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Preface

The book in front of you contains the proceedings of SAC 2008, the 15th an-
nual Workshop on Selected Areas in Cryptography. SAC 2008 took place during
August 14–15 at Mount Allison University, Sackville, New Brunswick, Canada.
This was the first time that SAC was hosted in New Brunswick, and the second
time in an Atlantic Canadian province. Previous SAC workshops were held at
Queen’s University in Kingston (1994, 1996, 1998, 1999, and 2005), at Carleton
University in Ottawa (1995, 1997, 2003), at the University of Waterloo (2000,
2004), at the Fields Institute in Toronto (2001), at Memorial University of New-
foundland at St. John’s (2002), at Concordia University in Montreal (2006) and
at the University of Ottawa (2007).

The intent of the workshop series is to provide a relaxed atmosphere in which
researchers in cryptography can present and discuss new work on selected areas
of current interest. The SAC workshop series has firmly established itself as an
international forum for intellectual exchange in cryptological research.

The responsibility for choosing the venue of each SAC workshop and appoint-
ing the Co-chairs lies with the SAC Organizing Board. The Co-chairs then choose
the Program Committee in consultation with the Board. Hence, we would like
to express our gratitude to the SAC Organizing Board for giving us the mandate
to organize SAC 2008, and for their invaluable feedback while assembling the
Program Committee.

Starting with 2008, SAC is organized in cooperation with the International
Association for Cryptologic Research (IACR). SAC 2008 witnessed two further
significant events in the history of SAC. The first one was a revision of the
wording of the fixed themes of the workshop. This revision takes into account
trends that emerge from the papers presented at the last SAC workshops, while
remaining true to the original spirit of the series. The three fixed themes are:

– Design and analysis of symmetric key primitives and cryptosystems
– Efficient implementations of symmetric and public key algorithms
– Mathematical and algorithmic aspects of applied cryptology

Each SAC workshop has a fourth theme which is changed every year. For
SAC 2008 this was:

– Elliptic and hyperelliptic curve cryptography, including theory and applica-
tions of pairings

The second event was a significant increase in the number of submissions. A
total of 99 technical papers were submitted to the conference from an interna-
tional authorship. Of these, 27 were accepted for presentation at the workshop,
a slight increase with respect to previous years, while the rate of accepted papers
has been reduced. In addition to these 27 papers, two speakers were invited to
give presentations at the conference.
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– Jacques Patarin gave the Stafford Tavares Lecture on The “coefficients H”
Technique.

– Joseph Silverman gave a lecture dealing with our fourth theme, on the sub-
ject of Lifting and the Elliptic Curve Discrete Logarithm Problem.

The Program Committee (PC) for SAC 2008 was also the largest to date,
comprising 21 members in addition to the Co-chairs. The reviewing process
was a challenging task. Every paper was refereed by at least three reviewers,
with papers (partially) co-authored by members of the Program Committee
refereed by at least five reviewers. A total of about 310 reviews were written and
uploaded by the PC members, who were helped by 107 subreviewers. The reviews
were then followed by through discussions on the papers, which contributed
in a decisive way to the quality of the final selection. About 300 additional
discussion comments were written by the PC members and the Co-chairs, with
up to 30 discussion comments per PC member, with some papers receiving up
to 20 discussion comments. The reviews were rewritten, taking these discussions
into account, before being sent to the authors. In most cases, extensive comments
were sent, with one set of comments totalling 3,444 words on 477 lines – the
average being about 200 lines of text per submission. Despite the huge amount
of work, the atmosphere in the PC was always serene and friendly, even with
some lighter moments. For us it was a honor to work with this PC.

We would like to thank the authors of all the submitted papers, both those
whose work is included in these proceedings, and those whose work could not be
accommodated.

The submission and review process was done using a Web-based software
system developed by Shai Halevi. Changes to the system were made to accom-
modate our needs, and Shai replied to all our questions very quickly. We thank
Shai for making his package available and for his help.

All the contributions are given in this volume in the same order as they
appeared in the final program. These include revised versions of all 27 accepted
submissions and the two papers related to the invited talks.

We had 71 registered participants from the following countries: Austria, Bel-
gium, Canada, Chile, China, France, Germany, Korea, Luxembourg, Japan, The
Netherlands, Singapore, Spain, Switzerland, Turkey, UK, and USA.

We also wish to express our gratitude to Mount Allison University and IEEE
New Brunswick Section for financial support.

Finally we would like to thank Cindy Allan, Judith Van Rooyen, Stuart
MacDonald, and Amy Adsett for helping with the organization, and all the
participants of SAC 2008.

April 2009 Roberto Avanzi
Liam Keliher

Francesco Sica
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Faster Halvings in Genus 2

Peter Birkner1 and Nicolas Thériault2,�

1 Department of Mathematics and Computer Science, Coding Theory and
Cryptology, Eindhoven University of Technology,

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
p.birkner@tue.nl

2 Instituto de Matemática y F́ısica, Universidad de Talca, Casilla 747, Talca, Chile
ntheriau@inst-mat.utalca.cl

Abstract. We study divisor class halving for hyperelliptic curves of
genus 2 over binary fields. We present explicit halving formulas for the
most interesting curves (from a cryptographic perspective), as well as all
other curves whose group order is not divisible by 4. Each type of curve
is characterized by the degree and factorization form of the polynomial
h(x) in the curve equation. For each of these curves, we provide explicit
halving formulæ for all possible divisor classes, and not only the most
frequent case where the degree of the first polynomial in the Mumford
representation is 2. In the optimal performance case, where h(x) = x,
we also improve on the state-of-the-art and when h(x) is irreducible of
degree 2, we achieve significant savings over both the doubling as well as
the previously fastest halving formulas.

Keywords: hyperelliptic curve, genus 2, halving, binary field.

1 Introduction

The double-and-add algorithm is essential to the efficiency of cryptosystems
based on hyperelliptic curves. This algorithm (and many of its variations) is
based on two basic group operations: the addition of two distinct group elements
and the computation of the double of an element. An alternative that proved
very successful in elliptic curves over binary fields is the halve-and-add algorithm,
which relies on the computation of the “half” of a group element (of odd order),
i.e. the computation of a pre-image of the doubling operation [9,14]. Given the
important savings produced by this approach for elliptic curves, it is natural to
ask if similar results can be obtained for hyperelliptic curves over binary fields.

In a double-and-add algorithm, we can use explicit formulæ for the most com-
mon cases of the doubling and the addition, going back to Cantor’s polynomial-
based algorithm if any special cases are encountered. In practice, using explicit
formulæ for the special cases has no measurable impact on the average perfor-
mance of a scalar multiplication, so it is not essential to develop them. The same
� The authors would like to thank the Fields Institute in Toronto for supporting this

work. Research was partially supported by FONDECYT (Chile) grants #1070242
and by the Programa Reticulados y Ecuaciones of the Universidad de Talca.

R. Avanzi, L. Keliher, and F. Sica (Eds.): SAC 2008, LNCS 5381, pp. 1–17, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



2 P. Birkner and N. Thériault

is not true for the halve-and-add algorithm however, since we cannot easily de-
scribe the halving operation in terms of polynomial arithmetic. A halve-and-add
algorithm should therefore contain explicit formulæ for all possible cases of the
halving operation.

In this paper we investigate halving of divisor classes of hyperelliptic curves
of genus 2 over finite fields of characteristic 2. Doubling formulæ for the different
types of curves can be found in [10,11,1] and halving for some types of curves
and/or cases have also been investigated in [7,8,3]. We present halving formulæ
for all cases (most frequent and special cases) for all curves having at most one
divisor of order 2 and no divisor of order 4 (see the second half of Section 2.2
for the reasons behind this condition). Rather than inverting the best doubling
formulæ, we invert Cantor’s algorithm, using the divisibility condition on semi-
reduced divisors to lower the cost. In the optimal performance case, where h(x) =
x, we also improve on the state-of-the-art [3] and when h(x) is irreducible of
degree 2, we achieve significant savings over both the doubling [1] as well as the
currently fastest halving formulas [7].

The remainder of this paper is structured as follows: Section 2 contains some
important terminology and background. In Section 3, we develop a complete
case study of the halving formulæ in the most efficient curves for cryptographic
application, and in Section 4 we do the same for the most general type of curves
where halving is of interest. For completeness, full sets of formulæ for the remain-
ing types of curves where halving can be efficient are presented in the appendix,
as well as the addition formula for the form of curve equation used in Section 4.

2 Basic Notations and Preliminaries

In this section we briefly recall the definitions of hyperelliptic curves, divisor
class groups and the Mumford representation since we will use these notions
throughout the whole paper.

A comprehensive resource for the mathematics of finite fields is [12]. For back-
ground on hyperelliptic curves we refer the interested reader to [1], from which
the following definitions and notations are taken.

Definition 1 (Hyperelliptic curve of genus 2 in characteristic 2). Let
Fq be a field of characteristic 2 and Fq its algebraic closure. A curve C, given
by an equation of the form

C : y2 + h(x)y = f(x), (1)

where f ∈ Fq[x] is a polynomial of degree 5 and h ∈ Fq[x] is a non-zero poly-
nomial of degree at most 2, is called an imaginary hyperelliptic curve of genus
2 over Fq if there is no point (x, y) on the curve over Fq for which both partial
derivatives are 0, i.e. such that h(x) = 0 and f ′(x) − h′(x)y = 0 (This last
condition ensures that the affine curve is non-singular).

Definition 2 (Divisor class group). Given a hyperelliptic curve C of genus
2 over a binary field Fq, the group of degree 0 divisors of C is denoted by Div0

C .
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The quotient group of Div0
C by the group of principal divisors of C is called the

divisor class group of C and is denoted by Pic0
C . It is also called the Picard group

of C.

Theorem 1 (Mumford). Let C be a hyperelliptic curve of genus 2 over a
binary field Fq. Each nontrivial divisor class of C over Fq can be represented by
a unique pair of polynomials u, v ∈ Fq[x], where

1. u is monic,
2. deg v < deg u ≤ 2,
3. u | v2 + vh− f .

A divisor satisfying Theorem 1 is called reduced (i.e. it is the shortest representa-
tive of its class), and if the condition deg(u) ≤ 2 is removed, the divisor is called
semi-reduced. The divisibility condition will be essential in establishing some of
the halving formulæ. Our halving formulæ expect the input divisor class to be
in Mumford representation, work directly on the coefficients of the polynomials
u and v and return an output in Mumford form. Since our goal is to compute
pre-images of the group doubling, we refer to Algorithm 1 for a description of
how this operation is performed using Cantor’s algorithm.

Algorithm 1. Cantor’s/Koblitz’s doubling algorithm for genus 2 HEC in char-
acteristic 2

Input: Reduced divisor D = [ua(x), va(x)]
Output: Reduced divisor D′ = [uc(x), vc(x)], D′ = [2]D

1: d← gcd(ua, h), u0 ← ua/d, v0 ← va mod u0

2: c← h−1 mod u0, u1 ← u2
0, v1 ← v0 + c(v2

0 + v0h + f) mod u1

3: if deg(u1) ≤ 2 then

4: uc ← u1, vc ← v1

5: else

6: uc ← monic
(

f+v1h+v2
1

u1

)
, vc ← v1 + h mod uc

7: end if

8: return [uc, vc]

We observe that all the pairs of polynomials computed in Algorithm 1 satisfy
the divisibility condition of Theorem 1, i.e. u0|v2

0 + v0h+ f , u1|v2
1 + v1h+ f , and

uc|v2
c + vch + f . To obtain our halving formulæ, we sometime use the identities

coming from these divisibility conditions rather than those which are more obvi-
ous in the polynomial equalities of Algorithm 1. In exchange, any identity which
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is not used to perform the halving becomes a divisibility condition that must be
satisfied for [ui(x), vi(x)] to be a semi-reduced divisor.

2.1 Field Arithmetic and Divisor Halving

Throughout this paper, we will assume that the field Fq has order 2n where n
is not divisible by 2 or 3. This is mainly due to security concerns, since various
versions of the Weil descent attack could be applied when n admits a factor
of 2 or 3 (for example, see [6,15,5]). In fact, for cryptographic applications it
is often assumed that n is a prime. As an added bonus, having n coprime to
2 means that we can take cube and 5-th roots in the field (since α3 and α5

are both isomorphism as 3 and 5 are coprime to 2n − 1), which allows us to
simplify the curve equations a little more. Furthermore, since n will be odd
we will have Tr(1) = 1. In various places, we implicitly take advantage of the
identity Tr(α) = Tr(α2) to simplify some trace computations.

In finite fields of characteristic 2, some operations which are very expensive
in fields of odd characteristic become very efficient, in particular computing the
roots of a quadratic equation (when they are available in the field of definition).
This observation led to the development of halve-and-add algorithms, a variation
of the double-and-add scalar multiplication where the doubling operation is re-
placed with a halving (the representation of the scalar is adjusted accordingly).
Such an approach was first used for elliptic curves [9,14], and was recently ex-
tended to hyperelliptic curves of genus 2 [7,8,3]. In some fields, computing of
square roots can be faster than the computation of squares [4,2]. Two other op-
erations, the trace (from F2n to F2) and the half-trace (HT, to solve quadratic
equations, see [4,2]), can also be implemented to have similar costs to the squar-
ing operation. For curves over those fields, it can be a good strategy to “replace”
squares with square roots in the group arithmetic, which is often what halving
does.

To count the number of operations, we denote inverses by I, multiplications
by M, squares by S, square roots by SR, traces by TR, and half-traces by HT.

2.2 Choices of Curves

An imaginary hyperelliptic curve of genus 2 over F2d is of the form

y2 + (h2x
2 + h1x + h0)y = f5x

5 + f4x
4 + f3x

3 + f2x
2 + f1x + f0, (2)

where h(x) = h2x
2 + h1x + h0 �= 0. It is also customary to use isomorphisms to

impose that f(x) is monic, i.e. that f5 = 1, but we will relax this condition for
some curves as the halving formulæ are more efficient if we use the isomorphisms
to force h1 = 1. We also note that when h(x) is constant (i.e. h2 = h1 = 0),
the curve is known to be supersingular, and therefore of limited interest for
cryptography, but we will still cover these curves for completeness.

For the curve (2), the possible isomorphisms are given by x = αx̃ + β and
y = γỹ + δx̃2 + εx̃+ ζ, where both α and γ are nonzero, after which the equation
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is divided by γ2 to get the coefficient of y2 back to 1. We distinguish five types
of curves depending on the degree and factorization type of h(x):

Ia h2 �= 0 and h(x) irreducible: Using α and γ we can force h2 = h1 = 1. We
can then use β to restrict h(x) to x2 + x + 1. The remaining freedom on
β allows us to impose Tr(f5) · Tr(f4) = 0. Taking advantage of δ, we can
restrict f4 to {0, 1} and then ε and ζ allow us to remove f3 and f2. We are
left with f(x) = f5x

5 + f4x
4 + f1x + f0 where f4 ∈ F2 and f4 · Tr(f5) = 0.

Ib h2 �= 0 and h(x) is the product of two distinct linear factors: Using β and
one of the roots of h(x), we can force h0 = 0. We can then use α and γ to
restrict h(x) to x2 + x. The remaining freedom on β allows us to impose
Tr(f5) · Tr(f4) = 0. Taking advantage of δ, we can restrict f4 to {0, 1}
and then ε and ζ allow us to remove f3 and f2. We are left with f(x) =
f5x

5 + f4x
4 + f1x + f0 where f4 ∈ F2 and f4 · Tr(f5) = 0.

Ic h2 �= 0 and h(x) a square: Using α and β and γ, we can force h(x) = x2 and
make f(x) monic. ε and ζ allow us to remove f3 and f2. Finally, δ can be
used to limit f4 to {0, 1}, leaving us with f(x) = x5 + f4x

4 + f1x + f0 with
f4 ∈ F2.

II h2 = 0, h1 �= 0: Using α and β and γ, we can force h(x) = x and make f(x)
monic. δ and ζ allow us to remove f4 and f1. Finally, we restrict f2 using ε,
giving us f(x) = x5 + f3x

3 + f2x
2 + f0 with f2 ∈ F2.

III h2 = h1 = 0: Using α and γ, we can force h(x) = 1 and make f(x) monic. By
selecting δ, ε and β wisely, we can remove f4 and f2 and reduce the number
of possible values of f1 (in general to a set of at most 16 values). Finally, ζ
can be used to limit f0 to {0, 1}, leaving us with f(x) = x5 + f3x

3 + f1x+ f0
with f0 ∈ F2.

Note that we did not include the non-singularity condition, nor conditions on the
group order in the descriptions of the different types. In terms of isomorphism
classes, types Ia and Ib are the most common (each with 3

2q3 + O(q2) classes),
followed by types II and Ic (each with 2q2 + O(q) classes) and with type III
(supersingular) the less common (O(q) classes). From the point of view of the
2-torsion group, type Ic is closer to type II than type Ia and Ib.

We limit ourselves to curves for which the order of the Jacobian is either odd
(h(x) constant) or 2 times an odd number (which eliminates all type Ib curves).
This restriction is needed to get a better performance out of the halving. Given
any hyperelliptic curve, the halve-and-add algorithm allows us to compute the
scalar multiple of a divisor class, given that it is in a (sub)group of odd order. In
this way, the pre-image of the doubling can always be computed and “becomes”
unique (all other pre-images of the doubling have even order). The group order
conditions are due to the following reasons:

1. To verify that the pre-image is in the subgroup of odd order, we make sure
that it can be halved again as many times as we want. If the group contains
divisors of order 2r, we must make sure that we can halve the pre-image
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(at least) r times, which obviously affects the cost of our halving formulæ.
When r ≥ 2 (i.e. when there are divisors of order 4), the increased work re-
quired for this check becomes too expensive for the halving to be interesting.

2. If C is of type Ib, there are four possible pre-images of the doubling. The
halving formula must then distinguish which of the four is in the subgroup
of odd order, which significantly increases the cost of the halving. We also
computed formulæ in this case, and the halving does indeed become much
more expensive than the doubling.

When we consider all the isomorphisms classes for a given type of curves (other
than type III), between a half and two thirds of them have divisors of order 4, so
rejecting these curves has an acceptably small impact on the number of possible
curves. Furthermore, because of the attack of Pohlig and Hellman [13], curves
with divisors of order 4 are in general (slightly) weaker than those without,
so the restriction can be seen as advantageous for the security of the curves.
From a cryptographic perspective, the two most interesting types of curves for
halving formulæ are type II (most efficient halving) and type Ia (largest number
of isomorphism classes). In terms of the benefits of halving over doubling, type
Ia gives the best savings.

3 Type II: h(x) = x

In this section, the curve C is of the form

y2 + xy = x5 + f3x
3 + f2x

2 + f0 , f2 ∈ F2 .

Theorem 2. Let Da = [ua, va] be a divisor in Div0
C . If deg(ua) = 2, then Da

can be halved if and only if Tr(ua1(ua0 + f3 + u2
a1)) = 0. If deg(ua) = 1, then

Da can be halved if and only if Tr(f2 + ua0(u2
a0 + f3)) = 0.

Proof. To obtain these trace conditions, we try to invert the explicit formulæ
for each of the possible cases of doubling (matching the outputs to the different
forms of Da). We do this by solving a sequence of equations to obtain a divisor Dc

such that [2]Dc = Da. We first observe that linear or square equations (w2 = α)
pose no problem, whereas quadratic equations of the form w2 + w + α = 0 can
be solved if and only if Tr(α) = 0. If deg(ua) = 1, then we only encounter one
quadratic (non-square) equation, with α = f2+ua0(u2

a0+f3). If deg(ua) = 2 and
ua1 = 0 (which obviously satisfies Tr(ua1(ua0 +f3 +u2

a1)) = 0), all equations are
either linear or square. Finally, if deg(ua) = 2 and ua1 �= 0, then we encounter
one quadratic (non-square) equation, with α = ua1(ua0 + f3 + u2

a1).
To show that the trace conditions are sufficient for the existence of a pre-

image of the doubling, we show that Dc is indeed a valid divisor (i.e. the pair
of polynomials computed correspond to a real divisor). In the computation of
Dc = [uc(x), vc(x)], we ignored a number of identities (essentially divisibility
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conditions) which are easily shown to be direct consequences of the divisibility
conditions on Da.

From Theorem 2, we obtain a simple condition for the group order:

Corollary 1. The Jacobian of the curve C has order 2·odd if and only if f2 = 1.

Proof. The curve C has exactly one divisor of order 2, [x,
√

f0]. The group order
is divisible by 4 if and only if [x,

√
f0] can be halved. From Theorem 2, this is

possible if and only if Tr(f2) = 0 and since f2 ∈ F2 we find that C has a divisor
of order 4 if and only if f2 = 0.

Let Dc1 and Dc2 be the two pre-images of Da, then Dc1 − Dc2 = [x,
√

f0] =
Dc2 −Dc1 . From this observation, we get the following corollary which allow us
to distinguish the different special cases.

Corollary 2. Let Da = [ua(x), va(x)] be a divisor in Div0
C that can be halved

and Dc = [uc(x), vc(x)] = [12 ]Da its pre-image (under the doubling) of odd order.
If deg(ua) = 2 and ua1 �= 0, then deg(uc) = 2 (“HLV22”). If deg(ua) = 2 and
ua1 = 0, then deg(uc) = 1 or 2 (with uc0 = 0 in the second case) (“HLV21/22”).
If deg(ua) = 1, then deg(uc) = 2 (“HLV12”).

Finally, to verify that we are computing the pre-image of odd order, we use the
conditions of Theorem 2 on uc(x) to ensure that it could be halved again (i.e.
that it has odd order), and we correct the computations if necessary. We obtain
the following formulæ:

Algorithm 2. (HLV22, h(x) = x, f(x) = x5 + f3x
3 + x2 + f0)

Input: The divisor class Da = [x2 + ua1x + ua0, va1x + va0]

Output: The divisor class [x2 + uc1x + uc0, vc1x + vc0] = [1/2]Da

1: s0 ←
√

ua1, s1 ← 1/s0, s2 ← s2
1 � 1I+1S+1SR

2: s3 ← HT(ua1(ua0 + f3 + s0)), s4 ← s3s2, s5 ← s4 + f3 � 2M+1HT

3: s6 ← va0 + ua0(s4 + s0), s7 ← s6, uc1 ←
√

s5 � 1M+1SR

4: if Tr(s5(s7 + f2
3 + uc1)) = 1 then � 1M+1TR

5: s3 ← s3 + 1, s4 ← s4 + s2, s5 ← s5 + s2

6: s6 ← s6 + s2ua0, s7 ← s6, uc1 ← uc1 + s1 � 1M

7: end if

8: uc0 ←
√

s7, vc0 ←
√

s7s1 + f0 � 1M+2SR

9: vc1 ← va1 + 1 + s3 + s1(ua0 + u2
a1 + uc0 + s5) + s4uc1 � 2M+1S

10: return [x2 + uc1x + uc0, vc1x + vc0] � 1I+8M+2S+4SR+1HT+1TR

11: � Average: 1I+7.5M+2S+4SR+1HT+1TR
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Algorithm 3. (HLV12, h(x) = x, f(x) = x5 + f3x
3 + x2 + f0)

Input: The divisor class Da = [x + ua0, va0]

Output: The divisor class [x2 + uc1x + uc0, vc1x + vc0] = [1/2]Da

1: s0 ←
√

ua0, s1 ← f3 + s0, s2 ← 1 + s1ua0 � 1M+1SR

2: s3 ← HT(s2), s4 ← va0 + ua0(s3 + 1 + s0ua0) � 2M+1HT

3: uc1 ←
√

s1, uc0 ←
√

s4 � 2SR

4: if Tr(uc1(uc0 + s1 + f3)) = 1 then � 1M+1TR

5: s3 ← s3 + 1, s4 ← s4 + ua0, uc0 ←
√

s4 � 1SR

6: end if

7: vc1 ← s3 + s0uc1, vc0 ← s4 + s0uc0 � 2M

8: return [x2 + uc1x + uc0, vc1x + vc0] � 6M+4SR+1TR+1HT

9: � Average: 6M+3.5SR+1TR+1HT

Algorithm 4. (HLV21/22, h(x) = x, f(x) = x5 + f3x
3 + x2 + f0)

Input: The divisor class Da = [x2 + ua0, va1x + va0]

Output: The divisor class [x + uc0, vc0] = [1/2]Da

or [x2 + uc1x, vc1x + vc0] = [1/2]Da

1: s0 ←
√

ua0, s1 ← va0 + s0va1 � 1M+1SR

2: if Tr(ua0s0) = 1 then � 1M+1TR

3: E ← [x + s0, s1]

4: else

5: s2 ← 1/s0, vc1 ← (s1 +
√

f0)s2 � 1I+1M

6: vc0 ← s1 + vc1s0, E ← [x2 + s0x, vc1x + vc0] � 1M

7: end if

8: return E � 1I+4M+1SR+1TR

9: � Average: 0.5I+3M+1SR+1TR

4 Type Ia: h(x) = x2 + x + 1

In this section, the curve C is of the form y2+(x2+x+1)y = f5x
5+f4x

4+f1x+f0
with f4 ∈ F2 and f4 · Tr(f5) = 0. To improve the efficiency of the formulæ, we
will assume that f−1

5 and f−2
5 are precomputed (only once per curve).
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Theorem 3. Let Da = [ua(x), va(x)] be a divisor in Div0
C . If deg(ua) = 2, then

Da can be halved if and only if Tr(ua1f5) = 0. If deg(ua) = 1, then Da can be
halved if and only if Tr(f4 + f5ua0) = 0.

Proof. To prove this, we can follow the same ideas as in Theorem 2, with one
difference: some of the halving formulæ require to solve two quadratic (non-
square) equations rather than one. In those formulæ, it is easy to verify that
switching between the roots of the first quadratic equation (adding one to the
half-trace) changes the trace of the constant term of the second quadratic equa-
tion by 1. The choice of root for the first equation (when roots exist in Fq) and
the trace condition from the second equation are then purely internal to the
halving formula.

From this theorem, we obtain a simple condition for the group order:

Corollary 3. The Jacobian of the curve C has order 2·odd if and only if Tr(f5)=
1 and f4 = 0.

Proof. The curve C has exactly one divisor of order 2, which is of the form
[x2 + x + 1, vh]. The group order is divisible by 4 if and only if [x2 + x + 1, vh]
can be halved. From Theorem 3, this is possible if and only if Tr(f5) = 0. The
condition f4 = 0 is then direct from the restriction f4 · Tr(f5) = 0.

Let Dc1 and Dc2 the two pre-images of Da, then their difference is [x2 + x +
1, vh]. From this observation, we get the following corollary which allow us to
distinguish the different special cases:

Corollary 4. Let Da = [ua(x), va(x)] be a divisor in Div0
C that can be halved

and Dc = [uc(x), vc(x)] = [12 ]Da its pre-image (under the doubling) of odd order.
If deg(ua) = 2 and ua1 �= 0, then deg(uc) = 2 (“HLV22”). If deg(ua) = 2 and
ua1 = 0, then deg(uc) = 1 or 2 (“HLV21/22”). If deg(ua) = 1, then deg(uc) = 2
(“HLV12”).

Finally, to verify that we are computing the pre-image of odd order, we use the
conditions of Theorem 3 on uc(x) to ensure it could be halved again (i.e. that
it has odd order), and we correct the computations if necessary. We obtain the
following formulæ:

Algorithm 5. (HLV22, h(x) = x2 + x + 1, f(x) = f5x
5 + f1x + f0)

Input: The divisor class D = [x2 + ua1x + ua0, va1x + va0],
and f−2

5 precomputed

Output: The divisor class [x2 + uc1x + uc0, vc1x + vc0] = [1/2]D

1: s0 ← f5ua1, s1 ← u−1
a1 , s2 ← HT(s0), s3 ← s2s1 � 1I+2M+1HT

2: s4 ← s2ua1, s5 ← f5ua0 + s2 + s3 + va1 + 1 + ua1 + s4 � 2M
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3: s6 ← s5ua1 � 1M

4: if Tr(s6) = 1 then � 1TR

5: s2 ← s2 + 1, s3 ← s3 + s1, s4 ← s4 + ua1

6: s5 ← s5 + 1 + s1 + ua1, s6 ← s5ua1 � 1M

7: end if

8: s8 ← HT(s6), s9 ← s8s1 � 1M+1HT

9: s10 ← s3ua0 + s4 + s8 + va1 + 1 + ua1 � 1M

10: if Tr((s10 + s3 + s9)(s3 + f5 + s1)) = 1 then � 1M+1TR

11: s8 ← s8 + 1, s9 ← s9 + s1, s10 ← s10 + 1

12: end if

13: s11 ← (s3 + f5 + s1)f−2
5 , s12 ← (s10 + s3 + s9)s11 � 2M

14: s13 ← (s2 + s9)ua0 + va0 + 1 + ua0 � 1M

15: s14 ← (s13 + s10 + f1)s11, uc0 ←
√

s14, uc1 ←
√

s12 � 1M+2SR

16: s15 ← s3uc1, s16 ← s15 + s9, s17 ← s16uc0 � 2M

17: vc1 ← s10 + (s3 + s16)(uc0 + uc1) + s15 + s17 � 1M

18: vc0 ← s13 + s17

19: E ← [x2 + uc1x + uc0, vc1x + vc0]

20: return E � 1I+16M+2SR+2TR+2HT

21: � Average: 1I+15.5M+2SR+2TR+2HT

Note that for curves with f5 = 1, the worst-case complexity decreases to
1I+13M+2SR+2HT+2TR. If we move the computation of s11 and s12 before
the second trace computation (which becomes Tr(s12)), then the average com-
plexity drops to 1I+12M+2SR+2HT+2TR (with that approach, a multiplication
is required to correct s12).

Algorithm 6. (HLV12, h(x) = x2 + x + 1, f(x) = f5x
5 + f1x + f0)

Input: The divisor class Da = [x + ua0, va0] and f−1
5 precomputed

Output: The divisor class [x2 + uc1x + uc0, vc1x + vc0] = [1/2]Da

1: s0 ← HT(f5ua0), s1 ← u2
a0 + ua0 � 1M+1S+1HT

2: s2 ← va0 + 1 + s1(s0 + 1) + s2
0 � 1M+1S

3: if Tr(s2) = 1 then � 1TR

4: s0 ← s0 + 1, s2 ← s2 + s1 + 1

5: end if
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6: s3 ← HT(s2) � 1HT

7: if Tr(s3f5) = 1 then s3 ← s3 + 1 end if � 1M+1TR

8: s4 ← s3f
−1
5 , s5 ← s0 + s3, s6 ← s2

0 + s3(1 + ua0 + s3) � 2M+1S

9: s7 ← (f1 + s5 + s6)f−1
5 , uc1 ←

√
s4, uc0 ←

√
s7 � 1M+2SR

10: vc1 ← s5 + s0uc1, vc0 ← s6 + s0uc0 � 2M

11: return [x2 + uc1x + uc0, vc1x + vc0] � 8M+3S+2SR+2TR+2HT

Algorithm 7. (HLV21/22, h(x) = x2 + x + 1, f(x) = f5x
5 + f1x + f0)

Input: The divisor class Da = [x2 + ua0, va1x + va0] and f−2
5

Output: The divisor class [x + uc0, va0] = [1/2]Da

or [x2 + uc1x, vc1x + vc0] = [1/2]Da

1: uc0 ←
√

ua0 � 1SR

2: if Tr(f5uc0) = 0 then � 1M+1TR

3: vc0 ← va0 + uc0va1, E ← [x + uc0, vc0] � 1M

4: else

5: s0 ← va1 + 1 + ua0f5, s1 ← s0 + f1, s2 ← s0 + f5 � 1M

6: s3 ← ua0 + (s0 + s2
2)f

−2
5 , uc1 ←

√
s3, s4 ← f5uc1, � 2M+1SR+1S

7: s5 ← s3ua0 + (s2 + s2
0 + f1)f−2

5 , uc0 ←
√

s5 � 2M+1SR+1S

8: s6 ← (s2 + s4)uc0, vc1 ← (s0 + s4)(uc1 + uc0 + 1) + s6 � 2M

9: vc0 ← s1 + s6, E ← [x2 + uc1x + uc0, vc1x + vc0]

10: end if

11: return E � 9M+3SR+2S+1TR

12: � Average: 5M+2SR+1S+1TR

5 Conclusion

We investigated the halving of divisor classes of hyperelliptic curves of genus
2 over binary fields. We provided new and improved formulæ for all cases of
the halving for all types of curves whose divisor class group has at most one
divisor of order 2 and does not contain any divisor of order 4. We summarize our
results for the most common cases in the table below, where we also compare
with doubling formulæ [10,11,1] and with the fast halving formulæ available in
previous papers [7,8,3].
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Curve type Doubling Halving (previous best) Halving (this work)
Ia 1I+19.5M+2S 1I+15.5M

(general)
1I+20M+6S

+2SR+2TR+2HT +2SR+2TR+2HT
Ia, with 1I+13.5M+3S 1I+12M

h1 = f5 = 1
1I+15M+7S

+2.5SR+2TR+2HT +2SR+2TR+2HT
1I+10.5MIc 1I+10M+6S —

+4SR+1TR+1HT
II 1I+8M 1I+7.5M+2S1I+5M+6S

+5SR+1TR+1HT +4SR+1TR+1HT
III 1I+4M+6S — 1I+4M+6SR

Note that Kitamura, Katagi and Takagi [7,8] also provide a brief description
of halving for type Ic curves, but the best approximation for the cost would be
from their formulæ for type Ia curves with h1 = f5 = 1.

For curves of type Ic and III, our halving formulæ are as efficient as the
doubling. For type II curves, our halving formulæ improve on the state-of-the-
art, although not sufficiently to match the efficiency of the doubling. Our most
important gain comes from type Ia curves, where our halving cost is significantly
lower than both the doubling and the previous best halving formulæ.
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A Type III: h(x) = 1

In this section, the curve C is of the form y2 + y = x5 + f3x
3 + f1x + f0

with f0 ∈ F2. Doing a case-by-case study of the doubling algorithm gives us
the following theorem, and the halving formulæ are obtained by inverting the
doubling ones:

Theorem 4. Let Da = [ua(x), va(x)] be a reduced divisor in Div0
C and Dc =

[uc(x), vc(x)] = 1
2Da its pre-image under the doubling. If deg(ua) = 2, then

deg(uc) = 2 if and only if ua1 �= 0 (HLV22), otherwise deg(uc) = 1 (HLV21). If
deg(ua) = 1, then deg(uc) = 2 (HLV12).

Algorithm 8. (HLV22, h(x) = 1, f(x) = x5 + f3x
3 + f1x + f0)

Input: The divisor class D = [x2 + ua1x + ua0, va1x + va0]

Output: The divisor class [x2 + uc1x + uc0, vc1x + vc0] = [1/2]D

1: s0 ←
√

ua1, s1 ← 1/s0, s2 ← s1 + f3, uc1 ←
√

s2 � 1I+2SR

2: s3 ← s1
√

ua0 + s2, vc1 ←
√

s3, s4 ← ua1s1, s5 ← s3 + s4 � 2M+2SR

3: s6 ← ua0s5, s7 ← 1 + va0 + f0 + s6, vc0 ←
√

s7 � 1M+1SR

4: s8 ← va1 + f1 + (ua0 + ua1)(s1 + s5) + s4 + s6, uc0 ←
√

s8 � 1M+1SR

5: return [x2 + uc1x + uc0, vc1x + vc0] � 1I+4M+6SR

Algorithm 9. (HLV12, h(x) = 1, f(x) = x5 + f3x
3 + f1x + f0)

Input: The divisor class D = [x + ua0, va0]

Output: The divisor class [x2 + uc1x + uc0, vc1x + vc0] = [1/2]D
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1: s0 ←
√

ua0, s1 ← f3, s2 ← s1ua0, s3 ←
√

s0 + s2 � 1M+2SR

2: s4 ← s3 + f1, s5 ← va0 + 1 + ua0(s3 + s0ua0) � 2M

3: uc1 ←
√

s1, uc0 ←
√

s4, vc1 ← s3 +
√

s2, vc0 ← s5 + s0uc0 � 1M+3SR

4: return [x2 + uc1x + uc0, vc1x + vc0] � 4M+5SR

Algorithm 10. (HLV21, h(x) = 1, f(x) = x5 + f3x
3 + f1x + f0)

Input: The divisor class Da = [x2 + ua0, va1x + va0]

Output: The divisor class [x + uc0, vc0] = [1/2]Da

1: uc0 ←
√

ua0, vc0 ← va0 + uc0va1 � 1M+SR

2: return [x + uc0, vc0] � 1M+1SR

B Type Ic: h(x) = x2

In this section, the curve C is of the form y2 + x2y = x5 + f4x
4 + f1x + f0 with

f4 ∈ F2.

Theorem 5. Let Da = [ua(x), va(x)] be a divisor in Div0
C . If deg(ua) = 2, then

Da can be halved if and only if Tr(ua1) = 0. If deg(ua) = 1, then Da can be
halved if and only if Tr(f4 + ua0) = 0.

Proof. As in Theorem 2.

From this theorem, we obtain a simple condition for the group order:

Corollary 5. The Jacobian of the curve C has order 2·odd if and only if f4 = 1.

Proof. The curve C has exactly one divisor of order 2, which is of the form
[x,
√

f0]. The group order is divisible by 4 if and only if [x,
√

f0] can be halved.
From Theorem 5, this is possible if and only if Tr(f4) = 0 and since f4 ∈ F2, C
has a divisor of order 4 if and only if f4 = 0.

Let Dc1 and Dc2 the two pre-images of Da, then Dc1 − Dc2 = Dc2 − Dc1 =
[x,
√

f0]. From this observation, we get the following corollary which allow us to
distinguish the different special cases.

Corollary 6. Let Da = [ua(x), va(x)] be a divisor in Div0
C that can be halved

and Dc = [uc(x), vc(x)] = 1
2Da its pre-image (under the doubling) of odd order.

If deg(ua) = 2 and ua1 �= 0, then deg(uc) = 2 (“HLV22”). If deg(ua) = 2 and
ua1 = 0, then deg(uc) = 1 or 2 (with uc0 = 0 in the second case) (“HLV21/22”).
If deg(ua) = 1, then deg(uc) = 2 (“HLV12”).
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Finally, to verify that we are computing the pre-image of odd order, we use the
conditions of Theorem 5 on uc(x) to ensure that it could be halved again (i.e.
that it has odd order), and we correct the computations if necessary. We obtain
the following formulæ:

Algorithm 11. (HLV22, h(x) = x2, f(x) = x5 + x4 + f1x + f0)

Input: The divisor class D = [x2 + ua1x + ua0, va1x + va0]

Output: The divisor class [x2 + uc1x + uc0, vc1x + vc0] = [1/2]D

1: s0 ← 1/ua1, s1 ← HT(ua1), s2 ← s1s0 � 1I+1M+1HT

2: s3 ← f1(s2 + 1 + s0), s4 ←
√

s1 + (va1 + ua0)s0 � 2M+1SR

3: s5 ← va1 + ua1(1 + s4 + s1) + s2ua0, s6 ← s5(s2 + 1 + s0) � 3M

4: if Tr(s6) = 1 then � 1TR

5: s2 ← s2 + s0, s3 ← s3 + f1s0, s4 ← s4 + 1 � 1M

6: s5 ← s5 + ua0s0, s6 ← s5(s2 + 1 + s0) � 2M

7: end if
8: uc1 ←

√
s6, uc0 ←

√
s3, vc0 ←

√
f0 + s3(1 + s4) � 1M+3SR

9: vc1 ← s6 + s2uc0 + s4uc1 � 2M

10: return [x2 + uc1x + uc0, vc1x + vc0] � 1I+12M+4SR+1HT+1TR

11: � Average: 1I+10.5M+4SR+1HT+1TR

Algorithm 12. (HLV12, h(x) = x2, f(x) = x5 + f4x
4 + f1x + f0)

Input: The divisor class Da = [x + ua0, va0]

Output: The divisor class [x2 + uc1x + uc0, vc1x + vc0] = [1/2]Da

1: s1 ← HT(ua0 + 1), s2 ←
√

va0 + (s1 + 1)u2
a0 � 1M+1S+1SR+1HT

2: s3 ← s2(ua0 + s2), s4 ← s2 � 1M

3: if Tr(s4) = 1 then � 1TR

4: s1 ← s1 + 1, s2 ← s2 + ua0, s4 ← s2

5: end if

6: uc1 ←
√

s4, uc0 ←
√

f1, vc1 ← s2 + s1uc1 � 1M+1SR

7: vc0 ← s3 + s1uc0, E ← [x2 + uc1x + uc0, vc1x + vc0] � 1M

8: return E � 4M+1S+2SR+1TR+1HT
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Algorithm 13. (HLV21/22, h(x) = x2, f(x) = x5 + f4x
4 + f1x + f0)

Input: The divisor class Da = [x2 + ua0, va1x + va0]

Output: The divisor class [x + uc0, vc0] = [1/2]Da

or [x2 + uc1x, vc1x + vc0] = [1/2]Da

1: s0 ←
√

ua0, s1 ← va0 + s0va1 � 1M+1SR

2: if Tr(s0) = 1 then � 1TR

3: E ← [x + s0, s1]

4: else

5: s2 ← 1/s0, vc1 ← (s1 +
√

f0)s2 � 1I+1M

6: vc0 ← s1 + vc1s0, E ← [x2 + s0x, vc1x + vc0] � 1M

7: end if

8: return E � 1I+3M+1SR+1TR

9: � Average: 0.5I+2M+1SR+1TR

C Genus 2 Addition for Type Ia, h(x) = x2 + x + 1

The form of the equation we used for curves of type Ia differs from the one
more commonly used in explicit formulæ paper (which prefer to force f5 = 1
rather than h1 = 1). It is therefore natural to ask what impact the form of the
equation has on the group addition, which is also necessary for the halving-and-
add algorithm.

As the following formula shows, allowing f5 �= 1 allows us to perform the
group addition in 1I+21M+4S, which is in fact slightly more efficient than the
1I+22M+3S required with the more common form of the equation.

Algorithm 14. (ADD22, h(x) = x2 + x + 1, f(x) = f5x
5 + f1x + f0)

Input: The divisor classes Da = [x2 + ua1x + ua0, vc1x + va0],
Db = [x2 + ub1x + ub0, vb1x + vb0]

Output: The divisor class [x2 + uc1x + uc0, vc1x + vc0] = Da + Db

1: s0 ← ua1 + ub1, s1 ← ua1s0, s2 ← ua0 + ub0, s3 ← s1 + s2 � 1M

2: s4 ← s3s2 + ua0s
2
0, s5 ← va0 + vb0, s6 ← va1 + vb1 � 2M+1S

3: s7 ← s3s5, s8 ← s0s6 � 2M

4: s9 ← (s3 + s0)(s5 + s6) + s7 + s8(1 + ua1), s10 ← s4s9 � 3M
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5: if s10 = 0 then

6: Use Cantor’s algorithm

7: else

8: s11 ← s7 + ua0s8, s12 ← 1/s10, s13 ← s4s12 � 1I+2M

9: s14 ← s2
9s12, s15 ← s4s13, s16 ← s2

15, s17 ← s11s13 � 3M+2S

10: s18 ← f5s16, uc1 ← s0 + s15 + s18 � 1M

11: uc0 ← s2 + s2
17 + s1 + (1 + s17 + ua1)s15 + s0s18 � 2M+1S

12: s19 ← ub1 + uc1, s20 ← (s17 + ub1)s19 � 1M

13: s21 ← (uc0 + ub0)s17 + ub0s19, vc1 ← uc1 + 1 + vb1 + s14s20 � 3M

14: vc0 ← uc0 + 1 + vb0 + s14s21 � 1M

15: end if

16: return [x2 + uc1x + uc0, vc1x + vc0] � 1I+21M+4S
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examples being Identity Based Encryption [4] and short signatures [5]. Since
pairing computations are generally the most important and expensive operation
in any pairing-based cryptosystem, improving the speed of pairing computations
has become an important issue in pairing-based cryptography.

Miller proposed the first algorithm [26] for computing the Weil pairing on
elliptic curves. In practice, the Tate pairing shows better performance than that
of the Weil pairing and therefore is widely used. While many important tech-
niques have been proposed to accelerate the computation of the Tate pairing
and its variants on elliptic curves [2,3,17], the subject of pairing computations
on hyperelliptic curves is also receiving an increasing amount of attention. Choie
and Lee [7] investigated the implementation of the Tate pairing on supersingular
genus 2 hyperelliptic curves over prime fields. Later on, Ó hÉigeartaigh and Scott
[16] improved the implementation of [7] significantly by using a new variant of
Miller’s algorithm combined with various optimization techniques. Duursma and
Lee [9] presented a closed formula for the Tate pairing computation on a very
special family of supersingular hyperelliptic curves. Barreto et. al. [2] generalized
the results of [9] and proposed the Eta pairing approach for efficiently computing
the Tate pairing on supersingular genus 2 curves over binary fields. In particular,
their algorithm leads to the fastest pairing implementation in the literature. In
[23], Lee et. al. considered the Eta pairing computation on general divisors on
supersingular genus 3 hyperelliptic curves with the form of y2 = x7 − x ± 1.
Recently, the Ate pairing, which is an extension of the Eta pairing to the setting
of ordinary curves, has been generalized to hyperelliptic curves [14] as well. Al-
though the Eta and Ate pairings hold the record for speed at the present time,
we will focus our attention on the Tate pairing in this paper. The main reason is
that the Tate pairing is uniformly available across a wide range of hyperelliptic
curves and subgroups, whereas the Eta pairing is only defined for supersingular
curves and the Ate pairing incurs a huge performance penalty in the context of
ordinary genus 2 curves [14, Table 6].

Previous work for computing pairings on hyperelliptic curves only considered
using affine coordinates. Motivated by Chatterjee et. al.’s work [6], we address
the efficient implementation of the Tate pairing on genus 2 hyperelliptic curves
over large prime fields in projective coordinates in this contribution. We first
derive new explicit formulae for the group operations for genus 2 hyperellip-
tic curves in projective and new (weighted projective) coordinates, respectively.
Letting I denote a field inversion, M a field multiplication, and S a field squar-
ing, we find in the context of pairing computations that compared to Lange’s
formulae [22], our mixed-addition formulae can save 5M and 3M in projective
and new coordinates, respectively, whereas our doubling formulae can save 2M
in both projective and new coordinates. We then show how to encapsulate the
computation of the line function with the mixed addition and doubling formu-
lae in new coordinates, and how to omit some operations which are cancelled
by the final exponentiation in the encapsulated method. Our encapsulated ex-
plicit formulae can be applied to pairing computations on both supersingular
and non-supersingular genus 2 hyperelliptic curves over prime fields. Finally, we
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describe an efficient implementation of the Tate pairing on a non-supersingular
genus 2 hyperelliptic curve with an embedding degree of 2 over prime fields as a
case study. To our knowledge, this is the first concrete implementation of pairing
computations on non-supersingular genus 2 curves.

This paper is organized as follows. Section 2 gives an overview of the Tate
pairing on hyperelliptic curves and Miller’s algorithm for computing the pair-
ing. In Section 3 we describe new explicit formulae which encapsulate group
operations and line computations for genus 2 curves over prime fields. Section
4 shows how to apply various techniques from the literature to accelerate the
pairing computation on a specific non-supersingular genus 2 curve over prime
fields, analyzes the computational complexity of computing the Tate pairings
and gives implementation results. Finally, Section 5 concludes this contribution.

2 Mathematical Background

2.1 Tate Pairing on Hyperelliptic Curves

Let Fq be a finite field with q elements, and Fq be its algebraic closure. Let C be
a hyperelliptic curve of genus g over Fq, and let JC denote the degree zero divi-
sor class group of C. We say that a subgroup of the divisor class group JC(Fq)
has embedding degree k if the order n of the subgroup divides qk − 1, but does
not divide qi− 1 for any 0 < i < k. For our purpose, n should be a (large) prime
with n | #JC(Fq) and gcd(n, q) = 1. Let JC(Fqk)[n] be the n-torsion group
and JC(Fqk)/nJC(Fqk) be the quotient group. Then the Tate pairing is a well
defined, non-degenerate, bilinear map [13]:

〈·, ·〉n : JC(Fqk)[n]× JC(Fqk)/nJC(Fqk)→ F∗
qk/(F∗

qk)n,

defined as follows: let D1 ∈ JC(Fqk)[n], with div(fn,D1) = nD1 for some ratio-
nal function fn,D1 ∈ Fqk(C)∗. Let D2 ∈ JC(Fqk)/nJC(Fqk) with supp(D1) ∩
supp(D2) = ∅ (to ensure a non-trivial pairing value). The Tate pairing of two
divisor classes D1 and D2 is then defined as

〈D1, D2〉n = fn,D1(D2) =
∏

P∈C(Fq)

fn,D1(P )ordP (D2).

Note that the Tate pairing as detailed above is only defined up to n-th powers.
One can show that if the function fn,D1 is properly normalized, we only need to
evaluate the rational function fn,D1 at the effective part of the reduced divisor
D2 in order to compute the Tate pairing [3,14].

In practice, the fact that the Tate pairing is only defined up to n-th power is
usually undesirable, and many pairing-based protocols require a unique pairing
value. Hence one defines the reduced pairing as

〈D1, D2〉(q
k−1)/n

n = fn,D1(D2)(q
k−1)/n ∈ μn ⊂ F∗

qk ,

where μn = {u ∈ F∗
qk | un = 1} is the group of n-th roots of unity. In the rest

of this paper we will refer to the extra powering required to compute the reduced
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pairing as the final exponentiation. Furthermore, we also assume the embedding
degree k is greater than 1.

2.2 Miller’s Algorithm

The main task involved in the computation of the Tate pairing 〈D1, D2〉n is to
construct a rational function fn,D1 such that div(fn,D1) = nD1. In [26], Miller
described a polynomial time algorithm, known universally as Miller’s algorithm,
to construct the function fn,D1 and compute the Weil pairing on elliptic curves.
However, the algorithm can be easily adapted to compute the Tate pairing on
hyperelliptic curves.

Let GiD1,jD1 ∈ Fqk(C)∗ be a rational function with div(GiD1,jD1) = iD1 +
jD1− (iD1⊕ jD1) where ⊕ is the group law on JC and (iD1⊕ jD1) is reduced.
Miller’s algorithm constructs the rational function fn,D1 based on the following
iterative formula:

fi+j,D1 = fi,D1fj,D1GiD1,jD1 .

Algorithm 1 shows the basic version of Miller’s algorithm for computing the
reduced Tate pairing on hyperelliptic curves according to the above iterative
relation. Essentially, computing the Tate pairing with Miller’s algorithm amounts
to performing a scalar multiplication of a reduced divisor and evaluating certain
intermediate rational functions which appear in the process of the divisor class
addition. A more detailed version of Miller’s algorithm for hyperelliptic curves
can be found in [14].

Algorithm 1. Miller’s Algorithm for Hyperelliptic Curves (basic version)
IN: D1 ∈ JC(Fqk)[n], D2 ∈ JC(Fqk), represented by D1 and D2

with supp(D1) ∩ supp(D2) = ∅
OUT: 〈D1, D2〉(q

k−1)/n
n

1. f ← 1, T ← D1

2. for i← �log2(n)� − 1 downto 0 do

3. � Compute T ′ and GT,T (x, y) such that T ′ = 2T − div(GT,T )
4. f ← f2 ·GT,T (D2), T ← [2]T
5. if ni = 1 then

6. � Compute T
′

and GT,D1(x, y) such that T
′
= T + D1 − div(GT,D1)

7. f ← f ·GT,D1(D2), T ← T ⊕D1

8. Return f (qk−1)/n

3 Encapsulated Computation on Genus 2 Curves

In this section we generalize the idea of encapsulated add-and-line and encapsu-
lated double-and-line proposed in [6] to genus 2 hyperelliptic curves over large
prime fields. Note that, in the process of computing Tate pairings, one inversion
is required for each divisor class addition and doubling, and the calculation of
the inversion of an element in large characteristic is usually quite expensive.
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Therefore, to avoid inversions, we need to derive efficient inversion-free explicit
formulae for genus 2 hyperelliptic curves in the context of pairing computations.

Lange [22] presented efficient explicit formulae for the group operations on
genus 2 curves using various systems of coordinates. In the projective coor-
dinate system, the quintuple [U1, U0, V1, V0, Z] corresponds to the affine class
[x2 + U1/Zx + U0/Z, V1/Zx + V0/Z] in Mumford representation [28], whereas
the sextuple [U1, U0, V1, V0, Z1, Z2] stands for the affine class [x2 + U1/Z

2
1x +

U0/Z
2
1 , V1/(Z3

1Z2)x + V0/(Z3
1Z2)] in the new coordinate system. Lange’s formu-

lae are designed to be used in the context of computing scalar multiplications,
and do not explicitly calculate all of the rational functions required in Miller’s
algorithm. However, one can extract the rational functions required from the
formulae in [22] at the cost of 3 extra field multiplications.

Choie and Lee [7] modified Lange’s explicit formulae in affine coordinates to
reduce the cost of extracting the rational functions required in Miller’s algorithm.
The formulae presented in [7] require 1I + 23M + 3S and 1I + 23M + 5S in
Fp for divisor class addition1 and doubling, respectively, thereby saving 2 field
multiplications over the previous method. Ó hÉigeartaigh and Scott [16] further
optimized the doubling formula proposed in [7] for supersingular genus 2 curves
over Fp of the form y2 = x5 + a by saving 1 multiplication and 1 squaring.

Based on the above explicit formulae in affine coordinates, we derive new
explicit mixed-addition and doubling formulae in the projective and new coor-
dinate systems in the context of pairing computations, respectively. Since the
explicit formulae in new coordinates are more efficient than those in projective
coordinates, we use new coordinates to represent divisor classes in the main pre-
sentation. The mixed-addition and doubling formulae in projective coordinates
can be found in the appendix. We will explain how to encapsulate the group op-
erations and the line computations in the following subsections. To increase per-
formance, we also enlarge the set of coordinates to [U1, U0, V1, V0, Z1, Z2, z1, z2]
as in [22], where z1 = Z2

1 and z2 = Z2
2 .

3.1 Encapsulated Divisor Addition and Line Computation

In this subsection, we show how to encapsulate the computation of the line func-
tion with the divisor class addition in new coordinates. Given two divisor classes
E1 = [U11, U10, V11, V10, 1, 1, 1, 1] and E2 = [U21, U20, V21, V20, Z21, Z22, z21, z22]
in new coordinates as inputs, Table 1 describes an explicit mixed-addition for-
mula which calculates a divisor class E3 = [u3(x), v3(x)] and the rational func-
tion l(x) such that E1 + E2 = E3 + div

(
y−l(x)
u3(x)

)
in the most common case. Our

new explicit formula requires 36M +5S for computing the divisor class addition
in new coordinates. Table 2 summarizes the computational cost of calculating
the divisor class addition and extracting the line function in various coordinate
systems. From Table 2 we note that in the context of pairing computations our
mixed-addition formulae can save 5M in the projective coordinate system and

1 We note that the addition formula in [7] requires 3S instead of 2S as claimed. Indeed,
each of Steps 1, 4, and 6 in [7, Table 5] requires a separate squaring.
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Table 1. Mixed-Addition Formula on a Genus 2 Curve over Fp (New Coordinates)

Input Genus 2 HEC C : y2 = x5 + f3x
3 + f2x

2 + f1x + f0

E1 = [U11, U10, V11, V10, 1, 1, 1, 1] and
E2 = [U21, U20, V21, V20, Z21, Z22, z21, z22]

Output E3 = [U31, U30, V31, V30, Z31, Z32, z31, z32] = E1 ⊕E2

l(x) such that E1 + E2 = E3 + div
(

y−l(x)
u3(x)

)
Step Expression Cost

1 Compute resultant and precomputations: 7M, 1S

z23 = Z21Z22, z24 = z21z23, Ũ11 = U11z21, y1 = Ũ11 − U21

y2 = U20 − U10z21, y3 = U11y1, y4 = y2 + y3, r = y2y4 + y2
1U10

2 Compute almost inverse of u2 mod u1: –
inv1 = y1, inv0 = y4

3 Compute s′: 7M

w0 = V10z24 − V20, w1 = V11z24 − V21, w2 = inv0w0

w3 = inv1w1, s
′
1 = y1w0 + y2w1, s

′
0 = w2 − U10w3

4 Precomputations: 4M, 3S

r̃ = rz23, R = r̃2, Z31 = s′1Z21, Z32 = r̃Z21

z31 = Z2
31, z32 = Z2

32, s̃
′
0 = s′0z21

5 Compute l: 5M

l2 = s′1U21 + s̃′0, l0 = s′0U20 + rV20

l1 = (s′1 + s′0)(U21 + U20)− s′1U21 − s′0U20 + rV21

6 Compute U3: 7M, 1S

w1 = Ũ11 + U21, U31 = s′1(2s̃′0 − s′1y1)− z32, l
′
1 = l1s

′
1

U30 = s̃′0(s′0 − 2s′1U11) + s
′2
1 (y3 − Ũ10 − U20) + 2l′1 + Rw1

7 Compute V3: 6M

w1 = l2s
′
1 − U31, V30 = U30w1 − z31(l0s′1)

V31 = U31w1 + z31(U30 − l′1)
Sum 36M, 5S

Table 2. Divisor Class Addition in Different Systems and in Odd Characteristic

Reference Coordinate Addition Mixed Extracting Line
Type Addition Function l(x)

Miyamoto et al. [27] Affine 1I, 24M, 2S – no cost
Projective 54M – no cost

Lange [22] Affine 1I, 22M, 3S – 3M
Projective 47M, 4S 40M, 3S 3M

New 47M, 7S 36M, 5S 3M

Choie and Lee [7] Affine 1I, 23M, 3S – no cost
Our work Projective – 38M, 3S no cost

Table 9
New – 36M, 5S no cost

Table 1
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Table 3. Doubling Formula on a Genus 2 Curve over Fp (New Coordinates)

Input Genus 2 HEC C : y2 = x5 + f3x
3 + f2x

2 + f1x + f0

E1 = [U11, U10, V11, V10, Z11, Z12, z11, z12]
Output E3 = [U31, U30, V31, V30, Z31, Z32, z31, z32] = [2]E1

l(x) such that 2E1 = E3 + div
(

y−l(x)
u3(x)

)
Step Expression Cost

1 Compute resultant: 4M, 2S

w0 = V 2
11, w1 = U2

11, w2 = V10z11

w3 = w2 − U11V11, r = U10w0 + V10w3

2 Compute almost inverse: –
inv′

1 = −V11, inv′
0 = w3

3 Compute k′: 7M, 1S

z′
11 = z2

11, w3 = f3z
′
11 + w1, Ũ10 = U10z11

k′
1 = z12(2(w1 − Ũ10) + w3), z′′

11 = z11z
′
11

k′
0 = z12(U11(4Ũ10 − w3) + f2z

′′
11)− w0

4 Compute s′: 5M

w0 = k′
0inv′

0, w1 = k′
1inv′

1, s
′
1 = w2k

′
1 − V11k

′
0, s

′
0 = w0 − Ũ10w1

5 Precomputations: 8M, 4S

Z31 = s′1z11, z31 = Z2
31, w0 = rz11, w1 = w0Z12

Z32 = 2w1Z11, z32 = Z2
32, w2 = w2

1, R = rZ31

S0 = s′20 , S = s′0Z31, s0 = s′0s
′
1, s1 = s′1Z31

6 Compute l: 6M

l2 = s1U11 + s0z11, V
′
10 = RV10, l0 = s0U10 + 2V ′

10

V ′
11 = RV11, l1 = (s1 + s0)(U11 + U10)− s1U11 − s0U10 + 2V ′

11

7 Compute U3: 1M

U30 = S0 + 4(V ′
11 + 2w2U11), U31 = 2S − z32

8 Compute V3: 4M

w0 = l2 − U31, w1 = w0U30, w2 = w0U31

V31 = w2 + z31(U30 − l1), V30 = w1 − z31l0
Sum 35M, 7S

3M in the new coordinate system, respectively, when compared to the formulae
given by Lange [22].

In the new coordinate system, the rational function c(x, y) = y − l(x) that is
required in Miller’s algorithm has the following form:

c(x, y) = y −
(

s′1
rz23

x3 +
l2

rz24
x2 +

l1
rz24

x +
l0

rz24

)
,

where s′1, l2, l1, l0, r, z23 and z24 = z21z23 are computed in Table 1. By defining
the auxiliary rational function c′(x, y) = (rz24)c(x, y), we obtain

c′(x, y) = (rz24)y − ((s′1z21)x3 + l2x
2 + l1x + l0).

Note that the result of evaluating the function c(x, y) at an image divisor D2 will
be raised to the power (qk − 1)/n (k > 1) in the last step of Miller’s algorithm.
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Table 4. Divisor Class Doubling in Different Systems and in Odd Characteristic

Reference Coordinate Doubling Extracting Line
Type Function l(x)

Miyamoto et al. [27] Affine 1I, 23M, 4S no cost
Projective 53M no cost

Lange [22] Affine 1I, 22M, 5S 3M
Projective 38M, 6S 3M

New 34M, 7S 3M

Choie and Lee [7] Affine 1I, 23M, 5S no cost
Ó hÉigeartaigh and Scott [16] Affine 1I, 22M, 4S no cost

Our work Projective 39M, 6S no cost
Table 10

New 35M, 7S no cost
Table 3

For efficiency reasons, the first input to the Tate pairing is usually restricted to
the 1-eigenspace of the Frobenius endomorphism on JC [n]. Therefore, we have
the following relation

c(D2)(q
k−1)/n = ((c′(D2)/(rz24))q−1)(q

k−1+qk−2+...+1)/n = c′(D2)(q
k−1)/n.

The above relation means that in new coordinates we can work with the rational
function c′(x, y) instead of c(x, y) without altering the value of the resulting Tate
pairing. For the same reason we also work with the rational function u′

3(x) =
z31x

2 + U31x + U30 instead of u3(x) = x2 + U31
z31

x + U30
z31

for both divisor addition
and divisor doubling.

3.2 Encapsulated Divisor Doubling and Line Computation

In this subsection, we describe how to encapsulate the computation of the line
function with the divisor class doubling in new coordinates. Given a divisor class
E1 = [U11, U10, V11, V10, Z11, Z12, z11, z12] in new coordinates as an input, Table 3
describes an explicit doubling formula which calculates a divisor class E3 =
[u3(x), v3(x)] and the rational function l(x) such that 2E1 = E3 + div

(
y−l(x)
u3(x)

)
in the most common case. Our new explicit formula needs 35M + 7S to double
a divisor class in new coordinates. Table 4 summarizes the computational cost
of doubling a divisor class and extracting the line function in various coordinate
systems. From Table 4 we note that in the context of pairing computations our
doubling formulae can save 2M in both projective and new coordinates, when
compared to the formulae given by Lange [22].

In the new coordinate system, the rational function c(x, y) = y − l(x) that is
required in Miller’s algorithm has the following form:

c(x, y) = y −
(

s1

s′1Z32
x3 +

l2
Z31Z32

x2 +
l1

Z31Z32
x +

l0
Z31Z32

)
,
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where s1, s
′
1, l2, l1, l0, Z31 and Z32 are available in Table 3. By defining the aux-

iliary rational function c′(x, y) = (Z31Z32)c(x, y), we obtain

c′(x, y) = (Z31Z32)y − ((s1z11)x3 + l2x
2 + l1x + l0),

where z11 is also available in Table 3. With the same argument as the case
of the mixed-addition, we have the relation c(D2)(q

k−1)/n = c′(D2)(q
k−1)/n for

an image divisor D2. Therefore, we can simply work with the rational function
c′(x, y) instead of c(x, y) without altering the value of the resulting Tate pairing
in the new coordinate system.

4 Implementing the Tate Pairing

4.1 The Non-supersingular Pairing-Friendly Genus 2 Curve

There are only a few techniques that have been proposed for constructing non-
supersingular curves of genus g ≥ 2 and low embedding degree for pairing-based
cryptography — see [10,11,18,21] for example. By modeling on the Cocks-Pinch
method for constructing pairing-friendly elliptic curves [8], Freeman generated
the first examples of non-supersingular pairing-friendly genus 2 curves [11]. In our
implementations, we will use an example from [11], which gives a genus 2 curve
whose Jacobian has embedding degree 2 with respect to the prime n = 2160 + 7.
The curve is given by the equation

C : y2 = x5 + f3x
3 + f2x

2 + f1x + f0

over Fp. The curve coefficients f3, f2, f1 and f0, the subgroup order n, and the
characteristic p of the prime field can be found in Appendix A of [11]. Although
Freeman [11] also provides examples of non-supersingular genus 2 curves with
larger embedding degree, those curves are defined over prime fields with very
large characteristics and therefore are not suitable for efficient implementations.
Generating non-supersingular pairing-friendly genus 2 curves defined over small
prime fields (|p| ∼ 80) with large embedding degree (k ≥ 12) remains an open
problem.

Let c ∈ Fp be a quadratic non-residue over Fp. A quadratic twist of C, denoted
by Ct, over Fp is defined by the following equation

Ct : y2 = x5 + c2f3x
3 + c3f2x

2 + c4f1x + c5f0.

Let JCt(Fp2) be the Jacobian of Ct when considering Ct as a curve defined over
Fp2 , and Dt = [ut, vt] be an element of JCt(Fp2) in Mumford representation. It is
known [1] that Ct(Fp2) is isomorphic to C(Fp2). Therefore, we can construct the
isomorphism ψ of Jacobians JCt(Fp2) and JC(Fp2) by applying the isomorphism
φ to each point P = (xt, yt) in the support of the divisor Dt as shown in the
following figure.
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ψ: JCt (Fp2) −→ JC(Fp2) φ: Ct(Fp2) −→ C(Fp2)
Dt �−→ D (xt, yt) �−→ (x, y)

[ut, vt] �−→ [u, v] (xt, yt) �−→ (c−1xt, c−5/2yt)

The Isomorphism of JCt (Fp2) and JC(Fp2) The Isomorphism of Ct(Fp2) and C(Fp2)

4.2 Finite Field Arithmetic

In our implementation, the curve C has embedding degree k = 2. Therefore we
first need to construct the quadratic extension field Fp2 . Since the prime p in
this paper is congruent to 5 modulo 12, the quadratic extension field Fp2 can be
constructed by the irreducible binomial x2+3. Letting β denote −3, the elements
of the field Fp2 can be represented as a + b

√
β, where a, b ∈ Fp. By using the

Karatsuba multiplication technique [20], a multiplication of two elements in Fp2

costs 3 multiplications in Fp.

4.3 Using Degenerate Divisors and Denominator Elimination

Degenerate divisors have been widely used in the literature to speed up pairing
computations on supersingular hyperelliptic curves [2,9,16]. Frey and Lange [12]
have shown that the value of the Tate pairing is non-trivial if one restricts the
second input to the embedding of C(Fqk) into JC(Fqk). In particular, when
the embedding degree k is even, we can use a degenerate divisor class P − P∞ ∈
JC(Fqk) as the second argument of the Tate pairing where the coordinates of P =
(x, y) ∈ C(Fqk) satisfy x ∈ Fqk/2 but y �∈ Fqk/2 . Therefore, in our implementation
we first generate a degenerate divisor class Dt = [x − xt, yt] ∈ JCt(Fp) on the
twisted curve Ct/Fp. We then use the isomorphism ψ given above to obtain
the degenerate divisor class D = ψ(Dt) = [x − c−1xt, c

−5/2yt] ∈ JC(Fp2) on
the curve C defined over Fp2 . Hence, D can be used as the second argument to
Miller’s algorithm. Note that the first part of D, namely x − c−1xt, is defined
over Fp, and thus the denominator elimination technique [3] applies in this case.

4.4 Evaluating Line Functions

At each iteration of the loop, we extract the rational functions y − l(x) and
u3(x) from the group operations and evaluate these functions at the second
argument D2. When new coordinates are used, we can work with c′(x, y) =
(rz24)y − ((s′1z21)x3 + l2x

2 + l1x + l0) and u′
3(x) = z31x

2 + U31x + U30 for
group addition, and c′(x, y) = (Z31Z32)y − ((s1z11)x3 + l2x

2 + l1x + l0) and
u′

3(x) = z31x
2 + U31x + U30 for group doubling as described in Section 3, where

r̃, z11, z21, Z31, Z32, s1, s
′
1, l2, l1 and l0 are from Table 1 and Table 3. We consider

the following two cases for evaluating line functions at the divisor D2:

1. D2 is a degenerate divisor generated by the method in Section 4.3. In this
case, D2 can be represented by [x − x2, y2] ∈ JC(Fp2) for which x2 ∈ Fp

and y2 �∈ Fp. Since x2
2 and x3

2 can be precomputed, this leaves 6M over Fp

to be computed each time the function c′(x, y) is evaluated. In particular,
denominator elimination is applicable in this case and we do not need to
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Table 5. Evaluating c′(x, y) and u′
3(x) at a General Divisor D2 in New Coordinates

Input c′(x, y) = (r̃z21)y − ((s′1z21)x3 + l2x
2 + l1x + l0) ∈ Fp[x, y]

u′

3(x) = z31x
2 + U31x + U30 ∈ Fp[x]

D2 = [x2 + u21x + u20, v21x + v20] ∈ JC(Fp2)
Output c′(D2), u′

3(D2) ∈ Fp2

Precomputations Cost
t1 = u20v21, t2 = u21v20, t3 = t1 − t2, t4 = v21t3, t5 = v2

20 13M, 3S

t6 = t4 + t5, t7 = u21v21, t8 = 2v20 − t7, t9 = t1 + t3, t10 = u21t3 in Fp2

t11 = u20v20, t12 = t10 + 2t11, t13 = u2
21, t14 = t3t13, t15 = 2t3 − t2

t16 = u20t15, t17 = t14 − t16, t18 = u20u21, t19 = u2
20, t20 = t19u20

t21 = t19u21, t22 = t13 − 2u20, t23 = u20t22, t24 = t22 − u20, t25 = u21t24

Computing c′(D2) Cost
w1 = r̃z21, w2 = s′1z21, w3 = w1t6, w4 = w2t17, w5 = l2t12, w6 = l1t9 38M, 1S

w7 = l0t8, w8 = w3 − w4 + w5 − w6 − w7, w9 = w1w8, w10 = w2t20 in Fp

w11 = l2t21, w12 = l1t23, w13 = l0t25, w14 = w10 − w11 + w12 − w13

w15 = w2w14, w16 = l2t19, w17 = l1t18, w18 = l0t22, w19 = w16 − w17 + w18

w20 = l2w19, w21 = l1u20, w22 = l0u21, w23 = w21 − w22, w24 = l1w23

w25 = l20, c
′(D2) = w9 + w15 + w20 + w24 + w25

Computing u′

3(D2) Cost
i1 = z2

31, i2 = z31U30, i3 = U2
30, i4 = i1t19, i5 = U31u20, i6 = z31t18, i7 = U30u21 13M, 2S

i8 = i5 − i6 − i7, i9 = U31i8, i10 = i2t22, u
′

3(D2) = i3 + i4 + i9 + i10 in Fp

evaluate the function u′
3(x) at D2. Therefore, the total cost of evaluating

the rational functions at a degenerate divisor D2 is given as 6M in Fp per
iteration of the loop, with a precomputation of 1M + 1S in Fp.

2. D2 is a general divisor in Mumford representation, namely D2 =[u2(x), v2(x)]
= [x2 + u21x+ u20, v21x + v20] ∈ JC(Fp2). Note that the Mumford represen-
tation of divisors essentially gives the symmetric functions of the coordinates
of the points in the support of the divisor. Hence, we can use these symmetric
functions to obtain an explicit formula for evaluating the rational functions
c′(x, y) and u′

3(x) at D2, which only uses the coefficients of u2(x) and v2(x).
Table 5 describes the efficient explicit formula for computing c′(D2) and
u′

3(D2).
Note that, in many of the multiplications in Table 5, one of the operands
is in Fp. Hence, a multiplication in Fp2 only needs 2M in Fp in this case.
The total cost of evaluating the rational functions at a general divisor D2 is
given as 51M + 3S in Fp per iteration of the loop, with a precomputation of
13M + 3S in Fp2 .

4.5 Final Exponentiation

For a genus 2 curve with an embedding degree of k = 2, the output of Miller’s
algorithm must be exponentiated to the power of (p2 − 1)/n. The final expo-
nentiation can be expressed in terms of operations in the base field Fp. Letting
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f = a + b
√

β ∈ Fp2 denote the output of Miller’s algorithm, we can compute the
final exponentiation as follows:

f
p2−1

n =
(

a− b
√

β

a + b
√

β

) p+1
n

=

(
a2 − 3b2 +

√
β
(
(a− b)2 − (a2 + b2)

)
a2 + 3b2

) p+1
n

.

We first calculate the expression in the parenthesis with 1I + 2M + 3S in Fp,
followed by an expensive exponentiation by (p + 1)/n which is executed in the
arithmetic in Fp2 .

4.6 Efficiency Comparison and Analysis

Since our encapsulated explicit formulae are applicable to pairing computations
on both supersingular and non-supersingular genus 2 curves, we first show how
our method can be used to improve previous implementations on supersingular
genus 2 curves. We then analyze the case of non-supersingular genus 2 curves.

In [7] and [16], the authors considered the pairing computation on a family
of supersingular genus 2 hyperelliptic curves with embedding degree 4 in affine
coordinates. The curves are defined by the equation y2 = x5 + a, where a ∈
F∗

p and p ≡ 2, 3 mod 5. Note that our explicit doubling formulae only need
37M + 6S and 32M + 6S in projective and new coordinates, respectively, for
this family of curves since the curve coefficients f2 and f3 are zero. Assume that
the order n of the subgroup is about 160 bits. Following the same analysis as in
[7] and [16], we compare the cost of computing the Tate pairing on this family
of curves in different coordinate systems (without including the cost of the final
exponentiation) in Table 6.

Table 6. Theoretical Complexity of Miller’s Algorithm in Different Systems

Reference Coordinate Type Subgroup Order Cost
Choie and Lee [7] Affine Random 240I, 17688M, 2163S

Ó hÉigeartaigh and Scott [16] Affine Solinas Prime 162I, 10375M, 645S

Our work Projective Random 20017M, 1201S

Solinas Prime 13129M, 967S

New Random 19297M, 1361S

Solinas Prime 12487M, 971S

We assume that field squarings have cost S = 0.8M . Then our encapsulated
method is faster than that of [7] whenever I/M > 4.03. Moreover, our algorithm
can achieve better performance than that of [16] whenever I/M > 14.65. These
conditions usually hold for large prime field arithmetic on modern processors
[25]. Therefore, for sufficiently large I/M , our method based on the encapsulated
explicit formulae will be superior.

Next, we analyze the computational complexity of computing the Tate pairing
using the non-supersingular genus 2 curve with embedding degree 2 (see Section
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4.1). Note that the group order n = 2160 + 7 = 2160 + 23 − 1 is a Solinas prime
[32]. The encapsulated explicit formulae for performing the group operations
and extracting the rational functions in new coordinates are used (See Section
3). Furthermore, the degenerate divisor generated by using the technique in
Section 4.3 is used as the second argument to Miller’s algorithm. Based on these
optimizations, the theoretical cost for computing the Tate pairing is given as
(again without including the cost of the final exponentiation)

(log2 n)(TD + Tc + Tsk + Tmk) + 2(TA + Tc + Tmk),

where TA = 36M + 5S is the cost of adding two general divisors and extracting
the rational functions with the formula in Table 1, TD = 35M +7S is the cost of
doubling a general divisor and extracting the rational functions with the formula
in Table 3, Tc = 6M (with a precomputation of 1M + 1S) is cost of evaluating
the rational function c′(x, y) at the degenerate divisor D2, and Tsk = 3S and
Tmk = 3M are respectively the cost of squaring and multiplication in Fp2 . Hence,
the total cost of computing the Tate pairing with our optimizations is given as
7175M + 1621S in Fp, whereas 163I + 4243M + 975S are required when using
affine coordinates.

4.7 Experimental Results

In this section, experimental results are given for computing the Tate pairing
using the techniques detailed in this paper for the non-supersingular genus 2
curve defined over Fp with embedding degree 2. All experiments were conducted
on a Core 2 DuoTMprocessor with a clock frequency of 2.67 GHz. The code was
written in C and complied and debugged using Microsoft Developer Studio 6. The
implementation of Fp-arithmetic is based on various efficient algorithms in [15],
where p is a 651-bit prime. Table 7 shows the timings of our finite field library
and the corresponding IM -ratio. From Table 7, we note that the IM -ratio is
45.8 and S = 0.89M in the target processor. Therefore, using our encapsulated
explicit formulae, we can obtain a 31.5% performance improvement over working
with affine coordinates.

Table 7. Timings of Prime Field Fp Library

# of bits of p Multiplication (M) Squaring (S) Inversion (I) IM -ratio
651 4.59μs 4.08μs 210μs 45.8

Table 8 gives experimental results for the implementation of the Tate pairing
for the (160/1024) security level. All of the timings are given in milliseconds and
three cases are included in the Table. The first case is the time taken to compute
the Tate pairing when a degenerate divisor is used as the second argument to
Miller’s algorithm and the denominator technique is applied. The second case
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Table 8. Experimental Results – (160/1024) Security Level

Case Description Running Time (ms)
1 Evaluating at a degenerate divisor 46.5
2 Evaluating using Mumford Representation 85.2
3 Elliptic curve pairing (k = 2 and log2 p ≈ 512) [31] 8.9

gives the time when a general divisor with Mumford representation is used as
the second input to the algorithm. The third case is the timing for computing
the Tate pairing on non-supersingular elliptic curves with embedding degree 2
over Fp given by Scott [31].

Note that the implementations in [16] and [31] use special assembly language
routines in MIRACL [30] for field operations. Therefore, it is hard to compare our
implementation with those in [16,31]. The timings in Table 8 indicate that the
Tate pairing on the non-supersingular genus 2 curve over Fp is a valid candidate
for practical applications. However, elliptic curve pairings are faster than those in
the genus 2 case for a (160/1024) bit security level, due to the more complicated
group operations and larger Jacobian sizes of genus 2 curves.

5 Conclusion

In this paper, we have described how to efficiently implement pairing computa-
tions on genus 2 hyperelliptic curves over prime fields in projective coordinates.
We generalize Chatterjee et. al.’s idea of encapsulated double-and-line compu-
tation and add-and-line computation to genus 2 curves in projective and new
coordinates, respectively. We also show that some of the operations in the en-
capsulated method do not need to be computed since they are eliminated by the
final exponentiation. Our new explicit formulae are applicable to pairing compu-
tations on both supersingular and non-supersingular genus 2 curves. Theoretical
analysis shows that for pairing computations on supersingular genus 2 curves
with embedding degree 4 over prime fields, our encapsulated method is faster
than previously best known algorithms whenever I/M > 14.65. Furthermore, we
also report the first efficient implementation of pairing computations on a non-
supersingular genus 2 curve with embedding degree 2 over prime fields using the
encapsulated explicit formulae and various known optimization techniques.
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Appendix: Explicit Formulae for Genus 2 Curves over Fp

In this appendix, we give efficient explicit formulae for group operations on genus
2 curves over Fp in projective coordinates in the context of pairing computations.
Table 9 and Table 10 address the cases of projective coordinates. Given two
divisor classes E1 and E2, Table 9 computes the divisor class E3 = [u3(x), v3(x)]
and the rational function l(x) such that E1 + E2 = E3 + div

(
y−l(x)
u3(x)

)
in the

projective coordinate system, where l(x) = s′
1
r x3 + l2

rZ2
x2 + l1

rZ2
x + l0

rZ2
. For

doubling a reduced divisor class E1, Table 10 calculates the divisor class E3 =
[u3(x), v3(x)] and the rational function l(x) such that 2E1 = E3 + div

(
y−l(x)
u3(x)

)
in projective coordinates, where l(x) = s1

R′ x
3 + l2

R′Z1
x2 + l1

R′Z1
x + l0

R′Z1
.
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http://www.shamus.ie/
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http://www.cacr.math.uwaterloo.ca/techreprots/1999/corr99-39.pdf
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Table 9. Mixed-Addition Formula on a Genus 2 curve over Fp (Projective Coordinates)

Input Genus 2 HEC C : y2 = x5 + f3x3 + f2x2 + f1x + f0

E1 = [U11, U10, V11, V10, 1] and E2 = [U21, U20, V21, V20, Z2]
Output E3 = [U31, U30, V31, V30, Z3] = E1 ⊕ E2

l(x) such that E1 + E2 = E3 + div
(

y−l(x)
u3(x)

)
Step Expression Cost

1 Compute resultant r = Res(u1, u2): 5M, 1S

Ũ11 = U11Z2, Ũ10 = U10Z2, z1 = Ũ11 − U21, z2 = U20 − Ũ10

z3 = U11z1, z4 = z2 + z3, r = z2z4 + z2
1U10

2 Compute almost inverse of u2 mod u1: –
inv1 = z1, inv0 = z4

3 Compute s′: 7M
w0 = V10Z2 − V20, w1 = V11Z2 − V21, w2 = inv0w0
w3 = inv1w1, s′

1 = z1w0 + z2w1, s′
0 = w2 − U10w3

4 Precomputations: 4M, 1S

R = r2, s̃′
0 = s′

0Z2, s̃′
1 = s′

1Z2, S = s′
1s̃′

1, r̃ = rs̃′
1

5 Compute l: 5M

l2 = s′
1U21 + s̃′

0, l0 = s′
0U20 + rV20

l1 = (s′
1 + s′

0)(U21 + U20) − s′
1U21 − s′

0U20 + rV21
6 Compute U3: 8M, 1S

w1 = Ũ11 + U21, U31 = s′
1(2s̃′

0 − s′
1z1) − RZ2, l′1 = l1s′

1

U30 = s̃′
0(s

′
0 − 2s′

1U11) + s
′2
1 (z3 − Ũ10 − U20) + 2l′1 + Rw1

7 Compute V3: 6M

w1 = l2s′
1 − U31, V30 = U30w1 − S(l0s′

1), V31 = U31w1 + S(U30 − l′1)
8 Adjust: 3M

Z3 = r̃S, U31 = r̃U31, U30 = r̃U30
Sum 38M, 3S

Table 10. Doubling Formula on a Genus 2 Curve over Fp (Projective Coordinates)

Input Genus 2 HEC C : y2 = x5 + f3x3 + f2x2 + f1x + f0

E1 = [U11, U10, V11, V10, Z1]
Output E3 = [U31, U30, V31, V30, Z3] = [2]E1

l(x) such that 2E1 = E3 + div
(

y−l(x)
u3(x)

)
Step Expression Cost

1 Compute resultant and precomputations: 4M, 3S

Z2 = Z2
1 , Ṽ11 = 2V11, Ṽ10 = 2V10, w0 = V 2

11, w1 = U2
11, w2 = Ṽ10Z1

w3 = 4w0, w4 = w2 − U11Ṽ11, r = U10w3 + Ṽ10w4
2 Compute almost inverse: –

inv′
1 = −Ṽ11, inv′

0 = w4

3 Compute k′: 5M

w3 = f3Z2 + w1, w4 = 2U10, w̃4 = w4Z1, k′
1 = 2w1 + w3 − w̃4

k′
0 = U11(2w̃4 − w3) + Z1(f2Z2 − w0)

4 Compute s′: 7M

w0 = k′
0inv′

0, w1 = k′
1inv′

1, s2 = w2k′
1 − Ṽ11k′

0
s′
1 = s2Z1, s′

0 = w0 − Z1U10w1
5 Precomputations: 6M, 2S

R = rZ2, R̃ = Rs′
1, R′ = Rs2, S0 = s′2

0 , S1 = s′2
1 , S = s′

0s′
1, s0 = s′

0s2, s1 = s′
1s2

6 Compute l: 6M

l2 = s1U11 + s0Z1, l0 = s0U10 + R′V10
l1 = (s1 + s0)(U11 + U10) − s1U11 − s0U10 + R′V11

7 Compute U3: 4M, 1S

U30 = S0 + R(s2Ṽ11 + 2rZ1U11), U31 = 2S − R2

8 Compute V3: 4M
w1 = l2 − U31, w2 = U30w1, w3 = U31w1
V31 = w3 + S1(U30 − l1), V30 = w2 − S1l0

9 Adjust: 3M

Z3 = S1R̃, U31 = U31R̃, U30 = U30R̃
Sum 39M, 6S
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Abstract. A significant amount of research has focused on methods to
improve the efficiency of cryptographic pairings; in part this work is mo-
tivated by the wide range of applications for such primitives. Although
numerous hardware accelerators for pairing evaluation have used paral-
lelism within extension field arithmetic to improve efficiency, thus far less
emphasis has been placed on software exploitation of similar. In this pa-
per we focus on parallelism within one pairing evaluation (intra-pairing),
and parallelism between different pairing evaluations (inter-pairing). We
identify several methods for exploiting such parallelism (extending pre-
vious results in the context of ECC) and show that it is possible to
accelerate pairing evaluation by a significant factor in comparison to a
naive approach.

1 Introduction

Generally speaking, one uses the term cryptographic pairing to describe a non-
degenerate bilinear map of the form

e : G1 ×G2 −→ GT .

In this paper we focus on the Ate pairing which takes the concrete form

e : E(Fp)× E(Fpk/6) −→ F×
pk

where E is the quadratic twist of an elliptic curve E defined over Fpk/6 . The type
and volume of applications enabled by pairings of this form has dictated that
methods for their evaluation remain an ongoing research challenge. This is mag-
nified by the fact that said applications have permeated both high-performance
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and embedded contexts: computational efficiency and storage footprint are both
important. Improvements to high-level algorithms that relate to the pairing it-
self are clearly the most significant in terms of efficiency; for an overview of
the evolution of this topic, see the excellent description by Scott [39]. In short,
improvement of seminal but unpublished work by Miller [34] resulted in the
first practical algorithms for evaluation of the Tate pairing [5,19]. These results
were further optimised by Duursma and Lee [15] who developed an inexpensive,
closed form for specific parameterisations later improved by Kwon [30]. Their
techniques were generalised and extended to produce the Eta [4] and Ate [23]
pairings, currently considered the fastest means of evaluation.

However, as well as the pairing itself, one depends on lower-level algorithms
for arithmetic in the fields Fp, Fpk/6 and Fpk . Previous results have reported on
analysis and efficient realisation of said algorithms; see for example [28,20,13].
One can readily identify two types of parallelism within these algorithms and
within pairing based cryptosystems more generally: that within a single pairing
evaluation (intra-pairing) or between several pairing evaluations (inter-pairing).
Put more simply, in the first case the aim is to compute R = e(P, Q) for some
P and Q from the appropriate groups; our focus is on parallelism within algo-
rithms for the pairing and constituent arithmetic. Efficient implementation of
pairings in hardware have used this feature to great effect; see [27] for an ex-
ample design where extension field arithmetic is realised using several parallel
computational units to reduce latency. In the second case, the aim is to compute
several pairings Ri = e(Pi, Qi); our focus in on the fact that each Ri can be
computed independently. Although Granger and Smart [21] describe a method
to improve performance where the pairings form terms in a larger product, i.e.
R =

∏
e(Pi, Qi), actually capitalising on the parallelism between disjoint pair-

ings is less well examined. This is despite the fact that numerous instances exist,
verification of BLS signatures [9] to name one, where this could be useful.

Identifying parallelism in algorithms for the pairing and constituent arithmetic
is only the first step: in order to exploit said parallelism, one must have effective
methods to map an algorithm onto the capabilities of a given host platform.
Often this mapping is difficult enough that any perceived advantage offered by
parallelism is eliminated by implementation overhead, in other cases the correct
choice of technique is limited by issues such as parameterisation and use of the
pairing in real applications. Forthcoming work by Hankerson et al. [24] gives an
excellent comparison between different algorithms and parameterisations, but
does not investigate parallelism beyond that in Fp. Our goal in this paper is to
fill the resulting gap, focusing on parallelism realised using software techniques
as a means of optimising concrete implementations of the Ate pairing.

We organise the paper as follows. In Section 2 we given an overview of the
Ate pairing and standard methods for parameterisation and evaluation. Then,
in Section 3, we make a detailed study of parallelism within algorithms for the
pairing and constituent arithmetic. Section 4 describes details of our implemen-
tation including an efficient algorithm for parallel multiplication in Fp. Using the
identified techniques we present and analyse experimental results derived from
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Algorithm 1. An algorithm to compute the Ate pairing
Input : Q ∈ E(Fp), P ∈ E(Fp2), s = t− 1 ∈ Z.
Output: e(Q,P ).

f ← 1, T ← P1

for i = |s| − 2 downto 0 do2

f ← f2 · lT,T (Q), T ← 2 · T3

if si = 1 then4

f ← f · lT,P (Q), T ← T + P5

return f (pk−1)/n6

their implementation on Intel Core2 and Pentium 4 processors; this is captured
in Section 5. Finally, we summarise our findings and conclude in Section 6.

2 The Ate Pairing

Successful parameterisation of the Ate pairing requires an elliptic curve E(Fp)
whose order n is divisible by some large prime r. Let k, the embedding degree of
the curve, be the smallest positive integer such that r | pk−1. A Barreto-Naehrig
curve or BN-curve [6] of the form

E(Fp) : y2 = x3 + b

where b �= 0, satisfies these requirements. In particular, such a curve has prime
order, i.e. r = n, and embedding degree k = 12. Additionally, the trace, curve
order and characteristic of Fp can be parameterised by x as follows

t(x) = 6x2 + 1
n(x) = 36x4 − 36x3 + 18x2 − 6x + 1
p(x) = 36x4 − 36x3 + 24x2 − 6x + 1.

We closely follow the excellent description of Devegili et al. [14] who show that by
selecting x = −6917529027641089837 for example, one specifies a 256-bit value
p and associated curve where n is of low Hamming weight. Selecting such an x
makes the notation t(x), for example, extraneous; using this specific value of x
we simply write t instead. Since the associated p satisfies various congruences,
it enables an efficient construction of extension field arithmetic using the tower
Fp2 = Fp[X ]/(X2 − β), Fp6 = Fp2 [Y ]/(Y 3 − ξ), Fp12 = Fp6 [Z]/(Z2 − ξ′) where
β = −2 ∈ Fp, ξ = −1−

√
β ∈ Fp2 and ξ′ = 3

√
ξ ∈ Fp6 .

Evaluation of the pairing is achieved using Algorithm 1 where lA,B(C) denotes
the line function between points A and B evaluated at C. The selection of a
sparse x allows for efficient realisation of the final exponentiation by (pk − 1)/n
as described fully by Devegili et al. [14].

3 Exploitation of Parallelism

SIMD and SWAR. Many commodity processors now support SWAR (SIMD
Within a Register), a form of vector processing; exemplar designs include several
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generations of SSE by Intel, VIS by Sun, 3DNow! by AMD, and AltiVec by
Apple, IBM and Motorola. To utilise this feature, one packs say u sub-words,
each v bits in size, into a large SWAR vector. Using such vectors one can permit
SIMD style vector operations. Let xi denote the i-th sub-word packed into vector
x = (x0, x1, . . . , xu−1)v. Using such a representation, one can compute all u
component-wise additions ri = xi + yi with one operation. The choice of u and
v, which dictate the number and size of sub-words that can be packed into a
fixed vector length, depends on the application. Often an instruction set will
support a (somewhat) orthogonal set of operations and choices of u and v. This
approach has brought significant performance improvements in easily vectorised
kernels such as those found in media processing; by making parallelism explicit
the processor can maintain a high issue rate and ensure a good trade-off between
provision of computational resources and their utilisation.

Use of SWAR style instruction sets have been successfully used to acceler-
ate kernels in symmetric cryptography; for example [10,11,32,33,37]. Although
exploiting parallelism within point multiplication in vanilla Elliptic Curve Cryp-
tography (ECC) is possible [2,26], vectorisation of the public-key cryptography
is often more problematic. Consider two n-bit multi-precision integers x and y
represented by l = �n/w� machine words where xi denotes the i-th such w-bit
word. Values represented as such are commonly manipulated within cryptosys-
tems such as RSA and ECC. For the sake of clarity, imagine we set n = 128 and
u = l = 4 such that v = w = 32. This implies that we can store x and y in one
SWAR register each, i.e.

(x0, x1, x2, x3)32 and (y0, y1, y2, y3)32

The problem is that to perform multi-precision addition, for example, one must
deal with carry from one sub-word into another sub-word within the same vec-
tor. That is, say we want to compute r = x + y. The addition of x and y is
not component-wise: for example, we need to take the carry produced by the
primitive addition x0 + y0 and factor it into x1 + y1 thereby destroying the
component-wise nature of computation and hence the SIMD style parallelism.

The flexibility of ECC parameterisations helps somewhat in resolving this
problem. One might view specific field representations such as Residue Number
Systems (RNS) and Optimal Extension Fields (OEF) [3] as more suitable for
vectorisation; parameterisation and parallel implementation over F2n has also
been effective [7] since carries are essentially eliminated by the nature of arith-
metic. Motivated by application in RSA as well as ECC, there is a similar effort
to accelerate arithmetic in Fp (or more exactly modulo some integer p). Work by
Acar [1] and reports by Intel [25] and Apple [12] all investigate the use of SIMD
parallelism for implementing multi-precision integer arithmetic. Acar states that
his implementation of RSA on a processor with an MMX instruction set runs
significantly slower due to a lack of unsigned 16-bit and 32-bit multiplication.
Intel are more positive in their results that focus on the SSE2 instruction set.
Their method applies a form of recoding into a representation with a smaller
digit size; this allows fast combination of partial products without requiring
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carries at all. Hankerson et al. [22, Chapter 5.1.3] also discuss the same tech-
nique within the context of ECC.

This previous work offers a natural way to exploit intra-pairing parallelism:
one simply accelerates arithmetic in Fp which, in turn, accelerates all higher
layers of arithmetic and therefore the pairing evaluation itself.

Bit-slicing and Digit-slicing. Considering a scalar processor with a w-bit
word size, let xi denote the i-th bit of a machine word x where i is termed the
index of the bit. Such a processor operates natively on word sized operands. For
example, with a single operation one might perform addition of w-bit operands x
and y to produce r = x+ y, or component-wise XOR to produce ri = xi⊕ yi for
all 0 ≤ i < w. This ability is restricted however when an algorithm is required
to perform some operation involving different bits from the same word. For
example one might be required to combine xi and xj , where i �= j, using an
XOR operation in order to compute the parity of x. In this situation one is
required to shift (and potentially mask) the bits so they are aligned at the same
index ready for combination via a native, component-wise XOR. The technique
of bit-slicing, proposed by Biham for efficient implementation of DES [8], offers
a way to reduce the associated overhead. Instead of representing the w-bit value
x as one machine word, we represent x using w machine words where word i
contains xi aligned at the same fixed index j. As such, there is no need to align
bits ready for use in a component-wise XOR operation. Additionally, since native
word oriented logical operations in the processor operate on all w bits in parallel,
one can pack w different values (say x[k] for 0 ≤ k < w) into the w words and
proceed using an analogy of SIMD style parallelism. Conversion to and from a
bit-sliced representation can represent an overhead but this can be amortised if
the cost of computation using the bit-sliced values is significant enough: Biham
used this technique to extract a five-fold performance improvement from DES
using a 64-bit Alpha processor.

Although it overloads the term somewhat, one might describe previous SWAR
based implementations of public-key cryptography as digit-serial in the sense
that they try to extract parallelism from a series of digits representing one value.
An alternative approach, which one might describe as digit-sliced SWAR, rep-
resents the digit based analogy of the bit based slicing approach outlined above.
This seems to have been first investigated by Montgomery in the context of ECM
based factoring [36] and then rediscovered and applied in the context of RSA by
Page and Smart [38]. Following the example above, the basic idea is that instead
of representing an l-word multi-precision integer x by packing the digits xi into
one SWAR vector, we slice the digits into l separate SWAR vectors where vector
i contains xi aligned at the same fixed index j. For the case where n = 128,
u = l = 4 and v = w = 32 we therefore represent x and y using four SWAR
registers

(x0, ·, ·, ·)32 (y0, ·, ·, ·)32
(x1, ·, ·, ·)32 and (y1, ·, ·, ·)32
(x2, ·, ·, ·)32 (y2, ·, ·, ·)32
(x3, ·, ·, ·)32 (y3, ·, ·, ·)32
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Algorithm 2. An algorithm to compute the Ate pairing
Input : Q ∈ E(Fp), P ∈ E(Fp2), s = t− 1 ∈ Z.
Output: e(Q,P ).

τf [0]← 11

τT [0]← P2

for i = 1 upto |s| − 1 do3

τf [i]← τf [i− 1]2 · lτT [i−1],τT [i−1](Q)4

τT [i]← 2 · τT [i− 1]5

f0 ← 1, T0 ← O6

f1 ← 1, T1 ← O7

par8

for i = 0 upto |s| − 1 do9

if si = 1 and i = 0 (mod 2) then10

f0 ← f0 · τf [i] · lT0,τT [i](Q), T0 ← T0 + τT [i]11

for i = 0 upto |s| − 1 do12

if si = 1 and i = 1 (mod 2) then13

f1 ← f1 · τf [i] · lT1,τT [i](Q), T1 ← T1 + τT [i]14

f ← f0 · f1 · lT0,T1(Q)15

return f (pk−1)/n16

where · denotes some arbitrary padding. The premise is that this makes carry
easier to deal with: we are now faced with carries between sub-words of different
vectors which are aligned at the same index rather than carries between sub-
words in the same vector. As such and in a naive sense, one expects the amount of
sub-word reorganisation, which represents a significant computational overhead,
to be lower. Again there is an overhead in conversion to and from the digit-
sliced representation. However, in common with the bit-slicing approach, we can
operate on u packed values at the same time by replacing the padding (i.e. ·)
with useful data. This essentially allows us to compute u separate multi-precision
additions (say x[k] + y[k] for 0 ≤ k < u), for example, at the same time. We call
each such parallel digit-sliced operation a channel and term an implementation
c-way digit-sliced if there are c channels utilised.

In terms of the pairing and constituent arithmetic, the technique of digit-
slicing is potentially interesting. At any level, all the algorithms for arithmetic
are (or are close to) control-flow invariant; for example for any given pairing
evaluation using some fixed parameterisation, one performs the same operation
at a given step so only the data values differ. As such, one can deploy digit-slicing
to exploit intra-pairing parallelism (for example performing c multiplications
in Fp at once to accelerate arithmetic in Fp2), or inter-pairing parallelism (for
example evaluating c pairings at once).

Multi-core Processors. A modern trend in the design of microprocessors is
that of multi-core, i.e. having many physical processor cores on a single die. This
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philosophy is in part guided by the need to make effective use of advances in
fabrication which allow dies to house a huge number of transistors, and the so-
called memory wall which posits that memory access dominates the performance
of conventional single-core processors. In software, one can take advantage of
multi-core processors using, for example, the OpenMP standard; with suitable
compiler and operating system support this enables multiple code sequences to
be executed in parallel, one on each core.

The use of multi-core processors is an emerging research topic in the context of
cryptographic implementation, for example Fan et al. investigate modular mul-
tiplication [16] and ECC [17] on this type of platform. Intra-pairing parallelism
is clearly possible at the field arithmetic level as evidenced by related hardware
based approaches [27]. In software however, the overhead of thread management
is a limiting factor: if the threads are too fine-grained then the cost of their
management will dominate useful computation and eliminate the advantage of
parallelism. An alternative, therefore, is to consider more coarse-grained paral-
lelism. In this setting, inter-pairing parallelism is easy to exploit: we simply have
each core compute a separate pairing. Exploiting coarse-grained intra-pairing
parallelism requires more thought. For example, one might redesign Algorithm 1
to allow parallelism between point arithmetic or line function evaluations.

Consider Algorithm 2 which is derived from a specialisation of so-called fixed-
base windowing [22, Algorithm 3.41] with window size 1. Use of the par key-
word shows that after a precomputation phase comprised of point (resp. line)
doublings, two threads can compute point (resp. line) additions in parallel (one
thread deals with odd-indexed bits in s, the other even-indexed bits). The clear
advantage of this approach is parallelism; the clear disadvantage is the signifi-
cant memory overhead for tables τf and τT , and the fact that the point (resp.
line) additions are now projective rather than mixed.

4 Implementation Details

In the following we elaborate on the concrete implementation of the field arithmetic
using scalar (i.e. non-SIMD) as well as SIMD (i.e. MMX, SSE) instruction sets.
Both implementations have in common that the modular multiplication (resp.
squaring) operation is realised via Montgomery reduction [35]. The inversion is
performed using the Extended Euclidean Algorithm (EEA).

4.1 Field Arithmetic with the IA-32/IA-64 Instruction Set

The IA-32 architecture provides an add-with-carry instruction (adc) and a 32-
bit unsigned multiply instruction yielding a 64-bit result (mul). Thanks to the
availability of these two instructions, the arithmetic operations in Fp can be im-
plemented in a fairly straightforward way: a field element is simply represented
in form of an array of single-precision (i.e. 32-bit) words and the software rou-
tines for addition and multiplication loop through these arrays and produce the
result using the afore-mentioned instructions. Our implementation of the field
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Algorithm 3. Montgomery multiplication (CIOS method)
Input : An s-word modulus M = (ms−1, . . . , m1, m0), two operands

A = (as−1, . . . , a1, a0) and B = (bs−1, . . . , b1, b0) with A, B < M , and
the constant m′

0 = −m−1
0 mod 2w .

Output: The Montgomery product Z = A ·B · 2−n mod M .

Z ← 01

for i = 0 upto s− 1 do2

u← 03

for j = 0 upto s− 1 do4

(u, v)← aj × bi + zj + u5

zj ← v6

(u, v)← zs + u, zs ← v, zs+1 ← u7

q ← z0 ×m′
0 mod 2w8

(u, v)← z0 + m0 × q9

for j = 1 upto s− 1 do10

(u, v)← mj × q + zj + u11

zj−1 ← v12

(u, v)← zs + u, zs−1 ← v, zs ← zs+1 + u13

if Z ≥M then14

Z ← Z −M15

return Z = (zs−1, . . . , z1, z0)16

arithmetic is written in ANSI C and contains some hand-optimised assembly
language sections for the performance-critical inner-loop operations. As the size
of the fields used in pairing-based cryptography is relatively small, it is possible
to unroll the inner loops and gain some extra performance at the expense of a
slight increase in code footprint.

Algorithm 3 shows the Coarsely Integrated Operand Scanning (CIOS) method
for calculating the Montgomery product Z = A ·B · 2−n mod M [29]. The n-bit
operands A, B, M are represented by arrays of s single-precision w-bit words.
The algorithm has a nested loop structure with two inner loops; the first con-
tributes to the calculation of the product A · B and the second implements the
modular reduction operation. Both inner loops perform the same operation: two
single-precision words are multiplied together, and then two other words are
added to the product. Therefore, each iteration of the inner loop executes a mul,
two add, and two adc instructions, respectively.

4.2 Field Arithmetic with the MMX/SSE Instruction Set

In order to accelerate the execution of multimedia kernels, Intel introduced the
MMX instruction set in 1997 as a SIMD extension to the IA-32 architecture.
MMX provides eight 64-bit registers and adds 57 new instructions. Most of these
instructions operate on packed data types, which means that a 64-bit MMX
operand can also be treated as either two 32-bit, four 16-bit, or eight 8-bit quan-
tities. The Streaming SIMD Extensions (SSE) further enhance the capabilities
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64 bits 64 bits

29 bits 29 bits

Fig. 1. The packed 29-bit digits within a single 128-bit SSE register, as detailed by [25]

Table 1. Timings for Montgomery multiplication and squaring (in cycles as reported
by ) on a Pentium 4 processor for 256-bit, 384-bit and 512-bit operands

Implementation 256-bit 384-bit 512-bit
SIMD Montgomery Mul. 1182 2104 2978
GMP ( ) 1171 2429 3700
SIMD Montgomery Sqr. 1063 1875 2523
GMP ( ) 1051 2257 3151

of the IA-32 architecture through the integration of eight 128-bit registers and
appropriate instructions. For example, the SSE2 instruction pmuludq allows one
to execute two 32 × 32-bit multiplications independently and in parallel, each
yielding a 64-bit result. However, the main drawback of the MMX and SSE in-
struction sets in the context of multi-precision integer arithmetic is the lack of
an add-with-carry instruction.

The fact that neither MMX nor SSE provide an add-with-carry instruction
not only makes multiple-precision addition relatively costly, but also defines how
multiple-precision multiplication must be implemented in order to exploit SIMD-
level parallelism. In [25], Intel recommends that multi-precision integers should
be represented as arrays of 29-bit words (instead of the more intuitive repre-
sentation with 32-bit words) and to pack two such 29-bit words into a 128-bit
quantity which can be loaded into SSE registers using the movdqa instruction.
Two 29 × 29-bit multiplications can be executed in parallel and several 58-bit
products can be accumulated without overflow. More precisely, the 29-bit repre-
sentation eliminates the need to propagate carry bits from less to more significant
words during a multiple-precision multiplication; a single carry propagation must
be performed at the very end to obtain the correct result. We implemented the
CIOS method for Montgomery multiplication following these guidelines which
also allowed us to fuse the two inner loops. This loop fusion does not only re-
duces the loop overhead, but also eliminates a number of load/store instructions
as, for example, the quantity zj in Algorithm 3 needs to be loaded only once.
However, a disadvantage of the multiplication technique described in [25] is that
two arrays are necessary for storing the intermediate results during a Mont-
gomery multiplication. This “redundant” representation makes the outer loop of
Algorithm 3 relatively costly, in particular the calculation of the quotient q.

Table 1 compares the execution times (in clock cycles) of our Montgomery arith-
metic implemented according to Algorithm 3 using the 29-bit representation
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detailed in [25], and the corresponding functions1 from the GMP library version
4.2.2. Our implementation is slightly slower for 256-bit operands, but outperforms
GMP for 384-bit and 512-bit operands. As mentioned previously, our implemen-
tation of Algorithm 3 is characterised by a relatively costly outer loop, while the
inner loop is extremely efficient. However, for short operands, the operations in the
outer loop dominate the execution time, which renders the 29-bit representation
less attractive.

5 Implementation Results

In order to evaluate the options for exploiting parallelism introduced in previous
sections, we used two experimental platforms; the rationale for their selection
was that they represent previous (NetBurst) and current (Core2) generation
micro-architectures in commodity microprocessors:

Platform A housed a 2.80GHz Intel Pentium 4 processor running a 32-bit in-
stallation of Linux including a 2.6.9 series kernel and 32-bit Intel C compiler
version 10.1. The SIMD instruction set on this platform was limited to SSE2
series (and earlier) instructions only.

Platform B housed a 2.40GHz Intel Core2 Duo processor running a 64-bit in-
stallation of Linux including a 2.6.18 series kernel and 64-bit Intel C compiler
version 10.1. The SIMD instruction set on this platform was limited to SSE3
series (and earlier) instructions only.

Since our goal is to highlight issues with existing processors, we do not investi-
gate the impact of altering the number of execution pipelines within a particular
micro-architecture (which could be interesting). Note that the second experimen-
tal platform includes a multi-core processor: it has two processor cores. Using
the platforms we constructed eight separate implementations which represent a
cross-section of the presented approaches to intra-pairing and inter-pairing par-
allelism (recalling that we have a fixed parameterisation where p is a 256-bit
prime):

Implementation A uses the scalar (i.e. non-SIMD) instruction set and a 32-bit
digit size; evaluates one pairing at a time using Algorithm 1.

Implementation B uses the scalar (i.e. non-SIMD) instruction set and a 64-
bit digit size; evaluates one pairing at a time using Algorithm 1.

Implementation C uses the SIMD (i.e. SSE) instruction set and a 29-bit digit
size to perform digit-serial Fp arithmetic; evaluates one pairing at a time
using Algorithm 1.

1 Note that GMP features a function for Montgomery reduction ( ), but not
for Montgomery multiplication. Therefore, a Montgomery multiplication must be
composed of and . We evaluated the execution times of ,

, and with help of the program.



On Software Parallel Implementation of Cryptographic Pairings 45

Table 2. Timings for major operations (in cycles as reported by ) on experimental
platform A (Pentium 4). Fp is a 256-bit prime field.

Fp Fp12 e(P, Q)
Inv Add Mul Inv Add Mul

A 278754 188 5826 892508 1870 347249 177634471
B − − − − − − −
C 271063 226 1182 624667 2144 174774 58266382
D 278012 186 5813 633801 1803 229323 127986142
E − − − − − − −
F − − − − − − −
G 299268 566 3444 818690 6134 312738 147441219
H − − − − − − −

Table 3. Timings for major operations (in cycles as reported by ) on experimental
platform B (Core2 Duo). Fp is a 256-bit prime field.

Fp Fp12 e(P, Q)
Inv Add Mul Inv Add Mul

A 156179 132 1117 287160 1061 76002 44814516
B 155567 107 395 208603 779 31484 23319673
C 155514 114 477 290536 842 64490 28452901
D 154295 132 1106 278503 1062 73336 35215963
E 154217 107 399 207236 787 24494 14429439
F 155567 108 394 208612 781 31491 25321173
G 157287 261 1444 390626 2705 137356 64879334
H 155567 108 390 208607 773 31485 25925534

Implementation D uses the SIMD (i.e. SSE) instruction set and a 32-bit digit
size to perform 2-way digit-sliced Fp2 arithmetic (i.e. two Fp operations in
parallel); evaluates one pairing at a time using Algorithm 1.

Implementation E takes Implementation B as a starting point, uses OpenMP
to perform parallel Fp6 arithmetic within Fp12 and parallel Fp2 arithmetic
within Algorithm 1 in order to evaluate one pairing at a time.

Implementation F takes Implementation B as a starting point, but uses
OpenMP to implement Algorithm 2 and thereby evaluate one pairing at
a time.

Implementation G uses the SIMD (i.e. SSE) instruction set and a 32-bit digit
size to perform 2-way digit-sliced pairing evaluation (i.e. two e(P, Q) opera-
tions in parallel) and therefore evaluates two pairings at a time.

Implementation H takes Implementation B as a starting point, but uses
OpenMP to execute two instances of Algorithm 1 in parallel and therefore
evaluate two pairings at a time.
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5.1 Analysis of Results

Timings obtained by executing these implementation on the two experimental
platforms are detailed in Tables 2 and 3. In each case the number of cycles (as
reported by rdtsc) required for the entire operation is quoted. That is, if an
operation generates n results in parallel then the tables quote the total time: the
per-result time requires division by n.

Although our results are not exhaustive, for the given parameterisation they
prompt some interesting conclusions. On the Pentium 4 based platform, if one is
required to evaluate a single pairing then the best option is to parallelise arith-
metic in Fp (Implementation C); if the requirement is for two pairing evaluations,
the best option is actually two invocations of Implementation C. Hankerson et
al. [24] obtain significantly better results for their Implementation A on the
same platform (but different processor model), but arrive at the same overall
conclusion.

On the Core2 based platform, if one is required to evaluate a single pairing
then it makes more sense to use 64-bit scalar arithmetic in Fp and multi-core
parallel arithmetic within Fp12 and the pairing itself (Implementation E) than
consider SIMD parallelism; if the requirement is for two pairing evaluations,
the slightly trivial conclusion is that one can perform one pairing on each core
(Implementation H), doubling the performance versus two sequential invocations
of any other method that does not already use multi-core parallelism internally.

5.2 Analysis of Platforms

Design of SIMD Instruction Sets. Interestingly, in early 2008 Intel an-
nounced an update to the SSE lineage of SIMD instruction sets, and a totally new
instruction set specialised toward implementation of AES. Specifically, the Ad-
vanced Vector Extensions (AVX) includes the pclmulqdq instruction for carry-
less multiplication that can be used to accelerate arithmetic in binary finite fields.
In addition, the Advanced Encryption Standard Instructions Set (AES-NI) in-
cludes instructions that perform whole AES rounds with the view to improving
performance and eliminating cache based side-channel attack.

In contrast with this new emphasis on supporting cryptography, our results
show that on a current Core2 platform, a 64-bit implementation (Implementation
B) is faster than that based on SIMD parallel techniques. In the short term,
microprocessors with a 64-bit data-path width seem sure to be ubiquitous before
longer operands (e.g. 512-bit). One might conclude that using current technology,
non-parallel implementation is best; given the specific nature of the updates
described above, it seems this will remain the fact in next-generation processors.
This seems an unattractive conclusion since it implies that current support for
SIMD parallelism is less effective that it could be for this particular domain. We
posit that this problem demands research into more public-key cryptography
centric SIMD instruction sets: in the longer term, the chance of the processor
data-path width doubling (e.g. from 64-bit to 128-bit) is less likely than the
operand length doubling and so effective use of parallelism is crucial to scalability.



On Software Parallel Implementation of Cryptographic Pairings 47

In a sense, it is not a surprise that Implementation B outperforms C on the
Core2 platform. For example, the SSE3 instruction set allows 2-way parallel
32 × 32-bit multiplication; the cost of such multiplication plus the overhead of
data reorganisation will intuitively be greater than native 64 × 64-bit multipli-
cation. Furthermore, the SSE3 instruction set lacks a method for performing
an add-with-carry operation that exists in the scalar instruction set. As such,
enhancements over SSE3 such as the pshufb instruction help to reduce said over-
head but the instruction set still lacks features which could improve performance
of our results. For example, the PLX [31] processor eases the issue of shuffles
between sub-words by including odd and even multiplication, i.e.

r2i+1...2i+0 = x2i+0 · y2i+0
r2i+1...2i+0 = x2i+1 · y2i+1

for i ∈ {0, 1}. Another improvement would be provision of hardware support
for add-with-carry via vector-carry registers; Fournier [18] investigates this ap-
proach within the context of a dedicated vector processor. The upcoming SSE5
instruction set offers an alternative approach by departing from purely 3-address
instructions by adding support for a range of 4-address alternatives. In this con-
text, it seems possible to extend the instruction set further and allow explicit
specification of a vector-carry register rather than via an implicit, special purpose
register as proposed by Fournier.

Effective Utilisation of Multi-core. Another interesting feature is that using
the multi-core capabilities of the Core2 platform to evaluate one pairing, we are
presented with two problems. Firstly, the overhead from use of OpenMP lim-
its where we can exploit the inherent parallelism within field arithmetic; if the
processor had a more light-weight means of managing fine-grained threads, Im-
plementation E would potentially be even more lucrative. The results from using
coarse-grained threads in Algorithm 2 are underwhelming. The low Hamming
weight of s coupled with the significant overhead introduced by using projec-
tive rather than mixed point (resp. line) addition means it is slower than the
non-parallel alternative. The first problem motivates research into fine-grained
multi-core and multi-threaded processors; an exemplar design is the XCore.
The second problem motivates research into forms of easily parallelised pairing
algorithms.

6 Conclusions

The efficient evaluation of cryptographic pairings underpins a wide range of mod-
ern cryptographic applications. There are a wide range of parameterisation and
implementation options to consider, in this paper we focused on the exploitation
of parallelism in software. The capabilities of modern processors in this respect
are diverse; the correct option and realisation in terms of implementation is
therefore far from trivial. In particular we found that, unlike implementation
in hardware, on a Pentium 4 based platform one should parallelise arithmetic
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in Fp rather than a higher level; on a Core2 based platform one should utilise
native support for 64-bit arithmetic and then harness the multi-core features to
parallelise arithmetic in Fp12 and the pairing itself. Although our results improve
significantly on a naive approach, we identified areas for further improvement
through study of new algorithm types and changes to processor architecture.
The results for arithmetic in Fp have a direct implication for vanilla ECC in
which it seems a similar argument wrt. implementation approach should apply.
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Abstract. In this paper we consider the cryptanalysis of the block ci-
pher SMS4. The cipher has received much recent attention due its sim-
plicity and prominence (it is used in wireless networks in China) and
a range of differential attacks break up to 21 of the 32 rounds used in
SMS4. Here we consider the application of linear cryptanalysis to the
cipher and we demonstrate a simple attack on 22 rounds of SMS4. We
also consider some advanced linear cryptanalytic techniques which, un-
der the best conditions for the cryptanalyst, might (just) extend to 23
rounds.

1 Introduction

In this paper we consider the security of the block cipher SMS4 which is reputedly
mandated for wireless networks in China [10]. A Chinese description of the cipher
was made public in 2006 by the Chinese government, and the first analysis in the
open community was published in 2007 [10]. The cipher takes a 128-bit block
and key, and it consists of 32 simple rounds. Its intriguing design encourages
analysis; something which is due in no small part to the fact that minor variants
of the cipher are exceptionally weak.

The first open analysis of a reduced-round version of SMS4 examined the
algebraic nature of the algorithm—thereby uncovering the construction of the
S-box—and yielded a saturation attack over 13 rounds using 216 chosen plaintext
pairs and 2114 operations [10]. This was followed by a differential attack on 14
rounds and then by an impossible differential attack on 16 rounds with the
claimed requirements of 2105 chosen plaintext pairs and 2107 operations [11].
These are rather complex attacks, and a more natural differential attack has
been revealed that suggests that 21 rounds could be compromised using 2118

chosen plaintext pairs and 2126.6 operations [22]. This is the previous best known
attack in the literature.

In this paper we present the first reported application of linear cryptanalysis
to SMS4. Apart from DES [15], there are few ciphers for which linear cryptanal-
ysis yields a more efficient attack than differential cryptanalysis. However, for
SMS4 we propose an attack on 22 rounds of the cipher with less than 2119 known
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plaintexts and a work effort roughly equivalent to 2117 22-round SMS encryp-
tions. The attack can be clearly described and the necessary components have
been experimentally verified. We also consider attacks on 23 rounds of SMS4
and highlight some future research directions.

2 Description of SMS4

We briefly describe the block cipher SMS4, but first we establish our notation.

Notation. For the most part we will be working with 32-bit words, though the
context will be clear when we restrict ourselves to bytes. The left rotation (resp.
right rotation) of a word x by b bit positions will be denoted x<<<b (resp. x>>>b).
The remaining notation is standard in the cryptographic literature.

Encryption and Decryption. SMS4 is a 32-round block cipher with a 128-bit
key and block. It is an unbalanced Feistel cipher, that repeatedly uses an 8-bit S-
box S. This is described in the appendices and it is, by way of construction [10],
closely related to the AES S-box [16]. We define the L function and the γ function
as follows

L(x) = x⊕ (x<<<2)⊕ (x<<<10)⊕ (x<<<18)⊕ (x<<<24)
γ(x) = (S[x31...24] || S[x23...15] || S[x15...8] || S[x7...0]).

The action of the round function f on input Xi−1 to the ith round of SMS4 is
given by f(Xi−1) = L(γ(Xi−1⊕ki). Two rounds of SMS4 are shown in Figure 1.

The SMS4 S-box

-0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -a -b -c -d -e -f
0- d6 90 e9 fe cc e1 3d b7 16 b6 14 c2 28 fb 2c 05
1- 2b 67 9a 76 2a be 04 c3 aa 44 13 26 49 86 06 99
2- 9c 42 50 f4 91 ef 98 7a 33 54 0b 43 ed cf ac 62
3- e4 b3 1c a9 c9 08 e8 95 80 df 94 fa 75 8f 3f a6
4- 47 07 a7 fc f3 73 17 ba 83 59 3c 19 e6 85 4f a8
5- 68 6b 81 b2 71 64 da 8b f8 eb 0f 4b 70 56 9d 35
6- 1e 24 0e 5e 63 58 d1 a2 25 22 7c 3b 01 21 78 87
7- d4 00 46 57 9f d3 27 52 4c 36 02 e7 a0 c4 c8 9e
8- ea bf 8a d2 40 c7 38 b5 a3 f7 f2 ce f9 61 15 a1
9- e0 ae 5d a4 9b 34 1a 55 ad 93 32 30 f5 8c b1 e3
a- 1d f6 e2 2e 82 66 ca 60 c0 29 23 ab 0d 53 4e 6f
b- d5 db 37 45 de fd 8e 2f 03 ff 6a 72 6d 6c 5b 51
c- 8d 1b af 92 bb dd bc 7f 11 d9 5c 41 1f 10 5a d8
d- 0a c1 31 88 a5 cd 7b bd 2d 74 d0 12 b8 e5 b4 b0
e- 89 69 97 4a 0c 96 77 7e 65 b9 f1 09 c5 6e c6 84
f- 18 f0 7d ec 3a dc 4d 20 79 ee 5f 3e d7 cb 39 48
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The Key Schedule. The key schedule is similar to the encryption function.
Each subkey ki is derived as one word from the output of a single round of
SMS-like encryption where the “key” for each round i is a constant g(i) (to be
defined below). The plaintext for the start of the key generation is the 128-bit
user-supplied key K[127...0]. The round function for the SMS-like encryption is
given by

L′(x) = x⊕ (x<<<13)⊕ (x<<<23)
γ(x) = (S[x31...24] || S[x23...15] || S[x15...8] || S[x7...0])

so only the L-function is changed in comparison with encryption. At the start,
the user-supplied key is xor-ed with a constant

T = 0xa3b1bac6 0x56aa3350 0x677d9197 0xb27022dc,

and the initialization of the generation of the subkeys1 is as follows:

k−3 = K[127...96] ⊕ T[127...96], k−2 = K[95...64] ⊕ T[95...64],

k−1 = K[63...32] ⊕ T[63...32], k0 = K[31...0] ⊕ T[31...0].

The key ki for the ith round, for 1 ≤ i ≤ 32 is computed as

ki = ki−4 ⊕ L′(γ(ki−3 ⊕ ki−2 ⊕ ki−1 ⊕ g(i)))

where each constant g(i) is defined by

g(i) = ((28× (i− 1)) || (28× (i− 1)+ 7) || (28× (i− 1)+14) || (28× (i− 1)+ 21)).

2.1 red-SMS4: A Small Version of SMS4

We confirm some of the work in this paper with experiments, and for these we
will need to define a reduced-version of SMS4. This will be a block cipher with
a 64-bit key and block size which uses a 4-bit S-box Sr. For experiments we
chose the S-box used in present [2]. We can define a reduced Lr function and
a reduced γr function as follows:

Lr(x) = x⊕ (x<<<8)⊕ (x<<<10)
γr(x) = (Sr[x15...12] || Sr[x11...8] || Sr[x7...4] || Sr[x3...0]).

Lr was built using the rotations that appear in L modulo 16. In this way, the
round function fr used in the ith round of reduced-SMS4 is given by fr(Xi−1) =
Lr(γr(Xi−1 ⊕ ki). A reduced version of the key schedule requires us to change
the linear function L′ to L′

r just as we changed L to Lr in the encryption routine,
and to revise the per-round constants to gr(i) = ((28×(i−1))||(28×(i−1)+7)).
1 This is slightly different to other descriptions so as to accommodate the natural

numbering of rounds starting with 1.
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3 Linear Cryptanalysis

While linear cryptanalytic methods appeared in [21], the linear cryptanalytic
attack and its application to DES was developed by Matsui [12,13]. The basic
idea is to find a linear approximation to the action of the block cipher. By this
we mean a linear equation that includes a bits of the plaintext Pr1 , . . ., Pra ,
together with b bits of the ciphertext Cs1 , . . ., Csb

and a single bit of key-related
information κ. Borrowing the vector inner-product, we will use the notation α ·P
to denote the sum of plaintext bits Pr1⊕ . . . ⊕Pra where α =

∑a
j=1 2rj and α is

called a linear mask. We will then write a single linear approximation as

α · P ⊕ β · C = κ. (1)

If κ (the exclusive-or of subkey bits) is fixed, then Equation 1 will be correct with
probability p = 1

2 + ε and we say that the linear approximation has a bias of ε.
Given a bias of sufficiently large absolute value |ε| and sufficiently many known
plaintext/ciphertext pairs, the value of κ can be deduced thereby revealing one
bit of key information. Throughout the paper the term “bias” will refer to its
absolute value.

