

Lecture Notes in Artificial Intelligence 5774
Edited by R. Goebel, J. Siekmann, and W. Wahlster

Subseries of Lecture Notes in Computer Science

Lars Braubach Wiebe van der Hoek
Paolo Petta Alexander Pokahr (Eds.)

Multiagent System
Technologies

7th German Conference, MATES 2009
Hamburg, Germany, September 9-11, 2009
Proceedings

13

Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jörg Siekmann, University of Saarland, Saarbrücken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbrücken, Germany

Volume Editors

Lars Braubach
Alexander Pokahr
University of Hamburg
Distributed Systems and Information Systems
Hamburg, Germany
E-mail: {braubach, pokahr}@informatik.uni-hamburg.de

Wiebe van der Hoek
University of Liverpool
Agent Applications, Research, and Technology (Agent ART)
Liverpool, UK
E-mail: Wiebe.Van-Der-Hoek@liverpool.ac.uk

Paolo Petta
Austrian Research Institute for Artificial Intelligence (OFAI)
Intelligent Software Agents and New Media Group
Vienna, Austria
E-mail: paolo.petta@ofai.at

Library of Congress Control Number: 2009933194

CR Subject Classification (1998): I.2, I.2.11, C.1.4, C.2.1, C.2.4, D.2, D.3, D.1.3

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-642-04142-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-04142-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12753154 06/3180 5 4 3 2 1 0

Preface

The seventh German Conference on Multi-Agent System Technologies (MATES
2009) took place in Hamburg, Germany, during September 9–11, 2009, and was
colocated with the tenth International Workshop on Computational Logic in
Multi-Agent Systems (CLIMA X) and the Fifth International Workshop on
Modelling of Objects, Components, and Agents (MOCA 2009). MATES 2009
was organized by the German “Gesellschaft für Informatik” (GI) Special Interest
Groups on “Distributed Artificial Intelligence” and “Communication and Dis-
tributed Systems” in cooperation with the Steering Committee of MATES.

One main aim of the MATES conference series consists in bringing together
researchers from around the world and providing a fruitful discussion basis for
exchanging ideas and sharing the newest scientific results. Since its inception in
2003, MATES has been colocated with mainstream software engineering confer-
ences like the Net.ObjectDays as well as with the German Artificial Intelligence
Conference (KI) and has thus strived to address the full range of agent research
topics ranging from practical applications and tools for agent technology to the
theoretical foundations of multi-agent systems. In addition to the broad range of
topics covered by MATES, in recent years special areas of interest (hot topics)
within the field of multi-agent systems have also been identified and have influ-
enced the conference editions. In 2009 the focus was laid on complex, adaptive
systems and phenomena of self-organization.

The international Program Committee for MATES 2009 carefully selected
among 44 submissions from all over the world 14 to be presented as full papers, 10
to be presented as short papers and finally also five exhibition papers. Besides the
regular paper presentations, the exhibition papers also included a live software
demonstration at the conference venue. Furthermore, the program featured an
invited talk by the distinguished speaker Birgit Burmeister (Daimler AG) as well
as a doctoral colloquium and mentoring event.

Finally, as Chairs, and in the name of all members of the Steering Com-
mittee, we would like to thank all authors of submitted papers and the invited
speaker for their contributions, all members of the Program Committee as well
as additional reviewers for their careful, critical and constructive reviews, and
the local conference organizers including student assistants as well as all others
involved in helping to make MATES 2009 a success.

July 2009 Lars Braubach
Paolo Petta

Wiebe van der Hoek
Alexander Pokahr

Winfried Lamersdorf

Organization

General Chair

Winfried Lamersdorf Universität Hamburg, Germany

Program Co-chairs

Lars Braubach Universität Hamburg, Germany
Wiebe van der Hoek University of Liverpool, UK
Paolo Petta OFAI, Austria
Alexander Pokahr Universität Hamburg, Germany

Doctoral Consortium Chair

Ingo J. Timm Goethe-Universität Frankfurt, Germany

Steering Committee

Hans-Dieter Burkhard Humboldt-Universität zu Berlin, Germany
Stefan Kirn Universität Hohenheim, Germany
Matthias Klusch DFKI, Germany
Jörg P. Müller Technische Universität Clausthal, Germany
Rainer Unland Universität Duisburg-Essen, Germany
Gerhard Weiss SCCH Hagenberg, Austria

Program Committee

Klaus-Dieter Althoff Universität Hildesheim, Germany
Elisabeth André Universität Augsburg, Germany
Bernhard Bauer Universität Augsburg, Germany
Federico Bergenti Università degli Studi di Parma, Italy
Michael Berger Docuware AG, Germany
Ralph Bergmann Universität Trier, Germany
Rafael Bordini Federal University of Rio Grande do Sul, Brazil
Hans-Dieter Burkhard Humboldt-Universität zu Berlin, Germany
Keith Clark Imperial College, UK
Mehdi Dastani Universiteit Utrecht, The Netherlands
Jörg Denzinger University of Calgary, Canada
Jürgen Dix Technische Universität Clausthal, Germany
Torsten Eymann Universität Bayreuth, Germany
Klaus Fischer DFKI, Germany

VIII Organization

Maria Ganzha Elblag University of Humanities and Economy,
Poland

Mike Georgeff Monash University, Australia
Paolo Giorgini Università degli Studi di Trento, Italy
Jos van Hillegersberg Universiteit Twente, The Netherlands
Benjamin Hirsch Technische Universität Berlin, Germany
Michael Huhns University of South Carolina, USA
Catholijn Jonker Delft University of Technology, The Netherlands
Stefan Kirn Universität Hohenheim, Germany
Franziska Klügl Örebro University, Sweden
Matthias Klusch DFKI, Germany
Daniel Kudenko University of York, UK
Gabriela Lindemann Humboldt Universität zu Berlin, Germany
Stefano Lodi Università di Bologna, Italy
Beatriz Lopez Universitat de Girona, Spain
Viviana Mascardi Università degli Studi di Genova, Italy
Mirjam Minor Universität Trier, Germany
Heinz-Jürgen Müller Duale Hochschule Baden-Württemberg

Mannheim, Germany
Daniel Moldt Universität Hamburg, Germany
Jörg P. Müller Technische Universität Clausthal, Germany
Andrea Omicini Università di Bologna, Italy
Marcin Paprzycki Polish Academy of Sciences, Poland
Adrian Paschke Freie Universität Berlin, Germany
Michal Pechoucek Czech Technical University in Prague,

Czech Republic
Wolfgang Renz Hochschule für Angewandte Wissenschaften

Hamburg, Germany
Alessandro Ricci Università di Bologna, Italy
Abdel Badeh Salem Ain Shams University, Egypt
Von-Wun Soo National Tsing-hua University, Taiwan
Amal El Fallah Seghrouchni University Pierre and Marie Curie, France
Ingo J. Timm Goethe-Universität Frankfurt, Germany
Adelinde Uhrmacher Universität Rostock, Germany
Rainer Unland Universität Duisburg-Essen, Germany
Laszlo Zsolt Varga MTA SZTAKI, Hungary
Danny Weyns Katholieke Universiteit Leuven, The Netherlands
Cees Witteveen Delft University of Technology, The Netherlands
Georg Weichhart Johannes Kepler Universität Linz, Austria
Gerhard Weiss SCCH Hagenberg, Austria

Organization IX

Additional Reviewers

Rashad Badawy
Tina Balke
Tristan Behrens
Petr Benda
Lawrence Cabac
Michael Duvigneau
Jiri Hodik
Stefan König

Régis Newo
Christoph Niemann
M. Birna van Riemsdijk
Daniel Schmalen
Peter Schuur
Michal Sindlar
Bas Steunebrink
Matthias Wester-Ebbinghaus

Table of Contents

Invited Talk

Industrial Application of Agent Systems: Lessons Learned and Future
Challenges (Extended Abstract) . 1

Birgit Burmeister

Full Papers

Multi-Agent Navigation Using Path-Based Vector Fields 4
Tristan Behrens, Randolf Schärfig, and Tim Winkler

Verification of Epistemic Properties in Probabilistic Multi-Agent
Systems . 16

Carla Delgado and Mario Benevides

GOAL as a Planning Formalism . 29
Koen V. Hindriks and Tijmen Roberti

Towards Pattern-Oriented Design of Agent-Based Simulation Models . . . 41
Franziska Klügl and Lars Karlsson

Multi Criteria Decision Methods for Coordinating Case-Based
Agents . 54

Beatriz López, Carles Pous, Pablo Gay, and Albert Pla

Agent Cooperation for Monitoring and Diagnosing a MAP 66
Roberto Micalizio and Pietro Torasso

Strategies for Exploiting Trust Models in Competitive Multi-Agent
Systems . 79

Vı́ctor Muñoz, Javier Murillo, Beatriz López, and Dı́dac Busquets

A Distributed Detecting Method for SYN Flood Attacks and Its
Implementation Using Mobile Agents . 91

Masaki Narita, Takashi Katoh, Bhed Bahadur Bista, and
Toyoo Takata

Agent-Based Model for Decision Support in Multi-Site Manufacturing
Enterprises . 103

Zhan Sheng Ng, Aaron Yu Siang Tan, Arief Adhitya, and
Rajagopalan Srinivasan

Embodied Organisations in MAS Environments . 115
Michele Piunti, Alessandro Ricci, Olivier Boissier, and
Jomi F. Hübner

XII Table of Contents

MACSIMA: On the Effects of Adaptive Negotiation Behavior in
Agent-Based Supply Networks . 128

Christian Russ and Alexander Walz

Towards Reactive Scheduling for Large-Scale Virtual Power Plants 141
Martin Tröschel and Hans-Jürgen Appelrath

Concurrently Decomposable Constraint Systems . 153
Cees Witteveen, Wiebe van der Hoek, and Nico Roos

SMIZE: A Spontaneous Ride-Sharing System for Individual Urban
Transit . 165

Xin Xing, Tobias Warden, Tom Nicolai, and Otthein Herzog

Short Papers

Towards a Verification Framework for Communicating Rational
Agents . 177

Nils Bulling and Koen V. Hindriks

Designing Organized Multiagent Systems through MDPs 183
Moser Fagundes, Roberto Centeno, Holger Billhardt, and
Sascha Ossowski

A Reference Architecture for Modelling of Emotional Agent Systems . . . 189
Julia Fix and Daniel Moldt

Towards a Taxonomy of Decision Making Problems in Multi-Agent
Systems . 195

Christian Guttmann

Modeling Tools for Platform Specific Design of Multi-Agent Systems . . . 202
Geylani Kardas, Erdem Eser Ekinci, Bekir Afsar,
Oguz Dikenelli, and N. Yasemin Topaloglu

L2-SVM Training with Distributed Data . 208
Stefano Lodi, Ricardo Ñanculef, and Claudio Sartori

Framework for Dynamic Life Critical Situations Using Agents 214
Jenny Lundberg and Anne H̊akansson

Unifying JIAC Agent Development with AWE . 220
Marco Lützenberger, Tobias Küster, Axel Heßler, and
Benjamin Hirsch

Formalizing ARTIS Agent Model Using RT-Maude 226
Toufik Marir, Farid Mokhati, and Hassina Seridi-Bouchelaghem

Table of Contents XIII

Implementing Over-Sensing in Heterogeneous Multi-Agent Systems on
Top of Artifact-Based Environments . 232

Alessandro Ricci and Michele Piunti

Exhibition Papers

Requirements and Tools for the Debugging of Multi-Agent Systems 238
Lawrence Cabac, Till Dörges, Michael Duvigneau, and Daniel Moldt

SONAR∗: A Multi-Agent Infrastructure for Active Application
Architectures and Inter-organisational Information Systems 248

Michael Köhler-Bußmeier and Matthias Wester-Ebbinghaus

An Architecture for Simulating Internet-of-Services Economies 258
Stefan König, Isaac Pinyol, Daniel Villatoro,
Jordi Sabater-Mir, and Torsten Eymann

Applying JIAC V to Real World Problems: The MAMS Case 268
Alexander Thiele, Thomas Konnerth, Silvan Kaiser,
Jan Keiser, and Benjamin Hirsch

Agent-Based Semantic Search at motoso.de . 278
Nils Weber, Lars Braubach, Alexander Pokahr, and
Winfried Lamersdorf

Author Index . 289

L. Braubach et al. (Eds.): MATES 2009, LNAI 5774, pp. 1–3, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Industrial Application of Agent Systems:
Lessons Learned and Future Challenges

(Extended Abstract)

Birgit Burmeister

Daimler AG, Group Research & MBC Development, H515, GR/PPF
Leibnizstraße 2, 71032 Böblingen, Germany
birgit.burmeister@daimler.com

Challenges in modern industry such as high complexity inside companies and in the
environment, ever increasing dynamics to react to, integration of many different
partners and world-wide distribution of supply and production networks seem to
really demand for the promises of agent systems. Multi agent systems handle complex
systems by dividing them into smaller pieces. Agents can react to changing
environments. Distribution, autonomy and interaction are basic concepts at the heart
of agent systems.

Nevertheless applications of agent systems in industry are still the exception rather
than the normal case. This contribution will describe some applications of agent
systems which were developed at Daimler Research during the last ten years. We will
present the advantages and lessons learned from these cases. But we will also have a
look at the obstacles in applying agent systems in a large scale. As a result we will
sketch some resulting challenges from the point of view of industry for the (scientific)
agent community.

An important application of agent systems in Daimler AG was developed during a
project called Production 2000+ addressing the challenges of manufacturing in
modern automotive industry. The system implemented a market-based approach to
provide a flexible flow of workpieces through a manufacturing facility for cylinder
heads [1], [2], [3].

The agent system was used to control a pilot facility in Stuttgart-Untertürkheim.
The facility ran from 2000 to 2003 for operational production. Although technically
very successful the pilot was not distributed into a larger environment for two
reasons: Firstly, the multi-purpose machines needed for enabling the flexible control
realised by the agent system are much more expensive than “normal” single use
machines, i.e. the cost for a potentially necessary flexibility to handle disturbances
and failures are higher than the cost for a normal, not very flexible line. The costs that
occur later when disturbances and failures happen are most often not considered.
Secondly, many components of up-to-date manufacturing equipment, like e.g.
equipment for transportation, nowadays already offer a certain extent of flexibility,
without the need for an agent based control systems, although some ideas from agents
are also used here, without being named “agents” [4], [5].

Although inspired by the ideas of Production 2000+ concerning flexibility in 2005
we started working in a quite different area of applying agent technology, namely that

2 B. Burmeister

of business process management [6], [7], [8]. Business processes in today’s
companies are highly complex, involve many different participants and spawn
multiple information systems. Running business processes is no longer possible
without support by information technology. Moreover, optimizing business processes
is crucial for business success of companies. Therefore, the processes have to be
continuously improved and have to be flexible enough to deal with the dynamic
environment. Tools used nowadays in this area support a very simple mind-model
behind modelling: processes are seen as long and fixed sequences of activities, which
is far away from reality and from the challenges. This leads to the fact that models
drawn in such tools are often used only to cover white walls in the offices. The
processes really executed in the companies are different from that on the wallpapers,
“shadow” processes dominate the “official” ones and IT systems are not understood
or inflexible and hence misused by many users.

Therefore we have developed a new modelling and execution approach based on
agent technology. Our modelling approach defines a process model with goals,
contexts, and plans using the basic concepts of the BDI agent architecture. The
execution semantics of the BDI architecture is used to execute a goal-based process
model. This leads to so called process agility, both in process execution and in
process and system implementation. The approach was demonstrated in the area of
the engineering change management process. The next generation of engineering
change management at Mercedes-Benz Cars will be based on this approach. The
system is currently under implementation and will be rolled out for a first pilot in
2010.

In future we would like to come back to the ideas on Production 2000+. The ideas
of distributed decision making and control and self-organization can be used to tackle
current challenges in production and logistics. Combined with technical progress in
the area of “auto-ID” technology and especially RFID (radio frequency identification)
technology we see a revival of agent techniques. The auto-ID technology can be used
to provide a seamless information flow which can be used to support the distributed
and autonomous decision making. Moreover with increasing computing power and
decreasing prices of RFID-tags also really distributed agents can be implemented into
these tags and thus closely coupled to the agents’ hardware, like e.g. workpieces,
machines, transportation units etc.

To get the full advantages of the agent approach some work needs to be done: One
of the most important promises of agent systems is the enabling and support for
flexibility. For any application case it is crucial to determine and to not exceed the
actually needed flexibility (as it was the case with the Production 2000+ approach.)
For these requirements a technically appropriate agent system should be defined, that
should be also as simple as possible. Especially for applications in production and
logistics an engineering approach and methodology is needed, which defines which
agent architecture to build, which communication mechanisms to use etc.

Another important aspect is the cost-benefit analysis. For any IT application in
industry the benefits must be qualified, and even better quantified. Since agent system
offers solutions, which cannot (or not easily) be implemented with other approaches
to IT-Systems it is not easy to compare agent systems to these other approaches and
especially quantify the advantages. Therefore different kinds of measures are needed
for the advantages of agents, such as flexibility, decentralisation etc. This will help to

 Industrial Application of Agent Systems: Lessons Learned and Future Challenges 3

really support an informed decision making about the question if the implementation
of an agent system pays off.

References

1. Bussmann, S., Schild, K.: Self-organising manufacturing control: an industrial application
of agent technology. In: Proc. of the 4th Int. Conf. on Multi-Agent Systems (ICMAS 2000),
Boston, USA, pp. 87–94 (2000)

2. Bussmann, S., Schild, K.: An Agent-Based Approach to the Control of Flexible Production
Systems. In: Proc. of the 8th IEEE Int. Conf. on Emergent Technologies and Factory
Automation (ETFA 2001), Antibes Juan-les-pins, France, vol. 2, pp. 481–488 (2001)

3. Sundermeyer, K., Bussmann, S.: Einführung der Agententechnologie in einem
produzierenden Unternehmen - Ein Erfahrungsbericht. Wirtschaftsinformatik 43(2), 135–
142 (2001) (in German)

4. Schild, K., Bussmann, S.: Self-organization in manufacturing operations. Communications
of the ACM 50(12), 74–79 (2007)

5. Bussmann, S.: Production 2000+: Implementing and deploying an agent-based control system,
http://www.stefan-bussmann.de/index.php?pg=P2pLessons
(last visited 24.6.2009)

6. Burmeister, B., Steiert, H.-P., Bauer, T., Baumgärtel, H.: Agile Processes through Goal- and
Context-oriented Business Process Modeling. In: Eder, J., Dustdar, S. (eds.) BPM
Workshops 2006. LNCS, vol. 4103, pp. 217–228. Springer, Heidelberg (2006)

7. Rimassa, G., Burmeister, B.: Achieving Business Process Agility in Engineering Change
Management with Agent Technology. In: Workshop dagli Oggetti agli Agenti WOA 2007 -
Agents and Industry: Technological Applications of Software Agents, Genua, September
2007, pp. 1–7 (2007)

8. Burmeister, B., Arnold, M., Copaciu, F., Rimassa, G.: BDI-Agents for Agile Goal-Oriented
Business Processes. In: Berger, M., Burg, B., Nishiyama, S. (eds.) Proc. of 7th Int. Conf. on
Autonomous Agents and Multiagent Systems (AAMAS 2008) – Industry and Applications
Track, Estoril, Portugal, pp. 37–44 (2008)

Multi-Agent Navigation Using
Path-Based Vector Fields

Tristan Behrens, Randolf Schärfig, and Tim Winkler

Department of Informatics, Clausthal University of Technology,
Julius-Albert-Straße 4, 38678 Clausthal, Germany

{tristan.behrens,randolf.schaerfig,tim.winkler}@tu-clausthal.de

Abstract. We present an approach to multi-agent navigation, that is
based on generating potential-fields from A*-paths. We will introduce
and compare two algorithms: 1) a geometrical algorithm that is based
on quads, and 2) an images-based algorithm. We show empirically that
the images-based algorithm is more memory-consuming, but has better
performance.

1 Introduction

Multi-agent systems programming is a promising software engineering paradigm
[3,4]. It is especially suited for the development of systems that have to operate
in dynamic environments [7].

In [2], we have introduced an approach to agent-oriented control of entities in a
simulated, physical environment. We have introduced an agent-entity-relation: it
allows agents to control entities, whereas each agent can control a set of entities.
This approach makes sense especially when several entities have the same goal(s).

