 61.3% 43.8%
0.6 60 72.3% 54.9% 62.4% 45.4%
0.6 100 72.1% 55.0% 62.4% 45.4%
0.5 1 86.1% 31.5% 46.1% 24.1%
0.5 10 71.5% 51.5% 59.9% 41.3%
0.5 60 69.8% 53.7% 60.7% 43.1%
0.5 100 69.8% 54.2% 61.0% 44.2%

All-Pairs-DTK

0.65 1 89.0% 36.0% 51.2% 30.2%
0.65 10 78.4% 54.4% 64.2% 53.1%
0.65 60 74.4% 57.4% 64.8% 54.8%
0.65 100 73.8% 57.6% 64.7% 54.8%
0.6 1 89.2% 35.1% 50.3% 28.4%
0.6 10 79.7% 53.9% 64.3% 53.3%
0.6 60 74.3% 58.2% 65.3% 56.7%
0.6 100 73.5% 58.1% 64.9% 56.5%
0.5 1 89.4% 33.5% 48.8% 25.2%
0.5 10 81.3% 51.9% 63.4% 54.3%
0.5 60 73.6% 57.1% 64.3% 57.2%
0.5 100 71.8% 58.1% 64.2% 58.3%

Path-DTK

1 0.5 0.65 1 86.8% 40.3% 55.1% 29.2%
1 0.5 0.65 10 79.8% 60.6% 68.9% 55.7%
1 0.5 0.65 60 78.4% 61.1% 68.7% 56.4%
1 0.5 0.65 100 78.2% 61.1% 68.6% 56.3%
1 0.5 0.6 1 86.9% 39.7% 54.5% 28.7%
1 0.5 0.6 10 80.3% 61.3% 69.5% 55.6%
1 0.5 0.6 60 77.9% 61.8% 68.9% 56.6%
1 0.5 0.6 100 77.9% 61.8% 68.9% 56.6%
1 0.5 0.5 1 86.8% 38.4% 53.3% 27.1%
1 0.5 0.5 10 80.6% 61.4% 69.7% 56.1%
1 0.5 0.5 100 77.4% 61.8% 68.7% 57.4%
1 0.5 0.5 60 77.4% 61.6% 68.6% 57.3%
2 0.5 0.5 10 79.4% 61.1% 69.1% 52.8%
3 0.5 0.5 10 79.7% 61.3% 69.3% 52.7%
4 0.5 0.5 10 80.1% 61.6% 69.6% 52.8%
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of 99%. The All-Pairs-DTK also beats the DTK by 3.1% Fmicro and 13.2%
Fmacro again with a significance of 99%. It has also the best Fmacro score of
all kernels although the difference is not significant. The Path-DTK exceeds all
other kernels by at least 4.9% Fmicro measure with a significance of 99%. It also
beats DTK and SPK by at least 8.0% Fmicro measure and 12.8% Fmacro again
with a significance of 99%. This experiment clearly shows that our kernels are
superior to the previously published kernels by a large margin with a high signif-
icance. In table 6 we present the results of the different kernels on each of the 5
top level relations. We see that the All-Pairs-DTK outperforms all other kernels
on the “Near” relation by 16.0% F-score and on the “Social” relation at least by
about 5.4% F-score. This is an interesting result because for these two relations
the least training data is available. This indicates that All-Pairs-DTK might
need less training data than the other kernels. The Path-DTK outperforms all
other kernels on the “At”, “Part” and “Role” relations with a significance of
99%. These results allow the conclusion that the Path-DTK performs best on
relations where many training examples are available. However it is not clear
from our experiments on the benchmark data set which of our proposed kernels
is suited best for an arbitrary relation. It is clear that more experiments on dif-
ferent data sets are needed to make such a judgement. Table 7 shows the results
for all different parameter settings. Because the benchmark data set consists of
a separate test set we also conducted experiments where we trained the classifier
only on the training set. We show these results in table 5. The Path-DTK per-
forms best on the test set outperforming the All-Pairs-DTK by 1.2% Fmicro and
the other published kernels by at least 5.8% Fmicro. This further supports the
conclusion that the Path-DTK is a good general kernel for relation extraction.

8 Conclusion and Future Work

In this paper we presented two new tree kernels for relation extraction using de-
pendency parse trees. They use richer structural features and yield significantly
better results than previosly published approaches.We optimized kernel computa-
tions for dependency trees reducing the runtime considerably. For some relations
the accuracy level of our methods seem to be good enough for practical applica-
tion, e.g. for information retrieval. An examination on how those kernels can be
combined with other kernel is meaningful [16]. Another promising direction for
future work is the usage of more sophisticated features which aim at capturing
the semantics of words. Here word sense disambiguation approaches [15] might
be employed or topic modeling algorithms may be used to assign broader seman-
tic information to the words relevant for a relation.
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Abstract. We propose a learning approach for integrating formal knowl-
edge into statistical inference by exploiting ontologies as a semantically
rich and fully formal representation of prior knowledge. The logical con-
straints deduced from ontologies can be utilized to enhance and control
the learning task by enforcing description logic satisfiability in a latent
multi-relational graphical model. To demonstrate the feasibility of our
approach we provide experiments using real world social network data in
form of a SHOIN (D) ontology. The results illustrate two main practical
advancements: First, entities and entity relationships can be analyzed via
the latent model structure. Second, enforcing the ontological constraints
guarantees that the learned model does not predict inconsistent relations.
In our experiments, this leads to an improved predictive performance.

1 Introduction

This paper focuses on the combination of statistical machine learning with on-
tologies specified by formal logics. In contrast to existing approaches to the use
of constraints in machine learning (ML) and data mining, we exploit a semanti-
cally rich and fully formal representation of hard constraints which govern and
support the stochastic learning task. Technically, this is achieved by combining
the Infinite Hidden Relational Model (IHRM) approach to Statistical Relational
Learning (SRL) with inference guided by the constraints implied by a Descrip-
tion Logic (DL) ontology used on the Semantic Web (SW). In this way, our
approach supports a tight integration of formal background knowledge resulting
in an Infinite Hidden Semantic Models (IHSM). The term Semantic in IHSM
stands for this integration of “meaningful”, symbolic knowledge which enables
the use of deductive reasoning.

Benefits of the presented approach are (1) the analysis of known entity classes
of individuals by means of clustering and (2) the completion of the knowledge
base (KB) with uncertain predictions about unknown relations while considering
constraints as background knowledge for the machine learning process. Thus, it
is guaranteed that the learned model does not violate ontological constraints and
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the predictive performance can be improved . While there is some research on
data mining for the SW, like instance-based learning and classification of indi-
viduals, considering “hard” constraints specified in the ontology during machine
learning has hardly been tried so far or only in quite restricted and semi-formal
ways (see Sec. 6 for related work). Even though we use a social network OWL
DL ontology and settle on SRL as an apparently natural counterpart for logical
constraints, our general approach is in no way restricted to DL or SRL and could
be easily adapted to other formal and learning frameworks.

To provide an intuitive understanding of the presented approach we will use a
simple example throughout this paper to illustrate the application of constraints
in our learning setting: Consider a social network where, amongst others, the age
of persons and the schools they are attending is partially known. In addition, an
ontology designer specified that persons under the age of 5 are not allowed to
attend a school. All this prior knowledge is provided in a formal ontology and
the ultimate task is to predict unknown elements of this network.

The remainder of this paper is structured as follows: In Sec. 2 we specify
an ontology in OWL DL that defines the taxonomy, relational structure and
constraints. Next, we show how to infer a relational model from the ontology
and transfer the relational model into an IHSM (Sec. 3). Then, we learn the
parameters of this infinite model in an unsupervised manner while taking the
constraints into account (Sec. 4). In Sec. 5 the IHSM is evaluated empirically
using a complex dataset from the Semantic Web. Finally, we discuss related work
in Sec. 6 and conclude in Sec. 7.

2 Formal Framework

Our approach requires the specification of formal background knowledge and
formal constraints for the learning process. We do so by letting the user of the
proposed machine learning algorithm specify a formal ontology or use an exist-
ing ontology e.g. from the SW. In computer science, an ontology is the formal
representation of the concepts of a certain domain and their relations. In the
context of the (Semantic) Web and thus also in our approach, such an ontology
is typically given as a so-called TBox and a ABox, each of which consists of a
number of description logic formulas. The TBox comprises conceptual knowledge
(i.e., knowledge about classes and their relations), whereas the ABox comprises
knowledge about the instances of these classes. In our context, the given ontol-
ogy and also all knowledge which is a logical consequence from it constitutes
the “hard” knowledge for the learning process (i.e., knowledge which cannot be
overwritten during learning), as described later.

However, our approach is not restricted to ontologies, but works in principle
with all sorts of formal knowledge bases. We are using ontologies mainly because
there is an obvious relatedness of clustering and ontological classification, and
because formal languages, reasoners, editors and other tools and frameworks for
ontologies on the SW are standardized and widely available. Consequently, we
use a description logic for our examples. This is not only because ontologies
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and other formal knowledge on the Web (which is our application here) are
usually represented using DLs, but also because the standard DL which we use
is a decidable fragment of first-order logic (FOL) for which highly optimized
reasoners exist.

We settle on the SHOIN (D) [1] description logic, because entailment in the
current Semantic Web standard ontology language OWL DL can be reduced to
SHOIN (D) knowledge base satisfiability. We could likewise work with OWL DL
syntax directly, but that wouldn’t have any technical advantages and would just
reduce the readability of our examples. Our approach requires that the satisfia-
bility or consistency of ontologies can be checked, which is a standard operation
of most automated reasoning software for the SW. Allowing to check the satisfi-
ability means that the reasoner is able to check whether a given KB (ontology)
has a model. On the syntactic level, satisfiability corresponds to consistency, i.e.,
there are no sentences in the given ontology which contradict each other. The
following specifies the syntax of SHOIN (D). Due to lack of space, please refer
to [1] for a detailed account of this language.

C → A|¬C|C1 � C2|C1  C2|∃R.C|∀R.C |
≥ nS| ≤ nS|{a1, ..., an}| ≥ nT | ≤ nT |

∃T1, ..., Tn.D|∀T1, ..., Tn.D|D → d|{c1, ..., cn}

Here, C denote concepts, A denote atomic concepts, R denote abstract roles
or inverse roles of abstract roles (R−), S denote abstract simple roles, the Ti

denote concrete roles, d denotes a concrete domain predicate, and the ai / ci

denote abstract / concrete individuals.
A SHOIN (D) ontology or knowledge base is then a non-empty, finite set of

TBox axioms and ABox assertions C1 & C2 (inclusion of concepts), Trans(R)
(transitivity), R1 & R2, T1 & T2 (role inclusion for abstract respectively con-
crete roles), C(a) (concept assertion), R(a, b) (role assertion), a = b (equal-
ity of individuals), and a 
= b (inequality of individuals). Concept equality is
denoted as C1 ≡ C2 which is just an abbreviation for mutual inclusion, i.e.,
C1 & C2, C2 & C1. Defining a semantics of SHOIN (D) is not required within
the scope of this work, the canonical semantics which we assume in this work
can be found, e.g., in [1].

2.1 Constraints

Constraints in the sense of this work are actually just formal statements. Our
approach is expected to work with all kinds of logical frameworks which allow
for satisfiability (or consistency) checks over some given set of logical sentences,
for example an ontology. This set of given statements is denoted as the KB in
the further course of this paper. Formally, we define a set of constraints C to
be the deductive closure Θ(KB) of a given knowledge base KB , with Θ(KB) =
{c|KB |= c}. The deductive closure contains not only explicitly given knowledge
(the knowledge base KB), but also all logical sentences which can be derived from
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the KB via deductive reasoning. E.g., if the KB would contain the sentences ¬a
and ¬a → b, the deductive closure would also contain b.

The application-specific constraint set which we use as an OWL DL ontology
is similar to the well-known Friend-Of-A-Friend (FOAF) social network schema,
together with additional constraints which will be introduced later. The following
ontology SN comprises only a fragment of the full FOAF-like ontology we have
used (with DOB meaning “date of birth” and hasBD meaning “has birthday”.).

Person & Agent knows− & knows ∃knows.' & Person
' & ∀knows.Person ∃hasBD.' & Person ' & ∀hasBD.DOB

' &≤ 1 hasBD ' &≥ 1 hasBD ∃yearV alue.' & DOB
' & ∀yearV alue.gY ear ' &≤ 1 yearV alue ' & ∀attends.School

These axioms mainly express certain properties of binary relations (so-called
roles) between classes. For example, ' & ∀attends.School specifies that in our
example ontology the range (target set) of role attends is School.

In addition to these, we provide the machine learning algorithm with an
ABox which models an incomplete social network. The later machine learning
task consists essentially in a (uncertain) completion of this given network frag-
ment. An example for such additional individuals-governing constraints A: tim :
Person, tina : Person, tom : Person; (tina, tim) : knows, (tina, tom) : knows.

Note, that these relationships among persons cannot be weakened or overwrit-
ten by the learning process, even if they contradict observed data. They need
to be provided manually by the KB engineer. As further constraints, we assume
some specific properties G of the analyzed social network. The following set of
axioms expresses that no one who is younger than six years goes to school. At
this, UnderSixY earsOld is the class which contains persons with an age less
than six years (calculated from the given dates of birth):

Pupil & Person Pupil & ¬UnderSixOld Pupil & ∃ attendsSchool

The complete set of given formal and definite knowledge for our running example
is then C = Θ(SN  A  G).

Example Data: The set of data used as examples for the learning tasks takes
the form of ABox assertions. But in contrast to the ABox knowledge in set A
above, an example here might turn out to be wrong. We also do not demand
that examples are mutually consistent, or consistent with the ontology. In order
to maintain compatibility with the expected input format for relational learning,
we restrict the syntax of examples to the following two description logic formula
patterns:

instance : category
(instancea, instanceb) : role

At this, roles correspond to binary relations. The set of all example data given
as logical formulas is denoted as D.
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3 Infinite Hidden Semantic Models

The proposed Infinite Hidden Semantic Model (IHSM) is a machine learning
algorithm from the area of SRL [2]. The novelty is its additional ability to exploit
formal ontologies as prior knowledge given as a set of logical formulas. In our
case, the constraints are provided as a SHOIN (D) ontology with a TBox and
an ABox as just described in the previous section. In traditional ML, prior
knowledge is just specified by the likelihood model and the prior distributions,
parameters of the learning algorithm or selection of features.

In this section, we first show how the ontology from Sec. 2 defines a Relational
Model (RM) which is the basis for an Infinite Hidden Relational Model (IHRM).
Then, the IHSM is generated by constraining the IHRM appropriately.

3.1 Relational Models

First an abstract RM of concepts and roles defined in our social network ontol-
ogy is created. Based on the TBox axioms given by the ontology we can create
a simple sociogram as depicted in Fig. 1. A sociogram consists of three differ-
ent elements: concept individuals (individuals that are instances of a concept
(e.g. tim : Person)), attribute instances (relations between a concept and a
literal (e.g. tina : hasImage)), role instances (relations between concepts (e.g.
(tina, tim) : knows)). Please note that many TBox elements first need to be
deduced from the ontology, so that all individuals can be assigned to its most
specific concepts. This process is known as realization in DL reasoning. Fig. 2
shows the full RM we use for experiments in Sec. 5.

tim : Person

knows

usa : 

Location

tina : 

Person

tom : 

Person

Imagehas

knows
uk : 

Location
residence

residence

Fig. 1. Partial sociogram of the LJ-FOAF-domain

Person
Date

Image

has
OnlineChat
Account

Location

#BlogPosts

School

holds

dateOfBirth

residence attends

posted

located

knows

Fig. 2. Relational Model of the LJ-FOAF-domain
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3.2 Infinite Hidden Relational Models

Following [3] and [4] we extend the RM to a Hidden Relational Model (HRM)
by assigning a hidden variable denoted as Zc

i to each individual i of concept c
with current state k. Given that the hidden variables have discrete probability
distributions they can be intuitively interpreted as clusters Z where similar indi-
viduals of the same concept c (in our case similar persons, locations, schools,...)
are grouped in one specific component k. These assignments of latent states
specify the component one individual is assigned to.

The resulting HRM of the sociogram shown in Fig. 1 is depicted in Fig. 3.
Following the idea of hidden variables in Hidden Markov Models (HMMs) or
Markov Random Fields, those additional variables can be thought of as unknown
properties (roles or attributes) of the attached concept. We assume that all
attributes of a concept only depend on its hidden variable and roles depend on
two hidden variables of the two concepts involved. This implies that if the hidden
variables were known, attributes and roles can be predicted independently. In
addition, the hidden variables in the IHSM incorporate restrictions in the form
of constraints imposed by the ontology (see Sec. 3.3).

Considering the HRM model shown in Fig. 3, information can now propagate
via those interconnected hidden variables Z. E.g. if we want to predict whether
tom with hidden state Z1

3 might know tina (Z1
2 ) we need to consider a new

relationship R3,2. Intuitively, the probability is computed based on (i) the at-
tributes A1

3 and A1
1 of the latent states of immediately related persons Z1

3 and
Z1

2 ; (ii) the known relations associated with the persons of interest, namely the
role knows and residence R2,1, R3,1 and R3,2; (iii) higher-order information in-
directly transferred via hidden variables Z1

3 and Z1
2 . In summary, by introducing

hidden variables, information can globally distribute in the HRM. This reduces
the need for extensive structural learning, which is known to be difficult.

Critical parameters in the HRM are the number of states in the various la-
tent variables, which might have to be tuned as part of a complex optimization
routine. A solution here offers the IHRM, that was introduced by [4] and [3]. In
the IHRM, a hidden variable has a potentially infinite number of states and an
estimate of the optimal number of states is determined as part of the inference
process.

tim : Person

knows

usa : 

Location

tina : 

Person

tom : 

Person

Imagehas

knows
uk : 

Location
residence

residence

tim : Person

knows

usa :

Location

tina : 

Person

tom :

Person

Imagehas

knows
uk : 

Location
residence

residence

Fig. 3. Hidden relational model of the sociogram defined in Fig. 1
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Entity
Attri-

bute
Relation

Fig. 4. Parameters of an IHRM

Finally, we need to define the remaining variables, their probability distribu-
tions and model parameters1. The most important parameters in our case are
shown in Fig. 4. The state k of Zc

i specifies the cluster assignment of the concept
(aka entity class) c. K denotes the number of clusters in Z. Z is sampled from a
multinomial distribution with parameter vector π = (π1, . . . , πK), which speci-
fies the probability of a concept belonging to a component, i.e. P (Zi = k) = πk.
π is referred to as mixing weights, and is drawn according to a truncated stick
breaking construction with a hyperparameter α0. α0 is referred to as a concentra-
tion parameter in Dirichlet Process (DP) mixture modeling and acts as a tuning
parameter that influences K. K is also limited by a truncation parameter that
specifies the maximum number of components per cluster for each entity class.

Attributes Ac are generated from a Bernoulli distribution with parameters
θk. For each component, there is an infinite number of mixture components
θk. Each person in the component k inherits the mixture component, thus we
have: P (Gi = s|Zi = k,Θ) = θk,s. These mixture components are independently
drawn from a prior G0. The base distributions Gc

0 and Gb
0 are conjugated priors

with hyperparameters βc and βb.
The truth values for the role Ri,j involving two persons (i and j) are sampled

from a binomial distribution with parameter φk,�, where k and � denote cluster
assignments of the person i and the person j, respectively. φb

k,� is the correlation
mixture component indexed by potentially infinite hidden states k for ci and �
for cj , where ci and cj are indexes of the individuals involved in the relationship
class b. Again, Gb

0 is the Dirichlet Process base distribution of a role b. If an
individual i is assigned to a component k, i.e. Zi = k, the person inherits not
only θk, but also φk,�, � = {1, . . . ,K}.

3.3 Infinite Hidden Semantic Models

The IHSM is based on the idea that formal constraints can be imposed on the
correlation mixture component φk,� and thus restrict possible truth values for
the roles Ri,j . This, amongst others, imposes constraints on the structure of the
underlying ground network or, more specifically in our application, the structure

1 Please note that we cannot focus on the technical details of an lHRM and need to
refere the reader to [4] and [3] for a more detailed introduction.
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of the sociogram. Recap the simple example from Sec. 1: According to this a per-
son i known to be younger than 5 years old should not be attending any school j.
The IHSM will extract this information from the ontology and set the correlation
mixture component φk,� at entries representing according relations from Person
component k to School component � to 0. Here, k and � denote the compo-
nents the person i and the school j are assigned to. This eliminates inconsistent
structural connection from the underlying ground network. More generally, all
connections Ri,j between two components k and � where inconsistent individuals
i and j are (partial) member of are considered void.

However, this redirection of relations by the latent variables allows IHSM
not only to restrict possible connections in the ground network but makes this
restriction influence the likelihood model itself. By restricting φ, π is affected
as well. Ultimately, cluster assignments Z are influenced and information can
globally propagate through the network and influence all φ, π and θ (see Sec. 3.2).

While this section (3.3) focused on a conceptual description of IHSM the
algorithm will be specify in detail in the next section (4) before Sec. 5 presents
experimental results.

4 Learning, Constraining and Predictions

The key inferential problem in the IHSM is to compute the joint posterior dis-
tribution of unobservable variables given the data. In addition, we need to avoid
inconsistent correlation mixture components φ during learning. As computation
of the joint posterior is analytically intractable, approximate inference methods
need to be considered to solve the problem. We use the blocked Gibbs sampling
(GS) with truncated stick breaking representation [5] a Markov chain Monte
Carlo method to approximate the posterior.

Let D be the set of all available observations (observed example data, each
represented as a logical formula as defined in 2.1), and let Agents = AgentI

be the set of all instances of category Agent under interpretation I - that is
informally, all persons which contribute to the social network. At each iteration,
we first update the hidden variables conditioned on the parameters sampled in
the last iteration, and then update the parameters conditioned on the hidden
variables. So, for each entity class

1. Update hidden variable Zc
i for each ec

i : Assign to component with probability
proportional to:

π
c(t)
k P (Ac

i |Z
c(t+1)
i = k, θc(t))×

∏
b′

∏
j′

P (Rb′

i,j′ |Z
c(t+1)
i = k, Z

cj′ (t)
j′ , φb′(t))

2. Update πc(t+1) as follows:

(a) Sample v
c(t+1)
k from
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Beta(λc(t+1)
k,1 , λ

c(t+1)
k,2 ) for k = {1, . . . ,Kc − 1} with

λ
c(t+1)
k,1 = 1 +

Nc∑
i=1

δk(Zc(t+1)
i ),

λ
c(t+1)
k,2 = αc

0 +
Kc∑

k′=k+1

Nc∑
i=1

δk′(Zc(t+1)
i ),

and set vc(t+1)
Kc = 1. δk(Zc(t+1)

i ) equals to 1 if Zc(t+1)
i = k and 0 otherwise.

(b) Compute πc(t+1) as: πc(t+1)
1 = v

c(t+1)
1 and

π
c(t+1)
k = v

c(t+1)
k

k−1∏
k′=1

(1− v
c(t+1)
k′ ), k > 1.

3. Update θ:

θ
c(t+1)
k ∼ P (·|Ac, Zc(t+1), Gc

0)

4. Constrain φ to satisfiable relations:
For entity cluster k, let F k

ext = F k∩{(em, en) : r|em, en ∈ Agents, r ∈ R,m 
=
n} be the set of those logical formulas in the example data set which represent
some relation (“role”) r between two different individuals (persons) em and
en where person em is assigned to component k already and en is assigned
to a component �. To keep the notation compact, we spell out role instances
(e1, e2) : r only asymmetrically (i.e., we omit (e2, e1) : r if we have covered the
case (e1, e2) : r). Let Fk ⊆ D be the set of all example formulas which have
already been used to learn component k so far, that is, the subset of the data
D which has been used for forming that cluster until now. Let furthermore
ϑ(e,D) be the set of all sampled formulas in D where the person e appears,
i.e., f ∈ ϑ(e,D) iff f ∈ D ∧ (f ≡ e : c ∨ f ≡ (e, ex) : r for some c ∈ C,
ex ∈ Agents and r ∈ R. We use ρ(e, j) to express that a certain entity e has
already been assigned to a certain component j. The following steps are now
used in order to check whether component k is usable w.r.t. the given set of
logical constraints C:

(a) Identify the largest subset F k
clean of formulas within F k

ext which is consis-
tent with C and the set of example data about person ec

i :

F k
clean ⊆ 2F k

ext , ∃ I, I |= F k
clean ∪ ϑ(ec

i , D) ∪ C,

∀F ⊆ 2F k
ext , ∃ I, I |= F ∪ ϑ(ec

i , D) ∪C : F ⊆ F k
clean

(I |= X expresses that the set of logical sentences X is satisfiable, I being
an interpretation).
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(b) Verify whether F k
clean, the formulas which have been used to learn “re-

lated” other clusters, ϑ(ec
i , D) and the constraints are consistent in sum

if we replace in F k
clean the names of all persons which are assigned to

components other than k with the name of person ec
i .

Let F k
upd = {(ec

i , em) : r|(en, em) : r ∈ F k
ext} be the latter set of for-

mulas. Furthermore, let F k
rel =

⋃
j 
=k,ρ(em ,k),(em,en):r∈F j F j be the set of

all formulas in all other components than k which“relate”to component k
using role formulas. The overall consistency check for component k yields
a positive result iff

∃ I, I |= ϑ(ec
i , D) ∪ F k

upd ∪ F k
rel ∪ C ∧ F k

clean 
= ∅

Where the consistency check described above yielded a positive result:

φ
b(t+1)
k,� ∼ P (·|Rb, Z(t+1), Gb

0).

After the GS procedure reaches stationarity the role of interest is approximated
by looking at the sampled values. Here, we only mention the simple case where
the predictive distribution of the existence of a relation Ri,j between to known
individuals i, j is approximated by φb

i′,j′ where i′ and j′ denote the cluster as-
signments of the objects i and j, respectively.

5 Experiments

The increasing popularity of social networking services like MySpace and Face-
book has fostered research on social network analysis in the last years. The
immense number of user profiles demands for automated and intelligent data
management capabilities, e.g. formal ontologies. While data mining techniques
can handle large amounts of simple facts, little effort has been made to exploit
the semantic information inherent in social networks and user profiles. There
is almost no work on statistical relational learning with formal ontologies in
general and with SW data in particular. The lack of experiments on large and
complex real world ontologies is not only due to the absence of algorithms but
also due to missing suitable datasets. In this section we will present both, a large
and complex SW dataset and the methodology of how to apply IHSM in prac-
tice. Ultimately, we evaluate our approach by presenting results of an empirical
comparison of IHSM and IHRM in this domain.

5.1 Data and Methodology

As mentioned before our core ontology is based on Friend of a Friend (FOAF)
data. The purpose of the FOAF project is to create a web of machine-readable
pages describing people, the links between them and the things they create and
do. The FOAF ontology is defined using OWL DL/RDF(S) and formally spec-
ified in the FOAF Vocabulary Specification 0.912. In addition, we make use of
2 http://xmlns.com/foaf/spec/
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Table 1. No. of individuals, no. of instantiated roles and final number of components

Concept #Indivi. Role #Inst. #C. IHRM #C. IHSM
Location 200 residence 514 18 17

School 747 attends 963 36 48
OnlineChatAccount 5 holdsAccount 427 4 4

Person 638 knows 8069 38 45
hasImage 574

Date 4 dateOfBirth 194 4 2
#BlogPosts 5 posted 629 4 4

further concepts and roles which are available in the data (see Sec. 2.1). We
gathered our FOAF dataset from user profiles of the community website Live-
Journal.com3 (This specific ontology will be called LJ-FOAF from now on).

All extracted concepts and roles are shown in Fig. 2. Tab. 1 lists the number
of different individuals (left column) and their known instantiated roles (middle
column). Please note that Date and #BlogPosts are reduced to a small number
of discrete states. As expected for a social networks knows is the primary source
of information. This real world data set offers both, a sufficiently large set of
individuals for inductive learning and a formal ontology specified in RDFS and
OWL. However, while LJ-FOAF offers a taxonomy there are no complex con-
straints given. Thus, to demonstrate the full potential of IHSM, we additionally
added constraints that are not given in the original ontology (see Sec. 2.1).

To implement all features of IHSM we made use of additional open source
software packages: The Semantic Web framework Jena4 is used to load, store
and query the ontology and Pellet5 provides the OWL DL reasoning capabilities.
This outlines the workflow: First, the TBox axioms are designed and loaded into
Jena. Next, all ABox assertions are added and loaded into Jena. Then, by using
the taxonomy information from the ontology and the ABox assertions we extract
the RM as described in Sec. 3.1. This RM is transferred into a IHSM by adding
hidden variables and parameters, accordingly. Finally, the parameters are learned
from the data, while constraints are constantly checked as shown in Sec. 4.

In our experiments the standard setting for the truncation parameter were
#Individuals/10 for entity classes with over 100 instances and #Individuals
for entity classes with less individuals. The standard iterations of the Gibbs
sampler are 100. We did not engage in extensive parameter tuning because the
purpose of this evaluation is to examine the influence of the constraints and not
optimal predictive performance. Thus, we fixed α0 = 5 for every entity class and
β0 = 20 for every relationship class.

5.2 Results

We will now report our results on learning and constraining with the LJ-FOAF
data set.
3 http://www.livejournal.com/bots/
4 http://jena.sourceforge.net/
5 http://pellet.owldl.com/
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Computational Complexity: The additional consistency check for every in-
dividual per iteration made training slower by approximately a factor of 6 if
performed with Jena and Pellet. After implementing a non-generic constraining
module optimized for the simple example introduced in Sec. 1 we could reduce the
additional computation considerably. A comparison between IHSM and IHRM
for different truncation parameter settings is given in Fig. 5. Obviously, there is
almost no computational overhead in the latter case.

Evaluating the convergence of the cluster sizes is another interesting aspect
in the comparison of IHSM and IHRM. Fig. 6 shows the number of individuals
for the two largest components of the entity cluster ZPerson plotted over Gibbs
sampler iterations for one exemplary training run. Apparently, the constraining
does not affect the convergence speed which is desirable.

Cluster Analysis: An interesting outcome of the comparison of IHRM and
IHSM is the number of components per hidden variable after convergence (see
Table 1 right column). In both cases, if compared to the initialization, Gibbs
sampling converged to a much smaller number of components. Most of the indi-
viduals were assigned to a few distinct components leaving most of the remaining
components almost empty. There is a noticeable difference between IHRM and
IHSM concerning the concepts School and Person which needed more compo-
nents after training with IHSM (see bold numbers in Table 1). A closer analysis of
the components revealed that IHSM generated additional components for incon-
sistent individuals, because both concepts are affected by constraints. However,
the last concept affected by the constraints (Date) has fewer components. Here,
IHSM divided more generally into age groups“too young”and“old enough”which
also reflects the constraints. This demonstrates that the restriction of roles does
influence the states of the latent variables.

Fig.7 compares the learned parameter φattend of IHRM to the one learned by
IHSM. A brighter cell indicates stronger relations between two components. Al-
though hard to generalize, a cell with 50% gray might indicate that no
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Fig. 7. Correlation mixture component φattend for each combination of components
ZPerson and ZSchool. Left: without constraining (IHRM). Right: with constraining
(IHSM).

significant probabilistic dependencies for individuals in this component are found
in the data. The most obvious results are the rows with black cells only which
represent Person components that have no relation to any school. In fact, all of
those cells contained at least one persons that conflicted with the ontology by
having specified an age under 5. This proves that one of the main goals of IHSM
is achieved, namely the exploitation of constraints provided by the ontology.

Note that the learned clusters can also be used to extract symbolic and un-
certain knowledge and feed it back to the ontology. This is a promising direction
of future research.

Predictive Performance: Given LJ-FOAF data for social network analysis
one could for instance want to predict “who knows who” in case either this
information is unknown or the systems wants to recommend new friendships.
Other relations that could be interesting to predict in case they are unknown
are the school someone attends/attended or the place he lives/lived. Furthermore
one could want to predict unspecified attributes of certain persons, like their
age. The purpose of this section is not to show superior predictive performance
of IHRM compared to other multi-relational learning algorithms. This has been
evaluated before, e.g. in [3]. Here, we want to show the influence of constraining
on the predictive performance for IHSM compared to IHRM.

We ran a 5-fold cross validation to evaluate the predictions of different rela-
tionship classes. In specific, the non-zero entries of the relationship matrix to be
predicted were randomly split in 5 parts. Each part was once used for testing
while the remaining parts were used for training. The entries of each testing
part were set to zero (unknown) for training and to their actual value of 1 for
testing. Each fold was trained with 100 iterations of the Gibbs sampler, where 50
iterations are discarded as the burn-in period. After this, the learned parameters
are recorded every fifth iteration. In the end we use the 10 recorded parameter
sets to predict the unknown relationship values, average over them and calculate
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Table 2. Predictive performance for different LJ-FOAF roles: AUC and 95% confidence
intervals

Role attends dateOfBirth knows
IHRM 0.577 (±0.013) 0.548 (±0.018) 0.813 (±0.005)
IHSM 0.608 (±0.017) 0.561 (±0.011) 0.824 (±0.002)

the area under the ROC curve (AUC) as our evaluation measure6. Finally we
average over the 5 folds and calculate the 95% confidence interval.

The obvious roles to evaluate are attends and dateOfBirth. Both are con-
strained by the ontology, so IHSM should have an advantage over IHRM because
it cannot predict any false positives. The results in Table 2 confirm this obser-
vation. In both cases IHSM did outperform IHRM. A less obvious outcome can
be examined from the influence of the constraining on a relationship that is not
directly constrained by the ontology like knows. Still, in our experiments IHSM
showed a slight advantage over IHRM. Thus, there seems to be a positive influ-
ence of the background knowledge, although a lot of users specify an incorrect
age. However, there is the potential that the opposite may occur likewise. If the
given constraints are conflicting with the empirical evidence there could even
be a decrease in predictive performance. It is the ontology designers choice to
decide whether to enforce a constraint that conflicts with the observed evidence.

Considering the numerous ongoing efforts concerning ontology learning for the
Semantic Web more data sets with complex ontologies should become available
in the near future. Thus, we expect to achieve more definite results of IHSM in
those domains.

6 Related Work

Very generally speaking, our proposed method aims at combining machine learn-
ing with formal logic. So far, machine learning has been mainly approached either
with statistical methods, or with approaches which aim at the inductive learning
of formal knowledge from examples which are also provided using formal logic.
The most important direction in this respect is Inductive Logic Programming
(ILP) [6]. Probabilistic- and Stochastic Logic Programming (e.g., [7]) (SLP) are
a family of ILP-based approaches which are capable of learning stochastically
weighted logical formulas (the weights of formulas, respectively). In contrast to
that, our approach learns probability distributions with the help of a given, for-
mal theory which acts as a set of hard constraints. To the best of our knowledge,
this direction is new. What (S)ILP and our approach have in common is that
our method also uses examples formalized in a logic language as data. There
6 Please note that SW data has no negative samples, because zero entries do not

represent negative relations but unknown ones (open world assumption). Still, the
AUC is appropriate because it has been shown to be a useful measure for probabilistic
predictions of binary classification on imbalanced data sets.
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are also some approaches which build upon other types of “uncertain logic”, for
example [8]. Although (S)ILP and SRL are conceptually very closely related and
often subsumed under the general term relational learning, SRL still is rarely in-
tegrated with formal logic or ontologies as prior knowledge. [9] use ontologies in
an similar model but only use taxonomic information as additional “soft”knowl-
edge (i.e., knowledge which can be overwritten during the learning process) in
the form of features for learning. They do not restrict their results using formal
hard constraints. One exception are Markov Logic Networks [10] which combine
First Order Logic and Markov Networks and learn weights of formulas.

Surprisingly there are also hardly any applications of (pure) SRL algorithms
to (SW) ontologies. The few examples, e.g. [11], [12], do not consider formal
constraints. There are various approaches to the learning of categories in formal
ontologies from given instance data and/or similar categories (e.g., [13]). How-
ever, these approaches do not allow for the statistical learning of relations in the
sense of SRL and their aims are all in all more related to those of ILP than to
our learning goals. Although there are applications of SRL to social networks,
such as [14], none of those approaches uses a formal ontology or any other kind
of formal knowledge. Furthermore, the social networks examined in this work
are mostly significantly less complex in regard of the underlying relation model.

The use of hard constraints for clustering tasks in purely statistical approaches
to learning, as opposed to the ubiquitous use of “soft”prior knowledge, has been
approached in, e.g., [15]. A common characteristic of these approaches is that
they work with a relatively narrow, semi-formal notion of constraints and do not
relate constraints to relational learning. In contrast to these efforts, our approach
allows for rich constraints which take the form of a OWL DL knowledge base
(with much higher expressivity). The notion of forbidden pairings of data points
(cannot-link constraints [15]) is replaced with the more general notion of logical
(un-)satisfiability w.r.t. formal background knowledge.

7 Conclusions and Future Work

In the presented approach, we explored the integration of formal ontological
prior knowledge into machine learning tasks. We introduced IHSM and provided
empirical evidence that hard constraints cannot only improve predictive perfor-
mance of unknown roles, which are directly affected by the constraints, but also
unconstraint roles via IHSMs latent variables.

In general we are hope to see more work on inductive learning with SW
ontologies and on the other hand complex Semantic Web ontologies that can
be supplemented with uncertain evidence. For the IHSM in particular, future
work will concern a detailed theoretical analysis of the effect of constraining on
clusters. Refining the ontology by extracting formal knowledge from the latent
model structure is another promising research direction. As mentioned before
we intend to obtain additional experimental evidence concerning computational
complexity and predictive performance as soon as more suitable ontologies be-
come available. We expect that the increased research on semantic technologies
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will soon result in those suitable formal ontologies that contain both, complex
consistency reasoning tasks and large sets of instances.
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Abstract. This paper focuses on Active Learning with a limited num-
ber of queries; in application domains such as Numerical Engineering, the
size of the training set might be limited to a few dozen or hundred exam-
ples due to computational constraints. Active Learning under bounded
resources is formalized as a finite horizon Reinforcement Learning prob-
lem, where the sampling strategy aims at minimizing the expectation of
the generalization error. A tractable approximation of the optimal (in-
tractable) policy is presented, the Bandit-based Active Learner (BAAL)
algorithm. Viewing Active Learning as a single-player game, BAAL com-
bines UCT, the tree structured multi-armed bandit algorithm proposed
by Kocsis and Szepesvári (2006), and billiard algorithms. A proof of
principle of the approach demonstrates its good empirical convergence
toward an optimal policy and its ability to incorporate prior AL crite-
ria. Its hybridization with the Query-by-Committee approach is found
to improve on both stand-alone BAAL and stand-alone QbC.

1 Introduction

Active Learning (AL), a most active topic in supervised Machine Learning (ML)
[1,2,3,4,5,6,7], aims at accurately approximating a target concept with a limited
number of queries to an oracle; each query asks the oracle to label a point of the
problem domain (instance) according to the target concept. Through a judicious
selection of instances to query, the hope is to learn with a significantly smaller
number of queries than in the standard ML setting using iid labeled instances.
Prominent AL approaches (section 2) rely on the properties of the hypothe-
sis space (VC dimension or covering numbers) and/or propose various criteria
estimating the additional information provided by an instance; they mostly pro-
ceed by iteratively selecting the optimal instance in the sense of the considered
criterion.

This paper presents a new perspective on AL, formalized as a finite time
horizon reinforcement learning problem. Choosing an instance, i.e. making a
query is viewed as an action taken by the learner. The reward associated to a
sequence of actions is the generalization error of the hypothesis learned from
the training set gathered from this sequence of actions. Under mild assumptions
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(Bayesian realizable setting) detailed in section 3, this paper offers a provably
optimal AL strategy, parameterized by the initial training set and the finite
horizon T , i.e. the maximum number of queries allowed.

As could have been expected, the formal derivation of this optimal AL strat-
egy is intractable. A tractable approximation thereof is given by the Bandit-based
Active Learner algorithm (BAAL, section 4). This tractable approximation in-
volves two main ingredients. Firstly, the exploration of the AL search space relies
on UCT, the tree-structured multi-armed bandit algorithm originally introduced
by Kocsis and Szepesvari [8]. The use of UCT is motivated as AL can be formu-
lated as a single player game (section 4) and UCT has been shown quite efficient
in learning game strategies [9]. Secondly, an unbiased and frugal sampler of the
hypothesis and instance spaces, based on billiard-based mechanisms [10,11,12]
supports the Monte-Carlo simulations in UCT. A proof of principle of the BAAL
algorithm is presented, showing its practical robustness for AL under bounded
resource constraints. This bounded resource constraint is motivated by targeted
applications, aimed at simplified models in Numerical Engineering: in this con-
text, training sets are limited to a few dozen or hundred labeled instances due
to the high computational cost of instance labeling.

The paper is organized as follows. Section 2 briefly introduces the notations
used throughout the paper and reviews the state of the art. Section 3 formalizes
AL as a reinforcement learning problem, and shows how to tackle it as a single-
player game. The online learning algorithm BAAL, implementing this single-
player game using the UCT algorithm, is described in section 4; it takes as input
a training set and the available computational budget, and finds the best instance
to label next. Section 5 details two extensions brought to UCT in order to match
the AL context. Firstly, as UCT only addresses finite action/state spaces, it
needs to be extended to explore the continuous instance space; the proposed
approach relies on progressive widening [13,14,15]. A second extension regards
the hybridization of BAAL with prior knowledge, such as existing AL criteria.
The proposed hybridization will be illustrated by embedding a variant of Query-
by-Committee (QbC, [16,17]) within the progressive widening heuristics. An
experimental validation of the approach is presented in section 6, using passive
learning and QbC as baselines, and the paper concludes with some perspectives
for further research.

2 Background and State of the Art

Notations and definitions used in the paper are as follows. Let st = {(xi, yi),
xi ∈ X, yi ∈ Y, i = 1 . . . t} denote a t-size training set, with X the instance space
and Y the label space; only the binary classification case (Y = {0, 1}) will be
considered in the paper.

From st, a learning algorithm A extracts some hypothesis h in hypothesis
space H, mapping X onto Y . The learning performance most usually refers to
the expectation of the loss �(h(x), h∗(x)) incurred by h over the target concept h∗

a.k.a. oracle, where the expectation is taken over the joint distribution PXY on
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the problem domain. Whereas the standard supervised learning setting assumes
that training examples (xi, yi) are independent and identically distributed (i.i.d.)
after PXY , AL selects at time step i some instance xi in the instance space X
(or in a pool of instances drawn from X), the label yi of which is determined by
the oracle.

A sampler S is a mapping from
⋃

t∈IN(X×Y )t to X , also referred to as policy
or strategy, selecting a new instance x to be labeled depending on training set
st. A learner A is a mapping from

⋃
t∈IN(X × Y )t to H associating a hypothesis

h to any training set st. The Version Space (VS) associated to a training set st,
noted H(st), is the set of hypotheses consistent with st, i.e. such that h(xi) = yi

for 1 ≤ i ≤ t.
A first research direction focuses on the uncertainty region (set of examples

where VS hypotheses disagree). Cohn et al. [2] reduce the VS by characterizing
the uncertainty region via neural nets, and selecting new instances in this region.
Well-known methods such as Query-by-Committee (QbC) algorithms [16,17] di-
rectly reduce the VS volume; Freund et al. [17] proved that these methods can
lead to an exponentially smaller number of queries than the random querying
strategy (passive learning), at least in the case of perceptrons. Dasgupta [4] has
established the quasi-optimality of these methods in the realizable classification
case (i.e. when h∗ belongs to H) for a finite instance pool. More generally, when
there exists a probability measure PH on H, usual AL strategies are concerned
with reducing either the measure of the Version Space, or the variance of the
VS hypothesis labels. Otherwise, the reduction of the Version Space can be ex-
pressed in terms of its diameter, that is the measure of points where hypotheses
in the VS differ.

A related research direction focuses on error reduction, meant as the ex-
pected generalization error improvement brought by an instance. Many criteria
reflecting various measures of the expected error reduction have been proposed
[18,19,20,21]; corresponding AL strategies proceed by greedily selecting the opti-
mal instances in the sense of the considered criterion. Other approaches exploit
prior, learner-dependent knowledge about what makes an instance informative,
such as its margin [3,22,23]. Hoi et al. [6] consider batch active learning, querying
a subset of instances that results in the largest reduction of the Fisher informa-
tion. Some of these approaches however happen to face learning instabilities,
which might require to mix the AL procedure with a uniform instance selection
[24]. Such instabilities suggest that in some cases an optimally efficient AL sys-
tem can hardly be based on a greedy selection strategy, at least using the criteria
considered so far.

On the theoretical side, significant results have been obtained in terms of
lower and upper bounds on the reduction of the sample complexity brought by
AL, e.g. depending on the complexity of the hypothesis search space measured
through covering numbers or Kolmogorov complexity [1,25,5]; the appropriate-
ness of hypothesis spaces to AL has been studied [26,27,7] and an “almost”
optimal (though intractable) algorithm has proposed by [27] in the realizable
setting for finite VC-dimension.
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3 An Optimal Active Learning Strategy: AL as a Markov
Decision Process

This section presents a theoretically optimal strategy for Active Learning in
finite time horizon T , where T corresponds to the total number of instances to
be labeled along the AL process. As in [17,4], the proposed approach is built on a
Bayesian setting [29,28]; prior knowledge about the target concept is accounted
for by a probability distribution PH on the hypothesis space1 H. Further, the
approach relies on the realizable assumption, i.e. the target concept h∗ to be
learned is assumed to be deterministic and to belong to H (how to relax this
assumption will be discussed in section 7).

Let us formalize AL as a Markov Decision Process (MDP). MDPs are classi-
cally described in terms of states, actions, reward, policy and transition functions
[30]. In the AL context, the state space S consists of all possible training sets st.
An action corresponds to the selection of a new instance to be labeled; the set
of actions noted A thus coincides with the instance space X or a subset thereof.

The reward function associated to state st corresponds to the generalization
error of the hypothesis A(st) learned from st by learner A. In many finite time
horizon settings, and particularly so for the targeted applications, the reward
at the final state of the learning is the only one that matters. Accordingly, the
reward function will be defined for horizon states only, and assimilated to the
value function of those states (see below).

The transition function p : S×A×S → R+ defines the probability of arriving
at some state st+1 by selecting action x in state st (see below). Lastly, in the
AL context a MDP policy is a sampler S, mapping a state st onto an action, i.e.
a new instance xt+1.

Considering horizon T , let ST (h) denote the training set built by applying T
times policy S when learning some target concept h, and let Err(A(ST (h)), h)
denote the generalization error of the hypothesis learned from ST (h). It comes
naturally that an optimal AL strategy is one minimizing the expectation of
Err(A(ST (h)), h) when h ranges in H:

S∗
T = argmin

S
Eh∼HErr(A(ST (h)), h). (1)

The main motivation behind the presented MDP framework is to build a policy
with optimal behavior in the sense of Eq. (1). In order to do so, it remains to
find the appropriate reward and transition probability functions, and such that
the latter accounts for the actual behavior of the AL process.

Regarding the reward function, as the goal is to minimize the generalization
error of the hypothesis learned from sT , the reward is only known at horizon
T . After the realizable assumption, the target concept h is bound to be in the
Version Space of sT , noted H(sT ). The reward function V (sT ) (value at horizon
T ) therefore is the expectation of the generalization error of the learner A, taken
over H(sT ):

V (sT ) = Eh∼H(sT )Err(A(sT ), h). (2)
1 PH is set to the uniform distribution on H in the absence of prior knowledge.
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By construction, the transition function p(st, x, st+1) is such that p is zero for all
st+1 except the ones satisfying st+1 = (st, (xt+1 = x, yt+1)) for some yt+1. In the
latter case, p reflects the probability for the label of x to be yt+1. p(st, x, st+1)
is thus expressed as a function of the probability of the label of x, conditionally
to the fact that the target hypothesis belongs to H(st):

p(st, x, (st, (xt+1 = x, yt+1))) = p(h(x) = yt+1|h ∈ H(st)) (3)

The above transition and value functions guarantee that the optimal MDP
strategy achieves the AL goal and minimizes the expected generalization error
(Eq. (1)):

Theorem 1 (Optimal AL policy). Let E denote the expectation operator
defined after Eq. (3). Let value function V ∗,T be recursively defined as follows,
where |s| denotes the number of examples in training set s:

V ∗,T (s) =
{

Eh∼H(s)Err(A(s), h) if |s| = T
infx∈X Es′∼p(s′|x,st)V

∗,T (s′) otherwise (4)

Define S∗,T as S∗,T (s) = arg infx∈X Es′∼p(s′|x,st)V
∗,T (s′) (Bellman optimal

strategy). Then S∗,T is optimal in the sense of Eq. (1).

The proof is given in [31] due to space limitations. It essentially shows that the
value function of a policy at the initial state coincides with the criterion in Eq.
(1). The rest of the proof is a direct application of Bellman’s optimality principle
[32].

After this MDP formulation, AL can be seen as a one-player game. The active
learner plays against the (unknown) target hypothesis h, belonging to the version
space H(s0) of the initial training set2 s0. Upon each move (selection of some
instance x), oracle h provides the label y = h(x). At the end of the game − that
is, after T examples have been picked, defining training set sT − the reward is
the generalization error of the hypothesisA(sT ) learnt from sT . The real learning
game is indeed played against oracle h.

It is however possible to train the AL player, and therefore devise a good AL
policy beforehand, by mimicking the above game and playing against a “surro-
gate” oracle, made of a hypothesis h uniformly selected in the VS. The reward
of such a game is computed as in the real game: it is the generalization error of
the learned hypothesis w.r.t. the (surrogate) oracle. This reward implements a
uniform draw of the random variable Err(A(s), h) for h ranging in H.

By construction, the average empirical reward collected by the AL player after
many such games asymptotically converges toward the true expectation of this
random variable, that is, the desired reward function (Eq. (2)).

4 Tractable Approximations of Optimal AL Strategy

This section presents a consistent and tractable approximate resolution of the
above MDP, the BAAL algorithm. BAAL relies on two main ingredients. Firstly
2 For the sake of simplicity and when no confusion is to fear, the initial training set

s0 is omitted and H is used instead of H(s0).
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the tree-structured multi-armed bandit UCT [8] is extended to the one-player
game of AL. Secondly, a fair and frugal billiard-based algorithm [10,11] is used
to sample the instance and hypothesis spaces.

4.1 Bandit-Based Active Learning

UCT (Upper Confidence Tree) is a Monte-Carlo tree-search algorithm [8,13],
where the selection of a child node is cast into a multi-armed bandit problem
[33]. UCT notably became famous in the domain of strategic games as it in-
spired the computer-Go program MoGo, first to ever win over professional human
players [9].

The UCT-based game strategy provides the basis for BAAL (Fig. 1). Let T
denote the “game” tree of AL; its root node is the initial training set s0. It is
worth noting that BAAL actually explores a directed graph (a given node can be
reached along different paths) although it is presented as a tree-search algorithm
for simplicity.

Each tree-walk (aka game or simulation) is indexed by a surrogate hypothesis
h (see below) and proceeds as follows. Each node corresponding to a training
set st is called a state node. Its child nodes, referred to as decision nodes, stand
for the actions of the AL player, that is, the possible instances to be selected. A
decision node thus is made of the training set st (parent node), and the chosen
instance xt+1.

Every decision node has two child nodes (the possible labels of the instance
xt+1). The one selected during the tree-walk indexed by h obviously corresponds
to h(xt+1), thus leading to the next state node st+1 = st ∪ (xt+1, h(xt+1)).
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Fig. 1. Search Tree developed by BAAL, the Bandit Based Active Learner, in the
binary classification case. The root of the tree is the initial training set s0. Each tree
walk is based on selecting some hypothesis h in the Version Space of s0. The tree walk
proceeds by iteratively selecting an instance x, whose label is set to h(x). Ultimately,
the tree walk is assessed from the generalization error Err(A(sT ), h) of the learned
hypothesis w.r.t. h.
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More precisely, each tree-walk proceeds as follows (Fig. 1; BAAL pseudo-code
is given in Alg. 1):

– Firstly, a surrogate hypothesis h is uniformly drawn in the version space
H(s0) of the initial training set s0;

– In each state node (i.e. some training set st), BAAL uses the famed Upper
Confidence Bounds (UCB) criterion (Eq. (5), see below) to select some de-
cision node, i.e. some instance xt+1 to be labeled. The associated label is set
to h(xt+1), where h is the surrogate hypothesis. The next state node thus is
st+1 = st ∪ (xt+1, h(xt+1)).

– The tree-walk proceeds until arriving in a tree leaf, i.e. a state node st0 not
yet visited. At this point, T − t0 additional instances are uniformly selected,
labeled after h, and added to the training set st0 , forming a T -size training
set sT .

– From training set sT , a hypothesis ĥ is learned by BAAL3.
– The reward of the tree walk is the generalization error of ĥ with respect to

the surrogate hypothesis h: this reward is used to update the value of every
relevant node.

The value μ̂(st) of state node st is computed by averaging all rewards gathered for
nodes sT such that st ⊆ sT . These values are exploited by the UCB criterion [33],
determining which arm (instance aka decision node) should be selected. The arm
selected is the one maximizing the sum of the empirical reward μ̂i (exploitation
term), plus an exploration term depending on the number ni of times arm i has
been selected. The exploration vs exploitation tradeoff is adjusted using some
tuned constant C:

arg max
i∈child nodes

μ̂i + C

√
log(

∑
j∈child nodes nj)

ni
(5)

In the multi-armed bandit setting, this formula guarantees a provably optimal
convergence towards the arms with maximal value, under the assumption that
arm rewards are independent random variables. (Clearly this assumption does
not hold in the AL game, no more than in the game of Go [34]).

The memory-wise computational tractability of BAAL is ensured by gradually
developing the tree, initially made of the root node and its child nodes only. After
each tree-walk, the first randomly selected node is stored in memory with its child
nodes: the current leaf node will no longer be a leaf node, and the next time it is
encountered, the selection among its child nodes will rely on the UCB formula.
Thereby the tree is asymmetrically grown, developing more the subtrees where
nodes have better values − since those will be selected more often.

BAAL (Alg. 1) implements the UCT scheme with two specific ingredients. The
DrawHypothesis function selects the surrogate hypothesis h attached to each
tree-walk using billiard algorithms (see below). The ArmSet function (section
5.1) extends UCT to deal with an infinite set of actions (the continuous instance
space), using the so-called progressive widening heuristics.
3 The learning algorithm actually is a parameter of BAAL. In the experiments, we

used a uniform sampler of the version space of sT .
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Algorithm 1. The BAAL algorithm:
Input: measure PH on hypothesis space H; initial training set s0; time horizon
T ; number N of allowed tree-walks;
Output: an instance x to be labelled by the oracle.

BAAL(PH , s0, T, N)
for i=1 to N do

h = DrawHypothesis(PH , s0)
Tree-Walk(s0, T, h)

end for
Return x = arg maxx′∈X{n(s

⋃
{x′})}

Tree-Walk(s, t, h)
Increment n(s)
if t==0 then

Compute r = Err(A(s), h)
else
X (s) = ArmSet(s, n(s))
Select x∗ = UCB(s,X (s)))
r = Tree-Walk(s

⋃
{(x∗, h(x∗))}, t− 1, h)

end if
r(s)← (1− 1

n(s)
)r(s) + 1

n(s)
r

Return r

4.2 Billiard Algorithms

As already mentioned, each tree-walk in BAAL is indexed by a hypothesis h uni-
formly sampled in version space H(s0). The most straightforward sampling al-
gorithm is based on rejection: hypotheses are uniformly drawn in H and rejected
if they do not belong to the VS (if they are inconsistent with the training set
s0). Unfortunately, the rejection algorithm, although sound, is hardly tractable.
Alternative algorithms such as Gibbs sampling or more generally Monte-Carlo
Markov Chains (MCMC) methods, involve quite a few free parameters and might
scale poorly with respect to the dimensionality of the search space and the size
of the training set s0. We thus used a billiard (a.k.a. ray-tracing) algorithm
inspired from [10,35,11], assuming that the hypothesis space H can be parame-
terized by IRd. Actually, the experimental validation (section 6) considers linear
hypotheses; how to go beyond the linear case will be discussed in section 7.

Let Ω be a connected subset of IRd, defined by a set of constraints g1, . . . , gn:
Ω = {x ∈ IRd s.t. gi(x) ≥ 0, i = 1 . . . n}. The billiard algorithm considers a point
z ∈ IRd (not necessarily in Ω) and a direction v (v ∈ IRd, ||v|| = 1). The trajec-
tory followed by z is such that: i) the set of constraints satisfied by z does not
decrease; ii) z “bounces” when it meets an active constraint g, i.e. its direction v
is changed to point inside the domain (see below); iii) the trajectory is stopped
when the computational resources are exhausted, that is when its total length
reaches some user-defined parameter L, and the final point is returned. Under a
few regularity conditions on the constraints, a billiard trajectory is ergodic, i.e.
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it covers the whole domain when L goes to infinity [36]; the distribution of the
final trajectory point converges toward the uniform distribution on Ω. Billiard
algorithms have been successfully used in Machine Learning, e.g. to estimate the
Bayes classifier in a (high-dimensional) kernel feature space [10,35].

Rebound policy. Let gi be the saturated constraint and zi the rebound point. The
rebound policy sets the current direction v to a unit vector randomly drawn in
the half sphere centered on zi and defined from the hyperplane tangent to gi in zi.
Experimentally, this policy efficiently approximates the Knudsen law advocated
by Comets et al. [36], which is more expensive to compute. This matter is however
outside the scope of this work.

5 UCT with Continuous Domain and AL Criteria

This section is devoted to specific adaptations of UCT involved in BAAL: how
to deal with a continuous action set (the instances) and how to take advantage
of existing AL criteria, such as Query-by-Committee [16].

5.1 Progressive Widening

UCB originally requires each arm to be selected at least once for Eq. (5) to be
computed. When the number of arms is large with respect to the number N of
simulations, UCB thus tends to degenerate into pure exploration. UCT faces the
same limitation, and even more so since many arms need be considered at each
node of the tree, strongly biasing the search towards exploration.

The progressive widening (PW) technique has been proposed by [13] to handle
such cases. Let ns denote the number of times node s has been visited so far; then
the number of arms that can be considered from s is limited to a fraction m of ns.
Empirical and theoretical studies suggest m = O(n1/4

s ) [13,14,15]. In practice,
the ArmSet procedure implementing PW in BAAL (Algorithm 1), considers a
finite set of options for each node (see below), and a new option is added to
this set whenever �n1/4

s � is incremented by one. Typically, a single arm will be
explored from the root node in the first fifteen tree-walks; an additional arm
is considered in the sixteenth random walk; UCB will be used to select among
both arms during random walks 16 to 80; a third arm is considered in random
walk 81, etc. The rationale behind progressive widening is that the better (i.e.
the more visited) s, the more careful the investigation of its subtrees should be.

5.2 Integrating AL Criteria in BAAL

The selection of the actions (instances) considered at a given time step by ArmSet
offers some room for the use of prior knowledge. The simplest selection procedure
indeed is based on the uniform sampling of the instance space. This procedure
reflects an agnostic viewpoint, making no assumption about the utility of in-
stances. It must be noted however that BAAL convergence might be delayed
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(like other UCT-based algorithms) if the optimal options are considered late
during the search: instances introduced later on are clearly disadvantaged com-
pared to the earlier, more investigated, instances.

Furthermore, the AL literature suggests that some selection criteria − al-
though not optimal − offer generally sound indications in order to select infor-
mative instances (section 2). Such criteria can seamlessly be integrated in BAAL
through the progressive widening procedure. Formally, a new instance is added
to ArmSet when it satisfies the considered criterion, instead of being uniformly
selected in the pool of instances4.

5.3 QbC-BAAL: BAAL with Maximal Uncertainty

Maximal uncertainty (MU) (section 2) is a criterion stemming from Query-by-
committee (QbC) algorithms. QbC works by randomly sampling hypotheses in
the Version Space, and choosing a given instance only if enough hypotheses
disagree about its label. An analysis of this strategy with a committee of size
2 is for instance presented in [17]. In the case of large-sized committees, one
proceeds by ranking instances based on the committee disagreement: the top-
ranked instances indeed correspond to those with maximal uncertainty.

The QbC approach is integrated within BAAL as follows. At each node (train-
ing set st) a committee of hypotheses is built by uniformly sampling the Version
Space of st. Whenever a new instance is to be added to ArmSet, one selects the
one maximizing the committee disagreement.

MU is an aggressive criterion, thus holding a higher AL potential than ran-
dom progressive widening. In counterpart it leads to a less diversified sample;
whenever the criterion is under-optimal, the limited exploration will yield poorer
performance. It is also more demanding computationally.

6 Experimental Validation

This section reports on the experimental study of BAAL. After describing the ex-
perimental goal and setting, empirical results are discussed comparatively to ran-
dom active learning, referred to as passive learning, and the Query-by-Committee
(QbC) approach [16,17].

6.1 Goal of Experiments

The main questions investigated in the experiments regard the theoretical and
computational performance of BAAL. Specifically:
Question 1 (Optimality): Does the stand-alone BAAL, where the progressive
widening heuristics involves a uniform instance selection, converge to an optimal
strategy; does it match QbC results when these are known to be quasi-optimal

4 Let us emphasize that hybridizing BAAL with any such criterion does not depend
on the true instance labels.
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after Dasgupta [4] ?
Question 2 (Flexibility): As shown in section 5.1, BAAL can embed existing AL
criteria, e.g. QbC, within the progressive widening heuristics. Does the use of
QbC within BAAL improve i) on stand-alone BAAL ? ii) on stand-alone QbC ?

6.2 Experimental Setting

Following [17,21,23], the instance space X considered in these experiments is the
unit sphere of IRd. The hypothesis space H is restricted to the linear classifiers,
a.k.a. separating hyperplanes. The choice of this search space is motivated as it
has been thoroughly studied from a theoretical perspective [17,21,23] although
these results did not lead to experimental studies to our best knowledge. Accord-
ingly, some upper and lower bounds on the optimal performance are available,
and will be used to assess BAAL performance. The goal of this experimental
study is to provide a proof of principle regarding the validity of this new AL
approach; still, it must be emphasized that BAAL is not limited to linear hy-
pothesis spaces (a kernelized extension will be discussed in section 7).

Two variants of BAAL will be considered. BAAL stand-alone (or BAAL for
short), uses a uniform selection of instances within progressive widening, whereas
QbC-BAAL uses a committee-based selection of instances. More precisely, in
each node (training set st), a committee of 100 hypotheses uniformly selected in
H(st) is built, and a set of 10, 000 instances uniformly drawn from X is sampled
and ordered after the committee disagreement. Whenever a new action is to be
considered (�n(st)1/4� increased by one), the first instance not yet considered in
the ordered set is returned by ArmSet.

A hypothesis h is characterized as a unit vector wh (wh ∈ IRd, ||wh||2 = 1),
where h(x) is positive if and only if the scalar product < wh, x > is positive.
The lack of prior knowledge is accounted for by setting distribution PH to the
uniform distribution on the unit sphere of IRd.

A BAAL run proceeds as follows:

1. The target concept h∗ is uniformly selected in H.
2. For t = 0 to T , where T is the horizon time and the initial training set s0 is

empty:
(a) The BAAL tree rooted on st is constructed using N tree-walks, respec-

tively using a randomly (a QbC-) ordered instance pool in the progressive
widening heuristics for BAAL (resp. QbC-BAAL);

(b) The best instance, i.e. the most visited one at the first level of the st

rooted tree, noted xt+1, is selected and labeled after the target concept
(oracle) h∗;

(c) st+1 = st ∪ {(xt+1, h
∗(xt+1)}.

3. From sT , the T -size training set built by BAAL (QbC-BAAL) and labeled
after the current target concept h∗, a hypothesis hT is learned (uniformly
sampled in the Version Space H(sT )).

4. The performance of the run, that is, the generalization error Err(h, h∗) de-
fined as Px∼X (h∗(x) 
= h(x)), is computed as the dot product of the associ-
ated vectors wh and wh∗ .
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BAAL and QbC-BAAL performances are averaged over 400 independent runs
for each 3-uple {d,T,N} (dimension, horizon, simulation number). The number
N of simulations, controlling the computational cost, ranges in {1, 2, 4, . . .N =
212}. The reported experiments consider (d = 4, T = 15) and (d = 8, T = 20)
to assess the scalability of the approach. The performance is plot against the
number N of tree-walks, Fig. 2, indicating the average performance (plain line)
and the standard deviation (vertical bars). The performance of BAAL stand-
alone (respectively QbC-BAAL) is assessed comparatively to the passive learning
(resp. the QbC greedy AL) baseline. The baseline performances correspond to
those obtained for N = 1. Actually, BAAL can be viewed as an algorithm
providing an “educated” sampling strategy, where the “educated sampler” is
based on a computational budget of N simulations; the baseline, non-educated,
sampler accordingly corresponds to N = 1.

6.3 Performance and Scalability

Fig. 2.(a) and (c) display the overall performance of stand-alone BAAL and
QbC-BAAL versus the computational budget N (in log scale).

The competence of BAAL in terms of Active Learning is visible as stand-alone
BAAL strongly outperforms the passive learning baseline (N = 1): the general-
ization error significantly decreases as N increases. For a given computational
budget N , the improvement on passive learning is higher in small dimension, as
could have been expected. Nevertheless, the improvement is significant both in
dimensions 4 and 8 even for a small computational budget (N > 26).

The performance of stand-alone BAAL is further assessed by comparison with
that of a stand-alone QbC using a large-sized committee. After [4,17], the Max-
imum Uncertainty heuristics (approximated by a large-sized QbC selection) is
almost optimal (up to logarithmic terms) in the linear setting. It is thus satisfac-
tory to see that stand-alone BAAL steadily approaches the QbC reference per-
formance (the fact that it can even outperform the QbC reference in dimension
8 is discussed below). These results suggest a positive answer to the Optimal-
ity question (section 6.1): stand-alone BAAL is a competent, criterion-agnostic
Active Learner, which might work well in the absence of prior knowledge about
the instance selection, and which matches the known optimal performance in a
simple hypothesis space.

Another picture is provided by the performance of QbC-BAAL (Fig. 2.(c)
and (d)), suggesting that QbC-BAAL can get the “best of both worlds”. In di-
mensions 4 and 8, QbC-BAAL outperforms the QbC baseline in a statistically
significant way; it overcomes the theoretical limitations of QbC with regards to
optimality (i.e. multiplicative factors w.r.t. optimality logarithmic in the preci-
sion and linear in the dimension). These results thus suggest a positive answer
to the Flexibility question (section 6.1): BAAL can be hybridized with the QbC
criterion, and this hybridization can improve on both stand-alone BAAL and
stand-alone QbC. Although BAAL flexibility remains to be confirmed by con-
sidering other AL criteria, QbC is among the most widely used criteria in the
AL literature.
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Fig. 2. BAAL performances: Generalization error vs the number of simulations N in
log scale. Top rows report the results obtained for instance space dimension d = 4
and time horizon T = 15; bottom rows report the results for d = 8, T = 20. Left rows
report the performance of the stand-alone BAAL. Right rows report the performance of
QbC-BAAL. The performance of the baseline correspond to the performance obtained
for N = 1 (at the origin of the curve). The horizontal line reports the results obtained
for the stand-alone QbC strategy.

Due to space limitations, the tractability of BAAL is detailed in [31]. Overall,
billiard algorithms allow for a time complexity lower by several orders of magni-
tude than the rejection algorithm, with an outstanding scalability w.r.t. horizon
and dimension of the instance space. For (d = 8, T = 20, N = 16, 000), the com-
putational time is 17 seconds on Pentium PC vs > 3 hours for the rejection-based
BAAL.

7 Conclusion and Perspectives

This paper focuses on Active Learning with a limited number of queries, moti-
vated by application domains such as Numerical Engineering. In such domains,
computing the response of an example might require several days of computa-
tion, limiting the training set size to a few dozen or hundred examples.
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Within this bounded resource setting, Active Learning was tackled as a Re-
inforcement Learning problem: find the sampling strategy aimed at minimizing
the overall generalization error for a finite time horizon. This ideal and utterly
intractable formalization leads to the proposed BAAL algorithm: an approxima-
tion of the optimal sampling strategy is learned within a one-player game setting.
BAAL is inspired from an earlier work devoted to Computer Go [9], building
upon the tree-structured bandit-based search algorithm UCT [37] and the pro-
gressive widening heuristics to deal with a continuous search space [13,14,15].

The experimental validation of BAAL investigates three main questions: the
convergence towards the optimal performance when it is known; the ability to
take advantage of competent AL criteria, such as Maximum Uncertainty [38],
and improve on the greedy use of these criteria; the computational tractability
of the overall AL scheme. A proof of principle, the experiments discussed in the
paper show that the answer to all three questions is positive in the simple case
of a realizable setting with linear hypotheses.

Further research aims at extending the proposed method beyond this sim-
ple setting. Getting rid of the realizable setting (considering label noise, or the
case where the target concept does not belong to the hypothesis space H) will
be investigated through relaxing the billiard-based exploration of the Version
Space. The billiard-based sampling of the hypotheses will likewise be extended
to accommodate the priors on the hypothesis space (set to the uniform density
in the present paper).

Another perspective for further study is to extend BAAL to non-linear hy-
pothesis spaces, thanks to the famed kernel trick. It must be noted that billiard-
based algorithms have been investigated for kernel spaces [11,10,35], featuring
good theoretical and computational results. The extension of BAAL to Active
Learning with kernels thus defines a new and appealing objective.
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Abstract. Partially ordered feature sets appear naturally in many clas-
sification settings with structured input instances, for example, when
the data instances are graphs and a feature tests whether a specific sub-
structure occurs in the instance. Since such features are partially ordered
according to an “is substructure of” relation, the information in those
datasets is stored in an intrinsically redundant form. We investigate how
this redundancy affects the capacity control behavior of linear classifi-
cation methods. From a theoretical perspective, it can be shown that
the capacity of this hypothesis class does not decrease for worst case
distributions. However, if the data generating distribution assigns lower
probabilities to instances in the lower levels of the hierarchy induced by
the partial order, the capacity of the hypothesis class can be bounded
by a smaller term. For itemset, subsequence and subtree features in par-
ticular, the capacity is finite even when an infinite number of features
is present. We validate these results empirically on three graph datasets
and show that the limited capacity of linear classifiers on such data makes
underfitting rather than overfitting the more prominent capacity control
problem. To avoid underfitting, we propose using more general substruc-
ture classes with “elastic edges” and we demonstrate how such broad
feature classes can be used with large datasets.

Keywords: capacity control, partially ordered features, graph mining,
QSAR.

1 Introduction

In this paper we investigate classification with feature sets that are partially
ordered. Such feature sets often appear naturally in learning settings with struc-
tured input objects. For instance, consider the task of learning whether or not
a particular chemical compound inhibits tumor growth [3,8,2,10]. A popular ap-
proach to this setting is to represent the compounds by molecular graphs and
to generate Boolean features that test for the occurrence of certain substruc-
tures (e.g. subgraphs) in the molecular graph. In this setting each compound
can be represented by a bit vector, where each bit indicates whether or not
the corresponding subgraph appears in the compound’s molecular graph. Such
a representation can then be used with traditional linear classifiers such as the
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ones output by support vector machines. The difference to most other classifi-
cation settings, of course, is that the space of subgraphs is partially ordered via
the “is subgraph of” relation. Consider, for instance, a data instance where the
feature representing an aromatic ring is set to true. This means that all features
that represent linear sequences of up to six carbon atoms connected with aro-
matic bonds must also be set to true. Consequently, the information provided
by partially ordered feature sets is redundant by design.

The main question dealt with in this paper is how this redundancy affects
the empirical risk minimization and capacity control behavior of a learning al-
gorithm. In the first part of the paper we address these questions from a theo-
retical point of view. We show that the capacity of the class of linear classifiers
(as measured by the VC-dimension) does not change, even when the features
in the training data are totally ordered. However, if the underlying data distri-
bution puts lower probabilities on data instances that are ordered in the later
levels of the hierarchy induced by the partial order, one can find smaller upper
bounds for the capacity of the class of linear classifiers. We show that distri-
butions where the probability of observing an instance declines exponentially
with the instance’s level in the hierarchy can lead to settings, where the class of
linear classifiers has finite capacity even in the presence of an infinite amount of
features.

On the practical side we validate the theoretical results empirically on three
datasets from quantitative structure-activity relationships. We show that adding
more features does indeed not lead to overfitting for subsequence, subtree and
subgraph features. Instead, we show that extending the feature set with more
expressive substructures can improve predictive accuracy. This indicates that
underfitting rather than overfitting is the prominent problem on datasets with
partially ordered features. Finally, we investigate how an expressive and therefore
large substructure feature class can be efficiently applied on large datasets.

2 Background

Before we can delve into the details, we need to introduce the used concepts
and definitions. We assume an instance space X of possible objects and a binary
output space Y := {−1, 1}. We are given a set F = {f0, . . . , fm} of m + 1
substructure features, which are ordered by a (possibly partial) “is substructure
of” relation R ⊂ F × F so that (fi, fj) ∈ R whenever fi is a substructure
of fj. We write fi(x) = 1 or fi(x) = 0 to express that the substructure for
feature fi is contained (fi(x) = 1) or not contained (fi(x) = 0) in object x. We
also assume that the first feature f0 represents the empty substructure, so that
f0(x) = 1 for all x ∈ X . With this, each object x ∈ X can be represented by
a m + 1-dimensional binary vector x ∈ {0, 1}m+1. In the following, we will not
distinguish between x as an object and x as a bit vector if the meaning is clear
from the context. We write fi ( fj to denote that (fi, fj) ∈ R. Naturally, the
“is substructure of” relation R is transitive so that fi ( fk whenever there is a
fj with fi ( fj and fj ( fk. Also, whenever a substructure feature fi is more
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general than a feature fj (i.e. fi ( fj), all objects x ∈ X with fj(x) = 1 also
have fi(x) = 1. The relation R limits the number of bit vectors that can be used
to represent the examples in X . We denote the space of possible bit vectors by
XR := {x ∈ {0, 1}m+1|∀(f, f ′) ∈ R : f ′(x) = 1 → f(x) = 1}.

We follow the usual learning setting, where a data set (X,Y ) ∈ (XR × Y)n

of n instances (x1, y1), . . . , (xn, yn) is drawn i.i.d. from a fixed but unknown
distribution P . The task of the learning system is to find a linear classifier
w ∈ R

m+1, which minimizes the true error εw := E(x,y)∼P l(wTx, y), where
the loss l(y, y′) → R assigns some loss to each misclassification. Since P is un-
known, a classifier’s true error is unknown and practical learning algorithms deal
with the empirical error ε̂w = 1

n

∑n
i=1 l(w

Txi, yi) as a computable substitute.
Since the first feature f0 represents the empty substructure and is always set to
1, the first component w0 of the linear classifier is essentially a bias term, which
controls the distance of the hyperplane induced by w to the origin.

3 Ordered Feature Sets

We are now in the position to formulate the main theoretical results. We first
show that the capacity of the class of linear classifiers is the same as the capacity
in the unrestricted case without a partial order. Thus, the introduction of a
partial order on the features does not increase or decrease the capacity of linear
classifiers for worst case distributions. In the second part we give upper bounds
of the capacity for distributions where the probability of observing an instance
declines with its level in the hierarchy induced by the partial order. We also show
that an exponential decay in this probability can lead to linear classifiers having
finite capacity, even though the number of features is infinite. This is the case
for instance for subsequence and subtree features, but not for subgraph features.

3.1 Distribution-Independent Capacity

One of the main contributions of computational learning theory deals with es-
timates for the capacity of hypothesis classes. In the general case (i.e. without
partially ordered features), it is well known that the hypothesis space of linear
classifiers of size m has VC dimension m (see e.g. corollary 13.1 in [4]), giving
rise to bounds of the form

Pr

⎡⎣εw ≤ ε̂w + O

⎛⎝√
m + ln 1

δ

n

⎞⎠⎤⎦ ≥ 1− δ.

Thus, the “overfitting penalty” introduced by a hypothesis space of linear clas-
sifiers scales as O(

√
m/n) in the number of features. These bounds are tight

up to the order of magnitude, that is, there are also lower bounds that scale
with O(

√
m/n). Let us now consider the hypothesis space of linear classifiers on

the restricted instance space XR, whose instances meet the constraints induced
by the partial order R. Observe that the VC-dimension of the class of linear



Capacity Control for Partially Ordered Feature Sets 321

classifiers decreases, if the data instances are chosen only from a d-dimensional
subspace of X with d < m. Since XR ⊂ X , the class of linear classifiers on XR is
smaller in the sense that its hypotheses needs to distinguish between a smaller
number of instances. One could thus hope that the VC-dimension of linear clas-
sifiers on XR decreases in a similar way, if the constraints imposed by R are
strict enough. Unfortunately, this turns out to be not the case. The following
theorem states this more formally:

Theorem 1. Let R be an arbitrary partial order on the features {f0, . . . , fm},
let XR ⊂ {0, 1}m+1 be the space of instances which are consistent with the order
R and let HR denote the hypothesis space of linear classifiers over XR. Then,
HR has VC-dimension m + 1.

Proof. It is sufficient to show that there is no dataset of size m + 2, which
can be shattered and that there is a dataset of size n ≤ m + 1, which can be
shattered by a linear classifier. The first statement follows directly from the fact
that the VC-dimension of linear classifiers in R

m is also m + 1. For the second
statement, assume without loss of generality that the features f0, f1, . . . , fm are
ordered according to R. Then, select the set of examples {x0, x1, . . . , xm}, where
fj(xi) = 1, if fj ( fi and fj(xi) = 0 otherwise. The (m + 1)× (m + 1) training
matrix X for this data set has the lower triangle set to zero and the diagonal
set to one, that is, it is in upper diagonal form. A straightforward application
of Gaussian elimination shows that the matrix has full rank. This means that
there is a linear classifier for all 2m+1 possible target value assignments.

This means the VC bounds for the hypothesis space of linear classifiers with
partially ordered features are essentially the same as the ones for unordered
features. The lower bounds in chapter 14 of [4] ensure that there is no way to
get significantly better guarantees than O(

√
m/n). This is quite remarkable,

because we did not impose any restrictions on R. In particular, if R is a total
order so that fi ( fi+1 for all 0 ≤ i < m, the instance space XR contains only
m + 1 instances. Thus, the VC dimension HR remains constant for any order
R, regardless of whether R is a total order (and |XR| = m + 1) or the empty
order (and |XR| = 2m+1). Even though the capacity of the hypothesis class
remains constant, the best obtainable empirical risk does depend heavily on R.
In particular, if R is a total order and the Bayes error is zero, it is easy to see
that empirical risk minimization will find a w with ε̂w = 0. This is not true for
non-total orders.

3.2 Distribution-Dependent Capacity

The results in the preceding section indicate that there are worst-case distribu-
tions where the partial ordered feature sets do not decrease the capacity of the
class of linear classifiers. However, there may very well be distributions that lead
to smaller capacity estimates. In the following we show that this is indeed the
case. More specifically, we introduce a distribution-based quantity that can be
used to upper-bound the capacity of the class of linear classifiers with partially
ordered feature sets.
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We begin with a few definitions. Since the features are partially ordered, they
can be categorized by level. More formally, for a given feature fi let the level
λ(fi) denote the largest k ∈ N so that there is a sequence i1, i2, . . . , ik of size k
with fi1 ≺ . . . ≺ fik

. Similarly, the level λ(x) := maxf∈F{λ(f)|f(x) = 1} of an
instance x is the largest level of the features that are set to one by x. The prob-
ability Pr[f(x) = 1] = E[f(x)] that a feature f is set to one decreases with its
level. In fact, if fi ( fj and E[fi(x)] = E[fj(x)], then we know that the two fea-
tures fi and fj are equivalent, because fi(x) = fj(x) for all instances x ∈ X . This
means that we can remove a feature fi from the training data whenever it is more
general than another feature fj and E[fi(x)] = E[fj(x)]. Removing the feature
does not affect the capacity of the hypothesis class of linear classifiers, because
for every classifier w that assigns a non-zero weight to fi there is an equivalent
classifier w′, which simply transfers the weight from fi to the equivalent feature
fj. Thus, we can assume without loss of generality that E[fi(x)] > E[fj(x)]
whenever λ(fi) < λ(fj). With this, let λi := maxx∈XR{Pr[X = x]|λ(x) ≥ i}
denote the maximum probability of obtaining an example of level at least i and
let di := |{f ∈ F|λ(f) = i}| denote the number of features of level i. We can
now state the following two results. The first one gives an upper bound of the
capacity of the class of linear classifiers for the zero-one loss, whereas the second
one deals with loss functions that are Lipschitz with Lipschitz constant L.

Theorem 2. Let R be a partial order on a feature space F , let XR := {x ∈
{0, 1}m|∀(f, f ′) ∈ R : f ′(x) = 1 → f(x) = 1} be an partially ordered instance
space, let P be a probability distribution on X × Y and let εw and ε̂w be based
on the zero-one loss. Define

DR :=
n∑

i=1

log

⎡⎣ k∑
j=1

λj exp
(
k

i
dj

)⎤⎦
Then it holds for all linear classifiers w ∈ R

m that

Pr

⎡⎣εw ≤ ε̂w +

√
2DR + log 1

δ

n
+

√
log 1

δ

2n

⎤⎦ ≥ 1− δ

A more straightforward bound can be achieved, if the loss function is continuous
and Lipschitz. Let Bm

2 := {w ∈ R
m|‖w‖2 ≤ 1} denote the m-dimensional unit

ball for the 2-norm.

Theorem 3. Let R, XR, P be as above, but let εw and ε̂w be based on a Lip-
schitz loss lL : R → [0, 1] with Lipschitz constant L. Then it holds for all linear
classifiers w ∈ Bm

2 that

Pr

⎡⎣εw ≤ ε̂w + 2L

√∑k
i=1 diλi

n
+

√
8 log 2

δ

n

⎤⎦ ≥ 1− δ
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Fig. 1. The maximum probability of observing an instance for each level on the
NCTRER dataset

The proofs are in the Appendix. The results essentially state that the capacity
of the class of linear classifiers can be upper-bounded depending on how λi

and di scale for increasing levels. The bound is small, either if there are only a
limited number of features of higher levels (i.e. di is small for large i), or if the
probability of encountering instances of higher levels is small (i.e. λi is small for
higher levels). As explained above, the sequence λ1, λ2, . . . is strictly decreasing,
but the extent of the decay depends on the distribution. In practice, applications
with structured examples and substructure features often lead to distributions
where the level probabilities features exponential decay. For instance, we plot
the level sequence for the NCTRER dataset in figure 1. The figure shows that
the probability decreases approximately exponentially.

The number di of features per level, though, grows usually exponentially. If
a learning system makes use of all possible substructure features for each level,
an exponential decay in the level probabilities does therefore not automatically
guarantee a small or even finite learning capacity. In the following we give capac-
ity estimates for the case where the decay in the level probabilities is exponential.
In particular we assume that the level probabilities can be upper-bounded by a
decay that is exponential in a constant α:

λi ≤ αi

3.3 Capacity Estimates for Various Partial Orders

Given the upper bound in Theorem 3 we can consider C :=
∑k

i=1 diλi as a
capacity measure for the class of linear classifiers on partially ordered feature
sets. This enables us to investigate the capacity estimates for the partial orders
induced by some popular substructure classes. Let us begin with the total order
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Rt := {(fi, fj)|i ≤ j}. While this order will be rarely encountered in practical
applications, it is interesting from a theoretical perspective, because it is the
order that puts the strongest constraints on the features. Obviously, the level of
feature fi is simply i so that CRt =

∑k
i=1 α

i. This is a geometric series, and a
basic analysis confirms that

CRt =
1− αk+1

1− α
≤ 1

1− α

This means that the capacity of the hypothesis class of linear classifiers with
totally ordered features is bounded by a term of order O(1/(1 − α)), which
is independent of the number of features. Thus, empirical risk minimization is
consistent even for instance spaces with an infinite amount of totally ordered
features.

As a slightly more complicated case, we consider the setting where the ex-
amples are sets of items. Here, we have a set O = {o1, . . . , ok} of items and
the instance space X is the power set of O, so that the instances and features
are represented by subsets of O. A feature assigns the label 1 to an example,
whenever the item set associated with the feature is a subset of the item set
associated with the example. It is easy to see that the level of a feature is simply
the number of items in its associated item set. Since there are

(
k
i

)
possible item

sets with i items, the decay capacity can be computed as:

CRI =
k∑

i=0

(
k

i

)
αi = (1 + α)k ≤ ekα

Depending on the size of α, this is an exponential improvement over the VC-
bound, which upper-bounds the capacity of the class of linear classifiers by O(2k),
because there are 2k possible features. This result is also applicable to SVM-
classification with polynomial kernels on binary data. If one selects a polynomial
kernel of degree t for SVM training on data with k binary (i.e. zero-one-valued)
features, the kernel-induced feature space is equivalent to a feature space con-
taining all itemset features of size at most t. In this case the decay capacity is∑t

i=0

(
k
i

)
αi.

In the next step, we handle the case where the examples are strings over an
alphabet A = {a1, . . . , ah} containing h characters. Here, it is a natural choice
to use substring features, which are partially ordered by the “is substring of”
order RS . More precisely, we assume that each feature is associated with a string
and the feature assigns the value 1 to an instance, if this string is a substring of
the instance. Even though there is a potentially infinite number of instances and
features, the analysis is particularly easy. It is clear that the level of a string is
just its length. Also, there are hl different strings of length l. That means that
the decay capacity for linear classifiers with partial order R is:

CRS =
∞∑

i=1

(hα)i
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This is again a geometric series. If α < 1
h , the series converges and the capacity

of the class of linear classifiers can be bounded by 1
1−hα . Since this quantity does

not depend on the number of features, one can have finite capacity even with an
infinite amount of features.

As a more complicated partial order, we consider the classification setting
where the features are represented by labeled rooted trees, where the labels are
taken from label set L of size l. Here, the features are ordered by some form of
subtree isomorphism. Let Ti denote the number of rooted unlabeled trees with
i vertices. It is well known that the fraction Ti

Ti−1
converges as i → ∞ and that

it converges to the limit cT := limi→∞
Ti

Ti−1
= 2.955765 . . . from below [7]. Thus,

we can use ci
T as a crude upper bound for the number of unlabeled rooted trees

with i vertices. Since there are li ways to assign labels, we get the following
upper bound for the “is subtree of” order RT :

CRT ≤
∞∑

i=1

(lcTα)i

If α < 1
cT l ≈

0.3383...
l , the decay complexity of labeled rooted tree classifiers with

the subtree order RT can be upper-bounded as follows:

CRT ≤ 1
1− lcTα

It is remarkable that this upper bound differs only in a comparably modest
constant from the one for strings.

Finally, let us investigate the setting, where examples and features are con-
nected graphs and the features are partially ordered according to the “is sub-
graph of” order RG. Here, a graph with i edges has level i. The number of
graphs with i edges and at most l different node labels can be upper-bounded
by li!(l + 1)i. If there are at most k levels, the capacity can thus be upper-
bounded by

CRG ≤
k∑

i=1

i!l ((l + 1)α)i

Unlike the previous substructure classes, this bound does not converge for k →
∞. In fact it is easy to see that the number of graphs with i edges grows at least
with o((i/c)!) for some constant c. That means that an exponential decay of the
level probability is not sufficient to enforce a finite capacity bound in the limit.

4 Experiments

Theoretical results are interesting for determining worst case capacity estimates
and investigating the asymptotical consistency of learning systems with partially
ordered feature sets. However, in practical applications one is much more inter-
ested in finding average case capacity estimates, which can be used to avoid
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over- and underfitting. If the capacity of the learning system’s hypothesis class
is too large, it might overfit on the training data. In this case, the training er-
ror will be near zero, but the validation error is worse than necessary. If, on the
other hand, the learner’s capacity is too small, the system might induce classifiers
with high training and validation error. The theoretical results in the preceding
section indicate that the capacity of the space of linear classifiers can be consid-
erably smaller than it is the case with non-ordered features. In the following we
investigate the overfitting behavior in quantitative structure-activity relation-
ships. Here, the learning system is given a training set containing the molecular
structure of compounds as labeled graphs. The task is to induce a model that
can predict some biological or chemical endpoint such as tumor growth inhibi-
tion or a compound’s ability to pass the blood-brain barrier. We used the three
datasets from [8]. The NCTRER dataset [5] deals with the prediction of binding
activity of small molecules at the estrogen receptor. It contains 232 molecules.
The Yoshida dataset [12] consists of 265 molecules classified according to their
bio-availability. The third dataset classifies 415 molecules according to the degree
to which they can cross the blood-brain barrier (BBB) [6].

4.1 Overfitting

For the first experiment we followed the standard substructure feature genera-
tion methodology (see e.g. [8,2]) and implemented a frequent subgraph mining
tool similar to gSpan [11]. The system recursively generates all subgraphs oc-
curring in at least one graph of the training database. However, in contrast to
gSpan, it discards all substructures whose instantiation vector is a duplicate of
an existing subgraph, that is, a substructure which occurs in exactly the same
graphs as an already generated subgraph. We used the tool to generate all possi-
ble subsequences, subtrees, and subgraphs for the three datasets. The NCTRER
dataset contains 463 subsequences, 1822 subtrees and 1897 subgraphs. We sort
the features by level and plot training accuracy and predictive accuracy of a
support vector machine (with C = 1) induced on an increasing subset of the
features in figure 2. The plot shows no significant overfitting; even though the
training accuracy reaches 100%, the predictive accuracy as measured by tenfold
cross-validation does not decrease very much. Similar plots can be generated for
the yoshida and BBB datasets. Obviously, overfitting is less of an issue as com-
pared to many other datasets. This is remarkable when one considers that the
substructure features lead to training data that has many more features than
examples.

4.2 Elastic Subgraph Feature Generation

As overfitting is apparently not a big problem, one might suspect that the SVM
is actually underfitting. To investigate this question we need a new feature gener-
ation mechanism that leads to feature sets with higher capacity than the existing
ones. The theorems in section 3.2 indicate that one should look for feature sets
whose λis do not decrease too fast. This means we would like to use substruc-
ture occurrence tests, where even large substructures are still likely to appear in
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Fig. 2. Training accuracy (circles) and predictive accuracy (triangles) for the NCTRER
dataset with an increasing number of features
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Fig. 3. The dashed edge in the substructure pattern is an elastic edge, which matches
the path from vertex a over b and c to vertex d in the instance graph

many instances. In order to do so, we extend the class of subgraph features by
allowing for elastic edges. More precisely, we introduce a new “elastic” edge label
in each subgraph’s edge label set. Whenever a subgraph pattern with such an
elastic edge is tested for occurrence in a graph in the database, the elastic edge
matches with any path containing only edges, which are not already matched
with another edge in the subgraph pattern. Figure 3 illustrates this concept.
Here, the substructure pattern on the right contains an elastic edge between
the vertices e and f . This pattern matches with the instance graph on the left,
because the elastic edge can be matched to the path from vertex a over b and c
to vertex d. On the other hand, consider the case where one extends the pattern
with another vertex, which is connected to the vertex e and has label C. The
resulting pattern does not occur anymore in the graph. This is because the new
edge can only be matched to the edge between a and b, but the elastic edge is
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Table 1. Predictive accuracy of a SVM on an increasing number of subsequence,
subtree and subgraph features

Dataset Number of Seq Trees Graphs Elastic
Features Graphs

NCTRER 500 81.0 81.9 81.5 79.7
1000 82.3 81.0 82.3
2000 82.3 82.3 83.6
3000 85.8
4000 84.9
5000 86.2
6000 86.2

Yoshida 500 63.8 67.5 66.0 64.9
1000 64.5 69.8 69.1 68.7
2000 67.5 66.8 64.2
3000 69.1 67.9 63.4
4000 67.9 69.1 64.5
5000 67.5 67.9 63.4
6000 67.9
7000 69.1
8000 68.3

BBB 500 76.1 74.0 77.6 75.4
1000 75.7 74.5 76.1 78.1
2000 76.6 74.5 73.7 79.3
3000 74.2 74.0 81.0
4000 75.2 74.2 81.2
5000 76.1 75.9 81.2
6000 75.2 75.7 81.4
7000 73.7 74.0 81.7
8000 81.9
9000 83.4
10000 81.9
11000 81.7

not allowed to match with the path from a to d, if one of the edges on the path
is already used in a different match.

We extended the subgraph mining tool to also generate subgraph structures
which contain a limited number of elastic edges. While it is feasible to com-
pute all non-duplicate subtree or subgraph features for the three datasets, the
number of non-duplicate subgraph patterns with elastic edges is way too large
to generate all of them. We therefore restricted the maximum size of the elas-
tic subgraph patterns to eight for the NCTRER dataset, and five for the BBB
and yoshida datasets. Table 1 shows the predictive accuracies of a SVM (with
C=1) as estimated by tenfold cross-validation for subsequence, subtree, sub-
graph and subgraph with one elastic edge patterns depending on the number of
used features. Elastic subgraph patterns outperform the other pattern languages
by approximately four percent on the NCTRER dataset and over five percent
on the BBB dataset. On the yoshida dataset, trees, graphs and elastic graph
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feature give approximately the same predictive accuracy. All three datasets show
better accuracies than the best ones reported in [8]. These results indicate that
underfitting was indeed a problem on two of the three datasets.

4.3 Feature Generation for Large Datasets

For the third experiment, the goal was to investigate how learning linear classi-
fiers with a broad class of substructure features can be made efficient on a large
dataset. The main problem here is that the considerations in section 4.1 indicate
that one should use broad substructure classes with many general features to
avoid underfitting. Unfortunately, the number of substructures in such classes is
way too large to enumerate them exhaustively as it was possible in the preceding
experiments. Consider the NCI DTP Human Tumor Cell Line Screen dataset [9].
The dataset contains 34748 compounds, which were tested for their ability to
inhibit tumor growth. Mining for all non-duplicate subsequences of only up to
four edges leads to over 10,000 features. Clearly, the database is too large to
allow for exhaustive enumeration of all existing subsequence features and work-
ing with all subtree or subgraph features is clearly not feasible. To avoid the
generation of all substructure features, we resort to a heuristic feature search
algorithm inspired by the feature generation method presented in [8]. Instead of
using a combinatorial search approach with an index structure (which would be
too large for the NCI dataset), we perform a simple beam search. The algorithm
starts with substructures of size one (i.e. single vertices) and iteratively extends
the most promising candidate in the current beam with a new edge. The search
heuristic is based on the class-correlated dispersion score as described in [8], but
features an exponential rather than a quadratic penalty for features with high
similarity to an existing feature:

h(s′) :=
m∑

i=1

exp[
c

n
sT

i s
′]−m exp[

c

n
tT s′]

Here, s′ is the −1/+1-valued n-dimensional instantiation vector of the new fea-
ture candidate, the si are the instantiation vectors of the m existing features, and
t is the target class vector. We generated one hundred substructure features for
subsequences, subgraphs and subgraphs with one elastic edge. We then learned
a linear classifier from a training set consisting of two thirds of the dataset and
evaluated the classifier on the remaining third. The feature generation, learning
and evaluation took 28 minutes on a 1 GHz Athlon 5200 computer for the se-
quences features, 68 minutes for the subgraphs feature set and 129 minutes for
subgraphs with one elastic edge. The classifier achieved a predictive accuracy
of 64.4% with subtree features, 64.1% with subgraph features and 63.3% with
subgraphs with one elastic edge, so underfitting seems not to be a big issue here.
It is unclear whether this is a limitation of the feature generation method or a
fundamental property of the data generation process.
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5 Conclusion

In the preceding sections we investigated classification with linear classifiers and
partially ordered feature sets. Learning with partially ordered feature sets differs
from other settings in that the partial order induces redundancy in the training
and test data. From a theoretical point of view, this does not necessarily affect the
over- or underfitting behavior of a learning system, because the VC-dimension
of the class of linear classifiers remains the same for worst-case data distribu-
tions. However, if the data distribution features a sufficiently steep decline in
the probability of observing features of higher level, the capacity of the learning
system can be upper-bounded by a smaller term. This means that overfitting
is less of an issue for linear classifiers on those distributions. We evaluated this
theoretical result on three datasets and found that subsequence, subtree and
subgraph features did indeed not show typical overfitting behavior. Instead, we
were able to extend the class of subgraph features towards subgraphs with elastic
edges. These patterns are more likely to occur in higher levels and thus increase
the capacity estimate. Practical experiments confirmed that this extended class
of subgraph features avoids underfitting and increases predictive accuracy on
two of the three datasets. Finally, we showed how classification with such large
substructure feature classes can be implemented efficiently on large datasets.

The work raises a couple of interesting questions. On the theoretical side one
could look for lower bounds that quantify to which degree the presented upper
bounds are tight and investigate how the results apply, if one uses support vector
machines with non-linear kernels. On the practical side, it would be interesting
to obtain more insights on the actual under- or overfitting behavior of common
data (for instance with regard to the study in [2]) and how the present results
apply to other partially ordered feature sets, for example in natural language
processing.

References

1. Bartlett, P.L., Mendelson, S.: Rademacher and gaussian complexities: risk bounds
and structural results. J. Mach. Learn. Res. 3, 463–482 (2003)

2. Bringmann, B., Zimmermann, A., De Raedt, L., Nijssen, S.: Don’t be afraid of
simpler patterns. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD
2006. LNCS (LNAI), vol. 4213, pp. 55–66. Springer, Heidelberg (2006)

3. Deshpande, M., Kuramochi, M., Karypis, G.: Frequent sub-structure-based ap-
proaches for classifying chemical compounds. In: IEEE International Conference
on Data Mining, p. 35 (2003)

4. Devroye, L., Györfi, L., Lugosi, G.: A Probabilistic Theory of Pattern Recognition
(Stochastic Modelling and Applied Probability). Springer, New York (1996)

5. Fang, H., Tong, W., Shi, L.M., Blair, R., Perkins, R., Branham, W., Hass, B.S.,
Xie, Q., Dial, S.L., Moland, C.L., Sheehan, D.M.: Structure-activity relationships
for a large diverse set of natural, synthetic, and environmental estrogens. Chemical
Research in Toxicology 14(3), 280–294 (2001)



Capacity Control for Partially Ordered Feature Sets 331

6. Li, H., Yap, C.W., Ung, C.Y., Xue, Y., Cao, Z.W., Chen, Y.Z.: Effect of selec-
tion of molecular descriptors on the prediction of blood-brain barrier penetrating
and nonpenetrating agents by statistical learning methods. Journal of Chemical
Information and Modeling 45(5), 1376–1384 (2005)

7. Otter, R.: The number of trees. The Annals of Mathematics 49(3), 583–599 (1948)
8. Rückert, U., Kramer, S.: Optimizing feature sets for structured data. In: Kok, J.N.,
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6 Appendix

6.1 Proof of Theorem 2

Proof. For a data sample S = (X1, . . . , xn) and a vector of Rademacher variables
σ = (σ1, . . . , σn)T (where σi has value +1 or −1 with probability 0.5) define
V (S, σ) = supw[ 1

n

∑n
i=1 σi sgn(wT xi)]. First of all, we consider the conditional

expectation E[V (S, σ)|S]. Let v := (sgn(wTx1), . . . , sgn(wTxn))T denote the
vector of predictions for a fixed training sample S and a fixed linear classifier w.
Changing the value of a Rademacher variable σi changes the value of 1

nv
Tσ by

at most 2
n . Thus, for a fixed data set S, one can apply McDiarmid’s inequality

to bound the probability that a random Rademacher vector disagrees with v by
more than fraction a fixed r > 0:

Pr

[
1
n

n∑
i=1

σi sgn(wTxi) ≥ r

∣∣∣∣S
]
≤ e−

1
2 r2n (1)

Now, let λ(x) := max{λ(f)|f(x) = 1} denote the level of example x. We can
assume without loss of generality that the instances in S are sorted by level.
Define Si := {x|λ(x) = i} and ni := |Si|, so that

∑k
i=1 ni = n. Sauer’s lemma

states that there are at most
∑di

j=0

(
ni

j

)
≤ (ni+1)di ways, in which the different w

can assign class labels to the instances in Si. This means the number of possible
class vectors induced by the w is at most

∏k
i=1(ni+1)di. Taking the union bound

over all possible class label assignments in (1) yields:
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Pr[V (S, σ) ≥ r|S] = Pr

[
sup
w

[
1
n

n∑
i=1

σivi

]
≥ r

∣∣∣∣S
]

≤ e−
1
2 r2n

k∏
i=1

(ni + 1)di

≤ e−
1
2 r2n exp

[
k∑

i=1

di log(ni + 1)

]

≤ e−
1
2 r2n exp

⎡⎣ k∑
i=1

di

ni∑
j=1

1
j

⎤⎦
≤ e−

1
2 r2n exp

[
n∑

i=1

dλ(xi)
k

i

]

≤ e−
1
2 r2n

n∏
i=1

e
k
i dλ(xi)

Taking the expectation on both sides yields:

Pr[V (S) ≥ r] = e−
1
2 r2n

n∏
i=1

E
[
e

k
i dλ(xi)

]
≤ e−

1
2 r2n

n∏
i=1

k∑
j=1

λje
k
i dj

Setting

r :=

√√√√2
∑n

i=1 log
[∑k

j=1 λj exp
(

k
i dj

)]
+ log 1

δ

n

yields that with probability larger than 1− δ it holds that

V (S) ≤

√√√√2
∑n

i=1 log
[∑k

j=1 λj exp
(

k
i dj

)]
+ log 1

δ

n

Taking the union bound with theorem 5 (b) in [1] yields the result.

6.2 Proof of Theorem 3

Proof. For a sequence of n Rademacher variables σ1, . . . , σn define

Rn(X ) := E

[
sup

w∈Bm
2

∣∣∣∣∣ 2
n

n∑
i=1

σil
(
yi, w

Txi

)∣∣∣∣∣
]
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The result follows from theorem 8 in [1] and the fact that

Rn(X ) ≤ 2L
√P

k
i=1 diλi

n . To see this, observe that

Rn(X ) ≤ E

[
sup
w∈H

2
n

n∑
i=1

σil(yi, w
Txi)

]

≤ 2LE

[
sup
w∈H

1
n

n∑
i=1

σiw
Txi

]
(2)

≤ 2LE

[
sup
w∈H

‖w‖2

∥∥∥∥∥ 1
n

n∑
i=1

σixi

∥∥∥∥∥
2

]
(3)

≤ 2LE

⎡⎣√√√√ 1
n2

m∑
k=1

n∑
i,j=1

σiσjfk(xi)fk(xj)

⎤⎦
≤ 2L

√√√√ 1
n2 E

[
m∑

k=1

n∑
i=1

fk(xi)2
]

(4)

≤ 2L

√√√√1
n

m∑
k=1

E [fk(x)]

≤ 2L

√∑k
i=1 diλi

n

Here, (2) is due to theorem 12 in [1], (3) is an application of Hölder’s inequality,
while (4) follows from the concavity of the square root and the independence of
the Rademacher variables.
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Abstract. Random Projection (RP) has drawn great interest from the research
of privacy-preserving data mining due to its high efficiency and security. It was
proposed in [27] where the original data set composed of m attributes, is multi-
plied with a mixing matrix of dimensions k ×m (m > k) which is random and
orthogonal on expectation, and then the k series of perturbed data are released for
mining purposes. To our knowledge little work has been done from the view of the
attacker, to reconstruct the original data to get some sensitive information, given
the data perturbed byRP and some priori knowledge, e.g. the mixing matrix, the
means and variances of the original data. In the case that the attributes of the orig-
inal data are mutually independent and sparse, the reconstruction can be treated
as a problem of Underdetermined Independent Component Analysis (UICA), but
UICA has some permutation and scaling ambiguities. In this paper we propose
a reconstruction framework based on UICA and also some techniques to reduce
the ambiguities. The cases that the attributes of the original data are correlated
and not sparse are also common in data mining. We also propose a reconstruction
method for the typical case of Multivariate Gaussian Distribution, based on the
method of Maximum A Posterior (MAP). Our experiments show that our recon-
structions can achieve high recovery rates, and outperform the reconstructions
based on Principle Component Analysis (PCA).

Keywords: Privacy-preserving Data Mining, Data Perturbation, Data Reconstr-
uction, Underdetermined Independent Component Analysis, Maximum A Poste-
riori, Principle Component Analysis.

1 Introduction

Privacy-preserving Data Mining (PPDM) concerns the problems of completing data
mining tasks without any direct access to the original data sets, because the providers
claim privacy on their data. The general mining tasks include classification, clustering
and association rule mining. PPDM can be treated as a subset within the problems of
Secure Multi-party Computation (SMC) ([19], [20], [26], [40], etc). The cryptographic
techniques from SMC provide solutions which always demand high computation cost,
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especially on processing volumes of data in data mining applications. Alternative ap-
proaches are based on data perturbation techniques which aim to be much more efficient
than techniques of SMC.

Additive data perturbation, i.e. adding random data to the original data, was used
in [3] to build decision tree classifiers, but in [17] and [22] random additive noise was
questioned and pointed out that it can be easily filtered out, and thus lead to compro-
mising of privacy. Multiplicative perturbation was used in [32] where the original data
of each data provider is multiplied with the same matrix which is random and orthog-
onal before released, while in [28] this kind of perturbation is easily reconstructed by
methods such as Principle Component Analysis (PCA), i.e. recovering the original data
by analyzing the covariance matrix of the perturbed data.

In [27], an improved multiplicative data perturbation was proposed, in which the
original data set X with m attributes is multiplied with a k ×m (m > 2k − 1) matrix
R, each entry of which is an independently and identically distributed (i.i.d.) random
number with the zero means. We name this method Random Projection (RP) following
[27] to avoid confusions with the method in [32]. The security claim of RX in RP is
based on the structure of R and the fact that there does not exist a matrix T such that
the product TR is a partition matrix and TRX is a separation of some attributes of X .
However in the research field of Independent Component Analysis (ICA), the separation
of m series of data X̂ from k (m > k) series of linearly mixed data RX is treated as the
problem of Underdetermined ICA (UICA). Plenty of methods have proposed for UICA
([31]), and most of them are not seeking for the partition matrix T , but the possible
values of X with maximum probability given only RX , and they have been successful
in the case that the m original sources in X are mutually independent and sparse, except
some permutation and scaling ambiguities.

In [8] and [16] reconstructions based on ICA were employed to attack the pertur-
bation method of [32]. To our knowledge the only work on attacking the RP of [27]
was proposed in [29] or [2] (Chapter 15), which was based on Maximum A Posterior
(MAP). This attack only assumed the original data are uniformly distributed, but in
practice many data properties can be assumed as normally (or approximately normally)
distributed (e.g. personal heights, weights, financial variables), or are sparse enough to
be modeled by the Laplace distribution (e.g. the voice or image data, financial data).
It is not difficult for an attacker to obtain these priori knowledge on the original data,
such as whether they are sparse, or whether they are normally distributed, given enough
samples extracted from the same pool where the original data are extracted. It is also
possible that the attacker may know the mixing matrix R by colluding with one data
provider. Little work has been done to address these considerations.

In this paper, we will propose some attacking techniques on the RP method of [27]
under some practical scenarios. We name the recovery of the original data by the at-
tacker who is given the perturbed data as “reconstruction” following [3] and [17]. We
also assume the attacker has a collusion with one of the data providers from which
he can know the mixing matrix in RP , the attacker has also obtained enough samples
with identical distribution with the original data set, and thus some necessary priori
knowledge on the original data, including whether the data attributes are mutually in-
dependent, whether they are sparse, their means and covariance matrix. Based on these
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assumptions we propose the following reconstruction methods from the view of the
attacker:

1) If the attributes are mutually independent and sparse, we propose Underdetermined
Independent Component Analysis (UICA) based reconstruction for the case that the
attacker knows the mixing matrix, which outperforms the reconstruction based on
PCA.

2) If the attributes are not mutually independent, where the ICA-based reconstruction
will not be effective, we propose Maximum A Posterior (MAP) based Reconstruc-
tion for the case that the attacker knows the mixing matrix, and the original data
following the Multivariate Gaussian Distribution. Our reconstruction outperforms
the reconstruction based on PCA.

The organization of this paper is as following. In Section 2 we briefly review the related
work. In Section 3 we give formal definitions on the problems of Data Perturbation
and Data Reconstruction. In Section 4 we talk about how to obtain the necessary priori
knowledge. In Section 5 and Section 6 we propose the ICA-based and MAP-based
Reconstructions respectively. In Section 7 we conduct some experiments to evaluate
our reconstruction methods, and compare them with reconstructions based on PCA.
Section 8 concludes the paper.

2 Related Work

2.1 Data Perturbation

According to the taxonomy of [1], two families of approaches, query restriction and
data perturbation, are usually used to provide statistical information (sum, count, av-
erage, etc) without compromising sensitive information about individuals. The query
restriction family includes restricting the size of query result, controlling the overlap
amongst successive queries, suppression of data cells, clustering entities into mutu-
ally exclusive atomic populations, etc. The data perturbation family includes the meth-
ods, loosely speaking, which perturb the original value of the data, X , into a random
value Y .

The perturbation methods employed until now consist of data replacement ([1], [25],
[23]), data swapping ([10], [13]), additive value distortion ([3], [22], [17]), and mul-
tiplicative value distortion ([32], [27]), random perturbation on categorical or boolean
data ([12],[33], [4]), etc. k-anonymity ([35], [30], [24]) and sensitive rule hiding ([5],
[34], [39]) have also been employed in PPDM. Details on these methods can be found
in the given references. In this paper we only focus on the multiplicative value distortion
(or multiplicative data perturbation).

Multiplicative Data Perturbation of [32]. Multiplicative data perturbation was used
in [32] in which the original data set X = (x1, ..., xm)′ is multiplied by a random and
orthogonal matrix R of dimensions m×m, and perturbed into the set U = RX . Given
U1 = RX1 and U2 = RX2, obviously U ′

2 · U1 = X ′
2 · X1, i.e. the inner products

X ′
2 ·X1 are the same as the inner products U ′

2 ·U1. The distance-related metrics such as
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Euclidean distance between X1 and X2 can be computed based on the inner products
U ′

2 · U1, U ′
1 · U1, U ′

2 · U2, and data mining tasks can continue by these metrics without
knowing the private X1 and X2.

Random Projection of [27]. In [27], a similar R is used in their multiplicative per-
turbation, but is different from [32] in that R is rectangle, which is k × m(m ≥
2k−1,m ≥ 2) with i.i.d entries from N(0, σ2

r). Two data owners respectively compute
U = 1√

kσr
RX and V = 1√

kσr
RY , and then send them to the miner. Because U ′V =

1
kσ2

r
X ′R′RY , and E(R′R) = kσ2

rI (by Lemma 5.2 of [27]), then E(U ′V ) = X ′Y .

By this statistical result, the inner product x · y (∀x ∈ X, ∀y ∈ Y ) can be computed
without knowing X and Y .

The security of this RP method is based on the fact that if R is a rectangle (k ×m)
matrix and m ≥ 2k − 1, there does not exist a matrix T such that the product TR
becomes a partition matrix which has at most one nonzero element in each column, and
separates any single independent signal in TRX . Details on the partition matrix and
signal separation can be referred to [7].

2.2 Reconstructions on Multiplicative Data Perturbation

Without the transformation matrix R, the recovery of X from U is infeasible given only
the linear system RX = U . If in the k×m matrix R k < m, given R and RX = U , X
can not also be determined from solving the linear system. However, the solutions can
be sought from clues in some priori knowledge on X .

Reconstruction on the Perturbation of [32]. According to [28], if some input-output
pairs “(xi, ui)” (i.e. xi ∈ X , ui ∈ U , and ui = Rxi), or some samples xi ∈ X ,
are known apriori by an attacker, he may approximately recover X . Given some input-
output pairs, the attacker can uniformly select an R to meet some criterion function, but
this kind of attack can be prevented by deleting these pairs from the data owners, or
de-identifying the output set U by randomly mixing the records (u1, ..., ui, ...), before
they are released for mining.

Another reconstruction of [28] is based on PCA, and does not requires the input-
output pairs, but some general samples from the same pool where X is originated. By
analyzing these samples, the attacker can estimate the covariance matrix of X , i.e. ΣX .
By analyzing the covariance matrix of the perturbation U , i.e. ΣU , the attacker can ob-
tain the information on R since ΣU = RΣXR′. Specifically, suppose the eigenvalue
decompositions of ΣX and ΣU are QXEXQ′

X and QUEUQ
′
U , then the diagonal ma-

trices EX = EU , and the orthogonal matrices QU = RQX . When R is know in this
way, the attacker can then have an estimate on X .

This attack based on PCA will not be effective on reconstructing theRP perturbation
of [27], since in this method R is rectangle (k < m), ΣU is very similar as a diagonal
matrix as proved by [11], and it may be difficult to make an eigenvalue decomposition
on ΣU . What’s more, given ΣU and ΣX , it is difficult to obtain the information on the
rectangle R from ΣU = RΣXR′.
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Attacks based on ICA were proposed in [2] (Chapter 15), [8] and [16], under various
assumptions on the attacker’s priori knowledge. They assumed an m×m mixing matrix
R, thus were not suitable to attack the RP in [27].

Underdetermined Independent Component Analysis (UICA). Underdetermined (or
overcomplete) independent component analysis (or blind source separation) has been
under years of research in the field of signal processing, which addresses the problem
that, X composed of m sources is linearly mixed by a k × m matrix R, and given
only the mixed data RX , without knowing R, the sources are required to be separated
out. A survey on the research can be referred to [31]. The methods of UICA have been
mostly successful in the case that the m sources are mutually independent and sparse.
They generally require two steps: 1) recovering the mixing matrix R, and 2) given R,
recovering the sources. For Step 1) a lot of improvement work have been continuously
done (e.g. [6], [24], [37] and [41]). For Step 2) L1-norm minimization is the standard
method that has been widely used.

L1-norm minimization comes from the general approach of Maximum A Posterior
(MAP). Considering u = Rx and neglecting any additional noise, the probability of
observing a vector x given R and a vector u is p(x|R, u), and by Bayes Theorem

p(x|R, u) =
p(u|R, x)p(x)

p(u)

By MAP x will be the vector in the Euclidean space of R
m that maximize the above

equation. In the searching of this vector, p(u) is a constant, p(u|R, x) can be viewed
as a constraint Rx = u, a sparse source xi (i = 1, ...,m) can be modeled by the
Laplace distribution, i.e. p(xi) ∝ e−|xi| (assuming they have zero means and identical
variances). Then x will be the solution of the following constrained linear programming
problem:

x = arg max
Rx=u

p(x)

= arg max
Rx=u

e−|x1|−...−|xm|

= arg min
Rx=u

m∑
i=1

|xi|

(1)

In Eq. (1)
∑m

i=1 |xi| is the L1-norm of the vector x = (x1, ..., xm)′, therefore x will be
the solution of the constrained L1-norm minimization problem. There have been many
methods to solve this problem and a survey of them can be referred to [9].

When the methods of UICA are used for reconstructions on the RP-perturbed data,
there is no additional noise N such as U = RS +N and no need to reduce N , but they
still have the following limitations:

1) When R is not known, these methods have permutation and scaling ambiguities.
For each estimate of R, e.g. R̂, there is infinite equivalent matrices R̃ = R̂PL in
which P is a permutation matrix of dimensions m×m, L is a nonsingular diagonal
matrix of dimensions m×m (scaling matrix), and R̃ is also an estimate of R. Thus
the recovering of X will also have permutation and scaling ambiguities.
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2) When R is known, there is no permutation ambiguity (the detailed reason is post-
poned to Section 5), but the means and variances of xi should not be neglected in
the constrained L1-norm minimization of Eq. (1), since in practical scenarios their
means may not be zero, and their variances may be not identical.

3) These methods generally require the original sources are mutually independent and
sparse. In many scenarios of data mining, the attributes of the original data are
correlated and not sparse. One typical model of these data is the Gaussian Mixture
Model (GMM).

2.3 Disclosure Risk of the Distances

The risks of disclosing the mutual distances between data objects were investigated
in [38]. They proposed two reconstruction methods based on the mutual distances of
the data objects. The first one needs some known samples in their original forms and
perturbed forms, so this method will not be effective when all perturbed data objects
are mixed arbitrarily and de-identified before released, and an attacker can not find the
corresponding perturbed data of the known samples. The second one needs no known
sample, but makes a PCA on the perturbed data. However, this PCA will not be effective
on analyzing the data perturbed by the method of [27], because R is rectangle, the
covariance matrix of U = RX is very similar as a diagonal matrix by [11], and it will
be difficult to make a desired eigenvalue decomposition of the covariance matrix.

3 Problem Statement

3.1 Database Model

For convenience we consider a two-party case in which Alice and Bob share a distrib-
uted database. The reconstructions under the cases of more than two parties are similar
as the two-party case, since in all the cases the parties use the same mixing matrix R
for RP . Suppose Alice and Bob have the data set X and Y respectively. Suppose the
database has m attributes. If the database is horizontally distributed on the two parties,
Alice has n1 records, Bob has n2 records, then X is an m × n1 matrix [[xi,j ]mi=1]

n1
j=1,

Y is an m× n2 matrix [[yi,j ]mi=1]
n1
j=1.

If the database is vertically distributed and the database has n records, Alice has m1
attributes, Bob has m2 attributes, then X is an n × m1 matrix [[xj,i]nj=1]

m1
i=1, Y is an

n×m2 matrix [[yj,i]nj=1]
m2
i=1. In this paper we only focus on the horizontally distributed

database. In the RP of [27] the vertically distributed databases are perturbed as similar
as the horizontally distributed databases are perturbed, so our proposed reconstruction
methods can be easily extended to the vertical cases.