It is well-known that we can recover more bits of the key by using Matsui’s
Algorithm 2 [12]. Here we use a linear approximation over several inner rounds,
say rounds b to c of the r-round cipher, and this approximates one inner bit of
key information (which is a function of the subkeys kb, . . ., kc). Since the inputs
to this linear approximation are a function of the plaintext, the ciphertext, and
the outer subkeys k1, . . ., kb−1 and kc+1, . . . , kr, if we were to test for a bias
as part of an exhaustive search over these outer key bits, then we would expect
a bias to appear for the correct guess. In this way we can recover more key
information and derive a more practical attack.

Clearly the basic building block to all these attacks will be the linear ap-
proximation, and to build a linear approximation we approximate individual
components of the cipher and join these together. We will therefore use the fol-
lowing notation for the linear approximation of a component f , say, where we
write α

f→ β if α · X = β · f(X) with some associated bias ε. Approximations
to larger components of a block cipher, such as a round, can be written in the
same way.

3.1 Linear Cryptanalysis and SMS4

To find a linear approximation of SMS4, we first compute the biases of all linear
approximations α

S→ β to the S-box. Then we consider the evolution of a linear
mask through the function L. For this, we define the function

L2(x) = x⊕ (x>>>2)⊕ (x>>>10)⊕ (x>>>18)⊕ (x>>>24)

and we observe the following. Since for bit-wise rotations α ·(x<<<i) = (α>>>i) ·x,
we have for all 32-bit inputs x, and all linear masks α, that α ·L(x) = L2(α) ·x.
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Fig. 1. Two rounds of SMS4 along with a two-round linear approximation using masks
α and β. The input to round i is Xi−1,0 ||Xi−1,1 ||Xi−1,2 ||Xi−1,3.

As can be seen from Figure 1, we can identify the potential for two-round
linear characteristics of the following form:

(β, 0, α⊕ β, α⊕ β)→ (α, β, β, β)→ (0, 0, 0, α).

Such a linear approximation would require the approximation α
f→ β in the first

round and β
f→ α in the second. Interestingly, by setting β = α this reduces to

(α, 0, 0, 0)→ (α, α, α, α)→ (0, 0, 0, α)

and by exploiting the structure of SMS4 in the preceeding three rounds, we
derive a five-round iterative linear approximation, of which only the last two
rounds are active

(0, 0, 0, α)→ (0, 0, α, 0)→ (0, α, 0, 0)→ (α, 0, 0, 0)→ (α, α, α, α)→ (0, 0, 0, α).
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Table 1. The relevant bitmasks for the iterative linear approximations in this paper

α L2(α) α L2(α)
0x0011ffba 0x0084be2f 0x007852b3 0x00582b15
0x007905e1 0x005afbc6 0x00a1b433 0x00f1027a
0x00edca7c 0x0083ffaa 0x00fa7099 0x00d20b1d
0x05e10079 0xfbc6005a 0x11ffba00 0x84be2f00
0x3300a1b4 0x7a00f102 0x52b30078 0x2b150058
0x709900fa 0x0b1d00d2 0x7852b300 0x582b1500
0x7905e100 0x5afbc600 0x7c00edca 0xaa0083ff
0x9900fa70 0x1d00d20b 0xa1b43300 0xf1027a00
0xb3007852 0x1500582b 0xb43300a1 0x027a00f1
0xba0011ff 0x2f0084be 0xca7c00ed 0xffaa0083
0xe1007905 0xc6005afb 0xedca7c00 0x83ffaa00
0xfa709900 0xd20b1d00 0xffba0011 0xbe2f0084

To identify a bit-mask α that yields an approximation α
f→ α with a good bias,

we use the distribution table for linear approximations of the S-box. In this way
we can list 24 different (α, L2(α)) pairs, where L2(α) gives the mask for the
output from the S-boxes, and each of these 24 five-round linear approximations
holds with a bias of 7

32768 ≈ 2−10.2. These are given in Table 1.

3.2 A Distinguisher for 18-Round SMS4

It is straightforward to see that a classical application of linear cryptanalysis gives
us an 18-round distinguisher for SMS4. We can concatenate three of the five-round
iterative approximations to give the following 18-round linear approximation with
bias ε1:

(0, 0, 0, α) 5 rounds−−−−−−−→ (0, 0, 0, α) 5 rounds−−−−−−−→(0, 0, 0, α)
5 rounds−−−−−−−→ (0, 0, 0, α)→ (0, 0, α, 0)→ (0, α, 0, 0)→ (α, 0, 0, 0)

To combine linear approximations, and to estimate the resultant bias, it is typ-
ical to appeal to the so-called piling-up lemma [12]. The suitability of applying
the piling-up lemma depends on the algorithms in question; for some, such as
DES [15], it gives accurate results while for others, such as RC5 [18], an inter-
round dependence means that the piling-up lemma can be misleading [19]. This
problem can be particularly acute when we have two consecutive active rounds.
However, experimental results below suggest that the piling-up lemma should
remain a reasonable tool to use with SMS4. We therefore estimate the resultant
bias of the 18-round linear approximation to be ε1 = (2−10.2)6 × 25 = 2−56.2.
This means that if we were to use ε−2

1 = 2112.4 known plaintexts then we would
expect our distinguisher to identify non-ideal behaviour in the reduced-round
SMS4 and/or to recover a single bit of key information with a success rate of
97.7% [12]. With regards to the work effort, we need to evaluate a single bit
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and increment a single counter 2112.4 times. This will be a fraction of the work
required to exhaustively search a 128-bit key.

In what follows we will use the 18-round linear approximations of the form de-
scribed above, of which there are 24 (see Table 1). It will therefore be convenient
to refer to a generic approximation from this class as A18

α .

Experimental Confirmation. To confirm the applicability of the piling-up
lemma with the basic linear approximations that we will use, we consider the
equivalent linear approximations in red-SMS4. The bias of the best approxi-
mation over a single active round—for which the input and output mask is the
same—is 2−5. So over five rounds, of which two are active, the linear approxi-
mation (0, 0, 0, α) → (0, 0, 0, α) with α = 0x040c would have a theoretical bias
of 2−9 . We extend this to give a six-round approximation

(α, β, β, β) 1 round−−−−−−−→(0, 0, 0, α) 5 rounds−−−−−−−→(0, 0, 0, α)

with β = 0x0406 and a bias of 2−2.7 for β
fr−−→α. The resultant six-round approx-

imation has a theoretical bias of 2−10.7 and in experiments with 100 keys using
the reduced key schedule and 223 known plaintexts, the measured bias ranged
between 2−10.0 and 2−12.1 with an average of 2−10.7.

On Extending to 19 Rounds. Taking A18
α we can prepend a single-round

linear approximation of the form (α, β, β, β) → (0, 0, 0, α). Here we can choose
β so as to maximise the bias of this extra round. For each of the valid L2(α)
that we identified in Section 3.1, we find that there are 125 possible values to β
that give a maximum bias of 2−10 over a single round of S-box transformations.
This means that there are 125 × 24 = 3000 19-round linear approximations
with a bias of ε2 = (2−10.2)6 × 2−10 × 26 = 2−65.2. While the bias means that
such approximations aren’t immediately useful to us, the large number of such
approximations makes them a tempting object for more advanced analysis, see
Section 5.1.

4 Advanced Techniques

We now use the 18-round approximations A18
α to recover the full 128-bit key.

Standard techniques immediately compromise 20-round SMS4, while a novel ex-
tension of the work of Collard et al [4] extends this to 22 rounds. In the literature
notation, this constitutes a 4R-attack for which there are few precedents.

4.1 An Attack on 20-Round SMS4

The classical approach to using an 18-round distinguisher is to recover key in-
formation from the two outer rounds of the cipher. We will use the linear ap-
proximations A18

α that have only three active S-boxes in an active round and
we will need the following definition: Given mask α, denote the restriction of
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A18
α

Fig. 2. Intermediate values for the 2R attack on 20-round SMS4

a 32-bit word y by α to be Rα(y) where Rα(y) consists of the deletion of bits
corresponding to the inactive byte. For example, given α = 0x0011ffba then
Rα(y) = y&0x00ffffff. Note that this can be viewed as a 24-bit quantity even
when the inactive byte is not in the most significant position.

It is easy to verify the following (see Figure 2). For plaintext P0||P1||P2||P3,
the bit value α ·X1,3 depends solely on α · P0, Rα(P1 ⊕ P2 ⊕ P3), and Rα(k1).
We can make a similar observation on the ciphertext, namely that the bit value
α ·X19,0 depends solely on α · C3, Rα(C0 ⊕ C1 ⊕ C2), and Rα(k20). In our 2R-
attack we will recover the values of Rα(k1) and Rα(k20) giving 48 bits of key
information. The rest of the key can be deduced using exhaustive search.

The data-related information that we need to evaluate the approximation is
α · P0, Rα(P1 ⊕ P2 ⊕ P3), α · C3, and Rα(C0 ⊕ C1 ⊕ C2) and we can consider a
plaintext-ciphertext as being in one of 250 possible classes according to the values
of these quantities. Note that under the same key guess Rα(k1) || Rα(k20), two
plaintext/ciphertext pairs from the same class yield the same values to α ·X1,3
and α ·X19,0. In [4] an efficient 1R-attack is described. We extend this approach
to give a 2R-attack recovering information from both outer rounds and adopting
an optimisation that means we need only store 248 rather than 250 counters.
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1. Take N = 32ε−2 = 2117.4 plaintext/ciphertext pairs.
2. Initialise a set of counters A[0] . . . A[248 − 1] to zero.
3. For each plaintext/ciphertext pair, compute b = α ·P0⊕α ·C3 and increment

A[Rα(P1⊕P2⊕P3)||Rα(C0⊕C1⊕C2)] if b = 0 or decrement it if b = 1, i.e.

A[Rα(P1 ⊕ P2 ⊕ P3)||Rα(C0 ⊕ C1 ⊕ C2)] += (−1)(α·P0⊕α·C3).

4. For each key guess k′ = Rα(k1) ||Rα(k20) keep a counter, and compute the
bias generated during the attack as follows:

(a) Taking each x = Rα(P1 ⊕ P2 ⊕ P3)||Rα(C0 ⊕ C1 ⊕ C2) in turn, where
0 ≤ x ≤ 248 − 1, compute the value

c = (−1)(α·f(Rα(k1⊕P1⊕P2⊕P3))⊕(α·f(Rα(k20⊕C0⊕C1⊕C2)).

(b) Add c × A[Rα(P1 ⊕ P2 ⊕ P3) || Rα(C0 ⊕ C1 ⊕ C2)] to the score for key
guess k′.

5. After recovering the 48-bit k′, perform exhaustive search on the remaining
80 bits of key.

We expect to recover the right value to the 48 bits of the key by identifying the
guess which gives the highest score of absolute value; using [20] the correct key
should be recovered with a probability of 99.9%

While the work effort for each plaintext/ciphertext pair in step 3 is much less
than a round of SMS4, we might estimate the work effort for the first three steps
to be equivalent to 2117.4× 1

20 ≈ 2113.1 20-round SMS4 computations. The work
effort for finding the right 48 bits of key material in step 4 is 248 × 248 = 296

basic operations and the work to recover the rest of the key. is 2128−48 = 280

reduced-round SMS encryptions. One point of detail: it is possible (see below)
that several keys are identified along with the correct one. However this is not
uncommon, and merely extends the search for the remainder of the key.

An Optimisation. Even though the work effort for Step 4 is lower than that for
data processing, we can adapt techniques introduced in [4]. Consider initialising
a (248 × 248) matrix M , where rows are indexed by Rα(k1) || Rα(k20) and the
columns indexed by Rα(P1⊕P2⊕P3) ||Rα(C0⊕C1⊕C2). Then the bias for the
ith guess of Rα(k1) ||Rα(K20) is given by

∑248−1
j=0 M(i,j)xj and we can view the

counters A[·] as a column vector x = AT . Following [4], since entry M(i,j) is a
function of i⊕ j the entire matrix M(i,j) can be reconstructed from a single row
or column, and it is possible to compute the product Mx = e with only three
products between a Discrete Fourier Transform matrix and a vector [4].This
means that the complexity of generating a set of final scores for each key, repre-
sented by a vector e is reduced from O((248)2) to 3 × O(248 log2(2

48)) [4]. The
work effort for data analysis can therefore be estimated as 248 × 3 × 48 ≈ 255.2

basic operations.
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Fig. 3. The upper half of the 4R-attack on 22-round SMS4

Experimental Confirmation. To illustrate this more advanced linear attack,
we use a 10-round version of red-SMS4 with the same linear approximation as
was used in the experiments of Section 3.2, namely (α, β, β, β)→ (α, 0, 0, 0) over
nine rounds. We will recover information about k10, though for red-SMS4 the
mask α we use has two inactive bytes. Recalling the bias of the approximation
is 2−10.7, we take 8× (211)2 = 225 plaintexts. The data is separated according to
the restriction Rα(C0⊕C1⊕C2) and we perform key recovery as outlined in Sec-
tion 4.1, though adapted to the 1R-scenario. For Sr there is a slight complication
with the bit mask α since there are equivalent keys for one of the active nibbles.
Experiments and analysis show that the best score applies to four equivalent key
values, and so we recover at most six bits of k10. With the plaintext amount we
use, we theoretically have a probability of 99.9% to recover the right six bits of
key [20]. In 100 experiments the correct set of keys was recovered 99 times.

4.2 An Attack on 22-Round SMS4

We useA18
α to make a 4R-attack on 22-round SMS4 (see Figure 3 for the plaintext

side of the attack) and we aim to recover k1, k22, Rα(k2) and Rα(k21). For the
data analysis, we will appeal to the optimisation of Collard et al. [4] described
in Section 4.1.
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1. We take N = 64ε−2 = 2118.4 plaintext/ciphertext pairs.
2. View counters A[0] . . . A[2112 − 1] as a column vector x and set to zero.
3. For each plaintext/ciphertext pair, compute b = α ·P1⊕α ·C2 and increment

A[P1 ⊕ P2 ⊕ P3 || Rα(P0 ⊕ P2 ⊕ P3) ||Rα(C0 ⊕ C1 ⊕ C3) || C0 ⊕ C1 ⊕ C2] if
b = 0 or decrement it if b = 1.

4. Define (conceptually) the (2112×2112) matrix M(i,j) where rows are indexed
by the key guess k′ = k1 || Rα(k2) || Rα(k21) || k22 and columns indexed by
x = P1⊕P2⊕P3 ||Rα(P0⊕P2⊕P3) ||Rα(C0⊕C1⊕C3) ||C0⊕C1⊕C2. Recall
we need only store the first column of this matrix M(i,j) since all values for
subsequent computations can be reconstructed from a single row/column.

(a) Compute the values in the first column as (−1)b where

b = α · f(Rα(k21 ⊕ C0 ⊕ C1 ⊕ C3)⊕ f(k22 ⊕ C0 ⊕ C1 ⊕ C2))
⊕ α · f(Rα(k2 ⊕ P0 ⊕ P2 ⊕ P3)⊕ f(k1 ⊕ P1 ⊕ P2 ⊕ P3))

(b) Efficiently compute Mx = e using [4]. This gives the right result since

α ·X2,3 = α · f(Rα(k2)⊕Rα(P2 ⊕ P3 ⊕X1,3))⊕ α · P1

= α · f(Rα(k2)⊕Rα(P0 ⊕ P2 ⊕ P3)
⊕ f(k1 ⊕ P1 ⊕ P2 ⊕ P3))⊕ α · P1

and we have a similar expression for the ciphertext side.
5. Recover the 112-bit k′ from e and search the remaining bits of the key.

The only hypothesis needed to apply [4] to the 22-round attack is that the
(2112 × 2112) matrix M(i,j) (see optimisation to Section 4.1) should only depend
on i⊕ j, which is the case for the expression in Step 2. We expect to recover the
right value to the 112 bits of the key from the guess with the highest score of
absolute value. With 2118.4 plaintexts, the method of [20] suggests that we are
very likely to recover the correct value, see Table 2. The work effort for Steps

Table 2. The estimated work efforts for a range of linear cryptanalytic attacks on
r-round SMS4 for 19 ≤ r ≤ 22. Work is estimated in terms of the number of r-round
encryptions (for appropriate r) with that exceeding 2128 placed in parentheses.

work work step 4 work step 4 work success
r texts mem. steps 1-3 (w/o [4]) (w. [4]) step 5 (%)

19 2116.4 224 2112.2 243.8 226 2104 99.5
20 2117.4 248 2113.1 291.7 250.9 280 99.9
21 2117.4 280 2113.0 (2155.6) 283.5 248 84.8
21 2118.4 280 2114.0 (2155.6) 283.5 248 99.9
22 2117.4 2112 2112.9 (2219.5) 2115.9 216 17.7
22 2118.4 2112 2113.9 (2219.5) 2115.9 216 99.9
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1-3 can be estimated as 2118.4 × 1
22 ≈ 2113.9 22-round SMS4 computations while

the effort in Step 4 is approximately 2112×3×112× 1
22 ≈ 2115.9 22-round SMS4

computations, and this dominates the attack.

5 Ongoing and Future Research

It is natural to consider some more advanced techniques in trying to attack
more rounds of SMS4. In this section we consider the use of multiple linear
approximations as well as the use of chosen-plaintexts.

5.1 Multiple Linear Approximations

Multiple linear approximations were first proposed in [6,7] and they have been
the subject of much recent analysis [3,5]. Here we take m different linear approx-
imations, where we use κj to denote a single bit of key information,

αj · P ⊕ βj · C = κj .

The purpose is to use several approximations to reduce the number of plaintexts
when keeping the same probability of sucess. Let εj denote the theoretical bias
of the jth approximation and let ej

kouter
denote the experimental bias of the jth

approximation observed when using the guess kouter for the outer key bits2. If,
with sufficiently many plaintexts, we compute

min
kouter

min
(κ1,...,κm)∈{0,1}m

m∑
j=1

(εj − (−1)κj ej
kouter

)
2
,

then the minimum value will be given by the correct values of kouter and the
correct values of the m bits of internal key represented by (κ1, . . . , κm).

A straightforward application of this method needs 2|k|+m computations.
However this can be reduced if we introduce σj

k where σj
k = 1 if sgn(εj) = sgn(ej

k)
and zero otherwise. Then we observe that, for each j,

min
κj∈{0,1}

(εj − (−1)κj ej
k)

2
= (εj − (−1)σj

kej
k)

2

and so we have the equality

min
kouter

min
(κ1,...,κm)∈(0,1)m

m∑
j=1

(εj − (−1)κj ej
kouter

)
2

= min
kouter

m∑
j=1

(εj − (−1)σj
kouter ej

kouter
)
2
.

This requires m2|kouter| computations, though we only recover the correct value
to kouter. However this is usually the most important block of key information
to recover.
2 An equivalent approach considers the imbalance which is double the bias [3].
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Application to SMS4. To gauge the possible limits of linear cryptanalysis, we
will optimistically assume that the gain that can be made when using multiple
linear approximations is linear in the number of approximations. We will then use
the techniques above to combine a set of different linear 19-round approximations
and illustrate the basis for a possible attack on 23-round SMS4.

To do this we need a set of linear approximations and we will choose 125
19-round approximations A19

αβ where these are the extensions of a given, fixed,
18-round distinguisher A18

α by the 125 choices for β. (These approximations were
identified in Section 3.2). We denote by ε the theoretical bias of 2−65.2 which is
the same for each of the A19

αβ .

1. Take N = 2125.4 plaintext/ciphertext pairs.
2. For each β view counters A[β][0], . . ., A[β][2112 − 1] as a column vector xβ

and set this to zero.
3. For each β and each plaintext/ciphertext pair, compute b = α ·P2⊕ β ·P0⊕

β · P1 ⊕ β · P3 ⊕ α · C2 and increment A[β][P1 ⊕ P2 ⊕ P3 || Rα(P0 ⊕ P2 ⊕
P3) ||Rα(C0 ⊕ C1 ⊕ C3) || C0 ⊕ C1 ⊕ C2] if b = 0 or decrement it if b = 1.

4. Define for each β (conceptually) the (2112 × 2112) matrix Mβ
(i,j) where rows

are indexed by the outer key guess kouter = k1 ||Rα(k2) ||Rα(k21) || k22 and
columns indexed by x = P1 ⊕ P2 ⊕ P3 || Rα(P0 ⊕ P2 ⊕ P3) || Rα(C0 ⊕ C1 ⊕
C3) ||C0⊕C1⊕C2. Recall we need only store the first column of this matrix
Mβ

(i,j) since all values for subsequent computations can be reconstructed from
a single row/column.

5. Compute the values in the first column as (−1)b where

b = α · f(Rα(k21 ⊕ C0 ⊕ C1 ⊕ C3)⊕ f(k22 ⊕ C0 ⊕ C1 ⊕ C2))
⊕ β · f(Rα(k2 ⊕ P0 ⊕ P2 ⊕ P3)⊕ f(k1 ⊕ P1 ⊕ P2 ⊕ P3))

6. Efficiently compute Mβxβ = eβ using [4].

7. For each guess to kouter, compute
∑

β (ε− (−1)σβ
kouter eβ

kouter
)
2
.

8. Assume that the minimum value is given by the correct guess for the 112-bit
kouter and then search the remaining bits of the key.

The work effort for this attack is dominated by Step 3. To derive the maximum
number of plaintexts we can use, we observe that the work effort of Step 3 can be
expressed as 125×N

23 23-round SMS4 computations. To give an academic attack,
we need this to be less than 2128 23-round SMS4 computations and so we have
N ≤ 23×2128

125 ≈ 2125.4 for a valid attack.
However 2125.4 corresponds to around 4× (265.2)2

125 , but since we are recovering
112 bits of key information the success rate [20] will be almost negligible. Thus
while it is conceivable that 23 rounds could be attacked (academically) we feel
that this is somewhat optimistic.

Unfortunately the reduced version of SMS4 used earlier doesn’t exhibit differ-
ent linear approximations with the same bias. Intead we were able to experiment
on a different reduced cipher design, but it was too far-removed from SMS4 for us
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to be able to draw any substantive conclusions. Our experiments demonstrated
improvements to the number of plaintexts required in a successful attack, but
the probability of success was somewhat less than anticipated by theory. We
therefore leave it as an object of future research to provide a sound estimate for
the effectiveness of multiple linear approximations on SMS4.

5.2 On Using Chosen Plaintext

Several extensions to linear cryptanalysis consider the use of chosen plaintext.
One of these is described by Knudsen and Mathiassen [8]. In early work for this
paper we considered using variants of this technique and at first sight it seemed
to be well-suited to SMS4. However technical complications meant that it was
hard to use these techniques directly with the 18-round distinguisher and we were
unable to get any satisfactory advantages. We also considered using differential-
linear cryptanalysis [9] but our preliminary conclusion was somewhat negative.
We therefore leave it as an open problem to decide whether chosen plaintext can
give any real advantage over the typical known plaintext approach.

6 Conclusions

In this paper we have considered the cryptanalysis of the block cipher SMS4. The
cipher is both actively deployed and of an elegant and simple design, making it
of considerable interest to the cryptanalyst. While much of the preceeding work
is concentrated on the differential cryptanalysis of SMS4, by turning to linear
cryptanalysis we have demonstrated some simple and effective attacks. These
yield results which are superior to all previous claims and which, therefore, give
the best current attacks on SMS4.
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Abstract. Up to now, the design of block ciphers has been mainly
driven by heuristic arguments, and little theory is known to constitute
a good guideline for the development of their architecture. Trying to
remedy this situation, we introduce a new type of design for symmetric
cryptographic primitives with high self-similarity. Our design strategy
enables to give a reductionist security proof for the primitive based on
plausible assumptions regarding the complexity of the best distinguishing
attacks on random Feistel schemes or other ideal constructions. Under
these assumptions, the cryptographic primitives we obtain are perfectly
secure against any adversary with computational resources less than a
given bound. By opposition, other provably secure symmetric primitives,
as for example C [3] and KFC [4], designed using information-theoretic
results, are only proved to resist a limited (though significant) range of
attacks. Our construction strategy leads to a large expanded key size,
though still usable in practice (around 1 MB).

Keywords: block ciphers, Feistel schemes, generic attacks, provable
security.

1 Introduction

Provable Security. Building provably secure but still efficient block ciphers
is certainly the most desired but also the most challenging goal of symmetric
cryptography. In the area of asymmetric cryptography, “provable security” means
that one is mathematically able to reduce the security of a primitive to a well
studied and presumably difficult problem such as integer factorisation or discrete
logarithm (see [17] for an overview but also a critical look at “provable security”
in public key cryptography). The situation in symmetric cryptography is quite
different: the security of the most widely deployed primitives often relies on
heuristic arguments of one of the three following types:

– lack of known attacks whose complexity is less than “brute-force” attacks or
less than the desired security level (typically 280 operations nowadays).

– provable security against some classes of attacks, typically differential and
linear cryptanalysis when dealing with block ciphers. For example, AES does
possess such security arguments.
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– provable security when some components of the primitive are replaced by
“ideal” ones. This kind of arguments apply for example for all Feistel ciphers
such as DES, for which the celebrated result of Luby and Rackoff [19] shows
that when the internal functions are pseudorandom, the cipher is secure in
the sense that it is a pseudorandom permutation. This, however, does not
yield any security proof for the real primitive, but only ensures that the
general structure of the algorithm does not present intrinsic weaknesses.

Provable security in symmetric cryptography in the reductionist sense discussed
for asymmetric cryptography is rather rare. Most notable examples include some
number-theoretic hash functions like VSH [10] and the stream cipher QUAD [6]
whose security relies on the difficulty of solving systems of multivariate quadratic
equations. However, there is to the best of our knowledge no block cipher with
security reduction to some hard problem proposed so far. More concernedly,
no difficult problems have been identified as suitable for such a design goal.
We will see that the problem of distinguishing a Feistel scheme from a random
permutation could be a potential candidate.

The Proposal. We propose to build a block cipher whose security can be
reduced to some simple and well studied problem. The hard problem we propose
is not number-theoretic like for most schemes of asymmetric cryptography. We
will use the problem of distinguishing a random Feistel scheme from a random
permutation. The rational for such a choice is that Feistel schemes have been
extensively studied in the cryptographic literature since the introduction of DES.
Though most of this literature is primarily concerned with the information-
theoretic properties of these schemes, some authors have studied the so-called
“generic attacks” on them. The term generic attacks, introduced by Kilian and
Rogaway in [16], means any attack performed on Feistel schemes instantiated
using uniformly random and independent functions in each round (which we will
name a “random Feistel scheme” in the following), and hence not making use of
the underlying structure of the function generator of a real cipher such as DES.
Though we will primarily use Feistel schemes, any well studied structure with
similar properties could be used.

We propose to go beyond the intrinsic limitations of information-theoretic
designs. For Feistel schemes, information theory is “stuck” at five rounds in the
sense that increasing the number of rounds beyond five does not increase the
number of queries needed by a computationally unbounded adversary to dis-
tinguish the Feistel scheme from a random permutation. Indeed, whatever the
number r ≥ 5 of rounds used in a random Feistel schemes from 2n bits to 2n
bits, there is always an oracle adversary making Θ(2n) queries and distinguish-
ing a random Feistel scheme from a random permutation with high probability.
However the computational complexity of this distinguisher can be extremely
high. Taking the problem in the opposite way, we will make the hypothesis (and
give arguments supporting it) that the best generic attacks described against
Feistel schemes cannot be improved, and design a permutation generator such
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that any distinguishing attack against it would imply an improvement of the
generic attacks against random Feistel schemes.

To achieve this goal, we will start from a Feistel scheme with r1 rounds us-
ing random and independent functions at each round, and evaluate its security
according to the best generic attacks. Then, rather than using independent and
random functions directly as the key, we will instantiate each of these functions
with independent Feistel schemes with r2 rounds, and again estimate the security
of the overall construction with respect to the best generic attacks. We will keep
on using this recursive structure until the total size of the key (constituted of
the random functions used at the innermost level of the construction) becomes
practical. We name this design strategy the “Russian Dolls” construction. As
we will see, the complexity of the best distinguisher described so far increases
exponentially with the number of rounds of the Feistel scheme, so that using a
reasonable number of rounds will be sufficient for a good level of security. Note
that in the information-theoretic setting, the innermost Feistel schemes would
be potentially weak as they have very small block size. However, any attack on
the resulting block cipher would imply a better generic attack on random Feistel
schemes at some level of the construction.

Related Work. There have been a number of “provably secure” block ciphers
proposals. We review the most prominent of them. BEAR and LION were
proposed by Anderson and Biham [2]. They are constructed from an ideal stream
cipher and an ideal hash function, and the authors proved that attacking the
block cipher would imply an attack on one of the underlying components. Later
Pat Morin [22] identified some weaknesses in BEAR and LION and proposed
AARDVARK, which is based on the same design strategy.

Zheng, Matsumoto and Imai [36] presented block ciphers built on so-called
Generalized Type-2 transformations (which are kinds of generalized Feistel con-
structions). They analysed their constructions in the information-theoretic set-
ting and gave evidence supporting the security of their primitives, but no formal
security proof.

Baignères and Finiasz built on Vaudenay’s decorrelation theory [35] to pro-
pose two block ciphers, C [3] and KFC [4], provably secure against a wide
range of attacks. This is the logical continuation of the work initiated with the
NUT family [35] (COCONUT, PEANUT) and the AES proposal DFC [13].
Again, their security proof relies on information-theoretic arguments. In partic-
ular, KFC is based on a 3-round Feistel scheme using round functions with a
very low decorrelation bias and is proved resistant against “d-limited” adversaries
making less than d = 8 or 70 queries, depending on the parameters. The security
proof also handles so-called “iterated attacks” of order d/2, where the adversary
repeats independent non-adaptive d/2-limited attacks. However, we note that as
the Feistel scheme of KFC has only 3 rounds, it is vulnerable to a distinguishing
attack making only 3 chosen plaintext-ciphertext queries (see Section 4.2).

Granboulan and Pornin [14] proposed an efficient way of generating perfectly
random permutations (i.e. statistically very close to the uniform distribution,
even for an attacker having the entire codebook) using a pseudorandom number
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generator, however their construction is only practical for small plaintext do-
mains (typically less than 30-bit blocks).

The prior proposal which is the closest to our work was made by Blaze [7]
but never published. He proposed the block cipher TURTLE and the stream
cipher HAZE. TURTLE is simply the Russian Dolls construction where 4-
rounds Feistel schemes are used at each stage, and HAZE is based on TURTLE
in counter mode. Yet the security arguments proposed by Blaze are quite different
from ours. He claims that retrieving the secret functions of an r-round Feistel
scheme, r ≥ 3, is NP-complete by reducing this problem to Numerical Matching
with Target Sums (NMTS) [11]. However, keeping the number or rounds constant
as the block-size decreases implies a dramatic loss of security.

Organization. Our paper is organized as follows. First we give our nota-
tions and some standard security definitions. Then, we describe the Russian
Dolls design strategy in all generality and state theorems about its security. In
Section 4 we analyse the Russian Dolls construction using balanced Feistel
schemes. We highlight some promising possibilities for future work and draw
our conclusions in Section 5.

2 Preliminaries

Notations. Throughout the whole paper, we will use the following notations.
We will denote by s

$←− S the operation of selecting an element in the set S
endowed with the uniform probability distribution. Func (D,R) will denote the
set of all functions from D to R, Perm (D) the set of all permutations on D, and
Perm+ (D) the set of all permutations on D with an even signature. In will de-
note the set of binary strings of length n, and we will use Func (n, m), Perm (n)
and Perm+ (n) as shorthands for Func (In, Im), Perm (In) and Perm+ (In) re-
spectively.

A family of functions from D to R indexed by key space K is a function
E : K×D → R. We will use the notation EK(X) as shorthand for E(K, X). E is
a family of permutations if D = R and EK is a permutation for each K ∈ K. We
will denote by E−1

K the inverse of EK . We will sometimes use the terms function
or permutation generator instead of family of functions or permutations.

Given a function f of Func (n, n), the 1-round Feistel scheme Ψf is the ele-
ment of Perm (2n) defined by Ψf (x) = xR‖xL ⊕ f(xR), where xL and xR de-
note respectively the left and right halves of the 2n-bit string x. We will note
Ψf1,...,fr the r-rounds Feistel scheme Ψfr ◦ . . . ◦ Ψf1 . Given two non null inte-
gers n and r, Ψ (r)(2n) will denote the permutation generator on I2n with key
space Func (n, n)r, taking as arguments r functions (f1, . . . , fr) in Func (n, n)
and x ∈ I2n and returning Ψf1,...,fr(x). When we omit the block-size, i.e. Ψ (r),
it will implicitly be 2n.

The adversaries we will consider are probabilistic. Implicitly, when we note
Pr[s $←− S : A = 1] the probability will always be on S and the internal ran-
domness of A.
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Pseudorandom Functions and Permutations. The notion of pseudoran-
dom function (PRF) was introduced by [12], and the notion of pseudorandom
and strong (or super-) pseudorandom permutation (PRP and SPRP) by [18].
Informally, a PRF is a family of functions E indexed by a key space K such
that any efficient adversary with access to an oracle can distinguish a function
associated to a random key K

$←− K from a uniformly random function only with
negligible probability. The definition of a PRP is quite similar, except that the
adversary tries to distinguish the permutation family from a uniformly random
permutation. For a SPRP, the adversary is given access to two oracles, either EK

and E−1
K for a random K, or G and G−1 for a uniformly random permutation G.

Rather than using the usual asymptotic notions of PRF and PRP, we will use the
concrete security approach introduced in [5] where the distinguishing advantage
of an adversary is measured as a function of its resources (namely, runtime and
number of oracle queries). We give now the following formal definitions.

Definition 1 (PRF). Let E : K × D → R be a family of functions from D to
R indexed by keys K. An adversary A (ε, T )-distinguishes E as a PRF if it runs
in time at most T and

Advprf
E (A) =

∣∣∣Pr
[
K

$←− K : AEK = 1
]

− Pr
[
G

$←− Func (D,R) : AG = 1
] ∣∣∣ ≥ ε .

We will say that E is an (ε, T )-secure PRF if no adversary is able to (ε, T )-
distinguish it.

Definition 2 (PRP). Let E : K × D → D be a family of permutations on D
indexed by keys K. An adversary A (ε, T )-distinguishes E as a PRP if it runs
in time at most T and

Advprp
E (A) =

∣∣∣Pr
[
K

$←− K : AEK = 1
]

− Pr
[
G

$←− Perm (D) : AG = 1
] ∣∣∣ ≥ ε .

We will say that E is an (ε, T )-secure PRP if no adversary is able to (ε, T )-
distinguish it.

Definition 3 (SPRP). Let E : K × D → D be a family of permutations on D
indexed by keys K. An adversary A (ε, T )-distinguishes E as a SPRP if it runs
in time at most T and

Advsprp
E (A) =

∣∣∣Pr
[
K

$←− K : AEK ,E−1
K = 1

]
− Pr

[
G

$←− Perm (D) : AG,G−1
= 1
] ∣∣∣ ≥ ε .

We will say that E is an (ε, T )-secure SPRP if no adversary is able to (ε, T )-
distinguish it.
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Alternatively, when a primitive is (O( T
f(n) ), T )-secure for some parameter n,

where O stands for some small constant independent of n, we will say that it
is Ω(f(n))-secure, meaning that a distinguisher must have runtime greater than
f(n) to have a non-negligible advantage. Note that all our definitions are stated
in terms of runtime T of the adversary. The total number q of queries of the
adversary to the oracle will only be constrained by the obvious inequality q ≤ T .

As we will see later, it is always possible to distinguish a random Feistel
scheme Ψ (r)(2n) from a uniformly random permutation with complexity O(22n).
This comes from the fact that a Feistel scheme has always an even signature,
whereas a random permutation has an even signature with probability 1/2. We
will therefore sometimes consider the difficulty of distinguishing a random Feistel
scheme from a random permutation with an even signature. For this reason we
also define the notion of (S)PRP+ (strong pseudorandom even permutation) by
simply substituting Perm+ (D) to Perm (D) in the definitions of PRP and SPRP.

We will use sometimes the term CPA (Chosen Plaintext Attack) to qualify
an adversary trying to break the pseudorandomness of a permutation generator,
and CPCA (Chosen Plaintext-Ciphertext Attack) to qualify an adversary trying
to break the strong pseudorandomness of a permutation generator. It will always
imply adaptive attacks.

3 The Russian Dolls Construction

In this section we explain our design strategy in all generality. Assume one
knows how to construct a secure (S)PRP E on D using a relatively large set
of keys K structured as a direct product of smaller permutations spaces K =
Perm (D1) × . . . × Perm (Dλ). Assume now that there exists secure PRPs E(i),
1 ≤ i ≤ λ, on Di with key spaces Ki. Then it is possible to define a new (S)PRP
E′ on D with key space K′ = K1 × . . .×Kλ, by

E′
(K1,...,Kλ)(·) = E(E(1)

K1
,...,E

(λ)
Kλ

)(·) . (1)

For simplicity, we will make the assumption that when the E(i)’s are given as
oracles, ciphering or deciphering with E′ requires only direct queries to the E(i)’s.
As will be clear from the proof of the theorem below, this enables to use only
secure PRPs for the E(i)’s. As soon as it requires access to the direct and the
inverse oracle for some i, E(i) has to be a secure SPRP. The security of the new
(S)PRP E′ is characterized by the following theorem:

Theorem 1 (Security of the Russian Dolls construction). Let E be an
(ε, T )-secure PRP (resp. SPRP) on D indexed by key space K = Perm (D1)×. . .×
Perm (Dλ). Let also E(i), 1 ≤ i ≤ λ, be (εi, T )-secure PRPs on Di with key spaces
Ki. Then the permutation generator E′ defined by Equ. 1 is an (ε +

∑λ
i=1 εi, T )-

secure PRP (resp. SPRP) on D with key space K′ = K1 × . . .×Kλ.

Proof. The proof proceeds by a standard hybrid method. Let A be an oracle
algorithm running in time T . We are interested in bounding its advantage in
distinguishing the PRP E′:
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∣∣∣Pr
[
(K1, . . . , Kλ) $←− K1 × . . .×Kλ : A

E
(E(1)

K1
,...,E

(λ)
Kλ

) = 1
]

− Pr
[
G

$←− Perm (D) : AG = 1
] ∣∣∣ .

This advantage is upper bounded through the triangular inequality by the sum
of ∣∣∣Pr

[
(G1, . . . , Gλ) $←− K : AE(G1,...,Gλ) = 1

]
− Pr

[
G

$←− Perm (D) : AG = 1
] ∣∣∣

and the sum for i = 1 to λ of the following quantities (where by convention for
i = 1 (resp. i = λ), the expressions were i−1 (resp. i+1) appears are discarded):∣∣∣Pr

[
(K1, . . . , Ki)

$←− K1 × . . .×Ki,

(Gi+1, . . . , Gλ) $←− Perm (Di+1)× . . .× Perm (Dλ) :

A
E

(E(1)
K1

,...,E
(i)
Ki

,Gi+1,...,Gλ) = 1
]

−Pr
[

(K1, . . . , Ki−1)
$←− K1 × . . .×Ki−1,

(Gi, . . . , Gλ) $←− Perm (Di)× . . .× Perm (Dλ) :

A
E

(E(1)
K1

,...,E
(i−1)
Ki−1

,Gi,...,Gλ)
= 1
]∣∣∣

The first term is upper bounded by definition by ε as E is an (ε, T )-secure
PRP. The i-th of the λ other terms is upper bounded by εi. Indeed, one can
build a probabilistic distinguisher Ai for E(i) as follows. Let F be the oracle
to which Ai has access. Ai draws random keys (K1, . . . , Ki−1) and random
permutations (Gi+1, . . . , Gλ) and runs A, answering each of its queries with
E(E(1)

K1
,...,E

(i−1)
Ki−1

,F,Gi+1,...,Gλ). Then Ai runs in time T and its advantage is exactly

the quantity above. Hence by hypothesis on E(i) it cannot be greater than εi.
The theorem follows. The SPRP case is handled in a similar way. ��
More restricted versions of this theorem in the information-theoretic setting can
be found in [20, Theorem 1] and [35, Lemma 20]. When the key spaces Ki are
themselves permutations spaces, the construction can be iterated to decrease the
key size of the outermost PRP. This construction may use functions instead of
permutations or even a mix of functions and permutations. However, we will be
primarily interested in permutations. We will now see how to use the Russian
Dolls construction with concrete PRP schemes.

4 Constructions with Balanced Feistel Schemes

Two main lines of research have been explored concerning Feistel schemes: one
aims at giving security bounds against information-theoretic adversaries, the
other tries to describe generic attacks on random Feistel schemes. We sum up
some known results about these two domains.
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4.1 Information-Theoretic Bounds

First, we review the security results on random Feistel schemes holding in the
information-theoretic setting, i.e. against computationally unbounded adver-
saries. All these results are purely combinatorial and can be restated in terms
of statistical closeness between the output of a Feistel permutation and the out-
put of a uniformly random permutation. Though we restate them in terms of
computational runtime T , it is essential to note that they are in fact all true in
terms of number of oracle queries q. The computational statement simply stems
from q ≤ T .

Luby and Rackoff started the subject by proving [19] that Ψ (3)(2n) is a Ω(2
n
2 )-

secure PRP, and claiming (without proof) that Ψ (4)(2n) is a Ω(2
n
2 )-secure SPRP.

The later was proved by Patarin in [23]. The first improvements beyond the
so-called “birthday bound” (namely, Ω(2

n
2 )-security) came from Patarin who

proved respectively in [25] and [26] that Ψ (5) is a Ω(2
2n
3 )-secure PRP and Ψ (6)

is a Ω(2
3n
4 )-secure PRP. Maurer and Pietrzak showed [21] that for r sufficiently

large, Ψ (r) is a Ω(2(1−O( 1
r ))n)-secure SPRP. Finally, Patarin proved in [28,29]

that the information-theoretic optimal security is obtained for 5 rounds in a
CPA attack (i.e. Ψ (5) is a Ω(2n)-secure PRP) and 6 rounds for a CPCA at-
tack (i.e. Ψ (6) is a Ω(2n)-secure SPRP). It is still an open problem to improve
the bound for Ψ (5) in a CPCA attack (for now it is only known that Ψ (5) is a
Ω(2

n
2 )-secure SPRP).

However, building on these results doesn’t enable to construct secure schemes
using the Russian Dolls construction as the security decreases with the block
size. We will see in the following how we can circumvent this problem by making
hypotheses on the best generic attacks on random Feistel schemes.

4.2 Generic Attacks on Feistel Schemes

Generic Attacks on Ψ (3) and Ψ (4). Generic attacks on Ψ (3) and Ψ (4) match-
ing the information-theoretic security bounds were described in [25] and later
independently in [1]. In the 3-round case, for a CPA attack, the adversary
gets m values yi = E(xi) and counts the number of (i, j), i < j, such that
xiR ⊕ yiL = xjR ⊕ yjL. It can be proved that this number will be about twice
greater in the case of Ψ (3) than for a random permutation, and this leads to
an attack with O(2

n
2 ) queries and runtime. However, there is a very efficient

CPCA attack with only 3 queries: A asks for y1 = E(x1) and y2 = E(x2) where
x1R = x2R. Then, it asks for x3 = E−1(y2L||y2R⊕x1L⊕x2L) and checks whether
x3R = x1R ⊕ y1L ⊕ y2L. This will always be the case for Ψ (3) but will happen
only with probability 1/2n for a random permutation. We note that this attack
applies to KFC as it is based on a 3-round Feistel scheme. However KFC was
explicitly designed to resist only chosen-plaintext attacks.

In the 4-round case, there is the following CPA attack: the adversary gets m
values yi = E(xi) such that xiR is constant and counts the number of (i, j),
i < j, such that xiL⊕ yiL = xjL ⊕ yjL. Again, it can be proved that this number
will be about twice greater in the case of Ψ (4) than for a random permutation,
and this leads to an attack with O(2

n
2 ) queries and runtime.
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Brute Force Attacks. We state the following result concerning brute force
attacks on Feistel schemes, valid for any number of rounds.

Claim. Let r, n be non null integers, r fixed. Then there exists an oracle ad-
versary, running in time Θ(2rn2n

) and distinguishing Ψ (r)(2n) from a random
permutation with overwhelming probability.

A rigorous proof of this claim can be found in [24]. Note that a simple entropy
argument [21, footnote 2] shows that the number of oracle queries required is
only r · 2n, which is in O(2n) for any fixed r. The adversary proceeds by making
an exhaustive search on the key space Func (n, n)r to see if there is one for which
all queries match. It is however highly non trivial to reduce the complexity of
the distinguisher described in the above claim in the case r ≥ 5, as we will see
now.

Attacks “By The Signature”. As noticed by Patarin in [27], there are better
attacks than the exhaustive search described above taking advantage of the fact
that Feistel schemes lie in a proper subgroup of Perm (2n), namely Perm+ (2n).
Indeed, it can easily be checked (see [27]) that a Feistel scheme has always an
even signature. Clearly, the signature of a permutation E ∈ Perm (2n) can be
computed in time O(22n) when all the cipherbook is available. As a random
permutation has an even signature with probability 1

2 , we have the following
claim:

Claim. Let r, n be non null integers. Then there exists an oracle adversary,
running in time Θ(22n) and distinguishing Ψ (r)(2n) from a uniformly random
permutation with probability 1

2 .

However, as we will see in the following, it is much harder to distinguish Ψ (r)

when this “global” property is suppressed, i.e. when the adversary tries to
distinguish Ψ (r) from a random permutation with an even signature.

Best Known Attacks against Ψ (r) as an SPRP+ When r ≥ 5. The
best generic attacks for distinguishing Ψ (r) from a random even permutation fall
in the class of iterated attacks of order 2. The notion of iterated distinguisher
of order d has been defined by Vaudenay [34,35]. Roughly, such a distinguisher
obtains a number d of plaintext-ciphertext pairs (xj , yj), takes a binary decision
γi depending on x = (x1, . . . , xd) and y = (y1, . . . , yd), and after N repetitions of
this, outputs 0 or 1 depending on (γ1, . . . , γN ). At each iteration i, the d-tuple of
plaintext-ciphertext pairs that is tested is determined, possibly adaptively, and
possibly in a probabilistic way1 by the adversary, by making only queries to E
for a CPA attack, or to E and E−1 for a CPCA attack. It is important however
that the decision function Γ such that γi = Γ (x, y) is fixed during all the attack.
In particular, it must not depend on the previously tested d-tuples and previous
decisions. Indeed, if it were the case, the i-th decision γi of the adversary would in
1 Indeed, as we consider computationally bounded adversaries, there may be an ad-

vantage for the adversary to be probabilistic.
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Parameters: number of iterations N , decision function Γ : Dd ×Dd → {0, 1},
acceptance set S ⊂ {0, 1}N
Oracle: a permutation E ∈ Perm (D) (and possibly its inverse E−1)
1: for i = 1 to N do
2: for j = 1 to d do
3: select xj ∈ D and get yj = E(xj) or select yj ∈ D and get xj = E−1(yj)
4: end for
5: set γi = Γ (x, y), where x = (x1, . . . , xd) and y = (y1, . . . , yd)
6: end for
7: if (γ1, . . . , γN) ∈ S then output 1 else output 0

Fig. 1. Iterated attack of order d

fact depend on all previous d-tuples already tested and the distinguisher would
in fact be a classical d′-limited adversary with d′ > d. Note that this is only
a logical description. In particular the total runtime of the adversary can be
less than N . For example, the generic attack described previously on Ψ (4) is an
iterated attack of order 2 where the attacker makes N = m(m− 1) tests in time
m by storing the m values of xiL⊕yiL and counting the number of collisions. The
total runtime of the adversary is thus T =

√
N . It is evident that making the

same test more than one time does not increase the advantage of the adversary,
hence we will assume that the distinguisher never makes twice the same test.
Thus, the total number of possible tests is 22n(22n − 1) · · · (22n − d + 1). Note
that the outcomes of the tests are of course not independent.

Up to now, the best distinguishing attacks on Feistel schemes with r ≥ 5
rounds, described in [28], are iterated attacks of order 2. They follow the general
description of Fig. 1. We describe the case r even; the case r odd is handled in a
similar way. The attacks need only to access the direct oracle E. To understand
how these attacks work, we introduce the d-ary transition probabilities associated
to a permutation generator E on D with key space K defined for any pairs of
d-tuples x = (x1, . . . , xd), y = (y1, . . . , yd) of distinct elements of D by

Pr[x EK−−→ y] = Pr
[
K

$←− K : EK(xi) = yi for all i ∈ [1..d]
]

. (2)

These quantities were introduced and extensively studied by Patarin in [24,23]
and are fundamental in upper bounding the advantage of information-theoretic
adversaries making less than d queries and trying to distinguish EK from a
uniformly random permutation on D. In particular, closed formula were given in
the binary case d = 2, for any number of rounds r. Let Pr∗ = 1

22n(22n−1) denote
the binary transition probability for a random even permutation for any x and

y. We will simply note Pr for Pr[x Ψ (r)

−−−→ y]. For r even, when x1R = x2R, then
depending on (y1, y2) the transition probabilities have the following values:

1. when y1L = y2L, Pr = Pr∗
(
1− 1

2(r−2)n

)
2. when y1L �= y2L and x1L ⊕ y1L �= x2L ⊕ y2L, Pr � Pr∗

(
1− 1

2(
r
2 −1)n

)
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3. when y1L �= y2L and x1L ⊕ y1L = x2L ⊕ y2L, Pr � Pr∗
(

1 + 1

2(
r
2 −2)n

)
With these notations the attack proceeds as follows. The adversary tests N pairs
(x1, y1), (x2, y2) such that x1R = x2R. The decision function is defined by

Γ (x, y) =
{

0 if Pr ≤ Pr∗ (cases 1 and 2)
1 if Pr > Pr∗ (case 3)

Let X be the random variable defined by X =
∑N

i=1 γi. Let E(X) and σ(X)
(resp. E∗(X) and σ∗(X)) be the expected value and the standard deviation of
X for a random Feistel scheme (resp. a random even permutation). One can

easily check that E∗(X) � N
2n and E(X) � N

2n

(
1 + 1

2(
r
2−2)n

)
, and it can be

proved that σ∗(X) �
√

N

2
n
2

and σ(X) �
√

N

2
n
2

. If we let the acceptance set be

S = {(γ1, . . . , γN ) |
∑N

i=1 γi ≥ τ} for τ = (E(X)−E∗(X))/2, the adversary will
have a noticeable advantage as soon as τ is larger than σ(X) and σ∗(X). This
implies the condition N ≥ 2(r−3)n.

Because of the constraint x1R = x2R, the number of possible tests is only 23n.
So in order to have a meaningful attack for r ≥ 7 we have to broaden slightly
the security model by letting the adversary interact with μ > 1 permutations
randomly outputted by the generator. The adversary will have to repeat the test
on μ = 2(r−6)n permutations. For each permutation, the 23n tests can in fact be
implemented in time 22n by building, for each possible value of xR, the list of
the 2n values for xiL⊕yiL and counting the number of collisions. Hence the total
runtime of A is T=μ22n = 2(r−4)n. Note that originally Patarin [28] described a
known plaintext attack with roughly the same complexity.

We will take these best known generic attacks as a starting point to build
secure PRPs by making the following conjecture:

Conjecture 1. Let n > 1 be an integer, r be an integer ≥ 5. Then Ψ (r)(2n) is a
(O( T

2(r−4)n ), T )-secure SPRP+.

Evidence in favour of this conjecture is that the best distinguishing attacks for
3 and 4 rounds, matching the information-theoretic bounds, are iterated attacks
of order 2. Hence this conjecture may be viewed as a natural generalization to
r ≥ 5 of a provable result for r < 5. We also conjecture that for a fixed d, iterated
attacks of order d are not more efficient than the best iterated attack of order
2 for sufficiently large n. Hence improving the attacks described above would
require to handle large d-tuples of plaintext-ciphertext pairs, which appears to
be intractable as the computation of the transition probabilities for random
Feistel schemes becomes very involved as soon as d ≥ 3.

4.3 The Russian Dolls Construction with Balanced Feistel Schemes

We now concretely describe how to construct a secure SPRP using the Russian
Dolls construction and Conjecture 1. The parameters of the construction will be
as follows:
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– the block size of the SPRP will be 2n,
– s will denote the number of iterations of the Russian Dolls construction,
– r1, r2, . . . , rs = will denote the number of rounds of the Feistel schemes used

at the i-th iteration of the process.

We start with the outermost Feistel scheme, which will have r1 rounds. If it were
to be instantiated with r1 random functions, the obtained permutation generator
would be a (O( T

2(r1−4)n ), T )-secure SPRP+. However, the size of the key would
be r1n2n bits, which is impractical for usual values of n. Using the Russian Dolls
construction, one can decrease the size of the key while maintaining a good level
of security by instantiating each function inside the Feistel scheme Ψ (r1) with
independent Feistel schemes with r2 rounds. Again, each function used in the
r1 Feistel schemes Ψ (r2) can be instantiated using independent Feistel schemes
with r3 rounds, and so on. . . Note that we implicitly make here the assumption
that the security of a Feistel scheme with internal random permutations is close
to the security obtained when using internal random functions. A security proof
by Piret [33] as well as preliminary results on generic attacks on Feistel schemes
with internal permutations [32] point towards the validity of this assumption.

Consider the permutation generator obtained after s iterations of the nesting
process. The innermost Feistel schemes use random functions from n

2s−1 bits to
n

2s−1 bits which will constitute the key for the global permutation generator. It
can easily be seen that the total number of functions needed to define the global
permutation is r1 · r2 . . . rs. Hence the size of the key defining a permutation is

log2(|K|) = r1 · r2 · · · rs ·
n

2s−1 · 2
n

2s−1 .

Suppose now that the numbers of rounds ri were chosen as the minimal integers
to satisfy, for some α, the following inequality:

(ri − 4)
n

2i−1 ≥ α i.e. ri =
⌈

2i−1α

n
+ 4
⌉

. (3)

According to Conjecture 1, any Feistel scheme used in the construction is a
( T
2α , T )-secure SPRP. Then, according to Theorem 1, any adversary running

in time T and trying to distinguish a permutation resulting from the overall
construction from a uniformly random even permutation has an advantage upper
bounded by

(
T

2α
+ r1

(
T

2α
+ r2

(
. . .

(
T

2α
+ rs ·

T

2α

)
. . .

)))
=

⎛⎝1 +
s∑

i=1

i∏
j=1

rj

⎞⎠ T

2α
.

Suppose that n is a power of 2. From an asymptotic point of view, if we set
α = poly(n), Equation 3 shows that for a logarithmic number on iterations
s = log2(n) − c, for some constant c, (which means that the key is constituted
of functions from 2c+1 bits to 2c+1 bits), the numbers of rounds ri will all be
polynomials in n. Hence the size of the key will be in poly(n)log n = eO((log n)2),
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which is quasi-polynomial, whereas the security is in (eO((log n)2) T
2poly(n) , T ). So

the Russian Dolls construction will be quite efficient and secure.
In practice, the optimal number of iterations is determined the following way.

Assume that s iterations have been made, and we want to know whether the
following iteration will increase or decrease the size of the key (we suppose that
the loss of security coming from the next iteration is negligible). Up to now,
the number of bits needed to store one of the functions constituting the key is

n
2s−1 ·2

n

2s−1 . Iterating the construction one more time would require to instantiate
each of these functions with Feistel schemes with rs+1 rounds, where rs+1 verifies
Equ. 3. Hence the storage requirements for each function would become rs+1 ·
n
2s · 2

n
2s . Consequently, it is unfavourable to iterate again as soon as

rs+1 ·
n

2s
· 2 n

2s ≥ n

2s−1 · 2
n

2s−1 , i.e. rs+1 ≥ 2
n
2s +1 .

4.4 Concrete Instantiations

We give now some concrete values for the parameters (n, s, ri). We describe
a block cipher with 128-bit blocks, hence n = 64. We aim roughly at 80-bit
security, meaning that the cipher has to be a (T/280, T )-secure SPRP. After
some optimizations, one can verify that s = 5 iterations, with the following
number of rounds: r1 = 6, r2 = 7, r3 = 10, r4 = 16 and r5 = 28, is optimal and
gives the desired level of security. The size of the expanded key, constituted of
functions from 4 bits to 4 bits, is

log2(|K|) = 6× 7× 10× 16× 28× 4× 24 � 1.5 MB ,

which is quite practical. Note however that stopping at s = 4 iterations (with
the same number of rounds r1 to r4) yields an expanded key size of � 1.7 MB,
which is close to the previous size. Yet the resulting block cipher would be much
faster as the number of table accesses to encrypt or decrypt one plaintext would
only be 6× 7× 10× 16 = 6, 720 instead of 6× 7× 10× 16× 28 = 188, 160, which
shows that trade-offs are possible.

Key Schedule. It is arguable that such a block cipher as we just described
would be implemented using pseudorandom bits for the expanded key. We did not
consider this problem in details and expect that a provably secure pseudorandom
number generator, such as BBS [8] or QUAD [6] would be used to expand a
smaller key. It may even be possible to design a key expansion procedure relying
itself on the Russian Dolls construction with PRFs rather than PRPs. Besides,
we’d like to underline that the nonexistence of short keys may be turned into
an advantage in some cases, particularly in a white-box context of operation [9].
We leave this as topics for further research.

5 Conclusion and Further Work

We described a general recursive strategy enabling to build secure PRFs or PRPs
and applied this design approach with random balanced Feistel schemes in order
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to obtain symmetric primitives provably secure under plausible conjectures about
generic attacks on random Feistel schemes. The schemes we obtain look very
promising: the size of the expanded key required for our proposed constructions
is of the order of 1 MB, and hence compares very favorably with other proposals
of provably secure block ciphers such as KFC which may require in extreme
cases up to 4 GB of expanded key. Moreover our schemes should be very fast in
software as they require only XOR operations and table look-ups.

Other structures are potentially very interesting to use inside the Russian
Dolls construction. In the case of PRP constructions, unbalanced Feistel schemes
could be suitable. They have been studied in [15,30,31] and could lead to ex-
panded key size savings and efficiency improvements. Such schemes are currently
under investigation.

Finally, proving results in the vein of Conjecture 1 may be very difficult be-
cause of its connexions with the “P vs. NP” problem. However it may be possible
to obtain more restricted security results by considering weaker models of adver-
sary (such as iterated attacks of order d). Such results would greatly reinforce
the confidence in the primitives based on the Russian Dolls construction. Ex-
ploring new kinds of attacks on random Feistel schemes (e.g., by studying the
cycle structure of the permutation) might also be a fruitful avenue of research.
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Abstract. The difficulty of the elliptic curve discrete logarithm prob-
lem (ECDLP) underlies the attractiveness of elliptic curves for use in
cryptography. The index calculus is a lifting algorithm that solves the
classical finite field discrete logarithm problem in subexponential time,
but no such algorithm is known in general for elliptic curves. It turns out
that there are four distinct lifting scenarios that one can use in attempt-
ing to solve the ECDLP; the lifting field may be a local field or a global
field, and the lifted points may be torsion points or nontorsion points.
These choices lead to four quite different ways to try to solve the ECDLP
via lifting. None of these approaches has led to a solution to the ECDLP,
but each method has its own reasons for failing to work. In this article I
survey the four ways of lifting the ECDLP, explain their similarities and
their differences, and describe the distinct roadblocks that arise in each
case.

Introduction

The elliptic curve discrete logarithm problem (ECDLP) has attracted consider-
able attention since Neal Koblitz [14] and Victor Miller [20] independently pro-
posed its use as the basis for crytography. To date, the best general algorithms
for ECDLP are no better than the square root algorithms which are known to
be best possible for the discrete logarithm problem in a generic group. This is in
marked contrast to the discrete logarithm problem in the multiplicative group
of a finite field, for which subexponential algorithms are known.

A number of writers have considered the possibility of solving the ECDLP by
lifting to either a p-adic (complete local) field such as Qp or to a global field such
as Q, see for example [4,5,12,13,26,27,34,35,36]. In this paper we consider the
general question of lifting as it relates to the ECDLP. In particular, we observe
that there are four, quite distinct, lifting scenarios, depending on whether the
lifting field is local or global and whether the lifted point is torsion or nontorsion.
This leads to four surprisingly different ways to try to solve ECDLP via lifting.
(Actually, five different methods, because the global/nontorsion approach comes
in two different flavors.) As we will see, none of these approaches has led to a
solution to ECDLP, but as we will also see, the reasons for their failures are
quite varied.
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Disclaimer. This article is a survey that draws together a number of threads
and attempts to present them in a unified and coherent manner. I have en-
deavored to give credit as appropriate and I apologize to anyone who may feel
slighted. Uncredited results are mostly elementary, well-known to experts in the
field, and have undoubtedly been discovered and rediscovered by numerous re-
searchers over the past couple of decades, although many have not previously
been published.

1 ECDLP and Lifting Problems

In this section we state the ECDLP and various sorts of lifting problems and
briefly indicate how each lifting problem might be used to solve ECDLP and why
each turns out not to give a practical algorithm. The remainder of this article
gives further details and works out several numerical examples that illustrate
what is realistically computable and what is not. For ease of exposition, these
examples are done with small numbers (e.g., we often consider the ECDLP
over F257), but except as noted, all computations that we perform over F257 can
be done for cryptographically useful finite fields containing between 2130 and
2400 elements.

We do not review the basic theory of elliptic curves or elliptic curve cryptog-
raphy. The reader will find this material amply covered in [2,6,11,21,25,37] and
in numerous other books and articles.

We generally let k denote a finite field and K a local or global field to which
we lift. Continuing this convention, we use lower case letters to denote quantities
defined over the finite field k and the corresponding upper case letters to denote
the lifted quantities defined over the local or global field K.

We now state the two problems whose interconnections lie at the heart of our
investigation.

Definition 1. Let e be an elliptic curve defined over a finite field k and let s
and t be points in e(k). Assuming that t is in the group generated by s, the
Elliptic Curve Discrete Logarithm Problem (ECDLP) is the problem of finding
an integer m such that t = ms.

Definition 2. Let e/k be an elliptic curve and let s1, . . . , sr ∈ e(k). The Lifting
Problem for (k, e, s1, . . . , sr) is the problem of finding the following quantities :

– a field K with subring R.
– a maximal ideal p of R satisfying R/p ∼= k.
– an elliptic curve E/K satisfying E mod p ∼= e.
– points S1, . . . , Sr ∈ E(K) satisfying Si mod p = si for 1 ≤ i ≤ r.

Remark 1. There are many variants of the lifting problem, including:

A. Given e/k, find a lift E/K of e/k and an algorithm that is able to (efficiently)
lift some sizable collection of the points in e(k) to points in E(K).
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Table 1. ECDLP Options for Lifting Points

Lift to Torsion Point Lift to Nontorsion Point

p-adic
• preserves unique relation
• computationally feasible
• cannot move to formal group

• does not preserve relation
• can move to formal group
• easy to compute

Global
• preserves unique relation
• computationally infeasible
• can move to complex numbers

• can find E(K) � E(k), hard to lift
• can lift (up to 9) points, hard to

make them dependent

B. Lifting (k, e, s1, . . . , sr) with the added restriction that E(K) is a finitely
generated group of rank strictly less than r.

C. Lifting (k, e, s1, . . . , sr) with the added restriction that the lifted points
S1, . . . , Sr are torsion points.

Roughly speaking, we can divide the lifting problem into four cases, depending
on whether the field K is local or global and depending on whether the lifted
point(s) are torsion or nontorsion. This separation into four cases may appear,
at first glance, to be somewhat artificial, but as we shall see, each case offers a
different path leading to a solution of ECDLP.

Thus suppose that we are given an ECDLP (k, e, s, t) whose solution is t = ms.
It is very easy to find a lift (K, E, S, T ) to a local field K with torsion points S
and T that satisfy the same relation T = mS, but this does not seem to help
in finding m. On the other hand, if we could instead lift to torsion points in
a global field, then we could solve ECDLP using Diophantine approximation.
Unfortunately (or fortunately, depending on your point of view), it does not
seem to be feasible to lift to torsion points in a global field because the degree
of the field will necessarily be very large.

It is also quite easy to lift to nontorsion points S and T in a local field. The
problem with this scenario is that there are many different lifts and it appears to
be hard to lift while preserving the relation T = mS. If we could find a relation-
preserving lift to nontorsion points, then it would be easy to solve ECDLP by
moving to the formal group. (More precisely, let n be the order of the point
s ∈ e(k) and rewrite the relation as nT = mnS, then nS and nT are in the
formal group, so it is easy to find m using the formal logarithm.) Finally, there
are two approaches to lifting to nontorsion points over a global field K. First,
we can easily find E/K with a lift of s to S ∈ E(K). If we could also find
T ∈ E(K) satisfying T = mS, then we could use height functions or descent
theory to recover m and solve ECDLP. But it appears to be very difficult to
find T . Second, we can easily find a lift of (k, e, s, t) to (K, E, S, T ), but then
it will almost always be true that S and T are independent points in E(K), so
they do not satisfy the relation T = mS and cannot be used to solve ECDLP.

The preceding discussion is summarized in Table 1. The remainder of this
article is devoted to expanding on these preliminary remarks.
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2 Lifting to a p-adic Nontorsion Point

Let e/k be an elliptic curve defined over a finite field k and let s ∈ e(k). Let K
be a complete local field with ring of integers R, maximal ideal p, and residue
field R/p = k. The reduction map E(K)→ e(k) is surjective [30, VII.2.1] , and
indeed there is an exact sequence

0 −→ E1(K) −→ E(K) −→ e(k) −→ 0. (1)

Hensel’s lemma provides an efficient method to calculate a lift of s to E(K).
(There are even more efficient methods, but Hensel’s lemma suffices for our
purposes.) Here is the basic idea.

Hensel’s Lemma: Let e/k and E/K be elliptic curves given by Weierstrass equa-
tions

e : f(x, y) = y2 + a1xy + a3y − x3 − a2x
2 − a4x− a6 = 0,

E : F (X, Y ) = Y 2 + A1XY + A3Y −X3 −A2X
2 −A4X −A6 = 0,

with E mod p = e, and let s = (x1, y1) ∈ e(k) be a point to be lifted. Also let π
be a generator of the ideal p. Define a sequence of points (Xi, Yi) satisfying

F (Xi, Yi) ≡ 0 (mod pi), i = 1, 2, 3, . . . , (2)

as follows:

– Choose any (X1, Y1) ∈ R2 satisfying X1 mod p = x1 and Y1 mod p = y1.
Note that (X1, Y1) satisfies (2).

– Suppose that (Xi, Yi) has been chosen and satisfies (2). Choose u, v ∈ R
satisfying

F (Xi, Yi)
πi

+
∂F

∂X
(Xi, Yi)u +

∂F

∂Y
(Xi, Yi)v ≡ 0 (mod p) (3)

and set
Xi+1 = Xi + πiu and Yi+1 = Yi + πiv.

The nonsingularity of e ensures that one of the partial derivatives is nonzero
modulo p, so there will be many choices for u, v ∈ R.

– Repeat the previous step to construct a sequence of points (Xi, Yi) that
reduce modulo p to s, that satisfy F (Xi, Yi) ≡ 0 (mod pi), and that converge
to a point S ∈ E(K) lifting s.

Remark 2. Notice that the Hensel construction does not yield a particular lift S
of s. Instead, at each step, it is necessary to choose values u, v ∈ R satisfying (3).
In practice, only the values of u and v modulo p matter, and the value of v mod p
is determined by the value of u. Thus for each Si = (Xi, Yi), there is one lift Si+1
for each value of u in R/p. In other words, the set of lifts of s ∈ e(k) to S ∈ E(K)
is parameterized by R, with the lifts modulo pi being parametrized by R/pi. In
particular, if k is a large field, then even the set of lifts modulo p2 is large.
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Remark 3. Suppose that t = ms and that we are searching for the value of m. As
explained above, we can lift e, s, and t to a curve E/K and points S, T ∈ E(K).
Suppose that we manage to do this while maintaining the initial relation, i.e.,
T = mS. The kernel of the reduction-modulo-p map, which we denote E1(K),
is called the formal group, and there is an exact sequence

0 −→ E1(K) −→ E(K)
red mod p−−−−−−→ e(k) −→ 0.

We know that ns = nt = 0, so nS and nT are in E1(K). The significance of this
lies in the fact that the formal group comes equipped with an easily computable
formal logarithm homomorphism

logf
E : E1(K) −→ K+.

(See [30, chapter IV] for information about formal groups and formal logarithms.)
We apply the formal logarithm to the relation T = mS. Since logf

E is a
homomorphism, we find that

logf
E(T ) = m logf

E(S).

This allows us to solve for the discrete logarithm

m =
logf

E(T )

logf
E(S)

,

unless we are unlucky and logf
E(S) = 0. Further, it is not hard to prove that for

a given s, most lifts S satisfy logf
E(S) �= 0.

So why does local-nontorsion lifting fail to solve the ECDLP? The answer lies in
our requirement that the lifted points S and T satisfy T = mS. Assume for the
moment that we have already lifted s to a point modulo p2. Then among the
many possible lifts of t modulo p2, only one of them satisfies the relation T ≡
mS (mod p2). So the difficulty of using local-nontorsion lifts to solve the ECDLP
is that there are too many lifts, and there is no way known1 to consistantly lift
two points so as to preserve the desired relation.

We illustrate with a small numerical example.

Example 1. We let p = 257 and consider the field k = F257 and the elliptic curve
and point

e : y2 = x3 + 23x + 11, s = (7, 1) ∈ e(k).

It is easy to check that #e(k) = 249 = 3 ·83 and that s has order n = 83 in e(k).
We lift e to a p-adic curve E in the obvious way,

E : Y 2 = X3 + 23X + 11.

We will lift s to a point S mod p2.
1 This is not strictly true; see Section 3 on local-torsion lifts. What we should say is

that there is no way known to lift to nontorsion points satisfying T = mS.
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We write S in the form

S = (7 + pu, 1 + pv) mod p2.

In order for S to represent a point on E modulo p2, we need

(1 + pv)2 ≡ (7 + pu)3 + 23(7 + pu) + 11 (mod p2).

Expanding this gives

1 + 2pv ≡ 515 + 170pu (mod p2),

so we find that v ≡ 85u + 1 (mod p). Thus S has the form

S = (7 + pu, 258 + 85pu) = (7 + 257u, 258 + 21845u) (mod 2572). (4)

This gives the complete set of lifts of s modulo p2 with each value of u mod p
giving a distinct lift.

Now fix a particular mod 2572 lift of s, say S = (7, 258), and consider a
second point t = (150, 14) ∈ e(k). The ECDLP for (e, s, t) asks us for the integer
0 ≤ m < 83 such that t = ms in e(k). (The solution turns out to be m = 54,
but we will suppose we do not know the answer.) The lifts of t modulo 2572 are
given by the formula

T = (150+pu, 61694+72pu) = (150+257u, 61694+18247u) (mod 2572), (5)

where we are free to choose any u mod 257. Unfortunately, for most choices of u
we have T �= mS (mod 2572), so for most choices of u we lose the relation
that we are seeking. For example, if we take the obvious lifts S = (7, 258) and
T = (150, 61694), then

54S ≡ (24565, 25971) �≡ T (mod 2572).

Indeed, for these lifts the smallest solution to T ≡ mS (mod 2572) is T = 11093S
(mod 2572).

It turns out that the “correct” choice for u in (5) is u = 95. Then we get
the point T = (15570, 33681) mod 2572, and this point T does satisfy T = 54S
(mod 2572). Further, if we know the point T = (15570, 33681), we can use the
formal logarithm to compute as follows.

It turns out to be easier to do computations if we make the change of variables
Z = −X/Y and W = −1/Y . This brings the identity element to (Z, W ) = (0, 0),
and the equation of our curve becomes W = Z3 + 23ZW 2 + 11W 3. The formal
logarithm for E starts logf

E(Z) = Z + 23Z7 + · · · , so since we are working mod-
ulo 2572, it suffices to use logf

E(Z) ≈ Z. We first compute (in (Z, W ) coordinates)

83S = (24 · 257 mod 2572, 203 · 2573 mod 2574),

83T = (11 · 257 mod 2572, 46 · 2573 mod 2574).
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Then
logf

E([83]T )

logf
E([83]S)

=
11 · 257
24 · 257

≡ 54 (mod 257)

yields the discrete logarithm m = 54 that solves t = ms.
Of course, for p = 257 it was not hard to find the right value for u. But if

p = 257 is replaced by a large prime, say p ≈ 2160, then there is no efficient
algorithm known for selecting a “correct” value of u, i.e., a value of u for which
T = mS (mod p2).

Remark 4. We have just said that there is no efficient way to lift modulo p2 to
points S and T while maintaining the relation T = mS, but this is not entirely
true. There are actually two situations in which we can perform this lift . The
first is when we lift to points S and T that have the same order modulo p2 as s
and t have modulo p. We discuss this situation in more detail in the next section,
but we note here that this is the one case in which we cannot multiply S and T
by n and still get useful information.

The other situation in which nontorsion local lifting does work and leads to an
essentially linear-time solution to the ECDLP is the case that n = #E(Fp) = p.
Elliptic curves with this property are called anomalous. In this case s and t have
order p, but if we lift them to points S and T modulo p2 such that S and T
do not have order p, then it turns out that [p]S and [p]T automatically satisfy
T = [m]S (mod p2). The reason is that if S′ and T ′ are some other lifts, then
S − S′ and T − T ′ are in the formal group, so

[p](S − S′) ≡ O (mod p2) and [p](T − T ′) ≡ O (mod p2).

For details see [26,27,36]. Thus anomalous curves are not suitable for use in
cryptography.

Remark 5. In Example 1 we considered the problem of lifting modulo p2. For
ease of exposition we restricted attention to p2, but we note that it is easy to
repeat the process and lift to higher powers of p. For example, if we take u = 0
in (4), then S = (7, 258) and we can work modulo 2573 to find the collection of
lifts

S′ = (7 + p2u, 8454530 + 85p2u) (mod 2573).

Continuing in this way, we can lift s to any desired level 257i as long as we can
perform basic arithmetic with numbers of size 257i. At each stage we have 257
choices for the next lift.

3 Lifting to a p-adic Torsion Point

Let e/k be an elliptic curve defined over a finite field k and let s ∈ e(k). Let K be
a complete local field with ring of integers R, maximal ideal p, and residue field
R/p = k. The order n of the point s divides #e(k). In this section we consider
the question of lifting s to a point S ∈ E(K) that also has finite order n. We
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have seen in Section 2 that there are many ways of lifting s to E(K), so there are
questions of both existence and uniqueness. Both are answered by the following
well-known result.

Theorem 1. Let e/k, E/K, and s ∈ e(k) be as above, and assume that the
order n of s is not divisible by the characteristic p of k. Then there exists a
unique n-torsion point S ∈ E(K) satisfying S mod p = s.

Proof. We begin with uniqueness. Suppose that S, S′ ∈ E(K) are both n-torsion
points that lift s. Then T = S − S′ is an n-torsion point that reduces of zero,
and now our assumption that p � n implies that T = O; see [30, VII.3.1b]. Hence
S = S′.

Let E be given by a minimal Weierstrass equation

E : F (X, Y ) = y2 + A1xy + A3y − x3 −A2x
2 −A4x−A6 = 0.

Thus A1, . . . , A6 ∈ R and the discriminant Δ ∈ R∗, since by assumption the
reduction E mod p = e is nonsingular. The nth division polynomial of E is a
polynomial

ψn(X) = n2X(n2−1)/2 + · · · ∈ Z[A1, . . . , A6][X ]

whose roots are the x-coordinates of the n-torsion points of E. (Strictly speaking,
this is only true if n is odd, otherwise a polynomial of a slightly different form is
required.) Further, the discriminant of ψn(X) has the form nαΔβ , so in particular
Disc(ψn) ∈ R∗. (Another way to see this last fact is to use the earlier observation
that the n-torsion of E injects under reduction, hence the roots of ψn(X) remain
distinct modulo p′ for every extension K ′ of K, hence its discriminant is relatively
prime to p.)

We are given that s = (x0, y0) is an n-torsion point in e(k), so x0 is a root of
ψn(X) ≡ 0 (mod p). Further, it is a simple root (i.e., ψ′

n(x0) �≡ 0 (mod p)), so
Hensel’s lemma tells us that there is a (unique) X0 ∈ R satisfying

X0 ≡ x0 (mod p) and ψn(X0) = 0.

Finally, we use the fact that F (X0, Y ) ≡ 0 (mod p) has the root Y ≡ y0 (mod p)
and use Hensel’s lemma to find aY0 ∈ R satisfying Y0 ≡ y0 (mod p) and F (X0, Y0)
= 0. Then S = (X0, Y0) is an n-torsion point in E(K) lifting s ∈ E(k). ��

Remark 6. Theorem 1 assures us that every s ∈ e(k) of order n can be lifted
to an n-torsion point S ∈ E(K), where K is a complete local field with residue
field k. However, the proof relies on properties of the division polynomial ψn(X).
If n is large, then it is not feasible to explicitly compute ψn, since ψn has degree
(n2 − 1)/2. Luckly, there is a more direct way to compute the lift. Roughly
speaking, we look at the one-parameter family of lifts, and then the condition
that S have finite order gives a linear equation for the parameter. The next
example illustrates the process.
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Example 2. We continue with Example 1. The formula for S,

S = (7 + pu, 258 + 85pu) = (7 + 257u, 258 + 21845u) (mod 2572),

gives a one-parameter collection of lifts of s. That is, we get one lift modulo 2572

for each value of u. We now add the condition that83S ≡ 0 (mod p2) and use it to
pin down a precise value for u. The easiest way to exploit this condition is to write
it as 41S ≡ −42S (mod p2). It may seem difficult to compute a large multiple
of S when S involves the indeterminate quantity u. However, the variable u
appears as pu, so its square modulo p2 is 0. Hence we never need to deal with
general polynomails in u. The only expressions that appear have the form α+βpu
with 0 ≤ α < p2 and 0 ≤ β < p. Thus the usual elliptic curve addition formula
and general methods for computing large multiples (e.g., by binary expansion of
the multiplier) work quite well. The results in our case are

41S ≡ (59609 + 12336u, 39178+ 44718u) (mod 2572),

−42S ≡ (40334 + 24415u, 27099+ 63736u) (mod 2572).

The congruence 41S ≡ −42S (mod 2572) leads to the two congruences

x(41S)− x(−42S)
257

≡ −47u + 75 ≡ 0 (mod 257),

y(41S)− y(−42S)
257

≡ −74u + 47 ≡ 0 (mod 257).

These congruences have the solution u ≡ 18 (mod 257). Of course, it is no
coincidence that there is a simultaneous solution. Substituting into the formula
for S yields the unique point

S = (4633, 63223) = (7 + 18 · 257, 1 + 246 · 257) (mod 2572)

satisfying

S ∈ E (mod 2572), S ≡ (7, 1) (mod 257), 83S ≡ 0 (mod 2572).

We apply the same process to the point t = (150, 14) from Example 1. We find
that T = (150+pu, 14+pv) is on the curve modulo p2 if and only if v = 71u+240,
so the full set of lifts is T = (257u + 150, 18247u + 61694). We now impose the
condition 83T ≡ O (mod p2) in the form 41T ≡ −42T . This leads to u = 47
and T = (12229, 60666). Then T has order 83 modulo p2, and one can check
that T ≡ 54S (mod 2572). However, we cannot ascertain this last formula by
computing 83S and 83T and working in the formal group, because both 83S
and 83T are zero modulo 2572. And there is no known way to efficiently use the
mod 2752 lifts to compute the discrete logarithm 54 without first moving into
the formal group.
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4 Lifting to a Global Torsion Point

As we saw in Section 3, if we lift points s, t ∈ e(k) to torsion points S, T ∈ E(K),
then the relation t = ms is preserved as T = mS. However, lifitng to a local
field did not help to compute m. In this section we observe that if we can lift to
torsion points defined over a global field, for example Q or a number field, then
it is compartively easy to find m from S and T . For example, we can reduce
modulo many small primes q and find the value of m modulo #E(Fq).

However if we try to lift to torsion points defined over Q or a number field,
then we run into a severe restriction.

Theorem 2. (Mazur [17], Merel [18]) Let E/Q be an elliptic curve and let
P ∈ E(Q)tors. Then P has order at most 12.

More generally, for any d ≥ 1 there is a bound C(d) so that if K/Q is a number
field of degree d and E/K is an elliptic curve with torsion point P ∈ E(K)tors,
then P has order at most C(d).

We can also turn the question around. Thus we lift e to an elliptc curve E, say
defined over Q, and we ask how large a number field K is needed in order to get
an n-torsion point in E(K). The asymptotic answer is provided by a theorem of
Serre.

Theorem 3. (Serre [28,29]) Let E/Q be an elliptic curve. There is a constant
c = c(E) > 0 so that for all integers n ≥ 2 and any number field K such that
E(K) has a torsion point of exact order n, we have

[K : Q] ≥ c# GL2(Z/nZ) ≈ cn4.

Since for cryptographic applications we need points whose order is between 2160

and 2320, the theorems of Mazur, Merel, and Serre make it unlikely that lifting
to torsion points over global fields will lead to a workable attack on the ECDLP,
since it is not feasible to write down such points or to work in the fields over
which they are defined.

5 Lifting to a Global Nontorsion Point

The index calculus is the most powerful method known for solving the classical
discrete logarithm problem in the multiplicative group of a finite field. Miller’s
original article [20] briefly mentions some of the difficulties in extending the index
calculus to elliptic curve groups. A more detailed analysis is given in [35]. We
briefly summarize the results in Section 5.2. An alternative approach to solving
the ECDLP tries to force curves to have low rank rather than using curves of
high rank. This method, dubbed the xedni calculus, is described in Section 5.3.
In the final section we briefly mention another unsuccessful global nontorsion
lifting method that exploits the covering of elliptic curves by modular curves
and the existence of special points called Heegner points on modular curves.
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5.1 Canonical Heights and Global Lifting

The group of rational points E(K) on an elliptic curve over a number field has
a canonical height function

ĥ : E(K) −→ [0,∞)

possessing a number of very nice properties. (See, e.g., [30, VIII §9] for basic
material on ĥ.) It has been suggested that the existence of the canonical height
in some way protects the ECDLP from index calculus methods. In this section
we explain why we feel that the mere existence of the canonical height does
not, in and of itself, imply that ECDLP should be hard. Our reason for this
assertion is that canonical heights exist in a wide variety of situations, including
some such as the classical DLP for which the index calculus does work. We then
briefly indicate what we feel is the real reason that the index calculus does not
work on elliptic curves. A more complete discussion is given in the next section.

In general terms, a canonical height on an abelian group G is a function

ĥ : G −→ [0,∞)

with the following four properties:

Power Rule. There is a constant d > 0 such that

ĥ(nα) = |n|dĥ(α) for all n ∈ Z and α ∈ G.

Addition Rule. There is a constant c1 = c1(G) > 0 such that

ĥ(α + β) ≤ c1
(
ĥ(α) + ĥ(β)

)
for all α, β ∈ G.

Normalization. For any α ∈ G, let |α|H denote the number of bits it takes to
describe the element α. (The “H” stands for Hamming weight.) There are
constants c2 = c2(G) > 0 and c3 = c3(G) > 0 such that

c2|α|H ≤ ĥ(α) ≤ c3|α|H for all α ∈ G.

Finiteness. For any bound B, the set {α ∈ G : ĥ(α) < B} is finite.

We have the following well-known result, which is a version of Fermat’s method
of descent.

Proposition 1. Let G be an abelian group. Suppose that there exists a canonical
height on G. Further suppose that the quotient group G/nG is finite for some
integer n ≥ 2. Then the group G is finitely generated.

More precisely, suppose that G/nG is finite for some integer n satisfying nd >
2c1, where d and c1 are the constants appearing in the power rule and the addition
rule for ĥ, respectively. Choose coset representatives

α1, α2, . . . , αt for G/nG.

Then the finite set {
α ∈ G : ĥ(α) ≤ max

1≤i≤t
ĥ(αi)

}
(6)

generates G.
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Table 2. Canonical height on multiplicative and elliptic curve groups

Multiplicative Group Elliptic Curve

Power Rule ĥ(αn) = |n|ĥ(α) ĥ(nP ) = n2ĥ(P )

Addition Rule ĥ(αβ) ≤ ĥ(α) + ĥ(β) ĥ(P + Q) ≤ 2ĥ(P ) + 2ĥ(Q)

Normalization Standard Standard

Proof. We prove the second part and leave the first part as an exercise (or see
any standard text). Let S denote the set (6), let GS denote the subgroup of G

generated by S, and let M = maxi ĥ(αi). We suppose that GS �= G and we
choose an element α ∈ G \GS of minimal canonical height. Notice in particular
that ĥ(α) > M . The image of −α in G/nG is represented by one of the αi’s, say

−α ≡ αk (mod nG).

This means that −α = αk − nβ for some β ∈ G. We compute

ndĥ(β) = ĥ(nβ) = ĥ(α + αk) ≤ c1
(
ĥ(α) + ĥ(αk)

)
≤ c1

(
ĥ(α) + M

)
≤ 2c1ĥ(α).

Thus ĥ(β) ≤ (2c1/nd)ĥ(α) < ĥ(α), so by assumption we have β ∈ GS . Thus
β =

∑
i miαi for some mi ∈ Z, which in turn implies that

α = nβ − αk = n
∑

i

miαi − αk ∈ GS ,

contradicting the assumption that α /∈ GS . This proves that GS = G, and hence
that S generates G. ��

The part of the definition that makes the height “canonical” is the power rule. If
the height function only satisfies ĥ(gn)�� |n|dĥ(g), one can still easily deduce
the conclusion of Proposition 1 that G/nG is finitely generated, although the
actual set of generators will be somewhat different.

It is not only elliptic curves that have a canonical height. The ordinary mul-
tiplicative group of Q, or more generally of a number field, also has a canonical
height. Indeed, the standard Weil height

h
(a

b

)
= log max{|a|, |b|}, a, b ∈ Z, gcd(a, b) = 1,

is a canonical height on Q∗. Table 2 gives a point-by-point comparision of the
canonical heights on multiplicative groups and elliptic curves and shows how
they are analogous.

Since we know that the index calculus works when we lift from the multi-
plicative group F∗

p to (finitely generated subgroups of) the multiplicative group
of Q∗, it does not seem that the mere existence of the canonical height prevents
index calculus methods from working on elliptic curves. We must look elsewhere
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for the reason. We give a detailed discussion in the next section, but briefly we
point out here the following dichotemy that gives a clear distinction between the
two situations.

Consider first a finitely generated subgroup of Q∗, say the subgroup

G = 〈p1, p2, p3, . . . , pr〉

generated by the first r primes. Similarly, let E/Q be an elliptic curve whose
Mordell–Weil group is given by

E(Q) = 〈P1, P2, . . . , Pr〉.

In both situations, the canonical height lets us work with linear combinations of
the generators. However, when we look at the actual sizes of the generators, we
find (assuming some standard conjectures) a striking difference:

max
1≤i≤r

ĥ(pi) ≈ log r and max
1≤i≤r

ĥ(Pi)� r log r.

Thus it is quite reasonable to work with subgroups of Q∗ of rank (say) 106 or 107,
since the Hamming weight of the generators is not very large. But it would be
difficult to deal with elliptic curves of such high rank, even if one knew how
to find them. Further, there are other conjectures predicting that for “most”
elliptic curve, maxi ĥ(Pi) actually grows exponentially in r. Thus it is not the
canoncial height, per se, that “protects” elliptic curves from the index calculus.
Rather, it is the fact that generating sets for elliptic curve groups have heights
(i.e., Hamming weights) that are at least exponentially larger than those for
multiplicative groups.

5.2 Elliptic Curves and the Index Calculus (Hard Lift Method)

Let (k, e, s, t) be an ECDLP whose solution t = ms we seek. We also let n denote
the order of s (and t) in the group e(k). The idea of the index calculus is to find
a number field K and a lift (K, E) of (k, e) for which it is possible to solve the
lifting problem

E(K) −→ e(k)

for some reasonable fraction of the points in e(k). One way to do this might be
to choose E so that the group E(K) has large rank. Of course, the Mordell–Weil
theorem tells us that E(K) has finite rank, and indeed for any given field K, it
appears to be very difficult to find elliptic curves of very large rank. In any case,
we start by showing that if this lifting problem can be solved, then ECDLP can
similarly be solved.

Theorem 4. Let K be a number field and let (K, E) be a lift of (k, e). Let A be
an algorithm that, given a point u ∈ e(k), has an ε-probability of finding a lift
U ∈ E(K) of u. Then there is an algorithm that solves the ECDLP for e(k) in
time O(ε−1). (The implied constants depend on K and E.)
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Proof. Let r be an upper bound for the rank of the Mordell–Weil group E(K).
An upper bound can be given explicitly in terms of the coefficients of E and
the discriminant of the field K. (The methods in [30, chapter 10] can easily be
used to derive such a bound, or see [23] for a general formulation. The upper
bound for r is logarithmic in the coefficients and discriminant of K, so tends to
be fairly small.)

Let (k, e, s, t) be an ECDLP to be solved. Choose at random 2(r+1)ε−1 pairs
of integers (a, b) and for each pair compute the point

as− bt ∈ e(k).

Applying the algorithm A to each of these points, we expect to lift at least r + 1
of them. Let

ui = ais− bit ∈ e(k), 0 ≤ i ≤ r,

be the points that we are able to lift and let Ui ∈ E(K) be the lift of ui.
The fact that E(K) has rank at most r implies that the points U0, . . . , Ur are

dependent. Further, it is generally possible to find an equation of dependency

m0U0 + m1U1 + · · ·+ mrUr = 0 in E(K). (7)

More precisely, we can find the dependence relation using either the theory of
canonical heights or the theory of descent. See [34] and the references listed there
for details, but as a practical matter we observe that the method will generally
work in time that is polynomial in the number of bits in the description of E, K,
and U0, . . . , Ur.

Having produced a relation (7) over the global field K, we use the reduction
map E(K)→ e(k) to deduce the relation

m0u0 + m1u1 + · · ·+ mrur = 0 in e(K).

Substituting Ui = ais− bit and rearranging terms gives( r∑
i=0

miai

)
s =

( r∑
i=0

mibi

)
t in e(k).

In other words, we have a relation As = Bt with A, B ∈ Z. Further, there is a
reasonable probability that B will be relatively prime to n. (In practice, n will be
a large prime, in which case B is almost certainly prime to n.) Multiplying the
relation As = Bt by B−1 mod n yields the solution ms = t to the ECDLP. ��

We next formulate a general notion of an index calculus for a group and relate
it to the ideas described in the proof of Theorem 4.

Definition 3. Let G be a (finitely generated abelian) group. The relation prob-
lem on G is the problem of finding, for a given set {U0, U1, . . . , Ur} of dependent
elements of G, a nontrivial relation

m0U0 + m1U1 + · · ·+ mrUr = 0.
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Definition 4. An index calculus for a finite group g is a finitely generated
group G for which the relation problem can be efficiently solved, a (surjective)
homomorphism

π : G −→ g,

and an algorithm that has an ε-probability of lifting an element of g to an element
of G.

Example 3. Let G is the subgroup of Q∗ generated by the first n primes, say for
n = 105 or n = 106. It is relatively easy to check if an element of Q∗ is in G,
and it is also not hard to solve the relation problem for elements of G. Finally,
let Fp be a finite field with p elements and consider the reduction map

G −→ F∗
p.

For primes p of an appropriate size, there is a nontrivial probability that elements
of F∗

p, lifted into the interval [0, p−1], will lie in G. Thus there is an index calculus
for F∗

p.

Example 4. We let p = 257 and consider the curve and points

e : y2 = x3 + 23x + 11, s = (7, 1) ∈ e(F257), t = (140, 71) ∈ e(F257).

It is not hard to find a lift E/Q such that S = (7, 1) ∈ E(Q), for example

E : Y 2 = X3 + 23X − 503, S = (7, 1) ∈ Ê(Q).

In this example it is likely that rankE(Q) = 1 and that the reduction map
E(Q) → e(F257) is surjective, so there are points T ∈ E(Q) whose reduction is
t = (140, 71). If we can find such a T , then it is relatively easy to express T as
a multiple of S, and hence to solve the ECDLP for s and t. However, although
such T exist, there are no known algorithms that efficiently find a T . For this
example it turns out that the least complicated value of T ∈ E(Q) satisfying
T ≡ t (mod 257) is the point

T =
(

62394310869880049863559
8736078981416085105625

,
4130665692373765369756729240437877
816535042394749261677147624171875

)
.

Further, we are lucky that T is so uncomplicated, since it happens that T = 5S.
If instead T were equal to, say, 51S, then its coordinates would require numbers
with thousands of digits.

Now let G be the group of points E(Q) of an elliptic curve. As we observed
during the proof of Theorem 4, there are efficient algorithms based on canonical
heights and on descent theory for solving the relation problem in E(Q). Further,
for a given elliptic curve e/Fp, it is not hard to find a lift E/Q such that the
reduction map is surjective, and one can even force the rank of E(Q) to be
larger than one. (However, it is not known if the rank can be arbitrarily large;
the current record for the rank of E(Q) is less than 30.) Thus if one could find an
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efficient algorithm A that had an ε-probability of lifting the map E(Q)→ e(Fp),
then one would have an index calculus and be able to solve ECDLP.

We now briefly sketch the reasons why such an algorithm is unlikely to exist.
Our material is taken from [20] and [35] and we refer the reader to those sources
for further details. For simplicity, we restrict attention to an elliptic curve e
defined over a finite field Fp and a lift of e to an elliptic curve E/Q. In order
to have an index calculus, we need to find an efficient algorithm A that lifts a
significant number of the points of e(Fp) to points in E(Q).

The complexity of a point P ∈ E(Q) is measured by its canonical height ĥ(P ),
so we suppose that A lifts points in e(Fp) into the set

EB(Q) = {P ∈ E(Q) : ĥ(P ) ≤ B}.

(See [30, VIII §9] for basic material on canonical heights and [31,33] for compu-
tational methods.) A conjecture of Lang (proven in many cases, see [10]) says
that ĥ(P ) cannot be too small. A theoretical and experimental analysis given
in [35] shows that at best we can expect

#EB(Q)��
(

c log B

r · log |Δ(E)|

)r/2

,

where r is the rank of E(Q), Δ(E) is the discriminat of E, and c is an explicit
constant.

In order to lift points from e(Fp) into EB(Q), we need #EB(Q) to be a
nontrivial fractional multiple of p. On the other hand, the fact that E is a lift
of e means that log |Δ(E)| � log p, and a theorem of Mestre [19] (conditional on
various standard conjectures) implies that log |Δ(E)| � r log r. The calculations
in [35] then show that if p ≈ 2160 and if we want #EB(Q) ≥ p/210, then we
probably need r ≈ 180 and B ≈ 27830 ≈ p49. The first problem would be to
merely find a curve of rank 180. (Mestre’s work says roughly that the coefficients
of a curve of rank r will be larger than rc′r.) However, even if this problem could
be solved, we still have no way of lifting points from e(Fp) to points in EB(Q).

Remark 7. Although the index calculus does not work on elliptic curves, we
mention that it does work on hyperelliptic Jacobian varieties when the genus is
sufficiently large compared to the order of the field; see [1] for details.

5.3 Elliptic Curves and the Xedni Calculus (Easy Lift Method)

As described in the previous section, an index calculus for a group g involves a
lifting homomorphism G → g such that G is finitely generated and such that
there is an efficient algorithm for lifting many elements of g to elements of G.
Thus in the index calculus scenario, we start with the homomorphism G → g
and then select points to lift. In this section we consider the reverse scenario,
which we dub the xedni calculus (xedni is index reversed). The idea is to first
select the points to be lifted, and then to find an appropriate group into which
to lift them. We begin with an abstract formulation.
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Definition 5. A xedni calculus for a finite abelian group g is an algorithm that
has an ε-probability of taking a set of elements u0, . . . , ur ∈ g and efficiently
finding a finitely generated group G of rank at most r for which the relation
problem can be efficiently solved, a (surjective) homomorphism

π : G −→ g,

and points U0, . . . , Ur ∈ G satisfying π(Ui) = ui.

Proposition 2. Let g be a finite abelian group for which there is a xedni calculus.
Then there is an algorithm to solve the discrete logarithm problem on g.

Proof. Let s, t ∈ g be a discrete logarithm problem to be solved. Choose at ran-
dom integers a0, . . . , ar, b0, . . . , br and apply the given xedni calculus algorithm
to the points

ui = ais− bit ∈ g, 0 ≤ i ≤ r.

The algorithm will probably be successful in fewer than 2/ε attempts. Let
U0, . . . , Ur ∈ G be the lifts of u0, . . . , ur found by the algorithm. The group G
has rank at most r, so U0, . . . , Ur are dependent; and by assumption there is an
efficient method for finding a relation m0U0 + · · ·+ mrUr = 0.

The remainder of the proof is the same as the proof of Theorem 4, so we just
briefly sketch. Substituting and rearranging yields (

∑
i miai)s = (

∑
i mibi)t.

Then multiplying by the inverse of
∑

i mibi modulo the order of s and t gives
the desired relation ms = t. ��
There is a natural way to try to use the xedni calculus to solve the ECDLP. Thus
let e/Fp be an elliptic curve and let u0, . . . , ur ∈ e(Fp). Writing ui = (xi, yi) ∈ F2

p,
we lift the ui to points Ui = (Xi, Yi) ∈ Z2 without regard to the curve.

Suppose that e is given by that Weierstrass equation

e : f(x, y) = y2 + a1xy + a3y − x3 − a2x
2 − a4x− a6 = 0.

Then lifts of e to Q are given by Weierstrass equations

E : F (X, Y ) = Y 2 + A1XY + A3Y −X3 −A2X
2 −A4X −A6 = 0

whose coefficients A1, . . . , A6 ∈ Q are required to satisfy

A1 ≡ a1, A2 ≡ a2, A3 ≡ a3, A4 ≡ a4, A6 ≡ a6 (mod p).

The formulas F (Xi, Yi)=0 for 0 ≤ i ≤ r give r+1 linear equations for A1, . . . , A6,
so as long as r ≤ 4, there is a solution A1, . . . , A6 ∈ Q. Further, the fact
that f(xi, yi) = 0 in Fp means that we can find a solution with Ai ≡ ai (mod p).
Then the curve E/Q defined by F (X, Y ) = 0 is a lift of e, and we have arranged
matters so that the points ui ∈ e(Fp) have lifts to points Ui ∈ E(Q).

More generally, we can lift e using a general cubic polynomial of two variables,
F (X, Y ) =

∑
j+k≤3 AjkXjY k. There are 10 coefficients Ajk, so using only linear

algebra, we can lift e/Fp and up to 9 points ui ∈ e(Fp) to an elliptic curve E/Q
and points Ui ∈ E(Q). If it turns out that (with non-negligible probability) the
rank of E(Q) is smaller than the number of lifted points, then the xedni calculus
succeeds.
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Example 5. We let p = 257 and consider the curve and points

e : y2 = x3 + 23x + 11, s = (7, 1) ∈ e(F257), t = (110, 15) ∈ e(F257).

We write the lifts E/Q of e/F257 as

E : Y 2 = X3 + (23 + 257α)X + (11 + 257β).

Substituting S = (7, 1) and T = (110, 15) yields two equations for α and β whose
solution gives

E : Y 2 = X3 − 1330433
103

X +
9277805

103
,

S = (7, 1) ∈ E(Q) and T = (110, 15) ∈ E(Q).

However, the points S and T are linearly independent in E(Q), so they cannot
be used to solve the ECDLP for s and t in e(F257).

We may view this naive xedni approach to the ECDLP as a specialization
process. Thus if we write Ui = (Xi, Yi) and treat the coordinates Xi and Yi

as indeterminates, then we can create an elliptic curve E whose coefficients
are in the field of rational functions K = Q(X0, . . . , Xr, Y0, . . . , Yr) and such
that Ui ∈ E(K). Then the above process involves substituting in particular val-
ues for the Xi and Yi. It is not hard to see that before we substitute values,
the points U0, . . . , Ur are independent in the group E(K). Then results of Néron
and Masser, as described in the following result, say that most substitutions give
specialized points that are independent.

Theorem 5. (Néron [22], Masser [16]) Let EZ be a parameterized family of el-
liptic curves, where Z = (Z1, . . . , Zn), and let U0,Z , . . . , Ur,Z be parameterized
families of points that are linearly independent. Then{

z ∈ Qn : Q1,z, . . . , Qr,z are dependent in Ez(Q)
}

is a small set (a set of density 0).

If we view the coordinates of the points as being the parameters, then the precise
statement of Masser’s theorem says that the probability that lifted (i.e., special-
ized) points are linearly dependent is at most O(1/p). Hence the probability that
this naive version of the xedni calculus succeeds is negligible.

The reason that the naive xedni calculus does not work is because the lifted
points tend to be independent. This suggests imposing further conditions on
the lifts in order to make them more likely to be dependent. Mestre [19] has a
method, based on the Birch–Swinnerton-Dyer conjecture, for influencing elliptic
curves to have higher ranker than expected. His idea is to impose congruence con-
ditions on the coefficients of E/Q for small primes � ≤ L in order to force #E(F�)
to be large. Since we know that #E(F�) = � + 1− a� with |a�| ≤ 2

√
�, Mestre’s

idea is to require that a� be close to −2
√

�. Mestre used this idea to produce
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an elliptic curve with rankE(Q) = 15, and his idea is still used in algorithms to
find curves of high rank.

This led the author to suggest using Mestre’s method in reverse to try to
influence the lifted curve E to have smaller than expected rank [34]. Thus we
impose both the mod p condition that E/Q is a lift of e/Fp, and also mod �
conditions for small primes in order to force #E(F�) to be small, i.e., for a� to
be close to 2

√
�. The hope was that this would cause E(Q) to have smaller rank

than expected, which would allow the xedni calculus to succeed.
However, as described in [13], it turns out that there are two difficulties that

cause this approach to fail. First, asymptotically one can show using canonical
heights, a height specialization theorem [32, III §11] and Lang’s height lower
bound conjecture [15, page 78] that the lifted points are independent. Second,
even for numbers of cryptographic size, experiments show that the rank lower-
ing effect of the small primes is offset by the increased size of the coefficients
of E, which negates the (heuristic) application of the Birch–Swinnerton-Dyer
conjecture.

5.4 Elliptic Curves and Heegner Point Lifts

We conclude by briefly describing another global lifting method based on en-
tirely different ideas. Suppose that e/Fp can be lifted to a curve E/Q with small
coefficients. Then we can exploit the fact (Wiles et.al. [3,38,39]) that E is cov-
ered by a modular curve, X0(N) → E, where N is the conductor of E. The
curve X0(N) has special points called Heegner points that are constructed using
the theory of complex multiplication, and Deuring’s work on CM [7] explains
how to lift points in X0(Fp) to Heegner points in X0(K) for certain number
fields K. If these Heegner points have a non-negligible probabiilty of being de-
pendent, then one might use their modular interpretation and height formulas
of Gross, Zagier, and Kohnen [8,9] to find explicit dependencies without having
to explicitly determine the coordinates of the points. This would give a xedni
calculus solution to the ECDLP. However, it turns out that the Heegner point
lifts are (almost) always independent, although proving their independence is far
from trivial. See [24] for details.

6 Summary and Final Remarks

In this paper we have outlined four lifting methods for the ECDLP:

Local-Nontorsion. Lift to nontorsion points in E(Qp).
Fails because we lose the relationship T = mS.

Local-Torsion. Lift to torsion points in E(Qp)tors
The relation T = mS is true, but the method fails because we cannot move
into the formal group, and there is no known way to determine m without
moving into the formal group.
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Global-Torsion. Lift to points in E(Q)tors or E(K)tors
Fails because E(Q)tors is too small and [K : Q] is too large.

Global-Nontorsion. Lift to nontorsion points in E(Q).
Hard Lift Method (index calculus):

Fails because there is no known method to lift additional points.
Easy Lift Method (xedni calculus):

Fails because the lifted points are independent.

Acknowledgements. I would like to thank Jeff Achter for his comment on
lifting the ECDLP to global torsion points, a remark that led me to consider
anew the overall question of lifting and the ECDLP.
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63-Step MD5 and More

Kazumaro Aoki and Yu Sasaki
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Abstract. This paper shows preimage attacks on one-block MD4 and
MD5 reduced to 63 (out of 64) steps. Our attacks are based on the meet-in-
the-middle attack, and many additional improvements make the preimage
computable faster than that of the brute-force attack, 2128 hash compu-
tation. A preimage of one-block MD4 can be computed in the complexity
of the 2107 MD4 compression function computation, and a preimage of
MD5 reduced to 63 steps can be computed in the complexity of the 2121

MD5 compression function computation. Moreover, we optimize the com-
putational order of the brute-force attack against MD5, and a preimage
of full-round MD5 can be computed in the complexity of the 2127 MD5
compression function computation.

Keywords: MD5, MD4, meet-in-the-middle, local collision, one-way,
preimage.

1 Introduction

A cryptographic hash function is an important primitive of cryptographic tech-
niques. There are many applications to make a scheme secure using a hash
function: message compression in digital signatures and message authentication,
for example. However, surprisingly, unlike block ciphers, there are not many con-
crete instantiations of hash functions. MD5 [12] and SHA-1 [14] are the de facto
standards of a hash function and their security is not analyzed well.

A hash function should have several security properties such as collision re-
sistance and one-wayness. After the breakthrough of Wang’s work [15], a lot of
study has been applied to collision resistance of hash functions. However, the
one-wayness of hash functions is not analyzed much.

At FSE 2008, Leurent showed that a preimage attack of MD4, which is a
predecessor of MD5 and consists of 48 steps, can be computed in the complex-
ity of the 2100.5 MD4 compression function [10]. (Hereafter, we omit the unit
of complexity, which is the computational complexity of the compression func-
tion of the corresponding hash function.) The attack is based on the pioneering
work by Dobbertin [4] and its extension [8]. The techniques used in that paper
made extensive use of the property of MD4 such as simple step function, not
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c© Springer-Verlag Berlin Heidelberg 2009
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well-mixed message expansion, and so on. Therefore, applying those techniques
to MD5 directly seems difficult. Recently, [13] have tried to compute a preimage
of MD5, which consists of 64 steps, utilizing the techniques in [10]. However,
[13] can compute a preimage of reduced variants of MD5 up to only 44 steps
faster than the brute-force attack. While De et al. proposed preimage attacks on
reduced variants of MD4 and MD5 based on SAT-solver [3].

This paper applies the meet-in-the-middle attack to MD5. With newly devel-
oped techniques, a preimage of MD5 reduced to 63 steps can be computed in 2121,
and a pseudo-preimage of full-round MD5 can be computed in 2125.7, which is
faster than the brute-force attack. On the concrete preimage of full-round MD5,
we develop a clever brute-force algorithm, and it finds a preimage of full-round
MD5 in 2127. Moreover, utilizing our technique with absorption properties of
Boolean functions used in MD4, we can compute a one-block preimage of MD4
in 2107, while [10] computes a preimage of more than 1 block.

A summary of our results and previously published results is shown in Table 11.
Note that we do not think that our attack can be used to practically compute
a preimage by using currently available resources, since all of our attacks need
very high complexity. Since the storage requirements for our attacks are 232

blocks at most, we do not mention the precise memory requirement in this
paper.

Table 1. Comparison of preimage attacks against MD4 and MD5

Target Attack Attacked steps Complexity
Pseudo-preimage Preimage

MD4 [4] 32 232 †

(Total 48 steps) [8] 32 232 †

[3] 39 Not given (8 hours) †

[10] 48 (Full) 296 2100.5

Our result (Sect. 5.2) 48 (Full) 2107 †

MD5 [3] 26 Not given
(Total 64 steps) [13] 44 296 †

[1] 47 296 2102

Our result (Sect. 3.2) 55 296 2113

Our result (Sect. 3.3) 59 296 *
Our result (Sect. 3.4) 63 2112 2121

Our result (Sect. 4) 64 (Full) 2125.7 ‡ 2127 †‡

† One-block attack.
‡ The attack is just the brute-force attack, but the computation is optimized.
* This attack only computes a pseudo-preimage. If a very long preimage is ac-

cepted, the attack can be converted to a preimage attack whose preimage
length is ≈ 264 blocks and computed in 2113.

1 Aumasson et al. independently shows a preimage attack in [1]. We refer their result
in the table for convenience.
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2 Description of MD5 and MD4

2.1 MD5 Specification and Its Properties

This section briefly describes the specification of MD5. Refer to details in [12].
MD5 is one of the Merkle-Damg̊ard hash functions, that is, the hash value is

computed as follows:{
H0 ← IV,

Hi+1 ← md5(Hi, Mi) for i = 0, 1, . . . , n− 1,
(1)

where IV is the initial value defined in the specification, md5: {0, 1}128 ×
{0, 1}512 → {0, 1}128 is the compression function of MD5, and the output of the
hash function is Hn. Before applying (1), the messages string M is processed as
follows:

– The messages are padded in 512-bit multiples.
– The padded string includes the length of the message, which is represented

by 64-bits, and the length string is placed at the end of the padding.

After the process, the message string is divided into 512-bit blocks, Mi (i =
0, 1, . . . , n− 1).

The compression function Hi+1 ← md5(Hi, Mi) is computed as follows.

1. Mi is divided into 32-bit message words mj (j = 0, 1, . . . , 15).
2. Do the following recurrence:{

p0 ← Hi,
pj+1 ← RMD5

j (pj , mπMD5(j)) for j = 0, 1, . . . , 63.

3. Output Hi+1 (= p64 +Hi), where “+” denotes 32-bit word-wise addition. In
this paper, we similarly use “−” to denote 32-bit word-wise subtraction.

RMD5
j is the step function for Step j. Let Qj be a 32-bit value that satisfies

pj = (Qj−3‖Qj‖Qj−1‖Qj−2). RMD5
j is defined as follows:

RMD5
j (pj , mπMD5(j)) = (Qj−2‖Qj+1‖Qj‖Qj−1), where Qj+1

= Qj + (Qj−3 + Φj(Qj , Qj−1, Qj−2) + mπMD5(j) + kj) ≪ sj , (2)

where Φj , kj , and sj are bitwise Boolean function, constant value, and left ro-
tation defined in the specification. πMD5(j) is a function for MD5 message ex-
pansion shown in Table 2. Note that (RMD5

j )−1(·, mπMD5(j)) can be computed in
almost the same complexity as that of RMD5

j .

2.2 MD4 Specification and Its Properties

The structure of MD4 is similar to that of MD5. The compression function of
MD4 consists of 48 steps. The step function RMD4

j for Step j is defined as follows:

Qj+1 = (Qj−3 + Φj(Qj , Qj−1, Qj−2) + mπMD4(j) + kj) ≪ sj , (3)
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Table 2. MD5 message expansion

πMD5(0), πMD5(1), . . . , πMD5(15) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
πMD5(16), πMD5(17), . . . , πMD5(31) 1 6 11 0 5 10 15 4 9 14 3 8 13 2 7 12
πMD5(32), πMD5(33), . . . , πMD5(47) 5 8 11 14 1 4 7 10 13 0 3 6 9 12 15 2
πMD5(48), πMD5(49), . . . , πMD5(63) 0 7 14 5 12 3 10 1 8 15 6 13 4 11 2 9

Table 3. MD4 Boolean functions and message expansion

Φj(X, Y, Z), 0 ≤ j ≤ 15 (X ∧ Y ) ∨ (¬X ∧ Z)
Φj(X, Y, Z), 16 ≤ j ≤ 31 (X ∧ Y ) ∨ (Y ∧ Z) ∨ (X ∧ Z)
Φj(X, Y, Z), 32 ≤ j ≤ 47 X ⊕ Y ⊕ Z

πMD4(0), πMD4(1), . . . , πMD4(15) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
πMD4(16), πMD4(17), . . . , πMD4(31) 0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15
πMD4(32), πMD4(33), . . . , πMD4(47) 0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15

where Φj , kj , sj, and πMD4(j) are defined differently than in MD5. Φj and
πMD4(j) are shown in Table 3. Note that (RMD4

j )−1(·, mπMD4(j)) can be com-
puted in almost the same complexity as that of RMD4

j .
Hereafter, we omit superscripts of RMD5

j , RMD4
j , πMD5, and πMD4 if the hash

function discussed is obvious from the context.

3 Preimage Attacks against Reduced MD5

3.1 Converting Pseudo-preimages to a Preimage

First, we describe the generic algorithm that converts pseudo-preimages to a
preimage [11, Fact 9.99]. Assume that there is an algorithm that finds (H1, (M1,
M2, . . . , Mn−1)) such that Hi+1 = md5(Hi, Mi) (i = 1, 2, . . . , n − 1) in the
complexity of 2x and H1 looks random. Prepare a table that includes 264−x/2

entries of (H1, (M1, M2, . . . , Mn−1)). Compute 264+x/2 md5(H0, M0) for random
M0, then one of them agrees with one of the entries in the table with high
probability. The required complexity of the attack is about 265+x/2. Therefore,
showing how to compute (H1, M1) from a given hash value within 2x where
x < 126 is enough for theoretical preimage attack.

3.2 A Preimage Attack against MD5 Reduced to 55 Steps

The proposed attack finds a preimage of MD5 reduced to 55 steps from a given
hash value Hn. Our attack target is MD5 reduced to 55 steps, and the steps lie
from Step 5 to Step 592. We propose a new technique called the splice-and-cut
technique.

2 We confirmed that Step 5 to Step 59, which are 55 steps in total, are the longest
section that can be attacked with only the splice-and-cut technique.
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Technique 1: Splice-and-Cut
We consider the first and last steps of the attack target as consecutive steps.
Then, we divide the attack target into two chunks of steps so that each chunk
includes at least one message word that is independent from the other chunk.
We call such message words “neutral words.” Then, we find pseudo-preimages
by the meet-in-the-middle approach.

Observe the message expansion described in Table 2 and notice that Steps 23-
37 do not contain m0, m6, m10, m15, and Steps 5-22 and 38-59 do not contain
m4 as shown in Fig. 1.

Our attack finds a 2-block preimage, so first, the appropriate padding strings
for 2-block messages are set in m13, m14, and m15. For a given H2, an attack
procedure is given below.

Attack Procedure
1. Choose mi (i �∈ {4, 6, 13, 14, 15}) and p38 randomly.
2. For all m6, do the following:⎧⎨⎩

pj+1 ← Rj(pj , mπ(j)) for j = 38, 39, . . . , 59,
p5 ← H2 − p60,
pj+1 ← Rj(pj , mπ(j)) for j = 5, 6, . . . , 22.

3. Make a table of (m6, p23)s which are computed in the last step.
4. For all m4, do the following:

pj ← R−1
j (pj+1, mπ(j)) for j = 37, 36, . . . , 23,

and examine that the computed p23 is in the table made by the previous
step. If p23 is in the table, the corresponding message and H1 is just a
pseudo-preimage of H2.

Note that p5 in the attack is just H1.
The computational complexity of the above attack procedure is about 232

(= 232 40
55 + 232 15

55 ), and the success probability is about 2−64 (= 232 · 232/2128).
Thus, by iterating the above procedure 264 times, we expect to find one pseudo-
preimage (H1, M1), and its complexity is about 296 (= 264 · 232). By applying
the technique in Section 3.1, we expect that a preimage of MD5 reduced to 55
steps can be computed in 2113 (= 265+96/2).

3.3 A Preimage Attack against MD5 Reduced to 59 Steps

We propose an attack that finds a preimage of MD5 reduced to 59 steps starting
from Step 3 and ending with Step 61. We notice that this attack cannot deal with
the message padding, therefore, the attack can only find a pseudo-preimage.

In the attack against MD5 reduced to 55 steps, two chunks reach the same pi,
and we examine 128-bit matching. Here, we do not have to check all 128 bits,
but we check part of them e.g. only 32 bits.

Assume that one chunk produces 232 pis and the other chunk produces 232

pi−3s. Since pi = (Qi−3‖Qi‖Qi−1‖Qi−2) and pi−3 = (Qi−6‖Qi−3‖Qi−4‖Qi−5),
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Step 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
index 0© 1 2 3 4© 5 6© 7 8 9 10© 11 12 13 14 15©

excluded first chunk
Step 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
index 1 6© 11 0© 5 10© 15© 4© 9 14 3 8 13 2 7 12

first chunk second chunk
Step 32 33 34 35 36 3738 39 40 41 42 43 44 45 46 47
index 5 8 11 14 1 4© 7 10© 13 0© 3 6© 9 12 15© 2

second chunk first chunk
Step 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
index 0© 7 14 5 12 3 10© 1 8 15© 6© 13 4© 11 2 9

first chunk excluded

Fig. 1. Message word distribution in MD5 observed in 55-step attack

Step 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
index 0 1 2© 3 4 5 6 7 8 9 10 11 12 13 14 15©

excluded first chunk
Step 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
index 1 6 11 0 5 10 15© 4 9 14 3 8 13 2© 7 12

first chunk second chunk
Step 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
index 5 8 11 14 1 4 7 10 13 0 3 6 9 12 15© 2©

second chunk skip
Step 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
index 0 7 14 5 12 3 10 1 8 15© 6 13 4 11 2© 9

first chunk excluded

Fig. 2. Message word distribution in MD5 observed in 59-step attack

we can examine 32-bit matching without computing three steps. This enables us
to find longer sections that are vulnerable against our attack.

Technique 2: Partial Matching
By executing only one-word matching instead of all-word matching, up to three
consecutive steps can be skipped from the attack target.

Observe the message expansion described in Table 2 and notice that Steps
23-44 do not contain m15, and Steps 3-22 and 48-61 do not contain m2 as
shown in Fig. 2. For a given H2, the rough sketch of the attack procedure is as
follows3.

Attack Procedure
1. Choose mi (i �∈ {2, 15}) and p23 randomly.
2. For all m15, do the following:
3 In this attack, skipping two steps is enough. However, we explain the attack proce-

dure for skipping three steps to show the generality of our attack.
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pj ← R−1

j (pj+1, mπ(j)) for j = 22, 21, . . . , 3,
p62 ← H2 − p3,
pj ← R−1

j (pj+1, mπ(j)) for j = 61, 60, . . . , 48,

and store (m15, p48)s in a table.
3. For all m2, do the following:

pj+1 ← Rj(pj , mπ(j)) for j = 23, 24, . . . , 44.

Since p48 = (Q45‖Q48‖Q47‖Q46) and p45 = (Q42‖Q45‖Q44‖Q43) we can
examine Q45 is in the table. If Q45 is in the table, we compute Q46 to Q48
by the corresponding mi, and check whether all of Q46 to Q48 are matched.

The computational complexity and the success probability are almost the same
with the attack against MD5 reduced to 55 steps. Therefore, a pseudo-preimage
of MD5 reduced to 59 steps can be found at the complexity of 296. Note that
we can compute a very long preimage by using the technique in Section 3.1 and
expandable message introduced in [6], where the length is determined by m15.

Note that we can attack MD5 reduced up to 50 steps even if we restrict that
the reduced MD5 should start with the first step (Step 0). The first chunk starts
with Step 17 and is 19 steps long, and the second chunk starts with Step 36 and
is 28 steps long. The neutral words are m1 and m14.

3.4 A Preimage Attack against MD5 Reduced to 63 Steps

We propose an attack that finds a preimage of the last 63 steps of MD5. In
addition to the splice-and-cut and partial-matching techniques, we use partial-
fixing technique.

In previous attack variants, neutral words are totally free when we execute the
meet-in-the-middle attack, and thus, both chunks can produce 232 outputs. In
this attack, we fix the lower 16 bits of a neutral word. By this effort, computation
of one chunk can be partially continued even if the message word for the other
chunk appears.

Let us see the inversion of the step function R−1
j . R−1

j (·, mπ(j)) is written by
using Qj as follows:

Qj−3 = ((Qj+1 −Qj) ≫ sj)− Φj(Qj , Qj−1, Qj−2)−mπ(j) − kj . (4)

When the lower n bits of Qj−1, Qj−2, and mπ(j) are fixed and other variables
are fully fixed, we can compute the lower n bits of R−1

j (·, mπ(j)) independently
from the higher 32 − n bits of Qj−1, Qj−2, and mπ(j). As a consequence, we
can partially compute 3 more steps if neutral words are partially fixed. This is
graphically explained in Appendix A.

Technique 3: Partial Fixing
By partially fixing neutral words in chunks, up to three consecutive steps can be
additionally skipped from the attack target.
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Observe the message expansion described in Table 2 and notice that Steps
19-42 do not contain m6, and Steps 1-18 and 49-63 do not contain m0 as shown
in Fig. 3.

For a given H2, the rough sketch of the attack procedure is as follows.

Attack Procedure
1. Set m13, m14, and m15 to appropriate padding for 2-block messages.
2. Choose mi (i �∈ {0, 6}), p19, and the lower 16 bits of m0, randomly.
3. For all higher 16 bits of m0, do the following:

pj+1 ← Rj(pj , mπ(j)) for j = 19, 20, . . . , 42,

and store (m0, p43)s in a table, where p43 = (Q40‖Q43‖Q42‖Q41).
4. (a) For all m6, do the following:⎧⎨⎩

pj ← R−1
j (pj+1, mπ(j)) for j = 18, 17, . . . , 1,

p64 ← H2 − p1,
pj ← R−1

j (pj+1, mπ(j)) for j = 63, 62, . . . , 49.

(b) From obtained p49 = (Q46‖Q49‖Q48‖Q47), by the partial-fixing tech-
nique, we can compute the lower 16 bits of Q45, Q44, and Q43.

(c) From the partial-matching technique described in Section 3.3, we can
examine 16-bit matching by Q43.

Step 3 of the above procedure needs the complexity of 216, and steps 4(a) and
4(b) need the complexity of 232. Therefore, the total complexity is 232. At step
4(c), we examine 16-bit matching for 248 pairs, and we obtain 248 × 2−16 = 232

pairs whose 16 bits are matched. Finally, by repeating the above procedure
280 times, we obtain a pair, where all 128 bits are matched. Therefore, the
final complexity of the pseudo-preimage attack is 232 × 280 = 2112, and this is
converted to a preimage attack whose complexity is 2121.