Furthermore we let the agents steer their associated entities using the po-
tential fields method [1,13,15,11]. Each agent can control its entities by putting
attractive and repelling forces into the environment. The entities are affected by
these forces – they behave like particles in a force field – and move accordingly.

In this paper we present a combination of A∗ path-planning and the potential
fields method. We 1. motivate our research, 2. introduce two computer graphics
approaches to generating potential fields from A∗ paths, and 3. compare the two
approaches.

In section 2, we present the problem we would like to solve and propose a
multi-agents systems solution. In section 3 we lay the groundwork for steering
entities using the potential fields method. In section 4, we elaborate on and
compare the two algorithms that we have developed to generate potential fields
from given A∗-paths. In section 5 we present some related work. Finally, we
conclude and give an outlook to future work.

2 MAS

Firstly, we will give a brief description of the problem we would like to solve. Let
a physical environment be given. Some areas of the environment are accessible,

L. Braubach et al. (Eds.): MATES 2009, LNAI 5774, pp. 4–15, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Multi-Agent Navigation Using Path-Based Vector Fields 5

some are not. Situated in that environment is a set of entities (e.g. robots).
Furthermore, we have a set of agents, that can control these entities. There are
several questions that should be answered:

– How can the agents map the environment?
– How can the agents find out which areas are accessible and which ones are

not?
– How can agents steer the entities from one place to another?

In our approach we use two kinds of agents: entity agents and mapper agents.
Entity agents control the entities in the environment. Each one of these agents is
associated with several entities. A single mapper agent is responsible for mapping
the environment and providing the entity agents with paths if requested. Also
the mapper agent can provide entity agents with paths to unknown areas in the
environment if requested.

These agents should cooperate to solve the given problem. Our solution is as
follows. The mapper agent internally represents the environment in a discretized
fashion by a grid. Each cell of the grid can be either accessible, blocked, or
unknown. The agent is not embodied (i.e. it cannot act and perceive in the
environment) and thus has to rely on other agents to provide it with informations
about the environment. The size and resolution of the grid can be defined by
the agent itself.

Each entity agent is indirectly embodied in the environment. It can access all
the sensors of its associated entities and thus is capable of perceiving what the
entities can perceive. Furthermore it can access the associated entities’ actuators,
allowing it to act in the environment.

All agents are capable of exchanging informations via message-passing. Entity
agents can request paths through the environment from the mapper agent. The
latter takes into account its internal environment representation, invokes the A∗

algorithm to compute a shortest path, and returns the path back to the respective
entity agent.

3 Navigation

The potential fields method solves a navigational problem by representing the
topology and structure of the environment as a combination of attracting and
repelling forces. A potential field in general is a function f : R

2 → R
2 that maps

a two-dimensional vector to another one. Usually the input-vector represents a
position on the Euclidean plane (in our case in the environment) and the output-
vector a force that is effective at that position. A moving entity follows the force
vector that affects it at its position.

Example 1 (potential fields). Any function

fgauss : [x, y] �→ [x − x0, y − y0]
|| [x − x0, y − y0] ||

· a · exp
(
−|| [x − x0, y − y0] ||2

2s2

)

6 T. Behrens, R. Schärfig, and T. Winkler

is called a Gaussian repeller potential field. The constant vector [x0, y0] rep-
resents the center, and the constants a and s represent the amplitude and the
spread of the field respectively. The repelling force is strongest at the center and
steeply falls off, converging to 0. An entity approaching a Gaussian repeller will
be affected once it gets close to that force. The amplitude a determines the max-
imum strength of the force. The spread s determines the width of the Gaussian
bell and thereby the range of influence of the field.

Another potential field is the sink attractor:

fsink : [x, y] �→ [x − x0, y − y0]
|| [x − x0, y − y0] ||

· gsink(x, y)

with

gsink : [x, y] �→ a · exp
(
−|| [x − x0, y − y0] ||2

2s2

)
− g · || [x − x0, y − y0] || − a

The constant vector [x0, y0] represents the center. The constants a and s repre-
sent the amplitude and the spread respectively. The constant g represents the
grade. In the sink attractor the attractive force is stronger the farther away the
target is. It is the combination of a conical potential field and a Gaussian one.

Given a set of potential fields, the overall potential field is simply the sum of all
potential fields that are relevant. Figure 1a shows a potential field that is the

−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(a) (b)

Fig. 1. Examples for the potential-fields method. The left side shows the Gaussian
repeller and the sink attractos. The right side shows the sum of two Gaussian repellers
(top left and bottom) and a sink attractor (top right).

Multi-Agent Navigation Using Path-Based Vector Fields 7

sum of two Gaussian repellers (top left and bottom) and a sink attractor (top
right) represented as a vector field. An entity that starts at a position in the
middle would move away from the repellers and move towards the sink.

The method is very elegant. It is easy to model environmental characteristics
with potential fields. Also, it is extremely handy when dealing with several mov-
ing entities. As an AI programmer you do not have to deal with movement on a
microscopic level for each entity. Instead you just let them all follow the shared
potential field like particles in a stream.

Although the method is elegant and allows entity movement in a unified way,
there are also drawbacks. The worst drawback is the fact that entities could get
stuck if there are local optima in the potential field. Thus an improvement is
necessary. Moving a stuck entity a bit might release it from the local optimum,
but this method is not useful if the potential field is too complex. Path-planning
does improve the situation significantly.

4 Path Based Potential Fields

Our approach is a compromise approach, that, although it does not rule out
getting stuck in local optima, reduces the probability of it. We distinguish two
classes of obstacles: static and dynamic ones. Static ones are avoided by path-
planning using the well-known A∗ algorithm, dynamic ones are avoided by re-
pelling potential fields, both in an unified framework.

The A∗ algorithm is an informed search algorithm for finding shortest paths
in graphs [16]. In our approach we use an implicit representation of the search
graph. The environment is discretized as a grid. Each cell is a node in the graph
if it is reachable. Two nodes are adjacent if the respective cells share a vertex or
an edge.

We will now introduce and compare two algorithms for computing vector
fields from arbitrary paths, that have been generated by the A∗ algorithm.
The first algorithm is geometry-based, the second is raster-graphics based. The
question we will answer is: given a path P := (p0, p1, . . . , pn) with waypoints
pi := [xi, yi] ∈ R

2, how can a potential field be calculated that lets the entities
follow that path?

4.1 Geometry Based Approach

In the preprocessing phase, given a path P := (p0, p1, . . . , pn), we generate
a force-quad strip, which consists of one force-quad for each path segment
〈pi, pi+1〉. A force-quad is a tuple q := 〈ls, le, ll, lr, d〉, where ls, le, ll, lr ⊂ R

2

are the lines defining the shape of the quad, and d ∈ R
2 is the direction of its

force. A force-quad strip is a sequence Q := (q0, q1, . . . , qm), with m = n− 1 and
where for each pair qi, qi+1 the following holds: lei = lsi+1. Figure 2a shows an
exemplary segment of a force-quad strip.

Calculating the force vector f ∈ R
2 at a given environment position p ∈ R

2

with respect to a given force-quad strip Q boils down to 1) detecting which force-
quad qi := 〈lsi, lei, lli, lri, di〉 ∈ Q contains p and 2) calculating f depending
on di.

8 T. Behrens, R. Schärfig, and T. Winkler

Preprocessing: Input-parameters for the force-quad strip generation are the
path P and a width w ∈ R

+. Algorithm 1 creates a sequence of connected force-
quads. All quads have the same width and their ordering reflects the ordering
of the waypoints of the path. Firstly, the direction vector di := pi+1 − pi is
calculated for each path segment 〈pi, pi+1〉. The vector wi is orthogonal to di

and has the length w. The line lli is 〈pi, pi+1〉 translated by wi and the line lri

is 〈pi, pi+1〉 translated by −wi. The algorithm then calculates the intersections
of lli with lli−1 and lli+1 respectively, and the intersections of lri with lri−1 and
lri+1 respectively. These four intersections define the force-quad

The first and the last quad are both special cases:

1. for the first quad the lines l−1 and r−1 are both set to p0 + −w0 − d0, and
2. for the last quad the lines ln and rn are both set to pn + −wn − dn.

This also allows handling the special case that the path consists only of two
waypoints. Figure 2a shows a quad within a given path and all lines and vectors
that the algorithm uses.

(a) (b)

Fig. 2. Illustrations for the force-quads based approach. The left side shows the lines,
vectors, and values that the preprocessing algorithm uses. The right side shows a plot
of the force field.

Calculating Force Vectors: We now consider the algorithm that computes
the force-vector f for a given position p ∈ R

2 with respect to a force-quad strip
Q. The algorithm iterates over all the force-quads qi ∈ Q and checks if p is
contained by qi. If so, the algorithm computes the force-vector with respect to
that quad. If p is not contained by any of the quads, the null vector is returned.

To get a smoother movement, the algorithm interpolates di of the force-quad
qi that contains p with respect to the position of p in qi. It determines if the
distance dist of p to one of the borders of the quad is smaller than a given ε. If
that is the case, the algorithm uses the linear interpolation of d and the normal
vector n to calculate the resulting vector f . This is described by the following
formula:

f = (dist/ε) ∗ d + (1 − (dist/ε)) ∗ n (1)
Algorithm 2 computes the force-vector. Figure 2b shows a vector-field generated
using the computed force-quad strip.

Multi-Agent Navigation Using Path-Based Vector Fields 9

Algorithm 1. Preprocessing: generating a force-quad strip
Input: a path P := (p0, p1, . . . , pn) and a width w ∈ R

+

Output: a force-quad strip Q := (q0, q1, . . . , qm) with m := n − 1
Q := ∅;
for all i ∈ [0, n − 1] do

di = Normalize(pi − pi+1)
lli is (pi, pi+1 translated by wi; lri is (pi, pi+1 translated by −wi;

end for
if only two waypoints then

for all i ∈ [0, n − 1] do
if i = 0 then

li = p0 + wi − di; ri = p0 − wi − di

else
li = Intersection(lli−1, lli); ri = Intersection(lri−1, lri)

end if
if i = n − 1 then

li+1 = pn + wi − di; ri+1 = pn − wi − di

else
li+1 = Intersection(lli, lli+1); ri+1 = Intersection(lri, lri+1)

end if
lsi = line(li, ri); lei = line(li+1, ri+1)
Save Quad 〈lsi, lei, lli, lri, di〉 in Q

end for
else

l0 = Intersection(ll0, (p0 − d0 + w0))r0 = Intersection(lr0, (p0 − d0 − w0))
l1 = Intersection(ll0, (p1 + d0 + w0))r1 = Intersection(lr0, (p1 + d0 − w0))
ls0 = line(l0, r0); le0 = line(l1, r1)
Save Quad 〈ls0, le0, ll0, lr0, d0〉 in Q

end if
return Q

Algorithm 2. Calculating Force Vectors
Input: a position vector p ∈ R

2 and a force-quad strip Q := (q0, q1, . . . , qm) threshold
ε ∈ R+

Output: a force vector f ∈ R
2

for all q ∈ Q do
if p is contained by q then

f := interpolate(p, q, ε)
return f

end if
end for
return [0, 0]

4.2 Image Processing Approach

In this section, we describe a method that generates a vector-field from a given
path P := (p0, p1, . . . , pn), borrowing some machinery from image processing.

10 T. Behrens, R. Schärfig, and T. Winkler

Preprocessing: Given a path P , the algorithm firstly creates a local frame
F ⊂ R

2, which is basically the enlarged bounding box of P . In the next step
it translates one of the corners of F into the origin by subtracting the vector
o ∈ R

2 (see Fig. 3). The same is done for each waypoint.

Fig. 3. The local frame F . The left side shows its alignment in the environment and
the waypoints. The right side shows F after translation by o and plotting the path.

Since the goal is to create a discrete vector field with appropriate resolution,
the coordinate axes are scaled by some factors rx, ry ∈ Z which are determined
by the agent. Since it can prescribe the desired resolution of F .

This yields a discrete representation of the local frame F , which is interpreted
from now on as a 2D image. The image is then initialized with an intensity
(color) value. After that, the waypoints are connected by an arbitrary discrete
line drawing algorithm with an certain line-width w depending on the use case.
A thin line would for example be painted if the entities are supposed to move
in single file and a thick line if they should maintain their formation. Also the
path is rendered with a gradient starting with a high intensity and ending with a
low intensity. This will provide the “current” of the “river” (see Fig. 4). Finally
the image is smoothened in order to ensure smooth movement by applying a
Gaussian operator. The continuous Gaussian function is

G(x, y) =
1

2πσ2 e
x2+y2

2σ2 . (2)

Since the image is already a raster of discrete pixels, we also need a discrete
version of the Gaussian operator. Two common approximations depending on
the value of σ in equation (2) are:

G(x, y) =
1
16

⎛
⎝1 2 1

2 4 2
1 2 1

⎞
⎠ (3) G(x, y) =

1
423

⎛
⎜⎜⎜⎜⎝

2 7 12 7 2
7 31 52 31 7
15 52 127 52 15
7 31 52 31 7
2 7 12 7 2

⎞
⎟⎟⎟⎟⎠ (4)

Multi-Agent Navigation Using Path-Based Vector Fields 11

which directly reflects the property of σ as smoothing parameter. The bigger the
smoothing parameter, the smoother we expect the movement to be. We apply
a discrete convolution (5) to the image by either using (3) or (4) as the filter
kernel and get the desired result (e.g. see [8], [17]). The pseudo code for this
preprocessing step is given in Algorithm 3. Figure 4 shows a painted path after
applying two blur-operators with different strength.

(I ∗ G)(x, y) =
∑

i

∑
j

I(i, j)G(x − i, y − i) (5)

Fig. 4. The same path after applying two Gaussian operations with different intensities.
The higher the intensity the smoother the movement.

Algorithm 3. Preprocessing
Input: a path P := (p0, p1, . . . , pn) a scaling factor r, the line-width w, and the blur

intensity b
Output: < F, T > the local frame F and the transformation T

B := calcBoundingBox(P)
F := initImage(B.width/r,B.height, /r, highestIntensity)
T := getT ransformation(B,r) //maps from environment to frame coordinates
for all pi do

pi := T (pi) //map all waypoints to frame-coordinates
end for
F := drawPolyLine(F, P, highIntensity, lowIntensity,w/r)
F := blur(F, b)
return < F, T >

Calculating Force Vectors: Given a query point q ∈ R
2 the algorithm per-

forms the following steps to retrieve the respective force-vector: 1) transforming
the environment position p into the respective position p′ in the frame by trans-
lating and scaling p respectively, 2) calculating the intensity difference between
p′ and all of its eight direct neighbors, and 3) retrieving the force with respect
to the difference of intensities. The pseudo code for the retrieval is given in
Algorithm 4.

12 T. Behrens, R. Schärfig, and T. Winkler

Algorithm 4. Calculating Force Vectors
Input: a position vector p ∈ R

2, a local frame F and a transformation T
Output: a force vector f ∈ R

2

q := T (q) //map to frame coordinates
cq := getColorAt(F, q)
prevDiff := 0; m := 0; n := 0
for i := −1 to 1 do

for j := −1 to 1 do
diff := cq − F (q[x] + i, q[y] + j)
if diff > prevDiff then

m = i; n = j; prevDiff = diff
end if

end for
end for
return (m, n) ∗ prevDiff

4.3 Implementation and Comparison

We base our experiments on a computer-game-like physical world. Many com-
puter games make the cooperation of entities (optionally with a human player)
desirable. Modern computer games almost always feature a very detailed simula-
tion of virtual environments. It is straightforward to create sensors and actuators
for agents that are situated in a game world. And you do not have to deal with
hardware. Our experimental game world is an 2APL-environment. 2APL[6] is

Nodes s Quads s Raster
21 5.9 5.8
19 5.6 5.8
17 5.5 5.8
15 5.1 5.8
13 4.6 5.8
11 4.2 5.7
9 3.9 5.8
7 3.1 5.8
5 2.3 5.6
3 2.4 5.4

Fig. 5. Comparison of the two algorithms. The experiments were done on a 2 GHz
Intel Core Duo MacBook Pro with 2GB RAM. The left side show the results. The
right side shows the path that has been used.

Multi-Agent Navigation Using Path-Based Vector Fields 13

an agent-programming platform that is based on the BDI-methodology. Details
about the environment and the implementation can be found in [2].

To compare the two algorithms we have set up a simple test environment. We
begin the test with an 21 node path (see Fig. 5). We then successively remove the
last waypoint until we end up with a two-node path. For each path we generate
two potential fields. One is generated using the quad-based algorithm, the other
is created with the raster-based one. Each field is then queried a million times
with random positions and the time needed is measured.

As you can see from the table in Fig. 5 the quads-based algorithm performs
worse for long paths. We have expected this since for each additional node around
four more dot-producs have to be computed. The raster-based algorithm almost
always takes the same time. From the implementation point of view the pre-
processing step in the raster-based approach is more straightforward since it
boils down to using the computer graphics API. For short paths the raster-
based approach is more memory consuming. The quad-based algorithm needs
approximately (n−1) ·14 doubles space given a path-length n. The raster-based
algorithm’s memory consumption depends on the area covered by the path and
the resolution. Finally from the user experience-point of view, moving using the
quads-based algorithm is more convincing. It yields a very smooth movement of
the entities.

5 Related Work

In our recent work, we have combined A∗ with potential fields in a more primitive
fashion. Instead of generating a potential field from a given path directly, we
have associated each node of the path with a sink attractor. A force has been
activated if the respective node has been the next to be reached and it has been
deactivated once the node has been reached. Although the approach worked very
good, the movement was not convincing because it lacked smoothness.

We have also concentrated on multi-agent systems dynamics that are useful
for implementing computer games AI. The high dynamics of game worlds with
respect to the number of entities (entities can be created and removed from the
environment) and the distribution of different task among the entities made it
necessary to allow respective dynamics in the MAS as well. A run of a MAS
usually begins with an environment in its initial state (the topology of the map
and the positions of the initial set of entities) and one default agent. We then
allow agents to instantiate more agents if necessary, and we allow them to transfer
their responsibility over associated entities to other agents. This can be exploited
for example to split or merge groups of entities.

Hagelbäck et al. [10,9] did similar research in this area. They use a discretiza-
tion for the complete algorithm, which represents the potential field. Our ap-
proaches differ especially in the structure of the MASs. They have for each
entity one controlling unit agent, and another agent that coordinates those unit
agents. We do not consider entities to be agents.

In their paper[12], Koren and Borenstein discuss problems inherent to the
potential fields method. They identify four significant problems: trap situations

14 T. Behrens, R. Schärfig, and T. Winkler

due to local optima, no passage between closely spaced obstacles, oscillations
in the presence of obstacles, and oscillation in narrow passages. Mamei and
Zambonelli[14] apply potential fields to the computer game Quake 3 Arena. In
their article[18], Weyns et al. solve the problem of task-assignment in MAS inter
alia with a field-based approach. This is, tasks emit fields in the environment
that attract idle agents.

6 Conclusions and Future Work

In this paper we have shown how to combine A∗ path-finding and potential
fields in a multi-agent setting. We have proposed a MAS with separated respon-
sibilities. One agent is responsible for mapping the environment and calculat-
ing shortest paths, other agents are responsible for steering sets of entities. We
have introduced and compared two algorithms for generating potential fields
from A∗-paths. The first one is geometry based and relies on the generation of
quads that model the path. Calculating the force-vector at a given position boils
down to checking in which quad contains the position. The second algorithm
is raster-graphics based. It plots a path into an image and blurs the latter to
allow smoother movement. Calculating the force-vector is done by finding the
pixel that is underneath the position and calculating the direction to the neigh-
boring pixel that decreases the height. Our experiments have shown, that the
raster-graphics approach is faster when dealing with long paths. For paths with
a smaller number of nodes, the geometry algorithm is more efficient.

We believe that the two algorithms for generating potential-fields from A∗

paths could be optimized. First of all, the geometry-based one could be improved
by using a more elaborate preprocessing step. We think about using for example
the binary-space partitioning technique to increase the speed of calculating force
vectors. The rastered algorithm on the other hand could be improved when it
comes to memory-comsumption. Only a necessary area of the heightmap could
be rendered.

We intend to shift away from our custom-made 2APL-environment towards
ORTS [5]. ORTS (Open Real-Time Strategy) has been established for studying
AI problems in a real-time setting. This would allow for a more elaborate problem
description of a more realistic problem setting. Also we would like to concentrate
more on the actual structure of the MAS when it comes to the types and the
numbers of agents, since our proposal in this paper is superficial but sufficient
for our purposes.