3.2 Network Model

We consider two kinds of network models in this paper:

1) Centralized model: There is an independent miner who receives perturbed data
from the data owners Alice and Bob (as in Fig. 1(a)). Scenarios are some com-
panies under the investigation of a governmental organization. The companies are
data providers, and the governmental organization wants to mine their private data.
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2) Distributed model: There is no independent miner. All the data owners, Alice and
Bob, act as miners on the perturbed data of their own and those received from the
other party (as in Fig. 1(b)). Scenarios are some companies which want to share
their data with each other to complete the data mining tasks. Each company is
simultaneously a data provider and miner.

(a) Centralized Model (b) Distributed Model

Fig. 1. Two Network Models for PPDM

3.3 Adversary Model

Adversary models have been theoretically defined in SMC ([14]), and also extensively
used in PPDM. Depending on whether the participants merely gather information, or
take active steps to disrupt the execution of the protocol, there are usually two types of
adversaries:

1) Semi-honest participants, which are assumed to execute the solution exactly as what
is prescribed, but may collude and analyze all the intermediate computations.

2) Malicious participants, which may arbitrarily deviate from the specified solution,
e.g. generate arbitrary inputs, substitute the intermediate computations, or pre-
maturely quit.

3.4 Problem Definition

Definition 1 - Privacy-preserving Data Mining based on Data Perturbation: A
database is distributed on two parties, Alice and Bob. The two providers respectively
perturb their data matrices X and Y into U and V , and publish U, V to the miner. The
miner may be an independent party, or replaced by Alice and Bob. All of them may be
semi-honest or malicious. Privacy-preserving data ming on the miner should satisfy the
following two requirements:

1) Privacy Requirement: No sensitive information on X and Y should be inferred
from U and V by the miner.

2) Accuracy Requirement: The mining tasks including classification, clustering, etc,
on U and V , should have statistically the same results as directly mining X and Y .

It is worthy to note that in Definition 1 we do not specify the method of perturbing
X and Y into U and V . Different perturbation methods possess different properties
on privacy and accuracy, so the definition is made inclusive so as to cover as many
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perturbation methods as possible. In addition, to achieve the accuracy requirement, an
accurate computation on the inner product of two vectors, such as x′y(∀x ∈ X, ∀y ∈
Y ), is enough. Distance-related metrics like Euclidean distance, required in both the
horizontally and vertically partitioned data mining, can be computed based on those
inner products, the details of which can be referred to [27].

Definition 2 - Data Reconstruction: An attacker obtains the perturbed data U and
V from the data providers Alice and Bob. He wants to recover as many as possible
the entries of X and Y . The attacker and any of the providers may be semi-honest or
malicious.

In the centralized model, if the miner and any of the providers are semi-honest, they
may collude to reconstruct the data of the other providers. If the miner is malicious, he
may not communicate the correct data mining results with the data providers.

In the distributed model, if one of the provider is semi-honest, he may reconstruct
the data of another provider using R. If he is malicious, he may arbitrarily substitute
his original data and publish them to another provider. Malicious attackers are not the
focus of this paper.

Figure 2 shows the two mutually inverse processes, data perturbation and
reconstruction.

(a) Data Perturbation by the owner Alice (b) Data Reconstruction by an adversarial miner

Fig. 2. Data Perturbation and Reconstruction for PPDM

Definition 3 - Recovery Rate: Suppose X̂ is a reconstruction of the original data X ,
X̂ = [[x̂i,j ]mi=1]

n1
j=1, and X = [[xi,j ]mi=1]

n1
j=1. The Recovery Rate, r(X̂, ε) with a given

threshold ε, is the percentage of reconstructed entries whose relative errors are within
ε, i.e.

r(X̂, ε) =
#{x̂i,j : |xi,j−x̂i,j

xi,j
| ≤ ε, i = 1, ...,m, j = 1, ..., n1}

m ∗ n1
(2)

We will use the recovery rate in this definition to evaluate the performance of our re-
construction methods.

4 Obtaining the Priori Knowledge

In this section we discuss how the attacker can obtain the necessary priori knowl-
edge on the original data, including their mean values, covariance matrix, whether
they are mutually independent, under the condition that he has got enough samples,
i.e. m-dimension vectors like v = (v1, ..., vm), which are identically and indepen-
dently selected from the multivariate distribution of the original data X , i.e. p(X) =
p(x1, ..., xm).
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Given enough samples, the attacker can compute the sample meansX = (x1, ..., xm)
in which xi is an estimate of xi’s mean ui, and he can also compute the sample covari-
ance matrix ΣX = [[cov(xi, xj)]mi=1]

m
j=1 in which cov(xi, xj) is an estimate of the

covariance E[(xi − ui)(xj − uj)].
When the estimated covariance matrix is diagonal, x1, ..., xm are uncorrelated with

each other. Uncorrelation is only a necessary condition of independence. In order to
know the independence, the attacker should do a further test of mutual independence of
the m attributes (x1, ..., xm). One test method is to compute the mutual information I
among the m attributes, i.e. I(x1, ..., xm) =

∑m
i=1 H(xi) − H(x1, ..., xm), in which

H(xi) is the entropy of the i-th attribute xi, H(x1, ..., xm) is the joint entropy of the
m attributes. I is zero if and only if the m attributes are statistically independent. There
are also characteristic function-based and kernel-density based methods, which can be
referred to [15] and [21].

When the attributes are mutually independent, the attacker can use statistical test,
e.g. Kolmogorov-Smirnov Test, to check whether the values are following the Laplace
distribution (i.e. sparse enough). When the attributes are not mutually independent, the
attacker can employ some multivariate statistical test, e.g. the method of [36], to check
whether the attributes are following the Multivariate Gaussian Distributions. As we
discuss in Section 2.2, practically the original data may be in a Gaussian Mixture Model
in which there are multiple clusters, but the attacker can easily identify some clusters
given the perturbed data, and target his attacks on the original data belonging to these
clusters.

In the later sections we assume the attacker has obtain all the necessary priori knowl-
edge about whether the m attributes are sparse, whether they are in the Multivariate
Gaussian Distribution, the means and covariance matrix. The reconstructions made by
the attacker are summarized in Table 1.

Table 1. Types of Reconstructions

Priori Knowledge Reconstruction

I(x1, ..., xm) = 0 & p(xi) = Laplace(μi, σi) UICA-based
I(x1, ..., xm) > 0 & p(X) = N(μ, Σ) MAP-based

5 UICA-Based Reconstruction

As we have discussed in Section 2.2, UICA has permutation and scaling ambiguities in
recovering X . However, in RP of [27], the data owner can not arbitrarily permute the
rows in R and the resulting U = RX , before U is released, otherwise suppose P1 and
P2 are two different permutation matrices of Alice and Bob respectively, U = P1RX ,
V = P2RY , then V ′U will not equal Y ′X on expectations. Therefore, when an attacker
knows R and U , he will not have permutation ambiguity in the reconstruction of X .

The attacker still needs to reduce the scaling ambiguity with the priori knowledge on
the mean μi and variance σ2

i of the i-th attribute xi. In our reconstruction, we will use
the same optimization function as Eq. (1), which assumes all xi have zero means and
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identical variances. In order to do this, we firstly remove the means of all xi before the
use of Eq. (1), and afterwards add them again. We also change R to RL in which L is
a scaling matrix whose diagonal entries are the variances, thus we can use Eq. (1) to
obtain solutions with identical variances, and afterwards the solutions will be multiplied
with the corresponding variances.

Specifically our UICA-based reconstruction includes the following steps:

1) Remove the means: Let μui is the sample mean of ui, the i-th row of U (i =
1, ..., k). μU = (μu1 , ..., μuk

)′. Θ = (1, ..., 1)n1 , then Ũ = U − μUΘ.
2) Change R to R̃: R̃ = RL, in which

L =

⎛⎜⎜⎝
σ1 0 ... 0
0 σ2 ... 0
...
0 0 ... σm

⎞⎟⎟⎠
3) L1-norm Minimization: By the optimization function in Eq. (1), substitute R̃ into

R, and each column of Ũ into u, search for the solution x of the function. Let
X̃ be an m × n1 matrix, each column of it is the solution vector of the function
corresponding to each column of Ũ .

4) Reduce the scaling ambiguity: Let μ = (μ1, ..., μm)′ in which μi(i = 1, ...,m) is
the sample mean of xi, then the reconstruction is X̂ = LX̃ + μΘ.

6 MAP-Based Reconstruction

The UICA-based reconstruction is effective when the original data x1, ..., xm are mu-
tually independent and non-Gaussian. For the case that the m attributes are following
the Multivariate Gaussian Distribution, we use the method of Maximum A Posterior
(MAP) to estimate them. The basic idea of our MAP is similar as the constrained linear
programming problem in Section 2.2, but the probability density function of the origi-
nal data are different, and thus our MAP becomes a constrained quadratic programming
problem.

6.1 Priori Knowledge

As same as UICA-based reconstruction, MAP method also requires sufficient
samples from the multivariate distribution p(x1, ..., xm), from which the means μ =
(μ1, ..., μm)′, and the covariance matrix (i.e. ΣX ) of X , can be successfully estimated.
By the definition of Multivariate Gaussian Distribution, ΣX is positive definite, i.e. its
eigenvalues are all positive.

6.2 Reconstruction under Collusion

Given u = (u1, ...,uk)′ which is one column of U , the attacker can search a vector
x̂ = (x̂1, ..., x̂m)′ in R

m to maximize the posterior probability p(x̂|u). Since p(x̂|u) =
p(x̂)p(u|x̂)/p(u), and under collusion the attacker will know R, then
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p(x̂|u) =

{
p(x̂)
p(u) , if Rx̂ = u,

0, if Rx̂ 
= u,
(3)

p(u) can be treated as a constant in the search of x̂, then the maximization of p(x̂|u) is
equivalent to the following constrained optimization problem:

MAXx̂ p(x̂), Subject to Rx̂ = u (4)

We assume X ∼ N(μ,ΣX), i.e. given a vector x = (x1, ...,xm)′ ∈ X ,

p(x) =
1

(2π)m/2|ΣX |1/2 e
− 1

2 (x−μ)′Σ−1
X (x−μ)

Since the exponential function is a monotone one-to-one function, the problem in Eq.
(4) is equivalent to the following Quadratic Programming (QP) problem:

MINx̂ f(x̂) =
1
2
(x̂− μ)′Σ−1

X (x̂− μ), Subject to Rx̂ = u (5)

We have assumed the ΣX is positive definite, so is Σ−1
X , then f(x̂) is convex and has

the unique global minimizer, which can be computed by the gradient of the Lagrange
function:

L(x̂, Λ) =
1
2
(x̂− μ)′Σ−1

X (x̂− μ) + Λ′(Rx̂− u) (6)

in which Λ = (λ1, ..., λk)′, λi (i = 1, ..., k) are Lagrange multipliers.
By Eq. (6),

∂L

∂x̂
=

(
∂L
∂x̂1

, ..., ∂L
∂x̂m

)′
= Σ−1

X (x̂− μ) + R′Λ = 0, (7a)

∂L

∂Λ
=

(
∂L
∂λ1

, ..., ∂L
∂λk

)′
= Rx̂− u = 0 (7b)

The m + k equations in Eq. (7) can be treated as a linear system with m + k variables
(λ1, ..., λk, x̂1, ..., x̂m):

R′Λ + Σ−1
X x̂ = Σ−1

X μ, (8a)

0 · Λ + Rx̂ = u (8b)

Let Θ1, Θ2 be m× k and k × k zero matrices, I be an m×m identity matrix, then by
solving the above linear system,

x̂ =
(
Θ1, I

) (
Λ
x̂

)
=

(
Θ1, I

)
Ω−1

(
Σ−1

X μ
u

)
, Ω =

(
R′ Σ−1

X

Θ2 R

)
. (9)

Lemma 1. Ω in Eq. (9) is nonsingular with high probability.
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Proof. By the Leibniz formula,

det(Ω) = det(Σ−1
X )det(Θ2 −RΣXR′) = (−1)k det(Σ−1

X )det(RΣXR′).

RΣXR′ = ΣU , which is the covariance matrix of U = RX .
By [11], when x is fixed, R is a k × m matrix each entry of which is an i.i.d

random number, then u = Rx is approximately Gaussian, following the distribution
N(Rμ, ||x||2Ik) in which Ik is a k × k identity matrix. Therefore ΣU ≈ ||x||2Ik,
which means when x is not a zero vector, ΣU will be nonsingular with high probability.
Since det(Σ−1

X ) 
= 0, then det(Ω) 
= 0, i.e. Ω is nonsingular. When ΣU is singular, it
is most possible that x is a zero vector. � 

In sum, the MAP-based reconstruction includes the following steps:

1) estimate ΣX and μ by enough samples from the same distribution as X ;
2) compute x̂i by Eq. (9) for each column ui ofU , i = 1, ..., n1. Let Θ3 = (1, ..., 1)n1 ,

the reconstructed X̂ = (x̂1, ..., x̂n1) can be written as:

X̂ =
(
Θ1, I

) (
R′ Σ−1

X

Θ2 R

)−1 (
Γ
U

)
, Γ = Σ−1

X μΘ3. (10)

7 Experiments and Comparisons

7.1 Reconstruction Based on Principle Component Analysis

As we sum in Section 2.2 the PCA-based attack of [28] is not suitable for the RP of
[27], and to our knowledge, there is no PCA-based attack proposed for the RP . For
comparison purposes, we use the pre-whitening phase of ICA ([18]) as a PCA-based
attack, which includes the following steps:

1) The attacker removes the mean of each row ui(i = 1, ..., k) of U .
2) The attacker computes the covariance matrix of U = RX as ΣU = E(UU ′), and

makes an eigenvalue decomposition of it. Let ΣU = QDQ′, in which Q is an
orthogonal matrix, D is a diagonal matrix each entry of which is an eigenvalue of
ΣU .

3) The attacker computes X̃ = QD−1/2Q′U , in which D−1/2 is a diagonal matrix
each diagonal entry of which is the inverse of the square root of the corresponding
entry of D. Let A = QD−1/2Q′, then

ΣX̃ = AΣUA
′ = (QD−1/2Q′)(QDQ′)(QD−1/2Q′) = I.

4) Suppose x̃j is the j-th row of X̃ . For i = 1, ...,m, and j = 1, ..., k the attacker
computes:

x̂j = σix̃j + μi, (11)

and makes a statistical test G(x̂j , p(xi)) in which p(xi) is the p.d.f of xi, e.g. using
the Two-sample K-S Test. If G outputs 1, x̂j has a similar distribution to xi, and
the attacker treats x̂j as an estimate of xi.
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In this method, ΣX̃ is an identity matrix, so the k rows of X̃ will be uncorrelated.
This reconstruction can be an approximate recovery when the m attributes of the origi-
nal data are mutually independent, or they are not mutually independent and not having
high correlations.

One major limitation of this method is that it can only recover k components, so it
is essential for the attacker to use the priori knowledge to reduce the permutation and
scaling ambiguities, as in Step 4). Another limitation is that ΣU may be diagonal by
[11], then in Step 2) Q will be an identity matrix, and in Step 3) the reconstruction
result X̃ is simply D−1/2U , i.e. some scaling of U .

7.2 Experiments and Comparisons for UICA-Based Reconstruction

We use the Laplace distribution to simulate 3 series of independent and sparse data, as
the original data X . We generate a random R with dimensions 2× 3 following the RP
method of [27]. The means of X are (0.3, 0.5, 0.8), the variances of X are changed to
get different recovery rates measured by Definition 3 in Section 3.4. ε for the recovery
rates are set to be 0.2. To search the solutions of the L1-norm minimization problems,
we use the fmincon function in the Optimization Toolbox of MATLAB.

In Fig. 3(a) the x-axis is the variance σ1 of the first row x1 of X , we make σ2 =
0.8σ1, σ3 = 0.3σ1. From Fig. 3(a) our reconstruction based on UICA achieves higher
recovery rates than PCA.

3 series of financial data from the UCI Machine Learning Repository, including At-
tribute 1 of the Japanese Credit Screening Data Set, Attribute 1 of the Australian Credit
Approval Data Set, Attribute 5 of the German Credit Data Set, are used as the orig-
inal data, and perturbed by a random 2 × 3 matrix. They are treated as sparse data
since they have high kurtosis (subtract 3), respectively 11.1, 1.17, 3.84. With different ε
Fig. 3(b) shows the recovery rates of UICA-based and PCA-based reconstructions, and
in comparison our UICA-based reconstruction performs much better than PCA.
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Fig. 3. Experiments on UICA-based and PCA-based Reconstructions
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7.3 Experiments and Comparisons for MAP-Based Reconstruction

For the synthetic data experiments we assume m = 10, μi = 0.1 ∗ i for i = 1, ..., 10. It
is a non-trivial problem to generate ΣX for the experiments which require variations on
the structure of the covariance matrices. We use ΣX = AA′ in whichA is 10×10 matrix
with i.i.d entries uniformly sampled from [0, b], and b is changed (from 0.1 to 1) to get
different ΣX . We use the mvnrnd function in MATLAB to generate X composed of
10 synthetic data attributes. R is a 4 × 10 matrix each entry of which follows N(0, 1).
Fig. 4(a) gives the recovery rates of our MAP-based reconstruction with different b,
in comparisons with the recovery rates of PCA (ε = 0.2). The figure shows that our
method achieves higher recovery rates than PCA.

It is difficult to find real data strictly following the Multivariate Gaussian Distribu-
tion. We take the Attribute 2 (“Duration in month”), 13 (“Age in years”), 16 (“Number
of existing credits at this bank”) of the German Credit Data Set from the UCI Machine
Learning Repository. They have μ = (20.9, 35.5, 1.4), ΣX = (145.4,−4.96,−0.08;
−4.96, 129.4, 0.98;−0.08, 0.98, 0.33). They are perturbed by a 2 × 3 random R. Fig.
4(b) shows the recovery rates with different ε, and our MAP-based reconstruction per-
forms much better than PCA.
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Fig. 4. Experiments on MAP-based and PCA-based Reconstructions

8 Conclusions

In this paper we propose two types of methods to reconstruct the original data from
the data perturbed by Random Projection in [27]. Our reconstructions consider the case
that the original data are mutually independent and sparse, and the case that the original
data are not mutually independent and not sparse. Experiments show that our methods
outperform the reconstructions based on PCA, and achieve higher recovery rates on the
perturbed data. In the future work we will consider more reconstruction methods when
R is not known, towards an improved perturbation method which is secure under these
reconstructions.
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Document via Language Modeling
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Abstract. One major goal of text mining is to provide automatic meth-
ods to help humans grasp the key ideas in ever-increasing text corpora.
To this effect, we propose a statistically well-founded method for identi-
fying the original ideas that a document contributes to a corpus, focusing
on self-referential diachronic corpora such as research publications, blogs,
email, and news articles. Our statistical model of passage impact defines
(interesting) original content through a combination of impact and nov-
elty, and the model is used to identify each document’s most original
passages. Unlike heuristic approaches, the statistical model is extensi-
ble and open to analysis. We evaluate the approach both on synthetic
data and on real data in the domains of research publications and news,
showing that the passage impact model outperforms a heuristic baseline
method.

1 Introduction

With the rapid proliferation of large text corpora, it is especially relevant to
provide automatic methods to support users in understanding global aspects of
a corpus without requiring them to read it in full. In diachronic corpora that
grow over time, one such global aspect is the dependency structure between ideas
and documents throughout the corpus. In particular, what is the original con-
tribution that a given document makes, and how does this idea further “flow”
through the corpus? In this paper, we focus on the first half of this question
and develop methods that automatically identify the original ideas that a doc-
ument contributes. Our methods leverage the diachronic nature of many text
corpora, where ideas originate in some documents and get discussed and refined
in later documents. Such corpora include research publications, email, news arti-
cles, Wikipedia content, discussion boards, and blogs. Useful applications include
the visualization of corpora, the detection of important developments in news
corpora, or the attribution of ideas in blogs or email discussions.

When identifying the original ideas expressed in a document, we are most
interested in ideas that ultimately had impact. Anybody can write some spam
on a discussion board, which would likely be novel to the discussion (at least the
first time), but not particularly interesting. In addition to novelty, measuring
the impact of an idea lets us focus on those ideas that are important, or that
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c© Springer-Verlag Berlin Heidelberg 2009



Identifying the Original Contribution of a Document via Language Modeling 351

at least are interesting to a large number of people. Therefore, our operational
definition of an original contribution combines both novelty and impact.

Unlike methods that rely on explicit citations that must be localizable in
each document [1], our methods require only the text of the documents. This
makes them more broadly applicable than citation-based measures (e.g., for
email, news). Furthermore, unlike novelty detection methods [2] (e.g., based
on TFIDF-style measures), our methods combine novelty with impact, which
provides a way of measuring the importance of novel ideas. The originality-
detection methods we propose are derived from a probabilistic language model
of diachronic corpora – called the Passage Impact Model (PIM), which makes
them theoretically well-founded and more extensible than heuristic approaches.
The method is evaluated on a corpus of Slashdot discussions, as well as through
a blind experiment with human judges on a collection of NIPS research articles.
In both experiments, the language modeling approach was found to outperform
a heuristic that focuses on novelty detection alone.

2 Related Work

The task of succinctly describing the original contribution of a document relates
to several existing research areas, including document summarization, topic de-
tection, topic modeling, and language modeling.

The largest body of related work is in document summarization (see e.g. [3]).
Document summarization methods provide the user with a summary of the entire
document, including both original and existing ideas, without explicitly making
a distinction. The difference between summarization and originality detection is
most apparent for documents that do not necessarily contain original content
(e.g., textbooks, review articles). While such documents have a summary, their
original contribution can be quite different or even non-existent.

Another area of related work lies in novelty detection for Topic Detection and
Tracking [4,5] in news streams. There, the task is to identify new topics and
events as they appear in the news. One major difference is that the Passage
Impact Model segments the document to identify a single passage that best
describes that document’s original contribution. Thus the inference method can
actually find a text description within the document, instead of just marking
that the document contains a novel topic. A second difference is that the Passage
Impact Model combines novelty with impact, focusing on ideas that not only are
novel but also affect the rest of the corpus. The TREC Novelty track [2] solves
a different problem, combining novelty and relevance, not novelty and impact.

One previous paper has tackled the problem of making “impact-based sum-
maries” [1]. Their method is based on citation contexts for explicit citations to
a document d. The task is to select the sentence s in document d that best
describes the contribution of d that had impact in these citation contexts. That
work followed a KL-divergence-based information retrieval framework where the
document d stands for the corpus, the sentences s stand for the documents to
be retrieved, and the citation context is descriptive of the “query.” The Passage
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Impact Model is quite different in model and inference, since it does not require
citations. Instead, our method is based on an extensible generative and unsu-
pervised language-modeling framework. We start from a generative model of the
corpus and derive an inference method to identify the most densely-concentrated
original contribution in the document d. We do not need to use a citation context,
as the method is completely text-based.

On a higher level, topic models and other language models also provide
generative models of corpora. In topic models, however, the focus is on dis-
covering underlying topics, without any explicit notion of originality or im-
pact. Typically, topics are inferred by fitting graphical models with topics as
the latent variables. Latent Dirichlet Allocation (LDA) [6,7] and its extensions
[8,9] are the most well-known, but there is much other work in topic model-
ing [10,11,12,13,14,15,16,17,18,19,20]. In this sense, topic models describe the
relationship between topics and documents, but not the relationships between
individual documents. Our Passage Impact Model directly models relationships
between documents via a copy process. In this sense it builds on the models
in [21,15], extending them to recognizing document substructure. We use sim-
ple unigram language models in the PIM, but one could also use more complex
language models [22,10,6,23,24,25,26].

3 Methods

We take a language modeling approach and define a generative model for di-
achronic corpora. An author writes a new document using a mixture of novel
ideas and ideas “copied” from earlier documents. An idea has impact if it is
copied (i.e., discussed, elaborated on) by future documents. This picture is one
of idea flows, originating in documents with impact and “flowing” to documents
based on idea development. We directly model idea flows between documents,
without an extra level of the topic as in topic models [6]. Identifying the original
contribution of a document means separating novel ideas from old ideas, and
simultaneously assessing impact. We assume that documents generally contain
a key paragraph or sentence(s) that succinctly describe the new idea, and we
aim to identify this piece of original text. The following gives more detail on our
probabilistic model and inference method.

3.1 Passage Impact Model

We propose a generative model of a diachronic corpus that extends the model in
[21] with respect to modeling originality. We model a document D(i) containing
ni words as a vector of ni random variables W (i) = (W (i)

1 ...W
(i)
ni )′, one per

word. Considering the process by which authors write documents, the text can
be split into several types: original content that will have impact on following
documents, novel content that will not have impact, and content “copied” from
already-existing ideas in the corpus. The location of the original content in D(i)

is denoted by Z(i), where Z(i) ⊆ {1...ni}. More concretely, the random variables
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W (i) are partitioned into two sets: Z(i) ⊆ {1...ni} for the indices of the words
of D(i) that are original and have impact, while Z̄(i) = {1...ni} − Z(i) contains
the rest of D(i) (i.e., the copied content and the novel content without impact).
With these definitions, the document is described by the tuple

D(i) = (W (i), Z(i)) (1)

and we will now define a probabilistic model of a document P (D(i)|D(1)...D(i−1)).
Each document D(i) can draw on the ideas already expressed in the existing
documents D(1)...D(i−1) in the corpus. The probability of an entire corpus C
consisting of documents D(1)...D(n), can be decomposed as

P (C) =
n∏

i=1

P (D(i)|D(1)...D(i−1)). (2)

We decompose the probability for a single document D(i) into

P (D(i)|D(1)...D(i−1)) = P (W (i), Z(i)|D(1)...D(i−1))
= P (W (i)|Z(i), D(1)...D(i−1))P (Z(i))

since the document text W (i) depends on the previous documents, but the au-
thor’s selection of placement of original content is independent of previous doc-
uments. Prior information about the placement of Z(i) in the document can be
encoded in P (Z(i)). Furthermore, in the inference described below, the quan-
tity P (Z(i)) can be used to encode constraints on the form of original content
summary that is desirable (e.g., a single sentence or a single paragraph).

Words in the original portion Z(i) are generated from a unigram language
model with word probabilities θ(i). The rest of the document (i.e. the words
indexed by Z̄(i)) comes from a mixture of existing ideas and text that is novel
but without impact. That is, the words indexed by Z̄(i) are drawn from a mix-
ture of a novel unigram model θ̄(i) (new but without impact) and words copied
from the original sections of prior documents. Words are drawn uniformly and
independently in this copy process so that it can also be described by a unigram
model with parameters θ̂(k) for each prior document D(k). The document-specific
mixing weights π(i) are (π(i)

n , π
(i)
k ) for θ̄(i) and θ̂(k), respectively.

With the assumption that text is generated from these unigram multinomial
language models, the generative model of the text given Z(i) and the existing
corpus at time i is

P (W (i)|Z(i), D(1)...D(i−1)) =
∏

j∈z(i)

(
θ
(i)

w
(i)
j

) ∏
j∈z̄(i)

(
π(i)

n θ̄
(i)

w
(i)
j

+
i−1∑
k=1

π
(i)
k θ̂

(k)

w
(i)
j

)
.

Figure 1 illustrates the generative process at document d(i), showing how d(i)

copies content from the original part Z(k) of earlier documents d(k) and showing
how terms indexed by Z(i) are copied by later documents d(l). We summarize
this generative process of a diachronic corpus in the Passage Impact Model.
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Fig. 1. The generative process for a corpus. Document d(i) is the current document,
while d(k) precede d(i) in time and d(l) follow d(i). The shaded boxes are original content
Z(·), while the rest of the documents form Z̄(·). The arrows depict the copy process.

Model 1. (Passage Impact Model)

A corpus C = (D(1)...D(n)) of temporally-sorted documents D(i) =
(W (i), Z(i)), each having parameters (θ(i), θ̄(i), π(i)), has probability P (C) =∏n

i=1 P (D(i)|D(1)...D(i−1)) where

P (D(i)|D(1)...D(i−1)) =
∏

j∈z(i)

(
θ
(i)

w
(i)
j

) ∏
j∈z̄(i)

(
π(i)

n θ̄
(i)

w
(i)
j

+
i−1∑
k=1

π
(i)
k θ̂

(k)

w
(i)
j

)
P (Z(i))

and where θ̂
(k)
w is the probability of uniformly drawing word w from the words in

the original section z(k) of document D(k). Note that π(i)
n +

∑
k

π
(i)
k = 1,

∑
j

θ
(i)
j =

1, and
∑
j

θ̄
(i)
j = 1.

3.2 Inference

Using the Passage Impact Model, we are primarily interested in inferring the
subset Z(i) of words in D(i) where the original contribution is most succinctly
contained. The only observed quantity is the text w(1)...w(n) of all documents.
We use maximum-likelihood inference based on Model 1 for inferring Z(1)...Z(n)

by maximizing P (D(1)...D(n)) given w(1)...w(n) w.r.t. Z(i), θ(i), θ̄(i), and π(i).
Applying Bayes rule and independence assumptions involving the placement of
original content Z(·) in different documents D(i)...D(n), the inferred original
content Z(i)∗ is given by the following:

(Z(1)∗...Z(n)∗) = argmax
Z(1)...Z(n)

max
(θ,θ̄,π)

P (w(1)...w(n)|Z(1)...Z(n))P (Z(1)...Z(n))

= argmax
Z(1)...Z(n)

max
(θ,θ̄,π)

P (w(1)...w(n)|Z(1)...Z(n))P (Z(1))...P (Z(n))

Note that we do not explicitly include the parameters θ, θ̄, and π in the no-
tation for improved readability, since their dependence is straightforward. To
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avoid the intractable simultaneous maximization over all (Z(i)...Z(n)), we in-
troduce some simplifying assumptions that allow independent optimization for
each Z(i). First, we assume that for all prior documents d(1)...d(i−1), the copy
probabilities θ̂(1)...θ̂(i−1) can be approximately estimated from the full set of
words w(1)...w(i−1), respectively, not merely the words indexed by the original
markers z(1)...z(i−1). In practice, this assumption can be expected to have only
minor impact1, and it can be removed if z(1)...z(i−1) are already known. With
this assumption, we have that for any i

(Z(i)∗...Z(n)∗) = argmax
Z(i)...Z(n)

max
Z(1)...Z(i−1)

max
(θ,θ̄,π)

P (w(1)...w(n)|Z(1)...Z(n))P (Z(1))...P (Z(n))

= argmax
Z(i)...Z(n)

max
(θ,θ̄,π)

P (w(i)...w(n)|Z(i)...Z(n), θ̂(1)...θ̂(i−1))P (Z(i))...P (Z(n))

Second, we introduce a simplified model for the future documents D(i+1)...D(n)

so that one can maximize over Z(i) independently. When inferring Z(i), model-
ing exactly how future documents D(l), l > i, had impact on each other is of
minor importance, so that we do not model their Z(l). Instead, we assume that
the original and novel content of future documents comes from a multinomial
mixture, which can be captured by a single multinomial language model θ̄(l).
Thus, each D(l) depends only on the documents D(1)...D(i), and

P (w(i+1)...w(n)|Z(i)...Z(n), θ̂(1)...θ̂(i−1)) =
n∏

l=i+1

P (w(l)|Z(i), w(i), θ̂(1)...θ̂(i−1))

Putting all of these assumptions together, we can rewrite the objective function
as the likelihood of the documents in the corpus starting from D(i), given all the
documents that precede D(i), which is P (D(i)...D(n)|D(1)...D(i−1)). We express
this likelihood using the parameters (θ(i), θ̄(i), π(i)) as follows:

Z(i)∗ =argmax
Z(i)

max
(θ,θ̄,π)

P (Z(i))P (w(i)|Z(i), θ̂(1)...θ̂(i−1))
n∏

l=i+1

P (w(l)|Z(i), w(i), θ̂(1)...θ̂(i−1))

= argmax
Z(i)

max
(θ,θ̄,π)

⎡⎣P (Z(i))
∏

j∈z(i)

(
θ
(i)

w
(i)
j

) ∏
j∈z̄(i)

(
π(i)

n θ̄
(i)

w
(i)
j

+
i−1∑
k=1

π
(i)
k θ̂

(k)

w
(i)
j

)
n∏

l=i+1

nl∏
j=1

(
π(l)

n θ̄
(l)

w
(l)
j

+
i∑

k=1

π
(l)
k θ̂

(k)

w
(l)
j

)⎤⎦ (3)

Note that the various π(.) and θ̄(.), as well as θ(i), are linearly constrained to
form proper probability distributions, and that θ̂(i) can be computed in closed
1 Since each document can be a mixture of original content and previous content, when

estimating θ̂(·) from the entire document, it is equal to the true θ̂(·), mixed with some
previous content that would have come from the θ̂(·) of even earlier documents in
the corpus. This assumption means that the θ̂(·) also could include some content
from θ̄(i). However, if this portion’s mixture component is relatively small, the θ̂(i)

will still be quite faithful to the Passage Impact Model’s definition.
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form for a given z(i). For a fixed z(i), the above optimization problem is convex
and has no local optima. The prior P (Z(i)) can be used to enforce a particular
form of original content description (e.g., that the algorithm has to select a whole
paragraph or a single sentence).

3.3 Implementation Details

When solving the optimization problem, the method can efficiently find the
maximum likelihood if given a specific z(i). In the following, we therefore give
non-zero prior P (Z(i)) only to a fairly small number of z(i) that can be enumer-
ated explicitly. This allows us to find the globally optimal solution of Eq. 3. In
particular, we break documents into consecutive passages of equal length, which
we denote s1...sK . We set P (Z(i) = sk) to be uniform for each k = 1...K, with all
other P (z(i)) = 0. One could also define a non-uniform prior over the candidate
passages z(i) to encode additional knowledge (e.g., bias toward the beginning or
end of the document). With this particular assumption on z(i), the entire likeli-
hood maximization can now be reduced to a sequence of convex problems, one
per sk. The solution to this sequence of optimizations is the global maximum
likelihood across the passages. We use the general software optimization tool
MOSEK to solve these convex optimizations [27].

While the individual problems are convex, for efficiency reasons, we have to
consider the number of parameters in the Passage Impact Model. Therefore,
when performing inference on document d(i), instead of using the full set of pre-
vious documents {d(1)...d(i−1)}, we choose the set of kP nearest neighbors from
these documents according to cosine similarity. The document indices for these
kP documents are given in the set P . Besides d(i), the optimization also uses
the likelihood of generating the documents d(i+1)...d(n). Each of these “future”
documents d(l) has its own set of mixing weights and set of previous documents,
again chosen from the documents {d(1)...d(i−1)} nearest to d(l) by cosine sim-
ilarity. While we do not use the following strategies for improving efficiency,
one could further reduce the size of the optimization problem. For example,
it is possible to consider a Passage Aggregated Impact Model, wherein all fu-
ture text is “lumped” together into one single “document” for inference. Then,
there would only be a single set of future document parameters. Equivalently, we
could constrain all future documents to have the same mixing weights and choose
the set of previous neighbors as those most similar to the concatenation of all
future documents. There is a tradeoff between using more information in more
future documents vs. using more parameters for a specific set of interesting pre-
vious documents.

4 Experiments

We conducted experiments to test the Passage Impact Model on both synthetic
and real data from research publications and news articles.
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4.1 Experiment 1: Synthetic Data

We use synthetic data to explore the range of problems and parameters under
which the methods work effectively and robustly. The synthetic data is generated
with underlying language models from documents in the full-text proceedings of
the Neural Information Processing Systems (NIPS) conference [28] between 1987-
2000. NIPS has 1955 documents with text obtained by OCR, resulting in 74731
unique words (multi-character alphabetic strings), except without stopwords.

To generate a document d(i), we selected a NIPS document d randomly and
set the original language model θ(i) for d(i) to be the distribution of words in
d. The words indexed in Z(i) are then generated according to θ(i). For Z̄(i), we
set the novel language models θ̄(i) and each θ̄(l) similarly, with each document
selected for θ̄(l) following NIPS document d in time. The mixing weights π(i)

k are
selected uniformly at random, except for explicitly exploring π

(l)
i , l > i, (how

much future documents d(l) copy from d(i)) and π
(i)
n (how much novel but not

original content d(i) has) according to the values they might take in practice.
The structure of Z(i) and Z̄(i) takes the form of K = 20 passages with L words

per passage. In the simplest case, Z(i) marks exactly one passage as original. In
addition, we test scenarios where the original content is more diffused through
the document, which poses a challenge in inference. One crucial assumption of
our method is that the prior P (Z(i)) used during inference matches the data-
generating process. However, the inference procedure as implemented above aims
to find a single passage containing all the original content, while the true Z(i)

might diffuse it over other passages. To test the robustness of inference w.r.t.
the degree of diffusion, we include a fraction δ of original content in the (mostly)
non-original passages in data generation, but not during inference.

Evaluation on the synthetic data uses the percentage of (mostly) non-original
passages with a greater likelihood than the original passage likelihood. Ran-
dom performance would be that half of the non-original passages are misranked,
resulting in a score of 50%. The error values show one standard error.

Impact Is Critical. In the first experiment, we explore the difference between
pure novelty detection vs. the additional use of impact when identifying Z(i).
When not using any future documents, our method might still be able to identify
Z(i) merely by fitting the mixture model and detecting that Z(i) cannot be ex-
pressed as a mixture of previous documents. In this setting, our method becomes
a pure novelty detection method. However, Table 1 shows that the signal from
novelty alone is much weaker than novelty combined with impact. While the per-
formance is better than random when no future documents are used (kF = 0),
detection accuracy substantially improves when future documents and impact
are considered by the method. The table shows that two future documents that
copy 5% of their content from d(i) already provide a robust signal.

More Information in Longer Passages. We would like to determine the size
of the original passage for which the Passage Impact Model can perform well.
Users may be interested in descriptions anywhere from one or more sentences



358 B. Shaparenko and T. Joachims

Table 1. Percentage of misranked non-original passages. Passage length L = 100,
δ = 0.2, π

(i)
n = 0.5, π

(l)
i = 0.05, and π

(l)
n = 0.6. 10 future documents d(l) were generated,

and inference used the kF documents d(l) most (cosine) similar to d(i).

kF % Err ± One Std Err
0 37.89 ± 3.23
1 2.95 ± 0.78
2 0.26 ± 0.16
5 0.00 ± 0.00
10 0.16 ± 0.16

Table 2. Percentage of misranked non-original passages with kF = 2 future documents.
The data was generated with δ = 0.2, π

(i)
n = 0.5, π

(l)
i = 0.05, and π

(l)
n = 0.6.

Length % Err ± One Std Err
25 8.16 ± 1.61
50 2.26 ± 0.65
100 1.00 ± 0.99
400 2.26 ± 0.74

to paragraphs. Table 2 shows that, in general, when performing inference on
longer passages, the method is able to perform more accurately. The method
performs very well for passages as short as 50 words. However, for very short
passages of length 25 words, there is some drop in accuracy. Longer passages –
and therefore longer documents – provide more observations, and it is less likely
that the method will overfit to a few random draws.

Diffusiveness of Original Content in d(i). The inference method searches for
a single passage that contains the original contribution, but realistic documents
will have original content spread throughout all passages. How much original
content in other passages can our inference method tolerate? Table 3 shows
that the method is very robust towards small to moderate diffusion. Even as δ
increases to 0.3 (i.e. 30% of each of the other passages is original content), the
method is still quite accurate. After that, performance degrades rather quickly,
at least when only two future documents are used.

How Much Copying Is Necessary? As shown above, the Passage Impact
Model relies on future documents copying the ideas expressed in the original
contribution of d(i). How much must each future document copy to provide a
sufficient signal? Table 4 shows that the method performs with minimal errors
for many values of π(l)

i , even in the situation where future documents copy only
5% of their content (i.e. 100 words) from d(i). At lower values for copying, the
percentage of correctly ranked passages smoothly decreases. As π

(l)
i approaches

0, the method becomes essentially equivalent to a novelty detection method that
does not using any future documents.
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Table 3. Percentage of misranked non-original passages. kF = 2 future documents,
passages length L = 100 words, π

(i)
n = 0.5, π

(l)
i = 0.05, and π

(l)
n = 0.6.

δ % Err ± One Std Err
0.1 0.00 ± 0.00
0.2 0.00 ± 0.00
0.3 4.74 ± 1.21
0.4 24.89 ± 2.80
0.5 45.26 ± 3.38

Table 4. Percentage of misranked non-original passages. kF = 2 future documents,
passage length L = 100 words, δ = 0.2, π

(i)
n = 0.5, and π

(l)
n = 0.6.

π
(l)
i % Err ± One Std Err

0.005 34.37 ± 3.16
0.01 28.58 ± 2.97
0.02 9.16 ± 1.41
0.05 0.11 ± 0.07
0.1 0.00 ± 0.00
0.2 0.00 ± 0.00

4.2 Experiment 2: Slashdot

Besides synthetic data, we also evaluate on the real world dataset of news articles
linked to on Slashdot under the Games topic. When users post an entry, they
often link to some article on the Web, and sometimes quote directly from it. Then
other users read and respond to these postings in a discussion board format. We
collect linked-to web documents and discussions from the Games topic where
the original poster directly quotes from a linked-to document. We regard the
sentences in the human-selected direct quotations as the label for the original
content z(i) of the web document d(i).

We collected a set of 61 documents from the Games topic of Slashdot. These
are the entries posted from August 2008 through February 2009, inclusive, where
the initial entry quotes a portion of the referenced article. The documents are
the referenced articles. In addition, we collect the first page of the user discussion
on this topic, as selected by Slashdot. Figure 2 shows a screenshot of Slashdot
that depicts the data we collected.

Experiment Setup. To do inference on Slashdot data, we sort the fulltext,
linked-to news articles by their posting date. For each article, we use the Passage
Impact Method to rank all the sentences in the linked-to web content d(i) by
their likelihood under the model. The previous documents d(1)...d(i−1) in this
setting are the web content that have been linked to in earlier discussions. The
future content d(i+1) in this experiment is the user discussion on this posting,
except that any direct quotations from the fulltext article have been removed.
The user discussion may not contain all the comments, but only those that have
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An original post including a quotation Part of the discussion

Fig. 2. Left: A post that quotes from article d(i) by the link “the way video games han-
dle simulated emotions.” The label for the original content z(i) in d(i) is the quotation
text. Right: Part of the discussion to be used as the future document d(l).

been voted up enough to be selected to appear with the posting. We collected
seven months (August 2008 to February 2009, inclusive) of articles that satisfy
these criteria from the Games subtopic of Slashdot, which netted a corpus of 61
web documents with their associated discussions.

Evaluation Method. For evaluation, we rank the sentences in the fulltext ar-
ticle in decreasing order of likelihood. The user quotations typically contain no
more than a handful of sentences, but often more than one. Thus, this imple-
mentation differs from the model where we assume that there is a single original
contribution marked in the passage Z(i). As a baseline, we compare against a
simple heuristic that identifies novelty. In particular, we rank the sentences by
a TFIDF score given by the sum of each sentence term’s IDF value. Then, since
we have the labels of the true original sentences, we evaluate using the standard
metrics of precision and recall at certain points in the ranking. Precision at a
point in a ranking is defined to be the number of original sentences at that posi-
tion in the ranking divided by the total number of sentences up to that point. For
a point near the top of the ranking, precision measures whether the sentences
that the method most confidently predicts as original are indeed original. Thus
we report results for Prec@2. Recall at a point in the ranking is defined to be
the number of original sentences at that position in the ranking divided by the
total number of original sentences in the document. Recall measures how well
the method can find all the original content in the document. Since each labeled
quotation typically contains several sentences, we report results for Rec@10.

Results. The Prec@2 results in Table 5 show that the Passage Impact Model
outperforms the TFIDF heuristic baseline for predicting the human-selected sen-
tences at the very top of the ranking. For the task of finding a description con-
sisting of a few good sentences that succinctly describe the original content of a
news article, the Passage Impact Model is better than the baseline. The PIM also
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Table 5. Prec@2 and Rec@10 are based on the predicted ranking of sentences by
likelihood and TFIDF sum. Original sentences are the ones quoted word-for-word from
the article. Results are for π

(i)
n = 0.2 and π

(l)
n = 0.001.

Prec@2 ± One Std Err Rec@10 ± One Std Err
PIM 22.13 ± 3.38 36.09 ± 3.61
TFIDF 9.84 ± 3.03 25.01 ± 4.04
RAND 10.63 ± 1.10 23.92 ± 2.27

Table 6. Comparing the PIM with future documents, and PIM as a novelty detection
method (without future documents). Results are for π

(i)
n = 0.2 and π

(l)
n = 0.001.

Prec@2 ± One Std Err Rec@10 ± One Std Err
PIM Impact 22.13 ± 3.38 36.09 ± 3.61
PIM Novelty 9.84 ± 3.03 28.04 ± 4.24

Table 7. Prec@2 and Rec@10 for various amounts of assumed novel content π
(i)
n in

d(i). Sentences are marked as original if they appear word-for-word as in the linked
article. Results are for π

(l)
n = 0.001.

π
(i)
n Prec@2 ± One Std Err Rec@10 ± One Std Err

0.01 18.85 ± 3.10 35.51 ± 3.55
0.05 20.49 ± 3.15 36.03 ± 3.57
0.2 22.13 ± 3.38 36.09 ± 3.61
0.8 22.95 ± 3.39 36.45 ± 3.63
0.9 22.95 ± 3.39 36.45 ± 3.63

significantly outperforms the baseline when trying to find most of the original
content, as measured by Rec@10.

Importance of Impact Component. Similar to the experiment with syn-
thetic data, the use of impact substantially improves the performance over pure
novelty detection. Table 6 compares the results when using the discussion for
detecting impact with the results when no future documents are used. Using the
discussion significantly improves the precision of the method.

Robustness with respect to amount of novel content in d(i). During
inference, the method needs to assume a mixture weight for the novel content in
the non-original text Z̄(i). How sensitive is the method to the selection of this
parameter? Table 7 shows that the method is robust and provides good results
for a wide range of values for π

(i)
n .

Minor Effect of Novel Language Model in Future Documents. Simi-
larly, since Slashdot discussions are somewhat notorious for getting off topic at
times, we evaluated whether changing the amount of novel content in the “future
document,” i.e., the discussion makes a difference. As it turns out, Table 8 shows



362 B. Shaparenko and T. Joachims

Table 8. Prec@2 and Rec@10 for various mixing weights π
(l)
n for the noise model in

fitting future documents. Sentences are marked as original if they appear word-for-word
as in the linked article. The results are reported for π

(i)
n = 0.2.

π
(l)
n Prec@2 ± One Std Err Rec@10 ± One Std Err

0.0001 20.49 ± 3.15 36.77 ± 3.58
0.001 22.13 ± 3.38 36.09 ± 3.61
0.01 16.39 ± 3.42 34.55 ± 3.73
0.1 18.03 ± 3.29 30.34 ± 3.47
0.5 20.49 ± 3.73 31.04 ± 3.47

that for a wide range of novel content mixing weights π
(l)
n , the method is quite

robust. The model is able to focus on the portions that the discussion derives
from the underlying linked article.

4.3 Experiment 3: Evaluation Based on Human Judgments

While the Slashdot data provided a reasonable mechanism for inferring ground-
truth labels, the most direct evaluation is by explicit human judgment. There-
fore, we conducted an experiment with human judges to evaluate the Passage
Impact Model on a corpus containing all 1955 papers from the NIPS conference
[28] between 1987-2000. In a blind experiment, we asked judges to compare pas-
sages extracted by the PIM to those extracted by the TFIDF heuristic regarding
how well they summarize the original contribution of a NIPS paper.

Experiment Setup. Since breaking documents into paragraphs is non-trivial,
especially when they are OCR-ed and have many math equations, we arbitrarily
defined passages as consecutive blocks of text of length L = 100 (non-stopword)
words. On average, there are 14 passages per document.

For inference using the Passage Impact Model, we constrained the novel θ̄(i)

and original θ(i) language models to be equal because research publications
typically discuss original contributions at length. Ideally, the identified passage
should list the paper’s contributions or conclusions. (Although the abstract has
original content, it mostly focuses on placing the paper with the context of ex-
isting ideas.) The future document novelty mixing weight of π(l)

n = 0.01 is small
to force the model to “explain” the content of future documents d(l) by identify-
ing copied ideas. For efficiency, we used kF = 5 future documents. We compare
against the TFIDF heuristic baseline. Each paper’s passages predicted by the
PIM and the baseline were highlighted, and three judges selected which passage
better summarized the paper’s original contribution. The annotators are ma-
chine learning graduate students familiar with the corpus and do not include
the authors of this paper.

Since the judgment process is time-consuming, we selected a subset of NIPS
publications for evaluation. We ranked all NIPS publications by their number of
intra-corpus citations and selected the top 50 most-cited documents. The first
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publication is “Optimal Brain Damage” by Le Cun, Denker, and Solla, with 27
citations. The entire set of 50 documents includes documents down to those with
only 5 intra-1987-to-2000 NIPS citations. The PIM and the baseline selected the
same passage on two documents, so we use the remaining 48 for evaluation.

Results. On these 48 documents, the human judges preferred the Passage Im-
pact Method over the baseline 58.33% of the time, with one standard error of
3.54%. Thus the judges significantly prefer the PIM over the baseline. To an-
alyze the results more closely, we separated the 48 evaluation documents into
two sets. On 20 documents, all three annotators (independently) agreed on a
single passage. For these, they preferred the PIM 70% of the time. On the other
28 documents, two annotators preferred one passage, while the third annotator
preferred the other passage. Here, the preferences for PIM and baseline were ex-
actly 50%. This suggests that sometimes identifying a passage that summarizes
the original contribution is quite difficult. When this is not the case, however,
the PIM outperforms the baseline quite substantially with 70% preference.

5 Discussion and Future Work

While the Passage Impact Model provides a generative model of diachronic cor-
pora and the relationships between individual documents, the model is still quite
simple. For example, it is based on unigram models of text production. In model-
ing the probability of W (i), one could instead use a more sophisticated sequence
model, or at least n-gram language models. Such information may help to iden-
tify coherent original ideas. Another limitation is that the model is constrained
to evaluate only a small number of candidate Z(i) for efficiency reasons. Devel-
oping pruning criteria is a promising direction for substantially increasing the
scope of Z(i) in hopes of finding better descriptions of original contributions.

Other information available for some corpora could be integrated into the
model as well. For example, if citation information is available, it could provide
additional constraints on the parameters during inference. Citations could be
used as priors for mixing weights, modeling that documents copy primarily from
those documents they cite. This could improve the accuracy of the model, and
it could improve efficiency of the optimization since many mixing weights could
be fixed at zero.

A more general direction for further work lies in the integration of originality
detection with models for idea flow. The goal is to have a unified probabilistic
model that identifies the dependency structure of the corpus, with ideas origi-
nating in some documents and then flowing through the corpus. Treating these
inference problems separately seems suboptimal.

6 Conclusions

We have proposed an unsupervised generative model for diachronic text corpora
that provides a formal structure for the process by which authors form new
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ideas and build on existing ideas. The model captures both novelty and impact,
defining an (important) original contribution as a combination of both. For this
Passage Impact Model, we have proposed an inference procedure to identify
the most original passage of a document. Under reasonable approximations, the
inference procedure reduces to multiple convex programs that can be solved
efficiently. The method is evaluated on synthetic and real data, and it is shown to
significantly outperform a heuristic baseline for selecting a passage describing the
original contribution in the domains of online discussions and research articles.
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Abstract. Most existing transfer learning techniques are limited to
problems of knowledge transfer across tasks sharing the same set of class
labels. In this paper, however, we relax this constraint and propose a
spectral-based solution that aims at unveiling the intrinsic structure of
the data and generating a partition of the target data, by transferring the
eigenspace that well separates the source data. Furthermore, a clustering-
based KL divergence is proposed to automatically adjust how much to
transfer. We evaluate the proposed model on text and image datasets
where class categories of the source and target data are explicitly dif-
ferent, e.g., 3-classes transfer to 2-classes, and show that the proposed
approach improves other baselines by an average of 10% in accuracy. The
source code and datasets are available from the authors.

1 Introduction

Traditional supervised and semi-supervised learning work well under the strict
assumption that the labeled training data and unlabeled test data are drawn
from the same distribution and have shared feature and category spaces. In many
real world applications, however, this assumption may be violated. In fact, we
often encounter the situations where we do not have sufficient labeled training
examples in the target learning task. Examples include spam filtering, biological
sequence annotation, web searching, and the like. To acquire more labels could
usually be expensive or infeasible. For example, in the field of computational
biology, many expensive and time-consuming experiments are needed to provide
the labels for even a small number of examples. As an alternative solution,
transfer learning was proposed to help extract some supervisory knowledge from
� Part of the work was done when the author was a visiting student at HKUST.
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related source data to help learn the target task (e.g., [3,4,16,22]). Existing
transfer learning techniques implicitly assume that there is sufficient overlap
between the source data and the target data, and categories of class labels are the
same, in order to allow the transfer of knowledge. However, this can significantly
limit the applicability of transfer learning, as it is not always possible to find
labeled data satisfying these constraints. In order to improve its applicability, we
study how to transfer knowledge across tasks having different class categories.

For example, can the text documents labeled in “wikipedia” help classify those
documents in “ODP1” even though they have different index systems? Can the
labeled source image data in Fig 1(a) help classify the target data in Fig 1(b)
given that they are images of different objects? The problem formulation is to
partition an unlabeled target data, by the supervision from a labeled source data
that has different class categories. To solve the problem, two issues need to be
addressed:

1. What and how to transfer? Since the source and target data have differ-
ent class labels, we can not directly take advantage of the class conditional
density p(x|y) or posterior p(y|x) to construct the model, and thus most of
the previous transfer learning methods do not work. A new transfer learning
strategy independent of class labels is needed.

2. How to avoid “negative transfer”? Given that the source and target data do
not share class labels, they may come from significantly different domains.
Thus, it is also necessary to avoid negative transfer (or accuracy worse than
no transfer) when the source and target data are unrelated.

We propose a spectral-based solution that uses eigenspace to unveil the intrinsic
structure similarities between source and target data. The key idea is that, re-
gardless of their class category naming, if the source and target data are similar
in distribution, the eigenspace constructed from the source data should be also
helpful to reflect the intrinsic structure of the target data. We illustrate the in-
tuition in Fig 1. Although the target data (Fig 1(b)) and source data (Fig 1(a))
have totally different class labels, the eigenspace Fig 1(c) constructed with the
supervision from Fig 1(a) still helps group the target data. On the one hand, the
images about homer-simpson are similar to the images about cartman because
they are all cartoon characters; on the other hand, the shape of real bear is sim-
ilar to teddybear, and the background of real bear may contain plants similar to
palm tree. Thus, the eigenspace that well separates Fig 1(a) also helps separate
Fig 1(b) even though their class labels are different.

To be specific, the proposed model finds an eigenspace through a combination
of two optimization objectives. The first is to find the eigenspace that well sep-
arates the source data: the labeled data with the same class categories will be
grouped together. The second objective is to maximize the marginal separation
of the unlabeled target data. Moreover, to avoid negative transfer, we also derive
a clustering-based Kullback-Leibler divergence to measure the difference in dis-
tribution between two finite datasets more effectively (see Lemma 1). We then
1 “Open Directory Projects” (http://www.dmoz.org/). Both “wikipedia” and “ODP”

are systems categorizing large amount of documents.
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(a) Labeled Source Dataset (b) Unlabeled Target Dataset

(c) Solution in eigenspace

Fig. 1. An example on two image datasets with totally different class labels. Fig 1(c)
is the eigenspace constructed with the supervision from the source dataset, and we
plot a sub set of examples to illustrate the intuition. In this example, the eigenspace
learnt from source dataset (Fig 1(a)) can also reflect the structure of the target dataset
(Fig 1(b)) though their class labels are different.

make use of the measure to define “transfer risk” to regulate the effects of the two
objectives. When the two datasets are very different, the effect of the first objec-
tive (or the supervision from source task) automatically decreases to minimize
the risk of negative transfer. We provide a PAC bound for the proposed method
in Theorem 1. In addition, the proposed algorithm is tested in several datasets
where target and source data have very different class categories. For instance,
in one of the experiments, we apply the 4-classes document sets “Graphics vs.
Hardware vs. Politics.mid vs. Religion.misc” to supervise the partition of the
binary document datasets “Comp vs. Rec”. The proposed model achieves an
accuracy 98%, while the accuracy of the baseline that does not apply transfer
learning is only 74%.

2 Problem Formulation

We consider the problem to find a good partition of the unlabeled target data,
possibly with the supervision from the labeled source data having different class
labels, only when the supervision is helpful. We denote the source data as L =
{l1, l2, ..., ls}, and the target data as U = {u1,u2, ...,ut}, where s and t are
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the sample size for the source and target data, respectively. Both L and U are
drawn from the same feature space Rd under different distributions L ∼ PL and
U ∼ PU . We also denote that the class labels of L are Y = {y1, y2, ..., yr} where
r is the number of categories of L, while the number of class labels of U is k.
And we do not assume the class labels of source and target data are the same.

No Transfer: To generate a partition C = {c1, c2, ..., ck} of the target data U ,
we find a clustering decision function N : U "→ C to minimize ε[N (U)], where
ε[∗] is a cost function to measure the quality of the partition. Example of such
a function is Normalized Cut [19].

Transfer Learning: We learn the partition U "→ C by making optional use of
the knowledge from the source data. There are many interpretations of transfer
learning strategies, e.g., [3,4] reviewed in Section 5. One straightforward strategy
is formulated as follows. We first learn a decision function F : L "→ Y on the
feature space Rd that correctly reflects the true label of the source data L. A
simple transfer learning strategy can be T (U) = M(F(U)), where M : Y "→ C.

Negative Transfer: Since the source and target data have different class labels,
they may be from very different domains. Thus, one of the main challenges is
how to avoid negative transfer when the source and target data are too different.
Formally, L and U may be very different so that the performance after transfer
learning is worse than no transfer. Formally,

ε[N (U)] < ε[T
(
U)] (1)

where ε[∗] is the cost function to measure the partition quality. There can be
other criteria such as error rates in classification problem. When Eq (1) holds,
it is said to have negative transfer [17].

3 Risk-Sensitive Spectral Partition

We propose an improved spectral partition model to transfer the eigenspace
that well separates the source data, in order to generate a good partition of
the target data. Importantly, source and target data have different class labels.
Since negative transfer may happen, we use the “risk of negative transfer” to
automatically decide when and how much to transfer.

3.1 Divergence Measure and Transfer Risk

We first derive a new formula of the KL-divergence and propose a clustering-
based approach to calculate it, in order to quantify the difference between source
and target data more effectively. Normally, given two probability distributions
P and Q, the KL divergence KL

(
P ||Q

)
is defined as follows2:

KL
(
P ||Q

)
=

∑
x

P (x)
(
logP (x)− logQ(x)

)
(2)

2 KL can be also written in terms of probability density in a continuous form, which
is difficult to estimate without prior knowledge [1].
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On finite datasets, one usually calculates P (x) and Q(x) for every value of
x via Eq (3).

P (x = a) =
|{x|x = a ∧ x ∈ DP }|

|{x|x ∈ DP }|

Q(x = a) =
|{x|x = a ∧ x ∈ DQ}|

|{x|x ∈ DQ}|

(3)

where DP ∼ P and DQ ∼ Q are the datasets generated from the distributions P
and Q, respectively. However, small changes to the datasets, such as those sparse
ones typically found in text mining, can result in significant changes by the above
approximations, making it difficult to distinguish different distributions [1]. To
resolve this problem, we derive another format of the KL divergence and propose
a clustering-based approach to calculate it. We first perform a clustering on the
combined dataset DP ∪DQ. We then directly employ some basic statistics of the
clustering results as shown in Lemma 1.

Lemma 1. Given two distributions P and Q, the KL divergence can be rewritten
with a new formula as3:

KLc
(
P ||Q

)
=

1
E(P )

(∑
C

(
P ′(C)S(P ′, C)log

S(P ′, C)
S(Q′, C)

)
+

∑
C

(
P ′(C)S(P ′, C)log

P ′(C)
Q′(C)

))
+ log

E(Q)
E(P )

(4)

where C is the cluster generated from the combined dataset, and

S(P ′, C) =
|DP ∩ C|
|C| , P ′(c) =

|DP ∩ C|
|DP ∪ DQ|

,

E(P ) =
|DP |

|DP ∪ DQ|

(5)

Likewise are the definitions of S(Q′, c), Q′(c) and E(Q) (by replacing DP with
DQ in the nominator).

Proof. Define P ′(x = a) = |{x|x=a∧x∈DP}|
|{x|x∈DP∨x∈DQ}| , E(P ) = |DP |

|DP∨DQ| . We then have

P (x) = P ′(x)/E(P )

Q′(x = a) and E(Q) are defined in a similar way. Note that the first step of
the proposed calculation is to perform clustering on the combined dataset. We
expect a reasonable clustering approach can guarantee that the instances with
the same value are assigned to the same cluster. In other words, {x|x = a ∧ x ∈
3 To distinguish the new formula with the original formula of KL, we denote the new

version as KLc (Clustering-based KL). Their difference is explained after the proof.
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DP ∧ x ∈ c} = {x|x = a∧ x ∈ DP } where c is a cluster and x ∈ c. This property
can be valid for many clustering approaches, such as K-means. We then have

P ′(x=a, c)=
|{x|x = a ∧ x ∈ DP ∧ x ∈ c}|
|{x|x ∈ DP ∨ x ∈ DQ}|

=
|{x|x = a ∧ x ∈ DP }|
|{x|x ∈ DP ∨ x ∈ DQ}|

=P ′(x=a)

With these equations, the KL divergence in Eq (2) becomes:

KLc
(
P (x)||Q(x)

)
=

∑
x

P (x)log
P (x)
Q(x)

=
∑

x

P ′(x)
E(P )

log
P ′(x)E(Q)
Q′(x)E(P )

=
∑

x

P ′(x)
E(P )

log
P ′(x)
Q′(x)

+ log
E(Q)
E(P )

∑
x

P ′(x)
E(P )

∑
c

∑
x∈c

P (x, c)log
P (x, c)
Q(x, c)

=
1

E(P )

(∑
c

∑
x∈c

(
P ′(x|c)P ′(c)log

P ′(x|c)P ′(c)
Q′(x|c)Q′(c)

))
+ log

E(Q)
E(P )

=
1

E(P )

(∑
c

(
P ′(c)

∑
x∈c

P ′(x|c)log
P ′(x|c)
Q′(x|c)

)
+

∑
c

(
P ′(c)log

P ′(c)
Q′(c)

∑
x∈c

P ′(x|c)
))

+ log
E(Q)
E(P )

Recall that the instances assigned to the same cluster are very similar to each
other. We can then assume that in the same cluster, the expectation of instances
from distribution P is the same as expectation of instances from Q:

Ex∈DP ,x∈c[x] = Ex∈DQ,x∈c[x]

⇒
∑
x∈c

x
P ′(x|c)∑

x∈c
P ′(x|c) =

∑
x∈c

x
Q′(x|c)∑

x∈c
Q′(x|c)

⇒
∑
x∈c

x(
P ′(x|c)∑

x∈c
P ′(x|c) −

Q′(x|c)∑
x∈c

Q′(x|c) ) = 0

Note that this property can be guaranteed to be satisfied by applying clustering
techniques such as bisecting k-means [18], with |Ex∈P,x∈c[x] − Ex∈Q,x∈c[x]| < θ
as the termination condition, where θ set close to 0. In other words, if the
condition does not satisfy in one of the clusters, a binary clustering procedure
can be performed to divide the cluster smaller, until each cluster satisfies the
condition. This process also adaptively decides the number of clusters. Since x
can take any value, to validate the above equation, we let

P ′(x|c)∑
x∈c

P ′(x|c) =
Q′(x|c)∑

x∈c
Q′(x|c)
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Eq (2) can then be rewritten as

KLc
(
P (x)||Q(x)

)
=

1
E(P )

( ∑
c

(
P ′(c)

∑
x∈c

P ′(x|c)log

∑
x∈c

P ′(x|c)∑
x∈c

Q′(x|c)
)

+
∑

c

(
P ′(c)log

P ′(c)
Q′(c)

∑
x∈c

P ′(x|c)
))

+ log
E(Q)
E(P )

=
1

E(P )

( ∑
c

(
P ′(c)S(P ′, c)log

S(P ′, c)
S(Q′, c)

)
+

∑
c

(
P ′(c)S(P ′, c)log

P ′(c)
Q′(c)

))
+ log

E(Q)
E(P )

�

The main difference between the original version of the KL divergence in Eq (2)
and its new formula KLc in Lemma 1 is that they are calculated in different ways
in practice. The original version of KL in Eq (2) is usually calculated by Eq (3)
because its formula requires to know every specific values of each variable x.
However, with the new formula in Lemma 1, we can calculate the KL divergence
by the clustering result on the whole dataset with several advantages. First, the
clustering-based KL divergence in Lemma 1 can be computed efficiently and
easily, because it only uses some basic statistics of the clustering. For example,
S(P ′, C) in Eq (5) represents the proportion of examples in the cluster C origi-
nally generated from the distribution P . Second, we do not explicitly calculate
the marginal distribution P (x), which is normally difficult to approximate with
a limited number of instances. Third, “high-level structures” (clusters) of the
datasets are applied as a bridge to learn their differences, which are normally
a more effective way to reflect the divergence. Other than the proof, we also
empirically study the proposed version of KL in the experiment.

It is important to note that the KL divergence is asymmetric. In other words,
KLc(PL||PU ) is not necessarily equal to KLc(PU ||PL), where L ∼ PL, U ∼ PU .
However, we keep this property because we are only interested in the “risk” of
learning the unlabeled data U based on the concept learnt from the labeled data
L. In other words, we use the risk of coding U based on the encoding from L, as
reflected by KLc(PU ||PL). With Lemma 1, we define the “transfer risk” *(L;U)
in the logistic form, to regularize it into [0, 1] and it is consistent with the known
form of probability distribution:

*(L;U) =
(
1 + exp(λ−KLc(PU ||PL))

)−1 (6)

where L ∼ PL, U ∼ PU , and λ = e2 is a deviation to make the minimum
value of *(L;U) close to 0. We then incorporate the transfer risk *(L;U) into
the proposed optimization function to automatically regulate the objectives to
avoid negative transfer.
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3.2 Objective Function

To generate a partition of the target data, the proposed algorithm finds an
eigenspace where the target data can be clearly separated through a combination
of two objectives. The first is to ensure the labeled data with the same class
labels will be grouped together, and the second is to adapt the feature space
to cater to the target data. Importantly, the transfer risk *(L;U) (Section 3.1)
automatically regulates the two goals.

Formally, the proposed optimization function, based on graph partition, can
be written as

min
Y
J (L,U) = Cut(GL∪U , Y ) + β

((
1−*(L;U)

)
TL + *(L;U)TU

)
(7)

where Cut(GL∪U , Y ) is a cost function of the partition Y on a graph GL∪U
generated from the combined data L ∪ U . Examples of such cost functions are
Normalized Cut [19], MinMax Cut [6], and so on. Note that TL and TU are the
two objectives formulated as partition constraints; β is a parameter to control
the overall effect of the constraints. On one hand, TL is directly derived from
the “must-link” constraint [21] to find a subspace where the instances are close
to each other if they have the same class labels. On the other hand, TU is a
partition constraint defined on the pre-clustering result of U to reflect its natural
separation. To construct TU , we first perform unsupervised spectral clustering
on the target data U individually by Ncut [19]. The proposed algorithm then
prefers to find a subspace to “gather” the instances closer if they are in the
same pre-cluster. This constraint is defined to “reinforce” the natural manifold
structure of U by maximizing its marginal separation.

We describe a partition constraint as TL or TU in Eq (7). To do this, we
construct a constraint matrix M as follows:

M = [m1,m2, ...,mr]T (8)

where each md is a (s + t) × 1 matrix (s + t is the total size of the combined
dataset L ∪ U). Each md represents a constraint on the dataset. For example,
if m1 has an entry of +1 in the ith row, −1 in the jth row and the rest are all
zero, it represents data i and data j are constrained to be close to each other.
There are a total of r constraints on the dataset. Then, let ML and MU denote
the constraint matrix of TL and TU , respectively. We have

TL = ‖MLY ‖2

TU = ‖MUY ‖2 (9)

where Y is the partition indicator. Now consider normalized cut [19] as the graph
partition cost function, the proposed optimization function in Eq (7) becomes:

min
Y
J (L,U) =

Y T (D −W )Y
Y TDY

+ β
((

1−*(L;U)
)
‖MLY ‖2 + *(L;U)‖MUY ‖2

)
(10)
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where Y is the partition indicator, W is the similarity matrix of the combined
dataset L ∪ U , and D = diag(W ·e) (� is a vector with all coordinates as 1).
In Eq (10), the first term reflects the partition quality derived from normalized
cut, and the second term consists of two constraints (‖MLY ‖2 and ‖MUY ‖2),
representing the two objectives; β is the parameter to control the overall effect
of the constraints. The transfer risk *(L;U) serves as the pivotal component to
balance the two constraints.

Then, if the transfer is too risky, or *(L;U) is large, the effect of the first
constraint decreases, and the optimization step prefers to satisfy the second
constraint more in order to maintain the natural manifold structure of the target
data and to avoid negative transfer. It is also important to emphasize that the
parameter β is not the essential component to avoid negative transfer. When
negative transfer is likely to happen, the constraint will mainly come from the
target data regulated by *(L;U). In this case, the partition constraint does
not include supervision from source data, and thus negative transfer is avoided
regardless of the value of β. The effect of β is also studied in the experiment.

3.3 Optimization

We introduce a key step to solve the proposed optimization function Eq (10).
First, we denote

A = D −W + β
((

1−*(L;U)
)
M

T
LML + *(L;U)MT

UMU
)

(11)

and Z = D
1
2Y/‖D 1

2 Y ‖. Then we have:

J (L,U) =ZTD− 1
2 (D −W )D− 1

2Z

+ β
((

1−*(L;U)
)
‖MLD

− 1
2Z‖2

+ *(L;U)‖MUD
− 1

2Z‖2
)

=ZTD− 1
2AD− 1

2Z =
Y TD− 1

2AD− 1
2Y

Y TY

(12)

It is easy to prove that A is symmetric, because D, W , M
T
LML and M

T
UMU are all

symmetric while A is a liner combination of these symmetric matrices. When we
relax Y to take the real values similar to other spectral clustering methods [10],
we can use the k smallest orthogonal eigenvectors of D− 1

2AD− 1
2 to generate the

partition.
The proposed algorithm is described in Fig 2. The algorithm first prepares

the partition constraint matrices ML and MU as Eq (8), and the transfer risk
*(L;U) according to Eq (6). Moreover, we also construct the similarity matrix
W by a distance function like cosine distance, and then construct the correspond-
ing diagonal matrix D. With these terms, we can get a matrix A according to
Eq (11). Then, we use the k smallest eigenvectors of D− 1

2AD− 1
2 to generate

the eigenspace. Finally, we can perform clustering on the projected target data
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Fig. 2. Risk-sensitive Spectral Partition. Input: labeled dataset L, target dataset U
(number of clusters k); constraint parameter β.

XU . Note that although clustering is a straightforward approach to generate the
partition, we can also use classifiers, such as KNN, to generate the partition if
the class labels of source and target data are the same. The target data marked
with the same class labels are assigned to the same cluster.

3.4 PAC Bound

The PAC-Bayes error bound in [14] is adopted with new terms to explain the
behavior of the proposed model.

Theorem 1. Let PU and PL be the distributions of target and source data re-
spectively, and s be the sample size of source data. Let δ ∈ (0, 1) be given. Then,
with probability at least 1− δ, the following bound holds,

εU(N ) ≤ εL(N ) +

√
KL(PU ||PL)− lnπ(N )− η − lnδ

2s

where N is the partition function, and π(N ) is a prior distribution of N that is
usually based on domain knowledge, and η is a normalization constant[14].

In the proposed algorithm, we apply semi-supervised spectral clustering to gen-
erate the partition. The goal is to minimize the expected partition cost εU (N ),
similar to the expected error in classification. Like other PAC methods, we can
minimize the empirical partition cost εL(N ) on the given source data L. In our
case, we apply the “must-link” constraint to achieve this goal, by encouraging
the labeled instances with the same class categories grouped together. However,
observed from the second term of the right hand side, the bound also depends
on the divergence of the two distributions PU and PL. Thus, we apply the su-
pervisory knowledge of source data L only when their divergence KL(PU ||PL)
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is small. Moreover, in order to distinguish the distribution divergence more ef-
fectively, we apply the clustering-based formula KLc(PU ||PL) to calculate the
KL divergence. With small partition cost εL on the labeled data, and small KL
divergence, the strategy minimizes the upper bound of the expected cost εU (N ).

4 Experiments

We empirically study the proposed method RSP (Risk-sensitive Spectral Part-
ition) with two goals: (1) testing whether RSP can transfer across tasks having
different class labels; (2) testing whether RSP can judiciously avoid negative
transfer.

4.1 Experiment Setup

Datasets : We first conduct experiments on the text datasets as shown in Table 1.
They are generated from 20-newsgroup and Reuters-21578 as in [5]. Each set
of experiments contains one labeled source dataset and a corresponding target
dataset. In addition, both the target dataset and the source dataset may come
from different categories of documents, or even different document corpus. For
example, the target dataset is from Reuters-21578, and the source dataset may
be from 20-newsgroup. Thus, the class categories and data distributions of the
two datasets may be significantly different. Each category contains around 1,500
documents. To speed up the optimization process, we first perform clustering on
the target and source dataset respectively by Cluto [24] to generate 100 clusters
each. We then choose the center of each cluster as the new data point. Finally,
we label the whole cluster by its center.

Table 1. Text Datasets

Target Comp1 VS. Rec1 Target Org1 VS. People1

2 classes: Comp2 VS. Rec2 2 classes: Org2, People2

4 classes: Graphics, Hardware, 3 classes: Place2, People2,
Source Politics.mid, Religion.misc Source Org2

3 classes: Sci.crypt, Sci.med, 3 classes: Sci.crypt, Sci.med,
Politics.guns Politics.guns

Note: Comp1 and Comp2 are different datasets with different distributions
[5], likewise the other dataset with different superscripts.

Table 2. Image Datasets

Target Homer-simpson VS. Real-bear Target Cartman VS. Palmtree
2 classes: Superman, Teddybear 2 classes: Superman, Bonsai
3 classes: Cartman, Palmtree, 3 classes: Homer, Bonsai,

Source Teddybear Source Rear Bear
4 classes: Laptop, Pram, 4 classes: Laptop, Pram,

Keyboard, Soccer Keyboard, Umbrella
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In addition, we conduct experiments on image datasets in Table 2. Similar
to the setting of text data, we also generate 6 sets of experiments, where each
set contains one labeled dataset and one unlabeled target dataset. All the data
are generated from the Caltech-256 image corpus [9] as shown in Table 1. Each
category contains around 100 image instances.

Baseline Methods: To verify the effectiveness of the proposed model, an unsu-
pervised spectral partition approach using normalized cut [19] is set as the first
baseline method abbreviated as “No-T”. This baseline directly generates the
partition of the target data without transfer learning. Furthermore, we design
another baseline method, abbreviated as “Full-T”, by setting the transfer risk
*(L;U) = 0 in the optimization function in Eq (10) to fully apply the knowl-
edge transferred from labeled data to learn the target data. This model does not
include any strategy to avoid negative transfer. In the baseline methods and the
proposed model RSP, the parameter β (Eq 10) is set to be 0.6. The effect of this
parameter is studied in another set of experiment.

Evaluation Criteria: Note that the outputs of the proposed model and the
baseline methods are actually clusters. Thus, to compare the models, we define
their accuracy by the purity of each cluster similar to [11]. The purity of a cluster
c can be defined as maxP (yi|c), and P (yi|c) = |{x|x∈c,y(x)=yi}|

|{x|x∈c}| , where yi is a
class label, and y(x) denotes the true label of x. The purity can be regarded as
the accuracy when we label the whole cluster by its majority label. As a result,
the accuracy is defined to be the weighted sum of the purity in all clusters; that
is

∑
c
|{x|x∈c}|

|x| maxP (yi|c).

4.2 Empirical Analysis

Tables 3 and 4 show the performance given by the baseline methods and the
proposed model RSP in average accuracy on ten runs. We answer the following
questions using three results:

(1) Can RSP transfer knowledge across tasks having different class
labels? From the experimental result, RSP can achieve a higher accuracy than
the strategy of “No-Transfer” especially when the source and target data are
detected to be similar in distribution. For example, when the target dataset is
“Org1 VS. People1” and the source dataset is a 3-classes document sets “Place2,
etc”, the clustering-based formula of KL divergence is 0.51, implying that the
target and source data are similar in distribution. In this case, RSP achieves an
accuracy of 78% while the accuracy of “No-Transfer” is only 65%. It is clear that
transfer learning helps improve the accuracy. More specifically, we plot Fig 3 to
illustrate that the final eigenspace transferred from the 3-classes datasets also
helps separate the binary target data.

(2) Can the proposed model avoid negative transfer? When the source
dataset is the 3-classes document sets “Sci.crypt, etc” and the target dataset
is “Comp1 VS. Rec1”, the accuracy of full transfer (Full-T) is only 51%, close
to random guessing. With the same setting, the accuracy of no transfer (No-T)
is 74%. It is clear that negative transfer happens because the accuracy of the
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Table 3. Experiment Result on Text Datasets

Target Source KLt KLc Full-T No-T RSP
Comp1 Comp2 VS. Rec2 0.21 0.37 0.99 0.74 0.99±0.00

VS. 4 classes: Graphics, etc 0.01 1.17 0.94 0.74 0.98±0.01
Rec1 3 classes: Sci.crypt, etc 0.05 21.4 0.51 0.74 0.74±0.03
Org1 Org2 VS. People2 0.11 0.24 0.80 0.65 0.80±0.00
VS. 3 classes: Places, etc 0.05 0.51 0.73 0.65 0.78±0.02

People1 3 classes: Sci.crypt, etc 0.21 26.5 0.56 0.65 0.65±0.06
Note: “KLt” is the traditional calculation of KL by Eq (3); “KLc” is the KL calculated by clus-
tering according to Lemma 1. “Full-T” denotes the method applied transfer learning without
considering the divergence between domains, while “No-T” denotes the traditional normalized
cut without the strategy of transfer learning.

Table 4. Experiment Result on Image Datasets

Target Source KLt KLc Full-T No-T RSP
Homer Superman VS. Teddy 0.62 0.17 0.85 0.72 0.85±0.02
VS. 3 classes: Cartman, etc 0.88 0.29 0.81 0.72 0.81±0.01

Real-bear 4 classes: Laptop, etc 0.11 10.3 0.53 0.72 0.72±0.01
Cartman Superman VS. Bonsai 0.12 0.07 0.87 0.55 0.87±0.00

VS. 3 classes: Homer, etc 0.43 0.55 0.92 0.55 0.92±0.01
Fern 4 classes: Laptop, etc 0.54 1.58 0.61 0.55 0.68±0.01

transfer learning models are worse than no transfer. In the same situation, the
proposed model RSP can judiciously avoid negative transfer and still obtains an
accuracy of 74%.

(3) How the proposed model avoids negative transfer? In the above
example, we observe that the KL divergence calculated by “Lemma 1” is 21.4,
implying that the transfer is very risky according to Eq (6). In this case, the
proposed model automatically decreases the effect of the first objective to avoid
negative transfer. From the experimental result, it is also important to note that
the clustering-based version KLc is a more effective KL to reflect distribution
divergence. It is also one of the reasons the proposed model RSP outperforms
the baseline models.

Parameter Sensitivity: We plot Fig 4 to study the effect of the parameter β on
the performance of the proposed model RSP (Fig 2). It is important to emphasize
again that β is not the essential component to avoid negative transfer. Instead,
it is the transfer risk *(L;U) that decides where the partition constraint comes
from (from source data or target data). Thus, if negative transfer may happen,
the partition constraint will mainly come from the target data regulated by the
transfer risk *(L;U), and negative transfer is avoided regardless of the value of
β. In Fig 4, for each unlabeled target dataset in Table 1 and Table 2, the first
source dataset is selected to report the result. The best performance appears at
around β = 0.6. In real world practice, there are various ways to select the best
value for β. For instance, partition cost functions, such as normalized cut [19],
can be directly applied to evaluate the partition quality, by which one can choose
the value of β with the best performance.
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Fig. 3. Projection on the eigenspace

Fig. 4. Parameter Sensitivity of RSP

5 Related Work

Spectral Method. Various unsupervised spectral clustering algorithms have been
proved effective in applications such as image segmentation (e.g., [6,12,19]), and
the like. Moreover, several works about supervised spectral methods have been
proposed to apply the labeled examples to help find the eigenspace of the target
data drawn from the same or very similar distributions, such as [11,15,23]. Unlike
most of these works, in this paper, we generate a partition of the unlabeled
data by transferring knowledge from the given labeled data that may have very
different distributions and class categories with the target data.

Transfer Learning. Transfer learning is proposed to extract knowledge from
source data to help learn the target data. One of the main issues in transfer
learning is how to transfer knowledge across different data distributions. A gen-
eral approach is based on re-sampling (e.g., [3]), where the motivation of it is
to “emphasize” the knowledge among “similar” and discriminating instances.
Another line of work is to transfer knowledge based on the common features
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found in a subspace (e.g., [5]) or a projected feature space where the different
tasks are similar to each other (e.g., [2]). There are also some other solutions like
model-combination based (e.g., [8]), transfer across similar learning parameters
(e.g., [13]), and so on.

Different from these works, we mainly study the problem to transfer knowl-
edge across tasks having different class labels. One important sub-issue of the
problem is how to avoid negative transfer [17], which happens when the source
data and the target data are significantly different. Previous works like [7,20] are
proposed to solve negative transfer in the supervised setting where there are a
few labeled examples in the target data. The general idea is to build a classifier
with the labeled data from the target task, which is applied to identify the harm-
ful knowledge by classification confidence or decrease of accuracy. However, in
our problem to transfer knowledge over different class labels, we can not directly
apply statics dependant on class labels (e.g., posterior) to select those harm-
ful knowledge. Thus, different from these works, we solve the negative transfer
problem in the unsupervised setting where the target data does not have any
labeled examples at all.

6 Conclusions

We proposed a spectral partition based model to transfer knowledge across
tasks having different class labels. The main framework is to find the optimal
eigenspace to partition the target data by regulating two objectives. The first
is to find the eigenspace where the source data of the same class labels will
be close to each other, and the second is to maximize the marginal separation
of the unlabeled target data. Importantly, a transfer risk term, as defined on
the basis of an effective clustering-based KL divergence, is applied to regulate
these two objectives to avoid negative transfer. These two objectives are formu-
lated as partition constraints to construct a symmetric matrix, similar to graph
Laplacian, to find the optimal solution given the objective function. The most
important advantage of the proposed model is that it can automatically avoid
negative transfer when the source data is very different from the target data,
while still benefiting from transfer learning even when the source and target data
have totally different class labels.

We evaluated the proposed model on text datasets and image datasets. For
example, in one of the experiments, a 3-classes image dataset was used to super-
vise the partition of a binary-class dataset. Even though the two datasets have
totally different class labels, the proposed method still achieved an accuracy of
81%, while the baseline model that does not apply transfer learning has accuracy
of only 72%.
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Abstract. Inductive databases are databases in which models and pat-
terns are first class citizens. Having models and patterns in the database
raises the question: do the models and patterns that are stored help in
computing new models and patterns? For example, let C be a classifier
on database DB and let Q be a query. Does knowing C speed up the
induction of a new classifier on the result of Q?

In this paper we answer this problem positively for the code tables
induced by our Krimp algorithm. More in particular, assume we have
the code tables for all tables in the database. Then we can approximate
the code table induced by Krimp on the result of a query, using only
these global code tables as candidates. That is, we do not have to mine
for frequent item sets on the query result.

1 Introduction

The problem investigated in this paper can informally be phrased as follows. Let
MDB be the model we induced from database DB and let Q be a query on DB.
Does knowing MDB help in inducing a model MQ on Q(DB), i.e., on the result
of Q when applied to DB. For example, if MDB is a classifier and Q selects a
subset of DB, does knowing MDB speed-up the induction of a new classifier MQ

on the subset Q(DB)?
There are at least two contexts in which this question is relevant. Firstly in

the context of inductive databases. Ever since their introduction in the seminal
paper by Imielinski and Mannila [11], they have been a constant theme in data
mining research. There is no formal definition of an inductive database, in fact,
it may be too early for such a definition [14]. However, consensus is that models
and patterns should be first class citizens in such a database. That is, e.g., one
should be able to query for patterns. Having models and patterns in the database
naturally raises the question: do the models and patterns that are stored help
in computing new models and patterns?

The second context in which the problem is relevant is in every day data
mining practice. In the data mining literature, the usual assumption is that
we are given some database that has to be mined. In practice, however, this
assumption is usually not met. Rather, the construction of the mining database
is often one of the hardest parts of the KDD process. The data often resides in a
data warehouse or in multiple databases, and the mining database is constructed
from these underlying databases.

W. Buntine et al. (Eds.): ECML PKDD 2009, Part II, LNAI 5782, pp. 382–397, 2009.
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From most perspectives, it is not very interesting to know whether one mines
a specially constructed database or an original database. For example, if the
goal is to build the best possible classifier on that data set, the origins of the
database are of no importance whatsoever.

It makes a difference, however, if the underlying databases have already been
modelled. Then, like with inductive databases, one would hope that knowing such
models would help in modelling the specially constructed ‘mining database. For
example, if we have constructed a classifier on a database of customers, one would
hope that this would help in developing a classifier for the female customers only.

So, the problem is relevant, but isn’t it trivial? After all, if MDB is a good
model on DB, it is almost always also a good model on a random subset of DB;
almost always, because a random subset may be highly untypical. The problem
is, however, not trivial because queries in general do not compute a random
subset. Rather, queries construct a very specific result.

For the usual “project-select-join” queries, there is not even a natural way in
which the query-result can be seen as subset of the original database. Even if Q
is just a “select”-query, the result is usually not random and MDB can even be
highly misleading on Q(DB). This is nicely illustrated by the well-known exam-
ple of Simpson’s Paradox, viz., Berkeley’s admission data [2]. Overall, 44% of the
male applicants were admitted, while only 35% of the females were admitted.
Four of the six departments, however, have a bias that is in favour of female
applicants. While the overall model may be adequate for certain purposes, it is
woefully inadequate for a query that selects a single department.

Solving the problem for all model classes and algorithms is a rather daunting
task. Rather, in this paper we study the problem for one specific class of models,
viz., the code tables induced by our Krimp algorithm [15]. Given all frequent
item sets on a table, Krimp selects a small subset of these frequent item sets. The
reason why we focus on Krimp is threefold. Firstly, because together the selected
item sets describe the underlying data distribution of the complete database
very well, see, e.g., [16,17]. Secondly, because the code table consists of local
patterns. Such a local pattern can be seen as a selection query on the database
(for the transactions in its support), hence, one would expect Krimp to do well
on selection queries. Thirdly, from earlier research on Krimp in a multi-relational
setting, we noticed as a side-result that Krimp is probably easily transformed
for joins [13]; this is investigated further in this paper.

More in particular, we show that if we know the code tables for all tables
in the database, then we can approximate the code table induced by Krimp

on the result of a query, using only the item sets in these global code tables
as candidates. Since Krimp is linear in the number of candidates and Krimp

reduces the set of frequent item sets by many orders of magnitude, this means
that we can now speed up the induction of code tables on query results by many
orders of magnitude.

This speed-up results in a slightly less good code table, but it approximates
the optimal solution within a few percent. We will formalise “approximation”
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in terms of MDL [10]. Hence, the data miner has a choice: either a quick, good
approximation, or the optimal result taking longer time to compute.

2 Problem Statement

This section starts with some preliminaries and assumptions. Then we introduce
the problem informally. To formalise it we use MDL, which is briefly discussed.

2.1 Preliminaries and Assumptions

We assume that our data resides in relational databases. In fact, note that the
union of two relational databases is, again, a relational database. Hence, we as-
sume, without loss of generality, that our data resides in one relational database
DB. As query language we will use the standard relational algebra. More pre-
cisely, we focus on the usual “select-project-join” queries. That is, on the selection
operator σ, the projection operator π, and the (equi-)join operator � ; see [5].
Note that, as usual in the database literature, we use bag semantics. That is, we
do allow duplicates tuples in tables and query results.

As mentioned in the introduction, the mining database is constructed from
DB using queries. Given the compositionality of the relational algebra, we may
assume, again without loss of generality, that the analysis database is constructed
using one query Q. That is, the analysis database is Q(DB), for some relational
algebra expression Q. Since DB is fixed, we will often simply write Q for Q(DB);
that is, we will use Q to denote both the query and its result.

2.2 The Problem Informally

In the introduction we stated that knowing a model on DB should help in
inducing a model on Q. To make this more precise, let A be our data mining
algorithm. At this point, A can be any algorithm, it may, e.g., compute a decision
tree, all frequent item sets or a neural network.

Let MDB denote the model induced by A from DB, i.e, MDB = A(DB).
Similarly, let MQ = A(Q). We want to transform A into an algorithm A∗ that
takes at least two inputs, i.e, both Q and MDB, such that:

1. A∗ gives a reasonable approximation of A when applied to Q, i.e.,

A∗(Q,MDB) ≈ MQ

2. A∗(Q,MDB) is simpler to compute than MQ.

The second criterion is easy to formalise: the runtime of A∗ should be shorter
than that of A. The first one is harder. What do we mean that one model is an
approximation of another? Moreover, what does it mean that it is a reasonable
approximation?
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2.3 Model Approximation

The answer to the question how to formalise that one model approximates an-
other depends very much on the goal. If A induces classifiers, approximation
should probably be defined in terms of prediction accuracy, e.g., on the Area
Under the ROC-curve (AUC).

Krimp computes code tables. Hence, the quick approximating algorithm we
are looking for, Krimp

∗ in the notation used above, also has to compute code
tables. So, one way to define the notion of approximation is by comparing the
resulting code tables. Let CTKrimp be the code table computed by Krimp and
similarly, let CTKrimp

∗ denote the code table computed by Krimp
∗ on the same

data set. The more similar CTKrimp
∗ is to CTKrimp, the better Krimp

∗ approxi-
mates Krimp.

While this is intuitively a good way to proceed, it is far from obvious how to
compare two code tables. Fortunately, we do not need to compare code tables
directly. Krimp is based on the Minimum Description Length principle (MDL)
[10], and MDL offers another way to compare models, viz., by their compression-
rate. Note that using MDL to define “approximation” has the advantage that we
can formalise our problem for a larger class of algorithms than just Krimp. It is
formalised for all algorithms that are based on MDL. MDL is quickly becoming
a popular formalism in data mining research, see, e.g., [8] for an overview of
other applications of MDL in data mining.

2.4 Minimum Description Length

MDL embraces the slogan Induction by Compression. It can be roughly described
as follows.

Given a set of models1 H, the best model H ∈ H is the one that minimises

L(H) + L(D|H)

in which

– L(H) is the length, in bits, of the description of H , and
– L(D|H) is the length, in bits, of the description of the data when encoded

with H .

One can paraphrase this by: the smaller L(H) + L(D|H), the better H
models D.

What we are interested in is comparing two algorithms on the same data set,
viz., on Q(DB). Slightly abusing notation, we will write L(A(Q)) for L(A(Q))+
L(Q(DB)|A(Q)), similarly, we will write L(A∗(Q,MDB)). Then, we are inter-
ested in comparing L(A∗(Q,MDB)) to L(A(Q)). The closer the former is to the
latter, the better the approximation is.

1 MDL-theorists tend to talk about hypothesis in this context, hence the H; see [10]
for the details.
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Just taking the difference of the two, however, can be quite misleading. Take,
e.g., two databases db1 and db2 sampled from the same underlying distribution,
such that db1 is far bigger than db2. Moreover, fix a model H . Then necessarily
L(db1|H) is bigger than L(db2|H). In other words, big absolute numbers do
not necessarily mean very much. We have to normalise the difference to get a
feeling for how good the approximation is. Therefore we define the asymmetric
dissimilarity measure (ADM) as follows.

Definition 1. Let H1 and H2 be two models for a dataset D. The asymmetric
dissimilarity measure ADM(H1, H2) is defined by:

ADM(H1, H2) =
|L(H1)− L(H2)|

L(H2)

Note that this dissimilarity measure is related to the Normalised Compression
Distance [4]. The reason why we use this asymmetric version is that we have a
“gold standard”. We want to know how far our approximate result A∗(Q,MDB)
deviates from the optimal result A(Q).

Clearly, ADM(A∗(Q,MDB),A(Q)) does not only depend on A∗ and on A,
but also very much on Q. We do not seek a low ADM on one particular Q,
rather we want to have a reasonable approximation on all possible queries. Re-
quiring that the ADM is equally small on all possible queries seems to strong
a requirement. Some queries might result in a very untypical subset of DB, the
ADM is probably higher on the result of such queries than it is on queries that
result in more typical subsets. Hence, it is more reasonable to require that the
ADM is small most of the time. This is formalised through the notion of an
(ε, δ)-approximation.

Definition 2. Let DB be a database and let Q be a random query on DB.
Moreover, let A1 and A2 be two data mining algorithms on DB. A1 is an (ε, δ)-
approximation of A2 iff

P (ADM(A1(Q),A2(Q)) > ε) < δ

2.5 The Problem

Using the notation introduced above, we formalise the problem as follows.

Problem Statement
For a given data mining algorithm A, devise an algorithm A∗, such that for a
random database DB:

1. A∗ is an (ε, δ)-approximation of A for reasonable values for ε and δ.
2. Computing A∗(Q,MDB) is faster than computing A(Q) for a random query

Q on DB.

What reasonable values for ε and δ are depends very much on the application.
While ε = 0.5 for δ = 0.9 might be acceptable for one application, these values
may be unacceptable for others.
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The ultimate solution to the problem as stated here would be an algorithm
that transforms any data mining algorithm A in an algorithm A∗ with the
requested properties. This is a rather ambitious, ill-defined (what is the class of
all data mining algorithms?), and, probably, not attainable goal. Hence, in this
paper we take a more modest approach: we transform one algorithm only, our
Krimp algorithm.

3 Introducing Krimp

For the convenience of the reader we provide a brief introduction to Krimp in
this section, it was originally introduced in [15] (although not by that name) and
the reader is referred to that paper for more details.

Since Krimp selects a small set of representative item sets from the set of all
frequent item sets, we first recall the basic notions of frequent item set mining [1].

3.1 Preliminaries

Let I = {I1, . . . , In} be a set of binary (0/1 valued) attributes. That is, the
domain Di of item Ii is {0, 1}. A transaction (or tuple) over I is an element
of

∏
i∈{1,...,n} Di. A database DB over I is a bag of tuples over I. This bag is

indexed in the sense that we can talk about the i-th transaction.
An item set J is, as usual, a subset of I, i.e., J ⊆ I. The item set J occurs

in a transaction t ∈ DB if ∀I ∈ J : πI(t) = 1. The support of item set J in
database DB is the number of transactions in DB in which J occurs. That is,
suppDB(J) = |{t ∈ DB| J occurs in t}|. An item set is called frequent if its
support is larger than some user-defined threshold called the minimal support
or min-sup. Given the A Priori property,

∀I, J ∈ P(I) : I ⊂ J → suppDB(J) ≤ suppDB(I)

frequent item sets can be mined efficiently level wise, see [1] for more details.
Note that while we restrict ourself to binary databases in the description

of our problem and algorithms, there is a trivial generalisation to categorical
databases. In the experiments, we use such categorical databases.

3.2 Krimp

The key idea of the Krimp algorithm is the code table. A code table is a two-
column table that has item sets on the left-hand side and a code for each item set
on its right-hand side. The item sets in the code table are ordered descending on
1) item set length and 2) support size and 3) lexicographically. The actual codes
on the right-hand side are of no importance but their lengths are. To explain
how these lengths are computed, the coding algorithm needs to be introduced.

A transaction t is encoded by Krimp by searching for the first item set I in
the code table for which I ⊆ t. The code for I becomes part of the encoding of
t. If t \ I 
= ∅, the algorithm continues to encode t \ I. Since it is insisted that
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each code table contains at least all singleton item sets, this algorithm gives a
unique encoding to each (possible) transaction over I.

The set of item sets used to encode a transaction is called its cover. Note that
the coding algorithm implies that a cover consists of non-overlapping item sets.

The length of the code of an item in a code table CT depends on the database
we want to compress; the more often a code is used, the shorter it should be.
To compute this code length, we encode each transaction in the database DB.
The frequency of an item set I ∈ CT , denoted by freq(I) is the number of
transactions t ∈ DB which have I in their cover. That is,

freq(I) = |{t ∈ DB|I ∈ cover(t)}|

The relative frequency of I ∈ CT is the probability that I is used to encode an
arbitrary t ∈ DB, i.e.

P (I|DB) =
freq(I)∑

J∈CT freq(J)

For optimal compression of DB, the higher P(c), the shorter its code should be.
Given that we also need a prefix code for unambiguous decoding, we use the
well-known optimal Shannon code [7]:

l(I|CT ) = − log(P (I|DB)) = − log
(

freq(I)∑
J∈CT freq(J)

)
The length of the encoding of a transaction is now simply the sum of the code
lengths of the item sets in its cover. Therefore the encoded size of a transaction
t ∈ DB compressed using a specified code table CT is calculated as follows:

L(t|CT ) =
∑

I∈cover(t,CT )

l(I|CT )

The size of the encoded database is the sum of the sizes of the encoded transac-
tions, but can also be computed from the frequencies of each of the elements in
the code table:

L(DB|CT ) =
∑

t∈DB

L(t|CT )

= −
∑

I∈CT

freq(I) log
(

freq(I)∑
J∈CT freq(J)

)
To find the optimal code table using MDL, we need to take into account both
the compressed database size, as described above, as well as the size of the code
table. For the size of the code table, we only count those item sets that have
a non-zero frequency. The size of the right-hand side column is obvious; it is
simply the sum of all the different code lengths. For the size of the left-hand side
column, note that the simplest valid code table consists only of the singleton
item sets. This is the standard encoding (ST), of which we use the codes to
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compute the size of the item sets in the left-hand side column. Hence, the size
of code table CT is given by:

L(CT |DB) =
∑

I∈CT :freq(I) 
=0

l(I|ST ) + l(I|CT )

In [15] we defined the optimal set of (frequent) item sets as that one whose
associated code table minimises the total compressed size:

L(CT,DB) = L(CT |DB) + L(DB|CT )

As before, this minimal compressed size of DB is denoted by L(DB). Krimp

starts with a valid code table (only the collection of singletons) and a sorted list
of candidates (frequent item sets). These candidates are assumed to be sorted
descending on 1) support size, 2) item set length and 3) lexicographically. Each
candidate item set is considered by inserting it at the right position in CT and
calculating the new total compressed size. A candidate is only kept in the code
table iff the resulting total size is smaller than it was before adding the candidate.
If it is kept, all other elements of CT are reconsidered to see if they still positively
contribute to compression. The whole process is illustrated in Figure 1; see [15].

Fig. 1. Krimp in action

4 The Problem for Krimp

If we assume a fixed minimum support threshold for a database, Krimp has
only one essential parameter: the database. For, given the database and the
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(fixed) minimum support threshold, the candidate list is also specified. Hence,
we will simply write CTDB and Krimp(DB), to denote the code table induced by
Krimp from DB. Similarly CTQ and Krimp(Q) denote the code table induced
by Krimp from the result of applying query Q to DB.

Given that Krimp results in a code table, there is only one sensible way in
which Krimp(DB) can be re-used to compute Krimp(Q): provide Krimp only
with the item sets in CTDB as candidates. While we change nothing to the
algorithm, we’ll use the notation Krimp

∗ to indicate that Krimp got only code
table elements as candidates. So, e.g., Krimp

∗(Q) is the code table that Krimp

induces from Q(DB) using the item sets in CTDB only.
Given our general problem statement, we now have to show that Krimp

∗

satisfies our two requirements for a transformed algorithm. That is, we have to
show for a random database DB:

– For reasonable values for ε and δ, Krimp
∗ is an (ε, δ)-approximation of

Krimp, i.e, for a random query Q on DB:

P (ADM(Krimp
∗(Q),Krimp(Q)) > ε) < δ

Or in MDL-terminology:

P

(
|L(Krimp

∗(Q))− L(Krimp(Q))|
L(Krimp(Q))

> ε

)
< δ

– Moreover, we have to show that it is faster to compute Krimp
∗(Q) than it

is to compute Krimp(Q).

Neither of these two properties can be formally proven, if only because Krimp

and thus Krimp
∗ are both heuristic algorithms. Rather, we report on extensive

tests of these two requirements.

5 The Experiments

In this section we describe our experimental set-up. First we briefly describe
the data sets we used. Next we discuss the queries used for testing. Finally we
describe how the tests were performed.

5.1 The Data Sets

To test our hypothesis that Krimp
∗ is a good and fast approximation of Krimp,

we have performed extensive tests mostly on 6 well-known UCI [6] data sets and
one data set from the KDDcup 2004.

More in particular, we have used the data sets connect, adult, chessBig, le-
tRecog, PenDigits and mushroom from UCI. These data sets were chosen because
they are well suited for Krimp. Some of the other data sets in the UCI reposi-
tory are simply too small for Krimp to perform well. MDL needs a reasonable
amount of data to be able to function. Some other data sets are very dense. While
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Krimp performs well on these data sets, choosing them would have turned our
extensive testing prohibitively time-consuming.

Since all these data sets are single table data sets, they do not allow testing
with queries involving joins. To test such queries, we used tables from the “Hep-
atitis Medical Analysis”2 of the KDDcup 2004. From this relational database we
selected the tables bio and hemat. The former contains biopsy results, while the
latter contains results on hematological analysis. The original tables have been
converted to item set data and rows with missing data have been removed.

5.2 The Queries

To test our hypothesis, we need to consider randomly generated queries. On first
sight this appears a daunting task. Firstly, because the set of all possible queries
is very large. How do we determine a representative set of queries? Secondly,
many of the generated queries will have no or very few results. If the query has
no results, the hypothesis is vacuously true. If the result is very small, MDL
(and Krimp) doesn’t perform very well.

To overcome these problems, we restrict ourselves to queries that are build
using selections (σ), projections (π), and joins (� ) only. The rationale for this
choice is twofold. Firstly, the well-known “project-select-join” queries are among
the most used queries in practice. This is witnessed by the important role they
play in benchmarks for DBMSs such as the TPC family of benchmarks. Secondly,
simple queries will have, in general, larger results than more complex queries.

5.3 The Experiments

The experiments preformed for each of the queries on each of the data sets were
generated as follows.

Projection: The projection queries were generated by randomly choosing a set
X of n attributes, for n ∈ {1, 3, 5, 7, 9}. The generated query is then πX .
That is, the elements of X are projected out of each of the transactions. For
example, π{I1,I3}({I1, I2, I3}) = {I2}. For this case, the code table elements
generated on the complete data set were projected in the same way. For each
value of n, 10 random sets X were generated on each data set.

As an aside, note that the rationale for limiting X to maximally 9 elements
is that for larger values too many result sets became too small for meaningful
results.

Selection: The random selection queries were again generated by randomly
choosing a set X of n attributes, with n ∈ {1, 2, 3, 4}. Next for each random
attribute Ai a random value vi in its domain Di was chosen. Finally, for
each Ai in X a random θi ∈ {=, 
=} was chosen The generated query is
thus σ(

∧
Ai∈X Aiθivi). As in the previous case, we performed 10 random

experiments on each of the data sets for each of the values of n.

2 http://lisp.vse.cz/challenge/
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Project-Select: The random project-select queries generated, are essentially
combinations of the simple projection and selection queries as explained
above. The only difference is that we used n ∈ {1, 3} for the projection and
n ∈ {1, 2} for the selections. That is we select on 1 or 2 attributes and we
project away either 1 or 3 attributes. The size of the results is, of course,
again the rationale for this choice. For each of the four combinations, we
performed 100 random experiments on each of the data sets: first we chose
randomly the selection (10 times for each selection), for each such selection
we performed 10 random projections.

Project-Select-Join: Since we only use one “multi-relational” data set and
there is only one possible way to join the bio and hemat tables, we could
not do random tests for the join operator. However, in combination with
projections and selections, we can perform random tests. These tests consist
of randomly generated project-select queries on the join of bio and hemat.
In this two-table case, Krimp

∗ got as input all pairs (I1, I2) in which I1 is
an item set in the code table of bio, and I2 is an item set in the code table
of hemat. Again we select on 1 or 2 attributes and we project away either 1
or 3 attributes. And, again, we performed again 100 random experiments on
the database for each of the four combinations; as above.

6 The Results

In this section we give an overview of the results of the experiments described in
the previous section. Each test query is briefly discussed in its own subsection.

6.1 Projection Queries

In Figure 2 the results of the random projection queries on the letRecog data set
are visualised. The marks in the picture denote the averages over the 10 experi-
ments, while the error bars denote the standard deviation. Note that, while not
statistically significant, the average ADM grows with the number of attributes
projected away. This makes sense, since the more attributes are projected away,
the smaller the result set becomes. On the other data sets, Krimp

∗ performs
similarly. Since this is also clear from the project-select query results, we do not
provide all details here. This will become clear when we report on the project-
select queries.

6.2 Selection Queries

The results of the random selection queries on the penDigits data set are visu-
alised in figure 3. For the same reason as above, it makes sense that the average
ADM grows with the number of attributes selected on. Note, however, that the
ADM averages for selection queries seem much larger than those for projection
queries. These numbers are, however, not representative for the results on the
other data sets. It turned out that penDigits is actually too small and sparse to
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Fig. 2. Projection results on letRecog

Fig. 3. Selection results on penDigits

test Krimp
∗ seriously. In the remainder of our results section, we do not report

further results on penDigits. The reason why we report on it here is to illustrate
that even on rather small and sparse data sets Krimp

∗ still performs reasonably
well. On all other data sets Krimp

∗ performs far better, as will become clear
when we report on the project-select queries.

6.3 Project-Select Queries

The results of the projection-select queries are given in the table in Figure 4. All
numbers are the average ADM score± the standard deviation for the 100 random
experiments. All the ADM numbers are rather small, only for mushroom do they
get above 0.2. Two important observations can be made from this table. Firstly,
as for the projection and selection queries reported on above, the ADM scores
get only slightly worse when the query results get smaller: “Select 2, Project
out 3” has slightly worse ADM scores than “Select 1, Project out 1”. Secondly,
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ADM+STD connect adult chessBig letRecog mushroom 
Project out 1 0.1 + 0.01 0.1 + 0.01 0.04 + 0.01 0.1 + 0.01 0.3 + 0.02 Select 1 
Project out 3 0.1 + 0.02 0.1 + 0.01 0.04 + 0.03 0.1 + 0.01 0.3 + 0.16 

Project out 1 0.2 + 0.01 0.1 + 0.01 0.1 + 0.03 0.04 + 0.01 0.2 + 0.04 Select 2 
Project out 3 0.2 + 0.02 0.1 + 0.01 0.1 + 0.03 0.04 + 0.01 0.2 + 0.05 

Fig. 4. Results of Project-Select Queries

Fig. 5. Histogram of 100 Project-Select Queries on connect

Relative #candidates connect adult chessBig letRecog mushroom 
Project out 1 0.01 + 0.001 0.01 + 0.002 0.21 + 0.012 0.01 + 0.001 0.01 + 0.001 Select 1 
Project out 3 0.01 + 0.001 0.01 + 0.004 0.26 + 0.031 0.02 + 0.004 0.01 + 0.001 

Project out 1 0.01 + 0.001 0.03 + 0.003 0.76 + 0.056 0.02 + 0.002 0.03 + 0.002 Select 2 
Project out 3 0.01 + 0.002 0.03 + 0.008 0.96 + 0.125 0.02 + 0.004 0.03 + 0.003 

Fig. 6. Relative number of candidates for Krimp
∗

even more importantly, combining algebra operators only degrades the ADM
scores slightly. This can be seen if we compare the results for “Project out 3” on
letRecog in Figure 2 with the “Select 1, Project out 3” and “Select 2, Project out
3” queries in Figure 4 on the same data set. These results are very comparable,
the combination effect is small and mostly due to the smaller result sets. While
not shown here, the same observation holds for the other data sets.

To give insight in the distribution of the ADM scores of the “Select 2, Project
out 3” queries on the connect data set are given in Figure 5. From this figure we
see that if we choose ε = 0.2, δ = 0.08. In other words, Krimp

∗ is a pretty good
approximation of Krimp. Almost always the approximation is less than 20%
worse than the optimal result. The remaining question is, of course, how much
faster is Krimp

∗? This is illustrated in the table in Figure 6 This table gives
the average number of candidates Krimp

∗ has to consider relative to those that
the full Krimp run has to consider. Since, both Krimp

∗ and Krimp are linear
in the number of candidates, this table shows that the speed-up is considerable;
a factor of 100 is often attained; except for chessBig were the query results get
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small and, thus, have few frequent item sets. The experiments are those that are
reported on in Figure 4.

6.4 Select-Project-Join Queries

The results for the select-project-join queries are very much in line with the
results reported on above. In fact, they are even better. Since the join leads to
rather large results, the ADM score is almost always zero: in only 15 of the 400
experiments the score is non-zero (average of non-zero values is 1%). The speed-
up is also in line with the numbers reported above, a factor of 100 is again often
attained.

7 Discussion

As noted in the previous section, the speed-up of Krimp
∗ is easily seen. The

number of candidates that Krimp
∗ has to consider is often a factor 100 smaller

than those that the full Krimp run has to consider. Given that the algorithm
is linear in the number of candidates, this means a speed-up by a factor 100. In
fact, one should also note that for Krimp

∗, we do not have to run a frequent
item set miner. In other words, in practice, using Krimp

∗ is even faster than
suggested by the Speed-up scores.

But, how about the other goal: how good is the approximation? That is, how
should one interpret ADM scores? Except for some outliers, ADM scores are
below 0.2. That is, a full-fledged Krimp run compresses the data set 20% better
than Krimp

∗. Is that good?
In a previous paper [17], we took two random samples from data sets, say D1

and D2. Code tables CT1 and CT2 were induced from D1 and D2 respectively.
Next we tested how well CTi compressed Dj. For the four data sets also used in
this paper, Iris, Led7, Pima and, PageBlocks, the “other” code table compressed
16% to 18% worse than the “own” code table; the figures for other data sets are in
the same ball-park. In other words, an ADM score on these data sets below 0.2 is
on the level of “natural variations” of the data distribution. Hence, given that the
average ADM scores are often much lower we conclude that the approximation
by Krimp

∗ is good.
In other words, the experiments verify our hypothesis: Krimp

∗ gives a fast and
good approximation of Krimp. The experiments show this for simple “project-
select-join” queries, but as noticed with the results of the “project-select” queries,
the effect of combining algebra operators is small. If the result set is large enough,
the approximation is good.

8 Related Work

While there are, as far as the authors know, no other papers that study the
same problem, the topic of this paper falls in the broad class of data mining
with background knowledge. For, the model on the database, MDB, is used as
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background knowledge in computing MQ. While a survey of this area is beyond
the scope of this paper, we point out some papers that are related to one of the
two aspects we are interested in, viz., speed-up and approximation.

A popular area of research in using background knowledge is that of con-
straints. Rather than trying to speed up the mining, the goal is often to pro-
duce models that adhere to the background knowledge. Examples are the use of
constraints in frequent pattern mining, e.g. [3], and monotonicity constraints [9].
Note, however, that for frequent pattern mining the computation can be speeded
up considerably if the the constraints can be pushed into the mining algorithm
[3]. So, speed-up is certainly a concern in this area. However, as far as we know
approximation plays no role. The goal is still to find all patterns that satisfy the
constraints.

Another use of background knowledge is to find unexpected patterns. In [12],
e.g., Bayesian Networks of the data are used to estimate how surprising a frequent
pattern is. In other words, the (automatically induced) background knowledge is
used filter the output. In other words, speed-up is of no concern in this approach.
Approximation clearly is, albeit in the opposite direction of ours: the more a
pattern deviates from the global model, the more interesting it becomes. Whereas
we would like that all patterns in the query result are covered by our approximate
answer.

9 Conclusions

In this paper we introduce a new problem: given that we have a model induced
from a database DB, does that help us in inducing a model on the result of a
query Q on DB? We formalise the problem for algorithms based on MDL and
solve it for a particular algorithm, viz., our Krimp algorithm. More in particular
we introduce Krimp

∗. This is actually the same as Krimp, but it gets a restricted
input. The code tables computed by Krimp on DB are used as input, and thus
as background knowledge, for Krimp

∗ on Q(DB).
Extensive experiments with select-project-join queries show that Krimp

∗ ap-
proximates the results of Krimp very well while it computes these results upto
hundreds of times faster. Hence, the data analyst has a real choice: either get
good result fast, or get optimal results slower.
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Abstract. In many real-world applications that analyze correlations
between two groups of diverse entities, each group of entities can be
characterized by multiple attributes. As such, there is a need to co-
cluster multiple attributes’ values into pairs of highly correlated clusters.
We denote this co-clustering problem as the multi-attribute co-clustering
problem. In this paper, we introduce a generalization of the mutual in-
formation between two attributes into mutual information between two
attribute sets. The generalized formula enables us to use correlation in-
formation to discover multi-attribute co-clusters (MACs). We develop a
novel algorithm MACminer to mine MACs with high correlation informa-
tion from datasets. We demonstrate the mining efficiency of MACminer
in datasets with multiple attributes, and show that MACs with high
correlation information have higher classification and predictive power,
as compared to MACs generated by alternative high-dimensional data
clustering and pattern mining techniques.

1 Introduction

Co-clustering values of two attributes (also known as pairwise co-clustering) is
a well-established research area with many successful applications, ranging from
clustering words and documents [7], to clustering video shots and video fea-
tures [17]. In pairwise co-clustering, the values of two attributes are partitioned
into clusters such that pairwise pairings of these clusters formed co-clusters.
More recently, star-structured co-clustering [8] was proposed to handle higher
dimensional data. In essence, a star-structured co-cluster is a set of pairwise
co-clusters, with the constraint that each pairwise co-cluster involves the cen-
ter attribute and a non-center attribute. Figure 1(a) shows some examples of
pairwise co-clusters.

Such pairwise co-cluster structures are not applicable in many real-world ap-
plications that involve co-clustering multiple attributes’ values into pairs of clus-
ters that correlate. We call such problems multi-attribute co-clustering. Figure
1(b) depicts the difference between the multi-attribute co-clusters (MACs) and
the pairwise star-structured co-clusters (Figure 1(a)). Here are some real-world
examples:

W. Buntine et al. (Eds.): ECML PKDD 2009, Part II, LNAI 5782, pp. 398–413, 2009.
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Fig. 1. (a) Pairwise co-clustering. The combination of clusters with horizontal and ver-
tical lines form pairwise co-clusters. Combination of clusters with horizontal lines, ver-
tical lines and dots form star-structured co-clusters. (b) Multi-attribute co-clustering.
The pair of clusters with horizontal lines form a multi-attribute co-cluster, and so do
the pair of clusters with vertical lines.

Table 1. Dataset of company management attributes and performance indicators

Management Performance
Company CEO Tenure Management Team Size ROE D/E Correlation Information

1 1 2 3 4 0.0322
2 1 2 3.1 4.1 0.0322
3 1 2 3.2 4.2 0.0322
4 1 2 3.3 4.3 0.0322
5 5 6 3 4 0.0322
6 5 6 3.1 4.1 0.0322
7 5 6 3.2 4.2 0.0322
8 5 6 3.3 4.3 0.0322
9 7 4 9 10 0.332
10 7.1 4 9 10.1 0.332

Example 1. In finance, a key research challenge is to investigate the correla-
tion between management and the performance of the companies [6, 14]. In a
study by Murray and Goyal [14], management attributes were shown to affect
the performance of the companies. Table 1 shows an example dataset of com-
panies. The first two attributes are management attributes: CEO Tenure and
Management Team Size. The next two attributes reflect the performance of the
companies, as measured by their efficiency indicator (ROE ratio) and debt in-
dicator (D/E ratio). The problem of understanding how management attributes
affect the company performance is a multi-attribute co-clustering problem. This
concept is illustrated in Table 2, where each row represents a MAC mined from
Table 1. We can see that each MAC contains two clusters of attributes’ values
that are highly correlated. In this example, the last MAC has the highest corre-
lation information as all companies with CEO Tenure(7.1,7) and Management
Team Size(4) will also have ROE(9) and D/E(10,10.1).
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Table 2. Three multi-attribute co-clusters (MACs) obtained from the dataset in
Table 1

MAC CEO Tenure Management Team Size ROE D/E Correlation Information
1 1 2 (3,3.3) (4,4.3) 0.129
2 5 6 (3,3.3) (4,4.3) 0.129
3 (7,7.1) 4 9 (10,10.1) 0.464

Table 3. Example of protein-protein interactions (PPIs) data. Each transaction rep-
resents a pair of proteins that interact and the corresponding Gene Ontology (GO)
functions that they are annotated with.

