
Neural Networks in Model Predictive Control

Maciej �Lawryńczuk

Institute of Control and Computation Engineering, Warsaw University of Technology
ul. Nowowiejska 15/19, 00-665 Warsaw, Poland

Tel.: +48 22 234-76-73
M.Lawrynczuk@ia.pw.edu.pl

Abstract. This work is concerned with Model Predictive Control
(MPC) algorithms in which neural models are used on-line. Model struc-
ture selection, training and stability issues are thoroughly discussed.
Computationally efficient algorithms are recommended which use on-
line linearisation of the neural model and need solving on-line quadratic
optimisation tasks. It is demonstrated that they give very good results,
comparable to those obtained when nonlinear optimisation is used on-line
in MPC. In order to illustrate the effectiveness of discussed approaches,
a chemical process is considered. The development of appropriate mod-
els for MPC is discussed, the control accuracy and the computational
complexity of recommended MPC are shown.

Keywords: Process control, Model Predictive Control, neural networks,
model identification, optimisation, quadratic programming, linearisation.

1 Introduction

Model Predictive Control (MPC) is recognised as the only advanced control
technique which has been very successful in practice [29, 43, 44, 47]. It is mainly
because MPC algorithms can take into account constraints imposed on both
process inputs (manipulated variables) and outputs (controlled variables), which
usually decide on quality, economic efficiency and safety. Moreover, MPC tech-
niques are very efficient in multivariable process control (i.e. for processes with
many inputs and outputs) and for processes with difficult dynamic properties,
e.g. with significant time-delays. Different versions of MPC algorithms are nowa-
days used in numerous fields, not only in chemical, food and motor industries,
but also in medicine and aerospace [43].

MPC techniques based on easy to obtain linear models are frequently used
in practice [43]. In many cases their control accuracy is sufficient, much better
than that of the classical PID approach. Nevertheless, in the last two decades
numerous MPC algorithms based on nonlinear models have been developed and
have gained in popularity [12, 35, 43, 47, 48]. When applied to significantly non-
linear processes, they significantly improve the control accuracy in comparison
with MPC approaches which use linear models.

In MPC a dynamic model of the process is used to predict its behaviour over
some time horizon and to determine the optimal future control policy. Hence, the

N.T. Nguyen and E. Szczerbicki (Eds.): Intel. Sys. for Know. Management, SCI 252, pp. 31–63.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

32 M. �Lawryńczuk

choice of the model structure which is used in nonlinear MPC is extremely im-
portant. Main measures of model utility are: approximation accuracy, suitability
for control and easiness of development [39]. Fundamental (first-principle) mod-
els [19,30], although potentially very precise, are usually not suitable for on-line
control. Such models are comprised of systems of nonlinear differential and alge-
braic equations which have to be solved on-line in MPC at each sampling instant.
It is usually computationally demanding as fundamental models can be very
complex and may lead to numerical problems (e.g. stiffness, ill-conditioning).
Moreover, in many cases the development and validation of fundamental models
is difficult, it needs technological knowledge.

This work presents MPC algorithms based on neural models [11]. In spite of
the fact that a number of different nonlinear black-box model types are avail-
able (e.g. polynomial models, fuzzy models, Volterra series models [39]), neural
networks have some unique features thanks to which they can be very efficiently
used on-line in MPC. More specifically, neural networks are universal approxima-
tors [13], have relatively a small number of parameters and a simple structure.
Moreover, they directly describe relations between inputs and outputs of the
process, which means that during on-line control it is not necessary to solve
complicated systems of nonlinear differential equations at each sampling instant
as it is necessary when fundamental models are used. In consequence, neural
models can be effectively used in MPC as models of technological processes. In
particular, thanks to a simple, regular structure of neural models, the implemen-
tation of described algorithms is relatively easy. Neural models are trained using
recorded data sets, no technological knowledge is necessary.

Although the literature concerned with MPC algorithms based on neural mod-
els is quite rich [1,2,3,4,5,8,10,12,14,16,18,20,21,22,23,24,25,26,27,28,33,35,
37,40,41,42,47,48,49,50,51,52], there are a few issues worth exploring. First of
all, the way the nonlinear model is used on-line in MPC is crucial in light of the
computational complexity and reliability of the whole control system. In theory,
neural models can be used directly without any simplifications but it means that
the optimal control policy at each sampling instant must be calculated from a
nonlinear optimisation problem. It is not only computationally very demanding
but also the optimisation routine is likely to terminate at shallow local minima.
In order to reduce the computational burden and increase reliability, in this
work suboptimal approaches are recommended. The nonlinear neural model is
linearised on-line and next the obtained local approximation is used in MPC al-
gorithms [10,20,21,22,23,24,25,26,27,28,37,47,48]. Thanks to using for control a
local linearisation of the original neural model, the necessity of on-line nonlinear
optimisation is avoided, it is replaced by an easy to solve quadratic programming
problem. It is demonstrated in this work that suboptimal MPC algorithms with
on-line linearisation are very precise, the control accuracy is comparable to that
obtained when a nonlinear optimisation routine is used on-line at each sampling
instant.

The second important issue discussed in this work is the choice of the model
structure and training. It is emphasised that MPC algorithms are very

Neural Networks in Model Predictive Control 33

model-based, the possible control performance is determined by the accuracy
of predictions calculated by means of a dynamic model. The role of the model
in MPC cannot be ignored during model structure selection and training. The
model has to be able to make good predictions of future behaviour of the pro-
cess over the whole prediction horizon. Usually, Multi Layer Perceptron (MLP)
and Radial Basis Function (RBF) neural networks are used in MPC. In some
cases block-oriented nonlinear models which are composed of linear dynamic sys-
tems and nonlinear steady-state (static) elements can be efficiently used (neural
Hammerstein and Wiener models). In this work two classes of specialised neural
models designed with the specific aim of using them in MPC are also discussed:
multi-models [24] and structured models [20]. Both specialised models are trained
easily as one-step ahead predictors, but they calculate predictions for the whole
prediction horizon without being used recurrently. As a result, the prediction
error is not propagated which is particularly important in practice.

In spite of the fact that in practice MPC techniques are relatively easily tuned,
a stable version of described algorithms based on different kinds of neural models
is shortly discussed.

In order to show the effectiveness of discussed approaches to MPC a chemical
reactor process is discussed. The development of appropriate models for MPC
is thoroughly discussed, the control accuracy and the computational complexity
of recommended MPC are also shown.

2 Model Predictive Control Problem Formulation

In MPC algorithms [29, 44, 47] at each consecutive sampling instant k a set of
future control increments is calculated

�u(k) =

⎡
⎢⎣

�u(k|k)
...

�u(k + Nu − 1|k)

⎤
⎥⎦ (1)

It is assumed that �u(k + p|k) = 0 for p ≥ Nu, where Nu is the control hori-
zon. The objective is to minimise differences between the reference trajectory
yref(k + p|k) and predicted output values ŷ(k + p|k) over the prediction hori-
zon N ≥ Nu and to penalise excessive control increments. The minimised cost
function is usually

J(k) =
N∑

p=1

(yref(k + p|k) − ŷ(k + p|k))2 +
Nu−1∑
p=0

λp(�u(k + p|k))2 (2)

where λp > 0 are weighting coefficients. Only the first element of the determined
sequence (1) is applied to the process, i.e. u(k) = �u(k|k) + u(k − 1). At the
next sampling instant, k + 1, the prediction is shifted one step forward and the
whole procedure is repeated. Fig. 1 illustrates the general idea of MPC.

34 M. �Lawryńczuk

Fig. 1. The principle of predictive control

A unique feature of MPC is the fact that constraints imposed on process
variables can be rigorously taken into account. More specifically, future control
increments (1) are found on-line from the following optimisation problem

min
�u(k|k)...�u(k+Nu−1|k)

{J(k)}
subject to

umin ≤ u(k + p|k) ≤ umax, p = 0, . . . , Nu − 1
−�umax ≤ �u(k + p|k) ≤ �umax, p = 0, . . . , Nu − 1
ymin ≤ ŷ(k + p|k) ≤ ymax, p = 1, . . . , N

(3)

where umin, umax, �umax, ymin, ymax define constraints imposed on the magni-
tude of the input variable, the increment of the input variable and the magnitude
of the output variable, respectively.

MPC algorithms directly use an explicit dynamic model in order to predict
future behaviour of the process, i.e. to calculate predicted values of the output
variable, ŷ(k+p|k), over the prediction horizon (p = 1, . . . , N). Hence, the role of
the model in MPC is crucial. As a result, MPC techniques are very model-based,
the accuracy of the model significantly affects the quality of control.

A great advantage of MPC algorithms is the fact that they can be efficiently
used for multivariable processes. Assuming that the process has nu inputs and
ny outputs (i.e. u(k) ∈ �nu , y(k) ∈ �ny), the MPC cost function (2) becomes

J(k) =
N∑

p=1

∥∥yref(k + p|k) − ŷ(k + p|k)
∥∥2

Mp
+

Nu−1∑
p=0

‖�u(k + p|k)‖2
Λp

(4)

Neural Networks in Model Predictive Control 35

where ‖x‖2
A = xT Ax, Mp ≥ 0 and Λp > 0 are weighting matrices of dimension-

ality ny ×ny and nu×nu, respectively. Having completed the MPC optimisation
task (3), the first nu elements of the sequence (1) are applied to the process.