References

1. Arkin, R.C.: Behavior-Based Robotics (Intelligent Robotics and Autonomous
Agents). The MIT Press, Cambridge (1998)

2. Behrens, T.M.: Agent-oriented control in real-time computer games. In: Proceed-
ings of ProMAS 2009 (2009)

Multi-Agent Navigation Using Path-Based Vector Fields 15

3. Bordini, R., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (eds.): Programming
Multi Agent Systems: Languages, Platforms and Applications. Multiagent Systems,
Artificial Societies and Simulated Organizations, vol. 15. Springer, Berlin (2005)

4. Bordini, R.H., Dastani, M., Dix, J., El Fallah-Seghrouchni, A. (eds.): Multi-Agent
Tools: Languages, Platforms and Applications. Springer, Berlin (2009)

5. Buro, M.: ORTS: A hack-free RTS game environment. In: Schaeffer, J., Müller, M.,
Björnsson, Y. (eds.) CG 2002. LNCS, vol. 2883, pp. 280–291. Springer, Heidelberg
(2003)

6. Dastani, M.: 2APL: a practical agent programming language. Autonomous Agents
and Multi-Agent Systems 16(3), 214–248 (2008)

7. Dastani, M., El Fallah Seghrouchni, A., Ricci, A., Winikoff, M. (eds.): ProMAS
2007. LNCS (LNAI), vol. 4908. Springer, Heidelberg (2008)

8. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Prentice-Hall,
Inc., Upper Saddle River (2006)

9. Hagelbäck, J., Johansson, S.J.: Dealing with fog of war in a real time strategy
game environment. In: Proceedings of 2008 IEEE Symposium on Computational
Intelligence and Games, CIG (2008)

10. Hagelbäck, J., Johansson, S.J.: Using multi-agent potential fields in real-time strat-
egy games. In: AAMAS (2), pp. 631–638 (2008)

11. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots,
vol. 2, pp. 500–505 (1985)

12. Koren, Y. (Senior Member), Borenstein, J.: Potential field methods and their in-
herent limitations for mobile robot navigation. In: Proc. IEEE Int. Conf. Robotics
and Automation, pp. 1398–1404 (1991)

13. Krogh, B.: A generalized potential field approach to obstacle avoidance control
(1984)

14. Mamei, M., Zambonelli, F.: Field-based motion coordination in quake 3 arena. In:
AAMAS, pp. 1532–1533. IEEE Computer Society, Los Alamitos (2004)

15. Massari, M., Giardini, G., Bernelli-Zazzera, F.: Autonomous navigation system for
planetary exploration rover based on artificial potential fields. In: Proceedings of
Dynamics and Control of Systems and Structures in Space (DCSSS) 6th Conference
(2005)

16. Russell, S.J., Norvig: Artificial Intelligence: A Modern Approach, 2nd edn. Prentice
Hall, Englewood Cliffs (2003)

17. Shirley, P., Ashikhmin, M., Gleicher, M., Marschner, S., Reinhard, E., Sung, K.,
Thompson, W., Willemsen, P.: Fundamentals of Computer Graphics, 2nd edn. A.
K. Peters, Ltd., Natick (2005)

18. Weyns, D., Boucké, N., Holvoet, T.: A field-based versus a protocol-based approach
for adaptive task assignment. Autonomous Agents and Multi-Agent Systems 17(2),
288–319 (2008)

Verification of Epistemic Properties in Probabilistic
Multi-Agent Systems

Carla Delgado1 and Mario Benevides2,�

1 Fakultät für Informatik, Technische Universität Dortmund, Germany
carla.delgado@tu-dortmund.de

2 Mathematics Institut, Universidade Federal do Rio de Janeiro, Brazil
mario@cos.ufrj.br

Abstract. Over the past decade Multi-Agent Systems (MAS) have emerged as a
successful approach to develop distributed applications. In recent years proposals
have been made to extend MAS models with probabilistic behavior. Languages
to reason about such systems were presented in order to deal with uncertainty that
can be encountered in practical application domains. While in recent works model
checking techniques have been successfully applied for verifying knowledge in
classical MAS, no methods for verifying knowledge in probabilistic MAS yet ex-
ist. This paper proposes such a model checking approach for probabilistic MAS.
The approach comprises a compositional modeling process, a modal logic with
operators for the specification of epistemic and temporal properties, the corre-
sponding model checking procedure, and an outline of how these techniques can
be implemented into existing model checking tools. The advantages of the chosen
design include the possibility to analyze the MAS both from the global perspec-
tive as well as from the perspective of the agents, and the polynomial complexity
of the model checking algorithm.

1 Introduction

Multi-agent systems (MAS) have gained importance as many distributed applications
were developed on the last decade. MAS applications permeate a wide area such as de-
cision support systems, business process management and electronic commerce [1,2,3].
According to [4] probabilistic MAS consist of “a collection of agents interacting in the
presence of some source of randomness (such as a fair coin)”. Examples of probabilis-
tic MAS are peers in cryptographic and other randomized or probabilistic protocols that
aim to provide guarantees about the probability of certain events.

As intelligent behavior is a central point in MAS, studies have been conducted to
improve the understanding of the relations among autonomous behavior, uncertainty
and interaction [5]. Significant work was done in order to obtain suitable logics to rea-
son about epistemic aspects of MAS, often using a combination of the epistemic modal
logic S5n and temporal logics [6,7,8]. The relations between knowledge and probability
received special attention in [9,10], and recent approaches to support the specification
and analysis of probabilistic MAS were presented in [11,12,13].

� This work was partially funded by the agencies CAPES, CNPq and FAPERJ.

L. Braubach et al. (Eds.): MATES 2009, LNAI 5774, pp. 16–28, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Verification of Epistemic Properties in Probabilistic Multi-Agent Systems 17

The behavior of a MAS is in general complex to predict, so formal means to ana-
lyze and verify such systems are required. Model checking is a successful approach
to automatize the verification of computer systems and a recent growth of the ap-
plication of these techniques to MAS has been observed. In particular, model check-
ing of epistemic aspects of MAS received considerable attention during the last years
[14,15,16,17,18,19]. However such techniques have not been applied yet to probabilis-
tic MAS.

In this paper a first approach to verify probabilistic MAS is presented. As an ex-
ample, consider a simple application with three agents: two image scanners (Agent A
and Agent B) and a file transfer agent that collects the scanned images from the two
scanners in order to send them to a processor (Agent C). The scanners have identical
probabilistic behavior: they can either scan, calibrate or synchronize with agent C (re-
spectively actions aRead, bRead, aCal, bCal, syncA and syncB). The models for the
agents are used to build a global model for the system. Figure 1 shows the model for
each agent and the global model obtained for the MAS. For the sake of simplicity the
transmission actions of Agent C are not shown. The calibration and scan actions are
probabilistic, so a probability value is associated to them. For instance, at state 0 of
agent A’s model aCal will be executed with probability 0.1 and aRead with probability
0.9. At the model for the complete MAS, a non-deterministic choice at state 000 will
decide among A and B the next agent to perform an action.

0

1

aRead
0,9

0,1

0,9

0,1

bRead

aCal

000

bCal

010

0,1

bCal 100 110

0,1
aCal

0,9
aRead

100
0,9 bRead

0,1

aCal
011

111

001

sincA

Agent A

Agent B

Agent C

0 1

0,9 bRead

0,9
aRead

bCal
0,1

bCal
0,1

sincA

0,9 bRead

0,9
aRead

bCal
0,1

0,1
aCal

0,9
aRead

0,9 bRead

0,1
aCal

0

1

syncA

syncB

syncA

syncB

syncA syncB

Fig. 1. A model for the MAS GABC is formed by composing the models of agents A, B and C

Assuming that the file transfer agent tries to optimize its throughput, it should rea-
son about the probability that at least one scanner is ready to synchronize. The scan-
ners might be interested in reasoning about how to behave if the file transfer agent is
available for synchronization with probability lower than 0.4, so they can manage their
activity schedule in order to avoid long waiting times. The specification and verifica-
tion of properties that relate to the knowledge of agents in a probabilistic MAS are

18 C. Delgado and M. Benevides

the subject of this paper. We propose a modeling strategy, a specification language and
the corresponding model checking algorithms, and describe how our approach can be
implemented in the probabilistic model checker PRISM [20].

In recent years, several approaches to model and verify knowledge in MAS have been
proposed: [21] discussed the problem in the context of systems with perfect recall, [19]
provided a reduction of the model checking problem for the logic CKLn (that combines
LTL with epistemic logic) to LTL model checking, and more recently [22] presented a
direct implementation for symbolic model checking of CKLn. In [16] model checking
approaches to the logic CKKn (that combine CTL and epistemic logic) are provided
and algorithms for model checking epistemic operators based on SMV are presented.
Finally in [14] a technique for verifying an epistemic logic of branching time (CTLK)
based on the NuSMV model checker [23] is presented.

Our work brings together previous results from the field of probabilistic model
checking (e.g. [24,25,26,27]) and techniques for modeling and verifying knowledge in
asynchronous MAS. We propose an epistemic extension of the probabilistic CTL tem-
poral logic, called K-PCTL. K-PCTL allows for the expression of epistemic properties,
temporal properties and likelihood of events. Our approach differs from the one in [11]
as no probabilistic distribution is assigned to each agent-state pair in our formalism.
In KPCTL probabilistic uncertainty is expressed using formulas with nested epistemic
and probabilistic operators. In order to verify such epistemic formulas a model check-
ing algorithm is provided in our work, and a description of how to extend PRISM to
model check K-PCTL formulas over probabilistic MAS models is presented. Perfor-
mance evaluation experiments were not in the scope of this work, but we prove that the
verification process has polynomial complexity. Our main contributions are the exten-
sion of previous approaches to probabilistic MAS and a road-map for the implementa-
tion of the herein developed techniques in a powerful probabilistic model checker.

This paper is organized as follows. A modeling process for probabilistic MAS is
presented in Section 2. In section 3 we present the logic K-PCTL and an interpretation
of K-PCTL formulas. In Section 4 we discuss how to extend existing PCTL model
checking processes to K-PCTL. Our final remarks and ideas to extend the results to
continuous-time probabilistic MAS are stated in Section 5.

2 Modeling Probabilistic MAS

We are interested in modeling asynchronous probabilistic MAS. Such systems are com-
posed of multiple agents that have probabilistic behavior and independent execution
times. The general idea is to model the behavior of individual agents, and then compose
these models to generate a model for the complete MAS. This will be done in order
to obtain a global model for probabilistic MAS in the resemblance of the interpreted
systems [7] formalism, but with a more precise characterization of the agents’ behavior.
Synchronization actions will be used to support interaction among agents.

In order to model agents that have probabilistic behavior, we will adopt a model
that allows for the specification of probabilistic state changes. Markov Chains are a
simple and adequate formalism for describing phenomena that change randomly as
time progresses [26]. The simplest Markov Chain model is the Discrete Time Markov

Verification of Epistemic Properties in Probabilistic Multi-Agent Systems 19

Chain (DTMC). DTMCs are commonly used as models for probabilistic systems, as
they provide a convenient representation of probabilistic behavior over time.

A DTMC is a collection of random variables {X(k)|k = 0, 1, 2, . . .} where obser-
vations are made at discrete time steps. The values taken by X(k) are called states. The
state space is discrete and for the scope of this work finite. A DTMC has the Markov
Property, so that the probability that the system is at state s at time k is dependent only
on the state of the system at time k − 1. A homogenous DTMC is a DTMC where
the probability of a transition is independent of the time in which the transition occurs.
Such DTMCs can be represented by a matrix that gives for each pair (s, t) of states the
probability that a transition from s to t occurs.

In our approach each individual agent will be modeled by a homogeneous DTMC.
For verification purposes, we enrich the model with the atomic propositions that are
valid in each state. Throughout this section we use AP to denote a given a set of atomic
propositions. Synchronization mechanisms are included in our model by means of spe-
cial synchronization actions. As the system is asynchronous, one agent might have to
wait for the other agents with which it has to synchronize until all are ready to perform
the action together. For simplicity, we assume that agents perform synchronization ac-
tions always with probability 1. We define a DTMC with synchronization actions –
DTMC-SA – as a tuple D = (S, s0, Act, L,A,P) where:

– S is a finite set of states;
– s0 ∈ S is the initial state;
– Act is a finite set of actions {a1, . . .an};
– L : S → 2AP is a labeling function describing the atomic propositions that are true

in a state;
– A : S×Act×S → {0, 1} describes the state changes caused by a synchronization

action;
– P : S × S → [0, 1] is a matrix with rational values such that:∑

s′∈S(P(s, s′) + A(s, a, s′)) = 1 holds for all s ∈ S and a ∈ Act (if a synchro-
nization action is possible at a state, no other action is allowed).1

We now consider the construction of a model for the probabilistic MAS based on the
models of the individual probabilistic agents. The probabilistic MAS model will be a
parallel composition of the models representing its agents.

There are two main approaches for the composition of DTMCs: fully probabilis-
tic and alternating [26]. Fully probabilistic approaches define a probability distribution
that encompasses actions from the composed DTMCs. Alternating approaches inter-
leave the actions from the composed DTMCs, which means that they do not require a
“normalization” of distributions from the different DTMCs being composed. Interleav-
ing actions from several DTMCs will introduce non-deterministic choices in the global
model. The non-determinism stands for the freedom of choice regarding which agent
from the MAS will be the next one to perform an action. This suits our model well
as we are considering MAS whose agents are expected to operate independently and
might have different execution times.

1 Note that P is not a probability matrix as in the original DTMC model, though one could be
generated adding to it the values of A.

20 C. Delgado and M. Benevides

It is known that the alternating composition of a set of DTMC models results in a
probabilistic and non-deterministic model called Markov Decision Process (MDP) (a
detailed description of both formalisms appears in [25] and [26]). A MDP is a similar
model to a DTMC, which instead of a probability matrix has a probabilistic transition
function R : S → 2Act×Dist(S), where Dist(S) is the set of all probability distributions
over the set S.2

We can formalize the composition of DTMC-SAs representing probabilistic agents
in order to obtain an MDP that represents the behavior of the overall MAS. In the
next definition, we will use the fact that the function R can be rewritten as a relation
R ⊆ S × Act × Dist(S). For an overview of the composition process, see Figure 1.

Definition 1. Let P=(SP , p0, ActP , LP ,AP ,PP) andQ = (SQ, q0, ActQ, LQ,AQ,
PQ) be two DTMC-SAs. The parallel composition of P and Q synchronizing at actions
a1, . . . , an ∈ (ActP ∩ ActQ) is a MDP (S, s0, Act, L, R) where:

– S = {(pq)|p ∈ SP and q ∈ SQ};
– s0 = (p0q0);
– Act = {aP , aQ} ∪ ActP ∪ ActQ, where aP and aQ are two new action labels;
– L is the smallest relation satisfying that for every state (pq) ∈ S, L((pq)) =

LP(p) ∪ LQ(q);
– R ⊆ S × Act × Dist(S) is the relation defined by:

• For each p ∈ SP and q ∈ SQ:
if

∑
p′∈SP PP(p, p′) = 1 then ((pq), aP , μ) ∈ R, where μ is the distribution:

μ(p′q′) = 1 if q′ = q, and μ(p′q′) = 0 otherwise.
if

∑
q′∈SQ PQ(q, q′) = 1 then ((pq), aQ, μ) ∈ R, where μ is the distribution:

μ(p′q′) = 1 if p′ = p, and μ(p′q′) = 0 otherwise.
• For each a ∈ (ActP ∩ ActQ):

((pq), a, μ) ∈ R, where μ is the distribution:

μ(p′q′) =

{
1 if (p, a, p′) ∈ AP and (q, a, q′) ∈ AQ,

0 otherwise

• For each action a /∈ {aP , aQ} ∪ (ActP ∩ ActQ):
((pq), a, μ) ∈ R, where μ is the distribution

μ(p′q′) =

⎧⎪⎨
⎪⎩

1 if (p, a, p′) ∈ AP and q = q′,
1 if (q, a, q′) ∈ AQ and p = p′,
0 otherwise

We will use the term “global model” to refer to a model obtained by a parallel composi-
tion of DTMC-SAs. The states of the global model are then ordered pairs representing
the states of the individual agents’ models . Considering that several agent models may
be composed into one global model, we denote by s[i] the i-th component of state s
that corresponds to the local state of agent i in the global state s. New action labels
ActP ∪ ActQ are introduced to denote the agent that was originally able to perform a

2 Dist(S) is the set of functions μ : S → [0, 1] such that
∑

s∈S
μ(s) = 1.

Verification of Epistemic Properties in Probabilistic Multi-Agent Systems 21

probabilistic transition. The labeling function for a global sate (pq) is constructed in a
way that the valid propositions are the ones that were valid at the states p and q from
the respective agents’ models. The probabilistic transitions are labeled with actions that
denote the agent that is able to perform them; the synchronization transitions keep their
previous labels. Note that at the time a composition is made not all synchronization
transitions need to be synchronized, i.e. they can be left “free” as an open door to syn-
chronization by a future composition.

The composition operation defined above can be extended for the composition of a
collection of DTMC-SAs. Because of space limitations we will not present a formal-
ization of this extension, but a short description of the composition process and of the
resulting model. Let Ag = {1, . . . , n} be a set of DTMC-SAs. The states of the model
generated by a parallel composition of the DTMC-SAs in Ag are tuples (s1, . . . , sn)
where si ∈ Si, being Si the set of states of agent i ∈ Ag. The probabilistic transitions
of the global model are constructed by interleaving the probabilistic transitions from
all agents i ∈ Ag with special attention to the synchronization actions. Such specific
actions can be used to synchronize agents as specified in the composition operation, and
are performed in parallel by the agents that are synchronizing.

In spite that the model for each agent is fully probabilistic, the composed model
has completely non-deterministic choices, to which no probability distribution is as-
signed. The probabilistic distributions that govern the behavior of individual agents do
not influence one another. The non-determinism is generated exactly when two different
distributions “compete” in one state, which happens when two different agents perform
probabilistic actions and independently change their states.

The goal of a MAS is usually defined in terms of global behavior, whereas its ex-
ecution is the result of the concurrent execution of all agents. The actions of an agent
are chosen each step by the agent itself, taking into account its available information.
We may say that the information an agent has available and is able to reason about is
its knowledge. Usually an agent does not know everything about a MAS, as some in-
formation may not be known at all or may be unavailable to the agent at a certain time,
such as the outcome of events under the control of other agents. This notions will be
represented by means of an equivalence relation ∼i, defined for each agent i over the
set of states of the global model. The intuition behind the ∼i relations is to connect
states of the global model where an agent i has the same the local state (e.g. states 000
and 010 in Figure 1 for the agents A and C). This means that the knowledge agent i has
in both states is the same, and the agent is not able to distinguish between them (states
related by ∼i are called “indistinguishable”). Agent i is said to know a fact if and only
if the fact holds in all states i considers possible, that is, all states that are related to the
current state by ∼i [7].

Let A = (S, s0, Act, L, R) be the parallel composition of a collection of DTMC-SAs
{Ai} for i ∈ [1, . . . , n]. The accessibility relation ∼i∈ S × S for each agent i is the
smallest equivalence relation containing all pairs (s, s′), where s and s′ ∈ S such that
the local state of agent i is the same both at s and s′: s′[i] = s[i]. We call the resulting
model MDP∼. A MDP∼ is then a global model for a MAS that encapsulates behavior
information (by means of state transitions) and epistemic information (by means of the
relations ∼i), and can be fully constructed from composing probabilistic agent models.

22 C. Delgado and M. Benevides

3 The Logic K-PCTL

In this section we consider how to formally specify epistemic properties of a proba-
bilistic MAS. Different logics to reason about knowledge and probability were already
proposed. [11] proposes a logic that combines probability and epistemic operators. This
logic is extended in [13] in order to deal with information change. Both logics require
that a probability function is assigned to each agent of the system for each state. These
distributions are used to denote, for a given state, the probability that an agent attributes
to the other states of the system. Such distributions are not easy to obtain directly from
the model, particulary for asynchronous systems. The biggest obstacle is that no agent
knows how quick the other agents run, and the chances that a specific state will be the
next one during an execution depends on the state changes of all agents.