Gene Ontology (GO) functions
Protein-Protein Interactions F 1

1 F 1
2 . . . F 1

n F 2
1 F 2

2 . . . F 2
n

P1-P7 1 1 . . . 0 1 1 . . . 0
P3-P6 1 0 . . . 0 0 0 . . . 1
P2-P5 0 1 . . . 1 1 1 . . . 1
P4-P9 1 0 . . . 0 0 1 . . . 0
P1-P6 1 1 . . . 0 0 0 . . . 1

Example 2. In biology, proteins can be profiled using biologically relevant fea-
tures such as functional annotations. A relevant problem is to discover pattern
pairs in the biological profiles of proteins that may be associated with the pro-
teins’ propensity to interact [11]. More specifically, given a set of known protein-
protein interactions (PPIs), the objective is to find correlated pattern pairs from
the biological profiles of interacting proteins. These pattern pairs can then be
used to identify unknown interactions. Table 3 shows an example of PPI data.
The first column of the table refers to protein-pairs that are known to be in-
volved in an interaction. Each row of the table represents the Gene Ontology
(GO) functions that the two interacting proteins are annotated with. F 1

1 , . . . , F
1
n

and F 2
1 , . . . , F

2
n represent the two sets of GO functions associated with the first

and second protein respectively. An entry of ‘1’ in the column F x
i denotes that

the xth protein in the interaction is annotated with function i, and an entry of
‘0’ indicates otherwise. By treating each GO function as a binary attribute, we
can mine MACs from the data, where a MAC consists of two clusters of GO
functions that are correlated in the presence of PPI.

Conventional pairwise co-clustering algorithms typically use information the-
ory to partition the values of two attributes into correlated clusters. The idea
that two clusters are co-clustered if they are correlated, that is, attributes’ values
in both clusters occur frequently together and not by chance, can be quantified
by mutual information I(Xi;Yj) =

∑
xi,yj

p(xi, yj) log p(xi,yj)
p(xi)p(yj)

, with Xi and
Yj as two attributes of a dataset. Intuitively, we can see that the first part of
this formula measures how frequent values xi, yj occur together and the second
part measures if their occurrence together is by chance.

In this work, we adopt the information theory principles of existing
(pairwise) co-clustering works [7, 8, 17] to obtain our desired MACs. Existing
co-clustering techniques are limited to co-clustering pairwise attributes due to
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mutual information calculation being restricted to a pair of attributes. We over-
come this limitation by generalizing the mutual information I(Xi;Yj) to mutual
information I(X1, . . . , Xn; Y1, . . . , Ym) of two sets of attributes X1, . . . , Xn and
Y1, . . . , Ym, which is non-trivial.

For a MAC, the correlation between its two clusters of attributes’ values can
then be calculated by the contribution of these attributes’ values to I(X1, . . . ,
Xn;Y1, . . . , Ym). We denote this contribution as the correlation information of
the MAC — high correlation information means the pair of clusters forming the
MAC is highly correlated. To validate our claim, we show that these MACs have
good clustering quality, as well as high predictive and classification power in our
experiments.

We develop an algorithm MACminer which mines k MACs with high corre-
lation information, so that users will not be overwhelmed by a large amount of
results. To overcome the curse of dimensionality problem faced when clustering
data with multiple attributes, we adopt the subspace clustering approach [15].
We also remove redundant co-clusters, keep maximal co-clusters and merge
highly overlapping co-clusters, to keep the results succinct but informative. As
correlation information has no anti-monotone property [9], traversing the search
space of the dataset to mine co-clusters can be computationally expensive. Hence,
we introduce several heuristic techniques to prune the search space.

One may think that correlation information can be calculated by considering
both sets of attributes as two meta-attributes and the pairwise mutual infor-
mation is used instead. However, this will create an unnatural constraint that
a value from each attribute must be in a MAC. It is possible that values from
a subset of attributes form a MAC with high correlation and values from the
excluded attributes are noise to the MAC. An alternative way to solve multi-
attribute co-clustering is to use existing high-dimensional data clustering [12,13]
or pattern mining [9, 10] techniques and adapt them to mine MACs. However,
each of these techniques has its own set of criteria to define its results, and these
criteria are not catered to mine our MACs, which are pairs of clusters that are
highly correlated. In Section 5, we show that our MACs have much higher pre-
dictive and classification power than MACs mined by existing high-dimensional
data clustering or pattern mining techniques [9, 10, 12].

In summary, we address the multi-attribute co-clustering problem with the
following contributions:
– we generalize the mutual information I(Xi;Yj) between two attributes Xi

and Yj , to the mutual information I(X1, . . . , Xn; Y1, . . . , Ym) of two sets of
attributes X1, . . . , Xn and Y1, . . . , Ym. (Section 3)

– we propose using correlation information to measure the correlation between
the two clusters of attributes’ values of a MAC. Correlation information is
based on I(X1, . . . , Xn; Y1, . . . , Ym). (Section 3)

– we develop a novel algorithm MACminer, which efficiently mines k MACs
with high correlation information. (Section 4)

– we conduct experiments to show the efficiency of MACminer and to show
that MACs discovered by MACminer have good clustering quality, high pre-
dictive and classification power. (Section 5)
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Table 4. Definitions of symbols

Symbol Definition
Xi, Yj A left attribute and a right attribute
Xn

1 A set of left attributes {X1, X2, . . . , Xn}
Y m
1 A set of right attributes {Y1, Y2, . . . , Ym}

xi ∈ Xi A value from the left attribute Xi

yj ∈ Yj A value from the right attribute Yj

xn
1 A tuple of values (x1, x2, . . . , xn)

from the attributes {X1, X2, . . . , Xn}
x̃i ⊆ Xi A set of values from the attribute Xi

x̃n
1 A tuple of sets of values (x̃1, . . . , x̃n)

from the attributes {X1, X2, . . . , Xn}
C = (x̃b

a, ỹd
c ) A MAC (multi-attribute co-cluster)

A = {Xb
a, Y d

c } An attribute set. 1 ≤ a < b ≤ n, 1 ≤ c < d ≤ m
D A dataset

2 Preliminaries

Let {X1, X2, . . . , Xn} and {Y1, Y2, . . . , Ym} be two sets of attributes which we
will refer to as the left and right attributes respectively. Let dataset D be a set
of transactions. A transaction is a tuple (x1, . . . , xn, y1, . . . , ym) of values from
the attributes, with each xi ∈ Xi and each yj ∈ Yj , for 1 ≤ i ≤ n and 1 ≤ j ≤ m.
We denote x̃i as a set of values from the left attribute Xi, that is, x̃i ⊆ Xi, and
ỹj as a set of values from the right attribute Yj , that is, ỹj ⊆ Yj . For brevity, we
denote a set of attributes {X1, . . . , Xn} as Xn

1 , a tuple of values (x1, . . . , xn) as
xn

1 , and a tuple of sets of values (x̃1, . . . , x̃n) as x̃n
1 .

Definition 1 (MAC (multi-attribute co-cluster)). Assume that we have a
tuple of sets of values x̃b

a = {x̃i ⊆ Xi : 1 ≤ a ≤ i ≤ b ≤ n} from a set of left
attributes Xb

a, and a tuple of sets of values ỹd
c = {ỹi ⊆ Yi : 1 ≤ c ≤ i ≤ d ≤ m}

from a set of right attributes Y d
c . We denote a MAC as C = (x̃b

a, ỹ
d
c ).

Definition 2 (Attribute set of the MAC). Given a MAC C = (x̃b
a, ỹ

d
c ), we

denote A = {Xb
a, Y

d
c } as the attribute set of C.

For example, the first row of Table 2 is a MAC C = ((1, 2), ((3, 3.3), (4, 4.3))).
The attribute set of C is A = {{CEO Tenure, Management Team Size} , {ROE,
D/E}}.

Let us assume that the degree of correlation between x̃b
a and ỹd

c of a MAC
is measured by some metric θ — the higher θ is, the higher is the degree of
correlation. We are interested in mining the top-k MACs that have the highest θ.
However, as mining the top-k MACs is a NP-complete problem [16], we propose
to mine the approximate top-k MACs instead.

Problem Statement. Given a dataset D that can contain quantitative and
categorical attributes, we propose to mine k MACs with high θ, sorted in de-
scending order of their θ values.
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3 Correlation Information

We propose to use correlation information as the metric θ to measure the cor-
relation of MACs. An attribute Xi can be considered as a random variable
with probability mass function p(xi) = Pr{Xi = xi} = occ(xi)

|D| , where occ(xi)
is the number of times value xi occurs in dataset D. The conditional prob-
ability of value xi occurring in D, given the occurrence of value yj in D, is
p(xi|yj) = Pr{Xi = xi|Yj = yj} = occ(xi,yj)

occ(yj)
, where occ(xi, yj) is the number of

times values xi, yj occur together in the transactions of dataset D.
The mutual information I(Xi;Yj) =

∑
xi,yj

p(xi, yj) log p(xi,yj)
p(xi)p(yj)

is the re-
duction in the uncertainty of the right attribute Yj due to the knowledge of the
left attribute Xi. In other words, it shows the amount of information about Yj

that can be described by Xi.
We are interested to know specifically which value xi of the attribute Xi

is correlated to which value yj of the attribute Yj . We quantify this informa-
tion as the correlation information between values xi and yj. The correlation
information between a pair of values xi and yj is defined as ci(((xi), (yj))) =
p(xi, yj) log p(xi,yj)

p(xi)p(yj)
.

We are also interested in group phenomenon — how a group of values is corre-
lated to another group of values. To find these kind of MACs, we must calculate
the mutual information between their left attributes and right attributes, which
is the mutual information of their attribute set.

For simplicity, let us consider a scenario where the attribute set contains
only one left attribute and several right attributes, {{Xi}, Y m

1 }. To calculate
the mutual information of this attribute set, we use the chain rule for mutual
information, defined as

I(Xi;Y m
1 ) =

m∑
j=1

I(Xi;Yj |Y j−1
1 )

The equation above shows that the chain rule for mutual information is a sum-
mation of conditional mutual information. The conditional mutual information
of Xi and Yj given Yk is

I(Xi;Yj |Yk) =
∑

xi,yj ,yk

p(xi, yk, yj) log
p(xi, yj|yk)

p(xi|yk)p(yj |yk)

We first make the assumption that the generalized conditional mutual infor-
mation, which is the conditional mutual information of Xi and Yj given X i−1

1 ,

Y j−1
1 , is

I(Xi;Yj |X i−1
1 , Y j−1

1 ) =
∑
xi
1,yj

1

p(xi
1, y

j
1) log

p(xi, yj|xi−1
1 , yj−1

1 )
p(xi|xi−1

1 , yj−1
1 )p(yj |xi−1

1 , yj−1
1 )

We then use the generalized conditional mutual information to obtain the mutual
information of an attribute set.
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Definition 3 (Mutual information of an attribute set). The mutual in-
formation of the attribute set A = {Xn

1 , Y m
1 } is

I(Xn
1 ;Y m

1 ) =
n∑

i=1

m∑
j=1

I(Xi;Yj |X i−1
1 , Y j−1

1 )

=
n∑

i=1

m∑
j=1

∑
xi
1,yj

1

p(xi
1, y

j
1) log

p(xi, yj|xi−1
1 , yj−1

1 )
p(xi|xi−1

1 , yj−1
1 )p(yj |xi−1

1 , yj−1
1 )

For the interested reader, the derivation for the equation above is given in [16].
The mutual information of an attribute set is the generalized chain rule for
mutual information, thus it is not order dependent.

The correlation information of a MAC C is derived from the mutual informa-
tion of the attribute set A of C. Let the probability mass function of a set of
values x̃i ⊆ Xi be p(x̃i) =

∑
xi∈x̃i

Pr{Xi = xi}.

Definition 4 (Correlation information of a MAC). The correlation infor-
mation of C is

ci(C) =
b∑

i=a

d∑
j=c

p(x̃i
a, ỹ

j
c) log

p(xi, yj |x̃i−1
a , ỹj−1

c )
p(xi|x̃i−1

a , ỹj−1
c )p(yj |x̃i−1

a , ỹj−1
c )

We can see that the correlation information of C is the total contributions of all
subsets of x̃b

a and ỹd
c to the mutual information of attribute set A. Since mutual

information of attribute set A shows the amount of information about Y d
c that

can be described by Xb
a, correlation information shows the amount of informa-

tion about ỹd
c that can be described by x̃b

a. It is possible that contributions of
subsets of x̃b

a and ỹd
c to the mutual information of A are negative, so correlation

information is not biased towards large MACs.
We use Table 1 to show how correlation information of MACs is calculated.

We focus on the first and third MACs C = ((1, 2), ([3, 3.3], [4, 4.3])) and C′ =
(([7, 7.1], 4), (9, [10, 10.1])). Their correlation information are ci(C) = p(1, [3, 3.3])
log p(1,[3,3.3])

p(1)p([3,3.3]) +p(1, [3, 3.3], [4, 4.3]) log p(1,[4,4.3]|[3,3.3])
p(1|[3,3.3])p([4,4.3]|[3,3.3])+ p(1, 2, [3, 3.3])

log p(2,[3,3.3]|1)
p(2|1)p([3,3.3]|1)+ p(1, 2, [3, 3.3], [4, 4.3]) log p(2,[4,4.3]|1,[3,3.3])

p(2|1,[3,3.3])p([4,4.3]|1,[3,3.3]) = 0.129
and ci(C′) = 0.464. An intuitive reason why ci(C′) is high is because the oc-
currence of ([7, 7.1], 4) in the dataset always results in the occurrence of (9, [10,
10.1]). ci(C) is low because ([3, 3.3], [4, 4.3]) occurs not only together with (1, 2),
but also together with (5, 6). Thus, C is less informative.

4 MACminer

We propose a novel algorithm, MACminer to mine k MACs with high corre-
lation information, sorted in descending order of their correlation information.
MACminer consists of three main parts:

1. Traversing the search space of D to obtain attribute sets
2. Obtaining MACs from each attribute set
3. Post-processing of the results by merging highly overlapping MACs
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4.1 Traversing the Search Space

Given a dataset D with left attributes Xn
1 and right attributes Y m

1 , MACminer
obtains attribute sets A from the set enumeration tree of Xn

1 and Y m
1 in depth-

first order. Enumerating all A has a complexity of O(2n+m), so pruning the
search space is essential. Given that correlation information has no anti-monotone
property, we have to implement heuristic pruning techniques to prune the search
space.

Let us describe the pruning techniques by assuming that MACminer is in the
search space of D that has attribute set A = {Xb

a, Y
d
c }, and we are extending the

attribute set with Xk ∈ Xn
1 −Xb

a. These pruning techniques are also applicable
when we extend the attribute set with Yk ∈ Y m

1 − Y d
c .

Pruning Technique 1: If I(Xb
a ∪ Xk;Y d

c ) = I(Xb
a;Y d

c ), we do not extend
A with Xk. This is because no new information is gained between the left and
right attributes of the attribute set when we add new attribute Xk to it.

Pruning Technique 2: If I(Xb
a∪Xk;Y d

c ) ≤
∑

Xi∈Xb
a∪Xk,Yj∈Y d

c
I(Xi;Yj), we

do not extend A with Xk. If the mutual information of the attribute set is less
than the sum of pairwise mutual information of the attributes in the attribute
set, then synergy between its left and right attributes does not exist.

Pruning Technique 3: If ∃Yj ∈ Y d
c where I(Xk;Yj) > I(Xb

a ∪ Xk;Y d
c ) −

I(Xb
a;Y d

c ), we do not extend A with Xk. If the mutual information of Xk and Yj

is more than what Xk can contribute to the mutual information of the attribute
set A, then the attribute set {{Xk}, {Yj}} is more informative than A extended
with Xk.

Pruning Technique 4: Let f(i, j) be the highest mutual information that
can be achieved, when the attribute set has i left attributes and j right attributes.
If I(Xb

a ∪ Xk;Y d
c ) < f(|Xb

a ∪Xk|, |Y d
c |), we do not extend A with Xk. So at a

level of the set enumeration tree of Xn
1 and Y m

1 , only the attribute set that
has the highest mutual information at that level can be extended. We denote
parameters l and r as the size of the left and right attribute sets the pruning
technique is to be used.

4.2 Obtaining MACs from an Attribute Set

After obtaining an attribute set A, MACminer takes the values of Xb
a and Y d

c

in each transaction t of D to be a MAC C.
C is then used to update list, a list of MACs sorted in descending order of their

correlation information. When updating the list, we also conduct the following
two checks:

Non-redundant MACs. Given a MAC C, we check if list contains a MAC
C′ such that C′ is a proper superset of C and correlation information of C is equal
to the correlation information of C′. If so, we replace C′ by C in list. Both C and
C′ giving the same amount of correlation information means that there are some
redundant values in C′ which do not increase the correlation information of C′.

Maximal MACs. We also check in list if there exists any MAC C′ such that
C′ is a proper subset of C and correlation information of C is larger than the
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correlation information of C′. If so, we replace C′ with C in list, as we prefer
maximal MACs that have higher correlation information than their subsets that
have lower correlation information.

4.3 Merging MACs

After mining of MACs is completed, we can merge those that are highly overlap-
ping. This is an effective way of handling noisy datasets— the noise may be the
cause of the small differences in highly similar MACs. In addition, this step of
merging MACs is particularly useful for MACs that contain categorical values.
Since MACminer does not partition categorical values, a MAC that only con-
tains categorical values becomes a pair of itemsets, with each itemset containing
a value from each attribute of the attribute set of the MAC. For example, if the
attributes are words and documents, then a MAC can contain only a word and
a document.

MACminer merges two MACs if they satisfy the merging condition
(Definition 5), which is adopted from [19]. MACminer iteratively merges two
MACs that satisfy the merging condition. The merging stops when no more
MACs satisfy the merging condition.

Definition 5 (Merging condition). Given two MACs (x̃b
a, ỹ

d
c ) and (x̃′b

a, ỹ
′d
c),

if
∑b

i=a |x̃i ∩ x̃′
i|+

∑d
j=c |ỹj ∩ ỹ′j | ≥ δ(

∑b
i=a |x̃i ∪ x̃′

i|+
∑d

j=c |ỹj ∪ ỹ′j|), then we

merge them to become MAC (x̃′′b
a, ỹ

′′d
c), where x̃′′b

a = (x̃a ∪ x̃′
a, . . . , x̃b ∪ x̃′

b) and
ỹ′′

d

c = (ỹc ∪ ỹ′c, . . . , ỹd ∪ ỹ′d). δ is a parameter controlling the strictness of the
merging.

5 Experimentation Results

MACminer was coded in C++ and the algorithms [7, 9, 10, 12] that we used
for comparison were kindly provided by the respective authors. Except for the
QCoMine [10] and Co-cluster [7] algorithm, all of our experiments were con-
ducted in a Win XP environment with a 3.6Ghz Pentinum 4 CPU and 2GB
memory. As QCoMine and Co-cluster can only be compiled in Linux, we ran
them in Linux environment with a 4-way Intel Xeon based server and 8GB
memory.

We used three real world in our experiments. The protein-protein interac-
tion (PPI) dataset was downloaded from Gene Ontology [2] and BioGRID [5]
databases, the 20 Newsgroup subsets dataset was downloaded from UCD Ma-
chine Learning Group [1], and the Insurance dataset was downloaded from UCI
Machine Learning Repository [3].

PPI dataset. Proteins were profiled using their functional annotation from
Gene Ontology (GO) [2]. GO annotations were organized as a Direct Acyclic
Graph, with more specific terms at lower levels and more general terms at higher
levels of the graph. To avoid overly general terms, we ignored terms in the top two
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levels of the graph. Existing PPIs were obtained from the BioGRID [2] database.
The data consists of a total of 38,555 physical interactions between proteins.
We transformed both sets of data into a set of transactions, which contains
38,555 transactions with 3851 left and 3851 right attributes. Each transaction
was labeled with two proteins that have interactions, and the attributes of the
transaction are the two sets of GO functions that the two proteins are annotated
with respectively. A toy example is shown in Table 3.

20 Newsgroup subset datasets. Each transaction of the datasets indicates
a word, a document and the occurrence number of the word in the document. The
left attribute is words and the right attribute is documents. Stop-word removal
and stemming were applied on these datasets by the original authors. ob-2-1
is a dataset which contains two topics and has 80,009 transactions, while ob-8-
1 is a dataset which contains eight topics and has 316,867 transactions. Both
datasets have balanced clusters containing 500 documents each, and they were
clustered according to their topics. In these datasets, the words and documents
may belong to more than one topic. For example, the word “earth” belongs to
topics Space and Graphics.

Insurance dataset. This dataset contains 5,822 customer transactions with
85 left attributes relating to the customer’s profile and 1 right (class) attribute
indicating if the customer buys a caravan policy. This dataset contains 4 quanti-
tative attributes, and they are discretized using a parameter-free, mutual infor-
mation based technique. The interested reader may refer to [16] for the details
of this discretization technique.

5.1 Performance of MACminer

As there is no existing work on mining MACs with high correlation information,
we show the efficiency of MACminer by assessing the efficiency of its pruning
techniques. We used the Insurance and PPI datasets, and we set k = 100 in
this experiment. The newsgroup dataset is not used since there is no need to
prune its search space of two attributes. We calculated how much times faster
MACminer is with each pruning technique (denoted as speedup) and Figure 2
presents the results. Techniques 1, 2 are more effective on the PPI dataset than
the Insurance dataset, while pruning techniques 3, 4 are very effective on both the
PPI and Insurance datasets. In fact, for the Insurance dataset, MACminer could
not complete mining after 24 hours without pruning technique 3. In general,
the pruning techniques can improve the mining time of MACminer on different
types of datasets.

5.2 Multi-Attribute Co-clustering: Predicting PPIs

We mined MACs from the PPI dataset, where each MAC is a pattern pairs of GO
functions that are associated with proteins that interact. We then evaluated these
MACs by using them to predict PPIs in the PPI dataset and the accuracy of the
predictions was validated by a five-fold cross-validation on the PPI dataset. The
proteins in the PPI dataset were randomly divided into five equal-sized groups.
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Fig. 2. The speedup based on different pruning techniques (denoted as Tech)

Table 5. AUCs of the PPI predic-
tions by different types of patterns

Pattern Type AUC
minsup avg

num
Closed itemsets 5000 24 60.31

10000 127 59.76
15000 434 54
20000 2182 56.21
25000 24631 56.5

k
MACs 100 74.46

200 72.61
300 72.24
400 72
500 72.3

Table 6. Performance results of the differ-
ent classifiers

Classifier tp fp Precision Recall F-measure
SVM 0 0 0 0 0
C4.5 0 238 0 0 0
Linear 17 221 0.227 0.071 0.109
k-nearest neighbor 29 209 0.155 0.122 0.136
Näıve bayes 97 141 0.135 0.408 0.203
MACs, k=100 81 679 0.119 0.34 0.177

In each cross-validation run, the proteins in one fold were isolated for evaluation,
while those from the remaining four folds were used for mining pattern pairs.
The pattern pairs were then used to predict PPIs from the isolated fold. Given
a pattern pair, if a protein from the isolated fold is annotated with the GO
functions of one of the pattern and another protein from the isolated fold is
annotated with the GO functions of the other pattern, then we predict these
two proteins interact, and we assign a prediction score to this prediction, which
is based on the correlation information of the pattern pair.

The predictions made for all five folds were evaluated against the known
protein interactions, and we computed the Receiver Operating Characteristic
(ROC) curve (a graphical plot of the sensitivity versus (1-specificity)) of the
predictions results. We then calculated the area under the ROC curve (AUC).
An AUC of 1 means the classifier is perfect, while an AUC of 0.5 means the
classifier is similar to a random guesser.

Since there are no existing algorithms that perform the same task, we used
the frequent closed itemset mining approach [9] with post-processing as our
baseline. Frequent closed itemsets were mined from the PPI dataset, and in the
post-processing, frequent closed itemsets that do not correspond to pattern pairs
were pruned. We then used the confidence of these frequent closed itemsets to
calculate their prediction score.
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The AUCs of MACs and frequent closed itemsets are presented in Table 5. For
the frequent closed itemsets, we set minimum support ms from 5000 to 25000,
and avg num in Table 5 indicates the average number of pattern pairs mined
from frequent closed itemsets across the 5 folds. For MACs, we varied the number
of predictors k from 100 to 500, and we disabled pruning techniques 1-3 and set
l = k = 1. From Table 5, we can see that our approach achieves an average AUC
score from 72% to 74.46%, which indicates that the pattern pairs discovered by
MACs are meaningful and relevant. On the other hand, the average AUC score
achieved by the baseline method is significantly lower. A possible explanation of
why frequent closed itemsets are poor predictors is that some functional annota-
tions are more general than the others and may be annotated to many proteins.
Hence high co-occurrences of such functions in interacting proteins may not be
associated with biologically meaningful annotations patterns. Our method, on
the other hand, takes into account the correlation between two sets of pattern,
and thus is able to detect dependency relationships in pattern pairs.

5.3 Pairwise Co-clustering: Co-clustering Words and Documents

We performed pairwise co-clustering of words and documents in the 20 News-
group subsets using MACs and Co-cluster [7], which was developed specifically
for this task. We assessed how accurate the co-clusters mined by MACs and
Co-cluster are in clustering documents of the same topic together.

Since the 20 Newsgroup subsets used in [7] were unavailable, and to have
an unbias comparison, we used the 20 Newsgroup subsets that was prepared
by a neutral party [1]. For the parameter settings of Co-cluster algorithm, we
adjusted its two main parameters, the desired number of document clusters and
the desired number of word clusters, and kept the rest as default settings. We set
the number of document clusters to the number of topics for the dataset and we
varied the number of word clusters from 8 to 128 (128 word clusters were shown
to get good co-clustering results in [7]). Hence, the number of co-clusters mined
varies from 16 to 1024. For MACminer, we merged co-clusters during mining to
prevent them from being too specific, with δ = 0.3. We mined 100 co-clusters
without any pruning technique, since there are only two attributes, words and
documents. Co-clusters mined by Co-cluster and MACminer that contain only
one document were removed.

In the document cluster of each co-cluster, we checked the topic of each doc-
ument and the dominant topic is the topic that the majority number of docu-
ments in the cluster belong to. So in a document cluster, documents belonging
to the dominant topic c are deemed to be assigned correctly. We used the eval-
uation measure in [7], micro-averaged-precision P (d), to measure the accuracy
of clustering documents of the same topic together. P (d) =

∑
c α(c, d)/

∑
c(

α(c, d) + β(c, d)), where α(c, d) is the number of documents correctly assigned
to topic c, β(c, d) is the number of documents incorrectly assigned to c and d is
denoted as the set of documents in the dataset.

The micro-averaged precision of the co-clusters mined by MACminer and Co-
cluster across different parameter settings was calculated and the results are
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Fig. 3. Micro-averaged precision of the co-clusters mined by Co-cluster and MACminer

presented in Figure 3. The first five columns show the micro-averaged precision
of the co-clusters mined by Co-cluster and the last column show the micro-
averaged precision of the co-clusters mined by MACminer. In ob-2-1 dataset
that contains two topics, Figure 3(a) shows that the micro-averaged precision of
co-clusters mined by MACminer is much better than those by Co-cluster.

On the more complex ob-8-1 dataset that has 8 topics, the micro-averaged
precision of the co-clusters mined by MACminer is again much better than those
by Co-cluster, as shown in Figure 3(b). This demonstrates that MACminer is
able to cluster documents of similar topics effectively, regardless of the number
of topics. In these datasets, the words and documents can belong to more than
one topic, so it is natural that the co-clusters of words and documents should
overlap. Existing co-clustering frameworks do not allow overlapping co-clusters,
thus they perform poorly in these datasets.

5.4 Multi-Attribute to One Attribute Co-clustering: Using MACs
to Build a Simple Classifier

In this experiment, we used MACs as rules to build a simple classifier. The
training dataset is the Insurance dataset and the testing dataset has the same
attributes as the training dataset but it contains 4000 other customers. The
objective is to predict the number of customers that will buy a caravan policy
from the testing dataset. This dataset is challenging because only 238 of the
customers bought the policy. 100 MACs were mined from the training dataset
without pruning technique 4 and they were used as rules for our classifier. As
these MACs were used for predicting customers buying, in each MAC, its left
cluster contains values from the left attributes (customer’s profile attributes)
and its right cluster contains the value ‘buy’ of the class attribute. If a customer
from the testing dataset has attributes’ values that are in any of the 100 MACs,
then our simple classifier predicts that this customer will buy.

For comparison, we tried using quantitative correlated patterns [10] and sub-
space clusters [12] for comparison. We mined and post-processed them, with the
requirement that each of them contains both left and right attributes’ values,
so that they can be used as rules for a classifier. However, even at their lowest



MACs with High Correlation Information 411

parameter settings, QCoMine [10] mined 0 quantitative correlated patterns from
the training dataset and LCM-nCluster [12] mined 121 subspace clusters from
the training dataset but none contains the value ‘buy’ of the class attribute.
Since we cannot use related works to build classifiers, we compared our simple
classifier with the major classifiers C4.5, SVM, Linear, k-nearest neighbors and
Näıve Bayes [18].

To measure the performance of the classifier, we used the standard preci-
sion, recall and F-measure, where precision P = tp

tp+fp , recall R = tp
tp+fn and

F-measure F = 2(P.R)
P+R . In this experiment context, tp is the number of correct

predictions in predicting that the customer will buy, fp is the number of wrong
predictions, and fn is the number of customers who buy but they are not pre-
dicted by the classifier. Table 6 summarizes the results of the different classifiers.
Our simple classifier using 100 MACs and Näıve Bayes are the top performers,
based on their F-measure. Although sophisticated techniques were not used to
build our classifier, it is still able to perform better than the other major classi-
fiers. A possible explanation of why SVM and C4.5 performed poorly is because
the data is highly skewed as only a small percentage of customers bought the pol-
icy. The performance of SVM and C4.5 performed well in predicting customers
that do not buy, but this classification result is not meaningful.

6 Related Work

For co-clustering that involves only two attributes such as words and documents
[7], each word/document value is assigned to a word/document cluster, and a pair
of word cluster and document cluster form a co-cluster. Since a word/document
value can only be assigned to a word/document cluster, no overlapping of co-
clusters is allowed. Our proposed framework allows a word/document value to be
in multiple word/document clusters, thereby allowing overlapping of co-clusters.
Gao et al. [8] extend the traditional pairwise co-cluster into star structured co-
cluster. In a star structured co-cluster, a cluster of values of the center attribute
is in the center, and the clusters of values of other attributes are linked to it.
To obtain this structure, pairwise co-clusterings are performed between values
of the center attribute and values of each non-center attribute. It is therefore
a series of pairwise co-clusters, with the constraint that the clustering result of
the values of the center attribute are the same in each pairwise co-cluster. This
is in contrast to MACs, where each cluster of a MAC contains values of multiple
attributes.

Biclustering algorithms [13] have been developed for co-clustering genes and
experimental conditions. In a bicluster, one cluster contains genes and the other
cluster contains the expression values of different experimental conditions. This
in essence, is clustering a group of attributes’ values, where the experimental
conditions are the attributes. The clustering structure of subspace clustering
[12] and correlation clustering [4] are also similar to biclustering. Thus, their
clustering structures are different from MACs, which are a pair of clusters of
attributes’ values. Biclustering [13] and subspace clustering [12] aim to cluster
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attributes’ values that satisfy certain homogeneity criteria, such as constancy,
similarity or coherency (scaling or shifting), whereas correlation clustering aims
to cluster attributes’ values that exhibit linear dependency [4]. These are different
from our clustering aim; we aim to find a cluster of attributes’ values that is
correlated to another cluster of attributes’ values.

Ke et al. [10] mine quantitative correlated patterns based on mutual infor-
mation. Quantitative correlated pattern is a set of attributes’ values, with the
requirement that the pairwise mutual information between the attributes ex-
ceed a threshold and the all-confidence of the pattern exceed another threshold.
Hence, we are mining different things and our clustering aims are different.

7 Conclusions

In this paper, we have introduced the problem of multi-attribute co-clustering
for data mining applications that involve co-clustering two highly correlated
clusters of attributes’ values (known as MAC). We proposed using correlation
information to measure the correlation in a MAC. Correlation information is
based on the mutual information of two sets of attributes, which we derived by
generalizing the mutual information for two attributes. We developed an algo-
rithm MACminer, which mines MACs that have high correlation information
from datasets. MACminer adopts the subspace clustering approach to overcome
the curse of dimensionality problem when clustering multiple attributes dataset.
MACminer also used heuristic techniques to aggressively prune the search space
of the dataset during mining. Our experimental results showed that MACs
produced better clustering, classification and prediction results than other
algorithms.
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Abstract. There has been growing interest in using joint inference
across multiple subtasks as a mechanism for avoiding the cascading accu-
mulation of errors in traditional pipelines. Several recent papers demon-
strate joint inference between the segmentation of entity mentions and
their de-duplication, however, they have various weaknesses: inference
information flows only in one direction, the number of uncertain hy-
potheses is severely limited, or the subtasks are only loosely coupled.
This paper presents a highly-coupled, bi-directional approach to joint
inference based on efficient Markov chain Monte Carlo sampling in a re-
lational conditional random field. The model is specified with our new
probabilistic programming language that leverages imperative constructs
to define factor graph structure and operation. Experimental results show
that our approach provides a dramatic reduction in error while also run-
ning faster than the previous state-of-the-art system.

1 Introduction

Advances in machine learning have enabled the research community to build
fairly accurate models for individual components of an information extraction
and integration system, such as field segmentation and classification, relation
extraction, entity resolution, canonicalization, and schema alignment. However,
there has been significantly less success combining these components together
into a high-accuracy end-to-end system that successfully builds large, useful
knowledge bases from unstructured text.

The simplest possible combination is to run each component independently
such that they each produce their output using only provided input data. We
call this an isolated approach. For example, if asked to build a de-duplicated
database of bibliographic records given citation strings, one could build field
extraction and citation coreference models that operate independently of each
other. However, the accuracy of coreference would almost certainly be improved
if it could access the output of segmentation, and thus be able to separately
compare individual bibliographic fields such as authors, titles, and venues.
� First two authors contributed equally.
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For this reason, the most common approach to component combination is
a pipeline, in which components are run in some order, and later components
have access to the output of already-completed earlier components. Here seg-
mentation could be run first, and then coreference would have fruitful access
to field boundaries. Nevertheless, pipeline systems also typically fail to produce
high-accuracy final output. This is because errors cascade and compound in a
pipeline. When an earlier component makes a mistake, later stages consuming
its output are also very likely to produce errorful output. Every stage is an op-
portunity for compounding error—for example, six components each having 90%
accuracy may result in about 50% accuracy for the final stage when pipelined.

In order to avoid this brittle accumulation of errors there has been increas-
ing interest in probabilistic models that perform joint inference across multiple
components of an information processing pipeline, e.g. [1]. Here the system does
not commit to a single answer in some stage before considering other stages;
rather, multiple hypotheses and uncertainty information are exchanged through-
out, such that some components can correct the misconceptions of others. The
need for joint inference appears not only in extraction and integration, but also
in natural language processing, computer vision, robotics, and elsewhere.

Joint inference aims to predict many variables at once, and thus usually leads
to complex graphical model structure with large tree-width, making exact in-
ference intractable. Several approximate methods for joint inference have been
explored.

One, described by Finkel et al. [2], runs a pipeline, but samples the output
for each component rather than selecting the single most likely output; then the
pipeline is run repeatedly so that different combinations of output throughout
the pipeline are evaluated. This feed-forward approach to inference is a classic
method in Bayesian networks, but has the drawback that it only allows infor-
mation to flow in one direction. For example, correct coreference of a messy
citation with a clean citation provides the opportunity for an alignment between
these two citations to help the model correctly segment the messy one. However,
feed-forward inference does not support this backward flow of information.

In another approach, pursued by Wellner et al. [3], each component produces
a weighted N-best list of hypotheses for consumption by other components,
and components are re-visited in both directions—both forward and backward
through the pipeline. This approach allows information to flow in both directions,
however an N-best list is a restrictive approximation for the full distribution of
large-output components.

Yet another approach, proposed by Poon and Domingos [4], creates a single
Markov random field with factor template structure specified via first-order logic—
called a Markov logic network, MLN—and performs randomized approximate in-
ference by MC-SAT [5], a variant of WalkSAT [6]. MC-SAT repeatedly reconsiders
variables and factors in the model in an order independent of the pipeline. How-
ever, as described below, limitations of first-order logic make it difficult to spec-
ify a coreference factor that uses the uncertain output of segmentation. For this
reason, in Poon and Domingos [4], citation coreference compatibility is measured
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using features of the un-segmented citation (see Sect. 3.2), and inference is not
strongly bi-directional.

This paper presents a strong bi-directional approach to inference for joint seg-
mentation and coreference. Like Poon and Domingos [4] we use a conditionally-
trained factor graph, with randomized approximate inference that roams freely
in both directions. However, rather than employing first-order logic, we leverage
our new work in probabilistic programming that uses imperative procedures to
define the factor template structure. We term this approach imperatively-defined
factor graphs (IDFs); they are factor graphs whose template structure, as well
as aspects of parameterization and inference, are specified with the power of a
Turing-complete language. This added flexibility enables us to include more so-
phisticated factors between segmentation and coreference that allow information
to flow bi-directionally. In spite of being more expressive, IDF’s flexibility also
allows our model to be more efficient.

We evaluate our approach on segmentation and coreference of the citation
strings from the Cora data set. In comparison with Poon and Domingos [4] we
reduce coreference error and segmentation error by∼ 20−25% while also running
3− 15 times faster, providing a new state-of-the-art result. We also analyze the
nature of bi-directional inference with separate diagnostic experiments.

2 Background

2.1 Factor Graphs

A factor graph [7] is a bipartite graph over factors and variables. Let factor graph
G define a probability distribution over a set of output variables y conditioned
on input variables x. A factor Ψi computes a scalar value over the subset of
variables xi and yi that are neighbors of Ψi in the graph. Often this real-valued
function is defined as the exponential of an inner product over sufficient statistics
{fik(xi,yi)} and parameters {θik}, where k ∈ [1,Ki] and Ki is the number of
parameters for factor Ψi. Let Z(x) be the data-dependent partition function used
for normalization. The probability distribution can be written as:

p(y|x) =
1

Z(x)

∏
Ψi∈G

exp

[
Ki∑

k=1

θikfik(xi,yi)

]
.

In practice factor graphs often use the same parameters for several factors; this
is termed parameter tying. A factor template Tj consists of parameters {θjk},
sufficient statistic functions {fjk}, and a description of an arbitrary relationship
between variables, yielding a set of satisfying tuples {(xj ,yj)}. For each of these
variable tuples (xi,yi) that fulfills the relationship, the factor template instan-
tiates a factor that shares {θjk} and {fjk} with all other instantiations of Tj .
Let T be the set of factor templates. In this case the probability distribution
becomes:
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p(y|x) =
1

Z(x)

∏
Tj∈T

∏
(xi,yi)∈Tj

exp

⎡⎣ Kj∑
k=1

θjkfjk(xi,yi)

⎤⎦.
The process of instantiating individual factors from their templates is termed
unrolling. For a factor Ψi that is an instantiation of factor template Tj , the inner
product of {fjk(xi,yi)} and parameters {θjk} is termed the score of the factor.

In a pipeline approach to solving multiple tasks the influence between stages
is uni-directional down the pipeline, since inference is performed separately for
each task in a sequential order. To enable the bi-directional flow of information
we add factors connecting variables of different tasks and perform inference si-
multaneously for the entire model. A factor template defined over variables of
different tasks is termed a joint factor template, and an instantiation of a joint
factor template is called a joint factor.

Introducing joint factors usually increases the complexity of the graph because
it tends to create many more cycles and a larger tree width. These complex
graphs often cause inference to become intractable, which we address by using
imperatively-defined factor graphs, as described next.

2.2 Imperatively-Defined Factor Graphs

Imperatively-defined factor graphs (IDFs) are an approach to probabilistic pro-
gramming that preserves the declarative semantics of factor graphs, while lever-
aging imperative constructs (pieces of procedural programming) to greatly aid
both efficiency and natural intuition in specifying model structure, inference,
and learning. Rather than using declarative languages, such as SQL or first-
order logic, model designers have access to a Turing complete language when
writing their model specification. A model written as an IDF is a factor graph,
with all the traditional semantics of factors, variables, possible worlds, scores,
and partition functions; IDFs simply provide an extremely flexible language for
their succinct specification that also enables efficient inference and learning. A
side benefit is that IDFs provide a mechanism whereby model designers can
inject both declarative and procedural domain knowledge.

We have developed IDFs in the context of Markov chain Monte Carlo (MCMC)
inference, which is a common approach to achieve efficiency in complex factor
graphs [8,9,10] where variable-factor connectivity structure changes during in-
ference. In such situations, fully unrolling the graph (creating the factors that
would be necessary to score all possible worlds, as required for belief propaga-
tion) would often result in an exponential or super-exponential number of factors.
However, in MCMC, we only represent a single possible world at a time. MCMC
performs inference by stochastically proposing some change to the current pos-
sible world, and then accepting that change with a probability that depends on
the ratio of post- and pre-proposal model scores. Calculating these acceptance
probabilities is quite efficient because not only do the partition functions, Z(x),
cancel, but the contributions of all factors not touching changed variables also
cancel; in fact, in our implementation they are not even created. This allows
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us to avoid the need to unroll and score the entire graph to evaluate a change,
resulting in quite efficient inference.

We summarize four key imperative constructs in IDFs, and argue that they
provide a natural interface to central operations in factor graph construction
and inference. For more details see [11].

1. Imperative structure definition determines the connectivity between factors
and their variable arguments. The key operation in efficient MCMC is finding
all variable arguments of a factor template given a relevant changed variable.
IDFs make this a primitive operation, with the opportunity to define its be-
havior in a Turing-complete language—dynamically finding all neighboring
variables of an instantiated factor given one of its neighbors. For example,
this approach allows arbitrary graph-search algorithms to define the argu-
ments of a factor.

2. Imperative constraint preservation keeps all explored possible worlds in the
feasible region by embedding the necessary control in the procedurally-
defined MCMC proposal function. For example, we can avoid the large ex-
pense of having factors that aim to enforce transitivity in coreference by
instead: (a) initializing to a possible world that obeys transitivity, and (b)
implementing a proposal function that is guaranteed to preserve the transi-
tivity constraint.

3. Imperative variable coordination also preserves constraints or encourages
more fruitful proposals by including in the variable-value setting method
of one variable a procedural “hook” that automatically sets other related
variable(s) to a compatible value.

4. Imperative variable-sufficient mapping allows the data to be represented in
natural, convenient variables, and then later to be functionally mapped into
the sufficient statistics required for our desired parameterization.

We have implemented IDFs in the Factorie toolkit1 [11]. Typically, IDF pro-
gramming consists of four distinct stages: (1) defining the data representation,
(2) defining the factors for scoring, (3) optionally providing domain knowledge
to aid inference (including the flexibility to write the entirety of a proposal func-
tion), (4) reading in the data, learning parameters, testing, and evaluating.

For parameter estimation in this paper we use Sample-Rank [12]. This method
embeds opportunities for approximate gradient ascent into each MCMC proposal
step by performing perceptron-like updates whenever possible worlds, pre- and
post-proposal, are ranked differently by their model scores versus their distance
to the labeled true world. Sample-Rank’s proof of convergence [12] is similar to
the proof for perceptron. In this paper, the final values of each parameter are
obtained by averaging over the learning period. To evaluate a trained model we
search for the MAP configuration by running MCMC with a low temperature
applied to the ratio of model scores in the proposal acceptance probability.

1 Available at http://factorie.cs.umass.edu
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3 Bi-directional Joint Inference for Segmentation and
Entity Resolution

In some information extraction tasks mentions of entities must be discovered by
segmenting them from background text. In other cases the mention strings are
provided, but they have internal structure requiring segmentation. Here we ad-
dress the latter case, in which we jointly segment the contents of many mentions,
while simultaneously performing coreference on the mentions.

Consider the task of citation matching in which we are given a large collection
of citation strings from the “References” section of research papers. They have
different citation styles, different abbreviations, and typographical errors. Many
of the citations refer to the same underlying papers. Our job is to find the
citations referring to the same paper (coreference or entity resolution) and also
identify the author, title, and venue fields of each citation (segmentation).

The tasks of segmentation and entity resolution are often solved in isolation,
without access to each other’s predictions [13,14], however, using the results of
the other subtask often helps reduce errors. For example, coreference compati-
bility between two citations can be assessed more accurately if we can compare
segmented title fields and venue fields separately, with different distance mea-
sures for each. Also, segmentation accuracy can be improved by accounting for
field similarity among multiple coreferent citations. These interdependencies be-
tween the two tasks have led others to explore joint models of segmentation and
coreference of citations with generative models [15], with conditionally-trained
models performing bi-directional N-best message-passing between tasks [3], and
with conditional models whose bi-directional factors mainly leverage coreference
for performing segmentation [4].

Next we present a highly-coupled, bi-directional approach to joint inference for
citation segmentation and coreference. We use imperatively-defined factor graphs
(IDFs) to specify a single undirected graphical model that performs both tasks. It
includes multiple factors that simultaneously examine variables of segmentation
and coreference. In the following sections we describe the variables and factors
of this model, as well as the MCMC proposal function used.

3.1 Variables

Segmentation Variables. Observed and predicted data for segmentation are
represented by three types of variables: Token, Label, and Field. Each ob-
served citation string consists of a sequence of words, each represented by a
Token whose value is the word string itself. Each Token is associated with a
corresponding unobserved Label variable, whose value is any of the field types,
or “None.” In addition, consecutive Tokens whose Labels have the same value
are also represented as a Field variable, whose value is the string formed by the
concatenation of its words. Fields are set in coordination with Labels through
imperative variable coordination, and facilitate joint factors between coreference
and segmentation. These variables are summarized in Table 1.
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Table 1. Variable Types for Segmentation and Coreference: Variable types
that are used in the joint model of segmentation and entity resolution

Segmentation Variable Types

Token: Observed variable that represents a word in the mention string
Label: Variable that can take any of the field types as a value (or “None”)
Field: Indices of consecutive Tokens that belong to a particular field

Coreference Variable Types

Mention: Variable that takes a single Entity as its value
Entity: Set of Mentions that are coreferent

Coreference Variables. There are two variable types for coreference: Entity
and Mention. Each Entity embodies an underlying paper, to which there may
be many citations. Each citation is represented by a Mention whose coreference
involves an assignment to its corresponding Entity. Although each Mention ob-
ject contains the citation string as a member instance variable, the Mention’s
value (as an IDF random variable) is the Entity to which it has been assigned.
The Entity is accordingly a set-valued variable—its value is the set of Mentions
that have this Entity as their value. The values of Mentions and Entities are
synchronized through imperative variable coordination. Note that this represen-
tation eliminates the need for factors enforcing mutual-exclusion or transitivity
since each Mention can only have one Entity as its value. These variables are
also summarized in Table 1.

Connections between Coreference and Segmentation Variables. To sup-
port joint factors between segmentation and coreference, the above variables
contain references to each other. We take advantage of the fact that our random
variables are objects in an object-oriented programming language, and represent
arbitrary relations as member instance variables. Each Mention contains an ar-
ray of its Tokens, as well as a list of its constituent Fields. Furthermore, each
Field has a reference to its enclosing Mention, comprising Tokens, and adja-
cent Fields. These object-oriented cross-references are used to efficiently find
the neighboring variables of a factor (imperative structure definition) and to
access related variables for calculating sufficient statistics (imperative variable-
sufficient mapping).

3.2 Factors Templates

Now we define the factor templates that are used to score possible worlds; they
are summarized in Table 2. A small example consisting of three mentions and
three fields, showing their instantiated factors and neighboring variables, is de-
picted in Figure 1. Given the neighboring variables of a factor, most of our
factor templates employ additional computation to calculate sufficient statis-
tics (features) from these neighbors—leveraging the flexible separation of data
representation and parameterization (imperative variable-sufficient mapping).
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Table 2. Factor Templates of Segmentation and Coreference: Factor templates
that are used in the joint model of segmentation and entity resolution

Segmentation Factors

LabelToken: Factor between every token and its field type
LabelNextToken: Factor between every label and the next token
LabelPrevToken: Factor between every label and the previous token
FieldFactor: Factor created for every Field to allow field-wise features

Coreference Factors

Affinity: Factor created between coreferent pairs of Mentions

Repulsion: Factor created between pairs of Mentions that are not coreferent
Joint Factors

JntInfBased: Factor between Mention and Label based on joint factors in [4]
JointAffinity: Factor between Fields of the same type of coreferent Mentions

JointRepulsion: Factor between Fields of the same type of non-coref. Mentions

Segmentation. The segmentation factor templates express preferences about
the Tokens’ Label values and their segmentation into Fields. We define three
factor templates traditional in linear-chain CRFs: factors between each Label
and its corresponding Token (LabelToken), plus factors between the Label and
adjacent Tokens on either side (LabelPrevToken and LabelNextToken).

In addition we define a factor template that examines a Field (and there-
fore has simultaneous access to all its constituent Tokens). This allows us to
implement features similar to the rest of the segmentation rules of Poon and
Domingos’ “Isolated” MLN [4]. These include various first-order formulae over
the Tokens of a Field. We also employ features testing the existence of punctua-
tion at the beginning, the end, and within the Field. Finally we include features
that take the position of the Field within the mention string into account. All
of these features are taken in conjunction with the field type (Label).

Coreference. We have two coreference factor templates, which express pref-
erences about partitioning Mentions into Entities. One measures pairwise
affinity between Mentions in the same Entity; the other measures pairwise
repulsion between Mentions in different Entities. Both factor templates have
two Mentions as neighbors, and they both share the same imperative variable-
sufficient mapping function. The number of these factors for a fully-unrolled
graph is O(m2) (where m is the number of the citations). As described above,
IDFs do not unroll the graph fully, and only need evaluate factors neighboring
moved Mentions, which is O(k) (where k is the average Entity size).

Affinity and Repulsion factors are scored using the same features (i.e. suf-
ficient statistics function), but different parameters. These sufficient statistics
are calculated from the un-segmented citation strings. We use the SimilarTitle
and SimilarVenue features as defined in [4]. Furthermore, we add a SimilarDate
feature that is true when the same year Token appears in both Mentions, as
well as a DissimilarDate feature that is true when unequal year Tokens appear.
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Fig. 1. Model: Variables and factors for joint segmentation and entity resolution
shown on a toy example containing two entities and three mentions with a single
field in each. Segmentation factors are only shown for one field. JntInfBased factors
have been omitted for clarity.

Bi-directional. Joint factor templates express preferences about both segmen-
tation and coreference simultaneously. In Poon and Domingos [4] all of the in-
teraction between these tasks is captured by four similar rules that use their
“JntInfCandidate” predicate. JntInfCandidate(m, i,m′) is true if the Token tri-
gram starting at position i in Mention m also appears in Mention m′, and the
trigram in m is not preceded by punctuation whereas the trigram in m′ is. The
trigram also must not meet certain “title exclusion” rules described in [4]. Note
that JntInfCandidate is pre-calculated from the observed data, independent of
segmentation and coreference predictions.

Even though Poon and Domingos’ rules containing JntInfCandidate are scored
on changes to both coreference and segmentation decisions, there are two reasons
it forms only a weak interaction between the tasks. First, these templates only
examine pairs of consecutive labels, not whole fields—failing to use information
from predicted field range and non-consecutive words in the field. Second, the fre-
quency with which the JntInfCandidate feature appears is quite data-dependent.
In the Cora corpus, it occurs only 4973 times—representing an average of < 4
possible coreference candidates per Mention, whereas the average Entity size is
∼ 10. On the other hand, if the feature occurs too often, it can be harmful for
coreference. We hypothesize these reasons explain the empirical results in [4],
in which the joint factors do not help entity resolution. We further explore this
issue in Sect. 5.2.

To achieve stronger interaction between the tasks, we add factor templates
that examine predicted Fields jointly with coreference decisions (Mentions).
Our JointAffinity factor template defines factors that measure the compatibil-
ity of corresponding Fields in coreferent Mentions. Similarly JointRepulsion
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factor templates compare the corresponding Fields of non-coreferent Mentions.
Hence the features (sufficient statistics) of these factor templates are able to
compare full extracted field strings, and include StringMatch, SubStringMatch,
PrefixMatch, SuffixMatch, AnyNTokenMatch, TokenIntersectionSize, etc.

One reason such strongly-joint factor templates have not been used in related
work is due to the large number of factor instantiations in the many possible
worlds. Such a factor could be created between any two pairs of Mentions, and
any pair of their possible Field segmentations. This leads to O(m2n4) factors,
where m is the number of Mentions, and n is the maximum number of Tokens
in a Mention string. The number of factors then becomes too large to be pre-
processed and stored for big datasets, making such factor templates intractable
for methods that fully unroll the factor graph or that pre-calculate features. This
problem is common in joint inference because factors that represent dependencies
between tasks often blow-up in the cross-product of the two hypothesis spaces.
Since IDFs never unroll the entire factor graph and allow on-the-fly feature
calculation they can efficiently use such factors.

3.3 Proposal Function

Our MCMC proposal function can make changes either to coreference or segmen-
tation. A coreference proposal selects a random Mention, then with probability
0.8 moves it to another randomly selected Entity, or with probability 0.2 makes
it a singleton in a new Entity. A segmentation proposal selects a random Field
and identifies the minimum and maximum amount by which the Field can
shrink or grow (which depends on the neighboring Fields). A new range for
the Field is selected randomly based on that potential range. When the range
of a Field is changed, the corresponding Labels are automatically adjusted via
imperative variable coordination. The order of fields within a mention string is
fixed: author, title, then venue.

4 Experimental Setup

We use the Cora dataset2 [16] to evaluate our joint entity resolution and segmen-
tation model. The dataset contains a total of 1,295 citations that refer to 134
ground truth entities. Each citation has three fields (author, title, and venue),
with a total of 36,487 tokens. The dataset is divided into the same three folds
used by [4]. These folds were not entirely random since they ensure no clusters
are split across different folds. Ten runs of three-fold cross-validation are per-
formed on the dataset, unless otherwise specified. Segmentation is evaluated on
token-wise precision, recall, and F1. Pairwise coreference decisions are evaluated
to obtain the precision, recall, and F1. Cluster recall, defined as the fraction of
clusters that are correctly predicted, is calculated to compare with earlier results.

As a baseline we run isolated coreference and segmentation experiments. These
isolated models use only the segmentation and coreference factors, as described
2 The cleaned version available at http://alchemy.cs.washington.edu/papers/poon07
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in Table 2, respectively (not the “joint factors”). Coreference is initialized to
an all-singleton configuration, while segmentation is initialized to an equal-sized
three way split of the mention string; we term these “default” configurations.
Training consists of 5 loops of 100,000 proposals each. At the beginning of ev-
ery loop we initialize either to the ground truth or the default configuration,
selected randomly. Test-time inference consists of 300,000 proposals (for each
task), starting with the default configuration. The temperatures for annealing
during training and testing are set to 1.0. During training and inference for
baseline isolated tasks only the respective proposal function is used.

Three different types of joint experiments are run to examine several aspects
of the bi-directional nature of the joint model. For all of the joint experiments
training is performed for 5 loops of 250,000 proposals each. Each task is initialized
to either the default or the ground truth configuration, selected randomly, at the
beginning of every training loop. Test-time inference consists of a total of 750,000
proposals across both tasks. The temperatures for training and testing are set to
3.0 and 1.0, respectively. During joint inference the proposal function randomly
chooses between selecting a coreference or a segmentation proposal.

5 Results

The first joint experiment evaluates the full model including all factor tem-
plates and features, and compares these results to the isolated baseline models.
The second joint experiment separately evaluates the gains resulting from the
JointInfBased factors and the fully bi-directional factors described in Sect. 3.2.
The third joint experiment examines the behavior of passing predictions between
coreference and segmentation in an iterative fashion.

The experiments run very quickly, which can be attributed to imperative vari-
able coordination and imperative structure definition, as described earlier. Train-
ing and inference of the isolated tasks finish within 3 minutes while the joint task
takes approximately 18 minutes to run. By comparison, MC-SAT in [4], which
does not enforce transitivity constraints for coreference, takes 50− 90 minutes.
Adding transitivity constraints to the MLN severely increases running time fur-
ther, as shown in [17].

5.1 Overall Joint Inference

Our results on the Cora dataset are shown in Table 3 and Table 4, demonstrat-
ing the benefits of a bi-directional approach to joint inference, with significant
improvements on both segmentation and coreference. We also compare with the
Fellegi-Sunter coreference model [14]. All improvements of our joint model over
our isolated models are statistically significant at 1% using the T-test.

Table 3 shows that our isolated coreference model outperforms the previously
published results in [4] on both metrics. Our joint model, which concurrently
solves the segmentation task, outperforms our isolated coreference model, with
a 13% error reduction compared to our isolated IDF. It also provides an overall
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Table 3. Cora Coreference: Pairwise precision/recall, F1, and cluster recall, for the
coreference task on the Cora dataset

Method Prec/Recall F1 Cluster Rec.

Fellegi-Sunter 78.0/97.7 86.7 62.7
Joint MLN 94.3/97.0 95.6 78.1
Isolated IDF 97.09/95.42 96.22 86.01
Joint IDF 95.34/98.25 96.71 94.62

Table 4. Cora Segmentation: Token-wise F1 for each field of the segmentation task
on the Cora dataset

Method Author Title Venue Total

Isolated MLN 99.3 97.3 98.2 98.2
Joint MLN 99.5 97.6 98.3 98.4
Isolated IDF 99.35 97.63 98.58 98.51
Joint IDF 99.42 97.99 98.78 98.72

25.2% error reduction in pairwise coreference F1 in comparison to the joint
MLN. In addition, Table 3 shows that the joint approach allows cluster recall
to improve substantially, resulting in a 75.4% error reduction compared to the
joint MLN, and a 61.5% error reduction compared to our isolated IDF.

Table 4 shows similar improvements on the segmentation task. Our isolated
segmentation model significantly outperforms all earlier results, and the joint
model uses the coreference predictions to improve segmentation further. In com-
parison to the joint MLN we provide an overall error reduction in token-wise
segmentation F1 of 20.0%. Compared to our isolated IDF the reduction is 14.1%.

5.2 Bi-directionality

We also examine the performance as joint factors are added to our isolated
models. The results are shown in Fig. 2. The isolated models produces the lowest
scores amongst our models. “Semi-Joint” refers to the model containing the
JointInfBased factors in addition to the isolated factors. They lead to a larger
improvement in segmentation than in coreference, confirming their weaker effect
on coreference proposals. When the fully bi-directional factors are also added
(“Fully-Joint”) both segmentation and coreference scores improve. However, the
improvement for coreference is much higher. Recall that the factors added for the
“Fully-Joint” model are prohibitively expensive to pre-calculate (as described in
section 3.2), which demonstrates the benefit of using an IDF for bi-directional
joint inference.
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Fig. 2. Adding Joint Factors: F1 of the joint model as different types of factors
are added, starting with the base model containing only isolated segmentation and
coreference factors. “Semi-Joint” refers to the model containing weakly joint factors
while the “Fully-Joint” model consists of bi-directional highly-coupled factors.

5.3 Iterated Pipeline Comparison

Conventionally, multiple information extraction tasks are solved using a pipeline
architecture in which the output predictions of one task are used as input to
the next. To minimize error caused due to cascading, multiple iterations of a
pipeline can be carried out, such that the output predictions of the last stage of
the pipeline feed back to the first stage.

As described earlier, we switch between segmentation and coreference propos-
als randomly. From the iterated pipeline perspective our method of performing
joint inference is similar to repeating a pipeline in which each stage consists of
a single proposal. To compare the performance of the fully joint proposal func-
tion against an iterated pipeline, we vary the number of pipeline iterations—by
changing the total number of stages—while keeping the total number of training
and testing proposals constant.

Our results are shown in Fig. 3. Each experiment involves 20 runs of three-fold
cross validation using 5 loops of 250,000 training proposals and 750,000 testing
proposals. The proposals are evenly divided across the stages, for example, the 2-
stage experiment consists of 125,000 training proposals in segmentation followed
by 125,000 training proposals in coreference for each of the 5 loops. In compari-
son, the 10-stage experiment consists of 5 pipelines, in which each pipeline has a
segmentation stage of 12,500 proposals followed by a coreference stage of 12,500
proposals. Thus a higher number of total stages leads to a smaller number of
proposals per stage. The first stage is always segmentation, to be consistent with
earlier work in citation matching [15].

For both tasks our experiments show that the fully joint model gives higher F1
than any of the iterated pipeline results. Notice that the segmentation F1 rises as
the number of stages in the pipeline increases. It is possible that segmentation
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Fig. 3. Iterated Pipeline: Performance of segmentation and coreference as the num-
ber of iterations of the pipeline is varied for a fixed number of total sampling steps
over all iterations. The dotted line denotes the model that performs inference jointly,
randomly switching between segmentation and coreference proposals.

F1 for a specific number of stages may be better than the fully joint results.
However, finding the optimal number of stages can be expensive and we feel
that a fully joint model is likely to perform competitively and generalize to a
withheld validation set.

6 Related Work

Many researchers have explored issues of joint inference in text processing. Mc-
Callum and Jensen [1] present a position paper motivating the need for joint
inference, and propose unified undirected graphical models for joint information
extraction and data mining, describing several examples of conditional random
fields. Many other papers present experimental results with various methods
of inference. Sometimes joint inference can be done with standard dynamic-
programming methods, for example, joint named entity recognition and parsing
[18,19] via CYK, with parse non-terminal symbols augmented to include named
entity information. Another common alternative is feedforward N-best lists, e.g.
[20,21]. The feedforward probability distribution can be better approximated by
sampling [2], but this flow of information is still uni-directional. Others have
passed N-best list information bi-directionally between two tasks [3,22]. Multi-
directional passing of full probability distributions corresponds to loopy belief
propagation, which has been used for skip-chains [23]. If joint factors can be
expressed as linear constraints, one can employ efficient software packages for
integer linear programming (ILP) [24]. When the structure of the model is chang-
ing during inference, MCMC provides significant efficiencies [8,9,10].
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Joint citation segmentation and coreference has become somewhat of a stan-
dard evaluation task. Pasula et al. [15] perform this task using BLOG to define
a generative model of research paper entities and their noisily-rendered cita-
tions; they perform inference by MCMC. Wellner et al. [3] bi-directionally pass
N-best lists among conditional random fields for 14-field citation segmentation,
coreference, and canonicalization. Poon and Domingos [4] avoid N-best lists with
inference via MC-SAT in a Markov logic network. However, the tasks are weakly-
coupled, do not enforce transitivity, and only segment into three fields. In this
paper, for purposes of comparison, we perform the same three-field task. We
leverage the efficient power of IDFs to define bi-directional joint factors that
provide reduced error, faster running times, and enforce coreference transitivity.

7 Conclusions and Future Work

In this paper we presented a highly-coupled, bi-directional model for joint in-
ference in citation segmentation and coreference, yielding new state-of-the-art
accuracy. We incorporate factors that use coreference to aid segmentation and
vice-versa, and do so efficiently using imperatively-defined factor graphs (IDFs).
Compared to other joint models for the same tasks, our method results in an
error reduction of 20 − 25%, providing a new state-of-the-art result, while also
running 3 − 15 times faster. In future work we will explore similar methods for
joint inference in newswire named entity extraction and coreference, in which,
unlike citations, the number of mentions must be inferred.
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Abstract. In this paper we introduce and evaluate a technique for ap-
plying latent Dirichlet allocation to supervised semantic categorization
of documents. In our setup, for every category an own collection of topics
is assigned, and for a labeled training document only topics from its cat-
egory are sampled. Thus, compared to the classical LDA that processes
the entire corpus in one, we essentially build separate LDA models for
each category with the category-specific topics, and then these topic col-
lections are put together to form a unified LDA model. For an unseen
document the inferred topic distribution gives an estimation how much
the document fits into the category.

We use this method for Web document classification. Our key results
are 46% decrease in 1-AUC value in classification accuracy over tf.idf
with SVM and 43% over the plain LDA baseline with SVM. Using a
careful vocabulary selection method and a heuristic which handles the
effect that similar topics may arise in distinct categories the improvement
is 83% over tf.idf with SVM and 82% over LDA with SVM in 1-AUC.

1 Introduction

Generative topic models [1,2,3] have a wide range of applications in the fields of
language processing, text mining and information retrieval, including categoriza-
tion, keyword extraction, similarity search and statistical language modeling.

One of the most successful generative topic models is latent Dirichlet alloca-
tion (LDA) developed by Blei, Ng and Jordan [3]. LDA models every topic as a
distribution over the terms of the vocabulary, and every document as a distribu-
tion over the topics. These distributions are sampled from Dirichlet distributions.
LDA is an intensively studied model, and the experiments are really impressive
compared to other known information retrieval techniques. The applications of
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LDA include entity resolution [4], fraud detection in telecommunication systems
[5], image processing [6,7,8] and ad-hoc retrieval [9].

Another important and widely studied area of language processing is super-
vised text categorization (for a survey we refer to [10]). LDA, in its original
form [3], cannot be used for supervised text categorization as it is an unsuper-
vised latent model rather than an explicit topic model. This issue, to our best
knowledge, remained mainly unexplored, and the goal of the present paper is to
address this question. Although LDA can be applied for dimensionality reduc-
tion prior to supervised classification as in LSA [1], we show that this baseline
method is not competitive with our modified LDA model.

In this paper we introduce multi-corpus LDA (MLDA), a modification of
LDA, which incorporates explicit topic labels into LDA making it applicable for
text categorization. MLDA is essentially a hierarchical method with two levels,
category and topics. Assume we have a supervised document categorization task
with m semantic categories. Every document is assigned exactly one category,
and this assignment is known only for the training corpus. For every category
we assign an own collection of topics, and the union of these collections forms
the topic collection of LDA. In LDA, for every document, a Dirichlet parameter
vector α is chosen such that the assigned topics to the document’s words are
drawn from a fixed multinomial distribution drawn from Dir(α). In MLDA, for
every training document we require that this α Dirichlet parameter has com-
ponent zero for all topics outside the document’s category, in order to achieve
that only topics from the document’s category are sampled to the document’s
words. This is tantamount to building separate LDA models for every category
with category-specific topics. Then for an unseen document d the fraction of
topics in the topic distribution of d that belong to a given category measures
how well d fits into that category. As a Dirichlet distribution allows only positive
parameters, we will extend the notion of Dirichlet distribution in a natural way
by allowing zeros. Although there exist hierarchical latent topic models [11,12]
to tackle more than one layers as we have, the advantage of MLDA is that it
is built up from plain LDA’s and no complicated hierarchical models should be
developed. For a more detailed description of MLDA, see Subsection 2.2.

We apply MLDA for a corpus of 12k documents from the DMOZ library,
divided into m = 8 categories. We carry out a careful term selection method,
based on the entropy of the normalized tf-vectors over the categories, resulting
in a vocabulary consisting of terms with high coverage and discriminability. We
also try out a heuristic, ϑ-smoothing, which tries to compensate the effect that
similar topics may arise in distinct categories, and thus unseen inference may
put very skewed weights on these two topics.

We test MLDA in combination with SVM over LDA and over tf.idf. The
improvement is 43% decrease in 1-AUC value over LDA with SVM. Careful
choice of term selection results in a further 37% decrease, while ϑ-smoothing
gives a further 2% decrease over LDA in 1-AUC, summing up to 82%. MLDA
with the best term selection and ϑ-smoothing results in a 83% decrease in 1-AUC
over tf.idf with SVM. For a detailed explanation, see Section 3.
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The MLDA technique was applied with success to Web spam filtering in the
Web Spam Challenge 2008 competition [13].

The rest of the paper is organized as follows. Section 2 explains LDA and
MLDA. Section 3 describes the experimental setup and Section 4 the results.
Finally, Section 5 summarizes our work and envisions future research.

2 Multi-corpus LDA

2.1 The Classical LDA

We shortly describe latent Dirichlet allocation (Blei, Ng, Jordan [3]), for a de-
tailed elaboration, we refer to Heinrich [14]. We have a vocabulary V consisting
of terms, a set T of k topics and n documents of arbitrary length. For every topic
z a distribution ϕz on V is sampled from Dir(β), where β ∈ R

V
+ is a smoothing

parameter. Similarly, for every document d a distribution ϑd on T is sampled
from Dir(α), where α ∈ R

T
+ is a smoothing parameter.

The words of the documents are drawn as follows: for every word-position of
document d a topic z is drawn from ϑd, and then a term is drawn from ϕz and
filled into the position.

LDA can be thought of as a Bayesian network, see Figure 1.

β

α

ϕ ∼ Dir(β)

ϑ ∼ Dir(α) z ∼ ϑ w ∼ ϕz

k

n

Fig. 1. LDA as a Bayesian network

One method for finding the LDA model by inference is via Gibbs sampling
[15]. (Additional methods are variational expectation maximization [3], and ex-
pectation propagation [16]). Gibbs sampling is a Monte Carlo Markov-chain
algorithm for sampling from a joint distribution p(x), x ∈ R

n, if all conditional
distributions p(xi|x−i) are known (x−i = (x1, . . . , xi−1, xi+1, . . . , xn)). In LDA
the goal is to estimate the distribution p(z|w) for z ∈ TP , w ∈ V P where P
denotes the set of word-positions in the documents. Thus in Gibbs sampling one
has to calculate for all i ∈ P and topics z′ the probability p(zi = z′|z−i, w). This
has an efficiently computable closed form, as deduced for example in Heinrich
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[14]. Before describing the formula, we introduce the usual notation. We let d be
a document and wi its word at position i. We also let count Ndz be the number
of words in d with topic assignment z, Nzw be the number of words w in the
whole corpus with topic assignment z, Nd be the length of document d and Nz

be the number of all words in the corpus with topic assignment z. A superscript
N−i denotes that position i is excluded from the corpus when computing the
corresponding count. Now the Gibbs sampling formula becomes [14]

p(zi = z′|z−i, w) ∝
N−i

z′wi
+ β(wi)

N−i
z′ +

∑
w∈V β(w)

· N−i
dz′ + α(z′)

N−i
d +

∑
z∈T α(z)

. (1)

After a sufficient number of iterations we arrive at a topic assignment sample z.
Knowing z, the variables ϕ and ϑ are estimated as

ϕz,w =
Nzw + βw

Nz +
∑

w∈V βw
(2)

and
ϑd,z =

Ndz + αz

nd +
∑

z∈T αz
. (3)

We call the above method model inference. After the model (that is, ϕ) is built,
we make unseen inference for every new, unseen document d. The ϑ topic-
distribution of d can be estimated exactly as in (3) once we have a sample from
its word-topic assignment z. Sampling z is usually performed with a similar
method as before, but now only for the positions i in d:

p(zi = z′|z−i, w) ∝ ϕz′,wi ·
N−i

dz′ + α(z′)
N−i

d +
∑

z∈T α(z)
. (4)

To verify (4), note that the first factor in Equation (1) is approximately equal
to ϕz′,wi , and ϕ is already known during unseen inference.

2.2 Multi-corpus LDA

All what is modified in LDA in order to adapt it to supervised semantic cate-
gorization is that we first divide the topics among the categories and then make
sure that for a training document only topics from its own category are sam-
pled during the training phase. To achieve this we have to extend the notion
of a Dirichlet distribution in a natural way. If γ = (γ1, . . . , γl, 0, . . . , 0) ∈ R

n

where γi > 0 for 1 ≤ i ≤ l, then let the distribution Dir(γ) be concentrated
on the subset {x ∈ R

n : xi = 0 ∀i > l,
∑

1≤i≤n xi = 1}, with distribution
Dir(γ1, . . . , γl). Thus for p ∼ Dir(γ) we have that pi = 0 for i > l with proba-
bility 1, and (p1, . . . , pl) is of distribution Dir(γ1, . . . , γl). It can be checked in
the deduction of [14] that the only property used in the calculus of Subsection
2.1 is that the Dirichlet distribution is conjugate to the multinomial distribu-
tion, which is kept for our extension, by construction. Indeed, if x ∼ χ where
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χ ∼ Dir(γ1, . . . , γl, 0, . . . , 0) with γi > 0 for 1 ≤ i ≤ l, then for i > l we have
that χi = 0 and thus xi = 0 with probability 1. So the maximum a posteriori
estimation of χi is

γi + xi∑
1≤j≤n γj + xj

,

because the same holds for the classical case. To conclude, every calculation of
the previous subsection still holds.

As p(zi = z′|z−i, w) = 0 in Equation 1 if z′ has 0 Dirichlet prior, that is if it
does not belong to the category of the document, the model inference procedure
breaks down into making separate model inferences, one for every category. In
other words, if we denote by Ci, 1 ≤ i ≤ m, the collection of those training
documents which were assigned category i, then model inference in MLDA is
essentially building m separate LDA models, one for every Ci, with an appro-
priate choice of the topic number ki. After all model inferences have been done,
we have term-distributions for all k =

∑
{ki : 1 ≤ i ≤ m} topics.

Unseen inference is the same as for LDA. For an unseen document d, we
perform Gibbs sampling as in Equation (4), and after a sufficient number of
iterations, we calculate ϑd as in (3). We define for every category 1 ≤ i ≤ m

ξi =
∑

{ϑd,z : z is a topic from category i}. (5)

As ξi estimates how relevant category i is to the document, ξi is a classification
itself. We call this direct classification, and measure its accuracy in terms
of the AUC value, see Section 3. It is an appealing property of MLDA that
right after unseen inference the resulting topic distribution directly gives rise to
a classification. This is in contrast to, say, using plain LDA for categorization,
where the topic-distribution of the documents serve as features for a further
advanced classifier.

MLDA also outperforms LDA in its running time. If there are ki topics and
pi word-positions in category i, then MLDA model inference runs in time O(I ·∑m

i=1 kipi), where I is the number of iterations. On the contrary, LDA model
inference runs in time O(I · kp) where k =

∑m
i=1 ki and p =

∑m
i=1 pi (running

times of LDA and MLDA do not depend on the number of documents). The
more categories we have, the more is the gain. In addition, model inference in
MLDA can be run in parallel. For measured running times see Subsection 4.3.

2.3 ϑ-Smoothing with Personalized Page Rank

There is a possibility that MLDA infers two very similar topics in two distinct
categories. In such a case it can happen that unseen inference for an unseen
document puts very skewed weights on these two topics, endangering the clas-
sification’s performance. To avoid such a situation, we apply a modified 1-step
Personalized Page Rank on the topic space, taking topic-similarity into account.

Fix a document d. After unseen inference, its topic-distribution is ϑd. We
smooth ϑd by distributing the components of ϑd among themselves, as follows.
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For all topics j replace ϑd,j by

S · ϑd,j +
∑

h topic, h 
=j

ch ·
ϑd,h

JSD(ϕj , ϕh) + ε
.

The constants ch are chosen in such a way that

ch ·
∑

j topic, j 
=h

1
JSD(ϕj , ϕh) + ε

= 1− S

for all topics h, making sure that the new ϑd is indeed a distribution. JSD is the
Jensen-Shannon divergence, a symmetric distance function between distributions
with range [0, 1]. Thus JSD(ϕj , ϕh) is a measure of similarity of topics j and h.
ε is to avoid dividing with zero, we chose it to ε = 0.001. S is a smoothing
constant. We tried four values for it, S = 1, 0.85, 0.75 and 0.5. Note that S = 1
corresponds to no ϑ-smoothing.

The experiments on ϑ-smoothing in Subsection 4.2 show slight improvement in
accuracy if the vocabulary has small discriminating power among the categories.
This is perhaps because it is more probable that similar topics are inferred in
two categories if there are more words in the vocabulary with high occurrence in
both. We mention that ϑ-smoothing can clearly be applied to the classical LDA
as well.

3 Experimental Setup

We have 290k documents from the DMOZ web directory1, divided into 8 cat-
egories: Arts, Business, Computers, Health, Science, Shopping, Society, Sports.
In our experiments a document consists only of the text of the html page. After
dropping those documents whose length is smaller than 2000, we are left with
12k documents with total length of 64M.

For every category, we randomly split the collection of pages assigned with
that category into training (80%) and test (20%) collections, and we denote by
Ci the training corpus of the ith category. We learn the MLDA model on the
train corpus, that is, effectively, we build separate LDA models, one for every
category. Then we carry out unseen inference on the test corpus (that is the union
of the test collections). For every unseen document d we define two aggregations
of the inferred topic distribution ϑd, we use ϑd itself as the feature set, and also
the category-wise ξ sums, as defined in (5). As we already noted, the category-
wise sum ξ gives an estimation on the relevancy of category i for document d,
thus we use it in itself as a direct classification, and an AUC value is calculated.

Similarly, we learn an LDA model with the same number of topics on the
training corpus (without using the category labels), and then take the inferred
ϑ values as feature on the test corpus.

1 http://www.dmoz.org/
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We make experiments on how advanced classifiers perform on the collection
of these aggregated features. For every category we do a supervised classification
as follows. We take the documents of the test corpus with the feature-set and
the Boolean label whether the document belongs to the category or not. We
run binary classifications (linear SVM, C4.5 and Bayes-net) using 10-fold cross-
validation to get the AUC value. What we report is the average of these AUC
values over the 8 categories. This is carried out for both feature-sets ϑ and ξ.

Every run (MLDA model build, unseen inference and classification) is re-
peated 10 times to get variance of the AUC classification performance.

The calculations were performed with the machine learning toolkit Weka [17]
for classification and a home developed C++ code for LDA2.

The computations were run on a machine of 20GB RAM and 1.8GHz Dual
Core AMD Opteron 865 processor with 1MB cache. The OS was Debian Linux.

3.1 Term Selection

Although the importance of term selection in information retrieval and text
mining has been proved crucial by several results, most papers on LDA-based
models do not put strong emphasis on the choice of the vocabulary. In this work
we perform a careful term selection in order to find terms with high coverage and
discriminability. There are several results published on term selection methods
for text categorization tasks [18,19]. However, here we do not directly apply
these, as our setup is different in that the features put into the classifier come
from discovered latent topics, and are not derived directly from terms.

First we keep only terms consisting of alphanumeric characters, the hyphen,
and the apostrophe, then we delete all stop-words enumerated in the Onix list3,
and then the text is run through a tree-tagger software for lemmatization4.

Then

1. for every training corpus Ci we take the top.tf terms with top tf values
(calculated w.r.t Ci) (the resulting set of terms is denoted by Wi),

2. we unify these term collections over the categories, that is, let W =
⋃
{Wi :

1 ≤ i ≤ m},
3. then we drop from W those terms w for which the entropy of the normalized

tf-vector over the categories exceeds a threshold ent.thr, that is, for which

H(tf(w)) ≥ ent.thr.

Here tf(w) ∈ R
m is the vector with ith component the tf value of w in the

training corpus Ci, normalized to 1 to be a distribution.

Term selection has two important aspects, coverage and discriminability. Note
that step 1. takes care of the first, and step 3. of the second.

2 http://www.ilab.sztaki.hu/~ibiro/linkedLDA/
3 http://www.lextek.com/manuals/onix/stopwords1.html
4 http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/
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Table 1. The size of the vocabulary and the average document length after filtering
for different thresholds (top.tf/ent.thr)

vocabulary size of vocab avg doc length
unfiltered 21862 2602
30000 / 1.8 89299 1329
30000 / 1.5 74828 637
15000 / 1.8 35996 1207

We also made experiments with the unfiltered vocabulary (stop-wording and
stemming the top 30k terms in tf). For the thresholds set in our experiments the
size of the vocabulary and the average document length after filtering is shown
in Table 1.

We mention that the running time of LDA is insensitive to the size of the
vocabulary, so this selection is exclusively for enhancing performance.

3.2 LDA Inference

The number k of topics is chosen in three ways, see Table 2:

1. (const) ki = 50 for all categories,
2. (sub) ki is the number of subcategories of the category,
3. (sub-sub) ki is the number of sub-sub-categories of the category.

Table 2. Three choice for topic-numbers k

category const sub sub-sub
Arts 50 15 41
Business 50 23 71
Computers 50 17 44
Health 50 15 39
Science 50 12 58
Shopping 50 22 82
Society 50 20 58
Sports 50 14 28
sum, k = 400 138 421

The Dirichlet parameter β was chosen to be constant 0.1 throughout. For a
training document in category i we chose α to be 50/ki on topics belonging
to category i and zero elsewhere. During unseen inference, the α smoothing
parameter was defined accordingly, that is, for every topic z we have αz = 50/ki

if z belongs to category i. The tests are run with and without ϑ-smoothing, with
b = 0.5, 0.75, 0.85 and ε = 0.001 (Subsection 2.3).



438 I. B́ıró and J. Szabó

We apply Gibbs sampling for inference with 1000 iterations throughout. We
use a home developed C++ code 5 to run LDA and MLDA.

4 Results

4.1 Plain Multi-corpus LDA vs LDA

As a justification for MLDA, we compared plain MLDA (no vocabulary fil-
tering and ϑ-smoothing) with the classical LDA [3] (as described in Subsec-
tion 2.1). The vocabulary is chosen to be the unfiltered one in both cases (see
Subsection 3.1). For MLDA we tested all three variations for topic-numbers (see
Table 2). We show only the ξ aggregation, as with ϑ features the AUC values
were about 5% worse. The classifiers were linear SVM, Bayes network and C4.5,
as implemented in Weka, together with the direct classification (defined in (5)).
For LDA the number of topics was k = 138, which is equal to the total number
of topics in MLDA ’sub’, and for a test document the corresponding 138 topic
probabilities served as features for the binary classifiers in the test corpus. An-
other baseline classifier is SVM over tf.idf, run on the whole corpus with 10-fold
cross validation. The AUC values are averaged over the 8 categories. The results
are shown in Table 3.

Table 3. Comparing plain MLDA with LDA (avg-AUC)

SVM Bayes C4.5 direct
MLDA (const) 0.812 0.812 0.605 0.866
MLDA (sub) 0.820 0.826 0.635 0.867
MLDA (sub-sub) 0.803 0.816 0.639 0.866
LDA (k = 138) 0.765 0.791 0.640 –
SVM over tf.idf 0.755 – – –

The direct classification of MLDA strongly outperforms the baselines and the
advanced classification methods on MLDA based ϑ features. Even the smallest
improvement, for SVM over MLDA ϑ features, is 35% in 1-AUC. Table 3 indi-
cates that MLDA is quite robust to the parameter of topic-numbers. However,
as topic-number choice ‘sub’ was the best, in later tests we used this one.

4.2 Vocabularies and ϑ-Smoothing

We made experiments on MLDA to fine tune the vocabulary selection thresholds
and to test performance of the ϑ-smoothing heuristic by a parameter sweep.
Note that S = 1 in ϑ-smoothing corresponds to doing no ϑ-smoothing. We fixed
seven kinds of vocabularies (with different choices of top.tf and ent.thr) and
the topic-number was chosen to be ’sub’ (see Table 2). We evaluated the direct
classification, see Table 4.
5 http://www.ilab.sztaki.hu/~ibiro/linkedLDA/
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Table 4. Testing the performance of ϑ-smoothing and the vocabulary parameters
(top.tf/ent.thr) in avg-AUC

vocabulary S = 1 0.85 0.75 0.5
30000 / 1.8 0.954 0.955 0.956 0.958
30000 / 1.5 0.948 0.948 0.948 0.947
30000 / 1.0 0.937 0.937 0.936 0.934
15000 / 1.8 0.946 0.947 0.948 0.952
15000 / 1.2 0.937 0.937 0.937 0.936
10000 / 1.5 0.942 0.942 0.943 0.943
unfiltered 0.867 0.866 0.861 0.830

It is apparent that our term selection methods result in a big improvement in
accuracy. This improvement is more accurate if the entropy parameter ent.thr
and the tf parameter top.tf are larger. As both result in larger vocabularies,
term selection should be conducted carefully to keep the size of the vocabulary
big enough. Note that the more the entropy parameter ent.thr is the more ϑ-
smoothing improves performance. This is perhaps because of the fact that large
ent.thr results in a vocabulary consisting of words with low discriminability
among the categories, and thus topics in distinct categories may have similar
word-distributions.

Every run (MLDAmodelbuild,unseen inference and classification)was repeated
10 times to get variance of the AUC measure. Somewhat interestingly, these were
at most 0.01 throughout, so we decided not to quote them individually.

4.3 Running Times

We enumerate the running times of some experiments. If the filtering parameters
of the vocabulary are chosen to be top.tf=15000 and ent.thr=1.8, and the topic
number is ’sub’ then model inference took 90min for the biggest category Society
(4.3M word positions), and 5min for the smallest category Sports (0.3M word
positions). Unseen inference took 339min, with the same settings.

4.4 An Example

To illustrate MLDA’s performance, we show what categories MLDA inferred
for the site http://www.order-yours-now.com/. As of July 2008, this site ad-
vertises a tool for creating music contracts, and it has DMOZ categorization
Computers: Software: Industry-Specific: Entertainment Industry.

The 8 category-wise ξ features (defined in (5)) of MLDA measure the relevance
of the categories, see Table 5. We feel that MLDA’s categorization is at par or
perhaps better than that of DMOZ. The top DMOZ category is Computers,
perhaps because the product is sold as a computer program. On the contrary,
MLDA suggests that the site mostly belongs to Arts and Shopping, which we
feel appropriate as it offers service for musicians for a profit. MLDA also detects



440 I. B́ıró and J. Szabó

Table 5. Relevance of categories for site http://www.order-yours-now.com/, found
by MLDA

category ξ

Arts 0.246
Shopping 0.208
Business 0.107
Health 0.103
Society 0.096
Computers 0.094
Sports 0.076
Science 0.071

the Business concept of the site, however, Shopping is given more relevance than
Business because of the informal style of the site.

The parameters for MLDA were set as follows: top.tf=15000, ent.thr=1.8,
S = 0.5 for ϑ-smoothing, ’sub’ as topic-numbers.

5 Conclusion and Future Work

In this paper we have described a way to apply LDA for supervised text catego-
rization by viewing it as a hierarchical topic model. This is called multi-corpus
LDA (MLDA). Essentially, separate LDA models are built for each category with
category-specific topics, then these models are unified, and inference is made for
an unseen document w.r.t. this unified model. As a key observation, the topic
unification method significantly boosted performance by avoiding overfitting to
a large number of topics, requiring lower running times.

In further research we will investigate possible modifications of MLDA for
hierarchical categorization for example into the full DMOZ topic tree as well as
for multiple category assignments frequently appearing in Wikipedia.

Acknowledgment. We would like to thank András Benczúr for fruitful dis-
cussions, Ana Maguitman for providing us the DMOZ corpus that we used for
testing and also to Dávid Siklósi.
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Abstract. We propose a new graph-based label propagation algorithm for trans-
ductive learning. Each example is associated with a vertex in an undirected graph
and a weighted edge between two vertices represents similarity between the two
corresponding example. We build on Adsorption, a recently proposed algorithm
and analyze its properties. We then state our learning algorithm as a convex
optimization problem over multi-label assignments and derive an efficient algo-
rithm to solve this problem. We state the conditions under which our algorithm is
guaranteed to converge. We provide experimental evidence on various real-world
datasets demonstrating the effectiveness of our algorithm over other algorithms
for such problems. We also show that our algorithm can be extended to incorpo-
rate additional prior information, and demonstrate it with classifying data where
the labels are not mutually exclusive.

Keywords: label propagation, transductive learning, graph based semi-supervised
learning.

1 Introduction

Supervised machine learning methods have achieved considerable success in a wide
variety of domains ranging from Natural Language Processing, Speech Recognition to
Bioinformatics. Unfortunately, preparing labeled data for such methods is often expen-
sive and time consuming, while unlabeled data are widely available in many cases. This
was the major motivation that led to the development of semi-supervised algorithms
which learn from limited amounts of labeled data and vast amounts of freely available
unannotated data.

Recently, graph based semi-supervised algorithms have achieved considerable atten-
tion [2,7,11,14,17]. Such methods represent instances as vertices in a graph with edges
between vertices encoding similarities between them. Graph-based semi-supervised al-
gorithms often propagate the label information from the few labeled vertices to the
entire graph. Most of the algorithms tradeoff between accuracy (initially labeled nodes
should retain those labels, relaxations allowed by some methods) with smoothness (ad-
jacent vertices in the graph should be assigned similar labels). Most algorithms only
output label information to the unlabeled data in a transductive setting, while some
algorithms are designed for the semi-supervised framework and build a classification
model which can be applied to out-of-sample examples.

W. Buntine et al. (Eds.): ECML PKDD 2009, Part II, LNAI 5782, pp. 442–457, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



New Regularized Algorithms for Transductive Learning 443

Adsorption [1] is one such recently proposed graph based semi-supervised algorithm
which has been successfully used for different tasks, such as recommending YouTube
videos to users [1] and large scale assignment of semantic classes to entities within
Information Extraction [13]. Adsorption has many desirable properties: it can perform
multiclass classification, it can be parallelized and hence can be scaled to handle large
data sets which is of particular importance for semi-supervised algorithms. Even though
Adsorption works well in practice, to the best of our knowledge it has never been an-
alyzed before and hence our understanding of it is limited. Hoping to fill this gap, we
make the following contributions in this paper:

– We analyze the Adsorption algorithm [1] and show that there does not exist an
objective function whose local optimization would be the output of the Adsorption
algorithm.

– Motivated by this negative result, we propose a new graph based semi-supervised
algorithm (Modified Adsorption, MAD), which shares Adsorption’s desirable prop-
erties, yet with some important differences.

– We state the learning problem as an optimization problem and develop efficient
(iterative) methods to solve it. We also list the conditions under which the opti-
mization algorithm – MAD – is guaranteed to converge.

– The transition to an optimization based learning algorithm provides a flexible and
general framework that enables us to specify a variety requirements. We demon-
strate this framework using data with non-mutually exclusive labels, resulting in
the Modified Adsorption for Dependent Labels (MADDL, pronounced medal) al-
gorithm.

– We provide experimental evidence demonstrating the effectiveness of our proposed
algorithm on various real world datasets.

2 Adsorption Algorithm

Adsorption [1] is a general algorithmic framework for transductive learning where the
learner is often given a small set of labeled examples and a very large set of unlabeled
examples. The goal is to label all the unlabeled examples, and possibly under the as-
sumption of label-noise, also to relabel the labeled examples.

As many other related algorithms [17,12,5], Adsorption assumes that the learning
problem is given in a graph form, where examples or instances are represented as nodes
or vertices and edges code similarity between examples. Some of the nodes are associ-
ated with a pre-specified label, which is correct in the noise-free case, or can be subject
to label-noise. Additional information can be given in the form of weights over the la-
bels. Adsorption propagates label-information from the labeled examples to the entire
set of vertices via the edges. The labeling is represented using a non-negative score for
each label, with high score for some label indicating high-association of a vertex (or its
corresponding instance) with that label. If the scores are additively normalized they can
be thought of as a conditional distribution over the labels given the node (or example)
identity.

More formally, Adsorption is given an undirected graph G = (V,E,W ), where a
node v ∈ V corresponds to an example, an edge e = (a, b) ∈ V × V indicates that the
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label of the two vertices a, b ∈ V should be similar and the weight Wab ∈ R+ reflects
the strength of this similarity.

We denote the total number of examples or vertices by n = |V | , by nl the number
of examples for which we have prior knowledge of their label and by nu the number of
unlabeled examples to be labeled. Clearly nl + nu = n. Let L be the set of possible
labels, their total number is denoted by m = |L| and without loss of generality we
assume that the possible labels are L = {1 . . .m}. Each instance v ∈ V is associated
with two row-vectors Yv, Ŷv ∈ R

m
+ . The lth element of the vector Yv encodes the

prior knowledge for vertex v. The higher the value of Yvl the stronger we a-priori
believe that the label of v should be l ∈ L and a value of zero Yvl = 0 indicates
no prior about the label l for vertex v. Unlabeled examples have all their elements set
to zero, that is Yvl = 0 for l = 1 . . .m. The second vector Ŷv ∈ R

m
+ is the output

of the algorithm, using similar semantics as Yv. For example, a high value of Ŷvl

indicates that the algorithm believes that the vertex v should have the label l. We denote
by Y, Ŷ ∈ R

n×m
+ the matrices whose rows are Yv and Ŷv respectively. Finally, we

denote by 0d the all-zeros row vector of dimension d.

2.1 Random-Walk View

The Adsorption algorithm can be viewed as a controlled random walk over the graph
G. The control is formalized via three possible actions: inject, continue and
abandon (denoted by inj, cont, abnd) with pre-defined probabilities pinj

v , pcont
v , pabnd

v ≥
0 per vertex v ∈ V . Clearly their sum is unit: pinj

v + pcont
v + pabnd

v = 1. To label any
vertex v ∈ V (either labeled or unlabeled) we initiate a random-walk starting at v fac-
ing three options: with probability pinj

v the random-walk stops and return (i.e. inject)
the pre-defined vector information Yv. We constrain pinj

v = 0 for unlabeled vertices
v. Second, with probability pabnd

v the random-walk abandons the labeling process and
return the all-zeros vector 0m. Third, with probability pcont

v the random-walk continues
to one of v’s neighbors v′ with probability proportional to Wv′v ≥ 0. Note that by def-
inition Wv′v = 0 if (v, v′) /∈ E. We summarize the above process with the following
set of equations. The transition probabilities are,

Pr [v′|v] =

⎧⎪⎨⎪⎩
Wv′v∑

u : (u,v)∈E

Wuv

(v′, v) ∈ E

0 otherwise

. (1)

The (expected) score Ŷv for node v ∈ V is given by,

Ŷv = pinj
v ×Yv + pcont

v ×
∑

v′ : (v′,v)∈E

Pr [v′|v] Ŷv′ + pabnd
v × 0m . (2)

2.2 Averaging View

For this view we add a designated symbol called the dummy label denoted by ν /∈ L.
This additional label explicitly encodes ignorance about the correct label and it means
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Algorithm 1. Adsorption Algorithm
Input:
- Graph: G = (V, E, W )
- Prior labeling: Yv ∈ R

m+1 for v ∈ V
- Probabilities: pinj

v , pcont
v , pabnd

v for v ∈ V
Output:
- Label Scores: Ŷv for v ∈ V

1: Ŷv ← Yv for v ∈ V {Initialization}
2:
3: repeat

4: Dv ←

∑
u

WuvŶu∑
u

Wuv

for v ∈ V

5: for all v ∈ V do
6: Ŷv ← pinj

v ×Yv + pcont
v ×Dv + pabnd

v × r
7: end for
8: until convergence

that a dummy label can be used instead. Explicitly, we add an additional column to all
the vectors defined above, and have that Yv, Ŷv ∈ R

m+1
+ and Y, Ŷ ∈ R

n×(m+1)
+ . We

set Yvν = 0, that is, a-priori no vertex is associated with the dummy label, and replace
the zero vector 0m with the vector r ∈ R

m+1
+ where rl = 0 for l 
= ν and rν = 1. In

words, if the random-walk is abandoned, then the corresponding labeling vector is zero
for all true labels in L, and an arbitrary value of unit for the dummy label ν. This way,
there is always positive score for at least one label, the ones in L or the dummy label.

The averaging view then defines a set of fixed-point equations to update the predicted
labels. A summary of the equations appears in Algorithm 1. The algorithm is run
until convergence which is achieved when the label distribution on each node ceases to
change within some tolerance value. Since Adsorption is memoryless, it scales to tens
of millions of nodes with dense edges and can be easily parallelized [1].

Baluja et. al. [1] show that up to the additional dummy label, these two views are
equivalent. It remains to specify the values of pinj

v , pcont
v and pabnd

v . For the experiments
reported in Section 6, we set their value using the following heuristics (adapted from
Baluja et. al. [1]) which depends on a parameter β which we set to β = 2. For each
node v we define two quantities: cv and dv and define

pcont
v ∝ cv ; pinj

v ∝ dv .

The first quantity cv ∈ [0, 1] is monotonically decreasing with the number of neighbors
for node v in the graph G. Intuitively, the higher the value of cv, the lower the number
of neighbors of vertex v and higher the information they contain about the labeling
of v. The other quantity dv ≥ 0 is monotonically increasing with the entropy (for
labeled vertices), and in this case we prefer to use the prior-information rather than the
computed quantities from the neighbors.
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Specifically we first compute the entropy of the transition probabilities for each node,

H [v] = −
∑

u

Pr [u|v] log Pr [u|v] ,

and then pass it through the following monotonically decreasing function,

f(x) =
log β

log(β + ex))
.

Note that f(0) = log(β)/ log(β + 1) and that f(x) goes to zero, as x goes to infinity.
We define,

cv = f (H [v]) .

Next we define,

dv =
{

(1 − cv)×
√
H [v] the vertex v is labeled

0 the vertex v is unlabled

Finally, to ensure proper normalization of pcont
v , pinj

v and pabnd
v , we define,

zv = max(cv + dv, 1) ,

and

pcont
v =

cv

zv
; pinj

v =
dv

zv
; pabnd

v = 1− pcont
v − pinj

v .

Thus, abandonment occurs only when the continuation and injection probabilities are
low enough. This is most likely to happen at unlabeled nodes with high degree. Once
the random walk reaches such a node (v), the walk is terminated with probability
pabnd

v . This, in effect, prevents the Adsorption algorithm from propagating informa-
tion through high degree nodes. We note that the probabilities pinj

v , pcont
v and pabnd

v for
node v may be set with heuristics other than the fan-out entropy heuristics shown above
to suit specific application contexts.

3 Analysis of the Adsorption Algorithm

Our next goal is to find an objective function that the Adsorption algorithm minimizes.
Our starting point is line 6 of Algorithm 1. We note that when the algorithm converges,
both sides of the assignment operator equal each other before the assignment takes
place. Thus when the algorithm terminates, we have for all v ∈ V :

Ŷv = pinj
v ×Yv + pcont

v × 1
Nv

∑
u

WuvŶu + pabnd
i × r ,

where
Nv =

∑
v′

Wv′v .



New Regularized Algorithms for Transductive Learning 447

The last set of equalities is equivalent to,

Gv

(
{Ŷu}u∈V

)
= 0 for v ∈ V , (3)

where we define,

Gv

(
{Ŷu}u∈V

)
= pinj

v ×Yv + pcont
v × 1

Nv

∑
u

WuvŶu + pabnd
i × r− Ŷv .

Now, if the Adsorption algorithm was minimizing some objective function (denoted by

Q
(
{Ŷu}u∈V

)
), the termination condition of Eq. (3) was in fact a condition on the

vector of its partial derivatives where we would identify

Gv =
∂

∂Ŷv

Q . (4)

Since the functions Gv are linear (and thus has continuous derivatives), necessary con-
ditions for the existence of a functionQ such that (4) holds is that the derivatives of Gv

are symmetric [8], that is,
∂

∂Ŷv

Gu =
∂

∂Ŷu

Gv .

Computing and comparing the derivatives we get,

∂

∂Ŷu

Gv = pcont
v

(
Wuv

Nv
− δu,v

)

= pcont

u

(
Wvu

Nu
− δu,v

)
=

∂

∂Ŷv

Gu ,

which is true since in general Nu 
= Nv and pcont
v 
= pcont

u . We conclude:

Theorem 1. There does not exists a function Q with continuous second partial deriva-
tives such that the Adsorption algorithm convergences when gradient of Q are equal to
zero.

In other words, we searched for a (well-behaved) functionQ such that its local optimal
would be the output of the Adsorption algorithm, and showed that this search will al-
ways fail. We use this negative results to define a new algorithm, which builds on the
Adsorption algorithm and is optimizing a function of the unknowns Ŷv for v ∈ V .

4 New Algorithm: Modified Adsorption (MAD)

Our starting point is Sec. 2.2 where we assume to have been given a weighted-graph
G = (V,E,W ) and a matrix Y ∈ R

n×(m+1)
+ and are seeking for a labeling-matrix

Ŷ ∈ R
n×(m+1)
+ . In this section it is more convenient to decompose the matrices Y and

Ŷ into their columns, rather than rows. Specifically, we denote by Yl ∈ R
n
+ the lth

column of Y and similarly by Ŷl ∈ R
n
+ the lth column of Ŷ. We distinguish the rows

and columns of the matrices Y and Ŷ using their indices, the columns are indexed with
the label index l, while the rows are indexed are with a vertex index v (or u).
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We build on previous research [3,17,11] and construct an objective that reflects three
requirements as follows. First, for the labeled vertices we like the output of the algo-
rithm to be close to the a-priori given labels, that is Yv ≈ Ŷv . Second, for pair of
vertices that are close according to the input graph, we would like their labeling to be
close, that is Ŷu ≈ Ŷv if Wuv is large. Third, we want the output to be as uninforma-
tive as possible, this serves as additional regularization, that is Ŷv ≈ r. We now further
develop the objective in light of the three requirements.

We use the Euclidian distance to measure discrepancy between two quantities, and
start with the first requirement above,∑

v

pinj
v

∑
l

(
Yvl − Ŷvl

)2
=

∑
l

∑
v

pinj
v

(
Yvl − Ŷvl

)2

=
∑

l

(
Yl − Ŷl

)�
S

(
Yl − Ŷl

)
,

where we define the diagonal matrix S ∈ R
n×n and Svv = pinj

v if vertex v is labeled
and Svv = 0 otherwise. The matrix S captures the intuition that for different vertices
we enforce the labeling of the algorithm to match the a-priori labeling with different
extent.

Next, we modify the similarity weight between vertices to take into account the dif-
ference in degree of various vertices. In particular we define W

′

vu = pcont
v × Wvu.

Thus, a vertex u will not be similar to a vertex v if either the input weights Wvu are
low or the vertex v has a large-degree (pcont

v is low). We write the second requirement
as, ∑

v,u

W
′
vu

∥∥∥Ŷv − Ŷu

∥∥∥2

=
∑
v,u

W
′
vu

∑
l

(
Ŷvl − Ŷul

)2

=
∑

l

∑
v,u

W
′
vu

(
Ŷvl − Ŷul

)2

=
∑

l

∑
v

(∑
u

W
′
vu

)
‖Ŷvl‖2 +

∑
l

∑
u

(∑
v

W
′
vu

)
‖Ŷul‖2 − 2

∑
l

∑
u,v

W
′
vuŶulŶvl

=
∑

l

Ŷ�
l LŶl ,

where,
L = D + D̄−W

′
−W

′�
,

and D, D̄ are n× n diagonal matrices with

Dvv =
∑

u

W
′

uv , D̄vv =
∑

u

W
′

vu .

Finally we define the matrix R ∈ R
n×(m+1)
+ where the vth row of R equals pabnd

v × r
(we define r in Sec 2.2). In other words the first m columns of R equal zero, and the
last (m+1th column) equal the elements of pabnd

v . The third requirement above is thus
written as, ∑

vl

(
Ŷvl −Rvl

)2
=

∑
l

∥∥∥Ŷl −Rl

∥∥∥2
.
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We combine the three terms above into a single objective (which we would like to
minimize), giving to each term a different importance using the weights μ1, μ2, μ3.

C(Ŷ) =
∑

l

[
μ1

(
Yl − Ŷl

)�
S

(
Yl − Ŷl

)
+ μ2Ŷ

T
l L Ŷl + μ3

∣∣∣∣∣∣Ŷl −Rl

∣∣∣∣∣∣2
2

]
. (5)

The objective in Equation 5 is similar to the Quadratic Cost Criteria [3], with the ex-
ception that the matrices S and L have different constructions. We remind the reader
that Ŷl,Yl,Rl are the lth columns (each of size n × 1) of the matrices Ŷ,Y and R
respectively.

4.1 Solving the Optimization Problem

We now develop an algorithm to optimize (5) similar to the quadratic cost criteria [3].
Differentiating Equation 5 w.r.t. Ŷl we get,

1
2
δC(Ŷ)

δŶl

= μ1S(Ŷl −Yl) + μ2LŶl + μ3(Ŷl −Rl)

= (μ1S + μ2L + μ3I)Ŷl − (μ1SYl + μ3Rl) . (6)

Differentiating once more we get,

1
2
δC(Ŷ)

δŶlδŶl

= μ1S + μ2L + μ3I ,

and since both S and L are symmetric and positive semidefinite matrices (PSD), we get
that the Hessian is PSD as well. Hence, the optimal minima is obtained by setting the
first derivative (i.e. Equation (6)) to 0 as follows,

(μ1S + μ2L + μ3I) Ŷl = (μ1SYl + μ3Rl) .

Hence, the new labels (Ŷ) can be obtained by a matrix inversion followed by matrix
multiplication. However, this can be quite expensive when large matrices are involved.
A more efficient way to obtain the new label scores is to solve a set of linear equations
using Jacobi iteration which we now describe.

4.2 Jacobi Method

Given the following linear system (in x)

Mx = b

the Jacobi iterative algorithm defines the approximate solution at the (t+1)th iteration
given the solution at tth iteration as follows,

x
(t+1)
i =

1
Mii

⎛⎝bi −
∑
j 
=i

Mijx
(t)
j

⎞⎠ . (7)
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We apply the iterative algorithm to our problem by substituting x = Ŷl, M = μ1S +
μ2L + μ3I and b = μ1SYl + μ3Rl in (7),

Ŷ(t+1)
vl =

1
Mvv

⎛⎝μ1(SYl)v + μ3Rvl −
∑
u
=v

MvuŶ
(t)
ul

⎞⎠
(8)

Let us compute the values of (SYl)i, Mij(j 
=i) and Mii. First,

Mvu(v 
=u) = μ1Svu + μ2Lvu + μ3Ivu .

Note that since S and I are diagonal, we have that Svu = 0 and Ivu = 0 for u 
= v.
Substituting the value of L we get,

Mvu(v 
=u) = μ2Lvu = μ2

(
Dvu + D̄vu −W

′

vu −W
′

uv

)
,

and as before the matrices D and D̄ are diagonal and thus Dvu + D̄vu = 0. Finally,
substituting the values of W

′

vu and W
′

uv we get,

Mvu(v 
=u) = −μ2 × (pcont
v ×Wvu + pcont

u ×Wuv) . (9)

We now compute the second quantity,

(SYl)vu = SvvYvv +
∑
t
=v

SvtYtu = pinj
v ×Yvv ,

where the second term equals zero since S is diagonal. Finally, the third term,

Mvv = μ1Svv + μ2Lvv + μ3Ivv

= μ1 × pinj
v + μ2(Dvv + D̄vv −W

′

vv −W
′

vv) + μ3

= μ1 × pinj
v + μ2

∑
u
=v

(pcont
v Wvu + pcont

u Wuv) + μ3 .

Plugging the above equations into (8) and using the fact that the diagonal elements of
W are zero, we get,

Ŷ(t+1)
v =

1
Mvv

(
μ1p

inj
v Yv + μ2

∑
u

(
pcont

v Wvu + pcont
u Wuv

)
Ŷ(t)

u + μ3 pabnd
v r

)
. (10)

We call the new algorithm MAD for Modified-Adsorption and it is summarized in
Algorithm 2. Note that for graphs G that are invariant to permutations of the vertices,
and setting μ1 = 2× μ2 = μ3 = 1, MAD reduces to the Adsorption algorithm.

4.3 Convergence

A sufficient condition for the iterative process of Equation (7) to converge is that M is
strictly diagonally dominant [10], that is if,

|Mvv| >
∑
u
=v

|Mvu| for all values of v
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Algorithm 2. Modified Adsorption (MAD) Algorithm
Input:
- Graph: G = (V, E, W )
- Prior labeling: Yv ∈ R

m+1 for v ∈ V
- Probabilities: pinj

v , pcont
v , pabnd

v for v ∈ V
Output:
- Label Scores: Ŷv for v ∈ V

1: Ŷv ← Yv for v ∈ V {Initialization}
2: Mvv ← μ1 × pinj

v + μ2

∑
u �=v(p

cont
v Wvu + pcont

u Wuv) + μ3

3: repeat
4: Dv ←

∑
u

(
pcont

v Wvu + pcont
u Wuv

)
Ŷu

5: for all v ∈ V do
6: Ŷv ← 1

Mvv

(
μ1 × pinj

v ×Yv + μ2 ×Dv + μ3 × pabnd
v × r

)
7: end for
8: until convergence

We have,

|Mvv| −
∑
u
=v

|Mvu| = μ1×pinj
v + μ2×

∑
u
=v

(
pcont

v ×Wvu + pcont
u ×Wuv

)
+ μ3 −

μ2×
∑
u
=v

(
pcont

v ×Wvu + pcont
u ×Wuv

)
= μ1×pinj

v + μ3 (11)

Note that pinj
v ≥ 0 for all v and that μ3 is a free parameter in (11). Thus we can

guarantee a strict diagonal dominance (and hence convergence) by setting μ3 > 0.

5 Extensions: Non-mutually Exclusive Labels

In many learning settings, labels are not mutually exclusive. For example, in hierarchi-
cal classification, labels are organized in a tree. In this section, we extend the MAD
algorithm to handle dependence among labels. This can be easily done using our new
formulation which is based on objective optimization. Specifically, we shall add addi-
tional terms to the objective for each pair of dependent labels. Let C be a m×m matrix
where m is the number of labels (excluding the dummy label) as before. Each entry,
Cll′ , of this matrix C represents the dependence or similarity among the labels l and l

′
.

By encoding dependence in this pairwise fashion, we can capture dependencies among
labels represented as arbitrary graphs. The extended objective is shown in Equation 12.

C(Ŷ) =
∑

l

[
μ1

(
Yl − Ŷl

)�
S

(
Yl − Ŷl

)
+ μ2ŶT

l L Ŷl + μ3

∣∣∣∣∣∣Ŷl −Rl

∣∣∣∣∣∣2
2

+μ4

∑
i

∑
l,l′

Cll′ (Ŷil − Ŷil′ )
2

⎤⎦ (12)
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The last term in Equation 12 penalizes the algorithm if similar labels (as determined by
the matrix C) are assigned different scores, with severity of the penalty controlled by
μ4. Now, analyzing the objective in Equation 12 in the manner outlined in Section 4,
we arrive at the update rule shown in Equation 13.

Ŷ(t+1)
vl =

1
Ml

vv

(
μ1p

inj
v Yvl + μ2

∑
u

(
pcont

v Wvu + pcont
u Wuv

)
Ŷ(t)

ul +

μ3 pabnd
v rl + μ4

∑
l′

Cll′ Ŷil′

⎞⎠ (13)

where,

Ml
vv = μ1 × pinj

v + μ2 ×
∑
u
=v

(pcont
v Wvu + pcont

u Wuv) + μ3 + μ4

∑
l′

Cll′

Replacing Line 6 in MAD (Algorithm 2) with Equation 13, we end up with a new
algorithm: Modified Adsorption for Dependent Labels (MADDL). In Section 6.4, we
shall use MADDL to obtain smooth ranking for sentiment classification.

6 Experimental Results

We compare MAD with various state-of-the-art learning algorithms on two tasks, text
classification (Sec. 6.1) and sentiment analysis (Sec. 6.2), and demonstrate its effec-
tiveness. In Sec. 6.3, we also provide experimental evidence showing that MAD is
quite insensitive to wide variation of values of its hyper-parameters. In Sec. 6.4, we
present evidence showing how MADDL can be used to obtain smooth ranking for senti-
ment prediction, a particular instantiation of classification with non-mutually exclusive
labels. For the experiments reported in this section involving Adsorption, MAD and
MADDL, the a-priori label matrix Y was column-normalized so that all labels have
equal overall injection score. Also, the dummy label was ignored during evaluation as
its main role is to add regularization during learning phase only.

6.1 Text Classification

World Wide Knowledge Base (WebKB) is a text classification dataset widely used for
evaluating transductive learning algorithms. Most recently, the dataset was used by
Subramanya and Bilmes [11], who kindly shared their preprocessed complete WebKB
graph with us. There are a total of 4, 204 vertices in the graph, with the nodes labeled
with one of four categories: course, faculty, project, student. A K-NN graph is created
from this complete graph by retaining only top K neighbors of each node, where the
value of K is treated as a hyper-parameter.

We follow the experimental protocol in [11]. The dataset was randomly partitioned
into four sets. A transduction set was generated by first selecting one of the four splits at
random and then samplingnl documents from it; the remaining three sets are used as the
test set for evaluation. This process was repeated 21 times to generate as many training-
test splits. The first split was used to tune the hyper-parameters, with search over the
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Table 1. PRBEP for the WebKB data set with nl = 48 training and 3148 testing instances. All
results are averages over 20 randomly generated transduction sets. The last row is the macro-
average over all the classes. MAD is the proposed approach. Results for SVM, TSVM, SGT, LP
and AM are reproduced from Table 2 of [11].

Class SVM TSVM SGT LP AM Adsorption MAD

course 46.5 43.9 29.9 45.0 67.6 61.1 67.5
faculty 14.5 31.2 42.9 40.3 42.5 52.8 42.2
project 15.8 17.2 17.5 27.8 42.3 52.6 45.5
student 15.0 24.5 56.6 51.8 55.0 39.8 59.6

average 23.0 29.2 36.8 41.2 51.9 51.6 53.7

Fig. 1. PRBEP (macro-averaged) for the WebKB dataset with 3148 testing instances. All results
are averages over 20 randomly generated transduction sets.

following:K ∈ {10, 50, 100, 500, 1000, 2000, 4204},μ2, μ3 ∈ {1e−8, 1e−4, 1e−2, 1,
10, 1e2, 1e3}. The value of μ1 was set to 1 for this experiment. Both for Adsorption
and MAD, the optimal value of K was 1, 000. Furthermore, the optimal value for
the other parameters were found to be μ2 = μ3 = 1. As in previous work [11], we
use Precision-Recall Break Even Point (PRBEP) [9] as the evaluation metric. Same
evaluation measure, dataset and the same experimental protocol makes the results re-
ported here directly comparable to those reported previously [11]. For easier readabil-
ity, the results from Table 2 of Subramanya and Bilmes [11] are cited in Table 1 of this
paper, comparing performance of Adsorption based methods (Adsorption and MAD)
to many previously proposed approaches: SVM [6], Transductive-SVM [6], Spectral
Graph Transduction (SGT) [7], Label Propagation (LP) [16] and Alternating Minimiza-
tion (AM) [11]. The first four rows in Table 1 shows PRBEP for individual categories,
with the last line showing the macro-averaged PRBEP across all categories. The MAD
algorithm achieves the best performance overall (for nl = 48).

Performance comparison of MAD and Adsorption for increasing nl are shown in
Figure 1. Comparing these results against Fig. 2 in Subramanya and Bilmes [11], it
seems that MAD outperforms all other methods compared (except AM [11]) for all
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Fig. 2. Precision for the Sentiment Analysis dataset with 3568 testing instances. All results are
averages over 4 randomly generated transduction sets.

Table 2. Average prediction loss at ranks 1 & 2 (for various values of μ4) for sentiment prediction.
All results are averaged over 4 runs. See Section 6.4 for details.

μ4

0 1 10 100 1e3 1e4

Prediction Loss (L1) at rank 1 0.93 0.93 0.92 0.90 0.90 0.90
Prediction Loss (L1) at rank 2 1.21 1.20 1.12 0.96 0.97 0.97

values of nl. MAD performs better than AM for nl = 48, but achieves second best
solution for the other three values of nl. We are currently investigating why MAD is
best for settings with fewer labeled examples.

6.2 Sentiment Analysis

The goal of sentiment analysis is to automatically assign polarity scores to text collec-
tions, with a high score reflecting positive sentiment (user likes) and a low score reflect-
ing negative sentiment (user dislikes). In this section, we report results on sentiment
classification in the transductive setting. From Section 6.1 and [11], we observe that
Label Propagation (LP) [16] is one of the best performing L2-norm based transductive
learning algorithm. Hence, we compare the performance of MAD against Adsorption
and LP.

For the experiments in this section, we use a set of 4, 768 user reviews from the
electronics domain [4]. Each review is assigned one of the four scores: 1 (worst), 2,
3, 4 (best). We create a K-NN graph from these reviews by using cosine similarity
as the measure of similarity between reviews. We created 5 training-test splits from
this data using the process described in Section 6.1. One split was used to tune the
hyper-parameters while the rest were used for training and evaluation. Hyper-parameter
search was carried over the following ranges: K ∈ {10, 100, 500}, μ1 ∈ {1, 100},
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Fig. 3. Plot of counts of top predicted
label pairs (order ignored) in MAD’s
predictions with μ1 = μ2 = 1, μ3 =
100
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Fig. 4. Plot of counts of top label pairs
(order ignored) in MADDL’s predic-
tions (Section 5), with μ1 = μ2 = 1,
μ3 = 100, μ4 = 1e3

μ2 ∈ {1e−4, 1, 10}, μ3 ∈ {1e−8, 1, 100, 1e3}. Precision is used as the evaluation
metric. Comparison of different algorithms for varying number of labeled instances are
shown in Figure 2. From this, we note that MAD and Adsorption outperform LP, while
Adsorption and MAD are competitive.

6.3 Parameter Sensitivity

We evaluated the sensitivity of MAD to variations of its μ2 and μ3 hyper-parameters,
with all other hyper-parameters fixed. We used a 2000-NN graph constructed from the
WebKB dataset and a 500-NN graph constructed from the Sentiment dataset. In both
cases, 100 nodes were labeled. We tried three values each for μ2 and μ3, ranging in at
least 3 order of magnitude. For the WebKB, the PRBEP varied between 43.1−49.9 and
for the sentiment data, the precision varied in the range 31.4−36.4 with μ2 ≤ μ3 while
precision dropped to 25 with μ2 > μ3. This underscores the need for regularization in
these models, which is enforced with high μ3. We note that in both cases the algorithm
is less sensitive to the value of μ2 than the value of μ3. In general, we have found that
setting μ3 to one or two order magnitude more than μ2 is a reasonable choice. We have
also found that the MAD algorithm is quite insensitive to variations in μ1. For example
on the sentiment dataset, we tried two values for μ1 ranging two order of magnitude,
with other hyper-parameters fixed. In this case, precision varied in the range 36.2 - 36.3.