3 Neural Models of the Process

Let the dynamic process under consideration be described by the following
discrete-time Nonlinear Auto Regressive with eXternal input (NARX) model

y(k) = f(x(k)) = f(u(k − τ), . . . , u(k − nB), y(k − 1), . . . , y(k − nA)) (5)

where f : �nA+nB−τ+1 −→ � is a nonlinear function which describes the model,
integers nA, nB, τ define the order of dynamics, τ ≤ nB. Although, in general,
the function f can be realised by various nonlinear models [39], Multi Layer
Perceptron (MLP) and Radial Basis Functions (RBF) neural networks are most
frequently used. Both structures are universal approximators [13] capable of
approximating any smooth function to an arbitrary degree of accuracy, they
have relatively a small number of parameters and a simple structure.

3.1 MLP Neural Model

When the MLP neural network with one hidden layer and a linear output [11]
is used as the function f in (5), the output of the model can be expressed as

y(k) = f(x(k)) = w2
0 +

K∑
i=1

w2
i ϕ(zi(k)) (6)

where zi(k) is a sum of inputs of the ith hidden node, ϕ : � −→ � is the nonlinear
transfer function (e.g. hyperbolic tangent), K is the number of hidden nodes.
From (5) one has

zi(k) = w1
i,0 +

Iu∑
j=1

w1
i,ju(k − τ + 1 − j) +

nA∑
j=1

w1
i,Iu+jy(k − j) (7)

Weights of the network are denoted by w1
i,j , i = 1, . . . , K, j = 0, . . . , nA + nB −

τ + 1, and w2
i , i = 0, . . . , K, for the first and the second layer, respectively,

Iu = nB − τ + 1.
In the case of the multivariable processes with nu inputs and ny outputs

the model is usually comprised of ny independent Multiple-Input Single-Output
(MISO) models. The whole nonlinear model has the general form

y1(k) = f1(u1(k − τ1,1), . . . , u1(k − n1,1
B), . . . , (8)

unu(k − τ1,nu), . . . , unu(k − n1,nu

B), y1(k − 1), . . . , y1(k − n1
A))

...

yny (k) = fny (u1(k − τny,1), . . . , u1(k − n
ny,1
B), . . . , (9)

unu(k − τny ,nu), . . . , unu(k − n
ny,nu

B), yny(k − 1), . . . , yny(k − n
ny

A))

36 M. �Lawryńczuk

where integers nm
A , nm,n

B , τm,n for m = 1, . . . , ny, n = 1, . . . , nu define the
order of dynamics, τm,n ≤ nm,n

B . Functions fm : �nm
A +

∑nu
n=1(n

m,n
B −τm,n+1) −→ �,

m = 1, . . . , ny are realised by independent neural networks which are trained
separately. Alternatively, the model can be realised by only one neural network
with as many as ny outputs, but training of such models is usually more difficult.

Unlike fundamental models, which are comprised of systems of nonlinear alge-
braic and differential equations, MLP and RBF neural models directly describe
relations between inputs and outputs of the process. Thanks to it, neural models
can be effectively used in MPC since during on-line calculation of the control
policy it is not necessary to solve these equations at each sampling instant, which
may be computationally complex and lead to numerical problems (e.g. stiffness,
ill-conditioning).

3.2 RBF Neural Model

If the RBF neural network containing one hidden layer with Gaussian functions
and a linear output is used as the function f in (5), the output of the model is

y(k) = f(x(k)) =w0 +
K∑

i=1

wi exp(−‖x(k) − ci‖2
Qi

) (10)

=w0 +
K∑

i=1

wi exp(−zi(k))

where K is the number of hidden nodes. Vectors ci ∈ �nA+nB−τ+1 and the
diagonal weighting matrices Qi = diag(qi,1, . . . , qi,nA+nB−τ+1) describe centres
and widths of nodes, respectively, i = 1, . . . , K. The model (10) is sometimes
named Hyper Radial Basis Function (HRBF) neural network in contrast to the
ordinary RBF neural networks in which widths of nodes are constant. Let zi(k)
be the sum of inputs of the i-th hidden node. Recalling the arguments of the
rudimentary model (5), one has

zi(k) =
Iu∑

j=1

qi,j(u(k − τ + 1 − j) − ci,j)2 +
nA∑
j=1

qi,Iu+j(y(k − j) − ci,Iu+j)2 (11)

Although it is a well known fact that both MLP and RBF neural models are
universal approximators, MLP networks are global ones whereas RBF networks
are local ones. It is because in the first case all hidden nodes are used to calculate
the output for a given input, in the second case only selected hidden nodes are
employed, other nodes are practically inactive. A direct consequence of this fact
is that for MLP networks it is difficult to establish a link between available data
and parameters of hidden nodes. As a result, weights of such networks are usu-
ally initialised randomly, training should be repeated many times for different
numbers of hidden nodes to find the adequate topology which gives good ap-
proximation. Conversely, training of RBF models is much more efficient because
parameters of basis functions are directly found from available data. Moreover,

Neural Networks in Model Predictive Control 37

Fig. 2. The structure of neural Hammerstein (top) and Wiener (bottom) models

selection of the optimal structure of the RBF model which leads to desired ap-
proximation accuracy can be included in a training procedure, whereas selection
of the structure of the MLP model usually needs training many networks.

3.3 Hammerstein and Wiener Neural Models

Neural MLP and RBF models are entirely black-box models. It means that
the model structure has nothing to do with the physical nature of the process
and model parameters (weights) have no physical interpretation. An interesting
alternative is to use block-oriented nonlinear models which are composed of linear
dynamic systems and nonlinear steady-state (static) elements. Hammerstein and
Wiener models are most known and most widely implemented members of this
class [15]. A model is called the Hammerstein model if the linear dynamic part
follows the nonlinear steady-state one, in the Wiener model the connection order
is reversed as shown in Fig. 2. Unlike black-box models, block-oriented models
have a clear interpretation, the steady-state part describes the gain of the system.

In the simplest case polynomials can be used as the steady-state nonlinear
part of block-oriented models. Unfortunately, some nonlinear functions need
polynomials of a high order. In such cases models are complex and the model
uncertainty is likely to be increased. Moreover, polynomials are likely to have
oscillatory interpolation and extrapolation properties. In consequence, the ap-
plication of polynomials is in practice limited [15].

A sound alternative is to use neural networks in the steady-state part of Ham-
merstein and Wiener models. Such an approach has a few advantages. Not only
are neural networks universal approximators, but also, in contrast to polyno-
mial approximators, neural approximations are very smooth, they do not suffer
from oscillatory interpolation and extrapolation behavior. An excellent review
of identification algorithms and applications of block-oriented Hammerstein and
Wiener models is given in [15].

Both MLP and RBF neural networks can be used as the nonlinear steady-
state part of block-oriented models. When the MLP neural network is used, the
nonlinear steady-state function fH of the Hammerstein model is described by

38 M. �Lawryńczuk

x(k) = fH(u(k)) = w2
0 +

K∑
i=1

w2
i ϕ(w1

i,0 + w1
i,1u(k)) (12)

where x(k) is an auxiliary signal. Weights are denoted by w1
i,j , i = 1, . . . , K,

j = 0, 1 and w2
i , i = 0, . . . , K, for the first and the second layer, respectively.

The transfer function of the linear dynamic part is

G(q−1) =
B(q−1)
A(q−1)

=
bτq−τ + . . . + bnBq−nB

1 + a1q−1 + . . . + anAq−nA
(13)

where q−1 is the backward shift operator. Hence, the output of the dynamic
part is

y(k) =
nB∑
l=τ

blx(k − l) −
nA∑
l=1

aly(k − l) (14)

Combining (12) and (14), the output of the neural Hammerstein model is

y(k) =
nB∑
l=τ

bl

(
w2

0 +
K∑

i=1

w2
i ϕ(w1

i,0 + w1
i,1u(k − l))

)
−

nA∑
l=1

aly(k − l) (15)

Analogously, for the neural Wiener model one has

y(k) = fW(x(k)) =w2
0 +

K∑
i=1

w2
i ϕ(w1

i,0 + w1
i,1x(k)) (16)

=w2
0 +

K∑
i=1

w2
i ϕ

(
w1

i,0 + w1
i,1

(
nB∑
l=τ

blu(k − l)−
nA∑
l=1

alx(k − l)

))

Similarly as rudimentary MLP and RBF neural models, block-oriented neural
models have a regular structure, unlike fundamental models they do not contain
differential and algebraic equations which have to be solved on-line in MPC at
each sampling instant. Hence, they can be also easily used in MPC.

4 MPC with Nonlinear Optimisation (MPC-NO)

In MPC algorithms a nonlinear model is directly used to calculate predictions
ŷ(k + p|k) which are taken into account in the minimised cost function (2). The
general prediction equation is

ŷ(k + p|k) = y(k + p|k) + d(k) (17)

where quantities y(k + p|k) are calculated from the model of the process. Rudi-
mentary MLP (6), (7), RBF (10), (11) neural models or block oriented neural
Hammerstein (15) and Wiener (16) models can be used. Usually, the ”DMC

Neural Networks in Model Predictive Control 39

type” disturbance model is used, in which the unmeasured disturbance d(k) is
assumed to be constant over the prediction horizon [47]. It is estimated from

d(k) = y(k) − y(k|k − 1) (18)

where y(k) is measured while y(k|k − 1) is calculated from the model.
If for prediction in MPC a nonlinear model is used without any simplifica-

tions, predictions ŷ(k + p|k) depend in a nonlinear way on the calculated con-
trol policy, i.e. on future control increments �u(k). It means that the MPC
optimisation problem (3) becomes a nonlinear task which has to be solved
on-line in real time. It may be computationally demanding and time consum-
ing. Moreover, such an approach may be not reliable in practice because the
nonlinear optimisation routine is likely to terminate in a shallow local min-
imum. Nevertheless, simulation results of the MPC-NO algorithm based on
different neural models are frequently presented in the literature, its appar-
ent computational inefficiency and limited practical applicability are overlooked
[2, 3, 14, 16, 33, 37, 49, 50, 51, 52].