Here we take a different approach and use PCTL as a base language. The main rea-
sons for this choice are that PCTL is commonly used to reason about time in probabilis-
tic models of discrete time as DTMCs and MDPs [28,25,29] and that the corresponding
model checking algorithms were already investigated. PCTL extends Real Time CTL –
RCTL [30], which is itself an extension of the temporal logic CTL [31,32]. As pointed
out in [33], RCTL can be used to state hard deadlines, while PCTL allows soft dead-
lines; RCTL allows to express properties such as “A property holds within a certain
amount of (discrete) time” and PCTL allows to state properties such as “A property
holds within a certain amount of (discrete) time with a probability of at least 99%”.

We propose a combination of PCTL with the basic modal epistemic logic S5n[7],
in order to allow the expression of properties about probabilistic behavior and the (not
probabilistic) knowledge of the agents. We call this language K-PCTL. It includes oper-
ators Ki for each agent i of the MAS and epistemic operators for group knowledge and
common knowledge (EG and CG). The intuitive meaning of formulas Kiφ is “Agent
i knows φ”. EGφ means that all agents of the group G knows φ, and CGφ represents
that φ as a convention among the agents of the group G. K-PCTL makes it possible to
express properties about knowledge, time and events in MAS, as for example: “Agent
A knows that if he sends a message to agent B, the probability that B will eventually
know the content of this message is 0.998”. This can be expressed by the K-PCTL
formula KA(msgsent→ P≥0.998(∃FKB msg)), where the proposition msgsent
stands for “agent A sent the message msg to agent B” and the proposition msg stands
for the content of the message.

The syntax is given in terms of state formulas φ and path formulas ψ that are evalua-
ted respectively over states and paths3. Let A be the set of agents.

φ ::= true | a | ¬φ | φ ∧ φ | Prelp[ψ] | Kiφ | CGφ | EGφ
ψ ::= φ | φU≤kφ | φUφ,

where a is an atomic proposition, rel ∈ {≤, <,≥, >}, p ∈ [0, 1], c ∈ R
≥0, i ∈ A and

k ∈ N.
Properties over the model will always be expressed using state formulas, which

may represent boolean combinations of atomic propositions, probabilistic properties
(Prelpf) that require a certain measure of existing paths starting in the current state and

3 The cost operator Erelc[φ] was omitted for the sake of simplicity, but it can be directly intro-
duced in K-PCTL as long as a cost structure is included in the model to support its semantics.

Verification of Epistemic Properties in Probabilistic Multi-Agent Systems 23

satisfying the path formula f , or epistemic formulas like Kiφ. Path formulas involve the
operator “until” U or bounded U≤k and the “next step” path (represented by the path
formula φ). Other boolean operators can be derived from ∧ and ¬ in the usual way.
Intuitively the path formula φ1U≤kφ2 means that φ1 holds from now on until within
at most k time units φ2 becomes true. φ1Uφ2 means that φ1 holds from now on un-
til φ2 becomes true. Adversaries are used to deal with non-determinism in order allow
for the computation of probabilities over paths. An adversary is basically a policy that
determines a non-deterministic choice based on the previous path (so on the history of
choices made so far) [25].

We present an interpretation for K-PCTL formulas based on the interpretation for
PCTL over MDP∼ models. The semantics of the epistemic modalities is based on the
accessibility relations ∼i.

s |= true for all s ∈ S

s |= a if and only if a ∈ L(s)
s |= ¬φ if and only if s �|= φ

s |= φ1 ∧ φ2 if and only if s |= φ1 and s |= φ2

s |= Kiφ if and only if for all t ∈ S | t ∼i s ⇒ t |= φ

s |= EGφ if and only if s |= Kiφ for all i ∈ G

s |= CGφ if and only if s |= Ek
Gφ for all k ≥ 1

s |= Prelp[ψ] if and only if pA
s (ψ)relp , for all A ∈ AdvM

where for all adversaries A ∈ AdvM:

pA
s (ψ) def= ProbA

s ({w ∈ PathA
s |w |= ψ})

and for each path w ∈ Path:

w |= φ if and only if w(1) |= φ,
w |= φ1U≤kφ2 if and only if ∃i ≤ k· (w(i) |= φ2∧ w(j) |= φ1, ∀j < i),
w |= φ1Uφ2 if and only if ∃k ≥ 0 · w |= φ1U≤kφ2.

The set of paths {w ∈ PathA
s |w |= ψ} is measurable for any path formula ψ, state

s ∈ S and adversary A [34]. The operators false, ∨ and → can be defined using true, ¬
and ∧. To illustrate the expressiveness of K-PCTL let us reconsider the example MAS
from Figure 1. Consider that in the local state 0 of agent A and B propositions calA
and calB are (respectively) valid, indicating that the agent is calibrating. The formula
K-PCTL KCP≤0,1calA∧ calB expresses that Agent C knows that the probability that
both agents A and B are calibrating is less then 0.1.

4 Verification

Now we discuss how to verify knowledge formulas like Kiφ from K-PCTL against
global models for MAS. As our intention is to benefit from the existence of a powerful
probabilistic model checker for PCTL, let us first consider how to map our mode-
ling approach to PRISM. PRISM is a probabilistic model checker that supports three
types of probabilistic models: DTMCs, MDPs and also continuous-time Markov chains

24 C. Delgado and M. Benevides

(CTMCs), plus extensions of these models with costs and rewards, and it has already
been used for a large and diverse set of case studies. For a more detailed description of
PRISM and its functionalities refer to [20].

The herein presented modeling techniques are completely compatible with the latest
PRISM implementation: the models for each agent can be described independently and
the available composition mechanism provides a global model compatible with the one
given by the parallel composition operation from Definition 1 as long as the agent mo-
dels are declared as MDPs (and not as DTMCs as one could expect4). This is a mere
technicality and is not a problem as DTMCs are a subclass of MDP models. The use
of synchronization actions is also supported by PRISM. Although PRISM does not en-
force that these actions have probability 1, we can consider without loss of generality
that this restriction will be enforced during the modeling process. As it is common in
PRISM, we can use a variable to represent the state of an agent. For the global model,
the state will be represented by the set of the state variables of all agents. This represen-
tation suits our model as it keeps track of the local states and can then be used to find
out the states related by ∼i.

The general model checking process adopted by PRISM takes as an input a formula
φ from PCTL and an MDP model M and checks if φ holds in each state of M . The
list of states where φ holds can then be obtained. Roughly speaking, this is done by
constructing a parse tree for formula φ, where each node is labeled with a subformula
from φ. φ is the label of the root of the tree and atomic propositions are the leaves. The
states satisfying each subformula are computed working upwards towards the root of
the tree.

To extend the model checking process to K-PCTL formulas it is enough to provide
an algorithm for handling the operator Ki as the algorithms for the epistemic operators
EG and CG are based on the verification of Ki formulas (such algorithms will not be
presented here because of space restrictions) and all remaining operators can be treated
by the existing algorithms of PCTL model checking. A straightforward implementation
of an algorithm for checking Kiφ would proceed as follows: “for each state s ∈ S, for
each state s′ related to s by ∼i, check if it is the case that φ holds. If yes, then Kiφ
holds for s”. This basic approach can be improved by taking advantage of the following
facts:

– By the time the formula Kiφ has to be computed, the set T (φ) of states of M where
φ holds has already been computed.

– Given a state s and an agent i we can obtain the set T (s ∼i) of states s′ such that
s ∼i s′ by checking for which states of the model s′[i] = s[i] holds. Once s is
fixed this is a simple task as it means to check for the states where a variable has a
specific value.

– As ∼i is by definition an equivalence relation and considering the semantics given
for Kiφ, it is the case that for all states where Kiφ holds, φ must also hold, and
Kiφ holds at a state s if and only if it holds for all states s′ such that s ∼i s′ [16].

Let T (Kiφ) denotes the set of states where Kiφ holds, and T (φ) denotes a set of states
where φ holds. Now consider that T (φ) is already known by the time Ki has to be

4 The composition operation defined for DTMCs at PRISM returns a DTMC and not an MDP.

Verification of Epistemic Properties in Probabilistic Multi-Agent Systems 25

handled (as part of the normal model checking process executed by PRISM); consider
also that PRISM can generate the set T (s ∼i). Then a convenient approach to obtain
T (Kiφ) is given by the following algorithm Check-K:

– For each state s from T (φ):
• Obtain the set T (s ∼i) of states s′ such that s ∼i s′ (as described above).
• Check whether T (s ∼i) ⊆ T (φ) . If yes, then include T (s ∼i) in T (Kiφ). In

either case remove all states that appear in T (s ∼i) from T (φ).
– return T (Kiφ).

The algorithm has to traverse the states s of T (φ) checking whether T (s ∼i) ⊆ T (φ).
For each state s that is checked, all states from T (s ∼i) are removed from T (φ). When
T (φ) is empty the set T (Kiφ) is returned and the algorithm ends. A proof of correctness
of this algorithm follows from the one presented in [16].

Proposition 1. The algorithm Check-K always terminates.

Proof. The number of states in T (φ) is finite and limited by S. Each state of T (φ) is
visited at most once. Constructing T (s ∼i) can be done in finite number of steps, as
well as checking if T (s ∼i) ⊆ T (φ).

Proposition 2. The time complexity to obtain T (Kiφ) given T (φ) according to the
algorithm Check-K is O(|S|2), where |S| is the number of states of the global model.

Proof. The proof presented in [16] for the non-probabilistic case can be applied here
with no loss of generality. The complexity to obtain T (s ∼i) is O(|S|). To traverse the
set T (φ), we must check in every step whether T (s ∼i) ⊆ T (φ) and then delete the
states of T (s ∼i) from T (φ). Each of these operations takes at most |T (s ∼i)| ∗ |S|
steps. Assume that it takes k steps until T (φ) becomes empty; it follows that T =
∪k

j=1T (sj ∼i) where sj is the state being analyzed in step j. Also, T (sj ∼i)∩T (sl ∼i)
= ∅ for any j, l from 1 to k. To finish traversing T (φ) it takes

∑k
j=1(|S|+2∗|T (sj ∼i)

| ∗ |S|) steps, what is clearly less then k ∗ |S| + 2 ∗ |S|2 < 3 ∗ |S|2 and so polynomial
in the size of the global model.

5 Conclusion

In this paper we have considered the problem of model checking knowledge and time in
probabilistic MAS. Based on previous results for model checking of knowledge logics
against non-probabilistic MAS, we described a concise approach for modeling a prob-
abilistic MAS, a logic to specify knowledge properties, and the corresponding process
for model checking epistemic formulas. Our approach is at the same time theoreti-
cally sound and suitable for implementation. A road-map was provided describing how
PRISM can be used to verify knowledge specifications against MDP models represent-
ing a probabilistic MAS, what is as well a description of how PRISM could be extended
to incorporate this functionality.

In our search for meaningful ways to express knowledge properties of probabilistic
MAS we found out that the assumption of time-independence among the agents is very

26 C. Delgado and M. Benevides

strong. If an agent has no extra information about the behavior of the others, it has no
reasons to consider that some states are most likely to be the current one than others.
The question “which is the current state at the moment” is linked to the history of
actions performed by all agents. As actions are interleaved, this type of uncertainty is
non-deterministic from the point of view of one agent. It is though sill possible for an
agent to reason about the probability that some property will eventually hold, as K-
PCTL provides mechanisms to reason about the probabilities a path will be reached by
means of quantifying over all possible non-deterministic choices (adversaries) with the
probabilistic operator P .

Regarding the knowledge properties, our approach was to treat them as indistin-
guishable states. If adversaries should be fixed determining a policy to solve the non-
deterministic choices we could as well use this new information to refine the agents’
knowledge, and build probabilistic accessibility relations. If we go one step further and
consider continuous-time probabilistic models like Continuous Time Markov Chains
(CTMC), we face a scenario where agents have a global notion of the time passage
(though their execution rates might freely differ). This fact can be used in order to build
more refined accessibility relations. This is the focus of our work at the moment and
our preliminary results are presented in [35].

References

1. Arus, C., Celda, B., Dasmahaptra, S., Dupplaw, D., Gonzalez-Velez, H., Huffel, S.V., Lewis,
P., Ariet, M.L.i., Mier, M., Peet, A., Robles, M.: On the design of a web-based decision sup-
port system for brain tumour diagnosis using distributed agents. In: Proc. IEEE/WIC/ACM
Int. Conf. on Web Intelligence and Intelligent Agent Technology, pp. 208–211 (2006)

2. Duo, W., Yi, L., Wenhui, L., Qi, J., Rongqing, Y.: Intelligent multi-agent based informa-
tion system of business process management. In: Pacific-Asia Workshop on Computational
Intelligence and Industrial Application, pp. 469–473 (2008)

3. Gleizes, M.P., Link-Pezet, J., Glize, P.: An adaptive multi-agent tool for electronic commerce.
In: IEEE Int. Workshops on Enabling Technologies, vol. 1, pp. 59–66 (2000)

4. Halpern, J.Y., Tuttle, M.R.: Knowledge, probability, and adversaries. J. ACM 40(4), 917–960
(1993)

5. Wooldridge, M.J.: Introduction to Multiagent Systems. John Wiley & Sons, Inc., Chichester
(2001)

6. Lehmann, D., Shelah, S.: Reasoning with time and chance. Information and Control 53, 165–
198 (1982)

7. Fagin, R., Halpern, J.Y., Moses, Y.: Reasoning about knowledge. MIT Press, Cambridge
(1995)

8. der Hoek, W.V., Wooldridge, M.: Cooperation, knowledge and time: Alternating-time tem-
poral epistemic logic and its applications. Studia Logica 75(1), 125–157 (2003)

9. Halpern, J.Y.: Reasoning about Uncertainty. MIT Press, Cambridge (2003)
10. Grünwald, P., Halpern, J.Y.: A game-theoretic analysis of updating sets of probabilities. In:

Proc. 24th Conf. in Uncertainty in Artificial Intelligence, pp. 240–247 (2008)
11. Fagin, R., Halpern, J.Y.: Reasoning about knowledge and probability. J. ACM 41(2), 340–

367 (1994)
12. de Carvalho Ferreira, N., Fisher, M., van der Hoek, W.: Specifying and reasoning about

uncertain agents. International Journal of Approximate Reasoning 49(1), 35–51 (2008)

Verification of Epistemic Properties in Probabilistic Multi-Agent Systems 27

13. Kooi, B.P.: Probabilistic dynamic epistemic logic. J. of Logic, Lang. and Inf. 12(4), 381–408
(2003)

14. Lomuscio, A., Pecheur, C., Raimondi, F.: Automatic verification of knowledge and time with
NuSMV. In: Proc. 20th IJCAI, pp. 1384–1389 (2007)

15. Lomuscio, A., Raimondi, F.: Model checking knowledge, strategies, and games in multi-
agent systems. In: Proc. 5th Int. Joint Conf. on Autonomous Agents and Multiagent Systems,
pp. 161–168. ACM Press, New York (2006)

16. Wu, L., Su, K., Chen, Q.: Model checking temporal logics of knowledge and its application
in security verification. In: Hao, Y., Liu, J., Wang, Y.-P., Cheung, Y.-m., Yin, H., Jiao, L., Ma,
J., Jiao, Y.-C. (eds.) CIS 2005. LNCS (LNAI), vol. 3801, pp. 349–354. Springer, Heidelberg
(2005)

17. Gammie, P., van der Meyden, R.: Mck: Model checking the logic of knowledge. In: Alur, R.,
Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 479–483. Springer, Heidelberg (2004)

18. Kacprzak, M., Lomuscio, A., Penczek, W.: Verification of multiagent systems via unbounded
model checking. In: Proc. 3rd Int. Joint Conf. on Autonomous Agents and Multiagent Sys-
tems, pp. 638–645. ACM Press, New York (2004)

19. van der Hoek, W., Wooldridge, M.: Model checking knowledge and time. In: Bošnački, D.,
Leue, S. (eds.) SPIN 2002. LNCS, vol. 2318, pp. 95–111. Springer, Heidelberg (2002)

20. Hinton, A., Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM: A tool for automatic veri-
fication of probabilistic systems. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS,
vol. 3920, pp. 441–444. Springer, Heidelberg (2006)

21. van der Meyden, R., Shilov, N.V.: Model checking knowledge and time in systems with
perfect recall (extended abstract). In: Pandu Rangan, C., Raman, V., Sarukkai, S. (eds.) FST
TCS 1999. LNCS, vol. 1738, pp. 432–445. Springer, Heidelberg (1999)

22. Su, K., Sattar, A., Luo, X.: Model checking temporal logics of knowledge via OBDDs. The
Computer Journal 50(4), 403–420 (2007)

23. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Sebas-
tiani, R., Tacchella, A.: NuSMV 2: An opensource tool for symbolic model checking. In:
Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, p. 359. Springer, Heidelberg
(2002)

24. Dekhtyar, M.I., Dikovsky, A.J., Valiev, M.K.: Temporal verification of probabilistic multi-
agent systems. In: Avron, A., Dershowitz, N., Rabinovich, A. (eds.) Pillars of Computer
Science. LNCS, vol. 4800, pp. 256–265. Springer, Heidelberg (2008)

25. Rutten, J., Kwiatkowska, M.Z., Norman, G., Parker, D.: Mathematical Techniques for Ana-
lyzing Concurrent and Probabilistic Systems. CRM Monograph Series, vol. 23. American
Mathematical Society, Providence (2004)

26. Hermanns, H.: Interactive Markov Chains: The Quest for Quantified Quality. Springer, Hei-
delberg (2002)

27. Katoen, J.P., Kwiatkowska, M.Z., Norman, G., Parker, D.: Faster and symbolic CTMC model
checking. In: de Luca, L., Gilmore, S. (eds.) PROBMIV 2001, PAPM-PROBMIV 2001, and
PAPM 2001. LNCS, vol. 2165, pp. 23–38. Springer, Heidelberg (2001)

28. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal Aspects
of Computing 6(5), 512–535 (1994)

29. Aziz, A., Singhal, V., Balarin, F.: It usually works: The temporal logic of stochastic systems.
In: Wolper, P. (ed.) CAV 1995. LNCS, vol. 939, pp. 155–165. Springer, Heidelberg (1995)

30. Emerson, E.A., Mok, A.K., Sistla, A.P., Srinivasan, J.: Quantitative temporal reasoning. In:
Clarke, E., Kurshan, R.P. (eds.) CAV 1990. LNCS, vol. 531, pp. 136–145. Springer, Heidel-
berg (1991)

28 C. Delgado and M. Benevides

31. Ben-Ari, M., Manna, Z., Pnueli, A.: The temporal logic of branching time. In: Proc. 8th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 164–
176. ACM Press, New York (1981)

32. Peled, D.A., Clarke, E.M., Grumberg, O.: Model Checking. MIT Press, Cambridge (2000)
33. Ciesinski, F., Größer, M.: On probabilistic computation tree logic. In: Baier, C., Haverkort,

B.R., Hermanns, H., Katoen, J.-P., Siegle, M. (eds.) Validation of Stochastic Systems. LNCS,
vol. 2925, pp. 147–188. Springer, Heidelberg (2004)

34. Vardi, M.Y.: Automatic verification of probabilistic concurrent finite state programs. In: Proc.
26th Annual Symposium on Foundations of Computer Science, pp. 327–338. IEEE, Los
Alamitos (1985)

35. Delgado, C.: Modelagem e verificação de propriedades epistêmicas em sistemas multi-
agentes. PhD thesis, Universidade Federal do Rio de Janeiro - UFRJ (2007)

GOAL as a Planning Formalism

Koen V. Hindriks and Tijmen Roberti

Delft University of Technology, Delft, The Netherlands

Abstract. It has been observed that there are interesting relations be-
tween planning and agent programming. This is not surprising as agent
programming was partially motivated by the lack of planners that are
able to operate in dynamic, complex environments. Vice versa it has
also been observed, however, that agent programming languages typi-
cally lack planning capabilities. We show in this paper that the agent
programming language Goal is not only a programming language but
can actually be used as a planning formalism as well. This opens up
many possibilities for various approaches to mix execution and plan-
ning in agent-oriented programming. Moreover, by using the recently
introduced temporal Goal we are able to include not only the stratified
axioms and ADL that are part of PDDL but also plan constraints.

1 Introduction

It has been argued in e.g. [3,13,14] that the combination and integration of
planners into agent programming languages has many benefits. By combining
the strengths of planners with the flexibility of agent programs it may be possible
to handle dynamic domains more effectively, and, moreover, it becomes possible
to exploit the advances of automated planning in agent programming.