6.4 Smooth Ranking for Sentiment Analysis

We revisit the sentiment prediction problem in Section 6.2, but with the additional re-
quirement that ranking of the labels (1, 2, 3, 4) generated by the algorithm should be



456 P.P. Talukdar and K. Crammer

smooth i.e. we prefer the ranking 1 > 2 > 3 > 4 over the ranking 1 > 4 > 3 > 2, where
3 > 2 means that the algorithm ranks label 3 higher than label 2. The ranking 1 > 2 >
3 > 4 is smoother as it doesn’t involve rough transition 1 > 4 which is present in 1 > 4
> 3 > 2. We use the framework of stating requirements as an objective to be optimized.
We use the MADDL algorithm of Sec. 5 initializing the matrix C as follows (assuming
that labels 1 and 2 are related, while labels 3 and 4 are related):

C12 = C21 = 1 , C34 = C43 = 1
with all other entries in matrix C set to 0. Such constraints (along with appropriate μ4
in Equation (12)) will force the algorithm to assign similar scores to dependent labels,
thereby assigning them adjacent ranks in the final output. MAD and MADDL were
then used to predict ranked labels for vertices on a 1000-NN graph constructed from
the sentiment data used in Sec. 6.2, with 100 randomly selected nodes labeled. For this
experiment we set μ1 = μ2 = 1, μ3 = 100. The L1-loss between the gold label and
labels predicted at ranks r = 1, 2 for increasing values of μ4 are given in Table 2. Note
that, MADDL with μ4 = 0 corresponds to MAD. From Table 2 we observe that with
increasing μ4, MADDL is ranking at r = 2 a label which is related (as per C) to the
top ranked label at r = 1, but at the same time maintain the quality of prediction at
r = 1 (first row of Table 2), thereby ensuring a smoother ranking. From Table 2, we
also observe that MADDL is insensitive to variations of μ4 beyond a certain range. This
suggests that μ4 may be set to a (high) value and that tuning it may not be necessary.

Another view of the same phenomenon is shown in Fig. 3 and Fig. 4. In these figures,
we plot the counts of top predicted label pair (order of prediction is ignored for better
readability) generated by the MAD and MADDL algorithms. By comparing these two
figures we observe that label pairs (e.g. (2,1) and (4,3)) favored by C (above) are more
frequent in MADDL’s predictions than in MAD’s. At the same time, non-smooth pre-
dictions (e.g. (4, 1)) are virtually absent in MADDL’s predictions while they are quite
frequent in MAD’s. These clearly demonstrate MADDL’s ability to generate smooth
predictions in a principled way, and more generally the ability to handle data with non-
mutually exclusive or dependent labels.

7 Related Work

LP [16] is one of the first graph based semi-supervised algorithms. Even though there
are several similarities between LP and MAD, there are important differences: (1) LP
doesn’t allow the labels on seeded nodes to change (while MAD does). As was pointed
out previously [3], this can be problematic in case of noisy seeds. (2) There is no way for
LP to express label uncertainty about a node. MAD can accomplish this by assigning
high score to the dummy label. More recently, a KL minimization based algorithm
was presented in [11]. Further investigation is necessary to determine the merits of
each approach. For a general introduction to the area of graph-based semi-supervised
learning, the reader is referred to a survey by Zhu [15].

8 Conclusion

In this paper we have analyzed the Adsorption algorithm [1] and proposed a new
graph based semi-supervised learning algorithm, MAD. We have developed efficient
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(iterative) solution to solve our convex optimization based learning problem. We have
also listed the conditions under which the algorithm is guaranteed to converge. Transi-
tion to an optimization based learning algorithm allows us to easily extend the algorithm
to handle data with non-mutually exclusive labels, resulting in the MADDL algorithm.
We have provided experimental evidence demonstrating effectiveness of our proposed
methods. As part of future work, we plan to evaluate the proposed methods further
and apply the MADDL method in problems with dependent labels (e.g. Information
Extraction).
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Abstract. With the aim of improving the performance of centroid text 
classifier, we attempt to make use of the advantages of Error-Correcting Output 
Codes (ECOC) strategy. The framework is to decompose one multi-class 
problem into multiple binary problems and then learn the individual binary 
classification problems by centroid classifier. However, this kind of 
decomposition incurs considerable bias for centroid classifier, which results in 
noticeable degradation of performance for centroid classifier. In order to 
address this issue, we use Model-Refinement strategy to adjust this so-called 
bias. The basic idea is to take advantage of misclassified examples in the 
training data to iteratively refine and adjust the centroids of text data. The 
experimental results reveal that Model-Refinement strategy can dramatically 
decrease the bias introduced by ECOC, and the combined classifier is 
comparable to or even better than SVM classifier in performance. 

1   Introduction 

With the advent of the Web and the enormous growth of digital content in Internet, 
databases, and archives, text categorization has received more and more attention in 
information retrieval and natural language processing community. To this date, 
numerous machine-learning approaches have been introduced to deal with text 
classification [1-6, 11-12, 19-24].  

In recent years, ECOC has been applied to boost naïve bayes, decision tree and SVM 
classifier for text data [7-10]. Following this research direction, in this work, we explore 
the use of ECOC to enhance the performance of centroid classifier. The framework we 
adopted is to decompose one multi-class problem into multiple binary problems and 
then use centroid classifier to learn the individual binary classification problems.  

However, this kind of decomposition incurs considerable bias [11-13] for centroid 
classifier. In substance, centroid classifier [2, 21] relies on a simple decision rule that 
a given document should be assigned a particular class if the similarity (or distance) 
of this document to the centroid of the class is the largest (or smallest). This decision 
rule is based on a straightforward assumption that the documents in one category 
should share some similarities with each other. However, this hypothesis is often 
broken by ECOC on the grounds that it ignores the similarities of original classes 
when disassembling one multi-class problem into multiple binary problems. 
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In order to attack this problem, we use Model-Refinement strategy [11-12] to 
reduce this so-called bias. The basic idea is to take advantage of misclassified 
examples in the training data to iteratively refine and adjust the centroids. This 
technique is very flexible, which only needs one classification method and there is no 
change to the method in any way. The empirical evaluation shows that Model-
Refinement strategy can dramatically reduce the bias and boost the performance of 
centroid classifier. From the perspective of mathematics, we justified that with respect 
to a linearly separable problem, the Model-Refinement strategy converges to the 
optimal solution after finite online updates. 

To examine the performance of proposed method, we conduct an extensive 
experiment on two commonly used datasets, i.e., Newsgroup and Industry Sector. The 
results indicate that Model-Refinement strategy can dramatically decrease the bias 
introduce by ECOC, and the resulted classifier is comparable to or even better than 
SVM classifier in performance. 

The rest of this paper is constructed as follows: Next section presents related work 
on applying ECOC to text classification. ECOC algorithm is described in section 3. In 
section 4, we present the proposed method. Experimental results are given in section 
5. Finally section 6 concludes this paper. 

2   Related Work 

In this section, we present the related work on applying ECOC to text classification. 
ECOC has been applied to boost Naïve Bayes, Decision Tree, SVM and Co-Training 
[7-10].  

Berger [7] made the first attempt to explore the application of ECOC to Naïve 
Bayes and Decision Tree for text categorization. He conducted his experiments on 
four datasets: Newsgroup, WebKB, Yahoo Science and Yahoo Health. His 
experiment showed that with sufficiently high bit n, combining a Decision Tree 
(Naïve Bayes) to an ECOC classifier can improve the performance over the one-vs.-
rest Decision Tree (Naïve Bayes) approach. He also gave some theoretical evidences 
for the use of random codes rather than error-correcting codes. 

Following the spirit of Berger, Ghani [8] explored the use of different kinds of 
codes, namely Error-Correcting Codes, Random Codes, Domain and Data-specific 
codes. Experiments conducted on Industry Sector show a reduction in classification 
error by up to 66% over Naive Bayes Classifier. Further more, he also gave empirical 
evidence for using error-correcting codes rather than random codes. 

In 2002, Ghani [9] continued his research in this direction. He developed a 
framework to incorporate unlabeled data in ECOC setup by first decomposing multi-
class problems into multiple binary problems and then using Co-Training to learn the 
individual binary classification problems. Experiments show that this strategy is 
especially useful for text classification tasks with a large number of categories and 
outperforms other semi-supervised learning techniques such as EM and Co-Training. 
In addition to being highly accurate, this method utilizes the Hamming distance from 
ECOC to provide high-precision results. He also present results with algorithms other 
than Co-Training in this framework and show that Co-Training is uniquely suited to 
work well within ECOC. 
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In 2002, Rennie [10] compared Naive Bayes and Support Vector Machines using 
ECOC on the task of multi-class text classification. The experimental results show that 
the Support Vector Machine can perform multi-class text classification very effectively 
when used as part of an ECOC scheme. Rennie argues that its improved ability to 
perform binary classification gives it much lower error scores than Naive Bayes. 

3   Error-Correcting Output Codes 

Error-Correcting Output Codes (ECOC) is a form of combination of multiple 
classifiers [8]. The ECOC method is borrowed from data transmitting task in 
communication. Its main idea is to add redundancy to the data being learned 
(transmitted) so that even if some errors occur due to the biases (noises) in the 
learning process (channel), the data can be correctly classified (received) in prediction 
stage (at the other end). It works by converting a multi-class supervised learning 
problem into a large number (L) of two-class supervised learning problems [8]. Any 
learning algorithm that can handle two-class learning problems, such as Naïve Bayes 
[3], can then be applied to learn each of these L problems. L can then be thought of as 
the length of the codewords with one bit in each codeword for each classifier. The 
ECOC algorithm is outlined in Figure 1. 

TRAINING 
1. Load training data and parameters, i.e., the length of code L 
and training class K. 
2. Create a L-bit code for the K classes using a kind of coding 
algorithm. 
3. For each bit, train the base classifier using the binary class (0 
and 1) over the total training data. 
TESTING
1. Apply each of the L classifiers to the test example. 
2. Assign the test example the class with the largest votes.

 

Fig. 1. Outline of ECOC 

Different from the use of ECOC in communication tasks, the use in classification 
tasks requires not only the rows of a code to be well-separated, but also the columns 
to be well-separated as well. The reason behind the rows being well-separated is 
obvious, since we want codewords or classes to be maximally far apart from each 
other, but the column separation is necessary because the functions being learned by 
the learner for each bit should be uncorrelated so that the errors in each bit are 
independent of each other [8].  

There are three commonly used coding strategies: code theory based method [16], 
random method [7], and data-specific method. Ghani’s work [8] indicates that code 
theory based method, such as BCH, performs the best. Further more, BCH can insure 
the code to be well-separated in row. As a result, we only use BCH in this work. 
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4   Methodology 

This section presents the rationale of why we combine ECOC with Model-Refinement 
strategy. First, we illustrate why ECOC brings bias for centroid classifier. Then 
explain why Model-Refinement strategy can modify this kind of bias. Finally we 
outline the combined ECOC algorithm. 

4.1   The Bias Incurred by ECOC for Centroid Classifier 

Centroid classifier is a linear, simple and yet efficient method for text categorization. 
The basic idea of centroid classifier is to construct a centroid Ci for each class ci using 
formula (1) where d denotes one document vector and |z| indicates the cardinality of 
set z. In substance, centroid classifier makes a simple decision rule (formula (2)) that 
a given document should be assigned a particular class if the similarity (or distance) 
of this document to the centroid of the class is the largest (or smallest). This rule is 
based on a straightforward assumption: the documents in one category should share 
some similarities with each other.  

∑
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i d
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For example, the single-topic documents involved with “sport” or “education” can 
meet with the presumption; while the hybrid documents involved with “sport” as well 
as “education” break this supposition. 

As such, ECOC based centroid classifier also breaks this hypothesis. This is 
because ECOC ignores the similarities of original classes when producing binary 
problems. In this scenario, many different classes are often merged into one category. 
For example, the class “sport” and “education” may be assembled into one class. As a 
result, the assumption will inevitably be broken. 

Let’s take a simple multi-class classification task with 12 classes. After coding the 
original classes, we obtain the dataset as in Figure 2. Class 0 consists of 6 original 
categories, and class 1 contains another 6 categories. Then we calculate the centroids 
 

 

Middle LineClass 0 Class 1

C1C0

d

 
Fig. 2. Original Centroids of Merged Class 0 and Class 1 
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of merged class 0 and merged class 1 using formula (1), and draw a Middle Line that 
is the perpendicular bisector of the line between the two centroids. 

According to the decision rule (formula (2)) of centroid classifier, the examples of 
class 0 on the right of the Middle Line will be misclassified into class 1. This is the 
mechanism why ECOC can bring bias for centroid classifier. In other words, the 
ECOC method conflicts with the assumption of centroid classifier to some degree. 

4.2   Why Model-Refinement Strategy Can Reduce This Bias? 

In order to decrease this kind of bias, we employ the Model-Refinement strategy to 
adjust the class representatives, i.e., the centroids. The basic idea of Model-
Refinement strategy is to make use of training errors to adjust class centroids so that 
the biases can be reduced gradually, and then the training-set error rate can also be 
reduced gradually. 

For example, if document d of class 0 is misclassified into class 1, both centroid C0 
and C1 should be moved right by the following formulas (3-4) respectively, 

dCC ⋅+= η0
*
0 . (3) 

dCC ⋅−= η1
*
1 . (4) 

where η (0<η<1) is the Learning Rate which controls the step-size of updating 
operation. The former formula (3) is called as “drag” formula and the latter (4) is 
called as “push” formula. 

 
1. Load training data and parameters;
2. Calculate centroid for each class; 
3. For iter=1 to MaxIteration Do 
   3.1 For each document d in training set Do 

3.1.1 Classify d labeled “A1” into class “A2”; 
3.1.2 If (A1!=A2) Do 
   Drag centroid of class A1 to d using formula (3); 
   Push centroid of class A2 against d using formula (4);

 

Fig. 3. Outline of Model-Refinement Strategy 

The Model-Refinement strategy for centroid classifier is outlined in Figure 3 where 
MaxIteration denotes the pre-defined steps for iteration. The time requirement of 
Model-Refinement strategy is O(MTKW) where M denotes the iteration steps, T 
denotes the size of training set and W denotes the size of vocabulary. 

With this so-called move operation, C0 and C1 are both moving right gradually. At 
the end of this kind of move operation (see Figure 4), no example of class 0 locates at 
the right of Middle Line so no example will be misclassified. 
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Fig. 4. Refined Centroids of Merged Class 0 and Class 1 

4.3   The Combination of ECOC and Model-Refinement Strategy for Centroid 
Classifier 

In this subsection, we present the outline (Figure 5) of combining ECOC with Model-
Refinement strategy for centroid classifier. In substance, the improved ECOC 
combines the strengths of ECOC and Model-Refinement strategy. ECOC research in 
ensemble learning techniques has shown that it is well suited for classification tasks 
with a large number of categories. On the other hand, Model-Refinement strategy has 
proved to be an effective approach to reduce the bias of base classifier, that is to say, 
it can dramatically boost the performance of the base classifier. 

TRAINING 
1. Load training data and parameters, i.e., the length of code L
and training class K. 
2. Create a L-bit code for the K classes using a kind of coding
algorithm. 
3. For each bit, train centroid classifier using the binary class
(0 and 1) over the total training data. 
4. Use Model-Refinement approach to adjust centroids. 
TESTING
1. Apply each of the L classifiers to the test example. 
2. Assign the test example the class with the largest votes.

 

Fig. 5. Outline of combining ECOC with Model-Refinement strategy 

4.4   The Convergence Analysis of Model-Refinement Strategy 

Given a training set i
K
i SS 1== U , where K denotes the number of training classes, and 

Si denotes the training examples of class i. In the following analysis, we suppose the 
data is 2-norm bounded, that is, ( )0,

2
>≤∈∀ RRdSd . Since the size of training set 

is finite, this assumption always holds. 

Definition 1. We said a training set S is a linearly separable problem if there exits 
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Theorem 1. With respect to linearly separable problem, if we select an appropriate 
learning parameter η, the Model-Refinement strategy converges to the optimal 
solution { }opt

iC  after finite online updates. 

Proof: In the iteration t, assume example ( )ASdd ∈  is a misclassified example, that is, 

0<− dCdC t
B
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, where t
BC  denote the most similar centroid to d with the different 
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Theorem 2. With respect to a linearly separable problem, the proposed method 
converges after finite online updates using any learning parameter η(η>0). 
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Proof: In the iteration t, assume example ( )ASdd ∈  is a misclassified example or 

small-margin example, that is, ( )γδδ <<<− 0dCdC t
B

t
A

, where t
BC  denote the most 

similar centroid to d with the different label. Then, 
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According to (5) and (6), we obtain, 
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Obviously, if above inequality holds, t must be finite. That is to say, the Model-
Refinement strategy converges after finite online updates.                                           □ 

5   Experiment Results 

In this section, we introduce the experimental data set, evaluation metrics, experiment 
settings and present the experimental results. 

5.1   Datasets 

In our experiment, we use two corpora: NewsGroup1, and Industry Sector2. 
20NewsGroup. The 20Newsgroup (20NG) dataset contains approximately 20,000 

articles evenly divided among 20 Usenet newsgroups. We use a subset consisting of 
total categories and 19,446 documents. 

Industry Sector. The Industry Section dataset is based on the data made available 
by Market Guide, Inc. (www.marketguide.com). The set consists of company 
homepages that are categorized in a hierarchy of industry sectors, but we disregard 
the hierarchy. There were 9,637 documents in the dataset, which were divided into 
105 classes. We use a subset called as Sector-48 consisting of 48 categories and in all 
4,581 documents. 

5.2   The Performance Measure 

To evaluate a text classification system, we use the F1 measure introduced by van 
Rijsbergen [15]. This measure combines recall and precision in the following way: 

xamplespositive enumber of 

edictionsositive prcorrect  pnumber of 
Recall =  

spredictionpositive  number of 

redictionsositive  pcorrect  pnumber of 
Precision =  

Precision)(Recall

PrecisionRecall2
F1

+
××=  

For ease of comparison, we summarize the F1 scores over the different categories 
using the Micro- and Macro-averages of F1 scores [17]: 

ents and documategories  F1 over cMicro-F1 =  

 valuesategory F1f within-c average oMacro-F1 =  

                                                           
1 www-2.cs.cmu.edu/afs/cs/project/theo-11/www/wwkb 
2 www-2.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/ 
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The MicroF1 and MacroF1 emphasize the performance of the system on common and 
rare categories respectively. Using these averages, we can observe the effect of 
different kinds of data on a classification system [18]. 

5.3   Experimental Design 

We evenly split the each dataset into two parts. Then we use one part for training and 
the remaining second for test. We perform the train-test procedure two times and use 
the average of the two performances as final result. This is so called two-fold cross 
validation. 

In order to remove redundant features and save running time, we employ 
Information Gain as feature selection method because it consistently performs well in 
most cases [14]. 

We employ TFIDF as input features. The formula for calculating the TFIDF can be 
written as follows: 

[ ]∑ ∈
×

×
=

dt t

t

nNdttf

nNdttf
dtW

v
2)/log(),(

)/log(),(
),(

 
(7) 

where N is the total number of training documents, and nt is the number of documents 
containing the word t. tf(t,d) indicates the occurrences of word t in document d. 

For experiments involving SVM we employed SVMTorch, which uses one-versus-
the-rest decomposition and can directly deal with multi-class classification problems. 
(www.idiap.ch/~bengio/projects/SVMTorch.html). Particularly, it has been specifically 
tailored for large-scale problems. 

5.4   Comparison and Analysis 

Table 1 and table 2 show the performance comparison of different methods on two 
datasets when using 10,000 features. For ECOC, we use 63-bit BCH coding; for 
Model-Refinement strategy, we fix its MaxIteration and LearningRate as 8 and 0.01 
respectively. For brevity, we use MR to denote Model-Refinement strategy. 

From the two tables, we can observe that ECOC indeed brings significant bias for 
centroid classifier, which results in considerable decrease in accuracy. Especially on 
sector-48, the bias reduces the MicroF1 of centroid classifier from 0.7985 to 0.6422. 

Table 1. The MicroF1 of different methods 

Method

Dataset
Centroid MR

+Centroid
ECOC

+Centroid

ECOC
+ MR 

+Centroid 
SVM

Sector-48 0.7985 0.8671 0.6422 0.9122 0.8948

NewsGroup 0.8371 0.8697 0.8085 0.8788 0.8777
 

 



468 S. Tan, G. Wu, and X. Cheng 

Table 2. The MacroF1 of different methods 

Method

Dataset
Centroid MR

+Centroid
ECOC

+Centroid

ECOC
+ MR 

+Centroid 
SVM

Sector-48 0.8097 0.8701 0.6559 0.9138 0.8970

NewsGroup 0.8331 0.8661 0.7936 0.8757 0.8759 
 

On the other hand, the combination of ECOC and Model-Refinement strategy 
makes a considerable performance improvement over centroid classifier. On 
Newsgroup, it beats centroid classifier by 4 percents; on Sector-48, it beats centroid 
classifier by 11 percents. More encouragingly, it yields better performance than SVM 
classifier on Sector-48. This improvement also indicates that Model-Refinement 
strategy can effectively reduce the bias incurred by ECOC. 

Figure 6 displays the MicroF1 curves of different methods vs. the number of 
features. For ECOC, we use 63-bit BCH coding; for Model-Refinement strategy, we 
fix its MaxIteration and LearningRate as 8 and 0.01 respectively. From this figure, we 
can observe that the combination of ECOC and Model-Refinement strategy delivers 
consistent top-notch performance on two datasets, especially when the number of 
features is larger than 3000. 
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Fig. 6(a). MicroF1 vs. the number of features on Sector-48 
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Fig. 6(b). MicroF1 vs. the number of features on Newsgroup 

Figure 7 presents the MicroF1 curves of different methods vs. iteration. For ECOC, 
we use 63-bit BCH coding; for Model-Refinement strategy, we fix its LearningRate 
as 0.01; the number of feature is fixed as 10,000. 

As we increase the iteration for Model-Refinement strategy, the combination of 
ECOC and Model-Refinement strategy shows an improved performance that is to be 
expected. This result verifies the fact that Model-Refinement strategy can 
dramatically reduce the bias that ECOC brings to centroid classifier. 
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Fig. 7(a). MicroF1 of different methods vs. iteration on Sector-48 
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Fig. 7(b). MicroF1 of different methods vs. iteration on Newsgroup 

It is worth noticing that “0” means no centroid adjustment is used. That is to say, 
the method “Model-Refinement+Centroid” equals to centroid classifier; the method 
“ECOC+Model-Refinement+Centroid” equals to “ECOC+Centroid” classifier. A 
noticeable observation is that the first round of centroid adjustment makes the largest 
performance improvement. 

Table 3 and 4 report the classification accuracy of combining ECOC with Model-
Refinement strategy on two datasets vs. the length BCH coding. For Model-
Refinement strategy, we fix its MaxIteration and LearningRate as 8 and 0.01 
respectively; the number of features is fixed as 10,000.  

We can clearly observe that increasing the length of the codes increases the 
classification accuracy. However, the increase in accuracy is not directly proportional 
to the increase in the length of the code. As the codes get larger, the accuracies start 
leveling off as we can observe from the two tables.  

This phenomenon is also observed in Ghani’s work [8] and he gave an explanation 
for this case: The longer a code is, the more separated the individual codewords can 
be, thus having a larger minimum Hamming distance and improving the error-
correcting ability.  

Table 3. The MicroF1 vs. the length of BCH coding 

                   Bit 
Dataset 15bit 31bit 63bit 

Sector-48 0.8461 0.8948 0.9105 

NewsGroup 0.8463 0.8745 0.8788 
 



 Enhancing the Performance of Centroid Classifier by ECOC and Model Refinement 471 

Table 4. The MacroF1 vs. the length of BCH coding 

                   Bit 
Dataset 15bit 31bit 63bit 

Sector-48 0.8459 0.8961 0.9122 

NewsGroup 0.8430 0.8714 0.8757 
 

6   Conclusion Remarks 

In this work, we examine the use of ECOC for improving centroid text classifier. The 
implementation framework is to decompose one multi-class problem into multiple 
binary problems and then learn the individual binary classification problems by 
centroid classifier. Meanwhile, Model-Refinement strategy is employed to reduce the 
bias incurred by ECOC. Furthermore, we present the theoretical justification and 
analysis for Model-Refinement strategy. 

In order to investigate the effectiveness and robustness of proposed method, we 
conduct an extensive experiment on two commonly used corpora, i.e., Industry Sector 
and Newsgroup. The experimental results indicate that the combination of ECOC 
with Model-Refinement strategy makes a considerable performance improvement 
over traditional centroid classifier, and even performs comparably with SVM 
classifier. 

The results reported here are not necessarily the best that can be achieved. Our 
future effort is to seek new techniques to enhance the performance of ECOC for 
centroid text classifier. Additionally, we will investigate the effectiveness of proposed 
method on multi-label text classification problems. 
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Abstract. In this study, we extend the framework of semiparametric
statistical inference introduced recently to reinforcement learning [1] to
online learning procedures for policy evaluation. This generalization en-
ables us to investigate statistical properties of value function estimators
both by batch and online procedures in a unified way in terms of estimat-
ing functions. Furthermore, we propose a novel online learning algorithm
with optimal estimating functions which achieve the minimum estima-
tion error. Our theoretical developments are confirmed using a simple
chain walk problem.

1 Introduction

Reinforcement learning is a class of machine learning based on reward-related
interactions with environments, and has successfully been applied to various
control problems [2]. In order to find out optimal strategies, it is important, in
particular in model-free approaches, to estimate the value function which denotes
goodness of the current policy, from a given sample trajectory. There are two
major ways in value function estimation. The temporal difference (TD) learn-
ing [2] updates the current estimator step-by-step whose step uses a relatively
small number of samples (online procedure). On the other hand, the least squares
temporal difference (LSTD) learning [3,4] obtains an estimator in one shot by
using all samples in the given trajectory (batch procedure). Other algorithms
proposed so far are also categorized into one of these two groups.

Recently, [1] introduced a novel framework of semiparametric statistical in-
ference to model-free policy evaluation. The semiparametric statistical models
include not only parameters of interest but also additional nuisance parameters
which may have infinite degrees of freedom [5,6,7]. For estimating the parame-
ters of interest in such models, estimating functions provide a well-established
toolbox: they give consistent estimators (M-estimators) without knowing the
nuisance parameters [5,8]. Applying this technique to Markov decision processes
(MDP), they discussed asymptotic properties of LSTD-like learning procedures
and proposed the generalized LSTD (gLSTD) based on the optimal estimating
function that achieved the minimum error. Although the framework by [1] has
potential to bring new insights to reinforcement learning, their theory could only

W. Buntine et al. (Eds.): ECML PKDD 2009, Part II, LNAI 5782, pp. 473–488, 2009.
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deal with batch procedures and a bunch of online algorithms such as TD were
excluded.

In this article, we extend their semiparametric statistical techniques to be ap-
plicable to online learning procedures as to follow the existing analysis of online
learning [9]. This extension leads to a general class of online learning procedures
for model-free policy evaluation derived from estimating functions, which in-
cludes many popular algorithms [2,10] such as TD learning [2] and least squares
policy evaluation (LSPE) [11]. This generalization also allows us to examine
the convergence of statistical error and hence to see that online algorithms can
achieve the same asymptotic performance as their batch counterparts if a matrix
factor is properly tuned (Theorem 4). Based on this fact, we can accelerate TD
learning (Section 5.4). Furthermore, we can derive the optimal choice of the esti-
mating function and construct a novel online learning algorithm which achieves
the minimum estimation error asymptotically (Algorithm 1).

This article is organized as follows. In Section 2, a semiparametric setting of
Markov reward processes (MRPs) is presented. We explain the concept of estimat-
ing functions in Section 3, before going into those for MRPs in Section 4. Then,
in Section 5, we discuss online learning procedures derived from estimating func-
tions. Convergence theorems for such algorithms will be presented, followed by
a novel algorithm with the optimal estimating function. In Section 6, the perfor-
mance of the proposed algorithms are compared to a couple of well-established
algorithms using a simple chain walk problem.

2 Markov Reward Process

Following the literature of policy evaluation [12], we consider Markov Reward
Processes (MRPs) in this study. However, extension to Markov Decision Pro-
cesses (MDPs) is straightforward as long as focusing on policy evaluation (hence
the policy is fixed).

An MRP is defined by the initial state probability p(s0), the state transition
probability p(st+1|st) and the reward probability p(rt+1|st, st+1). The state vari-
able s is an element of a finite set S and the reward variable r ∈ R can be either
discrete or continuous, but a finite value.

The joint distribution of a sample trajectory ZT := {s0, s1, r1 · · · , sT , rT } of
the MRP is described as

p(ZT ) = p(s0)
T−1∏
t=0

p(rt+1|st, st+1)p(st+1|st). (1)

We also impose the following assumptions on MRPs.

Assumption 1. Under p(st+1|st), MRP has a unique invariant stationary
distribution μ(s).

Assumption 2. For any time t, the state st and the reward rt are uniformly
bounded.
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Here, we introduce a statistical framework by confirming that the value function
estimation can be interpreted as the estimation of certain statistics of MRP (1).

Proposition 1. [10] Consider a conditional probability of {rt+1, st+1} given st,

p(rt+1, st+1|st) = p(rt+1|st, st+1)p(st+1|st).

Then, there is such a function V that

E [rt+1|st] = V (st)− γE[V (st+1)|st] (2)

holds for any state st. Here, E [·|s] denotes the conditional expectation for a given
state s. The function V that satisfies eq. (2) is unique and found to be a value
function;

V (s) := lim
T→∞

E

[
T∑

t=0

γtrt+1

∣∣∣∣∣ s0 = s

]
, (3)

where γ ∈ [0, 1) is a constant called the discount factor.

We assume throughout this article that the value function can be represented
by a certain parametric function, including a nonlinear function with respect to
the parameter.

Assumption 3. The value function given by eq. (3) is represented by a para-
metric function g(s,θ);

V (s) = g(s,θ),

where g : S → R, θ ∈ R
m is a parameter. Moreover, g(s,θ) is assumed to be

twice-differentiable with respect to θ, and g(s,θ) <∞ for any s ∈ S and θ.

Under Assumption 3, p(rt+1|st) is partially parameterized by θ, through its
conditional mean

E[rt+1|st] = g(st,θ)− γE[g(st+1,θ)|st]. (4)

Our goal is to find out such a value of the parameter θ that the function g(s,θ)
satisfies eq. (4), that is, it coincides with the true value function.

In order to specify the probabilistic model (4) completely, we need usually ex-
tra parameters other than θ. Let ξ0 and ξs be such extra parameters that initial
distribution p(s0, ξ0) and transition distribution p(r, s|s; θ, ξs) are completely
identified, respectively. In such a case, the joint distribution of the trajectory ZT

is expressed as

p(ZT ; θ, ξ) = p(s0; ξ0)
T−1∏
t=0

p(rt+1, st+1|st; θ, ξs), (5)
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where ξ = (ξ0, ξs). Since there is no way to know the complexity of the target
system, we attempt to estimate the parameter θ without estimating the extra
ξ, which may have innumerable degrees of freedom. Statistical models which
contain such (possibly infinite-dimensional) nuisance parameters (ξ) in addi-
tion to the parameter of interest (θ) are said semiparametric [6]. We emphasize
that the nuisance parameters are necessary only for theoretical discussions. In
actual estimation of the parameters, same as in other model-free policy evalua-
tion algorithms, we neither define them concretely, nor estimate them. This can
be achieved by usage of estimating functions which is a well-established tech-
nique to obtain a consistent estimator of the parameter without estimating the
nuisance parameter [5,7]. The advantages of considering such semiparametric
models behind model-free approaches are:

(a) we can characterize all possible model-free algorithms,
(b) we can discuss asymptotic properties of the estimators in a unified way and

obtain the optimal one with the asymptotically minimum estimation error.

We will summarize the estimating function method in the next section.

3 Estimating Functions in Semiparametric Models

We begin with a short overview of the estimating function theory in the i.i.d.
case and then discuss the MRP case in the next section. We consider a general
semiparametric model p(x; θ, ξ), where θ is an m-dimensional parameter of in-
terest and ξ is a nuisance parameter which can have infinite degrees of freedom.
An m-dimensional vector function f is called an estimating function when it
satisfies the following conditions for any θ and ξ;

Eθ,ξ[f(x,θ)] = 0 (6)
det |A| 
= 0, where A = Eθ,ξ [∂θf(x,θ)] (7)

Eθ,ξ

[
||f(x,θ)||2

]
<∞, (8)

where ∂θ = ∂/∂θ is the partial derivative with respect to θ, and det | · | and
|| · || denote the determinant and the Euclidean norm, respectively. Here Eθ,ξ[·]
means the expectation over x with p(x; θ, ξ) and we further remark that the
parameter θ in f(x,θ) and Eθ,ξ[·] must be the same.

Suppose i.i.d. samples {x1, · · · ,xN} are generated from the model p(x; θ∗, ξ∗).
If there is an estimating function f(x,θ), we can obtain an estimator θ̂ which
has good asymptotic properties, by solving the following estimating equation;

N∑
i=1

f(xi, θ̂) = 0. (9)

A solution of the estimating equation (9) is called an M-estimator in statistics [5].
The M-estimator is consistent, that is, it converges to the true value regardless
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Fig. 1. An illustrative plot of 1/T
∑

t f(xt, θ) as a function of θ (the solid line).
Due to the effect of finite samples, the function is slightly apart from its expectation
Eθ∗,ξ∗ [f(x, θ)] (the dashed line) which takes 0 at θ = θ∗ because of the condition (6).
The condition (8) means that the expectation (the dashed line) has a non-zero slope
around θ∗, which ensures the local uniqueness of the zero crossing point. On the other
hand, the condition (7) guarantees that its standard deviation shown by the two dotted
lines shrinks in the order of 1/

√
T , thus we can expect to find asymptotically at least

one solution θ̂ of the estimating equation (9) near the true value θ∗. This situation
holds regardless of that the true nuisance parameter ξ∗ takes any possible value.

of the nuisance parameter ξ∗. Moreover, it is normally distributed, that is,
θ̂ ∼ N (θ∗,Av) when the sample size N approaches infinity. The matrix Av,
which is called the asymptotic variance, can be calculated by

Av := Av(θ̂) =
1
N

A−1
Eθ∗,ξ∗

[
f(x,θ∗)f(x,θ∗)�

]
(A�)−1,

where A = Eθ∗,ξ∗ [∂θf(x,θ∗)], and the symbol ' denotes the matrix transpose.
Note that Av depends on (θ∗, ξ∗), but not on the samples {x1, · · · ,xN}. We
illustrate in Fig. 3 the left hand side of the estimating equation (9) in order to
explain the reason why an M-estimator has nice properties and the meaning of
conditions (6)-(8).

4 Estimating Functions in the MRP Model

The notion of estimating function has been extended to be applicable to Markov
time-series [13,14]. To make it applicable to MRPs, we need similar extension.
For convenience, we write the triplet at time t as zt := {st−1, st, rt}. and the
trajectory up to time t as Zt := {s0, s1, r1, . . . , st, rt}.

We consider an m-dimensional vector valued function of the form:

fT (ZT ,θ) =
T∑

i=1

ψt(Zt,θ),
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we attempt to estimate the parameter θ ∈ R
m for the given trajectory ZT . This

is similar to the left hand side of (9) in the i.i.d. case, but now each term ψt

depends also on the previous observations, that is, a function of the sequence up
to time t. If the sequence of the functions {ψt} satisfies the following properties
for any θ and ξ, function fT becomes an estimating function.

Eθ,ξs [ψt(Zt,θ)|Zt−1] = 0, ∀t (10)
det |A| 
= 0, where A := Eθ,ξ [∂θfT (ZT ,θ)] (11)

Eθ,ξ

[
‖ψt(Zt,θ)‖2

]
<∞, ∀t. (12)

Note that the estimating function fT (ZT ,θ) satisfies the martingale properties
because of the condition (10). Therefore, it is called a martingale estimating
function in literature [5]. Although time-series estimating functions can be de-
fined in a more general form, the above definition is enough for our theoretical
consideration.

4.1 Characterizing the Class of Estimating Functions

In this section, we characterize possible estimating functions in MRPs. Let εt+1
be the TD error, that is,

εt+1 := ε(zt+1,θ) := g(st,θ)− γg(st+1,θ)− rt+1.

From (4), its conditional expectation Eθ,ξs [εt+1|st] is equal to 0 for any state st.
Furthermore, this zero-mean property holds even when multiplied by any weight
function wt := wt(Zt) which depends only on the past observations, that is,

Eθ,ξs [wt(Zt)εt+1|st] = wt(Zt)Eθ,ξs [εt+1|st] = 0,

for any st. From this observation, we can obtain a class of estimating functions
fT (ZT ,θ) in MRPs.

Lemma 1. Suppose that the random sequence ZT is generated from the distribu-
tion of the semiparametric model {p(ZT ; θ, ξ) |θ, ξ} defined by (5). If the matrix
Eθ,ξ

[∑T
t=1 wt−1(Zt−1) {∂θε(zt,θ)}�

]
is nonsingular for any θ and ξ, then

fT (ZT ,θ) =
T∑

t=1

ψt(Zt,θ) :=
T∑

t=1

wt−1(Zt−1)ε(zt,θ) (13)

becomes an estimating function.

From Lemma 1, we can obtain an M-estimator θ̂ by solving the estimating
equation

T∑
t=1

ψt(Zt, θ̂) = 0. (14)
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In general, estimating equations can be nonlinear with respect to the parameter
θ. Therefore, in order to obtain a solution we need to employ iterative procedures,
for example, online learning procedures as will be discussed in Section 5. The
estimator derived from the estimating equation (14) has such an asymptotic
variance that described by the following lemma.

Lemma 2. Suppose that the random sequence {ZT } is generated from the dis-
tribution p(ZT ; θ∗, ξ∗) and wt is a function of {s0:t, r1:t} satisfying the condition
of Lemma 1. Then, the M-estimator derived from eq. (14) has the asymptotic
variance

Av = Av(θ̂) =
1
T

A−1Σ
(
A�)−1

,

where A = A(θ∗, ξ∗) = lim
t→∞

Eθ∗,ξ∗

[
wt−1 {∂θε(zt,θ

∗)}�
]
,

Σ = Σ(θ∗, ξ∗) = lim
t→∞

Eθ∗,ξ∗
[
(ε∗t )

2wt−1w
�
t−1

]
and ε∗t := ε(zt,θ

∗) denotes the
TD error with the optimal parameter θ∗.

Interestingly, the converse of Lemma 1 can also be shown; any martingale esti-
mating functions for MRP take the form (13).

Theorem 1. Any martingale estimating functions in the semiparametric model
{p(ZT ; θ, ξ) |θ, ξ} of MRP can be expressed as

fT (ZT ,θ) =
T∑

t=1

ψt(Zt,θ) =
T∑

t=1

wt−1(Zt−1)ε(zt,θ). (15)

Proof. Due to space limitation, we just sketch the proof here. From the martin-
gale property, for any t, we have

Eθ,ξs [ft+1(Zt+1,θ)− ft(Zt,θ)|st] = 0,

which should hold for any nuisance parameter ξ. It can be shown that the TD
error εt+1 is the unique one that satisfies Eθ,ξ [εt+1|st] = 0 for any st and ξ. This
implies ft+1(Zt+1,θ) − ft(Zt,θ) = wt(Zt)ε(zt+1,θ). By induction, we see that
fT (ZT ,θ) must have the form (15).

4.2 Optimal Estimating Function

Since Theorem 1 has specified the set of all martingale estimating functions, we
can now discuss the optimal estimating function among them which gives an
M-estimator with minimum asymptotic variance. Because of the same reason as
described in [1], it is suffice to consider the estimating function (15) with the
weight wt = wt(st) which depends only on the current state st. Furthermore,
by the calculus of variations, we can obtain the optimal estimating function as
stated by the following theorem.
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Theorem 2. When the random sequence ZT is generated from the distribution
p(ZT ; θ∗, ξ∗), the optimal estimating function is given by

f∗
T (ZT ,θ) =

T∑
t=1

ψ∗(zt,θ) :=
T∑

t=1

w∗
t−1(st−1)ε(zt,θ), (16)

where w∗
t (st) := Eθ∗,ξ∗

s
[ε(zt+1,θ

∗)2|st]−1
Eθ∗,ξ∗

s
[∂θε(zt+1,θ

∗)|st].

Note that the optimal weighting function w∗
t depends on the true parameter θ∗

(but unknown) and needs the expectation with respect to p(rt+1, st+1|st; θ∗, ξ∗
s),

which is also unknown. Therefore, we need to substitute initial estimators for
them as we will explain later. It is noted, however, that there is no need to esti-
mate the nuisance parameter ξ itself and that consistency is always guaranteed,
even if the initial estimators are based on rough approximation.

The minimum asymptotic variance can be obtained from Lemma 2 and
Theorem 2.

Corollary 1. The minimum asymptotic variance is given by

Av[θ̂] =
1
T

Q−1,

where Q = lim
t→∞

Eθ∗,ξ∗ [∂θψ∗(zt,θ
∗)] = lim

t→∞
Eθ∗,ξ∗

[
ψ∗(zt,θ

∗)ψ∗(zt,θ
∗)�

]
.

We remark that the positive definite matrix Q measures information of the opti-
mal estimating function. In general, the information associated with this matrix
Q is smaller than Fisher information, since we trade efficiency for robustness
against the nuisance parameter [7].

5 Learning Algorithms

This section describes the learning algorithm of the parameter θ. In reinforce-
ment learning, online learning is often preferred to batch learning because of its
computational efficiency and adaptability to even time-variant situations. Esti-
mating functions provide not only batch algorithms via estimating equations,
but also online ones as follows. An online estimator of θ at time t is denoted as
θ̂t. Suppose that the sequence {ψ1(Z1,θ), . . . ,ψT (ZT ,θ)} forms a martingale
estimating function for MRP. Then, an online update rule can be given by

θ̂t = θ̂t−1 − ηtψt(Zt, θ̂t−1), (17)

where ηt denotes a nonnegative scalar stepsize. In fact, there exist other online
update rules derived from the same estimating function
ft(Zt,θ) =

∑t
i=1 ψi(Zi,θ) as,

θ̂t = θ̂t−1 − ηtR(θ̂t−1)ψt(Zt, θ̂t−1), (18)
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where R(θ) denotes an m × m nonsingular matrix depending only on θ [15].
These variations come from the fact that R(θ)

∑t
i=1 ψi(Zi,θ) gives the same

roots as its original for any R(θ). This equivalence guarantees that both learning
procedures, (17) and (18), have the same stable point, while their dynamics
may be different; that is, even if the plain algorithm (17) is unstable, it can be
stabilized by introducing an appropriate R(θ) as (18).

In the next two sections, we will discuss convergence of the online learning
algorithm (18).

5.1 Convergence to the True Value

Here, we give sufficient conditions to guarantee the convergence of the online
learning (18) to the true parameter θ∗. For the sake of simplicity, we focus on
the final convergence phase: θ̂t are confined in a neighborhood of θ∗. Now we
introduce the following conditions for the convergence.

Condition 1
(a) For any t, (θ̂t − θ∗)�R(θ̂t)Eθ∗,ξ∗

s

[
ψt+1(Zt+1, θ̂t)

∣∣∣ st

]
is nonnegative .

(b) For any t, there exist such nonnegative constants c1 and c2 that
‖R(θ̂t)Eθ∗,ξ∗

s
[ψt+1(Zt+1, θ̂t)|st]‖2 ≤ c1 + c2‖θ̂t − θ∗‖.

Then, the following theorem guarantees the (local) convergence of θ̂t to θ∗.

Theorem 3. Suppose that Condition 1 holds. If the stepsizes {ηt} are all posi-
tive and satisfy

∑∞
t=1 ηt = ∞ and

∑∞
t=1 η

2
t <∞, then the online algorithm (18)

converges to the true parameter θ∗ almost surely.

Proof. The proof is given in Appendix A.

Theorem 3 ensures that an online algorithm of the form (18) is consistent, if we
can find such a matrix R(θ) that satisfies Condition 1.

5.2 Convergence Rate

In general, the convergence rate of an online algorithm is slow when compared
to a batch algorithm that tries to obtain the solution of the estimating equation
using all available samples. However, if we choose an appropriate matrix R(θ)
and adjust the stepsizes {ηt} appropriately, then it is possible to achieve the
same convergence rate with the batch algorithm [9]. First, we characterize the
learning process of the batch algorithm.

Lemma 3. Let θ̃t and θ̃t−1 be solutions of the estimating equations
1/t

∑t
i=1 ψi(Zi, θ̃t) = 0 and 1/(t−1)

∑t−1
i=1 ψi(Zi, θ̃t−1) = 0, respectively. Then,

we have
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θ̃t = θ̃t−1 −
1
t
R̂−1

t (θ̃t−1)ψt(Zt, θ̃t−1) +O
(

1
t2

)
, (19)

where R̂−1
t (θ̃t−1) = {1/t

∑t
i=1 ∂θψi(Zi, θ̃t−1)}−1.

Note that (19) defines the sequence of θ̃t as a recursive stochastic process that
is essentially same as the online learning (18) for the same R. In other words,
Lemma 3 implies that online algorithms can converge with the same convergence
rate as batch counterparts by an appropriate choice of the matrix R. Finally,
the following theorem addresses the convergence rate of the (stochastic) learning
process such as (19).

Theorem 4. Consider the following learning process

θ̂t = θ̂t−1 −
1
t
R̂−1

t ψt(Zt, θ̂t−1) +O
(

1
t2

)
, (20)

where R̂t = {1/t
∑t

i=1 ∂θψi(Zi, θ̂i−1)}.
Assume that:

(a) R̂−1
t can be written as R̂−1

t = Eθ∗,ξ∗
s
[R̂−1

t |st−1] + o
(
t−1

)
.

(b) For any t, R̂t is a nonsingular matrix.

If the learning process (20) converges to the true parameter almost surely, then
the convergence rate is given as

Eθ∗,ξ∗

[
‖θ̂t − θ∗‖2

]
=

1
t
Tr

[
A−1Σ(A−1)�

]
+ o

(
1
t

)
, (21)

where A = lim
t→∞

Eθ∗,ξ∗ [wt−1{∂θε(zt,θ
∗)}�] and

Σ = lim
t→∞

Eθ∗,ξ∗
[
ε(zt,θ

∗)2wt−1w
�
t−1

]
.

Theorem 4 applies to both the online and batch sequences. Note that this con-
vergence rate (21) is neither affected by the third term of (20) nor by small
variations on the matrix R̂−1

t .

5.3 Implementation of Online Algorithm with Optimal Estimating
Function

We now construct an optimal online learning which yields the minimum estima-
tion error. Roughly speaking, this is given by the optimal estimating function
in Theorem 2 with the best (i.e., with the fastest convergence) choice of the
nonsingular matrix in Theorem 4;

θ̂t = θ̂t−1 −
1
t
Q̂−1

t ψ∗(zt, θ̂t−1), (22)
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where Q̂−1
t = {1/t

∑t
i=1 ∂θψ∗(zi, θ̂i−1)}−1 and ψ∗(zt,θ) is defined by eq. (16). If

the learning equation (22) satisfies Condition 1 and Theorem 4, then it converges
to the true parameter with the minimum estimation error, (1/t)Q−1.

However, the learning rule (22) still contains unknown parameters and quan-
tities, so is impractical. For practical implementation, it is necessary to evaluate
Eθ∗,ξ∗

s
[ε(zt+1,θ

∗)2|st] and Eθ∗,ξ∗
s
[∂θε(zt+1,θ

∗)|st] appearing in the optimal es-
timating function. Therefore, we apply the online function approximation for
them. Let ζ(st,αt) and ϕ(st,βt) be the approximations of Eθ∗,ξ∗

s
[ε(zt+1,θt)2|st]

and Eθ∗,ξ∗
s
[∂θε(zt+1,θt)|st], respectively:

ζ(st,αt) ≈ Eθ∗,ξ∗
s
[ε(zt+1, θ̂t)2|st]

ϕ(st,βt) ≈ Eθ∗,ξ∗
s
[∂θε(zt+1, θ̂t)|st],

where αt and βt are adjustable parameters. αt and βt are adjusted in an online
manner;

α̂t = α̂t−1 − ηα
t ∂αζ(st−1, α̂t−1)

(
ζ(st−1, α̂t−1)− ε(zt, θ̂t−1)2

)
β̂t = β̂t−1 − ηβ

t ∂βϕ(st−1, β̂t−1)
(
ϕ(st−1, β̂t−1)− ∂θε(zt, θ̂t−1)

)
,

where ηα
t and ηβ

t are stepsizes. By using these parameterized functions, we can
replace ψ∗

t (zt, θ̂t−1) and Q̂−1
t by

ψ∗
t (zt, θ̂t−1) = ζ(st−1, α̂t−1)−1ϕ(st−1, β̂t−1)ε(zt, θ̂t)

Q̂−1
t =

(
1
t

t∑
i=1

ζ(si−1, α̂i−1)−1ϕ(si−1, β̂i−1)∂θε(zi, θ̂i−1)�
)−1

. (23)

Note that the update (23) can be done in an online manner by applying the
well-known matrix inversion lemma [16]. We summarize our implementation of
the optimal online learning algorithm in Algorithm 1. The empirical results of
this algorithm will be shown in Section 6.

5.4 Acceleration of TD Learning

TD learning is a traditional online approach to model-free policy evaluation and
has been as one of the most important algorithms in reinforcement learning.
Although the TD learning is widely used due to its simplicity, it is known to
converge rather slowly. In this section, we discuss the TD learning from the
viewpoint of the estimating function method and propose a new online algorithm
which can achieve faster convergence than the usual TD learning.

To simplify the following discussions, let g(s,θ) be a linear function of features:

V (st) := φ(st)�θ := φ�
t θ,
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Algorithm 1. The proposed online learning algorithm
Initialize α̂0, β̂0, θ̂0, Q̂−1

0 = εI, a1, a2

{ε and I denote a small constant and an m×m identical matrix, respectively. }

for t = 1, 2, · · · do
Obtain a new sample zt = {st−1, st, rt}

Compute the optimal weight function w∗
t−1

α̂t ← α̂t−1 − ηα
t ∂αζ(st−1, α̂t−1){ζ(st−1, α̂t−1)− ε(zt, θ̂t−1)2}

β̂t ← β̂t−1 − ηβ
t ∂βϕ(st−1, β̂t−1)

(
ϕ(st−1, β̂t−1)− ∂θε(zt, θ̂t−1)

)
w∗

t−1 ← ζ(st−1, α̂t−1)−1ϕ(st−1, β̂t−1)

Update Q̂−1
t using matrix inversion lemma

Q̂−1
t ← 1

t−1
Q̂−1

t−1 − 1
t

Q̂−1
t−1w∗

t−1∂θε(zt,θ̂t−1)�Q̂−1
t−1

1+∂θε(zt,θ̂t−1)�Q̂−1
t−1w∗

t−1

Update the parameter
τ ← max(a1, t− a2)
θ̂t ← θ̂t−1 − 1

τ
Q̂−1

t w∗
t−1ε(zt, θ̂t−1)

end for

where φ(s) : S → R
m is a feature vector and θ ∈ R

m is a parameter vector.
In this case, we have two ways to solve the linear estimating equation; one is a
batch procedure:

θ̂ = {
T∑

t=1

wt−1(φt−1 − γφt)�}−1{
T∑

t=1

wt−1rt}

and the other is an online procedure:

θ̂t = θ̂t−1 − ηtwt−1ε(zt, θ̂t−1).

When the weight function wt is set to φt, the online procedure and batch pro-
cedure correspond to the TD learning and LSTD algorithm, respectively. Note
that both TD and LSTD share the same estimating function. Therefore, from
Lemma 3 and Theorem 4, we can in principle construct an accelerated TD learn-
ing which converges at the same speed as the LSTD algorithm.

Here, we consider the following learning equation;

θ̂t = θ̂t−1 −
1
t
R̂−1

t φt−1ε(zt, θ̂t−1), (24)

where R̂−1
t = {1/t

∑t
i=1 φi−1(φi−1− γφi)�}−1. Since R̂−1

t converges to A−1 =
lim

t→∞
Eθ∗,ξ∗ [φt−1(φt−1 − γφt)�]−1 and A−1 must be a positive definite matrix

(see Lemma 6.4 in [10]), the online algorithm (24) also converges to the true
parameter almost surely. Then, if R̂t satisfies the condition in Theorem 4, it can
achieve same convergence rate as LSTD. We call this procedure the accelerated-
TD learning.
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In both the optimal online learning and the accelerated-TD learning, it is
necessary to maintain the inverse of the scaling matrix R̂t. Since this matrix
inversion operation costs O(m2) in each step, maintaining the inverse matrix
becomes expensive when the dimensionality of parameters increases. The com-
putational cost can be dramatically reduced by maintaining a coarse approxima-
tion of the scaling matrix (e.g. diagonal, block diagonal, etc.). An appropriate
setting ensures the convergence rate remains O(1/t) without spoiling computa-
tional efficiency.

6 Simulation Experiments

In order to validate our theoretical developments, we compared the performance
(statistical error) of the proposed online algorithms (accelerated-TD algorithm
and the optimal online learning algorithm) with those of the baselines: TD al-
gorithm [2] (online), LSTD algorithm [3] (batch), and gLSTD algorithm [1]
(batch) in a toy problem. An MRP trajectory was generated from a simple
Markov random walk on a chain with ten states (s = 1, · · · , 10) as depicted in
Fig. 2. At each time t, the state changes to either of its left (−1) or right (+1)
with equal probability of 0.5. A reward was given by the deterministic function
r = exp(−0.5(s − 5)2/32), and the discount factor was set to 0.95. The value
function was approximated by a linear function with three-dimensional basis
functions, that is, V (s) ≈

∑3
n=1 θnφn(s). The basis functions φn(s) were gener-

ated according to a diffusion model [17]. This approximation was not faithful;
i.e. there remained tiny bias.

We generated M = 200 trajectories (episodes) each of which consisted of
T = 200 random walk steps. The value function was estimated for each episode.
We evaluated the “mean squared error” (MSE) of the value function, that
is, 1

M
1
10

∑M
k=1

∑
i∈{1,··· ,10} ‖φ�

i θ̂k − V ∗(i)‖2 where V ∗ denotes the true value
function.

As is often done in online procedures, we utilized some batch procedures to
obtain initial estimates of the parameter. More specifically, the first 20 steps in
each episode were used to obtain an initial estimator in a batch manner and the
online algorithm started after 20 steps. In this random walk problem, owing to
the linear approximation, the parameter by the batch algorithm can be obtained
analytically. In general situations, on the other hand, an online algorithm has

1 2 3 10
p=0.5 p=0.5

p=0.5p=0.5

p=0.5p=0.5

Fig. 2. A ten-states MRP
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Fig. 3. Simulation results

a merit, because online procedures require less memory and are computation-
ally more efficient. They perform only a single update at each time, while the
batch algorithms must keep all trajectories and need to iterate computation until
convergence which is serious when employing nonlinear estimating equations.

In the proposed online algorithms, the stepsizes were decreased as simple as
1/t. On the other hand, the convergence of TD learning was too slow in simple
1/t setting due to fast decay of the stepsizes but also in certain well-chosen
constant stepsize. Therefore, we adopt an ad-hoc adjustment for the stepsizes as
1/τ , where τ = max(10, t− 100).

Fig. 3 shows the MSEs of the value functions estimated by our proposed
algorithms and the existing algorithms, in which the MSEs of all 200 episodes
are shown by box-plots; the center line, and the upper and lower sides of each box
denote the median of MSE, and the upper and lower quartiles, respectively. The
number above each box is the average MSE. As is shown in Fig. 3, the optimal
online learning algorithm (Optimal) and the optimal batch learning algorithm
(gLSTD) achieve the minimum MSE among the online and batch algorithms,
respectively, and these two MSEs are very close. It should be noted that the
accelerated-TD algorithm (accelerated-TD) performs significantly better than
the ordinary TD algorithm showing the matrix R was effective for accelerating
the convergence as expected by our theoretical analysis.
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7 Conclusion

In this study, we extended the framework of semiparametric statistics inference
for value function estimation to be applicable to online learning procedures.
Based on this extension, we derived the general form of estimating functions for
the model-free value function estimation in MRPs, which provides the statistical
basis to many existing batch and online learning algorithms. Moreover, we found
the optimal estimating function, which yields the minimum asymptotic estima-
tion variance amongst the general class, and presented a new online learning
algorithm (optimal algorithm) based on it. Using a simple MRP problem, we
confirmed the validity of our analysis, that is, the optimal algorithm achieves
the minimum MSE of the value function estimation and converges with almost
the same speed with the batch algorithm gLSTD.

Throughout this article, we assumed that the function approximation is faith-
ful, that is, there is no model misspecification for the value function, and ana-
lyzed only its asymptotic variance. Even in misspecified cases, the asymptotic
variance can be correctly evaluated [14]. Therefore, if we can reduce the bias
term to be much smaller than the variance, our optimal and accelerated-TD
procedures could also improve significantly the existing algorithms. Moreover, it
is an important future issue to find out a good parametric function g or set of
basis functions φn for linearly approximating the value function.
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A Proof: Theorem 3

To simplify the following proof, we assume the true parameter is located on
the origin without loss of generality: θ∗ = 0. Let ht be ‖θ̂t‖2. The conditional
expectation of variation of ht can be derived as

Eθ∗,ξ∗
s
[ht+1 − ht|st] = −2ηt+1θ̂

�
t R(θ̂t)Eθ∗,ξ∗

s

[
ψt+1(Zt+1, θ̂t)|st

]
+ η2

t+1Eθ∗,ξ∗
s

[
‖R(θ̂t)ψt+1(Zt+1, θ̂t)‖2|st

]
.

From Condition 1, the second term of this equation is bounded by the second
moment, thus we obtain

Eθ∗,ξ∗
s

[
ht+1 − (1 + η2

t+1c2)ht|st

]
≤ −2ηt+1θ̂

�
t R(θ̂t)Eθ∗,ξ∗

s

[
ψt+1(Zt+1, θ̂t)|st

]
+ η2

t+1c1. (25)

Now, let χt =
∏t−1

k=0
1

1+η2
k+1c2

and h′
t = χtht. From the assumption

∑∞
t=1 η

2
t <∞,

we easily verify that 0 < χt < 1. Multiplying both sides of eq. (25) by χt+1, we
obtain

Eθ∗,ξ∗
[
h′

t+1 − h′
t|Pt

]
≤− 2ηt+1χt+1θ̂

�
t R(θ̂t)Eθ∗,ξ∗

s

[
ψt+1(Zt+1, θ̂t)|st

]
+ η2

t+1χt+1c1.

The first term of this upper bound is negative because of Condition 1, and the
second term is nonnegative because ηt, χt+1, and c1 are nonnegative, and the
sum of the second terms

∑∞
t=1 η

2
tχt+1c1 is finite. Then, the supermartingale

convergence theorem [10] guarantees that h′
t converges to a nonnegative random

variable almost surely, and
∑∞

t=1 ηt+1χt+1θ̂
�
t Rt(θ̂t)Eθ∗,ξ∗

s

[
ψt+1(Zt+1, θ̂t)|st

]
<

∞. Since
∑∞

t=1 ηt = ∞ and lim
t→∞

χt = χ∞ > 0, we have

θ̂�
t R(θ̂t)Eθ∗,ξ∗

s

[
ψt+1(Zt+1, θ̂t)|st

]
a.s.−→ 0, where a.s.−→ denotes the almost sure

convergence. This result suggests the conclusion that the online learning algo-
rithm converges almost surely: θ̂t

a.s.−→ θ∗ = 0.
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Abstract. We present a method for applying machine learning algo-
rithms to the automatic classification of astronomy star surveys using
time series of star brightness. Currently such classification requires a
large amount of domain expert time. We show that a combination of
phase invariant similarity and explicit features extracted from the time
series provide domain expert level classification. To facilitate this appli-
cation, we investigate the cross-correlation as a general phase invariant
similarity function for time series. We establish several theoretical prop-
erties of cross-correlation showing that it is intuitively appealing and al-
gorithmically tractable, but not positive semidefinite, and therefore not
generally applicable with kernel methods. As a solution we introduce a
positive semidefinite similarity function with the same intuitive appeal as
cross-correlation. An experimental evaluation in the astronomy domain
as well as several other data sets demonstrates the performance of the
kernel and related similarity functions.

1 Introduction

The concrete application motivating this research is the classification of stars into
meaningful categories from astronomy literature. A major effort in astronomy
research is devoted to sky surveys, where measurements of stars’ or other celestial
objects’ brightness are taken over a period of time. Classification as well as other
analyses of stars lead to insights into the nature of our universe, yet the rate at
which data are being collected by these surveys far outpaces current methods
to classify them. For example, microlensing surveys, such as MACHO [1] and
OGLE [2] followed millions of stars for a decade taking one observation per night.
The next generation panoramic surveys, such as Pan-STARRS [3] and LSST [4],
will begin in 2009 and 2013, respectively, and will collect data on the order of
hundreds of billions of stars. It is unreasonable to attempt manual analysis of
this data, and there is an immediate need for robust, automatic classification
methods.

It is this need that we address directly with our first contribution: the foun-
dation of an automatic methodology for classifying periodic variable stars where

W. Buntine et al. (Eds.): ECML PKDD 2009, Part II, LNAI 5782, pp. 489–505, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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a star is variable if its brightness varies over time, and periodic if the variance in
brightness is periodic over time. In the data sets taken from star surveys, each
example is represented by a time series of brightness measurements, and differ-
ent types of stars have different periodic patterns. Fig. 1 shows several examples
of such time series generated from the three major types of periodic variable
stars: Cepheid, RR Lyrae, and Eclipsing Binary. In our experiments only stars
of the types in Fig. 1 are present in the data, and the period of each star is
given. A complete solution will automatically process an entire survey, of which
a small percentage will be periodic variable stars. We are actively working on
automatic methods for filtering out non-periodic variables and for identifying
period, however these are outside the scope of this paper. We use the existing
OGLEII periodic variable star catalog [5] to show that our classification method
achieves > 99% accuracy once such processing and filtering has been done.

As our second contribution we present several insights into the use of the cross-
correlation function as a similarity function for time series. Cross-correlation
provides an intuitive mathematical analog of what it means for two time series
to look alike: we seek the best phase alignment of the time series, where the
notion of alignment can be captured by a simple Euclidean distance or inner
product. We show that cross-correlation is “almost” a kernel in that it satisfies
the Cauchy-Schwartz inequality and induces a distance function satisfying the
triangle inequality. Therefore, fast indexing methods can be used with cross-
correlation for example with the k-Nearest Neighbor algorithm [6]. We further
show that although every 3 × 3 similarity matrix is positive semidefinite, some
4 × 4 matrices are not and therefore cross-correlation is not a kernel and not
generally applicable with kernel methods.
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Fig. 1. Examples of light curves of periodic variable stars. Each column shows two
stars of the same type. Left: Cepheid, middle: RR Lyrae, right: eclipsing binary. Exam-
ples of the same class have similar shapes but are not phase aligned. Examples are a result
of folding a long sequence of observations leading to a noisy sample of one period of the
light curve. The y-axis labels represent brightness in magnitude units, which is an inverse
logarithmic scale (this is the convention in astronomy).



Kernels for Periodic Time Series Arising in Astronomy 491

As our final contribution we introduce a positive semidefinite similarity func-
tion that has the same intuitive appeal as cross-correlation. We investigate the
performance of our kernel on other data sets, both real and artificial, showing
excellent performance. We show instances where the kernel outperforms all other
methods as well as instances where a simple universal phasing algorithm per-
forms comparably. Our investigation reveals that our kernel performs better than
cross-correlation and that the ability to use Support Vector Machines (SVM) [7]
with our kernel can provide a significant increase in performance.

The remainder of the paper is organized as follows. Section 2 investigates
properties of cross-correlation, and Sect. 3 introduces the new kernel function.
Related work is discussed in Sect. 4. We present our experiments and discuss
results in Sect. 5. Finally, the concluding section puts this work in the larger
context of fully automatic processing of sky surveys.

2 Cross-Correlation

Our examples are vectors in IRn but they represent an arbitrary shifts of periodic
time series. We use the following notation: y+s refers to the vector y shifted by s
positions, where positions are shifted modulo n. We then use the standard inner
product between shifted examples

〈x, y+s〉 =
n∑

i=1

xi(y+s)i.

We define the cross-correlation between x, y ∈ IRn as

C(x, y) = max
s
〈x, y+s〉.

In the context of time series, computing the cross-correlation corresponds to
aligning two time series such that their inner product, or similarity, is maximized.

2.1 Properties of Cross-Correlation

We first show that cross-correlation has some nice properties making it suitable
as a similarity function:

Theorem 1

(P1) C(x, x) = 〈x, x〉 ≥ 0.
(P2) C(x, y) = C(y, x).
(P3) The Cauchy-Schwartz Inequality holds, i.e. ∀x, y, C(x, y) ≤√

C(x, x)C(y, y).
(P4) If we use the cross-correlation function to give a distance measure d such
that

d(x, y)2 = C(x, x) + C(y, y)− 2C(x, y) = min
s
‖x− (y+s)‖2

then d satisfies the Triangle Inequality.
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In other words cross-correlation has properties similar to an inner product, and
can be used intuitively as a similarity function. In particular, we can use metric
trees and other methods based only on the triangle inequality [8,6] to speed up
distance based algorithms using cross-correlation.

Proof. For (P1) note that by definition C(x, x) ≥ 〈x, x〉. On the other hand,
C(x, x) =

∑
xixi+s, and by the Cauchy-Schwartz inequality,

∑
xixi+s ≤

√∑
x2

i

√∑
x2

i+s =
√∑

x2
i

√∑
x2

i = 〈x, x〉. (1)

Which means 〈x, x〉 ≥ C(x, x) ≥ 〈x, x〉 or C(x, x) =〈x, x〉 ≥ 0.
To prove (P2) observe that since 〈x, y+s〉 = 〈x−s, y〉 = 〈x+(n−s), y〉 maximiz-

ing over the shift for y is the same as maximizing over the shift for x.
(P3) follows from K1 of Theorem 2 below (see Proposition 2.7 of [9]) but

we give a direct argument here. Let C(x, y) = 〈x, y+s〉 = 〈x, z〉, where s is the
shift maximizing the correlation and where we denote z = y+s. Then by (P1),√
C(x, x)C(y, y) =

√
〈x, x〉〈y, y〉 = ‖x‖‖y‖. Therefore the claim is equivalent to

‖x‖‖y‖ ≥ 〈x, z〉, and since the norm does not change under shifting the claim
is equivalent to ‖x‖‖z‖ ≥ 〈x, z〉 = C(x, y). The last inequality holds by the
Cauchy-Schwartz inequality for normal inner products.

Finally, for (P4) let x, y, z ∈ IRn. Let τab be the shift that minimizes d(a, b).

d(x, y) + d(y, z) = ‖(x+τxy)− y‖+ ‖(y+τyz)− z‖ (2)
= ‖(x+τxy+τyz )− (y+τyz )‖+ ‖(y+τyz)− z)‖ (3)
≥ ‖(x+τxy+τyz )− (y+τyz ) + (y+τyz )− z‖ (4)
= ‖(x+τxy+τyz )− z‖ (5)
≥ ‖(x+τxz)− z‖ = d(x, z) (6)

Where (3) holds because shifting x and y by the same amount does not change
the value of ‖x − y‖, (4) holds because of the triangle inequality, and (6) holds
because by definition τxz minimizes the distance between x and z. � 

Since cross-correlation shares many properties with inner products it is natural
to ask whether it is indeed a kernel function. We show that, although every 3x3
similarity matrix is positive semidefinite, the answer is negative.

Theorem 2

(K1) Any 3× 3 Gram matrix of the cross-correlation is positive semidefinite.
(K2) The cross-correlation function is not positive semidefinite.

Proof. Let x1, x2, x3 ∈ IR, G a 3×3 matrix such that Gij = C(xi, xj), c1, c2, c3 ∈
IR. We prove K1 by showing Q =

∑3
i=1

∑3
j=1 cicjGij ≥ 0.
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At least one of the products c1c2, c1c3, c2c3 is non-negative. Assume WLOG that
c2c3 ≥ 0 and shift x2 and x3 so that they obtain the maximum alignment with
x1, calling the shifted versions x̃1, x̃2, x̃3 noting that x̃1 = x1. Now C(xi, xj) =
〈x̃i, x̃j〉 except possibly when (i, j) = (2, 3), so

3∑
i=1

3∑
j=1

cicjGij =
3∑

i=1

3∑
j=1

cicj〈x̃i, x̃j〉+ 2c2c3(C(x̃2, x̃3)− 〈x̃2, x̃3〉)

≥
3∑

i=1

3∑
j=1

cicj〈xi, xj〉 ≥ 0

since c2c3 ≥ 0 and C(x̃2, x̃3) ≥ 〈x̃2, x̃3〉 by definition.
The negative result, K2, is proved is by giving a counter example. Consider

the matrix A and the row-normalized A′

A =

⎛⎜⎜⎝
0 1 2
1 0 0
2 1 2
0 2 1

⎞⎟⎟⎠A′ =

⎛⎜⎜⎝
0 0.4472 0.8944
1 0 0
0.6667 0.3333 0.6667
0 0.8944 0.4472

⎞⎟⎟⎠
where each row is a vector of 3 dimensions. This illustrates a case where we have
4 time series, each with 3 samples and the time series are normalized. Using the
cross-correlation function on A′, we would get the following Gram matrix

G =

⎛⎜⎜⎝
1 0.8944 0.8944 0.8
0.8944 1 0.6667 0.8944
0.8944 0.6667 1 0.8944
0.8 0.8944 0.8944 1

⎞⎟⎟⎠
G has a negative eigenvalue of −0.0568 corresponding to the eigenvector c =
(−0.4906, 0.5092, 0.5092,−0.4906) and therefore G is not positive semidefinite.
In other words cGc′ =

∑4
i=1

∑4
j=1 cicjGij = −0.0568. � 

3 A Kernel for Periodic Time Series

Since the cross-correlation function is not positive semidefinite, we propose an
alternative kernel function that can be used in place of the cross-correlation
function with kernel methods. To motivate our choice consider first the kernel

K(x, y) =
n∑

i=1

n∑
j=1

〈x+i, y+j〉.

Note that here K iterates over all possible shifts, so that we no longer choose the
best alignment but instead aggregate the contribution of all possible alignments.
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This seems to lose the basic intuition behind cross-correlation and it is indeed
not a good choice. On closer inspection we can see that

K(x, y) = (x+1 + x+2 + . . . + x+n)y+1 + . . . + (x+1 + x+2 + . . . + x+n)y+n

= (
n∑

i=1

x+i)(
n∑

j=1

y+j).

So K just calculates the product of the sums of the shifted vectors. In particular,
if the data is normalized as mentioned above then this is identically zero.

Instead our kernel weights each shift with exponential function so that shifts
with high correlation are highly weighted and shifts with low correlation have
smaller effect.

Definition 1. The kernel function K : IRn × IRn → IR is defined as

K(x, y) =
n∑

i=1

eγ〈x,y+i〉 (7)

where γ ≥ 0 is a constant.

Thus like cross-correlation the value of the kernel will be dominated by the max-
imizing alignment although the number of “good alignments” is also important.
In this way we get positive semidefinite kernel while having the same guiding
intuition as cross-correlation. Exponential weighting of various alignments of
time series has been proposed previously in [10]. Despite the similarity in the
construction, the proof of positive semidefiniteness in [10] does not cover our
case as their set of alignments is all possible time warpings under a fixed phase
and does not allow for circular shifting. Similar ideas to weight different matches
exponentially have also been explored in kernels for multi-instance problems [11].

Theorem 3. K is a positive semidefinite kernel.

Proof. Consider the following function

K ′(x, y) =
n∑

i=1

n∑
j=1

eγ〈x+i,y+j〉.

By [12], K ′(x, y) is a convolution kernel. This can be directly shown as follows.
First rewrite K ′ as

K ′(x, y) =
∑

a∈R−1(x)

∑
b∈R−1(y)

eγ〈a,b〉 (8)

where R−1(x) gives all shifts of x. It is well known that the exponential function
eγ〈x,y〉 is a kernel [9]. Let Φ(x) be the underlying vector representation of the
this kernel so that eγ〈x,y〉 = 〈Φ(x), Φ(y)〉. Then

K ′(x, y) =
∑

a∈R−1(x)

∑
b∈R−1(y)

〈Φ(a), Φ(b)〉 = 〈(
∑

a∈R−1(x)

Φ(a)), (
∑

b∈R−1(y)

Φ(b))〉

(9)
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Thus K ′ is an inner product in the same vector space captured by Φ with the
map being the aggregate of all elements in R−1(x).

Note that K ′(, ) iterates over all shifts of both x and y, hence effectively
counting each shift n times. For example, observe that for the identity shift, we
have 〈x, y〉 = 〈x+1, y+1〉 = . . . = 〈x+(n−1), y+(n−1)〉. Hence we need to scale K ′

by 1/n in order to count each shift exactly once. This gives us

K(x, y) =
1
n

n∑
i=1

n∑
j=1

eγ〈x+i,y+j〉.

Since scaling a kernel (i.e. K ′) is also a kernel, K is a kernel. � 

Previous work [13] has shown that cross-correlation can be calculated in time
O(n log n) where n is the length of the time series. In particular they show
that 〈x, y+s〉 = F−1(X · Ŷ)[s] where · indicates point-wise multiplication, X
is the discrete Fourier transform of x, and Ŷ is the complex conjugate of the
discrete Fourier transform of y. Therefore cross-correlation can be calculated as
C(x, y) = maxs F−1(X · Ŷ)[s] and using the fast Fourier transform we get the
claimed time bound. This easily extends to our kernel by calculating K(x, y) =∑

s e
F−1(X·Ŷ)[s] implying:

Proposition 1. K(x, y) can be calculated in time O(n log n).

Note that we need take the Fourier transform of each example only once. This gives
a significant practical speedup over the naive quadratic time implementation.

4 Related Work

The current discoveries from the microlensing surveys such as OGLE and MA-
CHO are predominantly transient objects such as gravitational microlensing,
supernovae etc., and some periodic variable stars [14,15]. Recent work on star
surveys introduced the application of semi-automatic classification techniques
for periodic variable stars based on simple selection criteria over the parameter
space indexed by average brightness, average difference in brightness between
two spectral regions, and period, e.g [16,17]. We refer to these three parame-
ters as explicit features. The semi-automatic methods require significant human
intervention and hence pose an imperfect solution for a survey of even tens
of millions of stars. An automatic approach has been proposed in [18]. This
approach extracts explicit features from the light curves and applies machine
learning methods in the resulting parameter space. Despite the similarity in
terms of automation, our approach is unique in that we use the shape of the
periodic time series to derive a similarity measure. Furthermore our approach is
not astronomy-specific and is applicable across a range of domains.

There are many existing approaches for processing and classifying time series.
A classical approach is to extract features of the time series, such as the Fourier
basis, wavelets, or Hermite basis representation, and then work directly in the
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resulting vector space,e.g. [19]. Another major approach models the time series
using a generative probabilistic model, such as Hidden Markov Models (HMM),
and classifies examples using maximum likelihood or MAP estimates [20]. Our
work falls into a third category: using similarity functions or distance measures
for time series data [21,22]. Various similarity functions for time series have been
proposed. Notably, Dynamic Time Warping (DTW) has been shown to be very
effective across a large number of applications [21,23]. Such similarity functions
are not phase invariant, hence they rely on a good universal phasing of the data.

Cross-correlation has been proposed precisely as an effective phase-invariant
similarity function for astronomy and has been used for anomaly detection [13]. It
is faster in runtime, O(n log n), than other methods that compute a maximum
phase-invariant alignment. The notion of phase-invariance similarity has also
been explored in the context of time series classification, specifically for time
series generated from 2-d shape contours. For example, [23] present a method
for applying any distance measure in a phase-invariant context. This allows for
the application of Dynamic Time Warping, for instance, to data that is phase-
invariant. While in general the run-time (O(n3)) is as bad as brute-force methods
such as in [24], they give experimental evidence that their heuristics lead to
much faster, run-times in practice. We extend the work in [13] by investigating
theoretical properties of cross-correlation and proposing a positive semidefinite
alternative.

Several alternative approaches for working with non-positive semidefinite sim-
ilarity measures exist in the literature. The simplest approach is just to use the
(non-PSD) similarity function with SVM and hope for good results. Our ex-
periments in the next section show that this does not always yield the desired
performance. Another common alternative is to add a diagonal term λI to the
gram matrix in order to render it positive semidefinite. More recent approaches
reformulate the SVM optimization to account for the potential non-PSD ker-
nel [25,26]. Finally, [27] show that a similarity function that meets some general
requirements can be used to project examples into an explicit feature space in-
dexed by their similarity to a fixed set of examples, and that this preserves some
useful learnability properties. Unlike these generic methods, our work gives an
explicit kernel construction that is useful for the time series domain.

There is significant overlap between the domain of time series classification
and 2-d shape matching [23]. This is in part because a popular method for
representing 2-d shapes is to create a time series from the contour of the shape.
Shape classification has its own domain-specific approaches and it is beyond the
scope of this paper to examine them. Nevertheless we note that shape matching
is an example of a phase-invariant time series classification problem, and in fact
we will present experiments from this domain.

The general issue of “maximizing alignment” appears repeatedly in work on
kernels for structured objects. Dynamic Time Warping is a classic (non-positive
semidefinite) example where we maximize alignment under legal potential warp-
ing of the time axes. A general treatment of such alignments, characterizing when
the result is a kernel, is developed by [28]. Their results do not cover the case of
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cross-correlation, however. A similar alignment idea has been used for graph ker-
nels in the application of classifying molecules, where each molecule can be seen
as a graph of atoms and their bonds [29,30,31]. Here a base kernel is introduced
between pairs of nodes in the two graphs. Then one can define a convolution ker-
nel between the graphs using an equation similar to (8) where the sum ranges
over all nodes in the graph [29,30]. Note that this approach does not maximize
alignments, but sums over all possible alignments. A non-positive semidefinite
alternative is to maximally align the two molecules by pairing their atoms in
a one-to-one manner [31]. A major question is whether one could define an ef-
ficiently computable exponentially weighted version of such a (non-maximizing
but PSD) graph kernel. One can show that this problem is closely related to
calculating the permanent, a problem well known to be computationally hard
[32,33]. As it is a special case of the permanent problem, however, where edge
weights are related through the kernel function, it may be possible to calculate
efficiently.

5 Experiments

In the following sets of experiments we demonstrate the performance of
cross-correlation and our kernel in the context of phase-invariant time series
classification.

For real-world data we use time series from astronomy surveys, and time series
generated from contours of 2-d images. For artificial data, we generate examples
that highlight the importance of phase invariance in an intuitive fashion. We
use the same pre-processing for all time series, unless otherwise noted. The time
series are smoothed as in [13,34], linearly-interpolated to 1024 evenly spaced
points, and normalized to have mean of 0 and standard deviation of 1.

In all experiments we use the LIBSVM [35] implementation of SVM [7] and
k-Nearest Neighbors (k-NN) to perform classification. For LIBSVM, we choose
the “one-versus-one” multiclass setting, and we do not optimize the soft-margin
parameter, instead using the default setting. For k-NN, we choose k = 1 follow-
ing [23], who have published results on the shape data used in this paper1. When
we use explicit features, we use a linear kernel. When we use cross-correlation or
our kernel in addition to explicit features, we simply add the result of the inner
product of the explicit features to the value of the cross-correlation or kernel2.

We use five different similarity functions in our experiments: Euclidean Dis-
tance (ED) returns the inner product of two time series. The Universal Phasing
(UP) similarity measure uses the method from [13] to phase each time series

1 We reproduce their experiments as opposed to reporting their results in order to
account for the different splits when cross-validating; our results do not differ signif-
icantly from those reported in [23].

2 Another approach would be to perform multiple kernel learning [36] with one kernel
being the cross-correlation and the other the inner product of the explicit features.
However, this issue is orthogonal to the topic of the paper so we use the simple
weighting.
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according to the sliding window on the time series with the maximum mean,
and then behaves exactly like Euclidean Distance. We use a sliding window size
of 5% of the number of original points; the phasing takes place after the pre-
processing explained above. In all experiments where we use K as in Equation 7,
we do parameter selection by performing 10-fold cross-validation on the training
set for each value of γ in (1, 5, 10, 15, 25, 50, 80), then re-train using the value of γ
that gave best average accuracy on the training set. When we use Dynamic Time
Warping (DTW), we use the standard algorithm and do not restrict the warp-
ing window [21]. Finally we note that although cross-correlation is not positive
semidefinite, we can in practice use it on some data sets with SVM.

In the first set of experiments we run on the OGLEII data set [5]. This data set
consists of 14087 time series (light curves) taken from the OGLE astronomical
survey. Each light curve is from one of three kinds of periodic variable star :
Cepheid, RR Lyrae (RRL), or Eclipsing Binary (EB). We run 10-fold cross-
validation over the entire data set, using the cross-correlation (CC), our kernel
(K), and Universal Phasing (UP). The results, shown in the left top three rows
of Tab. 1, illustrate the potential of the different similarities in this application.
We see significant improvements for both cross-correlation and the kernel over
Universal Phasing. We also see that the possibility to run SVM with our kernel
leads to significant improvement over cross-correlation.

While the results reported so far on OGLEII are good, they are not suffi-
cient for the domain of periodic variable star classification. Thus we turn next
to improvements that are specific to the astronomy domain. In particular, the
astronomy literature identifies three aggregate features that are helpful in vari-
able star classification: the average brightness of the star, the color of the star
which is the difference in average brightness between two different spectra, and
the period of the star, i.e. the length of time to complete one period of brightness
variation [16,17]. The right side of Tab. 1 gives the results when these features
are added to the corresponding similarities. The features on their own yield very
high accuracy, but there is a significant improvement in performance when we
combine the features with cross-correlation or the kernel. Interestingly, while
Universal Phasing on its own is not strong enough, it provides improvement
over the features similar to our kernel and cross-correlation. Notice that a per-
formance gain of 2% is particularly significant in the domain of astronomy where
our goal is to publish such star catalogs with no errors or very few errors. The
left confusion matrix in Tab. 2 (for SVM with our kernel plus features) shows
that we can get very close to this goal on the OGLEII data. To our knowledge
this is the first such demonstration of the potential of applying a shape match-
ing similarity measure in order to automatically publish clean star catalogs from
survey data. In addition, based on our domain knowledge, some of the errors
reported in the left of Tab. 2 appear to be either mis-labeled or borderline cases
whose label is difficult to determine.

In addition to classification, we show in Tab. 2 that the confidences produced
by the classifier are well ordered. Here we do not perform any calibration and
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Table 1. Accuracies with standard deviation reported from 10-fold cross-validation on
OGLEII using various kernels and the cross-correlation

1-NN SVM 1-NN SVM
CC 0.844 ± 0.011 0.680 ± 0.011 features + CC 0.991 ± 0.002 0.998 ± 0.001
K 0.901 ± 0.008 0.947 ± 0.005 features + K 0.992 ± 0.002 0.998 ± 0.001
UP 0.827 ± 0.010 0.851 ± 0.006 features + UP 0.991 ± 0.002 0.997 ± 0.001

features 0.938 ± 0.006 0.974 ± 0.004

Table 2. Three confusion matrices for OGLEII, using SVM with K and features. From
left to right we reject none, then the lowest 1%, 1.5% and 2%.

Ceph EB RRL Ceph EB RRL Ceph EB RRL Ceph EB RRL
Cepheid 3416 1 13 3382 1 3 3363 1 3 3352 1 0
EB 0 3389 0 0 3364 0 0 3342 0 0 3312 0
RRL 9 0 7259 1 0 7195 0 0 7166 0 0 7138

simply take the raw output of each of the 3 hyperplanes learned by the SVM3.
To calculate the confidence in label 1, we add the raw output of the 1v2 (the
classifier separating class 1 from class 2) and 1v3 classifiers. To calculate the
confidence in label 2 we add the negative output of the 1v2 hyperplane and the
output of the 2v3 hyperplane, etc. We can then reject the examples that received
the lowest confidences and set them aside for review. When we reject the lowest
1%, for example, we reject all but 5 errors, showing that almost all of our errors
have low confidences. We now have reason to believe that, when we classify a
new catalog, we can reliably reject a certain percentage of the predictions that
are most likely to be errors. The rejected examples can either be ignored or set
aside for human review.

In the next set of experiments we use five shape data sets: Butterfly, Arrowhead,
Fish, Seashells introduced in [23], as well as the SwedishLeaf data set [38]4. These
data sets were created by taking pictures of objects and creating a time series by
plotting the radius of a line anchored in the center of the object as it rotates around
the image [23]. As all of the pictures have aligned each object more or less along a
certain orientation, we randomly permute each time series prior to classification
in order to eliminate any bias of the orientation. The identification of objects from
various orientations is now cast as a phase-invariant time series problem.

A natural and relatively easy problem is to use a classifier to separate the
different image types from each other. In this case we attempt to separate but-
terflies, arrowheads, seashells, and fish. We refer to this data set as Intershape5.

3 While there are several methods in the literature to produce class-membership prob-
abilities from SVM output [37], exploratory experiments could not confirm the re-
liability of these probabilities for our data. Therefore we chose to use the simple
method based on raw SVM output.

4 Detailed Information available via www.cs.ucr.edu/~eamonn/shape/shape.htm
5 We treat the SwedishLeaf set differently because it has a different resolution and is

not part of the same overall shape data set.
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Table 3. Number of examples in each data set. For those data sets that were filtered
to include 20 examples of each class, the number of examples post-filtering appears
after the ‘/’.

Num Examples Num Classes Majority Class
Arrowhead 558/474 9 0.19
Butterfly 754/312 5 0.39
Intershape 2511 4 0.30
SwedishLeaf 1125 15 0.07

We also investigate the potential to separate sub-classes of each shape type. The
SwedishLeaf data has already been labeled before, and hence the sub-classes
are already identified. For the other data sets that have not been explicitly la-
beled by class before, we generate labels as follows: for the Butterfly and Fish
data set, we consider two examples to be the same class if they are in the
same genus. For the Arrowhead data set, we consider two arrowheads to be
the same type if they share the same type name, such as “Agate Basin”, or
“Cobbs.” In order to make the results more statistically robust, we eliminate
sub-types for which there exist fewer than 20 examples. Seashells and Fish have
too few examples when processed in this way and are therefore only used in the
Intershape data set. A summary of the data sets, including number of exam-
ples and majority class probability (that can be seen as a baseline) are given
in Tab. 3.

For these experiments we calculate no explicit features. We run 10-fold cross-
validation using k-NN with cross-correlation (1-NN CC), the kernel (1-NN K),
Dynamic Time Warping (1-NN DTW), Universal Phasing (1-NN UP) and SVM
with the kernel (SVM K), Universal Phasing (SVM UP), and Euclidean distance
(SVM ED). The results are given in Tab. 4. We also tried using 1-NN with
Euclidean Distance, but the performance was not competitive with any of the
other methods so we do not include it in the comparison.

The results demonstrate that both cross-correlation and the kernel provide a
significant performance advantage. It is not surprising that DTW does not do
well since it only considers the one given random phasing of the data. Rather,
it is surprising that it does not perform worse on this data. The only way it
can expect to perform well with k-NN is if, by chance, for each example there
is another example of the same class that happens to share roughly the same
phase. In a large enough data set, this can happen, and this may explain why
DTW does much better than random guessing. It is interesting that SVM does
not always dominate k-NN and does very poorly on SwedishLeaf. It may be that
the data are linearly inseparable but there are are enough examples such that
virtual duplicates appear in the data allowing 1-NN to do well.

Another interesting observation is that while Universal Phasing never outper-
forms all methods it does reasonably well across the domains. Recall that this
method phases the time series according to the maximum average brightness of
a sliding window. This finds a “maximum landmark” in the data for alignment
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Table 4. Performance on various shape data sets. All results are cross-validated. Data
set names: A = arrowhead, B = butterfly, I = intershape, S = Swedish.

1-NN CC 1-NN K 1-NN DTW 1-NN UP SVM ED SVM UP SVM K
A 0.54 ± 0.06 0.54 ± 0.08 0.33 ± 0.06 0.49 ± 0.05 0.2 ± 0.05 0.41± 0.05 0.63± 0.04
B 0.73 ± 0.04 0.73 ± 0.04 0.59 ± 0.08 0.70 ± 0.07 0.4 ± 0.1 0.65± 0.08 0.76± 0.08
I 0.98 ± 0.01 0.98 ± 0.01 0.84 ± 0.03 0.97 ± 0.02 0.47 ± 0.03 0.8± 0.02 0.91± 0.02
S 0.84 ± 0.03 0.82 ± 0.03 0.48 ± 0.06 0.78 ± 0.04 0.08 ± 0.03 0.18± 0.03 0.33± 0.04

and is obviously not guaranteed to be informative of the class in every case.
Nevertheless, it works well on the Butterfly and Intershape data sets showing
that this type of landmark is useful for them.

As we show in the next set of experiments with artificial data, it is easy to
construct examples where Universal Phasing will fail. We generate two classes
of time series. Each example contains 1024 points. Class 1 is a multi-step func-
tion with one set of four steps beginning at time 0, as well as one spike placed
randomly. Class 2 is also a multi-step function but with two sets of two steps,
the first at time 0 and the second at time 665 (roughly 65% of the entire time
series) and one random spike exactly as in class 1. We show two examples of
each class in Fig. 2. We generate 10 disjoint training sets containing 70 ex-
amples and test sets containing 30 examples for cross-validation. We keep the
training set small to avoid clobbering the results by having near-identical exam-
ples. In these experiments we normalize as above, however we do not perform
smoothing.

For this type of data the random spike will always be in the center of the
largest magnitude sliding-window, and hence Universal Phasing will phase each
time series according to the random location of the spike. In a real world setting,
the random spike could be sufficiently wide noise period in the signal, or any
irrelevant feature of the time series. This is key to understanding the strength
of our method: if it is easy to find a global shifting such that each example
is maximally correlated with every other, our method performs identically to
Euclidean Distance. On the other hand, when a global shift is not trivial to find,
our method succeeds where a Universal Phasing algorithm fails. To illustrate
further the performance potential of the kernel we create a second version of the
data where we add noise to the labels by flipping the label of each example with
probability of 0.1. When the data are completely or nearly separable, both k-NN
and SVM should attain close to 100% accuracy. The noise changes the domain
to make it harder to get this level of performance.

The results are shown in Tab. 5. As we expected, Universal Phasing does quite
poorly in this setting. With no noise, 1-NN with cross-correlation, 1-NN with
our kernel, and SVM with our kernel attain almost 100% accuracy. The results
with noisy data show that SVM with our kernel is more robust to noise than
1-NN with cross-correlation or our kernel.
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Fig. 2. Examples of artificial data. The left two examples are from class 1, the right
two example are from class 2.

Table 5. Results on artificial data

1-NN CC 1-NN K 1-NN UP SVM UP SVM K
Artificial 0.99± 0.02 1.00 ± 0.00 0.65 ± 0.04 0.50 ± 0.07 0.997 ± 0.001
Artificial w/ Noise 0.84± 0.14 0.84 ± 0.12 0.61 ± 0.09 0.53 ± 0.12 0.90 ± 0.05

6 Conclusion

On the OGLEII data set we have shown a basis for a completely automatic star
classification algorithm. We have shown that cross-correlation is an effective sim-
ilarity measure for phase-invariant time series, we proved that cross-correlation
is not positive semidefinite, and we gave a positive semidefinite alternative, jus-
tifying its use in an experimental setting.

The work we have presented in the astronomy domain is a portion of our
continuing effort to build an “end-to-end” automatic classification system for
astronomy events. In particular we have used the work presented here to clas-
sify other star surveys such as MACHO. A complete star classification system
requires several modules in addition to the classification method we have demon-
strated here. For instance, the raw data from a survey contains no information
about the star other than its brightness measured at specific times. To classify
the star, we must first determine if it is variable, determine if it is periodic, and
find its period; only then can we finally classify it. What we have shown in this
paper represents the bulk of the classification portion. A manuscript detailing
a methodology for the complete task and results for the MACHO catalog is
currently in preparation.

As discussed in Sect. 4, using a computationally tractable approximation to
the maximum alignment has potential applications in the domain of classifying
graphs and other structured data. The main question is whether we can efficiently
calculate an exponential weighted approximation to a maximum alignment and
whether this would prove useful in an experimental setting.
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Abstract. The widely used K-means clustering deals with ball-shaped
(spherical Gaussian) clusters. In this paper, we extend the K-means clus-
tering to accommodate extended clusters in subspaces, such as line-
shaped clusters, plane-shaped clusters, and ball-shaped clusters. The
algorithm retains much of the K-means clustering flavors: easy to imple-
ment and fast to converge. A model selection procedure is incorporated
to determine the cluster shape. As a result, our algorithm can recognize
a wide range of subspace clusters studied in various literatures, and also
the global ball-shaped clusters (living in all dimensions). We carry ex-
tensive experiments on both synthetic and real-world datasets, and the
results demonstrate the effectiveness of our algorithm.

1 Introduction

Data clustering is useful to discover patterns in a large dataset by grouping
similar data points into clusters. Traditionally a cluster is viewed as a spherical
(ball-shaped) data distribution and therefore is often modeled with mixture of
Gaussians. For high dimensional data, sometimes an extended cluster may live in
a subspace with much smaller dimension, i.e., it deviates away from a spherical
cluster very significantly (Figures 1-5 in Section 5 illustrate various subspace
clusters). This type of subspace clusters is difficult to discover using traditional
clustering algorithms (e.g., K-means).

Here, we begin with an observation on the key difficulty of subspace clustering.
We believe the main difficulty with subspace clustering is the exact definition of
clusters. If a cluster lives in a subspace, but is not extended significantly, this type
of clusters can be handled by traditional algorithms such as K-means. However,
if a cluster has an extended size in limited dimensions, (e.g., an extended plane
in 5-dimensional space), it becomes a subspace cluster. Thus the difficulty is how
to model an extended cluster.

In this paper, we propose a new clustering algorithm to handle clusters with
extended shapes. Our approach is a distance-minimization based approach, much
like the standard K-means clustering algorithm. This approach can be cast in
the framework of mixture clustering with Expectation and Maximization steps.

In the following, we discuss the related work in Section 2. In section 3 we propose
several distance minimization based models to describe extended cluster objects
and derive the optimal solutions to these cluster models (Sections 3.2-3.5). We
discuss the model selection issue in section 3.6. Extensive illustrative examples
are given in Section 4.

W. Buntine et al. (Eds.): ECML PKDD 2009, Part II, LNAI 5782, pp. 506–521, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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One strong feature of our K-subspace algorithm is that it also accommodates
ball-shaped clusters which live in all dimensions, in addition to the subspace
clusters. In other words, our K-subspace algorithm is a comprehensive clustering
algorithm, in contrast to many previous subspace clustering algorithms which
are specifically tailored to find subspace clusters.

Clusters come in all shapes and sizes. Consider an elongated ball cluster which
is in-between a line-shaped cluster and a ball-shaped cluster. Our algorithm tries
to model it in both ways and automatically determine the best way to model it.
An algorithm specifically designed for seeking subspace clusters would have to
incorporate certain threshold to define whether it meets the criteria for subspace.
This specific subspace clustering search algorithm goes in contradiction to the
unsupervised nature of clustering.

Our K-subspace algorithm, on the other hand, retains much of the usual unsu-
pervised learning. It is an extension of K-means algorithm for incorporating the
capability to handle subspace clusters. For these reasons, we run our algorithm
on an extensive list of datasets and compare with many existing clustering algo-
rithms. Results are presented in Section 5. The new algorithm outperforms many
existing algorithms, due to its capability to model a larger number of different
cluster shapes. Conclusions are given in Section 6.

2 Related Work

Current study of subspace clustering mainly follows two general approaches [20].:
(1) bottom-up search methods such as Clique [3], enclus [6], mafia [14], cltree [18],
and DOC [21]; and (2) top-down search methods including COSA [13], Proclus
[1], ORCLUS [2], Findit [25], and δ-clusters [27]. The bottom-up approaches use
the monotonicity of density to prune subspaces by selecting those subspaces with
densities above a given threshold, and they often cover clusters in various shapes
and sizes. However, the clustering results are much dependent on the density
threshold parameter, which can be very difficult to set properly. The top-down
approaches integrate clustering and subspace selection by multiple iterations of
selection and feature evaluation. The required iterations of clustering are very
expensive and often cause slow performance. In addition to the poor efficiency,
the top-down approaches are bad at finding hyper-spherical clusters due to the
nature of using cluster centers to represent similar instances. Other recent works
include GPCA [24], Oriented K-windows [23], Weighted K-means [30], adaptive
subspace clustering [17] etc.

Adaptive dimension reduction, which attempts to adaptively find the subspace
where clusters are most well-separated or well-defined, has also been proposed.
Recent work in [11] combines linear discriminant analysis (LDA) and K-means
clustering in a coherent way where K-means is used to generate cluster labels
and LDA is used to select subspaces. Thus the adaptive subspace selection is
integrated with the clustering process. Spectral clustering (e.g., Normalized Cut
algorithm) and nonnegative matrix factorization (NMF) are also able to discover
arbitrarily shaped clusters. It has been shown that spectral clustering can be
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viewed as a weighted version of Kernel K-means, and NMF is proved to be
equivalent to spectral clustering [10].

In our work, we extend K-means algorithm to K-subspace algorithm, which
handles not only clusters living in all dimensions but also subspace clusters,
while retaining the simple and fast implementation of K-means clustering.

3 K-Subspace Clustering Model

3.1 The Distance Minimization Clustering Model

The distance minimization clustering model can be represented as:

min
H,θ

n∑
i=1

[
min

1≤k≤K
Dist(xi, Ck)

]
(1)

where H is the cluster indicator matrix, θ is a parameter in the optimization,
xi is a data point, Ck is the k − th cluster, and

Dist(xi, Ck) = −logProb(xi; Ck).

Note Prob(xi;Ck) ≤ 1 and a common choice of the individual probability is the
full Gaussian distribution using Mahalanobis distance.

This minimization can be equivalently written as

min
{Ck}

J =
K∑

k=1

∑
i∈Ck

Dist(xi, Ck) (2)

Clearly for K-means clustering,

Dist(xi, Ck) = ||xi − ck||2 (3)

The K-subspace clustering model utilizes the distance minimization model. In
this paper we consider only linear subspaces: 1D line-shaped (rod-like) subspace,
2D plane-shaped (slab-like) subspace, etc. The model also accommodates the
ball-shaped clusters. Our main contribution here is to show that these subspace
cluster models can be rigorously defined and efficiently computed. To our knowl-
edge, this approach is novel and this type of analysis and results have not been
previously investigated and obtained.

3.2 Line-Shaped Clusters

How to represent a line-shaped cluster Ck? A line is defined by a point in space
and a unit direction. Let the point be ck and the unit direction be ak. A data
point x can be decomposed as a parallel component

x‖ = ak[aT
k (x− ck)]

and a perpendicular component

x⊥ = (x− ck)− x‖.
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We define the distance between the data point x and cluster Ck as the perpen-
dicular distance between the point and the line:

Dist(x, Ck) = ||x⊥||2 = ||x− ck − αak||2 (4)

where
α = (x− ck)T ak. (5)

Computing model parameters. Given a set of data points in the cluster, and
assuming they are described by a line, how do we compute the model parameters
(ck, ak)?

We minimize the total distance (dispersion) of the cluster:

min
ck,ak

∑
i∈Ck

Dist(xi, Ck) =
∑
i∈Ck

||xi − ck − αak||2 (6)

It turns out that the model parameters can be computed in a surprisingly simple
way:

Theorem 1. Let
X(k) = [x(k)

1 ,x
(k)
2 , ..., x(k)

nk
] (7)

be the data points in Ck. Compute the principal component analysis (PCA) of
them, and let u1 be the first principal direction. Let the centroid of Ck be

x̄(k) =
1
|Ck|

∑
i∈Ck

xi. (8)

Then the global optimal solution to the minimization problem of Eq.(6) is
given by

c = x̄(k), a = u1. (9)

Proof. We wish to minimize Eq.(6) which is

min
ck,ak

J1 =
∑

i∈Ck

||(I − aka
T
k )(xi − ck)||2 (10)

by substituting Eq.(5) into Eq.(6).
Using ||A||2 = Tr(ATA), we have

J1 = Tr
∑

i∈Ck

[(xi − ck)T (I − aka
T
k )T (I − aka

T
k )(xi − ck)] (11)

Because (I − akaT
k )T (I − akaT

k ) ≡ M is a semi-positive definite matrix, J1 is a
convex function of ck. Its global minima is given by the zero- gradient condition:

0 =
∂J1

∂ck

∑
i

2(Mck −Mxi)

Thus Mck = M x̄(k). Clearly,ck = x̄(k) is the solution. In general, M is non-
deficient andck = x̄(k) is the unique solution. When M is deficient, ck = x̄(k) is
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still a correct solution, but it is not the unique solution. Because ak is a unit
vector,(I − aka

T
k )T (I − aka

T
k ) = (I − aka

T
k ). Thus

J1 = Tr(I − aka
T
k )Σ,

where
Σ = [

∑
i∈Ck

(xi − ck)(xi − ck)T ]

is the sample covariance matrix. Now minimization for ak becomes

min
ak

J1 = Tr (I − aka
T
k )Σ = const− aT

k Σak (12)

This is equivalent to maxak aT
k Σak, whose solution is the first principle direction,

because Σ is the covariance matrix. �–

3.3 Plane-Shaped Clusters

A 2D plane is defined by a point in space and two unit directions. Let ck be the
point, and ak,bk be the two unit directions. A data point x can be decomposed
as a parallel component (lying inside the plane)

x‖ = ak[aT
k (x− ck)] + bk[bT

k (x− ck)]

assuming the two unit directions are orthogonal: aT
k bk = 0. And the perpendic-

ular component
x⊥ = (x− ck)− x‖.

We define the distance between the data point x and cluster Ck as the perpen-
dicular distance between the point and the plane:

Dist(x, Ck) = ||x⊥||2 = ||x− ck − αak − βbk||2 (13)

where
α = (x− ck)T ak, β = (x− ck)T bk. (14)

Clearly, we can extend this to 3D and higher dimensional subspace clusters.

Computing model parameters. Given a set of data points in the cluster. As-
suming they are described by a plane, how do we compute the model parameters
(ck, ak,bk)?

We minimize the dispersion (total distance) of the cluster:

min
ck,ak,bk

∑
i∈Ck

Dist(xi, Ck) =
∑
i∈Ck

||xi − ck − αak − βbk||2 (15)

As one might have expected, the solution is given by PCA.

Theorem 2. Compute the (PCA) of X(k) of Eq.(7) to obtain the first two
principal directions (u1,u1). Compute the centroid as in Eq.(8). The optimal
solution to Eq.(15) is given by

c = x̄(k), a = u1, b = u2. (16)
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Proof. We outline the proof here by pointing out the main difference from the
proof for Theorem 1.

We wish to minimize Eq.(15) which is

min
ck,ak,bk

J2 =
∑

i∈Ck

||(I − aka
T
k − bkb

T
k )(xi − ck)||2 (17)

by substituting Eq.(5) into Eq.(17). J2 can be written as

J2 =
∑
i∈Ck

Tr [(xi − ck)T BT B(xi − ck)] (18)

where
B = (I − aka

T
k − bkb

T
k )

Because BTB is a semi-positive definite matrix, J2 is a convex function of ck.
Its global minima is given byck = x̄(k).

Now focusing on (ak,bk). Since we restrict aT
k bk = 0,and BT B = B =

(I − aka
T
k − bkb

T
k ), the minimization over (ak,bk) becomes

min
ak,bk

J2 = Tr (I − aka
T
k − akb

T
k )Σ = const− aT

k Σak − bT
k Σbk (19)

The solution for ak is given by the first principal direction u1. Since aT
k bk = 0,

the solution for bk is given by the second principal direction u2. �–

3.4 3D and Higher Dimensional Planes

Clearly, we can model a subspace cluster using 3D and higher dimensional planes.
The same definitions using the perpendicular distances can be adopted and the
same computational algorithms using PCA can be easily generalized from 1D
and 2D cases.

We can use this in the reverse direction. Suppose we are given a set of data
points, and the question is which dimensions of the subspace cluster we should
choose?

According to Theorem 1 and Theorem 2, we compute PCA of the dispersion
and obtain eigenvalues and eigenvectors. If there is only one significant eigen-
value, this implies that the cluster is a 1D (line-shaped) subspace cluster, then
we set ak = u1. If there are only two significant eigenvalues, it implies that
the cluster is a 2D (plane-shaped) subspace cluster, then we set ak = u1 and
bk = u2.

In general, if there are k significant eigenvalues, then the cluster is likely a
k-dimensional (kD plane) subspace cluster. For this cluster, we need k vectors
(kp parameters, where p = dimension of data space) to describe it.

However, to keep the simplicity of cluster modeling to prevent overfitting
with too many parameters, we restrict the cluster dimensions to 2. For higher
dimensions, we use a spherical cluster to describe the cluster, instead of using
the high-dimensional planes which have much more parameters.
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3.5 Spherical Clusters

Although Gaussian mixtures using the EM algorithm can describe more com-
plicated clusters, in practice very often the much simpler K-means clustering
algorithm provides results as good as the mixture models.

This implies two fundamental facts in statistics: (S1) complex functions do
not necessarily perform better (mainly due to overfitting) and (S2) most clusters
are reasonably modeled by the spherical cluster model. In fact, clusters of any
shape can be modeled as spherical clusters if they are reasonably separated.

From (S1), we should not use too many parameters in describing a cluster.
From (S2), we should make use of spherical clusters as much as possible. These
two facts motivate us to consider spherical clusters more carefully, rather than
using 3D or higher dimensional plane-shaped clusters.

A spherical (ball-shaped) data cluster is a global cluster in the sense that it
exists in all dimensions. We adopt it as our K-subspace clustering because not
all clusters in a dataset are subspace clusters.

Then a natural question is: what is the distance between a data point and a
spherical cluster? We could use the distance to the cluster centroid

Dist(xi, Ck) = ||xi − ck||2 (20)

as in K-means clustering. If all clusters in the dataset are spherical clusters, the
problem is reduced to the usual K-means clustering.

However, we wish to measure the distance between a data point to the cluster,
not to the cluster center. In the case of the line-shaped cluster, the point-cluster
distance is the perpendicular distance, i.e., data point x to the closest data points
on the line. In the case of the plane-shaped cluster, the point-cluster distance is
the perpendicular distance, i.e., data point x to the closest data points on the
plane.

For these reasons, we define the point-cluster distance for spherical clusters to
be the distance between the data point and the closest data point on the sphere.
For this we introduce

Dist(xi, Ck) = max
(
0, ||xi − ck||2 − ησ2) (21)

where η ≥ 0 is an input parameter. This distance assumes that the data points
inside the cluster are located in the spherical surface of radius

√
ησk. Thus

Dist(xi, Ck) is the distance of a outside data point to this spherical surface.
Setting η = 1, assuming Gaussian distribution, there will be about 69% data
points inside this surface. Setting η = 0, the distance metric is reduced to the
distance to the cluster center. In practice, we set η + 0.2 ∼ 0.5.

Computing model parameters. To compute the model parameter ck, we
optimize the dispersion of Ck

min
ck

∑
i∈Ck

max
(
0, ||xi − ck||2 − ησ2

k

)
(22)
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which, by substituting the variance, is

min
ck

∑
i∈Ck

max

⎛⎝0, ||xi − ck||2 − η
∑

j∈Ck

||xj − ck||2
⎞⎠ (23)

The max(·) is not differentiable and thus difficult to handle analytically. We use
the following continuous function to handle it:

max(u, v) =
1
τ

lim
τ→∞

log(eτu + eτv) (24)

Thus we minimize
J3(ck) =

∑
i∈Ck

1
τ

lim
τ→∞

logf(τ, xi, ck) (25)

where

f(τ, xi, ck) = 1 + exp

⎛⎝τ ||xi − ck||2 − τ
η

n

∑
j∈Ck

||xj − ck||2
⎞⎠ (26)

Taking the derivative w.r.t. ck, we have

∂J3(ck)
∂ck

=
∑
i∈Ck

lim
τ→∞

2ef

1 + ef

⎛⎝ck − xi −
η

n

∑
j∈Ck

(ck − xj)

⎞⎠ (27)

Note

lim
τ→∞

2ef(·)

1 + ef(·) = 2 if ||xi − ck||2 >
η

n

∑
j∈Ck

||xj − ck||2 (28)

lim
τ→∞

2ef(·)

1 + ef(·) = 0 if ||xi − ck||2 <
η

n

∑
j∈Ck

||xj − ck||2 (29)

Thus we obtain

∂J3(ck)
∂ck

=
∑
x>

i

⎛⎝ck − xi −
η

n

∑
j∈Ck

(ck − xj)

⎞⎠ (30)

where x>
i denotes the points outside the sphere, i.e., they satisfy Eq.(28). Let

the center for averaging outside points be

x̄k
> =

⎛⎝∑
x>

i

xi

⎞⎠ / ⎛⎝∑
x>

i

1

⎞⎠ . (31)

The final solution to the optimization problem is

ck =
x̄k

> − η x̄k

1− η
(32)

where x̄k is the centroid of Ck. Clearly, as η → 0, x̄k
> → x̄k. Thus this result is

consistent.
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3.6 Model Selection and Computation

In our distance-minimization based clustering model, because we allow each
cluster to be modeled by different models, there is a model selection issue. Given
the data points in Ck as in Eq.(7), which model describes the data best?

We define the model dispersion as

Dispersion(ball) =
∑
i∈Ck

max(0, ||xi − ck||2 − ησ2
k),

Dispersion(line) =
∑
i∈Ck

||xi − ck − αiak||2,

Dispersion(plane) =
∑
i∈Ck

||xi − ck − αiak − βibk||2,

αi = (xi − ck)T ak, βi = (xi − ck)T bk;

We choose the model with the smallest dispersion.
Then we minimize the total distance via the fundamental EM algorithmic

approach. The two steps are the Cluster Assignment step (E-step) and Model
Estimation step (M-step). The Cluster Assignment step is estimating the poste-
rior probability for all data points belonging to different clusters. In our distance
minimization model, for every xi, we assign xi to the closest cluster Ck:

k = arg min
1≤k≤K

Dist(xi, Ck) (33)

With new assignments of {xi} to each cluster, in the model estimation step we
re-estimate the model parameters using the computational procedure described
in §2.1, §2.2 and §2.4.

4 Illustrative Examples

To demonstrate the effectiveness of the K-subspace clustering in extended clus-
ters, we give the following examples. In the following figures, points with different
colors belong to different clusters.

Two lines in 3-D space: 50 points along two straight lines are generated
randomly in 3-D space as shown in Figure 1(a).

A line and a 2-D plane in 3-D space: 50 points along a straight line and
300 points in a 2-D plane are generated randomly in the 3-D space as shown in
Figure 2(a).

Two 2-D planes in 3-D space: 300 points in each 2-D plane are generated
randomly in the 3-D space as shown in Figure 3(a).

A Line, a 2-D plane and a sphere in 3-D space: 50 points along a
straight line, 300 points in a 2-D plane, and 400 points in the surface of a sphere
are generated randomly in the 3-D space as shown in Figure 4a.

Four clusters in 3-D space: Points with four clusters, each of which exists
in just two dimensions with the third dimension being noise [20]. Points from two
clusters can be very close together, which confuses many traditional clustering
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Fig. 1. Example (I): Two Lines in 3-D Space
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Fig. 2. Example (II): Line-Plane in 3-D Space
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Fig. 3. Example (III): Plane-Plane in 3-D Space
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Fig. 4. Example (IV): Line-Plane-Ball in 3-D Space
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Fig. 5. Example (V): Four clusters in 3-D Space
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algorithms. The first two clusters exist in dimensions x and y. The data forms a
normal distribution with means 0.6 and -0.6 in dimension x and 0.5 in dimension
y, and standard deviations of 0.1. In dimension z, these clusters have μ = 0 and
σ = 1. The second two clusters are in dimensions y and z and are generated in
the same manner. The data is illustrated in Figure 5a.

As you can observe from these figures, K-means algorithm has difficulties in
dealing with subspace clusters. However, our K-subspace algorithm is a com-
prehensive clustering algorithm, which can recognize a wide range of subspace
clusters and is also able to discover the global sphere clusters.

5 Experimental Results

In this section, we conduct comprehensive experiments to evaluate the effective-
ness of the K-subspace clustering method. We use both synthetic datasets and
real-world datasets. The purpose of using synthetic data is that the detailed
cluster structures are known, hence we can evaluate K-subspace with different
factors such as cluster structures and sizes systematically. And we believe that
those cluster structures do exist in real world applications. We use accuracy [12]
and normalized mutual information (NMI) [22] as performance measures.

5.1 Experiments on Synthetic Datasets

Dataset Generation. Synthetic datasets are generated by using the algorithm
proposed by Milligan [15]. The clusters are non-overlapping and truncated mul-
tivariate normal mixtures. Subspace structures are embedded in the synthetic
datasets. Basically the dimension with clustering structures (called cluster di-
mensions) is created based on a cluster length chosen from a uniform distribu-
tion. The mean and standard deviation of the cluster on this dimension can be
derived from this cluster length. The dimension without clustering structures
(called noise dimensions) is created from a uniform distribution in some gener-
ated range. Thus cluster dimensions and noise dimensions are independent from
each other. The data points are assigned to the cluster if they are within 1.5
standard deviation of every cluster dimension of this cluster. The number of
points that are assigned to each cluster are determined as following: From the
range [a, a+d] where a, d > 0, we choose k numbers {P1, · · · , Pk} uniformly, and
k is the number of clusters. Then, the number of points belonging to the cluster
i is n Pi∑

j Pj
, where n is the total number of data points.

Results on Synthetic Datasets. Three sets of experiments are conducted
on synthetic datasets: (1) We fix the number of data points and dimensional-
ity and investigate the clustering performance of k-subspace as a function of the
number clusters. (2) We fix the number of clusters and dimensionality and inves-
tigate the clustering performance of K-subspace as a function of the number of
points. (3) We fix the number of clusters and points and investigate the clustering
performance of K-subspace as a function of the number of dimensionality.
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Fig. 6. Clustering performance comparison on synthetic dataset (I). Remark: the num-
ber of data points is 1000; the dimensionality of the data is 500; and the number of
clusters changes from 10 to 50.
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Fig. 7. Clustering performance comparison on synthetic dataset (II). Remark: the num-
ber of clusters is 30; the dimensionality of the data is 1000; and the number of data
points changes from 500 to 1500.
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Fig. 8. Clustering performance comparison on synthetic dataset (III). Remark: the
number of clusters is 30; the number of data points is 1000; and the dimensionality of
the data changes from 500 to 1500.

We compare the K-subspace clustering algorithm with three other algorithms:
(1) Standard K-means algorithm; (2) LDA-Km algorithm [11]: an adaptive sub-
space clustering algorithm by integrating linear discriminant analysis (LDA) and
K-means clustering into a coherent process. (3) PCA+K-means clustering algo-
rithm: PCA is firstly applied to reduce the data dimension followed by K-means
clustering. The results are shown in Figure 6, Figure 7, and Figure 8, respectively.
We observe that: (1) LDA-Km outperforms K-means and PCA+K-means since
it integrates adaptive subspace selection with clustering process. (2) K-subspace
outperforms LDA-Km and achieves the best results among all the methods. This
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is due to the fact that K-subspace clustering can recognize a wide range of sub-
space clusters and also global spherical clusters (living in all dimensions). (3) The
clustering performance of K-subspace clustering decreases gradually as the num-
ber of clusters increases (as in Figure 6), and its performance does not vary much
as the number of points and dimensions increase (shown in Figure 7 and Figure 8).

5.2 Experiments on Real-World Datasets

Dataset Description. We use a wide range of real-world datasets in our ex-
periments as summarized in Table 1. The number of classes ranges from 4 to
20, the number of samples ranges from 47 to 7494, and the number of dimen-
sions ranges from 9 to 1000. These datasets represent applications from different
domains such as information retrieval, gene expression data and pattern recog-
nition. The summary of the datasets is as follows: (1) Five datasets including
Digits, Glass, Protein, Soybean, and Zoo are from UCI data repository [5]. (2)
Five datasets including CSTR, Log, Reuters, WebACE, and WebKB are stan-
dard text datasets that have been frequently used in document clustering. The
documents are represented as the term vectors using vector space model. These
document datasets are pre-processed (removing the stop words and unnecessary
tags and headers) using rainbow package [19]. The dataset descriptions can be
found in [12].