Step 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
index 0© 1 2 3 4 5 6© 7 8 9 10 11 12 13 14 15
excluded first chunk
Step 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
index 1 6© 11 0© 5 10 15 4 9 14 3 8 13 2 7 12

first chunk second chunk
Step 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
index 5 8 11 14 1 4 7 10 13 0© 3 6© 9 12 15 2

second chunk skip
Step 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
index 0© 7 14 5 12 3 10 1 8 15 6© 13 4 11 2 9

skip first chunk

Fig. 3. Message word distribution in MD5 observed in 63-step attack
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4 Notes on Preimage Attack against Full-Round MD5

This section studies the preimage resistance against full-round MD5. We, un-
fortunately, cannot find any “cryptanalytic attacks” against full-round MD5.
While, we find clever technique to perform a brute-force attack. Using this tech-
nique, we can find a pseudo-preimage of MD5 at the complexity of 2126, and a
preimage of MD5 at the complexity of about 2127.

4.1 Finding Pseudo-preimage of MD5

As we learned by the partial-matching and partial-fixing techniques, a few steps
can be skipped from the attack target. Based on this finding, we searched for
the minimum number of steps that must be skipped to attack the full-round
MD5. The best selection of two chunks where the number of skipped steps is 19
is shown in Fig. 4. (Only this pattern allows skipped steps to be less than 20.)

Since the number of skipped steps is large, we cannot find an efficient way to
check whether results from both chunks are matched or not. In this attack, we
exhaustively search for the pair that can be matched. Assume we obtain values
of p14, p33, and all message words. Whether the computation for that message
from p14 reaches p33 can be checked at the complexity of computing only 13 steps
with negligible cost since the complexity of computing 6 steps can be saved by
the partial-matching and partial-fixing techniques.

When we only consider pseudo-preimage of the compression function md5,
the attack procedure becomes very simple. However, we later want to discuss
the conversion from pseudo-preimage(s) to a preimage in Section 4.3. So, we
stress that m14 is selected as a neutral word, Therefore, some effort is necessary
to adjust the padding part. Since m5 is selected as a neutral word, the last
message block must be longer than or equal to 192 bits. As explained later,
this attack needs at least a 2-block message. Therefore, we fix 9 bits of m14 to
guarantee that the value of m14 is 192+512n, n ≥ 1 for any choice of other bits.
Details of messages we select are as follows:

Step 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
index 0 1 2 3 4 5© 6 7 8 9 10 11 12 13 14©15

first chunk skip
Step 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
index 1 6 11 0 5© 10 15 4 9 14© 3 8 13 2 7 12

skip
Step 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
index 5© 8 11 14© 1 4 7 10 13 0 3 6 9 12 15 2

skip second chunk
Step 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
index 0 7 14© 5©12 3 10 1 8 15 6 13 4 11 2 9

2nd chunk first chunk

Fig. 4. Message word distribution in MD5 observed in full-round MD5
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– m0, . . . , m4 ← Randomly chosen fixed value,
– Lower 16 bits of m5 ← Randomly chosen fixed value,
– m6 ← 0x00000080,
– m7, . . . , m13 ← 0x00000000,
– m14 is chosen to be 192 + 512n, n ≥ 1,
– m15 ← 0x00000000.

For a given hash value Hn, the attack procedure is as follows.

Attack Procedure
1. Set messages as explained above and choose p51 randomly.
2. For all the 23 free-bits of m14, do the following:{

pj ← R−1
j (pj+1, mπ(j)) for j = 50, 49, . . . , 33,

Partially compute Q29, Q28, and Q27 by the partial-fixing technique,

and store (m14, p33, partial Q29, partial Q28, partial Q27)s in a table.
3. For all of higher 16-bits of m5, do the following:⎧⎨⎩

pj+1 ← Rj(pj , mπ(j)) for j = 51, 52, . . . , 63,
p0 ← Hn − p64,
pj+1 ← Rj(pj , mπ(j)) for j = 0, 1, . . . , 13,

and keep the values of (m5, p14).

(a) For all (m14, p33, partial Q29, partial Q28, partial Q27) stored in a table,
do the following:

pj+1 ← Rj(pj , mπ(j)) for j = 14, 15, . . . , 26,

and examine the lower 16-bit match of Q27.
(b) If lower 16 bits of Q27 are matched, compute all bits of Q29, Q28, and

Q27 by using p33 and m5. Then, examine the higher 16-bit match of Q27.
(c) If higher 16 bits of Q27 are matched, compute p28 = R27(p27, mπ(27)),

and examine the match of Q28.
(d) If Q28 is matched, compute p29 = R28(p28, mπ(28)), and examine the

match of Q29.
(e) If Q29 is matched, compute p30 = R29(p29, mπ(29)), and examine the

match of Q30. If matched, corresponding (p0, M) is a pseudo-preimage.

Step 2 of the above procedure needs the complexity of 223 21
64 . For each m5, the

first 4 lines of step 3 need the complexity of 27
64 . Step 3(a) needs the complexity

of 223 13
64 . As a result of lower 16-bit match of Q27, 223 × 2−16 = 27 pairs are

expected to be remained. Step 3(b) needs the complexity of 27 3
64 . As a result of

higher 16-bit match of Q27, 27×2−16 = 2−9 pair is expected to be remained. Step
3(c) needs the complexity of 2−9 1

64 . After the match of Q28, 2−9 × 2−32 = 2−41

pair is expected to be remained. The complexities of 3(d) and 3(e) are negligible.
Hence, the complexity of step 3 is 223 21

64 +216 27
64 +216(223 13

64 +27 3
64 +2−9 1

64 ) < 237.
Finally, by repeating this procedure 289 times, we obtain a pair, where all 128

bits are matched. Therefore, the final complexity of the pseudo-preimage attack
is 289 × (216 × 223 13

64 ) < 2126.
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4.2 Increase the Speed of the Naive Search

When we compute hash values of 2128 different messages, we do not have to
compute 2128 times of md5. For example, two different messages whose m0 to
m14 are the same and whose m15 are different will have the same computation
result after the first 15 steps. This saves us the cost of computing the first 15
steps of the second message. By extending this idea, the complexity of computing
hash values of 2128 different messages becomes 2127 = 2128 32

64 .
We use a technique named Q4 Tunnel by Klima [7], which enables us to

compute md5 from an intermediate step. In this technique, the value of m3 in the
first round is changed, however, any change in m3 can be offset by modifying m4
and m7 so that all other chaining variables in the first round are kept unchanged.
Since m3, m4, and m7 appear in Steps 23, 26, and 30, respectively in the second
round, any choice of m3 does not impact on chaining variables up to Step 22.
Therefore, this technique saves us the cost for computing the first 23 steps.
Moreover, we can save the complexity of a few more steps:

1. Since the initial value and hash value are fixed and messagewords used in Steps
61, 62, and 63 are not m3, m4, and m7, we can compute p63, p62, and p61 in-
dependently of m3, m4, and m7. This saves us the complexity of three steps.

2. The partial-matching and partial-fixing techniques described in Section 3.3
save us the complexity of six steps.

Finally, the complexity to compute a hash value becomes 64 − 23− 3 − 6 = 32
steps, we can compute hash values of 2128 messages at the complexity of 2128 32

64 .

4.3 Discussion on Converting a Pseudo-preimage to a Preimage

Let E(x) = 1 − exp(−x), then the success probability of a brute-force attack
for computing preimage is b = E(2128/2128) ≈ 0.63. The attack described in
Section 4.2 finds a pseudo-preimage at the complexity of 2125.70 (= 2128 13

64 )
with probability b. If we directly use the conversion described in Section 3.1,
a preimage will be found at the complexity of 2127.85 with probability b2. This
complexity is higher than 2127.00 (= 2128 32

64 ) described in Section 4.2. Applying
the technique in Section 4.2 to the computation of md5(H0, M0) in the conversion
described in Section 3.1, resulting preimage attack still requires 2127.39 with
probability b2.

Using the idea of expandable message [6] as in [10], one preimage is enough
to compute a preimage4. This attack requires 2126.86 (= 2128 13

64 + 2128 32
64/2).

However, the success probability is b2, which is lower than that of the brute-
force attack, b. Spending c12128 13

64 work for computing a pseudo-preimage and
c22128 32

64/2 for brute-force attack, the success probability of the attack is E(c1)
E(c2) and the complexity is 2128 13c1+16c2

64 . To achieve the same success probabil-
ity b = E(c1)E(c2), the attack requires 2127.52, where c1 ≈ 1.672 and c2 ≈ 1.507.

4 Appendix B shows extensions of the attack.
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Even if computing a pseudo-preimage fails, we can continue to seek a preimage
using brute-force attack. The complexity of the attack is also 2128 13c1+16c2

64 , and
the success probability increases to E(c1)E(c2)+(1−E(c1))E(c2/2). To achieve
the same success probability b, the attack requires 2126.94, where c1 ≈ 0.354 and
c2 ≈ 1.636.

5 Preimage Attacks against MD4

The first preimage attack against full-round MD4 was proposed by Leurent [10].
It finds a preimage of MD4 with the complexity of 2102 by using messages of 34
blocks5. Therefore, no one has succeeded in attacking MD4 by using one-block
messages. A one-block attack is particularly interesting since an attacker cannot
use the characteristics of the Merkle-Damg̊ard structure. A one-block attack
analyzes the security of the compression function md4.

In this section, we first show a preimage attack using messages of 2 blocks to
show that the splice-and-cut approach can be also applied to MD4. This attack
finds a preimage of MD4 at the complexity of 2121. Second, we show a one-block
attack that finds a preimage at the complexity of 2107.

5.1 Two-Block Preimage Attack against MD4

MD4 can be analyzed in a manner similar to MD5. By using the splice-and-cut,
partial-matching, and partial-fixing techniques, we can find a pseudo-preimage
at the complexity of 2112, and this attack is converted to a preimage attack at
the complexity of 2121. The selection of two chunks is shown in Fig. 5.

5.2 One-Block Preimage Attack against MD4

By checking the details of the step function of MD4, we can find a preimage
that consists of a one-block message. The key idea is fixing the value of p0 to
the original MD4 IV when we compute a chunk. To achieve this, we use a local-
collision approach. By this approach, the value of p0 can be kept unchanged even
if the value of a neutral word in a chunk is changed. (The similar idea is used by
Sasaki et al. [13] to analyze MD5.) We thus search for a pair of chunks in which
one chunk includes one neutral word and the other chunk includes two neutral
words where changes of one neutral word can be offset by changing the other
neutral word. The selected chunks are shown in Fig. 6.

When we compute the first chunk by changing the value of m7, the correspond-
ing chaining variable Q4 is updated according to the selection of m7. In this attack,
by selecting m3 adaptively and fixing p7, m0 to m2, and m4 to m6 in advance, Q0
to Q−3 can be fixed to the original IV of MD4 for any m7. This attack heavily
uses the absorption properties of Boolean functions of MD4, so readers who are
not familiar with them are recommended to read [10, Section 2.1]. The method to

5 This attack can be easily converted to an attack that finds a preimage with the
complexity of 2113 by using messages of 2 blocks.
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Step 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
index 0 1 2 3 4 5 6 7© 8© 9 10 11 12 13 14 15

first chunk second chunk
Step 16 17 18 19 20 21 22 23 24 25 26 27 28 2930 31
index 0 4 8© 12 1 5 9 13 2 6 10 14 3 7©11 15

second chunk skip
Step 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
index 0 8© 4 12 2 10 6 14 1 9 5 13 3 11 7© 15

skip first chunk

Fig. 5. Message word distribution in MD4 observed in 2-block attack

Step 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
index 0 1 2 3© 4 5 6 7© 8© 9 10 11 12 13 14 15

first chunk second chunk
Step 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
index 0 4 8© 12 1 5 9 13 2 6 10 14 3© 7© 11 15

second chunk skip
Step 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
index 0 8© 4 12 2 10 6 14 1 9 5 13 3© 11 7© 15

skip first chunk

Fig. 6. Message word distribution in MD4 observed in 1-block attack

select p7 and m0 to m7 is shown in Table 4. 0, 1, Ci, and ∗ denote 0x00000000,
0xffffffff, a randomly fixed value, and a flexible value which depends on the
value of m7, respectively.

The attack procedure is as follows:

Precomputation

1. Set the values of chaining variables Qj as shown in Table 4. Note the value
of ∗ is left undetermined.

2. Compute mj , j ∈ {0, 1, 2, 4, 5, 6} by the following equation:

mπ(j) = (Qj+1 ≫ sj)−Qj−3 − Φj(Qj , Qj−1, Qj−2)− kj . (5)

Computation of the first chunk including m7 and m3

3. For all 32-bits of m7, compute the value of ∗.
4. For each m7, compute m3 by the following equation:

mπ(3) = (Q4 ≫ s3)−Q0 − Φ3(Q3, Q2, Q1)− k3. (6)
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Table 4. Fixed values for MD4 one-block preimage attack

step j mπ(j) Qj−2 Qj+1 Qj Qj−1

0 m0 Q−3 Q0 Q−1 Q−2

1 m1 Q−2 C4 Q0 Q−1

2 m2 Q−1 C3 C4 Q0

3 m3© Q0 C3 C3 C4

4 m4 C4 ∗ C3 C3

5 m5 C3 0 ∗ C3

6 m6 C3 1 0 ∗
7 m7© ∗ C2 1 0

8 0 C1 C2 1

At Step 2 of the above procedure, the value of ∗ is involved in the computation
for m4, m5, and m6. However, due to the absorption properties, m4, m5, and m6
can be computed independently on ∗.

In this attack, we fix lower 11-bits of m8 to an arbitrary value. Then, we
compute the second chunk for all the remaining 21-bits of m8 and store the
results. After that, we compute the first chunk for all m7, then check whether
they are matched with stored items by comparing the lower 11-bits of Q27 and
Q28

6. Finally, we can find a one-block preimage at the complexity of 2107.

6 Conclusion

This paper has shown the preimage attacks of one-block MD4 and MD5 reduced
to 63 (out of 64) steps. A preimage of MD5 reduced to 63 steps can be computed
in 2121 MD5 computations, which is faster than the brute-force attack, and a
pseudo-preimage of full-round MD5 can be computed in 2125.7 MD5 computa-
tions. On a preimage of full-round MD5, we optimize the computational order
of the brute-force attack against MD5, and a preimage of full-round MD5 can
be computed in the complexity of the 2127 MD5 compression function compu-
tation. Moreover, a one-block preimage of MD4 can be computed in 2107 MD4
computations, while the previous work [10] computes a preimage of more than
1 block. The key idea of our attacks, which are based on the meet-in-the-middle
technique, is quite simple, but very effective for preimage attacks. We left the
application of our attack to other hash functions as a problem.

Acknowledgments

The authors wish to thank Christophe De Cannière and Christian Rechberger
for providing [2] and anonymous referees for many useful comments on this
paper.
6 In MD4, up to four steps can be additionally skipped by the partial-fixing technique.



Preimage Attacks on One-Block MD4, 63-Step MD5 and More 117

References

1. Aumasson, J.-P., Meier, W., Mendel, F.: Preimage attacks on 3-pass HAVAL and
step-reduced MD5. In: Avanzi, R., Keliher, L., Sica, F. (eds.) Selected Areas in
Cryptography — Workshop Records of 15th Annual International Workshop, SAC
2008, Sackville, New Brunswick, Canada, pp. 99–114 (2008); also appeared in IACR
Cryptology ePrint Archive: Report 2008/183

2. De Cannière, C., Rechberger, C.: Preimages for reduced SHA-0 and SHA-1.
In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 179–202. Springer,
Heidelberg (2008); slides on preliminary results were appeared at ESC 2008 semi-
nar,

3. De, D., Kumarasubramanian, A., Venkatesan, R.: Inversion attacks on secure hash
functions using sat solvers. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007.
LNCS, vol. 4501, pp. 377–382. Springer, Heidelberg (2007)

4. Dobbertin, H.: The first two rounds of MD4 are not one-way. In: Vaudenay, S. (ed.)
FSE 1998. LNCS, vol. 1372, pp. 284–292. Springer, Heidelberg (1998)

5. Flajolet, P., Odlyzko, A.M.: Random mapping statistics. In: Quisquater, J.-J.,
Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 329–354. Springer,
Heidelberg (1990)

6. Kelsey, J., Schneier, B.: Second preimages on n-bit hash functions for much
less than 2n work. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 474–490. Springer, Heidelberg (2005)

7. Klima, V.: Tunnels in hash functions: MD5 collisions within a minute (IACR Cryp-
tology ePrint Archive: Report 2006/105 ) (2006),

8. Kuwakado, H., Tanaka, H.: New algorithm for finding preimages in a reduced
version of the MD4 compression function. IEICE Transactions Fundamentals of
Electronics, Communications and Computer Sciences (Japan) E83-A(1), 97–100
(2000)

9. Lai, X., Massey, J.L.: Hash functions based on block ciphers. In: Rueppel, R.A.
(ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 55–70. Springer, Heidelberg (1993)

10. Leurent, G.: MD4 is not one-way. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086,
pp. 412–428. Springer, Heidelberg (2008)

11. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of applied cryptog-
raphy. CRC Press, Boca Raton (1997)

12. Rivest, R.L.: Request for Comments 1321: The MD5 Message Digest Algorithm.
The Internet Engineering Task Force (1992),

13. Sasaki, Y., Aoki, K.: Preimage attacks on step-reduced MD5. In: Mu, Y.,
Susilo, W., Seberry, J. (eds.) ACISP 2008. LNCS, vol. 5107, pp. 282–296. Springer,
Heidelberg (2008)

14. U.S. Department of Commerce, National Institute of Standards and Technology.
Announcing the SECURE HASH STANDARD (Federal Information Processing
Standards Publication 180-2) (2002),

15. Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)

http://eprint.iacr.org/2008/183
http://wiki.uni.lu/esc/
http://eprint.iacr.org/2006/105
http://www.ietf.org/rfc/rfc1321.txt
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf


118 K. Aoki and Y. Sasaki

A Graphical Explanation of Partial-Matching and
Partial-Fixing Techniques

The way partial-matching and partial-fixing techniques work when we skip 6
steps from the attack target are shown in Fig. 7. The numbers in Fig. 7 denote
the number of bits that can be computed independently of the neutral word for
the other chunk.

mb

ma

A chunk with a neutral message mb

32 32 32 32

32 - x

32 - x 32 - x

32 - x 32 - x 32 - x

32 - x 32 32 - x 32 - x

32 - x 32 32 32 - x

32 - x 32 32 32

32 32 32 32

A chunk with a neutral message ma

Step i

Step i+1

Step i+2

Step i+3

Step i+4

Step i+5

Step i+6

Step i+7

Fig. 7. Graphical explanation of the partial-matching and partial-fixing techniques

First, we store results of the computation of the chunk including ma for all
possible values of ma. Note that to use the partial-fixing technique, we fix the
lower x-bits of ma to any value. Since mb is used in Step i+1, this computation
can be carried out until Step i. Then, we compute the chunk including mb for
all possible values of mb. Until Step i + 7, all 128-bit values can be computed
independently of ma.

Since the lower x-bits of ma are fixed by the partial-fixing technique, we can
partially execute inverse computation in Step i + 6 independently of the higher
(32−x)-bits of ma. A similar situation occurs in Steps i+5 and i+4. Finally, by
applying the partial-matching technique, we can compare 32− x bits of results
of the two chunks.

B Notes on MD-Strengthening

Section 3.1 describes how to convert pseudo-images to a preimage on Merkle-
Damg̊ard structure. When the length of preimages is not fixed and MD-strength-
ening [9] is used in the target hash function, the method cannot be applied. The
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problem can be solved using “expandable message” introduced in [6]. An (a, b)-
expandable message inputs a fixed chaining value, and can take any message
length between a and b blocks, and outputs the same chaining value. The expand-
able message to adjust the length of preimage is already applied to MD4 [10].
Actually, when the compression function is constructed by Davies-Meyer, an ex-
pandable message is easily found, and [6] showed how to construct (n, n+2n−1)-
expandable message for a generic compression function. However, when the com-
putational cost of computing preimages is nearly the complexity of brute-force
attack, [6] may not be efficient to compute a preimage. The following algorithm
efficiently produce (k + 1, k + n)-expandable message for given k. Note that the
algorithm is not efficient when n is large compared with [6].

Assume we need to generate a multi-collision that consists of messages whose
length are (k + 1)-block, (k + 2)-block, . . ., (k + n)-block. Such a multi-collision
is generated as follows:

1. Randomly generate a k-block message Mk and compute Hk = h(H0, Mk).
2. Randomly generate a 1-block message Mk+1 and compute Hk+1 = h(Hk,

Mk+1).
3. For i = 1, 2, . . . , n − 1, search for a 1-block message Mk+i+1 such that

h(Hk, Mk+i+1) = h(Hk+i, Mk+i+1). Let the generated value be Hk+i+1.
4. Finally, (Mk‖Mk+n), (Mk‖Mk+n−1‖Mk+n), . . ., (Mk‖Mk+1‖ · · · ‖Mk+n−1
‖Mk+n) are multi-collision messages of (k + 1), (k + 2), . . ., (k + n) blocks.

In the above procedure, generating Mk+i+1 costs the complexity of the birthday
paradox, which is sufficiently low in the preimage attacks.

Very recently, [2] introduced the use of P3graph. When a random directed
graph has n nodes which are a part of chaining values, 2n edges are sufficient
to connect from IV to a given hash value, and the path from IV to the given
hash value can take any length if the length is large enough. On the other
hand, we know n edges are sufficient to connect to the given hash value with
high probability, and we conjectured that there exists paths to the given hash
value from about

√
n nodes. The conjecture is true for the case of random map

[5], and we examine the conjecture by computer simulations. Though we only
examined that the number of nodes is less than 4096, about 1.1n edges make

√
n

nodes connect to the given hash value. Followed by the idea in Section 3.1 with
expandable message and above conjecture, a preimage can be computed and its
complexity is about half compared with that in [2]. More precisely, the number
of nodes in P3graph is small, a preimage can be computed more efficiently.
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Abstract. This paper presents preimage attacks on the hash functions
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spectively, these functions underwent severe collision attacks, but no
preimage attack. We describe two preimage attacks on the compres-
sion function of 3-pass HAVAL. The attacks have a complexity of about
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preimage attacks on the MD5 compression function that invert up to 47
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1 Introduction

A cryptographic hash function h maps a message M of arbitrary length to a
fixed-length hash value H and has to fulfill the following security requirements:

– Collision resistance: it is infeasible to find two messages M and M�, with
M� �= M , such that h(M) = h(M�).

– Second preimage resistance: for a given message M , it is infeasible to find a
second message M� �= M such that h(M) = h(M�).

– Preimage resistance: for a given hash value H , it is infeasible to find a
message M such that h(M) = H .

The resistance of a hash function to collision and (second) preimage attacks
depends in the first place on the length n of the hash value. Regardless of how a
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Recent cryptanalytic results on hash functions mainly focus on collision at-
tacks but only few results with respect to preimages have been published to date.
In this article, we analyze the preimage resistance of the hash functions MD5
and HAVAL. Both are iterated hash functions based on the Merkle-Damg̊ard
design principle. MD4 and MD5 both underwent critical collision attacks [4, 7,
8, 17, 18, 19], and hence should not be used anymore. But in practice MD5 is
still widespread and remains secure for applications that do not require collision
resistance. While three preimage attacks on MD4 are known [3,5,6], the picture
is different for MD5: using a SAT-solver De et al. [3] inverted 26 (out of 64) steps
of MD5, and no analytical attack is known to date. Idem for HAVAL: while sev-
eral collision attacks [7, 13, 20, 21] and even a second preimage attack [9] were
published, no preimage attack is known.

Independent Work. Sasaki and Aoki discovered preimage attacks on round-
reordered and step-reduced MD5 [14]: their best attack with original round-
ordering inverts 44 steps of the compression function within 296 trials, starting
at the step 3 and ending at step 46. They subsequently improved this result in
a paper presented at this workshop [15].

Our Contribution. First, we invert the compression function of MD5 reduced
to 45 steps by using a meet-in-the-middle approach. The attack makes about
2100 compression function evaluations and needs negligible memory. Second, we
exploit special properties of the permutations used in the compression function
to extend this attack to 47 steps (out of 64). The attack has a complexity of
296 compressions and memory requirements of 236 bytes. Third, we extend the
attacks on the compression function to the hash function by using a meet-in-the-
middle and tree-based approach. With this method we can construct preimages
for MD5 reduced to 45 and 47 steps with a complexity of about 2106 and 2102

compression function evaluations and memory requirements of 239 bytes.
Similar strategies can be applied to the compression function of HAVAL. We

can invert the compression function of 3-pass HAVAL with a complexity of about
2224 compression function evaluations and memory requirements of 269 bytes. We
can turn the attack on the compression function into a preimage attack on the
hash function with a complexity of about 2230 compression function evaluations
and memory requirements of 270 bytes.

Outline. The article is structured as follows. §2 presents two methods to invert
to compression function of MD5 reduced to 45 and 47 steps. We use the same
methods to invert the compression function of 3-pass HAVAL in §3. In §4, we
show how the attacks on the compression function of MD5 and HAVAL can be
extended to preimage attacks on the hash function, and §5 concludes.

2 Preimage Attacks on Step-Reduced MD5

This section presents two techniques to invert the MD5 compression function.
The first attack on 45 steps is based on a standard meet-in-the-middle (MITM)
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and requires about 2100 trials. The second attack inverts up to 47 steps, and
exploits special properties of the message ordering. Combined with a MITM, we
construct a preimage attack with complexity about 296 trials. But prior to that,
we provide a brief description of MD5 and illustrate the basic idea of our attacks
over 32 steps.

2.1 Short Description of MD5

The MD5 compression function takes as input a 512-bit message block and a
128-bit chain value and outputs another 128-bit chain value.

Fig. 1. The step function of MD5

The input chain value H0 . . . H3 is first copied into registers A0 . . . D0:

(A0, B0, C0, D0)← (H0, H1, H2, H3). (1)

This inner state is then transformed by a series of 64 steps and the output is

(H�
0 , H�

1 , H�
2 , H�

3 ) = (A64 + A0, B64 + B0, C64 + C0, D64 + D0). (2)

where A64 . . . D64 are defined by the recursion below:

Ai = Di−1
Bi = Bi−1 + (Ai−1 + fi(Bi−1, Ci−1, Di−1) + Mσ(i) + Ki) ≪ ri

Ci = Bi−1
Di = Ci−1

(3)

The Ki’s and ri’s are predefined constants and σ(i)’s are in Table 1. The function
fi is defined as

fi(B, C, D) = (B ∧ C) ∨ (¬B ∧D) if 0 < i ≤ 16
fi(B, C, D) = (D ∧B) ∨ (¬D ∧ C) if 16 < i ≤ 32
fi(B, C, D) = B ⊕ C ⊕D if 32 < i ≤ 48
fi(B, C, D) = C ⊕ (B ∨ ¬D) if 48 < i ≤ 64

(4)
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Table 1. Values of σ(i) in MD5 for i = 1, . . . , 64 (we boldface the M2 key inputs used
in the attacks on 32 and 47 steps, and the M6 and M9 key inputs used in the attack
on 45 steps)

Step index i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Message word σ(i) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Step index i 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Message word σ(i) 1 6 11 0 5 10 15 4 9 14 3 8 13 2 7 12

Step index i 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
Message word σ(i) 5 8 11 14 1 4 7 10 13 0 3 6 9 12 15 2

Step index i 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
Message word σ(i) 0 7 14 5 12 3 10 1 8 15 6 13 4 11 2 9

Fig. 1 gives a schematic view of the step function, and [12] gives a complete
specification.

Fact 1. At step i only Bi is a really new value, the others are just shifted as in
a feedback shift register. Hence for i = 0, . . . , 60 we have Bi = Ci+1 = Di+2 =
Ai+3.

Fact 2. The step function is invertible, i.e. from Ai . . . Di and Mσ(i) we can
always compute Ai−1 . . .Di−1. Removing the feedforward by H0 . . . H3 in Eq. (2)
would thus make the compression function trivially invertible.

2.2 Preimage Attack on 32 Steps

This attack computes preimages for the 32-step compression function within
about 296 trials (instead of 2128). It introduces two tricks used in the 45- and
47-step attacks: absorption of changes in C0 and exploitation of the ordering of
the message words.

Key Facts. Observe in Table 1 that M2 is only input at the very beginning and
the very end of 32-step MD5, namely at steps 3 and 30. Hence, if we could pick a
message and freely modify M2 such that B3 stays unchanged, we would be able
to “choose” B30 = C31 = D32 (cf. Fact 1). A key observation is that the function
fi can either preserve or absorb an input difference: indeed for 0 < i ≤ 16 and
any C and D we have

fi(0x00000000, C, D) = (0 ∧ C) ∨ (0xffffffff∧D) = D (5)
fi(0xffffffff, 0, D) = (0xffffffff∧ 0) ∨ (0 ∧D) = 0 (6)

These properties will be used to “absorb” a change in C0 = D1 = A2 at steps 1
and 2. More precisely, we need that B0 = 0 to absorb the changes of C0 at step 1.
And to absorb the change in D1 = C0 we need that B1 = 0xffffffff. We can
now sketch the attack:
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1. pick a chain value H0 . . . H3 = A0 . . . D0 (with certain constraints)
2. pick a message M0 . . . M15 (with certain constraints)
3. modify M2 to choose B30 = C31 = D32
4. modify H2 = C0 such that the change in M2 doesn’t alter subsequent

Ai . . .Di

Our strategy is inspired from Leurent’s MD4 inversion [6]; the main difference is
that [6] exploits absorption in the second round, whereas we use it in the early
steps.

Description of the Attack. Suppose we seek a preimage of H̃ = H̃0 . . . H̃3.
The algorithm below first sets B0 = 0 and B1 = 0xffffffff, to guarantee that
a change in C0 will only affect A2. Then, from an arbitrarily chosen message,
Algorithm 1 modifies M2 in order to “meet in the middle”. Finally, C0 corrects
the change in M2, and this new value of C0 does not affect the initial steps of
the function.

Algorithm 1. Preimage attack on 32-step MD5
1. set B0 = 0 and A0, C0, D0 to arbitrary values
2. repeat
3. pick M0 such that B1 =
4. pick arbitrary values for M1 . . . M15

5. compute A30 . . . D30

6. modify M2 to get B30 = D32 = H̃ −D0

7. correct C0 to keep B3 unchanged
8. compute the final hash value H� = H�

0 . . . H�
3

9. if H� = H̃ then
10. return A0 . . . D0 and M0 . . . M15

Algorithm 1 makes about 296 trials by choosing 32 bits in the 128-bit image and
bruteforcing the 96 remaining bits. (We denote H� = H�

0 . . . H�
3 a final hash

value, so our goal is to have in the end H� = H̃ .)

Correctness of the Attack. We now explain in details why the attack works.
First, the operation at line 3 of our algorithm is feasible because it corresponds
to setting

M0 = 0xffffffff−A0 −D0 −K0. (7)

Then right after line 4 we have for any choice of C0:

1. f1(B0, C0, D0) = f1(0, C0, D0) = D0
2. f2(B1, C1, D1) = f2(0xffffffff, C1 = B0, D1) = 0

In other words, the first two steps are independent of C0. This will allow us to
modify C0 = D1 = A2—to correct a change in M2—without altering Ai . . .Di

between steps 4 and 30.
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Now, at line 6 we set

M2 = (H̃3 −D0 −B29) ≫ 9−G(B29, C29, D29)−A29 −K30 (8)

With this new value of M2 we get in the end H�
3 = H̃3.

Finally we “correct” this change by setting

C0 = (B3 −B2) ≫ r3 − f3(B2, C2, D2)−M2 −K2. (9)

With this new value of C0 = A2 we keep the same B3 as with the original choice
of M2.

We can thus choose the output value H�
3 by modifying M2 and “correcting”

C0. However, H�
0 , H�

1 and H�
2 are random for the attacker. Hence, 96 bits have

to be bruteforced to invert the 32-step function. This gives a total cost of 296

trials.
We experimentally verified the correctness of our algorithm by searching for

inputs that give H�
2 = H�

3 = 0 (see Appendix A).

2.3 Preimage Attack on 45 Steps

We present here an attack that computes 45-step preimages within 2100 trials
and negligible memory. This combines a MITM with a conditional linear ap-
proximation of the step function. In short, the attack is based on the fact that
M2 appears at the very beginning and that M6 and M9 appear at the very end
of 45-step MD5. Another key observation is that M2 is used only once in the
first 25 steps, and M6 and M9 are used only once after step 25. Algorithm 2
describes the attack for finding a preimage of H̃0 . . . H̃3.

Correctness of the Attack. First, we use again (at line 1) the trick to absorb
the modification of C0, necessary to keep the forward stage unchanged with the
new value of M2. Then, observe that

– between steps 25 and 45, M6 and M9 are input at steps 44 and 45 (cf.
Table 1)

– at line 7 we use values of M6 and M9 distinct from the ones used in the
forward stage (line 5)

Hence, by setting M6 and M9 to the values chosen the matching L entry, we
would expect different values of B44 = C45 and B45 than the (zero) ones used for
the backward computation. Recall (cf. line 1) that we need A45 = 0, B45 = H̃1,
D45 = 0, hence the values of C45 will not matter; we would however expect a
random B45 from the new values of M6 and M9.

The trick used here is that the condition imposed on M6 and M9 at line 5
implies that the new B45 equals the original H�

1 = H̃1 with probability 2−4

instead of 2−32 for random values (see below). The attack thus succeeds to
find a 96-bit preimage when the MITM succeeds and B45 = H̃1, that is with
probability 2−64 × 2−4 = 2−68. Storage for 268 bytes is required for the MITM.
For full (128-bit preimage) we bruteforce the 32 remaining bits thus the costs
grows to 2100 trials.
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Algorithm 2. Preimage attack on 45-step MD5
1. set A0 = H̃0, B0 = 0, D0 = H̃3

(We thus need A45 = 0, B45 = H�
1 , D45 = 0. Note that we’ll have

f45(B44, C44, D44) = f45(C45, D45, A45) = C45.)
2. repeat
3. pick M0 such that B1 =
4. set arbitrary values to the remaining Mi’s except M6 and M9

5. for all 264 choices of C0 and (M6, M9) such that

M9 = −((M6 ≪ 19) + (M6 ≪ 23))

(Here 23 coincides with r44 and 19 = r44 − r45)
6. compute A25 . . . D25, store it in a list L
7. for M6 = M9 = 0 and all 264 choices of C45 and M2

8. compute A25 . . . D25

9. if this A25 . . . D25 matches an entry in L then
10. correct C0 to keep B3 unchanged
11. return A0 . . . D0 and M0 . . . M15

(Here the message contains the M2, M6, M9 corresponding to the matching
entries)

Reducing the Memory Requirements. By using a cycle-finding algorithm
(as for instance [16,11]) the memory requirements of the meet-in-the-middle step
of the attack can be significantly reduced. Hence, we can find a preimage for 45-
step MD5 with a complexity of about 2100 and negligible memory requirements.

On the Choice of M6 and M9. We explain here why the condition

M9 = −(M6 ≪ 19 + M6 ≪ 23) (10)

gives B45 = H̃1 with high probability.
Consider the last two steps (44 and 45): because A45 = D45 = 0 we have

C44 = D44 = 0 and B43 = C43 = 0. Hence we have

fi(B, C, D) = B ⊕ C ⊕D = B + C + D (11)

in these two steps.
Note that A43 and D43 depend on the C45 used for the backward computation.

Now we can compute B44 and B45 (note r44 = 23, r45 = 9)

B44 = (A43 + D43 + K43 + M6) ≪ 23 (12)
B45 = (A44 + B44 + K44 + M9) ≪ 4 + B44 (13)

For simplicity we rewrite

B44 = (X + M6) ≪ 23 (14)
B45 = ((Y + B44 + M9) ≪ 4) + B44 (15)
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Now we can express B45:

B45 = ((Y + ((X + M6) ≪ 23) + M9) ≪ 4) + ((X + M6) ≪ 23) (16)

Since (cf. line 7 of the algorithm) we chose (M6, M9) = (0, 0) this simplifies to

B45 = ((Y + (X ≪ 23)) ≪ 4) + (X ≪ 23) (17)

Consider now the case M9 = −(M6 ≪ 19 + M6 ≪ 23); Eq. (16) becomes:

B45 = ((Y + ((X + M6) ≪ 23)− ((M6 ≪ 19) + (M6 ≪ 23))) ≪ 4) (18)
+((X + M6) ≪ 23)

We will simplify this equation by using the generic approximation:

(A + B) ≪ k = A ≪ k + B ≪ k (19)

Daum showed [2, §4.1.3] that Eq. (19) holds with probability about 2−2 for
random A and B. We first use this approximation to replace (X +M6) ≪ 23 by

(X ≪ 23) + (M6 ≪ 23). (20)

Thus Eq. (18) yields

B45 = ((Y + (X ≪ 23)− (M6 ≪ 19)) ≪ 4) + (X ≪ 23) (21)
+(M6 ≪ 23)

Finally we approximate (Y + (X ≪ 23)− (M6 ≪ 19)) ≪ 4 by

((Y + (X ≪ 23)) ≪ 4)− ((M6 ≪ 19) ≪ 4) (22)

and Eq. (21) becomes

B45 = ((Y + X ≪ 23) ≪ 4) + (X ≪ 23) (23)

Note that this is the same equation as for (M6, M9) = (0, 0) in Eq. (17). Hence,
we get the correct value in B45 with a probability of 2−4, since we used two
approximations1.

Delayed-Start Attack. This attack strategy can be applied to invert the 47
steps from step 16 to 62, using M6 in place of M2, and the pair (M4, M11) instead
of (M6, M9).

2.4 Preimage Attack on 47 Steps

In the following we will show how to construct a preimage for the compression
function of 47-step MD5 with a complexity of about 296. This attack combines
the 32-step attack with a meet-in-the-middle (MITM) strategy. The latter is
made possible by the invertibility of the step function.

1 The exact probability is 2−3.9097 according to Daum’s formulas.
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The attack on 47-step MD5 can be summarized as follows:

1. set initial state variable to absorb a change in C0, as in the 32-step attack
2. compute A29 . . . D29 for all 232 choices of C0 and save the result in a list L
3. compute A30 . . .D30 for all 232 choices of C47 and “meet in the middle” by

finding a matching entry in L

Algorithm 3 describes the attack more formally.

Algorithm 3. Preimage attack on 47-step MD5
1. set B0 = 0 and A0, C0, D0 to arbitrary values
2. repeat
3. pick M0 such that B1 =
4. pick arbitrary values for M1 . . . M15

5. for all 232 choices of C0

6. compute A29 . . . D29, store it in a list L
7. set A47 = H̃0 − A0, B47 = H̃1 −B0, D47 = H̃3 −D0

8. for all 232 choices of C47

9. compute (backwards) A30 . . . D30

10. if L contains an entry A30 = D29, C30 = B29, D30 = C29 then
11. modify M2 to have

B30 = ((A29 + f(B29, C29, D29) + M2 + K29) ≪ 9) + B29

12. correct C0 to keep B3 unchanged
13. compute the final hash value H�

0 . . . H�
3

14. return A0 . . . D0 and M1 . . . M15

Again this attack essentially exploits the “absorption” of 32 bits during the
early steps to save a 232 complexity factor. Note that when the MITM succeeds,
i.e. when the line 10 predicate holds, we only have a 96-bit preimage because
H�

2 = C47 + C0 is random. This is because both C0 and C47 are random for the
attacker.

Each repeat loop hence succeeds in finding a 96-bit preimage with probability
2−32, and costs 232 trials. This is respectively because

1. we have 232 × 232 = 264 candidate pairs that each match with probability
2−96

2. the cost of the two for loops amounts to 232 computations of the compression
function

The total cost for finding a 128-bit preimage is thus 232 × 232 × 232 = 296,
with a required storage of 236 bytes (64 Gb) for the MITM. This allows us
to find preimages on the 47-step MD5 compression function 232 times faster
than bruteforce. However it doesn’t directly give a preimage attack for the hash
function because the initial value is here partially random, whereas in the hash
function it is fixed.
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3 Preimage Attacks on 3-Pass HAVAL

HAVAL was proposed with either 3, 4, or 5 passes, i.e. 96, 128, or 160 steps. It has
message blocks and hash values twice as large as MD5, i.e. 1024 bits (32 words)
and 256 bits (8 words) respectively. In the following, we present two methods to
invert the compression function of 3-pass HAVAL. Both attacks have a complex-
ity of about 2224 compression function evaluations. Like in the attacks on step-
reduced MD5, we combine a generic MITM with weaknesses in the design of the
compression function. In detail, we exploit the properties of the Boolean func-
tions to absorb differences in its input and special properties of the message
ordering in 3-pass HAVAL. But before describing the attacks, we give a short
description of 3-pass HAVAL.

Fig. 2. The step function of HAVAL

3.1 Short Description of 3-Pass HAVAL

The structure of HAVAL is similar to that of MD5: registers A0, B0, . . . , G0, H0
are initialized to the input chain values and finally the function returns

(H�
0 , . . . , H�

7 ) = (A96 + A0, B96 + B0, . . . , G96 + G0, H96 + H0) (24)

after 96 steps that set

Ai = Bi−1,
Bi = Ci−1
. . . . . .
Gi = Hi−1
Hi = Ai−1 ≫11+fi(Bi−1, Ci−1, Di−1, Ei−1, Fi−1, Gi−1, Hi−1)≫7+Ki+Mσ(i)

(25)
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Table 2. Values of σ(i) in 3-pass HAVAL for i = 1, . . . , 96 (we boldface the key inputs
of M5 and M6)

Step index i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Message word σ(i) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Step index i 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Message word σ(i) 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Step index i 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
Message word σ(i) 5 14 26 18 11 28 7 16 0 23 20 22 1 10 4 8

Step index i 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
Message word σ(i) 30 3 21 9 17 24 29 6 19 12 15 13 2 25 31 27

Step index i 65 66 67 68 69 70 77 72 73 74 75 76 77 78 79 80
Message word σ(i) 19 9 4 20 28 17 8 22 29 14 25 12 24 30 16 26

Step index i 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
Message word σ(i) 31 15 7 3 1 0 18 27 13 6 21 10 23 11 5 2

We thus have Hi = Gi+1 = Fi+2 = Ei+3 = Di+4 = Ci+5 = Bi+6 = Ai+7 for
i = 0 . . . 89. Like in MD5 the step function is invertible, and uses step-specific
constants, Boolean functions fi, and message words Mσ(i). The step functions
are defined as (with e.g. BC = (B ∧ C)):

fi(B, C, . . . , H) = FE ⊕BH ⊕ CG⊕DF ⊕D if 0 < i ≤ 32
fi(B, C, . . . , H) = ECH ⊕ CGH ⊕ CE ⊕ EG⊕ CD ⊕ FH

⊕GF ⊕BC ⊕B if 32 < i ≤ 64
fi(B, C, . . . , H) = CDE ⊕ CF ⊕DG⊕ EB ⊕ EH ⊕H if 64 < i ≤ 96

(26)
The σ(i)’s are in Table 2. See [22] or [20] for a complete specification.

3.2 Preimage Attack A

Suppose we seek a preimage of H̃0 . . . H̃7 with an arbitrary value for H̃6; that is,
we only want a 224-bit preimage. In the attack below we exploit the properties of
the Boolean function fi to absorb a difference in the input, and combine it with a
MITM to improve on bruteforce search. Algorithm 4 describes the attack in detail.
In the end the computed image H� is the same as the image sought H̃ except
(with probability 1 − 2−32) for H�

6 = G96 + G0. Here M5 and M6 are used as
“neutral words”, respectively in the second and the first part of the attack; the
change in G0 will correct the change in M6, while being absorbed during the
first six steps. Furthermore, if the MITM condition at line 8 is satisfied then we
directly get a 224-bit preimage, because at line 6 we choose A96 . . . F96H96.

Indeed we have 264 candidates for A48, . . . , H48 resulting from the forward
computation and 264 candidates resulting from the backward computation, so
we’ll find a match and thus a partial preimage with probability 2−128. Hence,
by repeating the attack 2128 times we’ll find a 224-bit preimage with about
2128 × 264 = 2192 compression function evaluations. We need storage for 269

bytes to perform the MITM. Note that a full (256-bit) preimage is obtained by
bruteforcing the 32 remaining bits, increasing the cost to 2224 trials.
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Algorithm 4. Preimage attack A on 3-pass HAVAL
1. set C0 = 0, D0 = H̃3 − , E0 = F0, H0 = 0, and arbitrary

A0B0G0

(We need to assume D96 = for our attack to work)
2. repeat
3. choose an arbitrary message for which H1 = and H3 =

H5 = 0
(This guarantees that differences in G0 will be absorbed in the first 6
rounds)

4. for all 264 choices of G0 and M5

(A difference in M5 only changes G96 after step 48)
5. compute A48 . . . H48 and store it in a list L.
6. set A96 = H̃0 − A0, . . . , H96 = H̃7 −H0

7. for all 264 choices of G96 and M6

8. compute A48 . . . H48 by going backwards
9. if this A48 . . . H48 matches an entry in L then

10. correct G0 such that A7 . . . H7 remains unchanged
11. return A0 . . . H0 and M0 . . . M31

3.3 Preimage Attack B

This attack exploits the fact that M2 appears at the very beginning in the first
pass and at the very end in the last pass. By combining this with absorption of
the Boolean function in the early steps (similarly to our attack on 47-step MD5),
we can construct a 192-bit preimage within about 2160 trials. By repeating the
attack about 264 times we can construct a preimage for the compression function
with complexity of about 2224 instead of the expected 2256 compression function
evaluations. Algorithm 5 computes a preimage of H̃0 . . . H̃7 where all H̃i’s are
fixed but H̃2 and H̃6 (i.e. a 192-bit preimage):

Algorithm 5. Preimage attack B on 3-pass HAVAL
1. set A0 = H̃0, B0 = H̃1, D0 = H̃3, E0 = H̃4, F0 = H̃5, G0 = 0.

(To get a 192-bit preimage we thus need A96 = B96 = 0, D96 = E96 =
F96 = 0, G96 = H̃7)

2. repeat
3. pick an arbitrary message for which the state variable H1 = 0.

(This guarantees that a change in C0 will only affect A2)
4. for all 264 choices of C0 and H0

5. compute A60 . . . H60 and store it in a list L.
6. for all 264 choices of C96 and H96

7. compute A61 . . . H61

8. if L contains a tuple such that A61 = B60, . . . , G61 = H60 then
9. modify M2 to have

H61 = (A60 ≫ 11) + (f61(. . . ) ≫ 7) + M2 + K61

10. correct C0 and H96 accordingly
11. return A0 . . . H0 and M0 . . . M15
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The MITM will succeed (line 8 of Algorithm 5) with probability 2−96 = 264 ×
264/2224, hence 296 × 264 = 2160 trials are required to get a 192-bit preimage
(and storage 269 bytes). A full (256-bit) preimage is obtained by bruteforcing
the 64 remaining bits, which increases the cost to 2224 trials.

4 Extension to the Hash Functions

In this section, we will show how to extend the preimage attacks on the com-
pression of step-reduced MD5 and 3-pass HAVAL to the hash function. The
extension of the attacks to the hash function is constrained by the padding rule
and the the predefined IV . The padding rule of MD5 and HAVAL forces the last
bits of the message to encode its length. Thus a preimage attack should find mes-
sages that match this constraint. In our attacks we have no restrictions on the
last message words and hence the padding rule is no problem; in each of the at-
tacks proposed, we shall simply choose the end of the message to be of the form
100 · · ·0〈�〉, where 〈�〉 represents the bitlength of the original message (without
the padding bits).

However, the IV of our preimages for the compression function is different
from the fixed one; e.g. in the attack on MD5 reduced to 47-steps we require
B0 = 0, and get a random value for C0. There are several methods to turn our
attacks into preimage attacks starting from the predefined IV , as described in
the next two sections; the general idea will be to find many preimages (with
partially random initial value) and to find many images of the fixed IV, and
then combine them to “bridge the gap” between the IV and the image.

4.1 Basic Meet-in-the-Middle

Suppose we want a preimage of H . This attack sets a parameter 0 < x < n,
and first computes 2x preimages (H̃i, M̃i), i = 0, . . . , 2x − 1, that is, such that
f(H̃i, M̃) = H ; the M̃i’s are chosen to have convenient padding bits. Then the
attack computes 2n−x random images Hj = f(IV, Mj), j = 0, . . . , 2n−x − 1, for
random Mi’s and the IV specified for the function. Finally we find a pair (i, j)
such that H̃i = Hj , and return the message M = Mj‖M̃i as a preimage of H .
Because there’s in total 2n pairs (i, j), the attack will work with high probability.

For reduced-step MD5 with the optimal x we compute forward 2112 random
chain values and compute backward 216 preimages within 296×216 = 2112 trials.
The total cost of the 47-step preimage attack is thus about 2113 trials and mem-
ory for a preimage attack. For 3-pass HAVAL we compute forward 2240 chain
values and backward 216 preimages within 2224 × 216 = 2240 trials. The total
cost is 2241 trials plus memory for a preimage attack.

4.2 Tree Approach

This attack is an improved version of the meet-in-the-middle above. It is based
on the finding of multi-target preimages, and the construction of a tree whose
root is the target image. This is exactly the technique described in [6], (a similar
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approach was published before by Mendel and Rijmen in [10]). To summarize,
we proceed in two stages

1. Backward stage: use a tree-based technique to compute a set S of multi-block
preimages

2. Forward stage: compute images of random message blocks with the prede-
fined IV until one lies in S

For MD5 the forward stage costs 296 trials and the backward stages costs 32×
297 = 2102 trials to compute 32-block preimages, plus storage for 233 message
blocks (i.e. 239 bytes). Applied to 3-pass HAVAL we get a preimage attack that
makes 2230 trials and needs 271 bytes of storage.

5 Conclusion

We presented the first preimage attacks for the hash functions 3-pass HAVAL
and step-reduced MD5: we described several preimage attacks on the MD5 com-
pression function that invert up to 47 (out of 64) steps within 296 compression
function evaluations, instead of the expected 2128, and two preimage attacks
on the 3-pass HAVAL compression function that cost 2224 compression function
evaluations instead of 2256. We extended our best attacks to the hash func-
tions (with padding and fixed IV) for a cost of 2230 and 2102 trials, respectively.
Although these attacks are not practical (notably due to large memory require-
ments), they show that the security margin of 3-pass HAVAL and step-reduced
MD5 with respect to preimage attacks is not as high as expected.
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A Partial Preimage for 32-Step MD5

With the IV

H0 = 0x67452301 H2 = 0x382ca539

H1 = 0x00000000 H3 = 0x10325476

and the message

M0 = 0xb11de410 M4 = 0x792a351e M8 = 0x6d32a030 M12 = 0x1dd5ec6d
M1 = 0x5c0cd1ec M5 = 0x420582b7 M9 = 0x16b2e752 M13 = 0x4794f768
M2 = 0xd7d35ac7 M6 = 0x77v8de3d M10 = 0x3b70c422 M14 = 0x04fef18f
M3 = 0x5704c13b M7 = 0x2476b43b M11 = 0x685cb2aa M15 = 0x00000000

we get the image

H�
0 = 0xb4df93c9 H�

2 = 0x00000000

H�
1 = 0x3348e3f2 H�

3 = 0x00000000

This was found in fewer than five minutes on our 2.4 GHz Core 2 Duo, whereas
brute force would take about 264 trials (thousands of years on the same
computer).
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Abstract. In this paper, we study the security of permutation based
hash functions, i.e. blockcipher based hash functions with fixed keys.
SMASH is such a hash function proposed by Knudsen in 2005 and broken
the same year by Pramstaller et al. Here we show that the two tweaked
versions, proposed soon after by Knudsen to thwart the attack, can also
be attacked in collision in time O(n2n/3). This time complexity can be
reduced to O(22

√
n) for the first tweak version, which means an attack

against SMASH-256 in c · 232 for a small constant c. Then, we show that
an efficient generalization of SMASH, using two permutations instead of
one, can be proved secure against collision in the ideal-cipher model in
Ω(2n/4) queries to the permutations. In order to analyze the tightness of
our proof, we devise a non-trivial attack in O(23n/8) queries. Finally, we
also prove that our construction is preimage resistant in Ω(2n/2) queries,
which the best security level that can be reached for 2-permutation based
hash functions, as proved in [12].

1 Introduction

Hash functions have recently been the subject of many attacks, revealing weak-
nesses in widely trusted hash functions such as MD5 or SHA-1. For this reason,
some recent papers deal with new designs for hash functions such as SMASH [6]
or Radiogatún [2,3]. Most of previous constructions of hash functions use block-
ciphers, since we know how to build such secure and efficient primitives and
since good constructions of compression functions based on them are known.
However, in the proofs of classical constructions of compression function, such
as Davies-Meyer used in MD5 and SHA-1, the assumption made on the block-
cipher is very strong, namely that for each key, or message for hash function,
the blockcipher acts as a random permutation. Such an assumption, which has
been introduced by Shannon and formalized in the ideal-cipher model in 1998
by Bellare et al. in [1], is impossible to check. For instance, it is possible that
among the 2512 possible keys of the SHACAL blockcipher used for SHA-1, some
weak keys exist, which could be used by an attacker. One solution to restrict the
power of the adversary is to fix the key as it is the case in SMASH.

In order to study blockcipher for such constructions, Knudsen and Rijmen at
Asiacrypt last year [7] proposed to use the notion of known-key distinguisher.
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The latter is an adversary which tries to distinguish a blockcipher from random
permutation when the key is known. This model seems to be less permissive
than the ideal-cipher model required to study the Davies-Meyer construction.
Knudsen and Rijmen mention that this approach could be used to analyze hash
function constructions, but the security model is not formally defined, seems to
be hard to formalize, and to take into account for a security proof.

Even if there is no security model well adapted to study this alternate con-
struction mode, it is particularly interesting since the assumption on the block-
cipher seems to be more realistic. We refer to permutation based hash functions
to precise that we do not use the flexibility of having many permutations using a
blockcipher. In the constructions we are interested in, we only require one or two
permutations to behave as random permutations, thus the probability to have a
weak key is low and cannot be used by the adversary. Finally, another practical
advantage of such constructions is that the key schedule of some blockciphers
is more costly than the encryption processes and so avoiding the key schedule
algorithm is interesting in term of speed and in term of space for hardware
implementation.

1.1 Related Work

At FSE 2005, Knudsen [6] proposed a design for a compression function us-
ing only one permutation and a particular instance called SMASH. Soon after,
Pramstaller et al. [10] broke it in collision very efficiently and Lamberger et
al. [9] broke it in second preimage. That is why Knudsen proposed two tweaks
to avoid the attacks, so that the expected complexity of any collision attack is
still O(2n/2).

The security of 1-permutation based hash functions has been studied at Euro-
crypt 2005 by Black et al. [4]. They show a very interesting impossibility result:
in the ideal-cipher model, the number of queries to the permutation required
to attack in collision the hash function is very low, linear in the bitsize of the
input/output permutation. This result seems to rule out the construction of com-
pression function using one permutation. However, it has one drawback which
is very important in practice: even if the number of queries is low, the overall
time complexity of the attack presented is very high, namely O(n2n). Therefore,
in a computational model which would take into accounts the time or space
complexity of the attack, such a construction could be possible. That is why
the result of [4] does not completely rules out the construction of hash function
based on one permutation such as SMASH. Finally, in the same vein, Steinberger
and Rogaway at Eurocrypt’08 extend this result for many permutations against
collision and preimage attacks. The main result interesting for us, is that with
two permutations the preimage and collision resistance cannot be proved if more
than O(2n/2) queries are made to the permutations.

1.2 Our Results

In this paper, we first exhibit a new collision attack against the two tweaked
versions of SMASH with complexity in time and memory of order O(n2n/3),
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generating a 2-block collision. For the first tweak version, the attack can be im-
proved and the complexity reduced to approximately 232 for n = 256. To avoid
our attack, we propose to replace one special operation, namely the multipli-
cation by a constant in an extension field of GF(2), by a strong permutation.
This modification has already been proposed by Thomsen [13], but has never
been analyzed. We prove that a collision attack against this new scheme requires
at least 2n/4 queries to the permutations. In order to better evaluate its colli-
sion resistance in term of number of queries, we devise an attack that requires
23n/8 queries but needs O(23n/4) in time and works only if the Merkle-Damg̊ard
strengthening is not used. Finally, we prove that the number of queries required
to attack the preimage is at least of 2n/2. Note that this latter bound is optimal
according to Steinberger and Rogaway attack. Therefore our construction has
also a theoretical interest since it is the first 2-permutation based hash function
provably collision and preimage resistant. It gives a lower bound for the best
collision resistance that we can obtain with such a construction and proves that
the best preimage collision resistance of these schemes is in Θ(2n/2) queries.

Remark that, even if we are not able to prove better bounds, this does not
say that our function is weak since we are not aware of an attack requiring less
than the birthday attack for collision if the Merkle-Damg̊ard strengthening used.
For the preimage, since the attack of Steinberger and Rogaway requires O(2n)
time complexity, we propose an attack requiring O(2n/2) time complexity for
the compression function and O(23n/4) for the full hash function.

1.3 Organization of the Paper

In section 2, we recall the security model and the designs of SMASH and of
our generalization. We propose our collision attack on SMASH in section 3
and study the resistance of our new hash function against collision attacks in
section 4. Finally, in section 5, we study the resistance against preimage of our
construction.

2 Construction and Security Model

2.1 Security Model

The ideal-cipher model. To model blockciphers, we use the ideal-cipher
model introduced by Shannon. In this model, the adversary is not computation-
ally limited and the blockcipher is viewed as a family of functions E : {0, 1}κ ×
{0, 1}n → {0, 1}n such that for each k, E(k, ·) is a permutation on {0, 1}n. For
every key k, E(k, ·) is chosen uniformly at random in the set of all permutations
on n bits. This implies that, for the adversary, for each key k ∈ {0, 1}κ, E(k, ·)
is a random and independent permutation.

The adversary A is given access to the oracles E and E−1, which is denoted
by AE,E−1

: it can ask at most Q oracle queries to either E or E−1 and the
answer of a query (Ki, Xi) for E is Yi = E(Ki, Xi) and the answer of a query
(Ki, Yi) for E−1 is Xi = E−1(Ki, Yi).
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Remarks on the security model. In our 2-permutation based construction,
the keys k1 and k2 chosen for the construction are public and given to the
adversary. As the permutations E(k, ·) for k �= k1, k2 are independent of E(k1, ·)
and E(k2, ·), we assume w.l.o.g that the adversary does not ask oracle queries
(k, x) to E or (k, y) to E−1 with k �= k1, k2. For the sake of simplicity we denote
π1 = E(k1, ·) and π2 = E(k2, ·) and give oracle access to π1, π−1

1 , π2 and π−1
2 .

Note that in this case we do not lean upon the whole power of the ideal-cipher
model, we only require that π1 and π2 were chosen independently and uniformly
at random in the set of all permutations. We do not use the fact that for every
k �= k1, k2, E(k, ·) is a permutation chosen uniformly at random in the set of all
the permutations.

Collision resistance. If H is a hash function, the goal of the adversary is
to break the collision resistance of H , that is to find two different messages
(M, M ′) such that H(M) = H(M ′). The ability of the adversary to break H
collision resistance is denoted advColl

H (A) and is equal to:

Pr
[
H(M) = H(M ′) ∧M �= M ′|AE,E−1

⇒ (M, M ′)
]

The probability is taken over the random coins of A and over all the possible
blockcipher E where E is generated as specified above. The notation AE,E−1 ⇒
(M, M ′) means that A, after at most Q queries to E or E−1, outputs (M, M ′).
We denote by advColl

H (Q) the maximum of advColl
H (A) over all the adversaries A

which can make at most Q queries.

Assumptions. We assume that the adversary does not ask a query for which
it already knows the answer; namely, it does not ask the same query twice or
if it asks (k, x) to E, which returns y, it does not ask (k, y) to E−1, and vice
versa. Furthermore, we assume that when an adversary outputs (M, M ′), it has
already computed H(M) and H(M ′), i.e. it has already made all the oracle
queries required to compute H(M) and H(M ′).

Measures of the complexity. There are two classical ways to measure the
complexity of the attack. On one hand, one can say that this complexity is
equal to the time complexity of the adversary. This is the complexity we are
interested in, in practice, and this is the complexity that Knudsen consider in
his paper about SMASH [6] and that we consider in our attack of SMASH.
We refer to this complexity as the practical complexity. On the other hand,
the attack complexity can be measured by the number of queries made to the
oracles. This is the complexity oftenly used in proofs [11,5], or on the contrary
to show that proofs cannot be established [4,12]. We use this complexity in our
security proofs. It is refered in the following as the query complexity. Note that
the practical complexity is always greater than the query complexity.
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Fig. 1. SMASH compression function and our 2-permutation based compression
function

2.2 SMASH Construction and Generalization

In this subsection, we introduce successively the original operating mode of
SMASH, the modifications proposed by Knudsen and our new construction
which is a generalization of the SMASH design.

Smash. Firstly we present the original version of SMASH. Let π = E(0n, ·) be a
random permutations, IV ∈ {0, 1}n be a fixed string, θ �= 0, 1 be a fixed element
of GF (2n), the finite field of 2n elements, and smash : {0, 1}n×{0, 1}n → {0, 1}n
be the function defined by:

smashπ(h, x) = π(h⊕ x)⊕ h⊕ θ · x,

where · denotes the multiplication in GF (2n).
Given (IV, π, θ), the hash of a message x = (x1, . . . , x�) ∈ {0, 1}n·� is given

by SMASH(x) = h�+1 where h0 = π(IV ) ⊕ IV = smashπ(IV, 0n), hk =
smashπ(hk−1, xk), for all 1 ≤ k ≤ �, and h�+1 = π(h�)⊕ h� = smashπ(h�, 0n).

Tweaked Versions of Smash. After the attack of [10], it has been proposed
two ways to modify the scheme [10,6], namely: “One is to use different permuta-
tions π for every iteration. Another is to use a secure compression function (. . . )
after the processing of every t blocks of the message for, say t = 8 or t = 16”.

We call the modification which consists in using a different permutation for
every iteration, the first modification and the modification which consists in using
a secure compression function (as π(h)⊕ h for example) after the processing of
every t blocks of the message, the second modification.

Our Generalized Construction. Let IV ∈ {0, 1}n be a fixed string, π1 =
E(0n, ·) and π2 = E(1n, ·) be two random permutations, and f : {0, 1}n ×
{0, 1}n → {0, 1}n be the function defined by:

f(h, x) = π1(x) ⊕ π2(x ⊕ h)⊕ h

Given (IV, π1, π2), the hash of a message x = (x1, . . . , x�) ∈ {0, 1}n·� is H(x) =
h� where h0 = IV , hk = f(hk−1, xk) for all 1 ≤ k ≤ �.
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Padding. The constructions introduced before require that the message length
is a multiple of a fixed integer which depends on the block size. To extend this
construction to arbitrary length messages, one can add an injective padding to
the message, such as the classical padding proposed for SMASH: add a ’1’ and
as many ’0’ as required. In SMASH, it is also required to add the so-called
Merkle-Damg̊ard strenghtening, that is to concatenate the encoded length of
the message at the end of the message. We also advice to add the Merkle-
Damg̊ard strenghtening for our construction, since, even if the security proof we
are able to establish does not require it, the best known collision attacks against
the construction without strengthening are strictly more efficient than the best
known collision attacks against the construction with the strengthening.

3 A Collision Attack against All Versions of SMASH

In this section, we present a collision attack against SMASH in O(n2n/3). Since
it generates a 2-block collision, it can be mounted against the two modifications
of SMASH, as long as t ≥ 3 (we remind that t denotes the number of iterations
using the classical SMASH compression function before the use of an alternate
secure compression function). Then we present an improvement of the attack
which can be used to reduce the complexity of the attack. It can be applied
against the first modification and then the attack generates two 2

√
n−1-block

long collision messages and has a practical complexity of O(22
√

n). This means
that for n = 256, there is an attack in c · 232 where c is a small constant. It also
can be applied against the second modification if t = 8 or t = 16, but its impact
is more limited.

3.1 Generic Attack

This subsection describes an attack against the collision resistance of the two
modifications of SMASH with practical complexity of O(n2n/3). It generates a
2-block collision.

Note that the generic collision attack presented in [4] by Black et al. also
applies to SMASH used with the first modification and finds a collision with
a query complexity of at most O(2(n + 1)) but a practical complexity greater
than O(2n). Therefore, this attack does not negate the security level expected by
Knudsen [6], namely a practical security of O(2n/2). The attack presented in [10]
by Pramstaller et al. is very efficient against the original version of SMASH, but
as they precise in their paper, it does not apply to the two modifications.

In the following, we use the notations already introduced in subsection 2.2.
Let π and π′ be the two permutations used respectively in the first and in the
second iteration. Let (α1, β1) and (α′

1, β
′
1) be 2 pairs such that π(α1) = β1 and

π′(α′
1) = β′

1. Let us define γ1 = β1 ⊕ θ · α1, γ′
1 = β′

1 ⊕ θ · α′
1, x1 = α1 ⊕ h0,

h1 = smashπ(h0, x1) = β1⊕θ ·α1⊕ (θ +1) ·h0, and x′
1 = α′

1⊕h1. Consequently,
for h2 = smashπ′

(h1, x
′
1), we get:

h2 = γ′
1 ⊕ (θ + 1) · γ1 ⊕ (θ + 1)2 · h0.
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Let (α2, β2) and (α′
2, β

′
2) be 2 other pairs such that π(α2) = β2 and π′(α′

2) = β′
2.

Let us define similarly as above γ2 = β2 ⊕ θ · α2, γ′
2 = β′

2 ⊕ θ ·α′
2, x2 = α2 ⊕ h0,

h′
1 = smashπ(h0, x2) = β2 ⊕ θ · α2 ⊕ (θ + 1) · h0 and x′

2 = α′
2 ⊕ h′

1. For h′
2 =

smashπ′
(h′

1, x
′
2), we get:

h′
2 = γ′

2 ⊕ (θ + 1) · γ2 ⊕ (θ + 1)2 · h0.

First, notice that if h2 = h′
2, then SMASH(x1, x

′
1) = SMASH(x2, x

′
2). We have

h2 = h′
2 if and only if γ′

1⊕ (θ + 1) · γ1 equals γ′
2⊕ (θ + 1) · γ2, which is equivalent

to:
(θ + 1) · γ1 ⊕ (θ + 1) · γ2 ⊕ γ′

1 ⊕ γ′
2 = 0. (1)

The attack can be easily deduced from this relation.
Let us makes 2q queries to π to generate 2 sequences with q elements (α1,i, β1,i)

and (α2,i, β2,i) and 2q queries to π′ to generate 2 sequences with q elements
(α′

1,i, β
′
1,i) and (α′

2,i, β
′
2,i). Let us compute the associated γj,i = βj,i⊕ θ ·αj,i and

γ′
j,i = β′

j,i ⊕ θ · α′
j,i, for j = 1, 2 and 1 ≤ i ≤ q.

If q = 2n/4, the birthday paradox says that with high probability there exists
a quadruple (γ1,a, γ′

1,b, γ2,c, γ
′
2,d) such that equation (1) is true. However finding

such a quadruple requires a time complexity of O(n2n/2). For q = 2n/3, the
algorithm presented in [14] allows to find such a quadruple in time O(n2n/3)
and space O(2n/3). Therefore, using this algorithm, we can mount an attack
with query complexity of O(2n/3) and practical complexity of O(n2n/3) which
is much smaller than the practical complexity of O(2n/2) that one could expect.

3.2 Improvements of the Attack

The improvement presented in this subsection comes from the generalization
presented in [14] of the 4-list algorithm. The more lists there are, the smaller
the practical complexity is. The main drawback of this improvement is that
it generates longer colliding messages and therefore cannot be used completely
against the second modification.

Let assume that instead of searching for 2-block colliding messages, we are
searching for 3-block colliding messages. Using the same notations as above, let
us introduce π′′ the permutation used in the third iteration and (α′′

1 , β′′
1 ) and

(α′′
2 , β′′

2 ) two pairs such that π′′(α′′
1 ) = β′′

1 and π′′(α′′
2 ) = β′′

2 . If we define similarly
as above x′′

1 = α′′
1 ⊕ h2 and x′′

2 = α′′
2 ⊕ h′

2, and generalize previous notations, we
have that

h3 = γ′′
1 ⊕ (θ + 1) · γ′

1 ⊕ (θ + 1)2 · γ1 ⊕ (θ + 1)3 · h0

h′
3 = γ′′

2 ⊕ (θ + 2) · γ′
2 ⊕ (θ + 2)2 · γ2 ⊕ (θ + 1)3 · h0

Therefore, h3 = h′
3 if and only if (θ+1)2 ·(γ1⊕γ2)⊕(θ+1)·(γ′

1⊕γ′
2)⊕γ′′

1⊕γ′′
2 = 0.

This leads to an attack which generates 6 lists and tries to find one element
in every list such that the xor of theses elements is equal to 0. This can be
generalized to k-block long messages. We can show that hk = h′

k if and only if:

k⊕
i=0

(θ + 1)k−i · (γ(i)
1 ⊕ γ

(i)
2 ) = 0. (2)
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The algorithm in [14] finds such a 2k-tuple in time O(k · 2n/(1+log2(2k))) and re-
quires 2k lists of size O(2n/(1+log2(2k))), therefore it requires to make
O(k · 2n/(1+log2(2k))) queries to generate all these lists. The complexity of the
attack is optimal for 2k = 2

√
n and in this case the practical complexity is equal

to O(22
√

n).
This improvement can be applied for all values of k when the first modification

is used and therefore this version of SMASH can be attack inO(22
√

n), generating
messages of 2

√
n−1 blocks. For n = 256, this means a complexity of c · 232 for a

small constant c and messages of 215 256-bit blocks, that is of 1 Mo.
However, it can be applied only for k ≤ t − 1 when the second modification

is used. Therefore against this modification, the improved attack has a practical
complexity of O(t · 2n/(2+log2(t−1))), that is O(2n/4) and O(2n/5) for t = 8 and
t = 16 respectively, as proposed by Knudsen [6] (we remind that t denotes the
number of iterations using the classical SMASH compression function before
the use of an alternate secure compression function). For n = 256, this gives a
complexity of approximately 264 and 252.

4 Collision Resistance of the Generalized Design

Now, we examine the collision resistance of the generalized version we pro-
pose. Firstly, we prove that a collision attack requires at least Ω(2n/4) queries
to succeed with good probability. Secondly, we give a collision attack against
our scheme with a query complexity of O(23n/8), but a practical complexity of
O(23n/4). Most often this attack generates two messages of different length and
therefore does not work anymore if the Merkle-Damg̊ard strengthening is used.
In this latter case, the best attack we have against our scheme is the birthday
paradox attack with O(2n/2) queries and a practical complexity of O(n2n/2) .

4.1 Security Proof

The attack presented in [4] shows in particular that one cannot expect to prove
the collision resistance of SMASH if more than O(n) queries are made. On the
contrary, we prove here that if we replace the multiplication by θ by a strong
permutation (modelized by an ideal cipher), then one can prove that at least
Ω(2n/4) queries are required to break collision resistance, and therefore that
such an attack has a practical complexity greater than 2n/4. This proof is valid
even if the Merkle-Damg̊ard strengthening is not used.

Theorem 1. Let A be a computationally unbounded adversary which makes at
most Q queries. Its advantage in breaking H collision resistance is upper bounded
by:

advColl
H (A) ≤ 2Q4

2n
.

Proof. A collision adversary is allowed to make at most Q queries to either π1,
π2, π−1

1 , or π−1
2 . We show that the probability that the adversary finds a collision
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IV

(α, β)

Δ

Fig. 2. An example of graph. In gray is the tree T .

for H is upper bounded by Q4/2n. The permutations π1, π2 and the initial value
IV are chosen randomly.

The graph construction. First, we introduce the following graph construc-
tion. Let R1 = {(αi, βi)1≤i≤q1} be q1 pairs such that π1(αi) = βi and R2 =
{(α′

j , β
′
j)1≤j≤q2} be q2 pairs such that π2(α′

j) = β′
j . We define Δi,j = αi ⊕ α′

j

and Δ̃i,j = βi ⊕ β′
j ⊕ αi ⊕ α′

j for 1 ≤ i ≤ q1 and 1 ≤ j ≤ q2. We construct a
labelled directed graph G = (V, E). The set of vertices V contains the bit strings
Δi,j , Δ̃i,j and IV (that is at most 2q1 ·q2 +1 nodes). The set of edges E contains

the directed edges (Δi,j , Δ̃i,j) labelled with (αi, βi) denoted
(
(Δi,j , Δ̃i,j), αi, βi

)
(there are exactly q1 · q2 labelled directed edges, possibly several edges between
the same pair of nodes).

We define a path in the graph G as a sequence of edges p = (e1, . . . , e�) such
that for each of its edge ei, 1 ≤ i ≤ �− 1 the output vertex is equal to the input
vertex of ei+1. Let us denote Δ

p� Δ′ which means that either Δ = Δ′ (and p
is empty) or there exists a path p = (e1, . . . , e�) for which the input vertex of e1
is Δ and the output vertex of e� is Δ′.

Correspondence between the hash function and the graph con-

struction. A message x = (x1, . . . , x�) is said to be valid if one can compute its
digest value thanks to the already made requests, that is if and only if: h0 = IV
and for every k ≥ 1, (xk, π1(xk)) ∈ R1 and (xk ⊕ hk−1, π2(xk ⊕ hk−1)) ∈ R2,
with hk = π1(xk) ⊕ π2(xk ⊕ hk−1) ⊕ hk−1. Let us denote by M the set of all
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the valid messages. Let P be the set of all non-empty paths in G with IV as
input node, that is P = {p �= ∅ | ∃Δ ∈ V, IV

p� Δ}. We now show that there is
a bijection between P and M .

Let p = (e1, . . . , e�) be a non-empty path from IV to a node Δ. For this path
p we construct a message x = (x1, . . . , x�), such that H(x) = Δ, where x is
defined as follows. For the kth edge ek, by construction, there exists (a unique)
(ik, jk) such that ek =

(
(Δik,jk

, Δ̃ik,jk
), αik

, βik

)
, and we define xk = αik

. Using
the same notations as in the definition of H one can easily check that h0 = IV =
Δi1,j1 , and for all other 1 ≤ k ≤ �, hk = Δik+1,jk+1 = Δ̃ik,jk

:

hk = f(hk−1, xk) = π1(xk)⊕ π2(xk ⊕ hk−1)⊕ hk−1

= π1(αik
)⊕ π2(αik

⊕Δik,jk
)⊕Δik,jk

= π1(αik
)⊕ π2(α′

jk
)⊕ αik

⊕ α′
jk

= βik
⊕ β′

jk
⊕ αik

⊕ α′
jk

= Δ̃ik,jk
= Δik+1,jk+1 .

Therefore x is valid and H(x) = h� = Δ̃i�,j�
= Δ. We say that p induces the

message x. One can check easily that if p �= p′ induce respectively x and x′, then
x �= x′.

Conversely, let x = (x1, . . . , x�) be a valid message and p be the path defined
as p = (e1, . . . , e�) with ek = ((hk−1, hk), xk, π1(xk)) (we remind that h0 = IV
and hk = f(hk−1, xk)). The path p is clearly in P . We say that x induces p. One
can check easily that if x �= x′ induce respectively a path p and p′ in G then
p �= p′.

Therefore, finding two colliding messages in M is equivalent to find two paths
in P with the same output nodes. We say that these two paths collide and that
there is a collision in G.

Upper bound of the collision probability. Consider now the collision
adversary. Let us assume that it has already made q1 queries to π1 or π−1

1 and
q2 queries to π2 or π−1

2 . These queries induce two sets R1 and R2, and a graph
G defined as above. We also introduce the following sets:

T = {Δ ∈ V | ∃ p, IV
p� Δ}

A = {α | ∃ 1 ≤ j ≤ q2, ∃Δ ∈ T, α′
j ⊕Δ = α}

B = {γ | ∃ 1 ≤ j ≤ q2, ∃Δ′ ∈ V, β′
j ⊕ α′

j ⊕Δ′ = γ}

Without loss of generality, we can assume that the adversary is ready to make
a query to π1 or π−1

1 . Let us denote by (α̃, β̃ = π1(α̃)) the pair induced by this
query. With this query the graph G expands, new edges are generated. Let us
denote by G̃ the graph after this expansion and similarly T̃ the expansion of T
and P̃ the expansion of P .

We now show that if there is a collision in G̃, then β̃⊕ α̃ ∈ B and α̃ ∈ A with
high probability. Assume that there is a collision in G̃ but not in G. Let Δ be a

node in G̃, let p, p′ be two paths in P̃ such that p �= p′, IV
p� Δ and IV

p′
� Δ

in G̃. Let us denote (IV, Δ1, . . . , Δ� = Δ) the sequence of vertices crossed by p
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in G̃ and (IV, Δ′
1, . . . , Δ

′
m = Δ) the sequence of vertices crossed by p′ in G̃. As

there is not any collision in G, then either p or p′ is not in P . Let us say it is p.
Note that with high probability Δ is already in G and was not generated

by the expansion. If it were not the case, then there would be i �= j such that
Δ = β̃ ⊕ β′

i ⊕ α′
i = β̃ ⊕ β′

j ⊕ α′
j . This implies that β′

i ⊕ α′
i = β′

j ⊕ α′
j . The

probability that there exists such a pair (i, j) is upper bounded by q2
2/2n. Let

us assume that such a pair does not exist and therefore that Δ is already in G.
Let a be the smallest integer such that there exists r suffix of p with Δa

r� Δ�

in G (hence Δa ∈ V ), that is r exists before the expansion. Due to the previous
remark, a exists and a ≤ �. As Δa−1 �∈ r, it means that the edge (Δa−1, Δa) is
generated by the expansion, that is there exists j such that Δa−1 = α̃⊕ α′

j and
Δa = β̃ ⊕ α̃⊕ β′

j ⊕ α′
j . Therefore we have β̃ ⊕ α̃ ∈ B.

Similarly, let b be the greatest integer such that, there exists r′ prefix of p with

IV
r′
� Δb in G (hence Δb ∈ T ). As Δb+1 �∈ r′, it means that the edge (Δb, Δb+1)

is generated by the expansion, that is there exists j such that Δb = α̃⊕ α′
j and

Δb+1 = β̃ ⊕ α̃⊕ β′
j ⊕ α′

j . Therefore we have α̃ ∈ A.
If it is π1 which was queried by α̃, then the collision probability is upper

bounded by:

#B

2n − q1
≤ #V · q2

2n − q
≤ 2(2q1q2 + 1)q2

2n
≤ 2q3

3 · 2n
≤ q3

2n
,

where q = q1 + q2. The last inequality is true because the function x "→ 2(2(q −
x)x + 1)x reaches its maximum for x ≈ 2q/3 and is smaller than 2q3/3 at this
point. The collision probability can be similarly upper bounded by q3/2n if it is
π−1

1 which was queried.
Therefore, at the qth iteration, the success probability is lower than 2q3/3 ·

2n + q2/2n, and at the end the success probability is lower than∑Q
q=1

(
2q3/3 · 2n + q2/2n

)
≤ Q4/2n. ��

4.2 Attacks

Now we present an attack against the entire hash function, this gives upper
bounds of its collision resistance. Before that, note that the birthday paradox al-
lows to easily construct a collision attack which succeeds with probability nearly
1 with O(2n/2) queries to π1 and π2 and time complexity of O(n2n/2). This
attack generates two 1-block messages which collide and therefore works even if
the Merkle-Damg̊ard strengthening is used (see the full version of the paper for
a description of this attack).

We present now an attack which succeeds with probability nearly 1. It is a
better attack than the birthday attack since its query complexity is only equal to
2 · 23n/8, but it has a practical complexity of O(n23n/4). Moreover, one does not
control the size of the two messages generated during the attack and most proba-
bly they won’t have the same size. Therefore the Merkle-Damg̊ard strengthening
allows to thwart the attack. Our analysis of this latter is heuristic and not proved.
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However, we have tested the attack for several values of n up to n = 40 and it
turned out to work well in practice.

Proposition 1. For Q ≥ 23n/8+2 there is a computationally unbounded collision
adversary with high success probability.

Sketch of the attack. In the sequel, first we explain how we make the
queries, then we informally evaluate the expected number of messages for which
we are able to compute the hash. For a precise algorithm, see the full version
of the paper. Note that the following attack is inspired from the way we have
proved the collision resistance : we introduce the same tree T and try to make
it grow as much as possible, so that it quickly contains 2n/2 vertices.

Let α0 and β0 be two random n-bit strings such that α0 ⊕ β0 = IV . Let q be
an integer. We generate the sequences (αi)0≤i≤q, and (βi)0≤i≤q such that for all
1 ≤ i ≤ q, αi = π1(αi−1) ⊕ αi−1, and βi = π2(βi−1) ⊕ βi−1. For all 0 ≤ i, j ≤
q, let us define Δi,j = αi ⊕ βj . Note that we make Q = 2q queries to π1 and
π2, and we generate about (q + 1)2 different Δi,j . We generate the sequences this
way, because we have the following interesting property: for all (i, j), f(Δi,j , αi) =
Δi+1,j+1. Therefore, for all 1 ≤ � ≤ q, the message α0‖α1‖ . . . ‖α�−1 hashes to
Δ�,� and if Δk,k = Δi,j , then for all 1 ≤ � ≤ q −max(i, j) the message Mk,i,j,� =
α0‖α1‖ . . . ‖αk−1‖αi‖αi+1‖ . . . ‖αi+�−1 hashes to Δi+�,j+�. Such a triplet (k, i, j)
is called a colliding triplet and the message Mk,i,j,� is a preimage of Δi+�,j+� for H .

If there are many different colliding triplets (i, j, k), so we are able to find a
preimage for many different values Δi+�,j+�. Let us introduce the graph T =
(V, E) where:

V = {Δa,b|∃ a colliding triplet (k, i, j) s.t. a− i = b− j ≥ 0}
∪ {Δa,a, 0 ≤ a ≤ q}

E = {(Δa,b, Δa+1,b+1) s.t. 0 ≤ a, b ≤ q − 1, Δa,b ∈ V } .

Note that we are able to find a preimage for all Δa,b ∈ V and that T is a tree if
and only if there is no collision (otherwise we are able to find a cycle in T and
there are two ways to reach some Δa,b ∈ V ). Therefore, our goal is to make V
grow up to a size of about 2n/2 vertices so that a collision occurs. In the following
we explain informally why this happens with high probability for q = 23n/8+1.
This analysis considers that the αi and βj are uniformly distributed, which is of
course not the case. However, we expect that the analysis gives a good intuition
of what happens.

Let us evaluate roughly the expected value of T size, denoted t. Note that
T contains at least the q + 1 vertices Δa,a. If (i, j, k) is a collision triplet with
i �= j, then all the Δi+�,j+�, with 0 ≤ � ≤ q −max(i, j), are added to T . Thus,
if Set = {(i, j, k) s.t. i �= j, i �= k, j �= k}, we have:

t ≈ 1 + q +
∑

(i,j,k)∈Set

�{Δk,k=Δi,j}(q −max(i, j)),

therefore, E(t) ≈ 1 + q +
∑

(i,j,k)∈Set

Pr [Δk,k = Δi,j ] (q −max(i, j)).
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n Q number of experiments size of T percentage of success
36 215 10000 218 ≤ · ≤ 219 52%
40 216.5 1000 220 ≤ · ≤ 221 59%

Fig. 3. Experimental results

where � denotes the characteristic function. If the αi and βj were uniformly
distributed (which is not the case) then we would have that Pr [Δk,k = Δi,j ] =
1/2n and therefore that

E(t) ≈ 1 + q +
1
2n

∑
(i,j,k)∈Set

(q −max(i, j))

= 1 + q +
q(q + 1)(q − 1)(q − 2)

3 · 2n
≈ q4

3 · 2n
.

We can conclude that for q = 23n/8, we can expect that T contains more than
2n/2 vertices and, in this case, hope that the birthday paradox applies here so
that two of these vertices collide. As already stated, if there is such a collision
the attack is finished, we are able to find two messages which collide for H . ��

Complexity of the attack and experimental results. The precise algo-
rithm is described in the full version of the paper. The attack requires O(23n/8)
queries to π1 and π2, O(2n/2) in space (to store T ) and O(n23n/4) in time (be-
cause we have to search for all the colliding triplets (i, j, k) with 1 ≤ i, j, k ≤
23n/8, that is all the triplets (i, j, k) such that Δk,k = αi ⊕ βj).

We have run several tests for n equals 36 and 40. For that, we have used the
blockcipher RC5 with two random keys and with a random IV . The results are
summarized in figure 3. It appears that for Q = 2

√
2 · 23n/8, in all experiments

the tree T contains between 2n/2 and 2n/2+1 vertices and a collision is found at
least half the time. This validates our heuristic analysis of the attack.
Note. We have studied some other constructions of a compression function us-
ing only two permutations and some “xor”. Some lead to hash functions which are
triviallybreakable, for all the others a variant of this attack could be applied (some-
times this variant is tricky and requires to make oracle queries to π−1

1 or π−1
2 ).

5 Security against Preimage of the Generalized
Construction

5.1 Security Proof

In this section we prove that the preimage resistance of our construction is
provably in O(2n/2) queries. Note that in the design of the compression function,
we have added a feed-forward (more precisely, we xor the chaining value to the
output of the two permutations) exclusively in order to prevent trivial preimage
attacks against the compression function (removing this feed-forward does not
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alter the collision resistance). Thus, the compression function is provably collision
resistant up to O(2n/2) queries. That is what we show in the following. Since
finding a preimage for the whole hash function implies finding a preimage for
the compression function, this implies that the whole hash function is provably
preimage resistant as long as less than O(2n/2) queries have been made.

Proposition 2. Let A be a computationally unbounded adversary which makes
at most Q queries, its advantage in breaking f preimage resistance is upper
bounded by Q2/2n.

Proof. Let α and α′ be two queries made respectively to π1 and π2 and let β and
β′ be the respective answers (that is we have β = π1(α) and β′ = π2(α′)). Let x
be the value for which a preimage is searched. We have Pr[x = α⊕β⊕α′⊕β′] =∑

y Pr[β = x ⊕ α ⊕ α′ ⊕ y] Pr[β′ = y] = 1/2n. The result is the same if π−1 is
queried by β or if π−2 is queried by β′. Therefore, if A makes q1 queries to π1 or
π−1

1 and q2 queries to π2 or π−2
1 (such that q1 + q2 = Q) and obtains the pairs

(αi, βi) and (α′
j , β

′
j) respectively, the union bound says that the probability that

there exists a pair (i, j) such that x = αi ⊕ βi ⊕ α′
j ⊕ β′

j is upper bounded by
q1q2/2n, and thus by Q2/2n. ��

5.2 Optimality of the Proof and Attacks

In [12], Rogaway and Steinberger present a generic O(n2n/2) preimage attack
against any 2-permutation based hash function. This means, as already stated,
that our construction reaches the best security level against preimage that we
can expect, namely O(2n/2) queries; in this sense, the construction is optimal.

Besides, the attack of [12] against the whole hash function requires O(n2n/2)
queries, but the exact practical complexity is not established in general. However,
in our case, its practical complexity seems greater than 2n. This leads us to
wonder what is the attack with the lowest practical complexity. Since finding a
preimage for the compression function requires O(n2n/2) in time, the Lai and
Massey attack [8] can be used. This attack is an unbalanced meet-in-the-middle
attack: we compute 2n/4 preimages, hash 23n/4 messages and meet in the middle
using the birthday paradox. This requires to make O(23n/4) queries and to make
O(n23n/4) computations. This is still greater than O(n2n/2) and it is an open
problem to decrease the practical complexity of a preimage attack against the
whole hash function.
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Counting Functions for the k-Error Linear
Complexity of 2n-Periodic Binary Sequences�
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Abstract. Linear complexity is an important measure of the crypto-
graphic strength of key streams used in stream ciphers. The linear com-
plexity of a sequence can decrease drastically when a few symbols are
changed. Hence there has been considerable interest in the k-error linear
complexity of sequences which measures this instability in linear com-
plexity. For 2n-periodic sequences it is known that minimum number of
changes needed per period to lower the linear complexity is the same
for sequences with fixed linear complexity. In this paper we derive an ex-
pression to enumerate all possible values for the k-error linear complexity
of 2n-periodic binary sequences with fixed linear complexity L, when k
equals the minimum number of changes needed to lower the linear com-
plexity below L. For some of these values we derive the expression for the
corresponding number of 2n-periodic binary sequences with fixed linear
complexity and k-error linear complexity when k equals the minimum
number of changes needed to lower the linear complexity. These results
are of importance to compute some statistical properties concerning the
stability of linear complexity of 2n-periodic binary sequences.

Keywords: Periodic sequence, linear complexity, k-error linear
complexity.

1 Introduction

The linear complexity of a sequence is the length of the shortest linear feedback
shift register (LFSR) that can generate the sequence. The LFSR that generates a
given sequence can be determined using the Berlekamp-Massey algorithm using
only the first 2L elements of the sequence, where L is the linear complexity of the
sequence. The typical assumption in the analysis of the security of stream ciphers
is that the attacker has access to a part of the key stream and wants to use this
to predict the remainder of the key stream. Thus the problem of designing a
good stream cipher is reduced to the problem of designing a fast key stream
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generator whose output is hard to predict from a prefix of the the output. Hence
for cryptographic purposes sequences with high linear complexity are essential as
an adversary would then need large initial segments of the sequences to recover
the LFSRs that generate them using the Berlekamp-Massey algorithm.

A system is insecure if all but a few symbols of the key stream can be ex-
tracted. So for a cryptographically strong sequence, the linear complexity should
not decrease drastically if a few symbols are changed. If it did, an attacker could
modify the known prefix of the key stream and try to decrypt the result using
the Berlekamp-Massey algorithm. If the resulting sequence differed from the ac-
tual key stream by only a few symbols, the attacker could extract most of the
message. This observation gives rise to k-error linear complexity of sequences
introduced in [7]. The k-error linear complexity of a periodic sequence is the
smallest linear complexity achieved by making k or fewer changes per period. In
addition to having large linear complexity, cryptographically strong sequences
should, thus, also have large k-error linear complexity at least for small k.

Let S = (s0, s1, · · · , sT−1)∞ be a periodic binary sequence with period T . We
associate the polynomial S(x) = s0 + s1x + · · ·+ sT−1x

T−1 and the correspond-
ing T -tuple S(T ) = (s0, s1, · · · , sT−1) to S. The relationship between the linear
complexity, denoted L(S), of S and the associated polynomial S(x) is given by

L(S) = T − deg(gcd(xT − 1,S(x))). (1)

Let wH(S) denote the Hamming weight of the T -tuple S(T ). For 0 ≤ k ≤ T , the
k-error linear complexity of S, denoted Lk(S), is given by

Lk(S) = min
E

L(S + E), (2)

where the minimum is over all T -periodic binary sequences E such that wH(E) ≤
k. Since we consider only 2n-periodic sequences, we use T = 2n and the obser-
vation

xT − 1 = x2n

− 1 = (x− 1)2
n

(3)

for the rest of the paper.
Let merr(S) denote the minimum value k such that the k-error linear com-

plexity of a 2n-periodic sequence S is strictly less than its linear complexity.
That is

merr(S) = min{k : Lk(S) < L(S)}. (4)

Kurosawa et al. [3] derived the formula for the exact value of merr(S).

Lemma 1. For any nonzero 2n-periodic sequence S, we have

merr(S) = 2wH(2n−L(S)),

where wH(j), 0 ≤ j ≤ 2n − 1, denotes the Hamming weight of the binary repre-
sentation of j.

The counting function of a sequence complexity measure gives the number of
sequences with a given complexity measure value. Rueppel [6] determined the
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counting function of linear complexity for 2n-periodic binary sequences. Using
equations (1) and (3) it is straightforward to obtain the number of 2n-periodic
binary sequences with fixed linear complexity. For the rest of the paper let N (L)
and A(L) denote, respectively, the number of and the set of 2n-periodic binary
sequences with given linear complexity L, 0 ≤ L ≤ 2n. Rueppel [6] showed that

N (0) = 1 and N (L) = 2L−1 for 1 ≤ L ≤ 2n. (5)

Recently, using efficient algorithms to compute the linear complexity of pn pe-
riodic sequences over Fp, Meidl [4] obtained the counting function and the ex-
pected value for the 1-error linear complexity of 2n-periodic binary sequences.
Meidl and Venkateswarlu [5] extended these results to pn-periodic sequences over
Fp. Fengxiang and Wenfeng [1] used Meidl’s [4] approach of analyzing Games-
Chan algorithm to obtain the counting functions and gave the exact expression
for the expected value of the 2-error linear complexity of a random 2n-periodic
binary sequence with linear complexity 2n − 1.

In this paper we perform a more rigorous analysis of Games-Chan algorithm
to enumerate all the possible values of k-error linear complexity of sequences
in A(L) for k = 2wH(2n−L), that is when k is the minimum number of changes
needed to lower the linear complexity below L. For certain sets of these values, we
also derive the corresponding number of sequences in A(L) whose k-error linear
complexity equals the values in those sets. For the rest of the paper by kmin(L)
denote the minimum number of changes needed to lower the linear complexity
of sequences in A(L), that is kmin(L) = 2wH(2n−L).

2 Games-Chan Algorithm

In this section we describe the Games-Chan algorithm and list some results using
its analysis.

By Lemma 1 for any 2n-periodic sequence S with merr(S) = 2m, m ∈
{0, · · · , n}, the linear complexity L(S) can be uniquely expressed as

L(S) = 2n or L(S) = 2n −
m∑

i=1

2n−ri ,

where 0 < r1 < · · · < rm ≤ n.
The Games-Chan algorithm [2] is a fast algorithm for computing the linear

complexity of a 2n-periodic binary sequence. For any S ∈ A(L) with period
S(2n) = (s0, · · · , s2n−1), denote the left and right halves of S(2n) by

S(2n−1)
L = (s0, · · · , s2n−1−1) and S(2n−1)

R = (s2n−1 , · · · , s2n−1).

Let SL and SR denote the 2n−1 periodic sequences

SL = (s0, · · · , s2n−1−1)∞ and SR = (s2n−1 , · · · , s2n−1)∞. (6)
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Games-Chan Algorithm. Let S be 2n-periodic binary sequence.

(i) If S(2n−1)
L = S(2n−1)

R , then L(S) = L(SL).

(ii) If S(2n−1)
L �= S(2n−1)

R , then L(S) = 2n−1 + L(SL + SR).
(iii) Apply the above procedure recursively to the 2n−1-periodic binary sequence

SL in (i), or the 2n−1-periodic binary sequence SL + SR in (ii).

We make some observations and establish notation we use for the rest of the
paper. We note that the procedure of the Games-Chan algorithm as stated here
is executed a total of n times to compute the linear complexity of any S ∈ A(L).
In the ith step, i = 0, · · · , n− 1, the algorithm computes the linear complexity
of a 2n−i-periodic binary sequence. Let ψi(S), i = 0, · · · , n − 1, denote the
first period of the 2n−i-periodic binary sequence considered in the ith step of
the algorithm when run with input sequence S. Let ψi

L(S) and ψi
R(S) denote,

respectively, the left and right halves of ψi(S). Let mi(S) denote the total value
contributed to L(S) in the algorithm during the execution from the 0-th step to
the i-th step of the algorithm. For any two finite binary sequences, S and S′, of
same length let dH(S,S′) denote the Hamming distance between S and S′. We
slightly abuse the notation because we also use dH(S,S′) to denote the Hamming
distance between the first periods of S,S′ ∈ A(L). It is straightforward to derive
the following lemma from the Games-Chan algorithm.

Lemma 2. Let S be a 2n-periodic binary sequence. For any t integers r1, · · · , rt

such that 0 < r1 < r2 < · · · < rt ≤ n, we have

L(S) = 2n − (2n−r1 + 2n−r2 + · · ·+ 2n−rt) (7)

if and only if

ψu−1
L (S) = ψu−1

R (S) exactly when u ∈ {r1, · · · , rt}.

For any S ∈ A(L) where L is as in equation (7), the following properties of
vectors ψl(S), 0 ≤ l ≤ n, are straightforward to obtain.

P1: If l = ri − 1, for some i ∈ {1, · · · , t}, then wH(ψl(S)) = 2 · wH(ψl+1(S)).
P2: For any l �= ri−1, for all i ∈ {1, · · · , t}, we have wH(ψl(S)) ≥ wH(ψl+1(S)).

By Pl, 0 ≤ l ≤ n, denote the number of distinct possibilities, over all sequences in
A(L), for the 2n−l-vector during the l-th step such that the 2n−l−1-vector during
the (l + 1)-th step is fixed. It is straightforward to get the following properties.

P3: If l = ri − 1, for some i ∈ {1, · · · , t}, then Pl = 1.
P4: For any l �= ri − 1, for all i ∈ {1, · · · , t}, we have Pl = 22n−l−1

.

We also use the following result in the next section. It can be proved using the
procedure of Games-Chan algorithm and Lemma 2.

Lemma 3. Let S ∈ A(L) with L �= 0 represented as

L(S) = 2n − (2n−r1 + 2n−r2 + · · ·+ 2n−rt), (8)
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where 0 < r1 < r2 < · · · < rt ≤ n. Let S′ �= S be any other 2n-periodic
binary sequence such that ml−1(S) = ml−1(S′) for some l ∈ {1, · · · , n}. If
dH(ψl(S), ψl(S′)) �= 0, then

dH(S,S′) ≥ 2b · dH(ψl(S), ψl(S′)), (9)

where b, 1 ≤ b ≤ t, is the unique integer determined by the inequality rb ≤ l <
rb+1 assuming r0 = 0 and rt+1 = n + 1.

3 Expression for kmin(L)-Error Linear Complexity

In this section we analyze the structure of the Games-Chan algorithm to derive
an expression to enumerate all possible values of kmin(L)-error linear complexity
of sequences in A(L) in terms the coefficients in the binary expansion of 2n−L.
We handle the case when 1 < L < 2n as the results are simple when L = 0 or
1 and as we already know the results when L = 2n [4]. We need the following
generalization of [1, Lemma 2] whose proof is similar to that of Lemma 2 in [1].

Lemma 4. For any sequence S = (s0, · · · , s2n−1)∞ ∈ A(L), we have L ≤ 2n −
2n−r, r = 1, · · · , n, if and only if

2r−1∑
i=0

sj+i·2n−r = 0 for j = 0, · · · , 2n−r − 1.

We prove an auxiliary result that is used in the main result of this section.

Lemma 5. Let S ∈ A(L) with 1 < L < 2n. Consider the representation of L as

L = 2n − (2n−r1 + 2n−r2 + · · ·+ 2n−rt), (10)

where r0 = 0 < r1 < r2 < · · · < rt < n + 1 = rt+1 and 1 ≤ t ≤ n − 1. Let
S′ be any 2n-periodic binary sequence such that dH(S,S′) = kmin(L) = 2t and
L(S′) = L2t(S). Define the two integers

l1 = min{i : 0 ≤ i ≤ n− 1 and mi(S′) �= mi(S)} (11)

and

l2 = min{i : 0 ≤ i ≤ n− 1 and dH(ψi
L(S), ψi

R(S)) = 2t−j

with rj ≤ i < rj+1}.
(12)

Then we have l1 = l2.

Proof. From Lemma 1 we know kmin(L) = 2t which implies L(S′) < L(S).
We note that there exists at least one integer i, 0 ≤ i ≤ n − 1, such that
mi(S′) �= mi(S) since otherwise L(S) = L(S′). Hence the set on the right hand
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side of equation (11) is not empty. From the procedure of the Games-Chan
algorithm and using the fact L(S′) < L(S) equation (11) implies

ψl1
L (S) �= ψl1

R (S) and ψl1
L (S′) = ψl1

R (S′). (13)

From equation (13) we get

dH(ψl1(S), ψl1(S′)) ≥ dH(ψl1
L (S), ψl1

R (S)). (14)

Let b be the unique integer determined by the inequality rb ≤ l1 < rb+1.
Since ψrt−1

L (S) = ψrt−1
R (S) and because the vectors considered during all the

steps, except the last one, of the Games-Chan algorithm have nonzero Ham-
ming weight, we have wH(ψrt−1(S)) ≥ 2. So using properties P1 and P2 we get
wH(ψl1+1(S)) ≥ 2t−b and thus

dH(ψl1
L (S), ψl1

R (S)) ≥ 2t−b. (15)

Now we show that dH(ψl1
L (S), ψl1

R (S)) = 2t−b. If not, from equation (15) we have
dH(ψl1

L (S), ψl1
R (S)) > 2t−b. By equation (14) this implies

dH(ψl1(S), ψl1 (S′)) > 2t−b. (16)

But from Lemma 3 we know dH(S,S′) ≥ 2b · dH(ψl1(S), ψl1(S′)), which implies
dH(ψl1(S), ψl1(S′)) ≤ 2t−b since dH(S,S′) = 2t. This contradicts inequality in
(16). Thus we have

dH(ψl1
L (S), ψl1

R (S)) = 2t−b. (17)

From equation (17) we know that the set on the right hand side of equation (12)
is not empty and l2 ≤ l1. By a denote the unique integer determined by the
inequality ra ≤ l2 < ra+1. Because there are a steps before the l2-th step where
the left and right halves are equal it is evident from equation (21) that altering
ψl2(S) such that ψl2

L (S) = ψl2
R (S) and propagating these changes to the 0-th

step of the Games-Chan algorithm will require exactly 2a · 2t−a = 2t changes in
S(2n). But if l2 < l1, forcing ψl2

L (S) = ψl2
R (S) will result in a 2n-periodic binary

sequence S′′ such that dH(S,S′′) = 2t and L(S′′) < L(S′). This contradicts the
fact that L(S′) = L2t(S). Thus we have l2 = l1. ��

Theorem 1. Let S ∈ A(L) with 1 < L < 2n. Consider the representation of L
as

L = 2n − (2n−r1 + 2n−r2 + · · ·+ 2n−rt), (18)

where r0 = 0 < r1 < r2 < · · · < rt < n + 1 = rt+1 and 1 ≤ t ≤ n− 1. Define the
integer w = min{i : ri = n + i− t, 1 ≤ i ≤ t + 1}. Then Lkmin(L)(S) is 0 or is in
one of the two forms

Lj,l,C := 2n −
j−1∑
i=1

2n−ri − 2n−l + C, 1 ≤ j ≤ w − 1,

rj−1 ≤ l ≤ rj − 2, and 1 ≤ C ≤ 2n−l−1 − 1,

(19)

or
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Lw,l,C := 2n −
w−1∑
i=1

2n−ri − 2n−l + C,

rw−1 ≤ l ≤ rw − 3 and 1 ≤ C ≤ 2n−l−1 − 2t−w+1.

(20)

Proof. From Lemma 1 and equation (18) merr(S) = kmin(L) = 2t. The se-
quences in A(L) whose 2t-error linear complexity is 0 are those with exactly 2t

1s per period. For any other sequence S in A(L) we show that the 2t-error linear
complexity is in one of the forms as stated in the theorem.

Define the integer l as in equation (12). That is

l = min{i : 0 ≤ i ≤ n− 1 and dH(ψi
L(S), ψi

R(S)) = 2t−j

with rj ≤ i < rj+1}.
(21)

We already know that the set on the right hand side of equation (21) is not empty
due to the intermediate findings of Lemma 5. By b denote the unique integer
determined by the inequality rb ≤ l < rb+1. From the proof of Lemma 5 we know
that altering ψl(S) such that ψl

L(S) = ψl
R(S) and propagating these changes to

the 0-th step of the Games-Chan algorithm will require exactly 2t changes in
S(2n). We also see that it is necessary to alter ψl(S) so that ψl

L(S) = ψl
R(S) to

achieve the smallest linear complexity that can be obtained by making exactly
2t errors in S(2n) since the remaining n − l steps can only add a maximum of
2n−l−1 to the linear complexity of the modified sequence.

Note that l �= rj − 1, j = 1, · · · , t, since ψ
rj−1
L (S) = ψ

rj−1
R (S), j = 1, · · · , t.

Next we show that

∀ l + 1 ≤ i ≤ n− 1, wH(ψi(S)) = 2t−j with rj ≤ i < rj+1. (22)

If equation (22) does not hold, then let m be any integer such that l + 1 ≤ m ≤
n − 1 and wH(ψm(S)) �= 2t−a where a is uniquely determined by the inequal-
ity ra ≤ m < ra+1. Since ψrt−1

L (S) = ψrt−1
R (S), we have wH(ψrt−1(S)) ≥

2. So using properties P1 and P2 we get wH(ψm(S)) ≥ 2t−a. This implies
wH(ψm(S)) > 2t−a since we assumed wH(ψm(S)) �= 2t−a. Again, using P1
and P2 we have wH(ψl+1(S)) > 2a−b · 2t−a = 2t−b which contradicts the fact
dH(ψl

L(S), ψl
R(S)) = 2t−b. Thus wH(ψm(S)) = 2t−a and so equation (22) holds.

To obtain the form of L2t(S) we consider two cases based on the value of w.

Case 1: w ≤ t
From the definition of w in the theorem statement it can be shown that n− ri =
t− i for i = w, · · · , t, which implies

L = 2n − (2n−r1 + · · ·+ 2n−rw−1 + 2t−w + 2t−w−1 + · · ·+ 20). (23)

From equations (18), (23) and Lemma 2 this means that the left and right halves
are equal from the (rw − 1)-th step to (n − 1)-th step of the execution of the
Games-Chan algorithm. Using the fact that n − rw = t − w, this implies that
the 2t−w+1-vector considered during the (rw − 1)-th step

ψrw−1(S) = (ψrw−1(S)0, · · · , ψrw−1(S)2t−w+1−1) = (1, · · · , 1) (24)
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is an all 1 vector. From the definition of w, equation (24) also implies that
wH(ψrw−2(S)) = 2t−w+1. That is

dH(ψrw−3
L (S), ψrw−3

R (S)) = 2t−w+1. (25)

By equation (25) and using the definition of l in equation (21) we have l ≤ rw−3.
We consider two cases based on the value of l.

Case 1a: rw−1 ≤ l ≤ rw − 3
We first note that this case occurs only when the binary expansion of L as
in equation (18) satisfies rw−1 ≤ rw − 3. Throughout this case we use the
fact that n − rw = t − w. From the definition of l in equation (21) we have
dH(ψl

L(S), ψl
R(S)) = 2t−w+1. We already know that making 2t−w+1 changes in

ψl(S) so that ψl
L(S) = ψl

R(S) is necessary to achieve the the smallest linear
complexity possible by making kmin(L) = 2t changes in S(2n). But we have to
decide for each of the 2t−w+1 positions where ψl

L(S) and ψl
R(S) differ, whether

the change should be made in ψl
L(S) or at the corresponding position in ψl

R(S).
In this case there is a unique of making these 2t−w+1 changes so that the linear
complexity of the 2n−l−1-periodic binary sequence with period equal to either
of the equal halves obtained by forcing ψl

L(S) = ψl
R(S) is as small as possible.

Next we describe a unique way of making these changes.
Let ψl+1(S′) = ψl

L(S) = ψl
R(S) be the 2n−l−1-vector obtained after forcing

ψl
L(S) = ψl

R(S) such that the linear complexity of the 2n−l−1-periodic binary
sequence with period ψl+1(S′) is as small as possible. The left and right halves
of the vectors considered are not equal from the rw−1-th step to the (rw − 2)-
th step of the Games-Chan algorithm when executed with input sequence S.
From equation (24) ψrw−1(S) is a 2t−w+1-vector with all 1s. Hence for all v =
rw−1, rw−1 + 1, · · · , rw − 2 due to the procedure of the Games-Chan algorithm
we have

2rw−v−1−1∑
j=0

ψv(S)i+j2t−w+1 = 1 for i = 0, · · · , 2t−w+1 − 1. (26)

Let pi, 0 ≤ pi ≤ 2n−l−1 − 1, i = 0, · · · , 2t−w+1 − 1, be the positions where
ψl

L(S) and ψl
R(S) differ. This means wH(ψl+1) = 2t−w+1 with 1s at positions

pi, i = 0, · · · , 2t−w+1 − 1. As equation (26) is valid for v = l + 1, this im-
plies that the mapping pi "→ pi mod 2t−w+1 is one-one and onto since otherwise
wH(ψrw−1(S)) < 2t−w+1. Hence for each pi, i = 0, · · · , 2t−w+1 − 1, only one of
the choices, that is, changing ψl

L(S)pi or ψl
R(S)pi results in the 2n−l−1-vector

ψl+1(S′) that satisfies

2rw−l−2−1∑
j=0

ψl+1(S′)i+j2t−w+1 = 0 for i = 0, · · · , 2t−w+1 − 1. (27)

The contribution to L(S) during the first l − 1 steps of the algorithm is

(2n−1 + 2n−2 + · · ·+ 2n−l)−
w−1∑
i=1

2n−ri = 2n − 2n−l −
w−1∑
i=1

2n−ri .
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Thus the 2t-error linear complexity of S is of the form

L2t(S) = 2n − 2n−l −
w−1∑
i=1

2n−ri + C, (28)

where C is the linear complexity of the 2n−l−1-periodic binary sequence with
period ψl+1(S′). By equation (27) and Lemma 4 the value C in equation (28)
satisfies

C = L((ψl+1(S′))∞) ≤ 2n−l−1 − 2t−w+1. (29)

Also, ψl+1(S′) is not the all zero vector from the definition of l in equation (21),
which implies C ≥ 1. Thus from equations (28) and (29) L2t(S) is in the form
Lw,l,C given in equation (20).

Case 1b: rj−1 ≤ l ≤ rj − 2, 1 ≤ j ≤ w − 1
From the definition of l in equation (21) we have dH(ψl

L(S), ψl
R(S)) = 2t−j+1

Also, by equation (22) we have wH(ψrj−1(S)) = 2t−j+1. Since j �= w we have
n− rj > t− j and so ψrj−1(S) is not an all 1 vector. More specifically if

G = {g : ψrj−1(S)g = 0, g = 0, · · · , 2n−rj+1 − 1}

then
|G| = 2n−rj+1 − 2t−j+1. (30)

Using a similar argument as that in Case 1a we have

L2t(S) = 2n − 2n−l −
j−1∑
i=1

2n−ri + C, (31)

where C is the linear complexity of the 2n−l−1-periodic binary sequence with
period ψl+1(S′), which is equal to either of the equal halves obtained by forcing
ψl

L(S) = ψl
R(S) such that the lowest possible linear complexity is achieved. The

left and right halves of the vectors considered from the l-th step to the (rj−2)-th
step are not equal. So by equation (30) due to the procedure of the Games-Chan
algorithm we have

2rj−l−1−1∑
f=0

ψl(S)i+f2n−rj+1 = 0 for i ∈ G (32)

and

2rj−l−1−1∑
f=0

ψl(S)i+f2n−rj+1 = 1 for i ∈ {0, · · · , 2n−rj+1 − 1} −G. (33)

Let pi, 0 ≤ pi ≤ 2n−l−1 − 1, i = 0, · · · , 2t−j+1 − 1, be the positions where
ψl

L(S) and ψl
R(S) differ. This means wH(ψl+1(S)) = 2t−j+1. By equations (32)
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and (33), this implies that the mapping pi "→ pi mod 2n−rj+1 is one-one since
otherwise wH(ψrj−1(S)) < 2t−j+1. We can see the mapping is not onto from
equation (30). Also, each element in G does not occur as the inverse image of
any element of the set {pi : i = 0, · · · , 2t−j+1}. We split the summation in
equation (32) into two separate summations involving terms exclusively from
ψl

L(S) or ψl
R(S). For each i ∈ G we have

ΣL(l, i) =
2rj−l−2−1∑

f=0

ψl
L(S)i+f2n−rj+1

and

ΣR(l, i) =
2rj−l−2−1∑

f=0

ψl
R(S)i+f2n−rj+1 .

(34)

For each i ∈ G, from equations (32) and (34) we know that ΣL(l, i)+ΣR(l, i) = 0
which implies ΣL(l, i) = ΣR(l, i) = 0 or ΣL(l, i) = ΣR(l, i) = 1. Note that
none of the terms involved in the summations of equation (32) can be al-
tered when forcing ψl

L(S) = ψl
R(S). Using these remarks it can be shown that

by making appropriate changes at one of the positions pi or pi + 2n−l−1, for
each i = 0, · · · , 2t−j+1 in ψl(S), we can only guarantee that wH(ψl+1(S′)) is
even by forcing ψl

L(S) = ψl
R(S). Thus the value C in equation (31) satisfies

1 ≤ C ≤ 2n−l−1 − 1. Hence L2t(S) is in the form Lj,l,C , 1 ≤ j ≤ w − 1, as in
equation (19).

Case 2: w = t + 1
The proof in this case is similar to that for Case 1 and both forms in equations
(19) and (20) are identical.

This completes the proof of the theorem. ��

4 Counting Functions

In this section we derive expressions for the number of sequences in A(L) with
fixed kmin(L)-error linear complexity. We need the following generalization of
[1, Lemma 3].

Lemma 6. Let S ∈ A(L) such that 1 ≤ L ≤ 2n − 2r, r = 1, · · · , n − 1. Let S′

be a 2n-periodic binary sequence corresponding to the polynomial

S′(x) = S(x) +
g∑

t=0

xit ,

where 0 ≤ g ≤ 2r − 1 and it ∈ {0, · · · , 2n − 1}, t = 0, · · · , g. If the mapping
it "→ it mod 2r is one-one, then we have L(S′) > L(S).
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Theorem 2. Let Nkmin(L)(C) be the number of sequences in A(L), 1 < L < 2n,
with fixed kmin(L)-error linear complexity C. Let L be represented as

L = 2n − (2n−r1 + 2n−r2 + · · ·+ 2n−rt),

where r0 = 0 < r1 < r2 < · · · < rt < n + 1 = rt+1 and 1 ≤ t ≤ n− 1. Let Lj,l,C

be defined as in equations (19) and (20) and let w = min{i : ri = n + i− t, 1 ≤
i ≤ t + 1}. Then for 1 ≤ j ≤ w, if 1 ≤ C ≤ 2n−l−1 − 2n−rj+1 then

Nkmin(L)=2t(Lj,l,C) = 2ρ(j,l,C),

where

ρ(j, l, C) = 2n − 2n−l −
j−1∑
i=1

2n−ri +
w−j−1∑

i=0

(rw−i − rw−i−1 − 1)2t−w+i+1

+ (rj − l − 1)2t−j+1 + C − 1.

(35)

Also, Nkmin(L)=2t(0) = 2ρ(0), where ρ(0) =
∑w−2

i=0 (rw−i−rw−i−1−1)2t−w+i+1+
(r1−1)2t and Nkmin(L)=2t(C) = 0 for all C not in the form Lj,l,C as in equations
(19) and (20).

Proof. From equations (19) and (20) the kmin(L)-error linear complexity of
S ∈ A(L) is of the form

Lj,l,C = 2n −
j−1∑
i=1

2n−ri − 2n−l + C for 1 ≤ j ≤ w (36)

where rj−1 ≤ l ≤ rj − 2 (For l = rw − 2, there exist no positive values for
C in equation (20) and hence no valid values for Lw,l,C). We determine the
counting function for the number of sequences in A(L) with kmin(L)-error linear
complexity equal to each of the values Lj,l,C in equation (36) when 1 ≤ C ≤
2n−l−1−2n−rj+1. From the definition of l in equation (21) and by equation (22),
for any S ∈ A(L) if rj−1 ≤ l ≤ rj − 2 we know

wH(ψl+1(S)) = wH(ψrj−1(S)) = 2t−j+1. (37)

We consider two cases based on the value of w.

Case 1: w ≤ t
From equation (24) for any S ∈ A(L) the 2t−w+1-vector ψrw−1(S) is an all 1
vector.

Let D1(j, l, C) be the number of distinct 2n−l−1-vectors ψl+1(S) over all
S ∈ A(L) such that the 2n−rw+1-vector ψrw−1(S) is an all 1 vector. To de-
termine D1(j, l, C) we make the following observations.

(i) By equation (22) it is evident that during the execution of Games-Chan
algorithm form the l + 1-th step to the (n− 1)-th step the Hamming weight
of the vectors considered does not change between two consecutive steps
except when going from the (ri−1)-th step to the ri-th step for i = j, · · · , t.
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(ii) Using (i) the procedure of the Games-Chan algorithm also implies that
over all sequences in A(L) for any integer a such that l + 1 ≤ a < rj or
ri ≤ a < ri−1 for some i ∈ {j, · · · , t}, the number of distinct vectors in the
a-th step that result in a fixed vector v in the (a + 1)-th step is 2wH(v).

(iii) The definition of w implies n− rw = t− w.

From these observations and by using property P1 recursively we obtain

D1(j, l, C) =
w−j−1∏

i=0

(2rw−i−rw−i−1−1)2
t−w+i+1

(2rj−l−2)2
t−j+1

. (38)

Recall that ψl+1(S′) is the 2n−l−1-vector obtained by forcing ψl
L(S) = ψl

R(S)
so that the least linear complexity is achieved by making kmin(L) errors in
S(2n). Let D2(j, l, C), 1 ≤ C ≤ 2n−l−1 − 2n−rj+1, be the number of choices for
ψl+1(S′) such that the linear complexity of the 2n−l−1-periodic sequence with
period ψl+1(S′) is C. By equation (5), we have

D2(j, l, C) = 2C−1 for 1 ≤ C ≤ 2n−l−1 − 2n−rj+1. (39)

Over all S ∈ A(L), for a fixed ψl+1(S) = v with wH(v) = 2n−rw+1 and for a fixed
choice of ψl+1(S′) with L((ψl+1(S′))∞) = C, the number of possibilities, denoted
by D3(w, l, C), for ψl(S) such that ψl

L(S)+ψl
R(S) = v and dH(ψl(S), ψl+1(S′) |

ψl+1(S′)) = 2n−rw+1 is
D3(w, l, C) = 22t−j+1

, (40)

where ψl+1(S′) | ψl+1(S′) is the 2n−l-vector formed by concatenating two copies
of ψl+1(S′).

Let pi, 0 ≤ pi ≤ 2n−l−1 − 1, i = 0, · · · , 2t−j+1 − 1, be the positions where
ψl

L(S) and ψl
R(S) differ. From Cases 1a and 1b of the proof of Theorem 1 the

mapping pi "→ pi mod 2n−rj+1 is one-one. Using this mapping and the condition
1 ≤ C ≤ 2n−l−1 − 2n−rj+1, by Lemma 6 for fixed ψl+1(S) and ψl+1(S′) each of
the 22t−j+1

possibilities for ψl(S) satisfies

L(ψl
L(S)) > C and L(ψl

R(S)) > C. (41)

By equations (38)-(41), using properties P3 and P4 recursively we obtain

N2t(Lj,l,C) = P0P1 · · · Pl−1D1(j, l, C)D2(j, l, C)D3(j, l, C). (42)

We have

P0P1 · · · Pl−1 =
j−1∏
i=1

(Pri−1 · · · Pri−2)(Prj−1 · · · Pl−1)

=

(
j−1∏
i=1

2
∑ ri−ri−1−1

z=1 2n−ri+z

)
2
∑ l−rj−1−1

z=0 2n−l+z

.

(43)
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By equations (38)-(41) and (43) a straightforward algebraic simplification of the
right hand side of equation (42) gives N2t(Lj,l,C) = 2ρ(j,l,C) with ρ(j, l, C) as in
equation (35). We note that the condition in equation (41) is necessary to avoid
double counting in determining the number of distinct possibilities for ψl(S) over
all S ∈ A(L) such that ψl+1(S) and ψl+1(S′) are fixed.

Case 2: w = t + 1
In this case we note that the two possibilities for vectors in the (n−1)-th step of
the Games-Chan algorithm are 01 and 10. Using this it can be shown that the
expression for D1(j, l, C) in equation (38) holds for w = t + 1. The remaining
details are similar to those in Case 1.

To obtainN2t(0) we only have to count the number of S ∈ A(L) with wH(S) =
2t. By equation (22) and property P1 the expression for N2t(0) follows using an
argument similar to that for finding D1(j, l, C) as in equation (38).

This completes the proof of the theorem. ��

5 Conclusion

In this paper we studied the k-error linear complexity of 2n-periodic binary
sequences by performing a rigorous analysis of the Games-Chan algorithm. We
derived an expression for all the possible values of k-error linear complexities of
2n-periodic binary sequences with fixed linear complexity when k is the minimum
number of changes needed to the lower the linear complexity. For certain sets
of these values, we obtained the corresponding number of sequences with fixed
linear complexity and k-error linear complexity. Our results further research
in analyzing the stability of linear complexity of 2n-periodic binary sequences.
These results, however, have limited importance for practical cryptography in
part due to the restriction to 2n-periodic sequences.
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On the Exact Success Rate of Side Channel
Analysis in the Gaussian Model

Matthieu Rivain

Oberthur Technologies & University of Luxembourg

Abstract. Nowadays, Side Channel Analysis is one of the most power-
ful cryptanalytic technique against cryptosystems embedded in portable
devices such as smart cards. Faced with this threat, it is of crucial impor-
tance to precisely determine what is achievable by a given side channel
adversary against a cryptosystem producing a given side channel leak-
age. This can be answered by evaluating the success rate of an attack
according to the adversary capacities and to the leakage properties.

In this paper, we investigate the issue of evaluating the success rate
of side channel analysis in the widely admitted Gaussian leakage model.
We introduce a new approach that allows us to efficiently compute the
success rate of an attack in this model and we apply it to the two main
families of side channel analysis: differential side channel analysis and
profiling side channel analysis.

1 Introduction

Side Channel Analysis (SCA) is a cryptanalytic technique that consists in an-
alyzing the physical leakage produced during the execution of a cryptographic
algorithm embedded on a physical device (e.g. execution time [13], power con-
sumption [12], electromagnetic emanations [8]). Some kinds of SCA exploit this
side channel leakage to recover information on the operation flow that may de-
pend on the secret key (e.g. Simple SCA [12], Timing Attacks [13]). These can
be circumvent by ensuring that the operation flow is independent of the secret
key. Other kinds of SCA exploit the fact that the side channel leakage is sta-
tistically dependent on the intermediate variables of the computation. Some of
these variables are themselves related to small parts of the secret key which
enables key recovery attacks. These second kinds of SCA are particularly power-
ful and securing cryptographic implementation against them constitutes a real
challenge.

SCA targeting intermediate variables divides into two main categories: differ-
ential SCA and profiling SCA. Differential SCA relies on correlation techniques
[12,4]. Based on several leakage observations, the attacker estimates a correlation
between the leakage and different predictions on the value of a key-dependent
intermediate variable. According to the obtained correlation values, the attacker
is able to (in)validate some hypotheses on the secret key. Profiling SCA [6,19] is
based on the maximum likelihood approach. It assumes that the attacker owns a

R. Avanzi, L. Keliher, and F. Sica (Eds.): SAC 2008, LNCS 5381, pp. 165–183, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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profile of the leakage according to the values of some key-dependent intermediate
variables. This profile is involved to derive the likelihood of some key hypotheses
given the observed leakage.