Existing work on formally relating programming languages and planning for-
malisms, as far as we know, has mainly focussed on the language Golog. For
example, in [13] the relative expressiveness of ADL [12] and Golog is investi-
gated and a maximal fragment of so-called basic action theories used in Golog
is identified that is expressively equivalent to ADL. We are not aware, however,
of any work that formally relates agent programming languages that are based
on BDI concepts such as beliefs and goals to planning from first principles.

The main contribution of this paper is to formally show that the agent pro-
gramming language Goal [10] can be used as a planning formalism. Goal agents
are BDI agents that derive their choice of action from their beliefs and goals.
More specifically, we show that a fragment of PDDL including axioms, ADL and
(temporal) plan constraints [8] can be compiled into Goal. This result is impor-
tant because it provides a clear interface between agent programs and planners.
Such an interface can be used to call planners from agent programs and, vice
versa, import results from research on planning into agent programming lan-
guages. It also shows that Goal agents can solve solvable PDDL problems for
a PDDL fragment including conditional effects and plan constraints. Moreover,
it clarifies the overlap and difference in concepts present in agent programming
languages and planning formalisms.

L. Braubach et al. (Eds.): MATES 2009, LNAI 5774, pp. 29–40, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

30 K.V. Hindriks and T. Roberti

A planning formalism uses an underlying knowledge representation (e.g. first-
order logic in PDDL). We introduce the notion of a Goal framework to separate
the underlying knowledge representation used by Goal agents from the features
of the language Goal itself. This allows us to clearly separate the features of
the Goal language that have been used to obtain our results from those pro-
vided by the knowledge representation language. We believe that this approach
may also be helpful in clarifying how our results may be applied to other agent
programming languages that have declarative beliefs and goals.

The paper is organized as follows. In Section 2 we introduce the syntax and
semantics of the PDDL 3.0 Level 1 fragment (without preferences). Section 3
introduces the agent programming language Goal. In Section 4 we show how
PDDL problems can be compiled into Goal. Section 5 concludes the paper.

2 PDDL Fragment: Axioms + ADL + Plan Constraints

The fragment of PDDL that we consider here is PDDL 3.0 Level 1, including
axioms, ADL, and plan constraints, but excluding preferences. We will refer to
this fragment as PDDLAx+CE+PC .

We assume that a first-order function-free language L0 is given that is built
from a set of predicates P , variables V , and constants C in the usual way and
includes equality =. Note that constants are allowed although L0 is otherwise
assumed to be function-free. The set of predicates is divided into two disjunct
sets of so-called basic predicates B and derived predicates D. PDDL also allows
typed variables but for reasons of space we do not discuss this feature. Formulae
φ ∈ L0 are also called state formulae, and we write φ[x] to indicate that all free
variables of φ occur in the vector x. State formulae are used in PDDL to define
the goal state G and as precondition of action operators. It is common to also
call state formulae goal descriptions. We define PDDL axiom sets as in [15].

Definition 1. (PDDL Axiom)
A PDDL axiom is a closed formula of the form ∀x.φ → d(x), where d ∈ D and
φ ∈ L0 (whose free variables are in the vector x).

PDDL axioms in this context are best thought of as definitions of derived predi-
cates d (cf. the completion of axioms in the sense of [1]). A closed world semantics
is used (see below) where d(x) is false whenever it cannot be derived as true. In
order to define PDDL axiom sets we use the notion of a Negation Normal Form
(NNF). A formula φ ∈ L0 is in negation normal form iff negation occurs directly
in front of atoms.

Definition 2. (PDDL Axiom Set)
A PDDL Axiom Set is a set of PDDL axioms that is stratified. A PDDL axiom
set A is stratified iff there exists a partition of the set of derived predicates D
into (non-empty) subsets {Di, 1 ≤ i ≤ n} such that for every di ∈ Di and every
axiom ∀x.φ → di(x) ∈ A we have that:

1. if dj ∈ Dj occurs positively in an NNF of φ, then j ≤ i
2. if dj ∈ Dj occurs negated in an NNF of φ, then j < i

GOAL as a Planning Formalism 31

The semantics of L0 is defined relative to a state and axiom set [15]. A PDDL
state S is set of ground positive literals from B. The closed world assumption
applies, so any ground positive literal not in S is assumed to be false. Axioms,
however, need to be treated separately and we first assume the consequences of
axioms A are given by a set D of atoms of the form d(x) with d ∈ D.

Definition 3. (Semantics of L0)
Let C be the constants of L0, S be a PDDL state, D a set of atoms d(x) with
d ∈ D, and A an axiom set. We only provide the most important clauses:

〈S, D〉 |= p(t) iff p(t) ∈ S ∪ D
〈S, D〉 |= ¬φ iff 〈S, D〉 �|= φ
〈S, D〉 |= ∀x.φ[x] iff 〈S, D〉 |= φ[c] for all c ∈ C

Intuitively, we can derive d(t) using axiom a = ∀x.φ → d(x) if we have
〈S, D〉 |= φ[t], and add d(t) to D if not already present; we write [[a]](S, D) =
{d(t) | 〈S, D〉 |= φ[t], t is ground} to denote these consequences. Then the set of
consequences of an axiom set A can be computed as follows, assuming that we
have a stratification {Ai, 1 ≤ i ≤ n} of A (cf. [15]): define [[A]]0(S) = ∅, and, for
1 ≤ i ≤ n, define

[[A]]i(S) =
⋂{

D |
⋃

a∈Ai

[[a]](S, D) ∪ [[A]]i−1(S) ⊆ D

}

Finally, S |=A φ is defined as 〈S, [[A]](S)〉 |= φ.
Action operators in the ADL fragment of PDDL specify the preconditions and

(conditional) effects of actions. Performing an action changes the state S.

Definition 4. (Action Operators)
A PDDL action operator α is a triple 〈x, πα, εα〉 where x are the action’s pa-
rameters, πα ∈ L0 defines when the action can be (successfully) executed, and
εα is set of conditions of the form φ ⇒ δ with φ ∈ L0 and δ a set of literals. All
free variables in πα and εα must also occur in x.

The effect of an action α on a state S can be derived by computing the positive
effects Eff+

ADL and negative effects Eff−
ADL. Given that pos(δ) and neg(δ) return

respectively the positive and negative literals in δ, these are defined by:

Eff+
ADL = {l ∈ pos(δ) | S |=A φ, φ ⇒ δ ∈ εα}

Eff−
ADL = {l ∈ neg(δ) | S |=A φ, φ ⇒ δ ∈ εα}

If the precondition of a ground operator α with effect εα holds in the current
state, i.e. S |=A πα, then the successor state γ(S, α) is defined by:

γ(S, α) = (S \ Eff−
ADL) ∪ Eff+

ADL

A plan π, which is a sequence of action operators 〈α0, . . . , αn−1〉, generates a
sequence of states: 〈S0, . . . , Sn〉 = 〈S0, γ(S0, a0), γ(S1, a1), . . . , γ(Sn−1, an−1)〉.
Such a sequence is also called a state trajectory.

32 K.V. Hindriks and T. Roberti

The language L0, axioms, and action operators are combined into a planning
domain definition Δ, which is formally defined by Δ = 〈L0,A,O〉, where L0 is
a first-order function-free language based on B, D, V , and C, A is a stratified
axiom set, and O is a set of action operators.

The final part of the PDDL fragment that we consider here are plan con-
straints (we do not discuss preferences). Plan contraints are like goals but apply
to the state trajectory of a plan instead of only to the final state. A limited
number of temporal modalities to express constraints are available, and we omit
modalities that require explicit reference to time such as the within modality.

Definition 5. (Plan Constraint)
A plan constraint Φ is defined as follows: Φ = Xφ | Φ ∧ Φ | ∀x.Φ[x],
where X is one of the modalities at end, always, sometime, at-most-once,
sometime-after, sometime-before and φ ∈ L0 a state formula.

In contrast with standard linear temporal logic, plan constraints are evaluated
relative to a finite state trajectory 〈S0, . . . , Sn〉 generated by a plan, and, as
before, an axiom set A.

Definition 6. (Semantics of Plan Constraints)
The semantics of temporal constraints is defined by the following clauses:

〈S0, . . . , Sn〉 |=A at end φ iff Sn |=A φ
〈S0, . . . , Sn〉 |=A always φ iff ∀i : 0 ≤ i ≤ n : Si |=A φ
〈S0, . . . , Sn〉 |=A sometime φ iff ∃i : 0 ≤ i ≤ n : Si |=A φ
〈S0, . . . , Sn〉 |=A at-most-once φ iff ∃i : 0 ≤ i ≤ n : Si |=A φ ⇒

¬∃j, k : i < j < k ≤ n : Sj |=A ¬φ & Sk |=A φ
〈S0, . . . , Sn〉 |=A sometime-after φ ψ iff ∃i : 0 ≤ i ≤ n : Si |=A φ ⇒

∃j : i < j ≤ n : Sj |=A ψ
〈S0, . . . , Sn〉 |=A sometime-before φ ψ iff ∃i : 0 ≤ i ≤ n : Si |=A φ ⇒

∃j : 0 ≤ j < i : Sj |=A ψ

We now have all the ingredients that are needed to define a PDDL problem. A
PDDL problem extends a domain with more specific information regarding the
initial state (which literals are true and false initially) and the goal the plan
should achieve. Additionally, plan constraints may be provided that must also
be satisfied by a plan.

Definition 7. (PDDL Problem)
A PDDLAx+CE+PC planning problem Π is a tuple 〈Δ, C, I,G,PC〉, where Δ is
a domain definition, C is a set of constants, I is the initial state, G ∈ L0 is a
closed formula called the goal description, and PC is a set of plan constraints.

A plan π is said to be a solution for a planning problem Π iff the plan can be
executed, the associated plan constraints are satisfied by the state trajectory of
the plan and the goal description G of the problem is satisfied by the final state
of that trajectory. Since G must be evaluated at the end of the trajectory we
also sometimes proceed as if G is of the form at end φ.

3 The Agent Programming Language GOAL

The agent programming language Goal is a language for programming ratio-
nal agents [10,4]. It provides constructs for specifying the beliefs and goals of

GOAL as a Planning Formalism 33

agents and for programming a strategy for action selection. Goal agents derive
their choice of action from their beliefs and goals. Goal defines a programming
framework rather than a concrete programming language because Goal does
not commit to any particular knowledge representation and may be combined
with various knowledge representation languages such as Prolog, ASP, OWL,
etc. The current implementation of Goal is based on Prolog.

3.1 GOAL Framework

We assume that some knowledge representation technology is available that
agents use to represent, reason, and update their beliefs and goals.

Definition 8. (Knowledge Representation Technology)
A knowledge representation technology (KRT) is a triple 〈L, |=,⊕〉 with L a
language to represent an agent’s beliefs and goals, |= ⊆ 2L × L a consequence
relation for L, and ⊕ : 2L × L �→ 2L an update operator that defines how a set
of formulae is updated with a given formula. We assume that falsity ⊥ ∈ L.

A KRT 〈L, |=,⊕〉is a plugin for a Goal framework. A second plugin component
of a Goal framework is a set of actions Act that Goal agents may perform,
typically dependent on the environment of the agents. A Goal framework is
abstractly defined first and then each component of a framework is explained.

Definition 9. (Goal Framework)
A Goal framework based on a KRT 〈L, |=,⊕〉is a tuple 〈Ψ,LΨ , |=Ψ ,M〉where:

– Ψ ⊆ L× L× L is the set of possible mental states of Goal agents,
– LΨ is a language of mental state conditions,
– |=Ψ ⊆ Ψ × LΨ defines the truth conditions of mental state conditions, and
– M : Ψ × Act ⇀ Ψ is a mental state transformer.

A mental state m ∈ Ψ is a triple m = 〈K, Σ, Γ 〉 with K, Σ, Γ ⊆ L which con-
sists of a knowledge base K, belief base Σ, and goal base Γ . The knowledge base
of a Goal agent consists of static conceptual or domain knowledge that does
not change. This means that performing an action does not modify a knowledge
base and applying the mental state transformer M(〈K, Σ, Γ 〉, α) = 〈K ′, Σ′, Γ ′〉
is constrained such that K = K ′. The belief base consists of the beliefs of an
agent that may change due to actions that are performed. Assuming that ϕ rep-
resents the effects of performing action α, the belief update operator ⊕ is used
to compute the new set of beliefs and applying the mental state transformer
M(〈K, Σ, Γ 〉, α) = 〈K ′, Σ′, Γ ′〉 is constrained such that Σ′ = Σ ⊕ ϕ. The goal
base consists of the goals of an agent, e.g. to have one block on top of another
(sometime in the future). Typically, additional rationality constraints are im-
posed on mental states, such as that K, Σ, and Γ are consistent (i.e. ⊥ does not
follow from any of these sets). The language LΨ of mental state conditions is
used by Goal agents to inspect their mental state. It consists of mental atoms
B(ϕ), to inspect an agent’s beliefs, and G(ϕ), to inspect an agent’s goals, where

34 K.V. Hindriks and T. Roberti

ϕ ∈ L, and combinations of such atoms by means of Boolean operators. It is
not allowed to nest the operators B and G. The semantics |=Ψ of mental state
conditions is derived from the consequence relation |= provided by the KRT, and
is defined as follows (the Boolean operators are defined as usual):

〈K, Σ, Γ 〉 |=Ψ B(ϕ) iff K ∪ Σ |= ϕ
〈K, Σ, Γ 〉 |=Ψ G(ϕ) iff K ∪ Γ |= ϕ

This definition also clarifies the distinct role of knowledge and beliefs. Conceptual
knowledge may be used in combination both with beliefs and goals, which allows
e.g. an agent to conclude that it wants to put block a above block c if it wants
block a on top of b on top of c using a rule that defines the concept above.

The actions Act that Goal agents may perform are specified as STRIPS-style
triples 〈α(x), ϕ, ϕ′〉 where α is the name of the action - including parameters
x, ϕ ∈ L is the action’s precondition, and ϕ′ ∈ L is the action’s postcondition.
Multiple action specifications for the same action α can be provided, allowing for
non-deterministic actions. An action is said to be enabled when its precondition
holds. Agents do not have direct access to their environment and have to inspect
their mental state (beliefs) to verify that an action is enabled. A Goal agent
makes a choice which action it will perform from the possibly multiple actions
that are enabled by a rule-based action selection mechanism that uses so-called
action rules. Action rules are of the form if ψ then α and define a strategy or
policy for action selection of an agent. Here, ψ is a mental state condition that
specifies when action α may be selected. If ψ follows from the agent’s current
mental state, we say that α is applicable. Finally, if an action is both applicable
and enabled, it is said to be an option, one of which is non-deterministically
choosen by an agent for execution.

Goal agents thus maintain a mental state and derive their choice of action
from their beliefs and goals. A Goal agent consists of the initial beliefs and
goals, specifies the preconditions and effects of the actions available to the agent,
and contains a set of action rules to select actions for execution at runtime. Like
the knowledge base, the action specifications and action rules are static.

Definition 10. (Goal Agent)
A Goal agent is a tuple 〈K, Σ, Γ, R, A〉 where 〈K, Σ, Γ 〉 is a mental state, R is
a set of action rules if ψ then α, and A is a set of action specifications.

Given the definition of a Goal agent and the semantics of mental state condi-
tions by |=Ψ , we can define the notion of a computation step in which a Goal
agent performs an action.

Definition 11. (Computation Steps)
Let Agt = 〈K, Σ, Γ, R, A〉 be a Goal agent with a mental state m = 〈K, Σ, Γ 〉.
Then the set of possible computation steps that Agt can perform from 〈K, Σ, Γ 〉
is denoted by −→ and defined by:

if ψ then α ∈ R, 〈α, ϕ, ϕ′〉 ∈ A, m |=Ψ ψ ∧ B(ϕ)

m
α−→ M(m, α)

GOAL as a Planning Formalism 35

This semantics allows for non-determinism in two ways. First, if multiple actions
are options, one of these actions is non-deterministically choosen. Second, if one
and the same action has multiple action specifications that can be executed
simultaneously, one of these specifications is choosen non-deterministically. The
latter allows for non-deterministic actions such as throwing a dice.

The action semantics of Goal induces a set of possible computations. A com-
putation is defined as an infinite sequence of mental states mi and actions αi,
such that mental state mi+1 is obtained from mi by applying the transition rule
of Definition 11 with action αi. Although computations are infinite, intuitively,
the actions of a finite prefix of a computation that achieve the agent’s goals may
be viewed as a plan that a planner may return to achieve these goals. As Goal
agents are non-deterministic, the semantics of a Goal agent is defined as a set
of possible computations that start in the agent’s initial mental state. A Goal
agent thus may be viewed as defining a plan search space; below, we make this
statement precise and formally show Goal can be used as a planning formalism.

Definition 12. (Run, Meaning of a Goal Agent)
A run or computation r is an infinite sequence m0, α0, m1, α1, . . . of mental states
mi and actions αi such that mi

αi−→ mi+1, or for all α: mi � α−→ and mj = mi

for all j > i and αj = skip for all j ≥ i.
We write rm

i to denote the mental state at point i in r and ra
i to denote the

action performed at point i in r. The meaning RAgt of a Goal agent named
Agt with initial mental state m0 is the set of all runs starting in that state.

3.2 Temporal GOAL

The instantiation of a Goal framework with linear temporal logic as KRT is
called temporal Goal. Temporal Goal has been introduced in [10] but here we
use a first-order variant and show how planning problems with temporal planning
constraints can be embedded in Goal. The KRT plugin of temporal Goal
is 〈LLTL, |=LTL,⊕〉 where LLTL is a first-order linear temporal language and
|=LTL is the usual consequence relation associated with LLTL [7]. The standard
language of linear temporal logic is extended with two special predicates do(α)
with α ∈ Act and fail, where do(α) means that action α is performed and fail
indicates a failure to achieve a goal. Formally, LLTL is defined as an extension
of L0 with temporal operators to facilitate the compilation of PDDL to Goal.

Definition 13. (Linear Temporal Logic)
The language LLTL, with typical element χ, is defined by:

χ ::=� | fail | (φ ∈ L0) | do(α ∈ Act) | ¬χ | χ ∧ χ | ∀(x ∈ V).χ | ©χ | χ until χ

♦χ and �χ are the usual abbreviations and we use χ before χ′ as abbrevi-
ation for ¬(¬χ until χ′) ∧ ♦χ′. Temporal Goal uses an encoding of action
specifications or planning operators into LLTL as in [5,10,11]. This allows us
to incorporate a declarative encoding of action preconditions and effects in the

36 K.V. Hindriks and T. Roberti

knowledge base of a Goal agent. Briefly, preconditions πα are mapped onto pre-
condition axioms of the form �(do(α) → πα) expressing that action α may be
performed only if its precondition πα holds. Effects are represented by a tempo-
ral encoding of successor state axioms. Successor state axioms are of the form
�(©p(x) ↔ (A+

p ∨ (p(x) ∧ ¬A−
p))) with A+

p and A−
p disjunctions of the form

do(α1) ∨ . . . ∨ do(αm). Here, A+
p collects all actions that have p(x) as effect

and A−
p all actions that have ¬p(x) as effect. Intuitively, a successor state ax-

iom expresses that p(x) is the case in the next state iff an action is performed
that has p(x) as effect, or p(x) is the case and no action with ¬p(x) as effect is
performed. To account for conditional effects a small modification is needed: If
(¬)p(x) is an effect of α conditional on φ, then replace do(α) by do(α) ∧ φ [5].

Now we are ready to define the components 〈Ψ,LΨ , |=Ψ ,M〉 of temporal
Goal. LΨ and |=Ψ are as defined above, given that L = LLTL. LΨ thus al-
lows temporal formulae inside the scope of the B and G operators, and we can
use this to define several common sense notions of goals (see also [10]). Let
goalχ be short for Gχ ∧ ¬Bχ. goalχ holds if χ is a goal and is not believed
to occur inevitably, and corresponds more closely to the intuitive notion of a
goal as being something that requires effort. When χ is of the form ♦χ′ we say
χ is an achievement goal. Note that we have Bχ → Gχ due to the rationality
constraint Σ ⊆ Γ , which implies realism [6], but we do not have Bχ → goalχ.