Table 1. Dataset Descriptions

Datasets # Samples # Dimensions # Class
CSTR 475 1000 4
Digits 7494 16 10
Glass 214 9 7

Protein 116 20 6
Log 1367 200 8

Reuters 2900 1000 10
Soybean 47 35 4
WebACE 2340 1000 20
WebKB 4199 1000 4

Zoo 101 18 7

Results on Real Datasets. On the five datasets from UCI data repository, we
compare the K-subspace clustering algorithm with standard K-means algorithm,
LDA-Km algorithm, PCA+K-means clustering algorithm, and Spectral Cluster-
ing with Normalized Cuts (Ncut) [28]. We use normalized cut since it has been
shown that weighted Kernel K-means is equivalent to the normalized cut [8]. The
implementation of Ncut is based on [28] and the variance of the Gaussian similar-
ity is determined using local scaling as in [29]. The results are shown in Figure
9(a) and Figure 9(b). On the text datasets, besides the above three alterna-
tive clustering methods, we also compare K-subspace algorithm with the follow-
ing algorithms: (i) Non-negative Matrix Factorization (NMF) method [16]; (ii)
Tri-Factorization Method (TNMF) [12]; (iii) Euclidean co-clustering (ECC) and
minimum squared residue co-clustering (MSRC) algorithms [7]. Note that NMF
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Table 2. Clustering accuracy comparison on text datasets

K-means PCA+K-means LDA-Km K-Subspace ECC MSRC NMF TNMF Ncut
WebACE 0.4081 0.4432 0.4774 0.5158 0.4081 0.5021 0.4803 0.4996 0.4513

Log 0.6979 0.6562 0.7198 0.7696 0.7228 0.5655 0.7608 0.7527 0.7574
Reuters 0.436 0.3925 0.5142 0.6426 0.4968 0.4516 0.4047 0.4682 0.4890
CSTR 0.5210 0.5630 0.5630 0.6555 0.5945 0.6513 0.5945 0.6008 0.5435

WebKB 0.5951 0.6354 0.6468 0.8583 0.5210 0.5165 0.4568 0.6094 0.6040

(a) Accuracy (b) NMI

Fig. 9. Clustering comparison on UCI data

has been shown to be effective in document clustering [26] and Tri-Factorization
(TNMF) is an extension of NMF [12]. Both ECC and MSRC are document co-
clustering algorithms that are able to find blocks in a rectangle document-term
matrix. Co-clustering algorithms generally perform implicit dimension reduction
during clustering process [9]. The comparison results on text datasets are shown
in Table 2.

From the comparisons, we observe that: (1) On most datasets, PCA+K-
means outperforms K-means due to the pre-processing by PCA. (2) Co-clustering
algorithms (ECC and MSRC) generally outperform K-means since they are per-
forming implicit dimension reduction during the clustering process. (3) NMF
outperforms K-means on most datasets since NMF can model widely varying
data distributions due to the flexibility of matrix factorization as compared to the
rigid spherical clusters that the K-means clustering objective function attempts
to capture [10]. When the data distribution is far from a spherical clustering,
NMF has advantages over K-means. (4) TNMF provides a good framework for
simultaneously clustering the rows and columns of the input documents. Hence
TNMF generally outperforms NMF on text datasets. (5) The results of spectral
clustering (Ncut) is better than K-means. Note that spectral clustering can be
viewed as a weighted version of Kernel K-means and hence it is able to discover
arbitrarily shaped clusters. The experimental results of Ncut is similar to those
of NMF and TNMF. Note that it has also been shown that NMF is equivalent to
spectral clustering [10]. (6) K-subspace clustering outperforms the other meth-
ods on all datasets. The improvements on Soybean dataset, Reuters dataset, and
WebKB dataset are evident. The comparisons demonstrate the effectiveness of
K-subspace algorithm in modeling different subspaces in real-life datasets.

Besides the above experimental comparisons, we also test the sensitivity of the
parameter η introduced in Eq.(21). Figure 10 shows the clustering performance
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Fig. 10. Effects of η on glass dataset

as a function of η on glass dataset. Unlike many existing subspace clustering
methods as discussed in Section 2, whose performance largely depends on the
parameter tuning, and proper parameters setting in which sometimes are par-
ticularly difficult, we observe that the clustering performance of our K-subspace
algorithm is not very sensitive to the choice of the parameters.

6 Conclusion

We extend the K-means clustering algorithm to accommodate subspace clusters
in addition to the usual ball-shaped clusters. The optimal solutions to subspace
models can be efficiently computed using PCA. We demonstrate that the model
can capture most (if not all) of subspace clusters investigated so far. Running
on synthetic datasets and 10 real life datasets, the K-subspace algorithm out-
performs existing methods due to its increased capability of modeling clusters
of different shapes.
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Abstract. Co-clustering has emerged as an important technique
for mining contingency data matrices. However, almost all existing
co-clustering algorithms are hard partitioning, assigning each row
and column of the data matrix to one cluster. Recently a Bayesian
co-clustering approach has been proposed which allows a probability
distribution membership in row and column clusters. The approach
uses variational inference for parameter estimation. In this work, we
modify the Bayesian co-clustering model, and use collapsed Gibbs
sampling and collapsed variational inference for parameter estimation.
Our empirical evaluation on real data sets shows that both collapsed
Gibbs sampling and collapsed variational inference are able to find more
accurate likelihood estimates than the standard variational Bayesian
co-clustering approach.

Keywords: Co-Clustering, Graph Learning, Dirichlet Distribution.

1 Introduction

Co-clustering [2] has emerged as an important approach for mining dyadic and re-
lational data. Often, data can be organized in a matrix, where rows and columns
present a symmetrical relation. For example, documents can be represented as a
matrix, where rows are indexed by the documents, and columns by words. Co-
clustering allows documents and words to be grouped simultaneously: documents
are clustered based on the contained words, and words are grouped based on the
documents they appear in. The two clustering processes are inter-dependent.

Some researchers have proposed a hard-partition version [3], others a soft-
partition version [1] of co-clustering. In the hard-partition case, each row (col-
umn) is assigned to exactly one row (column) cluster. In the soft-partition case,
each row (column) has a probability of belonging to each row (column) cluster.

The Bayesian Co-Clustering (BCC) model proposed in [1] is a kind of genera-
tive model. BCC maintains separate Dirichlet priors for the distribution of row-
and column-clusters given rows and columns. To generate each entry in the data
matrix, the model first generates the row and column clusters of the current
entry according to this Dirichlet distribution. The value of the current entry is
then generated according to the corresponding row-cluster and column-cluster.
The advantage of a generative model is that it can be used to predict unseen
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data. Like the original Latent Dirichlet Allocation (LDA) [5] model, though, BCC
assumes uniform priors for the entry value distributions given row- and column-
clusters. The authors in [1] proposed a variational Bayesian algorithm to perform
inference and estimate the BCC model. A lower bound of the likelihood function
is learned and used to estimate model parameters.

In this work, we extend the BCC model and propose a collapsed Gibbs sam-
pling and a collapsed variational Bayesian algorithm for it. Following [5], first
we smooth the BCC model, by introducing priors for the entry value distribu-
tions given row- and column-clusters. Following [5], we call our approach Latent
Dirichlet Bayesian Co-Clustering (LDCC), since it assumes Dirichlet priors for
row- and column-clusters, which are unobserved in the data contingency matrix.
The collapsed Gibbs sampling and collapsed variational Bayesian algorithms we
propose can learn more accurate likelihood functions than the standard varia-
tional Bayesian algorithm [1]. This result is derived analytically for the collapsed
variational Bayesian algorithm. More accurate likelihood estimates can lead to
higher predictive performance, as corroborated by our experimental results.

The rest of the paper is organized as follows. In Section 2, we discuss re-
lated work. Section 3 introduces the LDCC model and the variational Bayesian
algorithm. We then discuss the collapsed Gibbs sampling and the collapsed vari-
ational Bayesian algorithms. Section 4 demonstrates our empirical evaluation of
the three methods. Finally, Section 5 summarizes the paper.

2 Related Work

Our work is closely related to [1], which we discuss in Section 3.1. Dhillon et
al. proposed an information-theoretic co-clustering approach (hard-partition) in
[3]. Shafiei et al. proposed a soft-partition co-clustering, called “Latent Dirichlet
Co-clustering” in [4]. The proposed model, though, does not cluster rows and
columns simultaneously. It first defines word-topics, i.e., groups of words, and
then defines document-topics, i.e., groups of word-topics. Documents are mod-
eled as mixtures of such document-topics. Thus, the resulting model is similar
to a hierarchical extension of the “Latent Dirichlet Allocation” [5] model, since
the defined document-topics are not groups of documents, but groups of word-
topics. Our LDCC model and BCC [1] model assume independence between
row-clusters and column-clusters, which is the same assumption as in [3].

Blei et al. proposed “Latent Dirichlet Allocation” (LDA) [5], which assumes
that topics are mixtures of words, and documents are mixtures of topics. A
standard variational Bayesian algorithm [5] is used to estimate the posterior
distribution of model parameters given the model evidence. Griffiths et al. used
a collapsed Gibbs sampling method to learn the posterior distribution of pa-
rameters for the LDA model [9]. Recently, Teh et al. proposed a collapsed varia-
tional Bayesian algorithm to perform model inference for LDA and “Hierarchical
Dirichlet Processing”[7,10].
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3 Latent Dirichlet Co-Clustering

In this section, we first introduce the LDCC model. We then discuss three dif-
ferent learning methods: variational Bayesian, collapsed Gibbs sampling, and
collapsed variational Bayesian. Table 1 gives a summary of the notation used.

Symbol Description
X data matrix
u index for row
v index for column
[u, v] entry of the matrix at row u and column v
xuv value for matrix entry at row u and column v
X entry value set
i index for row clusters
j index for column clusters
N1 number of rows
N2 number of columns
z1 row clusters
z2 column clusters
K1 number of row clusters
K2 number of column clusters
α1 Dirichlet prior hyperparameter for for rows
α2 Dirichlet prior hyperparameter for columns

β
Dirichlet prior hyperparameter for the probabilities of each entry value
given a row- and a column-clusters

π1 The probabilities of each row-cluster given each row
π2 The probabilities of each column-cluster given each column
θijxuv probability of entry value xuv give z1 = i and z2 = j
nijxuv number of entries with value xuv assigned to row cluster i and column cluster j
nui number of entries in row u assigned to row cluster i
nvj number of entries in column v assigned to column cluster j
nij number of entries in matrix assigned to row cluster i and column cluster j
nu number of entries in row u
nv number of entries in column v

Fig. 1. Notation used in this paper

Given an N1 × N2 data matrix X , the values xuv of each entry [u, v], u =
1, . . . , N1, v = 1, . . . , N2 are defined in a value set, xuv ∈ X . For co-clustering, we
assume there are K1 row clusters z1, and K2 column clusters z2. LDCC assumes
two Dirichlet priors1 Dir(α1) and Dir(α2) for rows and columns respectively,
α1 =< α1u |u = 1, . . . , N1 >, α2 =< α2v |v = 1, · · · , N2 >, from which the
probabilities of each row-cluster z1 and column-cluster z2 given each row u and
each column v are generated, denoted as π1u and π2v respectively. Row clusters
for entries in row u and column clusters for entries in column v are sampled
from multinomial distributions p(z1|π1u) and p(z2|π2v ) respectively. We denote
π1 =< π1u |u = 1, . . . , N1 >, π2 =< π2v |v = 1, . . . , N2 >, z1 =< z1uv |u =
1, . . . , N1, v = 1, . . . , N2 > and z2 =< z2uv |u = 1, . . . , N1, v = 1, . . . , N2 >,
where z1 and z2 are row- and column-cluster assignment for all entries in the
data matrix X . A row cluster z1 = i and a column cluster z2 = j together
1 In the rest of the paper, we assume symmetric Dirichlet priors, which means α1 and

α2 do not depend on u or v.
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N

N1 N2

K1K2

Fig. 2. Latent Dirichlet Bayesian Co-clustering Model

decide a co-cluster (z1, z2) = (i, j), and entries in the matrix are also sampled
from a multinomial distribution p(x|θz1,z2) given a co-cluster (z1, z2) = (i, j).
We denote θ =< θz1=i,z2=j |i = 1, . . . ,K1, j = 1, . . . ,K2 >. Here, z1 and z2 are
latent variables, while π1, π2 and θ are unknown parameters. The generative
process for the whole data matrix is as follows (see Figure 2):

– For each row u, choose π1u ∼ Dir(α1)
– For each column v, choose π2v ∼ Dir(α2)
– To generate the entry of row u and column v:

• choose z1uv ∼ p(z1|π1u), z2uv ∼ p(z2|π2v )
• choose θz1uv z2uv

∼ Dir(β)
• choose xuv ∼ p(x|z1uv , z2uv , θz1uv ,z2uv

).

The LDCC model proposed here departs from the BCC model [1] by introducing
a prior β for θz1z2 . Thus, LDCC can assign a probability to an unseen entry value
according to p(θz1,z2 |β).

The marginal probability of an entry x in the data matrix X is given by:

p(x|α1, α2, β) =
∫

π1

∫
π2

∫
θ

p(π1|α1)p(π2|α2)p(θz1z2 |β)

·
∑
z1

∑
z2

p(z1|π1)p(z2|π2)p(x|θz1z2) dπ1dπ2dθz1z2 (1)

Note that the entries in the same row/column are generated from the same π1u

or π2v , so the entries in the same row/column are related. Therefore, the model
introduces a coupling between observations in the same row/column [1].

The overall joint distribution over X , π1, π2, z1, z2 and θ is given by:

p(X,π1,π2, z1, z2,θ|α1, α2, β) =
∏
u

p(π1u |α1)
∏
v

p(π2v |α2)

·
∏
K1

∏
K2

p(θz1,z2 |β)
∏
u,v

p(z1uv |π1u)p(z2uv |π2v )p(xuv|θz1,z2 , z1uv , z2uv)δuv (2)
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where δuv is an indicator function which takes value 0 when xuv is empty, and
1 otherwise (only the non-missing entries are considered); z1uv ∈ {1, . . . ,K1} is
the latent row cluster, and z2uv ∈ {1, . . . ,K2} is the latent column cluster for
observation xuv.

Marginalizing out all unknown parameters π1, π2 and θ, the marginal likeli-
hood of observed and latent variables is:

p(X, z1, z2|α1, α2, β) = p(X |z1, z2, β)p(z1|α1)p(z2|α2) = (3)∫
p(X |θ, z1, z2)p(θ|β) dθ

∫
p(z1|π1)p(π1|α1) dπ1

∫
p(z2|π2)p(π2|α2) dπ2

Summing over all possible latent variables z1 and z2, the probability of observing
the entire matrix X is:

p(X|α1, α2, β) =
∫

π1

∫
π2

∫
θ

(∏
u

p(π1u |α1)

) (∏
v

p(π2v |α2)

) ( ∏
z1,z2

p(θz1,z2 |β)

)

·

⎛⎝∏
u,v

∑
z1uv

∑
z2uv

p(z1uv |π1u )p(z2uv |π2v )p(xuv|θz1uv ,z2uv
)δuv

⎞⎠ dπ1dπ2dθ (4)

3.1 Variational Bayesian Algorithm for BCC

In this section, we briefly describe the variational Bayesian algorithm for the
original BCC model (see Appendix). The BCC model assumes uniform priors
for θ and assumes that θ has a Gaussian distribution. The authors in [1] derived
a variational algorithm for their model. In this paper, we assume that the values
for each entry in the data matrix are discrete2. We do so for mathematical
convenience of the derivation of the collapsed Gibbs sampling and the collapsed
variational Bayesian algorithms. Thus, unlike [1], we do not assume that θ has
a Gaussian distribution.

The variational Bayesian algorithm introduces q(z1, z2,π1,π2|γ1,γ2,φ1,φ2)
as an approximation of the actual distribution p(z1, z2,π1,π2|X,α1, α2,θ),
where γ1, γ2, φ1 and φ2 are called variational variables, γ1 =< γ1u |u =
1, · · · , N1 >, γ2 =< γ2v |v = 1, · · · , N2 >, φ1 =< φ1u |u = 1, · · · , N1 >,
φ2 =< φ2v |v = 1, · · · , N2 >, γ1u and γ2v are variational Dirichlet distribu-
tion parameters with K1 and K2 dimensions respectively for rows and columns,
φ1u and φ2v are multinomial parameters with K1 and K2 dimensions for rows
and columns. It is assumed that q(z1, z2,π1,π2|γ1,γ2,φ1,φ2) can be fully
factorized as:

q(z1, z2,π1,π2|γ1,γ2,φ1,φ2) =(
N1∏
u=1

q(π1u |γ1u)

)(
N2∏
v=1

q(π2v |γ2v )

) (
N1∏
u=1

N2∏
v=1

q(z1uv |φ1u)q(z2uv |φ2v )

)
(5)

2 Technically, our theory applies to any exponential family distribution for data
matrix.
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The factorization assumption of q(z1, z2,π1,π2|γ1,γ2,φ1,φ2) means that pa-
rameters and latent variables are independent, and the assignment of z1uv and
z2uv for the current entry [u, v] is independent of the assignments for other en-
tries.

The variational Bayesian algorithm can find a lower bound of the true
log-likelihood:

log p(X |α1, α2,θ) ≥ (6)
Eq[log p(X, z1, z2,π1,π2|α1, α2,θ)]− Eq[log q(z1, z2,π1,π2|γ1,γ2,φ1,φ2)]

and we denote the lower bound as L(γ1,γ2,φ1,φ2, α1, α2,θ).
The variational Bayesian algorithm is an EM-style method: the E-step es-

timates the values for γ1, γ2, φ1 and φ2 that maximize the lower bound of
the log-likelihood based on α1, α2 and θ; the M-step estimates α1, α2 and
θ according to the log-likelihood lower bound based on γ1, γ2, φ1 and φ2
learned during the previous E-step. Thus, in the E-step, in order to maximize
L(γ1,γ2,φ1,φ2, α1, α2,θ), one takes the derivative of L w.r.t γ1, γ2, φ1 and φ2
respectively, and sets it to zero. We get:

φ1ui ∝ exp

(
Ψ(γ1ui) +

∑N1
u=1

∑K1
i=1 δuvφ2vj log θijxuv

nu

)
(7)

φ2vj ∝ exp

(
Ψ(γ2vj ) +

∑N2
v=1

∑K2
j=1 δuvφ1vi log θijxuv

nv

)
(8)

γ1ui ∝ α1i + nuφ1ui
(9)

γ2vj ∝ α2j + nvφ2vj
(10)

where nu and nv are the number of entries in row u and column v respectively,
and Ψ(·) is the digamma function, the first derivative of logΓ (·), the log Gamma
function. In the M-step, to estimate the Dirichlet parameters α1 and α2, one
can use Newton method, as shown in [5] for LDA, to estimate θ, one takes the
derivative of L w.r.t θ and setting it to zero. We get:

θijxuv ∝
N1∑

u′=1

N2∑
v′=1

δu′v′(xuv)φ1u′i
φ2v′j

(11)

where δu′v′(xuv) is an indicator function, which equals 1 if the value of the entry
at row u′ and column v′ equals to xuv, 0 otherwise. The variational Bayesian
method iterates through the E-step and the M-step until convergence.

Although efficient and easy to implement, the variational Bayesian algorithm
can potentially lead to inaccurate results. The latent variables z1, z2 and the
parameters π1, π2, θ can have a strong inter-dependence in the true poste-
rior p(X, z1, z2,π1,π2|α1, α2,θ). This dependence is ignored in the variational
Bayesian algorithm which assumes independence between the latent variables
and the parameters. As a result, the lower bound learned for the log marginal
likelihood can be very loose, leading to inaccurate estimates of the posterior.
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3.2 Collapsed Gibbs Sampling for LDCC

Standard Gibbs sampling [8], which iteratively samples the latent variables z1
and z2, and the parameters π1, π2 and θ, may converge very slowly due to the
strong dependencies between the latent variables and the parameters. Collapsed
Gibbs sampling improves upon Gibbs sampling by marginalizing out the param-
eters π1, π2 and θ, and then sampling the latent variables z1 and z2 only, over
the so called collapsed space. Consider a model in which each matrix element
can have a discrete value from a value set X , with |X | = N . Using a symmetric
Dirichlet prior, the marginal likelihood over X , z1 and z2, (Equation (3)), can
be rewritten as:

p(X, z1, z2|α1, α2, β) =
N1∏
u=1

(
Γ (K1α1)

Γ (K1α1 + nu)

K1∏
i=1

Γ (α1 + nui)
Γ (α1)

)
(12)

N2∏
v=1

⎛⎝ Γ (K2α2)
Γ (K2α2 + nv)

K2∏
j=1

Γ (α2 + nvj)
Γ (α2)

⎞⎠K1∏
i=1

K2∏
j=1

(
Γ (Nβ)

Γ (Nβ + nij)

N∏
x=1

Γ (β + nijx)
Γ (β)

)

Given all the latent variables but the ones for entry [u, v], the conditional prob-
ability of z1uv = i and z2uv = j is:

p(z1uv = i, z2uv = j|X, z¬uv
1 , z¬uv

2 , α1, α2, β) =
(α1 + n¬uv

ui )(α2 + n¬uv
vj )(β + n¬uv

ijxuv
)

(K1α1 + n¬uv
u )(K2α2 + n¬uv

v )(Nβ + n¬uv
ij )

(13)

where ¬uv denotes the corresponding count with xuv , z1uv and z2uv excluded.
The derivation can be found in the Appendix. The conditional probability can
be rewritten as:

p(z1uv = i, z2uv = j|X, z¬uv
1 , z¬uv

2 , α1, α2, β) =
(α1 + n¬uv

ui )(α2 + n¬uv
vj )(β + n¬uv

ijxuv
)(Nβ + n¬uv

ij )−1∑K1
i′=1

∑K2
j′ (α1 + n¬uv

ui′ )(α2 + n¬uv
vj′ )(β + n¬uv

i′j′xuv
)(Nβ + n¬uv

i′j′ )−1
(14)

where the numerator covers the factors specific to z1uv = i and z2uv = j, and the
denominator serves as a normalization factor by summing over all combination
of z1 and z2 for the current entry [u, v].

Note that since collapsed Gibbs sampling marginalizes out the parameters π1,
π2 and θ, it induces new dependencies between the latent variables z1uv , z2uv

(which are conditionally independent given the parameters) [7]. Equation (14)
shows that z1uv and z2uv depend on z¬uv

1 , z¬uv
2 only through the counts n¬uv

ui′ ,
n¬uv

vj′ and n¬uv
i′j′ , which is to say that the dependence of z1uv = i and z2uv = j

on any other variable z1uv = i′, z2uv = j′ is very small, especially for large
datasets. This is precisely the right setting for a mean field (i.e., fully factorized
variational) approximation: a particular variable interacts with the remaining
variables only through a summary statistics called the field, and the impact of
any single variable on the field is very small [7]. On the contrary, this is not
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true in the joint space of parameters and latent variables because fluctuations in
parameters can have a signicant impact on latent variables. As a consequence,
the mean field assumption fits better the collapsed space of latent variables than
the joint space of latent variables and parameters.

Given Equation (13) or (14), Gibbs sampling can generate row- and column-
cluster probabilities for the current entry conditioned on row- and column-clusters
for the other entries. One can calculate the following stationary distributions:

p(xuv|z1uv = i, z2uv = j) =
nijxuv + β

nij + Nβ
(15)

p(z1uv = i|u) =
nui + α1

nu + K1α1
(16)

p(z2uv = j|v) =
nvj + α2

nv + K2α2
(17)

which correspond to θz1=i,z2=j , π1u and π2v .
Although Gibbs sampling leads to unbiased estimators, it also has some draw-

backs: one needs to assess convergence of the Markov chain and to have some idea
of mixing times to estimate the number of samples to collect, and to identify co-
herent topics across multiple samples. In practice, one often ignores these issues
and collects as many samples as is computationally feasible, while the question
of topic identication is often sidestepped by using just one sample. Hence, there
still is a need for more efficient, accurate and deterministic inference procedures.

3.3 Collapsed Variational Bayesian Algorithm for LDCC

The collapsed variational Bayesian algorithm for LDCC is similar to the stan-
dard variational Bayesian one, except for the optimization of the lower bound
of the log-likelihood in the collapsed space, which is inspired by collapsed Gibbs
sampling. There are two ways to derive the collapsed variational Bayesian algo-
rithm for LDCC, either in the collapsed space or in the original joint space of
latent variables and parameters.

We start from the collapsed space with parameters marginalized out. We
introduce q(z1, z2|γ) to approximate p(z1, z2|X,α1, α2, β), where γ =< γuv|u =
1, · · · , N1, v = 1, · · · , N2 >, and γuv =< γuvij |i = 1, · · · ,K1, j = 1, · · · ,K2 >.
Assume that q(z1, z2|γ) can be factorized as:

q(z1, z2|γ) =
N1∏
u=1

N2∏
v=1

q(z1uv , z2uv |γuv) (18)

where q(z1uv , z2uv |γuv) is a multinomial with parameters γuv.
The lower bound of the log-likelihood is:

log p(X |α1, α2, β) ≥
Eq(z1,z2|γ)[log p(X, z1, z2|α1, α2, β)]− Eq(z1,z2|γ)[log q(z1, z2|γ)] (19)

denoted as L(γ, α1, α2, β).
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When using the original joint latent variables and parameters space, we intro-
duce q(z1, z2,π1,π2,θ|γ) to approximate p(z1, z2,π1,π2,θ|X,α1, α2, β), where
we assume a factorization different from Equation (5):

q(z1, z2,π1,π2,θ|γ) = q(π1,π2,θ|z1, z2)
N1∏
u=1

N2∏
v=1

q(z1uv , z2uv |γuv) (20)

where we model the conditional distribution of parameters π1, π2, and θ given
latent variables z1 and z2 without any assumptions on their form. By doing
so, we drop the assumption made in Equation (5) that the parameters and the
latent variables are independent. Furthermore, from Equations (18) and (20),
we can see that we make the same assumption on z1, z2, that is the assignment
of z1uv and z2uv to the current entry [u, v] is independent w.r.t the assignments
of the other entries.

The lower bound of the log-likelihood is:

log p(X |α1, α2, β) ≥ (21)
Eq(z1,z2,π1,π2,θ|γ)[log p(X, z1, z2,π1,π2,θ|α1, α2, β)]−
Eq(z1,z2,π1,π2,θ|γ)[log q(z1, z2,π1,π2,θ|γ)] =
Eq(π1,π2,θ|z1,z2)q(z1,z2|γ)[log p(X, z1, z2,π1,π2,θ|α1, α2, β)]−
Eq(π1,π2,θ|z1,z2)q(z1,z2|γ)[log(q(π1,π2,θ|z1, z2)q(z1, z2|γ))] =
Eq(z1,z2|γ)[Eq(π1,π2,θ|z1,z2)[log(p(π1,π2,θ|X, z1, z2)p(X, z1, z2|α1, α2, β))]] −
Eq(z1,z2|γ)[Eq(π1,π2,θ|z1,z2)[log q(π1,π2,θ|z1, z2)]]− Eq(z1,z2|γ)[log q(z1, z2|γ)]

Since we do not assume any specific form for q(π1,π2,θ|z1, z2), the lower bound
will reach at the true posterior p(π1,π2,θ|X, z1, z2). Therefore, the lower bound
can be rewritten as:

log p(X |α1, α2, β) ≥
Eq(z1,z2|γ)[log p(X, z1, z2|α1, α2, β)]− Eq(z1,z2|γ)[log q(z1, z2|γ)] (22)

which is the same as L(γ, α1, α2, β). Thus, both approaches derive the same
lower bound of the log-likelihood.

Since the collapsed variational Bayesian algorithm makes a strictly weaker
assumption on the variational posterior than the standard variational Bayesian
algorithm, the collapsed approach can find a tighter lower bound, i.e.
L(γ, α1, α2, β) ≤ L(γ1,γ2,φ1,φ2, α1, α2,θ).

Maximizing Equation (22) w.r.t γuvij and setting it to zero, we obtain:

γuvij = q(z1uv = i, z1uv = j|γuv) = (23)
exp(Eq(z¬uv

1 ,z¬uv
2 )[log p(X,z¬uv

1 , z¬uv
2 , z1uv = i, z1uv = j|α1, α2, β)])∑K1

i′=1

∑K2
j′=1 exp(Eq(z¬uv

1 ,z¬uv
2 )[log p(X, z¬uv

1 , z¬uv
2 , z1uv = i′, z1uv = j′|α1, α2, β)])

Substituting Equation (3), and setting

f(u, v, i, j) =
exp(Eq(z¬uv

1 ,z¬uv
2 )[log(α1 + n¬uv

ui ) + log(α2 + n¬uv
vj ) + log(β + n¬uv

ijxuv
)− log(Nβ + n¬uv

ij )])
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we have:

γuvij = q(z1uv = i, z1uv = j|γuv) =
f(u, v, i, j)∑K1

i′=1
∑K2

j′=1 f(u, v, i′, j′)
(24)

The derivation of Equations (23) and (24) can be found in the Appendix.
Following [7], we also apply a Gaussian approximation to Equation (24). Here

we just illustrate how to calculate Eq(z¬uv
1 ,z¬uv

2 )[log(α1 + n¬uv
ui )]. The calcula-

tion of the other three expectations is similar. Suppose nu , 0, and note that
n¬uv

ui =
∑N1

v′=1,v′ 
=v

∑K2
j′=1,j′ 
=j 1(z1uv′ = i, z1uv′ = j′) is a sum of a large num-

ber of independent Bernoulli variables 1(z1uv′ = i, z1uv′ = j′), each with mean
parameter γuv′ij′ ; thus, it can be accurately approximated by a Gaussian. The
mean and variance are given by the sum of the means and the variances of the
individual Bernoulli variables:

Eq(z¬uv
1 ,z¬uv

2 )[n¬uv
ui ] =

N1∑
v′=1,v′ 
=v

K2∑
j′=1,j′ 
=j

γuv′ij′ (25)

V arq(z¬uv
1 ,z¬uv

2 )[n¬uv
ui ] =

N1∑
v′=1,v′ 
=v

K2∑
j′=1,j′ 
=j

γuv′ij′ (1− γuv′ij′ ) (26)

We further approximate log(α1 + n¬uv
ui ) using a second-order Taylor expansion,

and evaluate its expectation under the Gaussian approximation:

Eq(z¬uv
1 ,z¬uv

2 )[log(α1 + n¬uv
ui )] ≈ (27)

log(α1 + Eq(z¬uv
1 ,z¬uv

2 )[n¬uv
ui ])−

V arq(z¬uv
1 ,z¬uv

2 )[n¬uv
ui ]

2(α1 + Eq(z¬uv
1 ,z¬uv

2 )[n¬uv
ui ])2

(28)

As discussed in [7], the Gaussian approximation will be accurate. Finally, plug-
ging Equation (27) into (24), we have:

γuvij ∝ (29)(
α1 + Eq(z¬uv

1 ,z¬uv
2 )[n¬uv

ui ]
) (

α2 + Eq(z¬uv
1 ,z¬uv

2 )[n¬uv
vj ]

)(
β + Eq(z¬uv

1 ,z¬uv
2 )[n¬uv

ijxuv
]
) (

Nβ + Eq(z¬uv
1 ,z¬uv

2 )[n¬uv
ij ]

)−1

exp

(
−

V arq(z¬uv
1 ,z¬uv

2 )[n¬uv
ui ]

2(β + Eq(z¬uv
1 ,z¬uv

2 )[n¬uv
ui ])2

−
V arq(z¬uv

1 ,z¬uv
2 )[n¬uv

vj ]
2(β + Eq(z¬uv

1 ,z¬uv
2 )[n¬uv

vj ])2
−

V arq(z¬uv
1 ,z¬uv

2 )[n¬uv
ijxuv

]
2(β + Eq(z¬uv

1 ,z¬uv
2 )[n¬uv

ijxuv
])2

+
V arq(z¬uv

1 ,z¬uv
2 )[n¬uv

ij ]
2(Nβ + Eq(z¬uv

1 ,z¬uv
2 )[n¬uv

ij ])2

)
An EM-style iterative algorithm can be applied to estimate the γuvij ’s by defining
Equation (29) as the recursion equation, we can compute every γuvij for u ∈
1, · · · , N1, v ∈ 1, · · · , N2, i ∈ 1, · · · ,K1, j ∈ 1, · · · ,K2, until the change of γuvij

between two consecutive iterations is less than a certain threshold, which we
consider as converged.
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4 Experiments

4.1 Datasets

Two real datasets are used in our experiments: (a) MovieLens3: MovieLens is
a movie recommendation dataset created by the Grouplens Research Project.
It contains 100,000 ratings in a sparse data matrix for 1682 movies rated by
943 users. The ratings are ranged from 1 to 5, with 5 being the highest score.
We use 5-fold cross-validation for training and testing. (b) Jester4: Jester is a
joke rating dataset. The original dataset contains 4.1 million continuous ratings
of 100 jokes from 73,421 users. The ratings are ranged from -10 to 10, with 10
being the highest. Following [1], we pick 1000 users who rate all 100 jokes and
use this dense data matrix in our experiment, and binarize the dataset such that
the non-negative entries become 1 and the negative entries become 0. We held
out 1/4 data to do prediction.

4.2 Methodology

We train the LDCC model using the three methods discussed in Section 3,
and make prediction on the test data using the learned model parameters. For
prediction, we report the perplexity [1], which is defined as:

perp(X) = exp
(
− log p(X)

N

)
where N is the number of non-missing entries in X . Perplexity monotonically
decreases as the log-likelihood increases. Thus, a lower perplexity value is an
indication of a better model. In fact, a higher log-likelihood on the training set
means that the model fits the data better, and a higher log-likelihood on the
test set implies that the model can explain the data better.

The variational Bayesian algorithm can find local optima of α1, α2, and θ
for the training data, given a random initialization of these parameters. If the
change in log-likelihood between two consecutive iterations is less than 1.0e-
6, we stop the process. For collapsed Gibbs sampling and collapsed variational
Bayesian algorithms, we use uniform priors to initialize the model parameters
α1, α2, and β. We set to 5000 the maximum number of iterations for Gibbs
sampling, the first 2000 as burn-in, and 500 sample lag. Again, if the maximum
change between the model parameters γ of two consecutive iterations is less than
1.0e-6, we assume that the algorithm has converged, and stop the process.

4.3 Experimental Results

In this section, we present two experimental results: perplexity comparison
among the three methods, and the likelihood v.s. number of iterations com-
parison among the three methods.
3 http://www.grouplens.org/node/73
4 http://goldberg.berkeley.edu/jester-data/



Latent Dirichlet Bayesian Co-Clustering 533

Table 1. Perplexity Values

Gibbs CVB VB
MovieLens 3.247 4.553 5.849

Binarized Jester 2.954 3.216 4.023

Fig. 3. Log-likelihood v.s. Number of Iterations

Following [1], for the MovieLens dataset, we set K1 = 20 and K2 = 19, which
are the numbers of user-clusters and movie-clusters; for the Jester dataset, we set
K1 = 20 and K2 = 5, which are the numbers of user-clusters and joke-clusters;
the matrices of both datasets roughly have 100,000 entries. Table 1 shows the
perplexity values of the three methods on the test data. For the MovieLens
dataset, we report the average perplexity of five-fold cross-validation for all the
three methods. Doing prediction for the MovieLens dataset is harder than for
the binarized Jester dataset. In fact, the binarized Jester data have only two
rating states, while the MovieLens has 5. For this reason the perplexity values
for the MovieLens are smaller than that for the binarized Jester data. From the
table, we can see that collapsed Gibbs sampling achieves the best perplexity
on both datasets, followed by collapsed variational Bayesian (CVB). The worst
performer is the standard variational Bayesian (VB) approach. These results cor-
roborate our theoretical analysis: collapsed Gibbs sampling and collapsed varia-
tional Bayesian can learn more accurate likelihood functions than the standard
variational Bayesian algorithm, thus leading to higher predicting performance.

Figure 3 shows the log-likelihood as a function of the number of iterations
for the three methods on the binarized Jester dataset. As expected, the col-
lapsed Gibbs sampling algorithm provides higher log-likelihood values, but needs
a larger number of iterations, 5000 in our case. Collapsed variational Bayesian
provides better log-likelihood values than the standard variational Bayesian,
but worse than collapsed Gibbs sampling. Collapsed and standard variational
Bayesian algorithms have similar numbers of iterations at convergence (100).
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Although collapsed Gibbs sampling is an unbiased estimator and can find
the true likelihood function, it takes a long time to achieve the stationary dis-
tribution. Standard variational Bayesian suffers from the strong assumption of
independence between model parameters and latent variables. As a consequence
it finds a loose lower bound of the true likelihood function. Collapsed variational
Bayesian, however, can find a tighter lower bound of the likelihood function
than standard variational Bayesian, and at the same time it’s much faster than
collapsed Gibbs sampling.

5 Conclusions

In this work, we extended the Bayesian co-clustering model, and proposed a
collapsed Gibbs sampling and a collapsed variational Bayesian algorithm to per-
form estimation and inference. The empirical evaluation proved that collapsed
Gibbs sampling and collapsed variational Bayesian algorithms can learn more
accurate likelihood functions than the standard variational Bayesian algorithm,
thus leading to higher predicting performance in general.
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Appendix

BCC Model

For the BCC model, the marginal probability of an entry x in the data matrix X is:

p(x|α1, α2, θ) =
∫

π1

∫
π2

p(π1|α1)p(π2|α2)
∑
z1

∑
z2

p(z1|π1)p(z2|π2)p(x|θz1z2) dπ1dπ2

The overall joint distribution over all observable and latent variables is given by:

p(X, π1, π2, z1, z2|α1, α2, θ) =
∏
u

p(π1u |α1)
∏
v

p(π2v |α2)

·
∏
u,v

p(z1uv |π1u)p(z2uv |π2v )p(xuv|θz1uv ,z2uv
)δuv

The probability of observing the entire matrix X is:

p(X|α1, α2, θ) =
∫

π1

∫
π2

∫
θ

(∏
u

p(π1u |α1)

) (∏
v

p(π2v |α2)

)

·

⎛⎝∏
u,v

∑
z1uv

∑
z2uv

p(z1uv |π1u)p(z2uv |π2v )p(xuv|θz1uv ,z2uv
)δuv

⎞⎠ dπ1dπ2

Derivation of Equation (13)

p(X, z1uv = i, z2uv = j, z¬uv
1 , z¬uv

2 |α1, α2, β) = (30)
N1∏

u′=1

(
Γ (K1α1)

Γ (K1α1 + n¬uv
u′ + δu′=u)

K1∏
i′=1

Γ (α1 + n¬uv
u′i′ + δi′=i

u′=u)
Γ (α1)

)
N2∏

v′=1

⎛⎝ Γ (K2α2)
Γ (K2α2 + n¬uv

v′ + δv′=v)

K2∏
j′=1

Γ (α2 + n¬uv
v′j′ + δj′=j

v′=v)
Γ (α2)

⎞⎠
K1∏

i′=1

K2∏
j′=1

(
Γ (Nβ)

Γ (Nβ + n¬uv
i′j′ + δj′=j

i′=i
)

N∏
x′=1

Γ (β + n¬uv
i′j′x′ + δx′=xuv

i′=i,j′=j)

Γ (β)

)

p(X, z¬uv
1 , z¬uv

2 |α1, α2, β) = (31)
N1∏

u′=1

(
Γ (K1α1)

Γ (K1α1 + n¬uv
u′ + δu′=u)

K1∏
i′=1

Γ (α1 + n¬uv
u′i′ + δi′=i

u′=u)
Γ (α1)

)
N2∏

v′=1

⎛⎝ Γ (K2α2)
Γ (K2α2 + n¬uv

v′ + δv′=v)

K2∏
j′=1

Γ (α2 + n¬uv
v′j′ + δj′=j

v′=v)
Γ (α2)

⎞⎠
K1∏

i′=1

K2∏
j′=1

(
Γ (Nβ)

Γ (Nβ + n¬uv
i′j′ + δj′=j

i′=i )

N∏
x′=1

Γ (β + n¬uv
i′j′x′ + δx′=xuv

i′=i,j′=j)

Γ (β)

)

where δ
(·)
(·) is an indicator function: if all input equations are true, it takes value 1, else

0. Note that if u′ �= u, n¬uv
u′ = nu′ . The same holds for the other counting variables.

Thus, Equation (13) can be derived by taking the ratio of Equations (30) and (31).
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Derivation of Equations (23) and (24)

L(γ , α1, α2, β) =∫ N1∏
u=1

N2∏
v=1

q(z1uv , z2uv |γuv) log p(X, z1, z2|α1, α2, β) dq(z1, z2|γ)−

∫ N1∏
u=1

N2∏
v=1

q(z1uv , z2uv |γuv) log
N1∏

u=1

N2∏
v=1

q(z1uv , z2uv |γuv) dq(z1, z2|γ)

Taking the derivative of L(γ, α1, α2, β) w.r.t q(z1uv , z1uv |γuv), we get:

∂L(γ, α1, α2, β)
∂q(z1uv , z1uv |γuv)

=

Z N1Y
u′=1,u′ �=u

N2Y
v′=1,v′ �=v

q(z1u′v′ , z2u′v′ |γu′v′) log p(X, z1, z2|α1, α2, β) dq(z¬uv
1 , z¬uv

2 |γ)−

Z N1Y
u′=1,u′ �=u

N2Y
v′=1,v′ �=v

q(z1u′v′ , z2u′v′ |γu′v′) log
N1Y

u′=1

N2Y
v′=1

q(z1u′v′ , z2u′v′ |γu′v′) dq(z¬uv
1 , z¬uv

2 |γ)−

N1Y
u′=1,u′ �=u

N2Y
v′=1,v′ �=v

q(z1u′v′ , z2u′v′ |γu′v′) =

Z N1Y
u′=1,u′ �=u

N2Y
v′=1,v′ �=v

q(z1u′v′ , z2u′v′ |γu′v′) log p(X, z1, z2|α1, α2, β) dq(z¬uv
1 , z¬uv

2 |γ)−

log q(z1uv , z2uv |γuv)
Z N1Y

u′=1,u′ �=u

N2Y
v′=1,v′ �=v

q(z1u′v′ , z2u′v′ |γu′v′) dq(z¬uv
1 , z¬uv

2 |γ)−

Z N1Y
u′=1,u′ �=u

N2Y
v′=1,v′ �=v

q(z1u′v′ , z2u′v′ |γu′v′) log
N1Y

u′=1,u′ �=u

N2Y
v′=1,v′ �=v

q(z1u′v′ , z2u′v′ |γu′v′) dq(z¬uv
1 , z¬uv

2 |γ)−

N1Y
u′=1,u′ �=u

N2Y
v′=1,v′ �=v

q(z1u′v′ , z2u′v′ |γu′v′)

Setting the derivative to zero, it’s clear that:

q(z1uv , z2uv |γuv) ∝ exp(Eq(z¬uv
1 ,z¬uv

2 |γ)[log p(X,z1, z2|α1, α2, β)])

from which we derive Equation (23). From Equation (30), we can see that:

log p(X, z1uv = i, z2uv = j, z¬uv
1 , z¬uv

2 |α1, α2, β) =
N1X

u′=1

 
log Γ (K1α1)− log Γ (K1α1 + n¬uv

u′ + δu′=u) +
K1X

i′=1

(log Γ (α1 + n¬uv
u′i′ + δi′=i

u′=u)− log Γ (α1))

!
+

N2X
v′=1

0
@log Γ (K2α2)− log Γ (K2α2 + n¬uv

v′ + δv′=v) +
K2X

j′=1

(log Γ (α2 + n¬uv
v′j′ + δj′=j

v′=v)− log Γ (α2))

1
A+

K1X
i′=1

K2X
j′=1

 
log Γ (Nβ)− log Γ (Nβ + n¬uv

i′j′ + δj′=j
i′=i ) +

NX
x′=1

(log Γ (β + n¬uv
i′j′x′ + δx′=xuv

i′=i,j′=j)− log Γ (β))

!
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Note that if u′ = u, Γ (K1α1 + n¬uv
u′ + δu′=u) = (K1α1 + n¬uv

u′ )Γ (K1α1 + n¬uv
u′ ), as for

other Gamma functions. Then, we have:

log p(X, z1uv = i, z2uv = j, z¬uv
1 , z¬uv

2 |α1, α2, β) = − log(K1α1 + n¬uv
u ) + log(α1 + n¬uv

ui )−
log(K2α2 + n¬uv

v ) + log(α2 + n¬uv
v′j′ )− log(Nβ + n¬uv

i′j′ ) + log(β + n¬uv
i′j′x′) +

N1X
u′=1

 
log Γ (K1α1)− log Γ (K1α1 + n¬uv

u′ ) +
K1X

i′=1

(log Γ (α1 + n¬uv
u′i′ )− log Γ (α1))

!
+

N2X
v′=1

0
@log Γ (K2α2)− log Γ (K2α2 + n¬uv

v′ ) +
K2X

j′=1

(log Γ (α2 + n¬uv
v′j′ )− log Γ (α2))

1
A+

K1X
i′=1

K2X
j′=1

 
log Γ (Nβ)− log Γ (Nβ + n¬uv

i′j′ ) +
NX

x′=1

(log Γ (β + n¬uv
i′j′x′)− log Γ (β))

!
(32)

where for a chosen entry [u, v], no matter what z1uv and z2uv are, log(K1α1 + n¬uv
u ),

log(K2α2 +n¬uv
v ), and the summations in Equation (5) are the same. So it’s clear that:

q(z1uv = i, z1uv = j|γuv) ∝
exp(Eq(z¬uv

1 ,z¬uv
2 )[log(α1 + n¬uv

ui ) + log(α2 + n¬uv
vj ) + log(β + n¬uv

ijxuv
)− log(Nβ + n¬uv

ij )])

Thus, we derive Equation (24).
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Abstract. Existing feature extraction methods explore either global
statistical or local geometric information underlying the data. In this
paper, we propose a general framework to learn features that account
for both types of information based on variational optimization of non-
parametric learning criteria. Using mutual information and Bayes er-
ror rate as example criteria, we show that high-quality features can be
learned from a variational graph embedding procedure, which is solved
through an iterative EM-style algorithm where the E-Step learns a vari-
ational affinity graph and the M-Step in turn embeds this graph by
spectral analysis. The resulting feature learner has several appealing
properties such as maximum discrimination, maximum-relevance-
minimum-redundancy and locality-preserving. Experiments on
benchmark face recognition data sets confirm the effectiveness of our
proposed algorithms.

1 Introduction

Feature extraction, the preprocessing step aimed at learning a small set of highly
predictive features out of a large amount of possibly noisy or redundant raw input
variables, plays a fundamental role in the success of many learning tasks where
high dimensionality arises as a big challenge [8,5].

Over the past decades, a large number of algorithms have been proposed,
mostly based on using either global statistical or local geometric structures un-
derlying the data. Classical techniques, such as the Principal Component Anal-
ysis (PCA) and the Fisher Discriminant Analysis (FDA), make use of some
well-defined statistical measures (e.g., variance, entropy, linear correlation, cross-
correlogram, Fisher information, etc.) to evaluate the usefulness of features. Since
these measures are usually defined based on the overall properties of the data
set, hence, such statistical approaches are often powerful to retain the global
structures of the data space, but usually perform poorly when their underlying
assumptions (i.e., the optimal condition of statistical measures) are violated.
For example, FDA performs poorly for multi-modal data, because Fisher’s cri-
terion is optimal only if the data in each class are sampled from a Gaussian
distribution[7].

W. Buntine et al. (Eds.): ECML PKDD 2009, Part II, LNAI 5782, pp. 538–553, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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In contrast, a host of algorithms were recently established by using the lo-
cal geometric information to restore the submanifold structure from which the
data are sampled. Examples include ISOMAP [21], Locally Linear Embedding
[17], Laplacian Eigenmap [1], Locality Preserving Projection [9]. Such geometric
methods, although are powerful to retain the geometric structure revealed by
the training data, neglect the overall properties of the data that are fundamen-
tal to the success of extracting predictive features. For example, most geometric
methods neglect the supervision (label) information of the data and therefore
lack of discriminant power.

In this paper, we show that, by optimizing certain nonparametric learning cri-
teria, both the global (statistical) and local (geometric) structures revealed by
the training data can be used to build high-quality features. As case studies, we
mainly consider two learning criteria, Mutual Information (MI) and Bayes Error
Rate (BER). Both MI and BER are theoretically optimal for feature learning
but computationally intractable in practice. Our approach, however, is able to
encode these criteria into well-defined data graphs and in turn reduce the task
into variational graph-embedding problem. The proposed approach is an itera-
tive EM-style algorithm where the E-Step learns a variational affinity graph and
the M-Step in turn embeds this graph by spectral analysis. More importantly,
the learned graphs are capable to simultaneously capture the supervision infor-
mation, the global statistical property and the local geometric structure of the
data, leading to feature extractors sharing the advantages of both local geometric
methods and global statistical methods while mitigating their drawbacks.

1.1 Related Work

MI is a popular criterion in machine learning. Unlike other statistical measures,
such as variance, correlation or Fisher’s criterion, which only account for up to
second order moments, MI can capture the complete dependence between fea-
tures and the target concept (i.e., label) [14,16]. A practical prohibition of using
MI is the computational cost of entropy estimation which involves numerical
integration of high dimensional data. Conventional approaches usually resort to
histogram or discretization based methods to obtain estimations of MI [2,26],
which is computationally intensive when we are dealing with high-dimensional
data. In contrast, our approach encodes maximization of MI as variational graph
embedding, a much easier problem to solve. In addition, our approach is signif-
icantly different from the existing MI-based feature extraction algorithms such
as [12,22,10], all of which are formalized as nonlinear non-convex optimization
problems and do not account for the local properties of the data, as a re-
sult, cannot capture the geometric structure of the underlying manifold, which
is, however, fundamental to feature learning as being demonstrated by recent
researches [21,1].

BER has also been employed to learn features. However, due to the un-
availability of the underlying generative distribution, almost all the existing
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algorithms optimize BER indirectly [18,4], e.g., by maximizing the Average
Pairwise Divergence or minimizing the Union Bhattacharyya Error Bounds or
Bhattacharyya Distance. And Gaussian assumption usually has to be made to
make these approach tractable, which strongly limits the applicability and per-
formance of those methods. Again, our approach shows advantages over this
class of methods in computational efficiency as well as the capability to use local
information to restore geometric structures.

The importance of utilizing both global and local information for better
feature learning has been increasingly recognized. Algorithms that are globally-
and-locally consistent were reported to significantly outperform both global al-
gorithms and local algorithms. For example, Weinberger et al [23] proposed an
approach to learn a kernel matrix for nonlinear feature projections by maximiz-
ing a global statistic measure (i.e. variance of the projected data) subject to local
geometric constraints (e.g., preserving the angles and distances between nearest
neighbors). Sugiyama [20] proposed a localized FDA algorithm by optimizing
a combination of the Fisher’s criterion [7] and the locality preserving cost [9].
In this paper, we propose a principled way to derive such globally-and-locally
consistent approaches for feature learning.

The last few years have witnessed a surge of interests in graph-based learning
(GBL). Typically, a GBL learner is established by: (1) conveying basic assump-
tions and heuristical intuitions into pairwise similarity of and/or constraints over
the training instances; (2) constructing a affinity graph based on the defined sim-
ilarity; and (3) building a learner by spectral analysis of the graph. For instance,
in dimensionality reduction, Yan et al [24] and Zhao & Liu [29] presented gener-
alized formalization frameworks for graph-based feature extraction and attribute
selection respectively. Usually, the spectral graph theory [6] is employed to pro-
vide justifications for GBL. However, it provides no guidance on how to construct
the graph, which is of central importance to the success of the GBL algorithms
since the performance is extremely sensitive to both graph structures and edge
weight settings. As a consequence, one has to resort to heuristics to establish
graph for GBL. In contrast, we show in this paper that affinity graphs can be
learned by optimizing theoretically sound learning measures. In particular, we
show that some nonparametric criteria lead to graphs which naturally encode
both the global statistical and the local geometric structures of the data.

1.2 Our Contribution

The main contribution of this paper are three folds:

– Firstly, we propose two effective feature extraction algorithms and test them
on real-world tasks.

– Secondly, the graphs learned by our method, which encodes both global
(statistical) and local (geometric) structures of the data, can be used in a
wide variety of graph-based learning tasks, e.g., semi-supervised learning,
metric learning, etc.

– Finally, the approach we use to learn graphs, that is, nonparametric learn-
ing measure estimation and variational approximation of kernel terms, can
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be applied to other learning criteria to learn predictive graphs/kernels/
similarity functions.

2 Optimal Feature Learning Criteria

Suppose we are given a set of input vectors {xn}N
n=1 along with the corresponding

labels {yn}N
n=1 drawn i.i.d from an unknown distribution p(x,y), where xn ∈

X ⊂ R
D is a training instance and yn ∈ Y={1,. . . ,C} is its label, N , D and C

denote the training set size, the input space dimensionality and the total number
of categories, respectively. The goal of feature extraction is to construct a set of
M (M � D) most predictive features, i.e., to find a preprocessing of data z =
τ(x), where z ∈ Z ⊂ R

M , τ : X → Z and τ ∈ H with H being a hypothesis
space. Let the goodness of τ be measured by the feature evaluation criterion
J(·). Then the problem of feature extraction can be formalized as:

τ = arg maxJ(τ).

Theoretically, two optimal criteria can be identified for feature learning. The
first one [13] is based on information theory, which attempts to minimize the
amount of information loss incurred in the process of dimensionality reduction,
i.e.: minτ∈HKL{p(y|z)||p(y|x)}. Ideally, if the KL-divergence between these two
posteriors reaches zero, we can recover the optimal Bayes classifier based on
the data in the reduced dimensional space Z. This criterion is equivalent to
maximizing the mutual information, i.e., the expected information gain about y
from observing z:

max
τ∈H

I(z, y) =
∫
z,y

p(z, y) log
p(z, y)
p(z)p(y)

dzdy, (1)

The second optimal criterion [25] considers classification directly and naturally
reflects the Bayes error rate Υ in the reduced dimensional space Z, i.e.:

min
τ∈H

Υ (τ) = inf
h
Ex[err(h|z)] = Ez[1− max

c=1,...,C
P (c|z)], (2)

where Ex{err(h|z)} is the generalization error of a decision rule h in the reduced-
dimensional space.

However, a critical issue of learning features by directly optimizing such op-
timal learning criteria is that they involve unknown generative distributions. In
this paper, we attempt to establish feature extractors by efficiently optimizing
these criteria. We achieve this goal by two steps: (1) By nonparametric estima-
tion of the criteria, we reduce the task to kernel-based optimization problems;
(2) Based on variational approximation of each kernel term, the task can be
compactly formalized as variational graph-embedding problems, which can be
solved by graph spectral analysis.
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We will mainly focus on MI in the next section and discuss BER in Section 4
since the derivation procedures are quite similar.

3 Graph-Based Feature Learning by Maximizing Mutual
Information

In this section, we establish feature extractors by maximize the mutual infor-
mation between the features and the class label. Compared with other criteria
that only account for up to second-order statistics, an appealing property of
MI is that it makes use of higher-order statistics and is able to capture the
complete nonlinear dependence between the features and the class label [14,16].
However, the computation of MI involves integration of the unknown generative
distributions. Conventional approaches usually resort to histogram or discretiza-
tion based methods to obtain estimations of MI [2,26]. Such approaches are not
only highly ill-formed but also computationally intractable when dealing with
extremely high-dimensional data. In this section, we will show that MaxMI-
features can be learned efficiently by variational graph embedding.

3.1 Nonparametric Quadratic MI

We use a nonparametric method to estimate MI. One of the advantages of using
nonparametric estimators is that they can effectively capture the properties (e.g.,
multimodality) of the underlying distribution. We adopt an efficient estimator
that was proposed by Principe et al [16] and exploited recently by Torkkola [22]
to learn features. First, instead of using standard MI, we use the quadratic MI:

I2(z, y) =
∫
z,y

(p(z, y)− p(z)p(y))2 dzdy, (3)

which has been justified both theoretically and experimentally by many previous
works, e.g., [16,22,10].

A kernel density estimator is then employed to estimate the density function
involved in Eq.(3). Particularly, consider the isotropic Gaussian kernel:

k(x,x′) = g(x− x′, σ2U),

where σ is the standard deviation, U denotes the unit matrix, and g(μ,Σ) is the
Gaussian distribution function with mean μ and covariance Σ. An interesting
property of this kernel is:

〈k(x,x′), k(x,x′′)〉 =
∫
x

k(x,x′)k(x,x′′)dx = k(x′,x′′).

It turns out that, by using this property and the quadratic form of Eq.(3), we
are able to eliminate the integration in MI.

Given the training data, p(x) can be estimated as p̂(x) = 1
N

∑N
n=1 k(x,xn).

Plugging this into the objective J(z) = I2(z, y), we obtain,
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J(z) = Î2(z, y) = Jzy + Jz × Jy, (4)

Jzy =
1
N2

C∑
c=1

∑
i∈Yc

(
∑
j∈Yc

k(zi, zj)−
2Nc

N

N∑
n=1

k(zi, zn)),

Jz =
1
N2

N∑
i=1

N∑
j=1

k(zi, zj),

Jy =
C∑

c=1

N2
c

N2 ,

where Yc denotes the index set of examples in class c and Nc the number of
instances in it,

∑C
c=1Nc = N .

3.2 MaxMI by Variational Graph Embedding

In this section, we show that maximization of MI can be formalized compactly as
a variational graph embedding problem with a generic graph learning procedure
being derived. We begin with rewriting the objective Eq.(4).

Theorem 1. Maximizing the nonparametric quadratic MI is equivalent to the
following optimization problem:

max
1
N2

N∑
i=1

N∑
j=1

γijk(zi, zj),

γij = I(yi = yj) +
C∑

c=1

N2
c

N2 − P̂yi − P̂yj ,

(5)

where I(·) denotes the indicator function, and P̂yi = P̂ (c = yi) = Nc

N is the
proportion of instances sharing the same label with yi.

Proof. Let Iic = I(yi = c),
∑

c IicIjc = Iij = I(yi = yj), we have:

J(z) = Jzy + Jz × Jy

=
1

N2

C∑
c=1

N∑
i=1

(
N∑

j=1

(IicIjc − IicP̂yi − IjcP̂yj )k(zi, zj)) +
1

N2

C∑
c=1

N2
c

N2

N∑
i=1

N∑
j=1

k(zi, zj)

=
1

N2

N∑
i=1

N∑
j=1

(Iij +
∑

c

N2
c

N2
− P̂yi − P̂yi)k(zi, zj)

=
1

N2

N∑
i=1

N∑
j=1

γijk(zi, zj). �
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The optimization in Eq.(5) is still computationally difficult due to its expression
as a big summation of the nonconvex Gaussian density function k(·, ·). To address
this problem, we adopt the variational optimization method [11] to approximate
each kernel term with its variational lower bound. Since exponential function
is convex, a simple lower bound can be easily obtained by making first-order
Taylor expansion:

exp(
||zi − zj ||2

−δ2 ) � λij ||zi − zj||2/δ2 − λij + λij log(−λij), (6)

where we have introduced variational parameters λij . Then for given λij , in-
tegrate Eq.(6) into the objective Eq.(5), the task is reduced to a linear graph
embedding problem [24]:

min
N∑

i=1

N∑
j=1

wij ||zi − zj ||2, (7)

where W = (wij) ∈ R
N×N is the adjacency matrix of the derived data graph

with edge wights wij = −γijλij .
However, since the variational parameters are coupled with the feature ex-

tractors, the variational optimization is a EM-style algorithm, where the E-step
corresponds to learning a graph W by optimizing the variational parameters in
Eq.(6), and the M-step in turn learns feature extractors by solving the graph
embedding problem Eq.(7). These two steps are repeated alternatively until
convergence.

The E-Step has an analytical solution because the variational lower bound
Eq.(6) is exact iff λij = − exp(−||zi − zj ||2/δ2). In the following, we will mainly
discuss the M-Step.

Let G = {X,W} be the undirected weighted graph with X = {xi}N
i=1 being

the vertex set and W being the adjacency matrix. D = diag[W1] denotes the
degree matrix of G, 1 = [1, 1, . . . , 1]�, L = D −W denote the Laplacian matrix
of G. The M-Step, i.e., graph-embedding, learns a set of features by maximizing
their consistency with the graph G:

min
τ∈H

N∑
i=1

N∑
j=1

wij ||zi − zj ||2 = Z�LZ, (8)

where Z = [z1, z2, . . . , zn]�. To obtain practical feature extractors, we consider
two special forms.

Linear Case. Assume each feature is obtained as a linear projection of the
input attributes, i.e., z = T�x, T = [t1, t2, . . . , tM ] ∈ R

D×M is a transformation
matrix, we have
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min
N∑

i=1

N∑
j=1

wij ||T�xi − T�xj ||2 = tr(T�X�LXT ),

s.t. : t�mtm = 1, ∀ m ∈ {1, 2, . . . ,M}, (9)

where X = [x1,x2, . . . ,xn]� is the input data matrix, tr(·) denotes the trace
of a matrix. This is a constrained quadratic program problem. By using the
Lagrangian technique, we can easily prove that the optimal projection vectors
are given by the eigenvectors of X�LX corresponding to the bottom M eigen-
values1. Since W is symmetric, the resulting features are naturally orthogonal
projections, i.e., T�T = U . The algorithm is referred to as Mutual Information
Embedding (MIE).

Nonlinear Case. The linear MIE might fail to discover nonlinear structures un-
derlying the data. We now investigate nonlinear feature extractors. For simplic-
ity, we only consider a special case, where the hypothesis space H is restricted to
a reproducing kernel Hilbert space (RKHS) induced by a Mercer kernel k(x,x′),
where k(·, ·) is a symmetric positive semi-definite function, K = (kij) ∈ R

N×N

is the kernel matrix, kij = k(xi,xj) denotes its entry, i, j = 1, 2, . . . , N . Based
on the property of the Mercer kernel, we can assume that the nonlinearly pro-
jected features lie in the space spanned by the kernel bases, i.e., K×α, where
αi = [αi1, αi2, . . . , αiN ]� is a projection vector in the kernel space. We have:

A∗ = argmin tr(A�K�LKA),

s.t. : α�
mKαm = 1,m = 1, 2, . . . ,M,

(10)

where A =[α1,α2,. . .,αM ] is the kernel space projection matrix. Similarly, the
optimal projection vectors are given by the bottom M eigenvectors of K�LK.
Note that the Euclidean distance in H is given by:

dH(x,x′) =
√
k(x,x) + k(x′,x′)− 2k(x,x′). (11)

For a new input instance x, its projection in the optimal reduced kernel space
is given as:

z = τ(x) = A�κ,

κ = [k(x1,x), k(x2,x), . . . , k(xN ,x)]�.
(12)

This algorithm is referred to as kernel MIE (kMIE).

3.3 Initial Graph and Efficient Approximate Solution

The variational graph embedding algorithm requires initialization of the varia-
tional parameters λij or equivalently the graph wij . In this section, we construct
1 For fast implementation, please refer to[3,24,19] and the references therein.
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an initial graph, which is in the near neighborhood of the optimal one and hence
makes the convergence of the variational algorithm very fast.

Again, we approximate each kernel term by its first-order Taylor expansion.
Since expanding exp(−v) at v0 leads to exp(−v) ≈ exp(−v0)−exp(−v0)(v−v0),
let v = ||zi−zj ||2

δ2 , and v0 = ||xi−xj ||2
δ2 , we have:

exp(
||zi − zj ||2

−δ2 ) ≈ − exp(
||xi − xj ||2

−δ2 )||zi − zj ||2/δ2 + const.

Integrating this into the objective, we get an initial data graph with edge weights
wij = γije

−||xi−xj ||2/δ2
, where δ2 = 2σ2. That is, the feature space distance

||zi − zj || is replaced with the original space distance||xi − xj ||.
Besides being used to initialize the graph of the variational embedding al-

gorithm, this graph could also be used as an off-the-shelf tool to build other
graph-based learners. For instance, solely embedding this graph leads to an effi-
cient non-iterative alternative to MIE (refer to as initial MIE or MIE0).

3.4 Justifications

3.4.1 Max-Relevance-Min-Redundancy
In feature extraction, our goal is to learn a set of features that are useful for
building the predictor. Hence, merely extracting features that are most relevant
to the target concept is suboptimal since the learned features might be redun-
dant such that adding them will gain no additional information [8]. Therefore, a
good feature extractor should achieve a reasonable balance between maximizing
relevance and minimizing redundancy.

It turns out that our proposed algorithm simultaneously (1)maximizes the
relevance of the learned features z to the class label y; (2) minimizes the redun-
dancy within z; and (3) employs a natural tradeoff parameter for perfect balance.
This can be seen clearly from the objective function Eq.(4), which consists of
two terms: J(z) = Jzy + ηJz, where Jzy, depending on both the features z and
the class label y, is a measure of relevance of z to y; Jz, depending solely on fea-
tures z, measures the degree of redundancy within z; and η = Jy =

∑
cN

2
c /N

2,
which is invariant to z, provides a natural compromise between relevance and
redundancy.

3.4.2 Max-Discrimination
Another observation is that the proposed algorithms are supervised methods,
i.e., they take advantage of the label information to maximize the discriminative
ability of the learned features.

Theorem 2. The weights γi,j have the following properties:

1. for ∀ i, j : yi = yj, γi,j > 0;
2. for ∀ i, j : yi 
= yj, E{γi,j} < 0.
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Proof. Without loss of generality, consider a nontrivial case, i.e., ∀ c = 1, . . . , C,
C � 2, Pc > 0 and Nc � 1.

1. if yi = yj :

γij = 1 +
1
N2

C∑
c=1

N2
c − 2

Ni

N
=

1
N2 (

∑
c 
=i

N2
c + (

∑
k 
=i

Nk)2) > 0,

2. if yi 
= yj :

E{γij} = E{
C∑

c=1

N2
c

N2 −
Ni

N
− Nj

N
} = −

C∑
i,j=1

(Pi − Pj)2 − (C − 1)
C∑

i=1

P 2
i < 0,

completing the proof. � 

From Theorem 2, we can see that instance pairs that are from the same class
(yi = yj) are always assigned positive weights, while pairs from different classes
(yi 
= yj) are expected to get negative weights. As a consequence, the optimiza-
tion Eq.(7) actually minimizes the distances between patterns with the same
label while keeping patterns with different labels as far apart as possible, i.e.,
maximizing the margin between within-class and between-class patterns.

3.4.3 Locality Preserving
Another appealing properties of the proposed algorithm is that, besides the sta-
tistical information used to model the global property underlying the data (e.g.,
relevance, redundance and discrimination), it also makes use of local geometric
information to restore the submanifold structure from which the data is sampled,
or in other words, it is locality preserving. Particularly, the learned graph G nat-
urally includes a weight term e−||zi−zj ||2/δ2

(in the initial graph: e−||xi−xj ||2/δ2
),

which is actually the Gaussian heat weight [19] usually employed to retain the
local consistency of the data. This term turns to assign small weights to the
instance pairs that are far apart from each other, making sure that the results
are mainly affected by neighboring instance pairs and hence sufficiently smooth
with respect to the intrinsic structure revealed by the training data.

3.4.4 Connection with LPP and FDA
We provide some theoretical analysis of the connection between our proposed
algorithm and two popular dimensionality reduction methods, i.e., the global
statistical method FDA and the local geometric method LPP [9]. We show that
even the initial solution of MIE (i.e., embedding the initial graph) shares the
advantages of both FDA and LPP and mitigates their drawbacks at the same
time.

Theorem 3. Maximizing Ĵz is equivalent to LPP.
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Proof. We have

τ = argmax(Ĵz = −
N∑

i=1

N∑
j=1

w
(0)
ij ||zi − zj ||2)

= argmin
M∑

m=1

t�mX
�L(0)Xtm,

where w(0)
ij = e−||xi−xj ||2/δ2

is the adjacency matrix of a heat graph, L(0) is its
corresponding Laplacian matrix. Recall that LPP minimizes exactly the same ob-
jective function except that it uses a different normalization constraint (equiva-
lent to using normalized Laplacian). �

Theorem 4. If the classes are balanced, i.e., Nc

N = 1
C , maximizing Ĵzy is reduced

to a localized version of FDA (LFDA,[20]).

Proof. We have

τ = argmax(Ĵzy ∝ −
N∑

i=1

N∑
j=1

(w(+)
ij − w

(−)
ij )||zi − zj ||2)

= argmin
M∑

m=1

t�mX
�(L(+) − L(−))Xtm, (13)

where w(+)
ij = I(yi = yj)e−||xi−xj ||2/δ2

) and w(−)
ij = (p̂yi + p̂yj )e−||xi−xj ||2/δ2

de-
fines two graphs, L(+) and L(−) represents their Laplacian matrices respectively.
Assume the classes are balanced, ∀i, j, p̂yi = p̂yj = 1/C, the Fisher criterion can
be rewritten as:

max
M∑

m=1

tmSBtm

tmSW tm
∝

M∑
m=1

t�mX
�L(−)Xtm

t�mX�L(+)Xtm

+ const. (14)

The equivalence between Eq.(13) and Eq.(14) follows directly from the equiva-
lence of trace ratio and trace difference [7]. �

To summarize, both LPP and FDA can be viewed as degraded forms of the initial
MIE, They maximize solely either Jz or Jzy. In contrast, MIE simultaneously
optimizes both Jz and Jzy. In addition, instead of combining these two goals in

an ad-hoc way, MIE uses a natural parameter η = Jy =
∑

c
N2

c

N2 that is derived
from a theoretically optimal criterion to strive for a reasonable balance between
these two goals.

As an empirical validation, we test FDA, LPP and the initial MIE on a syn-
thetic 2-D data set [20]. The results are shown in Fig.1. We can see that in an
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Fig. 1. Typical behaviors of global method (FDA), local method (LLP) and globally-
locally consistent method (initial solution of MIE)

ideal case as depicted in the leftmost subfigure, LPP, FDA and MIE are all able
to find an excellent projection for the data. In the middle subfigure, while the
MIE and FDA can still find a good projection, the geometric and unsupervised
method LPP gets a very poor projection such that the data from both classes
are totally mixed up. In the rightmost subfigure where the data has multiple
modes, the methods that account for locality geometric information (i.e., MIE
and LPP) successfully obtain a good feature. However, FDA totally fails, which
is not surprising since it is based on Gaussian distribution assumption.

4 Using Bayes Error Rate

We now apply the procedures to the Bayes Error Rate (BER) criterion. From
Eq.(2), we have:

Υ ∝
∫
z
p(z)(p(y)p(z|y)− p(c 
= y)p(z|c 
= y))dz + const.

Using nonparametric estimator, we have:
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min
τ∈H

J(z) =
∫
z
p(z)(p(y)p(z|y)− p(c 
= y)p(z|c 
= y))dz.

≈
N∑

n=1

[P̂yn

∑
i∈Ω

(o)
n

k(zi, zn)− (1− P̂yn)
∑

j∈Ω
(e)
n

k(zj , zn)]

=
N∑

i=1

N∑
j=1

rijk(zi, zj),

where Ω(o)
n = {i : yi = yn} and Ω(e)

n = {j : yj 
= yn} denote the homogenous and
heterogeneous index set of zn, P̂c = Nc/N , and

rij =
{

2P̂yi if yi = yj

P̂yi + P̂yj − 2 otherwise

The remaining procedures (i.e., kernel approximation and feature construction)
are quite straightforward; we will omit the detailed derivation. Eventually, we
will derive a variational graph with adjacency wij = −rijλij (similarly, the initial
graph wij = rije

−||xi−xj ||2/δ2
), and get feature extractors by spectral analysis

based on the Laplacian of this graph (the resulting algorithms are referred to as
BER Embedding, or BERE/kBERE). It can be easily proved that BERE also
has the Max-Discrimination and Locality-Preserving properties.

5 Experiment

We test our proposed algorithms on real-world face recognition tasks. For com-
parison, PCA, FDA, LPP, MFA (Margin Fisher Analysis,[24]) and their kernel
counterparts are selected as baselines, among which PCA and LPP are unsu-
pervised, FDA and MFA are supervised, and LPP and MFA account for local
geometric structures.

Three benchmark facial image sets are selected: (1) the Yale2 data set, which
contains 165 facial images of 15 persons, 11 images for each individual; (2)the
ORL3 data set, which consists of 400 facial images of 40 persons; and (3) the
CMU Pie4 data set, which contains 41368 facial images of 68 individuals. All the
three sets of images were taken in different environments, at different times,
with different poses, facial expressions and details. In our experiment, all the
raw images are normalized to 32×32. For each data set, we randomly select ν
images of each person as training data (referred to as νtrain), and leave others
for testing. Only the training data are used to learn features. To evaluate the
effectiveness of different methods, the classification accuracy of a k-NN classifier
on testing data is used as the evaluation metric.
2 http://cvc.yale.edu/projects/yalefaces/yalefaces.html
3 http://www.uk.research.att.com/facedatabase.html
4 http://www.ri.cmu.edu/projects/project 418.html
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Table 1. Comparison of feature extraction algorithms on face recognition tasks. The
results of our proposed algorithms that are better than the performances of baseline
methods are highlighted in bold.

Method
Yale ORL CMU Pie

2train 3train 4train 2train 3train 4train 5train 10train 20train
PCA .44±.022 .52±.014 .55±.017 .54±.015 .63±.012 .69±.014 .47±.017 .55±.016 .65±.015
FDA .46±.016 .57±.013 .68±.012 .76±.021 .82±.017 .90±.016 .61±.022 .78±.015 .85±.008
LPP .50±.019 .61±.018 .67±.015 .70±.018 .78±.017 .86±.014 .62±.022 .75±.016 .84±.013
MFA .49±.023 .64±.019 .77±.014 .72±.021 .84±.017 .89±.017 .64±.016 .78±.011 .91±.013
MIE0 .51±.019 .67±.019 .83±.016 .77±.021 .85±.018 .94±.013 .64±.017 .81±.016 .89±.014
MIE .50±.016 .67±.018 .85±.018 .75±.019 .88±.018 .92±.017 .65±.019 .83±.018 .93±.015

BERE0 .53±.020 .66±.017 .81±.016 .80±.018 .88±.017 .91±.013 .70±.019 .81±.016 .94±.015
BERE .55±.022 .69±.019 .84±.015 .84±.018 .92±.018 .94±.016 .69±.019 .87±.017 .94±.018
KPCA .48±.025 .55±.019 .60±.016 .63±.022 .74±.017 .78±.013 .50±.018 .57±.017 .69±.016
KDA .49±.023 .63±.021 .69±.018 .79±.021 .89±.019 .92±.016 .60±.022 .79±.013 .91±.010

KMFA .52±.024 .65±.024 .78±.020 .75±.024 .84±.017 .92±.015 .62±.021 .83±.017 .91±.016
kMIE0 .55±.026 .70±.021 .84±.018 .86±.022 .91±.017 .94±.015 .69±.018 .83±.016 .93±.017
kMIE .52±.021 .73±.022 .87±.017 .88±.020 .91±.017 .92±.019 .67±.019 .86±.018 .95±.015

kBERE0 .54±.018 .73±.019 .86±.016 .81±.021 .93±.015 .92±.017 .71±.015 .86±.016 .95±.016
kBERE .57±.021 .72±.019 .89±.018 .83±.022 .95±.019 .95±.016 .74±.019 .89±.016 .94±.018

The only parameter of our algorithms is the bandwidth parameter δ in the
initial graph. In our experiments, we adopt the local scaling scheme used in
[27]. All the other hyper-parameters (e.g., the number of neighbors k used in
kNN and local scaling) are tuned by 5-fold cross validation. The experiments
are averaged over 10 random runs. The results are given in Table 1, where each
entry represents the mean testing accuracy ± standard deviation.

From Table 1, we can see that for almost all the entries, our proposed al-
gorithms significantly outperform other baseline methods. Even the algorithms
based on the initial graphs (i.e., MIE0 and BERE0) perform significantly better
than the baselines. Note that the computation complexity of the initial algo-
rithms are of the same order as the baseline methods. The improvements are
quite evident. On average, MIE is 36% over PCA, 8% over FDA, and 4% over
MFA; BERE is 39% over PCA, 11% over FDA and 6% over MFA. The im-
provements are even more significant in the kernel case: kMIE (31%,9%,7%) and
kBERE(33%,10%,8%) over (KPCA, KDA, KMFA). For most entries in the ta-
ble, we got p-values less than 0.005. We also observe in our experiment that,
when using the initial graph for initialization, the variational graph embedding
algorithms (i.e., MIE, BERE) usually converge within 5 iteration steps.

6 Conclusion

In this paper, we have established graph-based feature extraction algorithms
based on variational optimization of nonparametric learning criteria. As case
studies, we employed two theoretically optimal but computationally intractable
feature learning criteria, i.e., Mutual Information and Bayes Error Rate. By non-
parametric criteria estimation and kernel term approximation, we reduced the
optimization of these criteria to variational graph-embedding problems, which
can be solved by an iterative EM-style procedure where the E-Step learns a
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variational affinity graph and the M-Step in turn embeds this graph by spectral
analysis. The resulting feature learner has several appealing properties such as
maximum discrimination, maximum-relevance-minimum-redundancy and locality-
preserving. Experiments on benchmark face recognition data sets confirm the
effectiveness of our proposed algorithms.

We finally note that our derived graphs (e.g., the initial graphs derived in
Section 3 and 4) as well as the approach we used to derive graphs (i.e., non-
parametric learning measure estimation and variational approximation of kernel
terms) are not confined to feature extraction scenarios. They might also be
useful in a variety of graph-based learning tasks, e.g., semi-supervise learning,
relational learning, metric learning. We shall leave such investigations for future
research. Sparseness is a desirable property for feature learning, especially for
kernel based methods since both the memory for storing the kernel matrix and
the training and testing time are typically proportional to the degree of sparsity
of the feature extractor. In the future, we would also like to investigate sparse
feature learning in the proposed framework.
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Abstract. This paper presents an interdisciplinary investigation of statistical 
information retrieval (IR) techniques for protein identification from tandem 
mass spectra, a challenging problem in proteomic data analysis. We formulate 
the task as an IR problem, by constructing a “query vector” whose elements are 
system-predicted peptides with confidence scores based on spectrum analysis of 
the input sample, and by defining the vector space of “documents” with protein 
profiles, each of which is constructed based on the theoretical spectrum  of a 
protein. This formulation establishes a new connection from the protein 
identification problem to a probabilistic language modeling approach as well as 
the vector space models in IR, and enables us to compare fundamental 
differences in the IR models and common approaches in protein identification.  
Our experiments on benchmark spectrometry query sets and large protein 
databases demonstrate that the IR models significantly outperform well-
established methods in protein identification, by enhancing precision in high-
recall regions in particular, where the conventional approaches are weak. 

Keywords: Proteomics, Information Retrieval. 

1   Introduction 

Statistical pattern matching technologies have been successfully applied to many real-
world problems. Among those, text-based information retrieval (IR) is perhaps one of 
the most intensively studied and highly successful areas. Computational biology is 
another important area where pattern matching plays a key role in various forms of data 
analysis. This paper presents an interdisciplinary investigation, focusing on how to 
generalize good ideas and successful technologies in one domain (IR) into new insights 
and novel solutions in another (computational proteomics). Specifically, we focus on the 
problem of protein identification from detected peptides in tandem mass spectra.  

Protein identification is important for discovering biomarkers linked to diseases, 
therapeutic outcomes and individualized drug toxicity. Tandem mass (MS/MS) 
spectra, generated by a chemical process over complex biological samples such as 
tissues or blood, contain rich information about proteins and peptides which are 
constituents of proteins. Protein identification from MS/MS data is typically carried 
out in two steps. Step 1 is to predict peptides based on observed empirical spectra, and 
step 2 is to predict proteins based on the predicted peptides.  Many technical solutions 
have been developed for the peptide identification step in the past two decades, 
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including commercially available software [1], [2], [4], [5], [6], [7], [8].  However, for 
the second step, the current literature is relatively sparse. Particularly, few 
interdisciplinary investigations were conducted for exploring the potential of 
advanced IR technologies in solving the mapping from predicted peptides to proteins. 
Addressing this research gap is the primary motivation of this paper, and we focus on 
the second step in particular, i.e., the mapping from system-predicted peptides to the 
true proteins in large protein databases.  

Why would it be beneficial to bridge the technical and methodological gaps 
between the fields of protein identification and text retrieval?  At first glance, the two 
tasks look totally different. However, at a higher level of abstraction, the two tasks 
and related technical solutions have important properties in common. If we consider 
peptides as words, proteins as documents, and peptide identification from spectra as a 
query generation process, then the mapping from predicted peptides to proteins in a 
protein database is just like ad-hoc retrieval in a vector space, albeit a particularly 
high-dimensional one. A database with tens of thousands of proteins would contain 
tens of millions of unique peptides. Some common peptides could be considered in 
analogous to stop-words in text, while the majority of peptides are much rarer, form a 
highly skewed distribution over proteins.  This means that the rich body of research 
findings in text retrieval would provide meaningful insights into how to weight 
peptides in proteins, how to combine peptide-level evidence into predictions of 
proteins, and how to leverage state-of-the-art IR methods directly or with adaptation, 
including efficient inverted indexing, effective term weighting schemes, smoothing 
and dimensionality reduction techniques, choices of similarity measure in retrieval 
models, well-understood evaluation metrics, and standardized software toolkits like 
Lemur and Indri [9][10]. In order to leverage those potentials we need a good 
understanding of the background knowledge and related literature, including how 
biological samples, MS/MS spectra, peptides and protein sequences are related to 
each other, what kinds of technical solutions have been developed for peptide 
identification from spectra and for protein identification from predicted peptides, how 
the current solutions have been evaluated and compared, what the strengths and 
weaknesses of those methods, and how can we apply or adapt retrieval techniques to 
create better solutions. Achieving such an understanding is the primary contribution 
we target in this paper. Specifically, our main contributions can be listed as:  

1) A new formulation of the protein-prediction task that enables probabilistic 
modeling with joint use of well-established peptide identification techniques and 
domain knowledge about protein sequences, as well as the rich developments in 
IR on language modeling and vector space models.  

2) A comparative theoretical analysis of two probabilistic models for combining 
peptide-level evidence in the prediction of in-sample proteins: one is the well-
establish method by Nesvizhskii et al., which scores candidate proteins based on 
estimated probability of a Boolean OR function, and the other is a language-
modeling method that we propose, which uses the estimated probability of a 
Boolean AND instead.  We show that the former has a weakness in 
discriminating true positives from false positives in the high-recall region of the 
system’s predictions, and that the latter addresses such a weakness in a 
principled way. 
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3) A thorough evaluation on standard MS/MS datasets and large protein databases 
for comparison of methods, including probabilistic OR, probabilistic AND, 
cosine-similarity with a robust TF-IDF term weighting scheme, and the 
commonly used X!Tandem commercial software in proteomic applications. We 
observed significant performance enhancement by the IR models tested over the 
conventional methods in the current literature of protein identification from 
tandem mass spectra. 

The rest of the paper is organized as follows. Section 2 outlines related background 
and representative approaches in protein identification from tandem mass spectra. 
Section 3 defines our new framework and discusses its connection to well-established 
techniques in text retrieval. Section 4 introduces three benchmark query sets 
(spectrometry samples) and the corresponding large protein databases for empirical 
evaluation. Section 5 reports the experiments and the results. Section 6 summarizes 
the main findings and conclusions. 

2   Background and Related Work 

Statistical approaches for data analysis with tandem mass spectra is an important and 
fast growing area in recent computational biology research. Analogous and 
complementary  to micro-array data which are highly informative for analyzing gene-
level activities under various conditions, MS/MS spectra contain rich information 
about proteins which are potentially responsible for diseases, therapeutic responses 
and drug toxicity [3]. MS/MS spectra are generated using liquid chromatography 
where a sampled tissue or a blood drop is digested into peptides which are segments 
of protein sequences. The peptides are further separated into ionized fragments and 
analyzed to produce MS/MS spectra. Each spectrum is a list of spikes: the location of 
each spike is the mass/charge (m/z) ratio of an ionized fragment, and the magnitude of 
the spike is the abundance or intensity of the fragment.  An input sample is typically a 
mixture of multiple proteins but the exact number of proteins is unknown in advance. 
Standard MS/MS datasets for benchmark evaluations were typically constructed for 
sample mixtures that contain a dozen or a few dozens of proteins [19]. The numbers 
of MS/MS spectra obtained from those samples are in the range of a few thousands.  
The task of protein identification is to find a mapping from the few thousands of 
observed MS/MS spectra to the true proteins in the input sample. It is typically 
accomplished in two steps: first, identify the peptides based on observed spectra; 
second, predict proteins based by system-predicted peptides.   

In peptide identification research, database search techniques have been commonly 
used to select a candidate set of peptides based on the degree of matching between the 
“theoretical” (expected) mass spectra of candidate peptides in a protein database  and 
the empirical spectra in the input sample [1],[2],[4],[5],[6], [7], [8]. The theoretical 
spectrum of each peptide can be automatically derived by rules from the amino acid 
sequences of proteins. Each known protein has a unique amino acid sequence, which 
can be segmented by rules into peptide-level subsequences. The theoretical spectrum 
of each peptide can also be automatically generated based on existing knowledge 
about lower-level chemical properties of amino acid letters. The number of unique 
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peptides in a protein database can be very large. For example, we found roughly 5 
million unique peptides in a sample of 50,000 proteins as typical. By comparing each 
theoretical spectrum against the empirical spectra in an input sample, a system obtains 
a confidence score of each candidate peptide. Further, applying some threshold to the 
confidence scores yields peptide assignments by the system. The similarity measures 
differ from system to system. SEQUEST, for example, one of the most commonly 
used commercial programs in practical applications as well as in comparative 
evaluations of peptide identification methods on benchmark datasets, employs a 
Fourier Transform cross-correlation strategy [4]. X!Tandem is another popular open-
source software for peptide/protein identification and has been commonly used as a 
baseline in comparative evaluations. It uses aggressive thresholds to reduce false-
alarms and to enhance computational efficiency, and produces a ranked list of 
proteins for each input sample [21]. 

In protein identification based on system-predicted peptides from MS/MS spectra, 
the ProteinProphet system by Nesvizhskii et al [12] is among the most commonly 
used in comparative evaluations of methods on benchmark datasets.  This system uses 
SEQUEST-predicted peptides as the input, and converts the non-probabilistic 
confidence scores by SEQUEST to the probabilistic scores for peptide assignments. 
Specifically, they used the Expectation-Maximization (EM) algorithm to obtain a 
mixture model for true positives and false positives in system-predicted peptides. 
Some empirical evaluations [6] showed performance improvement by the score 
refinement method over that of the original SEQUEST. ProteinProphet estimates the 
probability of each protein being present in the input sample using the probability that 
at least one of the constituent peptides in the protein is a corrected assignment to the 
sample. To be explicit, suppose ]1,0[∈jq is the estimated probability of the presence 

of peptide j in the input sample. The probability that a protein i  is present in the 

input sample is calculated in ProteinProphet as 

∏
=

−−=
J

j
ji qp

1

)1(1  . 

This formula calculates the estimated probability of the Boolean-OR function over the 
peptide-level evidence, assuming that the occurrence (being present or not) of each 
peptide is an identically independently distributed (i.i.d.) random event with 

jq j ∀∈ ],1,0[ . If any constituent peptide of a protein is predicted as present by the 

system, we have jq j ∃= ,1 and 1=ip as the consequence. Clearly, the protein scoring 

function in ProteinProphet is the estimated probability for Boolean OR logic. We will 
refer to this method as prob-OR in the rest of the paper. A refined version of this 
method is also supported by the system, i.e., an EM algorithm is used to find hidden 
groups of proteins, and the peptide probabilities are estimated conditioned on the 
hidden groups of proteins instead of individual proteins.  

Other work of a similar nature in protein identification includes that by MacCoss  
et al. [11] who used a modified version of SEQUEST to generate peptide assignments 
with normalized scores, and performed protein-level predictions with a prob-OR 
equivalent operation. Moore et al. [13] pursued a different but heuristic approach: 
after aggressive removal of low-scoring candidate peptides, the product of the scores 
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of the remaining peptides that constitute a protein sequence is used to estimate the 
quality of the match for the protein.  Theoretical comparison of their method with the 
probabilistic models (including Nesvizhskii et al., and others) is difficult because their 
scoring functions are heuristically or procedurally defined, not explicitly probabilistic; 
empirical comparison was not reported on the other hand. The recent work by Li et. 
al. [22] presents another interesting alternative which predicts proteins by modeling 
the input sample as a multi-protein mixture and finding the Maximum-a-Posteriori 
(MAP) solution for the mixture weights. They used Gibbs sampling as an 
approximation method because solving MAP exactly is computationally intractable.  
Although no theoretical upper/lower bound is guaranteed by the approximation, an 
empirical evaluation on a new (their own) dataset shows improved results over that of 
Nesvizhskii’s method (prob-OR). However, repeating this comparative evaluation has 
been difficult as the dataset is not publicly available, and no sufficient details were 
published about how to reconstruct the dataset from publicly available protein 
databases. Other indirectly related work includes CHOMPER [14], INTERACT [15] 
and DTASelect [16], which focus on visualization and filtering tools for manual 
interaction in protein identification, and Mascot [3] and Sonar [17] which focus on 
commercial tool development.  

3   Methods 

The desiderata for a new approach are: 1) a theoretically justified function (or family 
of functions) for combining peptide-level evidence, and 2) higher performance in 
standard metrics such as average precision, compared to the best results reported in 
the MS/MS literature. To address these objectives we turn to modern IR approaches 
for mapping predicted peptides to proteins.  

Notice that the commonly used prob-OR type of functions in protein scoring has a 
potential weakness. That is, it has the tendency to produce many false alarms due to 
an overly simplistic assumption because if any constituent peptide of a protein is 
detected, then the protein is assumed as a correct assignment.  As an alternative, we 
propose a mapping with stronger constraints, i.e. using a probabilistic AND (prob-
AND) function to combine evidence in predicted peptides. More precisely, we 
propose to  

1) translate the predicted peptides into an empirical in-sample distribution of 
peptides as observed in the MS/MS spectra; 

2) use the relative frequencies of peptides in the amino acid sequence of each 
protein as the protein profile; and  

3) measure the Kullback-Leibler (KL) divergence of each protein-specific 
distribution of peptides from the sample distribution of peptides.   

These steps together accomplish a prob-AND mapping from the predicted peptides to 
candidate proteins with probabilistic scores.   

3.1   Data Representations  

The input to our protein identification system is a set of peptides with confidence 
scores which are produced by a well-established method for peptide identification 
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from a sample of MS/MS spectra [6]. We present the scored peptides using a vector 
),,2,1( Jqqqq L

r
= whose elements ]1,0[∈jq  are normalized so that they sum to one, 

and J is the number of total unique peptides being identified. For convenience, we call 
vector q

r
 the “query” for protein search. Notice that a peptide identification method 

may not generate normalized scores. In that case, we translate scores as following: 
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We also define a normalized vector ( profile) for each protein in the target database 
(DB) as:  
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where ijn  is the count of peptide j in protein i. Notice that query normalization is 

generally not required in text retrieval methods because it does not effect the ranking 
of documents given a query. Similarly, in our mapping from a “bag” of system-
predicted peptides to protein profiles, query normalization does not affect the ranking 
of proteins given a query. However, with explicit normalization of both the query 
vector and protein profiles we can intuitively interpret the mapping criterion based  
the KL-divergence between the two types of vectors (Section 3.2).  

We smooth the peptide probabilities using a Dirichlet prior [18], modifying the 
elements as  
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Parameter μ controls the degree of smoothing, and ]1,0[∈jπ  is calculated as: 
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Smoothing is a crucial step in the formulation of protein profiles. As discussed earlier, 
the peptide identification step identifies peptides in the sample which are the result of 
the protein cleavage, i.e. breaking of protein into its constituent peptides upon the 
reaction with a chemical cleaving agent (e.g. Trypsin). It is not guaranteed that each 
protein breaks at every peptide boundary (phenomenon known as miscleavage), and 
consequently, not every constituent peptide is necessarily observed and not every 
observed component is necessarily a valid peptide. Smoothing therefore is necessary 
for assigning non-zero weights to unobserved peptides, just as the out-of-vocabulary 
words need to be handled in language modeling for document retrieval.  To ensure 
that all the observed components (both valid peptides and peptide concatenations) are 
taken into account, we simulated miscleavages in  creation of protein profiles.  
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Why do we construct protein profiles in the above way? Because we want to 
leverage the domain knowledge about amino acid sequences and establish the 
mapping from peptides to proteins accordingly. Ideally, we would like to have a large 
training set of MS/MS spectra with explicitly labeled correspondences to positively 
and negatively related proteins in a target database, which would enable supervised 
learning of the conditional distribution of peptides given a protein in MS/MS samples.  
However, such a large training set would be very expensive to produce and is not 
currently available in open-source benchmark datasets for protein identification 
evaluations. The only knowledge we have for relating predicted peptides for an input 
sample to the proteins in a target database are 1) the peptide occurrences in amino 
acid sequences of proteins, and 2) the expected (theoretical) spectrum of each valid 
peptide. Thus, we stay with the unsupervised setting for the mapping problem, i.e., by 
constructing a peptide-based profile for each protein, and by conducting proximate-
search over protein profiles given a synthetic query. The normalization of both the 
query vector and the profile vectors of proteins enables probabilistic interpretation for 
the mapping criterion, and avoids an unjustified bias of favoring longer proteins (i.e. 
with a larger number of constituent peptides) over shorter ones, as present in the prob-
OR approaches.  As for the need of smoothing, it is well understood in statistical 
learning theory and practice that model smoothing is particularly important when the 
feature (input variable) space is very large and the observed data is highly sparse.  In 
our problem, the feature space consists of a large number of peptides, with a skewed 
distribution over a modest number of protein sequences. For example, the PPK 
benchmark dataset (Section 4) contains 4,534 proteins and 325,812 unique peptides. 
This means that most protein profiles are both high-dimensional and extremely 
sparse, and that appropriate smoothing is necessary for successful mapping from a 
query to candidate proteins.  

3.2   Protein Scoring Based on Prob-AND  

The choice of scoring criterion is obviously crucial for successful ranking of proteins 
given a query.  We may consider the presence or absence of a peptide in the predicted 
list as a random variable, where the randomness comes from both the sampled protein 
mixture, and the noisy process of generating MS/MS spectra from the protein 
mixture. Consequently, we may view vector q

r
 as the empirically observed in-sample 

distribution of peptides in an unknown protein mixture. Similarly, we may view 
vector ip

r
 as the “theoretical” peptide distribution in a specific protein, derived based 

on the amino acid sequences of proteins in a target database, and existing knowledge 
(rules) about how protein sequences decompose to peptides. We use the cross entropy 
to score each candidate protein with respect to the query.  The cross entropy of the 
two distributions is defined as: 
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The cross entropy decouples into two terms as shown in the last line above: the first 
term )(qH

r
 is the entropy of the query, which is the same for every protein; the second 

term )||( ipqD
rr

 is the Kullback-Leibler (KL) divergence that determines the relative 

ranking of proteins with respect to the query. A smaller KL divergence means a better 
matched protein for the query.   

We use prob-AND as the abbreviation of the proposed method. KL divergence has 
been commonly used in language modeling (LM) approaches for ad-hoc text retrieval 
with probabilistic ranking of documents given a query. It is a function proportional to 
the log-likelihood of the query conditioned on the document model under the term 
independence assumption in a multinomial process. Let ),,,( 21 Jxxxx L

r
= be the 

vector whose elements are the within-query term frequencies. The log-likelihood is 
estimated as:  
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where the scaling factor Jx xxxN +++= L21   is the total count of term occurrences in 

the query. Except for the scaling factor (which is constant given a query), the log-
likelihood and KL divergence are identical. Therefore, using the multinomial 
probabilistic model to rank documents for a query makes no difference compared to 
using the negation of the KL divergence as the metric. With respect to ranking 
proteins given a set of predicted peptides, the only difference is that the within-query 
term frequencies are not directly observed but are predicted instead.  Nevertheless, the 
connection between the log-likelihood function and KL divergence shows clearly that 
the logic being used for assembling partial evidence (from individual terms or 
peptides) is probabilistic AND, not probabilistic OR. In other words, KL divergence 
imposes stronger constraints in the mapping from predicted peptides to proteins.  
Probabilistic AND and KL divergence have not been studied for protein identification 
in the current literature, to our knowledge.  

3.3   Connections to Other Vector Space Models for Text Retrieval 

How are prob-AND and prob-OR related to conventional retrieval Vector Space 
Models (VSMs) in IR? In fact, they are closely related. Let ),,,( 21 iJiii dddd L

r
= be a 

document vector and define within-document term weighting as  

) doc |  termPr(loglog ijijpijd ≡= , 
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The dot-product similarity in a standard VSM is calculated as: 

ijpJ
j jqidqidqsim log1)( ∑ ==⋅=⋅

rrrr
. 

This is exactly the same formula in the prob-AND model, i.e., scoring function based 
on the cross entropy. On the other hand, if we choose ijij pd =  as the term weighting 

scheme, the dot-product similarity becomes: 
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This is a variant of soft OR. That is, a document (or protein) receives a positive 
weight where as long as any of its terms (or peptides) is found in the query. In a 
further extreme setting of ijij Id = which is the indicator function with 1),( =jiI if 

peptide j is a constituent of protein i and 0),( =jiI otherwise, we have: 

), ()|(
query∑ ∈

=
j

ji jiIqqdscore
rr

 

It also mimics the Boolean OR logic in a soft manner, obviously. There soft-OR 
scoring functions are closely related to the prob-OR metric in ProteinProphet which 
we analyzed in Section 2.   

The connections from prob-OR and prob-AND to conventional VSMs invites a 
question: are they better choices than other variants of VSM, e.g., the commonly used 
cosine similarity with TF-IDF term weighting scheme? Since the latter is not a 
probabilistic scoring function, direct theoretical comparison on the basis of 
probabilistic modeling is impossible. However, an empirical comparison between 
these VSM variants would be highly informative and practically important for a 
thorough investigation on the applicability and effectiveness of advanced IR 
techniques in solving the protein identification problem. Hence, we report such a 
comparative evaluation in Section 5. 

4   Datasets 

For evaluation and benchmarking of protein identification algorithms, we use 
standard proteomic mixtures whose MS/MS spectra are publicly available. Purvine et 
al in 2003 introduced a standardized proteomics dataset to support comparative 
evaluation which consists of a query set of MS/MS spectra from a mixture of 12 
proteins and 23 peptides1 and a search database consisting of 4534 proteins [19]. The 
dataset was designed to mimic the complexity of large scale proteomics experiments 
and to serve as a standard in proteomics research. We refer to this dataset as PPK, 
after the authors Purvine S, Picone AF and Kolker E [19]. 

We also created two more datasets, called Mark12+50000 and Sigma49+50000, 
respectively. The Mark12+50000 dataset consists of a query set of MS/MS spectra 
from a 12-protein mixture (from Invitrogen, Carlsbad CA) called the 'Mark12 

                                                           
1 The query set was generated from 12 proteins and 23 peptides. Each of the peptides was 

treated as a single-peptide protein in evaluation yielding a total of 35 proteins. 
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Electrophoresis Standard', and a target protein database which we name as M50000. 
The Sigma49+50000 dataset consists of the query set of MS/MS spectra from a 49 
protein mixture (from Sigma-Andrich, St. Louis MO) and a target protein database 
which we name as S50000. Both query sets were provided by the Mass Spectrometry 
Research Center at Vanderbilt University and have been used as standard benchmarks 
in proteomics research. The target databases were generated by us by drawing two 
random samples from the SwissProt2 protein database, which contains over 280,000 
protein sequences, and then adding Mark12 query-set proteins to one sample and 
Sigma49 query-set proteins to the other sample. We chose the size (50,000) of the 
target protein databases to be comparable to those used in actual proteomic analyses. 
Tables 1 and 2 summarize the datasets3. 

Table 1. Query set statistics 

Query Set #spectra #proteins #peptides

PPK (queries) 2995 35 1596

Mark12 9380 12 1944

Sigma49 12498 49 4560
 

Table 2. Protein database statistics 

Protein DB #proteins #peptides #relevant proteins

PPK (protein DB) 4534 325,812 35
M50000 50012 5,149,302 12
S50000 50049 2,571,642 49  

5   Experiments 

We conducted a comparative evaluation with controlled experiments for three 
models: prob-OR, prob-AND, and a standard VSM model (supported by the Lemur) 
which uses TF-IDF (“ltc”) for within-document term weighting and cosine similarity 
for the scoring function.  We name the last method “TFIDF-cosine”. We also used the 
popular X!Tandem software (available online) to generate an alternative baseline. 

5.1   Experimental Settings 

To ensure a controlled setting, all the four methods share the same query generation 
process. We used the publicly available software of SEQUEST [4] and the 

                                                           
2  http://expasy.org/sprot/ 
3 Datasets will be made publicly available to support comparative evaluation and benchmarking 

at the following URL:  http://nyc.lti.cs.cmu.edu/clair/datasets.htm 
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PeptideProphet4 pipeline to predict peptides from MS/MS data, producing the queries 
shared by all the methods except X!Tandem for retrieving proteins. For the 
experiment with X!Tandem, we use the inbuilt peptide and protein identification tools 
in the open-source software package. When evaluating a method on one dataset, we 
used the remaining two datasets as the validation sets for tuning parameters. For 
example, when PPK is used as the test set, we tuned the smoothing method and μ 
(smoothing parameter) in prob-AND on Mark12+50000 and Sigma49+50000 as the 
validation datasets5. Based on the results, we chose the Dirichlet prior over Laplace as 
the smoothing method and μ=5000 as the smoothing parameter.  

5.2   Metrics 

The output of each method is a ranked list of predicted proteins for a pre-specified 
MS/MS dataset and a protein database. Applying a threshold to the ranked list of each 
method yielded binary decisions and shifting the threshold enables us to calculate 
precision values at different levels of recall. Using TP (true positives), FP (false 
positives), FN (false negatives) and TN (true negatives) to denote the counts of 
predictions in the four corresponding categories, the performance at a fixed threshold 
is measured as: 

Recall = TP / (TP + FN), 

Precision = TP / (TP + FP) 

To evaluate the ranking ability of each method, we computed its average precision 
(over all recall levels) per query, and then the mean over all queries.  This produces 
the standard MAP score for each method.  

5.3   Main Results 

The performance of the four methods in average precision is summarized in Table 3.  
The main observations are the following:  

• Prob-OR had a relatively weak performance, with the MAP score significantly 
below the levels of all the other methods except X!Tandem. This observation 
supports our theoretical analysis (Sections 7) on the weakness of the protein 
scoring functions based on Boolean-OR in assembling peptide-level evidence – 
they are not sufficiently powerful for discriminating true positives from false 
positives.  

• Prob-AND is among the two best methods (the other is TFIDF cosine) on average, 
with a MAP score of 0.71. It outperformed the prob-OR method significantly on all 
the datasets, successfully addressing the main weakness of the latter. 

 
                                                           
4 PeptideProphet is a part of the TransProteomicPipeline, a publicly available software toolkit 

for protein identification at  http://tools.proteomecenter.org/software.php 
5 Note that the 50000 proteins in Sigma49+50000 and Mark12+50000 are different independent 

samples drawn from Swissprot. 
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Table 3. Results summary in average precision (bold case indicates best performance) 

Dataset prob-AND prob-OR
TFIDF
cosine

X!Tandem

PPK 0.87 0.8 0.84 0.43

Mark12 0.77 0.66 0.81 0.41

Sigma49 0.48 0.44 0.49 0.241

MAP 0.71 0.63 0.71 0.36
 

• The TFIDF-cosine method performed equally well as Prob-AND.  This is not 
surprising from the view point of text retrieval model analysis.  It has been 
well-understood that the conventional vector space model (VSM) using cosine 
and TFIDF term weighting is a good approximation of language modeling with 
a multinomial assumption and the Dirichlet prior of corpus-level term 
distribution [18].  And the latter is the foundation of our prob-AND approach.  
On the other hand, it is the first time that the conventional VSM is examined in 
protein identification and compared with prob-AND.  We are pleased to see 
both methods worked equally well on average, and both superior to prob-OR as 
a strong baseline in the computational proteomics literature. 

• X!Tandem, one of the most popular publicly available protein identification 
program that is commonly used as a comparative baseline algorithm,  
performed inferior to the other methods on all three datasets in our 
experiments. It has been reported in the peptide/protein identification literature 
that X!Tandem differs from SEQUEST significantly in the identified peptides 
(and proteins). X!Tandem usually suffers with poor recall (sensitivity) in the 
peptide identification step  as compared to SEQUEST based approaches [20], 
as a result of an aggressive thresholding strategy for computational efficiency 
and for reducing false alarms in the peptide identification step. Our results of 
X!Tandem agree with the previously reported findings in this sense.  

5.4   Performance in High-Recall Regions 

While average precision or MAP is well-accepted in evaluations of IR models, they 
may not be sufficiently informative for judging how much the protein identification 
systems would help biologists in reality. Notice that for biologists to verify the 
validity of the system-predicted proteins, wet-lab experiments would be needed and 
the cost would be much higher than what is required for a user to check through a 
ranked list of documents. In other words, dealing with a large number of false alarms 
would be too costly and hence impractical in proteomic data analysis. With this 
concern, we further analyze the performance of the methods in the high-recall (80%, 
90% and 100%).  

Table 4 shows the average numbers of false positives (FP) for each method at fixed 
levels of recall; the average is computed over the three datasets.  
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Table 4. Results summary in false positive counts (averaged over the 3 datasets) at fixed levels 
of recall  

Average Number of False Positives

Recall prob-AND prob-OR TFIDF-cosine
80% 28 52 28
90% 74 1002 96

100% 17746 16631 16586  

It can be observed that all the methods achieved 80% recall with a relative small 
number of FP, which is quite encouraging. However, to achieve 90% recall, the FP 
number of prob-OR increased from 92 (at 80% recall) to 1002 which is unacceptably 
high, while prob-AND and TFIDF-cosine retain their low-FP behavior. At the 100% 
recall level, all the methods produced a large number of FP, which is not too 
surprising. X!Tandem did not reach any of the recall levels higher than  60% on all 
the 3 datasets, thus it is not included in the table. 

5.5   Statistical Significance Tests 

We conducted one-sample proportion tests for comparing the average precision scores 
of the protein identification methods. Table 5 summarizes the results.   

Table 5. Significance test summary: each element in the matrix indicates the number of 
datasets (out of 3) on which System A significantly outperforms System B with a p-value <  
0.01 

A             
B prob-AND prob-OR TFIDF-cosine X!Tandem

prob-AND 3 1 3
prob-OR 0 0 3

TFIDF-cosine 1 3 3
X!Tandem 0 0 0  

 
Comparing the two strongest methods, i.e., prob-AND and TFIDF-cosine, each of 

them significantly outperformed the other on one of the three datasets, and performed 
equally well on the remaining dataset. Comparing prob-OR with all the others, it 
significantly underperformed prob-AND and TFIDF-cosine on all three datasets. 
X!Tandem performance was inferior to all other approaches on all the datasets.  

6   Conclusion and Future Work 

In this paper, we present the first interdisciplinary investigation on how to leverage 
the rich research insights and successful techniques in IR to better solve the 
challenging problem of protein identification from tandem mass spectra. We 
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formulated the problem (the mapping from system-predicted peptides to proteins) as 
an ad-hoc retrieval task, proposed a prob-AND model for combining peptide-level 
evidence in protein retrieval, and conducted a thorough evaluation of these models in 
comparison with a well-established method (prob-OR by Keller et al.) and a common 
baseline method (X!Tandem) in the field of protein-identification and a successful 
vector space model (TFIDF-cosine) in IR.  The results are highly encouraging: we 
obtained significant performance improvements by the prob-AND models and the 
VSM model over the representative baseline methods.  We hope this investigation 
provides useful information and insights for future research in adapting IR techniques 
to proteomic applications, and invites new ideas for further improvements from both 
the IR community and the computational proteomics community.  

Several extensions of the presented work are possible, including modeling the 
queries as a mixture of proteins. Such approaches are likely to rely on sampling and 
greedy approximation strategies as explicitly modeling mixtures of thousands of 
proteins is computationally intractable. One such approach by Li et. al. [22] uses the 
Gibbs Sampling strategy to overcome the computational limitations. It might also be 
possible to reduce the search space of mixtures is by grouping proteins based on co-
occurrences and modeling queries as mixture of such protein groups. We would like 
to explore such approaches in the future..Other important extensions of the presented 
work include addressing the  issues caused by incorrect cleaving of protein sequences 
into peptides, leveraging n-gram peptides in extended protein profiles, and applying 
supervised or semi-supervised classification and functional analysis to predicted 
proteins in different types of MS/MS data samples, e.g., cancerous vs. normal. Also, 
Nesvizhskii et al. have found that using Expectation Maximization (EM) as an 
additional step for finding hidden groups of proteins and for dealing with degenerate 
peptides can improve the performance of the prob-OR method.  That suggests a 
potential way to further improve prob-AND and the other methods similarly by 
deploying the additional EM step, which is an interesting topic for future research.   
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Abstract. We consider causally sufficient acyclic causal models in which
the relationship among the variables is nonlinear while disturbances have
linear effects, and show that three principles, namely, the causal Markov
condition (together with the independence between each disturbance and
the corresponding parents), minimum disturbance entropy, and mutual
independence of the disturbances, are equivalent. This motivates new and
more efficient methods for some causal discovery problems. In particular,
we propose to use multichannel blind deconvolution, an extension of
independent component analysis, to do Granger causality analysis with
instantaneous effects. This approach gives more accurate estimates of the
parameters and can easily incorporate sparsity constraints. For additive
disturbance-based nonlinear causal discovery, we first make use of the
conditional independence relationships to obtain the equivalence class;
undetermined causal directions are then found by nonlinear regression
and pairwise independence tests. This avoids the brute-force search and
greatly reduces the computational load.

1 Introduction

Given some observed variables, scientists, engineers, and policy-makers often
wish to find their causal relations, as well as to understand how to control a
particular variable by manipulating others. Discovering causal relations from
non-experimental data has attracted the interests of researchers in many areas,
such as philosophy, psychology, machine learning, etc [13,19]. In this paper we
focus on the causally sufficient acyclic causal models [13] of continuous variables.
That is, we assume that there are no confounders nor any feedback in the causal
relations.

There are some frequently-used models for acyclic causal discovery, and
traditionally they are estimated with different principles. For example, for Gaus-
sian variables with linear relations, conditional independence between the vari-
ables allows one to find a set of acyclic causal models which are in the d-
separation equivalence class [13]. Generally speaking, with more specific informa-
tion about the disturbance distribution or the causal structure, one can find the
underlying causal model more accurately. Based on the independent component
analysis (ICA [8]) technique, a class of linear, non-Gaussian, and acyclic mod-
els (LiNGAM) can be estimated very efficiently [18]. Moreover, in economics,

W. Buntine et al. (Eds.): ECML PKDD 2009, Part II, LNAI 5782, pp. 570–585, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Granger causality analysis [4] is a popular way to examine the causal relations
between times series. It exploits the temporal constraint that causes must pre-
cede effects and uses the vector auto-regression (VAR) for parameter estimation.

In this paper, we consider a large class of acyclic causal models in which
the causal relations among observed variables are nonlinear but the effect of
disturbances is linear, as extensions of the linear models mentioned above. We
show that for such causal models, mutual independence of the disturbances is
equivalent to conditional independence of observed variables (as well as the inde-
pendence between the disturbance and the parents affecting the same variable).
Furthermore, they are achieved if and only if the total entropy of the distur-
bances is minimized. The three criteria above, namely, conditional independence
of variables (together with the independence between each disturbance and the
corresponding parents), mutual independence of disturbances, and minimum dis-
turbance entropy, can all be exploited to estimate such causal models. In practice,
which one should be chosen depends on the problem at hand.

We then consider two causal discovery problems, and show how our results
help solve them efficiently. One is discovery of Granger causality with instan-
taneous effects. Previous methods consist of two separate steps: the first step
performs ordinary Granger causality analysis by using VAR’s, and the second
step finds the instantaneous causal relations [16,10]. Although these methods
are consistent in large samples, they are not efficient, because the Gaussianity
assumption for the innovations made in the first step is usually not true. We
propose a more efficient approach to estimate this model by making the distur-
bances mutually independent, as achieved by multichannel blind deconvolution
(MBD) [1], an extension of ICA.

The second problem on which we apply our theory is nonlinear causal dis-
covery with additive disturbances in the case of more than two variables. The
existing approach requires an exhaustive search over all possible causal struc-
tures and testing if the disturbances are mutually independent [6]. It becomes
impractical when we have more than three or four variables. The proposed ap-
proach, which can easily solve this problem with tens of variables, consists of
two stages. First, using nonlinear regression and statistical independence tests,
one can find the d-separation equivalence class. Next, among all possible causal
models in the equivalence class, the one consistent with the data can be found
by examining if the disturbance is independent of the parents for each variable.

2 Equivalence of Three Estimation Principles for Acyclic
Causal Models

In this section we consider a kind of acyclic data generating processes in which
each variable is generated by a nonlinear function of its parents plus the dis-
turbance. Such processes can be represented graphically by a directed acyclic
graph (DAG). Mathematically, each of the observed variables xi, i = 1, · · · , n,
is written as

xi = fi(pai) + ei, (1)
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where pai denotes the parents of xi, and the disturbances ei are independent
from each other.

A well-known approach to identify the acyclic causal relations is based on a
test called d-separation, which examines conditional independence between vari-
ables [13,19]. In the following theorem, we show that mutual independence of the
disturbances and conditional independence between observed variables (together
with the independence between ei and pai) are equivalent. Furthermore, they
are achieved if and only if the total entropy of the disturbances is minimized.

Theorem 1. Assume that the data x1, · · · , xn are causally sufficient, and were
generated by the acyclic causal model in Eq. 1. Then, when fitting the model Eq. 1
with the causal structure represented by a DAG to x1, · · · , xn, the following three
properties are equivalent:

(i) The causal Markov condition holds (i.e., each variable is independent of its
non-descendants in the DAG conditional on its parents), and in addition,
the disturbance in xi is independent from the parents of xi

1.
(ii) The total entropy of the disturbances, i.e.,

∑
i H(ei), is minimized, with the

minimum H(x1, · · · , xn).
(iii) The disturbances ei are mutually independent.

See Appendix for a proof. From this theorem, one can see that
∑n

i=1H(ei) can
be used as a measure to compare the quality of different acyclic causal model.
Generally, we prefer the model with the smallest

∑n
i=1H(ei). This is intuitively

appealing from a physics viewpoint. In physics, it is often claimed that causality
increases entropy [3]. Therefore, the disturbances ei, which are pure causes of
the observed variables xi, should have the least total entropy, compared to any
observed variables they generate. Another interesting point is that although the
causal relations among xi increases the total entropy of the observed variables,
i.e.,

∑
iH(xi), the joint entropy of the xi remains the same, with the value∑

iH(ei). In addition, the property (ii) for the acyclic causal model relates
causality and predictability from an information theory viewpoint. The causal
relations give the best prediction all variables in the system in an acyclic manner,
since the uncertainty (measured by entropy) in all errors ei is minimized.

All the three criteria in Theorem 1 can be used for causal discovery. However,
for a given problem, they may result in different techniques and involve different
computational loads. It should be noted that when using the minimum distur-
bance entropy criterion, one needs to constrain the causal models to be acyclic;
otherwise, minimization of this criterion tends to introduce cyclic relations into
the model, to reduce the magnitude of the disturbances.

It should be noted that the theorem does not state when the solution of the
problem is unique. It is well-known that for Gaussian variables, there may be sev-
eral solutions providing independent disturbances, and thus minimum entropy.
1 The property that the disturbance in xi is independent from the parents of xi is triv-

ial in the linear Gaussian case, since using linear regression, the noise (disturbance)
is uncorrelated from the explanatory variables (parents), and uncorrelatedness is
equivalent to independence for jointly Gaussian variables.
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Finding exact conditions for uniqueness is an important problem for future re-
search. For example, non-Gaussianity, or temporal order, have been shown to
make the solution unique in the linear case [18,4].

3 On Granger Causality with Instantaneous Effects

Granger causality [4] exploits the temporal information that the cause occurs
before the effect, such that the directions of the possible causal effects are known.
Consequently, it can be determined uniquely. A stationary process X1 : {x1t}
is said to Granger cause the process X2 : {x2t} if it contains information about
the predictability for x2,t+1 contained nowhere else in some large information
set, which includes x1,t−k, k ≥ 0 [4]. Using the language of conditional indepen-
dence, this means that X1 is not conditionally independent of x2,t+1 given the
large information set. In this sense, Granger causality is a kind of conditional
independence-based causality combined with the constraint that effects must fol-
low causes. Here we would like to treat xi,t as random variables, and use a DAG
to represent the possible causal relations among them. If there exist significant
causal relations xi,t−k → xj,t (k > 0, and i 
= j), then the process Xi Granger
causes Xj .

As the causal relations among xi,t are linear and acyclic, the three proper-
ties in Theorem 1 can all be used to estimate this model. Conventionally, all
of ei,t are treated as Gaussian, and minimization of the disturbance entropy is
reduced to minimizing the prediction error (in the mean square error sense), as
achieved by VAR’s. It should be noted that when eit are not Gaussian, although
the estimate given by VAR’s is consistent in large samples, it is not efficient.
With Granger causality analysis, it is sometimes observed that there is signifi-
cant contemporaneous dependency between the innovations ei. This means that
there are some instantaneous relations among xit, which cannot be captured by
traditional Granger causality.