Faced with the threat of side channel analysis, a crucial issue is to quantify the
efficiency of the different attacks according to the adversary capacities and the
leakage statistical properties. For this purpose, a natural metric is the success
rate, namely the probability that an attack succeeds in recovering the correct
key (or in isolating it in a restricted set). A straightforward way to evaluate the
success rate is to estimate it empirically by performing the attack several times.
However such an approach is costly in time and may even become impossible for
attacks with medium or high complexity. It is therefore not suitable to efficiently
and precisely determine the resistance of an embedded device if this one is not
quite weak. To tackle this issue, it is of particular interest to investigate efficient
ways to compute (or at least to precisely estimate) the success rate of an attack
without requiring to perform it many times.

Previous investigations have been done regarding this issue [7,16,22]. These
works investigate differential SCA in a noisy context. They provide an approxi-
mation of the required number of leakage measurements for a successful attack
[7,16] and an approximation of the success rate [22]. For the sake of generality,
these works do not take into account the relationship between the different key
candidates (which depends on the target algorithm logical properties and on the
leakage statistical properties) and only focus on the good key guess. However,
the success rate depends on the joint behavior of the different candidates and
this relationship cannot be neglected while looking for a precise estimation of the
success rate. Concerning profiling SCA, to the best of our knowledge no solution
for the success rate evaluation has been proposed in the literature so far. This
is a lack since these attacks are considered as the strongest form of side channel
analysis.

In this paper, we address the issue of evaluating the success rate of a side
channel key recovery attack. We analyze both differential SCA and profiling
SCA under the widely admitted assumption that the noise in the leakage has a
Gaussian distribution. We show that the result of these attacks can be expressed
as a multivariate Gaussian random variable which leads to an efficient way for
determining their success rates.

The rest of the paper is organized as follows. Section 2 introduces some pre-
liminaries. Section 3 presents the side channel theoretical model considered in
this paper. In Sections 4 and 5, we respectively analyze differential SCA and
profiling SCA. Based on these analyses, Section 6 shows how to efficiently eval-
uate the success rate of the focused attacks. Finally an empirical validation is
provided in Section 7 and concluding remarks are given in Section 8.

2 Preliminaries

The calligraphic letters, like X , are used to denote finite sets (e.g. Fn
2 ). The

corresponding large letter X denotes a random variable over X , while the low-
ercase letter x denotes a particular realization of X . The probability of an event
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ev is denoted by P [ev]. In case X has a continuous distribution, the notation
x "→ P [X = x] is further used to denote the probability density function (pdf)
of X . The expectation and the variance of a random variable X are respectively
denoted by E [X ] and Var [X ]. The covariance between two random variables
X and Y is denoted by Cov [X, Y ]. The Gaussian distribution of dimension T
with T -size expectation vector m and T × T covariance matrix Σ is denoted by
N (m, Σ), and the corresponding pdf is denoted by φΣ,m. We recall that this
pdf is defined for every x ∈ RT as:

φΣ,m(x) =
1√

(2π)T |Σ|
exp
(
−1

2
(x−m)′ Σ−1 (x−m)

)
,

where (x−m)′ denotes the transpose of the vector (x−m) and |Σ| denotes the
determinant of the matrix Σ. If the dimension T equals 1, then the Gaussian
distribution is said to be univariate and the single element of the covariance
matrix is the variance that is denoted by σ2. If T > 1, the Gaussian distribution
is said to be multivariate.

3 Side Channel Model

A formal modeling of side channel key recovery attacks has been initiated by
Standaert et al. in [21]. The theoretical model introduced hereafter follows the
outlines of their work.

3.1 Side Channel Key Recovery Attacks

Let ESK be a cryptographic algorithm E parameterized by a secret key SK. Let
K be a random variable representing a guessable part of SK. Let X be a random
variable representing a part of a public value such as an input (resp. output)
of ESK. Let S be a random variable representing the result of an intermediate
computation of ESK that satisfies S = ϕ(X, K) for a given function ϕ : X ×
K → S. We denote by L the random variable that represents the side channel
leakage generated by the computation (and/or the handling) of S on a physical
implementation of ESK. We shall further denote by L (s) the random variable
(L|S = s).

A side channel key recovery attack targeting the signal S aims at recovering
the value k∗ taken by K on a given physical implementation of ESK. For such
a purpose, the attacker collects several, say N , leakage measurements (li)i re-
sulting from the computation of ϕ(xi, k

∗) for N inputs (xi)i. Namely, the li’s
are realizations of the random variables L (ϕ(K, xi)) that are assumed to be
mutually independent. Then, the attack makes use of a distinguisher, that is a
function D which, from the leakage measurements vector l = (l1, · · · , lN ) and the
corresponding inputs vector x = (x1, · · · , xN ), outputs a distinguishing vector
d = (dk)k∈K. If the distinguisher is sound and if the leakage brings enough infor-
mation on S, then k∗ = argmaxk∈K dk holds with a non-negligible probability.
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Finally, a side channel adversary can be defined as the composition of a dis-
tinguisher with a strategy to select the algorithm inputs i.e. the xi values. These
can be randomly drawn (in a known plaintext/ciphertext attack setting) or they
can be chosen by the adversary (in a chosen plaintext attack setting). In this
paper, we do not assume a specific strategy. Rather, we investigate the success
rate of an attack according to the inputs vector x.

3.2 Gaussian Leakage Model

In practice, the leakage measurements are composed of several samples, say T ,
corresponding to several successive instants in time. The leakage L can hence
be modeled by a T -size random vector. In the Gaussian leakage model, the
leakage L (s) resulting from the computation of any signal s ∈ S has a Gaussian
distribution: L (s) ∼ N (ms, Σs).

Remark 1. The Gaussian model assumption is both very usual in the side chan-
nel literature (see for instance [6,15,19,21]) and fairly realistic in practice (see
for instance [15, §4]).

For clarity and without ambiguity, we shall respectively denote by mx,k∗ and
Σx,k∗ the mean vector mϕ(x,k∗) and the covariance matrix Σϕ(x,k∗).

3.3 Success Rate

The success rate is a classical metric in side channel analysis. Usually, a key
recovery attack is considered successful if the distinguishing vector satisfies k∗ =
argmaxk∈K dk. In [21], the authors propose to extend the notion of success rate
to different orders. The oth order success rate of a side channel attack using a
distinguisher D and a public vector x, and targeting a secret key k∗ is defined
as:

Succ-oD
x,k∗ = P

[(
li ← L (ϕ(k∗, xi))

)
i
; d← D(x, l) : k∗ ∈ argmax-o

k∈K
dk

]
,

where argmax-ok∈K dk denotes the set of the o elements k ∈ K that maximize
dk. The notion of order is motivated by the fact that an attacker may perform
an off-line exhaustive search after the side channel analysis. A oth order success
means that the attacker has at the most o key guesses to test after the attack in
order to recover the correct one.

Remark 2. In [21], the authors also suggest to use another metric: the so-called
guessing entropy [17,5]. This one is defined as the expected rank of the good
key guess in the distinguishing vector, namely it indicates the average number
of key guesses to test after the side channel analysis. This notion is discussed in
Appendix A where we show that it can be expressed with respect to the success
rates at the different orders.

Our Approach. In order to determine the exact success rate of an attack, we
must investigate the multivariate probability distribution of the distinguishing
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vector. This distribution can be expressed with respect to the inputs vector x,
the secret key k∗ and the leakage distribution parameters (ms, Σs)s∈S . In the
rest of the paper, we will investigate the two main families of side channel anal-
ysis: differential SCA and profiling SCA. We will show that under the Gaussian
assumption, the multivariate distribution of the distinguishing vector is (or at
least can be precisely approximated by) a multivariate Gaussian distribution.
This will enable us to show how the success rate of such attacks can be effi-
ciently computed.

4 Differential Side Channel Analysis

4.1 Description

Differential side channel analysis uses correlation techniques as distinguisher.
Several variants have been proposed in the literature [1,4,3,12,18]. In this pa-
per, we focus on the Pearson correlation coefficient since it is the most widely
used and seems to be the most efficient technique in practice [4]. Note that our
analysis could be easily extended to other differential distinguishers that rely on
correlation computations [1,3,12,18]. The adversary is assumed to own a model
of the side channel leakage that is a function M : X ×K → R such that M(x, k)
is linearly related to the expectation of the leakage L (ϕ(x, k)). The attack con-
sists in estimating, for every key guess k ∈ K, the linear correlation between
the prediction M(X, k) (i.e. the predicted value of the leakage for the guess k)
and the observable leakage L (ϕ(X, k∗)). This correlation is estimated based on
the prediction vector

(
M(x1, k), · · · , M(xN , k)

)
and the leakage measurements

vector l by the following coefficient:

ρk =
1
N

∑
i

(
M(xi, k)− 1

N

∑
j M(xj , k)

)(
li − 1

N

∑
j lj
)

√
1
N

∑
i

(
M(xi, k)− 1

N

∑
j M(xj , k)

)2
√

1
N

∑
i

(
li − 1

N

∑
j lj
)2

. (1)

If the model is sound, the prediction vector for the correct key guess is signif-
icantly correlated to the leakage measurements vector. As a result, for N large
enough, ρk is expected to be maximal for k = k∗.

Since the correlation distinguisher takes as input a set of 1-size leakage mea-
surements, we investigate hereafter the distribution of this distinguisher in the
univariate Gaussian model.

4.2 Distinguisher Distribution

Let us first denote by τx the occurrence ratio of an element x ∈ X through the
inputs vector x, i.e. :

τx =
|{i; xi = x}|

N
. (2)
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We shall further denote by Mk and σ̂k the mean and the standard deviation of
the prediction vector

(
M(xi, k)

)
i
, namely:

Mk =
∑
x∈X

τxM(x, k) and σ̂2
k =

∑
x∈X

τx

(
M(x, k)−Mk

)2
.

Instead of focusing on ρk, we focus in the sequel on the following coefficient:

ρ̇k =
1

σ̂kN

N∑
i=1

(
M(xi, k)−Mk

)
li . (3)

The distribution of (ρ̇k)k∈K is indeed more convenient to analyze than the one
of (ρk)k∈K. Moreover, one can verify that the ratio ρ̇k/ρk equals the standard
deviation of the leakage measurement vector l. Consequently, ρ̇k/ρk is positive
and constant with respect to the key guess k. As a result, argmax-ok∈K ρk =
argmax-ok∈K ρ̇k holds for every k and hence, the success rate of the attack is
fully determined by the distribution of the vector (ρ̇k)k∈K. The next proposition
provides us with the exact distribution of this vector.

Proposition 1. The vector (ρ̇k)k∈K has a multivariate Gaussian distribution
whose expectation satisfies for every k ∈ K:

E [ρ̇k] =
1
σ̂k

∑
x∈X

τx

(
M(x, k)−Mk

)
mx,k∗ , (4)

and whose covariance satisfies for every (k1, k2) ∈ K2:

Cov [ρ̇k1 , ρ̇k2 ] =
1

Nσ̂k1 σ̂k2

∑
x∈X

τx

(
M(x, k1)−Mk1

) (
M(x, k2)−Mk2

)
σ2

x,k∗ . (5)

Proof. Since the li’s are drawn from Gaussian distributions N (mxi,k∗ , σxi,k∗)
and since the vector (ρ̇k)k∈K is a linear transformation of l, one deduces that
(ρ̇k)k∈K has a multivariate Gaussian distribution.

Now, for every x ∈ X , we have Nτx elements among the xi’s that are equal
to x. This, together with (3) immediately leads to (4). Then, the mutual inde-
pendence of the li’s and the bilinearity of the covariance imply (5). %

Proposition 1 gives the exact distribution of the distinguishing vector (ρ̇k)k∈K.
This makes it possible to precisely compute the success rate of a differential SCA
that involves the Pearson correlation coefficient (see Section 6).

If the model is sound, namely if M(x, k) is linearly related to mx,k, then (4)
implies that the expectation of ρ̇k is maximal for the good key guess k = k∗

which shows the soundness of the attack.
From (4) we see that the distinguishing vector expectation does not depend

on the leakage variance nor on the number of leakage measurements. Conversely,
(5) shows that the covariance matrix depends on these parameters. If the leakage
variance is multiplied by a factor λ then so does the covariance matrix. And if
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the number of measurements is multiplied by a factor λ then the covariance
matrix is multiplied by 1/λ. As a result, if the leakage variance is increased by
a given factor, the number of leakage measurements must also be increased by
the same factor to keep unchanged the distinguisher distribution and hence the
attack success rate.

Another interesting observation is that the distribution of (ρ̇k)k∈K does not
fully depend on the inputs vector x but only on the different ratios τx’s. A
usual choice, for a chosen plaintext differential SCA, is to set these ratios at
τx = 1/|X |. For a known plaintext/ciphertext differential SCA, assuming that
the xi’s are uniformly drawn, we further have τx ≈ 1/|X | for N large enough.
We investigate this setting hereafter.

Uniform Setting. We investigate here the setting where the xi’s are chosen
such that τx = 1/|X | holds for every x. We further assume that the target signal
S can be expressed as S = ψ(X ⊕K) where ψ is a balanced function (i.e. the
cardinal of ψ−1(s) is constant for every s ∈ S).

In the uniform setting, the previous study can be simplified. In this setting,
the mean and the standard deviation of the prediction vector are constant with
respect to k∗. Indeed, for every k ∈ K, we have Mk = 1

|S|
∑

s∈S M(s) and σ̂k =√
1
|S|
∑

s∈S
(
M(s)−M

)2
. Hence, we can focus on the following coefficient:

ρ̈k =
1
N

N∑
i=1

M(xi, k)li . (6)

Once again ρ̈k/ρk is positive and constant with respect to k which implies that
focusing on ρk instead of ρ̈k does not affect the success rate of the attack. The
following corollary gives the distribution of (ρ̈k)k∈K.

Corollary 1. The vector (ρ̈k)k∈K has a multivariate Gaussian distribution
whose expectation satisfies for every k ∈ K:

E [ρ̈k] =
1
|X |

∑
x∈X

M(x, k)mx,k∗ , (7)

and whose covariance satisfies for every (k1, k2) ∈ K2:

Cov [ρ̈k1 , ρ̈k2 ] =
1

N |X |
∑
x∈X

M(x, k1)M(x, k2)σ2
x,k∗ . (8)

Proof. Corollary 1 straightforwardly holds from Proposition 1 by setting Mk to
0 and σ̂k to 1. %

An interesting property of the uniform setting is stressed in the following
proposition.

Proposition 2. Let (dk)k∈K and (d′k)k∈K be the distributions of the vector
(ρ̈k)k∈K for two secret keys k∗

1 ∈ K and k∗
2 ∈ K respectively. In the uniform

setting, the distributions (dk⊕k∗
1
)k∈K and (d′k⊕k∗

2
)k∈K are indentical.
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Proof. In the uniform setting, we have M(x, k) = M(ψ(x ⊕ k)) and mx,k∗ =
mψ(x⊕k∗). Hence, from (7) we get E

[
dk⊕k∗

1

]
= E[d′k⊕k∗

2
] for every k ∈ K and from

(8) we get Cov
[
dk1⊕k∗

1
, dk2⊕k∗

1

]
= Cov[d′k1⊕k∗

2
, d′k2⊕k∗

2
] for every (k1, k2) ∈ K2.

Finally, since (dk)k∈K and (d′k)k∈K are both Gaussian then they are identical. %

Proposition 2 shows that the vector (ρ̈k⊕k∗)k∈K has the same distribution for
every k∗. Moreover, the event k∗ ∈ argmax-ok∈K ρ̈k can be rewritten as 0 ∈
argmax-ok∈K ρ̈k⊕k∗ . Since the distribution of (ρ̈k⊕k∗)k∈K is independent of k∗,
we get that, in the uniform setting, the success rate is constant with respect to
k∗. Therefore, one only needs to analyze the distribution of (ρ̈k⊕k∗)k∈K for a
given secret key (e.g. for k∗ = 0) to get the distribution and the success rate of
(ρ̈k)k∈K for any secret key k∗.

5 Profiling Side Channel Analysis

5.1 Description

Profiling Side Channel Analysis assumes an adversary that owns a profile of the
side channel leakage (also called template in the literature from the initial work
of Chari et al. [6]). More precisely, the adversary owns an estimation of the pdf
l "→ P [L = l|S = s] for every s ∈ S. In practice, this estimation is obtained
through a profiling phase on a physical implementation identical to the targeted
one (except the secret key) and that is under the attacker control (see for instance
[2,6,14,19]).

The attack consists in estimating the likelihood of a key guess k, i.e. the
probability that K is equal to k, given the leakage measurements vector l and
the inputs vector x. Assuming that K is uniformly distributed (which is very
usual in cryptography), it can be checked that this probability satisfies:

P [K = k|(l,x)] = α

N∏
i=1

P [L = li|S = ϕ(xi, k)] , (9)

where α denotes a value constant with respect to k.
In the Gaussian model, the leakage pdf l "→ P [L = l|S = s] is the Gaussian

pdf φΣs,ms . Estimating such a pdf amounts to estimate the parameters (ms, Σs)
for every s ∈ S. In the sequel, we shall denote these estimations by m̂s and
Σ̂s. For clarity and without ambiguity, the parameters m̂ϕ(x,k) and Σ̂ϕ(x,k) are
further denoted by m̂x,k and by Σ̂x,k.

For computational reasons, one usually processes the logarithm of the esti-
mated likelihood and averages it on the number of leakage measurements. More-
over, since α is constant with respect to k, it is usually ignored. On the whole,
one computes the log-likelihood Lk = 1

N log(P [K = k|(l,x)] /α). In the Gaussian
model, Lk satisfies:

Lk =
1

2N

N∑
i=1

(
log
(
(2π)T |Σ̂xi,k|

)
− (li − m̂xi,k)′ Σ̂−1

xi,k
(li − m̂xi,k)

)
. (10)
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In the next section, we investigate the distribution of the log-lekelihood distin-
guisher under the Gaussian model assumption.

5.2 Distinguisher Distribution

Let us first introduce few notations. The element of the ith row and of the
jth column of a matrix A is denoted by A[i, j] while the ith element of a vector
V is denoted by V [i]. A′ denotes the transpose of a matrix (or a vector) A. The
notation ‖·‖ is used to denote the Euclidian norm while the notation ‖·‖hs refers

to the Hilbert-Schmidt matrix norm defined by ‖A‖hs =
√∑

i,j A[i, j]2. We

shall further denote by A2 the product A′A and by A−1/2 any matrix satisfying
(A−1/2)′A−1/2 = A (e.g. the Cholesky decomposition matrix). Finally the trace
of A is denoted by Tr(A).

The next proposition provides a precise approximation of the distribution of
the likelihood vector (Lk)k∈K (the proof is given in Appendix B).

Proposition 3. The distribution of the vector (Lk)k∈K tends toward a mul-
tivariate Gaussian distribution as N grows. Moreover, for every k ∈ K, the
expectation of Lk satisfies:

E [Lk] =
1
2

∑
x∈X

τx

(
log
(
2π|Σ̂x,k|

)
−
∥∥∥Σ̂−1/2

x,k (mx,k∗ − m̂x,k)
∥∥∥2

− Tr
(
Σ̂

−1/2
x,k Σx,k∗

(
Σ̂

−1/2
x,k

)′))
, (11)

and for every (k1, k2) ∈ K2, the covariance between Lk1 and Lk2 satisfies:

Cov [Lk1 ,Lk2 ] =
1
N

∑
x∈X

τx

( 1
2

∥∥∥Σ̂−1/2
x,k1

Σx,k∗ (Σ̂−1/2
x,k2

)′
∥∥∥2

hs

+ (mx,k∗ − m̂x,k1)
′ Σ̂−1

x,k1
Σx,k∗ Σ̂−1

x,k2
(mx,k∗ − m̂x,k2)

)
. (12)

Proposition 3 gives an approximation of the distribution of the log-likelihood
vector (Lk)k∈K which becomes quickly tight as N grows (see Appendix C). As
shown in Section 6, this approximation can be used to estimate the success rate
of profiling SCA. The computational cost of (11) and (12) is O(|X |T 3) where
T denotes the leakage dimension. The total cost of computing the distribution
parameters is hence O(|K|2|X |T 3). This may be prohibitive if the leakage dimen-
sion is high. However, the leakage dimension can be reduced by pre-processing
the leakage measurements [2,20]. In practice, T = 3 is often sufficient to catch
most of the side channel information [2,20].

In order to simplify our analysis, let us make the following assumption.

Assumption 1 (Constant Covariance Assumption). The covariance ma-
trix Σs is the same for all signals s ∈ S.
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Remark 3. This assumption is quite usual in the literature (see for instance
[19,11,21]). The noise in the leakage is indeed often independent of the target
signal. This is especially true if most of the noise amount is produced by a noise
generator (independent of the target algorithm) as a countermeasure to side
channel analysis.

Observing the expectation of Lk (11), one identifies three sums. The first
one and the third one only involve the leakage covariance matrices and/or their
estimations. Therefore, under the constant covariance assumption, these sums
are constant with respect to k and hence, they provide no discrimination between
the different key candidates. Actually, only the second sum in (11) provides some
discrimination which depends on the leakage means mx,k (corresponding to the
different processed signals s = ϕ(x, k)). If these means are clearly dissociated
and if their estimations m̂x,k are precise, then the second sum is around zero
for and only for the good key guess k∗. As a result, the expectation of Lk is
maximized for the good key guess k = k∗ which illustrates the attack soundness.

From (11) and (12) we also see that, unlike for differential SCA, increasing
the number of leakage measurements and increasing the leakage variance do not
have a complementary effect on the distinguisher distribution. However, it has
a complementary effect on the success rate: if the leakage covariance matrix is
multiplied by a factor λ (and assuming that its estimation is also multiplied by λ)
then the attacker must multiply the number of measurements by a factor λ in
order to keep the success rate constant. This fact is formally demonstrated in
Appendix D. We hence remark (according to the analysis in Section 4.2) that
Differential SCA and Profiling SCA are affected in the same way by the leakage
noise increase. Besides, when the leakage noise is amplified, the ratio between
the efficiencies1 of both attacks remains constant.

As final remark, let us mention that Proposition 2 also applies to the log-
likelihood vector (Lk)k∈K. Besides, in the uniform setting (see Section 4.2), the
success rate of the profiling SCA is also constant with respect to k∗.

6 Success Rate Evaluation

In accordance with the analyses of Sections 4.2 and 5.2, we assume that the
distribution of the distinguishing vector d = (dk)k∈K is a multivariate Gaussian
N (md, Σd). In this section we present two approaches to compute the success
rate of a side channel key recovery attack, once the parameter of this distribution
have been determined.

In the first approach, we show that the success rate can be expressed as a sum
of Gaussian cumulative distribution functions (cdf). It can hence be estimated by
numerically computing these cdf. The second approach consists in simulating the
multivariate Gaussian vector d several times in order to get a precise estimation
of the success rate.
1 By efficiency, we mean the required number of leakage measurements to succeed the

attack (with high probability).
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6.1 Numerical Computation

We show hereafter that the success rate can be expressed as a sum of Gaussian
cdf. For this purpose, we need to introduce the comparison vector that is the
(|K| − 1)-size vector c = (ck)k∈K/{k∗} defined for every k ∈ K/{k∗} by:

ck = dk∗ − dk . (13)

If all the coordinates of this vector are positive then the attack succeeds in
isolating the good key guess as first candidate. If n coordinates are negative
then the attack rates the good key guess as the (n + 1)th candidate; in other
words, it succeeds at the (n + 1)th order. The comparison vector is a linear
transformation of the distinguishing vector by a ((|K|−1)×|K|)-matrix P whose
expression straightforwardly follows from (13). This implies that the comparison
vector has a multivariate Gaussian distribution N (mc, Σc) where mc = Pmd

and Σc = PΣdP ′.
Let α ⊆ {1, · · · , |K|−1} be a set of indices and let Iα and Sα be the (|K|−1)-

size vectors defined by:

Iα[i] =
{
−∞ if i ∈ α
0 if i /∈ α

and Sα[i] =
{

0 if i ∈ α
+∞ if i /∈ α

.

The vector c has exactly n negative coordinates if and only if there exists a set
α of cardinal n s.t. Iα < c < Sα. Since the intervals ([Iα, Sα])α are disjoints, the
probability that exactly n coordinates of c be negative can be written as:

pn =
∑

α;|α|=n

P [Iα ≤ c ≤ Sα] . (14)

The oth order success rate equals the sum p0 + p1 + · · ·+ po−1 which from (14)
gives:

Succ-o =
∑

α;|α|<o

P [Iα ≤ c ≤ Sα] =
∑

α;|α|<o

Φmc,Σc (Iα, Sα) , (15)

where Φm,Σ denotes the Gaussian cdf that satisfies Φm,Σ : (a, b) "→
∫ b

a
φm,Σ(x) dx.

Relation (15) shows that the oth order success rate can be computed by per-
forming

∑
i<o

(|K|−1
i

)
multivariate Gaussian cdf calculations (on (|K| − 1)-size

Gaussian vectors). The numerical computation of multivariate Gaussian cdf is
a classical issue in statistics. Some solutions exist (see for instance [9,10]) that
can be used to precisely compute the success rate according to (15).

This approach has some drawbacks. Firstly, the numerical computations of
Gaussian cdf may be difficult with covariance matrices having particular forms
and/or quite high dimensions. For instance it requires that the covariance matrix
is not singular, which is not always the case in our context. Yet another drawback
of this approach is that the computation of high order success rates requires
an important number of Gaussian cdf computations. Regarding these issues, a
possible alternative is presented in the next section.
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6.2 Gaussian Simulation

Another possibility to compute the success rate is to perform a Gaussian sim-
ulation. The principle is to simulate several times the distribution N (md, Σd).
This amounts to randomly pick up several distinguishing vectors each one corre-
sponding to the result of an attack. The success rate is estimated based on these
different results. In other words this approach works as an attack simulation
but instead of performing the attack several times, we perform several Gaussian
random vectors simulation which is clearly more efficient especially when the
number of leakage measurements is high and/or the leakage dimension is high.
Another advantage of this approach is that the success rate at the different
orders as well as the guessing entropy (see Appendix A) can all be computed
using the same simulated distinguishing vectors. Finally Gaussian simulation is
sound even when the covariance matrix is singular which may happen in our
context.

7 Empirical Validation

In order to empirically validate the theoretical analyses conducted in the previous
sections we performed several simulations. We chose S = X⊕K as target signal
where X and K are 8 bits variables. The leakage means (ms)s∈S and the leakage
covariance matrix Σ (assumed constant for the different signals s ∈ S) were
drawn with random coefficients. Their dimensions were set to 1 for differential
SCA, and to 3 for profiling SCA (this is a typical dimension when subspace-based
profiling is involved [2,20]). The attacker model/estimations were first assumed
to be exact (i.e. M(s) = ms, m̂s = ms and Σ̂ = Σ) and then assumed to be
slightly erroneous (by inserting random errors).

On the one hand, the success rate was estimated empirically by simulating the
attack. Namely, the leakage measurements li corresponding to random inputs xi

were randomly picked up according to the leakage parameters (mxi,k∗ , Σxi,k∗).
The attack was performed several times (few thousands) on such simulated mea-
surements in order to obtain an empirical success rate. On the other hand, the
success rate was estimated using our approach. We computed the distinguishing
vector expectation and covariance matrix (such as described in Sections 4.2 and
5.2) according to the leakage parameters and assuming τx = 1/256 for every x.
Then we performed Gaussian simulations (see Section 6.2) to get an estimation
of the success rate.

As expected, for differential SCA, the different success rates obtained with our
approach always match almost perfectly the success rates obtained by attack sim-
ulations. For profiling SCA, the success rates obtained with our approach also
match quite well the success rates obtained by attack simulations. The precision
of this matching depends on the number of leakage measurements required for
the attack to succeed (with a high probability). When this number is quite low
(i.e. around few hundreds), our estimation slightly overvalues the real success
rate. This overvaluation becomes less marked as the number of required leakage
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Fig. 1. Success rates of different pro-
filing SCA attacks over an increasing
number of leakage measurements

Fig. 2. Success rates of a profiling SCA
attack over an increasing number of
leakage measurements

measurements increases. As an illustration the success rate of four attacks requir-
ing different amounts of leakage measurements is plotted Figure 1. Success rates
obtained by attack simulation are plotted in black while the corresponding ones
obtained with our approach are plotted in grey. The convergence can be clearly
observed. Figure 2 shows both success rates for an attack requiring around 200
leakage measurements. When moving up to 500 required leakage measurements,
the curves completely mix up.

The different empirical results that we obtained have demonstrated the sound-
ness of our theoretical analysis. They also show that the approximation τx ≈
1/|X | is sound when the xi’s are randomly drawn (i.e. in a known plaintext/
ciphertext attack setting).

8 Conclusion and Open Issues

In this paper, we have investigated the issue of evaluating the success rate of
side channel analysis in the Gaussian leakage model. For the two main families of
SCA, namely differential SCA and profiling SCA, we have shown that the distin-
guishing vector resulting from the attack has (or at least quickly tends towards)
a multivariate Gaussian distribution. This allowed us to exhibit an efficient way
to compute the success rate of such an attack according to the number of leakage
measurements and to the leakage distribution parameters. Finally, our analysis
was validated empirically by a large number of attack simulations.

Our analysis stresses several interesting open issues. Future works could focus
on chosen plaintext attacks and investigate how the choice of the target inputs
may affect the success rate of an attack. Another interesting issue is the tolerance
for a distinguisher to the error on the leakage model. How does an error on
the attacker model/estimations affect the success rate of the attack ? Finally,
extension of our analysis to protected implementations (for instance by masking
techniques) would be of great interest to quantify their security.
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A Guessing Entropy

The guessing entropy [17,5] is defined as the expected number of key guesses to
test before recovering a target key value. As pointed out in [21], the guessing
entropy is relevant in the context of side channel analysis since it indicates the
average workload to perform after side channel analysis. Let rankk(d) denote the
index i ∈ {1, · · · , |K|} such that dk is the ith higher element of d. The guessing
entropy of a side channel attack using a distinguisher D and a public vector x,
and targeting a secret key k∗ is formally defined as:

GED
x,k∗ = E

[(
li ← L (ϕ(k∗, xi))

)
i
; d← D(x, l) : rankk∗(d)

]
. (16)

The guessing entropy is related to the success rate of every order. In fact, the
correct key guess is rated at the oth rank in the distinguishing vector if and only
it is rated among the o first candidates but it is not rated among the o− 1 first
candidates. As a result, the probability that the correct key guess be rated at the
oth rank satisfies for every o: P [rankk∗(d) = o] = Succ-o − Succ-(o − 1), where
Succ-0 is naturally defined at zero. This brings to the following relation:

GE =
|K|∑
o=1

o P [rankk∗(d) = o] = |K| −
|K|−1∑
o=1

Succ-o . (17)

B Proof of Proposition 3

The proof of Proposition 3 makes use of the following lemma.

Lemma 1. Let X be a T -size random vector having a Gaussian distribution
N (0, Σ). Let A1 and A2 be two (T × T )-matrices and let m1 and m2 be two

http://eprint.iacr.org/
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T -size vectors. Let Q1 and Q2 be two quadratic forms defined, for j = 1, 2, by
Qj = (X + mj)′ A2

j (X + mj). For j = 1, 2, the expectation of Qj satisfies:

E [Qj] = ‖Aj mj‖2 + Tr(Aj Σ A′
j) . (18)

And the covariance of Q1 and Q2 satisfies:

Cov [Q1, Q2] = 2 ‖A1 Σ A′
2‖

2
hs + 4 m′

1 A2
1 Σ A2

2 m2 . (19)

Proof. We have Qj =
∑T

i=1 (Aj (X + mj))[i]
2 which leads to:

E [Qj ] =
T∑

i=1

E
[
(Aj (X + mj))[i]

2
]

(20)

=
T∑

i=1

E [(Aj (X + mj))[i]]
2 +

T∑
i=1

Var [(Aj (X + mj))[i]] , (21)

since E
[
Y 2
]

= Var [Y ] + E [Y ]2 holds for every random variable Y . From (X +
mj) ∼ N (mj , Σ) we have Aj (X + mj) ∼ N

(
Aj mj , Aj Σ A′

j

)
which directly

yields (18).

The quadratic form Qj can be rewritten as Qj = (Aj X)2 + (Aj mj)2 +
2m′

j A2
j X for j = 1, 2. By bilinearity, Cov [Q1, Q2] satisfies:

Cov [Q1, Q2] = Cov
[
(A1 X)2, (A2 X)2

]
+ 2 Cov

[
(A1 X)2, m′

2 A2 X
]
+ 2 Cov

[
(A2 X)2, m′

1 A1 X
]

+ 4 Cov [m′
1 AX, m′

2 AX ] . (22)

We claim the three following relations:

Cov
[
(A1 X)2, (A2 X)2

]
= 2 ‖A1 Σ A′

2‖
2
hs , (23)

Cov
[
(A1 X)2, m′

2 A2
2 X
]

= Cov
[
(A2 X)2, m′

1 A2
1 X
]

= 0 , (24)

Cov
[
m′

1 A2
1 X, m′

2 A2
2 X
]

= m′
1 A2

1 Σ A2
2 m2 . (25)

These relations together with (22) result in (19) and state the correctness of
Lemma 1. Relation (25) straightforwardly holds from the bilinearity of the co-
variance and by symmetry of A2

1 (i.e. (A2
1)

′ = A2
1). Relations (23) and (24) are

stated hereafter.

First, let us show (23). The covariance between (A1 X)2 and (A2 X)2 can be
rewritten as:

Cov
[
(A1 X)2, (A2 X)2

]
=
∑
i,j

Cov
[
(A1 X)[i]2, (A2 X)[j]2

]
=
∑
i,j

(
E
[
(A1 X)[i]2(A2 X)[j]2

]
− E

[
(A1 X)[i]2

]
E
[
(A2 X)[j]2

])
. (26)
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Since the expectations of A1 X and A2 X equal zero, the expectation of the
product (A1 X)[i]2(A2 X)[j]2 is the Gaussian forth order moment that is known
to satisfy:

E
[
(A1 X)[i]2(A2 X)[j]2

]
= E

[
(A1 X)[i]2

]
E
[
(A2 X)[j]2

]
+ 2 Cov [(A1 X)[i], (A2 X)[j]]2 . (27)

Hence, (26) gives:

Cov
[
(A1 X)2, (A2 X)2

]
= 2
∑
i,j

Cov [(A1 X)[i], (A2 X)[j]]2 . (28)

Since we have Cov [(A1 X)[i], (A2 X)[j]] = (A1 Σ A′
2)[i, j], one deduces that (28)

finally results in (23).

We now show the correctness of (24). We have:

Cov
[
(A1 X)2, m′

2 A2
2 X
]

=
∑

i

Cov
[
(A1 X)[i]2, m′

2 A2
2 X
]

. (29)

Since X has a zero mean, every term of the previous sum is a Gaussian third
order moment and is hence equal to zero. This way, we get (24). %

We give hereafter the proof of Proposition 3.

Proof. (Proposition 3) Since the li’s are independently drawn from Gaussian
distributions N (mxi,k∗ , Σxi,k∗) and since, for every x, there is a ratio τx of the
xi’s that equal x, Relation (10) and Lemma 1 directly lead to (11) and (12).

Now, (Lk)k∈K can be expressed as a linear transformation of the vector
∑N

i=1 li

and of the vector
(∑N

i=1 li[j1]li[j2]
)

1≤j1,j2≤T
. The first one has a multivariate

Gaussian distribution and, from the multivariate central limit theorem, the sec-
ond one tends toward a multivariate Gaussian distribution as N grows. Hence
(Lk)k∈K tends toward a multivariate Gaussian distribution as N grows. %

C Convergence of the Log-Likelihood Distribution

According to (10), the log-likelihood Lk can be expressed as the sum of |X |
values Lk,x that are defined by:

Lk,x =
τx

2
log
(
(2π)T |Σ̂x,k|

)
− 1

2N

N∑
i=1

xi=x

(li − m̂x,k)′ Σ̂−1
x,k (li − m̂x,k) . (30)

The first term is constant and the second term is a sum of Nτx elements of
the form X ′ A2 X where A is the matrix Σ̂−1

x,k and X is a Gaussian random
variable N (mx,k∗ − m̂x,k, Σx,k∗). The distribution of such a sum is given in the
following lemma. At first, let us recall that the chi-square distribution with n
degrees of freedom χ2 (n) is the distribution obtained by summing n independent
N (0, 1)-distributed random variables.
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Lemma 2. Let (Xj)j be n independent T -size random vectors having a Gaus-
sian distribution N (m, Σ), let A be a (T × T )-matrix and let (Qj)j be the
quadratic forms defined as Qj = X ′

j A2 Xj. The sum of the Qj satisfies:

n∑
j=1

Qj = β + G +
T∑

i=1

αiCi , (31)

where β = n(A ·m)2, αi = (AΣ A′)[i, i], G is an univariate Gaussian random
variable, Ci are T chi-square random variables with n degrees of freedom.

Proof. For j = 1, 2, we have Qj = (AXj)2. Denoting by Xj the centered
random variable Xj−m, we get Qj = (Am)2 +2 m′ A2 Xj +(AXj)2 and hence,∑

j Qj = β + 2
∑

j m′ A2 Xj +
∑

j

∑
i (AXj)[i]

2
.

After denoting 2
∑

j m′ A2 Xj by G and 1
αi

∑
j (AXj)[i]

2
by Ci, we get (31).

Now, G is Gaussian since it is defined as a sum of Gaussian random variables.
Moreover, the covariance matrix of AXj being equal to AΣ A′, we have, for every
j: αi = Var

[
(AXj)[i]

]
. This implies that 1√

αi
(AXj)[i] is N (0, 1)-distributed for

every j, hence by definition Ci is χ2 (n)-distributed. %

A chi-square distribution with n degrees of freedom quickly tends towards a
Gaussian distribution as n grows. A rule of thumb in probability theory is to
consider the approximation χ2 (n) ≈ N (n, 2n) quite reasonable for n ≥ 30.
From Lemma 2, Lk,x is a sum between a constant, a Gaussian random variable
and T chi-square random variables with Nτx degrees of freedom. Therefore, for
Nτx large enough, we can consider that Lk,x has a Gaussian distribution. If this
holds for every x ∈ X then the distribution of Lk can fairly be approximated by
a Gaussian.

D Profiling SCA – Number of Leakage Measurements vs.
Leakage Variance

Let us denotes the leakage covariance matrix by Σ and its estimation by Σ̂.
Under the constant covariance assumption, (11) and (12) can be rewritten as:

E [Lk] = C1 −
1
2

∑
x∈X

τx

∥∥∥Σ̂−1/2 (mx,k∗ − m̂x,k)
∥∥∥2

, (32)

and

Cov [Lk1 ,Lk2 ] = C2 +
1
N

∑
x∈X

τx (mx,k∗ − m̂x,k1)
′ Σ̂−1 Σ Σ̂−1 (mx,k∗ − m̂x,k2) ,

(33)
where C1 and C2 are some values constant with respect to k that satisfy C1 =

log
(
2π|Σ̂|

)
+ Tr

(
Σ̂−1/2 Σ

(
Σ̂−1/2

)′) and C2 = 1
2N

∥∥∥Σ̂−1/2 Σ (Σ̂−1/2)′
∥∥∥2

hs
.
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We show in Section 6.1 that the success rate depends of the distribution of
the comparison vector c = (ck)k∈K/{k∗} that is defined, for Profiling SCA, by
ck = Lk∗ − Lk for every k ∈ K. Assuming (Lk)k∈K Gaussian, c has a Gaussian
distribution whose parameters satisfies:

E [ck] = E [Lk∗ ]− E [Lk] , (34)

and

Cov [ck1 , ck2 ] = Var [Lk∗ ]+Cov [Lk1 ,Lk2 ]−Cov [Lk∗ ,Lk1 ]−Cov [Lk∗ ,Lk2 ] . (35)

From these expressions, we can see that the constant terms C1 and C2 of (32)
and (33) cancel each other out in the expectation and the covariance matrix of c.
It thus appears that multiplying the leakage covariance matrix by a factor λ (and
assuming that its estimation is also multiplied by λ) results in the multiplication
of mc and Σc by 1/λ while multiplying the number of leakage measurements by
λ results in the multiplication of Σc by 1/λ.

One can verify that the Gaussian cdf satisfies for every (a, b):

Φm/λ,Σ/λ2(a, b) = Φm,Σ(λa, λb) . (36)

As shown in Section 6.1, the success rate can be expressed as a sum of cdf Φmc,Σc

with inputs in {0, +∞,−∞}|K|−1. One thus deduces from (36) that multiplying
mc by 1/λ and Σc by 1/λ2 keeps the success rate unchanged. Hence we obtain
that multiplying the leakage covariance matrix and multiplying the number of
leakage measurements have complementary effects on the success rate of Profiling
SCA.
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Côme Berbain1, Henri Gilbert1, and Antoine Joux2

1 Orange Labs
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Abstract. The filter generator is a well known and extensively stud-
ied stream cipher construction. It consists of a Linear Feedback Shift
Register (LFSR) filtered by a non linear Boolean function. In this paper
we focus on the dual construction, namely a linearly filtered Non linear
Feedback Shift Register (NFSR). We show that the existing algebraic
and correlation attacks against the filter generator can be transposed
to mount algebraic or correlation attacks against this dual construction.
We investigate such attacks and extend them to the case where a lin-
early filtered NFSR is combined linearly with one or more non linearly
filtered LFSRs. We apply our algebraic attack to a modified version of
Grain-128, resulting in an attack requiring 2105 computations and 239

keystream bits. Even though this attack does not apply to the original
Grain-128, it shows that the use of a NFSR is not sufficient to avoid all
algebraic attacks.

1 Introduction

Stream ciphers represent, together with block ciphers, one of the two main classes
of symmetric encryption algorithms. They produce a pseudo-random keystream
sequence of numbers over a small alphabet, typically the binary alphabet {0, 1}.
To encrypt a plaintext sequence, each plaintext symbol is combined with the
corresponding symbol of the keystream sequence using a group operation, usually
the exclusive or operation over {0, 1}.

A classic way to build a random number generator is to use a Linear Feedback
Shift Register (LFSR) and to apply a non-linear Boolean function f to the
current LFSR state to produce the keystream. This construction is known as
the filter generator. It has been extensively studied over the past years resulting
in a large number of criteria for the design of such ciphers. For example, the
correlation and fast correlation attacks [23,24,9,19] against this scheme can be
avoided if the function f has a high order of correlation immunity or satisfies
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certain criteria [15]. Algebraic attacks [12,2,6,11] led to the notion of algebraic
immunity of Boolean function.

Recently new stream ciphers using Non linear Feedback Shift Registers
(NFSRs) were proposed as an alternative to LFSR-based stream ciphers. Fi-
nalist candidates to the eSTREAM project like Trivium [8] or Grain [17] are
using one or several NFSRs combined or not with LFSRs.

In this paper, we analyze the dual of the classical filter generator construction,
i.e. a Non linear Feedback Shift Register with a linear output function. We
show that it is easy to formally express any internal state variable as a linear
combination of the initial state variables and of keystream bits, and this (more
surprisingly) allows mounting algebraic or correlation attacks against such a
scheme. We extend our analysis to the case where a linearly filtered NFSR is
linearly combined with one or several non linearly filtered LFSRs. This allows us
to mount an attack against a modified version of Grain-128. Even though this
attack does not apply to the original Grain-128, it shows that the use of a NFSR
is not sufficient to avoid all algebraic attacks. In particular it contradicts the
common idea that the increase in the degree due to the NFSR allows to avoid
algebraic attacks.

The paper is organized as follows: in Section 2, we introduce linearly filtered
NFSRs and we explain why they might seem to naturally resist algebraic at-
tacks. In Section 3, we introduce a simple formal technique applicable to any
linearly filtered NFSR. In Section 4 and 5, we show how to mount algebraic and
correlation attacks against these schemes; in Section 6, we extend our attacks to
linear combinations of a linearly filtered NFSR and non-linearly filtered LFSRs
and we present our attack against a modified version of Grain-128.

2 Linearly Filtered NFSRs

The filter generator, i.e. a LFSR filtered by a nonlinear Boolean function, has
been widely studied, and some ciphers are based on this construction like WG
[14] or Sfinks[7], two of the candidates to the eSTREAM competition.

f

zt

Fig. 1. Filter Generator

A large number of attack techniques applicable to filter generators have been
proposed like correlation and fast correlation attacks [13,18,19,20] or algebraic
and fast algebraic attacks [12,11,1,2].
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For now on, we consider the dual construction, i.e. we swap the update and
output functions, i.e. the linear and the non linear functions. The resulting sys-
tem is a linearly filtered Non Linear Feedback Shift Register (NFSR).

More formally we consider an n-bit NFSR and denote its initial state by
(x0, . . . , xn−1). This NFSR is updated using a Boolean function g:

xt+n = g(xt, . . . , xt+n−1)

At each iteration, the function g is applied to the current internal state of the
NFSR and a new value xt+n is produced. We denote by dg the total degree of g,
i.e. the number of variables in the ANF (algebraic normal form) representation
of g.

The considered output function is linear, i.e. each keystream bit zt is a linear
combination of the internal state of the NFSR at time t.

zt =
n−1⊕
k=0

αkxt+k

g

Fig. 2. Linearly filtered NFSR

All the results of this paper can be applied to any linearly filtered NFSR.
However in order to render our presentation easier to follow, we will illustrate
our results with a first simple example inspired from Grain (a second example
inspired from Grain-128 will be introduced in Section 6). In our first example, we
took the NFSR from version 1 of Grain stream cipher [17] and slightly modified
the output function. In the original Grain, the output of the cipher is composed
of a linear combination of the NFSR internal state and of a Boolean function
of the LFSR internal state and of a single bit of the NFSR internal state. We
removed the LFSR and the associated Boolean function and kept the linear filter
of the NFSR.

This NFSR is 80-bit long and it is governed by the recurrence:

xt+80 = g(xt, xt+1, . . . , xt+79),

where the expression of nonlinear feedback function g is given by

g(xt, xt+1, . . . , xt+79) = xt+62 ⊕ xt+60 ⊕ xt+52 ⊕ xt+45 ⊕ xt+37 ⊕ xt+33 ⊕ xt+28

⊕ xt+21 ⊕ xt+14 ⊕ xt+9 ⊕ xt ⊕ xt+63xt+60 ⊕ xt+37xt+33
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g′

NFSR

g

LFSR

f

h

zt

Fig. 3. Grainv1

⊕ xt+15xt+9 ⊕ xt+60xt+52xt+45 ⊕ xt+33xt+28xt+21

⊕ xt+63xt+45xt+28xt+9 ⊕ xt+60xt+52xt+37xt+33

⊕ xt+63xt+60xt+21xt+15 ⊕ xt+63xt+60xt+52xt+45xt+37

⊕ xt+33xt+28xt+21xt+15xt+9

⊕ xt+52xt+45xt+37xt+33xt+28xt+21.

The cipher output bit zt is given by the following linear function of the current
NFSR internal state:

zt = xt+1 ⊕ xt+2 ⊕ xt+4 ⊕ xt+10 ⊕ xt+31 ⊕ xt+43 ⊕ xt+56 ⊕ xt+63

One of the motivations for NFSR based stream ciphers is that they are generally
believed to be naturally immune against algebraic attacks. In fact due to the
structure of the NFSR, each internal state variable can be written as a function
of degree dg of the n previous internal state variables. Consequently the degree
of the algebraic expression of any internal state variable in the initial variables
(x0, . . . , xn−1) is growing. In the case of a linearly filtered NFSR, the algebraic
expression of any keystream bit is a linear combination of the internal state
variable. Consequently, the degree of the algebraic expression of each keystream
bit is also growing.

In our example, the first 17 keystream bits can be written as linear combi-
nations of the initial state variables. The next 17 keystream bits can be written
as polynomials of degree 6. The next 17 polynomials are of degree 10, and the
degree keeps growing until it reaches the number of variables. The size of the
”blocks” of equations of constant degree is determined by the difference between
the position of the feedback (80 in our example) and the position of the tap of
highest index in the expression of the update function (63 in our example).

Algebraic attacks as independently discovered by Courtois and Meier [12] and
by Ars and Faugère [3] try to reduce the degree of the polynomials corresponding
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to keystream bits by the use of annihilators, and then linearize the obtained sys-
tem in order to solve it. These attacks require that a large quantity of keystream
bits be available and that each keystream bit can be expressed as a polynomial
of fixed degree. It is commonly believed that since the degree is growing with the
number of keystream bits, this makes algebraic attacks based on such equations
inefficient against these systems.

3 A Preliminary Observation

We now introduce a very simple technique that allows us to formally express any
internal state variable of the NFSR as a linear combination of the initial state
variables and of keystream bits. We consider the sequence of internal state vari-
ables (xi)i≥0. The initial state of the NFSR is composed of the n first variables
(x0, . . . , xn−1). We can relate the variables xi thanks to the non linear update
function of the NFSR g. This leads to increasing degrees as stated earlier. We
propose instead to use the linear filtering function to derive linear relations be-
tween these variables. We recall the expression of zt for any t:

zt =
n−1⊕
k=0

αkxt+k

We prove the correctness of this technique by induction. We denote by i the
highest value 0 ≤ k ≤ n − 1 such that αk is not equal to zero. Let us consider
the first bit of keystream which is dependent on xn. We can write

zn−i = xn ⊕
i−1⊕
k=0

αkxk+n−i

By exchanging the terms zn−i and xn, we can express xn as a linear combination
of a keystream bit and of a subset of the initial state variables (x0, . . . , xn−1).

Let us now assume that for all j ≤ t, all bits xj can be expressed as a linear
combination of the initial state variables and of keystream bits. Let us consider
the keystream bit zt+1−i. It results from the definition of i that this is the first
keystream bit which depends of xt+1. We can write

zt+1−i = xt+1

i−1⊕
k=0

αkxk+t+1−i

By exchanging the terms zt+1−i and xt+1, we can express xt+1 as a linear com-
bination of a keystream bit and of variables xj with j < t + 1. By applying
the induction assumption, we can replace all these variables xj by their respec-
tive linear combination and we finally express xt+1 as a linear combination of
keystream bits and of the initial state variables (x0, . . . , xn−1).

The complexity of building such linear expressions only depends on the num-
ber of variables we want to express since the computation can be done in a
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efficient way by following the induction process we just described. If we want to
be able to express N variables, our technique requires n ·N computations and
(n + 1) ·N bits of memory.

In our example, the former technique gives:

x80 = z17 ⊕ x76 ⊕ x60 ⊕ x48 ⊕ x27 ⊕ x21 ⊕ x19 ⊕ x18

x81 = z18 ⊕ x77 ⊕ x61 ⊕ x49 ⊕ x28 ⊕ x22 ⊕ x20 ⊕ x19

x82 = z19 ⊕ x78 ⊕ x62 ⊕ x50 ⊕ x29 ⊕ x23 ⊕ x21 ⊕ x20

x83 = z20 ⊕ x79 ⊕ x63 ⊕ x51 ⊕ x30 ⊕ x24 ⊕ x22 ⊕ x21

x84 = z21 ⊕ x80 ⊕ x64 ⊕ x52 ⊕ x31 ⊕ x25 ⊕ x23 ⊕ x22

The variable x84 depends on x80. By a simple substitution, we get:

x84 = z21⊕z17⊕x76⊕x64⊕x60⊕x52⊕x48⊕x31⊕x27⊕x25⊕x23⊕x22⊕x21⊕x19⊕x18

4 Algebraic Attacks

The above observation allows to express each of the variables xi as a linear
combination of the initial state variables and of keystream bits. We denote by
Lt the linear expression associated with variable xt.

Before mounting an algebraic attack against the linearly filtered NFSR, we
need to establish a basic property on algebraic immunity of function g + xn,
where g is a Boolean function of n variables (x0, . . . , xn−1) and xn is an extra
Boolean variable.

Theorem 1. Let g be a Boolean function of n inputs and degree dg and let h
be an annihilator of g, i.e. we have hg = 0 or h(g + 1) = 0. Then h(xn + 1) is
an annihilator of g + xn (resp. (g + xn + 1)) and we have

AI(g + xn) ≤ AI(g) + 1

Let us consider the case where hg = 0. We have

h(xn + 1)(g + xn) = hg(xn + 1) + h(xn + 1)xn

= 0 · (xn + 1) + h · 0 = 0

The case where h is an annihilator of (g+1) is similar. This shows that h(xn +1)
is an annihilator of g + xn (resp. (g + xn + 1)).

We can now mount an algebraic attack against the linearly filtered NFSR.

Theorem 2. Let g be a Boolean function. If the filter generator, i.e. a n-bit
LFSR filtered by g is vulnerable to an algebraic attack of complexity T that is
using M keystream bits and an annihilator of g of degree d, then we can mount an
algebraic attack against a linearly filtered NFSR of n bits updated with g by using
an annihilator of g+xn or g+xn+1 of degree at most d+1 with M ′ = M +

(
n

d+1

)
keystream bits and of complexity upper bounded by (M ′)ω + n ·M ′.
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In order to mount our attack, we first use the technique introduced at the pre-
vious section to express each variable xt as a linear combination of the initial
state variables and of keystream bits. We then use the update function of the
NFSR g. We have

xt+n = g(xt, . . . , xt+n−1).

By replacing each variable xt by its linear expression Lt, we get

Lt+n = g(Lt, . . . , Lt+n−1)

which is an algebraic equation of degree dg.
Since we get an algebraic equation for each keystream bit, we can use an

annihilator h of g of degree d to mount an algebraic attack using the annihilator
of degree at most d + 1

h(Lt, . . . , Lt+n−1) · (Lt+n + 1).

This attack will use at most M ′ bits of keystream with

M ′ =
d+1∑
k=0

(
n

k

)
,

and will have time complexity at most

n ·M ′ + M ′ω

where ω is the exponent of the linear solving algorithm (2.8 for the Strassen
algorithm).

However looking directly for low degree annihilators of g + xt+n can allow to
derive equations on the initial state of the NFSR of degree lower than d + 1.
Moreover since for all polynomials of n inputs there exists an annihilator of g of
degree at most �n

2 �, there exists an annihilator of g + xn degree at most �n+1
2 �.

When n is even, �n+1
2 � and �n

2 �+1 are equal but when n is odd, �n+1
2 � is strictly

lower than �n
2 � + 1. This shows that the bound on the algebraic immunity of

g + xn given by Theorem 1. is not an equality and that it is sometimes possible
to find annihilators of g + xn that have a lower degree than the one achieved by
deriving an annihilator of g + xn from an annihilator of g as presented earlier.

For our example, since g is of degree 6, it is straightforward to derive algebraic
equations of degree 6. Moreover we can remark that the degree of (xt+28 ⊕
1)(xt+60⊕1)g(xt, . . . , xt+79) is only 4. We consequently derive equations of degree
4 in 80 variables, which allow us to recover the initial state of the NFSR by
linearization with a complexity of 249 operations using 221 keystream bits and
memory.

5 Correlation Attacks

Our preliminary observation of Section 3, which allows us to mount algebraic
attacks against linearly filtered NFSRs, can also be used to build correlation
attacks against these schemes.
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Theorem 3. Let g be the Boolean function. If the filter generator, i.e. a n-bit
LFSR filtered by g is vulnerable to a correlation attack of complexity T that is
using M keystream bits, then a linearly filtered NFSR of n bits updated with g is
also vulnerable to a correlation attack of complexity T + n ·M that is using M
keystream bits.

In order to mount a correlation attack against the linearly filtered NFSR, we
first look for a linear approximation of the update function g. Let us denote by
Lg such a linear approximation and by ε its bias. With probability 1

2 + ε we have

xt+n = Lg(xt, . . . , xt+n−1),

and by replacing each variable by its linear expression as for algebraic attacks,
we get with the same probability

Lt+n = Lg(Lt, . . . , Lt+n−1).

We can mount a correlation attack in order to recover the initial state of the
NFSR. Classical techniques of correlation attacks can be applied in order to build
parity check equations on a small number of variables, like relations filtering or
collision search [20]. In order to improve the efficiency of the correlation attack, a
Fast Walsh Transform computation can be used as in [10]. One can also (almost
equivalently) notice that the problem of recovering the initial state of the NFSR
from the above equations can be viewed as an instance of the Learning Parity
with Noise Problem LPN and consequently be solved by the techniques described
in [21,22], where the Fast Walsh Transform is also used in an essential way.

In our example, the best linear approximation of the update function g is

Lg = xt+62 ⊕ xt+60 ⊕ xt+52 ⊕ xt+45 ⊕ xt+37 ⊕ xt+28 ⊕ xt+21 ⊕ xt+14 ⊕ xt.

It matches the function g with probability 594
1024 . We can mount two correlation

attacks against our scheme: in the first one we filter the linear relations in order
to retain only those relations involving the m < n variables x0 to xm−1, while
in the second attack we derive new linear approximation equations (of lower
bias) involving m < n unknown variables x0 to xm−1 by combining the available
approximate equations pairwise, and retaining only those pairs of relations for
which the n−m last coefficients collide. Then in both cases we use a Fast Walsh
Transform computation in order to compute the correlation and to determine
the correct value of the m bits. The first technique above allows us to recover
40 bits with 252 operations and 242 keystream bits, while the second technique
allows us to recover 30 bits with 235 operations and 233 keystream bits.

6 Linearly Filtered NFSR Combined with Non Linearly
Filtered LFSRs

While having high non linearity and resistance to algebraic equations, NFSRs
have the drawback that it is more difficult, contrary to the case of LFSRs, to
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prove useful statistical properties like period length or linear complexity. A possi-
ble solution to this problem is to combine a NFSR with a LFSR: the LFSR brings
its good statistical properties while the NFSR is a highly non-linear component.
This is the approach of the stream cipher Grain [17].

This led us to consider linear combinations of a linearly filtered NFSR and
one or several non linearly filtered LFSRs. Let us consider a m-bit LFSR of
initial state (y0, . . . , ym−1) filtered by a Boolean function h of degree dh linearly
combined with a linearly filtered NFSR of n bits updated by a Boolean function
g of degree dg.

6.1 Algebraic Attacks

The preliminary observation we made on a single linearly filtered NFSR can be
easily adapted to this case. Each keystream bit can be written as

zt =
n−1⊕
k=0

αkxt+k ⊕ h(yt, . . . , yt+m−1)

This allows us to write each variable xt as the sum of a polynomial of degree dh

in the LFSR initial state variables (y0, . . . , ym−1) and a linear combination of
the NFSR initial state variables (x0, . . . , xn−1) and of keystream bits. The poly-
nomial of degree dh is a sum of several instances of the function h, and is thus
involving LFSR variables yi. Using the LFSR feedback polynomials, we can ex-
press all the instances of h as polynomials of degree dh in the LFSR initial state
variables (y0, . . . , ym−1).

The number of instances of h in the expression of xt is equal to the number of
keystream bit involved in the expression of xt and consequently is determined by
the difference between the taps of the non linear update function. However this
number is growing with t and the complexity of finding the algebraic expression
of N variable xt as a polynomial in the initial state variables of the LFSR and
NFSR can be bounded by n ·N2.

The extension of our preliminary observation to the considered scheme allows
us to derive equations to mount an algebraic attack in the same way as earlier. We
replace the expression of each bit xt in the update function g and we get equations
of degree dg · dh in n + m variables. Here again classical techniques of algebraic
cryptanalysis may allow to reduce the degree of this system of equations. For
example finding an annihilator of g + xt+n+1 + 1 of degree d < dg allows us to
reduce the degree of the equations to d · dh. The total complexity of the attack
is n ·M2 + Mω where

M =
d∑

k=0

(
n + m

k

)
,

and d the final degree of the set of equations.
It is possible to extend algebraic attacks to the case where p non linearly

filtered LFSRs are linearly combined with a linearly filtered NFSR. In that case,
it is possible to mount an algebraic attack against such a scheme by writing
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equations of degree at most dg ·maxi dhi in n+
∑

i mi variables, where the i− th
of the p LFSRs has size mi and a filtering function of degree dhi .

6.2 Application to a Modified Version of Grain-128

In 2006 the eSTREAM project invited the authors of the hardware candidates
with a 80-bit key length to present a 128-bit version of their cipher. Grain-
128 was introduced by Hell, Johansson, Maximov, and Meier [16] as a response
to this invitation. It is built on the same principle as Grain, but uses a 128-
bit key and 128-bit IVs: it uses a 128-bit NFSR updated by a function g, a
128-bit LFSR, and an output function. We denote the NFSR internal state at
clock t by Xt = (xt, . . . , xt+127) and the LFSR internal state at clock t by
Yt = (yt, . . . , yt+127).

In order to achieve a very efficient design for hardware purposes, the authors
have chosen a small degree for the function g. The update of the NFSR internal
state is governed by the relation

xt+128 = yt ⊕ xt ⊕ xt+26 ⊕ xt+56 ⊕ xt+92 ⊕ xt+96 ⊕ xt+3xt+67 ⊕ xt+11xt+13

⊕xt+17xt+18 ⊕ xt+27xt+59 ⊕ xt+40xt+48 ⊕ xt+61xt+65 ⊕ xt+68xt+84.

In order to avoid attacks, two bits of the NFSR internal state instead of one
in Grainv1 are input to the non-linear output function h:

h(Xt, Yt) = xt+12yt+8 ⊕ yt+13yt+20 ⊕ xt+95yt+42 ⊕ yt+60yt+79 ⊕ xt+12xt+95yt+95

Each keystream bit can be written as a the XOR of a linear combination of the
NFSR internal state, a bit of the LFSR internal state, and the output of function
h:

zt = L(Xt)⊕ yt+93 ⊕ h(Xt, Yt)

with

L(Xt) = xt+2 ⊕ xt+15 ⊕ xt+36 ⊕ xt+45 ⊕ xt+64 ⊕ xt+73 ⊕ xt+89

In the paper describing Grain-128, the authors discuss the resistance of the
algorithm to algebraic attacks: ”In Grain-128, an NFSR is used to introduce
nonlinearity together with the function h(). Solving equations for the initial 256
bit state is not possible due to the nonlinear update of the NFSR. The algebraic
degree of the output bit expressed in initial state bits will be large in general
and also varying in time. This will defeat any algebraic attack on the cipher.”

We now introduce a modified version of Grain-128. In this version, we replace
the two bits of the NFSR internal state that were input into the non-linear out-
put function h by two bits of the LFSR internal state. As stated by the authors
of Grain-128, the non-linearity of the algorithm comes from the NFSR and from
this function h. We now present an algebraic attack against this modified ver-
sion, which shows that with the modified version of the function h it is possible to
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g

h

Fig. 4. Combination of a linearly filtered NFSR and a non linearly filtered LFSR

write equations of constant degree even tough the non-linear update of the NFSR
is supposed to make the degree vary in time, as claimed by the authors of
Grain-128.

For the modified version, the new function h depends only of the LFSR inter-
nal state. In order to keep the properties of function h in particular the number
of variables and the degree, we replace xt+12 and xt+95 by yt+12 and yt+94. This
choice of the two new taps is not significant for our attack.

h(Yt) = yt+8yt+12 ⊕ yt+13yt+20 ⊕ yt+42yt+94 ⊕ yt+60yt+79 ⊕ yt+12yt+94yt+95

In order to keep the keystream dependent on the two bits xt+12 and xt+95, we
add them to the linear part of the output. Consequently each keystream bit can
now be written as:

zt = L(Xt)⊕ xt+12 ⊕ xt+95 ⊕ yt+93 ⊕ h(Yt)

This modified version is almost identical to the case illustrated in Figure 4.
The only difference is the influence of the LFSR output on the update of the
NFSR. Using the technique described for algebraic attacks against combination
of a NFSR and a LFSR, we can express each variable bit of the NFSR internal
state xt as the sum of a polynomial of degree dh in the LFSR initial state
variables (y0, . . . , y127), of a linear combination of the NFSR initial state variables
(x0, . . . , x127) and of keystream bits. The polynomial of degree dh is a sum of
several instances of the function h and of linear combinations of the LFSR initial
state variables stemming from the term yt+93 for different values of t. As already
explained this allows us, by replacing the expression of each bit xt and of the bit
yt inside of the update function of the NFSR, to write equations of degree dg·dh =
6 in the 256 variables of the LFSR and NFSR initial states. By linearizing these
equations, we can recover the 256 variables in time 128 ·M2 + M2.73, where

M =
6∑

k=0

(
256
k

)
.
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Fig. 5. The original Grain-128
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Fig. 6. Modified version of Grain-128

This result in an attack of complexity 2105 using 239 keystream bits.
The described attack is not applicable to the original Grain-128 due to the

non-linearity in the NFSR state variables. However it shows that the argu-
ment used by the authors to justify the immunity against algebraic attack was
incomplete.

6.3 Correlation Attacks

Unlike the simple linearly filtered NFSR case, it seems difficult to mount cor-
relation attack against a combination of a linearly filtered NFSR and non lin-
early filtered LFSRs by using our preliminary observation. This is due to the
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increasing number of instances of the h function. If the functions g and h are
replaced by linear approximations, the resulting bias is decreasing as the number
of the instances of h grows. Consequently unless the biases for g and h are very
strong and the number of required keystream bits is very low, it seems difficult
to mount correlation attacks against these schemes by using our preliminary
observation.

It is however possible to mount a correlation attack in the special case where
the linear filtering function of the NFSR has one single non-zero coefficient. In
that case we have

zt = xt ⊕ h(yt, . . . , yt+m−1).

By using a linear approximation Lg of bias εg and weight w and a linear approx-
imation Lh of bias εh, we can derive approximate relations

xt+n � Lg(xt, . . . , xt+n−1)

�
w⊕

j=0

xt+ij

zt+n ⊕ h(yt+n, . . . , yt+n+m−1) �
w⊕

j=0

zt+ij ⊕ h(yt+ij , . . . , yt+ij+m−1)

By replacing the non-linear outputs of h with its linear approximation Lh, we
get approximate relations

zt+n ⊕ Lh(yt+n, . . . , yt+n+m−1) �
w⊕

j=0

zt+ij ⊕ Lh(yt+ij , . . . , yt+ij+m−1),

which can be re-expressed as approximate relations involving the initial state bits
of the LFSR. By using the Piling up Lemma, we can compute the equivalent
bias of approximate relations. We get:

ε = εg(2εh)w+1

Consequently if the bias εg and εh are large enough and if the weight w of the
linear approximation of g is small enough, a correlation attack is possible against
the construction of Figure 4 in this special case.

7 Conclusion

In this paper, we have shown that the dual case of the filter generator, i.e. a
linearly filtered NFSR, is vulnerable to the same kind of attacks than the filter
generator. We described how to mount algebraic and correlation attacks against
this scheme. These attacks were illustrated on an example NFSR taken from
the Grain stream cipher. We then extended these attacks to combinations of
a linearly filtered NFSR and one or several non linearly filtered LFSRs. We
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illustrated the latter extension by an algebraic attack on a modified version of
Grain-128, which can be broken in 2105 computations with 239 keystream bits.
This attack is not applicable to the original Grain-128 but is shows that the
use of a NFSR is not sufficient to avoid all algebraic attacks. As far as we know,
none of these attacks is directly applicable to stream cipher candidates submitted
to the eSTREAM competition or recognized stream ciphers like SNOW 2.0 or
MUGI.

The techniques presented in this paper can be easily extended to ciphers in
which t > 1 bits of the current state are non-linearly updated at each step while
t or more linear combinations of the state bits are output as keystream bits. It
is an open question whether those attack techniques can be also extended to
ciphers in which t > 1 state bits are non-linearly updated, while only t′ < t
linear combinations of the state bits are output.
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A Cache Timing Analysis of HC-256
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Abstract. In this paper, we describe a cache-timing attack against the
stream cipher HC-256, which is the strong version of eStream winner HC-
128. The attack is based on an abstract model of cache timing attacks
that can also be used for designing stream ciphers. From the observa-
tions made in our analysis, we derive a number of design principles for
hardening ciphers against cache timing attacks.

Keywords: Cryptanalysis, side-channel attack, cache timing attack,
stream cipher, HC-256.

1 Introduction

Cache timing attacks are a new class of side-channel attacks. They received
significant attention after being applied to the Advanced Encryption Standard
(AES) independently by Bernstein [1] and Osvik, Shamir, and Tromer [12,13] in
20051. The idea is that in some settings, the adversary can obtain information
about the cache accesses of a legitimate party by measuring timings. Optimised
software implementations of the AES turned out to be particularly vulnerable
to this kind of attack.

The discovery was met with great interest. Subsequent research verified the
correctness of the findings [11,10,9,15], improved the attack technically [14,3,8]
or algorithmically [5], and devised and analysed countermeasures [6,4,16].

However, the focus of the attacks was on the AES, and the countermeasures
mainly targeted the implementation of cryptographic designs. In this paper, we
take a different approach: We discuss how cipher designers can make such attacks
more difficult. In order to demonstrate our approach, instead of considering a
block cipher like AES, we analyse the stream cipher HC-256.

1.1 Cache Timing Attacks

Cache timing attacks exploit that loading data into a CPU register is faster when
done from cache than from RAM. By measuring cache timings, an observer can
obtain information about the inner state of a cipher. In the following, we give a
simplified description of cache timing attacks; for a more complete description,
see e.g. [13,9].
1 For prior work on cache timing attacks, see the references contained in [1] and [12].

R. Avanzi, L. Keliher, and F. Sica (Eds.): SAC 2008, LNCS 5381, pp. 199–213, 2009.
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Cache workings: The CPU cache of modern processors is organised into blocks
of s bytes. Correspondingly, RAM is considered to be (virtually) divided into
s-byte blocks. When loading data from RAM into a CPU register, the system
first checks whether the corresponding RAM block already lies in cache. If yes,
it is loaded directly from cache, which is very fast. If not, it is first loaded from
RAM to cache, which takes longer. Mapping from RAM to cache is typically by
a simple modulo operation, i.e. if the cache can hold n blocks and if the data lies
in RAM block a, then it is loaded into cache block a mod n. This means that
neighbouring data in RAM (e.g. tables) stays clustered in cache.

A simple attack: As an example, consider the prime-then-probe method pre-
sented in [13]. The adversary starts by filling all the cache with his own data.
Then the legitimate user U gets the read/write token. U loads the data required
for his own computations into cache, where it evicts the adversary’s data. When
the adversary reobtains the read/write token, he tries to reload his own data
from cache. For each cache block, if this takes long, it means that U has evicted
the corresponding data.

From this analysis, the adversary obtains a profile of cache blocks that have
been used by U . This profile is a noisy version of the cache blocks that have
been used for the encryption. By repeating the experiment a number of times,
a good approximation of the real cache access profile can be obtained.

Note that the adversary does not learn the data that was written in the cache
by U – he learns something about the addresses of the data that was used. In
the case of the AES, this corresponds to the indices of the S-box entries used for
encryption, which in turn can be used for an attack.

Practicality: Cache timing attacks require cache timing measurements of suffi-
cient precision. In addition, the experiment has to be repeated sufficiently often.
Obviously, these requirements are not always met. However, they are relevant in
shared server and in sandbox scenarios, and Bertoni et al. [3] show how to use
cache timings if the adversary has physical access to a device, making the attack
much more realistic.

Responsibility: Some researchers claim that defending against side-channel at-
tacks should be the responsibility of the implementer, not the cipher designer.
However, this view is not shared by everyone. As an example, the AES was chosen
partially due to its inherent resistance against side-channel attacks
(see e.g. Section 7 of [1]). The reason is that algorithms are designed only once,
but implemented many times on many platforms. Thus, if side-channel attacks
can be avoided in the design phase, implementation becomes easier, which seems
to be preferable. In order to emphasise the designer’s responsibility, we use a sim-
plified terminology in this paper: We say that a cipher can be “broken” in a cache
timing model if an unprotected implementation is vulnerable to a cache timing
attack.
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2 The Stream Cipher HC-256

HC-256 was proposed by Wu in [17], and its reduced version HC-128 is part of
the eStream portfolio [7]. The cipher is based on two large, key-based tables (i.e.,
no fixed S-boxes) that change content over time. With each call to the keystream
generation function, the cipher updates one table entry and outputs one 32-bit
keystream word.

Notation: HC-256 requires a 256-bit key K and a 256-bit IV IV . It uses two
tables P and Q, which contain 1024 32-bit words each. Table entries are identified
by P [i] and Q[i].

In the following, ⊕ denotes xor, || concatenation (most significant bits first),
≫ a circular right shift, � addition modulo 232, and � subtraction modulo 210.

If X is a word, we denote by X(b..a) the bits b..a, where b > a. For all notations,
the most significant bits are written to the left, while the least significant bits
are written to the right. Thus, we can write X = X(31..0).

Auxiliary Functions: The following auxiliary functions on 32-bit variables are
used:

f1(x) = (x ≫ 7)⊕ (x ≫ 18)⊕ (x� 3)
f2(x) = (x ≫ 17)⊕ (x ≫ 19)⊕ (x� 10)

g1(x, y) = ((x ≫ 10)⊕ (y ≫ 23)) � Q[(x⊕ y)(9..0)]
g2(x, y) = ((x ≫ 10)⊕ (y ≫ 23)) � P [(x⊕ y)(9..0)]

h1(x) = Q[00||x(7..0)] � Q[01||x(15..8)] � Q[10||x(23..16)] � Q[11||x(31..24)]
h2(x) = P [00||x(7..0)] � P [01||x(15..8)] � P [10||x(23..16)] � P [11||x(31..24)]

Key/IV Setup: For initialisation, the key is split into 32-bit words K[0], . . . , K[7],
and the IV is split into 32-bit words IV [0], . . . , IV [7]. With the help of an auxil-
iary array W [0], . . . , W [2559] and a global counter variable r, the algorithm can
be described as in Figure 1.

Init(K, IV )
1. For i = 0, . . . , 7:
2. W [i] = K[i]
3. For i = 8, . . . , 15:
4. W [i] = IV [i− 8]
5. For i = 16, . . . , 2559:
6. W [i] = f2(W [i− 2]) � W [i− 7] � f1(W [i− 15]) � W [i− 16] � i
7. For j = 0, . . . , 1023:
8. P [j] = W [j + 512]
9. Q[j] = W [j + 1536]

10. Set r = −4096
10. Repeat 4096 times:
10. Next() (* Ignore the output *)

Fig. 1. Key/IV setup for HC-256
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Next()
1. Set j = r mod 1024
2. If ((r mod 2048) ∈ {0, . . . , 1023}):
3. P [j] = P [j � 1024] � P [j � 10] � g1(P [j � 3], P [j � 1023])
4. zr = h1(P [j � 12]) ⊕ P [j]
5. Else:
6. Q[j] = Q[j � 1024] � Q[j � 10] � g2(Q[j � 3], Q[j � 1023])
7. zr = h2(Q[j � 12]) ⊕Q[j]
8. r = r + 1

Fig. 2. Keystream generation for HC-256

Keystream Generation: The r-th call to the Next() function updates one table
entry and produces one 32-bit output word zr. The function is described in
Figure 2. Note that r = 0 for the first output word.

3 Mapping Measurements to Inner State

3.1 Preliminaries

State-dependent table lookups: From a cache timing attack, the adversary learns
(part of) the table indices that were accessed by the encryption algorithm. How-
ever, most table lookups made by HC-256 depend on a public counter which is
known to the adversary anyway. The only exceptions are the state-dependent
table lookups within the functions g1 and h1 (leaking information about table
P ) as well as g2 and h2 (table Q).

Observable index bits: Ideally, the adversary would learn the full table index
from each cache observation. In practice, however, the cache is organised in
blocks that store several RAM table entries. Thus, all the adversary can learn
from his measurements is the cache block containing the table entry.

In the following, we assume that the tables P and Q are perfectly aligned
with the cache blocks2. Thus, the tables themselves can be considered as being
split into blocks that have the same size as the cache blocks.

The cache block size is processor dependent and varies typically between 16
and 128 byte. In the following, we use a cache block size of 64 byte, since it is
currently particularly wide-spread (e.g. in Pentium 4 and Athlon). Since tables
P and Q have 1024 entries with an entry size of 4 byte each, each table block
contains 16 table entries, and each table consists of 64 blocks. Thus, by measuring
cache timings, the adversary learns index bits 4..9, but not 0..3.

Note that if the cache block size is smaller (larger) than 64 byte, he will obtain
more (less) information about the table entries.

2 If this is not the case, our attack becomes easier, since unaligned table entries leak
additional information about the inner state.
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3.2 Keystream Generation vs. Key/IV Setup

The functions g1, g2, h1, and h2 are accessed both during keystream generation
and key/IV setup. However, during key/IV setup, all entries in the tables W , Q
and P are accessed at least once. Thus, the adversary will obtain no additional
information compared to the standard model.

Instead, we concentrate on the keystream generation phase, where we make
repeated measurements for each output block. This is modelled by giving the
adversary access to two oracles:

– Keystream(i): The adversary requests the cipher to return the i-th key-
stream block to him. The block length depends on the cipher design.

– SCT Keystream(i): The adversary obtains an unordered list of all cache
accesses made by Keystream(i).

A justification and generalisation of this model is given in Section 6.

3.3 Initial State Candidates

If the adversary calls the SCT Keystream(r) oracle, this corresponds to a call
to the Next() function. Consider such a call for a round r with (r mod 2048) ∈
{0, . . . , 1023}, i.e. code lines 3 and 4 are executed. From functions g1 and h1, he
observes either 4 or 5 accesses to table Q, as follows.

Function h1: In function h1, table Q is accessed at indices (00||P [j � 12](7..0)),
(01||P [j � 12](15..8)), (10||P [j � 12](23..16)), and (11||P [j � 12](31..24)). While in
general, the adversary does not know which table access belongs to which vari-
able, things are more obvious here. Each of the four 10-bit indices starts with a
unique 2-bit prefix and can thus be clearly assigned to one of the four variables.
Thus, if it were not for code line 3, the adversary could immediately determine
the upper half-bytes for P [j � 12].

Function g1: However, in the same function call, g1 accesses table Q at index
(P [j�3]⊕P [j�1023])(9..0). This index can have any of the prefixes 00, 01, 10, or
11. Thus, we can not distinguish it from one of the accesses by h1 which has the
same prefix (unless it accidentially uses the same cache block, which happens
with probability 1/16).

Concluding, for three of the four bytes in P [j � 12], we know precisely their
upper half-byte. For the fourth one, we normally have two candidates, which
we can not distinguish without additional information. In addition, for (P [j �
3]⊕ P [j � 1023]), we know exactly what the bits 9 and 8 are, and we have two
candidate assignments for bits 7..4.

Functions h2 and g2: Exactly the same observations hold for table P for rounds
r with (r mod 2048) ∈ {1024, . . . , 2047}.
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4 Reconstructing the Full Inner State

4.1 Notation

Before considering several calls to the Next() function, we have to define a
unique notation for the table entries. Since the table is constantly updated, we
have to make it clear which of a succession of values in e.g. table cell P [12] we
mean.

To this end, for table P , we write Pu when we mean the u-th value that was
updated for this table, where P0 is updated in round r = 0. As an example, table
cell P [12] has the value P−1012 after initialisation, obtains value P12 in round
r = 12 and value P1036 in round r = 2060.

Similarly, for table Q, we write Qu when we mean the u-th value that was
updated for this table, where Q0 is updated in round r = 1024. As an example,
table cell Q[12] has the value Q−1012 after initialisation, obtains value Q12 in
round r = 1036 and value P1036 in round r = 3084.

The following table describes the the relationship between rounds and se-
quence words that are used for the attack.

Round Table P Table Q
0, . . . , 1023 P0, . . . , P1023 -

1024, . . . , 2047 - Q0, . . . , Q1023
2048, . . . , 3071 P1024, . . . , P2047 -
3072, . . . , 4095 - Q1024, . . . , Q2047
4096, . . . , 5119 P2048, . . . , P3071 -
5120, . . . , 6143 - Q2048, . . . , Q3071
6144, . . . , 7167 P3072, . . . , P4095 -
7168, . . . , 8191 - Q3072, . . . , Q4095

4.2 Step 1: Determining the Half-Bytes

The purpose of the first step is to uniquely identify the correct assignments to
the upper half-bytes of P1024, . . . , P3083 and Q1024, . . . , Q3071.

Measurement: By using the SCT Keystream() oracle for rounds

r = 25, . . . , 1023, r = 2048, . . . , 3071, r = 4096, . . . , 5119, r = 6144, . . . , 6176,

the adversary observes partial information about table entries as described in
Subsection 3.3. This gives him 2 candidate assignments for each of the following
lines:

From h1 From g1

P
(7..4)
13 P

(15..12)
13 P

(23..20)
13 P

(31..28)
13 P

(9..4)
22 ⊕ P

(9..4)
−998

P
(7..4)
14 P

(15..12)
14 P

(23..20)
14 P

(31..28)
14 P

(9..4)
23 ⊕ P

(9..4)
−997

. . . . . . . . . . . . . . .

P
(7..4)
3092 P

(15..12)
3092 P

(23..20)
3092 P

(31..28)
3092 P

(9..4)
3101 ⊕ P

(9..4)
2081
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In particular, for the equations P1033 ⊕ P13, . . . , P3092 ⊕ P2072, we have 2 candi-
dates for the bits 7..4 from g1. At the same time, from h1, we have 1 candidate
(with probability ≈ 3/4) or 2 candidates (with probability ≈ 1/4) for bits 7..4
of the corresponding values P13, . . . , P3092.

A simple consistency check: We will now try to figure out which of the two
candidates for each g1 equation is the correct one. First note that with probability
1/16 there is really only one candidate for this equation, namely if bits 7..4 are
the same as for h1. If this is not the case, there are three subcases:

1. For the corresponding h1 values, there is only 1 candidate each. In this case
(which happens with prob. ≈ 9/16), checking by xoring those h1 values will
always identify the correct candidate for the g1 value.

2. One of the h1 values has 1 candidate and one has 2 candidates. In this case
(which happens with prob. ≈ 6/16), there is only one wrong combination of
h1 candidates, and it is identical to the wrong g1 candidate with probability
1/16. Thus, the test identifies the wrong g1 candidate with probability 15/16.

3. Both h1 values have 2 candidates. In this case (which happens with prob.
≈ 1/16), there are 3 wrong combinations of h1 candidates. They identify the
wrong g1 candidate with probability 15·15·14

163 .

Concluding, the probability of identifying a wrong g1 candidate by a simple
test is

1
16

+
15
16
·
(

9
16
· 1 +

6
16
·
(

15
16

)
+

1
16
·
(

15 · 15 · 14
163

))
≈ 0.9646.

Consequence: In the following, we will thus assume that the correct candidates
for equations P1033⊕P13, . . . , P3092⊕P2072 have been identified. In reality, there
will be a small number of such equations that have two candidates, but the per-
centage is small enough not to significantly influence the analysis in the following
sections (it will only make an implementation of the attack slightly messier).

Once the correct candidates for equations P1033 ⊕ P13, . . . , P3092 ⊕ P2072 are
known, we can also identify the correct candidates for the h1 values of the same
lines. Thus, in the following, we can assume that the upper half-bytes are known
for the h1 values under consideration, i.e. the sequence words P1024, . . . , P3083.

By repeating the same procedure for rounds

r = 1049, . . . , 2047, r = 3072, . . . , 4095, r = 5120, . . . , 6143, r = 7168, . . . , 7188,

the same bits can be determined for sequence words Q1024, . . . , Q3071.

4.3 Step 2: Reducing the Number of Candidates

In the second step, we will reduce the number of candidates for Q1024, . . . , Q3059
and P2048, . . . , P3071 from 216 to 28.
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Sequence words Q1024, . . . , Q2035: Let us consider the calls to the function

zr = h2(Q[j � 12])⊕Q[j]

that occur in rounds r = 3084, . . . , 4095. They access the sequence words Q1024,
. . . , Q2047 and P1024, . . . , P2047. According to Subsection 4.2, we know all upper
half-bytes for these entries. Now we have to try and learn as much as possible
about the remaining inner state from this information.

Let γ0, . . . , γ3 = (00||Q[j � 12](7..0)), . . . , (11||Q[j � 12](31..24)). Then we can
re-write the above equation as follows:

zr ⊕Q[j] = P [γ0] � P [γ1] � P [γ2] � P [γ3] (1)

Remember that the adversary knows the keystream word zr. Also note that for
Q[j], Q[j � 12] and for all P [γi] involved, we know the upper half-bytes. We will
now proceed by guessing the remaining 16 bits of Q[j � 12] and then verifying
the result by using eq. (1).

If the equation would use ⊕ instead of �, verification would be straightfor-
ward. We would use the upper half-bytes to obtain 16 linear equations in GF(2).
Since we also have to guess 16 bit for Q[j � 12], only one false guess would pass
this test on average.

However, for addition, we have to take carries into account. If we write
AI , . . . , AIV instead of A(7..4), . . . , A(31..28) for the four upper half-bytes of a
word A, then we can write 4 verification equations as follows:

zI
r ⊕ Q[j]I = P [γ0]I � P [γ1]I � P [γ2]I � P [γ3]I � c0

zII
r ⊕ Q[j]II = P [γ0]II � P [γ1]II � P [γ2]II � P [γ3]II � c1

zIII
r ⊕ Q[j]III = P [γ0]III � P [γ1]III � P [γ2]III � P [γ3]III � c2

zIV
r ⊕ Q[j]IV = P [γ0]IV � P [γ1]IV � P [γ2]IV � P [γ3]IV � c3

Here, c0, . . . , c3 are the carry values, taken from {0, 1, 2, 3}.
Thus, if we want to use the above equations to verify our guess for Q[j � 12],

we have to guess the carry values, too. In total, this gives us 216 · 28 = 224

possible guesses. On the other hand, we have 16 verification bits. This means
that on average, 28 guesses for Q[j � 12] will survive the test. For the table
entries Q1024, . . . , Q2035, we write these guesses into a table.

Sequence words Q2036, . . . , Q3059: It remains to reconstruct the remaining words
Q2036, . . . , Q3059, which can be done in a similar manner by considering rounds
r = 5120, . . . , 6143. These rounds use the sequence words Q2036, . . . , Q3071, as
well as some of the sequence words P2048, . . . , P3071. Using the same technique
as above, we can reduce the number of candidates for Q2036, . . . , Q3059 to ap-
proximately 28 candidates each.

Sequence words P2048, . . . , P3071: The same technique can also be applied to re-
duce the number of candidates for the sequence words P2048, . . . , P3071. We do
this by considering the rounds r = 4108, . . . , 5119, which use sequence words
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P2048, . . . , P3071 as well as Q1024, . . . , Q2047. From this, we can reduce the num-
ber of candidates for P2048, . . . , P3071 to 28. Afterwards, we consider rounds
6144, . . . , 6155, which use sequence words P3060, . . . , P3083 as well as some of
the table entries Q2048, . . . , Q3071.

Resulting table: For Q1024, . . . , Q3059 and P2048, . . . , P3071, the surviving candi-
date words are written in a table. The total size of this table is 3060·28 ·4 ≈ 3·220

byte, i.e. 3 MByte.

4.4 Step 3: Backtracking Attack

In the final step, we reduce the number of candidates for Q1024, . . . , Q2047 and
P2048, . . . , P3071 to one.

Reconstructing table Q: Consider code line 6 as it is called in round r = 5120.
It has the following form:

Q2048 = Q1024 � Q2038 � g2(Q2045, Q1025).

This means that the equation uses the variables Q1024, Q1025, Q2038, Q2045, Q2048
and an entry of table P with unknown index. For each of these 6 variables, we
have an average of 28 possible assignments. If we guess all of these assignments,
we obtain 248 possible candidates. Since wrong guesses for the 32-bit values
satisfy a linear equation with probability 1/232, only ≈ 216 of them remain as
valid states.

We proceed in the same way for round r = 5121, which requires variables
Q1025, Q1026, Q2039, Q2046, Q2049 and an entry of table P . Note that Q1025 is
already known from last round, meaning that we only have to guess 5 variables3.
Our search space increases to 216 ·240 = 256, then it collapses to 224 when filtering
out the assignments that don’t fulfil the equation.

Repeating the same step for round r = 5122 increases our search tree to
264, then collapsing it to 232. For round r = 5123, however, two of the required
variables are already known. This means that only 4 variables have to be guessed,
and the search tree expands to 264 and reduces itself to 232 after verification.

It continues to behave that way until round r = 5127. In this round, we need
three variables that have already been guessed before. This means that the tree
only expands to 256 candidates and then collapses back to 224. From now on,
the tree size will reduce itself with every round, until round r = 5130 when it
has size ≈ 1 after verification, i.e. only valid guesses remain. From now on, every
candidate guess can be verified right away.

Concluding, after running through rounds r = 5120, . . . , 6143, we have recon-
structed the correct solution for table entries Q1024, . . . , Q2047.

3 Of course, there is also a possibility that the table entry for table P repeats itself, but
this probability is not very high in the first rounds. Should this happen by chance,
the attack becomes even more efficient.



208 E. Zenner

Reconstructing table P : Note that from the guesses above, a significant num-
ber of entries for table P have already been reconstructed. There are numer-
ous possiblities for determining the remaining entries. A very simple one would
be to run the same attack as above, using code line 3 instead of line 6. Note
that this requires extra cache timings to reduce the number of candidates for
P3072, . . . , P4095 to 28, each.

A more intelligent approach uses code line 4 for rounds r = 5008, . . . , 5119.
This code line requires only two guesses from table P (with high probability at
least one of them is known anyway) and allows verification against the full 32-bit
keystream word (16 bits of which have not yet been taken into account). This
technique should rapidly identify the missing entries for table P .

5 Consequences

5.1 Cost of the Attack

The above attack retrieves the full contents of tables P and Q at the beginning of
round r = 6144. Given such a snapshot of both tables, we can run the generator
forwards to generate previously unknown keystream bits. We can also run it
backwards to retrieve the key (the state update function and the key/IV setup
are invertible). This shows that an attack is even possible for a synchronous cache
adversary (not only for an asynchronous adversary, as suspected by Bernstein
[2])4.

The main computational step is the backtracking attack, which requires less
than 5 · 264 < 267 computational steps that consist in verifying one equation.
Since the key/IV setup of HC-256 has to compute the same equation 4096 = 212

times (plus does a number of other computations), the effort is less than trying
255 keys in a brute-force setting. The memory requirements are around 3 MB for
the candidate tables, plus a little memory for the search tree (implementing it
in a depth-first search fashion keeps the memory consumption low). In addition,
we have assumed the availability of precise cache measurements for 6148 chosen
rounds, and of 2048 known keystream words. We point out that our attack is
not optimised in any way. It is likely that a better attack can be found using less
cache measurements and computational effort. Nonetheless, the huge number
of necessary cache timing measurements required for this attack indicates how
difficult it would be to apply a similar attack in the standard model.

If the attack is run on a processor with a different cache block size, efficiency is
influenced. For example, if the cache block size is only 32 byte instead of 64 byte,
the adversary learns 7 bit for each table lookup. In this case, no backtracking
phase is required at all – the solution can already be determined by the reduction
step in Subsection 4.3. On the other hand, if the cache block size is e.g. 128 byte,
then only 5 bits for each table lookup are recovered, and the backtracking gets
a lot more expensive.

4 For a definition of synchronous and asynchronous cache adversaries, see Section 6.
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5.2 Design Recommendations

While trying to break HC-256 (and doing initial analysis of other stream ciphers),
we met a number of obstacles that might be possible defense mechanisms against
cache timing attacks. Some of them may be known to cipher designers already,
but to the best of our knowledge, they have not been documented. Thus, we
provide a short list of design recommendations that make cache timing attacks
more difficult if use of tables can not be avoided altogether:

1. Make as many table accesses for one function call as possible. This makes
things harder for a synchronous adversary, who has to match the observed
indices to the inner state. For HC-256, this matching was relatively easy,
which made the attack possible in the first place.

2. Make the inner state size large compared to the information obtained from
one cache measurement. In the case of HC-256, one call to Next() yields 32
bit of keystream information and 52 bit of side-channel information. Because
of the large inner state, this means that at least 65, 536/84 ≈ 780 precise
cache access measurements (or many more noisy ones) have to be made to
retrieve the inner state.

3. Exploit that the least significant bits of the table index remain unknown
(in our analysis, bits 3..0). This can be achieved by using state update and
output generation functions that generate a lot of diffusion without the use
of S-boxes. As an example, functions using carry (like addition and multi-
plication) are suitable for this purpose.

4. Use variable tables instead of (fixed content) S-boxes. This gives the adver-
sary insecurity both about the input and the output of the tables.

6 Attack Model

In the following, we justify and generalise the abstract attack model that was
used for our attack, such that it also can be used to analyse other stream ciphers.

6.1 Motivation

Whether or how cache timing attacks can be used against a cipher depends on
the details of the system deploying it. This is not helpful for cipher designers who
are not allowed to make assumptions about the deployment environment. While
it is possible that certain attack options are not available in a fielded system,
the cipher designer must not rely on this unavailability.

Thus, he works under worst-case assumptions. As an example, while most
practical systems will not give the adversary 240 plaintext/ciphertext pairs, ci-
phers are nonetheless designed to withstand an attack that has this amount of
information available. Unless we want to make very detailed restrictions on how
the cipher is to be used, overestimating the adversary’s abilities is a key strategy.

A cipher designer who is concerned about cache timing attacks has to proceed
in the same way. He has to assume that the adversary gets the maximum amount
of information, and then see what damage this would do to the cipher. Ciphers
secure under such a model will most likely be secure in practice, too.
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6.2 Standard Adversary

In traditional (non-side-channel) stream cipher design, the adversary is assumed
to have the following oracles available:

– KeySetup(): The adversary requests the cipher to be re-initialised with a
new key. No output is returned.

– IVSetup(N): The adversary requests the cipher to be re-initialised with the
initialisation vector N that has not been used before. No output is returned.

– Keystream(i): The adversary requests the cipher to return the i-th key-
stream block to him. The block length depends on the cipher design.

An adversary is considered successful if he can distinguish an instance of the
stream cipher from a random function producing appropriately formatted (but
random) answers to his oracle queries. A cipher is considered secure if for any
adversary, the success probability is less than that of the generic adversary using
the same computational resources on brute-force key testing.

6.3 Synchronous Cache Adversary

The notion of synchronous cache attacks was introduced by Osvik et al. in [13].
In such an attack, the adversary interacts with the encryption code through
some type of interface, and he obtains additional information by making cache
measurements before or after execution of this code.

In our model, such an adversary can use the same oracles as the standard
adversary. In addition, he also has access to the following cache timing oracles:

– SCT KeySetup(): The adversary obtains a list of all cache accesses made
by KeySetup().

– SCT IVSetup(N): The adversary obtains a list of all cache accesses made
by IVSetup(N).

– SCT Keystream(i): The adversary obtains a list of all cache accesses made
by Keystream(i).

In particular, this reflects accurate measurements in a prime-then-probe attack,
which seems to be the strongest SCT technique to date; making weaker as-
sumptions would not cover this attack method adequatly. Note that the attack
described in Sections 3 and 4 use the synchronous attack model.

6.4 Asynchronous Cache Adversary

While a synchronous adversary has to wait until user U has finished the execution
of a certain operation, asynchronous adversaries run in parallel to U . This is
possible e.g. on processors with hyperthreading. In this setting, the adversary
can constantly monitor the cache state, which gives him an ordered list of all
cache accesses made during the observation.

Osvik et al. [13] assume that the adversary obtains no additional information
beyond the cache accesses. However, from a designer’s point of view, we can
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not restrict ourselves in this way. It is easy to imagine an adversary who both
controls some of the input/output data and observes cache behaviour. Thus, in
our model, an asynchronous cache adversary has access to the standard oracles
as well as the following side-channel oracles:
– ACT KeySetup(): The adversary obtains a list of all cache accesses made

by KeySetup() in chronological order.
– ACT IVSetup(N): The adversary obtains a list of all cache accesses made

by IVSetup(N) in chronological order.
– ACT Keystream(i): The adversary obtains a list of all cache accesses made

by Keystream(i) in chronological order.

6.5 Discussion

Our attack model abstracts away a number of practical difficulties the adversary
might encounter:
– The encryption process is not the only one using the cache. Cache accesses

made by other processes generate false positives. Thus, instead of a list of
encryption cache accesses, a real-world adversary only obtains a list of cache
blocks that have not been used by the encryption process.

– Cache timing measurements are subject to timing noise. Thus, the list ob-
tained by the adversary may contain false information that has to be filtered
out by statistical or analytical methods.

– The granularity of the measurements may not correspond to the above oracle
calls. This depends on how time sharing on the processor is organised.

– The adversary may be unable to choose the IV, or to observe the keystream.

Thus, the model has to be considered as being generous towards the adversary.
However, while doing one measurement only creates a noisy version of the cache
access list, repeating the measurement and using statistical methods will often
eliminate most of the noise.

In order to do this, the function calls have to be repeated under the same key
and IV. While at the first glance, this seems to be IV re-use and thus a breach of
the security contract, a second look shows that this is not the case at all. All the
security contract disallows is re-using the IV for a different plaintext, i.e. IV re-
use for the same plaintext is allowed. In particular, it is easy to imagine scenarios
where the rightful user decrypts the same ciphertext several times (e.g. an entry
in an encrypted database that is accessed repeatedly). Thus, in certain settings,
obtaining the necessary measurements might actually be possible.

Note that in addition to analysing cipher resistance against cache timing at-
tacks, the model can also be used to derive security margins for the standard
model. If the best cache timing attack against a given cipher requires a large
number of cache measurements, then the cipher may be considered as being more
robust than one that can be broken by only a few calls to the side-channel ora-
cles. Thus, analysing a cipher in our model achieves a similar effect as analysing
modified (e.g. reduced-round) versions of a design: Even though an attack may
not constitute a break in the standard model, it indicates how far we are from
attacking the full cipher according to specification.
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7 Conclusions

In this paper, we have described a cache-timing attack against the stream cipher
HC-256, which is the strong version of eStream winner HC-128. The attack was
based on a abstract model of cache timing attacks that can also be used for
designing stream ciphers. From the observations made in our analysis, we have
derived a number of design principles for hardening ciphers against cache timing
attacks.
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Abstract. At Crypto’2000, Johansson and Jönsson proposed a fast
correlation attack on stream ciphers based on the Goldreich-Rubinfeld-
Sudan algorithm. In this paper we show that a combination of their
approach with techniques for substituting keystream and evaluating
parity-checks gives us the most efficient fast correlation attack known
so far. An application of the new algorithm results in the first-known
near-practical key recovery attack on the shrinking generator with the
parameters suggested by Krawczyk in 1994, which was verified in the 40-
bit data LFSR case for which the only previously known efficient attacks
were distinguishing attacks.

Keywords: Stream ciphers, Correlation attacks, Linear feedback shift
register (LFSR), Shrinking generator.

1 Introduction

Fast correlation attacks are one of the most important attacks against LFSR-
based stream ciphers [18]. The aim is to recover the initial state of the involved
LFSR with complexity as low as possible. The earliest work dates back to [22,17],
followed by a large number of algorithms [1,2,3,9,10,12,14,15,16,19,20,25]. The
basic idea of a fast correlation attack is to regard the truncated keystream as
the noisy version of the underlying LFSR sequence, transmitted through a bi-
nary symmetric channel (BSC) with some crossover probability, as shown in
Figure 1. Thus, restoring the initial state of the LFSR is equivalent to decoding
the keystream segment by some method.

Such an attack usually has two phases: in the preprocessing phase, the
attacker constructs a large number of parity-checks according to the linear re-
curring structure of the LFSR; in the realtime phase, the attacker uses these pre-
computed parity-checks to decode a given keystream segment of certain length.
The preprocessing phase can be done once for all, and usually takes a relatively
longer time than that of the realtime processing phase. The efficiency of a fast
correlation attack highly depends on the cost of the pre-computation for finding
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Fig. 1. Model for a fast correlation attack

desirable parity-checks. It is commonly believed that the unrealistically large
preprocessing complexity is a significant barrier for decoding in the highly noisy
cases. A challenging problem in this field is how to efficiently decode in these
highly noisy cases with the processing complexities as low as possible, while not
substantially increasing the preprocessing complexity?

In this paper, we propose a new fast correlation attack that allows us to solve
this problem for noise up to 0.499 and for a LFSR of arbitrary form used in the
BSC model. Our algorithm is a combination of Johansson and Jönsson’s algo-
rithm proposed at Crypto’2000 [15] with techniques for substituting keystream
and evaluating parity-checks. To our knowledge, such a combination has not been
studied before. We give a thorough theoretical analysis of the new algorithm,
which is supported by a number of simulation results. Our algorithm can reli-
ably decode in the highly noisy cases with considerably lower data/time/memory
complexities than previously known to be possible. Besides, in all the noise
and LFSR length cases considered herein, our algorithm can successfully decode
without substantially increasing the preprocessing complexities. Therefore, the
new algorithm is more efficient than any previously known relevant attacks and
largely extends the practical application scope of fast correlation attacks.

To illustrate its power, we use the new algorithm to evaluate the security of the
shrinking generator (SG) [4], which is considered as one of the strongest stream
ciphers currently available. A shrinking generator consists of two LFSR’s, say
the data LFSR B and the control LFSR S. LFSR B is irregularly decimated by
the regularly clocked LFSR S according to the following rule: the output bit of the
data LFSR B is taken if and only if the current output bit of the control LFSR S
is 1. For a shrinking generator with the parameters suggested by Krawczyk in [11]
(LFSR B of length 61 and LFSR S of similar length), which has shown remarkable
resistance against various attacks, the best known cryptanalytic results are those
presented in [13] and [24]. More precisely, to restore the initial state of the data
LFSR B in such a shrinking generator, the attack in [13] requires 242 operations
and 242 keystream bits, while the attack in [24] needs 140000 keystream bits and
257 operations after a pre-computation of 243 operations. Both of the attacks still
draw the interest of academics to this day. In contrast, given 10146 keystream
bits and at most 233.23-byte memory, our new attack against the same shrinking
generator works in 235.86 operations after a pre-computation of 239.9 operations.
This is the first-known near-practical key recovery attack against the shrinking
generator with the suggested parameters in [11]. We verified our attack on the
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shrinking generator with a 40-bit data LFSR B on a Pentium 4 PC, in which
case the only previously known efficient attacks were distinguishing attacks [5].

This paper is organized as follows. We first give a high level review of Jo-
hansson and Jönsson’s algorithm [15] in Section 2. Then a description of our
new algorithm is presented in Section 3 with detailed theoretical analysis. The
simulation results, theoretical estimates of our algorithm and comparisons with
the best previously known fast correlation attacks are provided in Section 4.
The application of our algorithm to the shrinking generator with the parameters
recommended by Krawczyk is described in Section 5 together with comparisons
with other known attacks. Finally, some conclusions are given in Section 6.

2 Review of Johansson and Jönsson’s Algorithm

Let us first specify the notations used in this paper.

– ai is the ith output bit of the LFSR.
– zi is the ith keystream bit.
– P (zi = ai) = p = 0.5 + ε (ε > 0) is the correlation probability.
– L is the length of the LFSR.
– k (k < L) is the number of initial state bits to be determined.
– t is the weight of the parity-checks.
– q = 1

2 + 2t−1εt is the folded noise in a parity-check of weight t.
– N is the length of the available keystream.
– (·)T is the transpose of a vector or a matrix.
– bf ∈ Ff

2 is a binary column vector bf = (bi1 , bi2 , . . . , bif
)T .

– Ω(vL−k) is the expected number of parity-checks specified by vL−k.
– n is the number of vL−ks appearing in all the parity-checks.
– ⊕ is the bit-wise exclusive or.
– · is the inner product of two binary vectors.
– �x� is the smallest integer greater than or equal to x.

At Crypto’2000, Johansson and Jönsson proposed a fast correlation attack on
stream ciphers [15] based on the Goldreich-Rubinfeld-Sudan algorithm [6]. Al-
though they model the decoding problem as the problem of learning a binary
linear multivariate polynomial, it can be easily shown that their algorithm can
also be interpreted in the BSC model in Figure 1. Hence, we use the BSC model
as a unified framework hereafter.

In the preprocessing phase of Johansson and Jönsson’s algorithm, the attacker
constructs parity-checks of the following form:

1T
t · at = xT

k · ak ⊕ vT
L−k · aL−k , (1)

where 1t denotes the t-dimensional all-one vector, at = (ai1 , ai2 , . . . , ait) (here
ij for 1 ≤ j ≤ t are arbitrary indices among the output bits), ak = (a0, a1, . . . ,
ak−1) and aL−k = (ak, . . . , aL−1). In contrast with other fast correlation at-
tacks that use parity-checks with vL−k = 0, in (1), vL−k can take non-zero
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values. Thus, we can use several groups of parity-checks corresponding to differ-
ent vL−ks here. We need not know the true value of aL−k when determining ak

by evaluating the parity-checks with a fixed vL−k, as done in (2):

1T
t · zt ⊕ xT

k · a′
k = xT

k · (ak ⊕ a′
k)⊕ 1T

t · et ⊕ vT
L−k · aL−k . (2)

In (2), a′
k is the guessed value of ak, zt = (zi1 , zi2 , . . . , zit), et = (ei1 , ei2 , . . . , eit)

is the random noise vector satisfying zt = at ⊕ et and P (eij = 0) = P (aij =
zij ) = 0.5 + ε for 1 ≤ j ≤ t. Note that vT

L−k · aL−k is independent of ak and
takes either 0 or 1 in (2).

Thus, in the realtime processing phase, the attacker can evaluate the left
sides of Ω(vL−k) parity-checks like (2) and record the number of times that
1T

t ·zt⊕xT
k ·a′

k = 0. There will exist a deviation (more or less) from 1
2 · Ω(vL−k)

in the recorded number when a′
k is correctly guessed, and such a deviation

should not be observed otherwise. To restore ak, the attacker sums up all the
squared values of such deviations and accepts the guess resulting in the highest
record as the correct one. Please see the following description of Johansson and
Jönsson’s algorithm.

Parameters: t, k, n
Pre-computation

pre-compute n groups of parity-checks like (1)
with n different vL−k values

Input: keystream zN = (z0, z1, . . . , zN−1)
Processing

for all the 2k possible values a′
k of ak do

let Ba′
k

= 0
for each group of parity-checks with a fixed vL−k do

evaluate the left side of each parity-check like (2),
and store the total number of times that

1T
t · zt ⊕ xT

k · a′
k = 0 as A

update Ba′
k

= Ba′
k

+ (2A−Ω(vL−k))2

end for
store Ba′

k
in an array U

end for
search for the highest value B∗ in U and accept the
corresponding guess a∗

k

Output: ak = (a0, a1, · · · , ak−1) or a small list of candidates

After restoring ak, other bits of the initial state aL = (a0, . . . , aL−1) can be
determined with a much lower complexity, e.g. using the method in [25]. The
most time-consuming step in the above algorithm is to substitute the keystream
bits into the parity-checks and then to evaluate them. Since the number of the
employed parity-checks is often very large and there are 2k possible values for
ak, this step would take a lot of time, i.e., 2kk

∑
vL−k

Ω(vL−k) operations, when
it is done in the straightforward way as in [15]. This is the main bottleneck of
Johansson and Jönsson’s algorithm.
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In the following, we will improve this algorithm by efficiently fulfilling the
substitution and evaluation step. To our knowledge, such an improvement has
not been studied before.

3 Our Improved Version

3.1 The Main Difference

First note that in (2), we can randomly select a value for aL−k, this does not
influence the work of the parity-checks, but makes them easier to follow. Thus
we have

1T
t · zt ⊕ xT

k · a′
k ⊕ vT

L−k · a′′
L−k = xT

k · (ak ⊕ a′
k)⊕ 1T

t · et ⊕ ζ , (3)

where a′
k is the guessed value of ak, a′′

L−k is the value assigned to aL−k and
ζ = 0 or 1 depending on a′′

L−k. Other notations are the same as those in (2).
In the preprocessing phase, we constructed n groups of such parity-checks, each
of which is specified by a fixed vL−k and has an expected cardinality Ω(vL−k).

In the processing phase, the attacker evaluates the left sides of (3) and records
the number of times that 1T

t · zt ⊕ xT
k · a′

k ⊕ vT
L−k · a′′

L−k = 0. To avoid the
high time complexity in the substitution and evaluation step of Johansson and
Jönsson’s algorithm, we proceed as follows.

For a fixed set of parity-checks specified by vL−k, group the parity-checks
according to the value of xk and define an integer-valued function

hvL−k
(xk) =

∑
xk

(−1)1
T
t ·zt⊕vT

L−k·a′′
L−k (4)

for all the coefficient vectors xk appearing in this group of parity-checks. If a
value of xk does not appear in these parity-checks, we let hvL−k

(xk) = 0 in (4).
Now consider the walsh transform of hvL−k

(xk), i.e.,

HvL−k
(ω) = (5)∑
xk∈Fk

2

hvL−k
(xk)(−1)ωT ·xk =

∑
Ω(vL−k)

(−1)1
T
t ·zt⊕vT

L−k·a
′′

L−k⊕ωT ·xk .

In (5), note that when ω = a′
k, we have HvL−k

(ω) = Ω(vL−k)0 − Ω(vL−k)1,
where Ω(vL−k)i is the number of i for i = 0 or 1. Thus given the guess a′

k,
the number of times that 1T

t · zt ⊕ xT
k · a′

k ⊕ vT
L−k · a′′

L−k = 0 is u(vL−k) =

Ω(vL−k)0 =
Ω(vL−k)+HvL−k

(ω)
2 for this group of parity-checks. For simplicity, we

let u(vL−k) =
Ω(vL−k)+|HvL−k

(ω)|
2 , i.e., u(vL−k) is always greater than or equal

to Ω(vL−k)
2 .

We can use the fast Walsh transform (FWT) to simultaneously compute the
2k values of hvL−k

(xk)’s Walsh transform function. Therefore, the total time
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complexity of the above substitution and evaluation step is
∑

vL−k
(2kk+Ω(vL−k)

(t+ k)) operations, among which Ω(vL−k)(t+ k) operations are required by the
preparation of hvL−k

(xk) and 2kk operations are required by the FWT. The
memory cost is around c ·2k +

∑
vL−k

( t�log2N�+L)Ω(vL−k)-bit, among which
c · 2k bits are the memory consumption in the FWT computation (c is a small
constant and is usually ≤ 32) and

∑
vL−k

( t�log2N�+ L)Ω(vL−k) bits are used
for the storage of parity-checks. (see Theorem 1 in Section 3.2 for an explana-
tion). Compared to the straightforward method in [15], the gain in efficiency is
obvious. To take the best of the above method and Johansson and Jönsson’s idea
for constructing parity-checks, we propose the following improved algorithm.

Parameters: t, k, n
Pre-computation

pre-compute n groups of parity-checks like (1)
with n different vL−k values

Input: keystream zN = (z0, z1, . . . , zN−1)
Processing

let Bω = 0 for the 2k possible values of ω
for each group of parity-checks specified by vL−k do

let aL−k take a randomly assigned value
define a function hvL−k(xk) as in (4)
apply FWT to compute HvL−k(ω) for the 2k

possible values of ω
update Bω = Bω + (HvL−k(ω))2/4 for the 2k

possible values of ω
end for
search for Bω ≥ T and accept the corresponding
ω as a candidate for ak

Output: ak = (a0, a1, · · · , ak−1) or a small list of candidates

Here T is the threshold determined by the success rate of the whole attack and
Bω = Bω + (HvL−k

(ω))2/4 accumulates the squared biases for each guess of ak.
The above description illustrates the structure of our improved algorithm. In
practical programming, there may be some differences made for optimization.

3.2 Theoretical Analysis

Now we give a theoretical justification of our improved algorithm. First note that
the expected number Ω(vL−k) of the parity-checks with a fixed pattern vL−k

is (N
t )

2L−k . Thus from (3), if a′
k is correctly guessed, there will exist a deviation

Ω(vL−k)2t−1εt from 1
2 ·Ω(vL−k) in the number of times that 1T

t · zt⊕xT
k ·a′

k⊕
vT

L−k · a′′
L−k = 0. Otherwise, such a bias should not be observed. This is the

basis of our algorithm.
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In our improved algorithm, the accumulated squared bias is
∑

vL−k

(
u(vL−k)

−Ω(vL−k)
2

)2 =
∑

vL−k

( |HvL−k
(ω)|+Ω(vL−k)

2 − Ω(vL−k)
2

)2 =
∑

vL−k

(HvL−k
(ω))2

4 .
This is just Bω calculated in the above algorithm. Hence, we can rewrite the
judgement condition Bω ≥ T in our algorithm as

Bω ≥ T ⇔
∑
vL−k

(
u(vL−k)− Ω(vL−k)

2
)2 ≥ T . (6)

Obviously, when a′
k is correctly guessed, u(vL−k) follows the binomial distribu-

tion (Ω(vL−k), q), otherwise it follows the binomial distribution (Ω(vL−k), 1
2 ).

If we use the normal distribution to approximate the binomial distribution, then∑
vL−k

(
u(vL−k)− Ω(vL−k)

2

)2 ≥ T is equivalent to

Ω(vL−k)n
4q(1− q)

≥
∑
vL−k

(u(vL−k)− Ω(vL−k)
2 )2

Ω(vL−k)q(1− q)
≥ T

Ω(vL−k)q(1 − q)
(7)

when a′
k is correctly guessed and to

Ω(vL−k)n ≥
∑
vL−k

(u(vL−k)− Ω(vL−k)
2 )2

(1
2

√
Ω(vL−k))2

≥ 4T

Ω(vL−k)
(8)

when a′
k is wrongly guessed. (7) can be rewritten as

Ω(vL−k)n
4q(1− q)

≥
∑
vL−k

(u(vL−k)−Ω(vL−k)q + Ω(vL−k) · 2t−1εt√
Ω(vL−k)q(1− q)

)2 = (9)

∑
vL−k

(u(vL−k)−Ω(vL−k)q√
Ω(vL−k)q(1 − q)

+
Ω(vL−k)2t−1εt√
Ω(vL−k)q(1− q)

)2 ≥ T

Ω(vL−k)q(1− q)
.

Note that when a′
k is correctly guessed, u(vL−k)−Ω(vL−k)q√

Ω(vL−k)q(1−q)
follows the stan-

dard normal distribution N (0, 1). When a′
k is wrongly guessed, the variable

u(vL−k)−Ω(vL−k)
2

1
2

√
Ω(vL−k)

also follows the standard normal distributionN (0, 1). (8) means

that
∑

vL−k

(u(vL−k)−Ω(vL−k)
2 )2

( 1
2

√
Ω(vL−k))2

follows the centrally chi-squared distribution

when a′
k is wrongly guessed, while (9) implies that when a′

k is correctly guessed,∑
vL−k

(u(vL−k)−Ω(vL−k)
2 )2

Ω(vL−k)q(1−q) follows the non-central chi-square distribution. This
is the criterion used to filter out the wrong guesses.

More precisely, let Γ (y) =
∫ +∞
0 e−xxy−1dx denote the gamma function.

Since there are n different vL−ks, the probability density function of a cen-

trally chi-squared distribution is φ1(x) = x
n−2

2 e− x
2

2
n
2 Γ ( n

2 )
for x > 0 and the probability
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density function of a non-centrally chi-squared distribution is φ2(x) =
e− (x+δ2)

2

2
n
2

∑∞
j=0

xj−1+ n
2 δ2j

Γ (j+ n
2 )22jj! for x > 0, where δ2 =

∑
vL−k

(
√

Ω(vL−k)2t−1εt

√
q(1−q)

)2. Thus

the probability that the right ak could result in Bak
≥ T is

Pright =
∫ Ω(vL−k)n

4q(1−q) +0.5

T
Ω(vL−k)q(1−q)

φ2(x)dx , (10)

while a wrong guess a′
k would pass the test with the probability

Pwrong =
∫ Ω(vL−k)n+0.5

4T
Ω(vL−k)

φ1(x)dx . (11)

In our algorithm, we can control these two probabilities by carefully choosing
T . A typical case is that Pwrong < 2−k with some Pright, i.e., none of the wrong
guesses could pass the test, while the right guess could pass with some constant
probability.

As a summary of the results in Section 3.1 and 3.2, we have

Theorem 1. If the success rate of our improved algorithm is set to be Pright and
Pwrong < 2−k, then its time complexity is

∑
vL−k

(2kk + Ω(vL−k)(t + k)) opera-
tions, its memory complexity is at most c · 2k +

∑
vL−k

(t�log2N�+ L)Ω(vL−k)-
bit and its data complexity is N -bit keystream determined by (10), (11) and
Ω(vL−k).

Proof. For the time complexity, note that there are n groups of parity-checks
constructed, and for each group used in the processing phase, Ω(vL−k)(t+k) op-
erations are required by the function hvL−k

(xk) and 2kk operations are required
by the FWT. For the memory complexity, note that we use the following straight-
forward way to store a parity-check of the form 1T

t · zt⊕xT
k ·a′

k⊕vT
L−k ·a′′

L−k,

1. t · �log2N� bits to represent the t integers i1, i2, . . . , it.
2. k bits to represent the coefficient vector xk.
3. if vL−k �= 0, then L− k bits to represent it.

Thus, t�log2N� + L bits are needed by one parity-check. There are totally
Ω(vL−k) parity-checks in each group, so (t�log2N� + L)Ω(vL−k) bits are re-
quired by each group. In addition, c · 2k bits are required for the computation
of the FWT, where c is a small constant determined by k and by the size of
a float precision floating-point number. In our analysis, c ≤ 32 is enough for
the current usage. The data complexity is determined by the success rate of the

whole attack and we can use (10), (11) and Ω(vL−k) = (N
t )

2L−k to determine it. �

We use the traditional time/memory trade-off to pre-compute the parity-checks
with a fixed pattern vL−k. That is, first compute and sort in a table the formal
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expression of the sum of ( t
2) ais in the L initial state bits. Then sort the table

and compute the formal sum of the other � t
2� ais. An exclusive-or collision value

equal to vL−k in the table provides us a parity-check. For the keystream of N -
bit length, the time/memory complexities in the preprocessing phase are about
N 
 t

2 �log2N operations (even N 
 t
2 � operations by some hashing techniques) and

N � t
2 �(t�log2N�+ L)-bit, respectively.

4 Simulations, Theoretical Estimates and Comparisons

In general, the simulation results of our algorithm match the theory very well.
First we give some experimental results of our algorithm in the same scenarios
as those considered in [15]. We only list some typical cases in Table 11, other
cases are omitted due to limited space.

Table 1. Simulations and comparisons with the basic algorithm in [15]

attack [15] ours [15] ours [15] ours [15] ours [15] ours

L 40 40 40 40 60 60 60 60 60 60
p 0.64 0.64 0.55 0.55 0.57 0.57 0.68 0.68 0.6 0.6
t 2 3 2 3 2 3 3 5 2 5
N 4 · 105 5 · 103 4 · 105 104 4 · 107 2 · 105 1.5 · 105 8 · 103 4 · 107 9 · 103

time ≈ 3 min 5 sec 3 min 25 sec 106 min 6 min 4.6 min 20 sec 13 min 1 min

We implemented our attack in C on a Pentium 4 PC running under windows
XP. To make an accurate comparison, we also implemented one instance (L = 40,
p = 0.64, N = 4 ·105) of the basic algorithm in [15], the time cost is about 4 min-
utes (instead of 3 minutes). Although the time results of Johansson and Jönsson’s
algorithm listed in Table 1 are from [15] and are obtained on a different platform
(Sun Ultra-80 running under Solaris), the above instance we implemented shows
that the time comparisons are still meaningful. Our algorithm can successfully
decode with largely reduced data complexities. For example, in the case that
L = 40 and p = 0.55, our algorithm needs only 104 bits, while the attack in [15]
needs 4 · 105 bits to decode. The longest pre-computation time of our algorithm
in Table 1 are tens of minutes occurring in the two cases that L = 60 with t = 5.
In other cases, the pre-computation costs are all negligible.

Next, we compare our algorithm to the two algorithms in [3,25], which are
the best previously known fast correlation attacks. Table 2 and 3 show that our
algorithm compares favorably to these two attacks.
1 The feedback polynomial of the 40-bit LFSR used in Table 1 and 2 is 1 + x + x3 +

x5 + x9 + x11 + x12 + x17 + x19 + x21 + x25 + x27 + x29 + x32 + x33 + x38 + x40.
The feedback polynomial of the 60-bit LFSR in Table 1 is not released in [15], we
simply choose the polynomial x60 + x + 1 in our experiments. Since both the attack
in [15] and our algorithm are applicable to arbitrary form LFSR, this choice does
not influence the experimental results.



An Improved Fast Correlation Attack on Stream Ciphers 223

Table 2. Experimental results, theoretical predictions of our algorithm and compar-
isons with the best previously known attacks with success rate close to 1

p attack L N t k time memory pre− computation

[3] 40 80000 3 1 231 234.1 237

[25] 40 222 2 20 224 232.8 227

0.531 ours 40 40000 3 12 220 225 230.6

[3] 89 228 3 1 244 235.81 261

[25] 89 232 3 26 232 241.12 264

ours 89 228 3 22 229.8 227.3 256

[3] 40 80000 3 1 240 240.54 237

0.51 [25] 40 224 2 22 229 235.13 229

ours 40 50000 3 16 224.13 226.7 231.3

Table 3. Theoretical estimates of our algorithm and comparisons with the algorithm
in [25] with success rate close to 1 (the result in [25] for the case L = 61 and p = 0.501
is not correct, here we list the correct result obtained according to the formulas in [25])

p attack L N t k time memory pre− computation

[25] 61 236 2 22 243 249.71 242

0.501 ours 61 231 2 21 228.8 231.3 239.3

[25] 103 236 3 29 234 238.51 272

0.531 ours 103 232 3 24 231.6 229.2 264

In Table 2 and 3, we let n ≤ 12 in our algorithm, other parameters are
explicitly listed in the tables. Here we only give the parameters that result in
uniform complexities, i.e., the trade-off between data/time/memory and pre-
computation complexities is as balanced as possible. Other choices of parameters
are also allowed, but they do not have the uniform property.

As in [3,25], we have implemented the case that L = 40 and p = 0.531 in
Table 2 in C on the platform mentioned above. It takes less than 4 seconds
to restore the initial state of the involved LFSR after a pre-computation with
negligible time. Compared to the attack in [3] which takes a few days for pre-
computation and that in [25] whose pre-computation lasts for a few hours, the
gain on efficiency in the preprocessing phase is obvious. This mainly comes from
the fact that our algorithm can decode with much lower data complexities. In
fact, the keystream requirement in our attack is 2 times smaller than that in
[3] and is 26 times smaller than that in [25] in this implemented case. Other
complexities listed in Table 2 and 3 are theoretical predictions derived according
to (7)− (11) and Theorem 1.

From the above simulation results and theoretical estimates, we can see that
our algorithm makes real-life fast correlation attacks much more reachable for the
noise cases that only theoretical estimates are known by previous methods. This
will have an impact on the choice of the secure parameters for the corresponding
stream ciphers, as shown in Section 5.
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5 Application to the Shrinking Generator

The shrinking generator (SG) was proposed in [4] at Crypto’93. So far, various
key recovery and distinguishing attacks on the shrinking generator have been
proposed [4,5,8,13,18,23,24], but none of them can practically threaten the se-
curity of the shrinking generator with the suggested parameters in [11]. In the
following, we will demonstrate a key recovery attack against the same shrink-
ing generator that is near-practical when measured in time/data/memory and
preprocessing complexities.