5 MPC with Nonlinear Prediction and Linearisation
(MPC-NPL)

In this work the MPC algorithm with Nonlinear Prediction and Linearisation
(MPC-NPL) [26,47,48] is recommended. At each sampling instant k a local linear
approximation of the nonlinear neural model is found on-line. Thanks to lineari-
sation, predictions of the output depend in a purely linear way on the calculated
control policy. As a result, the MPC-NPL algorithm needs solving on-line a
quadratic programming problem, which can be easily completed within a foresee-
able time period, the necessity of nonlinear optimisation is avoided. In practice,
for different technological processes the algorithm gives good closed-loop control
performance, comparable to that obtained in computationally demanding MPC-
NO approach with full nonlinear optimisation [20,21,22,23,24,25,26,27,28,47,48].

The linear approximation of the nonlinear neural model (5) is

y(k) =
nB∑
l=1

bl(k)(u(k − l)) −
nA∑
l=1

al(k)(y(k − l)) (19)

where al(k) and bl(k) are coefficients of the linearised model. Using the linearised
model (19) recurrently, from the general prediction equation (17) one obtains

ŷ(k + 1|k) =b1(k)u(k|k) + b2(k)u(k − 1) + b3(k)u(k − 2) + . . . (20)
+ bnB (k)u(k − nB + 1)
− a1(k)y(k) − a2(k)y(k − 1) − a3(k)y(k − 2) − . . .

− anA(k)y(k − nA + 1) + d(k)

40 M. �Lawryńczuk

ŷ(k + 2|k) =b1(k)u(k + 1|k) + b2(k)u(k|k) + b3(k)u(k − 1) + . . . (21)
+ bnB (k)u(k − nB + 2)
− a1(k)ŷ(k + 1|k) − a2(k)y(k) − a3(k)y(k − 1) − . . .

− anA(k)y(k − nA + 2) + d(k)
ŷ(k + 3|k) =b1(k)u(k + 2|k) + b2(k)u(k + 1|k) + b3(k)u(k|k) + . . . (22)

+ bnB (k)u(k − nB + 3)
− a1(k)ŷ(k + 2|k) − a2(k)ŷ(k + 1) − a3(k)y(k) − . . .

− anA(k)y(k − nA + 3) + d(k)
...

Predictions can be expressed in a compact form as functions of future control
increments

ŷ(k + 1|k) =s1(k)�u(k|k) + . . . (23)
ŷ(k + 2|k) =s2(k)�u(k|k) + s1(k)�u(k + 1|k) + . . . (24)
ŷ(k + 3|k) =s3(k)�u(k|k) + s2(k)�u(k + 1|k) + s1(k)�u(k + 2|k) + . . . (25)

...

where step-response coefficients of the linearised model are determined recur-
rently for j = 1, . . . , N from

sj(k) =
min(j,nB)∑

i=1

bi(k) −
min(j−1,nA)∑

i=1

ai(k)sj−i(k) (26)

Using the linearised model (19), it is possible to express the output prediction
vector ŷ(k) = [ŷ(k + 1|k) . . . ŷ(k + N |k)]T as the sum of two parts

ŷ(k) = G(k)�u(k) + y0(k) (27)

The first part depends only on the future (on future control moves �u(k)), the
second part is a free trajectory vector y0(k) =

[
y0(k + 1|k) . . . y0(k + N |k)

]T ,
which depends only on the past. The dynamic matrix G(k) of dimensionality
N × Nu contains step-response coefficients of the local linear approximation of
the nonlinear model

G(k) =

⎡
⎢⎢⎢⎣

s1(k) 0 . . . 0
s2(k) s1(k) . . . 0

...
...

. . .
...

sN (k) sN−1(k) . . . sN−Nu+1(k)

⎤
⎥⎥⎥⎦ (28)

The dynamic matrix is calculated on-line from the local linearisation of the full
nonlinear model taking into account the current state of the process.

Neural Networks in Model Predictive Control 41

Thanks to using the suboptimal prediction (27), the optimisation problem (3)
becomes the following quadratic programming task

min
�u(k)

{∥∥yref(k) − G(k)�u(k) − y0(k)
∥∥2 + ‖�u(k)‖2

Λ

}

subject to
umin ≤ J�u(k) + uk−1(k) ≤ umax

−�umax ≤ �u(k) ≤ �umax

ymin ≤ G(k)�u(k) + y0(k) ≤ ymax

(29)

where yref(k) =
[
yref(k + 1|k) . . . yref(k + N |k)

]T , ymin =
[
ymin . . . ymin

]T ,

ymax = [ymax . . . ymax]T are vectors of length N , umin =
[
umin . . . umin

]T ,
umax = [umax . . . umax]T , uk−1(k) = [u(k − 1) . . . u(k − 1)]T , �umax

= [�umax . . .�umax]T are vectors of length Nu, Λ = diag(λ0, . . . , λNu−1), J
is the all ones lower triangular matrix of dimensionality Nu × Nu.

If output constraints are present, the MPC optimisation task (29) may be af-
fected by the infeasibility problem. In such a case the original output constraints
have to be softened by using slack variables [29, 47]. Using a quadratic penalty
for constraint violations the MPC-NPL optimisation problem is

min
�u(k), εmin, εmax

{∥∥yref(k) − G(k)�u(k) − y0(k)
∥∥2 + ‖�u(k)‖2

Λ

+ρmin
∥∥εmin

∥∥2 + ρmax ‖εmax‖2}
subject to

umin ≤ J�u(k) + uk−1(k) ≤ umax

−�umax ≤ �u(k) ≤ �umax

ymin − εmin ≤ G(k)�u(k) + y0(k) ≤ ymax + εmax

εmin ≥ 0, εmax ≥ 0

(30)

where slack variables vectors of length N are denoted by εmin and εmax, ρmin

and ρmax > 0 are weights.
All things considered, at each sampling instant k of the MPC-NPL algorithm

the structure of which is shown in Fig. 3, the following steps are repeated:

1. Linearisation of the neural model: obtain the matrix G(k).
2. Find the nonlinear free trajectory y0(k) using the neural model.
3. Solve the quadratic programming task (30) to find the control policy �u(k).
4. Implement the first element of the obtained policy u(k) = �u(k|k)+u(k−1).
5. Set k := k + 1, go to step 1.

The formulation of the MPC-NPL algorithm is general, different neural models
can be used: MLP structures [20, 21, 22, 26, 28, 47, 48], RBF models [27], neural
Hammerstein [25] and Wiener models [23]. Thanks to a simple, regular nature of
these models, the implementation of the algorithm is easy. For example, taking
into account the structure of the MLP neural model defined by (6) and (7),

42 M. �Lawryńczuk

Fig. 3. The structure of the MPC-NPL algorithm

coefficients of the linearised model al(k) = −∂f(x̄(k))
∂y(k−l) and bl(k) = ∂f(x̄(k))

∂u(k−l) are
calculated easily from

al(k) = −
K∑

i=1

w2
i

dϕ(zi(x̄(k)))
dzi(x̄(k))

w1
i,Iu+l (31)

where l = 1, . . . , nA, and

bl(k) =

⎧⎪⎨
⎪⎩

0 if l = 1, . . . , τ − 1
K∑

i=1

w2
i

dϕ(zi(x̄(k)))
dzi(x̄(k))

w1
i,l−τ+1 if l = τ, . . . , nB

(32)

The linearisation point x̄(k) = [ū(k − τ) . . . ū(k− nB) ȳ(k − 1) . . . ȳ(k −nA)]T is
determined by past input and output signals (measurements) corresponding to
the arguments of the nonlinear model (5). If hyperbolic tangent is used as the
nonlinear transfer function ϕ in the hidden layer of the neural model, one has
dϕ(zi(x̄(k)))

dzi(x̄(k)) = 1 − tanh2(zi(x̄(k))).
For optimisation of the future control policy a linearised model is used. Al-

though the free trajectory can be also calculated using the linearised model, it
is a better idea to use the full nonlinear neural model. The nonlinear free trajec-
tory y0(k + p|k) over the prediction horizon, i.e. for p = 1, . . . , N , is calculated
recursively from

y0(k + p|k) = w2
0 +

K∑
i=1

w2
i ϕ(z0

i (k + p|k)) + d(k) (33)

Quantities z0
i (k+p|k) are determined from (7) assuming no changes in the control

signal from the sampling instant k onwards. One has

Neural Networks in Model Predictive Control 43

z0
i (k + p|k) =w1

i,0 +
Iuf (p)∑
j=1

w1
i,ju(k − 1) (34)

+
Iu∑

j=Iuf (p)+1

w1
i,ju(k − τ + 1 − j + p)

+
Iyp(p)∑
j=1

w1
i,Iu+jy

0(k − j + p|k) +
nA∑

j=Iyp(p)+1

w1
i,Iu+jy(k − j + p)

where Iuf (p) = max(min(p − τ + 1, Iu), 0) and Iyp(p) = min(p − 1, nA). Using
(6) and (18), the unmeasured disturbance is estimated from

d(k) = y(k) −
(

w2
0 +

K∑
i=1

w2
i ϕ(zi(k))

)
(35)

6 Training of Neural Models for MPC

The neural model is usually trained off-line. During on-line control in MPC
the model is not retrained. On-line model adaptation, although discussed in
the literature [2, 50], has a limited applicability and in practice is not popular.
For training a set of data is given (i.e. the input sequence u(1), . . . , u(S) and
the output sequence y(1), . . . , y(S) where S is the number of samples) collected
from measurements of the process. The objective of identification is to find the
topology and parameters of the neural model in such a way that a predefined
performance index which describes the accuracy of the model is minimised. A
yet another set (the test set) is used in order to assess generalisation abilities of
the model.