3.1 Granger Causality with Instantaneous Effects

Mathematically, Granger causality analysis of x1t, · · · , xnt with instantaneous
effects can be formulated as

xt =
p∑

τ=0

Bτxt−τ + et, (2)

where xt = (x1t, · · · , xnt)T , et = (e1t, · · · , ent)T , and Bτ are n × n matrix of
coefficients. Here we have assumed that all involved random variables have been
made zero-mean. We also assume that the instantaneous causal relations, which
are implied in B0, are acyclic. That is, B0 can be transformed to a strictly lower-
triangular matrix by simultaneous equal row and column permutations [18].
Equivalently, the representation Eq. 2 can be written as

(I−B0)xt =
p∑

τ=1

Bτxt−τ + et. (3)
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3.2 Existing Methods

Existing methods for Granger causality analysis with instantaneous effects con-
sist of two steps [10,16]. Multiplying both sides of Eq. 3 by (I−B0)−1 from the
left, one can get

xt =
p∑

τ=1

(I−B0)−1 ·Bτ · xt−τ + (I−B0)−1 · et. (4)

This is exactly the Granger causality model without instantaneous effects with
the errors (I − B0)−1 · et. Therefore, one can first find (I − B0)−1 · Bτ , τ =
1, · · · , p, and (I−B0)−1 · et, by ordinary VAR analysis. In the second step, one
needs to estimate B0 by examining (the estimate of) the errors (I−B0)−1 · et.
One way is based on conditional independence graphs [16]. It is a combination
of VAR for lagged causality and conditional independence-based method [13]
for instantaneous causality. Due to the Gaussianity assumption, this method
produces a distribution-equivalence class of causal models. Another way, recently
proposed in [10], resorts to the ICA-based LiNGAM analysis [18]. The method
is very easy to implement, and also consistent in large samples. But when at
most one of the disturbance sequence is Gaussian, it is not efficient due to the
wrong assumption of Gaussianity of the disturbances in the first step and the
error accumulation of the two-step method.

3.3 Estimation by Multichannel Blind Deconvolution

According to the causal model Eq. 2, the causal relations among random vari-
ables xit are linear and acyclic. According to Theorem 1, such a causal model
can be estimated by making the disturbances eit mutually independent for dif-
ferent i and different t. That is, we need to make eit, which are a mixed and
filtered version of xt, both spatially and temporally independent. Estimation of
the model Eq. 3 (or equivalently, Eq. 2) is then closely related to the multi-
channel blind deconvolution (MBD) problem with causal finite impulse response
(FIR) filters [1,8]. MBD, as a direct extension of ICA [8], assumes that the ob-
served signals are convolutive mixtures of some spatially and independently and
identically distributed (i.i.d.) sources. Under the assumption that at most one of
the sources is Gaussian, by making the estimated sources spatially and tempo-
rally independent, MBD can recover the mixing system (here corresponding to
eit and Bτ ) up to some scaling, permutation, and time shift indeterminacies [11].
This implies that Granger causality with instantaneous effects is identifiable if
at most one of the disturbances ei is Gaussian.

In Eq. 2, the observed variables xit can be considered as convolutive mixtures
of the disturbances eit. We aim to find the estimate of Bτ , as well as eit, in Eq. 2,
by MBD with the filter matrix W(z) =

∑p
τ=0 Wτz

−τ (Wτ are n×n matrices):

êt =
p∑

τ=0

Wτxt−τ . (5)
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There exist several well-developed algorithms for MBD. For example, one may
adopt the one based on natural gradient [1]. Comparing Eq. 5 and Eq. 3, one
can see that the estimate of Bτ (τ ≥ 0) can be constructed by analyzing Wτ :
by extending the LiNGAM analysis procedure [18], we can find the estimate of
Bτ in the following three steps, based on the MBD estimates of Wτ .

1. Find the permutation of rows of W0 which yields a matrix W̃0 without any
insignificant entries on the main diagonal. Note that here we also need to
apply the same permutations to rows of Wτ (τ > 0) to produce W̃τ .

2. Divide each row of W̃0 and W̃τ (τ > 0) by the corresponding diagonal entry
in W̃0. This gives W̃′

0 and W̃′
τ , respectively. The estimate of B0 and Bτ

(τ > 0) can be computed as B̂0 = I− W̃′
0 and B̂τ = −W̃′

τ , respectively.
3. To obtain the causal order in the instantaneous effects, find the permutation

matrix P (applied equally to both rows and columns) of B̂0 which makes
B̃0 = PB̂0PT as close as possible to strictly lower triangular.

3.4 Sparsification of the Causal Relations

For the interpretation or generalization purpose, we need to do model selection
on the causal structure (i.e., to set insignificant entries of B̂τ to zero, and to
determine p, if needed). This is difficult to do in the two-step methods [16,10], but
is easily achieved in our method. Analogously to the development of ICA with
sparse connections [20], we can incorporate the adaptive L1 penalties into the
likelihood of the MBD model to achieve fast model selection. More importantly,
the model selection result obtained by this approach is consistent with that by
traditional information criteria, such as BIC [17]2. To make Wτ in Eq. 5 as
sparse as possible, we maximize the penalized likelihood

pl({Wτ}) = l({Wτ})− λ
∑
i,j,τ

|wi,j,τ |/|ŵi,j,τ |, (6)

where l({Wτ}) is the likelihood, wi,j,τ the (i, j)th entry of Wτ , and ŵi,j,τ a con-
sistent estimate of wi,j,τ , such as the maximum likelihood estimate. To achieve
BIC-like model selection, one can set λ = logT , where T is the sample size.

3.5 Simulation

To investigate the performance of our method, we conducted a series of simula-
tions. We set p = 1 lag and the dimensionality n = 5. We randomly constructed
the strictly lower-triangular matrix B0 and matrix B1. About 60% of the entries

2 Note that traditional model selection based on the information criteria involves a
combinatorial optimization problem, whose complexity increases exponentially in the
dimensionality of the parameter space. In the MBD problem, it is not practical to
set insignificant entries of B̂τ to zero by directly minimizing the information criteria,
as the number of parameters is too large.
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Fig. 1. Scatter plots of the estimated coefficients (y axis) versus the true ones (x axis)
for different sample sizes and different methods

in these matrices were set to zero, while the magnitude of the others is uniformly
distributed between 0.05 and 0.5 and the sign is random. The disturbances eit

were generated by passing i.i.d. Gaussian samples through a power nonlinearity
with exponent between 1.5 and 2.0 (the original sign was kept). The observations
xt were then generated according to Eq. 4. Various sample sizes (T = 100, 300,
and 1000) were tested. We compared the performance of the two-step method
proposed in [10], the method by MBD (Section 3.3) and the MBD-based method
with the sparsity constraint (Section 3.4). In the last method, we set the penal-
ization parameter in Eq. 6 as λ = logT to make its results consistent with those
obtained by BIC. In each case, we repeated the experiments for 5 replications.

Fig. 1 shows the scatter plots of the estimated parameters (including the
strictly lower triangular part of B0 and all entries of B1) versus the true ones.
Different subplots correspond to different sample sizes or different methods. The
mean square error (MSE) of the estimated parameters is also given in each
subplot. One can see that as the sample sizes increases, all methods give better
results. For each sample size, the method based on MBD is always better than
the two-step method, showing that the estimate by the MBD-based method is
more efficient. Furthermore, due to the prior knowledge that many parameters
are zero, the MBD-based method with the sparsity constraint behaves best.

3.6 Application in Finance

In this section we aim at using Granger causality analysis with instantaneous
effects to find the causal relations among several world stock indices. The chosen
indices are Dow Jones Industrial Average (DJI) in USA, Nikkei 225 (N225) in
Japan, Hang Seng Index (HSI) in Hong Kong, and the Shanghai Stock Exchange
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DJIt-1 N225t-1 HSIt-1 SSECt-1

DJIt N225t HSIt SSECt0.020.420.12

0.11

-0.15 0.35 0.21

-0.07 0.04
0.05 0.04

Fig. 2. Result of applying Granger causality analysis with instantaneous effects to
daily returns of the stock indices DJI, N225, HSI, and SSEC, with p = 1 lag. Large
coefficients (greater than 0.1) are shown in bold.

Composite Index (SSEC) in China. We used the daily dividend/split adjusted
closing prices from Dec. 4, 2001 to Jul. 11, 2006, obtained from the Yahoo finance
database. For the few days when the price is not available, we use simple linear
interpolation to estimate the price. Denoting the closing price of the ith index
on day t by Pit, the corresponding return is calculated by xit = Pit−Pi,t−1

Pi,t−1
. The

data for analysis are xt = [x1t, ..., x4,t]T , with 1200 samples.
We applied the MBD-based method with the sparsity constraint to xt. The

kurtoses of the estimated disturbances êit are 3.9, 8.6, 4.1, and 7.6, respectively,
implying that the disturbances are non-Gaussian. We found that more than half
of the coefficients in the estimated W0 and W1 are zero. B̂0 and B̂0 were con-
structed based on W0 and W1, using the procedure given in Section 3.3. It was
found that B̂0 can be permuted to a strictly lower-triangular matrix, meaning
that the instantaneous effects follow a linear acyclic causal model. Finally, based
on B̂0 and B̂1, one can plot the causal diagram, as shown in Fig. 2.

Fig. 2 reveals some interesting findings. First, DJIt−1 has significant impacts
on N225t and HSIt, which is a well-known fact in the stock market. Second,
the causal relations DJIt−1 → N225t → DJIt and DJIt−1 → HSIt → DJIt are
consistent with the time difference between Asian and USA. That is, the causal
effects from N225t and HSIt to DJIt, although seeming to be instantaneous,
are actually mainly caused by the time difference. Third, unlike SSEC, HSI is
very sensitive to others; it is even strongly influenced by N225, another Asian
index. Fourth, it may be surprising that there is a significant negative effect from
DJIt−1 to DJIt; however, it is not necessary for DJIt to have significant negative
autocorrelations, due to the positive effect from DJIt−1 to DJIt going through
N225t and HSIt.

4 Additive Disturbance-Based Nonlinear Causal
Discovery with More Than Two Variables

The additive disturbance causal model Eq. 1 has been proposed for nonlinear
causal discovery very recently by Hoyer et al. [6]. They mainly focused on the
two-variable case and showed that the model is able to distinguish the cause
from effect for some real-world data sets. Suppose we have two variables x1 and
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x2. The method to find the causal relation between them is as follows. First,
examine if they are independent using statistical independence tests, such as the
kernel-based method [5]. If they are, no further analysis is needed. Otherwise,
one then continues by testing if the model x2 = f2(x1) + e2 is consistent with
the data. Nonlinear regression is used to find the estimate of f2 and e2. If ê2
is independent of x1, the causal model x2 = f2(x1) + e2 is accepted; otherwise
it is rejected. One then needs to test if the reverse model x1 = f1(x2) + e1
is acceptable. Finally, if one model is accepted and the other is rejected, the
additive disturbance nonlinear causal model is uniquely found. If both models
hold, one can conclude that in this situation the additive disturbance causal
model cannot distinguish the cause from effect. If neither of the models holds,
one can conclude that the model cannot explain the data well, possibly due to
the existence of hidden variables or a different data generating process. When
performing nonlinear regression, one should carefully avoid over-fitting.

4.1 Existing Methods

It is much more difficult to find the causal relations implied by the causal model
Eq. 1 when we have more than two observed variables. In this case, a brute-force
search was exploited in [5]; for each possible acyclic causal structure, represented
by a DAG, one performs nonlinear regression of each variable on its parents,
and tests if the residuals are mutually independent with statistical independence
tests. The simplest causal model which gives mutually independent disturbances
is preferred. Clearly this approach may encounter two difficulties. One is that
the test of mutual independence is difficult to do when we have many variables.
The other is that the search space of all possible DAG’s increases too rapidly
with the variable number. In fact, it is well-known that the total number of all
possible DAG’s is super-exponential in the number of variables. Consequently,
this approach involves high computational load, and is not suitable when we
have more than three or four variables.

4.2 A More Practical Approach

We propose an approach which is suitable for identifying the nonlinear
causal model Eq. 1 with moderate-sized variables, say, with tens of variables.
According to Theorem 1, the nonlinear causal model Eq. 1 can be identified by
enforcing the causal Markov property and the independence between the dis-
turbance and the parents associated with the same variable. This motivates a
two-stage approach to identify the whole causal model. One can first use con-
ditional independence-based methods to find the d-separation equivalence class.
Next, the nonlinear causal model Eq. 1 is used to identify the causal relations
that cannot be determined in the first step: for each possible causal model con-
tained in the equivalence class, we estimate the disturbances, and determine if
this model is plausible, by examining if the disturbance in each variable xi is
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independent of the parents of xi
3. In this way, one avoids the exhaustive search

over all possible causal structures and statistical tests of mutual independence
of more than two variables.

In the first stage of the proposed approach, we need to find an efficient way
to derive the conditional independence relationships and to construct the equiv-
alence class. This brings up two issues. One is how to reliably test conditional
independence for variables with nonlinear relations. Traditionally, in the imple-
mentation of most conditional independence-based causal discovery algorithms,
such as PC [19], it is assumed that the variables are either discrete or Gaussian
with linear causal relations. This assumption greatly simplifies the difficulty in
conditional independent tests. But here we need to capture the nonlinear causal
effects. Some methods, such as the probabilistic non-parametric test proposed
in [12], have been developed for this task. However, they may be unreliable when
the conditional set contains many variables, due to the curse of dimensionality.
Alternatively, one may simplify the conditional independence test procedure by
making use of the particular structure of the nonlinear causal model Eq. 1. This
can be done by extending the partial correlation concept to the nonlinear case.

Partial correlation measures the degree of linear association between two vari-
ables, with the effect of a set of conditional variables removed. In particular, the
partial correlation between X and Y given a set of variables Z, denoted by
ρXY ·Z, is the correlation between the residuals RX and RY resulting from the
linear regression of X with Z and of Y with Z, respectively. Here we assume
that the data follow the nonlinear generating process Eq. 1. Due to the additive
disturbance structure, one can examine if X and Y are conditionally indepen-
dent given the variable set Z by performing independent tests on the residuals
RN

X and RN
Y , which are obtained by nonlinear regression of X with Z and of Y

with Z, respectively. In our implementation, Gaussian process regression with a
Gaussian kernel [15] is adopted for nonlinear regression, and the involved hyper-
parameters are learned by maximizing the marginal likelihood. The kernel-based
independence test [5] with the significance level 0.01 is then used to test if the
residuals are independent.

The other issue is how to construct the independence-based equivalence class
with as few conditional independence tests as possible. We adopt the total con-
ditioning scheme discussed in [14], which was shown to be very efficient provided
the underlying graph is sparse enough. It first finds the Markov blanket of each
variable and builds the moral graph. The Markov blanket of the variable X is
the set of parents, children, and children’s parents (spouses) of X . Let V be the
set of all variables. The variable Y is in the Markov blanket of X if X and Y
are not conditionally independent given V \ {X,Y }. In particular, in our case
we use nonlinear regression combined with the kernel-based independence test
to perform the conditional independence test, as discussed above. Next, it re-
moves the possible spouse links between linked variables X and Y by looking

3 According to Theorem 1, one can use the total entropy of the disturbances as the
criterion to find the “best” causal model in the equivalence class. However, this
approach does not easily provide a criterion for testing model validity.
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for a d-separating set around X and Y . When spouse links are removed, the V-
structures can be oriented using collider sets. One can then find the equivalence
class by propagating orientation constraints. For details of the total condition-
ing scheme for causal discovery based on Markov blankets, see [14]. In order
to construct the moral graph, one needs to perform nonlinear regressions for
n(n− 1) times and independence tests for n(n−1)

2 times, where n is the number
of observed variables. To find the possible spouse links, one further needs to do
nonlinear regressions for 2α+1 times and corresponding independence tests for
2α times, where α = maxX,Y |Tri(X −Y )|, with Tri(X −Y ) denoting the set of
variables forming a triangle with X and Y .

Finally, for each DAG in the equivalence class, we use nonlinear regression
to estimate the disturbances and then test if the disturbance and parents are
independent for each variable. Those that make each disturbance independent
of the parents associated with the same variable are valid models.

4.3 Simulation

In this section we investigate how the proposed approach behaves with a simu-
lation study. The data generating process is given in Fig. 3. It consists of seven
variables with both linear and strongly nonlinear causal relations, and the dis-
turbances are Gaussian, uniform, or super-Gaussian. The sample size is 1000.

We first used nonlinear regression and independence test to construct the
moral graph, with the result shown in Fig. 4(a). One can see that it is exactly
the moral graph corresponding to the causal model generating the data. The
edge x2−x4 was then found to be a spouse link, since they are (unconditionally)
independent. Consequently, x3 and x7 are colliders and thus common children of
x2 and x4. That is, we have x2 → x3 ← x4 and x2 → x7 ← x4. Furthermore, since
x5 (x6) is not connected to x4 in the moral graph, one can find the orientation
x3 → x5 (x3 → x6). To avoid cyclicity, the causal direction between x2 and x5
must be x2 → x5. The resulting equivalence class is shown in Fig. 4(b), with
only the causal direction between x1 and x2 and that between x3 and x7 are

x1

x2

x3

x6

x5

x7

x4

Data-generating process:
x1 = v1, with normal v1;
x2 = x1/2 + x3

1/10 + v2, with normal v2;
x4 = v4, with normal v4;
x3 = x2 + x4 + v3, with super-Gaussian v3;
x5 = x2x3 + v5, with uniform v5;
x6 = x3/2 + x3

3/10 + v6, with normal v6;
x7 = |x3|1.3(1 + x2 + tanh(x4)) + v7, with normal v7.

Fig. 3. The true data-generating model used in the simulation, where vi are mutually
independent, the standard deviation of vi is a random number between 0.2 and 1, and
v3 is obtained by passing a Gaussian variable through the power nonlinearity with
exponent 1.5
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Fig. 4. Simulation results of nonlinear causal discovery with additive disturbances. (a)
The moral graph obtained by our approach (the significance level for independence tests
is 0.01). (b) The graph after removing spouse link (x2 − x4), orienting V-structures,
and propagating orientation constraints. (c) The final result. (d) For comparison, the
result obtained by the PC algorithm, with the significance level 0.01.

not determined. Under the hypothesis x3 ← x7, we found that the disturbance
estimated by nonlinear regression is independent of the assumed parents (x2,
x4, and x7), while the disturbance is not independent of the parents for the
variable x7 under the hypothesis x3 → x7, so we obtained x3 ← x7. Similarly,
one can find the causal direction x1 → x2. The obtained causal model is given
in Fig. 4(c), which turns out to be the same as the one generating the data
(Fig. 3). For comparison, we also show the equivalence class obtained by the
PC algorithm [19] implemented in Tetrad4 with the significance level 0.01. One
can see that since the linearity assumption in PC is violated in this case, the
resulting equivalence class is significantly different from the true causal model;
in fact, half of the edges are spurious.

4.4 Application in Causal Discovery of MEG Data

As an illustration of the applicability of the method on real data, we applied it on
magnetoencephalography (MEG), i.e., measurements of the electric activity in
the brain. The raw data consisted of the 306 MEG channels measured by the Vec-
torview helmet-shaped neuromagnetometer (Neuromag Ltd., Helsinki, Finland)
in a magnetically shielded room at the Brain Research Unit, Low Temperature
Laboratory, Helsinki University of Technology. The measurements consisted of
300 seconds of resting state brain activity earlier used in [9]. The subject was
sitting with eyes closed, and did not perform any specific task nor was there any
specific sensory stimulation.

As pre-processing, we performed a blind separation of sources using the method
called Fourier-ICA[9]. This gave nine sources of oscillatorybrain activity. Our goal
was to analyze the causal relations between the powers of the source, so we divided
the data into windows of length of one second (half overlapping, i.e., the initial

4 Available at http : //www.phil.cmu.edu/projects/tetrad/
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(a) moral graph (b) causal diagram (c) by PC

Fig. 5. Experimental results of the MEG data. (a) The moral graph obtained by con-
ditional independence tests. Here no spouse link exists. (b) The final causal model. The
thickness of the lines indicates the strength of the causal effects, as measured by the
contributed variance. (c) For comparison, the result by the PC algorithm [19] is given.

Fig. 6. The effect of the causes on each target variable in the MEG data. For clarity,
we also give the fitted surface in 3D plots.

points were at a distance of 0.5 seconds each) and computed the logarithm of the
local standard deviation in each window. This gave a total of 604 observations of
a nine-dimensional random vector, on which we applied our method.

We first tested if the obtained variables have linear causal relations. If the
variables have linear acyclic causal relations and at most one of the distur-
bances is Gaussian, the de-mixing matrix obtained by ICA can be permuted to
lower-triangularity, and the causal model can be uniquely found [18]. We applied
FastICA [7], a widely-used linear ICA algorithm, to the data, and found that the
de-mixing matrix is far from a permuted lower-triangular matrix. Furthermore,
some independent components are not even truly independent, as verified by
the kernel-based independence test [5], which gave the p-value 7 × 10−3. These
findings imply that a linear acyclic causal model does not fit the data well.
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We then applied the proposed approach to do nonlinear causal analysis. The
results, including the moral graph and the final causal diagram, are shown in
Fig. 5. Note that there is a bidirected edge x2 ↔ x3 in the final result (Fig. 5(b));
in fact, neither of the causal relations x2 → x3 and x2 ← x3 could make the
disturbance independent of the parents. This means that the causal relation
between x2 and x3 could not be represented by Eq. 1, or that there exists some
confounder. For comparison, the result by the PC algorithm is given in Fig. 5(c).
It contains clearly more edges, with two bidirected and three undirected.

For illustration, Fig.6 plots the effect of the causes for each variable which
has parents. One can see that three of the causal relations (x9 → x6, x5 → x8,
and (x1, x7) → x9) are close to linear, while others are clearly nonlinear. The
obtained causal connections are something completely new in neuroscience. Their
interpretation will require a lot of work from domain experts.

5 Conclusion

In this paper we focused on the acyclic causality discovery problem with an
additive disturbance model. For the acyclic causal models in which the causal
relations among observed variables are nonlinear while disturbances have linear
effects, we have shown that the following criteria are equivalent: 1. mutual in-
dependence of the disturbances, 2. causal Markov property of the causal model,
as well as the independence between the disturbance and the parents associated
with the same variable, and 3. minimum disturbance entropy. From this view-
point, conventional conditional independence-based methods, non-Gaussianity-
based linear methods, and the Granger causality analysis could be unified.

The criterion of mutual independence of disturbances then inspires us to ex-
ploit multichannel blind deconvolution, a well-developed extension of ICA, to
estimate Granger causality with instantaneous effects. Compared to other meth-
ods, this approach is more efficient (in the statistical sense), and it admits sim-
ple ways for model selection of the causal structure by incorporating suitable
penalties on the coefficients. Finally, we showed that nonlinear causal discov-
ery with additive disturbances can be achieved by enforcing the causal Markov
condition and the independence between the disturbance and parents of the
same variable. The resulting approach is suitable for moderate-sized problems.
Simulations and real-world applications showed the usefulness of the proposed
approaches.
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Appendix: Proof of Theorem 1

Implication (iii) ⇒ (i) is obviously, as shown below. Suppose xk is neither xi

nor any descendant of xi. Apparently xk is a function of the disturbances which
do not include ei, and hence xk (as well as any parent of xi) is independent of ei.
According to Eq. 1, we have p(xi|pai, xk) = p(ei|pai, xk) = p(ei|pai) = p(xi|pai),
meaning xi and xk are conditionally independent given pai. Below we shall prove
(i) ⇒ (ii) and (ii) ⇒ (iii).

As the causal relations of xi are acyclic, xi can be arranged in an order such
that no later variable causes any earlier one. Let k(i) denote such an order. Let
x̃i be the vector of x with the order k(i), i.e., x̃k(i) = xi, and denote by ẽi and
p̃ai the disturbance in x̃i and the parents of x̃i, respectively.

According to the properties of conditional entropy, for any 1 ≤ i ≤ n, we have

H(ẽi) ≥ H(ẽi|p̃ai) (7)
= H(x̃i|p̃ai) ≥ H(x̃i|x̃1, · · · , x̃i−1), (8)

where the equality in 7 holds if and only if ei is independent of p̃ai, and the
equality in 8 holds if and only if x̃j (j < i, and x̃j 
∈ p̃ai) are conditionally
independent of ẽi given p̃ai [2]. Summation of the above inequality over all i
yields∑

i

H(ei) =
∑

i

H(ẽi) ≥ H(x̃1) +H(x̃2|x̃1) + · · ·+H(x̃n|x̃1, · · · , x̃n−1) (9)

= H(x̃1, · · · , x̃n) = H(x1, · · · , xn),

where the equality in Eq. 9 holds when (i) is true. This implies (i) ⇒ (ii).
Now let us suppose (ii) is true. Denote by G the transformation from

(x̃1, · · · , x̃n) to (ẽ1, · · · , ẽn). As ẽi only depends on x̃i and its parents, the Jaco-
bian matrix of G, denoted by JG , is a lower-triangular matrix with 1 on its diag-
onal. This gives |JG | = 1, and hence H(ẽ1, · · · , ẽn) = −E{log pẽ(ẽ1, · · · , ẽn)} =
−E{log[px̃(x̃1, · · · , x̃n)/|JG |]} = H(x1, · · · , xn). Consequently, the mutual in-
formation I(e1, · · · , en) =

∑
iH(ei) − H(ẽ1, · · · , ẽn) = H(x1, · · · , xn) −

H(x1, · · · , xn) = 0, meaning that ei are mutually independent. We then have
(ii) ⇒ (iii). Therefore, (i), (ii), and (iii) are equivalent. � 
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Abstract. Most existing semi-supervised learning methods are based
on the smoothness assumption that data points in the same high den-
sity region should have the same label. This assumption, though works
well in many cases, has some limitations. To overcome this problems, we
introduce into semi-supervised learning the classic low-dimensionality
embedding assumption, stating that most geometric information of high
dimensional data is embedded in a low dimensional manifold. Based on
this, we formulate the problem of semi-supervised learning as a task of
finding a subspace and a decision function on the subspace such that the
projected data are well separated and the original geometric information
is preserved as much as possible. Under this framework, the optimal sub-
space and decision function are iteratively found via a projection pursuit
procedure. The low computational complexity of the proposed method
lends it to applications on large scale data sets. Experimental compari-
son with some previous semi-supervised learning methods demonstrates
the effectiveness of our method.

1 Introduction

We consider the general problem of learning from labeled and unlabeled data.
Given an input data set {x1, . . . , xl, xl+1, . . . , xn}, the first l points have labels
{y1, . . . , yl} ∈ {−1,+1} and the remaining points are unlabeled. The goal is to
learn a prediction function which has low classification error on test points.

To make use of unlabeled data, assumption of the relationship between the
marginal distribution p(x) and the conditional distribution p(y|x) should be
made. This prior assumption plays an essential role in semi-supervised learning
[1,2]. Most of the semi-supervised learning methods proposed by far are based on
the smoothness assumption that “two points in the same high-density region are
likely of the same label” [1]. The effectiveness and generality of this assumption
has made the smoothness-based methods very successful, and in fact most of the
state-of-the-art semi-supervised learning methods are based on this assumption.

Although the smoothness assumption is effective and methods based on it
have obtained good performance on some problems, there are two main limi-
tations of it. First, according to Mann and McCallum [3], most of the current

W. Buntine et al. (Eds.): ECML PKDD 2009, Part II, LNAI 5782, pp. 586–601, 2009.
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semi-supervised methods lack in scalability. Typical semi-supervised learning
methods, such as label propagation [4,5,2], Manifold Regularization [6], Trans-
ductive Support Vector Machines (TSVM) [7], require learning time of order
O(n3) where n is the size of data set. Second, when data of different classes
overlap heavily, the ideal decision boundary should cross the overlapping area
which is a high density region. Thus, smoothness-based methods may fail since
they always avoid a decision boundary that crosses high density region to satisfy
the smoothness assumption [3,8].

In this paper, we turn to consider the low-dimensionality embedding assump-
tion in the semi-supervised learning setting. This assumption can be roughly
described as most information of high dimensional data is embedded in a low di-
mensional manifold. It has been traditionally used in dimension reduction meth-
ods to map the high dimensional data to a low-dimensional representation while
preserving most original information [9].

In the typical setting of semi-supervised learning, there is very limited num-
ber of labeled data in a high-dimensional input space. According to statistical
learning theory, because of the sparseness of data it is impossible to learn a good
classifier for a general problem [10]. Based on the low-dimensional embedding
assumption, we naturally hope to find a low-dimensional representation of data
so as to make the labeled data more dense and therefore much easier for train-
ing. To this end, both labeled and unlabeled data can be used to explore the
low-dimensional structure in data. Specifically, we propose a combined criterion
to evaluate the candidate subspace and the classifier simultaneously: the data-
fitting term evaluates how well the labeled data points of different classes are
separated in the subspace, and the regularization term evaluates how much infor-
mation has been lost by mapping the whole (labeled and unlabeled) data to the
subspace. As the regularization term tends to find the subspace that preserves
most interesting information, we call this framework as subspace regularization.

Within the above general framework, we instantiate a specific algorithm called
PCA-based Least Square (PCA-LS), where the regularization term aims at re-
ducing the reconstruction error of input points just like Principal Component
Analysis (PCA) [11]. We also kernelize the PCA-LS to extend our method to
nonlinear cases. The method we use to solve the optimal problem turns out to
be a special case of the classic projection pursuit procedure which constructs the
subspace and the decision function defined on this subspace in an incremental
manner.

Compared to the smoothness-based methods, subspace regularization has two
remarkable advantages. First, our methods still work when data from differ-
ent classes overlap heavily, while smoothness-based methods may fail. Roughly
speaking, after the subspace is fixed, subspace regularization looks for a decision
boundary that can optimally classify the projected labeled data. Thus, although
the data still overlap in the subspace, the decision boundary will not be affected
by the data density directly and avoids the problem that fails smoothness-based
methods. Second, our method has very low computational complexity which im-
plies that it can be applied in large-scale applications. For linear PCA-LS, the
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computational complexity is linear in the number of data points and dimension
of the input space. As a result, for a data set of 80, 000 points, our method is
about 60 times faster than typical smoothness-based methods in training. Be-
side these, the method is rather robust to hyperparameters and still suitable
when l/n is large. We will examine these in much more detail in the experiment
section.

The remainder of this paper is organized as follows. In section 2, we briefly
review the existing semi-supervised learning methods. Section 3 introduces the
subspace regularization framework and the details of algorithms. Experimental
results are reported in section 4. We conclude the paper in section 5.

2 Related Work

Over the past decade, there are many methods have been proposed to handle
the semi-supervised problem. Based on the prior assumptions they use, these
methods can be roughly divided into three categories.

The methods from the first category are generative models in which they
make a prior assumption on the form of the input data distribution, for example
Gaussian mixture models or naive Bayes models [8]. Then, models are trained
by Expectation Maximization algorithm using both labeled and unlabeled data.
Nigam et al. applied this method to text classification problem and improved the
performance dramatically [12]. However, this prior assumption on data distribu-
tion is too strict for general problems, and when the model is wrong unlabeled
data may hurt accuracy.

The methods from the second category are based on the smoothness assump-
tion as stated in the previous section. Based on this assumption, two families of
methods have been developed.

The methods in the first family, namely, graph-based methods, have been
developed to satisfy the smoothness assumption by penalizing the variance of
decision function in high density region of data. Specifically, using both labeled
and unlabeled data, an adjacency graph is constructed to explore the intrinsic
geometric structure of the data. The decision function is then found by minimiz-
ing the training error on labeled data and the variance on the adjacency graph.
Many famous semi-supervised learning methods, like label propagation [4,5,2],
spectral methods [13,14], manifold regularization [6], belong to this family.

The methods in the second family, namely, low-density-separation-based meth-
ods, implement the smoothness assumption based on an equivalent assumption
that “the best decision boundary should be located in low-density region”. The
aim of this kind of methods is to find a decision boundary which can correctly
classify the labeled data and meanwhile is far away from the high density region
of unlabeled data points. The distance from one point to the decision boundary
is evaluated by the absolute value of the decision function or the value of pos-
terior probability on the point. Methods of this family include the TSVM [7],
semi-supervised Gaussian processes [15], entropy regularization [16], information
regularization [17], low density separation [18], etc.
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The methods from the third category make use of the prior knowledge of label
distribution. They force the model predictions on unlabeled data to match the
prior label distribution. For example, Zhu et al. used class mean normalization
(CMN) as a post-processing step of Gaussian Random Fields (GRF) method to
adjust the classification results [4]. Mann et al. proposed a method named Expec-
tation Regularization that directly augments the objective function by adding
a regularization term which is defined as the KL-divergence between prior label
distribution and empirical label distribution predicted by model [3]. One impor-
tant advantage of the methods of this type is their high efficiency in computation.
However, as they do not explicitly explore the underling structure of data, these
methods can not utilize the information of unlabeled data sufficiently.

3 Subspace Regularization

In this section, we first present the subspace regularization framework. Then a
specific algorithm is given to learn linear decision function, and kernelized to
tackle the nonlinear case. Finally, we analyze the computational complexity of
our method.

3.1 Objective Function

Given a set of labeled and unlabeled data, we denote the input data by matrix
X = [x1, . . . , xn], and the output by vector Y = [y1, . . . , yl]T . Without confusion,
we use W to denote the subspace W = span{w1, . . . , wp|wi ⊥ wj , i 
= j} and the
matrix W = [w1, . . . , wp] depending on the context.

From the above discussion, we aim to find a low-dimensional subspace W =
span{w1, . . . , wp|wi ⊥ wj , i 
= j} and a decision function g defined on the W
such that the following objective is minimized:

L(X,Y,W, g) =
l∑

i=1

LF (yi, g(xT
i W )) + λLR(X,XW ), (1)

where LF and LR are loss functions, and XW = [xW
1 , . . . , xW

n ] in which xW
i is

the projection of xi onto the subspace W . The first term evaluates how well
the projected labeled data can be separated by g in the subspace W , and the
second term evaluates how much information is lost by projecting data onto the
subspace.

Specifically, we choose LF as the least square error, LR as the reconstruction
error, and let g be an arbitrary linear function defined on W . Then, the objective
function can be rewritten as

L(X,Y,W, g) =
l∑

i=1

(yi −
p∑

t=1

αtx
T
i wt)2 + λ

n∑
i=1

‖xi − xW
i ‖2. (2)

The parameters α = [α1, ..., αp] and W are estimated by minimizing (2). The
dimension of subspace p and the regularization factor λ are hyperparameters
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which can be fixed by cross-validations. In experiment section, we will show our
method is surprisingly robust to the λ, while the p should be carefully chosen.
The hyperparameter λ is introduced to trade off between terms of data-fitting
error and reconstruction error. When λ becomes large, the optimal subspace
approximates the PCA subspace. Thus, we name our algorithm as PCA-based
least square (PCA-LS).

3.2 PCA-Based Least Square Algorithm

We employ the traditional projection pursuit procedure [19,20] to incrementally
construct the optimal subspace W and decision function g in problem (2). More
specifically, we use an iterative procedure to minimize the objective function. In
each iteration, based on the current model, we select one projection direction to
add into the subspace and choose the coefficient in g for the selected direction
such that the objective function has a maximum reduction.

one iteration in projection pursuit
Suppose that, at tth iteration, we have W = span{w1, . . . , wt−1|wi ⊥ wj , i 
=

j} and g(v) =
∑t−1

j=1 αjvj . Then the residual ri of decision response yi is ri =
yi −

∑t−1
j=1 αjx

T
i wj , and the residual Ri of data point xi is Ri = xi − xW

i =
xi −

∑t−1
j=1 β

j
iwj . Note that Ri is orthogonal to the subspace W. Our goal in the

tth iteration is to optimize the following problem:

min
α,β,w

I(α, β, w) =
l∑

i=1

(yi −
t−1∑
j=1

αjx
T
i wj − αxT

i w)2 +
n∑

i=1

‖xi −
t−1∑
j=1

βj
iwj − βiw‖2

=
l∑

i=1

(ri − αxT
i w)2 + λ

n∑
i=1

‖Ri − βiw‖2

= ‖r − αXLT

w‖2 + λ

n∑
i=1

‖Ri − βiw‖2,

s.t. w ⊥ wj ∀j = 1, . . . , t− 1, (3)

where XL is the first l columns of X, α is a scalar, β = [β1, . . . , βn]T and
r = [r1, . . . , rl]T . After w is solved from problem (3), we denote it by wt and add
it to W . In this way, we finish one iteration of projection pursuit.

The problem (3) is difficult to optimize due to the high order of variables and
the orthogonal constraints. To eliminate the constraints, we limit the searching
scope of direction to be the subspace spanned by the residuals, which means
w =

∑n
i=1 ηiRi = Rη in which R = [R1, . . . , Rn] and η = [η1, . . . , ηn]T . As

Ri ⊥ W ∀i = 1, . . . , n, the orthogonal constraints are automatically met. It
thus results in the following unconstrained minimization problem:

H(α, β, η) = ‖r − αXLT

Rη‖2 + λ

n∑
i=1

‖Ri − βiRη‖2. (4)
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Fortunately, it is guaranteed that the optimal w∗ of problem (3) is indeed a
linear combination of Ri:

Proposition 1: The minimum point of problem (3) can be represented as a
linear combination of Ri.

Proof: We decompose R
d as R

d = X‖ ⊕ X⊥, where X‖ is the subspace
spanned by xi, 1 ≤ i ≤ n and X⊥ is the orthogonal complement space of X‖.
By construction, X‖ can be further decomposed as X‖ = W ⊕ R, where W is
the subspace spanned by wj , 1 ≤ j ≤ t − 1, and R is the subspace spanned by
Ri, 1 ≤ i ≤ n. As the optimal solution w∗ of (3) should be perpendicular to the
subspace W, thus w∗ ∈ X⊥ ⊕ R. Assume w∗ = w⊥ + wR, where w⊥ ∈ X⊥ and
wR ∈ R. So,

I(α, β, w∗) = ‖r − αXLT

w∗‖2 + λ

n∑
i=1

‖Ri − βiw
∗‖2,

= ‖r − αXLT

(w⊥ + wR)‖2 + λ
n∑

i=1

‖Ri − βi(w⊥ + wR)‖2,

= ‖r − αXLT

wR‖2 + λ

n∑
i=1

(‖Ri − βiw
R‖2 + β2

i ‖w⊥‖2). (5)

The third equation follows from the fact that XLT

w⊥ = 0 and RT
i w

⊥ = 0. Since
I(α, β, w∗) ≥ I(α, β, wR) and w∗ minimize I(α, β, w), we have w∗ = wR. Thus,
w∗ is in the subspace R, and can be represented as a linear combination ofRi, 1 ≤
i ≤ n. �
To minimize the objective function (4), the iterative coordinate decent method
is used. Briefly speaking, in each step, we optimize α, β for fixed η , and then
optimize η for fixed α, β.

For a fixed η, the optimal α and β can be obtained by setting the partial
derivatives ∂H(α,β,η)

∂α , ∂H(α,β,η)
∂β to zeros, and are given by:

α =
〈r,XLT

Rη〉
〈XLTRη,XLTRη〉

, βi =
〈Ri, Rη〉
〈Rη,Rη〉 . (6)

For fixed α and β, gradient decent is used to update η. The partial derivative of
H(α, β, η) with respect to η is given by

∂H(α, β, η)
∂η

= −2αRTXLr + 2α2RTXLXLT

Rη + 2λRTR((
n∑

i=1

β2
i )η − β). (7)

After the iterative coordinate decent method converges, we get the optimal
solution α∗, β∗, η∗ for the problem (4). The new projection direction wt = Rη∗

is then added into {w1, . . . , wt−1} to form the new basis of subspace W . The
residual of the response and the residual of inputs are updated by r ← r −
α∗XLT

Rη∗ and Ri ← Ri − β∗
i Rη

∗. Note that the new residual Ri preserves the
property that it is orthogonal to the new subspace W = span{w1, . . . , wt}. This
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fact follows the observation that the method we use to update the residual of
input data is exactly the Gram-Schmidt orthogonalization.

After p times greedy search, we get the p dimensional subspace W and a deci-
sion function g(v) =

∑p
t=1 αtvt defined on W . If only classification is concerned,

these two things can be combined to get the final decision function defined on
the input space f(x) =

∑p
t=1 αtx

Twt = xTWα.
The whole procedure is summarized in Algorithm 1.

Algorithm 1. PCA-based Least Square (PCA-LS)
Init: r = [r1, . . . , rl]T ; Ri = xi i = 1, . . . , n
for t = 1 to p do

repeat
1. Compute α, β using (6)
2. Compute ∂H(α,β,η)

∂η
using (7)

3. η = η − StepSize ∗ ∂H(α,β,η)
∂η

until η is convergent
wt = Rη
αt = α
r = r − αtX

Lwt

Ri = Ri − βiwt i = 1, . . . , n
end for
Output:
f(x) =

∑p
t=1 αtx

T wt = xT Wα
α = [α1, . . . , αp]T

3.3 Kernel PCA-Based Least Square

When the data set has highly nonlinear structure, the PCA-based least square
may fail. One common technique to tackle the nonlinear problem in machine
learning is the kernel trick, which can be briefly described as follows: with a
feature mapping φ : x → φ(x), the input data is mapped to a feature space.
For linear learning in this feature space, the inner product of two mapped data
is defined as the kernel function: k(x, y) = 〈φ(x), φ(y)〉, and the matrix K with
(K)ij = k(xi, xj) is the Gram matrix.

At the tth iteration, suppose that the residual Ri of φ(xi) can be expressed
as Ri =

∑n
j=1M

j
i φ(xj) = φ(X)Mi, where φ(X) = [φ(x1), . . . , φ(xn)] and Mi =

[M1
i , . . . ,M

n
i ]T . Thus, R = [R1, . . . , Rn] = φ(X)[M1, . . . ,Mn] = φ(X)M , where

M is a n×n matrix. In parallel with the linear case, we constrain the projection
direction w to be a linear combination of residuals: w =

∑n
i=1 ηiRi = Rη =

φ(X)Mη. Now we get the objective function H(α, β, η) of the kernel method
similar to the linear case:

H(α, β, η) = ‖r − αφ(XL)TRη‖2 + λ

n∑
i=1

‖Ri − βiRη‖2
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= ‖r − αφ(XL)Tφ(X)Mη‖2 + λ

n∑
i=1

‖Ri − βiRη‖2

= ‖r − αKLT

Mη‖2 + λ

n∑
i=1

‖Ri − βiRη‖2,

(8)

where KL is the first l columns of the Gram matrix K.
As before, we employ the iterative coordinate decent method to minimize the

objective function (8). In each step, α, β are given by

α =
rTKLT

Mη

ηTMTKLKLTMη
, βi =

MiKMη

ηTMTKMη
, (9)

and the partial derivative of H(α, β, η) with respect to η is given by

∂H(α, β, η)
∂η

= −2αMTKLr + 2α2MTKLKLT

Mη + 2λMTKM((
n∑

i=1

β2
i )η − β).

(10)

After the iterative coordinate decent method converges, we get the optimal solu-
tion α∗, β∗, η∗ for the problem (8). Then, the direction wt = φ(X)Mη∗ is added
to {w1, . . . , wt−1} to form the new basis of subspace W . The residual of response
and residual of inputs are updated by: r ← r − α∗φ(XL)TRη∗ = r − α∗KLT

η∗

and Mi ← Mi − β∗
i Mη∗. Again the new residual Ri is orthogonal to the new

subspace W = span{w1, . . . , wt}.
The whole process is summarized in Algorithm 2. Different from the linear

case, we can not express the projection direction wt explicitly. Instead, the co-
efficient vector st of wt’s linear representation by {φ(x1), . . . , φ(xn)} is stored.

3.4 Computational Complexity

As discussed above, large-scale problem is extremely important for semi-
supervised learning. The linear PCA-LS algorithm consists of p times greedy
search iterations, where p is the dimensionality of the subspace W . The com-
plexity of every iteration is dominated by computing the gradient of η which
scales as O(nd) where d is the dimensionality of the input space. Thus, the com-
putational complexity of the linear PCA-LS is O(pnd). By a similar analysis,
the computational complexity of the kernel PCA-LS algorithm scales as O(pn2).

4 Experiments

In this section, we first conduct experiments on synthetic data sets to show
the ability of subspace regularization methods in handling overlapping data and
manifold data. Then comparison experiments are given on several real data sets.
Finally, we analyze the robustness of our methods to hyperparameters.



594 Y.-M. Zhang et al.

Algorithm 2. Kernel PCA-based Least Square (Kernel PCA-LS)
Init: r = [r1, . . . , rl]T ; M = I
for t = 1 to p do

repeat
1. Compute α, β using (9)
2. Compute ∂H(α,β,η)

∂η
using (10)

3. η = η − StepSize ∗ ∂H(α,β,η)
∂η

until η is convergent
st = Mη
αt = α
r = r − αtK

LT

st

Mi = Mi − βist i = 1, . . . , n
end for
Output:
f(x) = kn(x)T Sα
kn(x) = [k(x, x1), . . . , k(x, xn)]T

S = [s1, . . . , sp]
α = [α1, . . . , αp]T

4.1 Overlapping Data

When data of different classes overlap heavily, the optimal decision boundary
or Bayesian decision boundary may cross the overlapping area which is a high
density region. In this case, the smoothness-based methods tend to fail as they
prefer a decision boundary located in low density area [3,8]. With following ex-
periments, we demonstrate that subspace regularization methods can effectively
avoid this problem.

Two dimension case. 200 data points were drawn from each of two unit-
variance Gaussians, the centers of which are (0, 0) and (1.5, 1.5). Only one point
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Fig. 1. Two Gaussians Data Set: Decision boundary using RBF kernel for KPCA-LS
(a) and KLapRLS (b)
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was labeled in each class and all the rest points were treated as unlabeled. The
data set and the best decision boundary across a range of hyperparameters of
kernel PCA-LS (KPCA-LS) and kernel LapRLS (KLapRLS) [6] are shown in
Figure 1. Just as PCA, KPCA-LS finds the first principal component direction
as the subspace to project on. In Figure 1 (a), this direction is parallel to the line
passing through the centers of two Gaussians. As a result, the decision boundary
is a line that is perpendicular to the selected subspace and can correctly classify
the labeled data. However, for KLapRLS, the smoothness regularization term
makes the decision boundary avoid the overlapping area as crossing such a high
density region would lead to a big penalty. This makes the KLapRLS fail to find
a satisfactory solution.

High dimension case. G241c and G241d are commonly-used data sets in
semi-supervised learning which are constructed by Chapelle et al. [1]. Each of
them is composed of 1500 points with dimension of 241. For G241c, two classes
data come from two unit-variance Gaussians respectively, and centers of the two
Gaussians have a distance of 2.5. For G241d, the data of the first class come
from the two unit-variance Gaussians, the centers of which have a distance of 6;
and the data of second class come from another two Gaussians which are fixed
by moving each of the former centers a distance of 2.5. By the construction of
G241c and G241d, we see that there exists overlapping between different class.

We compare subspace regularization methods with 3 smoothness-based meth-
ods, including Gaussian Random Field (GRF) [5], Learning with Local and
Global Consistency (LLGC) [2] and manifold regularization (linear LapRLS and
kernel LapRLS) [6]. 50 points are randomly sampled as labeled data, and the
rest are left as unlabeled data. Data set is split 10 times, and the reported results
are averaged classification accuracy over these 10 splits. 5-fold cross-validation
is used to select hyperparameters, and the detailed setting for every method is
introduced in following section. Experiments results is summarized in Table 1.

From the results, we can conclude that, when data of different classes over-
lap heavily, the subspace regularization methods outperform smoothness-based
methods dramatically.

4.2 Manifold Data

This experiment was conducted on the two moons data set which was designed
to satisfy the smoothness assumption and have a strong geometric structure. 200
data points were drawn from each of two moons, and three points drawn from

Table 1. Averaged classification accuracy (%) for 50 labeled data

GRF LLGC LapRLS KLapRLS PCA-LS KPCA-LS
G241c 48.28 48.28 71.66 68.36 84.62 83.59
G241d 65.62 63.53 67.90 66.28 83.92 74.01
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Fig. 2. Two Moons Data Set: Decision boundary using RBF kernel for KPCA-LS (a)
and KLapRLS (b)

each class were labeled. The data set and the best decision boundary across a
range of hyperparameters of kernel PCA-LS and kernel LapRLS are shown in
Figure 2. It is well-known that the kernel LapRLS algorithm can work perfectly
well on such problems. As can be seen from Figure 2, the kernel PCA-LS also
learns a satisfactory decision function that correctly classify all the data points.

4.3 Real Data Sets

To evaluate our methods, We perform experiments on seven data sets of binary
classification problem that come from the benchmark in Chapelle’s book [1]
and UCI machine learning repository. These data set originate from areas like
image, text, biometrics etc., with size from 277 to 83,679 and dimension from 9
to 11,960. The characteristics of the data sets are shown in Table 2.

We compare subspace regularization methods with 3 smoothness-based semi-
supervised learning methods, including GRF [5], LLGC [2], manifold regular-
ization (linear LapRLS and kernel LapRLS) [6]. We also use both labeled and
unlabeled data to perform dimension reduction with PCA, and then use regular-
ized least square (RLS) to learn classifier on labeled data. For convenience, we
name this baseline algorithm as PCA+RLS. We details the experimental setting
for each method in the following:

Table 2. Description of the data sets

Breast-cancer BCI USPS Text Image Waveform SecStr
size 277 400 1500 1500 2310 5000 83,679

dimension 9 117 241 11,960 18 21 315
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Table 3. Averaged classification accuracy (%)

PCA+RLS GRF LLGC LapRLS KLapRLS PCA-LS KPCA-LS
Breast-cancer 67.84 70.83 70.22 67.36 70.53 73.44 71.98

BCI 57.77 50.34 50.00 62.29 61.69 62.29 58.94
USPS 86.18 89.81 94.5 84.61 87.48 84.10 86.18
Text 73.25 52.68 62.63 71.84 68.62 72.25 71.32
Image 78.00 49.53 73.17 76.90 83.60 76.36 80.13

Waveform 78.99 70.84 79.69 78.34 - 85.33 86.18
SecStr 60.26 - - 60.41 - 61.28 -

– PCA-LS: the dimension of subspace is chosen from {2; 22; 23; 24; 25}, and the
regularization factor λ is simply fixed to 1.

– KPCA-LS: the dimension of subspace is chosen from {2; 22; 23; 24; 25}, the
regularization factor λ is simply fixed to 100. RBF kernel is selected as kernel
function, and the σk is chosen from σ0 ∗ {2; 1; 2−1; 2−2; 2−3; 2−4} where σ0
is the averaged distance between every two points in data set.

– GRF and LLGC methods: we use RBF kernel as similarity function to
construct the graph, and the hyperparameter σg is chosen from σ0 ∗
{2; 1; 2−1; 2−2; 2−3; 2−4} where σ0 is defined as above.

– LapRLS: γA and γI are chosen from {104; 102; 1; 10−2; 10−4}. Linear kernel
is used as kernel function. For all data sets except SecStr, RBF kernel is used
as similarity function to construct the graph, and the hyperparameter σg is
chosen from σ0 ∗ {2; 1; 2−1; 2−2; 2−3; 2−4} where σ0 is defined as above. For
SecStr, the graph entry Gij = 1 if xi is among xj ’s k nearest neighbors, else
Gij = 0. k is fixed to 5 which is the value used in [1].

– KLapRLS: γA, γI and σg is selected as in linear LapRLS. RBF kernel is used
as kernel function, and the σk is chosen from σ0 ∗ {2; 1; 2−1; 2−2; 2−3; 2−4}.

– PCA+RLS: the dimension of subspace is chosen from {2; 22; 23; 24; 25}, and
the regularization factor λ is chosen from {104; 102; 1; 10−2; 10−4}.

As some graph-based methods like GRF and LLGC can not directly predict
the out-of-sample points, we adopt the transductive setting in the experiments
which means all the data points are available before training. But we emphasize
that the subspace regularization method is inductive.

For all data sets except SecStr, 50 points are randomly sampled as labeled
data, and the rest are left unlabeled. We split each data set 10 times, and report
the averaged classification accuracy over these 10 splits. 5-fold cross-validation
is used to select hyperparameters. For SecStr, 500 points are randomly sampled
as labeled data in which 400 points are used for training and 100 points are used
to select the hyperparameters. The reported results are averaged accuracy on 10
splits.

Table 3 summarizes the experiments results. There are blank entries in Table 3
as some algorithms require too many memory, or the results can not be achieved
within 3 days.
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For all data sets except image (Image and USPS), subspace regulariza-
tion method works as well as or better than smoothness-based methods. It
demonstrates that subspace regularization is a powerful semi-supervised learning
method. We will analyze this result in more detail in the next section.

For SecStr data set, it costs PCA-LS less than 5 minutes to learn a decision
function and a subspace of dimension p = 8 which is the dimensionality selected
by most splits. However, for graph-based methods, only to construct a neigh-
borhood graph will take more than 2 hours without saying to inverse a matrix
of same size with neighborhood graph. All experiments are performed on a PC
with 3.0GHz CPU, 2GB memory, using Matlab.

4.4 Robustness Analysis

Recall that in all of the above experiments the regularization factor λ for sub-
space regularization methods is set to a fixed number, and here we will examine
this robustness of our methods to hyperparameters in more details.

To evaluate the PCA-LS’s robustness to the regularization factor λ, we fix
the dimension p of subspace to 16 and report the classification accuracy for
λ = {10−4, 10−2, 100, 102, 104}. For SecStr, 500 points are randomly labeled,
and for other data sets 50 data are randomly labeled. The result is averaged
over 10 splits which is shown in the Figure 3. We can see that PCA-LS is rather
robust to the variation of λ, so no careful tuning of λ is needed.

To evaluate the PCA-LS’s robustness to the dimension p of subspace, we fix
the λ to 1 and report the classification accuracy for p = {1, 2, 22, 23, 24, 25, 26}.
For SecStr, 500 points are randomly labeled, and for other data sets 50 data are
randomly labeled. The result shown in the Figure 4 is averaged over 10 splits.
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Fig. 3. PCA-LS’s classification accuracy with different λ (p = 16)
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Fig. 4. PCA-LS’s classification accuracy with different p (λ = 1)

Unlike λ, the dimension p of the subspace is very important to the success of
subspace regularization methods, and needs to be chosen carefully. According to
the performance of PCA-LS, these seven data sets can be clearly divided into two
categories. For Breast-cancer, waveform, Text and SecStr, the accuracy peaks at
a very small p and then decrease gradually, which means most of the information
valuable for classification is actually embedding in a low dimensional subspace.
For Image, USPS and BCI, however, the accuracy increases with the dimension
of subspace monotonically which means the discriminative information is highly
nonlinear and can not be captured by a low dimensional subspace. It is very
interesting to see that it is exactly on the first class of data sets that the sub-
space regularization methods beat all the smoothness-based methods, while on
the second class of data sets smoothness-based methods work better. Thus the
conclusion is that, for very limited labeled data finding a general semi-supervised
learning method that works well for most problem may be extremely hard, and
we need to choose method carefully according to the characteristics of problem
at hands. For manifold or highly nonlinear data set, smoothness-based methods
are good choices. For those linear or approximately linear problems, subspace
regularization methods are more effective.

5 Conclusions

This paper has presented subspace regularization, a new method for semi-super-
vised learning. The motivation of our work is to find a low-dimensional repre-
sentation of data to avoid the curse of dimensionality and reduce the complexity
of the problem. Specifically, we hope to find a subspace and a decision function
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defined on this subspace such that the projection of labeled data onto this sub-
space can be easily separated and meanwhile the data information does not loss
too much by projection. By specifying the regularization term as reconstruction
error as PCA, we propose the PCA-based least square algorithm.

Unlike most of the semi-supervised learning methods which are based on the
smoothness assumption, subspace regularization utilizes the classic low dimen-
sional embedding assumption. Compared with previous works, our methods have
two remarkable advantages. First, under the situation that data from differ-
ent classes overlap heavily, our methods can still work, while smoothness-based
methods may fail. Second, our method has low computational complexity. For
linear PCA-LS, the computational complexity is linear in the number of data
points and dimension of the input space. This favorable property enables our
method to be applied to large-scale applications which have been demonstrated
in the experiment section.

Acknowledgments. This work was supported by the National Natural Science
Foundation of China (NSFC) under Grant nos. 60825301 and 60723005. The
authors thank the anonymous reviewers for their valuable comments.
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Heteroscedastic Probabilistic Linear Discriminant
Analysis with Semi-supervised Extension
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Abstract. Linear discriminant analysis (LDA) is a commonly used method for
dimensionality reduction. Despite its successes, it has limitations under some
situations, including the small sample size problem, the homoscedasticity as-
sumption that different classes have the same Gaussian distribution, and its in-
ability to produce probabilistic output and handle missing data. In this paper, we
propose a semi-supervised and heteroscedastic extension of probabilistic LDA,
called S2HPLDA, which aims at overcoming all these limitations under a com-
mon principled framework. Moreover, we apply automatic relevance determina-
tion to determine the required dimensionality of the low-dimensional space for
dimensionality reduction. We empirically compare our method with several re-
lated probabilistic subspace methods on some face and object databases. Very
promising results are obtained from the experiments showing the effectiveness of
our proposed method.

1 Introduction

The need for dimensionality reduction is pervasive in many applications of pattern
recognition and machine learning due to the high dimensionality of the data involved.
Dimensionality reduction techniques seek to project high-dimensional data either lin-
early or nonlinearly into a lower-dimensional space according to some criterion so as
to facilitate subsequent processing, such as classification. Classical linear dimensional-
ity reduction methods include principal component analysis (PCA) [1] and linear dis-
criminant analysis (LDA) [2], with the former being an unsupervised technique while
the latter a supervised one that exploits the label information in the labeled data. For
classification applications, LDA generally outperforms PCA because label information
is usually useful for finding a projection to improve class separability in the lower-
dimensional space.

Although LDA is widely used in many applications, the method in its original form
does have limitations under some situations. One of them is a well-known limitation
often referred to as the small sample size (SSS) problem [3], which arises in applica-
tions when the sample size is much smaller than the feature dimensionality and hence
the within-class scatter matrix is singular. A number of methods have been proposed to
address this problem, e.g., PseudoLDA [4], PCA+LDA [5], LDA/QR [6], NullLDA [3],
DCV [7], DualLDA [8] and 2DLDA [9]. The main idea underlying these methods is to

W. Buntine et al. (Eds.): ECML PKDD 2009, Part II, LNAI 5782, pp. 602–616, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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seek a space or subspace in which the within-class scatter matrix is nonsingular and then
perform LDA or its variants there without suffering from the singularity problem. More
recently, another approach has been pursued by some researchers [10,11,12] to alleviate
the SSS problem via semi-supervised learning [13], by utilizing unlabeled data in per-
forming dimensionality reduction in addition to labeled data. Another limitation of LDA
arises from the fact that the solution it gives is optimal only when the classes are ho-
moscedastic with the same Gaussian distribution. However, this requirement is too rigid
in practice and hence it does not hold in many real-world applications. To overcome this
limitation, mixture discriminant analysis [14] and a maximum likelihood approach [15]
have been proposed. Recently, Loog and Duin [16] proposed a heteroscedastic exten-
sion to LDA based on the Chernoff criterion, with a kernel extension proposed later
in [17]. The third limitation of LDA comes from its non-probabilistic nature. As such,
it cannot produce probabilistic output and handle missing data in a principled manner.
While producing probabilistic output can help the subsequent decision-making process
in incorporating uncertainty under a probabilistic framework, the missing data prob-
lem is so commonly encountered in applications that being able to deal with it is very
essential to the success of pattern recognition tools for practical applications. Some
probabilistic LDA models have been proposed, e.g., [18,19,20]. A by-product of most
probabilistic LDA models except the one in [18] is that it imposes no restriction on the
maximum number of reduced dimensions, but the original LDA model can only project
data into at most C − 1 dimensions where C is the number of classes. Nevertheless,
previous research in probabilistic LDA [19,20] did not pay much attention to the issue
of how to determine the reduced dimensionality needed.

While various attempts were made previously to address the above limitations indi-
vidually, mostly one or at most two at a time, we are more aggressive here in trying to
address all of them within a common principled framework. Specifically, in this paper,
we will go through a two-step process in our presentation. First, we propose a het-
eroscedastic probabilistic LDA (HPLDA) model which relaxes the homoscedasticity
assumption in LDA. However, in HPLDA, the parameters for each class can only be
estimated using labeled data from that class. This may lead to poor performance when
labeled data are scarce. Motivated by previous attempts that applied semi-supervised
learning to alleviate the SSS problem, we then extend HPLDA to semi-supervised het-
eroscedastic probabilistic LDA (S2HPLDA) by making use of (usually large quantities
of) unlabeled data in the learning process. In S2HPLDA, each class can have a dif-
ferent class covariance matrix and unlabeled data are modeled by a Gaussian mixture
model in which each mixture component corresponds to one class. We also use auto-
matic relevance determination (ARD) [21] to determine the required dimensionality of
the lower-dimensional space which can be different for different classes and hence is
fairly flexible.

The remainder of this paper is organized as follows. In Section 2, we first briefly
review some previous work on probabilistic LDA. We then present HPLDA in Section 3
and S2HPLDA in Section 4. Section 5 reports some experimental results based on face
and object databases to demonstrate the effectiveness of our proposed method. Finally,
Section 6 concludes the paper.
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2 Related Work

To the best of our knowledge, three variants of probabilistic LDA [18,19,20] were pro-
posed before.

In [18], each class is modeled by a Gaussian distribution with a common covariance
matrix shared by all classes and the mean vectors of different classes are modeled by
another Gaussian distribution whose covariance matrix is similar to the between-class
scatter matrix in LDA. The solution of this probabilistic LDA model is so similar to
that of LDA that it, unfortunately, also inherits some limitations of LDA. For example,
it needs probabilistic PCA (PPCA) to perform (unsupervised) dimensionality reduction
first to alleviate the SSS problem and it can only project data to (C − 1) dimensions.

Yu et al. [19] proposed a supervised extension of probabilistic PCA (PPCA) [22]
called SPPCA. This approach can be viewed as first concatenating each data point
with its class indicator vector and then applying PPCA to this extended form. From
the analysis of [23], the maximum likelihood solution of this approach is identical to
that of LDA. Yu et al. [19] also proposed a semi-supervised extension of SPPCA, called
S2PPCA, which can utilize unlabeled data as well.

The model in [20] is slightly different from others. It directly models the between-
class and within-class variances. So each data point can be described as the aggre-
gation of three parts: the common mean which is the mean of the whole dataset, the
between-class variance which describes the characteristics of different classes, and the
within-class variance which describes the characteristics of each data point. Prince and
Elder [20] also gave some extensions of this model useful for face recognition.

3 HPLDA: Heteroscedastic Probabilistic Linear Discriminant
Analysis

Suppose the whole dataset contains l labeled data points {(xi, yi)}l
i=1 from C classes

Πk (k = 1, . . . , C), where xi ∈ R
D with its label yi ∈ {1, . . . , C} and class Πk con-

tains nk examples. Moreover, all data points {xi}l
i=1 are independent and identically

distributed.
HPLDA is a latent variable model. It can be defined as follows:

xi = Wyiti + μyi
+ εi

ti ∼ N (0, Id)

εi ∼ N (0, τ−1
yi

ID), (1)

where τi specifies the noise level of the ith class, ti ∈ R
d with d < D, ID is theD×D

identity matrix and N (m,Σ) denotes a multivariate Gaussian distribution with mean
m and covariance matrix Σ. So for each class Πk, we have a different Wk. This is
different from the models proposed in [18,19,20] in which different classes share the
same matrix W. The graphical model for HPLDA is shown in Figure 1. From (1), we
can get
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P (xi|ti) = N (Wyiti + μyi
, τ−1

yi
ID)

and
P (xi) = N (μyi

,Φyi),

where Φk = WkWT
k +τ−1

k ID . So the log-likelihoodL of the data set can be calculated
as

L = −1
2

C∑
k=1

∑
yi=k

[
(xi − μk)T Φ−1

k (xi − μk) +D ln 2π + ln|Φk|
]
, (2)

where |A| denotes the determinant of a square matrix A. We set the derivative of L
with respect to μk to 0 to obtain the maximum likelihood estimate of μk as

μk = m̄k ≡
1
nk

∑
yi=k

xi. (3)

Fig. 1. Graphical model for HPLDA

Plugging Eq. (3) into (2), the log-likelihood can be simplified as

L = −1
2

C∑
k=1

nk

[
tr(Φ−1

k Sk) +Dln2π + ln|Φk|
]
, (4)

where Sk = 1
nk

∑
yi=k(xi−m̄k)(xi−m̄k)T is the estimated covariance matrix for the

kth class. Since Wk for different classes are independent, we can estimate each Wk

from the following expression:

Lk = −1
2
nk

[
tr(Φ−1

k Sk) +Dln2π + ln|Φk|
]
, (5)
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which is similar to the log-likelihood in PPCA. So, following the analysis in [22], we
can obtain the maximum likelihood estimate of Wk as the eigenvectors of Sk cor-
responding to the largest eigenvalues and τ−1

k is equal to the mean of the discarded
eigenvalues.

3.1 Discussion

If all Wk and τk in (1) are the same, denoted by W and τ , then, from Eq. (4), the
log-likelihood can be expressed as

L = − l

2

[
tr(Φ−1Sw) +Dln2π + ln |Φ|

]
, (6)

where Sw = 1
l

∑C
k=1

∑
yi=k(xi−m̄k)(xi−m̄k)T is the within-class scatter matrix in

LDA and Φ = WWT + τ−1ID . So, also following the analysis in [22], W consists of
the top eigenvectors of Sw and τ−1 is equal to the mean of the discarded eigenvalues.
Then if the data points are whitened by the total scatter matrix, i.e., the total scatter
matrix of the dataset is the identity matrix, the estimated W is just the solution in
traditional LDA.

There are some limitations in our model (1) though. From the above analysis, we
can see that Wk is estimated using the data points from the kth class only. However, in
many applications, labeled data are scarce due to the labeling effort required. So, as a
result, Wk may not be estimated very accurately. On the other hand, unlabeled data are
often available in large quantities at very low cost. It would be desirable if we can also
make use of the unlabeled data in the estimation of Wk. Moreover, the dimensionality
of Wk plays an important role in the performance of our model and it should preferably
be determined automatically. In the next section, we will discuss how to solve these two
problems together.

4 S2HPLDA: Semi-supervised Heteroscedastic Probabilistic
Linear Discriminant Analysis

As in HPLDA, there are l labeled data points {(xi, yi)}l
i=1 from C classes. In addition,

there are u unlabeled data points {xl+1, . . . ,xl+u}, with n = l + u. Each class Πk

contains nk labeled examples. For the labeled data points, we still use (1) to model
them. For the unlabeled data points, we model them using a mixture model in which
each mixture component follows (1) with prior probability p(Πk) = πk . Thus the new
model can be defined as:

xi = Wyiti + μyi
+ εi, for i ≤ l

ti ∼ N (0, Id)

εi ∼ N (0, τ−1
yi

ID)

p(xi) =
C∑

k=1

πkp(xi|Πk), for i > l, (7)
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where ti ∈ R
d. Moreover, we use the ARD method [21] to determinate the dimension-

ality of Wk by introducing a data-dependent prior distribution

p(Wk,j) ∼ N (0, ν−1
kj XLXT ),

where Wk,j is the jth column of Wk, X ∈ R
D×n is the total data matrix including

both labeled and unlabeled data, and L, whose construction will be described later, is the
graph Laplacian matrix defined on X. The graphical model is shown in Figure 2. Using
the data-dependent prior on Wk,j , we are essentially adopting the manifold assump-
tion, which has been widely used in dimensionality reduction [24] and semi-supervised
learning [25]. More specifically, if two points are close with respect to the intrinsic ge-
ometry of the underlying manifold, they should remain close in the embedding space
after dimensionality reduction. The parameter νkj can be viewed as an indicator of the
importance of the corresponding dimension of Wk to determine whether that dimen-
sion should be kept.

Fig. 2. Graphical model for S2HPLDA

We now describe the construction of L. Given the datasetD = {x1, . . . ,xn}, we first
construct a K nearest neighbor graph G = (V,E), with the vertex set V = {1, . . . , n}
corresponding to the labeled and unlabeled data points and the edge set E ⊆ V × V
representing the relationships between data points. Each edge is assigned a weight rij
which reflects the similarity between points xi and xj :

rij =

{
exp

(
− ‖xi−xj‖2

σiσj

)
if xi ∈ NK(xj) or xj ∈ NK(xi)

0 otherwise

where NK(xi) denotes the neighborhood set of the K-nearest neighbors of xi, σi the
distance between xi and its Kth nearest neighbor, and σj the distance between xj and
its Kth nearest neighbor. This way of constructing the nearest neighbor graph is called
local scaling [26]. Then G is the similarity graph with its (i, j)th element being rij , D
is a diagonal matrix whose entries are the column sums of G, and L = D−G.
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Model (7) has parameters {μk}, {τk}, {πk}, {νkj}, {Wk}. We use the expectation
maximization (EM) algorithm [27] to estimate them from data. Here we introduce zi

as a hidden indicator vector for each unlabeled data point xi, with zik being 1 if xi

belongs to the kth class. Since the number of parameters in this model is quite large, we
apply two-fold EM [28] here to speed up convergence. In the E-step of the outer-fold
EM, {zi} are the hidden variables. We estimate p(zik = 1) as:

p(zik = 1) = p(Πk|xi) =
πkp(xi|Πk)∑C
j=1 πjp(xi|Πj)

where

p(xi|Πk) =
∫
p(xi|ti,Wk,μk, τk)p(ti)dti

= N (xi|μk,WkWT
k + τ−1

k ID).

In the M-step of the outer-fold EM, we aim to estimate {πk} and {μk}. The complete-
data log-likelihood is defined as

LC =
l∑

i=1

ln p(xi|Πyi) +
n∑

i=l+1

C∑
k=1

zik

{
ln

[
πkp(xi|Πk)

]}
.

So the expectation of the complete-data log-likelihood in the M-step of the outer-fold
EM can be calculated as

〈LC〉 =
C∑

k=1

∑
yi=k

{
−1

2
(xi − μk)T Φ−1

k (xi − μk)− 1
2

ln |Φk| −
D

2
ln 2π

}
+

C∑
k=1

n∑
i=l+1

〈zik〉
{
−1

2
(xi − μk)T Φ−1

k (xi − μk)− 1
2

ln |Φk|+ lnπk −
D

2
ln 2π

}
,

where Φk = WkWT
k + τ−1

k ID . We maximize the expectation of the complete-data
log-likelihood with respect to {πi} and {μi}. The update rules are given by

π̃k =

∑n
i=l+1〈zik〉∑n

i=l+1
∑C

k=1〈zik〉
=

1
u

n∑
i=l+1

〈zik〉

μ̃k =

∑
yi=k xi +

∑n
i=l+1〈zik〉xi

nk +
∑n

i=l+1〈zik〉
,

where 〈·〉 denotes the expectation of a variable.
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In the E-step of the inner-fold EM, {ti} are the hidden variables. We estimate

p(ti|xi,Πk) = N (ti|Σ−1
k WT

k (xi − μ̃k), τ−1
k Σ−1

k )

〈ti|Πk〉 = Σ−1
k WT

k (xi − μ̃k)

〈titT
i |Πk〉 = τ−1

k Σ−1
k + 〈ti|Πk〉〈ti|Πk〉T ,

with Σk = τ−1
k Id + WT

k Wk.

In the M-step of the inner-fold EM, we aim to estimate {Wk}, {νkj} and {τk}. The
complete-data log-likelihood can be calculated as

L̃C =
l∑

i=1

ln p(xi, ti|Πyi) +
C∑

k=1

d∑
j=1

p(Wk,j) +
n∑

i=l+1

C∑
k=1

〈zik〉 ln{πkp(xi, ti|Πk)}.

The expectation of the complete-data log-likelihood can be calculated as

〈L̃C〉 =
C∑

i=1

∑
yj=i

{
D

2
ln τi −

1
2

tr(〈tjt
T
j |Ci〉)−

τi

2
‖xj − μ̃i‖

2+

τi〈tj |Ci〉T WT
i (xj − μ̃i)−

τi

2
tr(WT

i Wi〈tjt
T
j |Ci〉)

}
+

C∑
i=1

n∑
j=l+1

〈zji〉
{

D

2
ln τi −

1
2

tr(〈tjt
T
j |Ci〉)−

τi

2
‖xj − μ̃i‖

2+

τi〈tj |Ci〉T WT
i (xj − μ̃i)−

τi

2
tr(WT

i Wi〈tjt
T
j |Ci〉) + ln π̃i

}
+

C∑
i=1

d∑
j=1

{
D

2
ln νij −

1
2
νijW

T
i,jL

−1

 Wi,j

}
,

where L� = XLXT . Maximization of the expected complete-data log-likelihood with
respect to Wk, τk and νkj gives the following update rules:

W̃k = (τkSkWk − L−1
� WkΛkΣk)(ñkId + τkΣ−1

k WT
k SkWk)−1

τ̃k =
Dñk

tr
{
(ID −WkΣ−1

k WT
k )2Sk + ñkτ

−1
k WkΣ−1

k WT
k

}
ν̃kj =

D

W̃T
k,jL

−1
� W̃k,j

,

where L� = XLXT , Λk = diag(νk1, . . . , νkM ) is a diagonal matrix with the (j, j)th
element being νkj , ñk = nk + uπ̃k, and Sk =

∑
yi=k(xi − μ̃k)(xi − μ̃k)T +∑n

i=l+1〈zik〉(xi − μ̃k)(xi − μ̃k)T .
After estimating the parameters, we can use νkj to determinate the dimensionality of

Wk. We can set a threshold η and discard the Wk,j whose corresponding νkj is larger
than η. In our experiments, we set η to be 10000.

For a test data point xtest, we classify it to class Πk where k = argmaxj p(Πj |xtest).
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4.1 Discussion

Our S2HPLDA model has advantages over existing probabilistic subspace methods. In
our method, each class is modeled by a Gaussian distribution with a possibly different
covariance matrix, giving our model higher expressive power than existing methods.
Moreover, our model, being a semi-supervised method, can utilize unlabeled data but
most other probabilistic LDA models cannot, except S2PPCA.

There exist several variants of LDA [10,11,12] which also utilize unlabeled data
to alleviate the SSS problem. Cai et al. [10] and Zhang and Yeung [11] used unlabeled
data to define a regularization term to incorporate the manifold and cluster assumptions,
which are two widely adopted assumptions in semi-supervised learning. Zhang and Ye-
ung [12] used unlabeled data to maximize the criterion of LDA and estimate the labels
simultaneously, in a way similar to the idea behind transductive SVM (TSVM) [29,30].
Unlike these methods, our method works in a different way. We use a Gaussian mixture
model to model the unlabeled data with each component corresponding to one class.
From previous research in semi-supervised learning, unlabeled data are more suitable
for generative models since unlabeled data can help to estimate the data density [13]
and our method also follows this strategy.

According to [31], integrating out all parameters is better than performing point es-
timation in terms of the generalization performance. In our future research, we plan to
propose a fully Bayesian extension of S2HPLDA by placing priors on the parameters
of S2HPLDA. For example, we can add a Dirichlet prior to (π1, . . . , πC), a Gaussian
prior to μk, and Gamma priors to τk and νkj :

(π1, . . . , πC) ∼ Dir(α0, . . . , α0)
μk ∼ N (μ0, β0ID)
τk ∼ Gamma(a0, b0)
νkj ∼ Gamma(c0, d0).

Since direct inference is intractable, we may resort to the variational approximation
approach [32].

5 Experiments

In this section, we report experimental results based on two face databases and one
object database to evaluate the performance of our method and compare it with some
related probabilistic subspace methods.

5.1 Experimental Setup

Subspace methods are widely used in face recognition and object recognition appli-
cations. Previous research found that face and object images usually lie in a low-
dimensional subspace of the ambient image space. Eigenface [33] (based on PCA) and
Fisherface [5] (based on LDA) are two representative subspace methods. Many variants
have also been proposed in recent years. These subspace methods use different dimen-
sionality reduction techniques to obtain a low-dimensional subspace and then perform
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classification in the subspace using some classifier. Some researchers also proposed
probabilistic versions of these subspace methods, with PPCA [22] and SPPCA [19]
being two popular ones. From the analysis in [22], the maximum likelihood solution
to PPCA is identical to that to PCA. Since the models proposed in [19] and [23] are
identical, then from the analysis in [23], the maximum likelihood solution to SPPCA
is also the same as that to LDA. Moreover, PPCA and SPPCA can deal with missing
data using the EM algorithm, but PCA and LDA cannot. In our experiments, we study
our method empirically and compare it with several probabilistic subspace methods,
including PLDA [20], SPPCA [19] and S2PPCA [19]. Note that PLDA and SPPCA are
supervised, but S2PPCA and our method S2HPLDA are semi-supervised in nature. For
SPPCA and S2PPCA, we use a simple nearest-neighbor classifier to perform classifica-
tion after dimensionality reduction.

5.2 Face Recognition

We use the ORL face database [5] for the first experiment. The ORL face database con-
tains 400 face images of 40 persons, each having 10 images. These face images contain
significant variations in pose and scale. Some images from the database are shown in
Figure 3. We randomly select seven images for each person to form the training set and
the rest for the test set. Of the seven images for each person, p ∈ {2, 3} images are ran-
domly selected and labeled while the other images remain unlabeled. We perform 10
random splits and report the average results across the 10 trials. Table 1 reports the error
rates of different methods evaluated on the unlabeled training data and the test data sep-
arately. For each setting, the lowest classification error is shown in bold. Since S2PPCA
exploits the structure of unlabeled data, we can see that its performance is better than
PLDA and SPPCA. Moreover, S2HPLDA relaxes the homoscedasticity assumption and
so it achieves better performance than its homoscedastic counterpart S2PPCA in our
settings. From Table 1, we can see that the performance of PLDA is very bad, proba-
bly because it gets trapped in an unsatisfactory local optimum when running the EM
algorithm.

The PIE database [34] is used in our second experiment. This database contains
41,368 face images from 68 individuals and these images have large variations in pose,
illumination and expression conditions. For our experiments, we select the frontal pose

Fig. 3. Some images for one person in the ORL database
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Table 1. Recognition error rates (in mean±std-dev) on ORL for two different p values. 1ST

TABLE: p = 2; 2ND TABLE: p = 3.

Method Error rate (unlabeled) Error rate (test)

PLDA 0.7141±0.0803 0.7016±0.0640
SPPCA 0.4562±0.1219 0.4578±0.0710
S2PPCA 0.2703±0.0332 0.2422±0.0366
S2HPLDA 0.1406±0.0231 0.1781±0.0308

Method Error rate (unlabeled) Error rate (test)

PLDA 0.5156±0.0744 0.5042±0.0603
SPPCA 0.4359±0.0713 0.4604±0.0322
S2PPCA 0.2625±0.0595 0.2000±0.0245
S2HPLDA 0.1375±0.0135 0.1562±0.0336

Fig. 4. Some images for one person in the PIE database

(C27)1 with varying lighting and illumination conditions and there are about 49 images
for each subject. Some images from the database are shown in Figure 4. The experi-
mental setting is almost the same as that of the first experiment. The only difference is
that we use 22 images to form the training set. Of these 22 images, we randomly select
p ∈ {3, 4, 5, 6} images and label them, leaving the remaining images unlabeled. Each
setting is also repeated 10 times. Table 2 reports the average results over the 10 trials.
From the results, we can see that our method again gives the best performance.

5.3 Object Recognition

We use the COIL database [35] for our object recognition experiment. This database
contains 1,440 grayscale images with black background for 20 objects. For each object,
the camera moves around it in pan at intervals of 5 degrees and takes a total of 72 differ-
ent images. These objects exhibit a wide variety of complex geometric and reflectance
characteristics. Some sample images for the 20 objects are shown in Figure 5. We use
22 images from each object to form the training set. Of the 22 images, p ∈ {3, 4, 5, 6}
images are randomly selected as labeled data and the rest as unlabeled data. We perform
10 random splits on each configuration and Table 3 reports the average results. From
the results, our method also outperforms other methods under all four settings.

1 This face database can be downloaded from
http://www.cs.uiuc.edu/homes/dengcai2/Data/FaceData.html
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Table 2. Recognition error rates (in mean±std-dev) on PIE for four different p values.
1ST TABLE: p = 3; 2ND TABLE: p = 4; 3RD TABLE: p = 5; 4TH TABLE: p = 6.

Method Error rate (unlabeled) Error rate (test)

PLDA 0.8421±0.0142 0.8492±0.0212
SPPCA 0.4509±0.0487 0.4798±0.0590
S2PPCA 0.3367±0.0088 0.3639±0.0139
S2HPLDA 0.3066±0.0131 0.3109±0.0397

Method Error rate (unlabeled) Error rate (test)

PLDA 0.7549±0.0451 0.7469±0.0532
SPPCA 0.2741±0.0202 0.2654±0.0073
S2PPCA 0.2545±0.0110 0.2520±0.0046
S2HPLDA 0.2096±0.0324 0.2225±0.0066

Method Error rate (unlabeled) Error rate (test)

PLDA 0.7029±0.0018 0.7201±0.0154
SPPCA 0.2080±0.0153 0.2409±0.0120
S2PPCA 0.2011±0.0055 0.2330±0.0046
S2HPLDA 0.1743±0.0177 0.1933±0.0108

Method Error rate (unlabeled) Error rate (test)

PLDA 0.7096±0.0351 0.7215±0.0420
SPPCA 0.1875±0.0104 0.2119±0.0143
S2PPCA 0.1590±0.0390 0.1724±0.0347
S2HPLDA 0.1220±0.0149 0.1450±0.0204

Fig. 5. Some images for different objects in the COIL database
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Table 3. Recognition error rates (in mean±std-dev) on COIL for four different p values. 1ST

TABLE: p = 3; 2ND TABLE: p = 4; 3RD TABLE: p = 5; 4TH TABLE: p = 6.

Method Error rate (unlabeled) Error rate (test)

PLDA 0.4026±0.0112 0.4000±0.0311
SPPCA 0.7303±0.1172 0.7195±0.1393
S2PPCA 0.3303±0.0428 0.3270±0.0410
S2HPLDA 0.3145±0.0651 0.3015±0.0474

Method Error rate (unlabeled) Error rate (test)

PLDA 0.3694±0.0118 0.3850±0.0156
SPPCA 0.6958±0.0727 0.7075±0.0658
S2PPCA 0.3500±0.0039 0.3195±0.0021
S2HPLDA 0.3167±0.0314 0.3005±0.0375

Method Error rate (unlabeled) Error rate (test)

PLDA 0.3471±0.0208 0.3290±0.0792
SPPCA 0.7691±0.0769 0.7815±0.0884
S2PPCA 0.3221±0.0062 0.2865±0.0346
S2HPLDA 0.2438±0.0265 0.2670±0.0566

Method Error rate (unlabeled) Error rate (test)

PLDA 0.3156±0.0707 0.3085±0.0559
SPPCA 0.7844±0.0398 0.7840±0.0226
S2PPCA 0.3391±0.0420 0.3270±0.0028
S2HPLDA 0.2250±0.0312 0.2200±0.0354

6 Conclusion

In this paper, we have presented a new probabilistic LDA model. This semi-supervised,
heteroscedastic extension allows it to overcome some serious limitations of LDA. As
said earlier in the paper, one natural extension is a fully Bayesian extension to boost the
generalization performance of the probabilistic model. Another possibility is to apply
the kernel trick to introduce nonlinearity into the model using techniques such as that
in [36].
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Abstract. Labeled data are needed for many machine learning applications but
the amount available in some applications is scarce. Semi-supervised learning
and multi-task learning are two of the approaches that have been proposed to al-
leviate this problem. In this paper, we seek to integrate these two approaches for
regression applications. We first propose a new supervised multi-task regression
method called SMTR, which is based on Gaussian processes (GP) with the as-
sumption that the kernel parameters for all tasks share a common prior. We then
incorporate unlabeled data into SMTR by changing the kernel function of the GP
prior to a data-dependent kernel function, resulting in a semi-supervised exten-
sion of SMTR, called SSMTR. Moreover, we incorporate pairwise information
into SSMTR to further boost the learning performance for applications in which
such information is available. Experiments conducted on two commonly used
data sets for multi-task regression demonstrate the effectiveness of our methods.

1 Introduction

Many machine learning applications require that labeled data be available for model
training. Unfortunately the amount of labeled data available in some applications is
very scarce because labeling the data points manually is very tedious and costly. As a
consequence, the model thus learned is often not satisfactory in performance. To alle-
viate this problem, machine learning researchers have investigated various approaches,
with semi-supervised learning and multi-task learning being two popular ones.

Semi-supervised learning [1] can be seen as an extension of the conventional super-
vised learning paradigm by augmenting the (labeled) training data set with unlabeled
data so as to exploit the useful information in the unlabeled data to boost learning per-
formance. Early semi-supervised learning methods include co-training [2], which builds
two learning models based on two different views of the data and then uses each learn-
ing model to select confident unlabeled data for the other, and transductive SVM [3,4],
which uses both labeled and unlabeled data to maximize the margin of a support vector
machine (SVM). More recent development includes many graph-based methods [5,6,7],
which model the geometric relationship between all data points in the form of a graph
and then propagate the label information from the labeled data points to the unlabeled
data points throughout the graph. In order for the unlabeled data to be useful for semi-
supervised learning, some assumptions about the data have to be satisfied. Two widely
used assumptions are the cluster assumption and manifold assumption. The cluster as-
sumption simply means that if two points are in the same cluster, they are more likely to
belong to the same class. Equivalently, this means that the class decision boundary only

W. Buntine et al. (Eds.): ECML PKDD 2009, Part II, LNAI 5782, pp. 617–631, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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goes through low-density regions. Transductive SVM is one popular method based on
the cluster assumption. As for the manifold assumption, it means that the data points in
some high-dimensional space span a low-dimensional manifold. If two points are close
to each other with respect to some metric on the manifold, their outputs are likely to
be similar. As a result, if we want to preserve the manifold structure when performing
some projection, then two points that are close in the manifold should remain close af-
ter projection. The manifold assumption is the underlying model assumption of many
semi-supervised learning methods, particularly graph-based methods.

On the other hand, multi-task learning [8,9,10] seeks to improve the learning perfor-
mance of one task with the help of some related tasks. This approach has been inspired
by psychological observations that humans can often benefit from previous learning
experience when learning a new but related task, sometimes referred to as transfer of
learning. Many multi-task learning methods have been proposed over the past decade.
For example, multi-task feature learning [11] learns a common representation for all
tasks under the regularization framework, regularized multi-task SVM [12] extends
SVM by requiring that the SVM parameters for all tasks be close to each other, task
clustering methods [13,14] group the tasks into multiple clusters and then learn a sim-
ilar or common representation for all tasks within a cluster, and GP-based multi-task
learning methods [15,16,17,18] utilize Gaussian processes (GP) as the base model for
multi-task learning. For multi-task learning, many existing methods assume that all the
tasks are related to each other and hence similar or identical data features or model pa-
rameters are shared by all tasks or subsets of tasks, for example, all tasks in the same
cluster. Methods based on neural networks and multi-task feature learning all assume
that the data features are shared by all tasks. On the other hand, regularized multi-task
SVM and the methods in [14] assume that similar model parameters are shared by all
tasks or tasks in the same cluster. Moreover, some methods incorporate both assump-
tions in their models, e.g., [13].

Since semi-supervised learning and multi-task learning share the common objective
of seeking to improve the learning performance of the original supervised learning task
by exploiting some auxiliary data available (unlabeled data for the current task or la-
beled data for other related tasks), it makes sense to combine them in an attempt to
get the best of both worlds. Indeed, some such attempts have been made recently. The
method proposed by Ando and Zhang [19] bears some relationship with these two learn-
ing paradigms even though its objective is mainly to improve the performance of semi-
supervised learning. There exists only a single task (target task) to start with as well as
some unlabeled data. The unlabeled data are then utilized to create more tasks to help the
learning of the target task. Moreover, Liu et al. [20] proposed a semi-supervised learn-
ing method called parameterized neighborhood-based classification (PNBC), which ap-
plies random walk to logistic regression and uses a task clustering method for multi-task
learning. However, these two methods only consider the classification problem and can-
not be extended readily to the regression problem. Indeed, there exist some applications
that can be modeled as the combination of semi-supervised regression and multi-task
regression, for example, personalized pose estimation. In personalized pose estimation,
each task corresponds to the pose estimation for one person. In this application, there
exist large amount of images with unknown pose information for each person.
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To the best of our knowledge, there does not exist any work in the literature that
integrates semi-supervised regression and multi-task regression. In this paper, we want
to fill the gap by proposing a scheme for such integration. We first propose a new su-
pervised multi-task regression method called SMTR, which is based on GP with the
assumption that the kernel parameters for all tasks share a common Gaussian prior.
We then incorporate unlabeled data into SMTR by changing the kernel function of the
GP prior to a data-dependent kernel function, resulting in a semi-supervised extension
of SMTR, called SSMTR. Moreover, as in [21], we incorporate pairwise information
into SSMTR to further boost the learning performance for applications in which such
information is available.

We first present SMTR in Section 2. SSMTR, our semi-supervised extension of
SMTR, and the incorporation of pairwise information into SSMTR are then presented
in Sections 3 and 4, respectively. Section 5 reports some experimental results to provide
empirical evaluation of our proposed methods.

2 Supervised Multi-Task Regression

Let there be m related regression tasks T1, . . . , Tm. For task Ti, the training set Di

consists of ni labeled data points {(xi
j , y

i
j)}ni

j=1 with the jth point xi
j ∈ R

d and its
output yi

j ∈ R.

For each task, we use a GP [22] as the base regressor. For task Ti, we define a latent
variable f i

j for each data point xi
j . The prior of f i is defined as

f i |Xi ∼ N (0ni ,Kθi), (1)

where f i = (f i
1, . . . , f

i
ni

)T , Xi = (xi
1, . . . ,x

i
ni

), N (m,Σ) denotes a multivariate
Gaussian distribution with mean m and covariance matrix Σ, 0ni denotes an ni × 1
zero vector, and Kθi denotes the kernel matrix defined on Xi where the kernel function
is parameterized by θi.

The likelihood for each task Ti is defined based on the Gaussian noise model:

yi | f i ∼ N (f i, σ2Ini), (2)

where yi = (yi
1, . . . , y

i
ni

)T , σ2 denotes the noise level, and Ini is the ni × ni identity
matrix.

Since all tasks are assumed to be related, we impose a common prior on the kernel
parameters {θi}m

i=1 for all m tasks:

θi ∼ N (mθ,Σθ). (3)

The graphical model for SMTR is depicted in Figure 1.
In some formulation of GP regression, the noise level σ2 can also be regarded as

one element of the kernel parameters θi since GP regression has an analytical form
for p(yi

j |xi
j). So the noise levels for different tasks can also share a common prior as
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Fig. 1. Graphical model for Supervised Multi-Task Regression

in Eq. (3) but they are not identical. Note that the noise level can be estimated from
the labeled data. Since the number of labeled data points in semi-supervised learning is
typically not very large, it may not be possible to obtain an accurate estimate of the noise
level if estimation is done independently for each task based on limited labeled data. For
this reason, we assume in this paper that all tasks have the same noise level. The more
general case that allows different noise levels for different tasks will be studied in the
future.

There exist some GP-based multi-task regression models [15,16,17,18]. Lawrence
and Platt [15] proposed a multi-task regression model in which the kernel parameters
are shared by all tasks. This assumption becomes unreasonable when there exist outlier
tasks. This problem also exists in the models of [16] and [17], which later motivated
the development of a robust model using t-processes [23]. Unlike the model in [15], the
models in [16,17] learn the kernel matrix in a nonparametric way. This makes it difficult
to perform inductive inference since there is no parametric form for the kernel function.
Bonilla et al. [18] proposed a powerful multi-task GP regressor which is especially suit-
able for multi-output regression problems. Their method directly models the similarity
between multiple tasks and is equivalent to using a matrix-variate normal distribution to
model the multiple latent function values. Due to the use of the Kronecker product, this
method incurs high storage and computational costs. However, these difficulties do not
exist in our proposed model. In our model, the kernel parameters for different tasks just
share the same prior but are not identical, making it capable of modeling outlier tasks.
Our model has a parametric form for the kernel function and hence it can be used to
make inductive inference directly. Even though our model does not directly character-
ize the relatedness between tasks, it is implicitly characterized by the kernel parameters.
Moreover, since the dimensionality of θi is usually not very large, the storage cost is
not high. Although there exist some multi-task learning methods which also place a
common prior on the model parameters of different tasks [24,25,13], to the best of our
knowledge none of them is based on GP.
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2.1 Learning and Inference

Since

p(yi|Xi) =
∫
p(yi|f i)p(f i|Xi)df i

= N (yi|0ni ,Kθi + σ2Ini),

the log-likelihood of all tasks can be computed as

L =− 1
2

m∑
i=1

[
(yi)T (Kθi + σ2Ini)

−1yi + ln
∣∣Kθi + σ2Ini

∣∣ ]
− 1

2

m∑
i=1

[
(θi −mθ)T Σ−1

θ (θi −mθ) + ln
∣∣Σ−1

θ

∣∣ ]
+ Const,

where |A| denotes the determinant of a square matrix A. We maximize L to estimate
the optimal values of θi, σ, mθ and Σθ . Since the number of parameters to estimate is
large, we use an alternating method to solve the problem.

In the (t+1)st iteration, given m(t)
θ and Σ

(t)
θ as estimates of mθ and Σθ from

the tth iteration, we apply gradient ascent to maximize the log-likelihood to estimate
θ

(t+1)
i and σ(t+1). The form of the kernel function we adopt is k(x1,x2) = θ1xT

1 x2 +
θ2 exp(− ‖x1−x2‖2

2
2θ2

3
) where ‖·‖2 denotes the 2-norm of a vector. Since each element of

θi and σ is positive, we instead treat ln θi and lnσ as variables, where each element
of ln θi is the logarithm of the corresponding element in θi. The gradients of the log-
likelihood with respect to ln θi and lnσ can be computed as:

∂L

∂ lnσ
=

∂L

∂σ2

∂σ2

∂ lnσ

= σ2
m∑

i=1

{
(yi)T (Kθi + σ2Ini)

−2yi − tr
[
(Kθi + σ2Ini)

−1]}
∂L

∂ ln θi
=

1
2

diag(θi)
[

Tr

(
A
∂Kθi

∂θi

)
− 2(Σ(t)

θ )−1(θi −m(t)
θ )

]
,

where A = (Kθi +σ2Ini)−1yi(yi)T (Kθi +σ2Ini)−1−(Kθi +σ2Ini)−1, tr(·) denotes

the trace function defined on a square matrix, Tr(A∂Kθi

∂θi
) denotes a vector whose jth

element is tr(A∂Kθi

∂θij
) where θij is the jth element of θi, and diag(θi) denotes the

diagonal matrix whose (j, j)th element is the jth element of θi.
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After we obtain θ
(t+1)
i and σ(t+1), we keep them fixed and maximize the log-

likelihood with respect to mθ and Σθ . With some simple algebraic calculations, we
can get

m(t+1)
θ =

1
m

m∑
i=1

θi

Σ
(t+1)
θ =

1
m

m∑
i=1

(θi −m(t+1)
θ )(θi −m(t+1)

θ )T .

These two steps are repeated until the model parameters converge.
Given a test data point xi

� of task Ti, the predictive distribution p(yi
� |xi

�,X
i,yi) is

a Gaussian distribution with mean mi
� and variance (σi

�)2 given by

mi
� = (ki

�)
T (Kθi + σ2Ini)

−1yi

(σi
�)

2 = kθi(x
i
�,x

i
�)− (ki

�)
T (Kθi + σ2Ini)

−1ki
�,

where kθi(·, ·) denotes the kernel function parameterized by θi and ki
� = (kθi(xi

�,x
i
1),

. . . , kθi(xi
�,x

i
ni

))T .
The computational complexity of our model is O

(∑m
i=1(ni)3

)
. Since the data set

sizes ni for different tasks are generally small in typical semi-supervised learning ap-
plications, our model is usually quite efficient.

2.2 Inductive Inference for New Tasks

The model presented above assumes that all tasks are given in advance for multi-task
learning to take place. This setting is sometimes referred to as symmetric multi-task
learning [14]. If a newly arrived task does not belong to any of the tasks in the training
set, our model can still deal with this situation easily without having to retrain the whole
model from scratch using an augmented training set. Instead, we can utilize the common
prior in Eq. (3) as the prior of the kernel parameters for the new task and then perform
maximum a posteriori (MAP) estimation to obtain the kernel parameters and maximum
likelihood estimation (MLE) to obtain the noise level. Therefore, we only need to store
mθ and Σθ instead of all the training data points for all tasks.

3 Semi-Supervised Multi-Task Regression

We now extend the SMTR model to the semi-supervised setting, which is called SSMTR.
For task Ti, the training setDi consists of a set of labeled data points {(xi

j , y
i
j)}li

j=1 and
a set of unlabeled data points {xi

j}ni

j=li+1. Typically, we have ni , li.
Like in many semi-supervised learning methods which are based on the manifold

assumption as described above, the unlabeled data in our model serve to enforce the
smoothness of the regression function. For each task Ti, we use local scaling [26] to
construct the similarity graph Si in which each element is defined as follows:

Si
jr =

{
exp

(
− ‖xi

j−xi
r‖

2

σi
jσi

r

)
if xi

j ∈ NK(xi
r) or xi

r ∈ NK(xi
j)

0 otherwise
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where NK(xi
j) denotes the neighborhood set of the K nearest neighbors of xi

j in task
Ti, σi

j is the distance between xi
j and its Kth nearest neighbor, and σi

r is the distance
between xi

r and its Kth nearest neighbor.
We introduce a random variable Gi to reflect the geometric structure contained in

the training set of task Ti. The prior for G is defined as

p(Gi | f i, Di) ∝ exp
[
−αi

2
(f i)T Lif i

]
, (4)

where f i = (f i
1, . . . , f

i
ni

)T includes the latent variables for both labeled and unlabeled
data, Li is the Laplacian matrix or normalized Laplacian matrix [27] of the similarity
graph Si defined on the training set Di, and αi is a hyperparameter which needs to be
estimated. So if the probability of Gi is high, it means that the data set is more likely to
contain manifold structure according to the graph structure implied by Li.

Thus the joint prior of f i conditioned on Di and Gi can be computed based on

p(f i |Di, G
i) ∝ p(f i |Di)p(Gi | f i, Di)

and so
f i |Di, G

i ∼ N
(
0n, (K−1

θi
+ αiLi)−1) . (5)

This formulation is similar to that of [28]. However, [28] focused on semi-supervised
classification but not the regression problem. The graphical model for SMTR is depicted
in Figure 2.

Fig. 2. Graphical model for Semi-Supervised Multi-Task Regression. Here Xi contains labeled
and unlabeled data in the ith task.

From the joint prior defined in Eq. (5), the new kernel function for task Ti can be
defined as:

ki(x, z) = kθi(x, z) − (ki
x)T

(
α−1

i I + LiKθi

)−1
Liki

z, (6)

where ki
x =

(
kθi(x,xi

1), . . . , kθi(x,xi
ni

)
)T

. The kernel function in Eq. (6) is similar
to the semi-supervised kernel function defined in [29].
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The hyperparameter αi in Eq. (4) can be viewed as a measure of usefulness of the
unlabeled data. We expect to automatically learn αi from data. If the optimal αi is very
small or even 0 after learning, then the prior of f i will degenerate to the Gaussian prior.
This means that the unlabeled data points have negligible effect on improving the per-
formance of GP regression. From the new kernel function in Eq. (6), we can view αi

as a parameter in the kernel function.
There exist some works on semi-supervised or transductive GP regression that work

in a different way, such as [30]. The assumption of [30] is that the mean and variance
of the predictive results on the unlabeled data are close to those of the labeled data. We
can show that it is easy to incorporate this more restrictive assumption into our model.

3.1 Learning and Inference

Since the likelihood is only related to the labeled data, we first marginalize the joint
prior with respect to f i

j corresponding to the unlabled data. In this section, we still use
Kθi to denote the kernel matrix whose elements are calculated by the modified kernel
function in Eq. (6) on the labeled data of task Ti.

We still use an alternating method to maximize the log-likelihood. The update rules
for mθ, Σθ , θi and σ are the same as those in Section 2.1 with the kernel function being
the only difference. Moreover, for αi, the gradient can be calculated as

∂L

∂ lnαi
=
αi

2

{
tr

[
(Kθi + σ2Ili)

−1yi(yi)T (Kθi + σ2Ili)
−1 ∂Kθi

∂αi

]
−tr

[
(Kθi + σ2Ili)

−1 ∂Kθi

∂αi

]}
.

When making prediction, the formulation is the same as conventional GP. Moreover,
the way to handle new tasks is the same as that in Section 2.2.

4 Utilizing Pairwise Information

In the previous section, we showed that incorporating unlabeled data into SMTR to
give the SSMTR model only requires modifying the GP prior, but the likelihood is still
defined based solely on the labeled data.

In addition to unlabeled data, in some applications the training set also contains
some other auxiliary data in the form of pairwise constraints [21]. Let the jth pairwise
constraint for task Ti take the form (i, u(j), v(j), di

j), which means that yi
u(j)−yi

v(j) ≥
di

j where yi
u(j) and yi

v(j) are the true outputs of two data points xi
u(j) and xi

v(j) in task
Ti with at least one of them being an unlabeled point. For personalized pose estimation,
it is easy to add a constraint that the pose angle difference between a frontal face image
and a left profile face image is not less than 45 degrees.

In semi-supervised classification or clustering applications, one may also find pair-
wise constraints such as ‘must-link’ and ‘cannot-link’ constraints [31], which state
whether or not two data points should belong to the same class or cluster. Many methods
have been proposed to incorporate such pairwise constraints into their learning models.
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For semi-supevised regression, however, very little has been studied on this topic. Here
we offer a preliminary study in the context of SSMTR.

The jth pairwise constraint of task Ti is denoted by ξi
j . The noise-free likelihood

function pideal(ξi
j | f i

u(j), f
i
v(j)) is defined as

pideal(ξi
j | f i

u(j), f
i
v(j)) =

{
1 if f i

u(j) − f i
v(j) ≥ di

j

0 otherwise

In real applications, however, the pairwise constraints are often noisy. To model this
more realistic setting, we introduce a random variable δ which follows some normal
distribution with zero mean and unknown variance ε2. The variance is the same for all
tasks. So the corresponding likelihood function is defined as

p(ξi
j | f i

u(j), f
i
v(j))

=
∫ ∫

pideal(ξi
j | f i

u(j) + δ1, f
i
v(j) + δ2)N (δ1 | 0, ε2)N (δ2 | 0, ε2) dδ1dδ2

= Φ

(
f i

u(j) − f i
v(j) − di

j√
2ε

)
,

where Φ(z) =
∫ z

−∞N (a | 0, 1)da is the probit function.
The noise level ε2 in the pairwise constraints has some relationship to the noise level

σ2 in the likelihood function since they both relate the latent variable f i
j to the output

yi
j . However, it should be noted that the noise sources they represent are different. For

instance, one may have noise in the pairwise constraints but not in the likelihood, or
their noise levels may be different. For flexibility, we use two different parameters for
the two noise sources in our model.

Although it appears that the likelihood function of our model is similar to that of [32],
their differences are worth pointing out here. The model in [32] is for classification and
the constraints there refer to label preference. On the other hand, our model is for semi-
supervised regression with pairwise constraints as auxiliary data and the constraints
specify the differences between the outputs of pairs of data points. Moreover, the like-
lihood function in [32] can be seen as a special case of our likelihood function when
each di

j takes the value 0.

4.1 Learning and Inference

Since direct integration of f i is intractable, we resort to the Laplace approximation [33]
to approximate the posterior of f i. We first compute f i

MAP by maximizing the posterior
of f i, which is equivalent to minimizing the following function:

g(f i) =
1
2
(f i)T K−1

θi
f i +

σ−2

2
‖ỹi − f̃ i‖2

2 −
ci∑

j=1

lnΦ(ωi
j) + li lnσ +

1
2

ln |Kθi | ,

where ỹi and f̃ i denote the subsets of yi and f i, respectively, corresponding to the
labeled data, ci is the number of pairwise constraints available in task Ti, and ωi

j =
fi

u(j)−fi
v(j)−di

j√
2ε

. We want to find f i
MAP that minimizes g(f i):

f i
MAP = arg min

f i
g(f i).
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It is easy to show that g(f i) is a convex function since the Hessian matrix of g(f i) is
∂2g(f i)

∂f i∂(f i)T = K−1
θi

+ σ−2Ili
ni

+ Ωi, which is positive definite, where Ili
ni

is the ni × ni

zero matrix with the first li diagonal elements being 1, and Ωi =
∂2−

∑ci
j=1 ln Φ(ωi

j)
∂f i∂(f i)T is

positive semidefinite. The proof is similar to that in [32] and we omit it here. So we can
apply gradient descent to find the global optimum.

After obtaining f i
MAP, we can approximate the likelihood or evidence of task Ti ac-

cording to the analysis in [33] as

p(yi) ≈ exp{−g(f i
MAP)}

(2π)ni/2

|K−1
θi

+ σ−2Ili
ni + Ωi

MAP|1/2
,

where Ωi
MAP is the value of the function Ωi taking on f i

MAP.

So the total negative log-likelihood of all m tasks can be approximated as

L =
m∑

i=1

[
1
2
(f i

MAP)
T K−1

θi
f i
MAP +

σ−2

2
‖ỹi − f̃ i

MAP‖2
2+

1
2

ln |Kθi |+
1
2

ln |K−1
θi

+ σ−2Ili
ni

+ Ωi
MAP|

]
+

m∑
i=1

1
2

[
(θi −mθ)T Σ−1

θ (θi −mθ) + ln |Σ−1
θ

]
+

m∑
i=1

[
li lnσ −

ci∑
j=1

lnΦ(ωi
j)

]
+ Const.

We still use an alternating method to minimize the negative log-likelihood. In the
(t+1)st iteration, given m(t)

θ and Σ
(t)
θ , the gradient of L with respect to each variable

is given by

∂L

∂ lnσ
=σ2

m∑
i=1

{
−σ−4‖ỹi− f̃ i

MAP‖2
2 +

li
σ2 − σ−4tr

[
(K−1

θi
+ σ−2Ili

ni
+ Ωi

MAP)
−1]}

∂L

∂ ln θi
=

diag(θi)
2

{
Tr(B

∂K−1
θi

∂θi
) + 2(Σ(t)

θ )−1(θi −m(t)
θ )

}
∂L

∂ lnαi
=
αi

2

{
−(f i

MAP)
T
∂K−1

θi

∂αi
f i
MAP − tr

(
Kθi

∂K−1
θi

∂αi

)

+tr

[
(K−1

θi
+ σ−2Ili

ni
+ Ωi

MAP)
−1 ∂K

−1
θi

∂αi

]}

∂L

∂ ln ε
=ε

m∑
i=1

⎧⎨⎩1
2

tr

[
(K−1

θi
+ σ−2Ili

ni
+ Ωi

MAP)
−1 ∂Ωi

MAP

∂ε

]
+

ci∑
j=1

ωi
jN (ωi

j |0, 1)
εΦ(ωi

j)

⎫⎬⎭ ,

where B = f i
MAP(f

i
MAP)

T −Kθi +
(
K−1

θi
+ σ−2Ili

ni
+ Ωi

MAP

)−1
.

The update rules for mθ and Σθ are the same as those in Section 2.1.
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4.2 Extension

In some applications, there exist auxiliary data given in another form as ξi
j = (i, u(j),

v(j), w(j), z(j)), which means that yi
u(j) − yi

v(j) ≥ yi
w(j) − yi

z(j). Let us take the
personalized pose estimation problem again as example. It is often easy to know that
the pose angle difference between a left profile face image and a right profile face image
is larger than that of two nearly frontal face images. The pairwise constraints considered
before may be seen as a special case of ξi

j when two of the data points xi
u(j), xi

v(j), x
i
w(j)

and xi
z(j) are labeled. The special case with v(j) = w(j) is also interesting in the pose

estimation application. For example, the pose angle difference between a left profile
face image and a right profile face image is larger than that between the left profile
image and a frontal image. Similar to the pairwise constraints above, the noise-free
likelihood function pideal(ξi

j | f i
u(j), f

i
v(j), f

i
w(j), f

i
z(j)) is defined as

pideal(ξi
j | f i

u(j), f
i
v(j), f

i
w(j), f

i
z(j)) =

{
1 if f i

u(j) − f i
v(j) ≥ f i

w(j) − f i
z(j)

0 otherwise

For more realistic situations, we again introduce a random variable δ following a normal
distribution with zero mean and unknown variance ε2. The likelihood function is thus
defined as

p(ξi
j | f i

u(j), f
i
v(j), f

i
w(j), f

i
z(j))

=
∫
pideal(ξi

j | f i
u(j) + δ1, f

i
v(j) + δ2, f

i
w(j) + δ3, f

i
z(j) + δ4)

N (δ1 | 0, ε2)N (δ2 | 0, ε2)N (δ3 | 0, ε2)N (δ4 | 0, ε2) dδ

= Φ

(
f i

u(j) − f i
v(j) − f i

w(j) + f i
z(j)

2ε

)
,

where δ = (δ1, δ2, δ3, δ4)T . It is easy to show that the posterior distribution of f i is
unimode, so we can also use the Laplace approximation to make inference.

5 Experiments

We compare a single-task regression method, SMTR, SSMTR and SSMTR with pair-
wise information in this section using two benchmark data sets, one for learning the
inverse dynamics of a robot arm and another for predicting the student performance in
terms of examination scores.

5.1 Learning Inverse Dynamics

This data set1 was used in [34]. For each instance, there are 7 joint positions, 7 joint
velocities and 7 joint accelerations forming 21 input attributes, together with 7 joint
torques for the outputs corresponding to 7 degrees of freedom. We treat each output

1 http://www.gaussianprocess.org/gpml/data/
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Table 1. nMSE results on learning inverse dynamics (SSTR: supervised single-task regression
which uses one GP for each task; SSMTRPI: semi-supervised multi-task regression with pairwise
information)

Method Transductive Error Inductive Error
SSTR 1.0228±0.1318 1.0270±0.1450
SMTR 0.4149±0.1109 0.4368±0.1020
SSMTR 0.3810±0.1080 0.3905±0.1123
SSMTRPI 0.3500±0.1088 0.3486±0.1010

Table 2. nMSE results on predicting student performance

Method Transductive Error Inductive Error
SSTR 1.2914±0.3146 1.3240±0.3274
SMTR 1.1151±0.3025 1.1535±0.3128
SSMTR 1.0506±0.2804 1.0612±0.2813
SSMTRPI 0.9817±0.2809 0.9824±0.2832

(i.e., degree of freedom) as a separate learning task. To simulate a more general multi-
task learning setting, we randomly select 2000 data points independently for each task
so that the input data points for different tasks are different. We randomly partition the
whole data set into three subsets, with 1% as labeled data, 10% as unlabeled data and
the rest as test data. The kernel we use is the RBF kernel. Moreover, we randomly se-
lect 100 pairs of data points and generate the pairwise constraint using their labels. Ten
random splits are performed and the mean and standard derivation of the performance
measure over different splits are reported. We adopt the normalized mean squared er-
ror (nMSE), which is defined as the mean squared error divided by the variance of the
test label, as the performance measure. Table 2 shows the results. From the results, we
can see that the performance of our proposed SMTR is significantly better than that of
supervised single-task learning which uses one GP for each task. Moreover, the perfor-
mance of SSMTR and SSMTR using pairwise information is better than that of SMTR,
which shows that both the unlabeled data and the pairwise information are effective in
improving performance.

5.2 Predicting Student Performance

This data set2 was used in [11] for multi-task learning. The goal is to predict the student
performance in terms of examination scores. The data set consists of 15362 students
from 139 secondary schools, recording their examination scores in three years (1985–
87). We treat each school as a different task, so that there are 139 learning tasks in total.
For each instance, the input consists of the year of the examination as well as 4 school-
specific and 3 student-specific attributes. We still use nMSE as performance measure.
We randomly select 2% of the data as labeled data, 20% as unlabeled data, and the rest
as test data. The kernel we adopt is the RBF kernel. We also generate 100 pairwise

2 http://www.cs.ucl.ac.uk/staff/A.Argyriou/code/
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constraints just as the last experiment did. We perform 10 random splits and report the
mean and standard derivation over different splits. Table 2 shows the results. Similar to
the results on learning inverse dynamics, SSMTR with pairwise information gives the
best performance.

6 Conclusion

In this paper, we have proposed an approach for integrating semi-supervised regres-
sion and multi-task regression under a common framework. We first propose a new
supervised multi-task regression method based on GP and then extend it to incorporate
unlabeled data by modifying the GP prior. In addition, if auxiliary data in the form of
pairwise constraints are available, we propose a scheme to incorporate them into our
semi-supervised multi-task regression framework by modifying the likelihood term. In
our future research, we will investigate sparse extension of our models, possibly by
using the informative vector machine [35].
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Abstract. Fisher linear discriminant analysis (LDA) and its kernel extension—
kernel discriminant analysis (KDA)—are well known methods that consider
dimensionality reduction and classification jointly. While widely deployed in
practical problems, there are still unresolved issues surrounding their efficient
implementation and their relationship with least mean squared error procedures.
In this paper we address these issues within the framework of regularized estima-
tion. Our approach leads to a flexible and efficient implementation of LDA as well
as KDA. We also uncover a general relationship between regularized discriminant
analysis and ridge regression. This relationship yields variations on conventional
LDA based on the pseudoinverse and a direct equivalence to an ordinary least
squares estimator. Experimental results on a collection of benchmark data sets
demonstrate the effectiveness of our approach.

1 Introduction

In this paper we are concerned with the supervised dimensionality reduction problem,
an enduring issue in data mining and machine learning. Fisher linear discriminant anal-
ysis (LDA) provides a classical example of supervised dimension reduction. LDA es-
timates an effective dimension reduction space defined by linear transformations by
maximizing the ratio of between-class scatter to within-class scatter.

The LDA formulation reduces to the solution of a generalized eigenproblem [6] that
involves the pooled between-class scatter matrix and total scatter matrix of the input
vectors. To solve the generalized eigenproblem, LDA typically requires the pooled scat-
ter matrix to be nonsingular. This can become problematic when the dimensionality is
high, because the scatter matrix is likely to be singular. In applications such as infor-
mation retrieval, face recognition and microarray analysis, for example, we often meet
undersampled problems which are in a “small n but large p” regime; i.e., there are a
small number of samples but a very large number of variables. There are two main vari-
ants of LDA in the literature that aim to deal with this issue: the pseudoinverse method
and the regularization method [7,19].

W. Buntine et al. (Eds.): ECML PKDD 2009, Part II, LNAI 5782, pp. 632–647, 2009.
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Another important family of methods for dealing with singularity is based on a two-
stage process in which two symmetric eigenproblems are solved successively. This ap-
proach was pioneered by Kitter and Young [12]. Recently, Howland et al. [10] used
this approach to introduce the generalized singular value decomposition (GSVD) [14]
into the LDA solution by utilizing special representations of the pooled scatter matrix
and between-class scatter matrix. A similar general approach has been used in the de-
velopment of efficient approximate algorithms for LDA [2,21]. However, the challenge
of developing an efficient general implementation methodology for LDA still remains.

It is well known that LDA is equivalent to a least mean squared error procedure
in the binary classification problem [3]. It is of great interest to obtain a similar rela-
tionship in multi-class problems. A significant literature has emerged to address this
issue [7,16,20]. However, the results obtained by these authors are subject to restrictive
conditions. The problem of finding a general theoretical link between LDA and least
mean squares is still open.

In this paper we address the issues within a regularization framework. We propose
a novel algorithm for solving the regularized LDA (RLDA) problem. Our algorithm is
more efficient than the GSVD-based algorithm [10], especially in the setting of “small
n but large p” problems. More importantly, our algorithm leads us to an equivalence
between RLDA and a ridge estimator for multivariate linear regression [8]. This equiv-
alence is derived in a general setting and it is fully consistent with the established result
in the binary problem [3].

Our algorithm is also appropriate for the pseudoinverse variant of LDA. Indeed,
we establish an equivalence between the pseudoinverse variant and an ordinary least
squares (OLS) estimation problem. Thus, we believe that we completely solve the open
problem concerning the relationship between the multi-class LDA problem and multi-
variate linear estimation problems.

LDA relies on the assumption of linearity of the data manifold. In recent years, kernel
methods [18] have aimed at removing such linearity assumptions. The kernel technol-
ogy can circumvent the linearity assumption of LDA, because it works by nonlinearly
mapping vectors in the input space to a higher-dimensional feature space and then im-
plementing traditional versions of LDA in the feature space. Many different approaches
have been proposed to extend LDA to kernel spaces in the existing literature [1,13,17].

The KDA method in [13] was developed for binary problems only, and it was solved
by using the relationship between KDA and the least mean squared error procedure. A
more general method, known as generalized discriminant analysis (GDA) [1], requires
that the kernel matrix be nonsingular. Unfortunately, centering in the feature space will
violate this requirement. Park and Park [15] argued that this might break down the theo-
retical justification for GDA and proposed their GSVD method to avoid this requirement
for nonsingularity. The approach to LDA that we present in the current paper also han-
dles the nonsingularity issue and extends naturally to KDA, both in its regularization
and pseudoinverse forms.

The paper is organized as follows. Section 2 reviews LDA and KDA. In Section 3
we propose a new algorithm for LDA as well as KDA. An equivalence between LDA
and multivariate linear regression problems is presented in Section 4. We conduct the
empirical comparisons in Section 5 and conclude in Section 6.
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2 Problem Formulation

We are concerned with a multi-class classification problem. Given a set of n p-
dimensional data points, {x1, . . . ,xn} ∈ X ⊂ R

p, we assume that the xi are to be
grouped into c disjoint classes and that each xi belongs to one and only one class. Let
V = {1, 2, . . . , n} denote the index set of the data points xi and partition V into c
disjoint subsets Vj ; i.e., Vi ∩ Vj = ∅ for i 
= j and ∪c

j=1Vj = V , where the cardinality
of Vj is nj so that

∑c
j=1 nj = n. We also make use of a matrix representation for the

partitions. In particular, we let E = [eij ] be an n×c indicator matrix with eij = 1 if
input xi is in class j and eij = 0 otherwise.