More precisely, let the output sequence of data LFSR B used in a shrink-
ing generator be b = b0, b1, · · · . The cryptanalysis of the shrinking generator is
usually composed of two phases. First, a new sequence b̂ = b̂0, b̂1, · · · associated
with b by the relation P (b̂i = bi) = 1

2 + εi (εi > 0) is constructed either by the
method in [7] or by the method in [24]. Second, a decoding algorithm is applied
to recover the initial state of LFSR B from b̂. Here we do not focus on how the
sequence b̂ is constructed, but on how to efficiently exploit the existing correla-
tions between b and b̂. According to [24], the average biases between b̂ and b for
different keystream lengths N are shown in Table 4.

Table 4. The average biases for different keystream lengths N using the method in
[24], which are obtained by a pre-computation of about 4 hours by Mathematica on a
Pentium 4 processor

N 240 3000 8000 10000 140000
ε 0.0542 0.021 0.020 0.0195281 0.00982376

For the shrinking generator with the data LFSR B of length 61 and the
control LFSR S of similar length, as suggested in [11], we show how to decode b̂
using our algorithm in 235.86 operations. From Table 4, the correlation between
b̂ and b is 0.5195281 if N = 10000. Note that 10146 keystream bits are needed
to get a sequence b̂ of 10000 bits. We choose the following parameters in our
algorithm: k = 27, n = 12, t = 5, T = 8.6 × 108, then Ω(vL−k) = 48457895,
Pright = 97.42% and Pwrong = 2−32.16. Thus the total time complexity is 12 ·
(227 · 27 + 48457895 · (27 + 5)) = 235.86 operations, the memory complexity is
at most 32 · 227 + 48457895 · 12 · (61 + 5 · �log210000�) = 236.23-bit after a pre-
computation of 100003 = 239.9 operations. We can see that the data and time
complexities of our attack are all practical, while the memory and preprocessing
complexities are near-practical. The comparisons of our attack with other known
attacks on the same target shrinking generator are given in Table 5, which shows
that our attack is the best known attack against the shrinking generator with
the suggested parameters.

At Eurocrypt’2003, a distinguishing attack on the shrinking generator is pro-
posed in [5]. The best result given in [5] is to distinguish a shrinking genera-
tor with the data LFSR B having a weight 4 polynomial of degree 10000 using
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Table 5. Comparisons of different attacks on the shrinking generator with the sug-
gested parameters in [11]

[18] [8] [13] [24] ours
N few 210.23 242 140000 10146

time 280 277 242 257 235.86

232 output bits. Note that an arbitrary weight feedback polynomial of degree r is
known to have a weight 4 multiple of degree around 2r/3 and 10000 = 213.2877 =
2r/3, the distinguishing attack in [5] is only applicable to arbitrary data LFSR’s
of length around 40. Please see the following example.

Example 1. Consider the polynomial x40 + x38 + x35 + x32 + x28 + x26 + x22 +
x20 + x17 + x16 + x14 + x13 + x11 + x10 + x9 + x8 + x6 + x5 + x4 + x3 + 1, it can
be easily checked that its weight 4 multiple is x24275 + x6116 + x1752 + 1. Note
that the degree 24275 is higher than the degree 10000 given in [5]. �

To further show the advantages of our decoding algorithm, consider a shrinking
generator with the data LFSR B of length 40. We launch a key recovery attack
on such a shrinking generator with the following attack parameters: N = 8119,
t = 3, k = 20, n = 9, p = 0.52 and T = 106. Thus, given 226.5-bit memory, the
time complexity is 227.62 operations after a pre-computation of 226 operations.
We implemented our attack in C on the same platform as that in Section 4.
The realtime decoding lasts for about 10 seconds to output the correct initial
state of LFSR B after a pre-computation of negligible time. Since an efficient key
recovery attack is usually believed to be stronger than an efficient distinguishing
attack on the same cipher, we conclude that our attack is stronger than that
in [5].

Remarks on the security of the shrinking generator. For a shrinking gen-
erator with the data LFSR having a known connection, our results show that
we should use a LFSR of longer length than that recommended by Krawczyk in
[11]. If a security level of 280 is needed, the length of the data LFSR should be
at least 128-bit and the control LFSR should be of similar length. This comes
from the following attack scenario: L = 128, N = 140000, p = 0.50982376,
k = 71, t = 6 and n = 16. The corresponding time, memory and preprocessing
complexities are 281.15 operations, 276-bit and 259.4 operations. An alternative
way for strengthening the security of a shrinking generator is to use an unknown
connection for the data LFSR at the expense of more hardware complexity. This
is originally suggested by the designers in [4], but all the known cryptanalysis
results on the shrinking generator so far are achieved under the known connec-
tion assumption. Our result on the shrinking generator could be seen as an end
of such a research routine if a shrinking generator with the suggested parameters
in [11] is employed.
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6 Conclusions

In this paper, we proposed an improved fast correlation attack based on the com-
bination of Johansson and Jönsson’s algorithm with techniques for substituting
keystream and evaluating parity-checks. Both the simulations and theoretical
estimates show that the new algorithm is more efficient than all the previously
known fast correlation attacks in general. The importance of such an algorithm
is that the secure parameters formerly proposed for the corresponding stream
ciphers have to be re-evaluated by our decoding method, which is verified by
our cryptanalytic result on the shrinking generator with the parameters recom-
mended by Krawczyk in 1994. We believe that our method will be useful in
the cryptanalysis of those LFSR-based stream ciphers that other attacks, e.g.
algebraic attacks, cannot deal with efficiently.
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Abstract. This paper proposes a new hash construction based on the
widely used Merkle-Damg̊ard (MD) iteration [13,9]. It achieves the three
basic properties required from a cryptographic hash function: collision
(Coll), second preimage (Sec) and preimage (Pre) security. We show
property preservation for the first two properties in the standard security
model and the third Pre security property is proved in the random oracle
model. Similar to earlier known hash constructions that achieve a form
of Sec (eSec [16]) property preservation [4,17], we make use of fixed key
material in the iteration. But while these hashes employ keys of size at
least logarithmic in the message length (in blocks), we only need a small
constant key size. Another advantage of our construction is that the
underlying compression function is instantiated as a keyless primitive.

The Sec security of our hash scheme, however, relies heavily on the
standard definitional assumption that the target messages are sufficiently
random. An example of a practical application that requires Sec security
and satisfies this definitional premise on the message inputs is the popular
Cramer-Shoup encryption scheme [8]. Still, in practice we have other
hashing applications where the target messages are not sampled from
spaces with uniform distribution. And while our scheme is Sec preserving
for uniform message distributions, we show that this is not always the
case for other distributions.

1 Introduction

Hash functions in cryptography are used to compress inputs of arbitrary length
to outputs of a fixed size. A typical way to build a hash function is to iteratively
apply a fixed-input length compression function. Practical hash functions today
are predominantly based on this principle and the most widespread application
of an iterative construction is the Merkle-Damg̊ard (MD) hash [13,9]. The main
security feature of the MD hash is its collision (Coll) security preservation, which
means that if the compression function is collision secure, then the iterated hash
function is collision secure as well. But collision security is not the only security
property required from hash functions. A good hash function should also be
second preimage (Sec) and preimage (Pre) secure.

The recent attacks of Wang et al. [18,19,20], however, have revealed weak-
nesses in the expected ideal collision strength of the SHA-0 and SHA-1 hash
functions. These and earlier MD5 collision attacks suggest that designing a col-
lision secure hash function may turn out to be difficult. With the loss of the
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Coll security guarantee current hash functions fail also to provide apt security
for the weaker security properties of Sec and Pre (see the attacks of [11] and the
counterexamples of [2]).

The National Institute of Standards and Technology (NIST) of US has in
turn addressed the problem by announcing a call for new hash functions [14].
The minimal security requirements stated in the call for proposals are Coll, Sec
and Pre security with computational complexity of order 2n/2, 2n−� and 2n,
respectively. Here the hash values are of n bits and the Sec security is expressed
in terms of the message length in blocks (2�). We believe that proposals for new
hash functions should provide guarantees for security preservation for not only
Coll, but also Sec and Pre security. Preservation proofs are important because
they allow one to rely on the hash function strength with respect to a concrete
security property, independently of the weaknesses of the other properties.

The problem of designing a property-preserving iterations has been earlier
investigated by [2,5,6,4,7,10,17]. Although these papers sometimes aim for prop-
erties different from the ones mentioned above, showing a property preserving
hash function is one of their main goals.

In this paper we propose a new iterative hash function, that is based on the
MD hash principle, and provably preserves the notions of Coll and Sec security
in the standard security model and achieves Pre security when the compression
function is instantiated as a random oracle. Our reduction for Coll is tight and
we lose a factor of the message length (in blocks) in the Sec preservation. In the
estimated Sec gap we are also able to mount the Sec attacks of [11,1]. Still, as
we show, these attacks are only possible for target messages of a very specific
structure. Finding a preimage message takes approximately 2n evaluations of
the compression function when it is modeled as a random oracle.

Our hash design benefits from a keyless compression function and makes use
of keys in the iteration. We call this the keyless compression function – keyed it-
eration setting. Compared to the dedicated key setting of [6] (keyed compression
function – keyed iteration), we achieve the three basic properties with a more
practically understood and employed primitive, namely a keyless compression
function. In the iterative portion of our design, we have reasons to believe that
achieving security guarantees for Sec security is hard without the use of some
form of randomization (provided by the keys in our case). A publicly known
key selects a single function from a family of hash functions and once chosen at
random it remains fixed for the hash algorithm. Note however, that any security
claims for keyed hash functions hold only as long as the keys are generated hon-
estly. If the keys are maliciously chosen, then they become exploitable constants
and could potentially give rise to future attacks. A possible way to employ fixed
keys in practice is to make the key selection process open and fixed in standard.

Achieving Coll and Sec preservation in the standard security and Pre security
in the random oracle model partially attempts to answer the question from [2] if
a multi-property preserving hash transform is realizable in the standard model.
To achieve a seven-property-preserving hash function the authors of [2] benefit
from the use of a random oracle for the mask (key) generation. Also, compared
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to [4,17], which show the eSec property preservation, we use the key material
sparsely. While the latter hash constructions use keys of length at least logarith-
mic in the message size (in blocks), we only need keys of constant length, b + 2n
bits, where b and n are the block and hash sizes, respectively.

Together with the basic hash function, we present some generalized versions of
it. These vary according to the order in which the input values are processed by
the compression function F. Still, the optimal input ordering for F in the iteration
heavily depends on the specifications of the concrete compression function.

In the line of this work, another interesting problem has come to our notice.
While our hash scheme offers a theoretically sound Sec preservation proof, in
practical scenarios this result may lack the claimed strength. Why does this dis-
crepancy occur? The standard Sec security definition assumes a uniform target
message space distribution. We use this fact in our hash design to extract ran-
domness from the message and mix it with the chaining portion of the iteration.
A prominent example application that requires Sec security and where the hash
inputs are chosen uniformly at random is the Cramer-Shoup cryptosystem [8]1.
However, in some applications, the target message space may not have the uni-
form distribution. By building a Sec secure compression function, we are able to
demonstrate a Sec attack on our hash only for such biased distributions.

On the other hand, working with non-uniform target message distributions
allows for better message visibility. Some messages are hashed with higher prob-
ability and thus are more predictable. This interpretation deviates from the Sec
definition and is a shift towards the notion of target collision security, or eSec
from [16], where the messages are fully predictable (chosen) by the adversary.
This observation can be interpreted in two ways. One way to think about the
problem is to work with variants of the Sec definitions that take into account
the target message distribution. Another solution may be to provide appropri-
ate message input randomization to guarantee the randomness of the message
inputs. In the final part of our paper we provide a short discussion on the issue.

2 Security Definitions

Notation. Let ε be the empty string. x‖y denotes the concatenation of strings x
and y. If x is a string, then x|msbz and x|lsby specify the most z and least y,
respectively, significant bits of x. |x| is the length in bits of the string x and x|ji
is the substring of x containing the i-th through j-th bit of x, inclusive.

If S is a set, then x
$← S denotes the uniformly random selection of an element

from S. We let y ← A(x) and y
$← A(x) be the assignment to y of the output of

a deterministic and randomized algorithm A, respectively, when run on input x.
1

“For this purpose, we will use a family of hash functions, such that given a
randomly chosen tuple of group elements and randomly chosen hash function
key, it is computationally infeasible to find a different tuple of group elements
that hashes to the same value using the given hash key.”

Definition of target collision resistance from [8] matching the standard Sec security
one.
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An adversary is an algorithm with polynomial running time, possibly with
access to some oracles. To avoid trivial lookup attacks, it will be our convention
to include in the time complexity of an adversary A its running time and its
code size (relative to some fixed model of computation).

In our keyless compression function-keyed iteration setting we model the fixed-
input-size function to be a keyless compression function. The iterative arbitrary-
input-size hash function on the other hand is a family of functions indexed by a
fixed random key.

Security of compression functions. Let F : {0, 1}b+n → {0, 1}n be a
compression function that takes inputs of fixed size (n + b) bits and maps them
to outputs of size n. First we define the following advantage measures for Coll
and Sec security for a fixed adversary A and message length λ ∈ N:

AdvColl
F (A) = Pr

[
M ′, M $← A(ε) : M �= M ′ and F(M) = F(M ′)

]
Adv

Sec[λ]
F (A) = Pr

[
M

$← {0, 1}λ ; M ′ $← A(M) : M �= M ′ and F(M) = F(M ′)
]

Adv
Pre[λ]
F (A) = Pr

[
M

$← {0, 1}λ ; Y ← F(M) ; M ′ $← A(Y ) : F(M ′) = Y
]

We say that F is (t, ε) atk secure for atk ∈ {Sec, Pre} if Advatk[λ]
F (A) < ε for all

adversaries A running in time at most t and λ = b+n. Note that it is impossible to
define security for the case of Coll in an analogous way. Indeed, if collisions on F
exist, then an adversary A that simply prints out a collision that is hardcoded into
it always has advantage 1. Rather than defining Coll security through the non-
existence of an algorithm A, we follow Rogaway’s human-ignorance approach [15]
and use the above advantage function as a metric to relate the advantage of an
adversary A against the hash function to that of an adversary B against the
compression function.

Security of hash functions. A hash function family is a function H : K ×
M → Y where the key space K and the target space Y are finite sets of bit
strings. The message space M could be infinitely large; we assume that there
exists at least one λ ∈ N such that {0, 1}λ ⊆ M. The key K is an index that
selects a instance from the function family. Following [16], we use the following
advantage measures:

AdvColl
H (A) = Pr

[
K

$← K ; (M, M ′) $← A(K) :
M �= M ′ and

H(K,M) = H(K,M ′)

]
Adv

Sec[λ]
H (A) = Pr

[
K

$← K ; M
$← {0, 1}λ

M ′ $← A(K, M)
:

M �= M ′ and
H(K, M) = H(K, M ′)

]

Adv
Pre[λ]
H (A) = Pr

[
K

$← K ; M
$← {0, 1}λ

Y ← H(K, M) ; M ′ $← A(K, Y )
: H(K, M ′) = Y

]

For atk = Coll, we say that H is (t, ε) atk secure if Advatk
H (A) < ε for all

adversaries A running in time at most t. For atk ∈ {Sec, Pre}, we say that H is
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(t, ε) atk secure if Advatk[λ]
H (A) < ε for all adversaries A running in time at most

t and for all λ ∈ N such that {0, 1}λ ⊆M.
Our security claims in the random oracle model consider (qRO, ε) atk-security,

where qRO is the total number of queries that the adversary A makes to the a
random oracle. In the same model, we assume that the compression function
F : {0, 1}b+n → {0, 1}n behaves as a random oracle. That means F is chosen
uniformly at random from the set of all functions with the respective domain
and range space and is publicly computable function.

Security preservation. Our goal is to build an infinite-domain hash func-
tion family H out of a limited-domain compression function F so that the hash
function “inherits” its Coll and Sec security from the natural analogues of these
properties for F. For atk = Sec, we say that H preserves atk security if H is
(t, ε) atk secure whenever F is (t′, ε′) atk secure, for some well-specified relation
between t, t′, ε, ε′. For the case of Coll, we have to be more careful because, as
pointed out before, (t, ε)-Coll security cannot be defined for the keyless com-
pression function F. Rather, we follow Rogaway [15] by saying that collision
resistance is preserved if, for an explicitly given Coll adversary A against H,
there exists a corresponding, explicitly specified Coll adversary B, as efficient as
A, that finds collisions for F.

3 The Basic Construction

3.1 The BCM Hash Function

In this section we present our hash mode. We refer to it as the backwards chaining
mode, or the BCM hash (see Fig. 1).

The Hash Function. The BCM F hash uses a fixed-input-length compression
function F : {0, 1}b+n → {0, 1}n where b ≥ n and takes as inputs a message
M of arbitrary length and a key K = K1‖K2‖K3 of fixed length (b + 2n) bits,
where |K2| = b and |K1| = |K3| = n. For security and practical reasons we set
a bound on the minimal and maximal message length λ, or n < λ < 2c where
typically c = 64 and c < n . The message is preprocessed with a standard MD

FFFF

K3

h�IV1

F

m�m�−1|msbb−n

m2|msbn ⊕ K1 (m� ⊕ K2)|msbn

m�−1|lsbn

...

K2

m4|msbnm3|msbn

m2m1 m3
...

K1

Fig. 1. The BCM Construction. The message M is MD strengthened. K1, K2 and
K3 are randomly chosen and fixed keys of length n, b and n bits, respectively.
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strengthening [12]. That is, a single 1 bit is appended to the message M followed
by as many zeros as needed and the binary encoding of |M | in 64 bits. We denote
the MD padding and strengthening function by pad and m1‖ . . . ‖m� ← pad(M),
such that |mi| = b for i = 1 to �.

The BCM F hash function can be described as follows. It XORs the key K1 and
the most significant n bits of block m2 with the fixed initial chaining variable IV1
(e.g. IV1 = 0n). The message block m1 together with the resulting value from
the XOR computation form the input to the first application of F. The current-
in-line message block mi and the chaining variable hi−1 XORed with the most
significant n bits of the next-in-line message block mi+1 are the following inputs
to the compression function F in the iteration for i = 1 to �− 2.

The one but last block is interpreted differently than the rest of the message
blocks. Here the difference is that the least significant n bits of m�−1 are XORed
with the key K1, while the chaining variable h�−2 is XORed with K2|msbn and
m�|msbn . The order of processing the inputs is preserved also in the (� − 1)st
block. The final input to the last compression function is provided by the last
message block m� and the chaining variable h�−1 XORed with keys K2 and K3,
respectively.

We describe our construction in pseudocode below (Alg. 1) and give a graph-
ical representation in Fig. 1.

Algorithm 1. BCM F(K, M):
m1‖ . . . ‖m� ← pad(M)
h0 = IV1, g1 = h0 ⊕K1 ⊕m2|msbn

h1 = F(m1, g1)
for i = 2 to �− 2 do

gi−1 = mi+1|msbn ⊕ hi−1

hi = F(mi, gi−1)
end for
g�−2 = (K2 ⊕m�)|msbn ⊕ h�−2

h�−1 = F(m�−1|msbb−n‖(m�−1|lsbn ⊕K1), g�−2)
h� = F(m� ⊕K2, h�−1 ⊕K3)
return h�

The BCM hash of a single strengthened message block m1 is computed as h1 =
F(m1 ⊕ K2, IV1 ⊕ K1 ⊕ K3). And when the message is two blocks long, then
h1 = F(m1|msbb−n‖m1|lsbn ⊕ K1, IV1 ⊕ K1 ⊕ (m2 ⊕K2)|msbn ) and the final output
hash is computed as h2 = F(m2 ⊕K2, h1 ⊕K3).

Efficiency. The BCM F hash mode is a streaming hashing mode that compared
to the known MD mode delays the processing with n bits in start-up time. Also
as in the MD hash function a single message block is processed per call to the
compression function F. Although we lack any concrete efficiency measurements,
we expect a small loss in efficiency (compared to MD) due to the constant storage
of extra n bits in memory.
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Discussion on the Design Choices.We choose to XOR IV1 with the key
K1 to provide additional randomization on the initialization value. The rest of
the XOR choices, namely XORing the chaining variables with the most signif-
icant n bits of the incoming message blocks provide the randomization on the
chaining values necessary for the Sec security preservation. Also, to achieve the
Sec security we have to disallow any fixed inputs introduced by the message
padding and strengthening. Hence, we XOR m�−1|lsbn and m� with the keys K1
and K2, respectively, and we additionally use the key K3 to randomize the fi-
nal chaining hash value h�−1. When F is modeled as a random oracle, the Pre
property of BCM F is easily satisfiable as long as the message has a minimal
length of n bits. An interesting observation is that none of the applied random-
ization techniques contributes for a Pre preservation in the standard security
model.

3.2 Possible Variants

We discuss modifications on the basic BCM construction with respect to the
order of input values to the compression function F. The variants include the
different chaining iterations on F, such that F takes as inputs any ordering of:
(A1 = m1|msbn , B1 = m1|lsbb−n, C1 = IV1 ⊕ K1 ⊕ m2|msbn ), (Ai = mi|msbn , Bi =
mi|lsbb−n, Ci = hi−1 ⊕ mi+1|msbn ) for i = 2 to � − 2, (A�−1 = m�−1|msbn , B�−1 =
m�−1|b−2n

n+1 ‖m�−1|b−n
b−2n+1 ⊕ K1, C�−1 = h�−2 ⊕ (m� ⊕K2)|msbn ) and finally

(A� = (m� ⊕K2)|msbn , B� = (m� ⊕K2)|lsbb−n, C� = h�−1 ⊕ K3). The indices de-
note the position of the input values in the iteration, e.g. (A1, B1, C1) forms the
set of input values to the first application of F. There are at most six permuted
input sets to F (per call to F). As long as the inputs in the final call to F are
ordered identically for messages of any arbitrary length, then the security prop-
erties of the basic BCM carry through to any chaining iteration that switches
the input wires to F in any chosen, but specified order.

Let S1
i = {Ai, Bi, Ci} for i = 1 to � be the sets containing the input values

to F of the same index i. We then define the sets Sj
i for j = 2 to 6 and i = 1

to � to be the rest of the possible orderings of the base set S1
j , or these are

S2
i = {Ai, Ci, Bi}, S3

i = {Ci, Ai, Bi}, S4
i = {Ci, Bi, Ai}, S5

i = {Bi, Ci, Ai} and
S6

i = {Bi, Ai, Ci}. Let P j
i : S1

i → Sj
i where j = 1 to 6 and i = 1 to �. With P a

i

we then denote any arbitrarily chosen mapping from S1
i to Sj

i for any j = 1 to
6 (i is a fixed input parameter), while P f stands for the final mapping from S1

�

to Sj
� for some randomly chosen and fixed j.

The GBCM hash of a 1-block message m1 is h1 = F(P a
1 (A1, B1, C1)) with

(A1 = (m1 ⊕K2)|msbn , B1 = (m1 ⊕K2)|lsbb−n, C1 = IV1 ⊕K1 ⊕K3).
The GBCM hash of a 2-block strengthened message is h2 = F(P f (A2, B2, C2))
for (A2 = (m2 ⊕K2)|msbn , B2 = (m2 ⊕K2)|lsbb−n, C2 = h1 ⊕K3) where h1 =
F(P a

1 (A1, B1, C1)) and (A1 = m1|msbn , B1 = m1|b−n
n+1‖m1|lsbn ⊕ K1, C1 = IV1 ⊕

K1 ⊕ (m2 ⊕K2)|msbn ).
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We then summarize the variants of BCM by exhibiting a generalized GBCM
construction and describe it in pseudocode in Algorithm 2.

Algorithm 2. GBCM F(K, M):
m1‖ . . . ‖m� ← pad(M)
h0 = IV1,
for i = 1 to �− 1 do

hi = F(P a
i (Ai, Bi, Ci))

end for
h� = F(P f (A�, B�, C�))
return h�

4 Property Preservation of the BCM (GBCM ) Construction

In this section we provide the full proofs for Coll and Sec security preservation in
the standard security model and we show Pre security of the BCM F construction
when the compression function is instantiated as a random oracle. We provide
the proofs of GBCM in the Appendix.

Theorem 1. If there exists an explicitly given adversary A that (t, ε)-breaks the
Coll security of BCM F (GBCM F), then there exists an explicitly given adversary
B that (t′, ε′)-breaks the Coll security of F for ε′ ≥ ε and t′ ≤ t + 2� · τF. Here,
τF is the time required for the evaluation of F and � = �(λ + 65)/b� where λ is
the maximum message length of the two messages output by A.

Proof. Given a Coll adversary A against the iterated hash BCM F, we construct
a Coll adversary B against the compression function F. B generates at random a
key K

$← {0, 1}b+2n with K = K1‖K2‖K3 where |K1| = |K3| = n and |K2| = b.
B runs A on input K. Finally, A outputs a colliding pair of messages M and
M ′, such that BCM F(K, M) = BCM F(K, M ′). We investigate the following two
cases:

1. If |M | �= |M ′|, then the inputs to the last compression function differ (due
to the present message length encoding in m�) and therefore a collision on
the final F occurs, or m� ⊕K2 �= m′

�′ ⊕K2 where F(m� ⊕K2, h�−1 ⊕K3) =
F(m′

�′ ⊕K2, h
′
�′−1 ⊕K3). B then outputs (m� ⊕K2, h�−1 ⊕K3) and (m′

�′ ⊕
K2, h

′
�′−1 ⊕K3) as a valid colliding pair.

2. Else if |M | = |M ′|, then � = �′. If m�⊕K2‖h�−1⊕K3 �= m′
�⊕K2‖h′

�−1⊕K3,
then a collision occurs again in the last application of F. Else B proceeds in
the following way.
B parses the inputs to the (�−1)st application of F as (m�−1|msbb−n‖(m�−1|lsbn ⊕
K1), g�−2) and (m′

�−1|msbb−n‖(m′
�−1|lsbn ⊕K1), g′�−2). If these inputs differ, then

they constitute a valid collision pair for B, else g�−2 = g′�−2 and hence
h�−2 = h�−2 because of the previous equality for m� ⊕K2|msbn = m′

� ⊕K2|msbn .
Following the iteration principle B parses the previous inputs as m�−2‖g�−3
and m′

�−2‖g′�−3 and proceeds in the same manner backwards.
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The inequality of the message inputs M and M ′ guarantees the existence
of an index i > 0, such that mi‖gi−1 �= m′

i‖g′i−1 where F(mi‖gi−1) =
F(m′

i‖g′i−1). B outputs then the colliding pair (mi‖gi−1, m
′
i‖g′i−1) for the

max(i) satisfying the former statement.

Whenever A succeeds, then B also succeeds with the same advantage. The time
complexity of B is at most the time complexity of A plus two evaluations of
BCM F over messages M and M ′ taking time 2� · τF. ��

Theorem 2. For atk = Sec, if the compression function F is (t′, ε′) atk secure,
then the iterated function BCM F (GBCM F) is (t, ε) atk secure for ε ≤ � · ε′
and t ≥ t′ − 2� · τF. Here, τF is the time required for the evaluation of F and
� = �(λ + 65)/b� where λ is the maximum message length of the two messages
output by A.

Proof. Given a Sec[λ] adversary A against BCM F, we construct a Sec adversary
B against the compression function F. B receives a random challenge message
m‖h. For a randomly chosen index i the goal of the adversary B is to construct
a challenge message M and a key K, which have B’s challenge message m‖h
embedded, such that when A outputs its second preimage message M ′, then a
collision for M and M ′ can be found at the ith block of M . To simulate A’s
view correctly, however, B generates M and K, such that they are uniformly
distributed. The proof goes as follows.

B chooses a random index i
$← {1, . . . , � = �(λ+65)/b�} and a random message

M of length λ. B has now to successfully embed his challenge m‖h at position i
in the target strengthened message m1‖ . . . ‖m� ← pad(M) and in the chaining
iterative portion of BCM F(K, M). Let M̂ = m1‖ . . . ‖m� be the strengthened
message M . Depending on the outcomes for i, B takes its decisions as follows:

1. If i = 1, then B sets m1 ← m and K1 ← IV1 ⊕ h ⊕ m2|msbn . Except block
m1, the rest of M̂ is unaltered. B chooses K2‖K3

$← {0, 1}b+n. Two special
cases arise in the case when λ < b− 65 or λ < 2b− 65. In the former case, B
proceeds as described below for i = �, and in the latter case as for i = �− 1.

2. If i ∈ {2, . . . , � − 2}, then B continues as follows. B sets mi ← m and
computes the intermediate chaining value hi−1 with K1

$← {0, 1}n. B sets
mi+1|msbn ← hi−1 ⊕ h. Then B chooses the keys K2‖K3 at random. Except
modifying blocks mi and mi+1|msbn , B leaves the rest of M̂ unaltered.

3. If i = �− 1, then B sets m�−1|msbb−n ← m|msbb−n and K1 ← (m�−1 ⊕m)|lsbn , and
computes the intermediate chaining value h�−2. h�−2 is set to IV1⊕K1 when
b− 65 ≤ λ < 2b− 65. B sets K2|msbn ← h�−2 ⊕ h⊕m�|msbn . Then B chooses at
random K2|lsbb−n‖K3

$← {0, 1}b. With the exception of m�−1|msbb−n, the rest of
M̂ remains unaltered.

4. If i = �, then B chooses at random K1
$← {0, 1}n and computes the inter-

mediate hash value h�−1. Note that if λ < b− 65, then the chaining value is
computed as IV1 ⊕K1. B then sets K3 ← h⊕ h�−1 and K2 ← m⊕m�. M̂
remains unchanged.
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After m‖h is successfully embedded, B proceeds by running A on inputs message
M where M = pad−1(M̂)(the non-strengthened version of M̂ with the applied
modifications) and key K = K1‖K2‖K3. Note that both M and K are uniformly
distributed. Initially B chooses uniformly at random M and then modifies some
of its blocks as prescribed in the former cases. However, the modified blocks
of M are assigned only independent random values. Hence, the resulting final
challenge message M is also uniformly distributed. The key K is constructed in
a similar way.

On inputs M and K A returns a second preimage message M ′, such that
BCM F(K, M) = BCM F(K, M ′). For the rest of the proof B acts identically as
in the Coll proof. With probability 1/� B finds the colliding pair at the correct
position i (at which B embedded m‖h) and outputs the colliding inputs for F as
its valid second preimage. If A succeeds with advantage ε, then B also succeeds
with advantage ε/�. The time complexity of B is at most the time complexity of
A plus two evaluations of BCM F. This completes the proof. ��

Theorem 3. If the compression function F is instantiated as a random oracle,
then the iterated function BCM F (GBCM F) is (qRO, ε) Pre[λ] secure where ε ≤
qRO/2n and qRO is the number of queries to the random oracle.

Proof. Let A be a Pre[λ] adversary on the iterated hash function BCM F. Given
a challenge hash value Y and key K = K1‖K2‖K3, the goal of A is to invert
Y , which is computed as Y = BCM F(K, M) for a randomly chosen message
M

$← {0, 1}λ and a key K
$← K.

We investigate the following two cases: 1. n < λ ≤ b−65 and 2. λ > b−65. In
the first case Y = F(m1⊕K2, IV1⊕K1⊕K3). The adversary A knows the message
length, respectively the applied strengthening bits, the fixed IV1 value and the
random key values K1‖K2‖K3. However, A has no information of at least n bits
of the message input m1. Thus, the only way to find a valid preimage message
for BCM F is to exhaustively query the random oracle F on chosen inputs for the
missing part of m1. The probability to find the correct preimage message per
single query is 1/2n and after qRO queries to the random oracle A succeeds to
invert Y with probability qRO/2n.

In the second case Y = F(m� ⊕ K2, h�−1 ⊕K3). Here A knows the keys K2
and K3, the message length λ and the respective strengthening bits used in the
last message block m�. Still, B does not know the intermediate chaining value
h�−1. Again as in the former case, A needs to invert Y and its success ε is bound
by qRO/2n. ��

A Pre Counterexample in the Standard Model. Surprisingly, the pre-
sented BCM F does not provide Pre property preservation when the compression
function is a Pre secure hash and not modeled as a random oracle. Here we
provide a counterexample compression function, which is Pre secure as long as
the underlying compressing function is also Pre secure.

Let F be defined as F(m‖h) = CE1(m). If CE1 : {0, 1}b → {0, 1}n is (t′, ε′)
Pre secure compressing function, then F is also (t, ε) Pre secure function with
ε ≤ ε′ and t ≥ t′.
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A Pre[λ] adversary A on the iterated hash function BCM F succeeds in constant
time with probability one in breaking the Pre[λ] security. A is given a challenge
hash value Y = BCM F(M, K) for a random M

$← {0, 1}λ and a random key
K ← K with K = K1‖K2‖K3. A succeeds by outputting any message M ′ of
length λ, because all these messages result in Y = F(m� ⊕ K2, h�−1 ⊕ K3) =
CE1(m� ⊕ K2). Here we made an assumption that λ is such that m� consists
only of padding and strengthening bits.

4.1 Second Preimage Attacks Beyond 2n−�

From [11] and [1] we know that earlier Merkle-Damg̊ard based constructions
are prone to Sec attacks in a bit more that 2n−� compression function calls
when the target messages are of size 2� blocks. The latter attacks apply to our
scheme given that the target messages are of a specific format. Let the challenge
messages be parsed as a sequence of b-bit blocks. When these contain fixed and
predictable message chunks in their n most significant bits (e.g. mi|msbn = 0n),
the mentioned attacks can be mounted on our hash construction. But even then
the attacks are in no contradiction with our claimed Sec security result. In our
Sec security proof we loose a factor of � (number of message blocks), while the
attacks are valid in the estimated security gap (between the exhibited 2n−� and
the ideal 2n Sec security).

To build either an expandable message or a diamond structure used in the
attacks, an adversary searches for collisions on F. These are possible by going
over different values only in the least significant (b−n) bits of the message blocks
chosen by the adversary. The adversary then commits to an intermediate hash
value hi. Next, in both the expandable message attack [11] and the diamond
structure [1] second preimage attacks, the adversary has to connect from hi to a
chaining value in the target message M . Here the requirement for a specific mes-
sage format comes into play. If the message blocks differ in their most significant
n bits, the adversary’s probability to connect correctly is small. That is because
he has to have predicted in advance mj |msbn , given that he successfully connects
to a chaining value hj . The best adversarial strategy here is to exploit message
blocks repetitions in their most significant n bits. Then if all these are equal,
the attacks become feasible in approximately 2n−� steps (compression function
calls).

One way to fully block this type of attacks is to XOR the chaining values
with the output of a function f that takes as input the complete forth-coming
message block of b bits. In the iteration we would replace the mi|msbn with f(mi)
for all i = 1 to �. To achieve the property preservation the function f has to be
instantiated as a random oracle, which turns the suggested scheme into a less
efficient variant (linear number of calls to RO) of the ROX [2] hash.

5 Security Discussion or Where Theory Meets Practice

Our scheme preserves the Coll security of the compression function F due to the
MD strengthening and achieves the 2n/2 security level if F is an ideal function.
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The Sec security property is preserved through the randomization of the final
inputs of F with keys K2 and K3, and the intermediate hash values with parts
of the message blocks.

Notice that the standard Sec definition we use for the latter result assumes
the uniform distribution U on the message space M. This allows us to extract
randomness from the challenge messages, rather than adding extra key material
(e.g. log number of keys in Shoup’s hash). Where is the caveat here? When the
messages are not sufficiently random, the BCM hash scheme does not reach the
claimed Sec security level. More precisely, we do not need the randomness from
the whole message source but we extract it only from the n most significant bits of
every b-bit chunk of message. Then messages without sufficient entropy in those
most significant bits can introduce Sec weaknesses in our scheme, as we show.
Non-uniform distributions that allow for such attacks are some concrete distri-
butions of messages with low entropy. Next we exhibit such a counterexample.

The Low Entropy Messages Counterexample. In our counterexample we
construct a contrived Sec secure compression function and specify the format of
the messages that occur with the highest probability according the challenge
messages distribution.

Let the challenge message spaceMDl be assigned the distribution Dl. Here we
defineMDl = {0, 1}λ where λ > 2b−65. According to Dl for any mi|lsbn with i =
2 to � (� = �(λ)/b�) the messages m1‖0n‖m2|lsbb−n‖ . . . ‖0n‖m�|lsbb−n appear with
high probability (1− ε′) while all the rest of the messages occur with negligible
probability ε′. The most frequent challenge messages contain n bits of 0s in
the most significant bits of their b-bit blocks. The counterexample compression
function we use is similar to the one from Theorem 3.2 [2].

Theorem 4. If there exists a (t, ε) Sec secure function G : {0, 1}b+n →
{0, 1}n−1, then there exists a (t, ε − 1/2n−1) Sec secure compression function
CE2 : {0, 1}b+n → {0, 1}n and an adversary A running in constant time with
Sec[λ, Dl]-advantage (1 − ε′) in breaking BCM CE2 for any challenge message
M ∈MDl chosen according to the distribution Dl.

Note that we additionally parameterize the adversarial advantage by the message
space distribution Dl and that ε′ is the probability for messages different from
the specified format to be chosen fromMDl .

Proof. Our CE2 is given by

CE2(m‖h) = 0n if h = 0n or m|msbn = 0n

= G(m‖h) ‖ 1 otherwise .

If G is (t, ε) Sec secure, then CE2 is (t, ε − 1/2n−1) Sec secure; we refer to the
full version [3] for the proof.
According to the distribution Dl the messages of the specified format are chosen
with high probability (1 − ε′) as target messages. Then for any random key
K

$← {0, 1}b+2n and target message M = m1‖0n‖m2|lsbb−n‖ . . . ‖0n‖m�|lsbb−n, a
Sec[λ, Dl] adversary A finds a second preimage message M ′, such that |M | = |M ′|
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and M ′ is of the same format as M . Let M ′ differ from M only in the least
significant (b − n) bits of their second blocks. Then the chaining values in the
computation of M and M ′ are equal immediately after the second application
of CE2. For any λ > 2b − 65 the chaining value 0n is propagated further in the
chain. Finally BCM CE2(K, M) = BCM CE2(K, M ′). ��

We admit that this is a particularly contrived counterexample for a low entropy
message distribution. The minimal requirement on the message structure with
this type of counterexample compression functions is a repetition in the most
significant n bits of two adjacent b-bit message blocks. Such counterexamples
are especially problematic for low entropy message distributions and are also
valid for high entropy message distributions. However, in the latter case, the
probability for such challenge messages to be chosen is not high on average and
we cannot exhibit an efficient Sec adversary.

6 Concluding Discussion

In our opinion the Sec security preservation is one of the hardest security no-
tions to satisfy in an iterative hash mode. At the cost of a logarithmic number
of keys to randomize the chaining values and an additional constant b-bit key
to randomize the message blocks, Shoup’s hash [17] could be modified to also
achieve Sec preservation in the standard model. Notice, however, that once the
keys are fixed, we can always identify non-uniform distributions for which con-
trived counterexamples are possible (even if we increase the fixed keys for the
randomization of the message blocks from a constant to linear in the message
length). One way to avoid this problem is to introduce randomization per mes-
sage, known also as salting. It is therefore an interesting question to identify
the conditions that such a message randomization transform needs to satisfy in
order to provide Sec preservation for any target message distribution.

On the other hand, the question of correctly formalizing and satisfying Sec
security properties that take into account biased challenge message distributions
may be practically relevant. Practical message distributions that deviate from
uniform allow for predictability of certain target messages and in our view are a
shift from the Sec to the known target collision resistance (TCR/UOWH/eSec)
property. Another interesting problem may then be to find ways to achieve Sec
security for any message distribution with an efficient hash construction that
uses a minimal amount of key material. In our view, one possible way to go
around this problem is to correctly identify new assumptions on the compression
function.
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A GBCM Proofs

A.1 Coll Proof of Theorem 1 for GBCM

Given a Coll adversary A against GBCM F, we construct a Coll adversary B

against the compression function F. B generates at random a key K
$← {0, 1}b+2n

with K = K1‖K2‖K3 where |K1| = |K3| = n and |K2| = b. B runs A on
input K. Finally, A outputs a colliding pair of messages M and M ′, such that
BCM F(K, M) = BCM F(K, M ′). We investigate the following two cases:

1. If |M | �= |M ′|, then the inputs to the last compression function differ (due to
the present message length encoding in m�) and therefore a collision on the
final F occurs, or P f (A�, B�, C�) �= P f (A′

�, B
′
�, C

′
�). Note that the transfor-

mation P f is fixed and identical for messages of arbitrary length. Therefore,
a difference in blocks B� and B�′ (induced by the applied strengthening)
results in difference in the outputs of P f on the same input wires for F. B
outputs P f (A�, B�, C�), P f (A′

�, B
′
�, C

′
�) as a valid colliding pair.

2. Else if |M | = |M ′|, then � = �′ and the processing of M and M ′ is symmetric
with respect to the inputs of F (the same arbitrary P a

j for j = 1 to �− 1 is
applied at all positions j for both M and M ′). Here B proceeds by search-
ing backwards (block-by-block) for distinct F inputs P a

j (Aj , Bj , Cj) and
P a

j (A′
j , B

′
j, C

′
j), which result in equal output hash values hj an h′

j under F.
Since M �= M ′, then there exists an index j > 0, such that P a

j (Aj , Bj , Cj) �=
P a

j (A′
j , B

′
j, C

′
j). Then for the max(j) that satisfies the inequality, B outputs

the corresponding colliding pair (P a
j (Aj , Bj , Cj), P a

j (A′
j , B

′
j , C

′
j)). ��

A.2 Sec Proof of Theorem 2 for GBCM

Given a Sec[λ] adversary A against GBCM F, we construct a Sec adversary B
against the compression function F. B receives a random challenge message m‖h.
Then B chooses a random index i

$← {1, . . . , � = �(λ + 65)/b�} and a random
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message M
$← {0, 1}λ. B has to successfully embed his challenge m‖h in the

target strengthened message m1‖ . . . ‖m� ← pad(M) and in the chaining iterative
portion of GBCM F(K, M). Let M̂ = m1‖ . . . ‖m� be the strengthened message.

Let (Xi, Yi, Zi) ← P a
i (Ai, Bi, Ci) for i = 1 to � − 1 and (X�, Y�, Z�) ←

P f (A�, B�, C�). Then B identifies the type of mapping applied in the respec-
tive ith position in the iteration for i = 1 to �− 1

1. if P a
i = P 1

i , then Xi‖Yi = m and Zi = h.
2. if P a

i = P 2
i , then Xi‖Zi = m and Yi = h.

3. if P a
i = P 3

i , then Yi‖Zi = m and Xi = h.
4. if P a

i = P 4
i , then Zi‖Yi = m and Xi = h.

5. if P a
i = P 5

i , then Zi‖Xi = m and Yi = h.
6. if P a

i = P 6
i , then Yi‖Xi = m and Zi = h.

Now if i = 1, then a value that equals to h translates to B setting K1 ←
IV1 ⊕ h⊕m2|msbn . If λ < b− 65, then B proceeds as in case i = �.

If i ∈ {2 . . . �−2}, then equality to h translates to B setting mi+1|msbn ← hi−1⊕h

for a randomly chosen K1
$← {0, 1}n (hi−1 is the (i− 1)st intermediate chaining

value computed by B). If λ < 2b− 65, then B proceeds as in case i = �− 1.
In both these cases B modifies either block m1, or blocks mi and mi+1|msbn

from the message M̂ . B also chooses at random K2‖K3
$← {0, 1}b+n.

If i = � − 1, then equality of a value to m is equivalent to B setting the
most significant b − n bits of it to m|msbb−n and K1 ← (m⊕m�−1)|lsbn . Equality
to h here means that B sets K2|msbn ← h⊕ h�−2 ⊕m�|msbn (h�−2 is the (�− 2)nd
intermediate chaining value computed by B when λ ≥ 2b − 65 and IV1 ⊕ K1

when b − 65 ≤ λ < 2b − 65). A chooses K2|lsbb−n‖K3
$← {0, 1}n. Only the first

b− n bits of block m�−1 are modified from the originally generated message M̂ .
If i = �, then

1. if P f = P 1, then X�‖Y� = m and Z� = h.
2. if P f = P 2, then X�‖Z� = m and Y� = h.
3. if P f = P 3, then Y�‖Z� = m and X� = h.
4. if P f = P 4, then Z�‖Y� = m and X� = h.
5. if P f = P 5, then Z�‖X� = m and Y� = h.
6. if P f = P 6, then Y�‖X� = m and Z� = h.

B chooses at random K1
$← {0, 1}n and computes the intermediate hash value

h�−1. An equality to m means that B then sets K2 ← m⊕m� and equality to h
that K3 ← h⊕h�−1 (h�−1 is the (�− 1)st intermediate chaining value computed
by B when λ ≥ b − 65 and IV1 ⊕K1 when λ < b − 65). Except m�, the rest of
M̂ remains unchanged.

Now m‖h is successfully embedded and B proceeds by running A on inputs
message M where M = pad−1(M̂)(the non-strengthened version of M̂) and
key K = K1‖K2‖K3. As in the case of BCM hash, the message M and key K
are uniformly distributed. A returns a second preimage message M ′, such that
BCM F(K, M) = BCM F(K, M ′). For the rest of the proof B acts identically as
in the Coll proof. With probability 1/� B finds the colliding pair at the correct
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position i (at which B embedded m‖h) and outputs the colliding inputs for F as
its valid second preimage. This completes the proof. ��

A.3 Pre Proof of Theorem 3 for GBCM

Proof. Let A be a Pre[λ] adversary on the iterated hash function GBCM F. Given
a challenge hash value Y and key K = K1‖K2‖K3, the goal of A is to invert
Y , which is computed as Y = GBCM F(K, M) for a randomly chosen message
M

$← {0, 1}λ and a random key K
$← K.

We investigate the following two cases: 1. n < λ ≤ b − 65 and 2. λ > b − 65.
In the first case Y = F(P f (A1, B1, C1)). A knows λ, respectively the applied
strengthening bits, IV1 and K1‖K2‖K3. Thus, A knows at most the input B1
and C1 and can derive at most b − n bits from the output of P f . However, A
has no information on at least n bits of the message input A1 = m1. Thus, the
only way to find a valid preimage message for BCM F is to exhaustively query the
random oracle F on chosen inputs for the missing part of m1. The probability
to find the correct preimage message per single query is 1/2n and therefore after
qRO queries to the random oracle A succeeds to invert Y with probability qRO/2n.

In the second case Y = F(P f (A�, B�, C�)). Here A knows the keys K2 and
K3, the message length λ and the respective strengthening bits used in the last
message block m�. A can compute at most b−n bits of P f (A�, B�, C�). But again
B does not know the intermediate chaining value h�−1 and also C� = h�−1⊕K3,
then again as in case one, A can at best try to invert Y . A’a success ε is bound
by qRO/2n. ��
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Abstract. In this paper, we present some preliminary results on the
security of the RadioGatún hash function. RadioGatún has an internal
state of 58 words, and is parameterized by the word size, from one to 64
bits. We mostly study the one-bit version of RadioGatún since according
to the authors, attacks on this version also affect the reasonably-sized
versions. On this toy version, we revisit the claims of the designers and
first improve some results. Secondly, given a differential path, we show
how to find a message pair colliding more efficiently than the strategy
proposed by the authors using algebraic techniques. We experimented
this strategy on the one-bit version since we can efficiently find differ-
ential path by brute force. Even though the complexity of this collision
attack is higher than the general security claim on RadioGatún〈1〉, it is
still less than the birthday paradox on the size of the internal state.

1 Introduction

RadioGatún is a new hash function, proposed in 2006 by Bertoni, Daemen,
Peeters and Van Assche at the Second NIST Hash Workshop. This hash function
is very interesting to study since its design is not similar to traditional hash
functions. It is not a blockcipher-based hash function such as the Davies-Meyer
construction of compression function and it does not use the Merkle-Damg̊ard
paradigm to transform a compression function into a hash function. This hash
function improves a previous design used in the Panama hash function [12].
RadioGatún has an internal state of 58 words; the size of those words, from one
to the recommended 64 bits, define the actual size of the internal state.

1.1 Related Work

The Sponge construction. RadioGatún is the current hash function whose
design resemble the sponge construction most. This construction differ signifi-
cantly from the SHA family : the internal building block transform the internal
state bijectively, and there is no message expansion: the input blocks are simply
injected into the state. The size of the input block is smaller than the internal
state, which is also much bigger than the security parameter. The output can be
of arbitrarily length.

Sponge functions were introduced in [2,4], to serve as a reference model for
the security of hash functions. Random sponges are an abstraction of a random
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function with a finite internal state. In [2], random sponges were shown to be
indifferentiable from a random oracle up to a number of query which depends
on the “capacity” of the sponge, a part of its internal state.

The Backtracking Attack. The security of the RadioGatún hash function
against differential attacks has been initially studied by Bertoni et al. in [3]. In
fact, the main security analysis has been done on the one-bit version since for
this version, differential paths can be found efficiently. If the one-bit version was
structurally broken, the the bigger version would be likely to be broken as well.
In [3], the authors describe a strategy to find two colliding messages given a
differential path and named it the trail backtracking attack. This kind of attack
improves the statistical attack which tries as many messages as the inverse of
the probability of the differential trail. Such an attack has also been mounted
on Panama [19,11] and on Grindahl in [18].

Message Modification and Algebraic Techniques. Expressing the prob-
lem of finding a collision as the problem of solving a set of equations is an old
technique, that was used to break MD4 first [13]. Message modification was
used with great success to attack hash functions from the MD and SHA families
[24,22,25,23]. More advanced algebraic techniques, such as Gröbner bases, were
used by [21] to improve the message modification part of existing attack against
SHA-1.

1.2 Our Results

Our main object of study is the one bit version, RadioGatún〈1〉. We show that
the backtracking attack can be performed more efficiently and without any back-
tracking. We use Gröbner basis algorithms to compute the set of all states from
which colliding messages can be found using a given trail. The main drawback
of this attack is that once we have this set, we need other techniques to go from
the initial vector to these states. Actually, our method uses statistical trials until
one satisfies the equations characterizing the set. The techniques we use heavily
rely on the fact that the non-linear function is quadratic and so the differential
of such function gives linear conditions on the states.

RadioGatún〈1〉 has an internal state of 58 bits, and it is conjectured in [3] that
differential attacks would cost at least 246. A first technique using only linear
algebra yields collisions in 227 evaluations of the round function. We present a
second technique using more sophisticated algebraic tools, most notably Gröbner
Basis computations, that produces collisions in less than 224.5 evaluations of the
round function, for any fixed IV. This is more than one million times faster
than what the authors of RadioGatún expected. Both attacks are faster than
the birthday paradox on the size of the internal state, but the do not break the
security claim of the designers of RadioGatún, since they took a high security
margin.

The first attack is trivially applicable to RadioGatún〈�w〉 for any value of
�w. The status of the second attack is less clear, but we give some arguments
supporting the idea that it will still be applicable when �w > 1.
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1.3 Organization of the Paper

In section 2, we describe the RadioGatún hash function. Then, we recall the
original backtracking attack on RadioGatún presented by its authors and present
some surprising experimental results. In section 4, we show how we can improve
the backtracking attack using only simple linear algebra. In section 5 and that
we can also remove the backtracking by propagating the linear conditions using
Gröbner basis computations. Consequently, we derive precise conditions on the
states from which colliding pairs can be found.

2 A Brief Description of RadioGatún

RadioGatún is parametrized according to the word length �w ranging from one
to the recommended 64 bits; RadioGatún〈�w〉 denote the �w-bit version of the
hash function.

RadioGatún is a hash function based on the sponge paradigm. During the
“absorbing” phase, it absorbs an arbitrary number of 3�W -bit input blocks, and
during the “squeezing” phase it produces an arbitrary long output. The input
message p is padded, so that its size is a multiple of the input block size. Radio-
Gatún absorbs the input message by alternatively XORing 3 message words into
the internal state and applying a bijective round function R until the padded
message is entirely read. In each round, �i = 3 · �W bits are absorbed. Note that
6 rounds are required in order that n/2 bits are hashed, where n is the size of
the internal state. This suggests that colliding message will span over at least
6 rounds. Then, the internal state is mixed using 16 blank iterations of R, and
finally the outputs is produced by alternatively extracting 2 words of the inter-
nal state and applying the round function until enough bits are extracted. The
security of a sponge function is not defined in terms of the digest length (since
it can be arbitrarily big), but rather according to another parameter called the
capacity, which is connected to the size of the internal state. For RadioGatún,
the authors made a “flat sponge claim” : More precisely, the authors claim that
(truncated) RadioGatún〈�W 〉 is as strong as a random sponge of capacity 19·�W .
This mean in particular that it should not be possible to find collisions in less
than 29.5·�W , while RadioGatún〈�W 〉 has an internal state of 58 words (58 · �W

bits).
From this description, it is easy to see that a collision into the state at the

end of the absorbing phase leads to a collision on the output bits. Consequently,
the authors of RadioGatún worry about such collisions and named them internal
collisions. However, in order to analyze such attacks, it seems that the important
parameter is not really the capacity, but rather the half of the size of the internal
state. We will see in the following, that if we take this security parameter, we
have attacks on the one-bit version of RadioGatún.

In RadioGatún, the state is split into two parts: the Mill and the Belt. The
role of the Belt is to have good long-term diffusion property and uses a simple
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invertible linear update function, while the goal of the mill is to create confusion
and uses an invertible non-linear update function. The Belt and the Mill interact
with each other in each application of the round function.

The Mill a consists of 19 words a[i], and the Belt b is a matrix of 3 rows
and 13 columns. An input block x consists of three words x[i]. All indices start
from 0. We defer the reader to [3] for a complete description of the hash func-
tion. Schematically a round of RadioGatún can be described in the following
way:

b′ ← L1 (b)⊕ L3(a)⊕ L2(x)

a′ ← L4 ◦ γ
(
a⊕ L5 (x)

)
⊕ L6(b′)

where the Li are bijective linear mappings, and γ is a word-wise bijective
quadratic mapping defined by: γ(a)[i] = a[i]⊕ a[i + 1] ∧ a[i + 2], where & de-
notes bitwise AND, and indices are taken modulo 19.

3 The Trail Backtracking Attack

3.1 Differential Trails

It seems natural to try a differential attack, considering the successes obtained
against the MD and SHA families. We call a differential over the round func-
tion a round differential ; it is a pair (Δi, Δo). Its differential probability (DP)
is the proportion of states s such that R(s) ⊕ R(s ⊕ Δi) = Δo. A round dif-
ferential is possible if DP > 0. We may want to take into account not only
the internal state, but also the message block entering a round. In this case, a
round differential is a triple (Δi, Δx, Δo), and it is satisfied by a state s and a
message block x if the internal state after the injection of x satisfies the differ-
ential

(
Δi⊕Fi(Δx), Δo

)
. The (restriction) weight of a differential is defined by:

Wr(Δi, Δo) = − log2 DP (Δi, Δo).
Since we will have to track the difference between two parallel hashing pro-

cesses amongst several iterations of the round function, we are lead naturally
to the definition of a collision trail ; it describes the propagation of the differ-
ence on the internal state, when given differences on the input block are applied.
Such a trail is a sequence of round differentials: (Δ0

i , Δ
0
x, Δ0

o), . . . , (Δ
r
i , Δ

r
x, Δr

o),
where Δ0

i = 0, Δr
o = 0, for all 1 ≤ k ≤ r, Δo

k−1 = Δi
k. For each round k, the

trail enforces that if the internal states satisfy sk ⊕ s′k = Δk
i , and the input

message blocks satisfy xk ⊕ x′k = Δk
x, then after R the output state pair has

difference Δk
o . If one finds an input state s0 and a sequence of message blocks

x0, . . . ,xr satisfying all the conditions imposed by the trail, then one has found
a collision. The probability that a random message follows the trail is the differ-
ential probability (DP) of the trail, and the differential weight of T is defined
by Wr(T ) = − log2 DP (T ).
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3.2 The Trail Backtracking Attack

Given a r-round differential trail and an initial state, a naive way to look for a
collision would be to try random sequences of r message blocks satisfying the
differences specified by the trail until a collision is found. The expected workload
of this attack is r/DP (T ) evaluations of R. It may very well happen that the
input message passes some of the first rounds with the right difference, but then
diverges from the trail. This message has an interesting prefix, but in the naive
attack it is simply thrown away. Additionally, it is useless to hash the end of
the message, since we could know in the middle that it would not follow the
trail.

In the backtracking attack, however, a right prefix is reused as much as
possible. It can be seen as an analogous of Wang’s message modification on
Davies-Meyer-type compression functions, but adapted to the alternating-input
framework. Suppose we have a message that passes the first k rounds, but not
the (k + 1)-th. Either the choice of xk was bad and by choosing another block
we can pass the (k + 1)-th round, or the previous choices of x0, . . . ,xk−1 were
bad, and we have to reconsider them (this is what we will call “backtracking”).

More precisely, if a right pair enters round k, the difference at the input of
the round function will be the same regardless of the value of the input block
xk, as long as it satisfies the specified difference Δk

x. Therefore, this right pair
can be turned into 2�i right pairs by simply enumerating all possible values of
x. If this results in a right outgoing pair, we can proceed to the next round,
and otherwise, we have to backtrack to the previous round. This can be seen as
the depth-first exploration of a big 2�i-ary tree in which nodes are labeled with
internal state values and edges are labeled with message blocks (the root being
labeled by s0).

BT Attack(s, k) :
Given a right pair entering the k-th round, try to go further along a given trail T or
backtrack.

– If k = |T |, then a collision has been found
– For all possible input block xk do

• if the state s along with the input block x pass the k-th round differential of
T , i.e. if

R (s ⊕ Fi (x)) ⊕ R
““

s⊕ Δ
k
i

”
⊕ Fi

“
x ⊕ Δ

k
x

””
= Δ

k
o

then invoke BT Attack(R (s ⊕ Fi (x)) , k + 1)

Fig. 1. Pseudocode of the trail backtracking attack

It may very well happen that the input state s0, which can be chosen at
random by hashing a random message for example, cannot possibly lead to a
collision along T . In that case, we just have to generate a new one.
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3.3 The Original Complexity Analysis of [3]

The authors of [3] give a generic complexity analysis of the trail backtracking at-
tack. They always assume that the conditions imposed by the round differentials
are independent from each other, which means that:

Wr(T ) =
r−1∑
k=0

Wr(Δk
i , Δk

x, Δk
o)

Following [3], we assume that we will try N pairs of (random) input state s0

before finding a collision. We count the number of right pairs entering and going
out of each round ; the round with the most incoming pairs is called the crowded
round, and the round with the less outgoing pairs is called the lonesome round.
If q pairs enter round k, then we can expect q · 2�i−Wr(Δk

i ,Δk
x,Δk

o ) pairs to go out.
We therefore define the excess weight in round k to be:

We(k) =
k−1∑
j=0

(
Wr(Δ

j
i , Δ

j
x, Δj

o)− �i

)
The total expected number of pairs entering round k is N · 2−We(k), and the
expected number of pairs going out of round k is N · 2−�i−We(k+1). The analysis
now proceeds in two steps:

Evaluate N. We assume that the attack succeeds as long as at least one pair
goes out of each round. This imposes N ≥ 2�i+We(k+1) for all 1 ≤ k < r .
This condition is satisfied by setting N = 2�i+maxk We(k+1).

Evaluate the Workload. According to [3], the workload can be approximated
by the number of pairs entering the crowded round : L(T ) � maxk N ·
2−We(k) = N · 2−mink We(k). Therefore, by using the previous result, we
define the backtracking cost :

Cb(T ) = �i + max
0≤j<k≤r

We(k)−We(j)

The workload of the trail backtracking attack is then: L(T ) � 2Cb(T ).

The authors of [3] present arguments that RadioGatún resists the trail back-
tracking attack, using this complexity analysis. In particular, on RadioGatún〈1〉,
where the internal state is 58-bit long, they performed an extensive search and
did not find collision trail with backtracking cost smaller than 46. If there were
no better trail, this would imply that the trail backtracking attack could not
possibly be faster than exhaustive search on the one-bit version. Because the
description of RadioGatún makes use of intra-word rotation, an operation that
has no effect on the one-bit version, it is likely that the many-bit version have
better diffusion, and therefore are stronger.

We emphasize that the differential weight is not a relevant indicator, because
the backtracking attack may dramatically reduce the cost of finding a collision.
A similar phenomenon occurs in the backtracking attack against Grindalh, or in
the differential attacks based on message-modification against MD5.
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3.4 Experimentation with the Backtracking Attack

We implemented the two required steps of the trail backtracking attack to find
collisions : finding differential trails, and actually finding colliding messages using
a given trail. Note that [3] only present experimental results about the former.
The C++ programs that we developed are available on the webpage of the first
author.

Finding Differential Trails. In RadioGatún〈1〉, it is possible to find collisions
by brute force, and a collision describes a collision trail. We therefore looked for
collisions extensively, and collected the corresponding trails. The authors of [3]
communicated to us their best collision trail on RadioGatún〈1〉, that we will note
T1. It is completely defined by two colliding messages sharing a 7-block prefix
followed by a 8-block colliding part. In octal notations, the two messages are :
0364220 64172767 and 0364220 20435061. The differential weight of this trail is
63, and its backtracking cost is 46.

We eventually found a 7-round trail (called T2) with backtracking cost 31
and differential weight 45. This surprising result was obtained while looking
for 7-round trails, by initializing the internal state with a 9-block random pre-
fix. T2 is defined by the following colliding messages, again in octal notation:
476356301 6336565 and 476356301 4250471. With the trail backtracking attack,
this gives a collision in an expected 231 effort, which is still above the birthday
bound.

Searching for a Collision. We used these two trails to find collisions on
RadioGatún〈1〉. It may be argued that we needed to find collisions (to get the
trails) before actually being able to find collisions, but there may very well be
other methods of finding trails, and we did not consider this problem. Moreover,
once a good collision trail is found, it can be used to find collision from any value
of the internal state. At the very least, if a technique were found to efficiently
find chosen-IV collisions, it could generate collision trails, and therefore be used
as a preprocessing step in our attack.

On average, the trail backtracking attack succeeds with 229 evaluations of the
round function (when using T2), which is exactly the complexity of the birthday
bound. With T1, the attack succeeds in 234.5 (in average), when the announced
complexity was 246.

In order to get some insight to why the collision search procedure succeeds
faster than expected, we observed the number of right pairs going in and out
of each round. Figure 2 shows these numbers when the first collision is found
(using T1). The results are similar if we average them on 100 collisions, or to
what is obtained with other trails. After round 2 or 3, the pairs pass the next
round with abnormally high probability. Apparently, the round differentials are
not independent. This would explain why the first rounds have a tendency to
“filter”good pairs that pass the subsequent rounds more easily. This may be very
specific to the one-bit version of RadioGatún, though. It may also be specific to
the way the collision trails were obtained (by actually computing a collision).

In itself, the trail backtracking attack does not break RadioGatún.
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round in. pairs out. pairs Wr(Δk
i , Δk

x, Δk
o) experimental weight

0 32.01 30.01 2 2.0
1 32.82 25.82 7 7.0
2 28.62 16.66 11 12.0
3 19.46 12.88 11 6.6
4 15.69 7.61 10 8.1
5 10.42 6.02 11 4.4
6 8.82 0.00 11 8.8
7 0.00 0.00 0 0.0

Fig. 2. (log2 of the) Number of pairs going in and out of each round in T1 ; comparison
with the weight of each round

4 Improving the Backtracking Attack on RadioGatún〈�W〉
In the next sections, we focus on improving the efficiency of the trail backtracking
attack whose complexity is above the birthday bound, using algebraic techniques,
as suggested by the authors of RadioGatún themselves.

The only non-linear part in RadioGatún is the “mill function”, and more
specifically its first component γ. The specific properties of γ are extensively
studied in [10, chapter 6]. For now, let us notice that γ has algebraic degree 2
over F2 (each bit of γ(a) can be expressed as a quadratic form in the input bits).
Because the rest of the round function is linear, the whole round function R can
be expressed as a tuple of 58 · �W polynomials of degree 2 in 58 · �W variables
over F2 (we denote by F2[s] the set of all polynomials over 58 · �W variables
corresponding to the bits of the internal state).

It is well-known that if a function is quadratic, then its differential is linear.
This is the key idea in this preliminary algebraic analysis of RadioGatún. Let us
consider the set of internal states ŝ after input injection satisfying the round dif-
ferential (Δi, Δo). These state satisfy the following equation: R(̂s)⊕R(̂s⊕Δi) =
Δo. Even though R is quadratic, this equation is only linear in ŝ. Therefore,
we know that all the values of ŝ satisfying it lie in an affine space, and thus
can be characterized by linear conditions on ŝ. These conditions depend on Δi

and Δo, and can be computed efficiently using linear algebra. We denote by
C(Δi, Δo) (or Ck) these conditions. The state entering the round function is
given by ŝ = s⊕Fi(x). Therefore, conditions on ŝ give two kinds of information:

1. linear conditions on the bits of s.
2. linear conditions between bits of s and bits of x.

The former can be used to detect incoming pair that will never give rise to an
outgoing pair, for any value of x. This allows to stop the exploration of dead
branches of the tree earlier. The latter directly gives us some bits of x, as linear
combinations of bits of s, and thus allow us to filter the values of x that do not
yield a right outgoing pair. Using these conditions, we can decrease the amount
of useless trials in the backtracking attack. Figure 3 shows which bits of the input
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k xk[0] xk[1] xk[2]
0 a[16] a[18] + 1
1 a[16] + 1
2
3 a[17] + a[16] + x[0] a[18]
4 a[15] + a[16] + 1 a[17] + 1 a[18]
5 a[17] + a[16] + x[0] + 1 a[18]
6

Fig. 3. When using T2, some bits of the input blocks xk are determined by some bits of
the incoming state. An empty cell means that the corresponding bit has to be chosen
by the attacker.

k C (Δk
i , Δk

x, Δk
o

)
0 x[0] + a[16] x[2] + a[18] + 1

1

x[0] + a[16] + 1 a[0]
a[2] a[3] + 1
a[5] + a[4] a[6]
a[8] a[10] + 1
a[12] a[14] + 1

2
a[4] + 1 a[7] + a[5] + 1
a[7] + a[6] + 1 a[8] + 1
a[13] a[15]

3
x[0] + a[17] + a[16] + x[1] x[2] + a[18]
a[1] + 1 a[3]
a[13] + 1 a[15]

4

a[15] + x[0] + a[16] + 1 a[17] + x[1] + 1
x[2] + a[18] a[3] + a[0] + 1
a[3] + a[1] a[3] + a[2]
a[4] a[6]
a[7] + a[8] + 1 a[9]
a[14] + 1

5

x[0] + a[17] + a[16] + x[1] + 1 x[2] + a[18]
a[0] a[2] + 1
a[4] a[7]
a[8] + a[10] a[9] + a[10] + 1
a[11] + 1 a[15] + 1

Fig. 4. Conditions imposed at the beginning of each round by T2

message are determined by the internal state, for the trail T2. The complete set
of conditions is given in fig. 4. It must be noted that these conditions can be
computed efficiently for all values of the word size �W (the linear algebra involved
is cubic in the word size).
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4.1 Experimental Results

We implemented the improved backtracking attack on RadioGatún〈1〉, using the
same two trails T1 and T2, so that the result can be compared with the regular
attack. For T2, collisions are found on an average of 227 evaluations of R, which
means a speedup of 4 compared to the regular attack. Note that this is below
the birthday bound. Annex 4 shows the local conditions imposed by T2. For T1,
232, which is more than 5.5 times faster than the original attack.

5 The Backtrackingless Backtracking Attack

While the technique described in the previous section reduces the amount of
backtracking by allowing an earlier filtering of pairs that will not lead to a
collision, it does not prevent all backtracking. The reason for this is that this
filtering is only local : at round k, we cannot yet filter pairs that will not pass
round k + 1. In this section, we address this issue. We show that it is possible to
avoid all backtracking by propagating equations backwards from the last round
to the first round of the trail. We get a set of equations on the internal states
entering the first round ; if a state s0 satisfies these equations, then we can
generate a few collisions at a negligible cost. We achieve some kind of global
filtering, because we filter at the first round all the pairs that will not pass any
of the subsequent rounds (we “push” all the conditions at the root of the tree).
We propose to name this attack the Backtrackingless Backtracking attack1.

In the previous section, we showed how to generate a set of conditions Ck

such that if a state s satisfies these conditions, then the pair
(
s, s⊕Δk

i

)
will

pass round k. In order to pass round k + 1, the states going out from round k
must also satisfy Ck+1. Our objective is to express a new set of conditions on
s such that if these conditions are satisfied, then s satisfies Ck and s′ satisfies
Ck+1. We achieve our objective of propagating all the conditions backwards to
the first round by recursively applying this process.

5.1 Description

We use standard notions and notations for commutative algebra, that can be
found for example in [8]. Formally, we say that a (polynomial) condition (or
constraint, or equation) on s is a polynomial of the ring F2[s] (i.e., a polynomial
in which the variables are bits of s). A condition P is satisfied by s if P vanishes
when the variables are substituted with the actual values of bits in s. We can then
write P (s) = 0, or, using the notation from the area of logics, s |= P . The set of
states satisfying P is then the set of zeroes of P . We will also have to consider the
conjunction C of several such conditions (i.e., systems of polynomial equations).
A convenient way to represent such a system is to consider the polynomial ideal I
generated by the polynomials in C. It contains all the polynomial combinations of
1 Its name is reminiscent of the inductionless induction of [7] or of the splittingless

splitting of [16].
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its generators, that is, all the polynomial“consequences”of the original equations.
The set of states satisfying C is the set of all common zeroes of all the polynomials
in I, which is called the affine variety V(I) associated to I. We say that a set of
conditions D is a consequence of another system C if ID ⊆ IC . We note C ⇒ D
to describe this situation.

When expressing conditions about the output of the round function, we in-
troduce 58 · �W more variables s′, corresponding to the bits of the output. The
equations of R are actually equations in F2[s, s′]. We will note IR the ideal of
F2[s, s′] generated by the equations of R; its affine variety contains all the tuples
(s, s′) such that s′ = R(s). From a geometric point of view, these equations de-
scribe the graph of the function R (in the same fashion that y−x2 = 0 describes
a parabola). Later on, we will use a different representation of these equations,
that still describe the same graph.

We need a last tool before defining formally the objects we wish to compute.
We need to express conditions on the input of the (j +1)-th round as conditions
on the output of the j-th round. This is simply done by renaming variables. We
define the renaming function ρ : F2[s]→ F2[s′] as ρ(sj) = s′j. This renaming can
be extended to operate on ideals : ρ(I) =

{
ρ(P ) | P ∈ I

}
. It is straightforward

to check that ρ(I) is still an ideal.

New Sets of Conditions. Given a r-round trail T , a sequence of r input
blocks

(
xk
)
0≤k<r

and an internal state s0, we note si+1 = R
(
si ⊕ Fi

(
xi
))

. Our
objective is to build r sets of conditions Dk, 0 ≤ k < r such that if xk |= Dk,
then for all j ≥ k, xk |= Cj (if the internal state at the input of round k satisfies
the conditions Dk, then we know for sure that it will lead to a collision because
it satisfies all the subsequent sufficient conditions Cj, for k ≤ j). In particular, if
we are able to find an internal state satisfying D0, then we get a collision nearly
for free. Intuitively, our objective is to transfer simultaneously all the conditions
Ci at the beginning of each round to conditions on the internal state s0 entering
the first round. It must be noted that the authors of [3] mentioned the possibility
to propagate conditions on the input of the lonesome round to the input of the
preceding rounds. Here, we propagate conditions on the internal state.

From the definition of Dk, we can first deduce that Dk ⇒ Ck, and then that
if sk |= Dk, then sk+1 |= Dk+1. We also know that there are no conditions on
the output of round r (because a collision is already obtained), and therefore:
Dr−1 = Cr−1. For 0 ≤ j < r − 1, we can now define Dj by:

Dj =
(
Cj + IR + ρ

(
Dj+1))⋂F2[s]

Informally, Dj is the ideal obtained by writing together the constraints Dj+1 on
s′, the equations of the round function and the constraints Cj on s. By taking
its intersection with F2[s], we eliminate all the polynomials containing a variable
from s′. This amounts to considering the consequences of these equations that
can be expressed using only the variables of s – a process known as eliminating
the variables s′.
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Computing the Dj’s. The Hilbert Basis theorem tells us that, like all ideals
of a polynomial ring, Dj admits a finite number of generators; moreover, they
can be computed using a computer algebra system: compute a Gröbner basis G
of Cj + IR + ρ(Dj+1) for the lexicographic ordering (or a suitable elimination
ordering). The basis G generates Cj +IR +ρ(Dj+1), but the elimination theorem
(see [8]) additionally tells us that G ∩ F2[s] generates Dj . Now, we claim that
V
(
Dj
)

is exactly the set of all the states that will pass the end of the trail.
This is in fact a consequence of the extension theorem: if s ∈ V

(
Dj
)
, then there

exists an “extension”value s′ such that (s, s′) ∈ V
(
Cj + IR +ρ

(
Dj+1

))
. Because

we included the equations of R, this value is necessarily R(s). The conclusion
follows by induction on the number of rounds.

To complete the attack, we need to find a message yielding an internal state
s satisfying D0, starting from the IV (which is the null state); then we would
automatically get a collision without any backtracking. Note that being able to
just determine a “standalone” state in V

(
D0
)

would give a chosen-IV collision
attack.

Finding points in an affine variety is difficult in the general case, but becomes
easier when a Gröbner basis of the corresponding ideal is known (and it is very
easy when a Gröbner basis is known for the lexicographic ordering). Here, as it
result from the process of elimination, D0 form a Gröbner basis for a certain
ordering, which depends on the ordering used for the elimination process. It
could be chosen so that D0 form a lexicographic Gröbner basis (using a block
order where the non-eliminated variables are ordered lexicographically), but this
may make the elimination process slower. In any case, order change algorithms
could be used, such as the Gröbner Walk [6] or FGLM [15].

Reaching D0. To find real collisions, we need to be able to reach V
(
D0
)

starting from the null state. The problem of finding a collision thus reduces
to the problem of reaching a state satisfying a set of polynomial conditions.
This formulation of the problem is again reminiscent of message modification
techniques. This suggest that such powerful techniques could be used here. We
did not investigate this problem in detail, and we only tried to hash random
messages until all the conditions are satisfied. In this case, the complexity of
finding a collision is related to the cardinality of V(Dj).

The representation of the condition set D0 on the initial conditions is not
unique. In our case, it forms a Gröbner basis, which is certainly interesting. We
have some freedom in the choice of the ordering. The Graded Reverse Lexico-
graphic order produces the system of lowest possible degree, but usually returns
a system with more equations than when using the lexicographic ordering (which
yields equations of higher degree).

5.2 Implementation and Experimental Results

We implemented the backtrackingless backtracking attack, using an off-the-shelf
computer algebra system to perform the algebraic computations, and then we
adapted our collision-finding program to use these conditions.
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Propagating Conditions. Back to our two trails T1 and T2, the process of
computing the conditions D0 involves nontrivial algebraic computation. We used
the implementation of the F4 [14] algorithm in the MAGMA computer algebra
system to obtain the Gröbner bases. We expected these computations to be very
hard (the systems have 100+ variables, and contains the equations of R). It
is usually not possible to compute a Gröbner basis of the equations describing
directly a cryptographic primitive – MAGMA ate 8Gb of memory and crashed
when we tried to compute a Gröbner basis of IR. However, the computations
of our sets of conditions were not only possible, but also unexpectedly fast (less
than a second). Computing D0 for a given trail is usually a matter of less than
five seconds on a desktop computer. Even more surprisingly, the conditions Dj

are almost always linear, for all trails, except when j = 0 on some trails.

– For T2 in particular, the conditionsD5,D4, D3 andD1 are linear.D2 contains
a few equations of degree 2, and D0 contains one equation of degree 3, along
with 97 quadratic and 15 linear equations.

– For T1, only D0 is non-linear ; it contains 26 quadratic and 26 linear equa-
tions.

This means that the size of conditions propagated through the round function
does not blow up exponentially with the number of round passed. This was
unexpected, because the size of the equations describing R(k) grows exponentially
with k. In fact, the local conditions computed in section 4 play a crucial role
here: the Gröbner basis computation are much faster and more tractable if there
are a few linear conditions on the internal state entering the round. In particular,
C0 is usually almost empty for many trails, and the conditions D0 are usually
bigger and of higher degree than the others.

Actually Finding Collisions. Our collision-finding program just hashes ran-
dom messages and checks if the resulting internal state satisfies D0. If it is the
case, the previous version of the backtracking attack is run, and succeeds with-
out backtracking. The performance of our straightforward implementation is the
following: for T2, a collision is found with about 224.5 evaluations of the round
function (229.5 for T1, which means a speedup of 32 compared to the original
attack).

In addition, we estimated the size of the set of states leading to a collision
by Monte-Carlo sampling : the probability that a random message yields a state
from which a collision is possible for T1 (resp. T2) is 2−28.42 (resp. 2−23.4). This
means that for T1 (resp. T2) we have |T1| � 229.6 (resp. 234.6). It is worth
noting that the trail that has the best backtracking cost still yields the biggest
affine variety. We also note that the running time of our simple implementation
is relatively well-correlated to the cardinalities of the affine varieties.

5.3 About the Structure of the Equations

In this short section, we give a few elements in order to explain why the algebraic
attack is successful. We discuss the case of the one-bit version, but the discussion
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also apply to the bigger versions, as we may notice. There are 19 mill equations
that we denote by f1, . . . , f19.

Peeling Off the Diffusion Layer. Compared to algebraic attacks on block
ciphers, the situation is quite easier here. First of all, we are not facing a mono-
lithic cipher where all the internal state is unknown but we can attack each round
independently of the others (the conditions Sj bridge the gap between the iso-
lated rounds). The equations we are manipulating therefore only represent a
single round, which is much weaker than the whole construction.

Second, the hardness of solving the equations associated with a block cipher
come from the alternation of a simple non-linear part (the S-Boxes, or the γ
function here) with a linear diffusion layer. Since we are considering a single
round here, it is possible to “peel off” the diffusion layer, and to expose the non-
linear core directly, by considering a linear combination of the original equations:⎛⎜⎝ g1

...
g19

⎞⎟⎠ = L−1
4 ×

⎛⎜⎝ f1
...

f19

⎞⎟⎠ = γ
(
a⊕ L5(x)

)
⊕ linear terms

Thus, it is relatively equivalent to perform our analysis on the equations of γ
and on the equations of the mill function. Recall that γ(a)[i] is given by:

γ(a)[i] = a[i + 1]a[i + 2]⊕ a[i + 2]⊕ a[i]⊕ 1

Sparsity of the Equations. Computing a Gröbner base of the equations of
γ is not easy (MAGMA takes about 10 minutes on a fast machine and requires
2.8 Gbytes of memory to do so, for the degree reverse lexicographic order).
However, these equations have a specific structure that can be exploited. They
are extremely sparse, each containing only one quadratic term. Moreover, each
variable appear in exactly two quadratic terms. This means that if the value
of a variable is fixed, two equations become linear. To illustrate how bad a
property this is, let us consider a random quadratic form in n variables. It is
shown in [17] that on fields of characteristic 2, any quadratic form becomes a
special standard form f =

∑n/2
i=0 x2ix2i+1 under the right change of variables

(some details omitted for the sake of simplicity). This means that we may have
to fix about n/2 variables in the new basis before the form becomes linear.

Let us go back to our main computational problem, namely the computation
of a Gröbner basis of the ideal generated by Cj + IR + ρ

(
Dj+1

)
, for a suitable

elimination ordering. Along with the equations of R are the linear conditions
Cj imposed on the input bits of each round. These conditions, shown in fig. 4,
often fix the value of one bit. Therefore, in conjunction with the removal of the
diffusion layer, they can be used to dramatically simplify the equations of IR. In
fact, these simplifications are able performed automatically by most computer
algebra systems. This explains why the elimination process results in mostly
linear equations, and terminates so fast.
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The REDUCTION Algorithm. Let B be a set of polynomials. A polynomial
P is said to be reduced for B if no monomial of P lies in the ideal generated by the
head terms of B − P . Intuitively, this means that P cannot be “simplified” by a
polynomial combination of elements in P . A Basis B is said to be reduced if each
P ∈ B is reduced for B − P (the polynomials of B cannot simplify each other).
The REDUCTION algorithm, which gives a reduced basis from an arbitrary
basis, is described in [8, chapter 2, paragraph 7], and in [1, figure 5.2]. Note
than when applied to linear polynomials only, it is actually (a version of) the
Gaussian reduction algorithm.

REDUCTION is often invoked automatically in computer algebra systems
before and after the computation of a Gröbner basis. When the graded-reverse
lexicographic ordering is used, it removes some of the quadratic terms in the
equations of γ by substituting the linear equations of Cj in them. Additional
tuning of variable order does not seem to be necessary to obtain satisfactory
results. However, ordering the variables in the following way: a′ < a < x peels
off the diffusion layer very nicely, by keeping the number of quadratic term close
to the minimum, and making the 19 quadratic terms of γ the head terms of the
19 equations.

6 Extension to �w > 1

The main interest in studying RadioGatún〈1〉, according to [3], is that a collision
trail for the one-bit version could be transformed into a collision trail for any
n-bit version, with an increased differential weight. In this section, we briefly
survey how the result presented in this paper apply to the case where �W > 1.

The backtracking attack with local filtering presented in section 4 can be
mounted for any value of �W without any difficulty, as its complexity is polyno-
mial in �w.

The backtrackingless backtracking attack may be more difficult to implement,
as we have no upper-bound on the complexity of the Gröbner basis computations
involved in the attack. However, all the arguments given in section 5.3 still apply
to the multi-bit case ; the diffusion layer can be gotten rid of as efficiently as in
the one-bit case. Then, the multi-bit version of γ is actually a collection of �w

copies of the one-bit version of γ operating independently (the diffusion layer is
supposed to connect them).

Unfortunately, we did not implement the attack in the multi-bit case, because
we were not able to find any possible differential trail for any value of �w > 1.
The heuristic argument of [3] regarding the extension of trails from 1-bit to n-bit
assumes that the conditions imposed by the round differentials are independent.
As we have seen earlier, this is not the case. All the possible trails we knew for
the 1-bit version turned out to be impossible to extend to n-bit versions (the
round differentials seem to impose contradictory conditions).

In any case, we believe that our technique may come in handy when collision
trail will be found for RadioGatún〈�w〉 with �w > 1 though.
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7 Conclusion

We presented an improvement to the trail backtracking attack introduced by
the authors of RadioGatún, and which is reminiscent of the well-known mes-
sage modification applied against the MD and SHA family. We are able to give
an algebraic characterization of the internal states that can lead to a collision
along a given trail. Finding a message mapping the IV to a state satisfying all
these conditions remains an open problem, which is also reminiscent of message
modification.

These preliminary remarks on RadioGatún invite some comments : the fact
that the round function is only quadratic seems to be exploitable in unpredictable
ways. It would be safe to consider functions of higher degree, but the hashing
speed would probably be affected. Alternatively, increasing the diffusion effect
of the belt in order to exploit the non-linearity of the mill function further seems
to be a potential solution to make the backtracking cost of collision trails higher.
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Abstract. This article discusses the provable security of an iterated
hash function using a block cipher. It assumes the construction using
the Matyas-Meyer-Oseas (MMO) scheme for the compression function
and the Merkle-Damg̊ard with a permutation (MDP) for the domain
extension transform. It is shown that this kind of hash function, MDP-
MMO, is indifferentiable from the variable-input-length random oracle
in the ideal cipher model. It is also shown that HMAC using MDP-
MMO is a pseudorandom function if the underlying block cipher is a
pseudorandom permutation under the related-key attack with respect to
the permutation used in MDP. Actually, the latter result also assumes
that the following function is a pseudorandom bit generator:

where E is the underlying block cipher, IV is the fixed initial value of
MDP-MMO, and and are the binary strings used in HMAC.
This assumption still seems reasonable for actual block ciphers, though
it cannot be implied by the pseudorandomness of E as a block cipher.
The results of this article imply that the security of a hash function may
be reduced to the security of the underlying block cipher to more extent
with the MMO compression function than with the Davies-Meyer (DM)
compression function, though the DM scheme is implicitly used by the
widely used hash functions such as SHA-1 and MD5.

1 Introduction

Background. A hash function is one of the most important primitives in cryptog-
raphy. It normally consists of a function with fixed input length. This component
function is called a compression function. A domain-extension transform is also
specified which describes how to apply the compression function to a given input
of variable length.

The methods to construct a compression function are classified in two classes:
dedicated methods and those using block ciphers. Compression functions of well-
known hash functions such as SHA-1/256 are constructed with the dedicated
methods. However, they are also regarded as Davies-Meyer functions using ded-
icated block ciphers known as SHACAL-1/2.
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Contribution. The topic of this article is to reduce the security of a hash function
to the security of the underlying block cipher. It assumes the construction using
the Matyas-Meyer-Oseas (MMO) scheme [14] for the compression function and
the Merkle-Damg̊ard with a permutation (MDP) [10] for the domain extension
transform. This kind of hash function is called MDP-MMO in this article. A
message padding scheme with the MD-strengthening is also assumed for MDP-
MMO.

This article mainly discusses two security properties of MDP-MMO: indif-
ferentiability from the variable-input-length (VIL) random oracle and pseu-
dorandomness of HMAC [2,12] using MDP-MMO. Collision-resistance is also
mentioned briefly. These results imply that the security of an iterated hash
function may be reduced to the security of the underlying block cipher to more
extent with the MMO compression function than with the Davies-Meyer (DM)
compression function.

It is shown that MDP-MMO is indifferentiable from the VIL random ora-
cle in the ideal cipher model. This work is motivated by the recent work of
Gong et al. [9]. They claimed that hash functions indifferentiable from the VIL
random oracle in the ideal cipher model can be constructed using the MMO
compression function and the domain extension transforms in [8]. The contri-
bution of the current article is to reconstruct the proof using the game playing
technique [5]. Also, notice that they did not consider MDP for domain extension.

Indifferentiability of an iterated hash function is often discussed on the as-
sumption that the underlying compression function is a random oracle with
fixed input length. Taking the structure of compression functions of widely used
hash functions into consideration, it is not satisfactory. For example, DM and
MMO compression functions are not indifferentiable from the fixed-input-length
(FIL) random oracle [8,13].

It is also shown that HMAC using MDP-MMO is a pseudorandom function
(PRF) if the underlying block cipher is a pseudorandom permutation (PRP)
under the related-key attack with respect to the permutation used in MDP.
Actually, this result also requires that the following function is a pseudorandom
bit generator (PRBG):

(EIV (K ⊕ opad)⊕K ⊕ opad)‖(EIV (K ⊕ ipad)⊕K ⊕ ipad) ,

where E is the underlying block cipher, IV is the fixed initial value of MDP-
MMO, and opad and ipad are the binary strings used in HMAC. It does not
seem difficult to design a block cipher with which the function shown above is
PRBG, though it cannot be implied by the pseudorandomness of E as a block
cipher. It is because any adversary has no control over IV , ipad and opad.

It can be said that the pseudorandomness of HMAC using MDP-MMO is
almost reduced to the pseudorandomness of the underlying block cipher. Intu-
itively, it is because the chaining variables are fed into the block cipher via the
key input and they are not disclosed to the adversary. On the other hand, if the
Davies-Meyer compression function is used, then it is difficult to obtain a similar
result. For this type of compression function, instead of the chaining variables,
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the message blocks are fed into the block cipher via the key input. They are
selected and controlled fully by the adversary.

Related Work. Coron et al. [8] first discussed the indifferentiability of hash func-
tions from the VIL random oracle. They presented four domain extension trans-
forms: the Merkle-Damg̊ard (MD) transform with prefix-free encoding, the MD
transform dropping some output bits, and NMAC/HMAC-like transforms. Then,
they showed that hash functions using them are indifferentiable from the VIL
random oracle if the underlying compression functions are FIL random oracles.
Moreover, they showed that hash functions using them and the DM compres-
sion function are indifferentiable from the VIL random oracle in the ideal cipher
model.

Chang et al. [7] discussed the indifferentiability of hash functions from the
VIL random oracle in the ideal cipher model. They assumed the compression
functions using a block cipher in the PGV model [17] and the MD transform with
prefix-free encoding for domain extension. They showed that the hash functions
using 16 compression functions in the PGV model are indifferentiable from the
VIL random oracle in the ideal cipher model. They also showed that the hash
function using the MMO compression function is differentiable from the VIL
random oracle. On the other hand, as mentioned before, Gong, Lai and Chen
claimed that it is possible to construct hash functions indifferentiable from the
VIL random oracle in the ideal cipher model even with the MMO compression
function [9].

Bellare and Ristenpart gave a new notion called multi-property preservation
(MPP) for domain extension [4]. A domain extension transform is called MPP
if it preserves multiple security properties of a compression function such as
collision-resistance, pseudorandomness, indifferentiability from a random oracle,
etc. They also presented the EMD domain extension transform with the MPP
property.

Hirose, Park and Yun [10] proposed a MPP domain extension transform called
MDP. They also showed that a hash function using MDP and the DM compres-
sion function is indifferentiable from the VIL random oracle in the ideal cipher
model. Ferguson had originally suggested an example of the MDP transform [11].

HMAC was first proposed by Bellare, Canetti and Krawczyk [2]. It was also
shown in the same paper that HMAC is a PRF if the underlying compression
function is a PRF with two keying strategies and the iterated hash function is
weakly collision-resistant. Bellare proved that HMAC is a PRF under the sole
assumption that the underlying compression function is a PRF with two keying
strategies [1].

Organization. This article is organized as follows. Some notations and definitions
are given in Section 2. The definition of MDP-MMO is given in Section 3. Sec-
tion 4 is devoted to the indifferentiability of MDP-MMO from the VIL random
oracle in the ideal cipher model. The security of HMAC using MDP-MMO as a
PRF is discussed in Section 5.
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2 Definitions

Let Func(D, R) be the set of all functions from D to R, and Perm(D) be the set

of all permutations on D. Let s
$← S represent that an element s is selected from

the set S under the uniform distribution.

2.1 Pseudorandom Bit Generator

Let g be a function such that g : {0, 1}n → {0, 1}l, where n < l. Let A be a
probabilistic algorithm which outputs 0 or 1 for a given input in {0, 1}l. The
prbg-advantage of A against g is defined as follows:

Advprbg
g (A) =∣∣∣Pr[A(g(k)) = 1 | k $← {0, 1}n]− Pr[A(s) = 1 | s $← {0, 1}l]

∣∣∣ ,

where the probabilities are taken over the coin tosses by A and the uniform
distributions on {0, 1}n and {0, 1}l. g is called a pseudorandom bit generator
(PRBG) if Advprbg

g (A) is negligible for any efficient A.

2.2 Pseudorandom Function

Let f : K × D → R be a keyed function or a function family. f(k, ·) is often
denoted by fk(·). Let A be a probabilistic algorithm which has oracle access to a
function from D to R. A first asks elements in D and obtains the corresponding
elements in R with respect to the function, and then outputs 0 or 1. The prf-
advantage of A against f is defined as follows:

Advprf
f (A) =

∣∣∣Pr[Afk = 1 | k $← K]− Pr[Aρ = 1 | ρ $← Func(D, R)]
∣∣∣ ,

where the probabilities are taken over the coin tosses by A and the uniform
distributions on K and Func(D, R). f is called a pseudorandom function (PRF)
if Advprf

f (A) is negligible for any efficient A.
Let p : K × D → D be a keyed permutation or a permutation family. The

prp-advantage of A against p is defined similarly:

Advprp
p (A) =

∣∣∣Pr[Apk = 1 | k $← K]− Pr[Aρ = 1 | ρ $← Perm(D)]
∣∣∣ .

p is called a pseudorandom permutation (PRP) if Advprp
p (A) is negligible for

any efficient A.

2.3 Pseudorandom Function under Related-Key Attack

Pseudorandom functions under related-key attacks are first formalized by Bellare
and Kohno [3]. In this article, we only consider a related-key attack with respect
to a permutation π as in [10]. We will refer to this type of related-key attack
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as the π-related-key attack. Let A be a probabilistic algorithm which has oracle
access to a pair of functions from D to R. The prf-rka-advantage of A against f
under the π-related-key attack is given by

Advprf-rka
π,f (A) =∣∣∣Pr[Afk,fπ(k) = 1 | k $← K]− Pr[Aρ,ρ′

= 1 | ρ, ρ′
$← Func(D, R)]

∣∣∣ ,

where the probabilities are taken over the coin tosses by A and the uniform distri-
butions on K and Func(D, R). f is called a π-RKA-secure PRF if Advprf-rka

π,f (A)
is negligible for any efficient A.

For a permutation, the prp-rka-advantage and the π-RKA-secure PRP can
also be defined similarly.

2.4 Computationally almost Universal Function Family

Computationally almost universal function families are formalized by Bellare in
[1]. Let f : K ×D → R be a function family. Let A be a probabilistic algorithm
which takes no inputs and produces a pair of elements in D. The au-advantage
of A against f is defined as follows:

Advau
f (A) = Pr[fk(M1) = fk(M2) ∧M1 �= M2 | (M1, M2)← A ∧ k

$← K] ,

where the probabilities are taken over the coin tosses by A and the uniform
distribution on K. f is called a computationally almost universal function family
if Advau

f (A) is negligible for any efficient A.

2.5 Indifferentiability from Random Oracle

The notion of indifferentiability is introduced by Maurer et al. [15] as a gener-
alized notion of indistinguishability. Then, it is tailored to security analysis of
hash functions by Coron et al. [8].

Let C be an algorithm with oracle access to an ideal primitive F . In the
setting of this article, C is an algorithm to construct a hash function using F
with fixed input length. Let H be the VIL random oracle and S be a simulator
which has oracle access to H. SH tries to behave like F in order to convince an
adversary that H is CF . Let A be an adversary with access to two oracles. The
indiff-advantage of A against C with respect to S is given by

Advindiff
C,S (A) =

∣∣∣Pr[ACF ,F = 1]− Pr[AH,SH
= 1]

∣∣∣ ,

where the probabilities are taken over the coin tosses by A, C and S and the
distributions of ideal primitives. CF is said to be indifferentiable from the ran-
dom oracle H if there exists a simulator SH such that Advindiff

C,S (A) is negligible
for any efficient A.
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2.6 Ideal Cipher Model

A block cipher with block length n and key length κ is called an (n, κ) block
cipher. Let E : {0, 1}κ × {0, 1}n → {0, 1}n be an (n, κ) block cipher. Then,
E(k, ·) = Ek(·) is a permutation for every k ∈ {0, 1}κ. An (n, κ) block cipher E
is called an ideal cipher if Ek is a truly random permutation for every k.

The lazy evaluation of an ideal cipher is described as follows. The encryption
oracle receives a pair of a key and a plaintext as a query, and returns a randomly
selected ciphertext. On the other hand, the decryption oracle receives a pair of a
key and a ciphertext as a query, and returns a randomly selected plaintext. The
oracles share a table of triplets of keys, plaintexts and ciphertexts, which are
produced by the queries and the corresponding replies. Referring to the table,
they select a reply to a new query under the restriction that Ek is a permutation
for every k.

3 MDP with MMO Compression Function

We denote concatenation of sequences by ‖. For sequences M1, M2, . . . , Mk, we
often denote M1‖M2‖ · · · ‖Mk simply by M1M2 · · ·Mk. Let B = {0, 1}n and
B+ = ∪∞i=1Bi.

Let E : B × B → B be an (n, n) block cipher. The Matyas-Meyer-Oseas
(MMO) compression function [16] F : B × B → B with E is defined as fol-
lows: F (s, x) = Es(x) ⊕ x, where s is a chaining variable and x is a message
block.

The MDP transform [10] of F with a permutation π is denoted by F ◦
π :

B × B+ → B and defined as follows: For s ∈ B and M1M2 · · ·Mk (Mi ∈ B),

1. s0 = s,
2. si = F (si−1, Mi) for 1 ≤ i ≤ k − 1,
3. sk = F (π(sk−1), Mk),
4. F ◦

π (s, M1M2 · · ·Mk) def= sk.

The following padding function pad : {0, 1}∗ → ∪∞i=2Bi is also prepared:

pad(M) = M‖10�‖bin(|M |) ,

where � is the minimum non-negative integer such that |M | + � ≡ 0 (mod n),
and bin(|M |) is the (n − 1)-bit binary representation of |M |. Thus, the input
length of pad is precisely at most 2n−1 − 1.

Now, MDP-MMO is a scheme to construct a hash function using a block
cipher E : B × B → B, a permutation π : B → B and an initial value IV ∈ B
defined as follows:

MDP-MMO[E, π, IV ](M) def= F ◦
π (IV, pad(M)) .
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E

M2M1

IV π

Mk−1

E E E

Mk

Fig. 1. MDP-MMO[E, π, IV ](M). pad(M) = M1M2 · · ·Mk

A diagram of MDP-MMO is shown in Figure 1.

4 Security of MDP-MMO

4.1 Collision Resistance

It is easy to see that MDP-MMO[E, π, IV ] is collision-resistant (CR) if its com-
pression function is CR, that is, it is difficult to compute a pair of distinct (S, X)
and (S′, X ′) such that ES(X)⊕X = ES′(X ′)⊕X ′. The pseudorandomness of E
as a block cipher cannot imply the property. It is easy to find a counterexample.
However, it seems still reasonable to assume that a well-designed block cipher
such as AES has this property.

The CR of MDP-MMO can also be proved in the ideal cipher model using
the technique by Black et al. in [6].

4.2 Indifferentiability from Random Oracle

In this section, we show that MDP-MMO[E, π, IV ] is indifferentiable from the
VIL random oracle in the ideal cipher model. The following theorem states the
indifferentiability of MDP-MMO in the ideal cipher model.

Theorem 1. Let E be an (n, n) block cipher. Let π be a permutation and Pπ be
the set of its fixed points. Let A be an adversary that asks at most qH queries to
the VIL oracle, qE queries to the FIL encryption oracle and qD queries to the
FIL decryption oracle. Let l be the maximum number of message blocks in a VIL
query. Suppose that lqH + qE + qD ≤ 2n−1. Then, in the ideal cipher model,

Advindiff
MDP-MMO,SE,SD

(A)

≤ 6 (lqH + qE + qD)2 + 14 (lqH + qE) qD + (lqH + qE)2

2n+1

+
2 lqH(qE + qD)

2n−1 − 3 (lqH + qE + qD)− |Pπ |

+
(4 |Pπ|+ 5) (lqH + qE + qD) + 21 qD

2n+1 ,

where the simulators SE and SD are given in Figure 2. SE is a simulator for
the encryption oracle, and SD for the decryption oracle. SE makes at most qE
queries and runs in time O(qE (qE +qD)). SD makes at most qD queries and runs
in time O(qD(qE + qD)).
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For Theorem 1, suppose that π has no fixed points. Also suppose that lqH+qE +
qD ≤ 2n−3, and lqH ≥ 1, qE ≥ 1, qD ≥ 1. Then, a looser but simpler bound is
obtained:

Advindiff
MDP-MMO,SE ,SD

(A) ≤ 5 (lqH + qE + qD)2

2n−1 .

Instead of the proof omitted due to the page limit, a brief intuitive idea of
the proof is given below.

SE and SD simulate the ideal cipher using lazy evaluation. In Figure 2, P(s)
and C(s) represent the set of plaintexts and that of ciphertexts, respectively,
which are available for the reply to the current query with the key s. Both
of them are initially {0, 1}n, and their elements are deleted one by one as the
simulation proceeds.

Let (si, xi, yi) be the triplet determined by the i-th query of the adversary
and the corresponding answer, where Esi(xi) = yi. For the MMO compression
function, si is a chaining variable, and xi is a message block. The triplets nat-
urally defines a graph which initially consists of a single node labeled by the
initial value IV and grows as the simulation proceeds. (si, xi, yi) adds two nodes
labeled by si and zi = xi ⊕ yi, and an edge labeled by xi from si to zi. The
additions avoid duplication of nodes with the same labels.

The simulators use two sets V and T . V keeps all the labels of the nodes with
outgoing edge(s) in the graph. T keeps all the labels of the nodes reachable from
the node labeled by IV following the paths. The procedure getnode(s) returns
the sequence of labels of the edges on the path from the node labeled by IV to
the node labeled by s.

The simulators select a reply not simply from C(s) or P(s) but from C(s)\Sbad
or P(s)\Sbad. It prevents most of the events which make the simulators fail. For
example, since {y |x⊕ y ∈ T } ⊂ Sbad, every node in T has a unique path from
the node labeled by IV . Thus, M̃ is uniquely identified at the lines 204 and 304.
The most critical work of the simulators is to reply to a decryption query related
to the final invocation of the compression function in MDP-MMO[E, π, IV ](M)
for some M . Let (s, x) be such a query to SD. In order to reply to it properly, the
simulator SD has to ask M to the VIL random oracle H and return H(M)⊕ x.
Owing to the padding scheme pad, there exist only two possibilities for M , M (0)

and M (1), which correspond to the message blocks M̃ fed to the compression
functions before the permutation π. Thus, SD can accomplish the work.

5 Security of HMAC Using MDP-MMO

In this section, we discuss the pseudorandomness of HMAC using the MDP-
MMO hash function (HMAC-MDP-MMO). This function is defined as follows:

HMAC[E, π, IV ](K, M) = H((K ⊕ opad)‖H((K ⊕ ipad)‖M)) ,

where H is MDP-MMO[E, π, IV ] and K is a secret key. A diagram of HMAC-
MDP-MMO is given in Figure 3. Let us call H((K ⊕ ipad)‖·) inner hashing and
H((K ⊕ opad)‖·) outer hashing.
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Initialize:

100: V ← ∅
101: T ← {IV }
102: P(s)← {0, 1}n
103: C(s)← {0, 1}n

Interface E(s, x):

200: if s ∈ T then
201: Es(x) $← C(s) \ Sbad

202: T ← T ∪ {Es(x)⊕ x}
203: else if π−1(s) ∈ T then
204: M̃ ← getnode(π−1(s))
205: if x ∈ {lb(M (0)), lb(M (1))} then
206: if x = lb(M (0)) then
207: Es(x)← H(M (0))⊕ lb(M (0))
208: else
209: Es(x)← H(M (1))⊕ lb(M (1))
210: if Es(x) �∈ C(s) then
211: return
212: else
213: Es(x) $← C(s)
214: else
215: Es(x) $← C(s)
216: V ← V ∪ {s}
217: P(s)← P(s) \ {x}
218: C(s)← C(s) \ {Es(x)}
219: return Es(x)

Interface D(s, x):

300: if s ∈ T then
301: Ds(x) $← P(s) \ Sbad

302: T ← T ∪ {Ds(x)⊕ x}
303: else if π−1(s) ∈ T then
304: M̃ ← getnode(π−1(s))
305: if x = H(M (0))⊕ lb(M (0)) then
306: Ds(x)← lb(M (0))
307: else if x = H(M (1))⊕ lb(M (1)) then
308: Ds(x)← lb(M (1))
309: else
310: Ds(x) $← P(s) \ {lb(M (0)), lb(M (1))}
311: else
312: Ds(x) $← P(s)
313: V ← V ∪ {s}
314: P(s)← P(s) \ {Ds(x)}
315: C(s)← C(s) \ {x}
316: return Ds(x)

Fig. 2. Pseudocode for the simulators SE and SD. Sbad = {y | y ∈ {0, 1}n∧x⊕y ∈ V ∪
T ∪π−1(V ∪T )∪π(T )∪Pπ}. pad(M (0)) = M̃‖lb(M (0)), and pad(M (1)) = M̃‖lb(M (1)).
M̃ = M (0)‖10� (0 ≤ � ≤ n − 2) and lb(M (0)) = 0‖bin(|M (0) |). M̃ = M (1) and
lb(M (1)) = 1‖bin(|M (1)|).
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E

M1Kip

IV π

Ml

E E E

E

Kop

IV E π E

1‖bin(|KopV |)

inner hashing

outer hashing

V

Ml+1

Fig. 3. HMAC[E, π, IV ](K, M). E is an (n, n) block cipher. Kip = K ⊕ and
Kop = K ⊕ . pad(Kip‖M) = KipM1 · · ·Ml+1.

We use the technique given by Bellare [1] in the analysis. We can also obtain
a similar result based on the pseudorandomness of Prefix-MDP [10] in a more
straightforward way. However, to the best of our analysis, the upper bound on
the prf-advantage against HMAC-MDP-MMO obtained with this approach is
worse than the one given below.

First, the compression function construction is considered. The following
lemma says that the MMO compression function is a (π-RKA-secure) PRF when
keyed via the chaining variable if the underlying block cipher is a (π-RKA-secure)
PRP under the chosen plaintext attack up to the birthday bound. The proof is
easy and omitted.

Lemma 1. Let E be an (n, n) block cipher and F be a function such that
FK(x) = EK(x) ⊕ x.

– Let AF be a prf-adversary against F which runs in time at most t and asks
at most q queries. Then, there exists a prp-adversary AE against E such
that

Advprf
F (AF ) ≤ Advprp

E (AE) +
q(q − 1)

2n+1 ,

where AE runs in time at most t + O(q) and asks at most q queries.
– Let π be a permutation. Let Aπ,F be a prf-rka-adversary against F with

respect to π which runs in time at most t and asks at most q queries. Then,
there exists a prp-rka-adversary Aπ,E against E with respect to π such that

Advprf-rka
π,F (Aπ,F ) ≤ Advprp-rka

π,E (Aπ,E) +
q(q − 1)

2n+1 ,

where Aπ,E runs in time at most t + O(q) and asks at most q queries.

The following lemma is on the inner hashing. It says that, if the compression
function F is a π-RKA-secure PRF, then the MDP composition of F and π is
computationally almost universal. The proof is omitted due to the page limit.
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Lemma 2. Let F : {0, 1}κ×{0, 1}n → {0, 1}κ be a function family, and let AF◦
π

be an au-adversary against F ◦
π . Suppose that AF◦

π
outputs two messages with at

most �1 and �2 blocks, respectively. Then, there exists a prf-rka-adversary Aπ,F

against F with respect to π such that

Advau
F◦

π
(AF◦

π
) ≤ (�1 + �2 − 1)Advprf-rka

π,F (Aπ,F ) +
1
2κ

,

where Aπ,F runs in time at most O((�1 + �2)TF ) and makes at most 2 queries.
TF represents the time required to compute F .

Lemma 2 requires a π-RKA-secure compression function. However, the assump-
tion does not seem severe since adversaries are allowed to make only at most 2
queries to the oracles.

The following lemma is on the outer hashing. It says that, if the compression
function is a PRF, then the outer-hashing function is also a PRF. The proof is
omitted.

Lemma 3. Let F : {0, 1}κ × {0, 1}n → {0, 1}κ be a function family. Let F̂ 2 :
{0, 1}κ × {0, 1}n → {0, 1}κ be a function family defined by

F̂ 2(K, X) = F (π(F (K, X)), 1‖bin(κ + n)) ,

where K ∈ {0, 1}κ and X ∈ {0, 1}n. Let AF̂ 2 be a prf-adversary against F̂ 2

that runs in time at most t and makes at most q queries. Then, there exist
prf-adversaries AF and A′

F against F such that

Advprf
F̂ 2 (AF̂ 2) ≤ Advprf

F (AF ) + q Advprf
F (A′

F ) ,

where AF runs in time at most t + O(q TF ) and makes at most q queries, and
A′

F runs in time t+O(q TF ) and makes at most 1 query. TF represents the time
required to compute F .

The following lemma is Lemma 3.2 in [1]. It says that h(Ko, G(Ki, ·)) is a PRF
if h(Ko, ·) is a PRF and G(Ki, ·) is computationally almost universal, where Ko

and Ki are secret keys chosen uniformly and independently of each other.

Lemma 4 (Lemma 3.2 in [1]). Let h : {0, 1}μ × {0, 1}n → {0, 1}μ and G :
{0, 1}κ×D → {0, 1}n be function families. Let hG : {0, 1}μ+κ×D → {0, 1}μ be
defined by hG(Ko‖Ki, M) = h(Ko, G(Ki, M)) for Ko ∈ {0, 1}μ, Ki ∈ {0, 1}κ
and M ∈ D. Let AhG be a prf-adversary against hG that runs in time at most
t and makes at most q (≥ 2) queries each of whose lengths is at most d. Then,
there exist a prf-adversary Ah against h and an au-adversary AG against G such
that

Advprf
hG(AhG) ≤ Advprf

h (Ah) +
q(q − 1)

2
Advau

G (AG) ,

where Ah runs in time at most t and makes at most q queries, and AG runs in
time O(TG(d)) and the two messages it outputs have length at most d. TG(d) is
the time to compute G on a d-bit input.
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The following theorem is on the pseudorandomness of the NMAC-like function
made from HMAC[E, π, IV ](K, ·) by replacing the first calls of the compression
function in inner and outer hashing with two secret keys chosen uniformly and
independently of each other. The theorem states that the security of the function
as a PRF is reduced to the security of the underlying block cipher as a PRP
under the π-related-key attack. It directly follows from Lemmas 1 through 4.

Theorem 2. Let B = {0, 1}n and E be an (n, n) block cipher. Let F : B×B → B
be a function such that FK(x) = EK(x)⊕x. Let F̂ 2F ◦

π : B2×B+ → B be defined
by F̂ 2F ◦

π (Ko‖Ki, M) = F̂ 2(Ko, F
◦
π (Ki, M)) for Ko, Ki ∈ B and M ∈ B+. Let

AF̂ 2F◦
π

be a prf-adversary against F̂ 2F ◦
π that runs in time at most t and makes

at most q (≥ 2) queries each of which has at most � blocks. Then, there exist
prp-adversaries AE and A′

E against E and a prp-rka-adversary Aπ,E against E
with respect to π such that

Advprf
F̂ 2F◦

π

(AF̂ 2F◦
π
) ≤

Advprp
E (AE) + q Advprp

E (A′
E) + � q2Advprp-rka

π,E (Aπ,E) +
(2� + 3)q2

2n+1 ,

where AE runs in time at most t + O(q TE) and makes at most q queries, A′
E

runs in time at most t + O(q TE) and makes at most 1 query, and Aπ,E runs in
time O(� TE) and makes at most 2 queries. TE represents the time required to
compute E.

The following lemma says that, even if the secret key of a PRF is replaced by
the output of a PRBG, the resulting function remains a PRF. The proof is easy
and omitted.

Lemma 5. Let g : {0, 1}κ → {0, 1}κ′
be a function and G : {0, 1}κ′ × D →

{0, 1}n be a function family. Let Gg : {0, 1}κ×D → {0, 1}n be a function family
defined by Gg(K, M) = G(g(K), M) for K ∈ {0, 1}κ and M ∈ D. Let AGg be
a prf-adversary against Gg that runs in time at most t and makes at most q
queries of length at most d. Then, there exist a prbg-adversary Ag against g and
a prf-adversary AG against G such that

Advprf
Gg(AGg) ≤ Advprbg

g (Ag) + Advprf
G (AG) ,

where Ag runs in time at most t+O(q TG(d)), and AG runs in time t and makes
at most q queries of length at most d.

Now, we can obtain the result on the pseudorandomness of HMAC-MDP-MMO
simply by combining Theorem 2 and Lemma 5.

Corollary 1. Let E be an (n, n) block cipher. Let gE : {0, 1}n → {0, 1}2n be a
function such that gE(K) = (EIV (Kop)⊕Kop)‖(EIV (Kip)⊕Kip) , where Kop =
K⊕opad and Kip = K⊕ipad. Let A be a prf-adversary against HMAC[E, π, IV ]
that runs in time at most t and makes at most q (≥ 2) queries each of which has
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at most � blocks. Then, there exist prp-adversaries AE and A′
E against E, a

prp-rka-adversary Aπ,E against E with respect to π and a prbg-adversary AgE

such that

Advprf
HMAC[E,π,IV ](A) ≤ Advprbg

gE
(AgE ) + Advprp

E (AE) + q Advprp
E (A′

E)

+ � q2Advprp-rka
π,E (Aπ,E) +

(2� + 3)q2

2n+1 ,

where AgE runs in time at most t+O(q � TE), AE runs in time at most t+O(q TE)
and makes at most q queries, A′

E runs in time at most t + O(q TE) and makes
at most 1 query, and Aπ,E runs in time O(� TE) and makes at most 2 queries.

Actually, we have not completely reduced the security of HMAC-MDP-MMO
as a PRF to the security of the underlying block cipher as a PRP under the
π-related-key attack. It is easy to see that the function gE in Corollary 1 may
not be a PRBG in general even if E is a PRP. However, it does not seem so
difficult to design a block cipher E such that gE is a PRBG. This is because IV
is a fixed initial value chosen by the designer of the hash function and the block
cipher. Furthermore, ipad and opad are fixed sequences given by HMAC. Any
adversary has no control over them.

We can say that the security of HMAC as a PRF is reduced to the security
of the underlying block cipher as a PRP using the MMO scheme to more extent
than using the Davies-Meyer scheme.
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Abstract. We study the security of step-reduced but otherwise unmod-
ified SHA-256. We show the first collision attacks on SHA-256 reduced
to 23 and 24 steps with complexities 218 and 228.5, respectively. We give
example colliding message pairs for 23-step and 24-step SHA-256. The
best previous, recently obtained result was a collision attack for up to 22
steps. We extend our attacks to 23 and 24-step reduced SHA-512 with
respective complexities of 244.9 and 253.0. Additionally, we show non-
random behaviour of the SHA-256 compression function in the form of
free-start near-collisions for up to 31 steps, which is 6 more steps than
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1 Introduction
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1.1 Previous Work on Members of the SHA-2 Family

Below, we briefly discuss existing work. Results on older variants of the larger
MD4 related hash function family, including SHA-1, suggest that the concept
of local collisions might also be important for the SHA-2 family. The first pub-
lished analysis on members of the SHA-2 family, by Gilbert and Handschuh [2],
goes in this direction. They show that there exists a 9-step local collision with
probability 2−66. Later on, the result was improved by Hawkes et al. [3]. By
considering modular differences, they increased the probability to 2−39. Using
XOR differences, local collisions with probability as high as 2−38 where used by
Hölbl et al. [4]. Local collisions with lower probability but with other properties
were studied by Sanadhya and Sarkar in [13].

Now we turn our attention to the analysis of simplified variants of SHA-256.
In [17], Yoshida and Biryukov replace all modular additions by XOR. For this
variant, a search for pseudo-collisions is described, which is faster than brute
force search for up to 34 steps. Matusiewicz et al. [8] analysed a variant of
SHA-256 where all Σ- and σ-functions are removed. The conclusion is that for
this variant, collisions can be found much faster than by brute force search. The
work shows that the approach used by Chabaud and Joux [1] in their analysis
of SHA-0 is extensible to that particular variant of SHA-256. The message ex-
pansion as a building block on its own was studied by Matusiewicz et al. [8] and
Pramstaller et al. [12].

Finally, we discuss previous work that focuses on step-reduced but otherwise
unmodified SHA-256. The first study was done by Mendel et al. [9]. The results
obtained are a practical 18-step collision and a differential characteristic for 19-
step SHA-224 collision. Also, an example of a pseudo-near-collision for 22-step
SHA-256 is given. Similar techniques have been studied by Matusiewicz et al. [8]
and recently also by Sanadhya and Sarkar [15]. Using a different technique,
Nikolić and Biryukov [10] obtained collisions for up to 21 steps and non-random
behaviour in the form of semi-free-start near-collisions for up to 25 steps. Very
recently, Sanadhya and Sarkar [16] extended this, and showed a collision example
for 22 steps of SHA-256 in [14].

1.2 Our Contribution

We extend the work of Nikolić and Biryukov [10] to collisions for 23- and 24-step
SHA-256 with respective time complexities of 218 and 228.5 reduced SHA-256
compression function evaluations. These 23- and 24-step attacks are also applied
to SHA-512, with complexities of 244.9 and 253.0 for 23-step SHA-512 and 24-
step SHA-512, respectively. Example collision pairs for 23-step SHA-256 and
SHA-512, and for 24-step SHA-256 are given. The collision attacks presented
in this work do not extend beyond 24 steps, but we investigate several weaker
collision style attacks on a larger number of rounds. Our results are summarised
in Table 1.

We use the terminology introduced by Lai and Massey [5] for different types of
attacks on (iterated) hash functions. A collision attack aims to find two distinct
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Table 1. Comparison of our results with the known results in the literature for each
type. Effort is expressed in (equivalent) calls to the respective reduced compression
functions.

function steps type effort source example

SHA-256 18 collision 20 [9] yes
SHA-256 20 collision 21.58 [10] no
SHA-256 21 collision 215 [10] yes
SHA-256 22 collision 29 [14] yes
SHA-256 23 collision 218 this work yes
SHA-256 24 collision 228.5 this work yes
SHA-512 23 collision 243.9 this work yes
SHA-512 24 collision 253.0 this work no
SHA-256 23 semi-free-start collision 217 [10] yes
SHA-256 24 semi-free-start collision 217 this work no
SHA-224 25 free-start collision 217 this work no
SHA-256 22 free-start near-collision 20 [9] yes
SHA-256 25 semi-free-start near-collision 234 [10] yes
SHA-256 31 free-start near-collision 232, Table 6 this work no

messages that hash to the same result. In a semi-free-start collision attack, the
attacker is additionally allowed to choose the initial chaining value, but the
same value should be used for both messages. In a free-start collision attack, a
(small) difference may appear in the initial chaining value. Near-collision attacks
relax the requirement that the hash results should be equal and allow for small
differences.

The structure of this paper is as follows. We give a short description of SHA-
256 in Sect. 2. Section 3 gives an alternative description of the semi-free-start
collision attack by Nikolić and Biryukov [10], which will make the subsequent
description of the new attacks easier to understand. We then discuss our collision
attacks on 23- and 24-step SHA-256 in Sect. 4. In Sect. 5, we apply our results
to step-reduced SHA-512. Finally, Sect. 6 concludes.

2 Description of SHA-256

This section gives a short description of the SHA-256 hash function, using the
notation from Table 2. For a detailed specification, we refer to [11].

The compression function of SHA-256 consists of a message expansion, which
transforms a 512-bit message block into 64 expanded message words Wi of 32
bits each, and a state update transformation. The latter updates eight 32-bit
state variables A, . . . , H in 64 identical steps, each using one expanded message
word. The message expansion can be defined recursively as follows.

Wi =
{

Mi 0 ≤ i < 16
σ1(Wi−2) + Wi−7 + σ0(Wi−15) + Wi−16 16 ≤ i < 64 . (1)
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Table 2. The notation used in this paper

X ≫ s X rotated over s bits to the right
X � s X shifted over s bits to the right

X One’s complement of X
X ⊕ Y Bitwise exclusive OR of X and Y
X + Y Addition of X and Y modulo 232

X − Y Subtraction of X and Y modulo 232

Ai, · · · , Hi State variables at step i, for the first message
A′

i, · · · , H ′
i Idem, for the second message

Wi i-th expanded message word of the first message
W ′

i Idem, for the second message
δX Additive difference in ′

δσ0 (X) Additive difference in σ0 , σ0 − σ0 )

Σ0 Σ1

f m
a
j

f c
h

+

+

+

+

+

+

+

Ai Bi Ci Di Ei Fi Gi Hi

Ki

Wi

Ai+1 Bi+1 Ci+1 Di+1 Ei+1 Fi+1 Gi+1 Hi+1

Fig. 1. The state update transformation of SHA-256

The functions σ0(X) and σ1(X) are given by

σ0(X) = (X ≫ 7) ⊕ (X ≫ 18) ⊕ (X � 3) ,
σ1(X) = (X ≫ 17) ⊕ (X ≫ 19) ⊕ (X � 10) .

(2)

The state update transformation updates two of the state variables in every step.
It uses the bitwise Boolean functions fch and fmaj as well as the GF(2)-linear
functions Σ0 and Σ1.

fch(X, Y, Z) = XY ⊕ XZ ,
fmaj(X, Y, Z) = XY ⊕ Y Z ⊕ XZ ,

Σ0(X) = (X ≫ 2) ⊕ (X ≫ 13) ⊕ (X ≫ 22) ,
Σ1(X) = (X ≫ 6) ⊕ (X ≫ 11) ⊕ (X ≫ 25) .

(3)

Figure 1 describes the state update transformation, where Ki is a step constant.
Equivalently, it is described by the following equations.



280 S. Indesteege et al.

T1 = Hi + Σ1(Ei) + fch(Ei, Fi, Gi) + Ki + Wi ,
T2 = Σ0(Ai) + fmaj(Ai, Bi, Ci) ,

Ai+1 = T1 + T2 , Bi+1 = Ai , Ci+1 = Bi , Di+1 = Ci ,
Ei+1 = Di + T1 , Fi+1 = Ei , Gi+1 = Fi , Hi+1 = Gi .

(4)

After 64 steps, the initial state variables are fed forward using word-wise addition
modulo 232.

3 Review of the Nikolić-Biryukov Semi-Free-Start
Collision Attack

In this section, we review the 23-step semi-free-start collision attack by Nikolić
and Biryukov [10]. The new results presented in this paper are extensions of this
attack. The notations we use are given in Table 2.

The attack uses a nine step differential, which is presented in Table 3. All
additive differences are fixed, as well as the actual values of some of the internal
state variables. Fixing these values ensures that the differential is followed, as
will be explained later. The constants α, β, γ and ε are determined by the attack.
The first difference is inserted via the message word W9. There are no differences
in expanded message words other than those indicated in Table 3, i.e., only W9,
W10, W11, W12, W16 and W17 can have a difference.

Table 3. A 9 step differential, using additive differences (left) and conditions on the
value (right). Blanks denote zero differences resp. unconstrained values.

step δA δB δC δD δE δF δG δH δW A B C D E F G H

8 α γ
9 1 α α γ + 1 γ
10 1 1 −1 −1 α α −1 γ + 1 γ
11 1 −1 1 δ1 α −1 α α ε −1 γ + 1 γ
12 1 −1 1 δ2 α α −1 α β ε −1 γ + 1
13 1 −1 1 α α α −1 β β ε −1
14 1 −1 α α α −1 β β ε
15 1 α α 0 −1 β β
16 1 1 α −2 0 −1 β
17 1 −1 −2 0 −1
18 −2 0

The attack algorithm consists of two phases. The first phase finds suitable
values for the constants α, β, γ and ε as well as two expanded message words,
W16 and W17. A detailed description of this phase of the attack will be given in
Sect. 3.2, as it is more instructive to describe the second phase first.
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3.1 The Second Phase of the Attack

The second phase of the attack finds, when given suitable values for α, β, γ,
ε, W16 and W17, a pair of messages and a set of initial values that lead to a
semi-free-start collision for 23 steps of SHA-256. It works by carefully fixing the
internal state at step 11 as indicated in Table 3, and then computing forward
and backward. At each step, the expanded message word Wi is computed such
that the differential from Table 3 is followed. During this, four extra conditions
appear, involving only the constants determined by the first phase of the attack.