Identification consists of three phases: model structure selection, training and
assessment. Typically, various models with different topology (K) and different
order of dynamics (nA, nB, τ) should be trained and evaluated. The order of
dynamics can be determined analytically [7]. The model finally chosen for MPC
should have a relatively small number of parameters and be precise.

Typically, during model training the following Sum of Squared Errors (SSE)
performance function is minimised

SSE =
∑

k∈data set

(y(k|k − 1) − y(k))2 (36)

where y(k|k−1) denotes the output of the model for the sampling instant k calcu-
lated using signals up to the sampling instant k− 1 whereas y(k) is the real value
of the process output variable collected during the identification experiment.

Training is an unconstrained optimisation task in which the SSE performance
index is minimised. Gradient-based algorithms are usually used, gradients of

44 M. �Lawryńczuk

the SSE function are calculated analytically using the backpropagation scheme
[11]. The optimisation direction can be found by different nonlinear optimisation
methods: the steepest descent, the conjugate gradient methods (Polak-Ribiere,
Fletcher-Reeves), the quasi-Newton algorithms (DFP, BFGS) or the Levenberg-
Marquardt method [6]. Because of fast convergence and robustness BFGS and
Levenberg-Marquardt algorithms are recommended. The optimisation problem
is likely to be non-convex, the minimised objective function may have many
local minima. Hence, in practice, for a given model structure the gradient-based
algorithm is usually initialised randomly and the training procedure is repeated
a few times (the multi-start approach). Alternatively, for initialisation global
optimisation can be used (e.g. the genetic algorithm, simulated annealing).

Two configurations of dynamic models can be used: the one-step ahead pre-
diction configuration (the series-parallel model) and the simulation configuration
(the parallel model) [36]. In the first case the current value of the output signal,
y(k), is a function of past input and output values (i.e. real values measured
at previous sampling instants). In the second case current and future output
values are calculated recurrently, without using real output measurements. Nat-
urally, in MPC the model must be used recurrently since the prediction over the
prediction horizon N is considered. For the model (5) one has

y(k|k) = f(u(k − τ), . . . , u(k − nB), y(k − 1), . . . , y(k − nA)) (37)

y(k + 1|k) = f(u(k − τ + 1), . . . , u(k − nB + 1),
y(k|k), . . . , y(k − nA + 1|k)) (38)

y(k + 2|k) = f(u(k − τ + 2), . . . , u(k − nB + 2),
y(k + 1|k), . . . , y(k − nA + 2|k)) (39)
...

Bearing in mind the role of the model in MPC for long-range prediction, it is ob-
vious that recurrent training should be used [15,36,37]. In the SSE performance
function the output of the model y(k|k−1) should be calculated recurrently. An
alternative formulation of the performance function can be also used in which all
predictions over the whole horizon N are taken into account for all data samples

SSE =
∑

k∈data set

N∑
p=1

(y(k + p|k − 1) − y(k + p))2 (40)

Example: Modelling and MPC of a Polymerisation Reactor

The process under consideration is a polymerisation reaction taking place in a
jacketed continuous stirred tank reactor [9] depicted in Fig. 4. The reaction is the
free-radical polymerisation of methyl methacrylate with azo-bis-isobutyronitrile
as initiator and toluene as solvent. The output NAMW (Number Average
Molecular Weight) [kg kmol−1] is controlled by manipulating the inlet initiator

Neural Networks in Model Predictive Control 45

Fig. 4. The polymerisation reactor control system structure

flow rate FI [m3 h−1]. The flow rate F [m3h−1] of the monomer is a distur-
bance. Properties of the considered process are highly nonlinear. The reactor is
frequently used as a benchmark [9, 26, 47].

The continuous-time fundamental model of the polymerisation reactor [9] is
comprised of four nonlinear ordinary differential equations

dCm(t)
dt

= −
[
ZP exp

(−EP

RT

)
+ Zfm exp

(−Efm

RT

)]
Cm(t)P0(t) (41)

− F (t)Cm(t)
V

+
F (t)Cmin

V
dCI(t)

dt
= − ZI exp

(−EI

RT

)
CI(t) − F (t)CI

V
+

FI(t)CIin

V
(42)

dD0(t)
dt

=
[
0.5ZTc exp

(−ETc

RT

)
+ ZTd exp

(−ETd

RT

)]
P 2

0 (t) (43)

+ Zfm exp
(−Efm

RT

)
Cm(t)P0(t) − F (t)D0(t)

V

dDI(t)
dt

=Mm

[
ZP exp

(−EP

RT

)
+ Zfm exp

(−Efm

RT

)]
Cm(t)P0(t) (44)

− F (t)DI(t)
V

where

P0(t) =

√√√√ 2f∗CI(t)ZI exp
(−EI

RT

)

ZTd exp
(−ETd

RT

)
+ ZTc exp

(−ETc
RT

) (45)

and one algebraic output equation

NAMW (t) =
DI(t)
D0(t)

(46)

Parameters of the fundamental model are given in Table 1. The initial operating
conditions are: FI = 0.028328 m3 h−1, F = 1 m3 h−1, NAMW = 20000 kg

46 M. �Lawryńczuk

Table 1. Parameters of the fundamental model

Parameter Value Parameter Value

CIin 8 kmol m−3 R 8.314 kJ kmol−1 K−1

Cmin 6 kmol/m−3 T 335 K
ETc 2.9442 · 103 kJ kmol−1 ZTc 3.8223 · 1010 m3 kmol−1 h−1

ETd 2.9442 · 103 kJ kmol−1 ZTd 3.1457 · 1011 m3 kmol−1 h−1

Efm 7.4478 · 104 kJ kmol−1 Zfm 1.0067 · 1015 m3 kmol−1 h−1

EI 1.2550 · 105 kJ kmol−1 ZI 3.7920 · 1018 h−1

EP 1.8283 · 104 kJ kmol−1 ZP 1.7700 · 109 m3 kmol−1 h−1

f∗ 0.58 V 0.1 m3

Mm 100.12 kg kmol−1

kmol−1, Cm = 5.3745 kmol m−3, CI = 2.2433·10−1 kmol m−3, D0 = 3.1308·10−3

kmol m−3, DI = 6.2616 · 10−1 kmol m−3.
For identification the fundamental model (41)–(46) is used as the real process,

it is simulated open-loop in order to obtain two sets of data, namely training and
test data sets depicted in Fig. 5. Both sets contain 2000 samples, the sampling
time is 1.8 min. The output signal contains small measurement noise. During cal-
culations the system of differential equations comprising the fundamental model
is solved using the Runge-Kutta RK45 method.

The classical MLP neural model of the process is used. A number of model
candidates are trained to assess the order of dynamics and the number of hidden
nodes. Finally, the second-order model is chosen containing K = 6 hidden nodes
with the hyperbolic tangent transfer function in the hidden layer

y(k) = f(u(k − 2), y(k − 1), y(k − 2)) (47)

Because input and output process variables have different orders of magnitude,
they are scaled as u = 100(FI − FI0), y = 0.0001(NAMW − NAMW0) where
FI0 = 0.028328, NAMW0 = 20000 correspond to the initial operating point.

During model training the SSE performance function (36) is minimised. Be-
cause models used in MPC have to be able to make good predictions not only one

1 500 1000 1500 2000
0

0.02

0.04

0.06

k

F
I

Training data set

1 500 1000 1500 2000

2

3

4

x 10
4

k

N
A

M
W

1 500 1000 1500 2000
0

0.02

0.04

0.06

k

F
I

Test data set

1 500 1000 1500 2000

2

3

4

x 10
4

k

N
A

M
W

Fig. 5. Training and test data sets

Neural Networks in Model Predictive Control 47

1 500 1000 1500 2000

1.5

2

2.5

3

3.5

4

4.5

x 10
4

k

N
A

M
W

Training data set

1 500 1000 1500 2000

1.5

2

2.5

3

3.5

4

4.5

x 10
4

k

N
A

M
W

Test data set

50 100 150 200 250
1.3

1.4

1.5

1.6

1.7

1.8

1.9
x 10

4

k

N
A

M
W

Test data set

900 950 1000 1050 1100
1.4

1.5

1.6

1.7

1.8

1.9

2

2.1
x 10

4

k

N
A

M
W

Test data set

1700 1750 1800 1850 1900

1.6

1.8

2

2.2

2.4

2.6

2.8
x 10

4

k
N

A
M

W

Test data set

Fig. 6. The process (solid line with dots) vs. the neural model (dashed line with circles)
for training and test data sets: complete data sets (top) and enlarged fragments of the
test data set (bottom)

step ahead, but over the whole prediction horizon, neural networks are trained as
recurrent Output Error (OE) models which make it possible to properly calculate
multi-step ahead predictions [37]. The SSE performance function is minimised
using the BFGS optimisation algorithm [6]. For each neural model topology
training is repeated 10 times, weights of neural networks are initialised ran-
domly. Fig. 6 shows the output of the process and the output of the chosen
neural model for both training and test data sets. The accuracy of the neural
model is very high. For the training data set SSE = 5.559159 · 10−1, for the test
data set SSE = 1.190907 · 100.

To demonstrate very high accuracy of the neural model the linear model

y(k) = b2u(k − 2) − a1y(k − 1) − a2y(k − 2) (48)

is found. The linear model has exactly the same arguments as the neural one.
Fig. 7 shows the output of the process and the output of the linear model for both
data sets. Unfortunately, because the process is really nonlinear, the accuracy
of the linear model is low. For the training data set SSE = 3.402260 · 102, for
the test data set SSE = 6.255822 · 102. Comparing properties of both models,
one can expect that it is better to use in MPC the neural model rather than the
linear one.