In this section we review LDA and KDA solutions to this multi-class classification
problem. We begin by presenting our notation.

2.1 Notation

Throughout this paper, Im denotes the m×m identity matrix, 1m the m×1 vector of
ones, 0 the zero vector or matrix with appropriate size, and Hm = Im − 1

m1m1′
m the

m×m centering matrix. For an m×1 vector a = (a1, . . . , am)′, diag(a) represents the
m×m diagonal matrix with a1, . . . , am as its diagonal entries. For an m×m matrix
A = [aij ], we let A+ be the Moore-Penrose inverse of A, tr(A) be the trace of A,
rk(A) be the rank of A and ‖A‖F =

√
tr(A′A) be the Frobenius norm of A.

For a matrix A ∈ R
p×q with p ≥ q, we always write the the singular value decom-

position (SVD) of A as A = UΓV′ where U ∈ R
p×q and V ∈ R

q×q are orthogonal,
and Γ = diag(γ1, . . . , γq) is arrayed in descending order of γ1 ≥ γ2 ≥ · · · ≥ γq

(≥ 0). Let the rank of A be r ≤ min{p, q} (denoted rk(A) = r). The thin SVD [6] of
A is then A = UAΓ AV′

A where UA ∈ R
p×r and VA ∈ R

q×r are orthogonal, and
Γ A = diag(γ1, . . . , γr) satisfies γ1 ≥ γ2 ≥ · · · ≥ γr > 0.

Given two matrices Φ and Σ ∈ R
p×p, we refer to (Λ,B) where Λ =

diag(λ1, . . . , λq) and B = [b1, . . . ,bq] as q eigenpairs of the matrix pencil (Φ,Σ)
if ΦB = ΣBΛ, namely,

Φbi = λiΣbi, for i = 1, . . . , q.

The problem of finding eigenpairs of (Φ,Σ) is known as a generalized eigenproblem.

2.2 Linear Discriminant Analysis

Let m = 1
n

∑n
i=1 xi be the sample mean, and mj = 1

nj

∑
i∈Vj

xi to the jth class mean

for j = 1, . . . , c. We then have the pooled scatter matrix St =
∑n

i=1(xi−m)(xi−m)′

and the pooled between-class scatter matrix Sb =
∑c

j=1 nj(mj − m)(mj − m)′.
Conventional LDA solves the generalized eigenproblem as

Sbaj = λjStaj , λ1 ≥ λ2 ≥ · · · ≥ λq > λq+1 = 0 (1)

where q ≤ min{p, c−1} and refers to aj as the jth discriminant direction. Note that
we ignore a multiplier 1/n in these scatter matrices for simplicity.
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Since St = Sb + Sw where Sw is the pooled within-class scatter matrix, LDA is
equivalent to finding a solution to

Sba = λ/(1−λ)Swa.

We see that LDA involves solving the generalized eigenproblem in (1), which can be
expressed in matrix form:

SbA = StAΛ, (2)

where A = [a1, . . . ,aq] and Λ = diag(λ1, . . . , λq). If St is nonsingular, it may be
shown that

S−1
t SbA = AΛ.

Thus, (λj ,aj) is eigenpair of S−1
t Sb and the eigenvectors corresponding to the largest

eigenvalues of S−1
t Sb are used for the discriminant directions. Since rk(Sb) is at most

c− 1, the projection will be onto a space of dimension at most c−1 (i.e., q ≤ c−1).
In applications such as information retrieval, face recognition and microarray anal-

ysis, however, we often meet a “small n but large p” problem. Thus, St is usually ill-
conditioned; that is, it is either singular or close to singular. In this case, S−1

t Sb cannot
be computed accurately.

Let Π = diag(n1, . . . , nc), Π
1
2 = diag(

√
n1, . . . ,

√
nc), π = (n1, . . . , nc)′,√

π = (
√
n1, . . . ,

√
nc)

′ and Hπ = Ic− 1
n

√
π
√

π
′. It follows that 1′

nE = 1′
cΠ = π′,

E1c = 1n, 1′
cπ = n, E′E = Π , Π−1π = 1c, and

M = Π−1E′X, (3)

where X = [x1, . . . ,xn]′ and M = [m1, . . . ,mc]′. In addition, we have

EΠ− 1
2 Hπ = HnEΠ− 1

2 (4)

due to EΠ− 1
2 Hπ = EΠ− 1

2 − 1
n1n

√
π

′
and HnEΠ− 1

2 = EΠ− 1
2 − 1

n1n

√
π

′
.

Using these results and the idempotency of Hn, we reexpress St as

St = X′HnHnX = X′HnX.

We also have

Sb = M′
[
Π− 1

n
ππ′

]
M

= M′
[
Π

1
2− 1

n
π
√

π
′
] [

Π
1
2− 1

n

√
ππ′

]
M

= X′EΠ−1Π
1
2 HπHπΠ

1
2 Π−1E′X

= X′HnEΠ−1E′HnX.

Utilizing the above representations of St and Sb, Howland et al. [10] proved that the
GSVD method can be used to solve the problem in (2).
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There are also two variants of conventional LDA in the literature that aim to han-
dle this problem [19]. The first variant involves replacing S−1

t by S+
t and solving the

following eigenproblem:
S+

t SbA = AΛ. (5)

Note that S+
t exists and is unique [6]. Moreover, S+

t is equal to S−1
t whenever St is

nonsingular. Thus, we will use (5) when St is either nonsingular or singular.
The second variant is referred to as regularized discriminant analysis (RDA) [4]. It

replaces St by St + σ2Ip and solves the following eigenproblem:

(St + σ2Ip)−1SbA = AΛ. (6)

It is a well known result that LDA is equivalent to a least mean squared error proce-
dure in the binary classification problem (c = 2) [3]. Recently, similar relationships
have been studied for multi-class (c > 2) problems [7,16,20]. In particular, Park and
Park [16] proposed an efficient algorithm for LDA via a least mean squared error pro-
cedure in the multi-class problem.

We can see that the solution A for (5) or (6) is not unique. For example, if A is
the solution, then so is AD whenever D is a q×q nonsingular diagonal matrix. Thus,
constraint A′(St + σ2Ip)A = Iq is typically imposed in the literature. In this paper
we concentrate on the solution of (6) with or without this constraint, and investigate the
connection with ridge regression problems in the multi-class setting.

2.3 Kernel Discriminant Analysis

Kernel methods [18] work in a feature space F , which is related to the original input
space X ⊂ R

p by a mapping,
ϕ : X → F .

That is, ϕ is a vector-valued function which gives a vector ϕ(s), called a feature vector,
corresponding to an input s ∈ X . In kernel methods, we are given a reproducing kernel
K : X ×X → R such that K(s, t) = ϕ(s)′ϕ(t) for s, t ∈ X . The mapping ϕ(·) itself
is typically not given explicitly.

In the sequel, we use the tilde notation to denote vectors and matrices in the feature
space. For example, the data vectors and mean vectors in the feature space are denoted
as x̃i and m̃j . Accordingly, X̃ = [x̃1, . . . , x̃n]′ and M̃ = [m̃1, . . . , m̃n]′ are the data
matrix and mean matrix in the feature space.

Fisher kernel discriminant analysis (KDA) seeks to solve the following generalized
eigenproblem:

S̃bÃ = S̃tÃΛ̃, (7)

where S̃t and S̃b are the total scatter matrix and the between-class scatter matrix in F ,
respectively:

S̃t =
n∑

i=1

(x̃i − m̃)(x̃i − m̃)′,

S̃b =
c∑

j=1

nj(m̃j − m̃)(m̃j − m̃)′.
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The KDA problem is to solve (7), doing so by working solely with the kernel matrix
K = X̃X̃′. This is done by noting [13,15] that the eigenvectors ãj are in the space
spanned by x̃1, . . . , x̃n and Ã can be expressed as

Ã =
n∑

i=1

(x̃i − m̃)β′
i = X̃′HnB,

where B = [β1, . . . ,βn] is an n×q coefficient matrix. Hence, (7) is equivalent to

X̃′HnEΠ−1E′HnX̃X̃′HnB = X̃′HnHnX̃X̃′HnBΛ̃.

Pre-multiplying the equation by HnX̃, we have a new generalized eigenvalue problem

CEΠ−1E′CB = CCBΛ̃, (8)

which involves only the kernel matrix K = X̃X̃′. Here C = HnKHn is the centered
kernel matrix. Moreover, given a new input vector x, we can compute the projection z
of its feature vector x̃ onto Ã through

z = Ã′(x̃− m̃) = B′HnX̃
(
x̃− 1

n
X̃′1n

)
= B′Hn

(
kx −

1
n
K1n

)
, (9)

where kx =
(
K(x,x1), . . . ,K(x,xn)

)′
. This shows that the kernel trick can be used

for KDA.
The concern then becomes that of solving the problem (8). Although K can be as-

sumed to be nonsingular, C is positive semidefinite but not positive definite because the
centering matrix Hn is singular. In fact, the rank of C is not larger than n−1 because
the rank of Hn is n−1. In this case, the method devised by [1] cannot be used for the
problem (8). Thus, Park and Park [15] proposed a GSVD-based algorithm to solve prob-
lem (8). Running this algorithm requires the complete orthogonal decomposition [6] of
matrix [CEΠ− 1

2 ,C]′, which is of size (n+c)×n. Thus, this approach is infeasible for
large values of n.

Another treatment is based on the following regularized variant of (8):

CEΠ−1E′CB = (CC + σ2In)BΛ̃. (10)

This RKDA problem can be equivalently expressed as

(S̃t + σ2Id)−1Ã = S̃bÃΛ̃, (11)

where d is the dimension of the feature space. Although d is possibly infinite, we here
assume that it is finite but not necessarily known.

3 RR-SVD Algorithms for RDA

In this section, we propose a novel approach to solving the RLDA problem in (6). We
then extend this approach for the solution of the RKDA problem in (11).
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3.1 The Algorithm for RLDA

We reformulate the eigenproblem in (6) as

GΠ− 1
2 E′HnXA = AΛ, (12)

where

G = (X′HnX + σ2Ip)−1X′HnEΠ− 1
2 (13)

= (X′HnX + σ2Ip)−1M′Π
1
2 Hπ

due to (3) and (4). We also have

G = X′Hn(HnXX′Hn + σ2In)−1EΠ− 1
2 (14)

due to (X′HnX + σ2Ip)−1X′Hn = X′Hn(HnXX′Hn + σ2In)−1. This implies that
if n < p, we may wish to use (14) to reduce the computational cost. More importantly,
we will see that (14) plays a key role in the development of an efficient algorithm for
KDA to be presented shortly.

Let R = Π− 1
2 E′HnXG. Since GΠ− 1

2 E′HnX (p×p) and R (c×c) have the same
nonzero eigenvalues [9], the λj , j = 1, . . . , q, are the nonzero eigenvalues of R. More-
over, if (Λ,V) is the nonzero eigenpair of R, (Λ,GV) is the nonzero eigenpair of
GΠ− 1

2 E′HnX. Note that

R = Π− 1
2 E′HnX(X′HnX + σ2Ip)−1X′HnEΠ− 1

2

= HπΠ
1
2 MG. (15)

This shows that R is positive semidefinite. Thus, its SVD is equivalent to the eigenvalue
decomposition.

We thus develop an algorithm for solving the RLDA problem in (6). This is a two-
stage process, which is presented in Algorithm 1. We will prove that the first stage is
equivalent to the solution to a ridge regression (RR) problem in Section 4. Thus, we
refer to this two-stage process as an RR-SVD algorithm. It is easily obtained that

A′(St + σ2Ip)A = Γ R and A′SbA = Γ 2
R.

This implies that AΓ
− 1

2
R is also a solution of problem (6) such that Γ

− 1
2

R A′(St +

σ2Ip)AΓ
− 1

2
R = Iq .

The first stage calculates G by either (13) or (14). The computational complexity is
O(m3) where m = min(n, p). The second stage makes use of the thin SVD of R and
the computational complexity is O(c3). If both n and p are large, we recommend to
use the incomplete Cholesky decomposition of HnXX′Hn (or X′HnX) and then the
Sherman-Morrison-Woodbury formula [6] for calculating (HnXX′Hn + σ2In)−1 (or
(X′HnX + σ2Ip)−1). Compared with the GSVD-based algorithm [15], the RR-SVD
algorithm is more efficient for a “small n but large p” problem.

When σ2 = 0, we can solve the problem in (5) by simply adjusting the first stage in
the RR-SVD algorithm. In particular, we calculate G by

G = (X′HnX)+M′Π
1
2 Hπ

(or)
= X′Hn(HnXX′Hn)+EΠ− 1

2 . (16)
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Algorithm 1. RR-SVD Algorithm for RLDA problem (6)

1: procedure RLDA(X,E, Π , σ2)
2: Calculate G by (13) or (14) and R by (15);
3: Perform the thin SVD of R as R = VRΓ RV′

R;

4: Return A = GVR or GVRΓ
− 1

2
R as the solution of RLDA problem (6).

5: end procedure

3.2 The Algorithm for RKDA

We now apply Algorithm 1 to the RKDA problem in (11), which is the kernel extension
of RLDA in (6).

It immediately follows from (14) that

G̃ = X̃′Hn(HnX̃X̃′Hn + σ2In)−1EΠ− 1
2

from which, using (15), we can calculate R̃ by

R̃ = Π− 1
2 E′C(C+σ2In)−1EΠ− 1

2 .

Moreover, given a new input vector x, we can compute the projection z of its feature
vector x̃ onto Ã through

z = Ã′(x̃− m̃) = Ṽ′
R̃Π− 1

2 E′(C + σ2In)−1HnX̃
(
x̃− 1

n
X̃′1n

)
= Ṽ′

R̃Π− 1
2 E′(C + σ2In)−1Hn

(
kx −

1
n
K1n

)
. (17)

This shows that we can calculate R̃ and z directly using K and kx. We thus obtain a
RR-SVD algorithm for RKDA, which is given in Algorithm 2. Also, when σ2 = 0, we
can calculate R̃ by

R̃ = Π− 1
2 E′CC+EΠ− 1

2

and exploit the RR-SVD algorithm to solve the following variant of KDA:

S̃+
t S̃bÃ = ÃΛ̃.

We see that the RR-SVD algorithm is more efficient than the GSVD-based algo-
rithm [15] for the RKDA problem in (11). Recall that problem (11) is not equivalent
to that in (10). Moreover, it is not feasible to develop a GSVD-based algorithm for
solving problem (11). However, we also have an RR-SVD algorithm for solving (10),
by replacing C by CC in calculating R̃ and (17) by (9) in calculating z. The result-
ing algorithm may be less computationally efficient, however, because it involves more
matrix computations.

4 Relationships between RFDA and Ridge Regression

It is a well known result that LDA (or KDA) is equivalent to a least mean squared error
procedure in the binary classification problem (c = 2) [3,13]. Recently, relationships
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Algorithm 2. RR-SVD Algorithm for RKDA problem (11)

1: procedure RKDA(K,E,kx, Π , σ2)
2: Calculate R̃ = Π− 1

2 E′C(C+σ2In)−1EΠ− 1
2 ;

3: Perform the thin SVD of R̃ as R̃ = ṼR̃Γ̃ R̃Ṽ′
R̃

;
4: Calculate z by (17);
5: Return z as the q-dimensional representation of x.
6: end procedure

between LDA and a least mean squared error procedure in multi-class (c > 2) problems
were discussed by [7,16,20].

Motivated by this line of work, we investigate a possible equivalency between RLDA
and ridge regression [8]. We then go on to consider a similar relationship between
RKDA and the corresponding ridge regression problem.

Let Y = [y1, . . . ,yn]′ = EΠ− 1
2 Hπ. That is, yi = (yi1, . . . , yic) is defined by

yij =

{
n−nj

n
√

nj
if i ∈ Vj ,

−
√

nj

n otherwise.

Regarding {(xi,yi), i = 1, . . . , n} as the training samples, we fit the following multi-
variate linear function:

f(x) = w0 + W′x

where w0 ∈ R
c and W ∈ R

p×c. We now find ridge estimates of w0 and W. In
particular, we consider the following minimization problem:

min
w0,W

L(w0,W) =
1
2
‖Y−1nw′

0−XW‖2
F +

σ2

2
tr(W′W). (18)

The solution W∗ for (18) is

W∗ = (X′HnX + σ2Ip)−1M′Π
1
2 Hπ. (19)

The derivation is given in Appendix A. It then follows from (13) that W∗ = G. More-
over, when σ2 = 0, W∗ reduces to the ordinary least squares (OLS) estimate of W,
which is the solution of the following minimization problem:

min
w0,W

L(w0,W) =
1
2
‖Y−1nw′

0−XW‖2
F . (20)

In this case, if X′HnX is singular, a standard treatment is to use the Moore-Penrose
inverse (X′HnX)+ in (19). Such a W∗ is identical with G in (16).

Consequently, we have found a relationship between the ridge estimation problem in
(18) and the RLDA problem in (6). This is summarized in the following theorem.

Theorem 1. Let W∗ be the solutions of the ridge estimation problem in (18) (resp. the
OLS estimation problem in (20)) and A be defined in Algorithm 1 for the solution of
the RLDA problem in (6) (resp. the LDA problem in (5)). Then,

A = W∗VR
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where the columns of VR are the eigenvectors of R associated with its q nonzero eigen-
values.

Theorem 1 provides a connection between A and W∗. Recall that the eigenvector ma-
trix VR (c×q) is orthogonal. This leads us to the following main result of this paper.

Theorem 2. Under the conditions in Theorem 1, we have

AA′ = W∗(W∗)′.

Accordingly, we have

(xi − xj)′AA′(xi − xj) = (xi − xj)′W∗(W∗)′(xi − xj)

for any xi and xj ∈ R
p.

The proof of this theorem is given in Appendix A. Theorem 2 shows that when apply-
ing a distance-based classifier such as the K-nearest neighbor (KNN) in the reduced
dimensional space, the classification results obtained by multi-class LDA and multi-
variate linear estimators are the same. Theorem 2 holds in general. Thus we obtain a
complete solution to the open problem concerning the relationship between multi-class
LDA problems and multivariate linear estimators.

Similar results have been obtained by [16,20], but under restrictive conditions. The
key difference between our work and that of [16] revolves around a different definition
for the label scores Y. Ye [20] used the same definition of Y as ours, but they aimed
to establish a connection of the solution W∗ with a matrix A defined differently from
ours.

5 Experimental Study

To evaluate the performance of the proposed algorithm for LDA and KDA, we con-
ducted experimental comparisons with other related algorithms for LDA and KDA on
several real-world data sets. In particular, the comparison was implemented on four
face datasets1, two gene datasets, the USPS dataset, the “letters” dataset and the We-
bKB dataset. Table 1 summarizes the benchmark datasets we used. All algorithms were
implemented in Matlab on a PC configured with an Intel Dual Core 2.53GHz CPU and
2.06GB of memory. Matlab code to implement the algorithms can be obtained from the
first author.

In our experiments, each dataset was randomly partitioned into disjoint training and
test data sets, according to the percentage n/k listed in the last column of Table 1. Ten
random partitions were obtained for each data set, and several evaluation criteria were
reported, including average classification accuracy rate, standard deviation and average
computational time.

1 The YaleB(+E) dataset was collected from the YaleB database and its extension.
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Table 1. Summary of the benchmark datasets: c−the number of classes; p−the dimension of the
input vector; k−the size of the dataset; n−the number of the training data

Data set c p k n/k

ORL 40 1024 400 40%
Yale 15 1024 165 50%
YaleB(+E) 38 1024 2414 30%
PIE 68 1024 6800 20%
11 Tumors 11 12533 174 31%
14 Tumors 25 15009 305 41%
USPS 10 256 2007 10%
Letters 3 17 2341 5%
WebKB 4 300 4192 10%

In the linear setting, we compared our method to the LDA/GSVD method [11]
and the LDA/MSE method [16]. In the kernel setting, we compared our method to
the KDA/GSVD method [15] and the KDA/MSE, i.e., the kernel-based extensions
of the two linear methods in above. All of the hyperparameters (such as σ2) were
selected by cross-validation [5]. In the kernel setting, the RBF kernel K(xi,xj) =
exp(−‖xi−xj‖2/θ2) was employed, and θ was set to the mean Euclidean distance be-
tween training data points. After having obtained the q-dimensional representations zi

of the xi from each dimensionality reduction method, we used a simple nearest neigh-
bor classifier to evaluate the classification accuracy.

Figure 1 presents comparative classification results on the four face datasets. We im-

plemented our Algorithm 1 with both A and AΓ
− 1

2
R . We found that the result with A

was slightly better than that with AΓ
− 1

2
R . Moreover, a similar result was found for ker-

nel leaning. The results reported here were based on the setting with A. From Figure 1,
it is clear that in the linear and kernel settings, our method has better classification ac-
curacy than that of the LDA/GSVD and LDA/MSE methods over a range of choices of
number of discriminant covariates. Moreover, an appealing characteristic of our method
is its effectiveness when q (i.e., the number of discriminant covariates) is small.

We also compared the computational time of the different methods in the linear and
kernel settings on the four face datasets. Figure 2 shows the comparisons with respect to
the training percentage n/k on the four face datasets. We can also see that our method
has an overall low computational time in comparison with the other methods on the
four face datasets. As the training percentage n/k increases, our method yields more
efficient performance.

Finally, Tables 2 and 3 summarize the different evaluation criteria on all the data
sets. As these results show, our method yields accurate and computationally efficient
performance in both the linear and kernel settings. Additionally, it should be mentioned
here that the data sets in our experiments range over small sample and large sample
problems.
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Fig. 1. Comparison of the three different methods on the four face datasets, where (a)∼(d)
denote the results in the linear setting and (e)∼(h) denote the results in the kernel setting:
(a) ORL−linear; (b) Yale−linear; (c) YaleB(+E)−linear; (d) PIE−linear; (e) ORL−kernel; (f)
Yale−kernel; (g) YaleB(+E)−kernel; (h) PIE−kernel. Here “No. of features” is equal to q.
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Fig. 2. Comparison of the computational times for the three different methods as the training
percentage k/n increases on the four face datasets, where (a)∼(d) denote the results in the linear
setting and (e)∼(h) denote the results in the kernel setting: (a) ORL−linear; (b) Yale−linear; (c)
YaleB(+E)−linear; (d) PIE−linear; (e) ORL−kernel; (f) Yale−kernel; (g) YaleB(+E)−kernel;
(h) PIE−kernel.
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Table 2. Experimental results of the three methods on different datasets in the linear setting:
acc− the best classification accuracy percentage; std− the corresponding standard deviation; q−
the corresponding number of discriminant covariates; time− the corresponding computational
time (s)

LDA/GSVD LDA/MSE Ours
Dataset acc (±std) q time acc (±std) q time acc (±std) q time

ORL 91.54 (±1.98) 39 2.059 91.58 (±2.00) 39 0.316 93.13 (±2.00) 39 0.077
Yale 78.56 (±2.29) 14 1.370 78.44 (±2.47) 14 0.084 79.56 (±3.75) 14 0.025
YaleB(+E) 59.54 (±11.8) 37 43.62 65.19 (±8.36) 34 10.17 90.20 (±1.09) 31 1.422
PIE 77.00 (±0.81) 67 88.51 77.01 (±0.81) 67 23.01 90.91 (±0.55) 45 2.681
11 Tumors 92.35 (±1.51) 10 0.652 90.25 (±2.10) 10 0.877 92.44 (±1.43) 10 0.495
14 Tumors 66.33 (±1.82) 24 2.808 64.94 (±1.69) 24 4.499 66.39 (±1.91) 24 2.035
USPS 52.23 (±3.02) 9 0.979 52.24 (±3.02) 9 0.579 86.84 (±1.31) 9 0.114
Letters 89.16 (±0.81) 2 0.129 89.16 (±0.81) 2 0.021 89.27 (±0.86) 2 0.102
WebKB 65.92 (±1.77) 3 2.348 65.92 (±1.77) 3 1.635 81.76 (±0.87) 3 0.225

Table 3. Experimental results of the three methods on different datasets in the kernel setting:
acc− the best classification accuracy percentage; std− the corresponding standard deviation; q−
the corresponding number of discriminant covariates; time− the corresponding computational
time (s)

KDA/GSVD KDA/MSE Ours
Dataset acc (±std) q time acc (±std) q time acc (±std) q time

ORL 93.75 (±1.95) 39 0.339 93.75 (±1.89) 39 0.198 93.75 (±1.73) 39 0.031
Yale 76.33 (±2.67) 14 0.025 76.44 (±2.67) 14 0.023 77.78 (±2.87) 14 0.007
YaleB(+E) 44.74 (±24.6) 17 7.751 48.95 (±25.4) 35 5.477 89.80 (±1.02) 27 0.844
PIE 91.04 (±0.49) 67 46.84 91.04 (±0.49) 67 36.44 91.77 (±0.43) 26 8.811
11 Tumors 88.74 (±2.94) 10 0.031 89.16 (±2.36) 10 0.022 89.58 (±2.10) 10 0.011
14 Tumors 59.56 (±2.76) 24 0.170 60.56 (±2.73) 10 0.108 66.33 (±1.51) 24 0.035
USPS 85.13 (±3.57) 9 0.697 85.15 (±3.57) 9 0.493 89.22 (±1.42) 9 0.082
Letters 95.25 (±0.99) 2 0.120 95.24 (±0.99) 2 0.071 99.36 (±1.20) 2 0.024
WebKB 74.79 (±2.78) 3 4.285 74.79 (±2.77) 3 3.255 83.35 (±1.31) 3 0.499

6 Conclusion

In this paper we have provided an appealing solution to an open problem concerning
the relationship between multi-class LDA problems and multivariate linear estimators,
both in the linear setting and the kernel setting. Our theory has yielded efficient and ef-
fective algorithms for LDA and KDA within both the regularization and pseudoinverse
frameworks. The favorable performance of our algorithms has been demonstrated em-
pirically on a collection of benchmark data sets. In future work we plan to extend our
algorithms to a broader class of generalized eigenproblems.
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A Proof of Theorem 1

Proof. The first-order derivatives of L(w0,W) with respect to w0 and W are given by

∂L

∂w0
= nw0 + W′X′1n −Y′1n,

∂L

∂W
= (X′X + σ2Ip)W + X′1nw′

0 −X′Y.

Letting ∂L
∂w0

= 0, ∂L
∂W = 0 and x̄ = 1

n

∑n
i=1 xi = 1

nX′1n, we obtain{
w0 + W′x̄ = 0
nx̄w′

0 + (X′X + σ2Ip)W = M′Π
1
2 Hπ

due to Y′1n = 0 and X′Y = M′Π
1
2 Hπ. Further, it follows that w0 = −Wx̄, and

hence,
(X′HnX + σ2Ip)W = M′Π

1
2 Hπ

because X′X−nx̄x̄′ = X′HnX. We thus obtain W∗ in (19). It then follows from (13)
that W∗ = G. Moreover, when σ2 = 0, W∗ reduces to the solution of the minimization
problem in (20). In this case, if X′HnX is singular, a standard treatment is to use the
Moore-Penrose inverse (X′HnX)+ in (19). Such a W∗ is identical with G in (16).

Consequently, we have the relationship between the ridge estimation problem in (18)
and the RLDA problem in (6). This is summarized in Theorem 1.

B Proof of Theorem 2

Proof. Since VR is an c×q orthogonal matrix, there exists an c×(c−q) orthogonal
matrix V2 such that V = [VR,V2] is an c×c orthogonal matrix. Noting that R =
VRΓ RV′

R, we have RV2 = 0 and V′
2RV2 = 0. Let Q = M′Π

1
2 HπV2. Then we

obtain Q′(X′HnX+σ2Ip)−1Q = 0. This implies Q = 0 because (X′HnX+σ2Ip)−1

is positive definite. Hence, W∗V2 = (X′HnX+ σ2Ip)−1Q = 0. As a result, we have

W∗(W∗)′ = W∗VV′(W∗)′

= W∗VRV′
R(W∗)′ + W∗V2V′

2(W
∗)′

= AA′.

Note that if σ2 = 0 and X′HnX is nonsingular, we still have W∗(W∗)′ = AA′. In
the case that X′HnX is singular, we have Q′(X′HnX)+Q = 0. Since (X′HnX)+

is positive semidefinite, its square root matrix (denoted F) exists. It thus follows
from Q′(X′HnX)+Q = QFFQ′ = 0 that FQ′ = 0. This shows that W∗V2 =
(X′HnX)+Q = 0. Thus, we also obtain W∗(W∗)′ = AA′. The proof is complete.
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Abstract. Debt detection is important for improving payment accu-
racy in social security. Since debt detection from customer transactional
data can be generally modelled as a fraud detection problem, a straight-
forward solution is to extract features from transaction sequences and
build a sequence classifier for debts. The existing sequence classification
methods based on sequential patterns consider only positive patterns.
However, according to our experience in a large social security applica-
tion, negative patterns are very useful in accurate debt detection. In this
paper, we present a successful case study of debt detection in a large
social security application. The central technique is building sequence
classification using both positive and negative sequential patterns.

Keywords: sequence classification, negative sequential patterns.

1 Introduction and Application Background

Centrelink Australia (http://www.centrelink.gov.au) is a Commonwealth
Government agency delivering a wide range of services to the Australian com-
munity. It is one of the largest data intensive applications in Australia. For
example, in financial year 2004-2005 (from 1 July 2004 to 30 June 2005), Cen-
trelink distributes approximately 63 billion dollars in social security payments
to 6.4 million customers, makes 9.98 million individual entitlement payments,
and records 5.2 billion electronic customer transactions [5].

Qualification for payment of an entitlement is assessed against a customer’s
personal circumstance. If all criteria are met, the payment to a customer contin-
ues until a change of the customer’s circumstance precludes the customer from
obtaining further benefit. However, for various reasons, customers on benefit
payments or allowances sometimes get overpaid. The overpayments collectively
lead to a large amount of debt owed to Centrelink. For instance, in financial year

W. Buntine et al. (Eds.): ECML PKDD 2009, Part II, LNAI 5782, pp. 648–663, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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2004-2005, Centrelink raised over $900 million worth of customer debts (exclud-
ing Child Care Benefits and Family Tax Benefits) [5]. To achieve high payment
accuracy, detection of debts is one of the most important tasks in Centrelink.
Centrelink uses a number of processes to determine customers at risk of incur-
ring a debt, however, the processes used only find a certain types of debts, for
example, earnings-related debts. Another problem is that processes are applied
to all customers, so a lot of time and efforts are spent on customers who are
subsequently identified as being non-debtors. In this paper, we discuss our case
study of debt detection in Centrelink using data mining techniques.

Debt detection can be generally modelled as a fraud detection problem. There-
fore, we can adopt a classification approach. All transactions about a customer
form a transaction sequence. If no debt happens to a customer, the sequence is
labelled as normal (i.e., no-debt). If a debt happens to a customer, the corre-
sponding customer sequence is labelled as debt. We can collect a training set
containing both no-debt and debt sequences and learn a sequence classifier. The
classifier can then be applied to new customer sequences to detect possible debts.

A classifier needs to extract features for classification. Since sequences are the
data objects in debt detection, it is natural to use sequential patterns, i.e., sub-
sequences that are frequent in customer sequences, as features. The traditional
techniques for sequential pattern based classifiers consider only positive patterns,
which capture a set of positively correlated events. Moreover, to detect debt at
an early stage and prevent debt occurrence, a classification model is needed
to predict the likelihood of debt occurrence based on the transactional activity
data. Nevertheless, to the best of our knowledge, there are no techniques for
building classifiers based on negative sequential patterns like A→ ¬B, ¬A→ B
and ¬A→ ¬B, where A and B and sequential patterns.

To tackle the above problems, based on our previous work on negative sequen-
tial patterns [27,28], we designed a new technique, sequence classification using
both positive and negative patterns, to build sequence classifiers with relation-
ship between activity sequences and debt occurrences. The contributions of this
paper are:

– A new technique of sequence classification using both positive and negative
sequential patterns ; and

– An application in social security, demonstrating: 1) the effectiveness of our
previous technique on negative sequential pattern mining to find both pos-
itive and negative sequential patterns; and 2) the effectiveness of our new
technique on sequence classification using both positive and negative sequen-
tial patterns.

The rest of this paper is organized as follows. Our proposed technique of sequence
classifiers using both positive and negative sequential patterns is described in
Section 2. An application of the above technique in social security is presented
in Section 3. Section 4 presents the related work on negative sequential pattern
mining, sequence classification and existing systems and applications for fraud
detection. Section 5 concludes this paper.
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2 Sequence Classification Using Both Positive and
Negative Sequential Patterns

From the data mining perspective, sequence classification is to build classifiers
using sequential patterns. To the best of our knowledge, all of the existing se-
quence classification algorithms use positive sequential patterns only. However,
the sequential patterns negatively correlated to debt occurrence are very im-
portant in debt detection. In this section, we first introduce negative sequential
patterns and then propose a novel technique for sequence classification using
both negative and positive sequential patterns.

2.1 Negative Sequential Patterns

Traditional sequential pattern mining deals with positive correlation between se-
quential patterns only, without considering negative relationship between them.
To find negative relationship in sequences, we previously designed a notion of
negative sequential rules [27,28] as follows.

Definition 1. A negative sequential rule (NSR) is in the form of A → ¬B,
¬A→ B or ¬A→ ¬B, where A and B are sequential patterns.

Based on the above definition, there are four types of sequential rules, including
the tradition positive sequential rules (see Type I).

– Type I: A→ B, which means that pattern A is followed by pattern B;
– Type II: A → ¬B, which means that pattern A is not followed by pattern
B;

– Type III: ¬A → B, which means that if pattern A does not appear, then
pattern B will occur; and

– Type IV: ¬A → ¬B, which means that if pattern A does not appear, then
pattern B will not occur.

For types III and IV whose left sides are the negation of a sequence, there is no
time order between the left side and the right side. Note that A and B themselves
are sequential patterns, which make them different from negative association
rules. The supports, confidences and lifts of the above four types of sequential

Table 1. Supports, Confidences and Lifts of Four Types of Sequential Rules

Rules Support Confidence Lift

I A→ B P (AB)
P (AB)
P (A)

P (AB)
P (A)P (B)

II A→ ¬B P (A)−P (AB)
P (A)−P (AB)

P (A)
P (A)−P (AB)

P (A)(1−P (B))

III ¬A→ B P (B)−P (A&B)
P (B)−P (A&B)

1−P (A)
P (B)−P (A&B)
P (B)(1−P (A))

IV ¬A→ ¬B 1−P (A)−P (B)+P (A&B)
1−P (A)−P (B)+P (A&B)

1−P (A)
1−P (A)−P (B)+P (A&B)

(1−P (A))(1−P (B))
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rules are shown in Table 1. In the table, P (A&B) denotes the probability of
the concurrence of A and B in a sequence, no matter which one occurs first, or
whether they are interwoven with each other.

2.2 Sequence Classification

Let S be a sequence dataset and T be a finite set of class labels. A sequence
classifier is a function

F : S → T . (1)

In sequence classification, a classifier F is built with frequent classifiable sequen-
tial patterns P .

Definition 2. A Classifiable Sequential Pattern (CSP) is in the form of pa → τ ,
where τ is a class ID and pa is a frequent pattern in the sequence dataset S.

The support of a sequential pattern pa is the proportion of sequences contain-
ing pa, and a sequential pattern is frequent in a dataset if its support in the
dataset exceeds a user-specified minimum support threshold. Based on the mined
sequential patterns, a sequence classifier can be formulized as

F : S P−→ T , (2)

where P is a set of classifiable sequential patterns. That is, for each sequence
s ∈ S, F predicts the target class label of s based on the sequence classifier built
using the classifiable sequential pattern set P . A sequence instance s is said to
be covered by a classifiable sequential pattern p (p ∈ P) if s contains pa, the
antecedent of p.

2.3 Discriminative Sequential Patterns

Given a sequence dataset S and a set of target classes T , a number of frequent
classifiable sequential patterns need to be discovered for building a sequence
classifier. The conventional algorithms use only positive sequential patterns to
build classifiers. However, negative sequential patterns can also contribute to
classification. To achieve better classification results, we use both negative and
positive sequential patterns to build classifiers. Furthermore, instead of using
the complete set of frequent patterns, we select a small set of discriminative
classifiable sequential patterns according to Class Correlation Ratio (CCR) [22].

CCR measures how much a sequential pattern pa is correlated with the target
class τ compared to the negative class ¬τ . Based on the contingency table (see
Table 2), CCR is defined as

CCR(pa → τ) =
ˆcorr(pa → τ)

ˆcorr(pa → ¬τ) =
a · (c+ d)
c · (a+ b)

, (3)
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Table 2. Feature-Class Contingency Table

pa ¬pa

∑
τ a b a + b

¬τ c d c + d∑
a + c b + d n = a + b + c + d

where ˆcorr(pa → τ) is the correlation between pa and the target class τ , defined
as

ˆcorr(pa → τ) =
sup(pa ∪ τ)

sup(pa) · sup(τ)
=

a · n
(a+ c) · (a+ b)

. (4)

CCR falls in [0,+∞). CCR = 1 means that the antecedent is independent of
the target class. CCR < 1 indicates that the antecedent is negatively correlated
with the target class, while CCR > 1 suggests a positive correlation between
them.

In order to use the mined classifiable sequential patterns to build a classi-
fier, we need to rank the patterns according to their capability to make correct
classification. The ranking is based on a weighted score

Ws =

⎧⎨⎩
CCR, if CCR ≥ 1

1
CCR , if 0 < CCR < 1
M, if CCR = 0

, (5)

where M is the maximum Ws of all rules where CCR 
= 0.

2.4 Building Sequence Classifiers

Our algorithm for building a sequence classifier with both positive and negative
sequential patterns is composed of five steps.

1) Finding negative and positive sequential patterns using a negative sequential
pattern mining algorithm, such as our previous techniques [27,28].

2) Calculating the frequency, chi-square and CCR of every classifiable sequen-
tial pattern, and only those patterns meeting support, significance (measured
by chi-square) and CCR criteria are extracted into the classifiable sequential
pattern set P .

3) Pruning patterns in the obtained classifiable sequential pattern set with the
pattern pruning algorithm in [13]. The only difference is that, in our algo-
rithm, CCR, instead of confidence, is used as the measure for pruning.

4) Conducting serial coverage test by following the ideas in [15,13]. The patterns
which can correctly cover one or more training samples in the test are kept
for building a sequence classifier.

5) Ranking selected patterns with Ws and building the classifier as follows.
Given a sequence instance s, all the classifiable sequential patterns covering
s are extracted. The sum of the weighted score corresponding to each target
class is computed and then s is assigned with the class label corresponding
to the largest sum.
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Table 3. Examples of Activity Transaction Data

Person ID Activity Code Activity Date Activity Time
******002 DOC 20/08/2007 14:24:13
******002 RPT 20/08/2007 14:33:55
******002 DOC 05/09/2007 10:13:47
******002 ADD 06/09/2007 13:57:44
******002 RPR 12/09/2007 13:08:27
******002 ADV 17/09/2007 10:10:28
******002 REA 09/10/2007 07:38:48
******002 DOC 11/10/2007 08:34:36
******002 RCV 11/10/2007 09:44:39
******002 FRV 11/10/2007 10:18:46
******002 AAI 07/02/2008 15:11:54

3 A Case Study

Our technique was applied in social security to study the relationship between
transactional activity patterns and debt occurrences and build sequence classi-
fiers for debt detection.

3.1 Data

The data we used is the debt and activity transactions of 10,069 Centrelink
customers from July 2007 to February 2008. In Centrelink, every single contact
(e.g., because of a circumstance change) of a customer may trigger a sequence of
activities running. As a result, large volumes of activity based transactions are
recorded in an activity transactional database. In the original activity transac-
tional table, each activity has 35 attributes, and we selected four of them which
are related to this study. These attributes are “Person ID”, “Activity Code”,
“Activity Date” and “Activity Time”, as shown in Table 3. We sorted the activ-
ity data according to “Activity Date” and “Activity Time” to construct activity
sequences. The debt data consists of “Person ID” and “Debt Transaction Date”.

There are 155 different activity codes in the sequences. Different from super-
market basket analysis, every transaction in the application is composed of one
activity only. The activities in four months before a debt were believed by do-
main experts to be related to the debt occurrence. If there were no debts for a
customer during the period from July 2007 to February 2008, the activities in
the first four months were taken as a sequence associated with no debts. After
data cleaning and preprocessing, there are 15,931 sequences constructed with
849,831 activity records in this case study.
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Table 4. Selected Positive and Negative Sequential Rules

Type Rule Support Confidence Lift
REA ADV ADV→DEB 0.103 0.53 2.02

DOC DOC REA REA ANO→DEB 0.101 0.33 1.28
RPR ANO→DEB 0.111 0.33 1.25

I RPR STM STM RPR→DEB 0.137 0.32 1.22
MCV→DEB 0.104 0.31 1.19
ANO→DEB 0.139 0.31 1.19

STM PYI→DEB 0.106 0.30 1.16
STM PYR RPR REA RPT→ ¬DEB 0.166 0.86 1.16

MND→ ¬DEB 0.116 0.85 1.15
STM PYR RPR DOC RPT→ ¬DEB 0.120 0.84 1.14

II STM PYR RPR REA PLN→ ¬DEB 0.132 0.84 1.14
REA PYR RPR RPT→ ¬DEB 0.176 0.84 1.14
REA DOC REA CPI→ ¬DEB 0.083 0.83 1.12

REA CRT DLY→ ¬DEB 0.091 0.83 1.12
REA CPI→ ¬DEB 0.109 0.83 1.12

¬{PYR RPR REA STM}→DEB 0.169 0.33 1.26
¬{PYR CCO}→DEB 0.165 0.32 1.24

¬{STM RPR REA RPT}→DEB 0.184 0.29 1.13
III ¬{RPT RPR REA RPT}→DEB 0.213 0.29 1.12

¬{CCO RPT}→DEB 0.171 0.29 1.11
¬{CCO PLN}→DEB 0.187 0.28 1.09
¬{PLN RPT}→DEB 0.212 0.28 1.08

¬{ADV REA ADV}→ ¬DEB 0.648 0.80 1.08
¬{STM EAN}→ ¬DEB 0.651 0.79 1.07

IV ¬{REA EAN}→ ¬DEB 0.650 0.79 1.07
¬{DOC FRV}→ ¬DEB 0.677 0.78 1.06

¬{DOC DOC STM EAN}→ ¬DEB 0.673 0.78 1.06
¬{CCO EAN}→ ¬DEB 0.681 0.78 1.05

3.2 Results of Negative Sequential Pattern Mining

Our previous technique on negative sequential rules [28] was used to find both
positive and negative sequential patterns from the above data. By setting the
minimum support to 0.05, that is, 797 out of 15,931 sequences, 2,173,691 patterns
were generated and the longest pattern has 16 activities. From the patterns,
3,233,871 positive and negative rules were derived. Some selected sequential rules
are given in Table 4, where “DEB” stands for debt and the other codes are
activities. The rules marked by “Type I” are positive sequential rules, while
others are negative ones.

3.3 Evaluation of Sequence Classification

The performance of the classifiers using both positive and negative sequential
patterns were tested and compared with the classifiers using positive patterns
only.

In the discovered rules shown in Table 4, generally speaking, Type I rules are
positive patterns and all the other three types are negative ones. However, in
the binary classification problem in our case study, A → ¬DEB can be taken
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as a positive rule A → c2, where c2 denotes “no debt”. Therefore, we treated
Type I and Type II patterns as positive and Type III and Type IV as negative.
That is, in the results shown in Tables 6–9, the traditional classifiers (labelled as
“Positive”) were built using both Type I and II rules, while our new classifiers
(labelled as “Neg& Pos”) were built using all four types of rules. However, in
applications where there are multiple classes, Type II rules are negative.

By setting the minimum support to 0.05 and 0.1, respectively, we got two
sets of sequential patterns, “PS05” and “PS10”. The numbers of the four types
of patterns are shown in Table 5. There are 775, 175 patterns in “PS10” and
3, 233, 871 patterns in “PS05”. It is prohibitively time consuming to do coverage
test and build classifiers on so large sets of patterns. In this experiment, we
ranked the patterns according to Ws. Then, we extracted the top 4, 000 and
8, 000 patterns from “PS05” and “PS10” and referred to them as “PS05-4K”,
“PS05-8K”, “PS10-4K” and “PS10-8K”, respectively.

After that, two groups of classifiers were built. The first group, labelled as
“Neg& Pos”, were built with both negative and positive patterns (i.e., all four
types of rules), and the other group, labelled as “Positive”, were built with posi-
tive patterns (i.e., Type I and II rules) only. In order to compare the two groups
of classifiers, we selected various numbers of patterns from the ones passing cov-
erage test to build the final classifiers and the results are shown in Tables 6–9. In
the four tables, the first rows show the number of patterns used in the classifiers.
In Tables 8 and 9, some results are not available for pattern number as 200 and
300, because there are less than 200 (or 300) patterns remaining after coverage
test.

From the four tables, we can see that, if built with the same number of rules,
in terms of recall, our classifiers built with both positive and negatives rules
outperforms traditional classifiers with only positive rules under most conditions.
It means that, with negative rules involved, our classifiers can predict more debt
occurrences.

As shown by the results on “PS05-4K” in Table 6, our classifiers is superior to
traditional classifiers with 80, 100 and 150 rules in recall, accuracy and precision.

From the results on “PS05-8K” shown in Table 7, we can see that our classifiers
with both positive and negatives rules outperforms traditional classifiers with
only positive rules in accuracy, recall and precision in most of our experiments.
Again, it also shows that the recall is much improved when negative rules are
involved.

As shown by Tables 8 and 9, our classifiers have higher recall with 80, 100
and 150 rules. Moreover, our best classifier is the one with 60 rules, which has
accuracy=0.760, specificity=0.907 and precision=0.514. It is better in all the
three measures than all traditional classifiers given in the two tables.

One interesting thing we found is that, the number of negative patterns used
for building our classifiers is very small, compared with that of positive pat-
terns (see Table 10). Especially for “PS05-4K” and “PS05-8K”, the two pattern
sets chosen from the mined patterns with minimum support=0.05, there are re-
spectively only 4 and 7 negative patterns used in the classifiers. However, these
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Table 5. The Number of Patterns in PS10 and PS05

PS10 (min sup = 0.1 ) PS05 (min sup = 0.05)
Number Percent(%) Number Percent(%)

Type I 93,382 12.05 127,174 3.93
Type II 45,821 5.91 942,498 29.14
Type III 79,481 10.25 1,317,588 40.74
Type IV 556,491 71.79 846,611 26.18
Total 775,175 100 3,233,871 100

Table 6. Classification Results with Pattern Set PS05-4K

Pattern Number 40 60 80 100 150 200 300

Neg&Pos

Recall .438 .416 .286 .281 .422 .492 .659
Precision .340 .352 .505 .520 .503 .474 .433
Accuracy .655 .670 .757 .761 .757 .742 .705
Specificity .726 .752 .909 .916 .865 .823 .720

Positive

Recall .130 .124 .141 .135 .151 .400 .605
Precision .533 .523 .546 .472 .491 .490 .483
Accuracy .760 .758 .749 .752 .754 .752 .745
Specificity .963 .963 .946 .951 .949 .865 .790

several negative patterns do make a difference when building classifiers. Three
examples of them are given as follows.

– ¬ADV → ¬DEB (CCR=1.99, conf=0.85)
– ¬(STM,REA,DOC) → ¬DEB (CCR=1.86, conf=0.84)
– ¬(RPR,DOC) → ¬DEB (CCR=1.71, conf=0.83)

Some examples of other rules used in our classifiers are

– STM,RPR,REA,EAD→ DEB (CCR=18.1)
– REA,CCO,EAD → DEB (CCR=17.8)
– CCO,MND → ¬DEB (CCR=2.38)

4 Related Work

Our study is related to the previous work on negative sequential pattern mining,
sequence classification and fraud/intrusion detection. In this section, we review
the related work briefly.
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Table 7. Classification Results with Pattern Set PS05-8K

Pattern Number 40 60 80 100 150 200 300

Neg&Pos

Recall .168 .162 .205 .162 .173 .341 .557

Precision .620 .652 .603 .625 .615 .568 .512
Accuracy .771 .774 .773 .771 .771 .775 .762

Specificity .967 .972 .956 .969 .965 .916 .829

Positive

Recall .141 .103 .092 .092 .108 .130 .314
Precision .542 .576 .548 .548 .488 .480 .513
Accuracy .761 .762 .760 .760 .754 .753 .760
Specificity .962 .976 .976 .976 .963 .955 .904

Table 8. Classification Results with Pattern Set PS10-4K

Pattern Number 40 60 80 100 150

Neg&Pos

Recall 0 .303 .465 .535 .584

Precision 0 .514 .360 .352 .362
Accuracy .756 .760 .667 .646 .647
Specificity 1 .907 .733 .682 .668

Positive

Recall .373 .319 .254 .216 .319
Precision .451 .421 .435 .430 .492
Accuracy .736 .727 .737 .738 .753
Specificity .853 .858 .893 .907 .893

Table 9. Classification Results with Pattern Set PS10-8K

Pattern Number 40 60 80 100 150 200

Neg&Pos

Recall 0 .303 .465 .535 .584 N/A
Precision 0 .514 .360 .352 .362 N/A
Accuracy .756 .760 .667 .646 .647 N/A
Specificity 1 .907 .733 .682 .668 N/A

Positive

Recall .459 .427 .400 .378 .281 .373
Precision .385 .397 .430 .438 .464 .500
Accuracy .688 .701 .724 .729 .745 .756
Specificity .762 .790 .829 .843 .895 .879

Table 10. The Number of Patterns in the Four Pattern Sets

Pattern Set PS10-4K PS10-8K PS05-4K PS05-8K
Type I 2,621 5,430 1,539 1,573
Type II 648 1,096 2,457 6,420
Type III 2 5 0 0
Type IV 729 1,469 4 7
Total 4,000 8,000 4,000 8,000



658 Y. Zhao et al.

4.1 Negative Sequential Pattern Mining

Since sequential pattern mining was first proposed in [1], a few sequential meth-
ods have been developed, such as GSP (Generalized Sequential Patterns) [19],
FreeSpan [8], PrefixSpan [17], SPADE [26] and SPAM [2]. Most of the sequential
pattern mining algorithms focus on the patterns appearing in the sequences,
i.e., the positively correlated patterns. However, the absence of some items in se-
quences may also be interesting in some scenarios. For example, in social welfare,
the lack of follow-up examination after the address change of a customer may re-
sult in overpayment to him/her. Such kind of sequences with the non-occurrence
of elements are negative sequential patterns. Only several studies look at this
issue.

Sun et al. [20] proposed negative event-oriented patterns in the form of¬P T→ e,
where e is a target event,P is a negative event-orientedpattern, and the occurrence
of P is unexpectedly rare in T -sized intervals before target events. P is supposed
to be an “existence pattern” (i.e., a frequent itemset without time order), instead
of a sequential pattern, though it is claimed that the discussion can be extended
to sequential patterns.

Bannai et al. [3] proposed a method for finding the optimal pairs of string
patterns to discriminate between two sets of strings. The pairs are in the form
of p′ ∧ q′ or p′ ∨ q′, where p′ is either p or ¬p, q′ is either q or ¬q, and p and q
are two substrings. Their concern is whether p and q appear in a string s.

Ouyang and Huang [16] proposed the notion of negative sequences as (A,¬B),
(¬A,B) and (¬A,¬B). Negative sequential patterns are derived from infrequent
sequences. A drawback is that both frequent and infrequent sequences have to
be found at the first stage, which demands a large amount of space.

Lin et al. [14] designed an algorithm NSPM (Negative Sequential Patterns
Mining) for mining negative sequential patterns. In their negative patterns, only
the last element can be negative, and all other elements are positive.

4.2 Sequence Classification

Classification on sequence data is an important problem. A few methods have
been developed.

Wu et al. [23] proposed a neural network classification method for molecular
sequence classification. The molecular sequences are encoded into input vectors
of a neural network classifier, by either an n-gram hashing method or a SVD
(Singular Value Decomposition) method.

Chuzhanova et al. [6] proposed to use Gamma (or near-neighbour) test to
select features from l-grams over the alphabet. The method was used to clas-
sify the large subunits rRNA, and the nearest-neighbour criterion was used to
estimate the classification accuracy based on the selected features.

Lesh et al. [11] used sequential patterns as features in classification. Sequence
mining is first employed to find sequential patterns correlated with the target
classes, and then the discovered patterns are used as features to build classifiers
with standard classification algorithms, such as Näıve Bayes. Their experimental
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results show that using sequential patterns as features can improve the accuracy
substantially. Compared to our work, they did not consider negative sequential
patterns.

Tseng and Lee [21] designed algorithm CBS (Classify-By-Sequence) for clas-
sifying large sequence data sets. Sequential pattern mining and probabilistic in-
duction are integrated for efficient extraction of sequential patterns and accurate
classification.

Li and Sleep [12] proposed a robust approach to sequence classification, where
n-grams of various lengths are used to measure the similarity between sequences,
a modified LZ78 algorithm is employed for feature selection, and a Support
Vector Machine (SVM) is used as the classifier.

A discriminatively trained Markov Model (MM(k-1)) for sequence classifica-
tion was proposed by Yakhnenko et al. [25]. Their experimental results show
that their classifiers are comparable in accuracy and more efficient than Support
Vector Machines trained by k-gram representations of sequences.

Lei and Govindaraju [10] proposed to use an intuitive similarity measure,
ER2, for multi-dimensional sequence classification based on SVM. The measure
is used to reduce classification computation and speed up the decision-making
of multi-class SVM.

Exarchos et al. [7] proposed a two-stage methodology for sequence classifi-
cation based on sequential pattern mining and optimization. In the first stage,
sequential pattern mining is used and a sequence classification model is built
based on the extracted sequential patterns. Then, weights are applied to both
sequential patterns and classes. In the second stage, the weights are tuned with
an optimization technique to achieve optimal classification accuracy.

Xing et al. [24] studied the problem of early prediction using sequence classi-
fiers. The prefix of a sequence as short as possible is used to make a reasonably ac-
curate prediction. They proposed a sequential classification rule method to mine
sequential classification rules, which are then selected by an early-prediction
utility measure. Based on the selected rules, a generalized sequential decision
tree method is used to build a classification model with a divide-and-conquer
strategy.

In all the above studies, no negative sequential patterns are considered.

4.3 Fraud/Intrusion Detection

Some applications similar to debt detection are fraud detection, terrorism detec-
tion, financial crime detection, network intrusion detection and spam detection.
Different from transactional fraud detection which attempts to classify a transac-
tion or event as being legal or fraud, our techniques try to predict the likelihood
of a customer being fraud based on his past activities. It is at customer level
instead of transaction level.

Bonchi et al. [4] proposed a classification-based methodology for planning au-
dit strategies in fraud detection and presented a case study on illustrating how
classification techniques can be used to support the task of planning audit strate-
gies. The models are constructed by analysing historical audit data. Then, the
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models are used to plan effectively future audits for the detection of tax evasion.
A decision tree algorithm, C5.0, was used in their case study. Although the tar-
get problem is similar to ours, the data used is different. We used transactional
data which records activities related to customers. Because the time order in ac-
tivities is important for predicting debt occurrences, sequence classifiers instead
of decision trees are used in our application.

Rosset et al. [18] studied the fraud detection in telecommunication and pre-
sented a two-stage system based on C4.5 to find fraud rules. They adapted the
C4.5 algorithm for generating rules from bi-level data, i.e., customer data and
behaviour-level data. However, the behaviour data they used is the statistics in
a short time frame, such as the number of international calls and total dura-
tion of all calls in a day, which is different from the sequential patterns in our
techniques.

Julisch and Dacier [9] used techniques of episode rules and conceptual clus-
tering to mine historical alarms for network intrusion detection. Their episode
rules are designed to predict the occurrence of certain alarms based on other
alarms. Negative sequential patterns are not taken into account in their model.

5 Conclusions and Discussion

We presented a new technique for building sequence classifiers with both posi-
tive and negative sequential patterns. We also presented an application for debt
detection in the domain of social security, which shows the effectiveness of the
proposed technique.

A limitation of our proposed technique is that an element in a sequence is
assumed to be a single event, which is based on the transaction data in this
application in social security. However, in other applications, an element may be
composed of multiple items. Therefore, to extend our techniques to such general
sequence data will be part of our future work.

Another limitation is that time constraints are only partly considered in our
techniques. What we did is setting the time window so that a pattern is less
than 4 months, based on domain experts’ suggestions. Nevertheless, we have
not set any other time constraints, such as the time interval between adjacent
elements. In other applications, it may be interesting to find patterns with the
above constraints and use them to build sequence classifiers.

A third limitation is that, in real world applications, there are different costs
with correct predictions, false positives and false negatives, and it will be more
fair and more useful when measuring the performance of classifiers by taking
the above costs into consideration. We are currently in the progress of the above
work.

In our future work, we will also use time to measure the performance of
our classifiers, because it is desirable in real-world applications to predict debt
occurrences as early as possible. Using time to measure the utility of negative
patterns and to build sequence classifiers for early detection will be part of our
future work.
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Last but not least, patterns in data may keep changing as time goes on,
and the learned patterns and the built classifiers may become out-of-date. New
labelled data (e.g., new debts) from oncoming data can be used to improve the
classifiers. Therefore, it is imperative to build an adaptive online classifier which
can adapt itself to the changes in new data.
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Abstract. We propose a new approach for estimating the difference between two
partially observable dynamical systems. We assume that one can interact with the
systems by performing actions and receiving observations. The key idea is to
define a Markov Decision Process (MDP) based on the systems to be compared,
in such a way that the optimal value of the MDP initial state can be interpreted as
a divergence (or dissimilarity) between the systems. This dissimilarity can then
be estimated by reinforcement learning methods. Moreover, the optimal policy
will contain information about the actions which most distinguish the systems.
Empirical results show that this approach is useful in detecting both big and small
differences, as well as in comparing systems with different internal structure.

1 Introduction

When building or learning models of dynamical systems, one is often confronted with
the problem of choosing between two models, or assessing whether a given model is
faithful to the original system. In such scenarios, a notion of behavioral distance (or
divergence) between dynamical systems can be very helpful. For example, when learn-
ing a model of a Partially Observable Markov Decision Process (POMDP), one might
make assumptions about the number of internal states, then learn the parameters of the
system from data. It would be very useful for the learning process to have a notion of
how close the learned model is to the true system. Moreover, an algorithm that can point
out what parts of the learned model are most different from the original would be very
useful, as it would suggest where the learned model can be improved. The results of
such an algorithm can be used to guide both the process of selecting the structure of a
new model, as well as the data acquisition. An even greater need for determining dif-
ferences arises if the systems under consideration are different in structure (e.g., a first
and a second-order Markov model, or a POMDP and a predictive state representation).
In this case, simple inspection of the models cannot determine if they behave similarly.
Instead, we need a way of assessing dissimilarity based purely on data, independently
of the model structure.

In this paper, we develop a novel approach to this problem, inspired by ideas from
probabilistic verification [1]. The key idea is to define a Markov Decision Process
(MDP) whose states and actions are built based on the processes that we want to com-
pare. The optimal value function of this MDP will be interpreted as a divergence (or
distance) between the processes. No knowledge of the original processes is needed; in-
stead, we only need the ability to interact with them. The optimal policy in the MDP
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will point out the actions which distinguish the systems most. This is very useful both
in learning applications, as well as in knowledge transfer, as we discuss in detail later.

The paper is structured as follows. Section 2 presents the problem and notation.
Section 3 presents the core ideas of our approach. Section 4 establishes the theoretical
properties of the proposed approach. We show that the MDP we define has a positive
value function, with strict inequality if and only if the two dynamical systems under
consideration are different. We also discuss the sample complexity of our approach.
In Section 5, we illustrate the behavior of the algorithm on several standard POMDP
examples from the literature. We show that the algorithm can both identify when the
systems are different, as well as quantify the extent of the difference. Section 6 contains
a discussion and related work. Finally, in Section 7 we conclude and present avenues
for future work.

2 Background

An MDP is a tuple 〈S,A, T ,R〉 where S is a set of states, A is a set of actions,
T : S ×A× S −→[0, 1] is a transition function such that T (s, a, s′) represents the
probability of making a transition from s to s′ after action a, and R : S ×A −→R is a
reward function such that R(s, a) is the reward obtained when action a is performed in
state s.

We will use MDPs to establish the differences between two stochastic, partially ob-
servable systems. We make the assumption that it is possible to interact with the systems
by choosing actions at at discrete time steps and receiving in response observations ot.
We also assume that there is a well-defined (but possibly unknown) probability distri-
bution Pr(ot+1|a1o1 . . . atot), ∀t. The most common model for such systems in the
AI literature is the Partially Observable Markov Decision Process (POMDP) (see [2]
for a survey). However, this formulation is more general and it includes, for example,
higher-order Markov systems, as well as systems with internal structure represented as
a finite state machine.

The notion of equivalence or similarity between probabilistic processes has been
studied extensively in the literature on verification of concurrent processes. In their
pioneering work [3], Larsen and Skou have defined a notion of tests, which consist
conceptually of logical formulas defined based on a given grammar. The formulas are
defined over the observations produced by the systems, and give a characterization of
what statements can made true in the two processes. Two processes are considered
equivalent if they accept all tests with equal probabilities. Different grammars for gen-
erating tests give rise to different notions of equivalence between processes. The notion
of equivalence can be relaxed by using metrics, which represent quantitative measures
of similarity between processes. Metrics are often defined based on the complexity of
the grammar needed to distinguish the processes.

In the AI literature, a similar idea is captured by predictive state representations
(PSRs) [4], which characterize the “state” of a dynamical system by the set of condi-
tional probabilities of different observation sequences that can be observed the current
history, given different sequences of actions. In some cases, PSRs can provide a com-
pact representation of the dynamical system. However, from the point of view of this
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paper, the main idea we want to emphasize is the use of tests, and their associated
probabilities.

A test is a sequence of actions of the form a1a2. . .an where a1, a2, . . . , an ∈ A. Running
a test on a dynamical system produces a sequence of observations of the form o1o2. . .on

where o1, o2, . . ., on ∈ O. The set of all such sequences will be denoted O∗. Under our
definition of dynamical system, any test induces a well-defined probability distribution
over observations sequences:

P (o1 . . . on|a1 . . . an) = P (o1|a1)P (o2|a1, o1, a2) . . . P (on|a1, o1, . . . an−1on−1an).

Definition 1. Two dynamical systems with probability distributions P1 and P2 are
trace equivalent if and only if, for any test a1 . . . an, and for any sequence of
observations o1 . . . on,

P1(o1 . . . on|a1 . . . an) = P2(o1 . . . on|a1 . . . an).

3 Quantifying the Difference between Dynamical Systems

LetP1 andP2 be two processes that we are interested in comparing (for ease of notation,
we will denote a system by its associated probability distributions). We are interested in
determining tests which maximize the difference between the two systems. Our strategy
will be two-fold. First, we will break down the action sequence of a test into steps, and
consider one action at a time. Second, we will establish a reward function which empha-
sizes the differences between processes: if the same action causes different observations
in the two processes, it should receive a high reward, otherwise, it should receive a low
reward. However, because the systems under consideration are stochastic, different ob-
servations may be obtained in the two systems even if they are identical. The likelihood
of this occurrence is higher if the probability distributions associated with the systems
have high entropy. In order to correctly account for this possibility, we introduce a third
and a fourth processes, called respectively P1c and P2c, which are simply clones of the
original systems P1 and P2 (see Fig.1). There will be a high reward if P1 and P2 differ
for some action, but this reward can be cancelled if P1 and P1c differ and/or P2 and
P2c differ. The intuition is that in this case, the difference we observed may well be due
to the inherent stochasticity in the processes and not to an actual behavioral difference
between them.

The intuition for our approach is inspired by the well-known Kullback-Leibler (KL)
divergence [5]. A divergence between two dynamical systems could be defined as the
maximum divergence between the probability distributions over observation sequences
generated by all tests run in the systems. The KL divergence is a good way of measuring
the similarity of two probability distributions. For two distributions P1 and P2, it is
defined as:

KL(P1‖P2) := Eh∼P1 ln
1

P2(h)
− Eh∼P1 ln

1
P1(h)

(1)

Unfortunately, because of the high number of possible tests (especially large systems),
computing the maximum value over all Kullback-Leibler divergences is not tractable.
Nevertheless, there is an analogy between our intuition and the KL divergence. The first
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term in the formula can be considered as comparing the two processes of interest, P2
and P1. The second term accounts for the entropy of the first process, P1, for a given
test. However, the KL divergence is not symmetrical, whereas for our purpose, the two
processes should be treated in the same way. Hence, we would like a divergence which
is closer in spirit to the “symmetrized” KL divergence, KL(P1|P2) + KL(P2|P1).
Also, instead of striving to compute the KL divergence, we will compute a different
divergence, which will be more efficient. We are now ready to detail our divergence
computation.

Fig. 1. Sketch of the divergence computation

Figure 1 depicts the setup that we will use. The interaction with the processes will
consist of the following steps:

Initialize the four processes (P1c, P1, P2, and P2c)
Repeat:

Step 1 : Choose an action a.
Step 2 : Execute a on P1c, P1, P2. and P2c.
Step 3 : Compute the reward by adding the following components:

– a reward of (+2) for different observations between P1 and P2
– a (−1) reward for different observations between P1 and P1c

– a (−1) reward for different observations between P2 and P2c.
In other words, if Obs.Pi denotes the observation obtained in system i, the imme-
diate (stochastic) reward is given by the formula:

R := 2 (Obs.P1 
= Obs.P2)− (Obs.P1 
= Obs.P1c)− (Obs.P2 
= Obs.P2c) (2)

where 0 and 1 are used as both truth values and numbers.

until either Obs.P1 
= Obs.P2, or the episode reaches a certain horizon.
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We will now show that this interaction gives rise to an MDP, whose value is 0 if and only
if the two processes have the same probability distribution over observation sequences
for all tests.

4 MDP Formulation and Theoretical Properties

Definition 2. Given two dynamical systems P1 and P2 with the same sets of actions
and observations,A and O, we define an MDP M as follows:

– The state space is the set S := {(AO)∗} ∪ {Dead}, with an initial state s0 = ε
(corresponding to the empty action-observation sequence).

– The set of actions is A.
– The transition function is defined as:

T (s, a, s′) :=

⎧⎪⎪⎨⎪⎪⎩
P1(o|s, a)P2(o|s, a) if s′ = sao

1−
∑
o∈O

P1(o|s, a)P2(o|s, a) if s′ = Dead

0 otherwise

– The reward function is defined as in Equation (2)

The MDP states correspond to action-observation sequences a1o1a2o2 . . .. When the ob-
servations obtained in P1 and P2 do not coincide, the episode stops. In the MDP, this
corresponds to a transition to the Dead state. Note that for a state s = a1o1. . .anon ∈ S,
the notation P1(o|s, a) = P1(o|a1. . .an, o1 . . .on, a) represents the probability of observing
o after executing action a, following the history a1o1. . .anon.

We will now show that this MDP has optimal value function equal to 0 if and only if
the two systems are identical. Moreover, the value function is never negative; therefore,
it defines a divergence notion. First, we will show the following lemma:

Lemma 1. The expected value of the reward in the MDP given by Def. 2 is:

R(s, a) =
∑
o∈O

(P1(o|s, a)− P2(o|s, a))2

Proof. Suppose we have n possible observations. Let P1(oi|s, a) and P2(oi|s, a) be the
probabilities of a designated observation oi in the two processes. We analyze the reward
by cases:

– W.p. P1(oi|s, a)P2(oi|s, a), the same observation oi is emitted in the two original
processes. In this case, the MDP continues to a state saoi. The rewards that can be
obtained are:
• 0, w.p.P1(oi|s, a)P2(oi|s, a)P1(oi|s, a)P2(oi|s, a) (i.e. if both clones also pro-

duce oi)
• −1 w.p. P1(oi|s, a)P2(oi|s, a)[P1(oi|s, a)(1− P2(oi|s, a)) + P2(oi|s, a)(1−
P1(oi|s, a))] (i.e. one clone emits oi, the other emits a different observation)

• −2 w.p. P1(oi|s, a)P2(oi|s, a)[(1− P1(oi|s, a))(1− P2(oi|s, a))] (i.e. neither
clone emits oi)
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The total expected reward in this case will then be:

−P1(oi|s, a)P2(oi|s, a)[(1 − P1(oi|s, a)) + (1− P2(oi|s, a))]
– W.p. P1(oi|s, a)P2(oj |s, a), different observations oi and oj are emitted in the two

original processes. In this case, the MDP goes to the Dead state. The rewards ob-
tained are:
• +2, w.p. P1(oi|s, a)P2(oj |s, a)P1(oi|s, a)P2(oj |s, a) (the clones have identi-

cal observations with the original systems)
• +1, w.p. P1(oi|s, a)P2(oj |s, a)[(1−P1(oi|s, a))P2(oj |s, a)+)P1(oi|s, a)(1−
P2(oj |s, a))] (one clone emits an observation identical to the one produced by
the original system, the other clone emits a different observation)

• 0, w.p. P1(oi|s, a)P2(oj |s, a)[(1− P1(oi|s, a))(1− P2(oj |s, a))] (both clones
have different emissions than the originals)

The total expected reward in this case will be:

P1(oi|s, a)P2(oj |s, a)[P1(oi|s, a) + P2(oj |s, a)]
Now, we can write the immediate expected reward as:

R(s, a) =
∑

i

∑
j 
=i

P1(oi|s, a)P2(oj |s, a)[P1(oi|s, a) + P2(oj |s, a)]

−
∑

i

P1(oi|s, a)P2(oi|s, a)[(1− P1(oi|s, a)) + (1− P2(oi|s, a))]

=
∑

i

∑
j 
=i

P1(oi|s, a)P2(oj |s, a)[P1(oi|s, a) + P2(oj |s, a)]

+
∑

i

P1(oi|s, a)P2(oi|s, a)[P1(oi|s, a) + P2(oi|s, a)]

−
∑

i

P1(oi|s, a)P2(oi|s, a)[P1(oi|s, a) + P2(oi|s, a)]

−
∑

i

P1(oi|s, a)P2(oi|s, a)[(1− P1(oi|s, a)) + (1− P2(oi|s, a))]

=
∑

i

∑
j

P1(oi|s, a)P2(oj |s, a)[P1(oi|s, a) + P2(oj |s, a)]

− 2
∑

i

P1(oi|s, a)P2(oi|s, a)

=
∑

i

(P1(oi|s, a))2 +
∑

j

(P2(oj |s, a))2 − 2
∑

i

P1(oi|s, a)P2(oi|s, a)

=
∑

i

P1(oi|s, a)(P1(oi|s, a)− P2(oi|s, a))

+
∑

i

P2(oi|s, a)(P2(oi|s, a)− P1(oi|s, a))

=
∑
o∈O

(P1(o|s, a)− P2(o|s, a))2

which concludes the proof. � 
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We note that the MDP M has a very special form: it is a tree, with no loops. Using
Lemma 1, and the Bellman equation for policy evaluation (see, e.g. [6] for a detailed
description) we have:

V π(s0) =
∑

a1∈A
π(a1|s0)

∑
o1∈O

[
(P1(o1|s, a1)− P2(o1|s, a1))2

+ γP1(o1|s, a1)P2(o1|s, a1)V π(sa1o1)]

=
∑

a1∈A
π(a1|s0)

∑
o1∈O

[
(P1(o1|s, a1)− P2(o1|s, a1))2

]
+ γ

∑
a1∈A

π(a1|s0)
∑

o1∈O
T (s, a1, sa1o1)

∑
a2∈A

π(a2|sa1o1)∑
o2∈O

(P1(o2|sa1o1, a2)− P2(o2|sa1o1, a2))2

+ γ2
∑

a1∈A
π(a1|s0)

∑
o1∈O

T (s, a1, sa1o1)
∑

a2∈A
π(a2|sa1o1)∑

o2∈O
T (sa1o1, a2, sa1o1a2o2)V π(sa1o1a2o2)

= . . .

Since all rewards are strictly positive, and 0 only if the two systems are identical, it
is now intuitively clear that all policies will have value 0 if and only if P1 and P2 are
identical, and strictly positive value otherwise. More formally:

Theorem 1. Let M be the MDP induced by P1 and P2. If the discount factor γ < 1 or
the size of MDP |M| <∞ then the optimal value V �(s0) ≥ 0, and V �(s0) = 0 if, and
only if, P1 and P2 are trace equivalent.

The proof is in the appendix.
Note that the size of the MDP increases exponentially with the desired horizon (or

depth). However, the computation of the divergence can still be done quite efficiently. In
particular, in order to obtain sample complexity bounds, we can use the sparse sampling
result of Kearns, Mansour and Ng [7]; they show that the optimal value function of an
MDP can be approximated within a desired degree of accuracy ε, for all states, in an
amount of time which is independent on the number of states in the MDP. The running
time still depends on the number of actions; however, in many tasks of interest the
number of actions is small, while the number of observations is very large. This would
cause the number of states inM to explode, but the number of samples will still depend
mainly on the desired accuracy parameters, the discount factor γ and the maximum
reward in the MDP (which in our case is 2).

Moreover, if the two systems are very different, intuitively many sequences will be
able to witness this discrepancy. As a result, it may become clear with much fewer
samples than this theoretical bound that the systems are different. In the case when we
are only interested in the number of samples needed to detect a difference, if one exists,
Monte Carlo estimation, along with Hoeffding bounds, can be used to establish tighter
bounds. We will now study the speed of the algorithm empirically.
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5 Experimental Results

We experimented with this approach on several benchmarks from Tony Cassandra’s
POMDP repository [8] as well as the hand washing domain [9], which models a real-
time system to assist persons with dementia during hand washing. The goal was to
see whether this approach can successfully detect differences between models, and to
assess the speed with which these can be detected. The experimentation consists in
comparing each POMDP with itself and then with slightly modified (noisy) versions
of itself. We experimented with introducing noise both in the transition dynamics as
well as in the observation probabilities. In both cases, we studied two different kinds of
changes: inserting one single important modification, or inserting small perturbations
in several places in the model.

The single modification is generated as follows. We choose at random an action
a, an internal state of the POMDP and two other internal states reachable through a;
then we swap the probabilities of the two next-state transitions. A similar approach is
used when perturbing the observation distributions. In the second case, for each state-
action pair (s, a), we choose uniformly randomly a number δ ∈ [0, 1] and a state in the
POMDP. Then, we increase the corresponding transition probability via a by δ. For the
remaining states we decrease the transition probabilities by δ/(|S| − 1). An analogous
transformation is applied when we modify the observation distribution.

For each setting, we compare the modified POMDP with the original version. We
always perform 10 independent runs, each one consisting of 106 episodes. The other
systems used for comparison are as follows:

– P2 : a single modification in the internal dynamics
– P3 : a single modification in the observation probabilities
– P4 : small perturbations are inserted throughout in the internal dynamics
– P5 : small perturbations are inserted throughout in the observation probabilities.

Figure 2 presents some representative learning curves for the value of the divergence.
We picked for visualization domains which exhibit typical behavior, as we do not have

Table 1. Summary of empirical results on different POMDPs

� of � of � of Divergence ratios
states actions observations P2 P3 P4 P5

DataSet4.3 4 4 20 1.35* 2* 2.51* 4.73*
4x3 Maze 11 4 18 1.02 1.023 1.4* 1.99*

Cheese Maze 11 4 7 1.28* 1.01 1.83* 1.72*
Tiger 2 3 6 1.01 1.64* 1.29* 1.77*

Shuttle Docking 8 3 10 1.21* 2.16* 12.26* 9.2*
Paint 4 4 6 1.17 1.16 1.78* 4.79*

MiniHall 13 3 9 4.79* 3.03* 2.74* 3.15*
HallWay 60 5 21 1.0 1.001 1.24* 1.32*

Aloha 30 9 3 1.01 1.37* 2.91* 3.06*
Hand Washing 180 6 6 1.62* 1.56* 1.66* 1.63*
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Fig. 2. Learning curves for the divergence values
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space to include the curves for all the benchmarks. As can be seen, in most cases the dif-
ferences between models are detected very quickly, and the learning curves are signif-
icantly different throughout (the bars on the graphs represent standard deviations over
the runs). This suggest that one would not even need to run this approach to conver-
gence, if a significant change is detected early on. There are three problems, Hallway,
Tiger and Aloha, in which the change in the internal dynamics is not detected correctly.
This is because, as it turns out, this one change is not significant enough to affect the
probability distribution over observations.

From this figure, one can notice that the magnitude of the divergence values differs
from task to task. Hence, in order to decide if two systems are indeed identical or not, we
divide the obtained divergence by the divergence that would be obtained by comparing
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the system to itself. Hence, two identical systems would be expected to have a ratio
of 1, while two very different systems would have a large ratio. Table 1 summarizes
the results of the experimentation. The first four columns describe the names of the
domains. For each benchmark, we include the number of states, the number of actions,
and the number of observations. The remaining columns indicate the divergence ratios.
The ∗ symbols indicate statistically significant differences (according to a bootstrap
test). From the table, it is clear that almost all differences are detected successfully.

Figure 3 presents statistics on the state visitation frequencies in the MDP. One of the
main concerns a priori regarding our method is that the number of states in the MDP
that we use is very large (increases exponentially with the size of the horizon). How-
ever, because of the special tree structure and because of the particular way we set up the
interaction, we expect that only very few states will be visited. Hence, in our implemen-
tation, we only maintain values, in a hash table, for states that are actually encountered.
For each benchmark, we computed the percentages of states that are visited less than
10 times, between 10 and 100 times, between 100 and 1000 ties, and more than 1000
times. The results confirm the fact that indeed, very few states are ever visited (between
10% and 30% total). A really tiny percentage of states are visited many times. If we
stopped the process as soon as significant differences are detected, these percentages
would be even lower.

Finally, the last plot (Figure 4) shows the divergence measures computed for predic-
tive state representation (PSR) models. We use the standard float-reset problem from
the literature. In the left graph, we compare a PSR representation with itself, against
a PSR with one less core test, and against a PSR with two less core tests. In the right
graph, we compare PSR and POMDP representations of float-reset. First, we compare
the PSR representation with an equivalent POMDP, then against a modified POMDP
representation, and finally we compared the original POMDP representation against a
PSR with two fewer core tests. The graph shows the potential of our method to detect
differences even representations which are not POMDPs.
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6 Discussion

Several distance and divergence notions for probabilistic systems have been proposed
in the literature. In particular, trace equivalence is a fairly weak notion, and the ver-
ification community often relies instead on distance metrics based on bisimulation, a
much stronger equivalence notion. Desharnais et al. [10] define a metric for Labelled
Markov Processes, which is inspired by the logical characterization of bisimulation due
to the same authors. A similar piece of work by Ferns et al. [11] presents a metric for
measuring the similarity of states in Markov Decision Processes, again based on the
notion of bisimulation for MDPs. For our purposes, bisimulation is too strong, as it es-
sentially establishes a behavior equivalence between systems which requires that they
be expressed in the same form. Our definition instead lets us compare systems which
may have very different structure (e.g. POMDPs and PSRs). The divergence that we
propose is also more efficient to compute and easier to approximate than bisimulation-
based metrics. Note that our algorithm generalizes to a family of equivalence notions,
called k-moment equivalence (see [1] for details); these equivalences are stronger than
trace equivalence but weaker than bisimulation.

In his work on automatic speech recognition, Rabiner developed two distance
measures for Hidden Markov Models (HMMs). One is based on a state permutation
function [12] and the other is inspired by relative entropy [13]. The connection to KL di-
vergence through relative entropy is interesting, but our setting involves actions, which
are chosen actively by the learning algorithm in order to probe the differences in the
systems.

The group on Foundations of Software Engineering at Microsoft Research devel-
oped a line of research which represents the problem of model-based testing as a game
between a tester and the implementation under test. Blass et al. [14] model the game as
a negative non-discounted MDP whose goal is to reach final states with minimum total
cost. The final states are states in which shared resources are freed, i.e., where new tests
can be initiated. Their algorithmic approaches are all offline: all the states are known
in advance and the MDP that they set up is solved using a value iteration algorithm.
Veanes et al. [15] use instead an online approach for testing through reinforcement
learning. The objective of the learning is to achieve the best coverage possible within
fixed resource constraints. In each episode the algorithm runs one test case until either
a non-conformance between the model (specification) and the implementation under
test occurs, or the maximum number of steps has been reached. The cost, or negative
reward, associated to an action is proportional to the number of times that actions has
been chosen from that state. In both these offline and online approaches, the goal of the
learning task is to achieve the best possible coverage. In our work, however, we defined
a reward model which is based on the non-conformance between the two processes we
compare. We speculate that our approach focuses the computation on more useful paths,
though an empirical comparison between these approaches would be useful.

The approach we propose has great potential for two important applications: learning
dynamical systems from data, and knowledge transfer. In both cases, the advantage of
our method is that it provides an optimal policy, in addition to the divergence. This
is very useful information, focusing on the action sequence which distinguishes the
systems most.
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In the case of learning, it would be natural to take this action sequence and try to
refine the model around it (e.g. by adding internal states, in the case of a POMDP,
or by adding tests, in the case of a PSR). Alternatively, this action sequence can be
played preferentially, along with exploratory paths starting from it. This would provide
additional data to improve model parameter estimates, in such a way as to make this
critical action path more similar (behaviorally) in the two systems.

In the case of knowledge transfer, the goal is to decide if a policy learned in one sys-
tem can be applied successfully in a different system. This problem can be formalized
as policy evaluation in our MDP, which is very simple and efficient to solve. Hence,
the divergence we propose could be used, for example, to search a library of small dy-
namical systems for one whose optimal policy can be applied successfully in a larger
system. We are currently investigating this line of research.

7 Conclusions and Future Work

We presented an approach for estimating the differences between partially observable
dynamical systems, based on trying out actions and observing their behavior. Our al-
gorithm is applicable even if the models of the two systems are not available, provided
that we are allowed to interact with them. Moreover, the approach allows us to pin-
point the action sequences which most distinguish the systems. Our empirical results
are very encouraging, but more practical experience with this approach is needed in the
future. One nice aspect is that the algorithm only depends on the number of actions and
observations, not on the internal structure of the dynamical system. Moreover, as illus-
trated above, differences are identified quickly and typically with few interactions with
the environment. This is due to the fact that we use reinforcement learning methods,
which quickly focus on differences that matter. An early detection mechanism will be
implemented in future work.

One important direction for future work is scaling up this approach for systems with
many actions and/or observations. In this case, function approximation techniques, or
methods by which one expresses interest in a limited set of observations, will need to
be used.
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Appendix: Proof of Theorem 1

We need the following three lemmas.

Lemma 2. Let P1 and P2 two dynamical systems. Then the following are equivalent:

(i) P1 and P2 are trace equivalent
(ii) ∀a ∈ A, s ∈ S, R(s, a) = 0

(iii) ∀π, V π(s0) = 0.

Proof. (i) ⇒ (ii). If P1 and P2 are trace equivalent, then

∀a ∈ Act, o ∈ O, s ∈ S, P1(o|s, a) = P2(o|s, a) ⇒ R(s, a) = 0 (by Lemma 1)

(ii) ⇒ (i). Immediate from Lemma 1. (ii) ⇒ (iii) and (iii) ⇒ (ii) follow from
the definition of V π given in Section 4: all policies have value greater than or equal to
0, with equality occurring only if all the squared differences in transition probabilities
are 0. � 
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Now we need we need to link the value of the optimal policy to policies acting to finite
depth.

Lemma 3. For every policy π that prescribes actions only for states up to a maximum
depth H ,

∃π′ such that V π(s0) ≤ V π′
(s0),

where π′ coincides with π up to depth H .

Proof. The result follows from Lemma 1 and the value function unrolling computation
in Section 4. � 

Lemma 4. Let M be the MDP induced by P1 and P2. If the discount factor γ < 1 or
the size of MDP |M| <∞ then V �(s0) ≥ V π(s0) for any policy π.

Proof. If |M| <∞, since M has a tree structure, the result is a direct consequence of
Lemma 3. Otherwise, it is sufficient to show that

∀ε > 0 ∀π ∃π′ such that |V π′
(s0)− V π(s0)| < ε.

Because of Lemma 3, w.l.o.g., we may suppose n to be large enough to satisfy

∞∑
i=n+1

γi < ε.

Since on each episode, the reward signal is between (−2) and (+2), it is easy to see that
any policy π′ of M that coincides with π on M′ will have the desired property. � 

Theorem 1. Let M be the MDP induced by P1 and P2. If the discount factor γ < 1 or
the size of MDP |M| <∞ then the optimal value V �(s0) ≥ 0, and V �(s0) = 0 if, and
only if, P1 and P2 are trace equivalent.

Proof. If P1 and P2 are trace equivalent, then Theorem 2 implies that V ∗(s0) = 0. If
they are not trace equivalent, then there exists at least one policy π such that V π(s0) >
0. Finally, by Lemma 4, we can conclude that V ∗(s0) > 0. � 
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Abstract. The basis assumption that “training and test data drawn
from the same distribution” is often violated in reality. In this paper, we
propose one common solution to cover various scenarios of learning un-
der “different but related distributions” in a single framework. Explicit
examples include (a) sample selection bias between training and test-
ing data, (b) transfer learning or no labeled data in target domain, and
(c) noisy or uncertain training data. The main motivation is that one
could ideally solve as many problems as possible with a single approach.
The proposed solution extends graph transduction using the maximum
margin principle over unlabeled data. The error of the proposed method
is bounded under reasonable assumptions even when the training and
testing distributions are different. Experiment results demonstrate that
the proposed method improves the traditional graph transduction by as
much as 15% in accuracy and AUC in all common situations of distri-
bution difference. Most importantly, it outperforms, by up to 10% in
accuracy, several state-of-art approaches proposed to solve specific cat-
egory of distribution difference, i.e, BRSD [1] for sample selection bias,
CDSC [2] for transfer learning, etc. The main claim is that the adaptive
graph transduction is a general and competitive method to solve distri-
bution differences implicitly without knowing and worrying about the
exact type. These at least include sample selection bias, transfer learn-
ing, uncertainty mining, as well as those alike that are still not studied
yet. The source code and datasets are available from the authors.

1 Introduction

One important assumption in many learning scenarios is that training and test
data are drawn from the same distribution. However, this may not be true in
many applications, and the following are some examples. First, suppose we wish
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to generate a model in clinical trial of a new drug. Since people self-select, the
training data is most likely having a different distribution from the general pub-
lic. Second, if we want to use a topic model to classify articles from New York
Times, but the only labeled data is from Reuters, we have to transfer knowledge
across these two collections. Third, for data collected over sensor networks, the
feature values are likely noisy or uncertain. Obviously, the distributions of train-
ing and test data in the above problems are different but related. In this paper,
we formulate this situation within a “universal learning” framework.

Given a space of instances X and labels Y = [−1, 1], let ptr(x, y) denotes the
joint distribution of training data L ⊆ X×Y and pte(x, y) denotes the test data
U ⊆ X × Y . Using the standard decomposition, p(x, y) can be represented by
p(x, y) = p(x)p(y|x) where p(x) and p(y|x) are the marginal and conditional
distributions. Let h ∈ X → Y be a function from a fixed hypothesis space H
for X . Then, we define the distance between training and tests sets using a
hypothesis class-specific distance measure. Let AH be the subsets of X that are
the support of some hypothesis in H. In other words, for every hypothesis h ∈ H,
{x : x ∈ X,h(x) = 1} ∈ AH. Then the distance between two distributions is:

dH(ptr(x), pte(x)) = 2 ∗ sup
A∈AH

|Prptr [A]− Prpte [A]| (1)

Using the conclusion from [3], we compute a finite-sample approximation to dH,
where H has finite V C dimensions. Thus, dH can be treated as the indicator to
measure the relationship between training and test set. We define the following
framework as “universal learning over related but different distributions”:

Definition 1. Given the training and test set, learning is universal iif
ptr(x, y) 
= pte(x, y) and dH is small.

With this definition, we study solutions for problems where dH is reasonably
small or training and testing data is related but different.

Note that this definition is unified in the sense that it covers many related
problem formulations, such as sample selection bias, transfer learning, uncer-
tainty mining and the alike that are not well studied and reported yet. For both
sample selection bias and uncertainty mining, ptr(x) 
= pte(x) but ptr(y|x) =
pte(y|x). For transfer learning, p(x) and p(y|x) of training and test data sets
may both be different, but p(y|x) are assumed to be related. As follows, we pro-
pose a generalized graph approach under this framework. One can solve as many
different but similar problems as possible and avoid employing and remembering
different approaches under different formulations.

1.1 Solution Based on Adaptive Graph Transduction

To solve universal learning problem, we propose an approach based on “maxi-
mum margin graph transduction”. Graph transduction explores the information
from both training and test set. Its most important advantage for universal
learning is that it does not explicitly assume the distributions of training and
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test set to be the same, but only makes a weaker assumption that the deci-
sion boundary lies on the low density regions of the unlabeled data. However,
the original graph transduction still suffers from the “unsmooth label problems”
and these are common when learning different distributions. It may instead mis-
lead the decision boundary to go through the high density regions, when labeled
examples of training examples stand on the wrong location in the space of the
testing data [4]. In margin-terms, unlabeled data with low margin are likely mis-
classified [5]. Clearly, if one employs graph transduction for universal learning,
label information ought be regularized in order to maintain smoothness. Based
on this motivation, we propose a maximal margin based graph transduction on
the basis of “maximal unlabeled data margin principal.”

To solve this problem, we cast the graph transduction into a joint optimization
over both the classification function and the labeled data. The optimization is
solved iteratively. In each iteration, sample selection is performed on labeled set
to select data which can maximize the unlabeled data margin. Based on the
selected sample, graph transduction is invoked to predict the labels of unlabeled
data. Those closest examples will be predicted with the same class label. Then,
the prediction results from each iteration are averaged to form an ensemble,
in order to remove the bias from any single graph [6] and further reduce the
prediction error as shown in Section 3. By the analysis of Section 3, the risk of
proposed method is bounded under reasonable terms even when training and
testing distributions are different.

2 Graph Transduction over Related Distributions

We first summarize the traditional graph transduction using harmonic func-
tion [7], and then present details on the proposed algorithm MarginGraph that
is generalized by the maximal margin principal over unlabeled data. The nota-
tions are summarized in Table 1.

2.1 Preliminaries: Graph Transduction Using Harmonic Functions

Suppose we have � training examples L = {(x1, y1), . . . , (x�, y�)}, and u test
examples U = {(x�+1, y�+1), . . . , (x�+u, y�+u)}. The labels of U are not known

Table 1. Definition of notation

Notation Notation Description Notation Notation Description
X Instance space maxIt Iteration times in algorithm
Y Label space G Graph whose nodes are data
xi Instance(without label), xi ∈ X points and the edges describe
yi Label of instance xi, yi ∈ {−1, 1} the similar between any nodes
L Training data set W Weight matrix of the graph G,
� Number of instances in L wij is the weight of the
U Test data set edge between node i and j
u Number of instances in U D Diagonal matrix, D = diag(di),
Δ Laplacian matrix, Δ = D − W di =

∑
j wij

p(x, y) Joint distribution p(x) Margin distribution
p(y|x) Conditional distribution H A fixed hypothesis space
Q A posterior distribution over H mQ(U) Unlabeled data margin
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apriori. In universal learning setting, L and U are drawn from the related but
different distributions. We construct a connected graph G = {V,E}. Vertex V
corresponds to both labeled and unlabeled data examples, and the edges (i, j) ∈
E, i, j = 1, . . . , � + u, are weighted according to the similarity between xi and
xj . According to the results from [7], we set the weight wij = exp(− ||xi−xj ||2

λ2 ),
where λ is a bandwidth hyper-parameter. It is adaptive according to the data.
Following the analysis in [7], we set λ = d0/3, where d0 is the minimal distance
between class regions. Also, Let D be a diagonal matrix, D = diag(di) where
di =

∑
j wij . Based on the intuition that unlabeled examples that are close-by

in the graph ought to have similar labels [7], a harmonic function is defined
as E(f) = 1

2

∑
i,j wij(f(xi) − f(xj))2 = fTΔf , where f : V → [−1, 1] is a

real-valued mapping function to minimize the value of harmonic function and
Δ = D−W is the Laplacian matrix. The harmonic solution Δf = 0 is given by:

fU = Δ−1
UUΔULfL (2)

where fU denotes the values on the unlabeled data, fL represents the values on
the labeled data (equal to the true label), ΔUU is the sub-matrix of Δ relating
the unlabeled data to unlabeled data, and ΔUL relates unlabeled data to la-
beled data. For binary classification, we obtain a classifier based on the mapping
function f and use it to predict the labels of unlabeled examples.

ŷi = I[f(xi)] =

{
1,f(xi) > θ

−1,otherwise
(3)

For balanced problem, θ is typically chosen to be 0. Based on the discussion in
introduction, in universal learning over related but different distributions, the
typical graph transduction suffers from label unsmooth problem that the initial
labels stand on the wrong locations in the domain of testing data.

2.2 Adaptive Graph Transduction by Maximizing Unlabeled Data
Margin

As follows, we focus on how to use sample selection to resolve the unsmooth
problem based on maximal margin principal. Let Q be a posterior distribution
over hypothesis space H. Then the “Q-weighted majority vote Bayes classifier
BQ” is

BQ(x) = I[Eh∼Qh(x)] (4)

where I[x] = 1 if x > θ and -1 otherwise, and h is a classifier in H according to
the distribution Q. Thus, the unlabeled data margin is:

mQ(xi) = |Eh∼Q�h(xi) = 1�− Eh∼Q�h(xi) = −1�|
= |1− 2Eh∼Q�h(xi) 
= yi�| (5)

where �π� denotes the probability that π is true. In graph transduction,

mQ(xi) = ||f(xi)| − |1− |f(xi)||| (6)
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And the unlabeled margin on whole unlabeled data set is mQ(U) =∑�+u
i=�+1mQ(xi). From the intuition in introduction (formally analyzed in

Section 3), graph transduction can be generalized by maximizing mQ(U) by
performing sample selection in training set. This can be formulated as

SL = arg max
S

′
L⊆L

mQ(U)S
′
L,h (7)

where SL is the selected labeled subset used for building a maximal margin
classifier h. To obtain SL, we employ a greedy sequence searching procedure in
the labeled data. Suppose the current mapping function is f . When we select
one more labeled example (xk, yk)∈L, we denote the new mapping function as
f+k. Then, in each iteration, we select one labeled example from L as follows:

k = arg max
k′

(
�+u∑

i=�+1

||fk
′

(xi)| − |1− |fk
′

(xi)|||) (8)

The above equation means that we select those data that can build a classifier
to maximize the unlabeled data margin. This procedure is a joint optimization
that simultaneously (1) maximizes the unlabeled data margin and (2) minimizes
the harmonic function. Detailed description of MarginGraph can be found in Al-
gorithm 1. In summary, it runs iteratively. In the beginning, the selected labeled
data set SL is empty. In each iteration, one labeled example is selected according
to Eq(8), and added into the training set SL in order to obtain the maximal un-
labeled margin. Then the graph transduction is invoked on the new training set
to calculate the harmonic function, as well as, to find a new mapping function
f+k. After the iteration, we combine all mapping functions f calculated during
each iteration and obtain an averaging ensemble classifier which aims to remove
the bias by any single graph and reduce the prediction error. In order to keep
balanced prior class distribution, we select one positive and one negative labeled
example alternatively during the iterative procedure. To practically guarantee
the margin mQ(U) is not small, we propose a criterion to stop the iteration. If
the following Eq(9) holds, we stop the iterative procedure.

mQ(U)∗ −mQ(U)k ≥ εmQ(U)∗ (9)

where mQ(U)k is the margin value after we select the kth labeled data point,
mQ(U)∗ is the maximal margin value obtained in the procedure so far and ε is
a real-value in (0, 1] to control the iterations.

2.3 Implementation Details

At each iteration, we need to compute the mapping function f+k after adding
(xk, yk) into the selected labeled data set. We discuss an efficient implementation
to retrain and reduce the computational cost. We first “suppose” data from both
L and U are all “unlabeled”. Thus the problem can be treated as labeling the
selected data from L to maximize the margin on U . Denote the unlabeled data
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Input: L,U ,maxIt
Output: BQ: Averaging ensemble or Bayes classifier
SL = {}, f0(xi) = 0, xi ∈ U ;1

for i = 1 to maxIt do2

Select one point (xk, yk) ∈ L using Eq(8), SL=SL∪(xk, yk);3

Calculate fi using Eq(2) based on SL and new margin value4

mQ(U)k;
IF Eq(9) holds Break. ;5

Otherwise, Update the maximal margin mQ(U)∗ = mQ(U)k;6

end7

return BQ = I [ 1
maxIt

∑maxIt

i=1 fi];8

Fig. 1. MarginGraph

in U and the unselected labeled data in L as U , and the selected data from L as
L with the labels YL. Suppose we are labeling the kth point from L, once we give
the point xk label yk, we obtain: f+k

U = fU + (yk − fk) (Δ−1
UU ).k

(Δ−1
UU )kk

, where (Δ−1
UU ).k

is the kth column of the inverse Laplacian on “unlabeled” data U , and (Δ−1
UU )kk

is the kth diagonal element of the same matrix. Importantly, this means updating
the values of mapping function f is a linear computation. When one “unlabeled”
example in L is labeled, the corresponding row and column are removed from
Δ−1

UU , so Δ−1
UU should be recomputed. Instead of naively taking the inverse, there

are efficient algorithms to compute in linear time [8]. In summary, the proposed
approach has computation complexity of O(� ∗ (�+ u) ∗maxIt).

3 Formal Analysis

Theorem 1 shows that the error of a classifier across different distributions is
bounded. Lemma 1 shows that this bound is reduced as margin being max-
imized. Finally, Lemma 2 demonstrates that the averaging ensemble achieves
larger margin than any single classifiers, implying that the ensemble classifier
has a lower error bound.

To measure the difference between training and test distributions, we define
a distance based on Eq(1): dHΦH(ptr, pte), where HΦH = {h(x)�h

′
(x) : h, h

′ ∈
H} represents the symmetric difference hypothesis space, and � denotes the
XOR operator. A hypothesis h ∈ HΦH assigns label +1 to x when there is a
pair of hypotheses in H that disagree on x. Thus, AHΦH is the subset of AH for
some h, h

′ ∈H, such that AHΦH = {x|x∈X,h(x)
=h′
(x)}. Let εtr(h, h

′
) be the

probability that a hypothesis h disagrees with another one h
′

according to the
marginal distribution ptr(x). Then

εtr(h, h
′
) = Ex∼ptr(x)|h(x)− h

′
(x)| (10)

In particular, if f∗ : X → Y denotes the (unknown) target (labeling) function,
εtr(h) = εtr(h, f∗

tr) represents the risk of the hypothesis h. Similarly, εte(h, h
′
)
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and εte(h) are the corresponding definitions for the test distribution. It can be
shown that for any hypotheses h, h

′ ∈ H [3],

|εtr(h, h
′
)− εte(h, h

′
)| � 1

2
dHΦH(ptr, pte) (11)

Since the margin evaluates the confidence of a classifier with regard to its deci-
sion [5], we define an ideal hypothesis as the one that maximizes the margin on
unlabeled data.

h∗ = arg max
h∈H

(mQ(U)h) (12)

where mQ(U)h is the margin obtained by classifier h. Following these definitions,
the bound for the risk of any classifiers h can be established when the distribu-
tions of training and test data are related but different. The bound is adopted
from Theorem 1 of [3], but with different terms.

Theorem 1. Let H be a hypothesis space of VC-dimension dV C and Utr and
Ute be unlabeled samples of size m each, drawn according to ptr(x) and pte(x),
respectively. Let d̂HΦH be the empirical distance on Utr and Ute. With probability
of at least 1− δ (over the choice of the samples), for any classifiers h ∈ H,

εte(h) ≤ εtr(h, h∗) + εte(h∗) +
1
2
d̂HΦH(Utr, Ute) + 4

√
2dV C log (2m) + log (4

δ )
m

Proof. The proof uses the inequality Eq(11). Also, we assume the triangle in-
equality holds for classification error [3]. It implies for any functions f1, f2 and
f3, ε(f1, f2) ≤ ε(f1, f3) + ε(f2, f3). Thus,

εte(h) ≤ εte(h, h∗) + εte(h∗)
≤ εtr(h, h∗) + εte(h∗) + |εtr(h, h∗)− εte(h, h∗)|

≤ εtr(h, h∗) + εte(h∗) +
1
2
dHΦH(ptr, pte)

≤ εtr(h, h∗) + εte(h∗) +
1
2
d̂HΦH(Utr, Ute) + 4

√
2d log (2m) + log (4

δ )
m

. �

Note that this bound is constructed by three terms. The first term, εtr(h, h∗)
represents the training error in terms of approximating the ideal hypothesis h∗.
The second is the risk of h∗. Recall the definition of Eq(12), h∗ just relies on the
test data set and is independent from any algorithms. When the unlabeled data
are given, the risk of h∗ is fixed. In addition, the third term is the distance be-
tween the training and test distributions, dHΦH(ptr, pte). If the training and test
distributions are related, dHΦH can be bounded. Therefore, the bound mostly
relies on εtr(h, h∗).

The following lemma and analysis show when training and test distributions
are related, if a classifier h achieves larger margin, εtr(h, h∗) becomes smaller.
We assume that for a given instance x, the misclassification probabilities of h
and h∗ are smaller than 50%.
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Lemma 1. Let mQ(U)h denotes the unlabeled margin obtained by h, then
εtr(h, h∗) is related to |mQ(U)h∗ −mQ(U)h|.

Proof. By the definition of Eq(6),

|mQ(U)h∗ −mQ(U)h|
= u ∗ Exi∼pte{|1− 2�h∗(xi) 
= yi�| − |1− 2�h(xi) 
= yi�|}
= u ∗ Exi∼pte{(1− 2�h∗(xi) 
= yi�)− (1− 2�h(xi) 
= yi�)}
= u ∗ Exi∼pte2 ∗ (�h(xi) 
= yi�− �h∗(xi) 
= yi�)
= u ∗ Exi∼pte(�h(xi) 
= yi�− �h∗(xi) 
= yi�) + (�h∗(xi) = yi�− �h(xi) = yi�)

Obviously, when |mQ(U)h∗ −mQ(U)h| is small, h and h∗ give similar classifica-
tion probabilities. Thus, if the margins achieved by h∗ and h are close, εte(h, h∗)
is small. Recall the Eq(11), if the training and test distribution are related,
smaller εte(h, h∗) induces smaller εtr(h, h∗). In summary, if one classifier h has
larger unlabeled data margin, it will make the εtr(h, h∗) smaller. �

More specifically, εtr(h, h∗) and εte(h, h∗) are equivalent when the training and
test distributions are the same. Under this situation, the bound becomes εte(h) ≤
εte(h, h∗)+εte(h∗). That implies, when the distributions of training and test data
are the same, the error bound of the maximal margin classifier is the lowest.

As follows, we analyse the idea behind the averaging ensemble.

Lemma 2. Unlabeled data margin achieved by averaging ensemble is not smaller
than any single classifiers.

Proof. Let hE = Eh∼Qh(x) denotes the averaging ensemble where Q is the
posterior distribution of selecting h. And let dm(h, h∗) denotes the difference
between the margins obtained by a classifier h and the ideal hypothesis h∗

dm(h, h∗) = Eh∼Q,xi∼pte(mQ(xi)h −mQ(xi))2

= Eh∼Q,xi∼pte(mQ(xi)2h −mQ(xi)h ∗mQ(xi) +mQ(xi)2)

The margin difference between the ensemble hE and the ideal hypothesis h∗ is

dm(hE , h
∗) = Exi∼pte(Eh∼QmQ(xi)h −mQ(xi))2

= Exi∼pte((Eh∼QmQ(xi)h)2 − Eh∼QmQ(xi)h ∗mQ(xi) +mQ(xi)2)
≤ dm(h, h∗) as E[f(x)]2 ≤ E[f(x)2] �

Therefore, on average, margin distance between averaging ensemble and ideal
hypothesis h∗ is smaller than any single classifiers. In other words, the ensem-
ble achieves larger margin. According to Lemma 1, the difference between the
ensemble and ideal hypothesis h∗ is smaller, and the bound is lower.

In summary, the error of a classifier can be bounded in universal learning and
the proposed maximal margin classifier has a lower bound. Moreover, averaging
ensemble further reduces the prediction error on the unlabeled data.



686 E. Zhong et al.

Table 2. Data Set Summary

Data Set #Training #Test Description Data Set #Training #Test Description
Transfer learning

O vs Pe 500 500 Documents Sheep 61 65 Web pages
O vs Pl 500 500 from different Biomedical 61 131 with different
Pe vs Pl 500 500 sub categories Goats 61 70 contents

Sample Selection Bias Correction Uncertainty Mining
Ionosphere 34 317 ColonTumor 30 35 Training and
Diabetes 80 688 Samples with CNS 30 30 Test set

Haberman 30 276 feature bias Leukemia 30 42 contain different
Wdbc 30 539 ProstateCancer 30 106 Gaussian noises

4 Experiment

MarginGraph is evaluated in three different scenarios of universal learning: trans-
fer learning, sample selection bias correction and uncertainty mining. For each
scenario, several frequently used data collections are selected. Results show that
MarginGraph can reduce the domain adaptation risk significantly. Both maximal
margin principal and ensemble play an important role in its performance.

4.1 Experiments Setting

The proposed approach is compared against different state-of-art algorithms
specifically designed for each scenario (transfer learning, etc), as well as, the
original graph transduction algorithm [7]. As a fair comparison, the original
graph transduction is implemented in two different ways. The first uses the en-
tire training data set, and the second one chooses a randomly selected sample
whose size is equal to the number of examples chosen by MarginGraph. For nam-
ing convenience, the first one is called Graph, and the second as RandGraph. In
transfer learning, CDSC [2] is selected as the comparative method. Its main idea
is to find a mapping space which optimizes over consistency measure between
the out-domain supervision and in-domain intrinsic structure. In sample selec-
tion bias correction, two approaches BRSD-BK and BRSD-DB [1] are adopted.
Both methods correct the bias through structural discovery and re-balancing
using unlabeled data. For both CDSC and BRSD, we use Graph as their base
classifiers. For the proposed method, the number of iterations is chosen to be
nt ∗ 2, where nt is the number of labeled samples of the minority class. In ad-
dition, we set ε = 0.1 for the stop criterion. The analysis of parameters can be
found in Section 4.3. Both accuracy and AUC are reported as the evaluation
metrics. Due to the randomness of obtained data set on sample selection bias
and uncertainty mining tasks, the results below are averaged over 10 runs. The
algorithm implementations are based on Weka [9].

4.2 Experiments Procedure

The descriptions, pre-processing procedures of different scenarios and the
experiment results are presented below.
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Table 3. Accuracy and AUC in Transfer Learning Data Set (%)

Methods
O vs Pe O vs Pl Pe vs Pl Biomedical Goats Sheep

Reuters-21578 SyskillWebert
Accuracy

Graph 0.682 0.672 0.698 0.687 0.586 0.708
RandGraph 0.632 0.648 0.664 0.656 0.529 0.677
CDSC 0.704 0.720 0.736 0.610 0.586 0.677
MarginGraph 0.752 0.810 0.780 0.740 0.743 0.815

AUC
Graph 0.773 0.723 0.677 0.600 0.562 0.720
RandGraph 0.719 0.715 0.652 0.561 0.510 0.587
CDSC 0.783 0.799 0.682 0.582 0.523 0.536
MarginGraph 0.841 0.837 0.741 0.725 0.681 0.678

Transfer Learning. Two data collections from two different domains are em-
ployed. Among them, Reuters-21578 [10] is the primary benchmark of text cat-
egorization, and SyskillWebert [10] is the standard data set used to test web
page ratings. Reuters-21578 collection is formed by different news with a hier-
archial structure where it contains five top categories of news wire articles, and
each main category contains several sub categories. Three top categories, “orgs”,
“people” and “places” are selected in our study. All of the subcategories from
each category are divided into two parts, one in-domain and one out-domain.
They have different distributions and are approximately equal in size. Details
are summarized in Table 2. The learning objective aims to classify articles into
top categories. SyskillWebert collection is formed by the HTML source of web
pages plus the a user rating (“hot” or “not hot”) on those web pages. It contains
four separate subjects belonging to different topics. In the experiment, we ran-
domly reserve “Bands-recording artists” as out-domain and the other three as
in-domain data (Table 2). The learning task is to predict the user’s preferences
for the given web pages.

Table 3 presents accuracy and AUC for each domain transfer data set, given
by Graph, RandGraph, CDSC and the proposed algorithm MarginGraph. It is
evident that MarginGraph achieves the best performance (accuracy and AUC)
in 11 out of 12 runs. Due to “labeling unsmooth problem” caused by distribu-
tion difference between the training and test data, both Graph and RandGraph
fail to make correct predictions most of the time. To be specific, they achieve
accuracies just no more than 71% on the Reuters and SyskillWebert collections.
By considering information from both domains, CDSC gets better performance
in that it boosts the accuracy by 2% to 8%. However, the proposed approach,
MarginGraph, has the highest accuracy in all data set, and highest AUC in 5 out
of 6 data set. We notice that MarginGraph performs better than both Graph and
RandGraph at least 7% in accuracy on most data set. Specifically, it achieves as
high as 16% better than these baseline methods on the Goat data set. The better
performance of MarginGraph than CDSC can be ascribed to both the maximal
margin based sample selection and ensemble strategy. As analyzed, these criteri-
ons can give a low prediction risk. This, from the empirical perspective, provides
justification to the analysis in Section 3.
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Table 4. Accuracy and AUC in Sample Selection Bias Data Set (%)

Methods Ionosphere Diabetes Haberman Wdbc Ionosphere Diabetes Haberman Wdbc
Accuracy StDev

Graph 0.642 0.602 0.649 0.892 0.028 0.034 0.074 0.001
RandGraph 0.590 0.601 0.586 0.890 0.070 0.068 0.002 0.001
BRSD-BK 0.699 0.643 0.631 0.890 0.038 0.043 0.004 0.002
BRSD-DB 0.649 0.624 0.627 0.887 0.010 0.018 0.059 0.887
MarginGraph 0.817 0.709 0.717 0.896 0.077 0.259 0.295 0.002

AUC StDev
Graph 0.701 0.583 0.582 0.962 0.030 0.069 0.091 0.001
RandGraph 0.605 0.554 0.511 0.961 0.010 0.115 0.003 0.002
BRSD-BK 0.726 0.671 0.561 0.962 0.053 0.061 0.012 0.001
BRSD-DB 0.686 0.634 0.551 0.962 0.008 0.032 0.075 0.001
MarginGraph 0.654 0.650 0.592 0.963 0.259 0.063 0.276 0.001

Table 5. Accuracy and AUC in Uncertainty Mining Data Set (%)

Methods CNS ColonTumor Leukemia ProCancer CNS ColonTumor Leukemia ProCancer
Accuracy StDev

Graph 0.647 0.813 0.928 0.762 0.078 0.032 0.042 0.040
RandGraph 0.566 0.838 0.916 0.721 0.461 0.85 0.88 0.741
MarginGraph 0.713 0.787 0.944 0.794 0.078 0.026 0.042 0.029

AUC StDev
Graph 0.606 0.761 0.914 0.762 0.086 0.035 0.020 0.052
RandGraph 0.444 0.740 0.910 0.698 0.154 0.075 0.035 0.126
MarginGraph 0.640 0.792 0.930 0.782 0.036 0.063 0.015 0.031

Sample Selection Bias Correction. Four data sets from UCI Repository [10]
are selected. “Haberman” aims to predict the survival of patients who had under-
gone surgery for breast cancer. “Ionosphere” is to detect which radar is “Good”
or “Bad” based on the radar signals information. “Wdbc” contains digitized
image with characteristics of the cell nuclei in a fine needle aspirate of breast
masses. “Diabetes” records test information about diabetes of patients and the
task is to figure out which patients have diabetes. To generate the sample se-
lection bias data set, we first randomly select 50% of the features, and then we
sort the data set according to each of the selected features (dictionary sort for
categorical features and numerical sort for continuous). Then, we attain top in-
stances from every sorted list as training set, with “#Training” instances, and
use the remain examples as test set.

Table 4 summarizes the accuracy, AUC as well as their standard deviations
of baselines: Graph, RandGraph, BRSD-BK, BRSD-DB, and the proposed al-
gorithm MarginGraph on four biased data sets. Clearly, MarginGraph achieves
higher accuracies (from 5% to 15%) for each data set than the corresponding
baseline approaches. For example, on the Haberman data set, the accuracy has
been improved from no more than 65% to 71%. In AUC, MarginGraph wins
Graph at 3 rounds and just loses at 1 comparison. Importantly, MarginGraph
outperforms BRSD-BK and BRSD-DB consistently, specifically designed for bias
correction, in accuracy. Moreover, MarginGraph performs compatibly with them
in AUC, 2 wins and 2 loses. These results demonstrate that MarginGraph also
has good generalization in sample selection bias task. This is attributed to the
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ensemble strategy, which makes the classifier more robust to bias [6], and the
maximal margin strategy guarantees error bound of MarginGraph is low when
the test and training distributions are related as shown in Section 3.

Uncertainty Mining. Four biomedical and gene expression data sets are se-
lected from Kent Ridge Biomedical Repository [11] for this comparison. “Colon-
Tumor” contains 62 samples collected from colon-cancer patients. “Central
Nervous System(CNS)” aims to detect which patients are survivors or failures.
“Leukemia” is the data set about classifying subtypes of pediatric acute lym-
phoblastic leukemia. “ProstateCancer” is about the tumor versus normal classi-
fication. Each of them is a typical example of high dimensional, low sample size
(HDLSS) problem. To generate the uncertainty, we randomly partition the data
set into training and test parts first. Then, we form two fm-dimension Gaussian
noises with different means and variances where fm is the dimensions of the data
set, and add them into two parts of data set separately. Thus, we obtain four
uncertain data sets where the training set and test set contain different noises
(Table 2).

The accuracy and AUC of the proposed method, and original label prop-
agation on uncertainty mining can be found in Table 5. Among the 4 tasks,
MarginGraph outperforms the baseline by 3-1 in accuracy and 4-0 in AUC with
smaller standard deviations. In particular, on the CNS data set, MarginGraph
performs better than the baseline by as much as 6% in accuracy and 4% in AUC.
The performance improvement results from the adaptation of maximal margin
strategy that makes the decision boundary go through the low density region.
In addition, the averaging ensemble strategy increases the resilience of the base
classifier for feature noises [12].

4.3 Parameter Analysis

Three extended experiments were conducted on the SyskillWebert collection
to test the parameter sensitivity and the relationship between the unlabeled
data margin and prediction accuracy. As discussed in Section 2, there are two
parameters to run MarginGraph, the parameter ε for the stopping criterion, as
well as maxIt, the maximal number of iterations.

Figure 2(a) shows the different AUC and accuracy vs. different values of ε. We
observe that AUC is insensitive to the value of ε, but the accuracy drops down
when ε becomes large. The reason is that ε determines the threshold of average
margin. Clearly, if the margin is too small, the prediction risk will increase and
the accuracy will decrease, as analyzed in Section 3.

Figure 2(b) illustrates the relationship between the number of iterations and
prediction accuracies. Because both Graph and CDSC use the entire training
data, their accuracy results do not change. We observe that the accuracy of
MarginGraph increases but then drops when the number of iterations is more
than 40. That is because the number of labeled data is too few to build an ef-
fective classifier at the beginning. When useful labeled data are selected enough,
adding more labeled data will reduce the unlabeled data margin and create un-
smooth problems against the test data. This can be observed from Figure 2(c)
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(b) Accuracy over Number of Iterations
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Fig. 2. Parameter Analysis

that the margin also drops down when we select more than 40 labeled points.
However, we still see that MarginGraph achieves the best overall performance
even with a large number of iterations.

Figure 2(c) shows that the average margin and accuracy have similar trend
with a function of the number of selected examples. This implies that the same
set of sampled training examples that reduce the unlabeled data margin can also
reduce the prediction accuracy, and vice versa. Thus, the unlabeled data margin
is a good criterion to select samples for graph transduction in universal learning.

4.4 Margin Analysis

As shown in Section 3, maximal margin and ensemble are two main contributing
factors to guarantee a low error bound. As follows, we perform an additional ex-
periment to study each factor. For comparison, we adopt three other approaches,
similar with MarginGraph but with slight modifications. The first “MarginBase”



Universal Learning over Related Distributions 691

10 20 30 40 50 60 70
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y

Number of Iterations

Central Nervous System

 

 

MarginGraph
MarginBase
LowGraph
LowBase

10 20 30 40 50 60 70
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y

Number of Iterations

Colon Tumor

 

 

MarginGraph
MarginBase
LowGraph
LowBase

10 20 30 40 50 60 70 80 90
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y

Number of Iterations

Leukemia

 

 

MarginGraph
MarginBase
LowGraph
LowBase

Fig. 3. Margin Analysis

is the base classifier of MarginGraph in each iteration. The second is a “minimal
margin classifier” which selects samples for building a classifier with minimal un-
labeled data margin, called “LowBase”. The third one is the averaging ensemble
of LowBase, called “LowGraph”.