σ1 (W16 + 1) − σ1 (W16) − Σ1 (ε − 1) + Σ1 (ε)
− fch (ε − 1, 0, γ + 1) + fch (ε,−1, γ + 1) = 0 . (5)

σ1 (W17 − 1) − σ1 (W17) − fch (β, ε − 1, 0) + fch (β, ε,−1) = 0 . (6)

β = α − Σ0 (α) . (7)

fch (β, β, ε − 1) − fch (β, β, ε) = −1 . (8)

The first phase guarantees that the constants are such that these conditions
are satisfied. The second phase of the attack has a negligible complexity and
is guaranteed to succeed. Since there is still a lot of freedom left, many 23-step
semi-free-start collisions can be found, with only a negligible additional effort, by
repeating this second phase several times. A detailed description of this phase,
including the origins of (5)–(8), is given in Appendix A.

3.2 The First Phase of the Attack

The goal of the first phase of the attack is to determine suitable values for the
constants α, β, γ and ε, as well as two expanded message words, W16 and W17.
Suitable values imply that the four conditions (5)–(8) are satisfied. Nikolić and
Biryukov [10] do not give much detail on this procedure, hence we clarify it
below.

1. Make a random choice for γ and ε and search for a value of W16 such that
condition (5) is satisfied. This condition is of the form σ1 (x + 1)−σ1 (x) = δ.
There exists a simple, generic method to solve equations of this form, which
is described in Appendix B. We note however that for this particular case,
a faster method exists. An exhaustive search over every possible value of x
resulted in the observation that only 6 181 additive differences δ can ever be
achieved. These can be stored in a lookup table, together with one or more
solutions for each difference. Hence, solving an equation of this form can be
done with a simple table lookup.

If no solution exists, simply retry with different choices for γ and/or
ε. If the right hand side difference δ is selected uniformly at random, the
probability that the equation has a solution is 2−19.5, so we expect to have
to repeat this step about 219.5 times.
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2. Make a random choice for α, and compute β using (7). Now check condi-
tion (8). As described in [10], this equation is satisfied if the bits of β are
zero in the positions where the bits of ε − 1 and ε differ. This occurs with a
probability of approximately 1/3, so this condition is fairly easy to satisfy.

3. The last condition, (6), is of the same form as the first condition, so it can
be solved in exactly the same way. The expected probability that a solution
exists is again 2−19.5.

Note that, because not all conditions depend on all of the constants determined
in this phase of the attack, the first condition can be treated independently of the
last three. Thus, the first and last step of this phase of the attack are executed
about 219.5 times and the second step about 221 times. One of these steps requires
much less work than an evaluation of the compression function of (reduced)
SHA-256 — a bit less than one step. Hence, the overall time complexity of the
entire attack, when expressed in SHA-256 compression function evaluations, is
below 217.

4 Our Collision Attacks on Step-Reduced SHA-256

In this section we describe a novel, practical collision attack on SHA-256, reduced
to 23 steps. It has a time complexity of about 218 evaluations of the reduced SHA-
256 compression function. We also extend this to 24 steps of SHA-256, with an
expected time complexity of 228.5 compression function evaluations.

4.1 23-Step Collision

Our collision attack for SHA-256, reduced to 23 steps, consists of two parts.
First, we construct a semi-free-start collision for 23 steps, based on the attack
from Sect. 3. Then we transform this semi-free-start collision into a real collision.

Finding “Good” Constants. Finding a 23 step semi-free-start collision is done
using the same attack as described in Sect. 3, with a slight change to the first
phase. In Sect. 3.2, it was described how to find constants α, β, γ and ε such
that there exist values for W16 and W17 ensuring that the conditions (5) and (6)
are satisfied. There are still some degrees of freedom left in this process. Indeed,
it is possible to determine the constants α, β, γ and ε such that there are many
values for W16 and W17 satisfying (5) and (6).

We performed an exhaustive search for such good constants. Condition (5)
depends only on ε and γ. An exhaustive search for this condition can be per-
formed with approximately 237 evaluations of (5), because for each value of ε,
only some of the bits in γ can have an influence. We found several values for ε
and γ for which more than 229 choices for W16 ensure that (5) is satisfied, for
instance

γ = 0000017cx , ε = 7f5f7200x . (9)

Conditions (6) and (8) depend on ε and β, which in turn depends on α through
(7). An interesting property is that condition (6) becomes independent of ε if
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we assume that condition (8) is satisfied. Indeed, since this assumption implies
that the bits of β are zero where ε and ε − 1 differ, (6) reduces to

σ1 (W ′
17 + 1) − σ1 (W ′

17) = β . (10)

Because of this, an exhaustive search for good values of α and β is feasible. There
are many of the optimal values for α and β which are consistent with (several
of) the optimal values for ε, thus yielding a global optimum. For instance, with γ
and ε as in (9), the following values for α and β are one of many optimal choices:

α = 00b321e3x , β = fcffe000x . (11)

There are 216 possible choices for W17 which satisfy (6) with these constants.
Thus, these values for α, β, γ and ε give us an additional freedom of 245 in
the choice of W16 and W17. This phase can be considered a precomputation,
or alternatively, one can reduce the effort spent in this phase by only searching
a smaller part of the available search space, which likely leads to less optimal
results. It may however be a worthwhile trade-off in practice.

Transforming into a Collision. Note that only 7 expanded message words, W11
until W17, are actually fixed to a certain value when constructing a semi-free-
start collision, ignoring the freedom left in W16 and W17 for now. The others
are chosen arbitrarily or computed from the message expansion when necessary.
Using this freedom, it is possible to construct many semi-free-start collisions with
only a negligible additional effort. But it is also possible to use this freedom in a
controlled manner to transform the semi-free-start collision into a real collision.

To this end, we first introduce an alternative description of SHA-256. In older
variants of the same design strategy, like MD5 or SHA-1, only a single state
variable is updated in every step. This naturally leads to a description where
only the first state variable is considered. Something similar can be done with
the SHA-2 hash functions, even though in the standard description, two state
variables are updated in every step.

From the state update equations (4), we derive a series of equations expressing
the inputs of the i-th state update transformation, Ai, . . . , Hi, as a function of
only Ai through Ai−7.

Ai = Ai , Bi = Ai−1 , Ci = Ai−2 , Di = Ai−3 ,
Ei = Ai−4 + Ai −Σ0(Ai−1) − fmaj(Ai−1, Ai−2, Ai−3) ,
Fi = Ai−5 + Ai−1−Σ0(Ai−2) − fmaj(Ai−2, Ai−3, Ai−4) ,
Gi = Ai−6 + Ai−2−Σ0(Ai−3) − fmaj(Ai−3, Ai−4, Ai−5) ,
Hi = Ai−7 + Ai−3−Σ0(Ai−4) − fmaj(Ai−4, Ai−5, Ai−6) .

(12)

Substituting these into (4) yields an alternative description requiring only a
single state variable. This description can be written concisely as

Ai+1 = F (Ai, Ai−1, Ai−2, Ai−3, Ai−4, Ai−5, Ai−6) + Ai−7 + Wi . (13)

The function F (·) encapsulates (4) and (12), except for the addition of the ex-
panded message word Wi and the state variable Ai−7. From (12), it is clear
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that one can easily transform an internal state in the standard description,
〈Ai, · · · , Hi〉, to the corresponding internal state in the alternative description,
〈Ai, · · · , Ai−7〉, and vice versa. Analogous to what is done for MD5 and SHA-1,
the initial values can be redefined as A−7, · · · , A0.

This alternative description of SHA-256 can be used to transform a 23 step
semi-free-start collision for SHA-256 into a real collision. Since control over one
expanded message word Wi gives full control over one state variable Ai+1, control
over eight consecutive expanded message words gives full control over the entire
internal state.

1. Start from a 23-step semi-free-start collision pair. Set 〈A0, · · · , A−7〉 to the
SHA-256 initial values, in the alternative description. Make arbitrary choices
for W0, W1 and W2, and recompute the first three steps.

2. The eight message words W3 until W10 are now modified such that A4 un-
til A11 remain unchanged. This implies that the internal state at step 11,
〈A11, · · · , H11〉 does not change, and thus we connect to the rest of the semi-
free-start collision. More specifically, for every step i, 3 ≤ i ≤ 10, the new
value of the i-th message word is computed as

Wi = Ai+1 − F (Ai, Ai−1, Ai−2, Ai−3, Ai−4, Ai−5, Ai−6) − Ai−7 . (14)

In the message words W9 and W10 there is an additive difference of 1 and
−1, respectively. This does not pose a problem since the construction of the
semi-free-start condition guarantees that these will have the intended effect,
regardless of the values of W9 and W10, see Appendix A.

3. Now we need to verify again if conditions (5) and (6) are still satisfied, since
they depend on W16 and W17, which may have changed. If the conditions are
not satisfied, simply restart and make different choices for W0, W1 and/or
W2.
Recall however that we have spent extra effort in the first phase of the
attack to choose the constants α, β, γ and ε such that there are many values
for W16 and W17 that satisfy the conditions. For the constants given in (9)
and (11), there are 245 allowed values for these two expanded message words.
This translates into a probability of 2−19 that the conditions (5) and (6) are
indeed still satisfied. We hence expect to have to repeat this procedure about
219 times. Every trial requires an effort equivalent to about 10 steps of SHA-
256.

4. After a successful modification of the first message words, the expanded mes-
sage words W18 until W22 need to be recomputed, and also the corresponding
steps need to be redone. The construction of the semi-free-start collision still
guarantees that no differences will be introduced.

If we consider the first phase to be a precomputation, the overall attack com-
plexity is about 218 evaluations of the compression function of SHA-256 reduced
to 23 steps. An example collision pair for 23-step reduced SHA-256 is given in
Table 4.
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Table 4. Example colliding message pair for 23-step reduced SHA-256

4.2 24-Step Collision

The same approach can be extended to 24 steps of SHA-256, using the 24-step
semi-free-start collision attack given in detail in Sect. 4.3. Simply put, the 23-step
attack is simply shifted down by a single step, and no difference is introduced
into W0 by the message expansion in the backward direction.

When turning the semi-free-start collision into a collision, however, the value
of the expanded message word W16 (which was the non-expanded message word
W15 in the 23-step attack) should not change. In a straightforward extension
of the 23-step collision attack to 24 steps, this extra condition would only be
satisfied with a probability of 2−32. Using the available freedom in a better way,
this can be improved substantially.

1. Start from a 24-step semi-free-start collision pair. Set 〈A0, · · · , A−7〉 to the
SHA-256 initial values. Make an arbitrary choice for W0 and recompute the
first step. Now, it follows from (4) that (A2 − W1) is a constant:

c1 = A2 − W1 . (15)

2. The new value of W9 is determined from (14), i.e., it depends on A2 through
A10. The state variables A5 through A10 have already been fixed in the semi-
free-start collision. If we additionally fix A4 and A3 to arbitrary values, it is
possible to compute the sum of W9 and A2,

c2 = W9 + A2 = A10 − F (A9, · · · , A3) . (16)

3. Combining (1) and (15)–(16), results in

W16 − σ1(W14) − c2 + c1 − W0 = σ0(W1) − W1 . (17)

It is easy to find a suitable value for W1 that ensures that W16 has the proper
value, if it exists. It suffices to guess the 15 least significant bits of W1 to
compute all 32 bits of W1, satisfying the above condition with probability
2−14. A conservative estimate is that each trial requires an effort equivalent
to one step update of SHA-256.

4. Now all the internal state variables have been fixed. The corresponding mes-
sage words can be found from (14) and the message expansion. Just as in
the 23-step collision attack, however, there are still some conditions left. As
explained in Sect. 4.1, these are satisfied with a probability of 2−19.
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Table 5. Example colliding message pair for 24-step reduced SHA-256

Hence, the overall expected time complexity is equivalent to about 219 ·(214+10)
SHA-256 step computations, or about 228.5 evaluations of the SHA-256 compres-
sion function reduced to 24 steps. An example collision pair for 24-step reduced
SHA-256 is given in Table 5. An extension of this attack method beyond 24 steps
fails, because then a difference in the first or in the last message word becomes
unavoidable. In [14], another differential than the one shown in Table 3 is used
to find 22-step collisions for SHA-256. We tried to use this differential in our
extended attacks, but even for 23 steps, using this differential fails.

4.3 Further Extensions

This section discusses further extensions using weaker attack models. The start-
ing point is the 23-step semi-free-start collision attack of Nikolić and Biryukov
[10], which was described in Sect. 3.

Semi-Free-Start Collisions for 24 Steps of SHA-256. We keep the entire attack
algorithm from Sect. 3 unchanged, but shift everything down by a single step.
Because of this, one more message word, W0, needs to be computed from the
message expansion in the reverse direction. From (1), it follows that the additive
difference in this word is

δW0 = δW16 − δσ1 (W14) − δW9 − δσ0 (W1) . (18)

None of these expanded message words has a difference, so also δW0 = 0. This
yields 24-step semi-free-start collisions of SHA-256 with the same complexity of
217 compression function evaluations.

Free-Start Collisions for 25 Steps of SHA-224. SHA-224 differs from SHA-256
in two ways. First, it has different initial values, and second, the output is trun-
cated to the leftmost 224 bits. We can thus extend the 24-step semi-free-start
collision of SHA-256 to a 25-step free-start collision of SHA-224 by simply shift-
ing the same attack down one more step. Now a difference will inevitably appear
in W0, which propagates to the initial value H0. The other initial values, A0
through G0 still have a zero difference. Because the word H is truncated away
in SHA-224, this results in free-start collisions for 25 steps of SHA-224, with the
same complexity. Note that this attack would not apply if a different method of
truncation would have been chosen in the design of SHA-224.
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Table 6. Experimental results of the free-start near-collision attack on SHA-256. For
each number of steps, only the combination of forward/backward steps that gave the
best results is shown. For comparison, the expected numbers of solutions for a generic
birthday attack with an equal effort are also given.

steps fwd. bwd. kmin 2-logarithm of the number of solutions with k
≤ 8 ≤ 16 ≤ 24 ≤ 32 ≤ 40 ≤ 48 ≤ 56 ≤ 64

25 1 1 2 31.95 32.00 32.00 32.00 32.00 32.00 32.00 32.00
26 1 2 8 24.17 31.55 31.99 32.00 32.00 32.00 32.00 32.00
27 1 3 11 −∞ 15.41 26.20 30.65 31.89 32.00 32.00 32.00
28 1 4 18 −∞ −∞ 8.77 20.41 27.24 30.63 31.80 31.99
29 1 5 32 −∞ −∞ −∞ 1.58 14.31 22.86 28.19 30.93
30 1 6 43 −∞ −∞ −∞ −∞ −∞ 10.73 19.58 25.68
31 2 6 53 −∞ −∞ −∞ −∞ −∞ −∞ 6.34 15.50

Birthday Attack 57 −143.41 −108.84 −80.49 −56.36 −35.51 −17.37 −1.57 12.14

Free-Start Near-Collisions of SHA-256. Extending the attack to more steps is
possible, provided that some differences are allowed both in the initial value and
in the hash result, i.e., when considering free-start near-collisions. The start-
ing point is again the 23-step semi-free-start collision attack from Sect. 3. It is
extended by adding a number of extra forward and backward steps.

As explained above, no difference is introduced in the first backward step. Note
that, in general, the diffusion of differences is slower in the backward direction
than in the forward direction. A difference introduced in an expanded message
word Wi affects both Ai+1 and Ei+1 in the forward direction, as opposed to only
Hi in the backward direction. Thus, in the forward direction, all state words can
be affected by a single difference in an expanded message word after only four
rounds. In the backward direction, this takes eight rounds.

We have done several experiments, each equivalent to an effort of 232 reduced
SHA-256 compression function evaluations. The results of our experiments are
summarised in Table 6. The first three columns give the total number of steps,
the number of extra forward and extra backward steps, respectively. The fourth
column gives kmin, the smallest Hamming distance found. The last eight columns
contain the 2-logarithm of the number of solutions with a Hamming distance k
of at most 8, 16, . . . , 64 bits.

For comparison, also the expected values for a generic birthday attack with
an equal effort of 232 is given. For a generic (free-start) near-collision attack on
an ideal n-bit hash function, using the birthday paradox with an effort of 2w

compression function evaluations, the lowest expected Hamming distance is the
lowest k for which

22w ·
∑k

i=0 2−n
(
n
i

)
≥ 1 . (19)

For instance, with w = 32 and for SHA-256 (i.e., n = 256), this gives k = 57
bits. Our attack performs significantly better for up to 30 steps of SHA-256.
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For 31 steps, we still found 208 free-start near-collisions with a Hamming distance
of at most 57 bits, whereas a birthday attack is only expected to find one with
the same effort.

5 Collision Attacks on Step-Reduced SHA-512

SHA-512 is a 512-bit hash function from the SHA-2 family. Its structure is very
similar to SHA-256. The sizes of all words are increased to 64 bits and the
number of rounds is increased to 80. It uses a different initial chaining value,
and different step constants. Finally, the GF(2)-linear functions are redefined.
Refer to [11] for details on SHA-512. In this section, we extend the collision
attacks on SHA-256 that were described in Sect. 4.1 and 4.2 to SHA-512. The
first phase of the attacks needs to be adapted, since an exhaustive search as in
Sect 3.2 is no longer feasible.

Finding “Good” Constants for SHA-512. Recall from Sect. 3.2 that the goal of
the first phase of the attack is to find values for the constants α, β, γ, ε such
that the conditions (5)–(8) are satisfied for many values of the expanded message
words W16, W17. Since an exhaustive search for good constants is infeasible, we
suggest the following approach.

1. First, make a list L of additive differences δ for which the equation

σ1 (x + 1) − σ1 (x) = δ (20)

has many solutions x. This can be accomplished by picking several values
for x at random and computing the corresponding δ’s. This procedure is
likely to quickly find the “good” values for δ, since the more x’s correspond
to a δ, the more likely we are to find it. Using Appendix B, the number of
solutions x for a given δ can be counted efficiently.

2. Since all conditions (5)–(8) will need to be satisfied, we can use (10) instead
of (6). Hence, β should preferably be one of the “good” δ’s from the list L.
Knowing the value of β, we need to invert (7) to find α. This can, for instance,
be done by guessing the 36 most significant bits of α and determining the
other bits using (7). A guess succeeds with a probability of about 2−36. Note
that (7) cannot necessarily be inverted for all β’s.

3. Now we make an arbitrary choice for ε which satisfies (8). Denote by lβ the
length of the run of least significant “0”-bits in β. Then, (8) is satisfied if
and only if the least significant “1”-bit of ε lies within the lβ least significant
bits. Unfortunately, for SHA-512, this condition eliminates the best values
for β.

4. If we choose a “good” value for σ1 (W16 + 1)− σ1 (W16) from the list L, and
since ε has already been chosen, (5) can be rewritten as

C − fch (ε − 1, 0, γ + 1) + fch (ε,−1, γ + 1) = 0 , (21)

where C is a known constant. The bits in which ε and (ε − 1) differ can be
corrected by a proper choice of γ. Hence it is advantageous to choose ε with
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Table 7. Example colliding message pair for 23-step reduced SHA-512

a long run of least significant “0”-bits. This again constrains β, as explained
above. If no choice for γ can satisfy (21), retry with a different choice for ε
and/or β.

Unlike the exhaustive search in Sect. 3.2, this procedure does not guarantee to
find the optimal solution. However, experiments show that we can quickly find
many good solutions. We found many values for the constants α, β, γ and ε for
which the conditions (5) and (8) are satisfied for 249.1 and 234 values for W16
and W17, respectively. Example values are

23-step Collision. The second phase of the 23-step attack from Sect. 4.1 can
directly be applied to SHA-512. With the constants from (22), a single attempt
to turn a 23-step semi-free-start collision into a 23-step collision will succeed
with an expected probability of 2−44.9 and costs about half of a reduced SHA-
512 compression function evaluation. Hence, this results in a collision attack on
23-step SHA-512 with an expected time complexity of 243.9 reduced compression
function evaluations. An example collision pair for 23-step reduced SHA-512 is
given in Table 7.

24-Step Collision. Also the second phase of the 24-step attack from Sect. 4.2 can
be applied to SHA-512. One slight modification is required when determining
a suitable value for W0, due to the redefinition of the σ0-function in SHA-512.
Guessing the 8 least significant bits of W0 allows to compute all of W0, sat-
isfying (17) with probability 2−8. This results in a collision attack on 24-step
SHA-512 with an expected time complexity of 253.0 reduced compression func-
tion evaluations.

Further Extensions. The attacks on SHA-512 can also be extended, much like
the extensions described for the SHA-256 attacks in Sect. 4.3. Adding more
rounds trivially leads to several (semi-) free-start (near-) collision attacks. One
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noteworthy case is a free-start collision attack on 26 steps of SHA-384. It is
analogous to the 25-step free-start collision attack on SHA-224 from Sect. 4.3,
but as two words are truncated away in the case of SHA-384, the attack extends
to 26 steps.

6 Conclusion

Our results push the limit for cryptanalysis of step reduced but otherwise un-
modified SHA-256; we found practical collisions for up to 24 steps. For almost
half of the steps (31 out of 64) non-random properties of the compression func-
tion are detectable in practice. The results also apply to SHA-512, albeit with
higher time complexities.
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A Detailed Description of the Second Phase of the
Nikolić-Biryukov Attack

This appendix gives a detailed description of the second phase of the Nikolić-
Biryukov attack [10]. When given suitable values for α, β, γ, ε, W16 and W17
by the first phase, as described in Sect. 3.2, it constructs a pair of messages
and a set of initial values that lead to a semi-free-start collision for 23 steps of
SHA-256.

1. Start at step 11 by fixing the state variables in this step, A11, · · · , H11 as
indicated in Table 3. The constants α, β, γ and ε are given by the first phase
of the attack.

2. Calculate W11 such that A12 = α and W ′
11 such that A′

12 = α. Now E12 = β
only depends on α, and we find condition (7) from Sect. 3.1.

E12 = α − Σ0 (α) = β . (23)

3. In a similar way, calculate W12 such that E13 = β and W ′
12 such that

E′
13 = β. This also guarantees that A13 = A′

13 because the majority function
absorbs the difference in C12.

4. Calculate W13 such that E14 = −1 and set W ′
13 = W13. Now, see Table 3,

δE14 should be equal to 1. This yields the condition

δE14 = fch (β, β, ε − 1) − fch (β, β, ε) + 2 = 1 . (24)

It was given before as (8), and is satisfied by the first phase of the attack.
Note that this also ensures that δA14 = 0.

http://www.itl.nist.gov/fipspubs/
http://de.arxiv.org/abs/0803.1220
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5. Calculate W14 such that E15 = 0 and set W ′
14 = W14. Since the values of E14

and E′
14 were chosen in the previous step to be fixed points of the function

Σ1, δΣ1 (E14) = δE14 = 1 cancels with δH14 = −1. Also, fch absorbs the
difference in E14, so no new differences are introduced.

6. Calculate W15 such that E16 = −2 and set W ′
15 = W15. The difference in

F15 is absorbed by fch.
7. The value for W16 is computed in phase one of the attack. The difference

δW16 = 1 is cancelled by the output of fch. Indeed, since the binary represen-
tation of E16 = −2 is 111 · · ·10b, the fch function passes only the difference
in the least significant bit.

8. Also the value for W17 is computed in phase one of the attack. The difference
δW17 = −1 cancels with δH17 = 1, thereby eliminating the final difference
in the state variables. Thus, a collision is reached.

9. Now, go back to step 11 and proceed in the backward direction. Make an
arbitrary choice for W10. The differential from Table 3 is followed because
of the careful choice of the state variables in step 11.

10. Make an arbitrary choice for W9, and proceed one step backward. The dif-
ference δW9 = 1 cancels with δA10 and with δE10 such that there is a zero
difference in the state variables A9 through H9. Now randomly choose W8
down to W2 and calculate backward. Because no new differences appear in
these expanded message words, there is also a zero difference in the state
variables A2 through H2.

11. It is not possible to freely choose W0 or W1 as 16 expanded message words
have already been chosen, i.e., W2 until W17. Hence, these are computed
using the message expansion in the backward direction. Although some of the
message words used to compute W0 and W1 have differences, these differences
always cancel out.

12. Continuing forward from step 18 again, note that the collision is preserved as
long as no new differences are introduced via the expanded message words.
From the message expansion, it follows that

δW18 = σ1 (W16 + 1) − σ1 (W16) − Σ1 (ε − 1) + Σ1 (ε)
− fch (ε − 1, 0, γ + 1) + fch (ε,−1, γ + 1) = 0 . (25)

This is condition (5), which is satisfied by the first phase of the attack.
13. Similarly, in step 19, we require that δW19 = 0, which results in

σ1 (W17 − 1) − σ1 (W17) − fch (β, ε − 1, 0) + fch (β, ε,−1) = 0 . (26)

This condition was given in (6), and is also satisfied by the first phase of the
attack.

14. In steps 20–22, the message expansion guarantees that no new differences
are introduced. In step 23, however, a difference of 1 is impossible to avoid,
hence the attack stops after 23 steps.

Every step in this procedure is guaranteed to succeed, provided that the first
phase of the attack supplied suitable constants. Thus, the complexity of the
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second phase of the attack is negligible. Since there is still a lot of freedom
left, many 23-step semi-free-start collisions can be found, with only a negligible
additional effort, by repeating this second phase several times.

B Solving L(x + δ) = L(x) + δ′

This appendix describes a generic method to solve equations of the form L(x +
δ) = L(x) + δ′ where δ and δ′ are given n-bit additive differences, and L is
an n-bit to n-bit GF(2)-linear transformation. This is similar to the problems
studied by Lipmaa and Moriai [6] and Lipmaa et al. [7].

Consider the modular addition x + δ and let Δ = (x + δ) ⊕ x. This addition
is described by the following equations, where xi is the i-th bit of x and the ci’s
are the carry bits:

(x + δ)i = xi ⊕ δi ⊕ ci

ci+1 = fmaj(xi, δi, ci)
c0 = 0

⇔
ci = δi ⊕ Δi

ci+1 = fmaj(xi, δi, δi ⊕ Δi)
c0 = 0

. (27)

Hence, once we fix both the additive difference δ and the XOR difference Δ,
all the carries ci are fixed. Some of the xi’s are also fixed: when Δi = 1 and
i < n − 1, it must hold that xi = ci+1 = δi+1 ⊕ Δi+1. The other xi’s can be
chosen arbitrarily. Thus, the allowed values for x lie in an affine space. Note
that not all additive differences are consistent with all XOR differences, i.e., the
following conditions must be satisfied{

c0 = δ0 ⊕ Δ0 = 0
δi = δi+1 ⊕ Δi+1 when Δi = 0 and i < n − 1 . (28)

Solving an equation of the form L(x + δ) = L(x) + δ′ can be done as follows.
Let Δ′ = (L(x)+δ′)⊕L(x), i.e., the XOR-difference associated with the modular
addition L(x) + δ′. Since L(x + δ) = L(x) + δ′ and L is GF(2)-linear, it follows
that Δ′ = L(Δ). We can thus simply enumerate all the XOR-differences Δ
consistent with the given additive difference δ, compute Δ′ = L(Δ) and check
if this is consistent with the other additive difference δ′. If it is, both additions
restrict x to a (different) affine space. The intersection of these spaces, which
can be computed by solving a system of linear equations over GF(2), gives the
solutions x for the chosen XOR-difference Δ. Note that this intersection may
be empty. If no solutions are found for any value of the XOR-difference Δ, the
equation L(x+δ) = L(x)+δ′ has no solutions. Note that the number of solutions
of the equation can be counted efficiently using this method, as the number of
solutions of a linear system over GF(2) is straightforward to compute.

The time complexity of this method is proportional to the minimum of the
number of XOR differences consistent with the given additive differences δ or δ′.
This follows from the fact that one can easily modify the method to choose Δ′

instead of Δ.
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Abstract. In this paper we propose a new publicly verifiable secret shar-
ing scheme using pairings with close relations to Shoenmakers’ scheme.
This scheme is efficient, multiplicatively homomorphic and with uncon-
ditional verifiability in the standard model. We formalize the notion of
Indistinguishability of Secrets and prove that out scheme achieves it un-
der the Decisional Bilinear Square (DBS) Assumption that is a natural
variant of the Decisional Bilinear Diffie Hellman Assumption. Moreover,
our scheme tolerates active and adaptive adversaries.
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1 Introduction

Most of the work on secret sharing dates from the eighties and the nineties,
before the invention of Paillier’s cryptosystem [10] and the first positive use of
pairings in cryptography [8]. As a consequence, little attention has been paid to
the potential use of recently invented cryptographic tools in the design of secret
sharing schemes. However, pairings have been successfully used in the design of
some distributed cryptographic protocols like threshold encryption and threshold
signatures, in the last years.

Background. In a secret sharing (SS) scheme, a dealer D wants to share a
secret among a set of participants in such a way that only special (qualified)
subsets are able to recover the secret. Here we are interested in (t, n)-threshold
secret sharing schemes, in which the qualified subsets are those with at least t
participants. Since the publication of the seminal paper by Shamir [15], secret
sharing has found innumerable applications and is nowadays considered as a
fundamental tool for the design of distributed cryptographic protocols.

The first constructions of secret sharing schemes achieved a high level of se-
curity (secrecy): The Shamir scheme provides secrecy even in the presence of a
passive adversary (i.e., an eavesdropper who controls the secret information of
at most t− 1 participants) with unlimited computational power. However, these
schemes do not provide enough protection against dishonest participants or a
dishonest dealer.
� This research was partially supported by the Centre de Recerca Matemàtica (CRM).
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Verifiable secret sharing (VSS) schemes have been introduced in [2] to solve
the problem of dishonest dealers and dishonest participants who try to deceive
other participants. Feldman’s VSS scheme [3] is a very practical scheme in which
secrecy is based on a computational assumption related to the Discrete Loga-
rithm problem. However, since a deterministic function of the secret is published,
only a weak notion of secrecy (one-wayness) is guaranteed. Pedersen [11], pro-
posed a VSS scheme in which secrecy is guaranteed for an unbounded passive
adversary, but verifiability relies on a computational assumption.

In [16], Stadler proposed a publicly verifiable secret sharing (PVSS) scheme.
In this scheme, the validity of the shares can be verified by anyone only from
the public information. Typically, in a PVSS scheme, the dealer only broadcasts
some information to the participants, and no private channels are needed for
the distribution of the shares. Shoenmakers’ PVSS scheme [14] works in a group
in which the Discrete Logarithm problem is intractable. His scheme is quite
simple, but to make it publicly verifiable some non-interactive zero-knowledge
proofs have been used.

In most publicly verifiable secret sharing schemes [5,14], the verification
procedure involves interactive proofs of knowledge. These proofs are made non-
interactive by means of the Fiat-Shamir technique [4]. This implies that verifi-
ability relies on the properties of some hash function. Actually, known security
proofs for verifiability work only in the Random Oracle Model (ROM), and
there is a known negative result about the universal validity of Fiat-Shamir
heuristics [6].

There are other known ways to obtain non-interactive zero knowledge proofs
without using Fiat-Shamir. For instance, a recent work by Groth et al. [7] shows
a generic non-interactive zero knowledge proof for any language in NP in the
common reference string model (CRS), that takes advantage of pairings. How-
ever, these zero knowledge proofs are still quite inefficient.

Based on a PVSS scheme by Fujisaki and Okamoto [5], Ruiz and Villar in [12]
overcame some of the above problems: a new PVSS scheme is proposed which
makes use of the additive homomorphic property of Paillier’s encryption. The
dealer commits to the coefficients of the polynomial of the underlying Shamir
SS scheme by broadcasting their encryptions. The resulting PVSS scheme is un-
conditionally verifiable (in the Standard Model) and the verification protocol is
intrinsically non-interactive (i.e., does not make use of Fiat-Shamir heuristics).
The main drawback of this scheme is that it requires an additional step of in-
teraction in the sharing phase: the dealer holds a secret/public key pair and
every participant sends an encrypted random value to him in order to establish
a secure channel through which the corresponding share is sent.

Moreover, compared to Feldman’s scheme, the Ruiz-Villar scheme provides a
higher level of secrecy called indistinguishability (IND) based on the Decisional
Composite Residuosity (DCR) assumption. Due to the unconditional verifiabil-
ity, this secrecy is guaranteed even in the presence of an active and adaptive
adversary.
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Another consequence of not using Fiat-Shamir non-interactive zero-knowledge
proofs is that the Ruiz-Villar scheme is an additively homomorphic PVSS scheme
(i.e., anyone can compute the public information of a sharing of s1 +s2 from the
individual sharing of s1 and s2, including the verification information, in such a
way that nobody can distinguish this sharing of s1 + s2 from a direct sharing of
the same value).

Boldyreva [1] proposed a threshold signature scheme based on gap Diffie-
Hellman groups (that can be naturally instantiated with pairings). The signing
key is distributed by using Feldman’s VSS and the signature verification pro-
cedure takes advantage of the DDH oracle. The techniques used in Boldyreva’s
paper are somewhat similar to ours but in the different context of threshold
signatures.

Contributions. On the one hand, we give two formal definitions of secrecy in
publicly verifiable secret sharing, which capture the notion of indistinguishability
of shared secrets. We also discuss their relationship.

On the other hand, we propose a new PVSS scheme that overcomes the use
of Fiat-Shamir zero-knowledge proofs in a different way than in [12], and which
does not require any additional interaction in the sharing phase: we basically
replace zero-knowledge proofs in Shoenmakers’ scheme by equalities involving
bilinear map computations. The resulting scheme has the following features:

– Public Verifiability: a misbehaving dealer or participant is unconditionally
detected.

– Secrecy: indistinguishability of secrets is based on the Decisional Bilinear
Square Assumption, which is a variant of the Decisional Bilinear Diffie-
Hellman Assumption.

– Active adversaries are tolerated (even adaptive ones), whenever there is a
majority of honest participants.

– Multiplicatively homomorphic property (compatible with public verifiability).
– Efficiency comparable to Shoenmakers’ scheme, with a more efficient dealer

but a less efficient verifier.

Reducing the computational cost of the dealer can be desirable in applications in
which there exist many potential dealers but a limited amount of participants,
as in electronic voting. A variant of the basic scheme is also presented, which
allows secret reconstruction via open channels in an efficient way. We also show
how the scheme generalizes to linear access structures other than threshold ones.

Organization. The paper is organized as follows: In Section 2 we recall the
characteristics of PVSS schemes. Computational secrecy for PVSS schemes is
revisited in Section 3. The proposed PVSS scheme is presented in Section 4
and its security is analyzed in Section 5. In Section 6 a variant of the scheme
which allows the reconstruction of the secret on public channels is presented.
Finally, the multiplicatively homomorphic property of the scheme is discussed
in Section 7.
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Notation. As usual in cryptography papers, we use the convenient notation
x

$← X to denote that x is a uniformly distributed random element of a set X .

2 Publicly Verifiable Secret Sharing Schemes

Let P = {P1, . . . , Pn} be a set of n participants. We only refer to a (t, n)-
threshold access structure, although the schemes proposed in this paper can
easily be generalized to any vector space access structure. The dealer D wants
to share a secret s between the participants of P in such a way that every set of at
least t participants can recover the secret, and no set of at most t−1 participants
can get any information about the secret. V is any (external) verifier who wants
to check any phase of the scheme.

In a basic secret sharing scheme, three subprotocols are needed: setup, dis-
tribution of the shares and reconstruction of the secret. In a PVSS scheme, the
dealer is supposed to communicate with participants via open channels. In spite
of simplicity, we assume the existence of an authenticated broadcast channel.
Furthermore, we can assume the existence of private channels between partici-
pants during the secret reconstruction. However, some basic PVSS schemes can
be modified in order to remove this last assumption. An additional public veri-
fication subprotocol is also considered.

Setup. All the parameters of the scheme are generated and published by the
dealer D. Also every participant publishes his public key and withholds the
corresponding secret key.1

Distribution. For a secret s the dealer creates s1, s2, . . . , sn as the shares of
P1, P2, . . . , Pn respectively. The dealer computes and publishes the encrypted
shares Ei(si) for each participant Pi ∈ P . He also must publish PROOFD to
ensure the verifier that the published values are encryptions of correct
shares.

Verification. From all the public information generated during setup and dis-
tribution phases, V verifies non-interactively that the published information is
consistent and that every authorized subset of (honest) participants will recover
the same secret. If verification fails, the whole protocol is aborted (i.e., honest
participants exit the protocol).

Reconstruction. Using his secret key, every participant Pi in a qualified sub-
set A ⊂ P decrypts his encrypted share and gets si. Then, all participants in A
exchange their shares si together with a proof PROOFPi via private channels.
Every participant in A locally reconstructs the secret from a subset of t correct

1 This public key could be the encryption with the public key of the dealer of a random
value chosen by the participant as a one-time key. However, different instances of
the protocol need independent one-time keys, and this adds a new interaction step
in the distribution subprotocol, as in [12].
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shares (i.e., those with a valid proof). If no private channels are available to
participants, they then can send encryptions of the shares instead of the shares
themselves.

As usual, adversaries can be classified into passive and active, depending on
the behavior of corrupted participants: a passive adversary cannot change the
behavior of a corrupted participant, while an active adversary can change it
in any possible way, but in any case the adversary learns all the participant’s
secret information. Also adversaries can be static or adaptive. A static adversary
decides the participants whom will be corrupted at the very beginning of the
protocol, while an adaptive one can decide to corrupt a new participant at any
time, as a function of his knowledge. We always consider a rushing adversary,
who makes corrupted participants wait for honest participants’ messages before
sending theirs in each communication round.

The three properties required for a PVSS scheme: correctness, verifiability
and secrecy are defined below.

Correctness. If the dealer and the participants act honestly, every qualified
subset of participants reconstructs the secret s in the reconstruction phase. This
obviously implies that the dealer passes the verification subprotocol.

Verifiability. If a dishonest dealer passes the verification subprotocol, then there
exists a unique value s such that the honest participants in any qualified subset
with at least t honest participants recover s as the secret. We can consider weaker
notions of verifiability by tolerating a negligible error probability (statistical veri-
fiability) or by considering a computationally bounded adversary (computational
verifiability).

Secrecy. For an honest dealer, the adversary cannot learn any information about
the secret, even after the execution of the reconstruction subprotocol by all
honest participants. We can also consider weaker notions of secrecy, depending
on the type of adversary and the tolerated amount of information he can learn
about the secret.

Unconditional secrecy is not possible in PVSS schemes, since the encrypted
shares are sent by public channels, so an unbounded adversary can decrypt
them and then compute the secret. In the following section we review some no-
tions of computational secrecy (i.e., secrecy against a computationally bounded
adversary).

3 Computational Secrecy

PVSS schemes can be related to threshold decryption schemes, in which only
qualified subsets can decrypt ciphertext encrypted with a certain public key. In
this analogy, the shared secret is the encrypted message and the information
published by the dealer is the ciphertext.

Hence, one-way secrecy in PVSS means that the adversary wants to know the
whole secret. However, achieving only this secrecy level (as in Feldman’s scheme)
does not appear to be enough in the real world.
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A formalization of the intuitive notion of semantic security for a PVSS scheme
was first introduced in [12]. We refine that secrecy notion for the worst case active
and adaptive adversary and give two secrecy levels that we call IND1 and IND2.
The weaker notion (IND1) informally means that the adversary cannot tell apart
the shared secret from a random value. This is a natural definition if the PVSS
scheme is seen as a Key Encapsulation Mechanism (KEM).

Definition 1 (Indistinguishability of secrets (IND1)). We say that a (t, n)-
threshold PVSS scheme is IND1-secret if any probabilistic polynomial time A
has a negligible advantage in the following game played against a challenger C.
During the game, A can corrupt a new participant at any time, but up to t − 1
participants in total. When A corrupts a participant, he receives his secret key
(only after step 1 in the game). A list of corrupted participants is maintained
during the game.

1. C runs the setup subprotocol and sends the public parameters to A along with
the public keys of still uncorrupted participants. C stores the secret keys of
those participants.

2. A sends the public keys of already corrupted participants.
3. C picks two random secrets x0, x1 and a random bit b ∈ {0, 1}. Then he

runs the distribution subprotocol for secret x0 and sends all the resulting
information to A, along with xb.

4. C runs the reconstruction subprotocol for the set of all uncorrupted partici-
pants and sends all the messages exchanged via public channels (if any) to
A. No new corruptions are allowed from this point.

5. A outputs a guess bit b′.

The advantage of A in that game is defined as
∣∣Prob[b′ = b] − 1

2

∣∣.
The stronger notion (IND2) is similar to (IND1) but now x0, x1 are chosen by
the adversary.

Definition 2 (Indistinguishability of secrets (IND2)). We define IND2-
secrecy of a (t, n)-threshold PVSS scheme exactly as in the definition of IND1-
secrecy but replacing item 3 by

3’ A selects to secrets x0, x1 and sends them to C. Then C picks a random bit
b ∈ {0, 1} and runs the distribution subprotocol for the secret xb. Finally, C
sends all the resulting information to A.

Clearly, IND2-secrecy implies IND1-secrecy but the converse is not true. However,
one can upgrade an IND1-secret PVSS scheme to achieve IND2-secrecy by using
the original PVSS scheme to share a random session key K, and then the dealer
publishes K ⊕ s, where s is the secret and ⊕ is a suitable group operation. We
refer to this PVSS scheme as a hybrid PVSS scheme. See Appendix B for a
detailed proof of this fact.
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4 The Proposed PVSS Scheme

Assume that G is a group of order q, q a prime number, and g and h are two
independent generators of this group. Let e be a non-degenerated bilinear map
e : G × G → G1. This means that the map e : G × G → G1 fulfils the following
properties:

1. e(gα, gβ) = e(g, g)αβ for all α, β ∈ Fq.
2. e(g, g) �= 1.
3. e(x, y) is efficiently computable given x and y in G.

We wish to use Shoenmakers’ protocol together with the bilinear map to build
a (t, n)-threshold PVSS scheme to share a secret in G1 among the participants
P1, . . . , Pn, where n ≥ 2t− 1, in such a way that the public verifiability does not
require the use of Fiat-Shamir non-interactive zero-knowledge proofs. To do this,
the dealer chooses z0 ∈ F∗

q randomly and distributes the secret S = e(h, h)z0 in
the following way:

Setup. Every participant Pi chooses a random secret value di ∈ F∗
q and publishes

hi = hdi as his public key.

Distribution. The dealer chooses a random polynomial P (x) =
∑t−1

j=0 αjx
j of

degree at most t − 1 with coefficients in Fq and α0 = z0. The dealer publishes
the commitments Cj = gαj , for 0 ≤ j < t. He also publishes the encryptions of
the shares Yi = hi

P (i) for 1 ≤ i ≤ n.

Verification. Every (external) verifier can compute the value Xi =
∏t−1

j=0 Cij

j

for every participant Pi by himself and check the correctness of the shares by
checking the equation e(Xi, hi) = e(g, Yi). If the verification fails, all participants
exit the protocol (i.e., they refuse to take part in the reconstruction subprotocol).

Reconstruction. Let A be a qualified subset of participants. Each participant
in A gets the encrypted share Si = hP (i) by using its private key and computing
Si = Yi

1/di . Then all participants in A pool their shares. All shares can be
verified easily by other participants of A by checking the equation e(Si, hi) =
e(Yi, h). After the verification, if there are at least t correct shares, then for
an arbitrary set B ⊆ A of t participants which have pooled correct shares,
every participant in A can get hz0 by Lagrange interpolation:

∏
Pi∈B Si

λi =∏
Pi∈B(hP (i))λi = h

∑
Pi∈B λiP (i) = hP (0) = hz0 , where λi =

∏
Pj∈B\{Pi}

j
j−i is a

Lagrange coefficient. The secret S will be recovered by computing e(hz0 , h). The
protocol is summarized in Figure 1.

5 Analysis of the Scheme

5.1 Correctness

Correctness of the scheme means that: (i) an honest D always passes the ver-
ification procedure, and (ii) any subset of at least 2t − 1 participants (which
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Setup:

� Each participant Pi computes (pk, sk) = (hi, di) = (hdi , di), where di
$← F∗

q ,
and broadcasts pk.

Distribution:
Let z0

$← F∗
q and S = e(h, h)z0 be the secret to be shared.

� D picks a random polynomial P (x) =
∑t−1

j=0 αjx
j where α0 = z0 and αj

$← Fq.
� D publishes Cj = gαj and the encrypted shares Yi = hi

P (i).
Verification:

� V computes Xi =
∏t−1

j=0 Cij

j and checks if e(Xi, hi) = e(g, Yi).
Reconstruction:
Let A be a subset of participants running the reconstruction subprotocol.

� Every Pi ∈ A, sends Si = Yi
1/di to the other participants in A.

� Every Pi ∈ A, checks if e(Sj , hj) = e(Yj, h) for all Pj ∈ A \ {Pi} and defines
Bi as a subset of t participants that pass the test.

� Every Pi ∈ A, computes
∏

Pj∈Bi
Sj

λj = hz0 where λj =
∏

Pk∈Bi\{Pj}
k

k−j
and

gets S = e(hz0 , h).

Fig. 1. PVSS scheme with reconstruction via private channels

ensures us that there are at least t honest participants) is always able to recover
the secret shared by an honest D. Checking these requirements for the above
protocol is straightforward.

5.2 Verifiability

Now we show that if D passes the verification, then all participants in the pro-
tocol must behave honestly or will be detected. More precisely, on the one hand,
the dealer must be honest in the distribution subprotocol and, on the other hand,
participants must be honest in the reconstruction subprotocol.

Verifiability of the Distribution. In the following, we prove that a dishon-
est D cannot cheat the participants without being detected in the verification.
More precisely, if D passes the verification, then all qualified subsets of honest
participants will reconstruct the same secret.

Lemma 1. If V accepts, then there exists a unique polynomial P (x) such that
the encrypted share of participant Pi is Yi = hi

P (i) for 1 ≤ i ≤ n.

Proof. Assume that the share of participant Pi is equal to Yi = hi
s. Let us

write Cj = gαj for suitable αj and consider the polynomial P (x) = α0 + α1x +
. . . + αt−1x

t−1. If V accepts, then for every 1 ≤ i ≤ n the dealer passes the
equation e(Xi, hi) = e(g, Yi), where Xi =

∏t−1
j=0 Cij

j . By the definition of P (x),
we have e(g, hi)P (i) = e(g, hi)s, which leads to s = P (i). The uniqueness of P (x)
implies that all sets of t correct shares get the same secret in the reconstruction
subprotocol. ��
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In the actual protocol, all participants act as verifiers after the secret distribution
stage. Then, if D broadcasts corrupt information, then all honest participants
drop out of the protocol. Hence, nobody can successfully run the reconstruction
subprotocol. It is worth noticing that verifiability of D is unconditional (i.e.,
does not depend on any computational assumption).

Verifiability of the Shares in the Reconstruction Subprotocol. Consider
now that D behaves honestly. Let Pi and Pj be two participants taking part in
the reconstruction subprotocol. Suppose Pi opens his secret value Si = Yi

s to
Pj , and Pj behaves honestly.

Lemma 2. If Pj accepts Pi’s value, then Si = Yi
1/di , where di is the secret key

of Pi, that is hi = hdi.

Proof. Since Pj accepts Pi’s value, then e(Si, hi) = e(Yi, h), and so e(Yi
s, hdi) =

e(Yi, h). By using the properties of the bilinear map we get e(Yi, h)sdi = e(Yi, h),
which results in sdi = 1. So if Pj accepts the secret share of Pi, then Si = Yi

1/di .
��

Thus, by the two previous lemmas, all honest participants involved in the recon-
struction subprotocol accept only correct shares Si = Yi

1/di = hP (i) (whether
the shares come from honest or dishonest participants). If there are at least t
honest participants in the subset A running the reconstruction subprotocol, then
every honest participant in A accepts at least t correct shares, which lead to the
secret S = hP (0) by Lagrange interpolation in the exponent. Notice that this
property does not depend on any computational assumption.

The results in this section are summarized in the following theorem.

Theorem 1. The proposed PVSS scheme is publicly verifiable even in the pres-
ence of an unbounded adversary.

5.3 Secrecy

Our goal now is to show that an active and adaptive probabilistic polynomial
time adversary corrupting at most t − 1 participants cannot obtain any infor-
mation about the shared secret S, assuming an honest D. To show this, we first
define the following assumption:

Assumption 1 (Decisional Bilinear Square (DBS)). Let G and G1 be two
groups of prime order q, g be a random generator of G and e : G×G → G1 be a
non-degenerated bilinear map. For random values μ, ν and s chosen uniformly
and independently from F∗

q and given h = gμ, u = gν , the following probability
distributions are polynomially indistinguishable: D0 = (g, h, u, T0 = e(h, h)ν)
and D1 = (g, h, u, T1 = e(h, h)s).

This assumption is equivalent to the Decisional Bilinear Quotient (DBQ) As-
sumption, recently introduced in [9], and it is a natural variant of the stan-
dard Decisional Bilinear Diffie-Hellman Assumption, in which informally, an
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adversary aims to tell apart e(g, g)xyz from a random value, given (g, gx, gy, gz).
DBS Assumption corresponds to the case x = y. See Appendix C for more details
about the relations of these assumptions.

Theorem 2. If the DBS Assumption holds, then the proposed scheme is
IND1- secret.

Proof. Assume that there is an active and adaptive probabilistic polynomial time
adversary, A, playing the game in Definition 1 with a non-negligible advantage
εA. Then we describe a simulator F that using A as a subroutine can break the
DBS Assumption with a non-negligible advantage εF .

1. Once F receives the description of a random instance of the DBS Problem
(q, G, G1, e, g, h = gμ, u = gν , Tb), as described in Assumption 1, he simu-
lates the (t, n)-threshold PVSS scheme as a challenger for A. So F sends
(n, t,P , q, G, G1, e, g, h) to A as the public parameters of the scheme. A
chooses a subset B0 ⊂ P of initially corrupted players and gives it to F .
Now F guesses the set of all players corrupted by A at the end of the game
by choosing at random B such that B0 ⊂ B ⊂ P and |B| = t − 1. Then F
computes the public keys of the players as follows: ∀Pi ∈ B \ B0; hi = hdi ,
di

$← F∗
q and ∀Pi ∈ P\B; hi = gri , ri

$← F∗
q , and sends them to the adversary.

2. A sends the public keys of the corrupted players which have been arbitrary
chosen by himself.

3. F chooses si
$← Fq and sets Yi = hi

si for all players Pi ∈ B. There exists a
unique interpolating polynomial P (x) = α0 + α1x + ... + αt−1x

t−1 ∈ Fq[x],
such that ∀Pi ∈ B; P (i) = si and gP (0) = u. Thus all the coefficients
can be uniquely determined for some efficiently computable constants μij

(that only depend on B) as αj =
∑

Pi∈B μijsj + μ0jν. Now F computes
Cj = g

∑
Pi∈B μijsiuμ0j , 1 ≤ j ≤ t − 1 and sets C0 = u. Then ∀Pi ∈ P \ B, F

sets Yi = hi
P (i) = gP (i)ri = [u

∏t−1
j=1 Cij

j ]ri , and sends all Yi, all Cj and Tb

to A.
4. A chooses B1 ∈ P \ B0 such that |B0 ∪ B1| ≤ t − 1, and corrupts the

participants in B1. If B1 � B \ B0, then F exits the game giving a random
bit b′ as output. Otherwise F sends the secret key di of every participant
Pi ∈ B1 to A.

5. Eventually A ends by outputting a bit b′ which is forwarded by F .

Let Fail denote the event that F exits the game at step 4. Notice that, if Fail
occurs then the probability of success of F (i.e., b′ = b) is exactly 1/2. Otherwise,
F perfectly simulates the challenger for A. On the other hand, the choice of B
is independent of all the variables of the secret sharing scheme, and then Fail is
independent of the success of A. Thus, the probability of success of F is SuccF =
1
2Prob[Fail]+SuccA Prob[¬Fail] and εF = εA Prob[¬Fail]. The (conditional) prob-
ability of ¬Fail can be easily computed as Prob[¬Fail] =

(t−1−|B0|
|B1|

)
/
(n−|B0|

|B1|
)
, for

any possible choice of B1, which ranges from 1 if B1 = ∅ (that is, in the case of
an active but static adversary εF = εA) to

(
n

t−1

)−1 if B0 = ∅ and |B1| = t − 1
(that is, the worst case adversary). ��
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As seen in Section 3, we can modify the basic PVSS scheme to achieve IND2-
secrecy by letting the dealer share a random value K = e(h, h)z0 ∈ G1, and then
publish the product T = KS, where S ∈ G1 is the actual secret he wants to
share.

6 Secret Reconstruction on Public Channels

In the basic scheme the secret reconstruction supposes the existence of private
channels between participants. In this section we remove this requirement with-
out losing any good property of the scheme.

Assume that participant Pi wants to sends his encrypted share, Si = Yi
1/di ,

to Pj . To do that publicly, he chooses a random value ρ and sends (r, z, w) =
(hi

ρ, Yi
ρ, hj

1/(diρ)), where hi, hj are the public keys of Pi, Pj respectively. Now
everybody can verify the correctness by checking the equations e(r, Yi) = e(z, hi)
and e(r, w) = e(hj , h), since Yi is publicly available from the sharing information
broadcast by the dealer. Notice that this verification is unconditional.

Then Pj computes the share of Pi as e(h, h)P (i) = e(z, w)1/dj . From t correct
shares, Pi can locally compute the secret S = e(h, h)P (0) as usual, by means of
Lagrange interpolation in the exponent. The secrecy of the modified protocol is
also based on the DBS Assumption.

Theorem 3. The protocol is IND1-secret under the DBS Assumption.

Proof. We only have to modify step 5 of the simulation in the proof of Theorem 2
to provide A with all the messages exchanged by the uncorrupted participants
during the secret reconstruction.

5’ For every ordered pair (Pi, Pj) of different uncorrupted participants, F
chooses ρ

$← F∗
q and sends (r = hi

ρ, z = Yi
ρ, w = hrj/(riρ)) to A. Even-

tually A ends by outputting a bit b′ which is forwarded by F .

Notice that the simulation of the secret reconstruction subprotocol is perfect.
Therefore, the advantage of F fulfils exactly the same equation as in Theorem 2.

��

7 Homomorphic Properties

It is well known that some basic secret sharing schemes have nice homomor-
phic properties. For instance, in Shamir’s scheme, if every participant Pi locally
computes a linear combination of his shares si and ti for the secrets s and t,
respectively, then he obtains a new share corresponding to the same linear com-
bination of the secrets. This interesting property has found a lot of applications
in electronic voting or multiparty computation, for example.

However, if the same idea is applied to a publicly verifiable secret sharing
scheme, then new difficulties arise: one wants to compute the sharing information
(including verification information) of the operation of two secrets from the
information of the individual sharing processes. This seems very hard to achieve
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if the public verifiability depends on non-interactive zero-knowledge proofs, but
it is straightforward in our scheme (as it was in [12]). Our basic scheme has the
following multiplicatively homomorphic property. We assume that public keys
of the participants are reused for multiple secret sharing.

Proposition 1. Let (C0, . . . , Ct−1, Y1, . . . , Yn) and (C̃0, . . . , C̃t−1, Ỹ1, . . . , Ỹn) be
the sharing information broadcast by the dealer for secrets S and S̃, respectively.
Then, for any α, β ∈ F∗

q the tuple (Cα
0 C̃β

0 , . . . , Cα
t−1C̃

β
t−1, Y

α
1 Ỹ β

1 , . . . , Y α
n Ỹ β

n ) has
the same probability distribution as a direct sharing of the secret SαS̃β.

The same property applies to the IND2-secret improved scheme. Indeed, it suf-
fices to do the same operation T αT̃ β with the additional public elements T
and T̃ .

8 Final Remarks

As in Shoenmakers’ scheme, the PVSS scheme proposed in this paper can be
easily extended to linear access structures other than the (t, n)-threshold ones by
following a standard procedure. Firstly, assign to every participant Pi a vector
vi = (vi,0, . . . , vi,t−1) ∈ Ft

q for a suitable dimension t, and let v0 = (1, 0, . . . , 0)
be the vector associated to the dealer. Then replace the sharing polynomial
P (x) by a (dual) vector α = (α0, . . . , αt−1), and P (i) by the dot product vi · α.
Hence, Xi is computed as Xi =

∏t−1
j=0 C

vi,j

j . All the remaining equations are
maintained except for Lagrange interpolation coefficients, which are replaced by
the coefficients of the expression of v0 as a linear combination of the vectors
associated to a qualified subset of participants.

On the other hand, the proposed PVSS scheme has a performance comparable
to Shoenmakers’ scheme. Indeed, the dealer’s computational effort of computing
the non-interactive zero-knowledge proofs (2n exponentiations) and the verifi-
cation of them by the verifier (2n multi exponentiations) have been replaced by
the computation of 2n pairings by the verifier. Hence, the dealer’s computation
complexity is reduced in about a 50%. If we tolerate a positive error probability
in the verification procedure, then the verifier can check a random combina-
tion of the n equations, reducing the number of pairing computations to only
n + 1. Moreover, every participant taking part of our scheme’s reconstruction
subprotocol must compute some extra pairings (typically 2t−1), but he does not
have to compute and check the non-interactive zero-knowledge proofs (saving 2
exponentiations and 2t − 2 multi exponentiations).
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A A Short Description of the Ruiz-Villar PVSS Scheme

Ruiz-Villar PVSS uses the additively homomorphic Paillier cryptosystem to add
public verifiability to Shamir’s secret sharing scheme over the ring ZN , where
N = pq is an RSA modulus. Let g be an element with multiplicative order N
in Z∗

N2 (e.g., g = 1 + N) and suppose that only the dealer knows p and q. The
distribution subprotocol for a secret s ∈ ZN works as follows:

1. Pi picks (mi, ri)
$← ZN × Z∗

N and broadcasts ci = gmiri
N mod N2.

2. D picks a random polynomial P (x) =
∑t−1

j=0 αjx
j where α0 = s and αj

$←
ZN . Then D sets si = P (i) mod N .

3. D decrypts all ciphertexts ci, thus obtaining the pairs (mi, ri), and broad-
casts di = si + mi mod N .
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4. D picks Rj
$← Z∗

N and broadcasts Aj = gαj RN
j mod N2, for 0 ≤ j < t.

5. D also broadcasts ti = R0R
i
1 · · ·Rit−1

t−1 ri mod N , for every i = 1, . . . , n.

For each 1 ≤ i ≤ n, a verifier can check A0A
i
1 · · ·Ait−1

t−1 = gdi

ci
tNi mod N2. Finally,

the secret reconstruction subprotocol (on private channels) for a subset A with
at least t honest participants, works as follows:

1. Every Pi ∈ A sends the secret pair (mi, ri) to the other participants in A,
who check that ci is the corresponding Pallier’s ciphertext.

2. Pi computes the valid shares sj = dj −mj mod N for the other participants
in A who passed the verification in the previous step.

3. Pi computes s by Lagrange interpolation in ZN from a set of t valid shares,
as in Shamir’s secret sharing scheme.

The above PVSS scheme is unconditionally verifiable and it is IND2-secret un-
der the Decisional Composite Residuosity (DCR) Assumption, and it is also
additively homomorphic. The scheme does not make use of Fiat-Shamir non-
interactive zero-knowledge proofs: instead it uses the homomorphic property of
Paillier’s encryption at the cost of an additional communication round in the
distribution subprotocol.

B Generic Transformation from IND1 to IND2-Secrecy

Let us consider an IND1-secret PVSS scheme. Let sharing(S) be the information
published by the dealer during the distribution subprotocol for a secret S. Let
us assume that the set of possible secrets is a group G, and let ⊕ denote the
group operation.

A new hybrid PVSS scheme can be defined from the original one by letting the
dealer choose and share a random secret K ∈ G and then publish T = K⊕S along
with sharing(K). Obviously, this modification has no effect on the correctness and
the public verifiability properties of the scheme. The reconstruction subprotocol
is slightly modified by just adding a last step in which every participant computes
S = K−1 ⊕ T after the computation of K. Let us show that if the basic scheme
is IND1-secret, then the hybrid scheme is IND1-secret. Let A2 be an adversary
playing the IND2 game in Definition 2 for the hybrid PVSS scheme, with a non-
negligible advantage ε2. We show an adversary A1 playing the IND1 game in
Definition 1 for the basic scheme, also with a non-negligible advantage ε1. Let
C be the challenger for A1 in that game. A1 will act as a challenger for A2. In
particular, A1 will forward all the corruption queries and responses of A2 to and
from C during the game. The only nontrivial part of A1 is in step 3.

1. A1 forwards the distribution information from C to A2.
2. A1 forwards the corrupted participants’ public keys from A2 to C.
3. A1 receives (sharing(K0), Kb) from C, where K0, K1

$← G and b
$← {0, 1} are

chosen by C. A1 also receives S0, S1 ∈ G from A2. Then, A1 picks β
$← {0, 1}

and sends sharing(K0) and Tb,β = Kb ⊕ Sβ to A2.
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4. A1 forwards the reconstruction information from C to A2.
5. If A2’s output β′ equals β, then A1 outputs b′ = 0. Otherwise A1 outputs

b′ = 1.

Notice that if b = 0, then A1 perfectly simulates a challenger for A2 since T0,β =
K0 ⊕ Sβ and then A1 sent a correct sharing of Sβ for a random β. Otherwise
b = 1, and then the view of A2 is independent of β. Indeed T1,β = K1 ⊕ Sβ ,
which is independent of sharing(K0) and Sβ . Hence, the probability that β′ = β
is exactly 1

2 . So ε1 = ε2/2. On the other hand, A1 runs within the same time as
A2 plus a small number of group operations.

This hybrid construction can be generalized to an arbitrary symmetric en-
cryption scheme, T = EK(S), such that for any possible value of S, EK(S) is
pseudorandom. Obviously, the above reduction should be modified to take into
account the maximum advantage of an attacker against the pseudorandomness
of the encryption scheme.

C Decisional Bilinear Square and Related Assumptions

We show here that the DBS Assumption is equivalent to the DBQ Assumption,
which is defined below.

Assumption 2 (Decisional Bilinear Quotient (DBQ)). Let G and G1 be
two groups of prime order q, g be a random generator of G and e : G×G → G1

be a non-degenerated bilinear map. For μ, ν, s
$← F∗

q, the probability distribu-
tions D0 = (g, gν , gμ, T0 = e(g, g)ν/μ) and D1 = (g, gν , gμ, T1 = e(g, g)s) are
polynomially indistinguishable.

Lemma 3. DBQ Assumption implies the DBS Assumption.

Proof. We can solve the DBQ problem by using a solver for the DBS problem as
follows. On input of a DBQ tuple (g, u = gν , v = gμ, Tb) we construct a correct
DBS tuple (v, g, u = vν/μ, Tb). Indeed, T0 = e(g, g)ν/μ and T1 is a random value
independent of the rest of the tuple. ��

Lemma 4. DBS Assumption implies the DBQ Assumption.

Proof. Similarly, on input of a DBS tuple (g, u = gν , v = gμ, Tb) we construct
a correct DBQ tuple (u, v = uμ/ν , g = u1/ν , Tb). Indeed, T0 = e(u, u)μ =
e(u, u)(μ/ν)(1/ν)−1

and T1 is random and independent of the rest of the tuple. ��

Lemma 5. DBS Assumption implies the DBDH Assumption.

Proof. On input of a DBS tuple (g, u = gν , v = gμ, Tb) we construct a cor-
rect DBDH tuple (g, u, uγ, v, T γ

b ) where γ
$← F∗

q . Indeed, T γ
0 = e(u, u)μγ =

e(g, g)ν(νγ)μ and T γ
1 is random and independent of (g, u, uγ , v). ��

These relations are very similar to the relations between the Decisional Diffie
Hellman (DDH), the Decisional Square Exponent (DSE) and the Decisional In-
verse Exponent (DIE) Assumptions (see [13]).
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and the MOV, Frey-Rück and Shipsey EDS attacks on the elliptic curve
discrete logarithm problem in the cases where these apply.

1 Introduction

The security of elliptic curve cryptography rests on the assumption that the
elliptic curve discrete logarithm problem is hard.

Problem 1 (Elliptic Curve Discrete Logarithm Problem (ECDLP)). Let E be an
elliptic curve over a finite field K. Suppose there are points P, Q ∈ E(K) given
such that P is of prime order and Q ∈ 〈P 〉. Determine k such that Q = [k]P .

Throughout this paper we require P to have prime order in our hard problems.
Much of what we do can be adapted for non-prime order at the cost of added
complication, but the prime order case is the relevant one for runtime [1].

In this article, we explore several related hard problems with a view to ex-
panding the theoretical foundations of the security of ECDLP as a hard problem.
Our research is inspired by work of Rachel Shipsey in her thesis [2], relating the
ECDLP to elliptic divisibility sequences (EDS) (see also Shipsey and Swart [3]).
An elliptic divisibility sequence is a recurrence sequence W (n) satisfying the
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We relate Shipsey’s work to the MOV and Frey-Rück attacks and explain their
limitations from the EDS point of view. We also point to a specific avenue for
attacking ECDLP by analysing the quadratic residuosity of elliptic divisibility
sequences.

The study of elliptic divisibility sequences was introduced by Morgan Ward
[4]. Let Ψn denote the n-th division polynomial of an elliptic curve E over the
rationals. The sequence WE,P : Z → Q of the form WE,P (n) = Ψn(P ) for some
fixed point P ∈ E(Q) is an elliptic divisibility sequence, and Ward showed that
almost all elliptic divisibility sequences arise in this way. This relationship is the
basis of our work here.

The general theory has been developed by Swart [5], Ayad [6], Silverman
[7][8], Everest, McLaren and Thomas Ward [9] and, more recently, generalised
to higher rank elliptic nets by Stange [10][11]. For an overview of research, see
[12]. Sections 2 and 3 provide brief background on elliptic divisibility sequences
and elliptic nets, more information about which can be found in [10][11][13].

The hard problems for elliptic divisibility sequences we consider are:

Problem 2 (EDS Association). Let E be an elliptic curve over a finite field K.
Suppose there are points P, Q ∈ E(K) given such that Q ∈ 〈P 〉, Q �= O, and
ord(P ) ≥ 4 is prime. Determine WE,P (k) for 0 < k < ord(P ) such that Q = [k]P .

Problem 3 (EDS Residue). Let E be an elliptic curve over a finite field K.
Suppose there are points P, Q ∈ E(K) given such that Q ∈ 〈P 〉, Q �= O,
and ord(P ) ≥ 4 is prime. Determine the quadratic residuosity of WE,P (k) for
0 < k < ord(P ) such that Q = [k]P .

The rank of zero-apparition of an elliptic divisibility sequence is the least positive
n such that W (n) = 0.

Problem 4 (Width s EDS Discrete Log). Given an elliptic divisibility sequence
W whose rank of zero-apparition is prime, and given terms W (k), W (k+1), . . .,
W (k + s − 1), determine k.

Problem 4 was considered by Shipsey [2, §6.3.1] and Gosper, Orman and Schroep-
pel [14, §3]. Problem 2 is also implicit in [2, §6.4.1] and [14, §3].

A perfectly periodic elliptic divisibility sequence is one which has a finite
period n and whose first positive index k at which W (k) = 0 is k = n. If a
sequence is not perfectly periodic, then it has period n > k. In Section 10, we
prove the following theorem.

Theorem 1. Let E be an elliptic curve over a finite field K = Fq. If any one
of the following problems is solvable in probabilistic sub-exponential time, then
all of them are:

1. Problem 1: ECDLP
2. Problem 2: EDS Association for non-perfectly periodic sequences
3. Problem 4 (s = 3): Width 3 EDS Discrete Log for perfectly periodic sequences
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In addition, the previous problems are equivalent to the following one in the case
that q is odd and E(Fq) is of odd order.

4. Problem 3: EDS Residue for non-perfectly periodic sequences

Section 4 relates Problems 4 and 2 to the ECDLP. Section 6 expands on Problem
2. Sections 7 and 8 discuss Problem 3. Section 9 remarks on Problem 4. Section
10 proves Theorem 1. The relation with the MOV and Frey-Rück attacks is
discussed in Section 5.

The authors would like to thank the referees for their helpful suggestions, and
Joe Silverman, Marco Streng and Christine Swart for corrections to the final
version.

2 Background on Elliptic Nets

In this section we state the background definitions and results on elliptic divis-
ibility sequences and elliptic nets that are needed for the rest of the paper. For
details and examples, see [10][11][13].

Definition 1 (Stange [10, Def. 2.1][11, Def. 3.1.1]). Let K be a field, n > 0
and integer. An elliptic net is any map W : Zn → K such that the following
recurrence holds for all p, q, r, s ∈ Zn:

W(p + q + s)W(p − q)W(r + s)W(r)
+ W(q + r + s) W(q − r) W(p + s)W(p)

+ W(r + p + s)W(r − p)W(q + s)W(q) = 0 (1)

We refer to n as the rank of the elliptic net. An elliptic net of rank one is called
an elliptic divisibility sequence.

One always has W (−v) = −W (v) and W (0) = 0, and a restriction of an elliptic
net to a sublattice of Zn is again an elliptic net. The important fact for our
purposes is that any elliptic curve E over K and points P1, . . . , Pn ∈ E(K) gives
rise to a unique elliptic net WE,P1,...,Pn : Zn → K. The principal theorem is as
follows.

Theorem 2 (Stange [10, Thm. 6.1][11, Thm. 7.1.1]). Let n > 0 be an
integer. Let

E : f(x, y) = y2 + α1xy + α3y − x3 − α2x
2 − α4x − α6 = 0

be an elliptic curve defined over a field K. Let ei be the i th standard basis vector.
For all v ∈ Zn, there are functions Ψv : En → K in the ring

Z[α1, α2, α3, α4, α6][xi, yi]ni=1
[
(xi − xj)−1]

1≤i<j≤n

/
〈f(xi, yi)〉ni=1 ⊂ K(E),

such that
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1. W (v) = Ψv satisfies the recurrence (1).
2. Ψv = 1 whenever v = ei for some 1 ≤ i ≤ n or v = ei + ej for some

1 ≤ i < j ≤ n.
3. Ψv vanishes at P = (P1, . . . , Pn) ∈ En if and only if v ·P = O on E (and v

is not one of the vectors specified in 2).

In the case of rank n = 1, the Ψv are the familiar division polynomials of an
elliptic curve [15, p. 105]. Since the Ψv satisfy the elliptic net recurrence (1), we
may make the following definition.

Definition 2 (Stange [10, Def. 6.1][11, Def. 7.2.1]). For any elliptic curve
E defined over K and non-zero points P1, . . . , Pn ∈ E(K) such that no two are
equal or inverses (or, if n = 1, P1 is not a 2- or 3-torsion point), the map
WE,P1,...,Pn : Zn → K defined by

WE,P1,...,Pn(v) = Ψv(P1, . . . , Pn)

is an elliptic net called the elliptic net associated to E, P1, . . . , Pn.

Nearly all elliptic nets arise in this way (see [10][11]). For the remainder of this
article, any elliptic net or elliptic divisibility sequence will be assumed to have
this form.

Elliptic nets or elliptic divisibility sequences are arrays or sequences of values
of K. The zeroes in this array are particularly important.

Definition 3. The zeroes of an elliptic divisibility sequence or elliptic net appear
as a sublattice of the lattice of indices. We call this sublattice the lattice of
zero-apparition. In the case of a sequence, this sublattice is specified by a single
positive integer – the smallest positive index of a vanishing term – and this
number is called the rank of zero-apparition.

The rank of zero-apparition of an elliptic divisibility sequence associated to a
point P will equal the order of the point P . In the case of an array associated
to points P1, . . . , Pn, the zeroes (v1, . . . , vn) correspond to linear combinations
v · P that vanish.

Suppose T : Zs → Zt is a Z-linear transformation. The following theorem
relates the elliptic net associated to P ∈ Es to that associated to T (P) ∈ Et.

Theorem 3 (Stange [10, Prop. 5.6][11, Thm. 6.2.3]). Let T be any t × s
integral matrix. Let P ∈ Es and v ∈ Zt. Then

WE,P(T tr(v)) = WE,T (P)(v)

×
t∏

i=1

WE,P(T tr(ei))v2
i −vi(

∑
j �=i vj) ∏

1≤i<j≤t

WE,P(T tr(ei + ej))vivj (2)

This has several useful corollaries. For proofs see the cited references.
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Theorem 4 (Ward [4, Thm. 8.1], Stange [11, Thm. 10.2.3][16]). Suppose
that WE,P (m) = 0. Then for all l, v ∈ Z, we have

WE,P (lm + v) = WE,P (v)avlbl2

where

a =
WE,P (m + 2)

WE,P (m + 1)WE,P (2)
, b =

WE,P (m + 1)2WE,P (2)
WE,P (m + 2)

.

Furthermore, am = b2. Therefore, there exists an α ∈ K̄, the algebraic closure
of K, such that α2 = a and αm = b, and so

WE,P (lm + v) = WE,P (v)α(lm+v)2−v2
.

Theorem 5 (Stange [11, Thm. 10.2.3][16]). Suppose r = (r1, r2) ∈ Z2 is
such that
WE,P,Q(r) = 0. For l ∈ Z and v = (v1, v2) ∈ Z2 we have

WE,P,Q(lr + v) = WE,P,Q(v)alv1
r blv2

r cl2

r

where

ar =
W (r1 + 2, r2)

W (r1 + 1, r2)w(2, 0)
, br =

W (r1, r2 + 2)
W (r1, r2 + 1)W (0, 2)

, cr =
W (r1 + 1, r2 + 1)

arbrW (1, 1)
.

3 Perfectly Periodic Sequences and Nets

Definition 4. An elliptic divisibility sequence is called perfectly periodic if it
is periodic with respect to its rank of zero-apparition. An elliptic net is called
perfectly periodic if it is periodic with respect to its lattice of zero-apparition.

Definition 5. Let f : Zn → K∗ be a quadratic function, and k ∈ K∗ a constant.
Two elliptic nets W and W ′ are called equivalent if W ′(v) = kf(v)W (v).

As an example, let W be an elliptic divisibility sequence with rank of zero-
apparition m. In one variable (n = 1), quadratic functions to K∗ have the form
f(n) = αn2

for some α ∈ K∗. Suppose we use α as defined by Theorem 4, i.e.
α2 = a, αm = b, and let take k = α−1. Then W ′(n) = αn2−1W (n), and this
sequence is perfectly periodic. Suppose that K = Fq and gcd(q − 1, m) = 1. In
this case the conditions of Theorem 4 determine such an α uniquely, and it lies in
K. Otherwise (if gcd(q−1, m) �= 1), two such α’s will exist, equal up to sign. The
two resulting perfectly periodic sequences will be equal at even-indexed locations
and equal up to sign at odd-indexed locations.

The moral of the last paragraph is that any elliptic divisibility sequence is
equivalent to a perfectly periodic one. We can give an explicit expression for
such a perfectly periodic sequence.
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Theorem 6. Let K be a finite field of q elements, and E an elliptic curve defined
over K. For all points P ∈ E of order relatively prime to q − 1 and greater than
3, define

φ(P ) =
(

WE,P (q − 1)
WE,P (q − 1 + ord(P ))

) 1
ord(P )2

. (3)

We will also define φ(O) = 0. Then for all n where gcd(n, m) = 1,

φ([n]P ) = φ(P )n2
WE,P (n). (4)

In particular, for a point P of prime order not dividing q−1 and greater than 3,
the sequence φ([n]P ) is a perfectly periodic elliptic divisibility sequence equivalent
to WE,P (n).

More generally, let P ∈ E(K)n be a collection of nonzero points, no two equal
or inverses, and all elements of a single cyclic group and all having a fixed prime
order greater than 3 not dividing q − 1. The n-array φ(v · P) (as v ranges over
Zn) forms a perfectly periodic elliptic net equivalent to WE,P(v). Specifically,

φ(v · P) = WE,P(v)
n∏

i=1

φ(Pi)v2
i −vi(

∑
j �=i vj) ∏

1≤i<j≤n

φ(Pi + Pj)vivj .

Proof. The proof uses Theorem 3. We will demonstrate the method of proof in
the rank one case before proceeding to the general case. Take T = (l), so

WE,[l]P (n)WE,P (l)n2
= WE,P (nl).

By symmetry,
WE,[n]P (l)WE,P (n)l2 = WE,P (nl).

Let m = ord(P ). Thus, combining the above and using l = q − 1 and q − 1 + m
in turn,

WE,[n]P (q − 1)WE,P (n)(q−1)2

WE,P (q − 1)n2 = WE,[q−1]P (n) = WE,[q−1+m]P (n)

=
WE,[n]P (q − 1 + m)WE,P (n)(q−1+m)2

WE,P (q − 1 + m)n2

Rearranging,
φ([n]P ) = φ(P )n2

WE,P (n).

When the order of P is prime, this holds for all n. Therefore, φ([n]P ) is an
elliptic divisibility sequence. By definition, φ([n]P ) has period ord(P ) which is
equal to the rank of apparition of WE,P and φ([n]P ). So φ([n]P ) is perfectly
periodic.

For the rank n case, let m be the order of the cyclic group containing all
the points under consideration. In Theorem 3, let t = 1 and s = n and take
T = (v1 v2 v3 · · · vn) to obtain

WE,P(lv) = WE,v·P(l)WE,P(v)l2 .
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Now take t = s = n in Theorem 3 , and T = lIdn to obtain

WE,P(lv) = WE,lP(v)
n∏

i=1

WE,P(lei)v2
i −vi(

∑
j �=i vj)

∏
1≤i<j≤n

WE,P(lei + lej)vivj .

Note that

WE,P(lei) = WE,Pi(l), WE,P(lei + lej) = WE,Pi+Pj (l).

Combining the above, we have

WE,lP(v) =
WE,v·P(l)WE,P(v)l2∏n

i=1 WE,Pi(l)
v2

i −vi(
∑

j �=i vj)∏
1≤i<j≤n WE,Pi+Pj (l)vivj

.

Comparing this in the case of l = q − 1 and l = q − 1 + m gives the required
result, as before.

In light of this theorem, when the order of P is prime (which we shall always
assume), we will use the convenient notation

W̃E,P (n) = φ([n]P ).

and call this the perfectly periodic elliptic divisibility sequence associated to E
and P . The attractive property of a perfectly periodic sequence is formula (3):
W̃E,P (n) can be calculated as a function of the point [n]P on the curve without
knowledge of n.

Corollary 1. Suppose that E is an elliptic curve over a field K = Fq and
P ∈ E(K) is of prime order m ≥ 4. The period of the sequence WE,P is
m ordK∗(φ(P )).

Proof. First, φ([n]P ) has period exactly m. Since, if the period were m′ < m,
then WE,P (m′) = 0, a contradiction. The result now follows from equation (4).

The ratio between the period and the rank of zero-apparition, which we’ve
demonstrated to be ordK∗(φ(P )), is called τ by Morgan Ward [4, Thm. 11.1].

4 The Hard Problems

As we have seen, elliptic nets are closely related to the points on an elliptic
curve. In this section, we will see specifically how to compute them, and how
they relate, algorithmically, to the points.

The choice of segment 0 < k < ord(P ) is not crucial in Problem 2 (EDS As-
sociation): it could be restated for any segment i ord(P ) < k < (i + 1) ord(P ).
This problem is trivial for a perfectly periodic sequence or net (since W̃ (k) =
φ(Q) is computable in log q time). For the non-perfectly periodic case, the prob-
lem appears to be much harder. As for Problem 4 (EDS Discrete Log), on the



316 K.E. Lauter and K.E. Stange

other hand, for non-perfectly periodic elliptic divisibility sequences, it can be
solved by computing an F∗

q discrete log. For this problem, it is the case of per-
fect periodicity that seems very difficult.

We will see that these hard problems are related according to the following
diagram.
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We demonstrate the complexity of solving the problems associated to the solid
lines in the following series of theorems. The solid line labelled F∗

qDLP has the
complexity of a discrete logarithm problem in F∗

q (this is sub-exponential by
index calculus). No sub-exponential algorithms are known for the dotted lines.

Since our concern is polynomial time vs. non-polynomial time, in the follow-
ing we assume naive arithmetic in Fq, i.e. we bound the time to do basic Fq

operations by O((log q)2) for simplicity.

Lemma 1. Let E be an elliptic curve defined over K, and P ∈ E(K) be a
point of prime order not less than 4. The x-coordinate of [n]P , x([n]P ), can be
calculated in O((log q)2) time from the three terms WE,P (n − 1), WE,P (n), and
WE,P (n + 1) or from the three terms W̃E,P (n − 1), W̃E,P (n), and W̃E,P (n + 1).

Proof. See [11, Lemma 6.2.2] for the following identity:

WE,P (n − 1)WE,P (n + 1)
WE,P (n)2

= x(P ) − x([n]P ). (5)

The left-hand side of (5) is invariant under equivalence, and so the same calcu-
lation applies if we put tilde’s on the W ’s.

Theorem 7 (Shipsey [2, Thm 3.4.1]). Let E be an elliptic curve over K,
and P ∈ E(K) a point of order not less than 4. Given a value t, the term
WE,P (t) in the elliptic divisibility sequence associated to E, P can be calculated
in O((log t)(log q)2) time.
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Proof. For completeness, we give a simplified version of Shipsey’s algorithm here.
Following Shipsey, denote by 〈WE,P (k)〉 the segment or block centred at k of eight
terms WE,P (k−3), WE,P (k−2), . . ., WE,P (k+3), WE,P (k+4) of the sequence.
The block centred at t can be calculated from the block centred at 1 via a double-
and-add algorithm based on an addition chain for t. The calculation of the new
block from the previous depends on two instances of the recurrence (one such
calculation for each term of the new block):

W (2i − 1, 0) = W (i + 1, 0)W (i − 1, 0)3 − W (i − 2, 0)W (i, 0)3 ,

W (2i, 0) =
(
W (i, 0)W (i + 2, 0)W (i − 1, 0)2

−W (i, 0)W (i − 2, 0)W (i + 1, 0)2
)
/W (2, 0) .

To begin we must calculate the block centred at 1. Recalling that W (0) = 0,
W (1) = 1 and W (−n) = −W (n), we must calculate W (i) for i = 2, 3, 4. Precise
formulae in terms of the coordinates of P and the Weierstrass coefficients for
E can be found in [15, p. 105] or for long Weierstrass equations in [17, p. 80].
This algorithm takes O(log t) steps, each of which involves a fixed number of F∗

q

multiplications and additions, which take O((log q)2) time at worst.

Theorem 8. Let E be an elliptic curve over Fq, and P ∈ E(Fq) a point of
prime order not dividing q − 1 and greater than 3. Given a point Q = [k]P , the
term φ(Q) = W̃E,P (k) can be calculated in O((log q)3) time without requiring
knowledge of k.

Proof. We use equation (3). Using Theorem 7 to calculate the ratio of terms
inside the parentheses takes log(q−1+ord(Q))+log(q−1) steps. Since ord(Q) is
on the order of q, this is O((log q)3) time at worst. The other necessary operation
in (3) is to find the inverse of ord(Q)2 modulo q−1, and to raise to that exponent.
Both these are also O(log q) operations.

Theorem 9. Let E be an elliptic curve over Fq, and P ∈ E(Fq) a point of prime
order not dividing q−1 and greater than 3. Given the W̃E,P (k), W̃E,P (k+1) and
W̃E,P (k + 2), the point Q = [k]P can be calculated in probabilistic O((log q)4)
time without requiring knowledge of k.

Proof. Calculate x([k + 1]P ) by Lemma 1. We can calculate the corresponding
possible values for y in probabilistic time O((log q)4) [18, §7.1-2]. To determine
which of the two points with this x-coordinate is actually [k+1]P , first take one of
the two candidate points, and proceed on the assumption that it is [k+1]P . Using
the addition formula for elliptic curves, calculate x([k + 1]P +P ) = x([k + 2]P ).
Compare this with (5) to determine W̃ (k + 3). Also determine W̃ (k + 4) in this
manner. Then, if the terms W̃ (k), . . . , W̃ (k + 4) satisfy the recurrence instance

W̃ (k + 4)W̃ (k) = W̃ (k + 1)W̃ (k + 3)W̃ (2)2 − W̃ (3)W̃ (1)W̃ (k + 2)2,

our assumption about the point we chose is correct. If this recurrence does not
hold, then the point we chose was incorrect, and the other one is the point
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[k +1]P we seek. For, it is impossible that both points cause the above equation
to be satisfied: any sequence of four consecutive terms in an elliptic divisibility
sequence determines the entire sequence uniquely. Finally, knowing [k + 1]P , we
can calculate Q = [k]P = [k + 1]P − P .

The following theorem is implicit in the work of Shipsey; see Section 5.2 for an
explanation.

Theorem 10. Suppose P has prime order not dividing q−1 and greater than 3,
and φ(P ) is a primitive root in F∗

q. Given WE,P (k), WE,P (k + 1), WE,P (k + 2),
where it can be assumed that 0 < k < ord(P ), calculating k can be reduced to a
single discrete logarithm in F∗

q in probabilistic O((log q)4) time.

Proof. We can deduce the x-coordinate of the point Q = [k]P by Lemma 1.
Compute the two corresponding y-coordinates, which takes probabilistic time
O((log q)4) [18, §7.1-2]. Choosing one of the two possible y-coordinates, we have
either Q = [k]P or Q = [−k]P . To determine which is correct, use the trick of
the proof of Theorem 9. Suppose it is the former; then, from Theorem 6, we have

φ([k + 1]P )
φ([k]P )

= φ(P )2k+1 WE,P (k + 1)
WE,P (k)

. (6)

So k satisfies an equation of the form A = B2k+1 where A and B are known, and
B has order q−1 by assumption. Therefore, we are reduced to solving a discrete
logarithm of the form A = Bx for 0 ≤ x < q − 1, with the understanding that k
will be one of (x − 1)/2 or (x + q − 1)/2. (In fact, if q − 1 < m, there may be at
most two other possible values of k to check: the above values shifted by q − 1.)

Remark 1. Let m = ord(P ). Suppose that gcd(m, q − 1) = 1. As an integer k
ranges over representatives of a single coset in Z/mZ, it ranges over all possible
cosets of Z/(q − 1)Z. Therefore, we cannot expect to find the set of k such that
Q = [k]P (i.e. a coset in Z/mZ) by solving an equation of the form A = Bk in F∗

q

(i.e. solving modulo q − 1). One solution to this problem is to attempt to solve
for an integer k (instead of a coset) – say, for example, the smallest non-negative
k with Q = [k]P . This is in essence what the preceeding theorem does. With
this in mind, we set some terminology.

Definition 6. Let Q be a multiple of P on an elliptic curve E. The minimal
multiplier of Q with respect to P is the smallest non-negative value of k such
that Q = [k]P .

Note that the minimal multiplier satisfies 0 ≤ k < ord(P ).

5 F∗
q Discrete Logarithm, the Tate Pairing and

MOV/Frey-Rück Attack

Theorem 10 uses terms of the elliptic divisibility sequence to give a discrete
logarithm problem in F∗

q . We demonstrate some variations on this theme, and
relate these types of equations to the Tate pairing, and to an ECDLP attack
given by Shipsey [2].
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5.1 An F∗
q DLP Equation of the Form A = Bk from Periodicity

Properties

The F∗
q DLP equations we consider are consequences of Theorem 3, but many can

be conveniently understood in terms of its corollary Theorem 5. The following
example involves the terms WE,P (k) and WE,P (k + 1), and requires knowledge
of Q = [k]P . The following diagram is suggestive for the discussion.

• ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ •
◦ ◦ ◦ •

u���������� ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦
◦ • ◦ ◦ ◦ ◦ •

u���������� ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ •

u���������� ◦ ◦ ◦ ◦ • ◦
◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ •

u���������� ◦ ◦ ◦
•

t

		

◦ ◦ ◦ ◦ •
−s



 ◦ ◦ ◦ ◦ •
−s



 ◦ ◦ ◦ ◦ •
−s




u����������

In this picture of Z2, u = (−3, 1), s = (5, 0) and t = (0, 5). Vectors u and s
generate the lattice of zero-apparition Λ for some elliptic net W associated to
points P and Q = [3]P of order 5. The vector t is also in Λ. One coset of Z2

modulo Λ is shown as the solid discs.
Theorem 5 shows the transformation relative to translation by a vector r ∈ Λ:

it relates W (v + r) to W (v) for each v. This Lemma can be applied repeatedly,
and different ‘paths’ from one point to another must agree. In the picture above,
the translation property which relates W (v+(−15, 5)) to W (v) can be calculated
by applying the transformation associated to u five times (the diagonal path)
or by applying the transformation associated to −s three times followed by that
associated to t once (the sides of the triangle).

In the general case, we have Q = [k]P . Then the lattice of zero-apparition
Λ for W = WE,P,Q includes vectors u = (−k, 1), s = (m, 0) and t = (0, m).
Suppose r = (r1, r2) is an element of Λ for W = WE,P,Q. By Theorem 5, we
have for all l ∈ Z and v ∈ Z2,

W (lr + v) = W (v)alv1
r blv2

r cl2

r (7)

where

ar =
W (r1 + 2, r2)

W (r1 + 1, r2)W (2, 0)
, br=

W (r1, r2 + 2)
W (r1, r2 + 1)W (0, 2)

, cr=
W (r1 + 1, r2 + 1)

arbrW (1, 1)
.

We expect appropriate relationships between au, bu, cu, as, bs, etc. The F∗
q

DLP equation we seek is one such relationship. We have

as =
W (m + 2, 0)

W (m + 1, 0)W (2, 0)
, at =

W (2, m)
W (1, m)W (2, 0)

, au =
W (2 − k, 1)

W (1 − k, 1)W (2, 0)
.

For each i ∈ Z, we apply (7) to obtain

W (−ik + 1, i − 1)W (0,−1)
W (1,−1)W (−ik, i − 1)

= ai
u (8)
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Set i = m in (8), and apply (7) four times:

am
u =

W (−mk + 1, m − 1)W (0,−1)
W (1,−1)W (−mk, m − 1)

=
(

W (−mk+1,m−1)
W (−mk+1,−1)

)(
W (−mk+1,−1)

W (1,−1)

)(
W (0,−1)

W (−mk,−1)

)(
W (−mk,−1)

W (−mk,m−1)

)
=

a−mk+1
t b−1

t c1
ta

−k
s bk

s ck2

s

a−mk
t b−1

t c1
ta

0
sb

k
s ck2

s
= ata

−k
s

Setting i = 1 in (8), we obtain an expression

au =
W (−k + 1, 0)W (0,−1)

W (1,−1)W (−k, 0)
= − WE,P (k − 1)

WE,P (k)W (1,−1)

which, when substituted into the last calculation, yields(
W (m + 1, 0)W (2, 0)

W (m + 2, 0)

)k

=
(

WE,P (k − 1)
WE,P (k)

)m(
− W (1, m)W (2, 0)

W (2, m)W (1,−1)m

)
. (9)

5.2 An F∗
q DLP Equation from Shipsey’s Thesis

The possibility of such an equation was observed by Rachel Shipsey in her thesis
[2, (6.3)]. She uses one-dimensional periodicity properties to derive the following
equation:

WE,P ((m + 1)(k + 1))WE,P (k)
WE,P ((m + 1)k)WE,P (k + 1)

= WE,P (m + 1)2k+1 (10)

Shipsey then argues that without knowledge of k the left hand side can be
calculated up to a factor of(

WE,P (k)
WE,P (k − 1)

)m(m+2)

.

This is very much of the same spirit as equation (9), and in fact, Theorem 3 can
be used to rewrite (10) in this form:

WE,P,Q(m + 1, m + 1)
WE,P,Q(0, m + 1)

(
WE,P (k + 1)

WE,P (k)

)m(m+2)

= WE,P (m + 1)2k+1. (11)

By Lemma 1, knowledge of Q, WE,P (k), WE,P (k − 1) determines WE,P (k + 1),
and so this is very much equivalent to Shipsey’s analysis. Note that the unknown
terms in (11) are raised to the exponent m + 2. At first blush, this may appear
to lead to an ECDLP attack for q − 1 = m + 2 (where the unknown terms will
disappear). However, this is not allowed by Remark 1. In fact, it turns out that
if q − 1 = m + 2, then WE,P (m + 1) = 1 (this eventually follows from Theorem
3 also).
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5.3 F∗
q DLP Equations and the Tate Pairing

Choose m ∈ Z+. Let E be an elliptic curve defined over a finite field K containing
the m-th roots of unity. Suppose P ∈ E(K)[m] and Q ∈ E(K)/mE(K). Since P
is an m-torsion point, m(P ) − m(O) is a principal divisor, say div(fP ). Choose
another divisor DQ defined over K such that DQ ∼ (Q)− (O) and with support
disjoint from div(fP ). Then, we may define the Tate pairing

τm : E(K)[m] × E(K)/mE(K) → K∗/(K∗)m

and Weil pairing
em : E(K)[m] × E(K)[m] → μm

by
τm(P, Q) = fP (DQ), em(P, Q) = fP (DQ)fQ(DP )−1.

Both are non-degenerate bilinear pairings, while the Weil pairing is alternating.
For details, see [19][20].

The Tate pairing and Weil pairing are used in the MOV [21] and Frey-Rück
[22] attacks on the ECDLP. These use the Weil and Tate pairings, respectively,
to translate an instance of the ECDLP into an F∗

q DLP equation, where index
calculus methods may be used. The basic idea, illustrated here for the Tate
pairing, is that Q = [k]P implies τm(Q, S) = τm(P, S)k by bilinearity. If S can
be chosen so that τm(P, S) is non-trivial, and if the Tate pairing takes values
in a manageably small finite field, then index calculus methods can be used
to determine k. In particular, this attack applies for curves E over Fq where
m = q − 1.

In (11) and (9), all the terms may be calculated from knowledge of m, P and
Q except for WE,P (k) and WE,P (k − 1). However, notice that these unknown
terms are raised to the power m. Therefore, in the case that m = q−1, no extra
information is needed and the ECDLP is reduced to an F∗

q DLP; this works in
exactly the cases that the MOV or Frey-Rück attack applies.

These sorts of ‘alternate versions’ of the MOV/Frey-Rück attack do have a
relation to the Tate pairing.

Theorem 11 (Stange [11, Thm. 17.2.1][13, Thm. 6]). Let E be an elliptic
curve, m ≥ 4, and P ∈ E[m]. Let Q, S ∈ E be such that S �∈ {O,−Q}. Let W
be an elliptic net of rank n, associated to points T ∈ E(K)n. Let s,p,q ∈ Zn be
such that

P = p · T, Q = q · T, S = s · T.

Let τm : E[m] × E/mE → K∗/(K∗)m be the Tate pairing. Then

τm(P, Q) =
W (mp + q + s)W (s)
W (mp + s)W (q + s)

.

Now equations (9) and (11) can be re-written as statements in terms of the Tate
pairing.
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Equation (9): Use Theorem 11 with p = (1, 0),q = (−1, 0), s = (2, 0) for the
left-hand side and p = (0, 1),q = (−1, 0), s = (2, 0) for the right. This rewrites
(9) as

τm(P,−P )k = τm(Q,−P ).

Equation (11): This is somewhat more complicated. From Theorem 4 with
m = q − 1 and Theorem 11 with various parameters,

WE,P (m + 1)2τm(P, P )−2 =
(

WE,P (m + 1)2WE,P (2)
WE,P (m + 2)

)2

= b2 = am = 1,

τm(P, Q) =
WE,P,Q(m + 1, 1)WE,P,Q(1, 0)
WE,P,Q(m + 1, 0)WE,P,Q(1, 1)

,

τm(Q, P ) =
WE,P,Q(1, m + 1)WE,P,Q(0, 1)
WE,P,Q(0, m + 1)WE,P,Q(1, 1)

,

1 = τm(P, O) = τm(P, [m]Q) =
WE,P,Q(m + 1, m + 1)WE,P,Q(1, 1)
WE,P,Q(m + 1, 1)WE,P,Q(1, m + 1)

.

All of which, taken together, rewrites (11) as

τm(P, Q)τm(Q, P ) = τm(P, P )2k.

Equation (4) (with n = k) does not, however, lend itself to this sort of re-writing
in terms of pairings in the case m = q−1, as the very definition of φ(P ) requires
the assumption that gcd(m, q − 1) = 1.

6 ECDLP through EDS Association

The previous sections have demonstrated that there are a variety of ways to
translate an ECDLP into an F∗

q DLP. The F∗
q DLP equation is in terms of

elements of the sequence WE,P . For example in (9), the elements are WE,P (k)
and WE,P (k − 1). The problem of finding these terms (with knowledge of Q =
[k]P but not k) is EDS Association. In this example, however, it is only their
quotient that is needed. Depending on the form of the F∗

q DLP equation, different
information (certain terms or ratios of terms) suffices. We formalise the most
general statement of this in the following theorem.

Proposition 1. Fix an elliptic curve E defined over Fq, and P ∈ E(Fq) of
prime order greater than three and not dividing q − 1. Suppose φ(P ) has order
q − 1 in F∗

q. With knowledge of any product

N∏
i=1

WE,P (pi(k))ei , (12)

where the ei ∈ Z, and pi(x) ∈ Z[x] of degree at most one, and t(x) =
∑N

i=1 eipi(x)2

is a non-constant polynomial in Z[x], the value of k can be determined in subex-
ponential time in q.
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Proof. Combine appropriate instances of equation (4) of Theorem 6 in such a
way that t(k) satisfies an equation in F∗

q of the form A = Bt(k). That is, combine
one instance for each n = pi(k) with multiplicities given by the respective ei,
and obtain an equation of the form

N∏
i=1

W̃E,P (pi(k))ei

N∏
i=1

WE,P (pi(k))ei

= φ(P )t(k).

(Earlier in the paper we derived equation (6) in this manner. In that case,
1 = e1 = −e2, p1(k) = k + 1, and p2(k) = k, so that t(k) = 2k + 1.)

The left hand side A includes the known product (12) as well as terms of the
form φ([pi(k)]P ), while B = φ(P ). The N points [pi(k)]P can each be calculated
from knowledge of P and Q = [k]P without knowledge of k in O(log q) curve
operations. Then the various φ terms can be computed in time O((log q)3) by
Theorem 8. Thus we have computed A and B.

Solving the discrete logarithm A = Bt(k) for t(k) can be done in sub-
exponential time by index calculus methods. Since t(k) has degree at most two,
solving for k from t(k) requires finding square roots in Z/(q − 1)Z (see [23,
§3.5.1]), which in turn depends on factoring q−1 which is sub-exponential using
the number field sieve.

It is evident that the most costly steps are the index calculus step and the
factorisation of q − 1 if t has degree two. In many cases these algorithms have
run time r(q) = exp(c(log q)1/3(log log q)2/3) [24, p.306].

7 ECDLP and Quadratic Residues

We will show that determining only one bit of information – the residuosity –
about a term WE,P (k) may suffice to solve the ECDLP in some cases. First, we
observe a hypothetical method of attack for ECDLP.

Proposition 2. Suppose that E(Fq) is of odd order. Let P be a point of order
relatively prime to q − 1. Given an oracle which can determine the parity of the
minimal multiplier of any non-zero point Q in 〈P 〉 in time O(T (q)), the elliptic
curve discrete logarithm for any such Q can be determined in time O(T (q) log q+
(log q)2).

Proof. Suppose that k is the minimal multiplier of Q with respect to P . The
basic algorithm is:

1. If Q = P , stop.
2. Call the oracle to determine the parity of k. If k is even, find Q′ such that

[2]Q′ = Q. If k is odd, find Q′ such that [2]Q′ = Q − P .
3. Set Q = Q′ and return to step 1.
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In Step 2, since the cyclic group 〈P 〉 has odd order, and the curve has no 2-
torsion, there is a unique Q′. It can be found in O(log q) time (see [25] for
methods). Furthermore, Q′ = [k′]P where

k′ =
{

k/2 k even
(k − 1)/2 k odd .

Then k′ is the minimal multiplier for Q′ with respect to P . At the end of this
process, the value of the original k can be deduced from the sequence of steps
taken. For each even step, record a ‘0’, and for each odd step a ‘1’, writing from
right to left, and adding a final ‘1’: this will be the binary representation of k.
The number of steps is log2 k = O(log q).

Proposition 3. Fix an elliptic curve E defined over Fq of characteristic not
equal to two, and P ∈ E(Fq) of prime order greater than three and not dividing
q − 1. Suppose that φ(P ) is a quadratic non-residue. Then, with knowledge of
the quadratic residuosity of any product of the form

N∏
i=1

WE,P (pi(k))ei , (13)

where the ei ∈ Z, and pi(x) ∈ Z[x] of degree at most one, and t(x) =
∑N

i=1 eipi(x)2

is not constant as a function Z/2Z → Z/2Z, the parity of k can be determined
in time O(N(log q)3).

Proof. By Theorem 6, the value t(k) satisfies an equation in F∗
q of the form

A = Bt(k) (exactly as in the proof of Proposition 1). The quadratic residuosity
of A can be calculated in time O(N(log q)3) as in the proof of Proposition 1.
Now, B = φ(P ) is a quadratic non-residue. The parity of t(k) can be calculated
from these values in constant time (i.e. consider the question in K∗ modulo
(K∗)2). The parity of k is determined by checking the parity of t(0) and t(1).
This final step takes constant time.

Corollary 2. Let E be an elliptic curve over a field of characteristic not equal
to two, and suppose E has an odd number of Fq points. Let P have prime order
greater than 3 and not dividing q− 1, and suppose that φ(P ) is a quadratic non-
residue, and let k be the minimal multiplier of a multiple Q of P . Given P, Q
and an oracle which can determine the quadratic residuosity of WE,P (k) in time
O(T (q)), the elliptic curve discrete logarithm for any such Q can be determined
in time O((log q)(T (q) + (log q)3)).

Proof. This follows from Proposition 3 with N = 1, e1 = 1, p1(x) = x and
Proposition 2.

A few remarks are in order.

1. If φ(P ) is a quadratic residue, one solution to this obstacle is to replace
the initial problem of Q = [k]P with the equivalent problem of
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[n]Q = [k]([n]P ) for any n such that φ([n]P ) is a quadratic non-residue.
The sequence W̃E,P (n) can be calculated term-by-term until such an n is
found. The existence of such an n is guaranteed when −1 is a quadratic
non-residue in Fq, in which case φ([m − 1]P ) = −φ(P ) suffices. Other cases
are less clear.

2. The condition that the order of P is relatively prime to the even quantity
q− 1 is required in several ways. First, for the very definition of φ (Theorem
6). Furthermore, if the order m of the group 〈P 〉 is even, in which case E has
2-torsion, then multiplication by 2 is not an automorphism, and so there is
no unique ‘half’ of a point (this is the same difficulty that prevents this sort
of parity attack on an F∗

q discrete log). However, if m|(q − 1) is odd, then
k satisfies a discrete logarithm equation of the form A = Bk in the group
K∗/(K∗)m, which has an odd number of elements. Therefore, this does not
determine the parity of k.

3. Similarly, if q − 1 is odd (i.e. Fq has characteristic 2), then A = Bk does not
carry information about the parity of k.

8 The EDS Residue Problem

In light of the preceeding section, it is natural to define the problem of EDS
Residue (Problem 3). In Section 10 we will show that it is equivalent to the el-
liptic curve discrete logarithm in sub-exponential time. How might one determine
the quadratic residuosity of WE,P (k)? Our first observation is that knowledge of
the residuosity of one term WE,P (k) would determine the residuosity of the next
term. In this section we assume as always that P is of prime order not dividing
q − 1 and greater than 3.

Proposition 4. Suppose Q is a known element of 〈P 〉, but that its minimal
multiplier k is unknown. The quadratic residuosity of WE,P (k+1)/WE,P (k) can
be calculated in O((log q)3) time.

Proof. From (4) with n = k and n = k + 1, we have

φ(Q + P )
φ(Q)

= φ(P )2k+1
(

WE,P (k + 1)
WE,P (k)

)
.

The calculation of the terms φ(P ), φ(Q), and φ(P + Q) each take O((log q)3)
time.

Therefore, based on knowledge of Q but not k, the sequence

S(n) =
(

WE,P (n)
q

)(
WE,P (k)

q

)
for n = k, . . . , k+N may be calculated in O(N(log q)3) time. Then the sequence(

WE,P (n)
q

)
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is either S(n) or −S(n). To determine whether it is S(n) or −S(n) is to determine
the quadratic residuosity of WE,P (k).

Therefore, if some bias, or some pattern, for quadratic residues of the elliptic
divisibility sequence WE,P (n) were known, then the correct choice of the two
sequences above could be determined. However, as yet we have no evidence to
suggest that the ratio of quadratic residues among the terms is not 1/2 in general.

9 ECDLP through EDS Discrete Log in the Case of
Perfect Periodicity

Problem 4 (EDS Discrete Log) is less unusual in flavour than the other problems
considered here: general discrete logarithm attacks will apply. Recall the proof of
Theorem 7, in which blocks centred at k are defined – denote this as B(k). From
B(k), the recurrence relation can be used to calculate B(2k) or B(2k + 1). In
fact, Shipsey goes further, and shows how two blocks B(k), B(k′) can be added
to obtain a block B(k + k′) in a similarly efficient manner (see [2, p. 23]). This
means that the sequence of blocks B(n) is a sequence along which we can move
easily by addition and Z-multiplication. Therefore, generic algorithms such as
Baby-Step-Giant-Step and Pollard’s ρ can be applied to this problem.

10 Equivalence of Hard Problems

Proof (Proof of Theorem 3). (2) =⇒ (1): Theorem 10. ; (1) =⇒ (2): If k is
known, we can assume 0 < k ≤ ord(P ), and then WE,P (k) can be calculated in
O((log k)(log q)2) = O((log q)3) time. ; (1) =⇒ (3): Theorem 9. ; (3) =⇒ (1):
Theorem 8 allows calculation of φ([k]P ), φ([k + 1]P ), and φ([k + 2]P ) in sub-
exponential time. ; (4) =⇒ (1): Corollary 2. ; (2) =⇒ (4): Residuosity of a
value in F∗

q can be determined in sub-exponential time (see [26] for algorithms).
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The “Coefficients H” Technique
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Abstract. The “coefficient H technique” is a tool introduced in 1991
and used to prove various pseudo-random properties from the distribu-
tion of the number of keys that sends cleartext on some ciphertext. It
can also be used to find attacks on cryptographic designs. We can like
this unify a lot of various pseudo-random results obtained by different
authors. In this paper we will present this technique and we will give
some examples of results obtained.

1 Introduction

The “coefficient H technique” was introduced in 1990 and 1991 in [11], [12]. Since
then, it has been used many times (by myself , Henri Gilbert, Gilles Piret, Serge
Vaudenay, etc.) to prove various results on pseudo-random functions and pseudo-
random permutations. In this paper we will present in a self content way the
“coefficient H technique”, with different formulations when we study different
cryptographic attacks (known plaintext attacks, chosen plaintext attacks, etc.).
We will give proofs of some of these theorems and we will give some simple
examples.

2 Notation - Definition of H

In all this paper, we will use these notations.

– KPA: Known Plaintext Attack
– CPA-1: Non-adaptive Chosen Plaintext Attack
– CPA-2: Adaptive Chosen Plaintext Attack
– CPCA-1: Non-adaptive Chosen Plaintext and Chosen Ciphertext Attack
– CPCA-2: Adaptive Chosen Plaintext and Chosen Ciphertext Attack
– IN = {0, 1}N (N is any integer)
– FN will be the set of all applications from IN to IN

– BN will be the set of all permutations from IN to IN

– ψk will denote the Feistel scheme of F2n with k rounds with k random round
functions randomly chosen in Fn (n is any integer). ψk is also called a random
Feistel scheme or a Luby-Rackoff construction.

– a ∈R A means that a is randomly chosen in A with a uniform distribution

R. Avanzi, L. Keliher, and F. Sica (Eds.): SAC 2008, LNCS 5381, pp. 328–345, 2009.
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– K will denote a set of values that we will sometimes call “keys”. In this
paper we will consider that K is a set of k-uples of functions (f1, . . . , fk) of
Fn. (However generally only |K| will be important, not the nature of the
elements of K).

– G is an application of K → FN . (Therefore, G is a way to design a function
of FN from k-uples (f1, . . . , fk) of functions of Fn of K).

Let m be an integer (m will be the number of queries). Let a = (ai)1≤i≤m be a
sequence of pairwise distinct elements of IN . Let b = (bi)1≤i≤m be a sequence of
elements of IN . By definition, we will denote by H(a, b) or simply by H if the
context of the ai and bi is clear, the number of (f1, . . . , fk) ∈ K such that:

∀i, 1 ≤ i ≤ m, G(f1, . . . , fk)(ai) = bi

Therefore, H is the number of “keys” (i.e. elements of K) that send all the ai

inputs to the exact values bi.

3 Five Basic “coefficient H” Theorems

In this section we will formulate five theorems. These theorems are the basis
of a general proof technique called the “coefficient H technique”, that allows to
prove security results for function generators and permutation generators (and
thus applies for random and pseudo-random Feistel ciphers).

These theorems were mentioned in [12] (with proofs in french) and in [16].
Since no proof in english was easily available so far we will present in this paper,
in Appendices, a proof of some of these theorems.

Theorem 1. [Coefficient H technique, sufficient condition for security
against KPA] Let α and β be real numbers, α > 0 and β > 0. If:

(1) For random values ai, bi, 1 ≤ i ≤ m of IN such that the ai are pairwise
distinct, with probability ≥ 1 − β we have:

H ≥ |K|
2Nm

(1 − α)

Then
(2) For every KPA with m (random) known plaintexts we have: AdvKPA ≤

α + β, where AdvKPA denotes the advantage to distinguish G(f1, . . . , fk)
when (f1, . . . , fk) ∈R K from a function f ∈R FN

(By “advantage” we mean here, as usual, for a distinguisher the absolute value
of the difference of the two probabilities to output 1).

Theorem 2. [Coefficient H technique, sufficient condition for security
against CPA-1] Let α and β be real numbers, α > 0 and β > 0. If:
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(1) For all sequences a = (ai), 1 ≤ i ≤ m of m pairwise distinct elements of IN

there exists a subset E(a) of Im
N such that |E(a)| ≥ (1 − β) · 2Nm and such

that for all sequences b = (bi), 1 ≤ i ≤ m of E(a) we have:

H ≥ |K|
2Nm

(1 − α)

Then
(2) For every CPA-1 with m chosen plaintexts we have: AdvPRF ≤ α+β where

AdvPRF denotes the advantage to distinguish G(f1, . . . , fk)
when (f1, . . . , fk) ∈R K from a function f ∈R FN .

Theorem 3. [Coefficient H technique, sufficient condition for security
against CPA-2] Let α and β be real numbers, α > 0 and β > 0. Let E be a
subset of Im

N such that |E| ≥ (1 − β) · 2Nm.
If:

(1) For all sequences ai, 1 ≤ i ≤ m, of pairwise distinct elements of IN and for
all sequences bi, 1 ≤ i ≤ m, of E we have:

H ≥ |K|
2Nm

(1 − α)

Then
(2) For every CPA-2 with m chosen plaintexts we have: AdvPRF ≤ α+β where

AdvPRF denotes the probability to distinguish G(f1, . . . , fk) when
(f1, . . . , fk) ∈R K from a function f ∈R FN .

Theorem 4. [Coefficient H technique, sufficient condition for security
against CPCA-2] Let α be a real number, α > 0. If:

(1) For all sequences of pairwise distinct elements ai, 1 ≤ i ≤ m, and for all
sequences of pairwise distinct elements bi, 1 ≤ i ≤ m, we have:

H ≥ |K|
2Nm

(1 − α)

Then
(2) For every CPCA-2 with m chosen plaintexts we have: AdvPRF ≤ α+ m(m−1)

2·2N

where AdvPRF denotes the probability to distinguish G(f1, . . . , fk) when
(f1, . . . , fk) ∈R K from a function f ∈R BN .

Theorem 5. [Coefficient H technique, a more general sufficient condi-
tion for security against CPCA-2]

Let α and β be real numbers, α > 0 and β > 0
If there exists a subset E of (Im

N )2 such that

(1a) For all (a, b) ∈ E, we have:

H ≥ |K|
2Nm

(1 − α)
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(1b) For all CPCA-2 acting on a random permutation f of BN , the probability
that (a, b) ∈ E is ≥ 1−β where (a, b) denotes here the successive bi = f(ai)
or ai = f−1(bi), 1 ≤ i ≤ m that will appear.
Then

(2) For every CPCA-2 with m chosen plaintexts we have: AdvPRF ≤ α + β
where AdvPRF denotes the probability to distinguish G(f1, . . . , fk) when
(f1, . . . , fk) ∈R K from a function f ∈R BN .

Remark. There are a lot of variants, and generalizations of these theorems. For
example, in all these theorems 1, 2, 3, 4, 5, the results are also true if we change
H ≥ |K|

2Nm (1 − α) by H ≤ |K|
2Nm (1 + α). However, for cryptographic uses H ≥

is much more practical since often it will be easier to evaluate the exceptions
where H is � average than the exceptions when H is � average.

4 How to Use the “Coefficient H Technique”

We have used the “coefficient H technique” to obtain proofs of security (cf
sections 5 and 6 below), generic attacks (cf section 7 below) and to obtain new
cryptographic designs (cf section 8 below). For proofs of security, very often,
the aim is to prove that a cryptographic construction A is not distinguishable
from an ideal object B. For example, in the Luby-Rackoff original result of [6],
A is a 3 or 4 round Feistel scheme with round functions generated from a small
key k by a pseudo-random function generator, and B is a perfectly random per-
mutation. For the proof, we introduce another ideal construction C, where all
the pseudorandom functions are replaced by truly random functions (or other
pseudo-random objects are replaced by truly random ones). Now the idea is that

Adv(A → B) ≤ Adv(A → C) + Adv(C → B)

i.e. the advantage to distinguish A from B is always smaller or equal to the
advantage to distinguish A from C plus the advantage to distinguish C from
B. To prove that Adv(A → C) is small is generally very easy: it comes from
the hypothesis that the function generator is secure, for example. To prove that
Adv(C → B) is small is sometimes more difficult. However, in A the only se-
cret values are generally contained in a small secret cryptographic k (of 128
bits for example) while in C the secret values are much bigger since they are
generally truly random secret functions. The “coefficient H” technique is very
often a powerful tool to get a proof that Adv(C → B) is small (and therefore
that Adv(A → B) is small, as wanted since Adv(A → C) is small). For this, we
“just” have to compute some values H , as stated in Theorem 1,2,3,4,5. When
the computations of these values H are easy, the proofs will be easy. (Very often
these values are easy to compute when we are below a “birthday bound value”,
i.e. when the analysis of collisions in equations are easy since the probability to
get such collisions is small). However, sometimes, the computations of the values
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H are not easy. For these cases, I have developed two techniques of computations
that I have called Hw and Hσ techniques.

Hw Technique

Hw stands for H “worst case” technique. The set of parameters on which we want
to compute H is generally fixed from the beginning. For these computations, I
sometimes use the “Theorem Pi⊕Pj” (or variants of it) that I will present below.
(See section 6.1 for an example of this technique).

Hσ Technique

Hσ stands for H “standard deviation” technique. The set of parameters on which
we want to compute H is not fixed from the beginning, but it will automatically
be fixed from the computation of the standard deviation of H . We will generally
use the covariance formula to compute this standard deviation. (See section 6.2
for an example of this technique).

BA

3

21

C

Fig. 1. Three cryptographic objects A,B,C

“Theorem Pi ⊕ Pj”

The “Theorem Pi ⊕ Pj” was proved in [17]. We use it sometimes to compute
some difficult values H . Let us recall here what this theorem is.

Definition 1. Let (A) be a set of equations Pi ⊕ Pj = λk, with Pi, Pj , λk ∈ In.
If by linearity from (A) we cannot generate an equation in only the λk, we will
say that (A) has “no circle in P”, or that the equations of (A) are “linearly
independent in P”.

Let a be the number of equations in (A), and α be the number of variables Pi

in (A). So we have parameters λ1, λ2, · · · , λa and a + 1 ≤ α ≤ 2a.

Definition 2. We will say that two indices i and j are “in the same block” if
by linearity from the equations of (A) we can obtain Pi ⊕ Pj = an expression in
λ1, λ2, · · · , λa.

Definition 3. We will denote by ξmax the maximum number of indices that are
in the same block.

Example 1. If A = {P1 ⊕ P2 = λ1, P1 ⊕ P3 = λ2, P4 ⊕ P5 = λ3}, here we have
two blocks of indices {1, 2, 3} and {4, 5}, and ξmax = 3.
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Definition 4. For such a system (A), when λ1, λ2, · · · , λa are fixed, we will
denote by hα the number of P1, P2, · · · , Pα solutions of (A) such that: ∀i, j, i �= j
⇒ Pi �= Pj. We will also denote Hα = 2nahα.

Remark hα and Hα are a concise notations for hα(A) and Hα(A). For a given
value α, hα and Hα can have different values for different systems A.

Definition 5. We will denote by Jα the number of P1, P2, · · · , Pα in In such
that: ∀i, j, i �= j ⇒ Pi �= Pj . So Jα = 2n · (2n − 1) · · · (2n − α + 1).

Theorem 6 (“Theorem Pi⊕Pj” when ξmax is fixed). Let ξmax be a fixed
integer, ξmax ≥ 2. Let (A) be a set of equations Pi ⊕ Pj = λk with no circle in
P , with α variables Pi, such that:

1. We have no more than ξmax indices in the same block.
2. The λ1, λ2, · · · , λk have any fixed values such that: for all i and j in the same

block, i �= j, the equation of Pi ⊕Pj in λ1, λ2, · · · , λα is �= 0 (i.e. by linearity
from (A) we cannot generate an equation Pi = Pj with i �= j).

Then we have for sufficient large n: Hα ≥ Jα. (This means: for all fixed ξmax,
there exists n0 ∈ N such that, for all n ≥ n0, for all system A that satisfies 1.
and 2., we have: Hα(A) ≥ Jα).

Remark This theorem was proved in [16] if we add the condition α3 � 22n (and
also ξmaxα3 � 22n since ξmax is here a fixed integer).

Theorem 7 (“Theorem Pi ⊕ Pj” when ξmaxα 	 2n ). With the same
notations, we have the same result, with the hypothesis ξmaxα � 2n (instead of
ξmax a fixed integer).

Remark. For cryptographic use, weaker version of this theorem will be enough.
For example, instead of Hα ≥ Jα for sufficiently large n, Hα ≥ Jα

(
1 − f( ξα

2n )
)
,

where f is a function such that f(x) → 0 when x → 0, is enough.
Another variant of this Theorem Pi ⊕ Pj is:

Theorem 8 (“Theorem Pi ⊕ Pj when ξmax ≤ O(n) and ξaverage ≤ 3). Let
ξaverage be the average value of ξ, where ξ is the number of variables Pj that
are fixed from the equations (A) when we fix a variable Pi. If ξmax ≤ O(n) and
ξaverage ≤ 3, then for sufficient large n, Hα ≥ Jα.

Generalizations of the “Theorem Pi ⊕ Pj”. This theorem may have many gen-
eralizations. For example:

• Generalization 1: the theorem is still true in any group G (instead of In).
• Generalization 2: we have a similar property for equations with 3, 4, · · ·, or
k variables, i.e. each equation is Pi1 ⊕ Pi2 · · ·Pik

= λl with pairwise distinct Pi

variables.

However in this paper we will only study the original “Theorem Pi ⊕ Pj” (i.e.
theorems 6 and 7) since it is this one that is needed to study random Feistel
schemes.
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5 First Simple Examples

5.1 ψ2

For ψ2 (Feistel scheme with the round functions (f1, f2) ∈R F 2
n) let [Li, Ri], 1 ≤

i ≤ m denotes the inputs, and [Si, Ti], 1 ≤ i ≤ m denotes the outputs. We have:
Si = Li ⊕ f1(Ri) and Ti = Ri ⊕ f2(Si) (*)

For random values [Li, Ri], [Si, Ti], 1 ≤ i ≤ m (such that i �= j → Li �= Lj or
Ri �= Rj) with probability > 1 − m2

2n we have that all the Ri values are pairwise
distinct and all the Si values are pairwise distinct. Moreover, if this occurs, we
have exactly H = |Fn|2

22nm (since (*) then fix f1 exactly on m points and f2 exactly
on m points).

So from Theorem 1 (with α = 0 and β = m2

2n ) we get:

Theorem 9. For every KPA with m random known plaintexts, we have

AdvKPA ≤ m2

2n

where AdvKPA denotes the advantage to distinguish ψ2 when (f1, f2) ∈R F 2
n

from a function f ∈R F2n. So when m � 2n/2, ψ2 will resit all known plaintext
attacks.

Remark. This result is tight, since when m2 becomes not negligible compared
with 2n then by counting the number N of (i, j)/Si ⊕ Li = Sj ⊕ Lj we will
be able to distinguish ψ2 from a random permutation with a known plaintext
attack.

5.2 Involutive Permutations

Let assume that G is a generator of permutations that generates involutive
permutations f (i.e. f = f−1). Then we can distinguish such f from random
permutations of BN with m = 2 queries in CPA-2 and m = 2 queries in CPCA-1.

CPA-2

In CPA-2 we ask f(a1) = b1 and f(b1) = b2, and we test if b2 = a1. This gives
a CPA-2 with m = 2 queries. It is not in contradiction with Theorem 3 since
in Theorem 3, we need property (1) on all sequences ai, 1 ≤ i ≤ m (and not
necessary on all sequences bi). Here if we have a = (a1, a2), b = (b1, b2) with
a2 = b1 and b2 �= a1, we will have H = 0. Therefore we will not be able to prove
from Theorem 3 that G is secure in CPA-2 (in fact G is not secure in CPA-2)
since for most (b1, b2) there exists (a1, a3) (take a2 = b1) such that H = 0.

CPCA-1

In CPCA-1 we ask f(a1) = b1 and f−1(a1) = a2 and we test if a2 = b1. This
gives a CPCA-1 distinguisher with m = 2 queries. We will not be able to prove
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from Theorem 4 or Theorem 5 that G is secure in CPCA-1 (in fact G is not
secure in CPCA-1) since in a non-adaptive chosen plaintext/ciphertext attack
we can impose that b2 = a1 and if we have a = (a1, a2), b = (b1, b2) with b2 = a1
and a2 �= b1 we will have H = 0.

KPA CPA-1

CPA-2

CPCA-1

��
��

��
��

CPCA-2

Fig. 3. Hierarchy of the attacks in secret key cryptography

5.3 Secret Key Security Hierarchy

In Figure 1, we have the well known hierarchy of attacks in secret key cryptog-
raphy (cf [2], [4], [5]). With coefficients H technique we can easily prove on small
examples this hierarchy, i.e. for example that there are some scheme secure in
CPA-2 and not in CPCA-1, that some schemes are secure in CPA-1 and not in
KPA etc. For example, we can easily prove that for a random involutive permu-
tation of BN we will have KPA and CPA-1 security in O(

√
2N). Therefore the

example of Section 6.2 shows that CPA-1 < CPA-2 and that CPA-1 < CPCA-1.