Compared MPC strategies are:

a) the linear MPC algorithm based on the linear model (48),

48 M. �Lawryńczuk

1 500 1000 1500 2000
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

k

N
A

M
W

Training data set

1 500 1000 1500 2000
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

k

N
A

M
W

Test data set

Fig. 7. The process (solid line) vs. the linear model (dashed line) for training and test
data sets

1 20 40 60 80 100
0

0.01

0.02

0.03

0.04

0.05

0.06

k

F
I

1 20 40 60 80 100

2

2.5

3

3.5

4

x 10
4

k

N
A

M
W

NAMWref

Fig. 8. Simulation results of the MPC algorithm based on the linear model

b) the nonlinear MPC-NPL algorithm based on the neural model (47),
c) the nonlinear MPC-NO algorithm based on the same neural model (47).

All algorithms are implemented in Matlab. The MPC algorithm based on the
linear model and the MPC-NPL algorithm use the quadratic programming pro-
cedure whereas the MPC-NO algorithm uses the Sequential Quadratic Program-
ming (SQP) nonlinear optimisation routine. As the initial point for MPC-NO
nonlinear optimisation Nu − 1 control values calculated at the previous sam-
pling instant and not applied to the process are used. The fundamental model
(41)–(46) is used as the real process, it is solved using the Runge-Kutta RK45
method.

Horizons of all compared MPC algorithms are N = 10, Nu = 3, the weighting
coefficients λp = 0.2. (As far as choosing parameters of MPC the reader is
referred to the literature [29,44,45,47].) The manipulated variable is constrained:
Fmin

I = 0.003, Fmax
I = 0.06, the sampling time is 1.8 min.

Simulation results of the MPC algorithm based on the linear model are de-
picted in Fig. 8. As the reference trajectory (NAMW ref) five set-point changes

Neural Networks in Model Predictive Control 49

1 20 40 60 80 100
0

0.01

0.02

0.03

0.04

0.05

k

F
I

1 20 40 60 80 100

2

2.5

3

3.5

4

x 10
4

k

N
A

M
W

NAMWref

10 12 14 16 18 20
2.35

2.4

2.45

2.5

2.55
x 10

4

k

N
A

M
W

NAMWref

25 30 35 40
2.8

2.85

2.9

2.95

3

3.05
x 10

4

k

N
A

M
W

NAMWref

80 85 90 95 100

1.9

2

2.1

2.2

2.3

2.4

2.5
x 10

4

k

N
A

M
W

NAMWref

Fig. 9. Simulation results of MPC-NPL (solid) and MPC-NO (dashed) algorithms
based on the same neural model: the whole simulation (top) and enlarged fragments
(bottom)

1 20 40 60 80 100
0

0.01

0.02

0.03

0.04

0.05

k

F
I

1 20 40 60 80 100

2

2.5

3

3.5

4

x 10
4

k

N
A

M
W

NAMWref

Fig. 10. Simulation results of MPC-NPL (solid) and MPC-NO (dashed) algorithms
based on the same neural model with constraints imposed on increments of the manip-
ulated variable, �Fmax

I = 0.005 m3/h

are considered. The linear algorithm works well only for the smallest set-point
change, whereas for bigger ones the system becomes unstable. Simulation results
of MPC-NPL and MPC-NO algorithms based on the same neural model are de-
picted in Fig. 9. Both nonlinear algorithms are stable. Moreover, the closed-loop
performance obtained in the suboptimal MPC-NPL algorithm with quadratic
programming is very close to that obtained in the computationally demanding

50 M. �Lawryńczuk

5 6 7 8 9 10 11 12 13 14 15

1
2

3
4

5
6

7
8

9
10
0

10

20

30

40

50

N

MPC−NPL

N
u

M
F

LO
P

S

5 6 7 8 9 10 11 12 13 14 15

1
2

3
4

5
6

7
8

9
10
0

10

20

30

40

50

N

MPC−NO

N
u

M
F

LO
P

S

Fig. 11. The computational complexity (MFLOPS) of MPC-NPL (left) and MPC-NO
(right) algorithms based on the same neural model

Table 2. The computational complexity (MFLOPS) of MPC-NPL and MPC-NO al-
gorithms based on the same neural model

Algorithm N Nu = 1 Nu = 2 Nu = 3 Nu = 4 Nu = 5 Nu = 10

MPC-NPL 5 0.131 0.176 0.275 0.422 0.637 −
MPC-NO 5 0.560 1.278 2.782 5.560 9.101 −
MPC-NPL 10 0.221 0.285 0.405 0.573 0.808 3.198
MPC-NO 10 1.262 2.640 4.110 6.779 8.896 48.358

MPC-NPL 15 0.320 0.413 0.563 0.764 1.033 3.628
MPC-NO 15 1.968 3.993 5.846 8.547 11.182 42.367

MPC-NO approach, in which a nonlinear optimisation problem has to be solved
on-line at each sampling instant.

Simulation results of both nonlinear algorithms with constraints imposed on
increments of the manipulated variable �Fmax

I = 0.005 m3/h are shown in
Fig. 10. Such constraints are very important when changes in the reference
trajectory are big, they take into account the actuator’s limitations. In com-
parison with Fig. 9, additional constraints result in a slightly slower output
profile, but technological restrictions are rigorously taken into account.

Table 2 shows the influence of control and prediction horizons on the compu-
tational complexity of MPC-NPL and MPC-NO algorithms (in terms of float-
ing point operations MFLOPS) for N = 5, 10, 15, Nu = 1, 2, 3, 4, 5, 10. Fig. 11
depicts the computational complexity for N = 5, . . . , 15, Nu = 1, . . . , 10. In gen-
eral, the suboptimal MPC-NPL algorithm is considerably less computationally
demanding than the MPC-NO strategy. The minimal computational complexity
reduction (MPC-NPL vs. MPC-NO) for all considered combinations of horizons
is 4.28 times, the maximal is 15.37 times, the average reduction factor is 10.59.

Neural Networks in Model Predictive Control 51

7 Specialised Neural Models for MPC

In MPC the explicit model of the process is directly used to predict its future
behaviour and to determine the optimal control policy. As a result, MPC al-
gorithms are very model-based, the control performance is determined by the
accuracy of predictions calculated by the model. The role of the model in MPC
control cannot be ignored during model structure selection and identification.
Naturally, the model has to be able to make good predictions of future behaviour
of the process over the whole prediction horizon.

According to the general prediction equation (17)

ŷ(k + p|k) = y(k + p|k) + d(k) (49)

predictions are calculated by means of the model used for the sampling instant
k +p at the current sampling instant k. The unmeasured disturbance estimation
d(k) is also calculated (18) using the model of the process. Using the prediction
equation and the general nonlinear neural model (5) which represents any model
discussed so far (MLP, RBF neural Hammerstein or Wiener), output predictions
over the prediction horizon (p = 1, . . . , N) are calculated recurrently from

ŷ(k + p|k) = f(u(k − τ + p|k), . . . , u(k|k)︸ ︷︷ ︸
Iuf (p)

, u(k − 1), . . . , u(k − nB + p)︸ ︷︷ ︸
Iu−Iuf (p)

, (50)

ŷ(k − 1 + p|k), . . . , ŷ(k + 1|k)︸ ︷︷ ︸
Iyp(p)

, y(k), . . . , y(k − nA + p)︸ ︷︷ ︸
nA−Iyp(p)

) + d(k)

Predictions ŷ(k + p|k) depend on Iuf (p) = max(min(p − τ + 1, Iu), 0) future
values of the control signal (i.e. decision variables of the MPC algorithm), where
Iu = nB − τ + 1, Iu − Iuf (p) values of the control signal applied to the plant at
previous sampling instants, Iyp(p) = min(p − 1, nA) future output predictions
and nA − Iyp(p) plant output signal values measured at previous sampling in-
stants. For prediction in MPC the classical NARX model (5) has to be used
recurrently, because predictions depend on predictions calculated for previous
sampling instants within the prediction horizon.

Quite frequently, neural models are trained using the rudimentary backprop-
agation algorithm which yields one-step ahead predictors. Intuitively, they are
not suited to be used recurrently in MPC for long-range prediction (50) since
the prediction error is propagated. It is particularly important in the case of
noise, model inaccuracies and underparameterisation, i.e. the order of the model
is usually significantly lower than the order of the real process or even the proper
model order is unknown.

To solve the problem resulting from the inaccuracy of one-step ahead predic-
tors in MPC two general approaches can be recommended. First of all, specialised
recurrent training algorithms for neural models can be used (Section 6), but they
are significantly more computationally demanding in comparison with one-step
ahead predictor training. Moreover, obtained models can be sensitive to noise.
An alternative is to choose the structure of the model in such a way that its

52 M. �Lawryńczuk

role in MPC is not ignored. In this work two specialised neural structures are
discussed: multi-models and structured models. In both cases, thanks to the na-
ture of these models, the prediction error is not propagated. Both model types
are easily trained as one-step ahead predictors.

7.1 Neural FIR Models

The easiest way of avoiding the necessity of using the model recurrently is to
use Nonlinear Finite Impulse Response (NFIR) models

y(k) = f(x(k)) = f(u(k − τ), . . . , u(k − nB)) (51)

where f : �nB−τ+1 −→ �. For the NFIR model, output predictions

ŷ(k + p|k) =f(u(k − τ + p|k), . . . , u(k|k)︸ ︷︷ ︸
Iuf (p)

, u(k − 1), . . . , u(k − nB + p)︸ ︷︷ ︸
Iu−Iuf (p)

) (52)

+ d(k)

depend only on past and future control signals. For prediction in MPC the NFIR
model is not used recurrently, the prediction error is not propagated.