The set of mental states Ψ is restricted such that: knowledge bases only consist
of PDDL axioms and precondition and frame axioms as defined above, belief
bases are sets of literals, and goal bases are sets of temporal logic formulae. A
rationality constraint is imposed on mental states 〈K, Σ, Γ 〉 such that (K∪Σ) ⊆
Γ (cf. [10]). There are various reasons for this constraint, both conceptually
as well as technically, but due to space restrictions we refer to [10] and only
make two brief remarks here: The constraint implies that (i) K, Σ and Γ are
mutually consistent, i.e., K ∪ Σ ∪ Γ �|= ⊥, which means that the agent cannot
have something as a goal that is never realizable according to its beliefs, and
(ii) statements believed to be currently the case are part of the goal base, which
allows us to use the standard definition of progression of LLTL formulae [2].

What remains is that we need to provide a definition of the mental state
transformer M(〈K, Σ, Γ 〉, α) = 〈K ′, Σ′, Γ ′〉, i.e. we must specify how Σ′ and
Γ ′ can be obtained when α is performed (recall that knowledge bases do not
change). We first specify how the belief base Σ′ is obtained. To this end, the
effects of performing α are collected in a set with positive effects Eff+

LTL =
{p(c̄) | K ∪ Σ ∪ {do(α)} |= ©p(c̄)} and a set with negative effects Eff−

LTL =
{¬p(c̄) | K ∪Σ ∪{do(α)} |= ©¬p(c̄)}. Using these sets, and by slightly abusing
notiation, we define:

Σ′ = Σ ⊕ (Eff+
LTL ∧ Eff−

LTL)
df
= Eff−

LTL ∪ Eff+
LTL

Finally, we need to specify Γ ′. To do so, we use the progression operator from [2]
relative to the current belief base Σ, but only specify some clauses of the inductive
definition due to space limitations. For the base case φ ∈ L0, Progress(φ, Σ) =
� if Σ |= φ, otherwise Progress(φ, Σ) = ⊥. Progress(©ϕ, Σ) = ϕ, the case

GOAL as a Planning Formalism 37

that requires the constraint Σ ⊆ Γ to be in place as it allows that a goal φ is
entailed by the agent’s beliefs. Progress(∀x.ϕ, Σ) =

∧
c∈C

Progress(ϕ[c/x], Σ).

We assume that ⊥ ∨ χ is reduced to χ, ⊥ ∧ χ to ⊥, � ∨ χ to �, etc. In order
to ensure progression always yields a consistent goal base Γ ′, some syntactic
restrictions are imposed on the temporal formulae allowed in goal bases: they
need to be in negation normal form (negation occurs only in front of atoms) and
may not have occurrences of disjunction ∨ or the next operator ©.

Progression of a formula may result in ⊥ which indicates that one of the goals
has not been achieved, and, consequently, that the actions selected cannot be
viewed as a plan for achieving these goals. To record such failure the special
predicate fail has been introduced above, and is used to replace ⊥ which also
restores consistency. That is, the new goal base denoted by Progressfail(Γ, Σ)
after performing an action is given by the set

⋃
ϕ∈Γ

Progress(ϕ, Σ) where ⊥, if

present, has been replaced by fail. Finally, we define:

M(〈K, Σ, Γ 〉, α) = 〈K, Σ′, P rogressfail(Γ, Σ)〉

where Σ′ = Eff−
LTL ∪ Eff+

LTL and Eff+
LTL and Eff−

LTL are defined as above.

4 Compiling PDDL Problems into GOAL Agents

In this Section we show that a Goal framework is expressive enough to define
a planning problem from PDDLAx+CE+PC , given that such a framework is
instantiated with a temporal logic KRT.

To compile a PDDL planning problem into a Goal agent we use the concept
of a compilation scheme. A compilation scheme is a mapping F from planning
problems Π to Goal agents F(Π) such that: (i) there exists a plan for Π iff
there exists a run of F(Π) that achieves all goals, (ii) the translations of the
initial and goal states of Π can be computed in polynomial time, and (iii) the
size of F(Π) is polynomial in the size of Π . Compilation schemes in our sense
are similar to that used in [13] but for obvious reasons differ in that we map to a
Goal agent instead of a planning problem in e.g. a different fragment of PDDL.

The compilation scheme f defined below maps every problem instance Π of
the PDDL fragment PDDLAx+CE+PC to a Goal agent f(Π). The scheme f
is defined by a tuple of functions 〈fax, fat, fc, fr, fas, ti, tg, tpc〉 that map dif-
ferent parts of a PDDL problem 〈Δ, C, I,G,PC〉 to corresponding Goal agent
〈K, Σ, Γ, R, A〉 components.

Definition 14. (Compiling PDDL Problems to Goal Agents)
Let Π = 〈Δ, C, I,G,PC〉 be a PDDL problem and Δ = 〈L0,A,O〉. The scheme
f from PDDL problems to Goal agents f(Π) = 〈K, Σ, Γ, R, A〉 is defined by:

• K = fax(A) ∪ fat(O) ∪ fc(C),
• Σ = ti(I) = Î,
• Γ = tg(G) ∪ tpc(PC),
• R = fr(Δ),
• A = fas(Δ)

38 K.V. Hindriks and T. Roberti

The scheme f maps PDDL axioms into the knowledge base K by applying the
well-known completion operator used to compute the completion of logic pro-
gramms to these axioms, i.e. fax(A) = comp(A). Intuitively, the completion
comp(A) replaces implications with equivalences (cf. [1]). fat maps the opera-
tors O to an action theory in LLTL as discussed above that is also part of K.
Finally, a domain closure axiom fc(C) = ∀x.(x = c1∨. . .∨x = cn) is added to K,
where c1, . . . , cn exhaust the constants in C (cf. [13]). The fact that a knowledge
base of a Goal agent is static corresponds with the fact that a PDDL domain
does not change over time. The function ti maps the initial state I to the belief
base, such that ti(I) = Î = {p(c̄) ∈ I} ∪ {¬p(c̄) | I �|= p(c̄), p(c̄) ∈ B}. tg maps
the goal G = at end(φg) to ♦φg . Assuming that G = at endφg is the main goal,
tpc maps the planning constraints PC to the goal base as follows:

• tpc(∀x.ϕ) = ∀x.tpc(ϕ)
• tpc(always φ) = φ until φg

• tpc(sometime φ) = φ before φg

• tpc(at-most-once φ) = φ before φg → (φ until (¬φ until φg))
• tpc(sometime-after φ φ′) = φ before φg → (φ before (φ′ before φg))
• tpc(sometime-before φ φ′) = φ before φg → (φ′ before (φ before φg))

This translation shows the difference between assuming a finite horizon as in
planning that is not made in Goal and has to be enforced by it. The function
fr(Δ) maps each of the actions α ∈ O to an action rule if � then α in the
program section, and fas maps each operator definition 〈α, πα, εα〉 ∈ Δ to an
action specification 〈α, πα,�〉. This works since effects are encoded in the action
theories stored in the knowledge base.

Theorem 1. There exists a solution for a PDDL problem Π iff there is a run
r of the Goal agent f(Π) such that for some i with rm

i = 〈K, Σ, Γ 〉: Σ |= Γ .

Proof. Due to space limitations we only provide a sketch. The proof proceeds
by first showing that the translation of the PDDL axioms and domain closure
assumption is correct. Consecutively, we show that updates by performing ac-
tions in PDDL correspond with those derived from temporal action theories in
Goal. Finally, we show that there exists a plan (solution) iff the goal base of
the compiled Goal agent after performing the corresponding action sequence is
empty and does not contain fail.

The theorem states that a planning problem can be represented by a Goal
agent. Another view on this result is that the meaning of the Goal agent F (Π)
defines the plan search space. Obviously, part of this result is derived from the
expressiveness of linear temporal logic, which allows to encode the semantics
of planning operators and plan constraints. However, Goal agents do not use
temporal logic to select actions but use action rules to do so. A plan search
space thus is defined by the Goal framework component of temporal Goal
(more specifically, Definition 11) and not by the temporal logic plugin.1

1 Another indication of this fact is that we do not need compatibility axioms as in [11].

GOAL as a Planning Formalism 39

It is clear that each of the functions 〈fat, fc, fr, fas, ti, tg, tpc〉 that define f
execute in polynomial time, and, as a consequence, the size of the Goal agent
obtained by applying f is polynomial in the size of the original PDDL problem.

Corollary 1. f defines a compilation scheme.

It is clear that Goal agents that are obtained by mapping a PDDL problem
into Goal can be translated back into a PDDL problem. This is not the case in
general, however. For example, it is not clear how to map multiple achievement
goals of the form ♦φ into a PDDL problem. Similarly, it is not clear how to
map non-trivial action rules that use mental atoms of the form G(ϕ) into a
PDDL problem. The question is which restrictions need to be imposed on Goal
agents to be able to map them into a PDDL problem. We propose the following
restrictions as a sufficient set, but it remains to establish a necessary set:

1. The knowledge base consists of a stratified axiom set, and an LTL action
theory.

2. The belief base is a set of literals Ŝ where S is a PDDL state.
3. The goal base consists of a single achievement goal of the form ♦φ with

φ ∈ L0 and, possibly, additional deadline goals of the form ϕ until φ and
ϕ before φ.

4. The program section consists of reactive action rules only, i.e. rules that
have only occurrences of belief atoms of the form B(φ) with φ ∈ L0 in their
conditions.

5. Variables that occur in preconditions are parameters of the corresponding
action.

6. All specified actions specified in the Goal agent are deterministic. (PDDL
does not allow for non-deterministic actions.)

Item (3) highlights one of the differences between dynamic agents, that may have
multiple goals and dynamically adopt and/or drop goals, and static planning
tasks. Alternatively, planners look for a fixed horizon determined by the goal
state which defines a temporal window to which plan constraints apply, whereas
this window needs to be made explicit in the mapping to Goal.

5 Conclusion

We have shown that Goal can be used as a planning formalism. To this end, the
notion of a Goal framework has been introduced that may be instantiated with
various knowledge representation technologies. A Goal framework defines the
structure and semantics of a Goal agent and has been introduced to be able to
make a distinction between the expressiveness provided by Goal itself and that
provided by a KRT plugin. Temporal Goal, a Goal framework with a linear
temporal logic plugin, has been used to compile planning problems with planning
constraints into Goal agents using so-called compilation schemes in the sense
of [13]. This paves the way for integrating a planner such as TLPlan [2] into
Goal and to combine the strenghts of planners with those of agent programming

40 K.V. Hindriks and T. Roberti

languages. We plan to integrate a planner into Goal in combination with the
notion of a module introduced in [9]. The idea is to introduce a variant called a
planmodule where the context condition is used to define when to call a planner.

As argued, the semantics of Goal may be viewed as defining a plan search
space. One very interesting avenue for future research is how Goal action rules
with non-trivial mental state conditions can be used to reduce this search space.
The idea is similar to how Golog programs [13] may reduce the search space and
how heuristic knowledge can be used in TLPlan [2] and Pdk [11].

References

1. Apt, K.R., Bol, R.: Logic programming and negation: A survey. Journal of Logic
Programming 19, 9–71 (1994)

2. Bacchus, F., Kabanza, F.: Using temporal logics to express search control knowl-
edge for planning. Artificial Intelligence 16, 123–191 (2000)

3. Baier, J., McIlraith, S.: Planning with first-order temporally extended goals us-
ing heuristic search. In: Proceedings of the 21st National Conference on Artificial
Intelligence (AAAI 2006), Boston, MA, July 2006, pp. 788–795 (2006)

4. Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (eds.): Multi-Agent
Programming: Languages, Platforms and Applications. Springer, Heidelberg (2005)

5. Cerrito, S., Mayer, M.C.: Using Linear Temporal Logic to Model and Solve Plan-
ning Problems. In: Giunchiglia, F. (ed.) AIMSA 1998. LNCS (LNAI), vol. 1480,
pp. 141–152. Springer, Heidelberg (1998)

6. Cohen, P.R., Levesque, H.J.: Intention Is Choice with Commitment. Artificial In-
telligence 42, 213–261 (1990)

7. Emerson, E.A.: Temporal and Modal Mogic. In: van Leeuwen, J. (ed.) Handbook
of Theoretical Computer Science (1990)

8. Gerevini, A., Long, D.: Plan constraints and preferences in PDDL3. Technical
report, Department of Electronics for Automation, University of Brescia (2005)

9. Hindriks, K.V.: Modules as Policy-Based Intentions. In: Dastani, M.M., El Fal-
lah Seghrouchni, A., Ricci, A., Winikoff, M. (eds.) ProMAS 2007. LNCS (LNAI),
vol. 4908, pp. 156–171. Springer, Heidelberg (2008)

10. Hindriks, K.V., van Riemsdijk, M.B., van der Hoek, W.: Agent programming with
temporally extended goals. In: Proceedings of the Eighth International Conference
on Autonomous Agents and Multiagent Systems, AAMAS 2009 (2009)

11. Mayer, M.C., Limongelli, C., Orlandini, A., Poggioni, V.: Linear temporal logic as
an executable semantics for planning languages. Journal of Logic, Language and
Information 16 (2007)

12. Pednault, E.P.D.: ADL and the State-Transition Model of Action. Journal of Logic
and Computation 4(5), 467–512 (1994)

13. Röger, G., Helmert, M., Nebel, B.: On the Relative Expressiveness of ADL and
Golog. In: Proc. of the Eleventh Int. Conference on Principles of Knowledge Repre-
sentation and Reasoning (KR 2008), pp. 544–550. AAAI Press, Menlo Park (2008)

14. Sardina, S., de Silva, L.P., Padgham, L.: Hierarchical planning in BDI agent pro-
gramming languages. In: Proc. of the Fifth Int. Conference of Autonomous Agents
and Multi-Agent Systems (AAMAS 2006), pp. 1001–1008 (2006)

15. Thiébaux, S., Hoffmann, J., Nebel, B.: In defense of PDDL axioms. Artificial In-
telligence 168, 38–69 (2005)

Towards Pattern-Oriented Design of
Agent-Based Simulation Models

Franziska Klügl and Lars Karlsson

School of Science and Technology,
Örebro University, Örebro, Sweden

{franziska.klugl,lars.karlsson}@oru.se

Abstract. The formalization and use of experiences in good model de-
sign would make an important contribution to increasing the efficiency
of modeling as well as to supporting the knowledge transfer from expe-
rienced modelers to modeling novices. We propose to address this prob-
lem by providing a set of model design patterns inspired by patterns in
Software Engineering for capturing the reusable essence of a solution to
specific partial modeling problem. This contribution provides a first step
formulating the vision and indicating how patterns and which types of
patterns can play a role in agent-based model design.

1 Introduction

Since the seminal studies of Willemain [1] on how modeling experts actually
build models, it is known that modeling and simulation processes are mostly
guided by expert intuition.

Despite of its obviously intuitive way of modeling, one must admit that the
development of a concept model and the design of an agent-based simulation
from that is a very challenging task – especially for starting modelers. Finding
the right abstractions, focussing on only the relevant relations and modeling
on the right level of detail are issues that hardly an experienced modeler can
handle well without following a painful trial and error procedure. For novices in
modeling and simulation – with or without (software) engineering education –,
this phase is particularly difficult and frustrating as they find no guidelines and
heuristics for these early, yet decisive phases of a simulation study. Engineering
processes advising the different steps in a systematic simulation study are not
helpful in these early phases of modeling. Unfortunately, the greatest advantage
of multi-agent simulation - its high degree of freedom in model design - turns
out to be a curse as there are no constraints and restrictions on what can be
formulated in a model. Therefore, especially novices may feel lost in the wide
field of alternatives.

The problem of guiding the development of a model concept can hardly be
solved from a general methodological point of view as it involves too much
domain-specific knowledge. However, we can formulate iterative strategies for
model development in general and support the model design on a more technical

L. Braubach et al. (Eds.): MATES 2009, LNAI 5774, pp. 41–53, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

42 F. Klügl and L. Karlsson

level. This contribution is part of larger vision of advancing the methodological
status of agent-based simulation towards systematic engineering starting from a
model concept to the analysis of the simulation results.

Our idea for supporting technical model design bases on the well-known con-
cept of software design patterns that – since their first introduction by Gamma
et al., [2] – became a success story in object-oriented software design. Design
patterns are meanwhile used in undergraduate courses in computer science for
teaching proper software design. They are acknowledged as an efficient vehicle
for transporting knowledge and experiences about how to solve particular prob-
lems. Therefore the idea of transferring the concept to modeling and simulation
seems to be promising - especially for the case of agent-based simulation. While
patterns address good simulation model design, components for modeling as
proposed in [3] are provided as implemented, configurable building blocks. Both
concepts address model reuse, but they are clearly different.

The next section gives the state of art in pattern-oriented design of agent-
based software, but also examines whether there are similar concepts of patterns
in simulation and modeling. This is followed by a section on patterns for agent-
based simulation tackling general representation and different categories and
examples. The contribution ends with a short conclusion and indication of future
work.

2 Pattern-Oriented Modeling

About ten years ago, software patterns became popular [2]. The basic idea behind
those was to capture experience about good design for particular problems in
a uniform and schematic way for supporting its reuse. A pattern can be seen
therefore as a recurrent problem and its solution on conceptual, architectural or
design level. Thus, the design of software should be ideally systemized to analysis
and identification of basic problems item to solve, followed by the selection of
appropriate patterns and instantiation and adaption to the particular case.

2.1 Patterns in the Agent World

Due to the obvious usefulness of patterns for software design, it is not surprising
that soon patterns for agent-based software – not simulation – have been dis-
cussed and defined. Weiss [4] gives a good introduction to how to develop and
use patterns in the development of agent-based software. Oluyomi and others
[5] survey and analyze existing patterns for agent-oriented software and classify
many of them. This work is accompanied by second publication from the same
group [6]. There, the authors systematically deal with description templates ap-
propriate for multi-agent systems with the aim of making different specifications
of similar or equal patterns more comparable. In contrast to this, Sauvage [7]
tackles more a meta-level view on patterns introducing the categories of anti
pattern, metaphors and meta pattern.

Kendall and others [8] give patterns for several layers of an agent society such
as sensory layer, action layer, collaboration and mobility layers. The patterns

Towards Pattern-Oriented Design of Agent-Based Simulation Models 43

range from The Layered Agent Pattern to patterns for different types of agents
with different abilities with respect to agent capabilities as sensory-level patterns;
intention pattern or prioritizer pattern as action-level patterns; agent system
patterns ranging from conversation pattern to facilitator and proxy pattern and
finally clone or remote configurator as examples for mobility patterns. They
hereby use a uniform schema consisting of problem, forces, solution, variations
and known uses.

Aridor and Lange [9] deal with patterns for mobile agents classified as task
pattern, like Master-Slave, as interaction pattern, like Meeting or Messenger and
as travel pattern, e.g. itinerary for agent routing. More patterns for itineraries
can be found in the work of Chacon et al., [10] – whereas they mean more
behavioral patterns – like the Sentinel Agent Behavior Pattern for persistent
monitoring, than a routing pattern as in the previous case. Social patterns that
help to design interactions between agents can be found in a publication by
Do et al., [11]. They categorize social patterns into peer patterns such as the
booking pattern or the call-for-proposal pattern and into mediation patterns such
as monitor pattern or broker pattern. Only the booking pattern is fully elaborated
until code generation in this publication. A list of similar mediation patterns is
given in a paper by Hayden et al., [12]. More recently, one can find patterns for
specific application domains, mostly in the area of information agents. A very
extensive list of patterns can be found in the PhD thesis of Oluyomi [13].

For agent-based simulation, these patterns have to carefully evaluated and po-
tentially revised. The main reason lies in the general differences between agent-
based software and agent-based simulation: The constraints for the design of
the simulated multi-agent system are much higher as it has to credibly cor-
respond to an original system. Whereas functional and technical requirements
of a software allow more alternatives in appropriate design, the main directive
for simulation model design is its validity. Hereby, structural validity refers to
the correspondence between the design of the model and the real-world system
[14]. Thus, technical patterns, such as yellow pages pattern are not relevant for
multi-agent simulations, as long as they don’t need to be part of the model due
to the objective of the simulation study. Additional patterns are relevant due
to the relevance of the environment and of particular feedback loops hopefully
leading to some given macroscopic behavior - for example in terms of population
dynamics. This is the most difficult aspect in model design and is therefore the
most attractive for formalizing experiences in terms of design pattern.