With f such that f(0) = 0 we will have that KPA < CPA-1.
With ψ2 we will have KPA < CPA-1.
With ψ3 we will have CPA-2 < CPCA-2 and CPCA-1 < CPCA-2.
With a random permutation such that f3 = Id we see that sometimes CPA-2

> CPCA-1
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With a random permutation, such that f−1(x) = f(x) ⊕ k where k is a secret
constant we see that sometimes CPCA-1 > CPA-2.

6 Proofs with Coefficient H

6.1 Feistel Schemes ψk

I have proved many security results on ψk generators with coefficient H. For
example, in [17], the security of ψ5 when m � 2n was proved (with the Hw

technique and “Theorem Pi ⊕ Pj”).

6.2 Xor of Two Random Permutations

Xoring two permutations is a simple very way to construct pseudorandom func-
tions from pseudorandom permutations (this problem is sometimes called “Luby-
Rackoff backwards”). In [19] we have proved this result:

Theorem 10. For every CPA-2 on a function G of Fn with m chosen plaintexts,
we have

AdvPRF ≤ O(
m

2n
)

where AdvPRF denotes the advantage to distinguish f ⊕ g with f, g ∈R Bn from
h ∈R Fn.

How to Get Theorem 10 from Theorem 3

A sufficient condition is to prove that for “most” (most since β must be small)
sequences of values bi, 1 ≤ i ≤ m, we have: the number H of (f, g) ∈ B2

n such
that ∀i, 1 ≤ i ≤ m, f ⊕ g(ai) = bi satisfies: H ≥ |B2

n|
2nm (1 − α) for a small value

α (more precisely α � O( m
2n )). One way to do this is to evaluate E(H) and

σ(H), i.e. the mean value and the standard deviation of H when the bi values
are randomly chosen in Im

n . (We call this technique, the “Hσ technique”).
We can see that the result wanted to prove Theorem 10 exactly says that

σ(H) � E(H) when m � 2n. To prove this, we can use the “covariance formula”

V (
∑

i

Ni) =
∑

i

(V (Ni)) +
∑
i�=j

[E(NiNj) − E(Ni)E(Nj)]

By definition, let λm be the number of sequences of values of I3
n, (fi, gi, hi), 1 ≤

i ≤ m such that:

1. The m values fi are pairwise distinct.
2. The m values gi are pairwise distinct.
3. The m values hi are pairwise distinct.
4. The m values fi ⊕ gi ⊕ hi are pairwise distinct.
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After a change of variables we get finally that the property wanted in Theorem
10 means that

λm =
(2n(2n − 1) . . . (2n − m + 1))4

2nm

(
1 + O(

m

2n
)
)

(This is what was proved in [19])
I have also conjectured this property:

∀f ∈ Fn, if
⊕
x∈In

f(x) = 0, then ∃(g, h) ∈ Bn2, such that f = g ⊕ h.

Just one day after paper [19] was put on eprint, J.F. Dillon pointed to us that
in fact this was proved in 1952 in [3]. We thank him a lot for this information.
(This property was proved again independently in 1979 in [24]).

A New Conjecture

However I conjecture a stronger property. Conjecture:

∀f ∈ Fn, if
⊕
x∈In

f(x) = 0, then the number H of (g, h) ∈ Bn2,

such that f = g ⊕ h satisfies H ≥ |Bn|2
2n2n .

Variant: I also conjecture that this property is true in any group, not only with
Xor.
Remark: In this paper, I have proved weaker results involving m equations with
m � O(2n) instead of all the 2n equations. These weaker results were sufficient
for the cryptographic security wanted.

6.3 Benes Schemes

In [18] the security of Benes schemes when m � 2n was finally obtained (after
the beginning of some proof ideas in [1]).

7 Attacks with Coefficient H

By using the coefficient values we were able to find many generic attacks. We
give here some examples.

7.1 For Feistel Schemes ψk

From [15] we have the results of Table 1.
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Table 1. Minimum number λ of computations needed to distinguish a generator Ψk

(with one or many such permutations available) from random permutations with an
even signature of In → In. For simplicity we denote α for O(α). ≤ means best known
attack.

KPA CPA-1 CPA-2 CPCA-1 CPCA-2
Ψ 1 1 1 1 1
Ψ2 2n/2 2 2 2 2
Ψ3 2n/2 2n/2 2n/2 2n/2 3
Ψ4 2n 2n/2 2n/2 2n/2 2n/2

Ψ5 ≤ 23n/2 2n 2n 2n 2n

Ψ6 ≤ 22n ≤ 22n ≤ 22n ≤ 22n ≤ 22n

Ψ7 ≤ 23n ≤ 23n ≤ 23n ≤ 23n ≤ 23n

Ψ8 ≤ 24n ≤ 24n ≤ 24n ≤ 24n ≤ 24n

Ψk, k ≥ 6 * ≤ 2(k−4)n ≤ 2(k−4)n ≤ 2(k−4)n ≤ 2(k−4)n ≤ 2(k−4)n

* If k ≥ 7 these attacks analyze about 2(k−6)n permutations of the generator and if
k ≤ 6 only one permutation is needed.

7.2 For Feistel Schemes ψ
′k with k Random Permutations for the

Rounds Functions (Instead of Round Functions)

From [26] we have the results of Table 2.

Table 2. Maximum number of computations needed to get an attack on a k-round
Feistel network with internal (+) is shown when the values are larger
than the corresponding values with internal functions.

number k
of rounds

KPA CPA-1 CPA-2 CPCA-1 CPCA-2

1 1 1 1 1 1
2 2n/2 2 2 2 2
3 2n(+) 2n/2 2n/2 2n/2 3
4 2n 2n/2 2n/2 2n/2 2n/2

5 23n/2 2n 2n 2n 2n

6 23n(+) 23n(+) 23n(+) 23n(+) 23n(+)
7 23n 23n 23n 23n 23n

8 24n 24n 24n 24n 24n

9 26n(+) 26n(+) 26n(+) 26n(+) 26n(+)
10 26n 26n 26n 26n 26n

11 27n 27n 27n 27n 27n

12 29n(+) 29n(+) 29n(+) 29n(+) 29n(+)
k≥6, k=0 mod 3 2(k−3)n(+) 2(k−3)n(+) 2(k−3)n(+) 2(k−3)n(+) 2(k−3)n(+)

k≥6, k=1 or 2 mod 3 2(k−4)n 2(k−4)n 2(k−4)n 2(k−4)n 2(k−4)n

7.3 For Unbalanced Feistel Schemes with Contracting Functions

From [21] we have the results of Table 3.
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Table 3. Results on Gd
k for any k ≥ 4. For more than 2k rounds more that one

permutation is needed or more than 2(2k−4)n computations are needed in the best
known attacks to distinguish from a random permutation with an even signature.

KPA CPA-1a

Gd
k, 1 ≤ d ≤ k − 1 1 1

Gk
k 2

n(k−1)
2 2

Gk+1
k 2

n(k−1)
2 2

n
2

Gk+2
k 2

k
2 n 2

3
2 n

Gk+3
k 2( k+1

2 )n 2
5
2 n

Gk+i
k , 1 ≤ i < k 2( k+i−2

2 )n 2( 2i−1
2 )n

G2k
k 2(2k−4)n 2(2k−4)n

Gd
k, d ≥ 2k 2(d+(k−2)� d

k
�−2k)n 2(d+(k−2)� d

k
�−2k)n

a Here we do not show CPA-2, CPCA-1 and CPCA-2 since for Gd
k, no better attacks

are found compared with CPA-1.

7.4 For Unbalanced Feistel Schemes with Expanding Functions

From [22] we have the results of Table 4

Table 4. Best known attacks on F d
k for k ≥ 3

KPA CPA-1
F1k 1 1
F2k 2

n
2 2

F3k 2n 2
F d

k , 2 ≤ d ≤ k 2
d−1
2 n 2

F k+1
k 2

k
2 n 2

n
2

F k+2
k 2

k+1
2 n 2n

F k+3
k 2

2k+3
4 n 22n or 2

k+2
3 n

F d
k , k + 2 ≤ d ≤ 2k 2

d+k
4 n 2(d−k−1)n or 2

d−1
3 n

F 2k
k 2

3k
4 n 2

2k−1
3 n

...
...

...
F 3k−1

k 2(k− 1
8 )n 2(k− 1

2 )n

F 3k
k 2kn 2kn

F d
k , 3k ≤ d ≤ k2 2(d−2k)n 2(d−2k)n

F k2
k 2(k2−2k)n 2(k2−2k)n

................................... ....................................... ............................................
F k2+1

k 2(2k2−3k−2)n 2(2k2−3k−2)n

F d
k , d ≥ k2 + 1 2(�2d(1− 1

k
)�−k−3)n 2(�2d(1− 1

k
)�−k−3)n

8 New Designs

8.1 Russian Doll Design

See [23] in this volume.
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8.2 Design from Random Unbalanced Feistel Schemes

This design comes directly from Table 3.

8.3 Hash Function Design

From 9.1 and 9.2 we are analyzing a Hash function design (by Xoring two inde-
pendent pseudorandom permutations, or by Xoring the input and the output of
a pseudorandom permutation).

9 Conclusion

With the “coefficient H technique” we were able to prove many security results
and to get many generic attacks. Moreover, it was a source of inspiration for the
design of new schemes.

References

1. Aiello, W., Venkatesan, R.: Foiling birthday attacks in length-doubling transforma-
tions. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 307–320.
Springer, Heidelberg (1996)

2. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A Concrete Security Treatment
of Symmetric Encryption: Analysis of the DES Modes of Operation. A Concrete
Security Treatment of Symmetric Encryption and appeared in the Proceedings of
38th Annual Symposium of Computer Science, IEEE (1997)

3. Hall Jr., M.: A Combinatorial Problem on Abelian Groups. Proceedings of the
Americal Mathematical Society 3(4), 584–587 (1952)

4. Katz, J., Yung, M.: Characterization of Security Notions for Probabilistic. In:
Private-Key Encription – STOC 2000 (2000)

5. Katz, J., Yung, M.: Unforgeable Encryption and Chosen-Ciphertext-Secure Modes
of Operation. In: Fast Software Encryption 2000 (2000)

6. Luby, M., Rackoff, C.: How to Construct Pseudorandom Permutations from Pseu-
dorandom Functions. SIAM J. Comput. 17(2), 373–386 (1988)

7. Maurer, U.M.: A simplified and generalized treatment of luby-rackoff pseudoran-
dom permutation generators. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS,
vol. 658, pp. 239–255. Springer, Heidelberg (1993)

8. Maurer, U.M.: Indistinguishability of random systems. In: Knudsen, L.R. (ed.)
EUROCRYPT 2002. LNCS, vol. 2332, pp. 100–132. Springer, Heidelberg (2002)

9. Maurer, U., Pietrzak, K.: The Security of Many-Round Luby-Rackoff Pseudo-
Random Permutations. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656,
pp. 544–561. Springer, Heidelberg (2003)

10. Naor, M., Reingold, O.: On the Construction of Pseudorandom Permutations:
Luby-Rackoff Revisited. J. Cryptology 12(1), 29–66 (1999)

11. Patarin, J.: Pseudorandom Permutations based on the DES Scheme. In:
Charpin, P., Cohen, G. (eds.) EUROCODE 1990. LNCS, vol. 514, pp. 193–204.
Springer, Heidelberg (1991)
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A Proof of Theorem 1

Let φ be an algorithm (with no limitations in the number of computations)
that takes the (ai, bi), 1 ≤ i ≤ m in input and outputs 0 or 1. let P1 be the
probability that φ outputs 1 when ∀i, 1 ≤ i ≤ m bi = G(f1, . . . , fk)(ai) when
(f1, . . . , fk) ∈R K. Let P ∗

1 be the probability that φ outputs 1 when bi = F (ai)
when F ∈R FN . We want to prove that |E(P1 − P ∗

1 )|α + β. Let D be the set of
all pairwise distinct ai, 1 ≤ i ≤ m (so |D| � 2Nm(1 − m(m−1)

2·2N )). When the ai,
1 ≤ i ≤ m are fixed, let W (a) be the set of all b1, . . . , bm such that the algorithm
φ outputs 1 on the input (ai, bi), 1 ≤ i ≤ m. When the ai, 1 ≤ i ≤ m are fixed
in D, then we have:

P ∗
1 =

|W (a)|
2Nm

(1)
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and
P1 =

1
|K|

∑
b∈W (a)

[Numbers of (f1, . . . , fk) ∈ K/

∀i, 1 ≤ i ≤ m, G(f1, . . . , fk)(ai) = bi]

so
P1 =

1
|K|

∑
b∈W (a)

H(a, b) (2)

Moreover, by hypothesis we have that the number N of (a, b) such that

H(a, b) ≥ |K|
2Nm

(1 − α) satisfies : N ≥ |D| · 2Nm(1 − β) (3)

When the (ai), 1 ≤ i ≤ m are fixed, let N (a) be the set of all b such that:

H(a, b) ≥ |K|
2Nm

(1 − α)

From (3) we have: ∑
a∈D

|N (a)| ≥ |D| · 2Nm(1 − β) (4)

From (2) we have:

P1 ≥ 1
|K|

∑
b∈W (a)∩N (a)

H(a, b)

so
P1 ≥ (1 − α)

2Nm
|W (a) ∩ N (a)|

so

P1 ≥ (1 − α)
2Nm

(|W (a)| − |N ′(a)|) (5)

where N ′(a) is the set of all b such that b /∈ N (a). |N ′(a)| = 2Nm − |N (a)|, so∑
a∈D

|N ′(a)| = |D|2Nm −
∑
a∈D

|N (a)|

so from (4) we have:∑
a∈D

|N ′(a)| ≤ β · |D| · 2Nm, so E(|N ′(a)|) ≤ β · 2Nm (6)

(where the expectation is computed when the (ai), 1 ≤ i ≤ m are randomly
chosen in D). From (5) and (1) we have:

P1 ≥ (1 − α)(P ∗
1 − |N ′(a)|

2Nm
)

P1 ≥ (1 − α)P ∗
1 − |N ′(a)|

2Nm
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so from (6) we get:
E(P1) ≥ (1 − α)E(P ∗

1 ) − β

so
E(P1) ≥ E(P ∗

1 ) − α − β (7)

Now if we consider the algorithm φ′ that outputs 1 if and only if φ outputs 0, we
have P ′

1 = 1−P1 and P
′∗
1 = 1−P ∗

1 and from (7) we get: E(P ′
1) ≥ E(P

′∗
1 )−α−β

(because (7) is true for all algorithm φ, so it is true for φ′). So

E(1 − P1) ≥ E(1 − P ∗
1 ) − α − β

so
E(P1) − E(P ∗

1 ) ≤ α + β (8)

From (7) and (8) we get |E(P1 − P ∗
1 )| ≤ α + β as claimed.

B Proof of Theorem 3

(I follow here a proof, in French, of this Theorem in my PhD Thesis, 1991,
Page 27).

Let φ be a (deterministic) algorithm which is used to test a function f of Fn.
(φ can test any function f from IN → IN ). φ can use f at most m times, that
is to say that φ can ask for the values of some f(Ci), Ci ∈ IN , 1 ≤ i ≤ m. (The
value C1 is chosen by φ, then φ receive f(C1), then φ can choose any C2 �= C1,
then φ receive f(C2) etc). (Here we have adaptive chosen plaintexts). (If i �= j,
Ci is always different from Cj). After a finite but unbounded amount of time, φ
gives an output of “1” or “0”. This output (1 or 0) is noted φ(f).

We will denote by P ∗
1 , the probability that φ gives the output 1 when f is

chosen randomly in Fn. Therefore

P ∗
1 =

Number of functions f such that φ(f) = 1
|FN |

where |FN | = 2N ·2N

.
We will denote by P1, the probability that φ gives the output 1 when

(f1, . . . , fk) ∈R K and f = G(f1, . . . , fk). Therefore

P1 =
Number of (f1, . . . , fk) ∈ K such that φ(G(f1, . . . , fk)) = 1

|K|

We will prove:

(“Main Lemma”): For all such algorithms φ,

|P1 − P ∗
1 | ≤ α + β

Then Theorem 1 will be an immediate corollary of this “Main Lemma” since
AdvPRF is the best |P1 − P ∗

1 | that we can get with such φ algorithms.
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Proof of the “Main Lemma”
Evaluation of P ∗

1

Let f be a fixed function, and let C1, . . . , Cm be the successive values that the
program φ will ask for the values of f (when φ tests the function f). We will note
σ1 = f(C1), . . . , σm = f(Cm). φ(f) depends only of the outputs σ1, . . . , σm.
That is to say that if f ′ is another function of Fn such that ∀i, 1 ≤ i ≤ m,
f ′(Ci) = σi, then φ(f) = φ(f ′). (Since for i < m, the choice of Ci+1 depends
only of σ1, . . . , σi. Also the algorithm φ cannot distinguish f from f ′, because
φ will ask for f and f ′ exactly the same inputs, and will obtain exactly the
same outputs). Conversely, let σ1, . . . , σn be m elements of IN . Let C1 be the
first value that φ choose to know f(C1), C2 the value that φ choose when φ has
obtained the answer σ1 for f(C1), . . ., and Cm the mth value that φ presents to
f , when φ has obtained σ1, . . . , σm−1 for f(C1), . . . , f(Cm−1). Let φ(σ1, . . . , σm)
be the output of φ (0 or 1). Then

P ∗
1 =

∑
σ1,...,σn

φ(σ1,...σm)=1

Number of functions f such that ∀i, 1 ≤ i ≤ m, f(Ci) = σi

2N ·2N

Since the Ci are all distinct the number of functions f such that ∀i, 1 ≤ i ≤
m, f(Ci) = σi is exactly |Fn|/2nm. Therefore

P ∗
1 =

Number of outputs (σ1, . . . , σm) such that φ(σ1, . . . σm) = 1
2Nm

Let N be the number of outputs σ1, . . . , σm such that φ(σ1, . . . σm) = 1. Then
P ∗

1 = N
2Nm .

Evaluation of P1

With the same notation σ1, . . . , σn, and C1, . . . Cm:

P1 =
1

|K|
∑

σ1,...,σn
φ(σ1,...σm)=1

[Number of (f1, . . . , fk) ∈ K such that

∀i, 1 ≤ i ≤ m, G(f1, . . . , fk)(Ci) = σi] (3)

Now (by definition of β) we have at most β ·2nm sequences (σ1, . . . , σm) such that
(σ1, . . . , σm) /∈ E. Therefore, we have at least N −β ·2Nm sequences (σ1, . . . , σm)
such that φ(σ1, . . . σm) = 1 and (σ1, . . . , σm) ∈ E (4). Therefore, from (1), (3)
and (4), we have

P1 ≥
(N − β · 2Nm) · |K|

2Nm (1 − α)
|K|

Therefore
P1 ≥

( N
2Nm

− β
)
(1 − α)

P1 ≥ (P ∗
1 − β)(1 − α)
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Thus P1 ≥ P ∗
1 − α − β (5), as claimed.

We now have to prove the inequality in the other side. For this, let P ∗
0 be the

probability that φ(f) = 0 when f ∈R FN . P
′∗
0 = 1−P ∗

1 . Similarly, let P0 be the
probability that φ(f) = 0 when (f1, . . . , fk) ∈R K and f = G(f1, . . . , fk). P0 =
1−P1. We will have P0 ≥ P ∗

0 −α−β (since the outputs 0 and 1 have symmetrical
hypothesis. Or, alternatively since we can always consider an algorithm φ′ such
that φ′(f) = 0 ⇔ φ(f) = 1 and apply (5) to this algorithm φ′).

Therefore, 1 − P1 ≥ 1 − P ∗
1 − α − β, i.e. P ∗

1 ≥ P1 − α − β (6). Finally, from
(5) and (6), we have: |P1 − P ∗

1 | ≤ α + β, as claimed.
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ation, the computation of which is dependent on the private key. It has been
shown in the literature that an attacker can derive a private key by observing
the power consumption during the computation of a näıvely implemented modu-
lar exponentiation [17]. This attack targeted implementations of the square and
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multiply algorithm, which has been shown to be vulnerable to this technique,
referred to as Simple Power Analysis (SPA). This vulnerability was present be-
cause the power consumption during the computation of a squaring operation
was different to that of a multiplication, and could, therefore, be distinguished by
simply monitoring the power consumption trace of the target device. This attack
can allow an attacker to simply read the private key from a power consumption
trace.

One of the first countermeasures proposed was a square and multiply always
algorithm [11], which consists of a squaring operation followed by a (possibly
fake) multiplication. While this algorithm achieves the effect of ensuring regular
behaviour regardless of the value of the bits of the exponent, it has a large im-
pact on efficiency. A more efficient approach, known as side channel atomicity,
was proposed in [10]. While this approach does make the operations computed
behave identically in terms of the instantaneous power consumption, other in-
formation being processed, such as the operand value being operated on, may
leak information and provide an attacker with the necessary insight to recover
the private key.

In this paper, we describe an attack that can be applied to algorithms imple-
mented using side channel atomicity [8] without knowledge of the plaintext used.
This is possible because the statistically expected Hamming weight of the result
of a multiplication and a squaring operation has an exploitable difference, which is
visible in the instantaneous power consumption. This highlights the importance of
randomising the exponent used to calculate a modular exponentiation. A similar
attack was previously proposed in [1] but requires that the architecture of a hard-
ware implementation is known. The attack is also somewhat similar to the attack
described in [27]. However, our attack is based on the distribution of the Ham-
ming weights of the values being manipulated by a device, rather than a thorough
analysis of the structure of hardware implementations of multipliers [27,29].

In some previously proposed attacks, similar power consumption traces dur-
ing squaring (or doubling) operations in two separate acquisitions have been
exploited by choosing or knowing the plaintexts being manipulated [14,19,30].
However, these attacks can be prevented by blinding the plaintext, and these
attacks are not possible when classical padding schemes are used. The advan-
tage of the attack described in this paper is that an attacker does not need any
plaintext information. Indeed, we assume that an attacker does not have access
to this information.

The implications of the proposed attack are explored further, and we analyse
how attacks based on the statistically expected difference in Hamming weight of
a multiplication and a squaring operation can be applied to implementations of
the elliptic curve point scalar multiplication algorithm central to many elliptic
curve schemes.

This paper is organised as follows. Section 2 describes why the Hamming
weight is of interest in side channel analysis. Section 3 details the difference in
expected Hamming weight between the results of a multiplication and squaring
operation. Section 4 gives practical results using different long integer modular
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multiplications on a classical ARM7 microprocessor to validate the theoretical
analysis given. New attacks based on this difference analysis are presented on
public key algorithms in Section 5. In Section 6 we analyse the countermeasures
which can be used in implementations of the algorithms discussed. We conclude
our research in Section 7.

Notation: The base of a value is determined by a trailing subscript, which is
applied to the whole word preceding the subscript. For example, FE16 is 254
expressed in base 16, d = (d�−1, d�−2, . . . , d0)2 gives a binary expression for d.

2 The Hamming Weight

It has been demonstrated that in microprocessors the instantaneous power con-
sumption is typically proportional to the Hamming weight of data being manip-
ulated at a given point in time [8]. This difference in Hamming weight was first
exploited in [17] to attack block ciphers. In this attack, an attacker acquires M
power consumption traces (wi for i ∈ {1, 2, . . . , M}) during the computation of
a block cipher, and chooses one bit b of an intermediate state generated during
the computation of a block cipher. For a given hypothesis for a secret key value
(or portion of the key) K this bit is predicted and used to determine whether
a corresponding power consumption trace is a member of one of two possible
sets. The first set S0 will contain all the traces where b is equal to zero, and the
second set S1 will contain all the remaining traces, i.e. where the output bit b is
equal to one.

A differential trace Δ is calculated by finding the average of each set and
then subtracting the resulting values from each other, where all operations on
waveforms are conducted in a pointwise fashion, i.e. this calculation is conducted
on the first point of each acquisition to produce the first point of the differential
trace, the second point of each acquisition to produce the second point of the
differential trace, etc.

Δ =

∑
wi∈S0

wi

|S0|
−
∑

wi∈S1
wi

|S1|

A differential trace is produced for each value that K can take. In DES the first
subkey will be treated in groups of six bits, so 64 (i.e. 26) differential traces will
be generated to test all the combinations of six bits. The differential trace with
the highest peak will validate a hypothesis for K.

In this paper we propose a novel attack based on a similar difference in Ham-
ming weight. However, in the proposed attack it is not necessary to predict the
value of a bit b, as the difference in Hamming weight is produced by the statis-
tically expected Hamming weight of the result of the computed operations. A
similar attack was previously proposed in [1] but requires that the architecture
of a hardware implementation is known.

Another commonly used model to describe the power consumption is the
Hamming distance model [8], where the power consumption is proportional to
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the Hamming weight of data being manipulated at a given point in time XORed
with some previous state. An analysis of how one would perform the proposed
attack in this case is beyond the scope of this paper.

In smart card implementations of RSA it has traditionally been necessary
to use a cryptographic coprocessor, which would typically be modelled using
the Hamming distance model [8]. However, it has been practically demonstrated
in [2] that the Hamming weight model applies to many public key implemen-
tations using arithmetic coprocessors. Some modern smart card chips are using
32-bit architectures [3,20], which allow for efficient implementations of RSA with-
out requiring a cryptographic coprocessor. In these cases the Hamming weight
model is likely to apply.

3 Defining the Difference in Hamming Weight

In this section we will describe the difference in Hamming weight of a multipli-
cation and squaring operation for random inputs, to describe why the expected
difference in Hamming weight between a multiplication and squaring operation
occurs.

If we consider the classical binary method of long integer multiplication, the
least significant bit will be set to one, if and only if both least significant bits
in the multiplicands are equal to one. The probability of the least significant
bit of the output being one is, therefore, equal to 1/4. In the case of a squaring
operation the least significant bit will be equal to one if the least significant bit
of the input is equal to one. For a random input this will occur with probability
1/2.

The next least significant bit has a higher chance of being equal to one if we
consider a multiplication with random inputs. However, if we conduct a squaring
operation this bit will always be equal to zero. This is because there are only
two bits that could affect this bit in the output. The two values that could affect
this bit are 102 and 112. In the case of 102 only the least significant bit in the
output is set to one and nothing affects the second bit, in the case of 112 both
bits will affect the second most significant bit. The bits will therefore cancel and
produce a carry. I.e. the output of every squaring operation will be equal to 0 or
1 mod 4.

This reasoning can be continued with increased complexity for more significant
bits and will be valid for all bit lengths, until more bits than half the total number
of bits being considered are included. After this point the least significant bit
ceases to directly affect each bit, and will only have an effect via the carry.

Defining the exact extent of this difference for n-bit operands is a non-trivial
problem. A method for defining the probability density function of the product
of uniformly distributed random variables is defined in [15]. This method de-
fines a means of computing the probability density function of the result of the
product of two random values that are distributed over a continuous uniform
distribution. Where, for two random values uniformly distributed in the interval
[0, �], the product can take every real value in [0, �2]. Random values generated
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in a microprocessor will, by necessity, be distributed on a discrete uniform dis-
tribution. If we consider two discrete random values uniformly distributed in the
interval [0, �], the product cannot take every integer value in [0, �2]. This is be-
cause no integer value in (�, �2] that is coprime with respect to the integer values
in [0, �] can be made from the product of two discrete random values distributed
between [0, �]. The most efficient method of defining the probability distribution,
and computing the expected Hamming weight of the result, is to simply count
all the possible outcomes.

We will consider the multiplication and squaring of random values of bit length
n, with no modular reduction. This is because we are interested in the distri-
bution of the single-precision operations required to compute multi-precision
operations. We will therefore assume that the values multiplied together will
have an equal bit length. If we consider that the values multiplied together have
a bit length of n, then the input values are, therefore, uniformly distributed over
the integer values in the interval [0, 2n − 1].

The difference in the distributions can be demonstrated by evaluating the
expected output of a multiplication and a squaring operation by calculating the
mean Hamming weight of all the possible results, i.e. the expected Hamming
weight of the result of squaring an n-bit value, X , is calculated as

E(X2) =
2n−1∑
i=0

H(i2) · Pr [X = i] =
1
2n

2n−1∑
i=0

H(i2) ,

and the Hamming weight of the result of multiplying two n-bit values, X and
Y , is calculated as

E(X · Y ) =
2n−1∑
i=0

2n−1∑
j=0

H(i · j) · Pr [X = i ∧ Y = j] =
1

22n

2n−1∑
i=0

2n−1∑
j=0

H(i · j) ,

where H is a function that computes the Hamming weight in both cases.
This can be readily computed for bit lengths of less than, or equal to, 16.

For bit lengths greater than 16 it starts to become time consuming to compute
the expected Hamming weight of the output of a multiplication. Figure 1 shows
the expected difference in Hamming weight for bit lengths between one and 16,
and the difference appears to tend to slightly less than one as the bit length
increases.

If we consider multiplication and squaring operations with 16-bit inputs, the
reason for the difference in the expected result can be demonstrated if we con-
sider the probability of each bit being equal to one. For random, uniformly
distributed, 16-bit inputs the probability of each of the 32 bits in the output
being equal one for a multiplication and squaring operation can be derived if all
the possible inputs are considered. A plot of the probabilities for each bit for
the multiplication and squaring operation is given in Figure 2. Further details
on this expected difference for 32-bit variables are given in the Appendix A.
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Fig. 1. The expected difference in Hamming weight between the output of a multipli-
cation and a squaring operation, for bit lengths 1 to 16

Fig. 2. The probability that each bit of the result of a multiplication (left) and a
squaring operation (right) is equal to one with random 16-bit inputs

4 Demonstrating the Difference in Practice

Certain multiplication algorithms were implemented on a standard 32-bit mi-
croprocessor. The results of manipulating the power traces acquired while these
multiplication algorithms were being computed are described in this section.

Long Integer Multiplication. A 128-bit multiplication using the long integer
multiplication algorithm was implemented on a microprocessor and 3000 acqui-
sitions1 were taken for multiplications and squaring operations with random,
uniformly distributed inputs. The implementation was based on the description
given in [18], and is given in Algorithm 1.

The difference between the two average traces is shown in Figure 3. There are
four peaks in the trace that correspond to the four squaring operations conducted
by the chip to compute the square of the input, i.e. for X = (x3, x2, x1, x0)b,
where b is 232, there will be four occurrences in the 16 multiplications where
i = j when xi · xj is computed. If averaged traces corresponding to the same
operation are subtracted from each other no significant peaks are produced.
1 Similar results are possible with 500 traces. However, the results are not as clear.
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Algorithm 1. Long Integer Multiplication
Input: X = (xz−1, . . . , x1, x0)b, Y = (yz−1, . . . , y1, y0)b

Output: W = (w2z−1, . . . , w1, w0)b = X · Y
W ← 0
for i = 0 to z − 1 do

c← 0
for j = 0 to z − 1 do

(uv)b ← wi+j + xj · yi + c
wi+j ← v ; c← u

end
w2z−1 ← u

end

return

Fig. 3. The difference between two averaged power consumptions for long integer
multiplication

Montgomery Multiplication. One of the most common methods of calcu-
lating modular multiplication is using Montgomery multiplication [21]. This is
because of its efficiency, especially as it can be parallelised in hardware and does
not require any time-consuming word-by-word divisions.

Montgomery multiplication [21] does not return the simple product of X and
Y modulo M . The algorithm actually returns XY R−1 mod M , where R−1 mod
M is introduced by the algorithm (R = bz), which imposes certain restrictions
on its use. The conditional subtraction has been shown to be unnecessary, and
undesirable in a secure implementation, and was not included in our implemen-
tation [25,26].

A description of Montgomery multiplication is given in Algorithm 2. Here b
is the size of the basic data unit, usually a machine word, and z is the number
of words in the representation of M , X and Y .

As previously, a 128-bit multiplication algorithm was implemented and 3000
acquisitions were taken for multiplications and squaring operations with random,
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Algorithm 2. Montgomery Multiplication
Input: X = (xz−1, . . . , x1, x0)b, Y = (yz−1, . . . , y1, y0)b,

M = (mz−1, . . . , m1, m0)b, R = bz with gcd(M,b) = 1, and M ′ = −M−1

mod b
Output: A = (az−1, . . . , a1, a0)b = X · Y ·R−1 mod M

A← 0
for i = 0 to z − 1 do

ui ← (a0 + xi · y0)M ′ mod b
A← (A + xi · Y + ui ·M)/b

end

if A ≥M then A← A−M

return

Fig. 4. The difference between two averaged power consumptions for Montgomery
multiplication

uniformly distributed inputs. The difference in the average trace produced by
each set of acquisitions is shown in Figure 4.

The first peak will be produced by the calculation of a0 + x0 · y0 mod b, as
a0 is set to zero so the difference in the distribution will be visible even where
this can be calculated with one instruction (e.g. on ARM microprocessors).

In the implementation analysed the processor computed A ← A + u0 · M
followed by A ← A + xi · Y . The group of peaks following the first peak are
caused by the repeated manipulation of u0 when it is multiplied by M . The
peaks are dependent on the value of M , and therefore M ′, that is being used
and will vary from one analysis to another.

This is followed by a large peak that corresponds to the computation of x0 ·y0,
which is subsequently combined with u0 ·M by adding the result to A. The next
group of three peaks are created by the manipulation of A when it is combined
with u1 · M .

This is followed by three groups of small peaks that correspond to the mul-
tiplication of three squaring operations conducted by the chip to compute the
square of the input, i.e. three instances where i = j when xi · yj is computed.
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5 Exploiting the Difference in Tamper Resistant
Cryptographic Primitives

Once an exponentiation algorithm has been chosen, for instance Barrett or Mont-
gomery exponentiation [5,21], a common countermeasure to protect embedded
implementations from Simple Power Analysis, consists in using side channel
atomicity. This was introduced in [10], where they deem an algorithm to be se-
cure if it can be broken down into indistinguishable blocks. In this section we
describe how these schemes can be attacked by observing the difference between
a multiplication and a squaring operation.

5.1 Recovering the Exponent in Atomic Exponentiations

The simplest exponentiation algorithm is the square and multiply algorithm, that
functions by scanning the bits of an exponent from left to right. An accumulator
is initially set to one and for each bit of the exponent scanned the accumulator
is operated upon. For each bit the accumulator is squared, and when a bit is
equal to one the accumulator is multiplied by the value being raised to the
power of the exponent. The square and multiply atomic exponentiation algorithm
simply means that squaring operations are computed using the same algorithm
as multiplications and the side channel becomes identical [10].

If a series of power consumption traces are taken, the points corresponding
to each operation (multiplication or squaring) can be identified using a method
similar to that described in [27] for identifying multiplications with a constant
value. The average power consumption trace of each operation can be compared
to the operation preceding, or following, it by performing a pointwise subtraction.
If this corresponds to subtracting the power consumption trace of a squaring
from that of a multiplication peaks will be visible (as shown in Figure 3), in the
case where the opposite occurs the same peaks will occur but will be negative.
It is interesting to note that an attacker does not need to have any knowledge
of the values being manipulated.

An attacker would therefore be able to determine a k-bit exponent by mak-
ing 3

2k − 1 comparisons, i.e. comparing each operation with one neighbouring
operation. This can be decreased by a factor of two, where an attacker can be
sure that each comparison gives noise free information, by only including each
operation in a comparison once.

If we consider the (M, M3) algorithm, as described in [10], analysing the power
consumption traces is sufficient to decrease the security of the algorithm. How-
ever, we cannot recover the entire private exponent d. The (M, M3) algorithm
functions in a similar manner to the square and multiply algorithm, but there
are three possible cases when parsing the bits of the private exponent from left
to right. When di = 0 a squaring operation is performed. When didi−1 = 102
the device computes a squaring operation, a multiplication with M and then a
squaring operation. The third case occurs when didi−1 = 112, where the device
computes two squaring operations followed by a multiplication with M3.
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In the remainder of this section we will denote a multiplication by M and a
squaring operation by S. Any sequence of operations MSM is particular because
it indicates that the last two operations correspond to the secret bits didi−1 =
102 and that di+2di+1 = 112. Indeed, this sequence can only be part of a longer
sequence SSMSM . We can also identify any bits of an exponent set to zero
when there are more than two consecutive squaring operations.

Through simulations of this attack we were able to determine that an attacker
can retrieve, on average, 37% of the bits of a private exponent by exploiting the
sequence MSM , and a further 17% of the bits by identifying repeated squaring
operations. Thus, an attacker would be able to retrieve 54% of the bits of a
private exponent using the attack method proposed above.

In case where the public exponent is small (for instance 3 or 216+1), half of the
most significant bits of d are intrinsically leaked as showed in [7]. Thus, combined
with the side channel leakage, up to 3/4 of the bits of a private exponent could
be considered to be recoverable by an attacker. However, there are currently
no factorisation techniques in the literature that can benefit from such partial
information, although an interesting approach has been published in [13], where
the authors assume that the exponent is modified by a small random value. How
the proposed attack can be applied to an implementation where this occurs is
discussed in Section 6.2.

5.2 Recovering the Scalar in ECC Using Unified Addition Formulæ

In the context of Elliptic Curve Cryptosystems (ECC), the ability to distinguish
a multiplication operation from a squaring operation can also facilitate the ex-
traction of secret information. The calculation of the point scalar multiplication
of rPPP , where r is a secret scalar value, PPP is a point on the prescribed elliptic
curve, and the operation of rPPP is known as point scalar multiplication is central
to a number of ECC schemes, such as EC-DH [6]. One of the most side-channel
näıve methods to calculate rPPP is the double and add method, which involves
accumulatively doubling and adding the point PPP , the sequence of which is deter-
mined by the binary representation of r [4]. This method is inherently vulnerable
to Simple Power Analysis and other side-channel attacks.

A countermeasure, known as unified addition formulæ, to make the double
operation indistinguishable from the addition operation was proposed in [6,9].
This method defined formulæ for the calculation for point addition and point
doubling, which is equivalent for both operations. Specifically, the slope for each
operation is equivalent. For example, the slope calculated during the addition of
the points PPP = (x1, y1), QQQ = (x2, y2) is

λ =
x2

1 + x1x2 + x2
2 + a2x1 + a2x2 + a4 − a1y1

y1 + y2 + a1x2 + a3
,

regardless of whether PPP is equal, or not equal, to QQQ. Hence, no discernible differ-
ence between the addition and doubling of a point is present in the formula. In
light of the work described in this paper, a difference between these operations
can be identified. The calculation of x1 · x2 in the calculation of λ will allow
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an attacker to determine whether an addition or a doubling operation is being
performed, since when a double is performed x1 ·x2 = x2

1, and will be vulnerable
to the attack process described in Section 5.1.

Similarly, this potential exploit can be witnessed when the elliptic curve points
are represented and operated on as projective coordinates, which will be the
case in most practical implementations. Unified formula for point addition and
multiplication using projective coordinates was also given by [9] and further
examined by [24]. In this case the addition of the points PPP = (X1, Y1, Z1),
QQQ = (X2, Y2, Z2), with xi = Xi/Zi and yi = Yi/Zi is

X3 = 2FW Y3 = R(G − 2W ) Z3 = 2F 3

where U1 = X1Z2, U2 = X2Z1, S1 = Y1Z2, S2 = Y2Z1, Z = Z1Z2, T = U1 + U2,
M = S1 + S2, F = ZM , L = MF , G = TL, R = T 2 − U1U2 + AZ2 and
W = R2 −G. Notice that, when a point doubling operation is being performed,
the computation of Z and U1U2 in R will be squaring operations and, hence,
our attacks can also be applied to such implementations.

6 Countermeasures

As presented in the previous sections, both side channel atomicity and unified
point addition formulæ are potentially vulnerable to attack according to the
expected difference highlighted in Section 3. Some of the countermeasures that
could be used to prevent this attack are discussed in this section.

6.1 Blinding

The most common countermeasure used to protect RSA against DPA consists
in modifying plaintext with a random value, either using an additive method
mb = m+r1n mod r2n, where r1 and r2 are random values, or in a multiplicative
way mb = re

1 · m where e is the public exponent. With such a countermeasure,
classical DPA [17], and related attacks (such as the attacks presented in [19]
or [2]), can no longer be applied.

However, plaintext blinding is not sufficient to protect against the attack
described in this paper. It is, therefore, necessary to change the order of the
multiplication and squaring operations between different exponentiations. The
most common solution consists of computing db = d+r1φ(N), where φ is Euler’s
Totient function and r1 is a small random value [16]. An equivalent solution can
be used to protect the double and add algorithm [11].

6.2 The Big Mac Attack

In [27], Walter presented the Big Mac attack, which demonstrates a powerful
attack on devices with a high level of side channel leakage, i.e. devices where
only a few power consumption traces are required to successfully conduct a power
analysis. Furthermore, in [28] it is explained that using longer keys in asymmetric
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cryptosystems improves the probability of a Big Mac attack succeeding. This
idea can be extended here to obtain a kind of Big Mac power attack which,
would enable the attack described in Section 5.1 to be conducted on one power
consumption trace. In such a case, the blinding of d would not provide adequate
protection to defend against the attack described in this paper. The attack could
also be applied to other schemes, such as the Diffie-Hellman key exchange [12]
and the DSA [22].

An attack on a single power consumption trace would consist of identifying
the points in a power consumption trace that correspond to the computation of
xj · yi when i = j (e.g. in Algorithm 1), and extract these points where each
point its then treated as a separate trace. These small traces can then be used
in place of a trace representing the entire operation in exactly the same manner
described in Section 5.1. The points to be used can be identified by analysing
an unprotected algorithm, as described in [2].

The success of this attack will depend on the length of the key and the word
size of the processor, i.e. long keys and small word size will provide an accu-
rate average and raise the probability of achieving a successful attack [28]. This
demonstrates that the blinding of the private key d may not be adequate to
prevent the attack presented in this paper.

7 Conclusion

This paper shows that the statistically expected difference in operations com-
puted by a microprocessor can be used to distinguish between a multiplica-
tion and a squaring operation. All that is required is that the plaintexts used
contain enough variation that the computations adhere to the distributions
defined in Section 3. This is an improvement over previously published re-
sults [14,19,27,29,30], as the described attack requires no knowledge of the plain-
text being manipulated or of the architecture of the multiplier. Moreover, the
proposed attacks will work when classical padding schemes are used. Further
work that is being conducted by the authors consists of analysing the algo-
rithms that are potentially vulnerable to this attack, and the development of
inexpensive countermeasures.
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faster. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 80–93.
Springer, Heidelberg (1999)

27. Walter, C.D.: Sliding windows succumbs to big mac attack. In: Koç, Ç.K.,
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A Appendix

In Section 3 we discussed the expected Hamming weight of multiplication and
squaring operations for random, uniformly distributed, 16-bit inputs. Given the
complexity of evaluating all of the possible inputs to a multiplication, it is not
possible to evaluate the expected Hamming weight and the corresponding distri-
bution of the individual bits for larger bit length. Given that the implementations
described in Section 4 are on a 32-bit chip, it would be helpful to attempt to
describe the corresponding distribution.

To characterise the distribution of the individual bits in the result of a 32-bit
squaring operation all the possible input values were evaluated and the result
is plotted on the right hand side of Figure 5. It is not possible to evaluate
a 32-bit multiplication in the same way as there are 264 possible inputs to a

http://www.mips.com/content/Products/
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Fig. 5. The distribution of the individual bits of the result of a multiplication (left)
and a squaring operation (right) with random 32-bit inputs

32-bit multiplication. An approximation to the distribution was generated by
evaluating the product of 232 pairs uniformly distributed 32-bit random values.

The form of the difference is similar to that shown of 16-bit operations in
Section 3, but with a larger region where the distribution of the bits are identical.

Given the very regular nature of multiplication algorithms, it would seem
reasonable to assume that the same difference will occur for all bit lengths.
However, it is not possible to demonstrate this because of the complexity of
evaluating all the possible inputs.
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1 Introduction

Modular multiplication of polynomials is a cornerstone for many higher-level
applications, from finite field arithmetic (for non-prime fields) to implementa-
tion of cryptographic protocols. In all that follows, we focus on the practically
important case of polynomials over F2.

Given a polynomial R of degree m, the Montgomery multiplication algo-
rithm [1] shows how to reduce a multiplication modulo a polynomial V of degree
at most m to a multiplication modulo R and a division by R, assuming that R
and V are coprime. This “multiplication” is slightly twisted, though, since on
input A and B, it returns AB/R modulo V .

To implement this algorithm, we need to specify R. An obvious choice is
R = xm [2]. Then, the computations are similar to (but distinct from) those
in the Cook-Sieveking-Kung algorithm [3, Chapter 9]. Using fast polynomial
multiplication [4,5], this yields an algorithm that uses O(m log(m) log log(m))
additions and multiplications. However, the rather large constant hidden in the
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big-O estimate makes it desirable to devise multiplication schemes with a possi-
bly higher asymptotic cost, but whose performance is better for moderate values
of m, say m ≤ 1000.

To fulfill this goal, we will take another approach to the Montgomery mul-
tiplication, that follows the ideas introduced in [6] and [7] (focusing on integer
multiplication), and [8] and [9] (for polynomials): we take R = r1 · · · rn, with
pairwise coprime ri. To make this approach useful, the computations modulo
ri should be easy: in [9], which focuses on large prime base fields, the ri’s are
linear. Here, following [8], the ri’s will be trinomials.

Main Result. Throughout this paper, a family of n pairwise coprime trinomials
R = (r1, . . . , rn) in F2[x] is fixed; their product is denoted R. We suppose that
all ri’s have the same degree d. This assumption makes it possible for us to give
explicit complexity bounds; however, the algorithm still works with trinomials
of different degrees. We also assume that all ri’s are squarefree. This can for
instance be obtained by taking d odd: in this case, the derivative of xd + xe + 1
is either xd−1 or xd−1 + xe−1, depending on the parity of e; in both cases, it has
no common factor with xd + xe + 1.

Let m = nd and let V be in F2[x], with gcd(R, V ) = 1 and deg(V ) ≤ m; V
does not have to be irreducible and can have degree less than m. Computations
modulo V will be done through the Montgomery algorithm, applied in the residue
basis R; since m ≥ deg(V ), a polynomial of degree less than deg(V ) is uniquely
determined by its residues modulo R.

Formally, our computational model is the boolean circuit, using multiplication
(AND) and addition (XOR) gates. The area complexity is the number of gates
we use; we distinguish between the number of multiplications and additions. The
time complexity is the length of the longest path in the circuit, i.e., the critical
path. As is customary, we write time complexities in the form αTA + βTX , to
indicate that all paths in the directed graph underlying the circuit have at most
α multiplication gates and β additions gates. Time complexity estimates will
depend on a function Trem(d) defined as follows: Trem(d) is such that for all
i ≤ n, one can compute the remainder of a polynomial of degree at most 2d − 2
by ri using 2d − 2 additions, in time Trem(d); we describe this function further
in Section 2. Since our main focus is more on the total number of gates than
on time complexity, we only give big-O estimates for the latter, except in very
simple cases.

Theorem 1. One can perform modular multiplication in the residue basis R =
(r1, . . . , rn) using 7nd2 multiplications and

7nd2 + 8n2d − 2nd log2(n) + 6nd − 2n2 − 10n

additions. The time complexity is O(TA + log2(d)TX + nTrem(d)).

When d is such that one can take n � d, our algorithm uses O(m1.5) operations.
In the worst case, Trem(d) is in O(dTX), so the time complexity is O(TA+ndTX).
If we assume that all trinomials have the form xd + xe + 1, with e < d/2, then
Trem(d) is in O(TX), and the time complexity is O(TA + log2(d)TX + nTX).
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Previous Work. There exist several other approaches to modular multiplica-
tion; as said above, it is possible to reach a quasi-linear number of operations.
Several other families of algorithms are also known, either for low weight mod-
uli [10,11] or for arbitrary ones, such as [12], which shares some features with
the family of algorithms we present now.

Our work follows previous results of Bajard et al. [8], who use a basis of tri-
nomials as well (with different constraints than ours) and Newton interpolation
techniques. Here, we use the Chinese remaindering with a classical divide-and-
conquer approach. Mihailescu [9] uses moduli of degree one, whose roots are
either roots of unity or consecutive integers; this is not immediately possible
here, since we work over F2.

In both previous papers, a difficulty arises, since the final exact division can-
not be performed in the residue basis. The same solutions are used: shifting to
another residue basis to do the division. We present an alternative solution, in-
spired by l’Hospital rule. This enables us to work with the same set of moduli
(and thus, to reach higher m for a given moduli degree d), at the cost of a slight
increase in the number of operations.

Notation. We write “large” degree polynomials (of degree typically close to
m = nd) with upper case letters, and “low” degree ones (typically, residues of
degree less than d) with lower case letters. Vectors of residues are written in bold
face. The equality A = B mod C means that A and B are congruent modulo
C; the stronger equality A = B rem C means that A is the remainder of the
division of B by C, so that deg(A) < deg(C). The notation A = B div C means
that A is the quotient in the Euclidean division of B by C.

Outline. Section 2 consists of preliminaries. In Section 3, we consider Chinese
remaindering using trinomials. In Section 4, we present our new algorithm and
illustrate its performance in Section 5.

2 Preliminaries

This section reviews basic material on operations such as polynomial multipli-
cation or reduction. Most of these results are known; the only new element here
is a straightforward estimate on the cost of multiplication by several trinomials.

Polynomial Multiplication. Let a and b be in F2[x], of degree less than d.
Then, the product ab can be computed using (d− 1)2 additions and d2 multipli-
cations; the time complexity is TA + �log2(d) TX .

Reduction by Trinomials. For i ≤ n and a ∈ F2[x] of degree at most 2d − 2,
a rem ri can be computed using 2d − 2 additions [13]. As said before, we write
Trem(d) for the time complexity of this operation; the following estimates for
Trem(d) are available:
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– for arbitrary trinomials ri, we can let Trem(d) = (2d − 2)TX ;
– if all trinomials ri are of the form xd + xei + 1, with ei < d/2, then we can

take Trem(d) = 2TX , see [14].

Multiplication by Trinomials. We also need to estimate the cost of multipli-
cation of a polynomial by one or several of the trinomials r1, . . . , rn. Our result
gives a reasonable operation count; however, we are not able to obtain logarith-
mic time bounds. Such bounds would reduce the overall time complexity of our
main algorithm as well.

Proposition 1. Let P be in F2[x] of degree less than s, let � ≤ n and let
a1, . . . , a� be in {1, . . . , n}. Then one can compute the product ra1 · · · ra�

P using
2(s − d)� + d�2 additions in time 2�TX.

Proof. Let P0 = P and Pi = raiPi−1 for i = 1, . . . , �, so that the polynomial we
want to compute is Pn. Remark that Pi has degree less than s + di for all i. Given
Pi−1, one can compute Pi using 2(s + d(i − 1)) − d additions. Hence, the total
number of additions is at most 2(s − d)� + d�2. Since multiplication by a single
trinomial can be done in time 2TX , the overall time complexity is 2�TX . �

3 Chinese Remaindering for Trinomials

We continue with algorithms to perform Chinese remaindering modulo the family
of pairwise coprime trinomials r1, . . . , rn, and for the inverse operation, multiple
reduction.

Given residues a = (a1, . . . , an), with deg(ai) < d, the Chinese remainder
theorem shows that there exists a unique polynomial A of degree less than m =
nd with ai = A rem ri for all i. Quasi-linear algorithms of area complexity
O(m log(m)2 log log(m)) are known for computing A from its residues ai, and
conversely [3, Chapter 10]. However, the constant hidden in the big-O is rather
large (especially for reduction, which uses fast Euclidean division).

These algorithms rely on divide-and-conquer techniques. In what follows, we
reuse this idea to devise a Chinese remainder algorithm adapted to trinomials,
which performs well for moderate values of m. We also give a (substantially
simpler) multiple reduction algorithm with a similar cost.

Linear Combination and Chinese Remaindering. Let a = (a1, . . . , an) be
in F2[x]n, with deg(ai) < d for all i. We consider here the question of computing
the coefficients of the linear combination

A =
∑
i≤n

aiSi, with Si = r1 · · · ri−1ri+1 · · · rn;

in what follows, we will write A = LinComb(a, R). Note that this does not quite
solve the Chinese remaindering question, since A rem ri = aiSi rem ri: thus,
one should divide ai by Si modulo ri prior to the combination. However, in the
cases where we apply this algorithm, we will be able to perform this preliminary
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step jointly with some other operation, so that the main task is indeed the linear
combination.

Proposition 2. Given a = (a1, . . . , an), one can compute LinComb(a, R) using
3n2d − nd log2(n) additions, in time O(nTX).

Proof. The proof adapts that of [3, Theorem 10.21] to moduli that are trinomials.
If n = 1, we have nothing to do. Otherwise, let n′ = !n/2" and n′′ = n − n′.
Define next

B =
∑

1≤i≤n′
air1 · · · ri−1ri+1 · · · rn′ , C =

∑
n′+1≤i≤n

airn′+1 · · · ri−1ri+1 · · · rn,

so that we have
A = Brn′+1 · · · rn + Cr1 · · · rn′ .

This leads to a divide-and-conquer algorithm. Assuming that B and C have
been computed recursively, A is obtained through multiplications by trinomials,
followed by a polynomial addition.

The first step requires to multiply B and C by several trinomials, so it is
handled by Proposition 1. Since B has degree less than n′d and we multiply
it by n′′ trinomials, we obtain a number of additions of 2(n′d − d)n′′ + dn′′2,
with a time complexity of 2n′′TX . Similarly, C has degree less than n′′d and we
multiply it by n′ trinomials, so we get 2(n′′d− d)n′ + dn′2 additions, and a time
complexity of 2n′TX .

The final polynomial addition takes an extra nd scalar additions, which are done
in parallel. After simplifying, we get that the total number of additions needed to
reconstructA fromB andC is atmost 3n2d/2−nd forn even, and 3n2d/2−nd−d/2
for n odd. Hence, the number N(n) of additions satisfies the relation:

N(n) ≤ N(n′) + N(n′′) + 3n2d/2 − nd.

Solving the recurrence gives N(n) ≤ 3n2d−nd log2(n). Since 2n′ ≤ 2n′′ ≤ n+1,
the time complexity D(n) satisfies

D(n) ≤ max(D(n′), D(n′′)) + (n + 2)TX ,

which yields our claim. �

Reduction. For modular reduction, a more direct approach turns out to work
well. In cases where we need the modular reduction in Section 4, the input
polynomial A will be even; hence, we present an adapted reduction algorithm,
starting with a lemma.

Lemma 1. Given A of degree at most s(d − 1), one can compute all ai =
A rem ri using n(s − 1)(2d − 2) additions, in time O(sTrem(d)).

Proof. We prove that for any given i ≤ n, ai = Ai rem r can be computed using
(s − 1)(2d − 2) additions, in time (s − 1)Trem(d). Doing so in parallel for all ri

proves our proposition.
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If s = 1, we have nothing to do. Else, we write A = A0 + x(d−1)(s−2)A1, with
deg(A0) < (d − 1)(s − 2) and deg(A1) ≤ 2(d − 1). Let bi = A1 rem ri and Bi =
A0 + x(d−1)(s−2)bi, so that A = Bi mod ri and deg(Bi) ≤ (d− 1)(s− 1). By what
was said before, one can compute bi using 2d−2 additions, with a time complexity
of Trem(d). Continuing inductively by reducing Bi modulo ri, the final number of
additions is (s − 1)(2d − 2), and the time is (s − 1)Trem(d). �

Corollary 1. Let A ∈ F2[x] be even and of degree less than nd. Then, one can
compute all ai = A rem ri using n(n+3)(d−1) additions, in time O(nTrem(d)).

Proof. Let us write A = B2, with deg(B) < nd/2. Our assumptions that all
ri are coprime imply that n ≤ d, so that the latter degree is upper-bounded
by (�n/2 + 1)(d − 1). In view of the previous lemma, we can thus compute
all bi = Bi rem ri using n�n/2 (2d − 2) ≤ 2(n + 1)(d − 1) additions, in time
O(nTrem(d)).

Then, we obtain ai as b2
i rem ri. The cost of reducing b2

i modulo ri is at most
2d−2, in time Trem(d). Hence, the total cost is at most (n+1)(d−1)+2d−2 =
(n + 3)(d− 1) additions for reduction by a single trinomial; the time complexity
is O(nTrem(d)). �

4 The Multiplication Algorithm

We conclude with presenting our Montgomery-like multiplication algorithm in
the residue basis. We start by recalling the Montgomery original construction,
then the prior extension to residue basis computations from [9,8], and finally
give our new version.

The Montgomery Algorithm. As in the introduction, let R and V be of
respective degrees m and m′, with gcd(R, V ) = 1 and m′ ≤ m. Given the
inverse W of V modulo R and A, B of degrees less than m′, the Montgomery
algorithm computes the quantities Z, H, T, Q of Figure 1.

Input:

– A, B, V, W, R

Output:

– Q = AB/R mod V

1. Z = AB
2. H = ZW rem R
3. T = Z −HV
4. Q = T div R.

Fig. 1. Montgomery multiplication

Observe that T is 0 modulo R, so that the division yielding Q is exact. Obvi-
ously, Q = AB/R mod V . Besides, since deg(R) = m and deg(T ) ≤ m + m′ − 1,
we have deg(Q) ≤ m′ − 1, so Q = AB/R rem V .
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The Montgomery Multiplication with Polynomial Residues. In both [9]
and [8], the idea of computing modulo a highly composite R is raised. We recall
this process here, for our case R = r1 · · · rn, with ri trinomials. Additions and
multiplications modulo R are done component-wise modulo R = (r1, . . . , rn).
However, the final step of the algorithm cannot be performed in the residue
basis, since it becomes a division by zero.

The workaround in [9,8] consists in shifting from the set of moduli R to an-
other set R̃ = (rn+1, . . . , r2n) modulo which R can be inverted. This shifting
process, also called base extension, is thus the composite of a Chinese remain-
dering operation (or Newton interpolation) at r1, . . . , rn, followed by a multiple
reduction at rn+1, . . . , r2n.

To minimize the overhead, it turns out to be better to take as input the
residues a,b of A and B modulo R, as well as their residues ã, b̃ modulo R̃;
similarly, we output the residues q, q̃ of Q modulo both sets. Thus, the algorithm
starts as before, performing the computations modulo R. Before the division by
R, though, it shifts from the basis R to R̃, divides by R in this basis, and
eventually shifts back to R. As input, it also takes the residues w of W modulo
R, and the residues s̃ of S = 1/R and ṽ of V modulo R̃. The details of this
algorithm are in Figure 2 (with notation adapted to our setting).

Input:

– a = (a1, . . . , an) and ã = (an+1, . . . , a2n)
– b = (b1, . . . , bn) and b̃ = (bn+1, . . . , b2n)
– w = (w1, . . . , wn)
– s̃ = (sn+1, . . . , s2n)
– ṽ = (vn+1, . . . , v2n)
– R = (r1, . . . , rn) and R̃ = (rn+1, . . . , r2n)

Output:

– q = (q1, . . . , qn) and q̃ = (qn+1, . . . , q2n)

1. (zi)i≤n = (aibi rem ri)i≤n

1’. (zn+i)i≤n = (an+ibn+i rem rn+i)i≤n

2. (hi)i≤n = (ziwi rem ri)i≤n

2’. (hn+i)i≤n = shift(h1, . . . , hn)
3. (tn+i)i≤n = (zn+i − hn+ivn+i rem rn+i)i≤n

4. (qn+i)i≤n = (tn+isn+i rem rn+i)i≤n

4’. (qi)i≤n = shift−1(qn+1, . . . , q2n)

Fig. 2. Residue Montgomery multiplication as in [8,9]

Our Algorithm. Our approach rests on the following remark: when divisions by
zero occur, one can still obtain a meaningful result by dividing derivatives. With
the notation of Figure 1, from the equality T = RQ, we obtain by differentiation
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T ′ = R′Q + RQ′.

The polynomial R is squarefree, because all ri are, and are pairwise coprime.
Hence, we can deduce the relation

Q =
T ′

R′ mod R. (1)

In contrast to the algorithm of the previous paragraph, our algorithm does not
require a second set of moduli: we work with R = (r1, . . . , rn) all along. Still, as
before, we will handle more data as input and output than the mere residues of A
and B modulo R. If A is in F2[x], we still write its residue representation modulo
R as a = (a1, . . . , an). Besides, we denote by a� the residue representation of its
derivative, i.e., A′:

a� = (a�
1, . . . , a

�
n), with a�

i = A′ mod ri.

Note that a�
i is not the derivative of ai.

The previous algorithm uses a function shift to extend the modular informa-
tion from the moduli R to R̃. In a similar manner, we use a function diff that
takes as input the residues a of a polynomial A of degree less than nd, and
outputs the residues a� of its derivative: this is done by computing A through
the Chinese remaindering, differentiating it, and reducing the result modulo
all ri.

Now, the input of the multiplication algorithm consists of the residues a,b
of A and B modulo R, and of the residues a�,b� of the derivatives A′ and B′;
the output consists of the residues q and q� of Q and its derivative Q′. The
computation follows the same steps as before. Since a, a�,b,b� are known, we
can compute the residues z and z�, using the relations zi = aibi rem ri and
z�

i = aib
�
i + a�

i bi rem ri.
Next, we deduce the residue representation h of H = ZW rem R. However,

since we take remainders modulo R, the derivative of H cannot be computed
term-wise, so we use the function diff to obtain h� (which is valid, since deg(H) <
nd).

In view of (1), we see that only t� is required to obtain the quotient Q. Since
T = Z − HV , we deduce that t�i = T ′ mod ri is given by

z�
i − hiv

�
i − h�

i vi rem ri.

Let U be the inverse of R′ modulo R and let u� be the residue vector of U modulo
R. Equation (1) then implies that q�

i = Q rem ri equals t�i u
�
i rem ri. Knowing q,

we deduce q� by applying the function diff (which is valid, since deg(Q) < nd).
Remark that q� is not needed if we perform a single multiplication. However,
since Q may be reused for further multiplications, we compute q� for consistency.
The details of the algorithm are given in Figure 3.
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Input:

– a = (a1, . . . , an) and a� = (a�
1, . . . , a

�
n)

– b = (b1, . . . , bn) and b� = (b�
1, . . . , b

�
n)

– w = (w1, . . . , wn)
– u� = (u�

1, . . . , u
�
n)

– v = (v1, . . . , vn) and v� = (v�
1 , . . . , v�

n)
– R = (r1, . . . , rn)

Output:

– q = (q1, . . . , qn) and q� = (q�
1 , . . . , q�

n)

1. (zi)i≤n = (aibi rem ri)i≤n

1’. (z�
i )i≤n = (aib

�
i + a�

i bi rem ri)i≤n

2. (hi)i≤n = (ziwi rem ri)i≤n

2’. (h�
i )i≤n = diff(h1, . . . , hn)

3. (t�
i )i≤n = (z�

i − hiv
�
i − h�

i vi rem ri)i≤n

4. (qi)i≤n = (t�
i u�

i rem ri)i≤n

4’. (q�
i )i≤n = diff(q1, . . . , qn)

Fig. 3. Our version of the residue Montgomery multiplication

Optimization and Cost Analysis. We finally prove the complexity statement
announced in Theorem 1, starting with a discussion of the function diff.

This function consists of a Chinese remaindering, followed by differentiation,
followed by a multiple reduction. As mentioned in Section 3, the Chinese remain-
dering requires as a first step the modular multiplication of the residue vector by
the vector (xi = S−1

i rem ri)i≤n, with Si = r1 · · · ri−1ri+1 · · · rn. We apply the
function diff twice. In both cases, this product can be absorbed in other modular
multiplications (requiring us to slightly modify the precomputed polynomials we
take as input).

– At step 2’, we apply diff to the vector (h1, . . . , hn) obtained at step 2. Hence,
we can modify step 2, replacing the product ziwi rem ri by the product
zi(wixi rem ri) rem ri, so that the vector (wixi rem ri)i≤n is needed as in-
put. However, this modifies hi; since hi is reused at step 3, we have to
compensate for this extra xi factor: this is done by replacing the prod-
uct hiv

�
i rem ri by hi(v�

i Si rem ri) rem ri, so that we take the latter vector
(v�

i Si rem ri)i≤n as input.
– At step 4’, we apply diff to the vector (q1, . . . , qn) obtained at step 4. Then, we

modify step 4, replacing the product t�i u
�
i rem ri by t�i (u

�
i xi rem ri) rem ri, so

(u�
i xi rem ri)i≤n is used as an extra input.

Hence, the cost of Chinese remaindering reduces to that of the LinComb func-
tion given in Proposition 2. Differentiation is free, and gives an even polynomial;
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the cost of multiple reduction is given in Corollary 1. Hence, the total cost of
diff is at most 4n2d− nd(log2(n)− 3)− n2 − 3n additions. The time complexity
is in O(nTrem(d)).

We complete the cost analysis of the whole algorithm. The algorithm performs
seven vector multiplications in size n, with polynomials of degree less than d:
this is done using 7n(d − 1)2 additions and 7nd2 multiplications. There are two
calls to diff, using 8n2d − 2nd(log2(n) − 3) − 2n2 − 6n additions.

The extra operations are vector additions and remainders in size n. It turns
out to be better to postpone the reduction at step 1’ to step 3, after all additions
are done. Then, we have three size-n additions to perform, on polynomials of
degree up to 2d − 2; hence, they require 3n(2d − 1) scalar additions. The four
remainders use 4n(2d − 2) additions. Summing all previous contributions gives
the estimate on the number of operations in Theorem 1.

The time complexity analysis requires no extra complication, except to note
that the addition at step 1’ can be done in parallel with one at step 3. The total
time is then seen to be in O(TA + log2(d)TX + nTrem(d)).

5 Examples

Table 1 illustrates the number of additions performed by our algorithm for a few
values of d. The second column gives the maximal list of trinomials one can use,
under the form of a set S = {i1, . . . , in} of integers between 1 and d − 1: the
corresponding trinomials are xd + xi1 + 1, . . . , xd + xin + 1. As can be seen, the
squarefreeness assumption on our trinomials forces us to discard at least half of
the available ones for d even.

Table 1. Numerical examples

d indices nmax nmax d additions
13 {1, 2, 3, 4, 6, 7, 10, 12} 8 104 15912
14 {1, 3, 5, 9, 11} 5 70 9564
15 {1, . . . , 14} − {10, 12} 12 180 35561
16 {1, 3, 5, 7, 9, 13, 15} 7 112 18691
17 {3, 4, 5, 6, 9, 11, 12, 14, 15} 9 153 28919
18 {1, 3, 5, 7, 9, 11, 13, 15, 17} 9 162 31768
19 {3, 4, 5, 6, 7, 9, 10, 12, 13, 15, 16} 11 209 45644
20 {1, 3, 5, 9, 11, 15, 17} 7 140 27325
21 {1, . . . , 20} − {15} 19 399 117393
22 {1, 3, 7, 9, 11, 13, 15, 19, 21} 9 198 44428
23 {2, 3, 5, 8, 9, 11, 12, 14, 15, 18, 20, 21, 22} 13 299 78348
24 {5, 7, 11, 13, 15, 17, 19, 21, 23} 9 216 51514
25 {1, 3, 4, 7, 9, 10, 13, 15, 16, 18, 19, 21, 22, 24} 14 350 99352
26 {3, 5, 7, 9, 11, 15, 17, 21, 23} 9 234 59104
27 {1, . . . , 26} − {2, 4, 9, 11, 16, 18} 20 540 186032
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Our goal was to obtain a low operation count for multiplication modulo the
modulus V . We are successful in this, since our results improve on some of the
best ones previously known to us. For instance, Bajard et al. [8] have 49920
additions for m = 192, 139400 additions for m = 360 and 213716 additions
for m = 486. We obtain 44336 additions for (n = 8, d = 24, m = nd = 192),
108285 additions for (n = 18, d = 21, m = nd = 378) and 159872 additions for
(n = 18, d = 27, m = nd = 486).

6 Conclusion

The results given here easily extend to slightly more general situations: e.g.,
using trinomials of different degrees would enable one to extend and refine the
range of accessible degrees. Harder questions concern our time complexity: as of
now, our Chinese remaindering or multiple remaindering algorithms have rather
bad time complexity, due to their sequential nature. It would be most interesting
to obtain a similar operation count with a logarithmic time.
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ments, as well as Paul Zimmermann for pointing out McLaughlin’s work. The
first author acknowledges the support of the Canada Research Chairs Program
and of NSERC.
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Abstract. Post-processing functions are used to reduce the imperfect-
ness of physical random number generators. At FSE ’07, Dichtl con-
sidered the case where the physical random number generator outputs
independent bits that have a constant bias, and the post-processing func-
tion has fixed input and output lengths. In this paper, we first present a
number of bounds on deg(n, m), which is a measure of the reduction of
biases with n-bit input and m-bit output post-processing functions. We
next show the exact values of deg(n, m) for a large class of (n, m) such
that 1 ≤ m ≤ n ≤ 16, by using the bounds on deg(n, m) and a com-
puter simulation. We finally discuss how we have derived these numerical
values.

Keywords: physical random number generator, bias, post-processing,
entropy extractor.

1 Introduction

Background. Cryptographic schemes are designed assuming that unbiased and
independent bits are available. However, when we implement them in practice,
the physical sources of randomness to which we have access are not perfect, and
may contain biases and correlations. For example, we may use system clocks,
keyboard or mouse movements, radioactive sources, or quantum mechanical
sources (see [9,13] and [20, Chap. 17] for other examples), but they usually
do not produce perfect random bits. Many cryptographic schemes rely on se-
quences of unbiased bits. It is therefore important to be able to extract unbiased
bits from an imperfect physical source, and a natural approach to the prob-
lem is to apply a post-processing function (also called an entropy extractor, or
a corrector), a function that transforms a weak random source into an almost
perfect random source. This classical problem was extensively studied in the
past [1,2,5,6,7,8,12,16,17,18,19,21,22,23,24,25,26],

At FSE ’07, Dichtl studied the particular source of randomness, where the
output bits of physical source are independent and have a constant (but un-
known) bias [10]. That is, if x1, x2, . . . are the output bits of the physical source,
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then Pr(xi = 1) = 1/2 + ε holds for some ε. This setting may be of practical
interest as some of the above sources of randomness, such as radioactive sources
and quantum mechanical sources, may output data that are independent but
biased. Also, post-processing functions studies in [10] have fixed input and out-
put lengths, and this may be important in a real system as they have a fixed
input/output ratio and latency, while, for example, a well known von Neumann’s
method [26] does not have this property.

Dichtl’s result [10]. Dichtl proposed five post-processing functions, called XOR,
H, H2, H3 and Solution S. These functions take 16-bit input and produce 8-bit
output. For the first four functions, the 16-bit input x is divided into two 8-bit
sequences a and b as x = (a, b), and the output y is given by⎧⎪⎪⎨⎪⎪⎩

XOR : y = a ⊕ b
H : y = a ⊕ (a � 1) ⊕ b
H2 : y = a ⊕ (a � 1) ⊕ (a � 2) ⊕ b
H3 : y = a ⊕ (a � 1) ⊕ (a � 2) ⊕ (a � 4) ⊕ b

where a � i is the i-bit cyclic left shift of a. Since our input bits have a constant
bias, its probability is a polynomial in ε, i.e., if x is n bits and its Hamming
weight is w, then Pr(x) = (1/2 − ε)n−w(1/2 + ε)w. Now for post-processing
function F , the output probability, Pr(y), is the sum of input probabilities of x
such that y = F (x), which is also a polynomial in ε whose degree is at most n.
Dichtl proposed to measure the effectiveness of reduction of bias by the “lowest
degree of ε with non-zero coefficient.” Dichtl shows that, for XOR, the coefficient
of ε in Pr(y) is zero for any y. Similarly, ε and ε2 are zero for H, ε, ε2, ε3 are zero
for H2, and the coefficients of ε, . . . , ε4 are all zero for H3, thus the lowest degree
with non-zero coefficient is 2, 3, 4, and 5 for XOR, H, H2, and H3, respectively.
Since the lowest degree of raw input x is 1, they all reduce the bias compared
to the raw input, and H3 reduces the bias the most effective way among these
four functions.

Solution S is a special type of post-processing functions, where for any input
x, x and its complement have the same output value. Solution S is derived by
solving the system of linear equations, and the above property reduces the search
space since for any y and odd i, the coefficients of εi in Pr(y) is zero. In particular,
Dichtl shows that, for any y, the coefficients of ε, . . . , ε5 in Pr(y) are all zero,
thereby reducing more bias than the previous four functions.

We note that post-processing functions in [10] are deterministic, while founda-
tional works [16,21,22,23,24,25] assume a small amount of true randomness, and
the works on deterministic extractors [1,2,6,18] directly capture the min-entropy,
which is known to be an appropriate notion for random number generation to
evaluate the randomness quantity of a binary sequence [3]. As in [10], in this
paper, we consider the deterministic functions and use the lowest degree of the
polynomial for evaluating the reduction of biases.

Lacharme’s result [14]. Lacharme shows that the problem is closely related to
the coding theory, i.e., if there exists an [n, m, d] linear code, then there exists an
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n-bit input and m-bit output post-processing function such that the coefficients
of ε, ε2, . . . , εd−1 are all zero. This is a natural generalization of [10], as H, H2 and
H3 respectively correspond to generator matrices of [16,8,3], [16,8,4] and [16,8,5]
linear codes. Also, a table of linear codes [11] can be used to construct linear
post-processing functions. Then Lacharme proposes to use a resilient function as
the post-processing function, and shows that, for an (n, m, t)-resilient function,
the coefficients of ε, ε2, . . . , εt are all zero. Finally, Lacharme studies the relation
between the bias and the min-entropy.

Our contributions. We first re-formalize the problem explicitly separating the
general post-processing functions and the “Solution S type” post-processing
functions. For any n-bit input and m-bit output post-processing function F ,
we let mindeg(F ) be the minimum degree of ε with non-zero coefficient in the
output probability, where the minimum is taken over all the output value. We
then define deg(n, m) and degs(n, m) to be the maximum of mindeg(F ), where
the maximum is taken over all n-bit input and m-bit output post-processing
functions for deg(n, m), and over all “Solution S type” post-processing functions
for degs(n, m). In our terminology, Dichtl shows degs(16, 8) = 6 and derives the
concrete truth table of F achieving mindeg(F ) = 6, and Lacharme shows that,
if there exists an [n, m, d] linear code, then deg(n, m) ≥ d, and if there exists a
(n, m, t)-resilient function, then deg(n, m) ≥ t + 1.

We then present a number of bounds on deg(n, m) and degs(n, m). Our bounds
are elementary ones and we see that proving these bounds are important in
understanding the basic properties of post-processing functions. Indeed, it turns
out that they are actually useful in deriving the exact values of deg(n, m) and
degs(n, m). By using a computer simulation and the bounds we have derived, we
next present the exact values of deg(n, m) for 1 ≤ m ≤ n ≤ 16, and degs(n, m) for
1 ≤ m < n ≤ 16. Out of 136 values of (n, m) for deg(n, m), we have determined
123 values, and out of 120 values for degs(n, m), 115 values are determined. While
the exact values for the remaining (n, m) are open, we derive both the upper and
lower bounds. We finally discuss in detail how we have derived these numerical
values. Our results can be seen as the generalization of [10] from n = 16 and
m = 8 to 1 ≤ m < n ≤ 16, and proving the optimality and non-optimality of
the results in [14] for 1 ≤ m ≤ n ≤ 16.

2 Preliminaries

For a positive integer n, {0, 1}n is the set of all n-bit strings. For any set S,
#S is the cardinality of S. An n-bit input and m-bit output post-processing
function is a vector output Boolean function F : {0, 1}n #→ {0, 1}m. Let TF be
its truth table, i.e., TF = (F (00 · · · 00), F (00 · · ·01), . . . , F (11 · · · 11))t, which is
the transposed vector of (F (00 · · · 00), F (00 · · ·01), . . . , F (11 · · · 11)). We say that
F is balanced if each y ∈ {0, 1}m appears 2n−m times in TF . A balanced n-bit
input and m-bit output post-processing function is denoted (n, m)-PP, and let
(n, m)-PP be the set of all (n, m)-PPs. As in [10], we only consider (n, m)-PPs.
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Let x ∈ {0, 1}n be the input of an (n, m)-PP and y ∈ {0, 1}m be its output.
Throughout this paper, we assume that each bit of x has a constant (but un-
known) bias ε, i.e., if x = (x1, x2, . . . , xn) ∈ {0, 1}n is the input,
then Pr(xi = 1) = 1/2 + ε for 1 ≤ i ≤ n. The Hamming weight of x =
(x1, x2, . . . , xn) is denoted w(x), which is #{i | xi = 1}. The probability of
input, Pr(x), depends only on w(x) and is given by

Pr(x) =
(

1
2
− ε

)n−w(x)(1
2

+ ε

)w(x)

. (1)

Therefore, Pr(x) is a polynomial in ε. Since 0 ≤ w(x) ≤ n, there are (n + 1)
possibilities for the value of Pr(x). If w(x) = w, the corresponding probability
is denoted pw, and hence pw = (1/2 − ε)n−w (1/2 + ε)w.

For any y ∈ {0, 1}m, F−1(y) is the preimage of y, and is defined as the set of
x such that y = F (x), i.e., F−1(y) = {x | y = F (x)}. The probability of output,
Pr(y), is the sum of probabilities of 2n−m n-bit inputs belonging to its preimage.
That is,

Pr(y) =
∑

x∈F−1(y)

Pr(x). (2)

Since Pr(x) is a polynomial in ε given by (1), Pr(y) is also a polynomial in ε
whose degree is at most n. Therefore, Pr(y) = a0 + a1ε + a2ε

2 + · · · + anεn.
Now we define mindeg(Pr(y)) as follows.

Definition 1. For all y ∈ {0, 1}m, define

mindeg(Pr(y)) def= min{k | 1 ≤ k ≤ n, ak �= 0}.

For given y, mindeg(Pr(y)) is the minimum degree other than the constant term.
Next, we define mindeg(TF ) as follows.

Definition 2. For all F ∈ (n, m)-PP, define

mindeg(TF ) def= min{mindeg(Pr(y)) | y ∈ {0, 1}m}.

For given F ∈ (n, m)-PP, mindeg(TF ) is the minimum of mindeg(Pr(y)), where
y runs all the possible values.

Then, we define deg(n, m) as follows.

Definition 3. For all n ≥ m ≥ 1, define

deg(n, m) def= max{mindeg(TF ) | F ∈ (n, m)-PP}.

For given (n, m), deg(n, m) is the maximum value of mindeg(TF ), where the
maximum is taken over all the possible F ∈ (n, m)-PP. It is easy to see that
#(n, m)-PP = (2n)!/{(2n−m)!}2m

, i.e., F ∈ (n, m)-PP satisfying mindeg(TF ) =
deg(n, m) reduces the bias most effective way among this number of possible
(n, m)-PPs.
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Solution S is a special type of an (n, m)-PP, where any input x and its com-
plement, x̄, have the same output [10]. This implies that x and x̄ belong to the
same preimage of some y. Therefore, for any y ∈ {0, 1}m and for all odd i, the
coefficient of εi in Pr(y) is zero since the coefficient of εi in (Pr(x) + Pr(x̄)) is
zero. An (n, m)-PP is said to be an (n, m)-SPP (Solution S type PP) if for any x,
x and x̄ have the same output, and let (n, m)-SPP be the set of all (n, m)-SPPs.

Now we define degs(n, m) as follows.

Definition 4. For all n > m ≥ 1, define

degs(n, m) def= max{mindeg(TF ) | F ∈ (n, m)-SPP}.

Note that #(n, m)-SPP = (2n−1)!/{(2n−m−1)!}2m

, and the maximum is taken
over all these (n, m)-SPPs. Also, for any n > m ≥ 1, we have deg(n, m) ≥
degs(n, m) since (n, m)-SPP ⊂ (n, m)-PP. We do not consider the case n = m
since any F ∈ (n, n)-PP is a permutation over {0, 1}n, and thus two distinct
inputs cannot have the same output. With the similar reasoning, we do not
consider the case n = 1.

3 Bounds on deg(n, m) and degs(n, m)

In this section, we present bounds on deg(n, m) and degs(n, m) with their proofs.

3.1 Bounds on deg(n, m)

We show six bounds on deg(n, m).

Theorem 1. For all n ≥ 1, deg(n, n) = 1.

Proof. Any (n, n)-PP is a permutation over {0, 1}n. Therefore, for all 0 ≤ w ≤
n, there always exists some y ∈ {0, 1}n such that Pr(y) = pw. Now since
mindeg(pw) �= 0 for 0 ≤ w ≤ n, mindeg(Pr(y)) �= 0 for any y ∈ {0, 1}n. This
implies mindeg(TF ) ≥ 1 for any F ∈ (n, n)-PP.

On the other hand, mindeg(pw) = 1 holds for some 0 ≤ w ≤ n, cf., w = 0.
Thus, there always exists some y ∈ {0, 1}n such that mindeg(Pr(y)) = 1. This
implies mindeg(TF ) ≤ 1 for any F ∈ (n, n)-PP, and hence deg(n, n) = 1. ��

Theorem 2. For all n ≥ 2, deg(n, n − 1) = 2.

Proof. Constructing an (n, n−1)-PP corresponds to dividing 2n n-bit inputs into
2n−1 preimages, where each preimage consists of two inputs. Our proof proceeds
in two steps. First, we derive a necessary and sufficient condition that, for each
y ∈ {0, 1}n−1, the coefficient of ε in Pr(y) is zero. Then we show that when the
condition is satisfied, the coefficient of ε2 in Pr(y) is non-zero for some y.

Now Pr(x) in (1) can be written as

Pr(x) =

{
n−w∑
i=0

(
n − w

i

)(
1
2

)n−w−i

(−ε)i

}⎧⎨⎩
w∑

j=0

(
w

j

)(
1
2

)w−j

εj

⎫⎬⎭ ,
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where w(x) = w. Therefore, the coefficient of ε in Pr(x) is

∑
i+j=1

(
n − w

i

)
(−1)i

(
w

j

)(
1
2

)n−i−j

=
2w − n

2n−1 .

Fix any y ∈ {0, 1}n−1, and suppose that its preimage consists of x1 and x2, where
w(x1) = w1 and w(x2) = w2. Since Pr(y) = Pr(x1) + Pr(x2), the coefficient of ε
in Pr(y) is zero if and only if

2w1 − n

2n−1 +
2w2 − n

2n−1 = 0,

which is equivalent to w2 = n − w1. Therefore, the necessary and sufficient
condition is to form a preimage with two inputs of weight w and n − w. Now,
since #{x | w(x) = w} = #{x | w(x) = n − w} holds for any 0 ≤ w ≤ n, it is
possible to satisfy the above condition to construct F ∈ (n, n − 1)-PP satisfying
mindeg(TF ) ≥ 2.

Next, consider some F ∈ (n, n − 1)-PP satisfying mindeg(TF ) ≥ 2. We show
that the coefficient of ε2 in Pr(y) is non-zero for some y. If w(x) = w, then the
coefficient of ε2 in Pr(x) is

∑
i+j=2

(
n − w

i

)
(−1)i

(
w

j

)(
1
2

)n−i−j

=
(2w − n)2 − n

2n−1 .

Similarly, if w(x′) = n − w, we see that ε2 in Pr(x′) has the same coefficient.
Therefore, if the preimage is formed with two inputs of weight w and n−w, the
coefficient of ε2 in Pr(y) is

(2w − n)2 − n

2n−1 +
(2w − n)2 − n

2n−1 =
(2w − n)2 − n

2n−2 .

So we need (2w − n)2 − n = 0 to eliminate ε2, which is equivalent to w =
(n±

√
n)/2. Now it is clear that we always have some w such that 0 ≤ w ≤ n and

w �= (n ±
√

n)/2 (since n ≥ 2, we have at least three choices of w, and the right
hand side takes at most two values). This implies the coefficient of ε2 in Pr(y)
is non-zero for some y. Therefore, for any F ∈ (n, n − 1)-PP, mindeg(TF ) ≤ 2,
and hence deg(n, n − 1) = 2. ��

Theorem 3. For all n > m ≥ 1, deg(n, m) ≥ deg(n, m + 1).

Proof. Suppose we have F ∈ (n, m + 1)-PP, where deg(n, m+1) = mindeg(TF ).
We construct F ′ ∈ (n, m)-PP such that mindeg(TF ′) ≥ mindeg(TF ).

Since the output length of F is (m + 1) bits, F has 2m+1 preimages, where
each preimage has 2n−m−1 inputs. Now we divide the 2m+1 preimages into 2m

pairs of preimages, and regard the pair of preimages as a new preimage. We then
have 2m new preimages each of which consists of 2n−m inputs, and let F ′ be the
resulting (n, m)-PP.



Bounds on Fixed Input/Output Length Post-processing Functions 379

Let y0 ∈ {0, 1}m be some output of F ′ and Pr(y0) be its probability. By
definition, Pr(y0) = Pr(y1) + Pr(y2) for some outputs y1 ∈ {0, 1}m+1 and
y2 ∈ {0, 1}m+1 of F . Without loss of generality, assume that mindeg(Pr(y1)) ≤
mindeg(Pr(y2)). Then we have

mindeg(Pr(y0)) = mindeg(Pr(y1) + Pr(y2)) ≥ mindeg(Pr(y1)).

Therefore, for any y′ ∈ {0, 1}m of F ′, we have some y ∈ {0, 1}m+1 of F satis-
fying mindeg(Pr(y′)) ≥ mindeg(Pr(y)). This implies min{mindeg(Pr(y′)) | y′ ∈
{0, 1}m} ≥ min{mindeg(Pr(y)) | y ∈ {0, 1}m+1}, and the result follows. ��

Theorem 4. For all n ≥ m ≥ 1, deg(n, m) ≤ deg(n + 1, m).

Proof. Suppose that we have F ∈ (n, m)-PP such that mindeg(TF ) = deg(n, m).
We construct F ′ ∈ (n + 1, m)-PP satisfying mindeg(TF ) = mindeg(TF ′).

For an input x′ ∈ {0, 1}n+1, the output of F ′ is F ′(x′) = F (x), where x is the
least significant n bits of x′, i.e., F ′ simply ignores the most significant bit of x′.

Now, for any x ∈ {0, 1}n, we have Pr(0||x) = (1/2 − ε) Pr(x) and Pr(1||x) =
(1/2+ ε) Pr(x). Let Pr(y) be the probability that the output of F is y. Then the
probability that F ′ outputs y is∑

x∈F−1(y)

(
1
2
− ε

)
Pr(x) +

∑
x∈F−1(y)

(
1
2

+ ε

)
Pr(x) = Pr(y).

Therefore we have mindeg(TF ′) = mindeg(TF ). ��

Theorem 5. For all n ≥ m ≥ 1 and k ≥ 1, deg(n, m) ≤ deg(kn, km).

Proof. Suppose that we have F ∈ (n, m)-PP such that mindeg(TF ) = deg(n, m).
We construct F ′ ∈ (kn, km)-PP satisfying mindeg(TF ) ≤ mindeg(TF ′).

For an input x = (x1, x2, . . . , xk) ∈ ({0, 1}n)k of F ′, the output is y =
(y1, y2, . . . , yk) ∈ ({0, 1}m)k, where yi = F (xi) for 1 ≤ i ≤ k.

Since Pr(y) = Pr(y1) Pr(y2) · · ·Pr(yk), we have

mindeg(Pr(y)) = mindeg(Pr(y1) Pr(y2) · · ·Pr(yk)).

Now, mindeg(Pr(y1) Pr(y2) · · ·Pr(yk)) ≥ mindeg(Pr(yi)) holds for any 1 ≤ i ≤ k.
Also, from the definition of mindeg(TF ), we have mindeg(Pr(yi)) ≥ mindeg(TF )
for any 1 ≤ i ≤ k. Therefore, min{mindeg(Pr(y)) | y ∈ {0, 1}km} ≥ mindeg(TF ),
and the result follows. ��

Theorem 6. For all n ≥ 1, deg(n, 1) = n.

We use the following Piling-up Lemma [15] to prove Theorem 6.

Lemma 1 (Piling-up Lemma). Let n ≥ 1 and x1, x2, . . . , xn be independent
random variables such that Pr(xi = 1) = 1/2 + εi. Then

Pr(x1 ⊕ x2 ⊕ · · · ⊕ xn = 1) =
1
2

+ (−2)n−1
∏

1≤i≤n

εi.

Now Theorem 6 is proved directly from Lemma 1.
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Proof (of Theorem 6). Consider F (x1, x2, . . . , xn) = x1 ⊕ x2 ⊕ · · · ⊕ xn. We see
that F ∈ (n, 1)-PP. Lemma 1 shows that the coefficients of ε, ε2, . . . , εn−1 are
all zero, and therefore, deg(n, 1) ≥ n. On the other hand, by definition, we have
deg(n, 1) ≤ n. ��

3.2 Bounds on degs(n, m)

Similarly to deg(n, m), we show six bounds on degs(n, m).

Theorem 7. For all n ≥ 2, degs(n, n − 1) = 2.

Proof. This follows since F ∈ (n, n − 1)-PP satisfying deg(TF ) ≥ 2 in the proof
of Theorem 2 also satisfies F ∈ (n, n − 1)-SPP . ��

Theorem 8. For all n − 1 > m ≥ 1, degs(n, m) ≥ degs(n, m + 1).

Proof. Similarly to the proof of Theorem 3, we can construct F ′ ∈ (n, m)-SPP
such that mindeg(TF ′) ≥ mindeg(TF ) from any F ∈ (n, m + 1)-SPP. ��

Theorem 9. For all n + 1 > m ≥ 1, degs(n, m) ≤ degs(n + 1, m).

Proof. A proof is similar to the proof of Theorem 4. For any F ∈ (n, m)-SPP ,
there exists F ′ ∈ (n + 1, m)-SPP satisfying mindeg(TF ) ≤ mindeg(TF ′). ��

Theorem 10. For all n > m ≥ 1 and k ≥ 1, degs(n, m) ≤ degs(kn, km).

Proof. Similarly to the proof of Theorem 5, for any F ∈ (n, m)-SPP, there
exists F ′ ∈ (kn, km)-SPP satisfying mindeg(TF ) ≤ mindeg(TF ′). ��

Theorem 11. For all even n ≥ 2, degs(n, 1) = n.

Proof. We see that F (x1, x2, . . . , xn) = x1 ⊕x2 ⊕· · ·⊕xn ∈ (n, 1)-SPP, and the
rest of the proof is the same as Theorem 6. ��

Theorem 12. For all odd n ≥ 3, degs(n, 1) = n − 1.

Proof. Since n is odd, n − 1 is even and thus we have degs(n − 1, 1) ≥ n − 1
from Theorem 11. From Theorem 9, we have degs(n − 1, 1) ≤ degs(n, 1), and
therefore, n− 1 ≤ degs(n, 1). On the other hand, we always have degs(n, 1) ≤ n,
but since degs(n, 1) cannot be odd from the definition of degs(n, 1), we have
degs(n, 1) ≤ n − 1. ��

4 Simulation Results

4.1 Values of deg(n, m) and degs(n, m)

We first present our simulation results in Table 1 and Table 2. Table 1 shows
the values of deg(n, m) for 1 ≤ m ≤ n ≤ 16, and Table 2 shows degs(n, m) for
1 ≤ m < n ≤ 16. Table 3 is our environment for this simulation.
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– In Table 1 and Table 2, if the entry is a1, then the value is derived by our
computer simulation discussed in the following sections.

– In Table 1, a2 means that the upper bound is derived by our simulation
(i.e., deg(n, m) ≤ a) and we apply Theorem 3 to derive the lower bound
(i.e., deg(n, m) ≥ a).

– a3 means that the upper bound is derived by our simulation and we apply
Theorem 4 to derive the lower bound.

– a4 means that the upper bound is derived by our simulation and the lower
bound is taken from Lacharme’s results [14].

– If the entry is a1, b1, then this means deg(n, m) = a or b for Table 1 and
degs(n, m) = a or b for Table 2, where both values are derived by our simu-
lation. Similarly, if the entry is a1, b5, this means that the upper bound a is
derived by our simulation and the lower bound b is taken from Lacharme’s
results [14]. The exact value for these entries remains as an open question.

– In Table 2, a6 means that the upper bound is derived by our simulation and
we apply Theorem 8 to derive the lower bound.

– a7 means that the upper bound is derived by our simulation and we apply
Theorem 9 to derive the lower bound.

– degs(16, 8) = 6, which is denoted 68 in Table 2, is the value from [10].

The entry with underline shows that the bound is strictly better than the one
given by the t-resilient functions in [14]. For example, deg(10, 2) = 7, but it
is known that (10, 2, 6)-resilient function does not exist [4, Theorem 2, 3], and
hence F ∈ (10, 2)-PP such that mindeg(TF ) = 7 cannot be a resilient function.
For all the entries with underline, we have used the bound on t from [4].

Table 1 and Table 2 may be used to determine the values of n and m (and
hence the input/output ratio) given the maximum bias that can be accepted for
the application.

4.2 How to Derive deg(n, m)

In this section, we discuss how we have derived numerical values of deg(n, m) in
Table 1. We divide 2n n-bit inputs into 2m preimages, where each preimage has
2n−m n-bit inputs. Consider some preimage, and let qw be the number of x such
that w(x) = w in that preimage. Therefore, we require that

n∑
w=0

qw = 2n−m. (3)

If w(x) = w, then the coefficient of εl in Pr(x) is∑
i+j=l

(
n − w

i

)
(−1)i

(
w

j

)(
1
2

)n−i−j

.

Now consider the output probability of this preimage. The necessary and
sufficient condition that the coefficients of ε, ε2, . . . , εe are all zero is;

for 1 ≤ l ≤ e,
n∑

w=0

⎧⎨⎩∑
i+j=l

(
n − w

i

)
(−1)i

(
w

j

)(
1
2

)n−i−j

qw

⎫⎬⎭ = 0. (4)
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Table 1. The values of deg(n, m) for 1 ≤ m ≤ n ≤ 16

n\m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 11

2 21 11

3 31 21 11

4 41 21 21 11

5 51 31 21 21 11

6 61 41 31 21 21 11

7 71 41 41 31 21 21 11

8 81 51 41 41 21 21 21 11

9 91 61 51 41 31 21 21 21 11

10 101 71 61 51 41 31 21 21 21 11

11 111 81 62 61 42 41 31 21 21 21 11

12 121 81 71, 61 63 51, 41 41 41 31 21 21 21 11

13 131 101 81 71, 61 61 51, 41 42 41 31 21 21 21 11

14 141 101 91, 81 81, 75 63 61, 55 51, 41 42 41 34 21 21 21 11

15 151 111, 101 101 84 74 62 61 51, 41 42 41 34 21 21 21 11

16 161 121 103 91, 85 84 71, 61 71, 61 61 42 42 41 21 21 21 21 11

Table 2. The values of degs(n, m) for 1 ≤ m < n ≤ 16

n\m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2 21

3 21 21

4 41 21 21

5 41 21 21 21

6 61 41 21 21 21

7 61 41 41 21 21 21

8 81 41 41 41 21 21 21

9 81 61 41 41 21 21 21 21

10 101 61 61 41 41 21 21 21 21

11 101 81 61 61 41 41 21 21 21 21

12 121 81 67 67 41 41 41 21 21 21 21

13 121 101 81 66 61 46 46 41 21 21 21 21

14 141 101 87 81, 61 67 61, 41 46 46 41 21 21 21 21

15 141 101 101 81, 61 66 66 61 46 46 41 21 21 21 21

16 161 121 107 81, 61 81, 61 66 66 68 46 46 41 21 21 21 21

Table 3. Environment for the simulation

Machine Dell OPTIPLEX GX620
CPU Pentium(R) 4 CPU 3.40GHz
OS Microsoft Windows XP Professional SP2
Memory 4GB
Software Wolfram Mathematica 6.0.1.0
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The first step is to derive all the possible values of {q0, q1, . . . , qn} that sat-
isfy both (3) and (4). Suppose that we have d solutions, {q(1)

0 , q
(1)
1 , . . . , q

(1)
n },

{q(2)
0 , q

(2)
1 , . . . , q

(2)
n }, . . . , {q(d)

0 , q
(d)
1 , . . . , q

(d)
n }. Let Qk = {q(k)

0 , q
(k)
1 , . . . , q

(k)
n } for

1 ≤ k ≤ d. If we construct a preimage with q
(k)
t inputs of weight t, then the

resulting F is balanced (from (3)) and ε, ε2, . . . , εe are all eliminated (from (4)).
Now we have to construct 2m preimages with the constraint that we have

exactly
(

n
w

)
inputs x ∈ {0, 1}n such that w(x) = w. Therefore, the next step is

to solve the following linear system;

[
z1 z2 · · · zd

]
⎡⎢⎢⎢⎣

Q1
Q2
...

Qd

⎤⎥⎥⎥⎦ =
[(

n
0

) (
n
1

)
· · ·
(
n
n

)]
. (5)

If there exists some (z1, z2, . . . , zd) satisfying (5), this means it is possible to
fulfill the above mentioned constraint, and thus we conclude deg(n, m) ≥ e + 1.
Otherwise deg(n, m) ≤ e.

See Appendix for an example to derive deg(4, 2).

4.3 How to Derive degs(n, m)

In (n, m)-SPPs, any input x and its complement, x̄, have the same output. Thus
we consider x and x̄ as the pair (x, x̄). Let w(x, x̄) = min(w(x), w(x̄)), i.e.,w(x, x̄)
is the minimum value of w(x) and w(x̄). Now, in F ∈ (n, m)-SPP , we have to
divide 2n−1 input pairs into 2m preimages, where each preimage has 2n−m−1

input pairs. Consider some preimage, and let qw′ be the number of pairs (x, x̄)
such that w(x, x̄) = w′ in that preimage. Then, we need

�n/2�∑
w′=0

qw′ = 2n−m−1, (6)

where !n/2" is maximum integer at most n/2.
If l is odd, then the coefficient of εl in Pr(x) + Pr(x̄) is zero. Otherwise the

coefficient is

2
∑

i+j=l

(
n − w′

i

)
(−1)i

(
w′

j

)(
1
2

)n−i−j

,

where w(x, x̄) = w′. Consider the output probability of this preimage, and the
coefficients of ε, ε2, . . . , εe are all zero iff;

for even 1 ≤ l ≤ e,
�n/2�∑
w′=0

⎧⎨⎩2
∑

i+j=l

(
n − w′

i

)
(−1)i

(
w′

j

)(
1
2

)n−i−j

qw′

⎫⎬⎭ = 0.

(7)
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Similarly to deg(n, m), we first solve a linear system of (6) and (7). Suppose that
we have d′ solutions, Qk = {q(k)

0 , q
(k)
1 , . . . , q

(k)
�n/2�} for 1 ≤ k ≤ d′, and consider

the following linear system;

[
z1 z2 · · · zd′

]
⎡⎢⎢⎢⎣

Q1
Q2
...

Qd′

⎤⎥⎥⎥⎦ =
[(

n
0

) (
n
1

)
· · ·
(

n
�n/2�

)]
. (8)

If some (z1, z2, . . . , zd′) satisfies (8), then degs(n, m) ≥ e + 2. Otherwise we
conclude that degs(n, m) ≤ e.

5 Summary of Results

In this paper, we have generalized the work in [10] in various ways. We first re-
defined deg(n, m) and degs(n, m), and then presented twelve bounds on them.
We believe that these bounds are important in understanding the basic prop-
erties of post-processing functions, and some of them are useful in deriving the
exact values of deg(n, m) and degs(n, m). We derived the tables of deg(n, m) for
1 ≤ m ≤ n ≤ 16, and degs(n, m) for 1 ≤ m < n ≤ 16, and discussed how we
have derived these numerical values. Several values of deg(n, m) and degs(n, m)
are left as open questions.

Our results suggest that, for some n and m, the resilient function is not the
optimal solution as a post-processing function, and it would be interesting to see
systematic constructions of optimal functions.
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A Deriving deg(4, 2)

We show a small example to derive deg(4, 2).
We divide sixteen 4-bit inputs into four preimages, where each preimage has

four 4-bit inputs. Consider some preimage, and let qw be the number of x such
that w(x) = w in that preimage. Therefore, we need

q0 + q1 + q2 + q3 + q4 = 4. (9)

Now the coefficient of ε in Pr(y) is zero iff

− 1
2
q0 − 1

4
q1 +

1
4
q3 +

1
2
q4 = 0, (10)

which corresponds to l = 1 in (4). Similarly, the coefficient of ε2 is zero iff

3
2
q0 − 1

2
q2 +

3
2
q4 = 0. (11)

We have seven solutions that satisfy both (9) and (10), and consider the following
linear system;

[
z1 z2 z3 z4 z5 z6 z7

]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 4 0 0
0 1 2 1 0
0 2 0 2 0
0 2 1 0 1
1 0 1 2 0
1 0 2 0 1
1 1 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=
[
1 4 6 4 1

]
, (12)

where the matrix in (12) corresponds to the seven solutions. Now since

(z1, z2, . . . , z7) = (1, 1, 1, 0, 0, 0, 1)

satisfies (12), we conclude that deg(4, 2) ≥ 2.
On the other hand we only have one solution satisfying (9), (10) and (11),

which is (q0, . . . , q4) = (0, 2, 0, 2, 0). Now we consider the following linear system;[
z1
] [

0 2 0 2 0
]

=
[
1 4 6 4 1

]
.

Since there is no solution for this system, we have deg(4, 2) ≤ 2, and therefore,
deg(4, 2) = 2.
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Abstract. In this paper we describe a high performance, area-efficient
implementation of Hyperelliptic Curve Cryptosystems over GF(2m). A
compact Arithmetic Logic Unit (ALU) is proposed to perform multipli-
cation and inversion. With this ALU, we show that divisor multiplica-
tion using affine coordinates can be efficiently supported. Besides, the
required throughput of memory or Register File (RF) is reduced so that
area of memory/RF is reduced. We choose hyperelliptic curves using the
parameters h(x) = x and f(x) = x5 + f3x

3 + x2 + f0. The performance
of this coprocessor is substantially better than all previously reported
FPGA-based implementations. The coprocessor for HECC over GF(283)
uses 2316 slices and 2016 bits of Block RAM on Xilinx Virtex-II FPGA,
and finishes one scalar multiplication in 311 μs.

Keywords: Hyperelliptic Curve Cryptosystems, Modular multiplication,
Modular inversion, FPGA.

1 Introduction

Public-Key Cryptography (PKC) [10], introduced in the mid 70’s by Diffie and
Hellman, ensures a secure communication over an insecure network without prior
key agreement. PKC is widely used for digital signatures, key agreement and data
encryption. The best-known and most commonly used public-key cryptosystems
are RSA [26] and Elliptic Curve Cryptography (ECC) [23,19], but recently Hy-
perElliptic Curve Cryptography (HECC) [20] is catching up. The main benefit
for curve-based cryptography e.g. ECC and HECC is that they offer equiva-
lent security as RSA for much smaller parameter sizes. The advantages result in
smaller data-paths, less memory and lower power consumption.

Implementing HECC on a resource-constrained platform has been a chal-
lenge in both area and performance. Over the past few years, HECC have been
implemented in both software [25,27] and hardware [4,7,11,15]. However, the im-
plementations so far failed in reaching the performance of ECC implementations
with comparable hardware cost. Table 1 compares the computational complexity
of point/divisor operations in ECC and HECC as in [2]. Here I, M and S denote
modular inversion, multiplication and squaring, respectively. Note that Table 1
is not exhaustive, and a comprehensive description of different coordinates as

R. Avanzi, L. Keliher, and F. Sica (Eds.): SAC 2008, LNCS 5381, pp. 387–400, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Table 1. Modular Operations Required by Point/Divisor Operations in GF(2m) [2]

PA/DA PD/DD Coordinates Conversion
ECC Affine I+2M+S I+2M+S -

Projective 15M+3S 7M+4S I+2M
HECC Affine I+22M+3S I+20M+6S -

Projective 49M+4S 38M+7S I+4M

well as their computational complexity can be found in [2]. In addition, state
of the art regarding various types of coordinates for all types of curve-based
cryptosystem can be found in [9]. For example, ECC over GF(2163) and HECC
over GF(283) are supposed to offer equivalent security as 1024-bit RSA [2]. Using
projective coordinates, one EC Point Addition (PA) requires 15 multiplications
and 3 squarings in GF(2163), while one HEC Divisor Addition (DA) requires 49
multiplications and 4 squarings in GF(283), which is much more complex even
with parameters of half bit-lengths. In order to speed up HECC implementa-
tions, parallel multipliers [4,7] or inverters [15] were used. As a result, an ALU
becomes large in the area. In order to efficiently feed data to parallel multipliers
and inverters, a high-throughput Register File (RF) with an additional control
logic i.e. a MUX array connected to ALU is required. This adds even more area
to implementations.

In this paper, we describe a compact HECC coprocessor on an FPGA platform.
The coprocessor utilizes a unified multiplier/inverter, which supports both multi-
plication and inversion. This architecture brings three main advantages. First, the
fast inverter makes affine coordinates very efficient. Second, as the multiplier and
inverter share partial data-path, it is much smaller in area compared to previous
implementations. Third, using only one multiplier/inverter, the required through-
put of Memory or RF is comparably low. Therefore we can reduce the area of the
memory. Note that the architecture proposed here for FPGA design can also lead
to an area-efficient design in ASICs. The coprocessor was synthesized with Xilinx
ISE8.1i.On Virtex-II FPGA(XC2V4000), this coprocessorfinishes one scalarmul-
tiplication of HECC over GF(283) in 311 μs using 2316 slices and 2016 bits mem-
ory. To the best of our knowledge, this implementation is faster than all proposed
FPGA-based implementations of HECC, while the area is much smaller than that
of the fastest reported implementation [15].

The rest of the paper is organized as follows. Section 2 gives a brief introduc-
tion on the previous work. Section 3 describes the mathematical background of
HECC and field arithmetic. Section 4 describes the architecture of the proposed
HECC coprocessor. In Sect. 5 we show the implementation results. We conclude
the paper and give some future work in Sect. 6.

2 Previous Work

In 2001, Wollinger described the first hardware architecture for HECC implemen-
tations using Cantor’s algorithm [6] in his thesis [32]. However, the architecture
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was only outlined. The first complete hardware implementation of HECC was
presented in [4]. It is also based on Cantor’s algorithm, but with improvement on
the calculation of Greatest Common Divisor (GCD). This implementation, using
16600 slices on Xilinx Virtex II FPGA, supports a genus-2 HEC over GF(2113).
One scalar multiplication takes 20.2 ms on this coprocessor running at 45MHz.
This work was further improved in [7].

In 2002, Lange generalized the explicit formulae for HECC over finite fields
with arbitrary characteristic [21]. This was first implemented on 32-bit embedded
processors (ARM7TDMI and PowerPC) in [25]. The inversion in this algorithm
was performed with Extended Euclidean Algorithm (EEA). The first hardware
implementation of HECC using explicit formulae was described in [12]. Further
improvement by using mixed coordinates and simplified curves were proposed
in [11]. In [11] the coprocessor, running at 45.3MHz, deploys 25272 slices on
Xilinx Virtex II FPGA. With this implementation 2.03 ms is required to per-
form one scalar multiplication of HECC over GF(2113). There are some ASIC
implementations of HECC using projective coordinates. For example, Sakiyama
proposed a HECC coprocessor [28] using 0.13-μm CMOS technology. The co-
processor runs at 500 MHz, and can perform one scalar multiplication of HECC
over GF(283) in 63 μs.

The first hardware implementations of HECC using affine version of explicit
formulae were described in [31], which described so far the fastest FPGA-based
HECC coprocessor. This coprocessor uses three modular multipliers and two
modular inverters. It uses 7785 slices on Xilinx Virtex II FPGA(XC2V4000),
and can reach a clock frequency of 56.7MHz. One scalar multiplication of HECC
over GF(281) takes 415 μs.

3 Mathematical Background

3.1 Hyperelliptic Curve Cryptography

Hyperelliptic curves are a special class of algebraic curves; they can be viewed
as generalization of elliptic curves. Namely, a hyperelliptic curve of genus g = 1
is an elliptic curve, while in general, hyperelliptic curves can be of any genus
g ≥ 1.

Let GF(2m) be an algebraic closure of the field GF(2m). Here we consider
a hyperelliptic curve C of genus g = 2 over GF(2m), which is given with an
equation of the form:

C : y2 + h(x)y = f(x) in GF(2m)[x, y], (1)

where h(x) ∈ GF(2m)[x] is a polynomial of degree at most g (deg(h) ≤ g) and
f(x) is a monic polynomial of degree 2g + 1 (deg(f) = 2g + 1). Also, there
are no solutions (x, y) ∈ GF (2m) × GF (2m) which simultaneously satisfy the
equation (1) and the equations: 2v + h(u) = 0, h′(u)v − f ′(u) = 0. These points
are called singular points. For the genus 2, in the general case the following
equation is used y2 + (h2x

2 + h1x + h0)y = x5 + f4x
4 + f3x

3 + f2x
2 + f1x + f0.
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A divisor D is a formal sum of points on the hyperelliptic curve C i.e.
D =

∑
mP P and its degree is degD =

∑
mP . Let Div denotes the group of all

divisors on C and Div0 the subgroup of Div of all divisors with degree zero. The
Jacobian J of the curve C is defined as quotient group J = Div0/P . Here P is the
set of all principal divisors, where a divisor D is called principal if D = div(f),
for some element f of the function field of C (div(f) =

∑
P∈C ordP (f)P ). The

discrete logarithm problem in the Jacobian is the basis of security for HECC. In
practice, the Mumford representation according to which each divisor is repre-
sented as a pair of polynomials [u, v] is usually used. Here, u is monic of degree 2,
degv < degu and u|f −hv−v2 (so-called reduced divisors). For implementations
of HECC, we need to implement the multiplication of elements of the Jacobian
i.e. divisors with some scalar.

The main operation in any hyperelliptic curve based primitive is scalar mul-
tiplication, i.e. mD where m is an integer and D is a reduced divisor in the
Jacobian of some hyperelliptic curve C. The first algorithm for arithmetic in the
Jacobian is due to Cantor [6]. However, until “explicit formulae” were invented,
the HECC was not considered a suitable alternative to EC based cryptosys-
tems. For geni 2 and 3, there was some substantial work on the formulae and
algorithms for computing the group law on the Jacobian have been optimized.
Algorithms for the group operation for the case of genus 2 hyperelliptic curves,
which we used are due to Lange [22].

The main operation in any curve-based primitive (ECC or HECC) is the
scalar multiplication. Looking at the arithmetic for both ECC/HECC the only
difference between ECC and HECC is in the group operations. On this level
both ciphers consist of different sequences of operations. Those for HECC are
more complex when compared with the ECC point operation, but they use
shorter operands. The divisor scalar multiplication is achieved by repeated di-
visor addition and doubling. Many techniques that help to speed up ECC scalar
multiplication are also applicable to HECC. For example, using Non-Adjacent
Form (NAF) for scalar representation or window method can also improve HECC
performance.

3.2 Field Arithmetic

An element α in GF(2m) can be represented as a polynomial A(x)=
∑m−1

i=0 aix
i,

here ai ∈ GF(2). Addition of two elements in GF(2m) is performed as polynomial
addition in GF(2)

m−1∑
i=0

aix
i +

m−1∑
i=0

bix
i =

m−1∑
i=0

(ai ⊕ bi)xi,

where ⊕ is XOR operation.

Multiplication. In the literature there are various algorithms and architec-
tures [3,30] proposed for modular multiplication in GF(2m). The bit-serial al-
gorithms can be classified into two categories, the Most Significant Bit (MSB)
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first algorithms and the Least Significant Bit (LSB) first algorithms. It is impor-
tant to point out that LSB-first bit-serial multiplier has shorter critical path than
MSB-first bit-serial multipliers [3]. In this paper, we use the LSB-first algorithm.

Algorithm 1. LSB-first bit-serial modular multiplication in GF(2m) [3]
Input: A(x) =

∑m−1
i=0 aix

i, B(x) =
∑m−1

i=0 bix
i, irreducible binary polynomial P (x)

with deg(P (x)) = m.
Output: A(x)B(x) mod P (x).
1: C(x)← 0, A′(x)← A(x);
2: for i = 0 to m− 1 do
3: C(x)← C(x) + biA

′(x);
4: A′(x)← xA′(x) mod P (x);
5: end for

Return: C(x).

Inversion. A multiplicative inverse of A(x) is a polynomial A−1(x) in GF(2)
such that A−1(x)A(x) ≡ 1 mod P (x). Compared with the other modular opera-
tions, modular inversion is considered as a computationally expensive operation.
The most commonly used methods to perform the modular inversion are based
on Fermat’s little theorem [1], Extended Euclidean Algorithm [18] and Gaussian
elimination [16]. EEA is widely used to perform inversion in practice.

The schoolbook EEA-based inversion algorithm in GF(2m) is commonly con-
sidered inefficient due to the long polynomial division in each iteration. This
problem was partially solved by replacing degree comparison with a counter [5].

In [34], Yan et al. proposed a modified inversion algorithm based on the EEA.
Algorithm 2 shows this inversion algorithm. Here we use Si(x) to denote the
value of S(x) after ith iteration, and di−1

0 the LSB of di−1. The complement of
C1 is represented as C̄1. Unlike many other EEA variants [14,5,18], this algorithm
has no modular operations, thus a short critical path delay can be easily achieved.
Besides, with a fixed number of iterations, it is more secure against side-channel
analysis.

4 HECC Coprocessor Architecture

In this section we describe a compact coprocessor architecture for HECC over
GF(2m). Two main approaches are used to reduce the area: using compact ALU
and reducing memory area. First, we propose a unified digit-serial modular multi-
plier/inverter, which enables a small ALU. Second, we investigate the character-
istics of the ALU, and reduce area of memory block as well as its interconnecting
network.

4.1 Modular Multiplier

As shown in Algorithm 1, the main operation in LSB-first multiplication is
(bA(x)+C(x)), which can be performed by a row of AND gates and XOR gates
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Algorithm 2. EEA-Based Inversion Algorithm [34]
Input: irreducible binary polynomial P (x) with deg(P (x)) = m, polynomial A(x) with
deg(A(x)) < m.
Output: A−1(x) mod P (x).
1: R0(x)← P (x), S0(x)← xA(x), H0(x)← 0, J0(x)← xm, d0 ← 2, sign0 ← 1;
2: for i = 1 to 2m− 1 do
3: C1 ← si

m, C2 ← C1 ∧ signi−1;

signi ←
{

C̄1 if signi−1 = 1;
di−1
0 if signi−1 = 0;

Si(x)←
{

x(Ri−1(x) + Si−1(x)) if C1 = 1;
xSi−1(x) if C1 = 0;

J i(x)←
{

Hi−1(x) + J i−1(x) if C1 = 1;
J i−1(x) if C1 = 0;

Ri(x)←
{

Si−1(x) if C2 = 1;
Ri−1(x) if C2 = 0;

Hi(x)←
{

J i−1(x)/x if C2 = 1;
Hi−1(x)/x if C2 = 0;

di ←
{

2di−1 if signi = 1;
di−1/2 if signi = 0;

4: end for

Return: H2m−1(x).

shown in Figure 1(a). Figure 1(b) shows the architecture of a LSB-first bit-serial
multiplier. Two (m + 1)-bit registers are used to hold the parameter P (x), A(x)
and two m-bit registers to hold B(x) and the partial product C(x). Note that
B(x) is shifted to right by one bit in each clock cycle. Here (amP (x) + A(x))
and (b0A(x) + C(x)) is performed on the left and right side, respectively. If low
Hamming weight irreducible polynomials are used, the AND-XOR cell on the
left side can be simplified. For example, using P (x) = x83 + x7 + x4 + x2 + 1,
only 4 AND gates and 4 XOR gates are required to perform (amP (x) + A(x)).

It is clear that the critical path delay is TAND + TXOR, where TAND and
TXOR denote the delay of a 2-input AND and XOR gate, respectively. One
multiplication in GF(2m) takes m clock cycles on this bit-serial multiplier.

4.2 Unified Modular Inverter and Multiplier

We propose a unified architecture which can perform both multiplication and
inversion. In [8], Daly et al. have proposed a unified ALU for GF(p). It can
perform addition, subtraction, multiplication and inversion. Compared with this
ALU, our unified inverter/multiplier in GF(2m) has a shorter critical path delay,
and can be implemented in a digit-serial manner to achieve a higher throughput.
Figure 2 shows the data-path of our proposed bit-serial inverter and multiplier.
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(a) AND-XOR Cell (b)Bit-serial modular multiplier

Fig. 1. Bit-serial modular multiplier

Fig. 2. Bit-serial modular multiplication/inversion unit

It realizes both Algorithm 1 and Algorithm 2. The multiplier and the inverter
share one AND-XOR cell and three registers. The critical path delay is 2TMUX.
Here TMUX denotes the delay of a 2-input multiplexer. This multiplier/inverter
finishes one inversion operation in GF(2m) in (2m − 1) clock cycles.

This data-path supports the following operations:

1. Modular Multiplication

– Initialization (i = 0), R(x) ← P (x), S(x) ← xA(x), H(x) ← B(x),
C(x) ← 0, d ← 0, sign ← 0;

– During the whole loop (0 < i < m + 1), di = 0, signi = 0, thus, Ri(x) =
Ri−1(x) = P (x), Hi(x) ← Hi−1(x)/x, Ai(x) ← x(Ai−1(x) + amP (x)),
and Ci(x) ← h0A

i−1(x)/x + Ci−1(x);
– Return Cm(x).

2. Modular Inversion
– Initialization (i = 0), R(x) ← P (x), S(x) ← xA(x), H(x) ← 0, J(x) ←

xm, d ← 2, sign ← 1;
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– During the whole loop (0 < i < 2m), Si(x) ← x(Si−1(x) + smRi−1(x)),
J i(x) ← J i−1(x) + smHi−1(x),
• If C2 = 1, then Ri(x) ← Si−1(x), Hi(x) ← J i−1(x)/x;
• If C2 = 0, then Ri(x) ← Ri−1(x), Hi(x) ← Hi−1(x)/x;

– Return H2m−1(x).

4.3 Compact Digit-Serial Inverter/Multiplier for HECC

In order to achieve higher throughput, a digit-serial inverter/multiplier can be
implemented with multiple bit-serial multiplication and inversion units. We pro-
pose a flexible architecture which allows us to explore the trade-off between
performance and hardware cost. Figure 3 shows the architecture where 3 unified
inversion multiplication units (w1 = 3) and 4 bit-serial multipliers (w2 = 7)
are used. Here w1 and w2 denote the equivalent digit-size of this digit-serial in-
verter and multiplier, respectively. When choosing m = 83, one inversion takes
� 2m−1

w1
 = 55 clock cycles, while one multiplication takes � m

w2
 = 14 clock cycles.

Given a constant w2, increasing w1 will reduce the number of clock cycles
required by one inversion. However, it will increase the area as well as the critical
path delay. As a result, the multiplication will be slowed down slightly. Therefore,
w1/w2 can be chosen for different design targets such as high performance, low
hardware cost or smallest area-time product. Theoretical exploration for optimal
(w1, w2) for a specific design target is out of the scope of this paper. Table 2 shows

Fig. 3. Digit-serial modular multiplication inversion unit (w1 = 3, w2 = 7)
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Table 2. Performance comparison of multiplication and inversion unit in GF(2m)

Ref. Configuration Area Freq. Finite Mul. Perf. Inv. Perf.
Design [Slices] [MHz] Field [ns]/[#cycle] [ns]/[#cycle]

w1 = 1, w2 = 14 977 127 GF(283) 47.1 / 6 1296 / 165
w1 = 2, w2 = 14 1117 126 GF(283) 47.3 / 6 654 / 83

Fig. 3 w1 = 3, w2 = 14 1500 125 GF(283) 47.9 / 6 439 / 55
w1 = 4, w2 = 14 1718 113 GF(283) 52.7 / 6 372 / 42
w1 = 5, w2 = 14 1987 104 GF(283) 57.4 / 6 315 / 33

w = 8 342 108.7 GF(281) 101 / 11 -
Mult. [31] w = 16 554 87.5 GF(281) 69 / 6 -

w = 27 882 71.0 GF(281) 42 / 3 -
Inv. [31] MAIA 663 87.8 GF(281) - 1014 / 89

the performance and area of the proposed ALU with different configurations.
Here Xilinx Virtex II (XC2V4000) FPGA is used. In this HECC implementation
we choose w1 = 3 and w2 = 14 as the best performance/area trade-off for this
architecture. With this configuration, one multiplication and one inversion in
GF(283) take 47.9 and 439 ns, respectively.

4.4 Memory/RF Analysis

Besides ALU, memory/RF is another main component that decides the overall
area and performance of a coprocessor. The size, throughput and delay of mem-
ory/RF must be chosen according to the requirement of the ALU. We analyze
different design strategies of HECC coprocessor here.

Both memory and RF have their own advantages and disadvantages. While
registers are larger than memory of the same capacity, memory usually has one
clock delay in read operation. This delay may cause performance degradation
when multiple data-path work in a pipelining mode, see [31]. Thus, HECC copro-
cessors using multiple data-path [7,33,31] require an efficient register file to feed
data to parallel multipliers and inverters. The register file and its interconnecting
network make a big part of the whole area.

The area of memory/RF is dependent on the size and throughput [24,29].
Higher throughput results in a more complex decoder and a larger intercon-
necting network, which cause the area increase. Thus, reducing the memory/RF
throughput reduces the area. Table 3 shows the required memory/RF through-
put of different ALUs. Note that here we use GF(283) for all the ALUs, D denotes
the delay of multiplication. For example, when using three multipliers, the ALU
reads 6 operands from memory/RF and writes 3 data back. In [33,31], 3 clock cy-
cles are required for one multiplication. If each operand is 84-bit, then the ALU
needs to read 168 bits in each clock cycle. The proposed multiplier/inverter
shown in Figure 3 requires 56-bit read and 14-bit write in each clock cycles. The
required memory throughput is much smaller than that in [33] and [31].
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Table 3. Comparison of memory throughput required by different ALUs

Ref. Configuration Read Write Total
Design [Bits] [Bits] [Bits]

[33] 3 Mult. (D = 3) 168 84 252
[31] 2 Mult. (D = 3) 112 56 168
Fig.4 Unified M/I. (D = 6) 56 14 80

4.5 Coprocessor Architecture

The HECC Coprocessor is shown in Figure 4. It contains an Instruction ROM, a
main controller and a unified modular multiplier/inverter. The Instruction ROM
contains the field operation sequences of divisor addition and doubling. As only
a single data-path is used, the coprocessor does not require high-throughput
register files. Instead, a data RAM is used to keep the curve parameters, base
divisor and intermediate data. On FPGAs, Block RAMs are used.