The NFIR model can be realised by the MLP or RBF neural network. The
output of the MLP NFIR model is given by (6). In contrast to the classical MLP
neural model (7), sums of inputs of hidden nodes (i = 1, . . . , K) depend only on
the input signal

zi(k) = w1
i,0 +

Iu∑
j=1

w1
i,ju(k − τ + 1 − j) (53)

Weights of the network are denoted by w1
i,j , i = 1, . . . , K, j = 0, . . . , nB − τ + 1,

and w2
i , i = 0, . . . , K, for the first and the second layer, respectively, Iu =

nB − τ + 1.
Unfortunately, because of its nature, the NFIR model usually needs a high

order of dynamics (determined by nB), much higher than the classical model of
a similar accuracy which depends on both past input and output signals (5).

7.2 Neural Multi-models

In the multi-model approach [24] one independent neural model is used for each
sampling instant within the prediction horizon. For the sampling instant k + 1
the following model is used

y(k + 1) = f1(u(k − τ + 1), . . . , u(k − nB), y(k), . . . , y(k − nA)) (54)

For the sampling instant k + 2 the model is

y(k + 2) = f2(u(k − τ + 2), . . . , u(k − nB), y(k), . . . , y(k − nA)) (55)

Neural Networks in Model Predictive Control 53

In a similar way independent submodels are formulated for all sampling instants
within the prediction horizon. For the sampling instant k + N the model is

y(k + N) = fN(u(k − τ + N), . . . , u(k − nB), y(k), . . . , y(k − nA)) (56)

In general, for p = 1, . . . , N , all submodels can be expressed in a compact form

y(k + p) = fp(x(k + p|k)) = (57)
fp(u(k − τ + p), . . . , u(k − nB), y(k), . . . , y(k − nA))

The multi-model is comprised of N neural networks which calculate predictions
for consecutive sampling instants within the prediction horizon. Each network
realises the function fp : �min(nB+p−τ+1,nB)+max(p−τ+1,0)+nA+1 −→ �.

Predictions calculated from the multi-model are

ŷ(k + p|k) = y(k + p|k) + d(k + p|k) (58)

for p = 1, . . . , N . Independent disturbance estimations are

d(k + p|k) = y(k) − fp(k|k − 1) (59)

where y(k) is measured while fp(k|k−1) is calculated from the multi-model used
for the sampling instant k.

Using (57) and (58), output predictions for p = 1, . . . , N calculated from the
multi-model are

ŷ(k + p|k) = fp(u(k − τ + p|k), . . . , u(k|k)︸ ︷︷ ︸
Iuf (p)

, u(k − max(τ − p, 1)), . . . , u(k − nB)︸ ︷︷ ︸
Iup(p)

y(k), . . . , y(k − nA))︸ ︷︷ ︸
nA+1

+d(k + p|k) (60)

where Iuf (p) = max(p−τ +1, 0), Iup(p) = nB−max(τ−p, 1)+1. Analogously as
in the case of the classical NARX model (5), predictions calculated by means of
the multi-model (57) depend on Iuf (p) future values of the control signal, Iup(p)
values of the control signal applied to the plant at previous sampling instants
and on nA + 1 values of the plant output signal measured at previous sampling
instants. Unlike classical predictions (50), they do not depend on predictions cal-
culated for previous sampling instants within the prediction horizon. As a result,
the multi-model is not used recurrently, the prediction error is not propagated.
Fig. 12 depicts the structure of the multi-model used for prediction in MPC.

Neural multi-model training needs finding independent N submodels. They
are trained separately by means of the standard backpropagation algorithm
which yields one-step ahead predictors. It is possible because for prediction
one independent neural submodel is used for each sampling instant within the
prediction horizon and predictions do not depend on previous predictions.

54 M. �Lawryńczuk

Fig. 12. The structure of the neural multi-model used for prediction in MPC

As submodels both MLP and RBF neural networks can be used. These neural
networks realise functions fp, p = 1, . . . , N in (57). Outputs of MLP submodels
for the sampling instant k + p, p = 1, . . . , N are

y(k + p|k) = fp(x(k + p|k)) = w2,p
0 +

Kp∑
i=1

w2,p
i ϕ(zp

i (k + p|k)) (61)

where zp
i (k + p|k) are sums of inputs of the ith hidden node, Kp is the number

of hidden nodes. Recalling the prediction of the multi-model (60) one has

zp
i (k + p|k) =w1,p

i,0 +
Iuf (p)∑
j=1

w1,p
i,j u(k − τ + 1 − j + p|k) (62)

+
Iup(p)∑
j=1

w1,p
i,Iuf (p)+ju(k − max(τ − p, 1) + 1 − j)

+
nA+1∑
j=1

w1,p
i,Iuf (p)+Iup(p)+jy(k + 1 − j)

Weights are denoted by w1,p
i,j , i = 1, . . . , Kp, j = 0, . . . , max(p − τ + 1, 0) −

max(τ −p, 1)+nA +nB +2, and w2,p
i , i = 0, . . . , Kp, for the first and the second

layer, respectively, p indicates the submodel, p = 1, . . . , N .
The MPC-NPL algorithm based on MLP multi-models is detailed in [24].

7.3 Structured Neural Models

Rewriting the model (5) for sampling instants k − 1, . . . , k − N + 1 one has

y(k − 1) = f(u(k − τ − 1), . . . , u(k − nB − 1), (63)
y(k − 2), . . . , y(k − nA − 1))

...

Neural Networks in Model Predictive Control 55

y(k − N + 2) = f(u(k − τ − N + 2), . . . , u(k − nB − N + 2), (64)
y(k − N + 1), . . . , y(k − nA − N + 2))

y(k − N + 1) = f(u(k − τ − N + 1), . . . , u(k − nB − N + 1), (65)
y(k − N), . . . , y(k − nA − N + 1))

Using (65), the quantity y(k − N + 2) given by (64) can be expressed as

y(k − N + 2) = f(u(k − τ − N + 2), . . . , u(k − nB − N + 2), (66)
f(u(k − τ − N + 1), . . . , u(k − nB − N + 1),

y(k − N), . . . , y(k − nA − N + 1)),
y(k − N), . . . , y(k − nA − N + 2))

which can be rewritten as the function

y(k − N + 2) = fN−2(u(k − τ − N + 2), . . . , u(k − nB − N + 1), (67)
y(k − N), . . . , y(k − nA − N + 1))

Model arguments rearrangement can be repeated for all quantities y(k − N +
2), . . . , y(k), giving functions fN−2, . . . , f0. Finally, one has

y(k) = f(u(k − τ), . . . , u(k − nB), (68)
f1(u(k − τ − 1), . . . , u(k − nB − N + 1), . . . ,

y(k − N), . . . , y(k − nA − N + 1)), . . . ,
fnA(u(k − τ − nA), . . . , u(k − nB − N + 1),

y(k − N), . . . , y(k − nA − N + 1)))

which can be rewritten as the function

y(k) = f0(u(k − τ), . . . , u(k − nB − N + 1), (69)
y(k − N), . . . , y(k − nA − N + 1))

The equation (69) represents the structured model, f0 : �nA+nB−τ+N −→ �.
Using the general prediction equation (17), output predictions calculated from

the structured model (69) are

ŷ(k + p|k)=f0(u(k − τ + p|k), . . . , u(k|k)︸ ︷︷ ︸
Iuf (p)

, u(k − 1), . . . , u(k − nB − N + 1 + p)︸ ︷︷ ︸
Iu−Iuf (p)

,

y(k − N + p), . . . , y(k − nA − N + 1 + p)︸ ︷︷ ︸
nA

) + d(k) (70)

For the structured model Iu = nB + N − τ . Predictions depend on Iuf (p) =
max(p− τ + 1, 0) future values of the control signal and Iu − Iuf (p) values of the
control signal applied to the plant at previous sampling instants. Unlike classi-
cal predictions (50), they do not depend on predictions calculated for previous

56 M. �Lawryńczuk

sampling instants within the prediction horizon, but only on nA values of the
plant output signal measured at previous sampling instants. As a result, the
structured model is not used recurrently, the prediction error is not propagated.

Both MLP and RBF neural networks can be used in the structured model to
realise the function f0 in (69). The output of the structured MLP model is

y(k) = f(x(k)) = w2
0 +

K∑
i=1

w2
i ϕ(zi(k)) (71)

where zi(k) is the sum of inputs of the ith hidden node. From (69)

zi(k) = w1
i,0 +

Iu∑
j=1

w1
i,ju(k − τ + 1 − j) +

nA∑
j=1

w1
i,Iu+jy(k − j − N + 1) (72)

Weights are denoted by w1
i,j , i = 1, . . . , K, j = 0, . . . , nA + nB − τ + N , and w2

i ,
i = 0, . . . , K, for the first and the second layer, respectively.

The MPC-NPL scheme based on structured MLP models is described in [20].

Example: Multi-Modelling of the Polymerisation Reactor

Two models are trained off-line: the classical NARX model (5)

y(k) = f(u(k − 2), y(k − 1)) (73)

and the multi-model (57) for N = 10

y(k + 1|k) =f1(u(k − 1), u(k − 2), (74)
y(k), y(k − 1))

y(k + 2|k) =f2(u(k|k), u(k − 1), u(k − 2), (75)
y(k), y(k − 1))

y(k + 3|k) =f3(u(k + 1|k), u(k|k), u(k − 1), u(k − 2), (76)
y(k), y(k − 1))

y(k + 4|k) =f4(u(k + 2|k), u(k + 1|k), u(k|k), u(k − 1), u(k − 2), (77)
y(k), y(k − 1))

...
y(k + 10|k) =f10(u(k + 8|k), . . . , u(k|k), u(k − 1), u(k − 2), (78)

y(k), y(k − 1))

Both models used have the same order of dynamics determined by τ = nB = 2,
nA = 1. To show advantages of the multi-model both models are underparame-
terised, because in fact the fundamental model (41)–(46) consists of four differen-
tial equations. In order to precisely capture the nature of the process, the classical

Neural Networks in Model Predictive Control 57

1 2 3 4 5 6 7 8 9 10

2

2.5

3

3.5
x 10

4

p

N
A

M
W

Fig. 13. Step-responses (long-range predictions) calculated recurrently by the classical
NARX neural model (solid line with asterisks) and by the neural multi-model (dashed
line with circles) vs. the real process (solid line with dots)

neural model should have at least the second order, i.e. nA = nB = τ = 2 (in
all experiments described so far the model (47), i.e. y(k) = f(u(k − 2), y(k −
1), y(k − 2)) is used).