2.2 “Patterns” in the Simulation World

Grimm and Railsback [15] introduced so called pattern-oriented modeling for
individual- respectively agent-based simulation in ecology. They thereby refer
to patterns in given data that are to be reproduced by the simulation. Based
on data patterns, a systematic model development procedure is defined. This is
a different form of pattern than we use it here where we are discussing design
patterns that should support the production of a well-structured model that
resembles all required data patterns or stylized facts.

44 F. Klügl and L. Karlsson

Similar pattern-like building blocks also have been established in mathemati-
cal, equation-based modeling, especially in biological simulation. The researcher
analyzes what kind of relationship may be assumed between two or more vari-
ables and then selects the appropriate mathematical function from to a catalogue
of well known formula. Finally, she or he fits the parameters of the functions to
available data. These functions can be seen as basic model patterns. Examples
are the exponential growth function or saturation curves. In his book on bio-
logical modeling, Haefner [16] lists a complete toolbox of functions for modeling
different relationships that are usually applied in modeling and simulation in
the area of population biology. Also the basic Lotka-Volterra equations of a
predator prey system form elements of such a model schemata library. In [17] a
pattern language for spatial process models is given; the examples are more like
full model description. Unfortunately, such function patterns cannot be trans-
ferred to agent-based simulation as – in contrast to these models – agent-based
models generate macroscopic dynamics from the agents behavior whereas the
macroscopic models describe the relations and dynamics on the aggregate level.
Nevertheless, it would be a most interesting – and most challenging – form of
design support to find agent population patterns that produce the corresponding
dynamics on the macroscopic level.

Also, in object-oriented simulation, pattern-based methods for developing sim-
ulators were proposed [18]. Patterns are hereby used for putting together objects
or components that form the building blocks for a model. Using code templates
associated with a pattern, the code for a complete simulator could be instanti-
ated. Such a system was developed for the domain of building simulation.

3 Agent-Based Simulation Model Design Patterns

Considering agent-based modeling and simulation, the actual level of patterns
may not always be obvious: the technical, detailed implementation-near level and
a more conceptual design level. An example for the former is the configuration
interface pattern describing how to aggregate all start values into one interface
object. Examples for the latter are patterns of limited exponential growth or a
food web pattern. One may further divide model design patterns into agent ar-
chitecture patterns that describe appropriate ways of conceptualizing an agent
itself, patterns for agent models generating certain population dynamics, and
interaction patterns for capturing dynamics among agents and between agents
and their environment. Also, meta-level patterns are possible that describe how
different design pattern could be combined. As with software engineering pat-
terns, all of these may seem trivial for the experienced multi-agent simulation
developer, but may be highly valuable for starters, but also for general charac-
terization of possible agent models.

In the following we will discuss several pattern categories and patterns in more
or less detail; this is not meant as a complete list but more like an indication of
what can be possible. First, we will set the general frame for approaching such
a pattern by giving a schema.

Towards Pattern-Oriented Design of Agent-Based Simulation Models 45

3.1 Pattern Schema

Many experienced modeler implicitly use patterns of agent behavior. In an anal-
ogous way to software design patterns, model design patterns may be made
explicit using some predefined scheme. Thus, before going into the details of
particular model design patterns, we have to discuss a proper scheme for mak-
ing the experiences explicit and thus reusable. As mentioned above, there are
many suggestions for schemes. The following is clearly inspired by the original
pattern language [2].

Name: Each pattern needs an memorable name for referring to the pattern in
a short yet descriptive way.

Intent: What is the problem that this pattern aims at solving? What kind of
pattern/relations should be reproduced by it?

Scenario: In what situations or basic model configurations, does it make sense
to apply this pattern?

Description: Short description of the functionality produced by the pattern.
Dependencies: Does the pattern only make sense in combination with other

patterns? Do we need a specific form of data for reasonably handling the
structures?

Agent System Structure: This is the actual content of the pattern. What
agents classes are involved? How do they interact? What environmental
structures are part of the pattern?

Agent Behavior: Exact specification of the agent behavior pattern. This cor-
responds to the original “code” attribute of a pattern scheme.

Technical Issues: Sometimes additional low-level technical aspects are impor-
tant. This serves to prevent artifacts coming from poor implementation.

Example: If necessary, an additional example can be given for clarifying the
usage of the pattern. In what models was the pattern successfully applied?

Configuration: For evaluating the properties of the pattern in the simulation
context, the existence and effects of parameters have to be discussed.

Consequence: Using this pattern may have consequences for further design
decisions. Information about this should be given here. This item is differ-
ent from the original one: the original “consequences” were split up into
configuration and consequences.

Related Patterns: Pointer to other patterns that may compete with this pat-
tern or have similar properties.

This is a first attempt for finding a systematics for documenting agent-based
simulation model design. In the following a number of patterns are sketched
and example patterns are discussed in more detail using the above introduced
pattern description scheme. We have identified the following pattern categories:
agent architecture patterns, agent population patterns, interaction patterns and
environmental patterns.

3.2 Agent Architecture Patterns

The first category that comes to mind is agent architectures. They form basic
patterns for how to organize different modules and processes within an agent. A

46 F. Klügl and L. Karlsson

model design pattern on the level of an agent architecture does not necessarily
tackle full agent architectures, but also certain component interactions.

Agent architectures were in the focus of research from the beginning of Dis-
tributed Artificial Intelligence. Thus, one can already find a wealth of architecture
suggestions in the literature with different complexities, intended applications,
etc. During the last years the discussion about appropriate agent architectures has
calmed down a bit. For agent-based simulation, the selection/design of an agent
architecture can be difficult as the used generic architecture must be explicitly
treated as a basic assumption that also has a correspondence to the original sys-
tem or its influence on the results should be credibly justified.

Formulating agent architectures as patterns is quite popular in agent-oriented
software design (see Section 2.1). As one can find psychological theories for some
architectures, especially layered and BDI architectures, it is absolutely justified
to add these full architectures to a list of agent model design patterns. But
also smaller parts or architectural details can be interesting to be formulated as
pattern. In the following we give an example of an agent architecture pattern
that turned out useful in several applications: Perception Memory Pattern. It
combines a particular form of knowledge representation with specific reasoning.
Instead of providing a complete architecture, it may also be combined with other
patterns.

Name: Perception Memory Pattern
Intent: The pattern shows how perception can be dealt with separately from in-

terpretation. This increases efficiency as perception is appropriately buffered
instead of allowing environmental scans whenever information is needed.

Scenario: This pattern makes sense when the agent needs information about
the local environment more than once in its behavior specification. The gen-
eral background is that memory space is cheaper than scanning the environ-
ment.

Description: The agent status contains a set of variables for memorizing per-
ceptions. The first step in each update cycle consists in the agent scanning its
environment and memorizing all noticed objects in the variable. A cascade
of filters provides information necessary in the current situation based on
the initial perception. The agent may always access the initially perceived
information, instead of scanning the environment again. The pre-processed
information is then used for decision making or for determining the agent’s
behavior.

Dependencies: This is a basic pattern that may be used in a variety of models
with other diverse patterns built upon it.

Agent System Structure: The agent needs at least one variable or memory
location for saving the memorized information about its surroundings: Per-
ceptionMemory. Additional data structures contain preprocessed informa-
tion

Agent Behavior: The behavior or an agent contains the following partial steps:
1. Initial Scan → PerceptionMemory
2. Filter PerceptionMemory appropriately → ProcessedPerception

Towards Pattern-Oriented Design of Agent-Based Simulation Models 47

3. Follow behavioral rules, use ProcessedPerception as if it would come
from direct access in the environment if necessary go back to the second
step.

Technical Issues: It must be secured that the basic scan happens at the ap-
propriate point of time in an update cycle and sufficiently often.

This separation between basic environmental scan with memorizing all
information that might be useful in the later context may also be used for
implementing virtual parallelism where all agents sense the environment and
in a second step process the sensed information.

Example: We applied this patter in all pedestrian simulation models. The
agents scanned their complete environment within their range of perception
and saved all objects in a PerceptionMemory variable. In the next step all
objects that are recognized as obstacles are filtered and stored separately for
being used in the collision avoidance rules. A second independent prepro-
cessing step allows the agent to sort out whether it has already reached its
goal or not.

Configuration: The most basic parameter is the range of initial scan (a dis-
tance in metric space or a number of hops in a graph environment). This
initial scan must be done with sufficient distance as the environment is only
scanned once and all eventualities have to be foreseen.

Consequence: -
Related Patterns: This pattern might be used in combination with different

memory structure patterns, such as the Mental Map Pattern, etc.

Although it takes quite some space to describe the Perception Memory Pattern,
it is basically trivial. However our experience showed that especially beginners
again and again access the environment in time intervals where no change can
happen just because they want to save memory. However depending on the
particular implementation of perception, accessing the environment often is the
most expensive operation.

Beside other, already mentioned patterns, we might indeed find it useful to
specify a BDI architecture in terms of a pattern. A pattern formalizing how
to best design an adaptive discrete choice in term of a Discrete Choice With
Feedback Pattern may be useful when agents have to choose from a set of options.

3.3 Agent Population Patterns

Especially interesting are design patterns that capture agent control aspects
for producing some specific overall behavior on the aggregate level, such as a
given population dynamics. Similar to the set of useful functions in the book
of Haefner [16], one may identify several agent-level behavior modules that may
lead to specific relations on the macro level. Such patterns are useful for all
forms of systematic design – bottom-up or top-down. It is clear that for a final
model these mostly isolated patterns have to be integrated into environmental
dynamics, other behavioral feedback mechanisms, etc. One can image a lot of
different population dynamics generated by different behavior and interaction

48 F. Klügl and L. Karlsson

behaviors on the agent level. The following Exponential Growth Pattern can be
seen as the one of the simplest forms of such an agent population pattern.

Name: Exponential Growth Pattern
Intent: A population of agents should exhibit basic exponential growth in pop-

ulation numbers. This is basically the purest agent-based implementation of
an exponential growth function.

Scenario: Useful for different scenarios where exponential growth of an agent
population is necessary.

Description: Agent duplicate themselves. Duplication is triggered with a given
individual probability.

Dependencies: none
Agent System Structure: There is just one agent class with one attribute.

An additional global container may store references to all agents and serve
as a bookkeeping device for the number of agents.

Agent Behavior: see figure 1

Fig. 1. Behavior specification for the agent behavior producing exponential growth

Configuration: There is only one parameter per agent, namely the duplication
probability. The basic question is how to set this local agent parameter
for producing the corresponding macro behavior. Basically the macro rate
should equal the probability for duplication. However, this is not so simple
as illustrated in figure 2.

Even without parameter variations, the outcome of a short simulation
generated with the same initial conditions, varies a lot. This is due to the
high degree of randomness in this model formulation.

A technical issue concerns the integration of new agents into the update
schedule of the simulation. One has to pay attention, whether there are
delays originating from the inclusion of new agents into the overall update
sequence.

Example: This pure agent system pattern is completely unrealistic in reality
as there is no unconstraint, unbounded growth. However, an exponential
growth model might set the frame for a more complex one, modifying the
reproduction probability.

Consequence: Its exponential growth: depending on the parameter the popu-
lation growth tremendously fast, sufficient computational resources are nec-
essary. The system easily gets out of reasonable population sizes. Due to

Towards Pattern-Oriented Design of Agent-Based Simulation Models 49

Fig. 2. Different micro runs do only in average resemble the macro model (black)

the relevance of the random component with direct influence on population
sizes, it is hard to control.

Extensions: There are many obvious extensions addressing the decision for
duplication: the probability may be replaced by a counter for some regular,
deterministic reproduction. Both probability and counter-based reproduc-
tion can be modified by resource or energy bounds. Pattern-like structures
can also be formulated for sexual reproduction, local density dependent du-
plication, etc.

Related Patterns: Pattern that remove agents from the simulated environ-
ment, such as age-dependent death, starvation or predation.

This Exponential Growth Pattern seems to be trivial, but it is also something
that many modelers have used in their models without really reflecting about
that this could be pattern – a special building block for a model that could
be used to document best practice. As mentioned in the extensions section,
there a set of potential variations. For bounded growth in interaction with other
types of agents something like n-species food web pattern could be specified that
tackles interacting populations of agents, but defined from an agent-perspective.
In contrast to the following category the patterns here aim at reproducing certain
macro-level population dynamics; the following focus on interaction between
agents for coordination or for (self-)organization.

3.4 Interaction Patterns

In a similar way, one can specify good solutions to standard problems concern-
ing negotiation among and organization of agents. Here, the intersection with
agent-oriented software engineering patterns should be high - considering bid-
ding, call-for-proposals, or even mediation pattern (see Section 2.1). As with the

50 F. Klügl and L. Karlsson

agent architecture pattern, the degrees of freedom in design are constrained by
the required correspondence between original and model. Additional patterns
can be interesting besides the patterns suggested by the agent software com-
munity, such as the Tag-based Interaction Pattern or Memory-based Interaction
that can be often found in models of iterated games. In biological as well as social
science models a pattern can be found describing how some form of interaction
leaves marks in the beliefs/memory of an agent that influences the selection of
future interaction partners. This pattern may be denoted Emergent Organiza-
tion Pattern. Interesting patterns may also be found for specific organization
or relation networks – a pattern describing the initialization of a small world
network is definitely useful.

3.5 Environment Patterns

Explicit space often plays an important role in agent-based simulation mod-
els. In most cases one can observe that space representation and consequently,
environment-agent interactions are handled in similar ways. Patterns can be for-
mulated like the Background Cellular Automata Pattern describing discrete cells
that carry (dynamic) information that is perceived and modified not only by the
agents, but also by the cells themselves potentially in relation to the values of
their neighbor cells. Application examples can be found in certain pedestrian
simulations like in the work of Bandini and co-workers [19] where a cellular au-
tomata is used to store the potential gradient for guiding the agents movement
or in the well-known Sugarscape [20] model to represent the heterogenous renew-
able resources. Such a pattern would document how a cellular automata and its
particular update could be used as the agents environment. Hereby a cell forms
the position of an agent that accesses the state variable of that cell. A similar
pattern for the continuous case may be something like a Potential Field Pattern.

Also for agent movement in space, patterns can be usefully applied. Just
think about, how often a random walk has to be designed and how often the
modeler starts anew thinking about whether a completely random change in
direction from time to time or a slight random change in direction before every
step is more appropriate. A Random Walk Pattern is a good way to formulate
the experiences and guide future random walk designs. Similar considerations
may result in a Pheromone-based interaction as a specific recurrent form of
stigmergic interaction. Also more elaborate walking patterns can be useful, e.g.
a Path in Continuous Space Pattern where the problem of obstacle avoidance in
a continuous space without additional spatial structure is tackled.

4 Future Challenges: Formalization and Evaluation

The next steps in actually making these ideas viable would be a thorough exam-
ination of as many available models as possible for candidates of patterns. Those
patterns then must be fully and precisely described and more clearly classified
than we did in this paper. However, this raises the question what languages

Towards Pattern-Oriented Design of Agent-Based Simulation Models 51

should be used for precisely characterizing the patterns, respectively the differ-
ent elements of their description. Original UML [21] and its current versions
or a selection from the many agent-oriented extensions of UML (such as MES-
SAGE/UML [22]) can be seen as good candidates at least for partial aspects of
the overall description.

One can see that the number of potentially useful agent-based model design
patterns for supporting the design of the a multi-agent model can be quite long.
We gave a few examples and indicated a number of others whose usefulness
is immediately clear to somebody who was confronted with such a problem.
Nevertheless the patterns in this list have to be evaluated, e.g. its usefulness and
useability have to be tested.

What constitutes a good design pattern is ultimately an empirical question,
and can only be answered by investigating what the outcome is when people
actually use it. The usefulness of design patterns in software engineering have
been empirically evaluated in a number of studies. The first study of that kind
was conducted by Prechelt et al [23], who experimentally compared software
maintenance with and without design patterns. They came to the conclusion
that ”pattern-relevant maintenance tasks were completed faster or with fewer
errors if redundant design pattern information was provided.” A similar study
by Vokác [24] found that certain design patterns were easier to use than others,
and resulted in considerable lower defect rates.

5 Conclusion

The process from conceptual to implemented model is the hardest part in mod-
eling and simulation – especially when considering multi-agent simulations with
their unlimited freedom of design. Therefore it is important to provide less ex-
perienced modelers with some guideline for a good model design. Following the
success of patterns in object-oriented software engineering and consequently in
agent-oriented software engineering, we discussed the application of patterns
for agent-based simulation models. We gave some examples that illustrated the
particular situation in agent-based modeling showing that actual patterns in
agent-based simulation can be different from the ones suggested for standard
agent-based software.

One may observe that all tackled patterns in this contribution are on a very
technical level. Yet, the actual modeling problem often starts before the techni-
cal level. Nevertheless, a list of well-defined, evaluated patterns on the level we
discussed here, may show the technical options that a modeler has for realizing
a model concept, especially when the pattern are connected to a particular mod-
eling and simulation platform that includes some facility for code generation.

References

1. Willemain, T.: Insights on modeling from a dozen experts. Operations Re-
search 42(2), 213–222 (1994)

2. Gamma, E., Helm, R., Vlissides, R.J.J.: Design Patterns: Elements of reusable
object-oriented software. Addison Wesley, Boston (1995)

52 F. Klügl and L. Karlsson

3. Triebig, C., Klügl, F.: Designing components for multiagent simulation. In: Agent-
Based Modeling & Simulation Symposium at EMCSR, April 2006. Wien (2006)

4. Weiss, M.: Pattern-driven design of agent systems: Approach and case study. In:
Eder, J., Missikoff, M. (eds.) CAiSE 2003. LNCS, vol. 2681, pp. 711–723. Springer,
Heidelberg (2003)

5. Oluyomi, A., Karunasekera, S., Sterling, L.: A comprehensive view of agent-
oriented patterns. Autonomous Agents and Multi-Agent Systems 15(3), 337–377
(2007)

6. Oluyomi, A., Karunasekera, S., Sterling, L.: Description templates for agent-
oriented patterns. Journal of Systems and Software 81(1), 20–36 (2008)

7. Sauvage, S.: Agent oriented design patterns: A case study. In: AAMAS 2004: Proc.
of the 3rd Int. Joint Conf. on Autonomous Agents and Multiagent Systems, Wash-
ington, DC, USA, pp. 1496–1497. IEEE Computer Society, Los Alamitos (2005)

8. Kendall, E.A., Krishna, P.V.M., Pathak, C.V., Suresh, C.B.: Patterns of intelligent
and mobile agents. In: AGENTS 1998: Proc. of the 2nd Int. Conf. on Autonomous
agents, pp. 92–99. ACM Press, New York (1998)

9. Aridor, Y., Lange, D.B.: Agent design patterns: elements of agent application de-
sign. In: AGENTS 1998: Proc. of the 2nd Int. Conf. on Autonomous agents, pp.
108–115. ACM Press, New York (1998)

10. Chacon, D., McCormick, J., McGrath, S., Stoneking, C.: Rapid application devel-
opment using agent itinerary patterns. Technical Report 01-01, Lochheed Martin
Advanced Technology Laboratories (2000)

11. Do, T.T., Kolp, M., Pirotte, A.: Social patterns for designing multiagent systems.
In: Proc. of the 15th Int. Conf. on Software Engineering & Knowledge Engineering
(SEKE 2003), San Franciso, USA, July 2003, pp. 103–110 (2003)

12. Hayden, S.C., Carrick, C., Yang, Q.: Architectural design patterns for multiagent
coordination. In: Proc. of the 3rd Int. Conf. on Autonomous Agents (1999)

13. Oluyomi, A.: Pattern and Protocols for Agent-Oriented Software Engineering. PhD
thesis, Department of Computer Science and Software Engineering, University of
Melbourne, Australia (2006)

14. Klügl, F.: A validation methodology for agent-based simulations. In: SAC Sympo-
sium, Advances in Computer Simulation Track, Ceara, BR (March 2008)

15. Grimm, V., Railsback, S.F.: Individual-Based Modeling and Ecology. Princeton
University Press, Princeton (2005)

16. Haefner, J.W.: Modeling Biological Systems – Principles and Applications, 2nd
edn. Springer, New York (2005)

17. Koenig, R., Bauriedel, C.: Modular system of simulation patterns for a spatial-
processes laboratory. In: Proc. of the ICA Workshop on Geospatial Analysis and
Modeling, Vienna (July 2006)

18. Schütze, M., Riegel, J.P., Zimmermann, G.: A pattern-based application generator
for building simulation. In: Jazayeri, M. (ed.) ESEC 1997 and ESEC-FSE 1997.
LNCS, vol. 1301. Springer, Heidelberg (1997)

19. Bandini, S., Manzoni, S., Vizzari, G.: Towards a methodology for situated cellular
agent based crowd simulations. In: Dikenelli, O., Gleizes, M.-P., Ricci, A. (eds.)
ESAW 2005. LNCS (LNAI), vol. 3963, pp. 203–220. Springer, Heidelberg (2006)

20. Epstein, J.M., Axtell, R.: Growing Artificial Societies. Social Science from the
Bottom Up. Random House Uk Ltd (1996)

21. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Reference
Manual. Addison Wesley, Reading (1999)

Towards Pattern-Oriented Design of Agent-Based Simulation Models 53

22. Caire, G., et al.: Agent oriented analysis using Message/UML. In: Wooldridge,
M.J., Weiß, G., Ciancarini, P. (eds.) AOSE 2001. LNCS, vol. 2222, pp. 119–135.
Springer, Heidelberg (2002)

23. Prechelt, L., Unger, B., Tichy, W.: Two controlled experiments assessing the useful-
ness of design pattern documentation in program maintenance. IEEE Transactions
on Software Engineering 28(6), 595–606 (2002)

24. Vokác, M.: Defect frequency and design patterns: an empirical study of industrial
code. IEEE Transactions on Software Engineering 30(12), 904–917 (2004)

Multi Criteria Decision Methods for
Coordinating Case-Based Agents

Beatriz López, Carles Pous, Pablo Gay, and Albert Pla

University of Girona,
Campus Montilivi, edifice P4, Girona, Spain

{beatriz.lopez,carles.pous}@udg.edu, {pgay,apla}@eia.udg.edu
http://exit.udg.edu

Abstract. There is an increasing interest on ensemble learning since it
reduces the bias-variance problem of several classifiers. In this paper we
approach an ensemble learning method in a multi-agent environment.
Particularly, we use genetic algorithms to learnt weights in a boosting
scenario where several case-based reasoning agents cooperate. In order to
deal with the genetic algorithm results, we propose several multi-criteria
decision making methods. We experimentally test the methods proposed
in a breast cancer diagnosis database.