The coprocessor supports four instructions, namely,

Add Ra,Rb,Rc // Ra=Rb+Rc
Mul Ra,Rb,Rc // Ra=Rb*Rc
Mac Ra,Rb,Rc,Rd,Re // Ra=Rb*Rc+Rd+Re
Inv Ra,Rb // Ra=Rb^{-1}

Here one Add instruction takes two cycles. As w1 = 3, one Inv instruction takes
55 clock cycles. One Mul instruction takes 6 clock cycles. One Mac instruction
consists of one Mul and two Add instructions. However, it takes also 6 clock
cycles. This is because fetching and adding data Rd and Re are performed during
the multiplication. Two Add and one Mul instructions cause 6 operand fetches
and 3 result stores, while one Mac instruction requires only 4 operand fetches
and one result store. Therefore, the use of Mac instruction reduces the number
of memory access and speeds up the scalar multiplication.

In this implementation, we choose hyperelliptic curves with the following pa-
rameters: h(x) = x and f(x) = x5 + f3x

3 + x2 + f0. One DA operation consists
of 36 instructions, which include 11 Add, 24 Mac and 1 Inv instructions. One DD
operation consists of 14 instructions, which includes 2 Add, 11 Mac and 1 Inv
instructions.

Note that the architecture of the coprocessor can be slightly modified so that it
can be integrated into a SoC where memory is shared. The required throughput
of memory needs to be further reduced. In the InsRom Mac instruction needs
to be replaced by a Mul and two Add instructions, thus only two instead of
four operands need to be loaded for each instruction. In this case, the required
throughput of memory is 2∗84

6 = 28 bits, the amount that a 32-bit dual-port
SRAM is able to offer. However, the add instruction requires 6 instead of 2 clock
cycles, which slightly degrades the performance of the coprocessor.
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5 Implementation Results

In order to check the area and performance of the proposed coprocessor, we
implemented the architecture from Figure 4 on a Xilinx Virtex-II (XC2V4000)
FPGA. The coprocessor is described with Gezel [13] language and synthesized
with Xilinx ISE8.1. It uses 2316 slices and 6 Block RAMs. A clock frequency
of 125 MHz can be reached. Table 4 compares the area and performance with
previous FPGA-based implementations of HECC in GF(2m).

The proposed HECC coprocessor in [7] uses Cantor’s method to perform di-
visor addition and doubling. It has two modular multipliers, one inverter, one
GCD module and several other logics. Register file is connected to the datapath
with MUX arrays. When supporting HECC in GF (283), it uses 22000 slices on
Xilinx Virtex-II FPGA and can finish one scalar multiplication in 10 ms.

Fig. 4. Block diagram of the proposed HECC coprocessor

The proposed HECC coprocessor in [11] uses the mixed coordinates of explicit
formulae proposed in [21]. The ALU contains three modules, namely divisor
addition module, divisor doubling module and coordinates conversion module.
Each of them has four field multipliers, while only the coordinates conversion
module has a inverter. It supports Right-to-Left binary expansion method, which
scans the key from LSB to MSB, and can perform divisor addition and doubling
in parallel. It also supports NAF method. Here we list the performance of scalar
multiplication using NAF method as it is slightly faster than the binary method.

The HECC coprocessor proposed in [17] uses projective coordinates, and a
superscalar architecture is used to support parallel field operations. Several digit-
serial (w = 12) multipliers are used. Our coprocessor, using one unified multi-
plier/inverter, is faster than the coprocessor in [17] that uses three multipliers.
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Table 4. Performance comparison of FPGA-based HECC implementations in GF(2m)

Ref. FPGA Freq. Area RAM Finite Irreducible Perf. Comments
Design [MHz] [Slices] [bits] Field Polynomial [μs]

Two mult.
Clancy [7] Xilinx N/A 23000 0 GF(283) Arbitrary 10000 One inv.

Virtex-II Using NAF
Xilinx 12 mult.

Elias et al. Virtex-II 45.3 25271 0 GF(2113) Fixed 2030 One inv.
[11] (XC2V8000) Using NAF

6586 8064 GF(283) Arbitrary 420 Three mult.
Using NAF

Sakiyama Xilinx 100 4749 5376 GF(283) Arbitrary 549 Two mult.
et al. [17] Virtex-II Pro Using NAF

(XC2VP30) 2446 2688 GF(283) Arbitrary 989 One mult.
Using NAF

56.7 7785 0 GF(281) Fixed 415 Three mult.
Two inv.

Wollinger Xilinx 47.0 5604 0 GF(281) Fixed 724 Two mult.
[31] Virtex-II One inv.

(XC2V4000) 54.0 3955 1536 GF(281) Fixed 831 Two mult.
One inv.

Xilinx
This Virtex-II 125 2316 2016 GF(283) Fixed 311 Unified mult./inv.
work (XC2V4000) Using NAF

The architectures proposed in [31], however, uses affine coordinates of the
explicit formulae. Three different architectures ranging from high speed to low
hardware cost are proposed. For the high speed version, with three multipliers
and two inverters, only 415 μs is required to finish one scalar multiplication. The
area of the coprocessor is also much smaller than that of [7,11]. The area can be
further reduced to 3955 slices but, in that case it requires 831 μs for one scalar
multiplication.

Compared with all the previous FPGA-based implementations our implemen-
tation has the best performance, to the best of our knowledge. The area reduc-
tion is attributed to the use of compact ALU and the reduction of the memory
throughput. The ALU in [31] contains two multipliers and one inverter, which
in total use 2427 slices. The ALU used in this paper requires only 1500 slices.
The performance gain is mainly due to the efficient inverter. When running at
56.7 MHz, the inverter in [31] requires 1570 ns in average for one inversion in
GF(281), while the proposed ALU finishes one inversion in GF(283) in 439 ns.
Though we use only one multiplier, which is also slower than the one in [31], the
overall performance of divisor addition/doubling is better.

6 Conclusions

We describe a compact architecture for HECC over binary extension field. This
architecture uses a unified modular multiplier/inverter, and reduces the through-
put of the memory. Thus, the area of the coprocessor is largely reduced. On a
Xilinx Virtex II (XC2V4000) FPGA, the proposed coprocessor takes 311 μs to
finish one scalar multiplication in HECC over GF(283).
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The proposed implementation can be further speeded up by exploring instruc-
tion level parallelism. Besides, if more space is available in the data memory,
precomputation can be used to drastically improve the performance.
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Abstract. This paper presents the silicon chip ECCon1, an Elliptic
Curve Cryptography processor for application in Radio-Frequency Iden-
tification. The circuit is fabricated on a 180 nm CMOS technology. EC-
Con features small silicon size (15K GE) and has low power consumption
(8.57 µW). It computes 163-bit ECC point-multiplications in 296k cy-
cles and has an ISO 18000-3 RFID interface. ECCon’s very low and
nearly constant power consumption makes it the first ECC chip that can
be powered passively. This major breakthrough is possible because of a
radical change in hardware architecture. The ECCon datapath operates
on 16-bit words, which is similar to ECC instruction-set extensions. A
number of innovations on the algorithmic and on the architectural level
substantially increased the efficiency of 163-bit ECC. ECCon is the first
demonstration that the proof of origin via electronic signatures can be
realized on RFID tags in 180 nm CMOS and below.

Keywords: Radio-Frequency Identification (RFID), Elliptic curve
cryptography (ECC), Anti-Counterfeiting, Modular Multiplication.

1 Introduction

Counterfeiting is an increasing problem in the industry. Estimates assume more
than 200 bn. US$ of fake products in 2005 [Org07]. In total, counterfeited prod-
ucts might amount up to one tenth of the total industry production. Besides
legal measures, technical approaches are required to fight product piracy. This
is in particular desirable for goods that affect the health of humans directly like
pharmaceuticals or spare parts in aviation.

RFID (Radio-Frequency Identification) technology, which labels products with
tiny chips that are powered over an air interface, is able to proof the authenticity
of goods. In its simplest form, RFID tags assign a unique number to every item.
This ID can be used to track goods from production to the end consumer. Cen-
tral databases and online applications can verify the e-pedigree of products. The
concept of e-pedigree suffers from scalability issues and assumes that unique IDs

1 A portmanteaux of ECC and economical.
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cannot be copied. The unprotected wireless communication of RFID systems in
HF or UHF frequencies allows access to unique IDs without necessitating a line of
sight. Also, illegitimate readers can obtain IDs from distances of 1 m (HF) to 15 m
(UHF). Thus, the concept of preventing counterfeiting by using RFID technology
requires cryptography to guarantee the uniqueness of a tag. A major step to bring
cryptography to RFID is the landmark work of Feldhofer et al.: They showed that
challenge-response authentication is useful [FDW04] and that symmetric ciphers
– in particular the AES (Advanced Encryption Standard) – can be realized on
RFID tags [FWR05]. AES can fulfill the hard requirements of small silicon area
and minute power consumption.

Theuse of symmetric cryptographynecessitates sophisticated keymanagement.
Its main drawback is its limitation to closed systems, where all verifiers have to be
trusted and where all potential parties are known in advance. It is not realistic for
open-loop systems, like global logistics and supply chain management, where this
is not the case.

Asymmetric crypto, where tags possess a private key and verifiers can obtain
an authentic public key, can overcome these limitations. Asymmetric crypto
allows challenge-response authentication without access to an online database.
Verifiers only need the public key of the device claiming a certain identity.

Although asymmetric crypto has very nice properties regarding its applicabil-
ity in worldwide open-loop systems, it imposes much more effort for realization
in silicon. Requirements for silicon area are roughly five times higher; power con-
sumption also quadruples at least. Computation times are several hundred times
longer than for symmetric crypto. Therefore, most asymmetric approaches for
use in RFID are based on elliptic curve cryptography, which exhibits the lowest
hardware requirements among standardized and secure asymmetric algorithms.

In this work, we scrutinize the requirements of passively powered RFID sys-
tems and introduce a new hardware architecture for computing ECC operations
with the smallest footprint and requiring the smallest power consumption. The
architecture processes ECC operations on a word length much smaller than the
actual element size of 163 bits. This allows a very compact datapath, which
shows excellent power characteristics: On the one hand, the proposed architec-
ture avoids large shares of clocking power and on the other hand, it allows very
flat and low power profiles which are desired for passively powered systems.

2 State of the Art

Modular multiplication is the dominating finite-field operation for computing an
ECC point multiplication k · P . Our work centers on the efficient implementa-
tion of ECC over F2163 (Curve B-163 in [Nat00]). Hence, most considerations
will be done for this field. Computing the point multiplication k · P over F2163

involves 163 point doublings and additions when using Montgomery’s point lad-
der [Mon87]. This is a widely used algorithm[Wol05, KP06, BMS+06, FW07,
BBD+08] – we use it too. It is fast and has good properties to prevent side-
channel analysis. In total, roughly 1000 finite-field multiplications have to be
computed.
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Fig. 1. Classical (bit-serial) vs. proposed architecture

The art of building ECC hardware centers on the efficient implementation of
finite-field multiplication in hardware. Most ECC publications for low-resource
requirements use bit-serial multipliers [Wol05, SBM+06, LV07, FW07]. Bit-serial
multipliers compute c = a · b by scheduling the operand a at full word size and
multiplying it with b bit-by-bit: c =

∑162
i=0 a · bi2i.

The classical architecture when using bit-serial multipliers for ECC processors
is shown on the left of Figure 1. A datapath unit 163×1 mult computes the
partial products a · bi and accumulates them. Usually, modular reduction is
interleaved to avoid accumulators of double size. Intermediate 163-bit values are
stored in a RAM unit, which has to hold at least six 163-bit words during an
EC point multiplication.

[SBM+06] investigated the impact of the digit size on power consumption and
area usage. Generally, bit-serial multipliers are more power efficient, whereas the
digit-serial type is more energy efficient. Lee et al. [LV07] present an optimized
architecture based on the so-called Modular Arithmetic Logic Unit [BMS+06].
It uses a common-Z coordinate system for representing EC points to minimize
memory requirements. Storage of intermediate values is usually the main con-
tributor to area (roughly 66%). Area has a direct impact on the production cost
of an integrated circuit.

Fürbaß et al. [FW07] departs from the pure digit-serial multiplier approach
and analyzes the ramifications of using an inversion unit in conjunction with
affine coordinates for operation over Fp. Inversion is usually avoided because
its computation is either much slower than multiplication or it consumes con-
siderable silicon area. Affine coordinates reduce the memory requirements and
decrease the number of cycles required to perform a point multiplication at the
expense of a more complex datapath and therefore higher power consumption.

3 Architecture

The architecture presented in this article schedules both operands of the mul-
tiplication a · b in words of 16 bits – called digits. It thus differs totally from
conventional approaches found in literature. A digit size of 16 bits leads to a
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datapath of roughly the same area as a bit-serial datapath for 163 × 1 multi-
plication. It is shown on the right side of Figure 1. The core component of the
datapath is a 16×16 multiplier. The storage requirements for the new approach
are the same as for bit-serial approaches. The data width of the RAM circuit is
adjusted to fit the 16-bit datapath. RAM is organized as 16-bit wide memory
with 64 entries. In comparison, the bit-serial approach and ours require nearly
the same hardware resources. Also the timing characteristics are very similar.

The main difference of our digit-level architecture to the classical bit-serial
architecture is the power consumption. Bit-serial architectures clock on average
2 ·163 = 326 registers per clock cycle. Our digit-level architecture clocks roughly
4 · 16 = 64 registers. Hence, it needs just one fifth of the power for clocking.
The power consumption of the combinational logic in our datapath is higher.
The longer combinational path causes higher signal activity. Nevertheless, the
approach promises a much better power characteristic because it uses a much
larger share of the power budget for computation than for clocking.

The second design choice of great impact is the restriction of ECCon to sup-
port only a single 163-bit curve over the binary extension field F2163 . This allows
numerous optimizations, which minimize the required area, improve the running
time of ECC operations and decrease the power consumption.

The selection of a binary extension field simplifies the arithmetic unit as ad-
dition is equivalent to an XOR operation. The 163-bit elements limit the size
of the required memory while providing reasonable security. Support for only
one finite field allows efficient modular multiplication. A tailored interleaved
reduction algorithm for F2163 is presented in §3.4.

3.1 Word Level Operations in F2163

The small word width of the datapath necessitates splitting up finite-field oper-
ations into operations on 16-bit digits. Research with respect to this has been
undertaken in the context of Fp[Gro02] and F2m [GK03] instruction-set extensions
for general-purpose processors. Großschädl et al. propose a Multiply ACumulate
(MAC) architecture for a word-level instruction-set extension. The ECCon pro-
cessor uses the same approach: Main component of the datapath is a 16 × 16
MAC unit.

The point multiplication requires addition and multiplication in F2163 . Both
necessitate to split up the 163-bit operands into 11 digits of 16 bits each. In every
cycle, one digit can be fetched from memory. As soon, as two digits are available
to the Arithmetic Logic Unit (ALU), either an addition, a multiplication or a
MAC operation is performed. The result is then stored in an accumulator. The
lower 16 bits of the accumulator can be written to memory. Thus, digit for digit
a 163-bit operation is performed.

Addition is a good example for this concept. First, a digit of the input a is
loaded into the ALU. Then the corresponding digit of b is added (XORed). While
the next digit is fetched, the result digit is stored. This is repeated 11 times to
execute one 163-bit addition. One addition takes 24 clock cycles (see tab. 1).
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Table 1. Performance results

Operations Cycles Operations Cycles
Addition 24 Squaring 49
Multiplication 251 Point multiplication 296,299

The two prevailing integer multiplication algorithms are operand-scanning-
form and product-scanning-form multiplication (Comba multiplication). Both
depend on an inner multiplication operation a · b ⊕ c, which is the reason why
a MAC architecture was chosen. The ECCon processor employs the Comba
algorithm. It computes the result one digit at the time which minimizes memory
write cycles, at the expense of requiring an additional 16-bit adder. Furthermore,
smart ordering of operand loading allows to decrease the number of memory read
operations to a minimum.

A multiplication of two 163-bit elements in F2163 would produce a 325-bit
result. Modular reduction a ·b = c ≡ dmod f(z) reduces the product to a 163-bit
representation, where f(z) is the irreducible polynomial. Two possible options for
reduction exist. The first, interleaved reduction, performs the reduction during
multiplication. The alternative is to first compute the 325-bit product and then
reduce it. This has the severe drawback that it requires 162 bits of additional
storage. An efficient algorithm capable of implementing the interleaved reduction
on the 16-bit ALU will be detailed in §3.4.

In conformancewith the state-of-the-art implementations, ECCon employsFer-
mat’s little theorem to realize inversion. It requires nine multiplications and 162
square operations. This is not fast enough to allow using affine coordinates, there-
fore a projective version of the point multiplication requiring only one inversion is
applied.

3.2 Choice of Word Size

The choice of a width of 16 bits for the datapath is an outcome of assessing
various cost metrics for different datapath sizes. Cost is determined by the area
usage, the power consumption and the clock cycles for a point multiplication. The
critical path is not considered because the circuit runs well below the maximum
clock frequency.

Figure 2 depicts a comparison of the ALU architecture (see also §3.3), syn-
thesized for different bit-widths. The four graphs represent different variants of
area, cycle and power products (A(rea)·C(ycles)·P (ower)). The values are com-
puted from normalized results to allow a comparison over the different metrics.
Bit-widths below 8 and above 31 were not considered because they are either far
too slow (> 1 mio. cycles) or too large circuits (> 5500 gate equivalents).

On a first glance, no obvious bit-width presents itself. Considering the A·C ·P
and A · C · P 2 products, starting with the transition between 15 and 16 bits,
the values start to increase steeply. The A · C2 · P and A · C2 · P 2 on the other
hand seem to have a local minimum point at 15 bit. As the actual area, cycle
and power values for a 15-bit datapath lie well within the aspired limits, this
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Fig. 2. Datapath bit-width comparison

bit-width was deemed optimal. Due to the fact that the RFID protocol is byte
oriented and the difficulties in converting 15-bit digits to this interface, a 16-bit
datapath was chosen for implementation.

3.3 MAC Unit for Interleaved Reduction

Figure 3 illustrates the top level architecture of the ALU of the ECCon processor.
B, RC, ACCL and ACCH denominate registers. ACCL and ACCH compose
the accumulator ACC which also supports a shift right-by-8 and shift right-by-
16 operation. MC, the multiplication carry register, has the capability to select
between two different inputs.

The multiplier unit ⊗ computes either the product of the input I times the
factor register B or ACCL times the reduction polynomial r(z) (cf. 3.4). The
multiplier unit uses a 16×16 polynomial array multiplier consisting of 256 AND
gates and a F2 tree adder built from 240 XOR gates.

The select-and-add unit SAA contains two 16-bit F2 adders, implemented by
two 16-bit XOR gate arrays. The input select of the higher adder (Output DH)
allows to choose between ACCH and MC for its first input and MulH and I
for its second input. Both inputs are maskable. This is implemented with AND
gates. The first input of the lower adder (Output DL) can be chosen from RC,
MulL and I while the second input may be selected from ACCH, MC and
ACCL. Again, both inputs to the adder are maskable.
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Fig. 3. ALU top level architecture

3.4 Multiplication with Interleaved Reduction

The Comba multiplication algorithm is utilized to perform the multiplication.
To execute the modular reduction, the following idea is applied. We split the
irreducible polynomial f(z) = z163 + z7 + z6 + z3 + 1 as z163 + r(z) and call
r(z) = z7 + z6 + z3 + 1 the reduction polynomial. The product polynomial
c(z) = a(z) · b(z)| deg{c(z)} ≤ 2m − 2 is thus congruent to

c(z) = c2m−2z
2m−2 + · · · + cmzm + cm−1z

m−1 + · · · + c1z + c0

≡ (c2m−2z
m−2 + · · · + cm)r(z) + cm−1z

m−1 + · · · + c1z + c0 (mod f(z)).

So, by multiplying r(z) and cH = (c324z
161 + · · · + c163), and adding the result

to cL = c162z
162 + · · ·+ c1z + c0, a new temporary output is derived which only
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Fig. 4. Modular reduction

Fig. 5. Saving the first 13-bit of CH0

has a degree of m = 168. The process is then repeated once more and the fully
reduced result is computed. Figure 4 illustrates the procedure.

Algorithm 1 presents the necessary steps to perform a multiplication with
interleaved reduction. A line in the algorithm illustrates all the operations ex-
ecuted in one clock cycle. Line number five will serve as example to facilitate
understanding of the nomenclature.

T [i − 1] ← ACCL signifies that the output of the ALU is to be stored in the
(i-1)th digit of memory element T . ACC ← i − INDEX (i, j)·B⊕ACCH denotes
that the result of the MAC operation is stored in the accumulator. In this case
the ALU input is B[i − INDEX (i, j) ]. The function INDEX (i, j) computes the
optimal loading sequence for the input operands, thus minimizing memory read
operations. INDEX (i, j) is implemented by a look-up table.

For a multiplication c = a · b, a, b ∈ F2163 , the 11th partial product computed
with the product scanning form contains the polynomial c175z

175+ . . .+c160z
160.

In accordance with the nomenclature used in Figure 4 the polynomial c162z
162 +

. . . + c160z
160 is the last digit of C0

L (C0
L[10]), while c175z

175 + . . . + c163z
163 is

the first part of CH0 .
The lower three bits representing C0

L[10] are stored in the last digit of the
memory element that will contain the final product. The lower part of CH0 is
saved in temporary variable RC. This is illustrated in Figure 5.

The next partial product (C[11]) that is ascertained will again be split at the
3-bit boundary. This time the higher 13 bits (c191z

191+. . .+c176z
176) are written
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Algorithm 1. Comba multiplication with interleaved reduction
Input: a, b ∈ F2m

Output: c = a · bmod f, c ∈ F2m

B← A[0];1

ACC← B[0] ·B⊕ACC;2

i← 0, j ← 0;3

for i← 1 to t− 1 do4

T [i− 1]← ACCL;ACC← B[i− INDEX (i, j)] ·B⊕ACCH;5

for j ← 1 to i do6

B← A[INDEX (i, j)];7

ACC← B[i− INDEX (i, j)] ·B⊕ACC;8

T [t− 1]← ACCL;ACC← ACC� 16;MC← 0;RC← ACCL � SR;9

i← 0, j ← 0;10

B← A[INDEX (i, j)];11

for i← 0 to t− 2 do12

if i �= 0 then13

C[i− 1]← ACCL;ACC← B[(t + i)− INDEX (i, j)] ·B⊕MC;MC←14

ACCH;
else15

ACC← B[(t + 1)− INDEX (i, j)] ·B⊕ACC;16

for j ← 1 to (t− 2)− i do17

B← A[INDEX (i, j)];18

ACC← B[(t + 1)− INDEX (i, j)] ·B⊕ACC;19

ACCH ← T[i]⊕MC;ACCL ← {(ACCL � SL)|RC};MC←20

ACCH;RC← ACCL � SR;
ACC← ACCL · r(z)⊕ACCH;21

C[t − 2]← ACCL;ACCH ← 0;ACCL ←MC;MC← ACCH;22

ACCH ← 0⊕MC;ACCL ← {(ACCL � SL)|RC};MC← ACCH;RC←23

ACCL � SR;
ACC← ACCL · r(z)⊕ACCH;24

ACCH ←MC;ACCL ← T[i] ⊕ACCL;MC← ACCH;RC← ACC� SR;25

C[i]← ACCL;ACCH ← C[0]; ACCL ← RC;26

ACC← ACCL · r(z)⊕ACCH;27

C[0]← ACCL;ACC← ACC� 16;28

to a second temporary space MC. The lower three bits are then combined with
the 13 bits carried over from the last round which are currently stored in RC.
Together they constitute the 16-bit digit c178z

178 + . . . + c163z
163, the first digit

of C0
H . This digit is restored in the accumulator (cf. Figure 6).

In the next step it is multiplied with r(z). The lower 16 bit of the result in
ACCL are added to C0

L[0]. The carry of the multiplication in ACCH is than
swapped with the content of MC. Thus, MC alternately stores the carry of
the normal multiplication and the one of the reduction multiplication. Figure 7
corresponds to this state. Then the next partial product (C[12]) is computed,
and the process is repeated. Thus, the interleaved multiplication and reduction
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Fig. 6. Restoring CH0 and saving the multiplication carry

Fig. 7. Result of the first reduction multiplication

operation is performed step by step as the partial products of CH0 and after
that CH1 become available.

4 Results and Comparison

The ECCon processor was fabricated using the UMC L180 GII 1P/6M 1.8V/3.3V
CMOS technology. The ECC core consists of a 7 × 163-bit memory, the ALU
introduced in §3 and a control unit that is capable of performing an EC point
multiplication. It employs a fully registered, two phase handshake enabled 8-bit
bus interface to connect to an ISO 18000-3-1 [ISO04] compatible RFID front-end.

Fig. 8. The tape-out ready layout of the ECCon processor
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Table 2. Synthesis results of the ECC core

Technology Area Area Max. Frequency Power @ 106 KHz Voltage
[µm2] [GE] [MHz] [µW] [V]

UMC L180 128,098 13,250 46 8.57 1.8V
AMS C35 727,090 13,320 20 54.7 2.5V

Table 3. Area and cycle comparison

Area [GE] Runtime [Cycles] Field Bits Technology
[BBD+08] 12,876 80K F2163 163 INF 220nm

ECCon w/o k 11,904 296K F2163 163 UMC 180nm
[LV07] 13,182 314K F2163 163 TSMC 180nm
[KP06] 15,094 430K F2163 163 AMI 350nm
[Wol05] 23,000 426K F2191 191 AMS 350nm
[FW07] 23,656 502K Fp192 192 AMS 350nm

[OScE04] 30,333 545K Fp(2167+1)/3
165 TSMC 130nm

The integrated RFID front-end is purely digital in nature and lacks an analog
air interface.

The chip has a core area of 219,897 µm2 with a utilization of approximately
70%. The minimum core area amounts to 151,126 µm2 or 15,630 GE. An over-
head of 654 GE is incurred by circuits for production testing, which reduces the
core area required for the RFID front-end and the ECC processor to 14,976 GE.
The circuit achieves a maximum frequency of 46 MHz and the ECC core has a
power consumption of 8.57 µW at 106 kHz. This frequency was chosen because it
is 1

128 of the 13.56 MHz carrier signal used by the ISO-18000-3-1 RFID standard.
Table 2 presents the synthesis results of the ECC core without the RFID

front-end and the test hardware. The power consumption value of the UMC
180 nm variant was obtained by measuring the fabricated IC.

ECCon was also synthesized, placed and routed in the AMS c35b4 0.35 µm
CMOS technology. A power simulation with Synopsys c© NanoSim was performed
on the placed & routed layout. The simulated mean current, the determinative
factor for an RFID application is 21.88 µA at 2.5V . During a whole EC point
multiplication it varies only by 10%. This is important because high fluctuations
disrupt the communication channel.

Table 3 tries to compare the ECCon processor to different architectures. The
area for the ECCon processor in this table includes only a 6× 163 bits memory.
This was done to allow a fair comparison, because most related work does not
include storage for the key k. [LV07], [KP06] and [OScE04] are capable to perform
the point multiplication, whereas [Wol05] and [FW07] implement all operations
of the ECDSA standard, except hashing and random number generation. Bock et
al. ([BBD+08]) implement an ISO-18000-3-1 compatible RFID tag and a Diffie-
Hellman key exchange based authentication protocol employing a digit-serial
multiplier.
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Table 4. Power consumption comparison

Power Imean f Tech. Obtained by
[µW] [µA] [kHz]

ECCon 54.7 21.88 106 AMS350 NanoSim power simulation
[BBD+08] 96.4 n.a. 847.5 INF 220 PowerTheater power simulation
ECCon 67.23 37.35 847.5 UMC180 measured
[FW07] 141 42.73 106 AMS350 NanoSim power simulation

[BMS+06] 20 - 30 n.a. 500 CMOS130 estimated, MALU only
[OScE04] 990 n.a. 20000 TSMC130 plain synthesis results assumed

Table 4 compares the power consumption of different ECC implementations.
It is important to grade the quality of these values. In this table measurement
and power simulation are the most accurate, followed by synthesis results. Esti-
mations are the most inaccurate. The power consumption of [BBD+08] is similar
to that of ECCon due to their efficient latch based memory unit. They dissipate
88% of the total power in the ALU, whereas the ECCon ALU requires only 48%.
Their ALU is also approximately three and a halve times larger.

5 Conclusions

This article presented a fully functional implementation of ECC over F2163 on a
180 nm CMOS process. The so-called ECCon processor has a footprint of 15k
GE, which is the smallest reported ECC solution so far, considering that this
number also includes overhead for place-and-route, a hardwired state machine
for controlling the roughly 300,000 clock cycles of one ECC operation, and a
digital interface for communicating via the ISO-18000-3-1 standard. The power
consumption obtained by measurement is 8.57 µW .

The ECCon processor is one of the first complete hardware solutions that can
compute ECC point multiplications while fulfilling the harsh requirements of
passively powered RFID tags. It will help to realize a secure Internet of things,
where goods have an electronic identity that can be proved.
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Cryptanalysis of a Generic Class of White-Box
Implementations

Wil Michiels, Paul Gorissen, and Henk D.L. Hollmann
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Abstract. A white-box implementation of a block cipher is a software
implementation from which it is difficult for an attacker to extract the
cryptographic key. Chow et al. published white-box implementations for
AES and DES. These implementations are based on ideas that can be
used to derive white-box implementations for other block ciphers as well.
In particular, the ideas can be used to derive a white-box implementa-
tion for any substitution linear-transformation (SLT) cipher. Although
the white-box implementations of AES and DES have been cryptana-
lyzed, the cryptanalyses published use typical properties of AES and
DES. It is therefore an open question whether an SLT cipher exists for
which the techniques of Chow et al. result in a secure white-box imple-
mentation. In this paper we largely settle this question by presenting an
algorithm that is able to extract the key from such an implementation
under a mild condition on the diffusion matrix. The condition is, for in-
stance, satisfied by all MDS matrices. Our result can serve as a basis to
design block ciphers and to develop white-box techniques that result in
secure white-box implementations.

Keywords: white-box cryptography, AES, Serpent, cryptanalysis,
substitution linear-transformation network, MDS matrix.

1 Introduction

The classical ‘black-box’ attack model used for symmetric block ciphers assumes
that an attacker can at most mount chosen text attacks on the implementation.
An attacker is assumed to have no access to the execution of the implementation.
In practice, this model is often not realistic. Consider, for instance, a content
provider who sends encrypted data to a PC platform. Then the owner of this PC
may benefit from illegally distributing the key for decrypting the data to other
users. In this case, it is more realistic to consider the severe ‘white-box attack
model’ in which an attacker is assumed to have full access to and full control
over the implementation of a cryptographic algorithm.

White-box cryptography is the discipline that aims at solving the problem
of how to implement a cryptographic algorithm in software, such that the key
cannot be extracted by a white-box attack. A software implementation of a
cryptographic algorithm that has the objective to resist a white-box attack on
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its key is called a white-box implementation. Chow et al. present white-box
implementations for the block ciphers AES and DES [4,5]. These white-box
implementations are based on ideas that naturally extend to any substitution-
linear transformation cipher, as defined below.

Definition 1 (Substitution-Linear Transformation Cipher (SLT
cipher)). A cipher is called an SLT cipher if it can be specified as follows.
It consists of R rounds for an R ≥ 1. A single round r is a bijective function
F (r)

SLT(x1, x2, . . . , xs) on GF(2)n with xi ∈ GF(2)m and n = m · s. This func-
tion consists of the following operations. It starts with xoring an n-bit round key
k(r) = (k(r)

1 , k
(r)
2 , . . . , k

(r)
s ) to its input. That is, the value yi = k

(r)
i ⊕ xi is com-

puted. Next, the round computes zi = S
(r)
i (yi) for all yi, where the (non-linear)

invertible S-boxes S
(r)
1 , S

(r)
2 , . . . , S

(r)
s are part of the cipher specification and thus

key-independent. These two steps realize confusion. The diffusion is realized by
multiplying the outcome z = (z1, z2, . . . , zs) ∈ GF(2)n of the S-boxes with an
n × n invertible matrix M (r) over GF(2). This diffusion matrix is also part of
the cipher specification.

In our notation we will often omit the index r denoting the round when this
value is clear from the context. White-box attacks have been published for ex-
tracting the 128-bit AES key and the 56-bit DES key from the white-box AES
and DES implementations of Chow et al. [2,7,8,9,12]. The attacks use typical
properties of AES and DES and do not apply to white-box implementations of
other block ciphers. Hence, it remains an open question whether the white-box
techniques proposed by Chow et al. can result in a secure white-box implemen-
tation for other SLT ciphers than AES, such as, for instance, Serpent [1]. In this
paper we present an algorithm that, under a mild condition on the diffusion ma-
trix, can extract the round keys from the white-box implementation of any SLT
cipher. If the key scheduling algorithm is invertible, then having these round
keys suffices to also derive the main key. Otherwise, we at least have a com-
pact description of the main key. Although the time complexity of the algorithm
depends on the choice of the S-boxes and the diffusion matrices, we were only
able to find impractically large time complexities for unrealistic choices of these
operators, e.g. linear S-boxes or diffusion matrices that are close to the identity
matrix. To demonstrate the effectiveness of the proposed algorithm, we show
in this paper that the algorithm can be applied successfully to AES and
Serpent.

The remainder of this paper is organized as follows. In Section 2 we give a
precise formulation of the result that is proved in this paper. Essential in this
formulation is a specification of the information that is available to an attacker
in a white-box implementation. In Sections 3-6 we present our cryptanalysis
and in Section 7 we show how our ideas can be used to extract the round keys
from a white-box AES and a white-box Serpent implementation. We end with a
conclusion in Section 8.
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2 Problem Formulation and Notation

In order to discuss the attack of a white-box implementation of an SLT cipher,
we have to specify what kind of information we can obtain from such an im-
plementation by a white-box attack. To answer this question, we briefly discuss
how Chow et al. derive a white-box implementation of a block cipher.

First, they derive an implementation that, in each round of the block cipher,
only performs a sequence of table lookups. The input to a lookup table is either
the input to the round or it is obtained by concatenating the outputs of one or
more other lookup tables. Such an implementation can be modeled by a network
of lookup tables, where an arc from table T to T ′ means that (part of) the output
of table T is used as (part of the) input to table T ′.

In the design of the white-box implementation, they next obfuscate the lookup
tables by encoding their inputs and outputs. Encoding the input and output
of a table T with bijective functions fin and fout, respectively, corresponds to
replacing table T by fout◦T ◦f−1

in . Hence, we incorporate in T an input decoding
and an output encoding. To see that such encodings realizes obfuscation, observe
that encoding the input of a lookup table changes the order of its rows and that
encoding the output changes the value of the rows.

The lookup tables are encoded in such a way that the functionality of the entire
implementation does not change. Chow et al. show how this can be done with a
combination of linear and a non-linear encodings. The non-linear encodings are
applied as follows. The first tables in the network do not get an input decoding
and the last ones do not get an output encoding. Furthermore, we choose the
input encoding of a table, such that it matches the encoding that has been put on
its input data by the tables that directly precede it in the network. To illustrate
this, suppose that the entire output of a table T serves as the entire input of
another table T ′. We then encode the output of T by a randomly chosen encoding
f and we decode the input of table T ′ accordingly, that is, as input decoding
of table T ′ we employ f−1. The result is that the output encoding of T and
the input decoding of T ′ cancel out. This concludes the strategy employed by
Chow et al. to add non-linear encodings. For the strategy to add additional linear
encodings we refer to [4,5]. We note, however, that our cryptanalysis applies to
the case that both the linear and non-linear encodings are applied.

Let (x1, x2, . . . , xs) be the input to a round r of an SLT cipher, where xi is the
m-bit input to S-box Si. Then, before applying the encodings, the network of
lookup tables has the property that each word xi is input to some lookup table
Ti. For details, we refer to [4,5]. For the white-box implementation obtained after
applying the (linear and non-linear) encodings, this has as a consequence that
an attacker who has access to the inputs of all tables in the implementation,
which holds in a white-box attack, has access to the encoded version f

(r)
i (xi) of

each value xi. Here f
(r)
i is a secret bijective function that is used as input encod-

ing for Ti. Furthermore, having access to f
(r)
i (xi) means that we can determine

this value as well as set it to any given other value. This, for instance, implies that



Cryptanalysis of a Generic Class of White-Box Implementations 417

the attacker can choose the encoded input to a round r and next observe the
effect of this for the input to a later round.

In our cryptanalysis we assume that for each value f
(r)
i (xi) an attacker knows

the index i and the round r that are associated to this value. The index r can
be derived by inspecting an execution of the white-box implementation. With
respect to the value i we can in general at least limit the number of candidate
values to a number that is feasible for performing an exhaustive search. We can
do this by using the definition of the diffusion matrices and S-boxes and by
generalizing parts of the cryptanalysis. For the sake of readability and as the
difficulty of finding the value i is not considered to be the essence of the strength
of a white-box implementation, we do not further discuss this problem in this
paper and assume the value to be known.

This brings us at the following property, which specifies the information that
is available to an attacker who tries to extract the round keys from a white-box
implementation that is based on the techniques of Chow et al.

Property 1. In a white-box attack, an attacker has for each round r and for each
m-bit input word xi of round r access to the encoded version f

(r)
i (xi) of xi. The

attacker also knows the values of r and i that are associated with f
(r)
i (xi). The

attacker does not know the value of the m-bit input word xi nor the definition
of the function f

(r)
i , which is an arbitrary m-bit bijective function. �

In order to formulate the main result of this paper, we need the following defi-
nitions. We note that in this paper all matrices are over GF(2).

Definition 2. If N is an n × n matrix with n = m · s, then we consider N to
be partitioned into s vertical strips of size n×m. We denote the jth strip by Nj

That is,
(Nj)x,y = Nx,(j−1)·m+y ,

where the rows and columns have indices in {1, 2, . . . , n}.
Furthermore, we will consider each strip Nj to be partitioned further into s

blocks Ni,j of size m × m. That is,

(Ni,j)x,y = N(i−1)m+x,(j−1)m+y,

so that

N = (N1 · · ·Ns) =

⎛⎜⎜⎜⎝
N1,1 N1,2 . . . N1,s

N2,1 N2,2 . . . N2,s

...
...

...
...

Ns,1 Ns,2 . . . Ns,s

⎞⎟⎟⎟⎠ .

We will refer to the ith row

N(i) = (Ni,1 Ni,2 . . . Ni,s)

of blocks of N as the ith block row of N .
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Definition 3. Let N be an n × n matrix with n = m · s. We say that a subset
U ⊆ {1, 2, . . . , s} is a spanning block set for block row i if the collection of all
the m-bit columns from the blocks Ni,j with j ∈ U spans GF(2)m.

If two subsets U, V ⊆ {1, 2, . . . , s} with U ∩ V = ∅ both represent spanning
block sets for block row i, then we say that block row i has disjoint spanning
block sets.

MDS (Maximum Distance Separable) matrices are often used as diffusion matrix
in block ciphers because of their good diffusion properties [6,10,11]. In an MDS
diffusion matrix N each block Ni,j defines the multiplication with a non-zero
element in GF(2m). Hence, each block Ni,j is non-singular, which implies that
any pair of blocks from a block row i defines a spanning block set. This means
that the main result of this paper, which is stated below, covers the class of SLT
ciphers in which the diffusion is realized by MDS matrices.

Main Result. Consider an SLT cipher for which the diffusion matrices have the
property that all their block rows have disjoint spanning block sets. Then, given
a white box implementation for this cipher that satisfies Property 1, we present
an algorithm for extracting the round key of any round r with 1 < r < R.

The result above does not cover the first and last round of the cipher. This has
the following reason. In order not to change the functionality of the white-box
implementation, the input of the first round and the output of the last round
cannot be encoded. However, by omitting these external encodings the white-box
implementations of the first and last round become less secure. As as solution to
this problem, Chow et al. propose to add the external encodings and to either
undo these encodings elsewhere in the software or to include these encodings in
the definition of the block cipher that is implemented. In both cases it will not
only be the goal of an attacker to derive the round keys of the first and last
round, but also to determine the external encodings. To simplify the discussion
we exclude the attack of these rounds in this paper. We note, however, that
these rounds can also be attacked. The attack is based on the following result.
By applying our cryptanalysis, an attacker can determine the output encoding of
the first round and the input encoding of the last round. This gives the attacker
the plain output of the first round and the plain input to the last round. Using
this, the first and last round can be attacked.

We end this section with the description of some notational conventions used
throughout this paper.

– By abuse of notation, if N is a matrix, then the map x #→ Nx corresponding
to a matrix multiplication by N will also denoted by N .

– If T denotes a lookup table, then, by abuse of notation, we also write T to
denote the function that it defines.

– We define ⊕c as the map ⊕c(x) = x ⊕ c. Using this, we can write the key
addition of an SLT cipher as ⊕k(r) .
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– Let g1, g2, . . . , gs be maps on m-bit vectors, and let n = ms. The map g =
(g1, . . . , gs) defined by

g(x) = (g1(x1), g2(x2), . . . , gs(xs))

for each n-bit vector x = (x1, x2, . . . , xs) ∈ GF(2)n with xi ∈ GF(2)m is
called the diagonal map with components g1, . . . , gs. When considering a
diagonal map h, we will always assume that the components are maps hi;
conversely, given maps h1, . . . , hs, we will denote the diagonal map with
components hi by h.

Remark 1. Note that if c is a vector and N a matrix, then the addition map ⊕c

is always diagonal and the matrix map N is diagonal if and only if N is a block
diagonal matrix. Here, N is called a block diagonal matrix if all off-diagonal
blocks Ni,j , i �= j, are zero. More general, it is easily verified that an affine map
α : x #→ a ⊕ Ax is a diagonal map if and only if A is a block diagonal matrix.
Note also that the ith component of the diagonal map x #→ Nx associated with
a block diagonal matrix N is just the diagonal block Ni,i of N .

As an example of the above conventions, we can now write the function F (r)
SLT

describing the rth round of an SLT cipher in Definition 1 as

F (r)
SLT = M (r) ◦ S(r) ◦ ⊕k(r) , (1)

where M (r) is the diffusion matrix, S(r) is the S-box diagonal map with as
components the S-boxes S

(r)
i , and ⊕k(r) the round-key addition map x #→ x⊕k(r),

a diagonal map with as components the maps xi #→ xi ⊕ k
(r)
i .

3 Determination of the Encodings Up to an Affine Part

According to Property 1, an attacker has access to the encoded version x̃i =
f

(r)
i (xi) of each input word xi of a round r, where f

(r)
i is an unknown bijective

function. In the first step of our cryptanalysis, we will show how to determine
the encodings up to an affine part.

Consider a fixed round r of the white-box implementation with 1 ≤ r < R,
and a block row i of the diffusion matrix M . Let sets U = {u1, u2, . . . , ul}
and V = {v1, v2, . . . , vl′} be two disjoint spanning block sets for block row i of
M . Without loss of generality we may assume that U ∪ V = {1, 2, . . . , s}, i.e.,
l′ = s − l. This partitions the s input words of a round input into two parts:
words that are input to an S-box Si with i ∈ U and words that are input to an
S-box Si with i ∈ V . We write x̃′ as the vector containing all l input words x̃i

with i ∈ U and we write x̃′′ as the vector containing all l′ input words x̃i with
i ∈ V . Then the ith output word z̃i of this round r is given by z̃i = h(x̃′, x̃′′),
where

h(x̃′, x̃′′) = f
(r+1)
i (ψU (x̃′) ⊕ ψV (x̃′′)).
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Here ψU (x̃′) =
⊕
j∈U

ψj(x̃j) and ψV (x̃′′) =
⊕
j∈V

ψj(x̃j), with

ψj(x̃j) = Mi,j ◦ Sj ◦ ⊕kj ◦ (f (r)
j )−1(x̃j).

Note that by Property 1 an attacker has access to function h, but not, for
instance, to functions ψj . In what follows, we denote the range of a function g
by im(g). Now im(ψj) is the vector space spanned by the columns of matrix Mi,j .
Hence, as U defines a spanning block, we have im(ψU ) = GF(2)m. Similarly, we
have im(ψV ) = GF(2)m. In other words, both ψU and ψV are surjective on the
vector space GF(2)m. In the full paper we prove Theorem 1 below, which bounds
the time complexity for the construction of sets WU and WV which are mapped
bijectively onto GF(2)m by ψU and ψV , respectively.

Theorem 1. In O(s + m · 2m) time, we can construct sets WU and WV , with
|WU | = |WV | = 2m, such that
(i) for each fixed x̃′′, the map x̃′ #→ h(x̃′, x̃′′) is a bijection on WU , and
(ii) for each fixed x̃′, the map x̃′′ #→ h(x̃′, x̃′′) is a bijection on WV .

Let hc denote the bijective function x̃′ #→ h(x̃′, c) from WU onto GF(2)m. Let
c1, c2 ∈ WV , and put d = ψV (c1)⊕ψV (c2). Now if z̃i = hc2(x̃

′) = f
(r+1)
i (ψU (x̃′)⊕

ψV (c2)), then ψU (x̃′) = ψV (c2) ⊕ (f (r+1)
i )−1(z̃i), and hence

hc1 ◦ h−1
c2

(z̃i) = f
(r+1)
i (ψU (x̃′) ⊕ ψV (c1)) = f

(r+1)
i ◦ ⊕d ◦ (f (r+1)

i )−1(z̃i).

Now fix c1 ∈ WV . Then to each c2 ∈ WV there corresponds a unique d ∈ GF(2)m.
Hence by letting x̃′ run through WU , we can construct for each d in GF(2)m a
lookup table for the function f

(r+1)
i ◦ ⊕d ◦ (f (r+1)

i )−1. We can then use the
following result of Billet et al. [2] to determine f

(r+1)
i up to an affine part.

Theorem 2. Let f
(r+1)
i be an arbitrary bijective function on GF(2m). Suppose

that the set of functions {f (r+1)
i ◦ ⊕d ◦ (f (r+1)

i )−1 | d ∈ GF(2m)} is given by
means of lookup tables. Then we can construct in O(23m) time a function g

(r+1)
i

for which the map α
(r+1)
i = g

(r+1)
i ◦ f

(r+1)
i is affine.

Combining Property 1 with the above theorem shows that for any input word xi,
an attacker can obtain the value of the affine map α

(r+1)
i (xi) = g

(r+1)
i ◦f r+1

i (xi).
So we have the following.

Property 2. In a white-box attack, an attacker has for each round r with 2 ≤
r ≤ R and for each m-bit input word xi of round r access to the encoded version
x̃i = α

(r)
i (xi) of xi. Here, α

(r)
i (xi) = A

(r)
i x⊕a

(r)
i is an m-bit affine function. The

attacker also knows the values of r and i that are associated with f
(r)
i (xi). �
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4 Transformation into Table Network

From Property 2 it follows that upon completion of the first step of the cryptanal-
ysis, an attacker has for each round r with 1 < r < R access to the input-output
behavior of the function

G(r)
SLT = α(r+1) ◦ F (r)

SLT ◦ (α(r))−1. (2)

As before, fix a round r. Then we have GSLT = α(r+1) ◦ FSLT ◦ (α(r))−1, and by
(1), we have that FSLT = M ◦ S ◦ ⊕k. Hence, if we write N = A(r+1)M and
R = S ◦ ⊕k ◦ (α(r))−1, then we have that

GSLT(x̃) = ⊕a(r+1) ◦ N ◦ R(x̃) = a(r+1) ⊕
s⊕

j=1

Nj ◦ Rj(x̃j), (3)

where Nj denotes the jth strip of matrix N and Rj denotes the jth component
of diagonal map R.

We will first derive an implementation of GSLT involving s lookup tables
only. More specifically, we will define tables T1, T2, . . . , Ts such that GSLT(x̃1,

x̃2, . . . , x̃s) equals
s⊕

i=1
Ti(x̃i). To this end, we define Tj as

Tj(x̃j) =
{

GSLT((x̃1, 0, . . . , 0)), if j = 1;
GSLT((0, . . . , 0, x̃j, 0, . . . , 0)) ⊕ GSLT(0), otherwise.

We have GSLT(0) = ⊕a(r+1) ◦ N ◦ R(0) and, for all j ≥ 1,

GSLT((0, . . . , 0, x̃j , 0, . . . , 0)) = GSLT(0) ⊕ Nj ◦ Rj(0) ⊕ Nj ◦ Rj(x̃j).

Hence,

Tj(x̃j) =

⎧⎨⎩a(r+1) ⊕ N1 ◦ R1(x̃1) ⊕
s⊕

i=2
Ni ◦ Ri(0), if j = 1;

Nj ◦ Rj(0) ⊕ Nj ◦ Rj(x̃j), for j = 2, . . . , s,
(4)

and hence we immediately see that GSLT(x̃) =
s⊕

i=j

Tj(x̃j) as desired.

5 Transformation into SAT Cipher

In an SLT cipher, we can merge a key-addition operation into the S-box operation
that succeeds it. The resulting S-box is then given by Si ◦ ⊕ki . Hence, an SLT
cipher can be viewed as a generic SAT cipher, which is defined as follows.

Definition 4 (Generic Substitution-Affine Transformation Cipher
(generic SAT cipher)). A cipher is called a generic SAT cipher if it can be spec-
ified as follows. It consists of R rounds for an R ≥ 1. A single round r is a bijective
function Fgen−SAT(x1, x2, . . . , xs) on GF(2)n with xi ∈ GF(2)m and n = m · s.
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A round consists of the following operations. First, the values yi = Q
(r)
i (xi) are

computed for all input words xi, where the specification of an S-box Q
(r)
i is derived

from the key. Next, an invertible affine function ε(r)(y) = E(r) · y ⊕ e(r) is applied
to the outcome y = (y1, y2, . . . , ys) ∈ GF(2)n of the S-boxes. The specification of
this affine function ε(r) is also derived from the key.

So the round function Fgen−SAT of a generic SAT cipher can be written as
Fgen−SAT = ε ◦Q, where ε is affine and Q is a diagonal map, with both Q and ε
fully specified by the key.

We can consider GSLT as a generic SAT cipher. Indeed, according to (3),
GSLT = θ ◦R, where θ = ⊕a(r+1) ◦N is affine and R is a diagonal map. However,
since the functions θ and R are not accessible to an attacker, this form is not
suitable for cryptanalysis. In what follows, we will develop an alternative speci-
fication for GSLT as a SAT cipher GSLT = ε ◦ Q, with an affine function ε and a
diagonal map Q that are both accessible to an attacker. We will then use this
expression to attack the round key of the original STL cipher FSLT.

We begin with a simple observation. Since both the diffusion matrix M and
the diagonal matrix A(r+1) from the affine map α(r+1) are invertible, the matrix
N = A(r+1)M = (N1 · · ·Ns) is also invertible, and hence the columns of each of
the n × m matrices Nj are also independent. Let Uj denote the m-dimensional
vector space spanned by the columns of Nj . Next, we consider again Expression
(4) for the lookup tables Tj. Putting w1 = a(r+1) ⊕ N ◦ R(0) ⊕ N1 ◦ R1(0) and
wj = Nj ◦Rj(0) for j = 2, . . . , s, it follows from (4) that im(Tj) = wj ⊕Uj. Hence
the 2m rows of lookup table Tj together comprises all vectors from wj ⊕ Uj .

Now, select an arbitrary row vj from each table Tj, and define

e =
s⊕

j=1

vj .

Note that for each x̃j , we have that vj ⊕ Tj(x̃j) ∈ Uj . Indeed, since both vj and
Tj(x̃j) are rows of Tj , there are uj and u′

j in Uj such that vj = wj ⊕ uj and
Tj(x̃j) = wj ⊕ u′

j . But then vj ⊕ Tj(x̃j) = uj ⊕ u′
j ∈ Uj , as claimed. Next, by

selecting words x̃j,1, . . . , x̃j,m for which the vectors ej,i = vj ⊕ Tj(x̃j,i) in Uj are
independent, we can construct a basis ej,1, . . . , ej,m for each Uj . We use these
bases to define the submatrices Ej of E = (E1, E2, . . . , Es) as

Ej = (ej,1 · · · ej,m).

Since the m columns of Ej span Uj and since Tj(x̃j) ∈ vj ⊕ Uj for each x̃j ∈
GF(2)m, there is a vector Qj(x̃j) ∈ GF(2)m such that

Tj(x̃j) = vj ⊕ EjQj(x̃j).

We will consider Qj as a map from GF(2)m to GF(2m). As all rows of table Tj

are different, this map is a bijection. Now let Q = (Q1, . . . , Qs) be the diagonal
map with components Qj , and define the affine map ε by ε = ⊕e ◦ E. By the
above analysis, we have that
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ε ◦ Q(x̃) = e ⊕ E ◦ Q(x̃) =
s⊕

j=1

vj ⊕
s⊕

j=1

EjQj(x̃j) =
s⊕

j=1

Tj(x̃j) = GSLT(x̃),

hence GSLT = ε ◦ Q is a representation of GSLT as a SAT cipher where both the
affine map ε and the diagonal map Q are explicitly known and accessible to an
attacker.

6 Extracting the Key

In this chapter we describe the last step of our cryptanalysis. We adopt the follow-
ing strategy.First, we derive a relationbetween the S-boxesS

(r)
i of the white-boxed

SLT cipher and the S-boxes Q
(r)
i of the generic SAT cipher that we constructed in

Section 5. This relation will be of the form Q
(r)
i = γ

(r)
i ◦ S

(r)
i ◦ δ

(r)
i for affine func-

tions γ
(r)
i , δ

(r)
i . The diagonal map δ(r) = (δ(r)

1 , δ
(r)
2 , . . . , δ

(r)
s ) depends on both the

round key k(r) of F (r)
SLT and the affine encoding α(r) that G(r)

SLT puts on the input
of round F (r)

SLT. The function γ(r) = (γ(r)
1 , γ

(r)
2 , . . . , γ

(r)
s ) depends on the encoding

α(r+1) that G(r)
SLT puts on the output of F (r)

SLT. By comparing the functions γ(r−1)

and δ(r), we can recover the key k(r) contained in δ(r).
We now make the last step of our cryptanalysis more precise. Fix a round r.

From the previous step we get S-boxes Qj and an affine function ε, such that
GSLT = ε ◦ Q. By (1) and (2), we also have that

GSLT = α(r+1) ◦ M ◦ S ◦ ⊕k ◦ (α(r))−1.

Since the functions ε, α(r+1), M , ⊕k, and α(r) are all affine, we conclude that

Q = γ ◦ S ◦ δ, (5)

for affine functions
γ = ε−1 ◦ α(r+1) ◦ M (6)

and
δ = ⊕k ◦ (α(r))−1. (7)

Note that both γ and δ are diagonal maps. For δ this is true because α(r) is
a diagonal map. For γ this property follows from (5) and the observation that
δ, Q, and S are all diagonal maps. Biryukov et al. [3] present an algorithm for
efficiently determining the set Γi of all pairs (γi, δi) satisfying Qi = γi ◦ Si ◦ δi.
So we can use this algorithm to determine the set Γ consisting of all pairs (γ, δ)
that satisfy (5). Note that this set Γ contains the pair (γ, δ) that satisfies all
of (5), (6), and (7). To complete our cryptanalysis it now suffices to solve the
following two problems.

– Which pairs (γ(r−1), δ(r−1)) ∈ Γ (r−1) and (γ(r), δ(r)) ∈ Γ (r) of affine
functions satisfy (6) and (7)?

– If we have the pairs (γ(r−1), δ(r−1)) ∈ Γ (r−1) and (γ(r), δ(r)) ∈ Γ (r) of affine
functions that satisfy (6) and (7), how can we derive round key k(r) from this?
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Observe that the former problem need not be solved completely. If we can limit
the number of candidate pairs to a value �, then we can apply an algorithm for
the second problem to all � candidate solutions to obtain � candidate round keys.
The correct round key can next be derived by exhaustive search.

By (6) for round r−1 and (7) for round r, we have that ε(r−1)◦γ(r−1) = α(r)◦
M (r−1) and α(r) = (δ(r))−1◦⊕k(r) , and hence δ(r)◦ε(r−1)◦γ(r−1) = ⊕k(r)◦M (r−1).
So if we let γ(t) = ⊕c(t) ◦ C(t) and δ(t) = ⊕d(t) ◦ D(t), then we obtain that

d(r) ⊕ D(r)e(r−1) ⊕ D(r)E(r−1)C(r−1)y ⊕ D(r)E(r−1)c(r−1) = k(r) ⊕ M (r−1)y,

for all y. For this equality to hold, the constant parts as well as the linear parts
are the same in both sides of the equation. This implies that

D(r)E(r−1)C(r−1) = M (r−1)

and that the round key k(r) is given by

k(r) = d(r) ⊕ D(r)e(r−1) ⊕ D(r)E(r−1)c(r−1).

The above analysis now leads to the algorithm described in Fig. 1 for finding
k(r).

Known: Q, E, S, M .

– Step 1: For a particular pair (r−1, r) of successive rounds, construct for each S-box
Si the set

Γi = {(γi, δi) | Qi = γi ◦ Si ◦ δi ∧ γi, δi affine}
and let Γ be such that (γ, δ) ∈ Γ if (γi, δi) ∈ Γi for all i.

– Step 2: Construct the subset Λ(r) ⊆ Γ (r−1) × Γ (r) of pairs of affine functions
(γ(r−1), δ(r−1)) ∈ Γ (r−1) and (γ(r), δ(r)) ∈ Γ (r) such that

D(r)E(r−1)C(r−1) = M (r−1), (8)

where matrices C(r−1) and D(r) define the linear part of γ(r−1) and δ(r), respec-
tively.

– Step 3: The round key k(r) of round r is contained in the set

K(r) =
{

D(r)E(r−1)c(r−1) ⊕D(r)e(r−1) ⊕ d(r) | (γ(r−1), δ(r−1), γ(r), δ(r)) ∈ Λ(r)
}

.

Fig. 1. Basic algorithm for finding the round key of a round r

For implementing Step 1 of the algorithm, we already referred to [3]. We now
describe how Step 2 can be implemented.

6.1 Solving the Linear Equivalence Problem for Matrices

Step 2 of the algorithm of Fig. 1 deals with the matrices C and D specifying the
linear parts of the affine m-bit diagonal maps γ = ⊕c ◦ C and δ = ⊕d ◦ D. Note
that as observed in Remark 1, C and D are block diagonal matrices.
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Definition 5. Let X = X1×X2×. . .×Xs, where Xi consists of m×m matrices.
Then we denote by D(X) the collection of all block diagonal matrices with ith
diagonal block contained in Xi, for all i.

We can now formulate the problem of Step 2 as an instance of the Linear Equiv-
alence Problem of Matrices (LEPM) defined below.

Definition 6 (Linear Equivalence Problem of Matrices (LEPM)). A
problem instance is defined by (M, E, X, Y ) for invertible n×n matrices M and
E and sets X = X1 ×X2× . . .×Xs and Y = Y1 ×Y2× . . .×Ys, where Xi and Yj

contain invertible m×m matrices and n = m ·s. Find all pairs of block-diagonal
n × n matrices (C, D) ∈ D(X) ×D(Y ) such that M = D · E · C.

In Fig. 2 we describe an algorithm for solving LEPM. The algorithm gradually
reduces the sets Xi and Yj , as follows. If a pair (C, D) ∈ D(X) ×D(Y ) satisfies
M = D · E · C, then Mi,j = DiEi,jCj holds for all i, j. So if for some Cj ∈ Xj

there does not exist a Di ∈ Yi for which Mi,j = DiEi,jCj , then Cj can never
be used as jth component in C, and so can be removed from Xj . A similar
argument can be used to remove a matrix Di from a set Yi.

We proceed with such removal steps until no more removals are possible. If
some set Xj or some set Yi is empty, then the LEPM problem has no solution.
Next, if all sets Xj and Yi contain exactly one linear mapping, then the only
candidate solution to the LEPM problem instance is the solution defined by
these linear mappings; moreover, since no Xj or Yi was further reduced, this
solution must indeed be valid. So in this case, the LEPM problem is solved.

On the other hand, suppose that a set Xj or a set Yi exists that contains more
than one linear mapping. If all Xj have size one, then C is uniquely determined,
and hence D = E−1C−1M is also uniquely determined. As a consequence, all
sets Yi must also have size one. So we may assume without loss of generality
that some set Xj has size bigger than one. In that case, for each matrix Cj in
Xj , we rerun the algorithm with Xj replaced by the set X ′

j = {Cj}. Obviously,
in this way all solutions are found.

To know whether the algorithm presented is effective for attacking a white-box
implementation, we have to know an upper bound on the number of solutions
returned and the number of recursive invocations. The former number is related
to the cardinality of the set K of candidate round keys in the algorithm of
Fig. 1. The latter number determines the time complexity of the algorithm of
Fig. 2. The problem is that we do not want to answer the question for one
particular white-box implementation of a block cipher, but for any white-box
implementation of that block cipher. Hence, we want to derive upper bounds on
these numbers that only depend on the block cipher specification and not, for
instance, on the encodings put on the input and output of a round FSLT by the
white-box implementation. The following theorem, which is proved in the full
version of this paper, can be used to derive such bounds.

Theorem 3. For a round r of an SLT cipher, let I = (M, E, X, Y ) be the prob-
lem instance of LEPM that is associated with the cryptanalysis of its white-box
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algorithm LEPM solver(X, Y )

begin
repeat

for all Xj do
for all Cj ∈ Xj do

if ¬∃Di∈YiMi,j = Di ·Ei,j · Cj then
Xj := Xj \ {Cj};

for all Yi do
for all Di ∈ Yi do

if ¬∃Cj∈Xj Mi,j = Di ·Ei,j · Cj then
Yi := Yi \ {Di};

until X and Y do not change;
if a set Xj or Yi is empty then

return ∅;
else if ∀j |Xj | = 1 ∧ ∀i|Yi| = 1 then

return {(C, D)} with Cj ∈ Xj and Di ∈ Yi;
else /* case ∃j |Xj | > 1 */

select smallest j with |Xj | > 1;
return

⋃
Cj∈Xj

LEPM solver(X(Xj = {Cj}), Y );
end;

Fig. 2. Algorithm for solving LEPM problem in pseudo code. In the algorithm X(Xj =
{Cj}) denotes X, where Xj is replaced by {Cj}.

implementation. Furthermore, let I ′ = (M, M, X ′, Y ′) be the problem instance
in which X ′

i and Y ′
i are given by

X ′
i = {L | S

(r−1)
i = λ ◦ S

(r−1)
i ◦ φ with λ : x #→ l ⊕ Lx and φ affine}

and

Y ′
i = {P | S

(r)
i = λ ◦ S

(r)
i ◦ φ with λ and φ : x #→ p ⊕ Px affine}.

Then, applying the algorithm of Fig. 2 to I results in the same number of recur-
sive invocations and the same number of solutions as when applying the algorithm
to problem instance I ′.

7 Proof of Concept

As proof of concept, we briefly discuss our cryptanalysis for attacking white-
box AES and white-box Serpent. It can be verified that the diffusion matrices
of both AES and Serpent satisfy the property that all their block rows have
disjoint spanning blocks. Recall that this is a necessary property to perform the
first step of the cryptanalysis. After applying the steps described in Sections 3-
5, the cryptanalysis runs the algorithm of Fig. 1 to find a set K of candidate
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round keys for a given round r. The algorithm first derives for each S-box Si

the set Γi. For the AES S-box these sets can be shown to have a cardinality of
2040, while for the Serpent S-boxes the cardinality of these sets is either 4 or
1. Next, the algorithm solves an LEPM problem instance to find the set Λ. For
AES and Serpent it can be shown that the pairs (γi, δi) from a set Γi satisfy the
property that all affine functions γi have a unique linear part and that all affine
functions δi have a unique linear part. Hence, the cardinality of set Λ is given
by the number of solutions of this LEPM problem instance. Using Theorem 3 it
can be proved that for any LEPM problem instance associated with a white-box
implementation the algorithm does not go into recursion and that it returns only
one solution. As a consequence, Λ consists of only one solution. It now follows
from the third step of the algorithm of Fig. 1 that the set K of candidate round
keys consists of only one solution as well. This is the round key we are looking
for. The time complexity of the attack is dominated by the algorithm of Biryukov
et al. [3] to determine the sets Γi.

8 Conclusion

Chow et al. published white-box implementations for AES and DES. As these
white-box implementations have been broken, it is an interesting research direc-
tion to design a block cipher that results in a secure white-box implementation.
This paper can serve as a basis for such research. In this paper we presented an
algorithm for extracting the round keys from the white-box implementation of
an SLT cipher in case that all block rows of the diffusion matrices of the cipher
have disjoint spanning block sets. The condition on the diffusion matrices is, for
instance, satisfied by all MDS matrices. Furthermore, we conjecture that our
attack can be generalized to arbitrary diffusion matrices. From our result we
can conclude that, unless we design new white-box techniques, SLT ciphers are
less suited for white-box implementations. A weakness of SLT ciphers that is ex-
ploited by our attack is the linearity of the diffusion operator. A linear diffusion
matrix is difficult to hide with non-linear encodings. Hence, a possible direction
for deriving secure white-box implementations is to resort to alternative diffu-
sion operators. Another weakness of SLT ciphers that we exploit is that, except
for a key addition, all operations in the cipher are fixed (i.e., key-independent).
It may help to make a larger part of the block cipher operations key-dependent.
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Abstract. This paper presents a linear cryptanalysis for reduced round
variants of CAST-128 and CAST-256 block ciphers. Compared with the
linear relation of round function with the bias 2−17 by J. Nakahara et al.,
we found the more heavily biased linear approximations for 3 round func-
tions and the highest one is 2−12.91. We can mount the known-plaintext
attack on 6-round CAST-128 and the ciphertext-only attack on 4-round
CAST-128. Moreover the known-plaintext attack on 24-round CAST-256
with key size 192 and 256 bits has been given, and the ciphertext-only
attack on 21-round CAST-256 with key size 192 and 256 bits can be
performed. At the same time, we also present the attack on 18-round
CAST-256 with key size 128 bits.

Keywords: Linear Cryptanalysis, Block Cipher, CAST-128, CAST-256.

1 Introduction

CAST-128 is a block cipher designed by C. Adams and S. Tavares in 1996[1], and
is used in a number of products notably as the default cipher in some versions
of GPG and PGP[2,3]. It has been approved for Canadian government use by
the Communications Security Establishment. CAST-256 is one of the fifteen
candidate algorithms of the first AES Candidate Conference[4,5].

One way to reduce the size of the largest entry in the XOR table is to use
injective substitution layer(S-boxes) such that the number of output bits from
the S-box is sufficiently larger than the number of input bits. In this way, it is
very likely that the entries in the XOR distribution table of a randomly chosen
injective S-box will have only small values, making the block cipher resistant to
differential cryptanalysis.

In order to resist to differential cryptanalysis, CAST-128 and CAST-256 use
injective substitution S-boxes with 32-bit output and 8-bit input. Moreover, S-
boxes are designed from bent functions to resist linear cryptanalysis. Therefore,
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the cryptanalysis for them will be very difficult. As far as we know, the differential
cryptanalysis of 9 quad-rounds CAST-256 and 5-round CAST-128 under weak-
key assumption and the impossible differential cryptanalysis for 20-round CAST-
256 have been given respectively in [6] and [7]. In addition, Wagner presented
the boomerang attack on 16-round CAST-256[11].

Nakahara and Rasmussen presented the first concrete linear cryptanalysis on
reduced-round CAST-128 and CAST-256. They can recover the subkey for 4-
round CAST-128 with 237 known plaintexts and 272.5 times of 4-round CAST-128
encryption. The distinguishing attack for 12-round CAST-256 with 2101 known
plaintexts and 2101 times of 12-round CAST-256 encryption has been given[8].

In this paper, we give the linear cryptanalysis for 6-round CAST-128 with
253.96 known plaintexts and 288.51 times of 6-round CAST-128 encryption, and
give the linear cryptanalysis for 24-round CAST-256 with 2124.10 known plain-
texts and 2156.20 times of 24-round CAST-256 encryption. Moreover, we present
the ciphertext-only attack on 4-round CAST-128 and 21-round CAST-256.

The paper is organized as follows. Section 2 introduces the description of
CAST-128 and CAST-256. In Section 3, we present how to find the more heav-
ily biased linear approximations of three round functions in these two block
ciphers. In Section 4, we give the linear cryptanalysis for reduced-round CAST-
128. In Section 5, we give the linear cryptanalysis for reduced-round CAST-256.
In Section 6, we conclude this paper.

2 Description of CAST-128 and CAST-256

2.1 Description of CAST-128

As a Feistel block cipher, CAST-128 uses a block size 64 bits, and the key size
can vary from 40 bits to 128 bits, in 8-bit increments. For key sizes up to and
including 80 bits, the number of round is 12. For key sizes greater than 80
bits, the cipher uses the full 16 rounds[1]. The overall operation of CAST-128 is
similar to DES[9], which is described in Fig.1. CAST-128 splits the plaintext into
left and right 32-bit halves L0 and R0. In the key schedule process, 16 pairs of
subkeys Kmi and Kri for the user key K are computed, with one pair of subkeys
per round. A 32-bit key-dependent value Kmi is used as a ”masking” key and
a 5-bit Kri is used as a ”rotation” key of the ith round. Our cryptanalysis is
not related to the key schedule, so we don’t present it in detail. The encryption
process is defined as follows,

– For 1 ≤ i ≤ 16, compute Li and Ri as follows:

Li = Ri−1
Ri = Li−1 ⊕ Fi(Ri−1, Kmi, Kri)

where Fi is the round function(Fi is of Type 1, Type 2, or Type 3) described
later.

– The ciphertext is (R16, L16).
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Fig. 1. CAST-128 encryption algorithm

Decryption is identical to the encryption algorithm given above, except that the
subkey pairs are used in reverse order to compute (L0,R0) from (R16,L16).

Three different round functions are used in CAST-128. X is the input to the
round function and I is the input to 4 S-boxes where Ia and Id are the most
significant byte and the least significant byte of I respectively(I = Ia‖Ib‖Ic‖Id).
”+” and ”−” are addition and subtraction modulo 232. ”⊕” is bitwise XOR, and
”<<<” is the circular left-shift operation. The round functions are defined as
follows,

Type1 : I = ((Kmi + X) <<< Kri)
F1 = ((S1[Ia] ⊕ S2[Ib]) − S3[Ic]) + S4[Id]

Type2 : I = ((Kmi ⊕ X) <<< Kri)
F2 = ((S1[Ia] − S2[Ib]) + S3[Ic]) ⊕ S4[Id]

Type3 : I = ((Kmi − X) <<< Kri)
F3 = ((S1[Ia] + S2[Ib]) ⊕ S3[Ic]) − S4[Id]
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Fig. 2. CAST-256 encryption algorithm

Rounds 1, 4, 7, 10, 13, and 16 use F1 function. Rounds 2, 5, 8, 11, and 14 use
F2 function. Rounds 3, 6, 9, 12, and 15 use F3 function. In the above equations,
S1, S2, S3, and S4 are 4 S-boxes, which input is 8-bit and output is 32-bit.

2.2 Description of CAST-256

As a candidate for the first AES conference, CAST-256 is designed based on
CAST-128. The block size is 128-bit, and the key size can be 128-bit, 192-bit
and 256-bit. The round number is 48 for all key size. The structure for CAST-256
is generalized Feistel Network structure in Fig. 2.

We denote 128-bit block as β = (ABCD) where A,B,C and D are each 32
bits in length. Two types of round function, the ”forward quad-round” Q(·) and
the ”reverse quad-round” Q̄(·) are used in CAST-256.

The ”forward quad-round”β ←− Qi(β) is defined as the following four rounds,

C = C ⊕ F1(D, Kr1
(i), Km1

(i))

B = B ⊕ F2(C, Kr2
(i), Km2

(i))

A = A ⊕ F3(B, Kr3
(i), Km3

(i))

D = D ⊕ F1(A, Kr4
(i), Km4

(i))
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And the ”reverse quad-round”β ←− Q̄i(β) is defined as the following four
rounds,

D = D ⊕ F1(A, Kr4
(i), Km4

(i))

A = A ⊕ F3(B, Kr3
(i), Km3

(i))

B = B ⊕ F2(C, Kr2
(i), Km2

(i))

C = C ⊕ F1(D, Kr1
(i), Km1

(i))

where Kr
(i) = {Kr1

(i), Kr2
(i), Kr3

(i), Kr4
(i)} is the set of rotation keys for the ith

quad-round, and Km
(i) = {Km1

(i), Km2
(i), Km3

(i), Km4
(i)} is the set of masking

keys for the ith quad-round.
The encryption process for CAST-256 consists of 6 ”forward quad-rounds”

followed by 6 ”reverse quad-rounds”. Decryption is identical to encryption except
that the sets of quad-round keys Kr

(i) and Km
(i) are used in reverse order.

3 Linear Approximation for Round Functions

The S-boxes of CAST-128 have dimension 8× 32 bits and are non-surjective, so
their linear approximation tables are difficult to be constructed. The probability
of the linear approximations for these S-boxes with the form 0 → Γ is away
from 1

2 because of the non-surjective property of S-boxes, where ’0’ stands for a
zero 8-bit mask, and ’Γ ’ stands for a nonzero 32-bit mask. This kind of linear
approximation only represents that an exclusive-or of output bits selected by
Γ is zero. Especially if there is only one non-zero bit for Γ , the probability is
always equal to 1

2 ± 1
25 . In [8], in order to obtain the linear approximation for the

round function, only the linear approximation for S-boxes with the form 0 → 1
has been used where only the least significant output masking bit is non-zero.
Then the bias for the linear approximation of the round function with the form
0 → 1 in Fig.3 is 2−17 according to the Piling-Up lemma[10] because the least
significant output masking bit is not affected by the mixture operations with
modular addition, modular subtraction and XOR operations. In [8], authors
think the highest bias for the round function is 0 → 1 because the carry bits in
modular addition and the borrow bits in modular subtraction of round function
will reduce the bias to less than 2−17, so they use the linear relations for round
functions F1, F2 or F3 having the following forms,

Fi : 00000000X → 00000000X

Fi : 00000000X → 00000001X

Based on the above line relations, 2 types of 2-round iterative linear relations
for CAST-128 depicted in Fig.4(a) and Fig.4(b) respectively have been given.
According to the Piling-Up lemma[10], the biases for the two 2-round iterative
linear relations are all 2−17[8].
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Fig. 4. 2 two-round iterative linear relations for CAST-128

However, we find an important fact that the carry-bit in the modular addition
and the borrow-bit in the modular subtraction don’t always decrease the bias of
linear approximation, sometimes they can further increase the bias. The crypt-
analysis in [8] only uses the bias for the single output bit(the least significant bit)
of S-boxes. In fact, we find that the non-random properties of the consecutive
output bits of S-boxes may result in the higher bias of the output bit of round
function with modular addition, modular subtraction and XOR operations com-
pared with the bias of S-boxes output. For example, two least significant bits
of S-box output have 4 possible values such as ’00’, ’01’, ’10’ and ’11’. If the
distribution for the 4 values are non-random(the probabilities are not equal),
the bias of the second least-significant bit of round function may be increased
after the mixture operations on them. So we searched the linear approximations
for the round functions F1, F2 and F3 which have the form 0 → Γ and only
one non-zero bit mask of Γ , and the bias for this kind of linear approximation
represents the unbalance property for each output bit of round function. The
results are presented in Table1. From Table1, we identified the highest bias is
not for linear approximation 0 → 1, but the highest biases for F1, F2 and F3 are
2−13.71, 2−14.41 and 2−14.26 respectively which are corresponding to the linear
approximation 0 → 00000010X, 0 → 00020000X, and 0 → 00000080X.



New Linear Cryptanalytic Results of Reduced-Round 435

Table 1. Linear approximation table for one non-zero bit mask of Γ

non-zero masking bit for Γ biasF1 = |Pr − 1
2
| biasF2 = |Pr − 1

2
| biasF3 = |Pr − 1

2
|

1 2−17.00 2−17.00 2−17.00

2 2−18.00 2−17.68 2−17.48

3 2−18.99 2−19.91 2−14.48

4 2−14.58 2−15.00 2−15.38

5 2−13.98 2−14.61 2−15.23

6 2−13.71 2−16.45 2−15.54

7 2−16.30 2−17.00 2−17.81

8 2−16.91 2−18.79 2−14.26

9 2−15.24 2−15.68 2−18.20

10 2−17.69 2−18.47 2−17.03

11 2−17.38 2−18.74 2−16.60

12 2−15.88 2−23.68 2−15.41

13 2−16.08 2−16.38 2−16.71

14 2−15.69 2−14.74 2−15.68

15 2−17.08 2−17.00 2−16.80

16 2−17.53 2−15.19 2−19.09

17 2−21.54 2−17.34 2−16.26

18 2−14.41 2−14.41 2−14.47

19 2−15.55 2−19.30 2−17.43

20 2−18.96 2−15.88 2−16.41

21 2−17.66 2−16.30 2−20.80

22 2−15.32 2−16.80 2−19.44

23 2−17.20 2−15.38 2−16.17

24 2−18.47 2−17.93 2−18.73

25 2−17.23 2−17.64 2−15.74

26 2−15.77 2−16.75 2−15.37

27 2−14.72 2−16.19 2−16.44

28 2−17.60 2−20.46 2−17.33

29 2−20.12 2−17.85 2−17.64

30 2−16.06 2−15.31 2−16.34

31 2−16.24 2−16.23 2−18.09

32 2−15.82 2−16.03 2−16.89

Additionally, the unbalance property of the single output bit of round function
will result in the heavily biased linear approximation with more non-zero output
masking bits. So we searched the linear approximations for 3 round functions
which have the form 0 → Γ with two and three non-zero masking bits of Γ .
Further four and five non-zero masking bits of Γ for F2 have been examined,
but we have not examined four or five non-zero masking bits of Γ for F1 and
F3 and more than five non-zero masking bits for 3 round functions because the
complexity of computation is very large. Their linear relations with the highest
bias we have found will be given in Table 2.

From Table 1 and Table 2, the best bias for single round function we found
is 2−12.91 corresponding to the linear relation 00000000X → 03400000X for F2.
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Table 2. Best linear approximation for more non-zero bits of Γ

Function Type Γ Number of non-zero bits of Γ bias = |Pr − 1
2
|

F1 0000000CX 2 2−14.07

F2 80004000X 2 2−13.06

F3 02400000X 2 2−13.71

F1 02600000X 3 2−13.37

F2 03400000X 3 2−12.91

F3 00030020X 3 2−14.05

F2 00600300X 4 2−13.64

F2 32000900X 5 2−13.48

4 Linear Cryptanalysis for Reduced-Round CAST-128

4.1 Known-Plaintext Attack for Reduced-Round CAST-128

Based on the above linear approximations of the 3 round functions, we can obtain
the 5-round linear relation in Fig 5.a. The output mask Γ in round 2 and round
4 is non-zero, but zero in round 1, 3 and 5. The input mask from the first round
to the fifth round are all zero. So the probability of the linear relation in round
1, 3 and 5 are all 1. The bias of the linear relation 00000000X → 03400000X for
F1 is 2−13.57, and the bias of the linear relation 00000000X → 03400000X for
F2 is 2−12.91. Based on ”the Piling-Up lemma”, the bias for the 5-round linear
approximation is 2−25.48.

The linear relation in Fig 5.a is a 5-round distinguisher from the random
permutation, which can be presented as follows,

(PR ⊕ CR) · 03400000X = 0

where PR is the right 32-bit of the plaintext, and CR is the right 32-bit of
the ciphertext for 5-round. As a known plaintext attack, the number of known
plaintext N required in linear cryptanalysis is proportional to ε−2[10], where ε
is the bias for the linear relation. If N is taken as 8 · ε−2, the attack will be
successful with very high probability. So we can distinguish 5-round CAST-128
with 8 · 225.48·2 = 253.96 known plaintexts.

We can recover 37-bit subkey of 6-round using the above 5-round distinguisher
in Fig 5.a. As the distinguishing attack for 5-round, the attack also requires
253.96 known plaintexts and 253.96 · 237 = 290.96 one-round encryptions, which is
equivalent to 288.51 6-round encryptions.

4.2 Ciphertext-Only Attack for Reduced-Round CAST-128

If the plaintext is ASCII encoded English text, we can attack reduced-round
CAST-128 only with ciphertexts. We use the linear approximation for 3-round
CAST-128 where only F2 is active,

(PR ⊕ R3) · 00008000X = 0
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Fig. 5. Two linear relations for CAST-128

where R3 is the right 32-bit output for round 3, and the bias for the above
linear approximation is 2−15.19, so we can construct the distinguisher of 3-round
CAST-128 with only 8 · 215.19·2 = 233.38 ciphertexts in Fig 5.b. Moreover we
can recover 37-bit subkey of 4-round using the above 3-round distinguisher. The
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attack also requires only 233.38 ciphertexts and 233.38 · 237 = 270.38 one-round
encryptions, which is equivalent to 268.38 4-round encryptions.

5 Linear Cryptanalysis for Reduced-Round CAST-256

5.1 Known-Plaintext Attack for Reduced-Round CAST-256

As described in Section 3, the highest bias for single round function we found is
2−12.91 corresponding to the linear relation 0 → 03400000X for F2. So we arrive
the iterative linear approximation for one quad-round CAST-256 in Fig6.a. Only
F2 in each quad-round is active, but other 3 round functions are all non-active.
We can derive the linear approximation for r quad-rounds of CAST-256 which
can be used as a distinguisher, which can be represented as follows,

(B ⊕ F ) · 03400000X = 0

where (A, B, C, D) and (E, F, G, H) denote the plaintext block and the cipher-
text block for r quad-rounds respectively. Based on ”the Piling-Up lemma”, the
bias for the linear approximation is 2r−1 · 2−12.91·r.

We can distinguish 21 rounds CAST-256 from a random permutation with
2124.1 known plaintexts. By the 21 rounds distinguisher, we can recover 37-bit
subkey of round 22 for 24-round CAST-256 with the key size 192 or 256 bits.
The time complexity is 2124.1 · 237 = 2161.1 one-round CAST-256 encryptions
which is equivalent to 2156.2 24-round CAST-256 encryptions.

For CAST-256 with key size 128 bits, we use the linear approximation 0 →
02600000X for F1 with the bias 2−13.37 to construct the iterative quad-round
linear approximation in Fig 6.b. So the iterative linear approximation for 3 quad-
round CAST-256 can be derived. Only F1 of the 4th round in each quad-round
is active, but other 3 round functions are all non-active. The bias for the linear
approximation is 2−38.11 and we can recover 37-bit subkey of round 16 with
279.22 known plaintexts and 2111.98 times of 18-round CAST-256 encryption.

5.2 Ciphertext-Only Attack for Reduced-Round CAST-256

If the plaintext is ASCII encoded English text, we can attack reduced-round
CAST-256 only with ciphertexts. We use the linear approximation 0→00000080X

for round function F3 with bias 2−14.26, so we obtain the iterative linear approx-
imation for one quad-round CAST-256 in Fig6.c. Only F3 in round-3 is active,
but other 3 round functions are all non-active. We can derive the linear approx-
imation for r quad-rounds of CAST-256 which can be used as a distinguisher,
which can be represented as follows,

(A ⊕ E) · 00000080X = 0

where (A, B, C, D) and (E, F, G, H) denote the plaintext block and the cipher-
text block for r quad-rounds respectively. Based on ”the Piling-Up lemma”, the
bias for the linear approximation is 2r−1 · 2−14.26·r.
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We can distinguish 4 quad-rounds CAST-256 from a random permutation
with only 2111.08 ciphertexts. Using 4 quad-rounds distinguisher with only 2111.08

ciphertexts, we can recover the round 19 subkey for 21-round CAST-256 with
the key size 192 or 256 bits. The time complexity is 2111.08 · 237 = 2148.08 one-
round CAST-256 encryptions which is equivalent to 2143.50 21-round CAST-256
encryptions.

For CAST-256 with key size 128 bits, we use the linear relation 0→80000000X

for F1 with the bias 2−15.82 to construct the iterative linear approximation for
a quad-round CAST-256 in Fig6.d. So the iterative linear approximation for 3
quad-rounds CAST-256 can be derived. Only F1 of the 4th round in each quad-
round is active, but other 3 round functions are all non-active. The bias for the
linear approximation is 2−45.46 and we can recover the subkey of round 16 with
293.92 only-ciphertexts and 2126.28 times of 18-round CAST-256 encryption.

6 Summary

In this paper, we found that the unbalance for the consecutive bits from S-
boxes output may further increase the unbalance of the output from the round
function which performs modular addition, modular subtraction and XOR op-
erations on the outputs of 4 S-boxes, This observation led us to find the heavily
biased linear relation for the round functions of CAST-128 and CAST-256. After
that, we present the best known linear attack on reduced-round CAST-128 and
CAST-256. Our attacks are by far the best known attacks on the two ciphers
without weak-key assumption. Moreover we give the first ciphertext only attack
for reduced round variants of the two ciphers.

We attack 6-round CAST-128, which works for the key size more than 88 bits,
with data complexity of 253.96 known plaintexts, the time complexity of 288.51

times of 6-round encryption. Moreover we mount a ciphertext-only attack on
4-round CAST-128 for the key size more than 68 bits, and the attack uses only
233.38 ciphertexts and 268.38 times of 4-round encryption. Then we present an
attack on 24-round CAST-256 requiring 2124.10 known plaintexts, 2156.20 times
of 24-round encryptions. In addition, we mount a ciphertext-only attack on 21-
round CAST-256 with only 2111.08 ciphertexts and 2143.50 21-round encryptions.

Table 3. Summary of linear attacks on reduced-round CAST-128

Rounds Key Size Data Complexity Time Complexity Type Source
2 all 237 KPs 237 Distinguishing [8]
3 all 237 KPs 237 Distinguishing [8]

>72 bits 237 KPs 272.5 Key Recovery [8]
4 >72 bits 237 KPs 272.5 Key Recovery [8]

>68 bits 233.38 COs 268.38 Key Recovery This Paper
6 >88 bits 253.96 KPs 288.51 Key Recovery This Paper

1

KPs:Known Plaintexts, COs:Ciphertexts only
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Table 4. Summary of linear attacks on reduced-round CAST-256

Rounds Key Size Data Complexity Time Complexity Type Source
9 all 269 KPs 2103 Key Recovery [8]
12 all 2101 KPs 2101 Distinguishing [8]
18 all 279.22 KPs 2111.98 Key Recovery This Paper

all 293.92 COs 2126.28 Key Recovery This Paper
21 192-bit or 256-bit 2111.08 COs 2143.50 Key Recovery This Paper
24 192-bit or 256-bit 2124.1 KPs 2156.20 Key Recovery This Paper

2KPs:Known Plaintexts, COs:Ciphertexts only

Table 3 and Table 4 give the comparison of our results with the previous linear
attacks on CAST-128 and CAST-256.
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Improved Impossible Differential Cryptanalysis
of Reduced-Round Camellia

Wenling Wu, Lei Zhang, and Wentao Zhang
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Chinese Academy of Sciences, Beijing 100190, P.R. China

Abstract. The block cipher Camellia has now been adopted as an in-
ternational standard by ISO/IEC, and it has also been selected to be
Japanese CRYPTREC e-government recommended cipher and in the
NESSIE block cipher portfolio. Most recently, Wu et al constructed some
8-round impossible differentials of Camellia, and presented an attack on
12-round Camellia-192/256 in [5]. Later in [6], Lu et al improved the
above attack by using the same 8-round impossible differential and some
new observations on the diffusion transformation of Camellia. Consid-
ering that all these previously known impossible differential attacks on
Camellia have not taken the key scheduling algorithm into account, in
this paper we exploit the relations between the round subkeys of Camel-
lia, together with some novel techniques in the key recovery process to
improve the impossible differential attack on Camellia up to 12-round
Camellia-128 and 16-round Camellia-256. The data complexities of the
two attacks are 265 and 289 respectively, and the time complexities of the
two attacks are less than 2111.5 and 2222.1 respectively. The presented re-
sults are better than any previously published cryptanalytic results on
Camellia without the FL/FL−1 functions and whitening layers.

Keywords: Block cipher, Camellia, Impossible differential, Cryptanal-
ysis, Round subkey.

1 Introduction

The block cipher Camellia [1], with the same interface specification as the Ad-
vanced Encryption Standard(AES), supports 128-bit block size and 128-, 192-
and 256-bit key sizes, which can usually be denoted as Camellia-128, Camellia-
192 and Camellia-256 respectively. Camellia was jointly developed by NTT and
Mitsubishi Electric Corporation, and it was first published at SAC 2000. Then it
was submitted to some cryptographic evaluation projects such as the European
NESSIE Project and the Japanese CRYPTREC Evaluation, and Camellia was
selected to be CRYPTREC e-government recommended cipher in 2002 and in
the NESSIE block cipher portfolio in 2003. Furthermore, it was adopted as a new
international standard for 128-bit block cipher by ISO/IEC in 2005. As Camellia
has become one of the most worldwide used block ciphers, in the last few years

R. Avanzi, L. Keliher, and F. Sica (Eds.): SAC 2008, LNCS 5381, pp. 442–456, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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cryptanalysts had evaluated the security of Camellia against various cryptana-
lytic techniques, including truncated differential cryptanalysis [2,3], higher order
differential cryptanalysis [4], impossible differential cryptanalysis [3,5,6], Square
attack/Integral attack [7-11], collision attack [12,13], linear cryptanalysis [14,15]
and so on.

Impossible differential cryptanalysis [16] was first proposed by Biham et al
in 1999, and was applied to the Skipjack cipher reduced from 32 to 31 rounds.
Unlike traditional differential cryptanalysis which exploits differentials with the
highest possible probability, impossible differential cryptanalysis uses differen-
tials which hold with probability 0, which can also be called impossible differ-
entials. An impossible differential can usually be built in a miss-in-the-middle
manner. Recently, impossible differential cryptanalysis had received worldwide
attention, and its application to the security analysis of AES and CLEFIA both
got very good results [17-23].

The initial analysis of Camellia against impossible differential cryptanalysis
was given by M.Sugita et al [3] in 2001, they constructed a nontrivial 7-round
impossible differential for Camellia. In 2007, by exploiting some properties of the
linear diffusion function, Wu et al [5] presented some 8-round impossible differen-
tials for Camellia, and based on it they mounted an impossible differential attack
on 12-round Camellia-192/256. Then in [6], Lu et al exploited the same 8-round
impossible differential together with the early abort technique and improved the
impossible differential cryptanalysis of Camellia. However, all of these impossi-
ble differential attacks on Camellia have not taken the key scheduling algorithm
into account. Thus in this paper, we first present some observations of the re-
lations between round subkeys, and then by taking advantage of these relations
and some novel techniques in the key recovery process, we improve the impos-
sible differential attack on Camellia up to 12-round Camellia-128 and 16-round
Camellia-256. As far as we know, these are the best published cryptanalytic re-
sults on Camellia without the FL/FL−1 functions and whitening layers, and we
summarize our results together with the previously known results on Camellia
in Table 1.

The cryptanalytic results of [6] in Table 1 come from an early version, not the
published version, so we mark them with “†”. This is because there are some
mistakes in the published version. In Step 3 of the 14-round attack for camellia-
256 in [6], the authors wrote: “Finally, for every remaining pair of plaintexts we
can get the first bytes of their intermediate values just after Round 2.” Byte
1,3,4,6,7,8 of K2 should be known for calculating the first byte just after round
2. However, only byte 1,2,3,5,8 are guessed in the attack, whereas byte 4,6,7 are
unknown. There are similar mistakes in the other attacks in [6].

This paper is organized as follows. In Section 2, we give a brief description
of Camellia. In Section 3, we describe the 8-round impossible differential and
some properties of Camellia which are used in our attacks. Then in Section 4,
we present our impossible differential attacks on 12-round Camellia-128 and 16-
round Camellia-256 respectively. Finally, in Section 5 we summarize this paper.
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Table 1. Summary of known cryptanalytic results on Camellia

Cipher # of FL/FL−1 Attack Type Data Time Source
Rounds Complexity Complexity

Camellia-128 8 × Truncated DC 283.6 255.6 [2]
9 × Collision Attack 2113.6 2121 [12]
9 × Square Attack 266 284.8 [11]
11 × Impossible DC 2120 283.4 [6]†
12 × Impossible DC 265 2111.5 Sec. 4.1

Camellia-192/256 11
√

Higher Order DC 293 2256 [4]
12 × Linear Attack 2119 2247 [14]
12 × Impossible DC 2120 2181 [5]
12 × Square Attack 266 2249.6 [11]
13 × Impossible DC 2120 2211.7 [6]†
16 × Impossible DC 289 2222.1 Sec. 4.2

2 Description of Camellia

The overall structure of Camellia is a variant of Feistel structure, with the
FL/FL−1 functions inserted at every 6 rounds. Before the first round and after
the last round, there are pre- and post- whitening layers which employ bitwise
exclusive-OR operations with 128-bit whitening subkeys respectively. In this pa-
per, we will only consider Camellia without FL/FL−1 functions and whitening
layers, namely the simplified variant of Camellia.

Let Lr−1 and Rr−1 be the left and the right halves of the r-th round input,
and Kr be the r-th round subkey respectively. Then the r-th round of Camellia
can be expressed as follows.

Lr = Rr−1 ⊕ F (Lr−1 ⊕ Kr),
Rr = Lr−1.

Here the round function of Camellia is F = P ◦ S, and the transformations S
and P are defined as follows.

S : (F 8
2 )8 −→ (F 8

2 )8

x1 |x2 |x3 |x4 |x5 |x6 |x7 |x8 −→ y1 | y2 | y3 | y4 | y5 | y6 | y7 | y8
y1 = s1(x1), y2 = s2(x2), y3 = s3(x3), y4 = s4(x4),
y5 = s2(x5), y6 = s3(x6), y7 = s4(x7), y8 = s1(x8).

where s1, s2, s3 and s4 are four 8 × 8 S-boxes.

P : (F 8
2 )8 −→ (F 8

2 )8

y1 | y2 | y3 | y4 | y5 | y6 | y7 | y8 −→ z1 | z2 | z3 | z4 | z5 | z6 | z7 | z8
z1 = y1 ⊕ y3 ⊕ y4 ⊕ y6 ⊕ y7 ⊕ y8, z5 = y1 ⊕ y2 ⊕ y6 ⊕ y7 ⊕ y8,
z2 = y1 ⊕ y2 ⊕ y4 ⊕ y5 ⊕ y7 ⊕ y8, z6 = y2 ⊕ y3 ⊕ y5 ⊕ y7 ⊕ y8,
z3 = y1 ⊕ y2 ⊕ y3 ⊕ y5 ⊕ y6 ⊕ y8, z7 = y3 ⊕ y4 ⊕ y5 ⊕ y6 ⊕ y8,
z4 = y2 ⊕ y3 ⊕ y4 ⊕ y5 ⊕ y6 ⊕ y7, z8 = y1 ⊕ y4 ⊕ y5 ⊕ y6 ⊕ y7.
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Key Scheduling Algorithm of Camellia. First of all, two 128-bit variables
KL and KR are generated from the master key K. For Camellia-128, the 128-bit
key K is used as KL, and KR is 0. For Camellia-192, the left 128 bits of the key
K is used as KL, and concatenation of the right 64-bit of K and the complement
of the right 64-bit of K is used as KR. For Camellia-256, the left 128-bit of the
key K is used as KL and the right 128-bit of K is used as KR. Then two 128-bit
variables KA and KB are generated from KL and KR, but note that KB is used
only if the length of the master key is 192 or 256 bits. Finally, the 64-bit round
subkeys Kr are generated by rotating (KL, KR, KA, KB) and then taking the left
half or the right half of them. More details are shown in [1], and in the following
we only present some observations which are useful for our later attacks.

For Camellia-128, the round subkeys Kr(1 ≤ r ≤ 18) are generated by rotating
(KL, KA), and we can get the following expressions:

K1 = (KA ≪ 0)L (64), K2 = (KA ≪ 0)R (64),
K11 = (KA ≪ 60)L (64), K12 = (KA ≪ 60)R (64).

For Camellia-192/256, the round subkeys Kr(1 ≤ r ≤ 24) are generated by
rotating (KL, KR, KA, KB), and we can get the following expressions:

K1 = (KB ≪ 0)L (64), K2 = (KB ≪ 0)R (64),
K3 = (KR ≪ 15)L (64), K4 = (KR ≪ 15)R (64),

K13 = (KR ≪ 60)L (64), K14 = (KR ≪ 60)R (64),
K15 = (KB ≪ 60)L (64), K16 = (KB ≪ 60)R (64).

3 Preliminaries

3.1 Notations

Camellia is a byte-oriented block cipher, in which the 128-bit intermediate
variables are represented as 16 bytes and the 64-bit round subkeys are rep-
resented as 8 bytes. The subkey of the r-th round is represented as Kr =
(kr,1, kr,2, kr,3, kr,4, kr,5, kr,6, kr,7, kr,8). Furthermore, kr,1[i ∼ j](i, j = 1, 2, . . . ,
8, i ≤ j) denotes the i-th to the j-th bits of kr,1.

For a pair of plaintexts (L0, R0) and (L∗
0, R

∗
0), we denote the plaintext differ-

ence as (ΔL0, ΔR0), where ΔL0 = L0⊕L∗
0, ΔR0 = R0⊕R∗

0. (ΔLr, ΔRr) denotes
the output difference of the r-th round. ΔLr and ΔRr can be represented as 8
bytes, such as ΔLr = (a, 0, 0, 0, 0, 0, 0, 0) and ΔRr = (?, ?, ?, 0, ?, 0, 0, ?), where
0 denotes a zero byte difference, a denotes a nonzero byte difference and the
question mark ? denotes an unknown byte difference(two bytes marked with ?
may be different).

3.2 The 8-Round Impossible Differential of Camellia

In [5] Wu et al presented an impossible differential attack on 12-round Camellia-
192/256, which was based on the following 8-round impossible differential.

(0, 0, 0, 0, 0, 0, 0, 0, a, 0, 0, 0, 0, 0, 0, 0) �→ (h, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).
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where a and h are arbitrary nonzero bytes. Refer to [5] for more details, and
the 8-round impossible differential is also illustrated in Fig. 1. In this paper,
we will exploit this 8-round impossible differential and improve the impossible
differential cryptanalysis of Camellia up to 12-round Camellia-128 and 16-round
Camellia-256.

�KS � P �
�
ΔR0 = (a, 0, 0, 0, 0, 0, 0, 0)ΔL0 = (0, 0, 0, 0, 0, 0, 0, 0)

⊕

������������

������������
ΔL1 = (a, 0, 0, 0, 0, 0, 0, 0)

�KS � P �
�
⊕

������������

������������

(b, 0, 0, 0, 0, 0, 0, 0)
(b, b, b, 0, b, 0, 0, b)

ΔL2 = (b, b, b, 0, b, 0, 0, b)
�KS � P �

�
⊕

������������

������������

(b1, b2, b3, 0, b5, 0, 0, b8)
(c1, c2, c3, c4, c5, c6, c7, c8)

ΔL3 = (a ⊕ c1, c2, c3,

c4, c5, c6, c7, c8) �KS � P �
�
⊕

������������

������������
ΔL4 = (h ⊕ d1, d2, d3,

d4, d5, d6, d7, d8) �KS � P �
�
⊕

������������

������������

P−1(X) = (b1 ⊕ a, b2 ⊕ a,

b3 ⊕ a, a, b5 ⊕ a, 0, 0, b8 ⊕ a)

X = (c1 ⊕ a ⊕ f, c2 ⊕ f,

c3 ⊕ f, c4, c5 ⊕ f, c6, c7, c8 ⊕ f)

d6 = d7 = 0, hence e2 = 0
� Contradiction !

e2 �= 0
ΔL5 = (f, f, f, 0, f, 0, 0, f)

�KS � P �
�
⊕

������������

������������

(e1, e2, e3, e4, e5, e6, e7, e8)
(d1, d2, d3, d4, d5, d6, d7, d8)

ΔL6 = (h, 0, 0, 0, 0, 0, 0, 0)
�KS � P �

�
⊕

������������

������������

(f, 0, 0, 0, 0, 0, 0, 0)
(f, f, f, 0, f, 0, 0, f)

ΔL7 = (0, 0, 0, 0, 0, 0, 0, 0)
�KS � P �

�
⊕

������������

������������
ΔL8 = (h, 0, 0, 0, 0, 0, 0, 0) ΔR8 = (0, 0, 0, 0, 0, 0, 0, 0)

Fig. 1. 8-Round Impossible Differential of Camellia

3.3 Some Properties of Camellia

In this subsection, we exploit some properties of the key scheduling algorithm
of Camellia-128 and Camellia-192/256, and present the following observations
of the relations between round subkeys.
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For Camellia-128, according to its key scheduling algorithm, we know that:

K1 = (KA ≪ 0)L, K11 = (KA ≪ 60)L,
K2 = (KA ≪ 0)R, K12 = (KA ≪ 60)R.

Therefore, the five bytes of K1 and K12 at positions (1, 2, 3, 5, 8) can be expressed
as follows, respectively.

k1, 1 = KA [1 ∼ 8], k12, 1 = KA [125 ∼ 128, 1 ∼ 4],
k1, 2 = KA [9 ∼ 16], k12, 2 = KA [5 ∼ 12],
k1, 3 = KA [17 ∼ 24], k12, 3 = KA [13 ∼ 20],
k1, 5 = KA [33 ∼ 40], k12, 5 = KA [29 ∼ 36],
k1, 8 = KA [57 ∼ 64], k12, 8 = KA [53 ∼ 60].

Furthermore, the first bytes of K2 and K11 are expressed as follows, respectively.

k2, 1 = KA [65 ∼ 72], k11, 1 = KA [61 ∼ 68].

According to the above expressions, we can obtain the following property of
Camellia-128:

Property 1. For the round subkeys of Camellia-128:

1) (k1,1, k1,2, k1,3, k1,5, k1,8) and (k12,1, k12,2, k12,3, k12,5, k12,8) have 28 com-
mon bits.
2) If (k1,1, k1,2, k1,3, k1,5, k1,8) and (k12,1, k12,2, k12,3, k12,5, k12,8) are known,
there remains only 16 unknown bits of K1, namely (k1,4[1 ∼ 4], k1,6, k1,7[1 ∼ 4]).
3) If K1 and (k12,1, k12,2, k12,3, k12,5, k12,8) are known, the value of K12 is de-
termined.
4) k2,1[1 ∼ 4] = k11,1[5 ∼ 8], k11,1[1 ∼ 4] = k1,8[5 ∼ 8].

For Camellia-192/256, according to the key scheduling algorithm, we notice that
the round subkeys of Rounds 1, 2, 15 and 16 are all determined by the interme-
diate variable KB, and the expressions are as follows.

K1 = (KB ≪ 0)L, K15 = (KB ≪ 60)L,
K2 = (KB ≪ 0)R, K16 = (KB ≪ 60)R.

Similarly, we can obtain the following properties of Camellia-192/256.

Property 2. For the round subkeys of Camellia-192/256:

1) If the value of K1 is known, then there remains only 4 unknown bits of K16.
2) If the value of K1 and K16 are known, there remains 60 unknown bits of K2.
3) If the value of K1 and K2 are known, then the value of K15 is determined.

Furthermore, according to the key scheduling algorithm of Camellia-192/256, the
round subkeys of Rounds 3, 4, 13 and 14 are all determined by the intermediate
variable KR, and the expressions are as follows.

K3 = (KR ≪ 15)L, K13 = (KR ≪ 60)L,
K4 = (KR ≪ 15)R, K14 = (KR ≪ 60)R.
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Based on these expressions, we can get the following relations between subkey
bytes.

k14,1 = k 4,6[ 6 ∼ 8 ] || k 4,7[ 1 ∼ 5 ],
k14,2 = k 4,7[ 6 ∼ 8 ] || k 4,8[ 1 ∼ 5 ],
k14,3 = k 4,8[ 6 ∼ 8 ] || k 3,1[ 1 ∼ 5 ],
k14,5 = k 3,2[ 6 ∼ 8 ] || k 3,3[ 1 ∼ 5 ],
k14,8 = k 3,5[ 6 ∼ 8 ] || k 3,6[ 1 ∼ 5 ],
k13,1 = k 3,6[ 6 ∼ 8 ] || k 3,7[ 1 ∼ 5 ].

Therefore, we can obtain another property of Camellia-192/256.

Property 3. For the round subkeys of Camellia-192/256:

1) (k3,1, k3,2, k3,3, k3,5, k3,8) and (k14,1, k14,2, k14,3, k14,5, k14,8) have 16 com-
mon bits.
2) If (k3,1, k3,2, k3,3, k3,5, k3,8) and (k14,1, k14,2, k14,3, k14,5, k14,8) are known,
there remains only 19 unknown bits of K3, namely (k 3,4, k 3,6[ 6 ∼ 8 ], k 3,7).
3) If K3 and (k14,1, k14,2, k14,3, k14,5, k14,8) are known, the value of K14 is de-
termined.
4) k13,1 = k 3,6[ 6 ∼ 8 ] || k 3,7[ 1 ∼ 5 ].

Finally, according to the analysis in [6], the linear diffusion function P of Camel-
lia satisfies the following property.

Property 4. [6] For X, X∗ ∈ (F 8
2 )8, if there exists an h such that P−1(X ⊕

X∗ ⊕ (h, 0, 0, 0, 0, 0, 0, 0)) has the form of (?, ?, ?, 0, ?, 0, 0, ?), then there is only
one possible value of h.

4 Impossible Differential Cryptanalysis of
Reduced-Round Camellia

4.1 Impossible Differential Attack on 12-Round Camellia-128

We set the 8-round impossible differential at Rounds 3 to 10, and present an
impossible differential attack on 12-round Camellia-128, which is illustrated in
Fig. 2. The first step of the attack is data collection, and we only choose the pairs
whose output differences of Round 2 satisfy the above impossible differential
distinguisher. According to the round function of Camellia, we can know that
the required plaintext difference must have the following form:

ΔL0 = (u, u, u, 0, u, 0, 0, u),
ΔR0 = P (?, ?, ?, 0, ?, 0, 0, ?) ⊕ (?, 0, 0, 0, 0, 0, 0, 0).

Then by constructing appropriate plaintext structures, we can obtain plaintext
pairs with the required difference, and this technique helps us reduce the data
complexity.

The second step of the attack is data filtering. Based on certain property of
ciphertext difference, we can filter out part of the wrong pairs and this may help
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� K1S � P � �ΔR0 = P (?, ?, ?, 0, ?, 0, 0, ?)
⊕(?, 0, 0, 0, 0, 0, 0, 0)

ΔL0 = (u, u, u, 0, u, 0, 0, u)
⊕

������������

������������
ΔL1 = (a, 0, 0, 0, 0, 0, 0, 0)

� K2S � P � �⊕
������������

������������
ΔL2 = (0, 0, 0, 0, 0, 0, 0, 0) ΔR2 = (a, 0, 0, 0, 0, 0, 0, 0)

8-round impossible differential

ΔL10 = (h, 0, 0, 0, 0, 0, 0, 0) ΔR10 = (0, 0, 0, 0, 0, 0, 0, 0)�K11S � P � �⊕
������������
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������������

������������
� �

ΔL12 ΔR12 = (g, g, g, 0, g, 0, 0, g)

Fig. 2. Impossible Differential Attack on 12-Round Camellia-128

us reduce the time complexity of the following computation. Note that all the
useful ciphertext pairs must satisfy the following condition:

ΔL10 = (h, 0, 0, 0, 0, 0, 0, 0), ΔR10 = (0, 0, 0, 0, 0, 0, 0, 0).

where h denotes a nonzero byte, namely h has 255 possible values. Moreover,
for every S-box of Camellia, when the input difference of S-box is nonzero, there
are at most 27 possible output differences. Therefore, there are at most 255× 27

possible output differences (ΔL11, ΔR11) after Round 11. Considering that there
are 5 nonzero bytes of ΔL11, namely bytes at positions (1,2,3,5,8), then there
are at most 255×27×(27)5 ≈ 250 possible output differences (ΔL12, ΔR12) after
Round 12. Therefore, in the data filtering step, the probability that a random
pair remains after the test is about 2−78 = 250 × 2−128.

The third step of the attack is key recovery. According to Property 4, we can
compute the output differences of S-boxes used in Round 1 and Round 12. Then
by utilizing the difference distribution tables of S-boxes, we can recover 5 bytes
(k1,1, k1,2, k1,3, k1,5, k1,8) of K1 and 5 bytes (k12,1, k12,2, k12,3, k12,5, k12,8) of K12.
Furthermore, the corresponding pairs must be discarded if the relations between
the subkeys contradict with Property 1-1. Lastly, we recover the correct key by
discarding all the wrong subkeys using the impossible differential. In this step,
we employ the divide-and-conquer technique when decrypting with the subkey
guesses value and this also helps us reduce the time complexity of the attack.
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In the following, we describe the attack procedure in detail.

1. Data Collection: Choose 2m structures and each structure is as follows:

L0 = (x, x, x, a4, x, a6, a7, x),
R0 = P (y1, y2, y3, b4, y5, b6, b7, y8) ⊕ (y, c2, c3, c4, c5, c6, c7, c8).

where (ai, bj , cl) are fixed constants, and the 7 bytes (x, y1, y2, y3, y5, y8, y)
take all possible values. Therefore, each structure contains 256 plaintexts,
which can generate about 256 × 256/2 = 2111 plaintext pairs. Hence 2m

structures can generate about 2111+m plaintext pairs.
2. Data Filtering: According to the above analysis of the ciphertext differences,

there are 250 possible ciphertext differences. Therefore, after this test the
expected number of remaining pairs is about 2111+m × 250 × 2−128 = 233+m.

3. For each remaining pair (L0||R0, L12||R12) and (L∗
0||R∗

0, L∗
12||R∗

12), do as
follows:
(a) Compute P−1(L12 ⊕ L∗

12 ⊕ (h, 0, ..., 0)) for all the 255 possible values
of h. According to Property 4, we can obtain only one value of h such
that it has the form (?, ?, ?, 0, ?, 0, 0, ?). Similarly, we can compute the
only one value of a such that P−1(R0 ⊕ R∗

0 ⊕ (a, 0, ..., 0)) has the form
(?, ?, ?, 0, ?, 0, 0, ?).

(b) Using the obtained input and output differences of the S-box in Round
1 and Round 12, together with the value of L0 and R12, we can calculate
subkey bytes (k1,1, k1,2, k1,3, k1,5, k1,8) and (k12,1, k12,2, k12,3, k12,5, k12,8)
by searching the difference distribution tables of S-boxes. Check if the
deduced subkey bytes satisfy the 28-bit condition suggested by Property
1-1, and if this is not the case, discard the pair and return to Step 3 to try
another pair. After this test, there remains about 233+m × 2−28 = 25+m

pairs.
(c) For every guess of the 16 unknown bits (k1,4[1 ∼ 4], k1,6, k1,7[1 ∼ 4]), do

as follows. Note that according to Property 1-3, we can determine the
value of K12 now.
i. For every remaining pairs, encrypt the first round to get (L1, L∗

1)
using K1, and decrypt the last round to get (R11, R∗

11) using K12.
ii. Utilizing the difference distribution tables of S-boxes, we can cal-

culate the value of k2,1 using (L1, L
∗
1), a and P−1(L0 ⊕ L∗

0); Sim-
ilarly we can calculate the value of k11,1 using (R11, R

∗
11), h and

P−1(R12 ⊕ R∗
12).

iii. Check if the subkey bytes satisfy the following equation suggested
by Property 1-4.

k11,1 = k 1,8[5 ∼ 8]||k 2,1[1 ∼ 4].

If there exists a plaintext pair that passes this test, then discard the
76-bit subkey guess value (k1,1, k1,2, k1,3, k1,5, k1,8, k12,1, k12,2, k12,3,
k12,5, k12,8, k1,4[1 ∼ 4], k1,6, k1,7[1 ∼ 4], k2,1, k11,1), as this is an im-
possible differential and the subkey guess satisfying it must be wrong.
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Furthermore, the probability that a subkey guess may remain after
this test is about 1 − 2−8. We choose m = 9, hence the number of
remaining wrong subkey is about 276(1−2−8)2

5+m ≈ 276 ×e−26
< 1.

The data complexity of the attack is about 256×29 = 265 CP, and the time com-
plexity of the attack is estimated as follows. The time complexity of
Step 1 is 265 encryptions, and the memory spaces needed to store the plain-
texts and ciphertexts are about 266 blocks, where one block means 128 bits. In
Step 2, choosing the qualified pairs requires about 265×250 = 2115 MA (Memory
Access), and the memory spaces needed to store the possible ciphertext differ-
ences are about 250 blocks. In Step 3, the time complexity of Step (a) is about
242 × 2/12 < 240 encryptions; the time complexity of Step (b) is less than 239

encryptions, since the calculation of key using difference distribution table of
S-box is only about one F computation; and the time complexity of Step (c) is
about 214 × 216 × 2/12 < 228 encryptions.

As a rule, one MA is equivalent to about one-round encryption of Camellia.
Therefore, the total data complexity of the attack is 265 CP, and the time com-
plexity of the attack is less than 2111.5 encryptions, and the memory complexity
of the attack is about 266 blocks.

4.2 Impossible Differential Attack on 16-Round Camellia-256

We set the 8-round impossible differential at Rounds 5 to 12, and present an
impossible differential attack on 16-round Camellia-256, which is illustrated in
Fig. 3. The first step of the attack is data collection, and we also exploit the
plaintext structure to reduce data complexity.

The second step of the attack is data filtering. In this step we try to filter out
part of the wrong pairs whose plaintext and ciphertext differences can not satisfy
the impossible differential, so as to reduce the computation workload for later
analysis. According to the 8-round impossible differential, the output differences
of a useful pair after Round 4 and Round 12 must be as follows, respectively.

ΔL4 = (0, 0, 0, 0, 0, 0, 0, 0), ΔR4 = (a, 0, 0, 0, 0, 0, 0, 0),

ΔL12 = (h, 0, 0, 0, 0, 0, 0, 0), ΔR12 = (0, 0, 0, 0, 0, 0, 0, 0).

where a and h are nonzero bytes. Therefore, for a useful pair, the left half
of output difference after Round 1 must have the form P (?, ?, ?, 0, ?, 0, 0, ?) ⊕
(?, 0, 0, 0, 0, 0, 0, 0), and the left half of the output difference after Round 2 must
have the form (u, u, u, 0, u, 0, 0, u). Similarly, the right half of the input difference
before Round 16 must have the form P (?, ?, ?, 0, ?, 0, 0, ?) ⊕ (?, 0, 0, 0, 0, 0, 0, 0),
and the right half of the input difference before Round 15 must have the form
(u, u, u, 0, u, 0, 0, u). Hereafter, we denote the set of differences with the form
P (?, ?, ?, 0, ?, 0, 0, ?) ⊕ (?, 0, 0, 0, 0, 0, 0, 0) as Π1, and the set of differences with
the form (u, u, u, 0, u, 0, 0, u) as Π2. Obviously, there are 248 elements in the set
Π1 and 28 elements in the set Π2, namely #{Π1} = 248 and #{Π2} = 28.
Therefore, the probability that a random plaintext pair is a useful pair for our
analysis is about 2−144 = 248

264 × 248

264 × 28

264 × 28

264 .
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Fig. 3. Impossible Differential Attack on 16-Round Camellia-256

The third step of the attack is subkey guessing and sieving, and the divide-
and-conquer technique is also used to reduce the time complexity. First of all, we
need to guess part of the round subkeys to encrypt and decrypt the first and last
two rounds, respectively. Then based on Property 4, we can compute the output
differences of S-boxes used in Round 3 and Round 14. Utilizing the difference
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distribution tables of the S-boxes, we can calculate 5 bytes (k3,1, k3,2, k3,3, k3,5,
k3,8) of K3 and 5 bytes (k14,1, k14,2, k14,3, k14,5, k14,8) of K14 , respectively. Then
we use Property 2 and Property 3 to filter out the wrong pairs. Lastly, using
the remaining pairs we can discard all the wrong subkey guesses based on the
impossible differential, and thereby recover the correct key.

In the following, we describe the attack procedure in detail.

1. Data Collection: Choose 289 plaintexts as follows:

L0 = (x1, ..., x8), R0 = (y1, ..., y8)

where xi(1 ≤ i ≤ 8) and y1 all take 64 arbitrary values chosen from F 8
2 , and

yj(1 < j ≤ 8) all take 32 arbitrary values chosen from F 8
2 . This way we can

get about 289 ·289/2 ≈ 2177 plaintext pairs, and these pairs need to be stored
for later analysis which requires about 2178 blocks memory.

2. For every guess of K1, do the followings:
(a) Encrypt the first round for each of the 289 plaintexts, and check if the

output difference F (L0, K1)⊕F (L∗
0, K1)⊕ R0 ⊕R∗

0 satisfies the form of
P (?, ?, ?, 0, ?, 0, 0, ?) ⊕ (?, 0, 0, 0, 0, 0, 0, 0). If this is not the case, discard
the corresponding plaintext pair. After this test, there remains about
2177 × 248

264 = 2161 pairs.
(b) According to Property 2-1, K16 has 60 common bits with K1, and thus

there are only 24 possible values of K16. For every possible value of K16,
decrypt the last round for each of the 289 plaintexts. Check if the input
difference F (R16, K16) ⊕ F (R∗

16, K16) ⊕ L16 ⊕ L∗
16 of Round 16 satisfies

the form of P (?, ?, ?, 0, ?, 0, 0, ?) ⊕ (?, 0, 0, 0, 0, 0, 0, 0). If this is not the
case, discard the corresponding pair. After this test, there remains about
2161 × 248

264 = 2145 pairs.
(c) For every guess of K2, encrypt the second round for the 289 plaintexts.

Note that there are only 60 unknown bits of K2 after guessing the val-
ues of K1 and K16 according to Property 2-2. Check if F (L1, K2) ⊕
F (L∗

1, K2)⊕R1⊕R∗
1 has the form of (u, u, u, 0, u, 0, 0, u). If this is not the

case, discard the pair. After this test there remains about 2145× 28

264 = 289

pairs.
(d) Decrypt Round 15 for each of the 289 pairs using K15 which can be de-

duced by K1 and K2. Check if the difference F (R15, K15)⊕F (R∗
15, K15)⊕

L15 ⊕ L∗
15 satisfies the form (u, u, u, 0, u, 0, 0, u). Discard the unsatisfied

pairs, and after this step there remains about 289 × 28

264 = 233 pairs.
3. For each of the 2128 possible candidates of (K1, K2, K15, K16), and for each

of the 233 remained pairs (L0||R0, L16||R16) and (L∗
0||R∗

0, L
∗
16||R∗

16), do as
follows:
(a) Encrypt the first two rounds and decrypt the last two rounds to get

(L2||R2, L14||R14) and (L∗
2||R∗

2, L
∗
14||R∗

14).
(b) Compute P−1(L14 ⊕ L∗

14 ⊕ (h, 0, ..., 0)) for all the 255 possible values
of h. According to Property 4, we can obtain only one value of h such
that it has the form (?, ?, ?, 0, ?, 0, 0, ?). Similarly, we can compute the



454 W. Wu, L. Zhang, and W. Zhang

only one value of a such that P−1(R2 ⊕ R∗
2 ⊕ (a, 0, ..., 0)) has the form

(?, ?, ?, 0, ?, 0, 0, ?).
(c) Using the obtained input and output differences of the S-box in Round

2 and Round 14, together with the value of L2 and R14, we can calculate
subkey bytes (k3,1, k3,2, k3,3, k3,5, k3,8) and (k14,1, k14,2, k14,3, k14,5, k14,8)
by searching the difference distribution tables of S-boxes. Check if the
deduced subkey bytes satisfy the 16-bit condition suggested by Property
3-1, and if this is not the case, discard the pair and return to Step 3 to
try another pair. After this test, there remains about 233 × 2−16 = 217

pairs.
(d) For each possible value of the 19 unknown bits (k3,4, k3,6[6 ∼ 8], k3,7) of

K3, do as follows. Note that according to Property 3-3, we can know the
value of K14 now.
i. For every remaining pairs, encrypt Round 3 using K3 and decrypt

Round 14 using K14 to get (L3, L12) and (L∗
3, L

∗
12).

ii. Utilizing the difference distribution tables of S-boxes, calculate the
value of k4,1 using (L3, L

∗
3), a and P−1(L2 ⊕L∗

2); calculate the value
of k13,1 using (L12, L

∗
12), h and P−1(L13 ⊕ L∗

13).
iii. Check if the subkey bytes satisfy the following equation suggested

by Property 3-4.

k13,1 = k 3,6[ 6 ∼ 8 ] || k 3,7[ 1 ∼ 5 ].

If there exists a plaintext pair that passes this test, then discard
the 221(= 128 + 64 + 19) bits subkey guess(KB, K3, K14), as this is
an impossible differential and the subkey guess satisfies it must be
wrong. Furthermore, the probability that a subkey guess may remain
is about 1−2−8, and the number of remaining wrong subkey is about
2221(1 − 2−8)2

17 ≈ 2221 × e−29
< 1.

The data complexity of the attack is about 289 CP, and the time complexity
of the attack can be estimated as follows. Step 2(a) has a time complexity of
about 264 × 289 × 2−4 = 2149, and needs about 248 × 64 bits memory spaces
to store the elements in the set Π1, and then requires about 264 × 289 × 248 =
2201MA(Memory Access) for testing the qualified pairs. Step 2(b) has a time
complexity of about 264 × 24 × 289 × 2−4 = 2153, and requires about 264 × 24 ×
289 × 248 = 2205MA(Memory Access) for testing the qualified pairs. Step 2(c)
has a time complexity of about 264 × 264 × 289 × 2−4 = 2213, and needs about
264×264×289×28 = 2225MA for testing the qualified pairs. Step 2(d) has a time
complexity of about 264 × 264 × 289 × 2−4 = 2213 encryptions and 2225MA. In
Step 3, the time complexity of Step 3(a) is about 2128×233×2/4 = 2160; the time
complexity of Step 3(b) is about 2128×233×2/16 = 2158; the time complexity of
Step 3(c) is less than 2158 encryptions, since the time to calculate subkey using
difference distribution table of S-box is only about one F computation; and the
time complexity of Step 3(d) is about 2128 ×219×217×2/16 < 2151 encryptions.

Therefore, the total data complexity of the attack is 289 CP, and the time com-
plexity of the attack is less than 2222.1 encryptions, and the memory complexity
of the attack is about 2178 blocks.
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5 Conclusion

In [5] Wu et al constructed some 8-round impossible differentials of Camellia,
and based on it they successfully attacked Camellia reduced up to 12 rounds
using impossible differential cryptanalysis. Then in [6] Lu et al observed some
new properties of the linear diffusion function P , and by using the same 8-round
impossible differential they improved the impossible differential cryptanalysis of
Camellia. However, all of these impossible differential attacks on Camellia have
not taken the key scheduling algorithm into account. In this paper, we present
some observations of the relations between round subkeys of Camellia, and by
taking advantage of these relations and some novel techniques (such as differen-
tial cryptanalysis, divide-and-conquer etc.), we improve the impossible differen-
tial attack on Camellia up to 12-round Camellia-128 and 16-round Camellia-256.
These results are better than any previously published cryptanalytic results on
Camellia without the FL/FL−1 functions and whitening layers. Note that our
method used in this paper does not apply to Camellia-192 effectively, since the
relations between round subkeys of Camellia-192 are difficult to exploit in the
attack process.
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