In both model types MLP neural networks are used with the hyperbolic tan-
gent transfer function in hidden layers. All neural models are trained as one-step
ahead predictors. The NARX model has K = 6 hidden nodes, in the case of the
multi-model, six submodels have Kp = 3 hidden nodes (for p = 1, 6, 7, 8, 9, 10),
four submodels have Kp = 3 hidden nodes (for p = 2, 3, 4, 5). The number of
hidden nodes in submodels comprising the multi-model is adjusted in such a way
that when trained and tested as one-step ahead predictors they give comparable
values of the SSE performance index as the classical NARX model.

To reduce the complexity of models, the Optimal Brain Damage (OBD) prun-
ing algorithm is used [17]. The complexity of the NARX model is reduced by
only 16.0% whereas in case of the multi-model in the best case by 34.15%, in
the worst case by 17.65%. An average complexity reduction factor is 29.66%.

In light of the application of models in MPC, it is interesting to compare their
long range prediction accuracy. Fig. 13 shows step-responses of the process and
predictions. The manipulated variable FI changes at the sampling instant k = 0
from 0.028328 to 0.004602, which corresponds to changing the operating point
from NAMW = 20000 to NAMW = 40000. The one-step ahead NARX neural
model is used recurrently, it correctly calculates only the prediction for the first
sampling instant of the prediction horizon (i.e. for p = 1). As a result of under-
parameterisation, for next sampling instants the prediction error is propagated
and consecutive predictions significantly differ from the real process. The neural
multi-model is not used recurrently, the prediction error is not propagated. It
correctly predicts behaviour of the process over the whole prediction horizon.

To further compare the long-range prediction accuracy and show the potential
of using neural multi-models for long-range prediction in MPC, the ratio

58 M. �Lawryńczuk

RN =
1
N

N∑
p=1

∑
k∈data set

(y(k + p|k) − y(k + p))2

∑
k∈data set

(yNARX(k + p|k) − y(k + p))2
(79)

is considered. It compares the average long-range prediction accuracy of the
multi-model (the numerator) and the classical NARX model (the denominator).
The output of the classical one-step ahead model used recurrently for long-
range prediction is denoted by yNARX(k + p|k), the output of the multi-model
is denoted by y(k + p|k), y(k + p) is the real data sample.

If RN < 1 it is a potential for using in MPC multi-models rather than classical
models recurrently. The smaller the value of RN , the worse long-range prediction
abilities of the classical model and it is more appropriate to use multi-models.
For the training data set R10 = 0.3241, for the test data set R10 = 0.2298.

8 The Stabilising MPC-NPL Algorithm

In practice stability of MPC is achieved by adjusting horizons’ lengths and
penalty factors λp. MPC algorithms have gained recognition and have been
successfully applied in industry for years before theoretical results concerning
their stability analysis appeared. Over the years several MPC algorithms with
guaranteed stability have been developed, an excellent review is given in [31].
Usually, stability is guaranteed provided that the nonlinear optimisation is used
to solve the MPC optimisation task (3). An additional strong assumption under
which stability is guaranteed is the necessity of finding the global solution to the
nonlinear MPC optimisation problem at each algorithm iteration. On the other
hand, as emphasised in this work, suboptimal MPC algorithms with on-line lin-
earisation and quadratic programming give very good control performance and
are computationally efficient. The gap between the practice and the theory is
evident. Stability of suboptimal MPC are researched exceptionally infrequently.

It can be easily proved that to guarantee stability it is sufficient to bring the
terminal state (i.e. at the end of the prediction horizon) to the origin [31, 32].
In other words, stability is enforced by using in the MPC optimisation task an
additional equality terminal constraint

x(k + N |k) = 0 (80)

The state x(k) = [u(k−1) . . . u(k−nB+1) y(k) . . . y(k−nA+1)]T [29] corresponds
to arguments of the nonlinear model (5). Unfortunately, in nonlinear MPC such
a constraint significantly increases the complexity of the nonlinear optimisation
problem.

To overcome the necessity of finding the global solution to nonlinear MPC
optimisation problem, the dual-mode MPC scheme [34,46] can be used in which
a terminal inequality constraint

x(k + N |k) ∈ Ωα (81)

guarantees stability. The terminal set Ωα is a convex neighbourhood of the origin

Neural Networks in Model Predictive Control 59

Ωα =
{
x(k) ∈ �nA+nB−1 : ‖x(k)‖2

P ≤ α
}

(82)

where the matrix P > 0, α > 0. In this approach merely feasibility, rather then
optimality, is sufficient to guarantee stability. It means that it is only necessary to
find a feasible solution to the nonlinear MPC optimisation problem, this solution
does not need to be the global or even a local minimum to guarantee stability of
the whole control algorithm. Hence, the dual-mode approach can be efficiently
combined with the MPC-NPL algorithm as described in [22]. The formulation
of the stabilising MPC-NPL algorithm is general, different neural structures can
be used: MLP and RBF models, neural Hammerstein and Wiener models as well
as neural multi-models and structured models.

In the dual-model approach the current value of the manipulated variable
is calculated in two different ways, the method used depends on the current
state of the process. Outside the terminal set Ωα a nonlinear MPC algorithm
is used whereas an additional, usually linear, controller is used inside this set.
The objective of the additional feedback controller is to bring the state of the
process to the origin. The control law is

u(k) =
{

u(k|k) if x(k) /∈ Ωα

Kx(k) if x(k) ∈ Ωα
(83)

The nonlinear MPC, which is used if the current state of the plant is outside
the terminal set Ωα, takes into account all the constraints explicitly in the op-
timisation problem. The linear control law u(k) = Kx(k), which is used if the
state is inside the terminal set, despite being unconstrained, must never violate
constraints. Constraints are used when the terminal set is calculated off-line.

In the stabilising dual-mode approach, the MPC-NPL optimisation problem
(30) takes also into account the terminal inequality constraint (81). The main
advantage of the algorithm is its suboptimality, i.e. feasibility of the nonlinear
optimisation problem (30) is sufficient to guarantee stability. In other words,
the determined control sequence u(k) must be always feasible, but it does not
need to be the global or even a local minimum of the optimisation problem (30).
Determination of the terminal set Ωα and simulation results of the stabilising
dual-model MPC-NPL algorithm are presented in [22].

9 Approximate Neural MPC

Because neural networks are universal approximators, it is an appealing idea to
use a network capable of approximating the whole MPC algorithm [4,8,38]. The
key idea is to calculate on-line values of the manipulated variable without any
optimisation. In other words, the neural network replaces the whole MPC algo-
rithm. The control signal is simply calculated by the neural network as a function
of past input and output signals measured at previous sampling instants.

An important advantage of approximate neural MPC is its speed. On the
other hand, the main problem is training. At first, a classical MPC algorithm

60 M. �Lawryńczuk

is developed, for example the MPC-NPL one. Next, a sufficiently large number
of simulation should be carried out to cover the whole operation domain (i.e.
different initial conditions and reference trajectories). Finally, this data set is
used to train a neural model the role of which is to replace the control algorithm.

10 Conclusions

This work emphasises two issues:

1. The proper choice of the model used in MPC is crucial as MPC algorithms
are very model-based, the possible control performance is determined by the
accuracy of predictions calculated by means of the model.

2. MPC algorithms used in practice should be computationally efficient.

Since fundamental models (complicated systems of nonlinear differential and
algebraic equations) are usually not suitable for on-line control and their devel-
opment is difficult, neural models are recommended. In this work models based
on rudimentary MLP and RBF neural networks are discussed, including Ham-
merstein and Wiener neural structures. All discussed models can be easily used
in MPC, without solving any equations which is likely to be computationally de-
manding and may lead to numerical problems. Neural models are trained using
recorded data sets, no technological knowledge is necessary.

The role of the model in MPC cannot be ignored during model structure
selection and training. The model has to be able to make good predictions of
future behaviour of the process over the whole prediction horizon. Two classes
of specialised neural models designed with the specific aim of using them in
MPC are discussed: multi-models and structured models. Both these models are
trained easily as one-step ahead predictors, but they calculate predictions for
the whole prediction horizon without being used recurrently. As a result, the
prediction error is not propagated which is particularly important in practice.

In this work the suboptimal MPC-NPL algorithm is recommended. The neural
model is successively linearised on-line, the linear approximation is used for pre-
diction and calculation of the future control policy. The MPC-NPL algorithm
is computationally efficient, it needs solving on-line a quadratic programming
task. It is also demonstrated that the algorithm gives very good control accu-
racy, comparable to that obtained when nonlinear optimisation is used on-line
in MPC.

Acknowledgement. This work was supported by Polish national budget funds
2009-2011 for science as a research project.