Figure 3 shows the relationship between the number of iterations and pre-
diction accuracies on three uncertain data set. It is obvious that MarginGraph
outperforms others in most cases. Especially, MarginGraph achieves the highest
accuracy during iterations in all three data sets. In addition, LowGraph out-
performs LowBase and MarginBase performs better than LowBase. That means
maximal margin is better than minimal margin and ensemble is better than any
single classifiers.

5 Related Works

Many solutions for transfer learning, sample selection bias correction and un-
certainty mining have been proposed previously, such as but not limited to
[2,13,1,14,15,16]. Among them, [2] designs a novel cost function from normal-
ized cut that test data supervision is regularized by training data structural
constraints. [13] learns a low-dimensional latent feature space where the distri-
butions between the training data and the test data are the same or close to each
other. [1] proposes to discover the natural structure of the test distribution, by
which different types of sample selection biases can be evidently observed and
then be reduced. [14] proposes a direct importance estimation method for sam-
ple selection bias that does not involve density estimation. [15] discusses a new
method for handling error-prone and missing data with the use of density based
approaches to data mining. [16] aims at minimizing the worst-case value of a
loss function, over all possible realizations of the uncertainty data within given
interval bounds. However, these methods are designed for each specific scenario,
and are not generalized over universal learning where training and testing data
are related but different. In our work, we do not distinguish transfer learning,
sample selection bias, uncertainty mining and the alike. There are several signif-
icant extensions to graph transduction. For example, recently [7] introduces a
semi-supervised learning framework based on Gaussian random fields and har-
monic functions. Previously, [8] combines the graph transduction and active
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learning, similar to the proposed work. However, the algorithm in this paper do
not require any expert to label examples. Most recently, [4] introduces a new
label propagation algorithm that can reliably minimize a cost function over both
a function on the graph and a binary label matrix.

6 Conclusion

We have introduced the “universal learning” framework to cover different for-
mulations where the training and test set are drawn from related but differ-
ent distributions. Explicit scenarios include transfer learning, sample selection
bias and uncertainty mining. We have proposed an adaptive graph transduction
method using unlabeled data maximum margin principle to solve universal learn-
ing tasks. Unlike prior work, the proposed framework implicitly encompasses all
three problem definitions and the alike. The same proposed solution can address
different scenarios. The maximum margin graph transduction works as a joint
optimization to maximize the unlabeled data margin and minimize the harmonic
function over unlabeled data in the same time. It is an iterative strategy that
removes the bias of any single graph. Formal analysis shows that the maximum
margin based sample selection strategy has good generality over testing data
with related but different distribution.

Empirical studies demonstrate that with different problem formulations in
universal learning, the proposed approach significantly improves the original
graph transduction. For transfer learning, it outperforms the original graph
transduction by as much as 16% in accuracy and 12% in AUC. For sample se-
lection bias correction, it achieves around 10% higher in accuracy in most cases.
For uncertainty mining, its performance is the highest in 7 out of 8 comparisons.
Most importantly, it consistently outperforms, by as much as much 10% in accu-
racy, than state-of-art approaches specifically designed for transfer learning and
bias correction. These base line methods include CDSC [2] for transfer learn-
ing, and BRSD-BK and BRSD-DB [1] for sample selection bias correction. The
main claims are that (1) universal learning framework provides a general formu-
lation to cover and study various real-world application scenarios where training
and testing data do not follow the same distribution, and (2) unlike previously
proposed methods that cover only one scenario, the proposed adaptive graph
transduction provides a more accurate solution to encompass all distribution
differences under universal learning, and this provides utility and ease of use.
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Abstract. Most accurate predictions are typically obtained by learning
machines with complex feature spaces (as e.g. induced by kernels). Unfor-
tunately, such decision rules are hardly accessible to humans and cannot
easily be used to gain insights about the application domain. Therefore,
one often resorts to linear models in combination with variable selection,
thereby sacrificing some predictive power for presumptive interpretabil-
ity. Here, we introduce the Feature Importance Ranking Measure (FIRM),
which by retrospective analysis of arbitrary learning machines allows to
achieve both excellent predictive performance and superior interpreta-
tion. In contrast to standard raw feature weighting, FIRM takes the
underlying correlation structure of the features into account. Thereby, it
is able to discover the most relevant features, even if their appearance in
the training data is entirely prevented by noise. The desirable properties
of FIRM are investigated analytically and illustrated in simulations.

1 Introduction

A major goal of machine learning — beyond providing accurate predictions — is
to gain understanding of the investigated problem. In particular, for researchers
in application areas, it is frequently of high interest to unveil which features
are indicative of certain predictions. Existing approaches to the identification
of important features can be categorized according to the restrictions that they
impose on the learning machines.

The most convenient access to features is granted by linear learning machines.
In this work we consider methods that express their predictions via a real-valued
output function s : X → R, where X is the space of inputs. This includes stan-
dard models for classification, regression, and ranking. Linearity thus amounts to

s(x) = w�x + b . (1)

One popular approach to finding important dimensions of vectorial inputs (X =
R

d) is feature selection, by which the training process is tuned to make sparse use
of the available d candidate features. Examples include �1-regularized methods
like Lasso [13] or �1-SVMs [1] and heuristics for non-convex �0-regularized formu-
lations. They all find feature weightings w that have few non-zero components,
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for example by eliminating redundant dimensions. Thus, although the resulting
predictors are economical in the sense of requiring few measurements, it can not
be concluded that the other dimensions are unimportant: a different (possibly
even disjoint) subset of features may yield the same predictive accuracy. Being
selective among correlated features also predisposes feature selection methods to
be unstable. Last but not least, the accuracy of a predictor is often decreased
by enforcing sparsity (see e.g. [10]).

In multiple kernel learning (MKL; e.g. [5,10]) a sparse linear combination of a
small set of kernels [8] is optimized concomitantly to training the kernel machine.
In essence, this lifts both merits and detriments of the selection of individual
features to the coarser level of feature spaces (as induced by the kernels). MKL
thus fails to provide a principled solution to assessing the importance of sets of
features, not to speak of individual features. It is now urban knowledge that �1-
regularized MKL can even rarely sustain the accuracy of a plain uniform kernel
combination [2].

Alternatively, the sparsity requirement may be dropped, and the j-th compo-
nent wj of the trained weights w may be taken as the importance of the j-th
input dimension. This has been done, for instance, in cognitive sciences to under-
stand the differences in human perception of pictures showing male and female
faces [4]; here the resulting weight vector w is relatively easy to understand for
humans since it can be represented as an image.

Again, this approach may be partially extended to kernel machines [8], which
do not access the features explicitly. Instead, they yield a kernel expansion

s(x) =
n∑

i=1

αik(xi,x) + b , (2)

where (xi)i=1,...,n are the inputs of the n training examples. Thus, the weighting
α ∈ R

n corresponds to the training examples and cannot be used directly for the
interpretation of features. It may still be viable to compute explicit weights for
the features Φ(x) induced by the kernel via k(x,x′) = 〈Φ(x), Φ(x′)〉, provided
that the kernel is benign: it must be guaranteed that only a finite and limited
number of features are used by the trained machine, such that the equivalent
linear formulation with

w =
n∑

i=1

αiΦ(xi)

can efficiently be deduced and represented.
A generalization of the feature weighting approach that works with general

kernels has been proposed by Üstün et. al. [14]. The idea is to characterize input
variables by their correlation with the weight vector α. For a linear machine as
given by (1) this directly results in the weight vector w; for non-linear functions
s, it yields a projection of w, the meaning of which is less clear.

A problem that all above methods share is that the weight that a feature
is assigned by a learning machine is not necessarily an appropriate measure of
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its importance. For example, by multiplying any dimension of the inputs by
a positive scalar and dividing the associated weight by the same scalar, the
conjectured importance of the corresponding feature can be changed arbitrarily,
although the predictions are not altered at all, i.e. the trained learning machine
is unchanged. An even more practically detrimental shortcoming of the feature
weighting is its failure to take into account correlations between features; this
will be illustrated in a computational experiment below (Section 3).

Further, all methods discussed so far are restricted to linear scoring functions
or kernel expansions. There also exists a range of customized importance mea-
sures that are used for building decision trees and random forests (see e.g. [11,12]
for an overview).

In this paper, we reach for an importance measure that is “universal”: it shall
be applicable to any learning machine, so that we can avoid the clumsiness of
assessing the relevance of features for methods that produce suboptimal predic-
tions, and it shall work for any feature. We further demand that the importance
measure be “objective”, which has several aspects: it may not arbitrarily choose
from correlated features as feature selection does, and it may not be prone to
misguidance by feature rescaling as the weighting-based methods are. Finally,
the importance measure shall be “intelligent” in that it exploits the connections
between related features (this will become clearer below).

In the next section, we briefly review the state of the art with respect to these
goals and in particular outline a recent proposal, which is, however, restricted
to sequence data. Section 2 exhibits how we generalize that idea to continuous
features and exhibits its desirable properties. The next two sections are devoted
to unfolding the math for several scenarios. Finally, we present a few computa-
tional results illustrating the properties of our approach in the different settings.
The relevant notation is summarized in Table 1.

Table 1. Notation

symbol definition reference
X input space
s(x) scoring function X → R

w weight vector of a linear scoring function s equation (1)
f feature function X → R equation (6)
qf (t) conditional expected score R→ R definition 1
Qf feature importance ranking measure (firm) ∈ R definition 2
Q vector ∈ R

d of firms for d features subsection 2.4
Σ, Σj• covariance matrix, and its jth column

1.1 Related Work

A few existing feature importance measures satisfy one or more of the above
criteria. One popular “objective” approach is to assess the importance of a vari-
able by measuring the decrease of accuracy when retraining the model based on
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a random permutation of a variable. However, it has only a narrow application
range, as it is computationally expensive and confined to input variables.

Another approach is to measure the importance of a feature in terms of a
sensitivity analysis [3]

Ij = E

[(
∂s

∂xj

)2

Var [Xj ]

]1/2

. (3)

This is both “universal” and “objective”. However, it clearly does not take the
indirect effects into account: for example, the change ofXj may imply a change of
some Xk (e.g. due to correlation), which may also impact s and thereby augment
or diminish the net effect.

Here we follow the related but more “intelligent” idea of [17]: to assess the
importance of a feature by estimating its total impact on the score of a trained
predictor. While [17] proposes this for binary features that arise in the context
of sequence analysis, the purpose of this paper is to generalize it to real-valued
features and to theoretically investigate some properties of this approach. It
turns out (proof in Section 2.2) that under normality assumptions of the input
features, FIRM generalizes (3), as the latter is a first order approximation of
FIRM, and because FIRM also takes the correlation structure into account.

In contrast to the above mentioned approaches, the proposed feature impor-
tance ranking measure (FIRM) also takes the dependency of the input features
into account. Thereby it is even possible to assess the importance of features
that are not observed in the training data, or of features that are not directly
considered by the learning machine.

1.2 Positional Oligomer Importance Matrices [17]

In [17], a novel feature importance measure called Positional Oligomer Impor-
tance Matrices (POIMs) is proposed for substring features in string classifica-
tion. Given an alphabet Σ, for example the DNA nucleotides Σ = {A, C, G, T},
let x ∈ ΣL be a sequence of length L. The kernels considered in [17] induce a
feature space that consists of one binary dimension for each possible substring y
(up to a given maximum length) at each possible position i. The corresponding
weight wy,i is added to the score if the substring y is incident at position i in x.
Thus we have the case of a kernel expansion that can be unfolded into a linear
scoring system:

s(x) =
∑
y,i

wy,iI {x[i] = y} , (4)

where I {·} is the indicator function. Now POIMs are defined by

Q′(z, j) := E [ s(X) | X[j] = z ]− E [s(X)] , (5)

where the expectations are taken with respect to a D-th order Markov
distribution.



698 A. Zien et al.

Intuitively, Q′ measures how a feature, here the incidence of substring z at
position j, would change the score s as compared to the average case (the un-
conditional expectation). Although positional sub-sequence incidences are binary
features (they are either present or not), they posses a very particular correlation
structure, which can dramatically aid in the identification of relevant features.

2 The Feature Importance Ranking Measure (FIRM)

As explained in the introduction, a trained learner is defined by its output or
scoring function s : X → R . The goal is to quantify how important any given
feature

f : X → R (6)

of the input data is to the score. In the case of vectorial inputs X = R
d, examples

for features are simple coordinate projections fj(x) = xj , pairs fjk(x) = xjxk or
higher order interaction features, or step functions fj,τ (x) = I {xj > τ} (where
I {·} is the indicator function).

We proceed in two steps. First, we define the expected output of the score
function under the condition that the feature f attains a certain value.

Definition 1 (conditional expected score). The conditional expected score
of s for a feature f is the expected score qf : R → R conditional to the feature
value t of the feature f :

qf (t) = E [ s(X) | f(X) = t ] . (7)

We remark that this definition corresponds — up to normalization — to the
marginal variable importance studied by van der Laan [15]. A flat function qf
corresponds to a feature f that has no or just random effect on the score; a
variable function qf indicates an important feature f .

Consequently, the second step of FIRM is to determine the importance of a
feature f as the variability of the corresponding expected score qf : R → R.

Definition 2 (feature importance ranking measure). The feature impor-
tance Qf ∈ R of the feature f is the standard deviation of the function qf :

Qf :=
√

Var [qf (f(X))] =
(∫

R

(
qf (t)− q̄f

)2
Pr (f(X) = t) dt

) 1
2

, (8)

where q̄f := E [qf (f(X))] =
∫

R
qf (t)Pr (f(X) = t) dt is the expectation of qf .

In case of (i) known linear dependence of the score on the feature under investi-
gation or (ii) an ill-posed estimation problem (8) — for instance, due to scarce
data —, we suggest to replace the standard deviation by the more reliably esti-
mated slope of a linear regression. As we will show later (Section 2.3), for binary
features identical feature importances are obtained by both ways anyway.
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2.1 Properties of FIRM

FIRM generalizes POIMs. As we will show in Section Section 2.3, FIRM indeed
contains POIMs as special case. POIMs, as defined in (5), are only meaningful
for binary features. FIRM extends the core idea of POIMs to continuous features.

FIRM is “universal”. Note that our feature importance ranking measure (FIRM)
can be applied to a very broad family of learning machines. For instance, it
works in both classification, regression and ranking settings, as long as the task
is modeled via a real-valued output function over the data points. Further, it is
not constrained to linear functions, as is the case for l1-based feature selection.
FIRM can be used with any feature space, be it induced by a kernel or not. The
importance computation is not even confined to features that are used in the
output function. For example, one may train a kernel machine with a polynomial
kernel of some degree and afterwards determine the importance of polynomial
features of higher degree. We illustrate the ability of FIRM to quantify the im-
portance of unobserved features in Section 3.3.

FIRM is robust and “objective”. In order to be sensible, an importance measure
is required to be robust with respect to perturbations of the problem and in-
variant with respect to irrelevant transformations. Many successful methods for
classification and regression are translation-invariant; FIRM will immediately
inherit this property. Below we show that FIRM is also invariant to rescaling of
the features in some analytically tractable cases (including all binary features),
suggesting that FIRM is generally well-behaved in this respect. In Section 2.4
we show that FIRM is even robust with respect to the choice of the learning
method. FIRM is sensitive to rescaling of the scoring function s. In order to
compare different learning machines with respect to FIRM, s should be stan-
dardized to unit variance; this yields importances Q̃f = Qf/Var [s(X)]1/2 that
are to scale. Note, however, that the relative importance, and thus the ranking,
of all features for any single predictor remains fixed.

Computation of FIRM. It follows from the definition of FIRM that we need to
assess the distribution of the input features and that we have to compute condi-
tional distributions of nonlinear transformations (in terms of the score function
s). In general, this is infeasible. While in principle one could try to estimate all
quantities empirically, this leads to an estimation problem due to the limited
amount of data. However, in two scenarios, this becomes feasible. First, one can
impose additional assumptions. As we show below, for normally distributed in-
puts and linear features, FIRM can be approximated analytically, and we only
need the covariance structure of the inputs. Furthermore, for linear scoring func-
tions (1), we can compute FIRM for (a) normally distributed inputs (b) binary
data with known covariance structure and (c) — as shown before in [16] —
for sequence data with (higher-order) Markov distribution. Second, one can ap-
proximate the conditional expected score qf by a linear function, and to then
estimate the feature importance Qf from its slope. As we show in Section 2.3,
this approximation is exact for binary data.
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2.2 Approximate FIRM for Normally Distributed Features

For general score functions s and arbitrary distributions of the input, the compu-
tation of the conditional expected score (7) and the FIRM score (8) is in general
intractable, and the quantities can at best be estimated from the data. However,
under the assumption of normally distributed features, we can derive an analyt-
ical approximation of FIRM in terms of first order Taylor approximations. More
precisely, we use the following approximation.

Approximation. For a normally random variable X̃ ∼ N
(
μ̃, Σ̃

)
and a differ-

entiable function g : R
d → R

p, the distribution of g(X) is approximated by its
first order Taylor expansion:

g(X) ∼ N
(
g(μ̃), JΣ̃J�

)
with

J =
∂g

∂x

∣∣∣∣
x=μ̃

Note that if the function g is linear, the distribution is exact.
In the course of this subsection, we consider feature functions fj(x) = xj (an

extension to linear feature functions f(x) = x�a is straightforward.)
First, recall that for a normally distributed random variable X ∼ N (0,Σ),

the conditional distribution of X |Xj = t is again normal, with expectation

E [ X | Xj = t ] =
t

Σjj
Σj• =: μ̃j .

Here Σj• is the jth column of Σ.
Now, using the above approximation, the conditional expected score is

qf (t) ≈ s (μ̃j) = s((t/Σjj)Σj•)

To obtain the FIRM score, we apply the approximation again, this time to the
function t "→ s(((t/Σjj)Σj•). Its first derivative at the expected value t = 0
equals

J =
1

Σjj
Σ�

j•
∂s

∂x

∣∣∣∣
x=0

This yields

Qj ≈

√
1

Σjj

(
Σ�

j•
∂s

∂x

∣∣∣∣
x=0

)2

(9)

Note the correspondence to (3) in Friedman’s paper [3]: If the features are un-
correlated, (9) simplifies to

Qj ≈

√√√√Σjj

(
∂s

∂xj

∣∣∣∣
xj=0

)2
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(recall that 0 = E[Xj ]). Hence FIRM adds an additional weighting that cor-
responds to the dependence of the input features. These weightings are based
on the true covariance structure of the predictors. In applications, the true co-
variance matrix is in general not known. However, it is possible to estimate
it reliably even from high-dimensional data using mean-squared-error optimal
shrinkage [7].

Note that the above approximation can be used to compute FIRM for the
kernel based score functions (2). E.g., for Gaussian kernels

kγ(x,xi) = exp

(
−‖x− xi‖2

γ2

)
we have

∂kγ(x,xi)
∂x

∣∣∣∣
x=0

=
2k(0,xi)

γ2 x�
i =

2e−(‖xi‖2/γ2)

γ2 x�
i

and hence obtain

∂s

∂x

∣∣∣∣
x=0

=
N∑

i=1

αiyi
2e−(‖xi‖2/γ2)

γ2 x�
i .

2.3 Exact FIRM for Binary Data

Binary features are both analytically simple and, due to their interpretability and
versatility, practically highly relevant. Many discrete features can be adequately
represented by binary features, even if they can assume more than two values.
For example, a categorical feature can be cast into a sparse binary encoding with
one indicator bit for each value; an ordinal feature can be encoded by bits that
indicate whether the value is strictly less than each of its possibilities. Therefore
we now try to understand in more depth how FIRM acts on binary variables.

For a binary feature f : X → {a, b} with feature values t ∈ {a, b}, let the
distribution be described by

pa = Pr (f(X) = a) , pb = 1− pa ,

and let the conditional expectations be qa = qf (a) and qb = qf (b). Simple algebra
shows that in this case Var [q(f(X))] = papb(qa−qb)2. Thus we obtain the feature
importance

Qf = (qa − qb)
√
papb . (10)

(By dropping the absolute value around qa − qb we retain the directionality of
the feature’s impact on the score.) Note that we can interpret firm in terms of
the slope of a linear function. If we assume that a, b ∈ R, the linear regression fit

(wf , cf ) = arg min
wf ,cf

∫
R

((wf t+ cf )− qf (t))2 dPr (t)
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the slope is wf = qa−qb

a−b . The variance of the feature value is Var [f(X)] =
papb(a − b)2. (10) is recovered as the increase of the linear regression function
along one standard deviation of feature value. As desired, the importance is
independent of feature translation and rescaling (provided that the score remains
unchanged). In the following we can thus (without loss of generality) constrain
that t ∈ {−1,+1}.

Let us reconsider POIMS Q′, which are defined in equation (5). We note that
Q′(b) := qb − q̄ = pa(qb − qa) =

√
pa/pbQ(b); thus Q(z, j) can be recovered as

Q(z, j) = Q′(z, j)
√

Pr (X[j] 
= z) /Pr (X[j] = z) .

Thus, while POIMs are not strictly a special case of FIRM, they differ only
in a scaling factor which depends on the distribution assumption. For a uni-
form Markov model (as empirically is sufficient according to [17]), this factor is
constant.

2.4 FIRM for Linear Scoring Functions

To understand the properties of the proposed measure, it is useful to consider it
in the case of linear output functions (1).

Independently Distributed Binary Data. First, let us again consider the
simplest scenario of uniform binary inputs, X ∼ unif({−1,+1}d); the inputs
are thus pairwise independent.

First we evaluate the importance of the input variables as features, i.e. we
consider projections fj(x) = xj . In this case, we immediately find for the condi-
tional expectation qj(t) of the value t of the j-th variable that qj(t) = twj + b.
Plugged into (10) this yields Qj = wj , as expected. When the features are inde-
pendent, their impact on the score is completely quantified by their associated
weights; no side effects have to be taken into account, as no other features are
affected.

We can also compute the importances of conjunctions of two variables, i.e.

fj∧k(x) = I {xj = +1 ∧ xk = +1} .

Here we find that qj∧k(1) = wj + wk + b and qj∧k(0) = − 1
3 (wj + wk) + b,

with Pr (fj∧k(X) = 1) = 1
4 . This results in the feature importance Qj∧k = (wj +

wk)/
√

3. This calculation also applies to negated variables and is easily extended
to higher order conjunctions.

Another interesting type of feature derives from the xor-function. For features
fj⊗k(x) = I {xj 
= xk} the conditional expectations vanish, qj⊗k(1) = qj⊗k(0) =
0. Here the FIRM exposes the inability of the linear model to capture such a
dependence.

Binary Data With Empirical Distribution. Here we consider the empirical
distribution as given by a set {xi | i = 1, . . . , n } of n data points xi ∈ {−1,+1}d:
Pr (X) = 1

n

∑n
i=1 I {X = xi}. For input features fj(x) = xj , this leads to qj(t) =
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1
njt

∑
i:xij=t w

�xi +b, where njt := | { i |xij = t } | counts the examples showing
the feature value t. With (10) we get

Qj = (qj(+1)− qj(−1))
√

Pr (Xj = +1)Pr (Xj = −1)

=
n∑

i=1

xij

nj,xij

(
w�xi

) √
nj,+1nj,−1

n2

It is convenient to express the vector Q ∈ R
d of all feature importances in matrix

notation. Let X ∈ R
n×d be the data matrix with the data points xi as rows.

Then we can write

Q = M�Xw with M ∈ R
n×d = 1n×dD0 + XD1

with diagonal matrices D0,D1 ∈ R
d×d defined by

(D1)jj =
1

2√nj,+1nj,−1
, (D0)jj =

nj,+1 − nj,−1

2n√nj,+1nj,−1
. (11)

With the empirical covariance matrix Σ̂ = 1
nX�X, we can thus express Q as

Q = D01d×nXw + nD1Σ̂w. Here it becomes apparent how the FIRM, as op-
posed to the plain w, takes the correlation structure of the features into account.
Further, for a uniformly distributed feature j (i.e. Pr (Xj = t) = 1

2 ), the stan-
dard scaling is reproduced, i.e. (D1)jj = 1

nI, and the other terms vanish, as
(D0)jj = 0.

For X containing each possible feature vector exactly once, corresponding to
the uniform distribution and thus independent features, M�X is the identity
matrix (the covariance matrix), recovering the above solution of Q = w.

Continuous Data With Normal Distribution. If we consider normally
distributed input features and assume a linear scoring function (1), the approx-
imations above (Section 2.2) are exact. Hence, the expected conditional score of
an input variable is

qj(t) =
t

Σjj
w�Σj• + b . (12)

With the diagonal matrix D of standard deviations of the features, i.e. with
entries Djj =

√
Σjj , this is summarized in

q = b1d + tD−2Σw .

Exploiting that the marginal distribution of X with respect to the j-th variable
is again a zero-mean normal, Xj ∼ N (0,Σjj), this yields Q = D−1Σw. For
uncorrelated features, D is the square root of the diagonal covariance matrix
Σ, so that we get Q = Dw. Thus rescaling of the features is reflected by a
corresponding rescaling of the importances — unlike the plain weights, FIRM
cannot be manipulated this way.
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As FIRM weights the scoring vector by the correlation D−1Σ between the
variables, it is in general more stable and more reliable than the information
obtained by the scoring vector alone. As an extreme case, let us consider a two-
dimensional variable (X1, X2) with almost perfect correlation ρ = cor(X1, X2) ≈
1. In this situation, L1-type methods like lasso tend to select randomly only one
of these variables, say w = (w1, 0), while L2-regularization tends to give almost
equal weights to both variables. FIRM compensates for the arbitrariness of lasso
by considering the correlation structure of X : in this case q = (w1, ρw1), which
is similar to what would be found for an equal weighting w = 1

2 (w,w), namely
q = (w(1 + ρ)/2, w(1 + ρ)/2).

Linear Regression. Here we assume that the scoring function s is the solution
of an unregularized linear regression problem, minw,b ‖Xw − y‖2; thus w =(
X�X

)−1
X�y.

Plugging this into the expression for Q from above yields

Q = D−1Σ
(
nΣ̂

)−1
X�y . (13)

For infinite training data, Σ̂ −→ Σ, we thus obtain Q = 1
nD−1X�y. Here it

becomes apparent how the normalization makes sense: it renders the importance
independent of a rescaling of the features. When a feature is inflated by a factor,
so is its standard deviation Djj , and the effect is cancelled by multiplying them.

3 Simulation Studies

We now illustrate the usefulness of FIRM in a few preliminary computational
experiments on artificial data.

3.1 Binary Data

We consider the problem of learning the Boolean formula x1 ∨ (¬x1 ∧ ¬x2). An
SVM with polynomial kernel of degree 2 is trained on all 8 samples that can
be drawn from the Boolean truth table for the variables (x1, x2, x3) ∈ {0, 1}3.
Afterwards, we compute FIRM both based on the trained SVM (w) and based
on the true labelings (y). The results are displayed in Figure 1.

Note that the raw SVM w can assign non-zero weights only to feature space
dimensions (here, input variables and their pairwise conjunctions, corresponding
to the quadratic kernel); all other features, here for example pairwise disjunc-
tions, are implicitly assigned zero. The SVM assigns the biggest weight to x2,
followed by x1 ∧ x2. In contrast, for the SVM-based FIRM the most important
features are x1 ∧¬x2 followed by ¬x1/2, which more closely resembles the truth.
Note that, due to the low degree of the polynomial kernel, the SVM not capa-
ble of learning the function “by heart”; in other words, we have an underfitting
situation. In fact, we have s(x) = 1.6̄ for (x1, x2) = (0, 1).
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Fig. 1. FIRMs and SVM-w for the Boolean formula x1∨(¬x1∧¬x2). The figures display
heat maps of the scores, blue denotes negative label, red positive label, white is neutral.
The upper row of heat maps shows the scores assigned to a single variable, the lower
row shows the scores assigned to pairs of variables. The first column shows the SVM-
w assigning a weight to the monomials x1, x2, x3 and x1x2, x1x3, x2x3 respectively.
The second column shows FIRMs obtained from the trained SVM classifier. The third
column shows FIRMs obtained from the true labeling.

The difference in y−FIRM and SVM-FIRM underlines that — as intended —
FIRM helps to understand the learner, rather than the problem. Nevertheless
a quite good approximation to the truth is found as displayed by FIRM on the
true labels, for which all seven 2-tuples that lead to true output are found (black
blocks) and only ¬x1 ∧ x2 leads to a false value (stronger score). Values where
¬x1 and x2 are combined with x3 lead to a slightly negative value.

3.2 Gaussian Data

Here, we analyze a toy example to illustrate FIRM for real valued data. We
consider the case of binary classification in three real-valued dimensions. The
first two dimensions carry the discriminative information (cf. Figure 2a), while
the third only contains random noise. The second dimension contains most dis-
criminative information and we can use FIRM to recover this fact. To do so, we
train a linear SVM classifier to obtain a classification function s(x). Now we use
the linear regression approach to model the conditional expected scores qi (see
Figure 2b-d for the three dimensions). We observe that dimension two indeed
shows the strongest slope indicating the strongest discriminative power, while
the third (noise) dimension is identified as uninformative.
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Fig. 2. Binary classification performed on continuous data that consists of two 3d
Gaussians constituting the two classes (with x3 being pure noise). From left to right a)
Of the raw data set x1, x2 are displayed. b) Score of the linear discrimination function
s(xi) (blue) and conditional expected score q1((xi)1) (red) for the first dimension of
x. c) s(xi) and q2((xi)2) for varying x2. As the variance of q is highest here, this is
the discriminating dimension (closely resembling the truth). d) s(xi) and q3((xi)3) for
varying x3. Note that x3 is the noise dimension and does not contain discriminating
information (as can be seen from the small slope of q3).

3.3 Sequence Data

As shown above (Section 1.2), for sequence data FIRM is essentially identical
to the previously published technique POIMs [17]. To illustrate its power for
sequence classification, we use a toy data set from [9]: random DNA sequences
are generated, and for the positive class the sub-sequence GATTACA is planted
at a random position centered around 35 (rounded normal distribution with
SD=7). As biological motifs are typically not perfectly conserved, the planted
consensus sequences are also mutated: for each planted motif, a single position is
randomly chosen, and the incident letter replaced by a random letter (allowing
for no change for ∼ 25% of cases). An SVM with WDS kernel [6] is trained on
2500 positive and as many negative examples.

Two analyses of feature importance are presented in Figure 3: one based on
the feature weights w (left), the other on the feature importance Q (right). It is
apparent that FIRM identifies the GATTACA feature as being most important at
positions between 20 and 50, and it even attests significant importance to the
strings with edit distance 1. The feature weighting w, on the other hand, fails
completely: sequences with one or two mutations receive random importance,
and even the importance of the consensus GATTACA itself shows erratic behavior.

The reason is that the appearance of the exact consensus sequence is not a
reliable feature, as is mostly occurs mutated. More useful features are substrings
of the consensus, as they are less likely to be hit by a mutation. Consequently
there is a large number of such features that are given high weight be the SVM.
By taking into account the correlation of such short substrings with longer ones,
in particular with GATTACA, FIRM can recover the “ideal” feature which yields
the highest SVM score. Note that this “intelligent” behavior arises automatically;
no more domain knowledge than the Markov distribution (and it is only 0-th
order uniform!) is required. The practical value of POIMs for real world biological
problems has been demonstrated in [17].
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Fig. 3. Feature importance analyses based on (left) the SVM feature weighting w
and (right) FIRM. The shaded area shows the ±1 SD range of the importance of
completely irrelevant features (length 7 sequences that disagree to GATTACA at every
position). The red lines indicate the positional importances of the exact motif GATTACA;
the magenta and blue lines represent average importances of all length 7 sequences
with edit distances 1 and 2, respectively, to GATTACA. While the feature weighting
approach cannot distinguish the decisive motiv from random sequences, FIRM identifies
it confidently.

4 Summary and Conclusions

We propose a new measure that quantifies the relevance of features. We take up
the idea underlying a recent sequence analysis method (called POIMs, [17]) — to
assess the importance of substrings by their impact on the expected score — and
generalize it to arbitrary continuous features. The resulting feature importance
ranking measure FIRM has invariance properties that are highly desirable for a
feature ranking measure. First, it is “objective”: it is invariant with respect to
translation, and reasonably invariant with respect to rescaling of the features.
Second, to our knowledge FIRM is the first feature ranking measure that is
totally “universal”, i.e. which allows for evaluating any feature, irrespective of
the features used in the primary learning machine. It also imposes no restrictions
on the learning method. Most importantly, FIRM is “intelligent”: it can identify
features that are not explicitly represented in the learning machine, due to the
correlation structure of the feature space. This allows, for instance, to identify
sequence motifs that are longer than the considered substrings, or that are not
even present in a single training example.

By definition, FIRM depends on the distribution of the input features, which
is in general not available. We showed that under various scenarios (e.g. binary
features, normally distributed features), we can obtain approximations of FIRM
that can be efficiently computed from data. In real-world scenarios, the under-
lying assumptions might not always be fulfilled. Nevertheless, e.g. with respect
to the normal distribution, we can still interpret the derived formulas as an
estimation based on first and second order statistics only.
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While the quality of the computed importances does depend on the accuracy of
the trained learning machine, FIRM can be used with any learning framework.
It can even be used without a prior learning step, on the raw training data.
Usually, feeding training labels as scores into FIRM will yield similar results
as using a learned function; this is natural, as both are supposed to be highly
correlated.

However, the proposed indirect procedure may improve the results due to
three effects: first, it may smooth away label errors; second, it extends the set of
labeled data from the sample to the entire space; and third, it allows to explicitly
control and utilize distributional information, which may not be as pronounced
in the training sample. A deeper understanding of such effects, and possibly their
exploitation in other contexts, seems to be a rewarding field of future research.

Based on the unique combination of desirable properties of FIRM, and the
empirical success of its special case for sequences, POIMs [17], we anticipate
FIRM to be a valuable tool for gaining insights where alternative techniques
struggle.

Acknowledgements. This work was supported in part by the FP7-ICT Pro-
gramme of the European Community under the PASCAL2 Network of Excellence
(ICT-216886), by the Learning and Inference Platform of the Max Planck and
Fraunhofer Societies, and by the BMBF grant FKZ 01-IS07007A (ReMind). We
thank Petra Philips for early phase discussion.

References

1. Bennett, K., Mangasarian, O.: Robust linear programming discrimination of two
linearly inseparable sets. Optimization Methods and Software 1, 23–34 (1992)

2. Cortes, C., Gretton, A., Lanckriet, G., Mohri, M., Rostamizedeh, A.: Outcome of
the NIPS 2008 workshop on kernel learning: Automatic selection of optimal kernels
(2008)

3. Friedman, J.: Greedy function approximation: a gradient boosting machine. Annals
of Statistics 29, 1189–1232 (2001)

4. Graf, A., Wichmann, F., Bülthoff, H.H., Schölkopf, B.: Classification of faces in
man and machine. Neural Computation 18, 143–165 (2006)

5. Lanckriet, G.R.G., Cristianini, N., Ghaoui, L.E., Bartlett, P., Jordan, M.I.: Learn-
ing the kernel matrix with semidefinite programming. Journal of Machine Learning
Research 5, 27–72 (2004)
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Abstract. This paper describes OTTHO (On the Tip of my THOught),
a system designed for solving a language game called Guillotine. The rule
of the game is simple: the player observes five words, generally unrelated
to each other, and in one minute she has to provide a sixth word, seman-
tically connected to the others. The system exploits several knowledge
sources, such as a dictionary, a set of proverbs, and Wikipedia to real-
ize a knowledge infusion process. The main motivation for designing an
artificial player for Guillotine is the challenge of providing the machine
with the cultural and linguistic background knowledge which makes it
similar to a human being, with the ability of interpreting natural lan-
guage documents and reasoning on their content. Our feeling is that the
approach presented in this work has a great potential for other more
practical applications besides solving a language game.

1 Background and Motivation

Words are popular features of many games, and they play a central role in many
language games. A language game is defined as a game involving natural lan-
guage in which word meanings play an important role. Language games draw
their challenge and excitement from the richness and ambiguity of natural lan-
guage. In this paper we present a system that tries to play the Guillotine game.
The Guillotine is a language game played in a show on RAI, the Italian National
Broadcasting Service, in which a player is given a set of five words (clues), each
linked in some way to a specific word that represents the unique solution of the
game. She receives one word at a time, and must choose between two different
proposed words: one is correct, the other one is wrong. Each time she chooses
the wrong word, the prize money is divided by half (the reason for the name
Guillotine). The five words are generally unrelated to each other, but each of
them is strongly related to the word representing the solution. Once the five
clues are given, the player has one minute to provide the solution. Often the
solution is not so intuitive and the player needs different knowledge sources to
reason and find the correct word.

The literature classifies games related to the language in two main categories:
1) word games and 2) language games. Word games do not involve true language,
because word meanings are not important. A typical example of word game is
Scrabble, in which players take turn placing letters in a grid to form words.

W. Buntine et al. (Eds.): ECML PKDD 2009, Part II, LNAI 5782, pp. 710–713, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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On the other side, language games, such as crosswords, strongly involve natural
language, since word meanings play an important role. WebCrow [1] is the first
solver for Italian crosswords and the first system that tackles a language game
using the Web as knowledge base. OTTHO (On the Tip of my THOught) is the
system we designed to solve the final stage of the Guillotine game. We assume
that the five words are provided at the same time, neglecting the initial phase of
choosing the words, that only concerns the reduction of the initial prize. With
respect to other language games, our “questions” or “clues” are single words,
and the answer is a single word. Co-occurrences of terms, providing the evidence
of a strong relationship between words, is the key factor for finding a set of
candidate words that likely contains the solution. Our system exploits different
knowledge sources, such as a dictionary, an encyclopedia, a list of proverbs, etc.,
as described in the next section.

2 OTTHO

Guillotine is a cultural and linguistic game. Therefore, we need to define an
extended knowledge base for representing the both the cultural and linguistic
background knowledge of the player. After a deep analysis of the correlation
between the clues and the solution, we chose to include the following knowledge
sources, ranked according to the frequency with which they were helpful in find-
ing the solution of the game:

1) Dictionary1
: the word representing the solution is contained in the descrip-

tion of a lemma or in some example phrases using that lemma;
2) Encyclopedia2

: as for the dictionary, the description of an article contains
the solution, but in this case it is necessary to process a more detailed descrip-
tion of information;
3) Proverbs and aphorisms3

: short pieces of text in which the solution is
found very close to the clues.

In order to exploit these types of sources, it is necessary to organize data gathered
from different sources of the same type, to process that information in order
to extract and model relationships between words, and to define a reasoning
mechanism that, given the clues, is able to select the correct solution of the
game among a set of candidate words.

The above mentioned types of sources have different characteristics, therefore
different heuristics should be used for building the model. Another important
aspect is to define a uniform representation of that model. We decided to use a
term-term matrix containing terms occurring in the modeled knowledge source;
each cell of the matrix contains the weight representing the degree of correlation
between the term on the row and the one on the column. The computation of
1 De Mauro Italian Dictionary: http://old.demauroparavia.it/
2 Italian Wikipedia: it.wikipedia.org
3 Italian proverbs: web.tiscali.it/proverbiitaliani
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the weights is different for each type of knowledge source and takes into account
several parameters, as described thoroughly in [2]. Natural language processing
techniques adopted for modeling the knowledge sources do not depend on the
language used, therefore OTTHO is language independent.

Modeling several knowledge sources realizes a sort of “knowledge infusion”
process into the system, in order to create a memory of world facts and lin-
guistic knowledge. An algorithm for retrieving the most appropriate pieces of
knowledge associated with the clues is needed to replicate the cognitive mecha-
nism of a human being in the most faithful way. We adopt a spreading activation
model [3], which consists of a network data structure of nodes interconnected
by links, that may be labeled and/or weighted and usually have directions. The
processing is initiated by labeling a set of source nodes with activation weights
and proceeds by iteratively propagating that activation to other nodes linked
to the source nodes. For each iteration, a termination condition is checked in
order to end the search process over the network. We decided to adopt this
model as reasoning mechanism of OTTHO. In the network for Guillotine, nodes
represent words, while links denote associations between words, obtained from
the knowledge sources. The spreading activation is triggered by words given as
clues. The activation of clues causes words with related meaning (as modeled in
the sources) to become active. At the end of the weight propagation process, the
most “active” words represent good candidates to be the solution of the game.

3 Into the Game

Our idea is to build a system which helps the user to solve the Guillotine game.
OTTHO is able to provide some suggestions in order to make easier finding
the correct answer. Figure 1 shows the OTTHO user interface. The clues are
visualized on the left of the window, while the suggestions are shown within the
text area on the bottom. A timer is displayed on the right of the window, which
warns the player on time to provide the answer.

Fig. 1. OTTHO user interface



OTTHO: On the Tip of My THOught 713

As shown in Figure 1, the clues are: doppio (double), carta (paper), soldi
(money), pasta and regalo (gift). The solution is pacco (pack), because carta
(paper) is a kind of pack (wad), the word pack composes a phrase with both
the words gift and double (gift-wrapped package/double pack). Moreover, un
pacco di soldi is an Italian expression which means “a lot of money”, and pasta
can be stored in a package. Notice that the word “pacco” appears in the list of
suggestions provided by the system. The accuracy of OTTHO was measured on
a dataset of N = 50 games attempted during the show by human players. A
game is solved when the solution occurs in the Candidate Solution List (CSL)
produced by OTTHO. Since the component that picks up the unique answer
from the CSL is not yet complete, the evaluation is based on the first k words in
the CSL (words are ranked according a relevance score computed by the spread-
ing activation model). The accuracy is the percentage of games for which the
solution occurs in the CSL. For k = 10, accuracy is 8%, while for k = 100, 40%
of accuracy is achieved. These results are encouraging, given that the average
accuracy of the human player on the dataset is about 16%.

4 Conclusions

We proposed an artificial player for a language game consisting in guessing a hid-
den word semantically related to five words given as clues. The system could be
used also for implementing an alternative paradigm for associative retrieval on col-
lections of text documents [4], in which an initial indexing phase of documents can
spread further “hidden” terms for retrieving other related documents. The iden-
tification of hidden terms might rely on the integration of specific pieces of knowl-
edge relevant for the domain of interest. This might represent a valuable strategy
for several domains, such as search engine advertising, in which customers’ search
terms need to be matched with those of advertisers. Spreading activation can be
also combined with document retrieval for semantic desktop search [5].
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Abstract. This is a demonstration of a system for protecting sensi-
tive topics present in text documents. Our system works in a privacy
framework where the topic is characterized as a multiclass classification
problem in a generative setting. We show how our system helps a user
redact a document in a business setting to obscure what company the
text pertains to, and show some experimental results on redacting the
topic for a standard text classification data set.

1 Introduction

Many companies are just starting to realize that the databases that they have
released to partners or shared with the public, after cursory data “masking” ex-
ercises, can in fact be linked against other public sources to recover the sensitive
information that they thought had been obscured. Luckily the machine learning
and data mining communities have been very active in devising means to pro-
tect individual records from discovery by attacks such as these. K-anonymity [5],
L-diversity [2], and noise based methods are effective both in identifying records
where possible privacy breaches might occur, and in suppressing or generalizing
fields until these records are protected.

Unfortunately, general techniques to protect sensitive information in text and
semi-structured data have not been developed. Text datasets are often multiple
times larger than structured databases, and the risks associated with divulging
sensitive information in them are no less large. For example, when AOL released
an “anonymized” set of user search queries, which were linked against external
data sources to discover sensitive information about the users, the release was
considered to be a major privacy breach. The challenge we address with our
system is not just to identify words that are correlated with the sensitive topic
(see [1]), but to optimally suppress those words within a confusion set of topics
(for example Ford vs GM), to control possible inferences about the topic.

2 PROTEXTOR System

We define the problem of obscuring a sensitive topic in a text document x in a
generative multi-class classification framework. In our scenario, the trusted party
possesses a corpus of documents X from which x is drawn, and the un-trusted
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party has some subset of X minus x. All the documents in X can be classified
into a finite set Y of classes, with the true class of x being y. The goal of our
redaction method is to perturb x in such a way as to reduce the likelihood of y
and increase the likelihood of some k closest of the other classes.

To approximate a model the attacker might have of Y , we build a Naive Bayes
classifier from X by creating a bag-of-words example from each document and
training using the maximum likelihood method.

In our system, as shown in the screenshot below, we would then like to present
to the user along with the document a suggested list of the most important
words to suppress in order to make y confusable with at least k other classes
of documents. We have experimented with several ordering metrics based on
feature selection techniques from the text categorization domain, along with
a new metric PosMin designed to explicitly minimize the posterior likelihood
P (y|x). We define this metric relative to the k closest classes to y (called K) as
measured by the KL divergence KL(P (y)||P (y′)) for each y′ ∈ Y .

We’d like to minimize log(P (x|y)). Notice that log(P (y|x)) = log(P (x|y)) +
log(P (y))− log(P (x)) = log(P (x|y)) + log(P (y))− log(

∑
y′∈Y P (x|y′) ∗ P (y′)).

Here we re-estimate P (x) relative to the set K ∪ y to obtain PosMin(x, y) =
log(P (x|y)) + log(P (y)) − log(

∑
y′∈K∪y P (x|y′) ∗ P (y′)). By varying K for the

same document, different sets of words will be suggested in order to vary the
number of “guesses” necessary for an attacker to pick the correct class. For
example, below is a table of the top 10 words picked by our metric for a document
taken from the alt.atheism class from the 20 newsgroups dataset. In this dataset,
the top 5 closest classes to alt.atheism in order are: soc.religion.christianity,
talk.religion.misc, talk.politics.misc, talk.politics.mideast, & talk.politics.guns.
The list of words to confuse the document with soc.religion.christianity is very
different than the one to confuse it with the whole top 5. In particular the entire
k = 1 list does not contain the words jesus or christianity, since these words do
not distinguish alt.atheism documents from soc.religion.christianity documents.

As we show in Sec.3 in a controlled evaluation, compared to the other feature
selection metrics we tested, automated redacting with our new PosMin metric
creates documents which are relatively unclassifiable up to k guesses for classifiers
trained on the unobscured documents.

Implementation. The PROTEXTOR implementation at Accenture has been
created as an add-in panel for Microsoft Office 2007. In many large companies
to reuse business materials from project to project it is necessary to remove
client identifiable information. In order to comply with client contracts it is
insufficient to simply remove the canonical name of the client. Additionally a
user must remove abbreviations of the client as well as any uniquely identifying
information that an attacker could use to deduce the client. So, in the first
implementation we have created topic models for 450 of Accenture’s clients from
documents in a 350000 document corpus.

When a document is loaded, the add-in builds the word vector of the existing
text and returns the most likely client classification along with the suggested
words to redact to resemble the closest client (k = 1). The user can adjust the
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k=1 k=5

religion faith
dogma christian
system dogma
encourages system
toronto encourages
humans beliefs
beliefs humans
genocide secular
philosopher philosopher
prison christianity

Fig. 1. (Left) Top 10 words to confuse alt.atheism doc with k = 1 and k = 5 other
classes. (Right) Screenshot of PROTEXTOR system.

k parameter via a slider to change the suggested redaction list. For example if
the true client is Carrefour and the next closest client model is for Danone, the
list contains the word “Carrefour” and project specific terms that distinguish
the document from Danone. If the user increases the k parameter to indicate
that they want to obscure the document to resemble additional clients, it might
suggest more general words such as “supermarket” or “france”. As the user
edits the text, the add-in will update the likelihoods returned for the closest
client classes.

3 Evaluation

Here we describe a controlled experiment done in the context of the PROTEX-
TOR system. We set out to test what the effects of our redaction process with
different parameter settings would be on learned classifiers. If our system can foil
these classifiers, then an attacker scanning for sensitive information in a corpus
of masked documents using them would be deterred. Also, the performance of
learned classifiers seems to correlate with human performance in defeating our
redaction (which we explore in further work).

The dataset used in the experiments was the Industry Sector dataset intro-
duced in [3]. It contains 6440 documents corresponding to company websites in
a two level hierarchy of industry classes. We trained naive Bayes classifiers for
the 12 top level classes using a standard stoplist, to serve as the class models for
creating redaction word lists.

In this experiment, we created redacted sets of documents using a simple
greedy redaction algorithm as follows: Given an input k, for each document x of
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Fig. 2. All results for the Industry Sector experiment

class y create an ordered list of words to redact using the four metrics below. For
each list, suppress words from x until the log-likelihood (LL) of y is less than the
LL of the k closest classes. In addition to the PosMin metric as described in Sec
2, we used three standard feature selection metrics described in [4]: InfoGain,
OddsRatio, and FreqLogP. Using a leave-one-out procedure we trained new naive
Bayes and SVM classifiers on the corpus minus each redacted document, and
tested on the redacted sets. In the results below we see the desired performance
as very high error rates occur for both test classifiers up to k guesses, and then
a sharp drop off as the true class becomes clear. Also our PosMin metric seems
to give the best performance profile at most k settings, and exhibits the best
tradeoff given the percentage of the document redacted.

Acknowledgements. Thanks to Yaron Rachlin for all his ideas and hard work.
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Abstract. This paper aims at presenting how natural language processing and 
machine learning techniques can help the internet surfer to get a better overview 
of the pages he is reading. The proposed demo is a Firefox extension which can 
show a semantic graph of the text in the page that is currently loaded in the 
browser. The user can also get a summary of the web page she is looking at by 
choosing to display only the more important nodes in the semantic graph 
representation of the document, where importance of the nodes is obtained by 
machine learning techniques.  

Keywords: natural language processing, document visualization, triplet 
ranking, Firefox extension. 

1   Introduction 

The popularity and size of the Internet has greatly increased lately. So has the time 
people spend surfing. Moreover, a significant part of the traditional media has been 
replaced by online content. While it is very good that information can be retrieved so 
quickly and easily, the increased amount of time needed to be spent online by the 
users to process all this information raises important health and sociological 
problems. We think that a tool which could render most of the text contained in web 
pages easier to grasp, would greatly improve the user experience, and decrease the 
time needed to get at least a first impression of the page content. In our opinion such a 
tool should have the following features: 

− provide a graphical representation of text, as most people prefer pictures over text 
− emphasize and display the most important content (e.g.,  text summary) 
− the user should be able to adjust the amount of information he wants to see 
− the user should be able to see the content of the summary in the order in which he 

would see it during a normal read of the page 
− the tool should be available and easy to use for the most users on the internet, and 

be applicable to most of the web pages 

We believe that the tool presented in this paper satisfies the abovementioned needs. It 
is implemented as an extension to one of the most popular browsers, Firefox, and is 
designed to be used with any web page which has textual content.  

The screenshot in Fig. 1 shows a typical usage scenario. The user wants to read a 
news article online and with the help of our browser extension he can also get a 
graphical representation of the text in the article. 
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Fig. 1. Screenshot showing a web page and its visualization as a graph 

The natural language processing and machine learning techniques used are exposed 
to the Firefox extension through RESTful web services and the visualization is done 
using the TouchGraph1 graph drawing library. In the following sections we shall 
present the general architecture and the building blocks of the system in more detail.  

2   System Architecture 

In this section we describe the general architecture of our system, as a pipeline [1][2]. 
First the HTML code of the web page under consideration is preprocessed to obtain 
plain text which is split into sentences. For removing the HTML markup we use the 
Python HTML parsing library Beautiful Soup2 whose main advantage is that it can 
handle badly formatted HTML, whereas splitting the text into sentences is done with 
the Natural Language Toolkit’s3 sentence detector. After that named entities and 
triplets are extracted from the sentences. For extracting named entities (people, places 
and organizations) we use GATE4 (General Architecture for Text Engineering), while 
(subject – verb – object) triplets are extracted from the parse tree of each sentence 
                                                           
1 http://sourceforge.net/projects/touchgraph 
2 http://www.crummy.com/software/BeautifulSoup/ 
3 http://www.nltk.org/ 
4 http://gate.ac.uk/ 
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obtained with the OpenNLP5 parser, using heuristic rules described in [3]. Triplets are 
enhanced by linking them to co-referenced named entities (where appropriate), by 
resolving anaphora and by semantic normalization which means identifying the 
WordNet6 synset their elements belong to. Next triplets are merged, becoming the 
building blocks of the semantic graph, where the subject and object are nodes, and  
the link is labeled with the verb. The semantic graph size can be reduced by ranking 
the triplets with the aid of machine learning techniques. Fig. 2 shows a block diagram 
of what we described before. The arrows are the processing tasks and the blocks 
represent the state in the system pipeline.  

 

Fig. 2. System overview 

3   Triplet Ranking Using Machine Learning Techniques 

Ranking those triplets which compose the semantic graph, in decreasing order of 
importance has the goal of reducing the size of the semantic graph while retaining the 
most important nodes. From the list of ranked triplets a smaller semantic graph of any 
chosen size can be built. 

The ranking method tried consists of training an SVM model for binary 
classification of triplets into important and not important. The 69 features used are of 
three kinds, as already proposed in [1]: document features (e.g. position of the 
sentence in the document, position of the triplet in the sentence, words in the triplet 
elements), linguistic features (e.g. part of speech tags, location of the triplet in the 
parse tree) and graph features (e.g. hub and authority weights, page rank, node 
degrees, connected components). For training the linear SVM model and for 
evaluating the triplet ranking, we use the DUC (Document Understanding 
Conferences)7 datasets from 2002 and 2007, respectively. The DUC datasets contain 
news articles from various sources like Financial Times or Wall Street Journal. The 
2002 dataset comprises 300 newspaper articles on 30 different topics and for each 
article we have a 100 word human written abstract. The DUC 2007 dataset comprises 
250 articles for the update task and 1125 articles for the main task, part of the 
AQUAINT dataset8; the articles are grouped in clusters and 4 NIST assessors 

                                                           
5 http://opennlp.sourceforge.net/ 
6 http://wordnet.princeton.edu/ 
7 http://duc.nist.gov/ 
8 http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2008T25 
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manually create summaries (of 100 or 250 words) for the documents in the clusters. 
As training data we used the DUC 2002 articles, as well as the DUC 2007 main task 
articles, while the DUC 2007 update task articles were used for testing. We extracted 
triplets from the training and test data, and learned to classify if a triplet will appear in 
the summary or not. If we order the classified triplets by the confidence weights of 
their class we obtain a ranked list of triplets which is exactly what we need. The 
approach was also used to automatically create document summaries [2]. It was 
evaluated by comparing the results to the ones obtained by other systems competing 
in the DUC 2007 update task. Other competing systems that were ranked close to ours 
generate compressed versions of source sentences as summary candidates and use 
weighted features of these candidates to construct summaries 4, or learn a log-linear 
sentence ranking model by maximizing three metrics of sentence goodness 5 (see [2] 
for more details on the evaluation outcome).  

4   Conclusions 

We have presented a tool which is meant to make the reading of web pages easier by 
providing interactive graphical visualization of the read document. To achieve this 
task we have used natural language processing and machine learning techniques such 
as: named entity recognition, triplet extraction, co-reference and anaphora resolution 
and triplet ranking. The tool is implemented as a Firefox extension, which makes it 
available to a wide range of users browsing a big variety of web sites. 
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Abstract. We present a demonstration of ClusTR, a highly interactive system 
for exploring relationships between different clusterings of a dataset and for 
viewing the evolution in time of topics (e.g., tags associated with objects in the 
dataset) within and across such clusters. In particular, ClusTR allows 
exploration of generic multi-dimensional, text labeled and time sensitive data. 

1   Introduction 

In many applications (e.g., bioinformatics, telecommunications, marketing, etc.) the 
focus of Data Mining is often on Knowledge Discovery (KD), largely because of the 
complexity of the data and the heterogeneity in terms of attributes and possible 
groupings of objects. The same reasons that create the needs for a focus on 
Knowledge Discovery, however, make it a very challenging process. On one hand, it 
is an activity that cannot be fully automated—by definition, the discovery process 
aims to gain insight from the data and therefore implies a user-in-the-loop approach. 
On the other hand, except in very simple cases, insight cannot be gained without often 
significant automatic processing intertwined in the human analysis loop. The 
combination of automatic techniques and human analysis is thus central to the KD 
process and the two could offer new potentiality in both areas: presenting information 
in a way that can exploit human perceptual skills, and user input to improve automatic 
results. Thus, a large part of the KD process focuses on discovering and 
understanding of not only similarities between objects, but also on how different 
groupings of objects, based on different attributes relate to each other. Furthermore, in 
cases in which time is one of the attributes and objects have textual attributes, it is 
also often important to discover the evolution of such textual attributes (e.g., topics or 
categories) over time with respect to the possible groupings of the objects. 

In this paper, we address these problems with ClusTR, a highly interactive system 
for exploring relationships between different clusterings of a dataset and for viewing 
the evolution in time of topics (e.g., tags associated with objects in the dataset) within 
and across such clusters. In particular, ClusTR allows exploration of generic multi-
dimensional, text labeled and time-sensitive data. Our system follows the goals of 
visual analysis tasks [9], as well as user interface design principles (e.g., overview 
first, zoom-and-filter, then details-on-demand and others [3]), placing strong 
emphasis on a highly interactive environment that combines automatic techniques 
with human analysis. In particular, we apply the concept of dynamic queries [3], 
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which continuously update the data that is visualized: user actions work instantly, 
triggering clustering, filtering, and allowing other operations in the database.  

Related work. There is a large body of work on interactive KD, the most relevant 
being in the areas of interactive exploration and queries, data visualization and 
temporal data exploration. Related systems and approaches include [2][1][10][11][4] 
[6][7][8], and [14].   

2   ClusTR 

Our system works with any kind of multi-dimensional data, but some of the 
functionality was implemented specifically for data that includes time and textual 
features. For the demonstration we use a freely available Flickr image dataset [13] 
containing 25,000 images where each image has the following features: textual tags, 
geo-tag coordinates, and camera settings (aperture, exposure, ISO, and a Flash use flag). 
In the current implementation we use EM for clustering, which assigns a probability 
distribution to each instance that indicates the probability of it belonging to each of the 
clusters. The value of correlation between two clusters is calculated using the Jaccard 
coefficient (the size of the intersection divided by the size of the union).  

Interaction with the system takes place as follows. The first step is selection of the 
data for analysis. After data is loaded into ClusTR, exploration consists of two stages: 
(1) selection of features to create multiple cluster groups (Figure 1); and (2) 
exploration of correlations between resulting clusters and analysis of time-evolution 
of topics within clusters (Figure 2).  We describe the two stages below. 

Given k features (figure 1) in the dataset, in the first interaction screen the system 
creates a correlation panel of k x k squares. The user selects features by drawing sets 
of dots (D) and lines (L), whose combination determine the features to use in the 
creating cluster groups. In figure 1, for example, two cluster groups are created, one 
using flash, ISO and one using ISO, aperture, and exposure. The two cluster groups 
are created on-line when the user presses the “next” button (each cluster group 
contains the same data). Each dot and each line drawn by the user defines one 
combination of features to create a cluster group. 

The drawing style of interaction used is meant to intuitively allow quick selection of 
features instead of cumbersome interaction with boxes or lists. ClusTR plots the value 
distributions for the dataset for each feature (Figure 1, right) to give the user quick 
 

 

Fig. 1. The panel for selecting the features to create cluster groups 
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insight into the variability of the data in each feature space. The correlation layout has 
the advantage of allowing us to graphically represent correlations between features.   

In the second stage, each of the clusters is represented by a solid circle and a label on 
the outside of a circle (Figure 2). The circular interface aims at showing correlations 
between clusters, while the bottom panel (bottom of Figure 2) shows topic trends. Each 
cluster group is represented by a different color. Horizontal bars on the outside of the 
circle associated with each cluster indicate the size of the cluster relative to its 
corresponding group. Lines between clusters represent correlations (thicker edge 
implies higher correlation). User interaction takes place in the following ways: 

• Clicking anywhere on the screen, holding the button and moving the mouse up 
or down: the threshold for correlation is modified and shown. Lines 
dynamically (immediately) appear, disappear, increase or decrease thickness. 

• Clicking on a cluster (solid circle) shows details of the cluster (topic evolution 
described next, and a tag cloud with their most frequent values).  

 

 

Fig. 2. Visualization of correlation strengths and evolution of topics for the clustered data. 
When the user selects a specific cluster, the system shows a dynamic tag cloud with the most 
frequent contents in the selected cluster.   

Note that for clusters with the same color there’s no edge/correlation given that they 
belong to the same clustering group so they contain distinct instances. For data that 
contains a textual feature (e.g., tag, free-text, etc.), it is possible to consider such 
values to be topics, or to extract them using a variety of techniques. For this 
demonstration we focus on the tag features available in the data (each image has a 
number of tags associated with it) and refer to them as topics.  

The topic evolution component of the interface complements the cluster correlation 
exploration. The goal of this component is to show the trends in time of the topics 
within clusters and to compare topic trends across clusters. Topics are analyzed 
according to the level of co-occurrence in different periods of time using Latent 
Semantic Analysis [15], mapping them into a one-dimensional space T as in [12], in a 
way that their relative latent semantic distances are preserved. The bottom panel of 
the interface shows the general evolution of the topics over time (bottom of Figure 2). 
Each vertical bar represents a single period of time (e.g., a day, week, season, etc.). 
The horizontal lines within each bar represent the topics of items in the cluster and the 
vertical location of each line represents its value in T. The user can click over one 
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single period of time to have an insight of the topics/labels contained in it. In addition, 
the system allows the user to explore the differences in topic trends for different 
clusters. When the user clicks on a cluster in the circle, its topics trace is projected in 
the topics evolution panel. In this way, the user can visually relate clusters to time, 
seeing how their topic evolution overlaps.  

3   Conclusions and Future Work 

We have presented a demonstration of ClusTR, a highly interactive system for 
exploring relationships between different clusterings of a dataset and for viewing the 
evolution of topics within and across clusters. The main features of the system are its 
interactive-query mechanisms, the functionality to select features for clusterings using 
a 2D correlation space, and allowing the dynamic exploration of topics over time for 
multiple clusters. Future work includes further addition to the functionality (e.g., 
adding several clustering methods, more visualization options, etc.), a user study, case 
studies with other datasets, etc. 

References 

1. Ahn, J.-w., Brusilovsky, P., Grady, J., He, D., Syn, S.Y.: Open user profiles for adaptive 
news systems: help or harm? Int. conf. WWW 2007 (2007) 

2. Olsen, K.A., Korfhage, R.R., Sochats, K.M., Spring, M.B., Williams, J.G.: Visualisation of 
a document collection: The VIBE system. In: Inf. Proc. and Managem. (1993) 

3. Shneiderman, B.: Designing the User Interface. Addison Wesley, Reading (1997) 
4. Zytkow, J.M., Rauch, J.: Circle Graphs: New Visualization Tools for Text-Mining. In: 

Żytkow, J.M., Rauch, J. (eds.) PKDD 1999. LNCS (LNAI), vol. 1704, pp. 277–282. 
Springer, Heidelberg (1999) 

5. Kliger, J.: Methods for Visualizing User Models. MIT Media Lab, Cambridge 
6. Don, A., Zheleva, E., Gregory, M., Tarkan, S., Auvil, L., Clement, T., Shneiderman, B., 

Plaisant, C.: Discovering interesting usage patterns in text collections: Integrating text 
mining with visualization. HCIL Technical report 2007-08 

7. Seo, J., Shneiderman, B.: A Rank-by-Feature Framework for Unsupervised Multidimensional 
Data Exploration Using Low Dimensional Projections. In: Infovis 2004 (2004) 

8. Inselberg, A.: Visual Data Mining with Parallel Coordinates. Comp. Statistics (1998) 
9. Nocke, T., Schumann, H.: Goals of Analysis for Visualization and Visual Data Mining 

Tasks. In: CODATA Workshop Information, Presentation and Design (2004) 
10. Catarci, T., Costabile, M.F., Levialdi, S., Batini, C.: Visual Query Systems for Databases: 

A Survey. Journal of Visual Languages and Computing 8 
11. Derthick, M., Kolojejchick, J., Roth, S.F.: An Interactive Visual Query Environment for 

Exploring Data 
12. Qi, Y., Candan, K.S.: CUTS: CUrvature-Based Development Pattern Analysis and 

Segmentation for Blogs and other Text Streams. In: Hypertext 2006 (2006) 
13. Hu., M.J., Lew, M.S.: The MIR Flickr Retrieval Evaluation 
14. Berchtold, S., Jagadish, H.V., Ross, K.A.: Independence Diagrams: A Technique for 

Visual Data Mining. AT&T Laboratories (1998) 
15. Deerwester, S., Dumais, S., Furnas, G., Harshman, R., Landauer, T., Lochbaum, K., 

Streeter, L.: Computer Information Retrieval using Latent Semantic Structure 



W. Buntine et al. (Eds.): ECML PKDD 2009, Part II, LNAI 5782, pp. 726–729, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

Visual OntoBridge: 
Semi-automatic Semantic Annotation Software 

Miha Grcar and Dunja Mladenic 

Jozef Stefan Institute, Dept. of Knowledge Technologies, Jamova cesta 39, 
1000 Ljubljana, Slovenia 

{Miha.Grcar,Dunja.Mladenic}@ijs.si 

Abstract. Machine learning methods have been successfully used for data 
labeling, also referred to as data annotation, either in semi-automatic or fully 
automatic way. We present a system for semi-automatic annotation of Web 
service schemas and other resources with the motivation to support efficient 
browse and search through those resources and to enable efficient composition 
and execution of Web services. The presented system, Visual OntoBridge 
(VOB), provides a graphical user interface and employs a set of machine 
learning algorithms to support the user in the annotation task. 

Keywords: annotation, ontologies, graphs, machine learning, text mining, 
PageRank, Visual OntoBridge. 

1   Introduction and Motivation 

In order to support efficient browse and search through resources and to enable 
efficient composition and execution of Web services, these resources need to be 
semantically annotated. In our work, the semantic annotation is defined as a set of 
interlinked domain-ontology instances being associated with the resource being 
annotated. For example, let us assume that our resource is a database table. We want 
to annotate its fields in order to provide compatibility with databases from other 
systems. Further on, let us assume that this table has a field called “employee_name” 
that contains employee names (as given in Fig. 1, left side). On the other hand, we 
have a domain ontology containing knowledge and vocabulary about companies (an 
excerpt is given in Fig. 1, right side). In order to state that our table field in fact 
contains employee names, we first create an instance of the domain-ontology concept 
Name and associate it with the field. We then create an instance of Person and link it 
to the instance of Name via the hasName relation, and an instance of Company and 
link it to the instance of Person via the hasEmployee relation. Such annotation (shown 
in the middle in Fig. 1) indeed holds the desired semantics: the annotated field 
contains names of people which some company employs (i.e. names of employees). 
Formulating annotations in one of the ontology-description languages (e.g. Web 
Service Modeling Language <http://www.wsmo.org/wsml/>) is not a trivial task and 
requires specific expertise. Therefore, the users would benefit from a system that 
allows them to visualize the resource and the domain ontology (much like this is  
done in Fig. 1), create instances by clicking on concepts, and interlink them by 
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Fig. 1. Annotation as a “bridge” between the resource and the domain ontology 

“drawing” relations between them. In addition, the users would benefit from non-
trivial “building blocks” provided to them by the software with respect to some 
Google-like queries. 

With this in mind, we have developed Visual OntoBridge [1], a system that 
provides a graphical user interface and a set of machine learning algorithms that 
support the user in the annotation task.  

2   Software, Approach, Related Systems 

When the application is launched, the domain ontology is visualized as a graph of 
concepts. As already said, VOB provides functionality to create several domain 
ontology instances and interlink them as appropriate to formulate an annotation (see 
the screenshot in Fig. 2). Establishing annotations manually is not a trivial task, 
especially if the domain ontology contains a large amount of entities and/or the user is 
not fully familiar with the conceptualizations in the domain ontology. VOB provides 
an advanced tool for querying the domain ontology with the purpose of finding the 
appropriate concepts and triples. The user is able to enter a set of Google-like natural-
language queries and the system then provides her with two lists of ontology entities: 
the list of proposed concepts and the list of proposed triples. VOB employs text 
mining techniques, Page Rank-like algorithms, and consults a Web search engine to 
populate the two lists of recommended building blocks.  

Let us briefly summarize the ontology-querying algorithm. The domain ontology is 
first represented as a graph in which concepts and triples are represented with vertices 
and edges represent relations. The user’s natural-language query is also represented as a 
vertex. This is illustrated in Fig. 3. Next, each graph vertex (including the user’s query) 
is assigned a set of documents. The documents are obtained by querying a Web search 
engine, the search term being either the label of the corresponding ontology entity or the 
user’s query. The set of documents at each particular vertex is converted into TF-IDF 
vectors and the corresponding centroid vector is computed. The cosine similarity 
measure is now used to determine similarities between the centroid of the user’s query 
and the rest of the graph. The computed similarity scores are used to weight the edges of 
the graph. When the graph is properly weighted, PageRank is employed to rank vertices 
(i.e. concepts and triples) according to the relevance to the query. The vertex 
representing the query is therefore used as the source vertex for PageRank. Since every 
concept and every triple has now been ranked by PageRank, it is possible to populate 
the two required lists of annotation building blocks and present these to the user. Many 
details and insights can be found in [1]. 
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Fig. 2. Visual OntoBridge graphical user interface 

Conceptually, our approach can be compared to that of QuestIO [5], a natural-
language interface to ontologies. The authors of QuestIO argue that related systems—
such as SemSearch, AquaLog, and Orakel—are either keyword-based or require  
full-blown and correctly phrased questions. Furthermore, such systems are usually 
domain-specific and require the user to be familiar with the domain. QuestIO does not 
share these drawbacks. It analyzes a question—written in a natural language—and 
creates a SeRQL1 query from it. Their matching algorithm relies on morphological 
analysis, POS tagging, and string matching. In contrast to this, our system is not a 
question-answering system but rather a triple-retrieval system. It does not rely on 
language analysis algorithms, which makes it suitable for languages that do not yet 
have adequate support for natural-language processing (e.g. Slovene). Furthermore, 
our approach is “softer” in the sense that it will always provide answers (i.e. retrieve 
triples) even if there are no string similarities between query terms and ontology 
entity labels. 

3   Discussion and Experimental Results 

The presented software was developed and successfully employed in the European 
project SWING2. In SWING, we were annotating geospatial Web services (Web 
Feature Services or WFS’s [3]). More accurately, we were annotating their schemas 
(i.e. capability documents) to achieve semantic interoperability of services for the 
purpose of discovery, composition, and execution.  

During the project, several WFS were annotated manually (by formulating 
annotations in the WSML language). For the purpose of evaluating the techniques 
discussed in Section 0, we asked the domain experts at Bureau of Geological and 
Mining Research (BRGM, France) to provide us with natural-language queries with 
which they would hope to retrieve building blocks for these annotations.  
                                                           
1 Sesame RDF Query Language <http://en.wikipedia.org/wiki/RDF_query_language> 
2 Semantic Web Service Interoperability for Geospatial Decision Making <http://www.swing-

project.org/> 
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Fig. 3. Representing ontologies as graphs 

We measured the Area Under the ROC Curve (AUC) to evaluate the lists of 
recommendations produced by the algorithm. The rewarding fact is that we managed 
to significantly beat the baselines which were based solely on term matching (term 
matching algorithm is described in [4]). We have increased the average AUC for 
5.48% (from 91.46% to 96.94%) on concepts and for 3.18% on triples (from 93.16% 
to 96.34%). This presents a big difference from the application point of view. 
Roughly speaking, the graph-based algorithms are twice as good as the baseline 
algorithm. Also, the user is able to interact with the system and reformulate queries to 
achieve even better results. To support this claim, we computed the average AUC by 
taking, for each annotation, only the most successful annotator into account. The 
average AUC on the triples rose to 98.15%. The high AUC achieved in the evaluation 
process is also reflected in practice. 

To conclude, VOB incorporates a novel approach to semi-automatic annotation of 
resources and represents a substantial engineering effort wrapped in an advanced 
visualization-based graphical user interface. 
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Abstract. Automatic or semi-automatic categorization of items (e.g. documents) 
into a taxonomy is an important and challenging machine-learning task. In this 
paper, we present a module for semi-automatic categorization of video-recorded 
lectures. Properly categorized lectures provide the user with a better browsing 
experience which makes her more efficient in accessing the desired content. Our 
categorizer combines information found in texts associated with lectures and 
information extracted from various links between lectures in a unified machine-
learning framework. By taking not only texts but also the links into account, the 
classification accuracy is increased by 12–20%. 

Keywords: categorization, classification, machine learning, multi-modal data 
mining, multimedia, video, VideoLectures.net. 

1   Introduction and Motivation 

In this paper, we present a module for semi-automatic categorization of video-
recorded lectures. The presented categorizer is part of the software powering one of 
the world’s largest educational Web portals, the VideoLectures video-hosting portal1. 

VideoLectures is growing fast. There are roughly 200 videos added each month. In 
order to provide the audience with efficient browsing facilities, each video needs to be 
categorized into one or more categories in the taxonomy. The taxonomy now has 
roughly 150 categories and is still growing. The categorization of lectures is a time-
consuming task and is far from trivial.  

Our categorizer combines information found in texts associated with lectures (e.g. 
title, description, slide texts) and information extracted from various links between 
lectures (e.g. lectures recorded at the same event, lectures sharing an author, lectures 
interlinked according to the click-stream data) in a unified machine-learning 
framework. The VideoLectures team provided us with their dataset of English 
lectures; roughly one third of them were already manually categorized and served as 

                                                           
1 <http://videolectures.net> 
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training data. Each lecture is described with a title; more than two thirds of the 
lectures also have a short description and/or come with slide titles. In addition to this 
unstructured textual data, each lecture can be seen as a vertex in several undirected 
weighted graphs representing the structural part of the data. These graphs are the 
following: 

• Same-event graph. Two vertices are interconnected if the two corresponding 
lectures were recorded at the same event (e.g. a specific conference or workshop).  

• Same-author graph. Two vertices are interconnected if the two corresponding 
lectures were prepared and/or given by the same author or authors. The weight of 
a link is the number of authors the two lectures have in common. 

• Also-watched graph. Two vertices are interconnected if the two corresponding 
lectures were viewed together in the same browsing session. The weight of a link 
is the number of times the two lectures were viewed together. 

The categorizer has already been integrated into the VideoLectures Web site. When 
the author or the editor decides to categorize a lecture, she is provided with a set of 
suggested categories (called “quick links” in the categorization panel). These 
suggestions were pre computed by the categorizer. The author/editor simply selects 
the appropriate categories in contrast to browsing the taxonomy to find them. The 
categorization user interface is shown in Fig. 1. 

 

 

Categorization 
     suggestions 

 

Fig. 1. Categorization user interface on VideoLectures 

2   Approach and Experimental Results 

Classification of documents into a taxonomy has already been addressed by several 
researchers, either on a flattened taxonomy [2] or by taking the structure into account 
[3]. We decided to flatten the taxonomy and employ Centroid Classifier as suggested 
in [1].  

To evaluate the approach, we first represented each lecture by the associated text as 
TF-IDF vector as usual in text mining and performed 5-fold cross validation on the 
manually categorized lectures. We measured classification accuracies on top 1, 3, 5, 
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and 10 predicted categories. We tested several classifiers: the Centroid, SVM, and  
k-Nearest Neighbors (k-NN) classifier. From the results, we learned that the three 
algorithms perform comparably well in terms of accuracy, with the Centroid 
Classifier standing out with respect to the accuracy on top 10 items (achieving 
83.48% accuracy on average) and SVM achieving a slightly better accuracy on the 
topmost item (achieving 53.89% accuracy on average). Regarding the efficiency, it is 
important to note that SVM is slow in the training phase while k-NN is slow in the 
prediction phase. These two facts give even more appeal to the Centroid Classifier 
which was our choice for further experimentation and also final implementation. 

To incorporate structural data in an attempt to boost accuracy, we decided to 
compute a kernel for each different “instance space” of the data, different spaces 
being the TF-IDF representation of the textual data on one hand and the three 
undirected weighted graphs (i.e. same-event, same-author, and also-watched graph) 
on the other.  

We can look at a set of normalized TF-IDF vectors fi, || fi ||2 = 1, fi,j ≥ 0, as if they 
are rows in matrix FTF-IDF = [fi,j]. If so, the corresponding kernel KTF-IDF is obtained by 
multiplying FTF-IDF with the transposed form of itself. When dealing with data in the 
form of an undirected weighted graph, on the other hand, we compute a diffusion 
kernel [4]. Let us consider attaching a random variable Zi to each vertex i. Now let 
each variable send some of its value (fraction α) to each of the immediate neighbors 
at discrete time steps. It turns out that the covariance matrix of such random field is a 
kernel reflecting similarities between vertices: the more two vertices i and j are 
interconnected in a graph, the more of Zi is transitioned to Zj and vice versa. 
Covariance between i and j is consequently increased.  

When we compute all the kernels (i.e. the TF-IDF kernel and the diffusion 
kernels), we “join” them together into a single kernel by computing a convex 
combination of kernels 

321 G4G3G2IDFTF1 KKKKK αααα +++= −Σ
. KΣ is again a kernel. 

The task is now to set the weights αi so that a high accuracy is achieved. For this 
purpose, we split the dataset into a training and test set for each fold as we did when 
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Fig. 2. Classification accuracies for each type of information in isolation as well as for the 
optimized combined kernels 
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establishing the baseline. However, we then run an optimization algorithm called 
Differential Evolution [5] to optimize the convex combination weights. In the 
optimization loop, we evaluate the intermediate weights by performing another 
(inner) 5-fold cross validation.  

The accuracy of the optimized convex combination as well as the accuracies of the 
baseline and each of the graphs in isolation are shown in Fig. 2. From the chart, we 
can conclude the following. The same-author and same-event graphs contain the least 
relevant information for our categorization task. The same-event graph performs a bit 
better than same-author but is still below the baseline. By far the most relevant 
information is contained in the also-watched graph. This graph, in isolation, 
outperforms the other graphs as well as the text-based baseline. The optimized feature 
kernel indeed yields the best accuracies. However, the performance of the optimized 
data representation is close to that of the also-watched graph-based representation.  

3   Conclusions 

We can conclude that we were successful in our task as the categorizer is highly 
accurate—the proposed approach using text and graph features achieves accuracies 
that stretch 12–20% above the baseline obtained using text features only—and highly 
robust in terms of missing data. The latter means that a lecture might be missing 
textual annotations (such as the description and slide titles) but is still categorized 
correctly. Furthermore, the categorizer has been successfully integrated into the 
VideoLectures Web site. Categorization suggestions (termed “quick links”) are 
provided to the author in the categorization panel.  

The current implementation of the categorizer suffers from high memory 
consumption as each diffusion kernel is a n × n dense matrix, where n is the number 
of lectures. Also, computing diffusion kernels is a time-consuming operation. We are 
currently working on reducing these time-space requirements to make the categorizer 
more scalable. 
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Abstract. In this demonstration, we aim to present the ACSM proto-
type that deals with the discovery of frequent patterns in the context of
flow management problems. One important issue while working on such
problems is to ensure the preservation of private data collected from
the users. The approach presented here is based on the representation
of flows in the form of probabilistic automata. Resorting to efficient al-
gebraic techniques, the ACSM prototype is able to discover from those
automata sequential patterns under constraints. Contrary to standard
sequential pattern techniques that may be applied in such contexts, our
prototype makes no use of individuals data.

1 Introduction

Sequential pattern mining has been a very active domain of research since the
mid 90’s (see [1] for an overview of the domain) and it has provided various
powerful tools used in many applications. Nevertheless, those researches have
mainly focused on increasing the efficiency of algorithms in terms of speed and
space consumption. Parallel to this line of research, there has been a great inter-
est in privacy preserving data mining techniques [2], but not directly dedicated
to the specific domain of sequence mining, except the work of Zhan et al. [3],
and more recently that of Kapoor et al. [4] or Kim et al. [5]. However, in those
approaches, it is supposed that we have a set of sequences on which we can apply
some specific techniques in order to do some kind of anonymization, directly or
indirectly on the data to be processed.

We can note that there are many situations where the database of sequences
results from the study of flows. For example, we may study the flow of cars in a
town and get some set of paths used by car drivers on which the sequence mining
task could be achieved. We may study the flow of visits on a particular web site
and get some history files of sequences of pages visited by some users. We may
study the flow of IP packets in some networks and get some set of routes used by

� This work has been supported in part by the french national research agency under
the Bingo2 project.
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IP packets sent and received by users. We may also study the flow of customers
in a store and get some video recordings of customer behaviors in the store, etc.
In such situations, anonymization techniques may be used on the data with more
or less difficulties. However, this would result in a huge amount of pre-processing
and moreover, and would require to collect non anonymous datasets that might
be used by malicious agents before the end of the anonymization process. The
approach we propose with the ACSM (Automata-based Constrained Sequence
Mining) prototype is completely different. We assume that the underlying prob-
lem can be modeled in the form of a probabilistic automaton. This hypothesis
is particularly verified in flow management problems such as those previously
mentioned. In such a context, ACSM achieves a sequence mining task directly
from the automaton using algebraic methods. Hence, it does not need to get the
sequences of data making the flow but rather the structure of the flow itself (an
automaton) and the values assigned to each path of the flow.

2 The ACSM Prototype

Due to space limitation we cannot present the theoretical aspects behind ACSM.
For that purpose, the reader may refer to [6]. From an operational point of view,
ACSM takes as input an XML file describing a flow graph. This file is loaded by
ACSM that generates the corresponding probabilistic automaton while satisfying
some statistical constraints.

ACSM can then be used to extract frequent sequential patterns given a sup-
port threshold. Our software has been implemented to satisfy statistical con-
straints in order to reduce the risk to extract false frequent patterns or to
overlook true frequent ones. In this probabilistic framework, the user can then
parameterize ACSM according to a priori fixed type I and type II errors. We
dealt with the control of the false positive and false negative rates in [7] by
providing a lower bound of the sample size on which the sequence mining task
has to be performed. This means that we can formally decide when we can stop
observing the flow, pick up the XML file and begin to mine the data.

The probabilities on the edges and vertices of the automaton are used to
calculate the frequency of each discovered sequence and ACSM returns the paths
(sequences), made up of not necessarily consecutive edges, whose frequency is
greater than the fixed support threshold. Efficient algebraic calculus are used to
optimize the extraction process, based on the LU factorization.

3 Overview of the Demonstration

To put forward the interest of ACSM, we show an application (called Traf-
ficMiner) in the domain of car flow management that has been designed on top
of it. Using ACSM to discover car flow patterns in a town, that is sequences of
non necessarily consecutive streets frequently used by car drivers of that town,
is a way to ensure privacy preservation of drivers’ behavior. Indeed, until now,
if we wanted to discover frequent routes in a town we had to install cameras in
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each street and then record the routes traversed by each driver. This solution is
of course unrealistic because of its cost, but moreover it would be a great breach
to drivers privacy and this would not be acceptable. The solution we propose
consists in just counting, in each street of the part of the town we want to study,
the number of cars using this street. The map of the town and the resulting
counters provide a probabilistic automaton that can be processed by ACSM.

Figure 1 shows a screenshot of TrafficMiner discovering frequent routes in the
city of Arlington (Virginia, USA).

Fig. 1. TrafficMiner running on a map of Arlington

The demonstration shows the way we can design the automaton associated
with the map using a specific interface and the way we can simulate some traffic
on this map. Then, we look at the XML file describing the flows of cars focusing
on each of its markup. Then, we run ACSM to get the frequent routes used by
the virtual car drivers. At the demo, it will also be possible for users to provide
specific flows that may have some interests for them. The input data will have
to be provided in an XML form explained on site. Then running ACSM will
provide patterns for the users.

3.1 Contribution of ACSM for the ML and DM Communities

What makes our piece of software unique and special? To our knowledge,
ACSM is the first prototype able to deal with flow management problems and
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to extract sequential patterns in datasets completely preserving the privacy of
users involved in the flows.

What are the innovative aspects or in what way/area does it repre-
sent the state of the art? The innovative aspects of our system concerns
privacy preservation issues. Contrary to standard sequential pattern mining al-
gorithms, our prototype does not need any user dependent sequential data. No
anonymization step is required because the sequential data are no more needed.

For whom is it most interesting/useful? Our prototype, and the ideas
behind, may be very useful for the industrial practitioners. To give an example,
we may consider webmasters who might want to mine visits of users without
using classical history files that lead to many known problems due to proxies,
caches, etc. Instead of a tedious pre-processing step on history files, they may
easily proceed by putting counters on each page and link of their site and then
use ACSM on the automaton built using the structure of the website and the
probabilities assigned thanks to the counters.

4 Conclusion

We think this demonstration of the ACSM system proves the interest of pro-
cessing automata instead of sequences in various situations. This is the case for
example if privacy concerns are crucial issues of the applications. Interoperabil-
ity with ACSM is very easy as it only requires an XML file as an input, which
gives ACSM the ability to be easily encapsulated in some specific applications.
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Abstract. In order to increase precision in searching for web pages or web doc-
uments, taking the temporal dimension into account is gaining increased interest.
A particular problem for web documents found on the Internet is that in gen-
eral, no trustworthy timestamp is available. This is due to its decentralized nature
and the lack of standards for time and date. In previous work we have presented
techniques for solving this problem. In this paper, we present a tool for deter-
mining the timestamp of a non-timestamped document (using file, URL or text
as input) using temporal language models. We also outline how this tool will be
demonstrated.

1 Introduction

In order to increase precision in searching for web pages or web documents, taking the
temporal dimension into account is gaining increased interest. In this way, the search
engine will retrieve documents according to both text and temporal criteria, i.e., tempo-
ral text-containment search [5].

Due to its decentralized nature and the lack of standards for time and date, it is
difficult to determine an accurate and trustworthy timestamp of a web document. In a
web warehouse or a web archive, there is no guarantee that the creation time and the
time of retrieval by the crawler are related.

In this paper, we present a tool for determining timestamp of a non-timestamped doc-
ument using temporal language models. The tool can take as input a file, contents from an
URL, or text entered directly. As output it will present an estimation of possible creation
time/periods, with confidence of each of the estimated time periods. Obviously, the one
with highest confidence is the most probable based on the language model. An example
of the interface is shown in Fig. 1(a) and example of results are shown in Fig. 1(b-e).

To build a system for dating a document, we compare document contents with word
statistics and usages over time. The dating approach is based on the temporal language
model presented in [1]. The intuition behind this approach is that, for a given docu-
ment with unknown timestamp, it is possible to find the time partition that mostly over-
laps in term usage with the document. For example, if the document contains the word
“tsunami” and corpus statistics shows this word was very frequently used in 2004/2005,
it can be assumed that this time period is a good candidate for the document timestamp.
The model assigns a probability to a document according to word statistics over time.
By partitioning a document corpus into time partitions, it is possible to determine the
timestamp of a non-timestamped document di by computing a similarity score (NLLR)
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between the language model of di with each partition pj . The timestamp of the docu-
ment is the partition which maximizes the similarity score.

The rest of the paper is organized as follows. In Sect. 2 we outline the temporal
language models used in our approach. In Sect. 3 we describe our document dating
prototype. Finally, in Sect. 4 we outline our proposed demo.

2 Temporal Language Models

Timestamp estimation is based on the statistic language model presented by de Jong,
Rode and Hiemstra [1]. This temporal language model is a variant of the time-based
model in [4], based on a probabilistic model from [6]. The temporal language model
assigns a probability to a time partition according to word usage or word statistics over
time.

A document is modeled as di = {{w1, . . . , wn} , (ti, ti+1)} where ti < ti+1 and
(ti, ti+1) is a temporal view of document which can be represented by a time partition
associated to its timestamp. A normalized log-likelihood ratio [3] is used to compute
the similarity between two language models. Given a partitioned corpus, it is possible to
determine the timestamp of a non-timestamped document di by comparing the language
model of di with each corpus partition pj using the following equation:

Score(di, pj) =
∑
w∈di

P (w|di)× log
P (w|pj)
P (w|C)

(1)

where C is the background model estimated on the entire collection and pj is a time
partition. The timestamp of the document is the partition maximizing a score according
to the equation above, and the confidence Conf of the estimation is calculated as the
logarithm of the score of the highest ranked relative to the second ranked partition.

In [2] we presented improvements to the approach of [1], the most important being
temporal entropy, use of search statistics and adapted semantic-based preprocessing.

We use temporal entropy (TE) to weight terms differently depending on how well
a term is suitable for separating time partitions among overall time partitions and also
indicates how important a term is in a specific time partition. Temporal entropy of a
term wi is given as follows:

TE(wi) = 1 +
1

logNP

∑
p∈P

P (p|wi)× logP (p|wi) (2)

where P (pj |wi) = tf(wi,pj)∑ NP
k=1 tf(wi,pk)

, NP is the total number of partitions in a corpus P,

and tf(wi, pj) is the frequency of wi in partition pj . Modifying the score in Equa-
tion (1), each term w can be weighted with temporal entropy TE(w) as follows:

Scorete(di, pj) =
∑
w∈di

TE(w)× P (w|di)× log
P (w|pj)
P (w|C)

(3)

Search statistics provided by Google Zeitgeist (GZ) can be integrated as an additional
score in order to increase the probability of a tentative time partition. GZ essentially
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gives statistics of trends of search terms, i.e., increasing and decreasing popularity. By
analyzing search statistics, we are able to increase the probability for a particular par-
tition which contains top-ranked queries. The higher probability the partition acquires,
the more potential time candidate it becomes. GZ is integrated as an additional score
into Equation (1) in order to increase the probability of partition pj:

Scoregz(di, pj) =
∑
w∈di

(
P (w|pj)× log

P (w|pj)
P (w|C)

+ βGZ(pj , w)
)

(4)

where β is the weight for the GZ function (see [2] for more details on calculatingGZ).
In order to further increase accuracy of the dating, we have also integrated semantic-

based techniques into document preprocessing, i.e., part-of-speech tagging (POS), col-
location extraction (COLL), word sense disambiguation (WSD), and concept extraction
(CON).

3 Document Dating System

Our prototype implements the ideas from [2], and uses a web-based interface. It allows
to estimate the date of different input formats (i.e., a file, an URL, or plain text) as shown
by Fig. 1(a). Example inputs can be URL: “http://tsunami-thailand.blogspot.com” or
text: “the president Obama”. The user can select parameters: preprocessing (POS,
COLL, WSD, or CON), similarity score (NLLR, GZ or TE), and time granularity (1-
month, 3-months, 6-months, or 12-months). Given an input to be dated, the system com-
putes similarity scores between a given document/text and temporal language models.
The document is then associated with tentative time partitions or its likely originated
timestamps. The results can be displayed in two ways. First, a rank list of partitions
is shown in an descending order according to their scores. Second, each tentative time
partition is drawn in a timeline with its score as a height.

4 Demo Outline

In the demo, we will present the features of our dating tool, including the impact of the
variants of our temporal language approach:

Basic vs. advanced preprocessing: There is a trade-off among semantic-based prepro-
cessing. We compare a basic preprocessing (POS only) to an advanced preprocessing
(a combination of POS, COLL, WSD, and CON). As will be shown, basic used less
time, but gains a poorer quality than the advanced.

How GZ enhances scores: To improve the accuracy, we compute scores by using GZ
in addition to NLLR. The correct time period (2004/12 to 2005/11) is raised from the
7th rank in Fig. 1(b) to the 1st rank with higher confidence in Fig. 1(c).

TE as a trend: A term occurring in few partitions is weighted high by TE and it pro-
vides high scores for partitions in which the term appears. Fig. 1(d-e) display trends of
the web page about “US presidential election” with and without TE respectively and TE
gives higher scores for relevant periods (2000, 2004 and 2008).
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Fig. 1. (a) System interface, (b) Results of basic preprocessing and NLLR, (c) Results of basic
preprocessing and GZ, (d-e) Trends of “US presidential election” with and without TE
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Abstract. In this paper we present a new approach for measuring the relatedness
between text segments, based on implicit semantic links between their words, as
offered by a word thesaurus, namely WordNet. The approach does not require
any type of training, since it exploits only WordNet to devise the implicit se-
mantic links between text words. The paper presents a prototype on-line demo of
the measure, that can provide word-to-word relatedness values, even for words
of different part of speech. In addition the demo allows for the computation of
relatedness between text segments.

1 Introduction

Text-relatedness can be perceived in several different ways. Primarily, as lexical relat-
edness or similarity between texts, based on a vectorial representation of texts and a
standard similarity measure (e.g. Cosine). Secondly, by capturing the latent semantic
relations between dimensions (words) in the constructed vector space model, by using
techniques of latent semantic analysis [1]. Another aspect of text relatedness, probably
of equal importance, is the semantic relatedness between two text segments. For exam-
ple, the sentences ”The shares of the company dropped 14 cents” and ”The business
institution’s stock slumped 14 cents” have an obvious semantic relatedness, which tra-
ditional measures of text similarity fail to recognize. In this paper we present an on-line
demo of a new measure of semantic relatedness between words (SR) and its expansion
(Omiotis, from the Greek word for relatedness or similarity) to measure semantic relat-
edness between text segments. Our measure of relatedness lies in the use of WordNet,
and all of its available semantic information. The contribution of this demo is twofold:
(a) it can measure the semantic relatedness between words of any part of speech, and
consequently between sentences, and (b) it computes relatedness values very fast, based
on an index of all the pair-wise relatedness values between WordNet synsets (11 billion
combinations). This is the first time, to the best of our knowledge, that such an index
has been created.

2 Measuring Semantic Relatedness

The expansion of WordNet with semantic relations that cross parts of speech has wide-
ned the possibilities of semantic network construction from text. Recent approaches in
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Fig. 1. System architecture

semantic network construction from word thesauri, e.g. from Navigli and Velardi [2],
utilize all of the semantic relations in WordNet. The applications of these methods in
areas like Word Sense Disambiguation highlight the advantages of using the full range
of semantic relations that WordNet offers. In this work, we find all the semantic paths
that connect two sense nodes in WordNet using all of the provided semantic relations
by WordNet. To the best of our knowledge it is the first time that a measure of semantic
relatedness combines three factors in tandem: (a) path length connecting concepts; (b)
concepts’ depth in the used thesaurus, and (c) thesaurus’ edges importance. An analysis
of state of the art measures that use semantic information from word thesauri can be
found in [3]. Figure 1 shows the architecture of the developed system. For the computa-
tion of the semantic relatedness between two terms (SR), we first compute the semantic
relatedness values for all pairwise combinations of their senses. The semantic related-
ness between a pair of senses considers the path length, captured by compactness, and
the path depth, captured by semantic path elaboration as explained in details in [4]. The
values of SR range in [0,1]. In the case when only one of the terms exists in WordNet,
the semantic relatedness between them is 0. If both terms are the same, and this term
exists in WordNet, then it is considered 1.

Following the work we presented in [5], the measure of semantic relatedness between
text segments (Omiotis) perceives texts as sets of terms (bag of words) in a vector space,
and uses TF-IDF for term weighting. Omiotis valueOA,B for a pair of textsA and B is
defined as:

OA,B =
1
2

⎡⎣ 1
|A|

⎛⎝|A|∑
i=1

λi,x(i) ·SR(ki, hx(i))

⎞⎠+
1
|B|

⎛⎝|B|∑
j=1

λy(j),j ·SR(ky(j), hj)

⎞⎠⎤⎦ (1)

In the above equation, SR(ti, tj) is considered as the semantic relatedness between
terms ti and tj , as defined previously, λti,tj is the sum of the terms’ TF-IDF values, ki

the ith term of A, hi the ith term of B and x(i) and y(j) are defined respectively:

x(i) = argmax
j∈[1,|B|]

(λi,j · SR(ki, hj)) and y(j) = argmax
i∈[1,|A|]

(λi,j · SR(ki, hj)) (2)
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3 On-line Demo

The computation of Omiotis entails a series of steps, the complexity of which is strongly
related to the SR measure. In order to improve the system’s scalability, we have pre-
computed and stored all SR values between every possible pair of synsets in a RDBMS.
This is a one-time computation cost, which dramatically decreases the computational
complexity of Omiotis. The database schema has three entities, namely Node, Edge and
Paths. Node contains all WordNet synsets. Edge indexes all edges of the WordNet graph
adding weight information for each edge computed using the SR measure. Finally, Paths
contains all pairs of WordNet synsets that are directly or indirectly connected in the
WordNet graph and the computed relatedness. These pairs were found by running a
Breadth First Search (BFS) starting from all WordNet roots for all POS. The RDBMS,
which exceeds 220 Gbytes in size, has indexed in total 155.327 unique synsets, whereas
the number of processed edges is 324.268. In total, the number of processed synset pairs
exceeds the 11 billion combinations. The current implementation takes advantage of
the database structures (indices, stored procedures etc) in order to decrease the running
time of Omiotis. Because we have pre-computed the relatedness values for all synset
pairs, the time required for processing 100 pairs of terms is + 1 sec, which makes the
computation of Omiotis feasible and scalable. As a proof of concept, we have developed
an on-line demo version of the SR and the Omiotis measures (publicly available at
http://omiotis.hua.gr), where the user can test the term-to-term and sentence-to-sentence
semantic relatedness measures. Figure 2 shows a walk-through example of the demo for
computing relatedness between database and systems. Similarly, the user can compute
text-to-text relatedness. Once the relatedness computation takes place for the desired
input, a screen showing the relatedness value appears to the user’s browser.

Fig. 2. Omiotis on-line demo

4 Applications

SR and Omiotis have been evaluated in several different text related tasks. Initially, SR
has been evaluated as a measure for Word Sense Disambiguation in [4]. The results
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showed that the measure produces state of the art precision in the Senseval competi-
tions (all English words task). Furthermore, SR has been evaluated in measuring word-
to-word relatedness, in three widely used data sets [4], where experiments showed that
it produces the highest Spearman rank order correlation coefficient compared to the hu-
man judgements, than any other dictionary-based measure [3]. In addition, Omiotis has
been embedded in the text retrieval task [6], by using the implementation of the mea-
sures described in the next section, inside the TERRIER retrieval platform. Experiments
in three TREC collections show that Omiotis can boost retrieval performance by even
up to 2% compared to traditional retrieval models that do not take into account semantic
information from text. Finally, measures of semantic relatedness have been embedded
in the past in many different linguistic exercises, like for example the SAT analogy tests
and the TOEFL synonym questions (consult http://www.aclweb.org/aclwiki/), as well as
in paraphrase recognition [7]. From the aforementioned, it is induced that both SR and
Omiotis can be embedded in a variety of applications, mainly due to the fact that they
can measure relatedness for words of all parts of speech. Regarding related systems,
the offered functionality of computing word-to-word relatedness by SR is also offered
by the WordNet::Similarity software package [8], which implements a wide range of
measures, but as our experimental analysis in [4] shows, SR outperforms all of these
measures in capturing semantic relatedness compared to the human judgements in three
data sets. The functionality offered by Omiotis, in computing text relatedness between
text segments, taking into account semantic information from WordNet, is not offered,
to the best of our knowledge, by another on-line system. Finally, as far as WordNet
synset relatedness values is concerned, currently there is no other on-line system that
has indexed all the possible WordNet synset combination relatedness values.
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Abstract. We present a complete working system that gathers multilin-
gual news items from the Web, translates them into English, categorises
them by topic and geographic location and presents them to the final user
in a uniform way. Currently, the system crawls 560 news outlets, in 22
different languages, from the 27 European Union countries. Data gath-
ering is based on RSS crawlers, machine translation on Moses and the
text categorisation on SVMs. The system also presents on a European
map statistical information about the amount of attention devoted to the
various topics in each of the 27 EU countries. The integration of Support
Vector Machines, Statistical Machine Translation, Web Technologies and
Computer Graphics delivers a complete system where modern Statistical
Machine Learning is used at multiple levels and is a crucial enabling part
of the resulting functionality.

1 Introduction

This paper describes a web system that makes use of Statistical Machine Learn-
ing technology at various levels, in order to process and aggregate the contents
of hundreds of news outlets in dozens of languages: Found in Translation (FIT)
(http://foundintranslation.enm.bris.ac.uk/).

News outlets produce a huge amount of daily news in different languages
which are usually read only by the citizens of the country where the media that
publish the story is located. Found in Translation is an online service that makes
all this information available to English speakers under a common interface.

Many systems have been proposed to show different aspects of the information
contained in various news outlets. NewsBlaster [1] generates multi-document
summaries, while European Media Monitor [2] uses cross-language retrieval to
generate news clusters without translating. The TextMap system [3] is mostly
based on detecting entities.

Found in Translation takes advantage of the technologies obtained by the
Statistical Machine Translation (SMT) and text categorisation communities in
recent years. All of these advances have been possible only due to statistical ma-
chine learning technology. Instead of using cross-language information retrieval
techniques to analyse multilingual news, FIT translates daily news from 21 Euro-
pean languages into English. A set of classifiers categorises each translated article
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into six topics, namely ‘Accidents’, ‘Business’, ‘Crime’, ‘Environmental Issues’,
‘Politics’ and ‘War and Conflict’. All the news are geolocated and presented ac-
cording to their topic on a ‘heat-map’ of Europe to allow an easy comparison of
the topic bias present in the media in the different countries of EU.

Our approach has the advantage that an English speaker can easily read con-
tent translated into English from the different languages spoken in the EU. He or
she can also easily compare the current levels of interest in the media for a specific
topic, in each of the EU countries. Comparisons like this could be useful in un-
derstanding the different perspectives and biases that the media present to each
country, and such an analysis could not be performed by a single human being.

From the point of view of machine learning, the problem of creating a classifier
for each topic and for each language is very difficult to tackle: It is almost
infeasible to gather all the multilingual labelled data that are needed to train
the classifiers. The use of machine translated news allows us to focus on only
one language, English, where labelled data are more easily available.

2 Methodology

FIT is based on state of the art technology both in text categorisation, using
Support Vector Machines (SVMs) [4] and in SMT, using Moses [5].

We consider the popular class of SMT approaches based on a noisy chan-
nel model originally developed for speech recognition [6], where a Markovian
Language Model coupled with a phrase-to-phrase translation table are at the
heart. In recent years, the noisy channel model has been extended in different
directions. The most fruitful has been the phrase based statistical machine trans-
lation (PBSMT) introduced by [7] that is based on the use of phrases rather than
words. We use Moses, a complete phrase based translation toolkit for academic
purposes. It provides all the state of the art components needed to create a PB-
SMT system from one language to another. For each language pair, an instance
of Moses is trained using Europarl [8] data and JRC-Acquis Multilingual Paral-
lel Corpus [9]. To train the language model, this data is complemented with the
English news of the last fifteen days.

We use a set of Support Vector Machines (SVMs) classifiers, one per topic
we want to detect. SVMs are kernel based approaches of supervised learning,
delivering state of the art performance in text-categorisation [4]. Each classifier
is trained offline, on a dataset of articles which have been pre-labelled. Linear
kernels were used and the classifiers were trained with a choice of parameters
aimed at achieving a low false positive rate, in other words a high precision of
above 90%. This means that documents will be tagged only when we are very
confident about the topic, while articles for which the confidence is lower will be
left untagged.

To calculate an unbiased influence of a topic in a country, a subset of news
outlets is selected. For each country, all the outlets of that country are ordered
using their Alexa rank score (http://www.alexa.com). This score, which has
been used before in the spatial analysis of news sources [3], is calculated using

http://www.alexa.com
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a combination of criteria and it estimates the traffic rank of each website. For
FIT, we use as input dataset only the top ten ranked outlets in that country.
For each country and each topic, we count the number of articles which referred
to that topic during a sliding window, and we normalize it by the total number
of articles discovered in that country in these ten outlets. This quantity is used
on the web interface to colour the European map.

3 Infrastructure

Nowadays most main news outlets provide their content in Really Simple Syn-
dication (RSS) format. We developed a web crawler infrastructure that targets
these RSS feeds and collects all the advertised articles on the main page of each
outlet we track. The RSS feeds provide just the summary of each article and
a link to the web page of the full article. The crawler uses that link to get the
full HTML page that contains the main body of the article. Finally a scraper
is used to remove undesired elements from the HTML page such as images,
advertisements, external links, etc., and returns the raw text of the article.

Each article we collect is stored in a database for further processing. The
information stored includes a title and a summary (from the RSS feed), the
full text of the article (from scraping the relevant HTML page), the publication
date, the outlet name of its origin, the geographic location of the outlet and the
language it is written in.

Every day, roughly 10,000 multilingual news articles are extracted and trans-
lated into English before stored in the database. Subsequently, all the English
and machine-translated English articles are tagged by topic using the six SVM
classifiers described previously.

4 Web Interface

FIT has a web-based user interface that presents all the translated news articles
in an organised way. Articles are divided by topic and each topic is further
divided by country. Two different data representations are available. The first is
using colour maps of Europe, indicating topic activity. Each topic is shown on a
different map as for example in Fig. 1. The second representation visualizes the
same information using bar charts (see web site).

On the map, each country is coloured according to an unbiased statistic com-
puted only on the top-ten outlets of the country as ranked by their Alexa score.
There are six different maps, one map per topic. Green colours identify a weak
interest for a particular topic while red colours a strong interest. On the bar
chart view, the size of each bar represents the total number of discovered, trans-
lated and categorised news articles for each country for a particular topic. The
list of articles we show for each country and topic is produced by using only high
quality machine translated news: A filter has been introduced to hide articles
that contain more than one untranslated word.
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Fig. 1. Found in Translation web site

For each article the translated title and summary are reported with links to
their site of origin. For United Kingdom and Ireland only English language news
are shown. Multi-lingual countries, like Belgium, contain news from more than
one language, all translated in English. This aspect is completely transparent to
the user.
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A Community-Based Platform for Machine
Learning Experimentation
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Abstract. We demonstrate the practical uses of a community-based
platform for the sharing and in-depth investigation of the thousands
of machine learning experiments executed every day. It is aimed at re-
searchers and practitioners of data mining techniques, and is publicly
available at http://expdb.cs.kuleuven.be. The system offers standards
and API’s for sharing experimental results, extensive querying capabili-
ties of the gathered results and allows easy integration in existing data
mining toolboxes. We believe such a system may speed up scientific dis-
covery and enhance the scientific rigor of machine learning research.

1 Introduction

Experimentation is the lifeblood of machine learning (ML) research. A consid-
erable amount of effort and resources are invested in assessing the usefulness of
new algorithms, finding the optimal approach for new applications or just to
gain some insight into, for instance, the effect of a parameter. Yet in spite of
all these efforts, experimental results are often discarded or forgotten shortly
after they are obtained, or at best averaged out to be published, which again
limits their future use. If we could collect all these ML experiments in a central
resource and make them publicly available in an organized (searchable) fashion,
the combined results would provide a highly detailed picture of the performance
of algorithms on a wide range of data configurations, which can be tapped into
to gain quick insights, reuse previous experiments, and increase the speed and
depth of ML research.

In this paper, we demonstrate a prototype of a community-based platform
designed to do just this. It allows researchers and practitioners to share their
results and/or to keep an organized, detailed log of past experiments, even during
early phases of algorithm development. This functionality can even be integrated
seamlessly in DM toolboxes, without requiring any additional effort from the
user. The biggest benefit, however, lies in the flexible querying capabilities it
offers to browse and reorganize large amounts of publicly available (or locally
stored) data. In the remainder of this paper we first we describe the design of
this platform in Section 2. Next, Section 3 illustrates the querying capabilities
and their utility in ML research. Finally, Section 4 concludes with future work.

W. Buntine et al. (Eds.): ECML PKDD 2009, Part II, LNAI 5782, pp. 750–754, 2009.
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2 Anatomy of the Platform

The components of the platform are shown Fig. 1. To promote the free exchange
of experiments, an extensible XML-based language for experiment exchange is
introduced, dubbed ExpML, which is formally described in Vanschoren et al.
[6], and adheres to an ontology of experimental concepts. It captures the basic
structure of a machine learning experiment, yet allows each element (e.g. algo-
rithms, kernels, datasets, evaluation metrics,...) to be described further to define
the exact setup and cover task-specific properties. It currently supports a very
wide range of classification and regression tasks, and is being extended further.
It also supports the submission of new elements of any kind, verifies that exper-
iments are reproducible, and allows each element to be ‘tagged’ with properties,
such as dataset and algorithm characteristics. To facilitate the description of
new experiments, a Java API is provided to compose experiments from scratch
and submit them to the system. The same interface can also be used by existing
DM tools to automatically stream new experiments to the database.

The experiments are then stored in an experiment database (ExpDB) [1,2]: a
database designed to store all details of machine learning experiments in order
to make them reproducible and clearly interpretable. It is designed to be very
extensible, scale easily to large numbers of experiments and allow queries on
practically any aspect of the experimental setup and outcome. As a result, its
structure is very complex. Though we cannot include a complete discussion here,
all the details of its design can be viewed at the project webpage. It currently
contains over 600,000 experiments on 67 classification and regression algorithms,
149 different datasets and 2 data preprocessing techniques. Access is provided
through web services for submitting experiments and launching queries.

Fig. 1. The components of our platform and their use
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Finally, the platform offers various ways to use the stored data. First, it
offers two query interfaces to explore all the stored information. The first is
an online interface, which offers an SQL query interface and basic visualiza-
tions of the returned results. The second is a stand-alone explorer tool offer-
ing more advanced querying and visualization features. Both are available at
http://expdb.cs.kuleuven.be, including example queries and a video tutorial
for using the explorer tool. Second, large sets of experiments can be downloaded
to build meta-models of algorithm performance, e.g. in function of data charac-
teristics. Finally, data can also be streamed to DM tools. For instance, experi-
mental toolboxes can download experiments that have run before, visualization
tools can download data points to provide new insights and DM assistance tools
can check whether a certain approach is viable on a specific problem.

3 Benefits and Illustrations

The benefits of experiment databases have been listed systematically in previous
work [5,2]. Here we simply illustrate these benefits with some example cases.

One of the biggest benefits is the reuse of previously run experiments. Collect-
ing the experiments originally run to test various hypotheses, when combined,
can be reused to test other hypotheses. As such, new experimental work can
often be conducted by simply querying the database, instead of setting up new
experiments; this is tremendously faster and easier. One clear example are bench-
marking studies: competing algorithms probably have run before on the same
datasets, and those experiments can therefore be simply downloaded instead of
repeating them. The same strategy can also be used in algorithm development or
refinement. For instance, we queried for the effect of the ‘gamma’ parameter in
RBF kernels on several datasets, shown in Fig. 2. This analysis showed that the
useful range of this parameter correlates with the number of attributes (shown
in parentheses), which in turn led to an adjustment of the RBF function and
improved the applicability of this particular algorithm [5].

Furthermore, it facilitates verification and iterative refinement of public
knowledge. For instance, since a large number of bias-variance experiments

Fig. 2. The effect of kernel width in SVMs Fig. 3. Bias error ratio vs. dataset size
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are stored, we could verify the claim that bias error becomes dominant on
large datasets [3]. A single query reorganized the available experimental results
and produced Fig. 3, showing that, at least for larger datasets, the percentage
of bias error in the total error indeed increases with size. Again, not a sin-
gle new experimental run was required; querying the stored experiments was
sufficient.

Even when the stored experiments are not sufficient to answer a new experi-
mental question, they may reduce the need for new experiments. New experimen-
tal runs may even be generated automatically as a query requires them (using,
for instance, active learning principles), thus making the decision of which new
experiments to perform in order to answer a new scientific question entirely
transparent. Besides offering these practical advantages, the platform also sim-
ply serves as an ultimate reference, a ‘map’ of all known approaches and how
they behave on certain types of datasets.

4 Conclusion and Future Work

Although standardization of experimental results has been a driving force in
bio-informatics [4], our approach is, to the best of our knowledge, unique in
ML and extends the latter by providing much more powerful querying abilities.
Functioning as a open portal for ML experimentation, we are confident that
this platform will be very useful for ML researchers, practitioners and students.
Currently planned work includes a full integration in the WEKA toolbox [7]
(beyond the interfaces available now), a graphical query interface, an account
system and further work on the ontology used.
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Abstract. By the structure of call graphs derived from huge amounts
of Call Detail Records, we can find out the social communities in the call
graphs and make different market strategies for these social communi-
ties in real telecom applications. However, traditional telecom business
intelligence methods are short of ways to understand the social interac-
tions. To fill this gap, we propose a Telecom Community Visual Analysis
prototype tool, called TeleComVis, to analyze the call graphs derived
from Call Detail Records. In the demo, we will show (1) the functions
of TeleComVis; (2) the critical techniques of finding statistically signifi-
cant communities in real-world telecom applications. Using TeleComVis,
users can both analyze the statistical properties of massive call graphs
and explore the statistically significant communities and the temporal
links interactively.

Keywords: Visual Analytics, Community, Call Graph, Social Network.

1 Introduction

Nowadays, researchers are increasingly interested in addressing a wide range of
challenges residing in social networks. Taking a social network analysis and vi-
sual analytics approach, based on the framework of JSNVA [1], we develop a
tool called TeleComVis in Java programming language to analyze the structure
of massive call graphs derived from Call Detail Records (CDR) and the relation-
ships among customers. Currently, many famous social network visualization
tools have been proposed, such as Vizster [2]. To overcome the problem of scala-
bility, Vizster allows users to explore massive social networks through egocentric
networks. In real telecom applications, there are two scenarios that are not well
addressed by current available visual analytical tools: one is how to detect the
statistically significant communities accurately and interactively, and the other
is how to show the temporal comparison of the call patterns.

2 Tool—TeleComVis

TeleComVis keeps three data structures for graphs: the raw graph which pro-
vides the structure of original graph, the subgraph which contains a subgraph in
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the raw graph and the community graph which is an abstract graph derived from
the raw graph in which each vertex is a community and the edges indicate the
relationships between communities.TeleComVis classifies the operations into the
following steps: preprocessing, topological statistical analysis, community detec-
tion and visual analysis.

2.1 Preprocessing and Statistical Analysis

The ‘Preprocessing’ tab enables users to load network data into TeleComVis, as
shown in Fig. 1 (a). Once the graph file has been imported, users can import
the weight or temporal information of the edges. In the temporal information
file, each edge has a natural number s ∈ N standing for a time step in which
the edge is active. The ‘Statistics’ tab enables users to use different network
algorithms to get the topological statistical properties of the raw graph. As shown
in Fig. 1 (b), there are several typical network analysis methods to get the
statistical properties of the whole graph, such as degree distribution, component
distribution, cluster coefficient, maximal clique distribution, etc. To measure the
relative importance of customers in call graphs, various centrality algorithms
have also been provided. TeleComVis also provides several algorithms to sample
the subgraph from the raw graph.

(a) Preprocessing (b) Statistical Analysis (c) Community Detection

(d) Visual Analysis (e) Subgraph Visualization (f) Community Overview

Fig. 1. TeleComVis user interface
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2.2 Community Detection

The ‘Community’ tab enables users to get the dense subgraphs or communities
from the original raw graph, as shown in Fig. 1 (c). To get an overview of massive
graphs, one practical strategy is to show the cohesive subgraphs. We call the
maximal cliques which contain at least k vertices as k-maximal cliques. We
provide k-maximal clique enumeration algorithm and k-core algorithm to explore
the dense subgraph in call graphs. TeleComVis can enumerate all the maximal
cliques in a call graph with tens of thousands of vertices and edges in just several
seconds which makes it possible to explore real-world call graphs interactively.

In TeleComVis, we provide two types of community graph to be analyzed: sepa-
rated communities and overlapping communities, such as CPM [3]. There are two
types of edges between overlapping communities: one shows the connection rela-
tionships and the other one shows the overlapping relationships. Fig 1 (f) shows the
8-clique-community graph of a mobile call graph with tens of thousands of vertices
and hundreds of thousands of edges using the CPM algorithm.

2.3 Visual Analysis

As shown in Fig. 1 (d), the ‘Visualization’ tab enables users to show the raw
graph, subgraph and community graph in new network visualization frames,
respectively. As shown in Fig. 1 (d), (e) and (f), in the network visualization

Fig. 2. The evolution of 8-maximal cliques in a mobile call graph in the last month
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frame, basic interaction is done with simple mouse operations. Dragging the
mouse to select a group of community vertices causes these communities to
automatically expand, and users can zoom into the overlapping relationships
between actors. They can also drag the vertex in the panel to change its po-
sition. It also provides better capabilities to manipulate graph display details,
such as labeling, color coding, size normalization and scaling. As show in Fig. 1
(e) and (f), different graph layout algorithms in the framework JSNVA [1] are
offered, such as FR layout algorithm, n-body based spring algorithm [2], radial
algorithm, etc.

To show temporal links, we define 3 types of edges: the persistent edges which
appear both in previous and current time steps, the vanished edges which appear
in previous time step but disappear in current time step and the new born edges
which do not appear in previous time step but appear in current time step.
Fig. 2 shows the dynamical patterns of the subgraph made by 8-maximal cliques
in a temporal mobile call graph in a city of China during 7 months which has
49035 vertices and 158543 edges. The grey edges indicate the persistent edges,
and the red edges indicate the vanished edges, and the green edges indicate the
new born ones. Fig. 2 shows the structure of the subgraph in the last month.
To show temporal links, the link relationships in the second month are shown in
the red frame.

3 Summary

By combining the techniques of social network analysis and visual analytics, we
develop TeleComVis to characterize the relationships between customers and
their social groups in massive call graphs. By allowing different social network
analysis methods and fast community detection algorithms, we believe that these
techniques can reduce unnecessary interaction and make visual analysis of tem-
poral telecom call data more effectively.

Acknowledgments. Supported by the National Natural Science Foundation of
China under Grant No. 60402011, the National Key Technology R&D Program
of China under Grant No.2006BAH03B05, and the Specialized Research Fund for
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Spott, Martin I-163
Steinberger, Ralf I-5
Stone, Peter I-644, I-660
Sugiyama, Masashi I-469
Suo, Lijun II-755
Suvitaival, Tommi I-33
Suzuki, Einoshin I-596
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