References

1. Al-Duwaish, H., Karim, M.N., Chandrasekar, V.: Use of multilayer feedforward
neural networks in identification and control of Wiener model. Proceedings IEE,
Part D, Control Theory and Applications 143, 225–258 (1996)

Neural Networks in Model Predictive Control 61

2. Alexandridis, A., Sarimveis, H.: Nonlinear adaptive model predictive control based
on self-correcting neural network models. AIChE Journal 51, 3495–3506 (2005)

3. Al Seyab, R.K., Cao, Y.: Nonlinear system identification for predictive control using
continuous time recurrent neural networks and automatic differentiation. Journal
of Process Control 18, 568–581 (2008)

4. Åkesson, B.M., Toivonen, H.T.: A neural network model predictive controller. Jour-
nal of Process Control 16, 937–946 (2006)

5. Arto, V., Hannu, P., Halme, A.: Modeling of chromato-graphic separation process
with Wiener-MLP representation. Journal of Process Control 78, 443–458 (2001)

6. Bazaraa, M.S., Sherali, J., Shetty, K.: Nonlinear programming: theory and algo-
rithms. Prentice-Hall, Englewood Cliffs (1999)

7. Bomberger, J.D., Seborg, D.E.: Determination of model order for NARX models
directly from input-output data. Journal of Process Control 8, 459–468 (1998)

8. Cavagnari, L., Magni, L., Scattolini, R.: Neural network implementation of nonlin-
ear receding-horizon control. Neural Computing and Applications 8, 86–92 (1999)

9. Doyle, F.J., Ogunnaike, B.A., Pearson, R.K.: Nonlinear model-based control using
second-order Volterra models. Automatica 31, 697–714 (1995)

10. El Ghoumari, M.Y., Tantau, H.J.: Non-linear constrained MPC: real-time imple-
mentation of greenhouse air temperature control. Computers and Electronics in
Agriculture 49, 345–356 (2005)

11. Haykin, S.: Neural networks – a comprehensive foundation. Prentice-Hall, Engle-
wood Cliffs (1999)

12. Henson, M.A.: Nonlinear model predictive control: current status and future direc-
tions. Computers and Chemical Engineering 23, 187–202 (1998)

13. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are uni-
versal approximators. Neural Networks 2, 359–366 (1989)

14. Hussain, M.A.: Review of the applications of neural networks in chemical process
control – simulation and online implmementation. Artificial Intelligence in Engi-
neering 13, 55–68 (1999)

15. Janczak, A.: Identification of nonlinear systems using neural networks and poly-
nomial models. In: A block-oriented approach. LNCIS, vol. 310. Springer, Berlin
(2005)

16. Lazar, M., Pastravanu, O.: A neural predictive controller for non-linear systems.
Mathematics and Computers in Simulation 60, 315–324 (2002)

17. LeCun, Y., Denker, J., Solla, S.: Optimal brain damage. In: Touretzky, D. (ed.)
Advances of NIPS2, pp. 598–605. Morgan Kaufmann, San Mateo (1990)

18. Liu, G.P., Kadirkamanathan, V., Billings, S.A.: Predictive control for non-linear
systems using neural networks. International Journal of Control 71, 1119–1132
(1998)

19. Luyben, W.L.: Process modelling, simulation and control for chemical engineers.
McGraw Hill, New York (1990)

20. �Lawryńczuk, M.: Efficient nonlinear predictive control based on structured neural
models. International Journal of Applied Mathematics and Computer Science 19
(in press, 2009)

21. �Lawryńczuk, M.: Modelling and nonlinear predictive control of a yeast fermentation
biochemical reactor using neural networks. Chemical Engineering Journal 145, 290–
307 (2008)

22. �Lawryńczuk, M., Tadej, W.: A computationally efficient stable dual-mode type
nonlinear predictive control algorithm. Control and Cybernetics 145, 99–132 (2008)

62 M. �Lawryńczuk

23. �Lawryńczuk, M.: Suboptimal Nonlinear Predictive Control Based on Neural Wiener
Models. In: Dochev, D., Pistore, M., Traverso, P. (eds.) AIMSA 2008. LNCS
(LNAI), vol. 5253, pp. 410–414. Springer, Heidelberg (2008)

24. �Lawryńczuk, M.: Suboptimal nonlinear predictive control with neural multi-
models. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J. (eds.) Com-
putational intelligence: methods and applications, pp. 45–56. Exit, Warsaw (2008)

25. �Lawryńczuk, M.: Suboptimal nonlinear predictive control with MIMO neural Ham-
merstein models. In: Nguyen, N.T., Borzemski, L., Grzech, A., Ali, M. (eds.)
IEA/AIE 2008. LNCS (LNAI), vol. 5027, pp. 225–234. Springer, Heidelberg (2008)

26. �Lawryńczuk, M.: A family of model predictive control algorithms with artificial
neural networks. International Journal of Applied Mathematics and Computer Sci-
ence 17, 217–232 (2007)

27. �Lawryńczuk, M., Tatjewski, P.: A computationally efficient nonlinear predictive
control algorithm with RBF neural models and its application. In: Kryszkiewicz,
M., Peters, J.F., Rybiński, H., Skowron, A. (eds.) RSEISP 2007. LNCS (LNAI),
vol. 4585, pp. 603–612. Springer, Heidelberg (2007)

28. �Lawryńczuk, M., Tatjewski, P.: An efficient nonlinear predictive control algorithm
with neural models and its application to a high-purity distillation process. In:
Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006.
LNCS (LNAI), vol. 4029, pp. 76–85. Springer, Heidelberg (2006)

29. Maciejowski, J.M.: Predictive control with constraints. Prentice-Hall, Englewood
Cliffs (2002)

30. Marlin, T.E.: Process control. McGraw Hill, New York (1995)
31. Mayne, D.Q., Rawlings, J.B., Rao, C.V., Scokaert, P.O.M.: Constrained model

predictive control: stability and optimality. Automatica 36, 789–814 (2000)
32. Mayne, D.Q., Michalska, H.: Receding horizon control of nonlinear systems. IEEE

Transactions on Automatic Control 35(7), 814–824 (1990)
33. da Cruz Meleiro, L.A., José, F., Zuben, V., Filho, R.M.: Constructive learning

neural network applied to identification and control of a fuel-ethanol fermentation
process. Engineering Applications of Artificial Intelligence (in press, 2009)

34. Michalska, H., Mayne, D.Q.: Robust receding horizon control of constrained non-
linear systems. IEEE Transactions on Automatic Control 38, 1623–1633 (1993)

35. Morari, M., Lee, J.H.: Model predictive control: past, present and future. Comput-
ers and Chemical Engineering 23, 667–682 (1999)

36. Narendra, K.S., Parthasarathy, K.: Identification and control of dynamical systems
using neural networks. IEEE Transactions on Neural Networks 1, 4–26 (1990)

37. Nørgaard, M., Ravn, O., Poulsen, N.K., Hansen, L.K.: Neural networks for mod-
elling and control of dynamic systems. Springer, London (2000)

38. Parisini, T., Sanguineti, M., Zoppoli, R.: Nonlinear stabilization by receding-
horizon neural regulators. International Journal of Control 70, 341–362 (1998)

39. Pearson, R.K.: Selecting nonlinear model structures for computer control. Journal
of Process Control 13, 1–26 (2003)

40. Peng, H., Yang, Z.J., Gui, W., Wu, M., Shioya, H., Nakano, K.: Nonlinear system
modeling and robust predictive control based on RBF-ARX model. Engineering
Applications of Artificial Intelligence 20, 1–9 (2007)

41. Piche, S., Sayyar-Rodsari, B., Johnson, D., Gerules, M.: Nonlinear model predictive
control using neural networks. IEEE Control System Magazine 20, 56–62 (2000)

42. Pottmann, M., Seborg, D.E.: A nonlinear predictive control strategy based on
radial basis function models. Computers and Chemical Engineering 21, 965–980
(1997)

Neural Networks in Model Predictive Control 63

43. Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technol-
ogy. Control Engineering Practice 11, 733–764 (2003)

44. Rossiter, J.A.: Model-based predictive control. CRC Press, Boca Raton (2003)
45. Scattolini, R., Bittanti, S.: On the choice of the horizon in long-range predictive

control – some simple criteria. Automatica 26, 915–917 (1990)
46. Scokaert, P.O.M., Mayne, D.Q., Rawlings, J.B.: Suboptimal model predictive con-

trol (feasibility implies stability). IEEE Transactions on Automatic Control 3, 648–
654 (1999)

47. Tatjewski, P.: Advanced control of industrial processes, structures and algorithms.
Springer, London (2007)

48. Tatjewski, P., �Lawryńczuk, M.: Soft computing in model-based predictive control.
International Journal of Applied Mathematics and Computer Science 16, 101–120
(2006)

49. Trajanoski, Z., Wach, P.: Neural predictive control for insulin delivery using the
subcu-taneous route. IEEE Transactions on Biomedical Engineering 45, 1122–1134
(1998)

50. Yu, D.L., Yu, D.W., Gomm, J.B.: Neural model adaptation and predictive control
of a chemical process rig. IEEE Transactions on Control Systems Technology 14,
828–840 (2006)

51. Yu, D.L., Gomm, J.B.: Implementation of neural network predictive control to a
multivariable chemical reactor. Control Engineering Practice 11, 1315–1323 (2003)

52. Zamarreño, J.M., Vega, P., Garcia, L.D., Francisco, M.: State-space neural network
for modelling prediction and control. Control Engineering Practice 8, 1063–1075
(2000)

	Neural Networks in Model Predictive Control
	Introduction
	Model Predictive Control Problem Formulation
	Neural Models of the Process
	MLP Neural Model
	RBF Neural Model
	Hammerstein and Wiener Neural Models

	MPC with Nonlinear Optimisation (MPC-NO)
	MPC with Nonlinear Prediction and Linearisation (MPC-NPL)
	Training of Neural Models for MPC
	Specialised Neural Models for MPC
	Neural FIR Models
	Neural Multi-models
	Structured Neural Models

	The Stabilising MPC-NPL Algorithm
	Approximate Neural MPC
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