Keywords: Ensemble Learning, Case-Based Reasoning, Multi Criteria
Decision Making.

1 Introduction

Ensemble learning has been a matter of concern in the last recent years because
of its benefits on reducing the bias-variance of classifiers. Bagging, boosting and
staging are three very well known ways of addressing this relatively new way
of learning. Bagging assigns randomly to each learner a set of examples, so the
construction of complementary learners is left to the chance and to the instability
of the learning methods. Boosting actively seeks to generate complementary base
learners, on the basis of the methods of the previous learners. Staking deals with
the combination of models of different algorithms [19].

Ensemble learning has been recently applied to multi-agent systems, so that
several learning agents collaborate in a distributed environment. For example,
in [13] the authors propose several ensemble schemas for cooperative case-based
learners.

The usual way in which bagging and boosting integrate the different learners
is under a weighted voting schema. Therefore, the key issue is the weight assigned
to each agent. AdaBoost [4] is one of the best known learning algorithms for this
purpose, having today a lot of variants. More recently, genetic algorithms (GAs)
have also been applied [7], but mainly in non-multi-agent environments. Our
research is related to extend the application of genetic algorithms, for boosting
purposes, in a multi-agent environment where each classifier is linked to a given
agent.

L. Braubach et al. (Eds.): MATES 2009, LNAI 5774, pp. 54–65, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://exit.udg.edu

Multi Criteria Decision Methods for Coordinating Case-Based Agents 55

This multi-agent approach based on boosting can be applied in domains where
there are different experts distributed for solving a problem, and each of them
can provide a solution to the problem. In this scenario, each agent could kept
in private the process of arriving at a given solution; the weight of each agent
represents the confidence or trust of the agent when solving a problem. For
example, in the medical domain, different units of a hospital can be involved in
the diagnosis of a patient. Each unit has the corresponding physician responsible
of the diagnosis according to his/her speciality: radiology, endocrinology, etc.
Then, according to the data gathered in each unit, each physician (agent) can
provide his/her diagnosis.

In particular, in our approach each classifier follows case-based reasoning
(CBR) method, so we are dealing with CBR agents. Moreover, since we are
actively seeking for the complementary of learners through a GA, we say that
we are boosting CBR agents.

According to the genetic algorithm theory, several runs are required in order
to deal with the randomness involved in this kind of algorithms [11]. Thus, two
runs with different random-number seeds will generally produce different detailed
behaviours. But finally, a single weight should be assigned to a boosting agent. In
this paper, we present several alternatives for obtaining this single weight from
the outcomes of the different genetic algorithm runs. Our methods have been
applied in a breast cancer diagnosis domain, and we show the different results
obtained. This paper extends the work in [8].

This paper is organised as follows. First we introduce the boosting schema in
which our CBR agents cooperate. Next, we describe the GA we propose and the
methods to manage the outcomes of the different runs. We continue by providing
the information about the application domain we are working on and the results
obtained in it. Finally, some related work is highlighted and some conclusion
and discussion is provided.

2 Boosting CBR Agents

Our multi-agent system (MAS) consists of n case-based agents that cooperate
for solving a problem. Each agent provides its advise or solution about a case,
and a coordinator makes a final decision based on a weighted voted schema.

Each agent is trained with the same set of examples; however, each agent
receives only a part of the examples (as in [12]). Thus, each agent is specialised
in a particular field of knowledge of the domain.

Since there is a coordinator agent in charge of dealing with cooperation issues,
the system is centralised. The coordinator agent keeps a weighti on each agent
according to the performance provided by the agent. This weights are learned
according to the method proposed in this paper in section 3.

When a new case C needs a solution, the coordinator agent broadcasts the
case to the CBR agents. CBR agents compute internally a solution for the case
following a case-based reasoning process (see [15] for further details). Next, the
CBR agents reply to the coordinator with a tuple containing the class to which

56 B. López et al.

(classi, i)

Agent_iCoordinator

(case)

Fig. 1. Agent’s interaction

the case belongs according to its case-base, and the confident it is on that solution
(see Figure 1). That is:

ai =< classi, δi > (1)

where ai is the answer of the agent i; classi the class provided by the agent;
and δi is a confidence value in [0,1], where 1 means high confident. We are
currently considering a diagnosis environment, so only two class values are under
evaluation: 1 (positive diagnosis or illness) and 0 (negative diagnosis or healthy).

Afterwards, the coordinator agent combines the different answers in order
to find information regarding the positive diagnostic according to the following
expression:

v =
∑n

i=1 classi ∗ ωi

ωi
(2)

where n is the number of agents; and ωi is a combination of the weight of the
agent i and δi, such that ωi = f(weighti, δi). The f function can be any, as for
example the multiplication.

Then, if v is over a given threshold τ , the final answer of the multi-agent
system is positive. Otherwise, negative. This decision procedure follows the reuse
step of a case-based system as explained in [15]. See also [9] for further details
on the boosting CBR MAS system.

3 Multi-Criteria Decision Making Methods for
Coordination

The method we propose to learn agents’ weights has two phases: genetic algo-
rithm learning and multi-criteria decision processing.

3.1 Genetic Algorithm

A genetic algorithm (AG) consists on the following steps [11]:

1. Start with a randomly generated population of chromosomes
2. Calculate the fitness of each chromosome in the population
3. Repeat

(a) Select a pair of chromosomes from the current population
(b) With a probability pc cross over the pair to form two offsprings
(c) With a probability pm mutate the two offsprings

4. Replace the current population with the new one
5. Goto step 2 until χ iterations.

Multi Criteria Decision Methods for Coordinating Case-Based Agents 57

As it is possible to observe, randomness plays a large role in each run; so two
different runs can produce different results. Thus, averaged results on several
runs should be obtained.

When applying genetic algorithms to learn the weights in a boosting CBR
agents scenario, the key issues are how to represent chromosomes and how to
define the fitness function. Particularly, we have defined the chromosome as an
array of n values; each value represents the weight of an agent. On the other
hand, the fitness of a chromosome is a function of the error of the boosting CBR
system it codifies when applied to a data set of examples. So the chromosome
is translated to the corresponding boosting CBR MAS, it is run for a given set
of examples, and an averaged error over all of the examples is provided (see [9]
for the details on the error computation). Finally, if there are no improvements
between a population and the new one, 50 additional iterations are performed,
and the GA is stopped. Regarding other details of the GA see also [9].

Given a set of M examples, m data sets can be generated according to a
cross-validation methodology. Then, the GA is repeated for each set, obtaining
m sets of weights together with the m error rates, one per each of the GA run.

3.2 Multi-Criteria Decision Methods

Multi-criteria decision making (MCDM) aims at supporting decisions when sev-
eral alternatives are available according to different criteria [18]. We can order
those alternatives, and then choose one. We can also combine all of them to
obtain a new solution thanks to either information fusion techniques or aggre-
gation operators. We are interested in the second option. Among the different
aggregation operators, there are the mean (M) and the weighted mean (WM).

Thus, after m runs of the GA on boosting a number of n CBR agents, we get
the following sets of weights:

run Agent1 Agent2 ... Agentn
1 weight11 weight12 ... weight1n
2 weight21 weight22 ... weight2n
...
m weightm1 weightm2 ... weightmn

The different runs can be considered alternatives from the MCDM point of
view. Thus, a mean that can compute a final weight weighti for the i agent is
the following:

weighti =

∑m
j=1 weightji

m
(3)

where m is the total number of weights obtained by the AG regarding the agent i.
In the case of a WM, we need to compute the mean values of the different

weights weigthj
i obtained according to another ponderation μ1, ...μn. Thus,

weighti =

∑m
j=1 weightji ∗ μj

i∑m
j=1 μj

i

(4)

58 B. López et al.

Table 1. Left : Example of weights obtained for n agents after m GA runs. Right :
Rankings of the example.

run A0 A1 A2 A3 A4 A5 A6 A7
1 0.74 0.06 0.05 0.01 0.04 0.00 0.07 0.03
2 0.63 0.03 0.01 0.00 0.27 0.00 0.04 0.01
3 0.42 0.01 0.06 0.04 0.35 0.02 0.08 0.03
4 0.79 0.01 0.04 0.01 0.08 0.02 0.02 0.02
5 0.02 0.00 0.01 0.09 0.79 0.05 0.02 0.01
6 0.83 0.02 0.03 0.01 0.03 0.03 0.03 0.01
7 0.90 0.02 0.01 0.01 0.01 0.01 0.04 0.01
8 0.35 0.04 0.03 0.04 0.42 0.04 0.06 0.03
9 0.24 0.02 0.02 0.03 0.64 0.01 0.04 0.01
10 0.85 0.01 0.04 0.03 0.03 0.01 0.02 0.01

run A0 A1 A2 A3 A4 A5 A6 A7
1 1 3 4 7 5 8 2 6
2 1 4 6 8 2 7 3 5
3 1 8 4 5 2 7 3 5
4 1 7 3 8 2 5 6 4
5 5 8 7 2 1 3 4 6
6 1 6 4 7 2 3 5 8
7 1 3 6 5 8 4 2 7
8 2 6 8 5 1 4 3 7
9 2 6 5 4 1 8 3 7
10 1 6 2 4 3 7 5 8

So, a new parameter μj
i should be determined in order to obtain the final values

weighti. We propose four methods: rated ranking, voted ranking, error based,
and mean value.

Rated ranking method. The rated ranking method consist on 1) ranking
the different weights for a given set, and 2) computing the distance to the first
position.

We can compute the ranking of each agent in all the sets by sorting them
according to a descending order (from the highest to the lowest weight). So, we
obtain a set of rankings as follows:

run Agent1 Agent2 ... Agentn
1 rank1

1 rank1
2 ... rank1

n

2 rank2
1 rank2

2 ... rank2
n

...
m rankm

1 rankm
2 ... rankm

n

Finally, the μj
i is computed as follows:

μj
i =

1
rankingj

i

(5)

In order to illustrate with an example this method, suppose that we have 8
agents (n=8) and we have run 10 times the GA (m=10). The weights obtained
by the GA are shown in Table 1 left. Then, after sorting the values of the table,
we get the rankings shown in Table 1 right. So agent A0 has been the agent with
the highest weight in runs 1-4,6-7 and 10; while it occupies the second position
in runs 8 and 9, and the fifth position in the 5th run.

Afterwards, the μj
i is computed according to equation 5. Finally, the weight of

each agent, weighti, is computed according to equation 4, obtaining the results
shown in the ”ranking” row of Table 3.

Multi Criteria Decision Methods for Coordinating Case-Based Agents 59

Voted ranking method. In this method, all the weights obtained by the GA
weightji are ranked as in the previous one. However, after obtaining the ranking,
we count the times an agent occupies the same position, obtaining the ”voted”
ranking for each agent votki . Thus if we have n agents, we have n possible votes
per agent. In the next step, all the votes are averaged according to the following
expression:

μj
i =

∑n
k=1[(n + 1) − k] ∗ votk

i

n

n
∀j (6)

Observe, that μj
i as it is, can also be used as the weighti, and we analyse this

consideration in the results section.
Following the example of Table 1, we obtain the votes and μj

i values shown in
Table 2. These values are then combined according to equation 4, and the agent
weights are obtained are shown in the ”voting” row of Table 3.

Error based method. In this method we want to take advantage of the
information provided by the learning algorithm related to the error errorj to
which the GA (run j) converges. Thus, the distance to the error is used as the
μj

i , as follows
μj

i = 1 − errorj (7)

In our example, we got the following error rates for every GA run: 0.29, 0.30,
0.27, 0.31, 0.29, 0.33, 0.38, 0.26, 0.26, 0.34. Therefore, the weights obtained for
our agents with this method are the ones shown in the ”error” row of Table 3.

Mean value method. Now, we define a method based on the mean weight
value obtained for the agents in all the runs. Let mvi be this mean value. Then,
the inverse to the distance to this value is used as μj

i . That is,

μj
i = 1 − |mvi − weightji | (8)

In our example, we get the following mvj values (from Table 1): 0.58, 0.02, 0.03,
0.03, 0.27, 0.02, 0.04, 0.02. Finally, the weights obtained for each agent as shown
in the ”mean value” row of Table 3.

Table 2. Votes and μj
i values from the example of Table 1

Rank A0 A1 A2 A3 A4 A5 A6 A7
1 7 0 0 0 3 0 0 0
2 2 0 1 1 4 0 2 0
3 0 2 1 0 1 2 4 0
4 0 1 3 2 0 2 1 1
5 1 0 1 3 1 1 2 1
6 0 4 2 0 0 0 1 3
7 0 1 1 2 0 3 0 3
8 0 2 1 2 1 2 0 2
μj

i 0.93 0.41 0.51 0.44 0.79 0.43 0.68 0.33

60 B. López et al.

4 Application to Breast Cancer Diagnosis

In this section we provide a brief description of the data base used for experi-
mentation. Afterwards, some details about the experimental setup are presented.
Next, the results obtained are shown.

4.1 Experimental Set Up

We have used a Breast Cancer data base provided by the team of physicians
we are working with. It consists of 871 cases, with 628 corresponding to healthy
people and 243 to women with breast cancer. There are 1199 attributes for each
case. Since there are redundant, wrong and useless information a preprocess
was carried out. Also, the preprocess was used to obtain data corresponding
to independent individuals, since there are patients in the database that are
relatives. As consequence, the database was constituted of 612 independent cases,
with 239 healthy people.

A first selection of the relevant attributes was performed by the physicians.
According to their knowledge, 85 attributes were selected, being 46 of them
numerical and the remaining categorical.

Data has been partitioned in 8 groups, following the questionnaire criteria
with which physicians have collected them that are related to different medical
specialisations (epidemiology data, family information data, etc.). Each group
of data has been assigned to an agent. Therefore, we have 8 CBR agents in our
system.

We have followed a cross-validation procedure, with 90% of the cases for
training and 10% for testing. Up to 10 folds were generated, and 10 AG runs
have been performed, one per fold. Thus, we finally obtain 10*8 weights. The
eXiT*CBR tool [16] has been used since it allows to easily define CBR boosting
agents in a parameter-based way.

The following experimental settings have been defined:

– None: no learning has been applied. So all the agents weights have been set
to 1.

– Mean: the mean operator has been used
– Ranking: the WM has been used together with the rated ranking method
– Voting: the WM operator has been applied together with the voting method
– Error: the WM operator has been used together with the error-based method
– MeanValue: the WM operator has been used together with the mean value

method.

The results obtained in each experimental configuration are detailed in the next
section.

4.2 Results

The weights obtained are the ones shown in Table 3. Regarding the outputs
of the boosting CBR MAS, we have used ROC curves. ROC (Receiver Opera-
tor Characteristics) curves depict the tradeoff between hit rate and false alarm
rate [3].

Multi Criteria Decision Methods for Coordinating Case-Based Agents 61

Table 3. Weight obtained after applying the different MCDM methods

A0 A1 A2 A3 A4 A5 A6 A7
None 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Mean 0.58 0.02 0.03 0.03 0.27 0.02 0.04 0.02

Ranking 0.55 0.01 0.01 0.01 0.22 0.01 0.01 0.00
Voting 0.54 0.01 0.02 0.01 0.21 0.01 0.03 0.01
Error 0.39 0.02 0.02 0.02 0.19 0.01 0.03 0.01

MeanValue 0.45 0.02 0.03 0.03 0.19 0.02 0.04 0.02

Fig. 2. Comparison of the different scenarios

Figure 2 shows the plot corresponding to the different scenarios. As it is
possible to observe, the worst situation is when all of the agents weights are set
to 1 (so the boosting voting schema has no weight). The remaining methods
perform quite well and in a similar behavior. Analysing in detail the results, we
obtain the following AUC (Area Under the Curve) values: None 0.706, Mean
0.851, Ranking 0.854, Voting 0.852, Error 0.853, MeanValue 0.848. The AUC
values are quite similar too, being the ranking method the one that outperforms
the others. Analysing the weights obtained by all of our methods, we see that in
fact, the weights are quite closer. So we are not surprised on obtaining so close
results. However, this does not happen with the weights obtained in each AG
run, as shown in Table 1.

We have also analysed the results of our methods compared to a single AG
run. The different situations are being analysed are the following:

– run1: the weights of the first GA run have been set in the boosting CBR
MAS, and run over all the folders used for all the GA.

– run1 newfolder:the weights of the first GA run have been set in the boosting
CBR MAS, and run the MAS over a new set of folders.

– ranking: the weights according to our ranking method, and run using the
same folders than the GA (the same than in the run1).

– ranking newfolder: the weights obtained with our ranking method, and run
the MAS over the new set of folders (the same than in the run1 newfolder)

Figure 3 right shows the results. We can see that the performance of the learnt
weights are similar. However, in Figure 3 left, we have changed the weights

62 B. López et al.

Fig. 3. Comparison of boosting CBR performance when examples change

0,9

1

0 7

0,8

0,9

0,6

0,7

0,4

0,5

0,2

0,3

0

0,1

0,1 Agent0 Agent1 Agent2 Agent3 Agent4 Agent5 Agent6 Agent7

1,2

0 8

1

0 6

0,8

0,4

0,6

0,2

0

A 0 A 1 A 2 A 3 A 4 A 5 A 6 A 7

0,2

Agent0 Agent1 Agent2 Agent3 Agent4 Agent5 Agent6 Agent7

Fig. 4. Mean and standard deviation a) top: after 10 runs; b) bottom: after 50 runs

Fig. 5. Consideration of a voting based exclusively on the ranking

obtained in the first run by the ones obtained in the fourth run. Both runs stop
with a close error value: the first run at 0.29, and the fourth run at the error
value of 0.31, quite closer to the previous one. So these results confirm the need
of running the AG several times and finding an aggregated value. The aggregated
results maintain the behaviour.

We have repeated the experimentation increasing the number of folds up to 50.
Results, however, were not so good. The AUC obtained are the following: None
0.706, Mean 0.833, Ranking 0.827, MeanValue 0.848. The reason for that is that
the variance on the weights obtained by the AG is higher. Figure 4 left shows the
mean an standard deviation of the weights obtained with the 10 folds, while in
Figure 4 right the ones obtained for the 50 folds. As it is possible to observe, the
variance with 50 folder has increased. So, in a future work we need to determine
the adequate number of runs required in order to obtain the appropriate results.

Multi Criteria Decision Methods for Coordinating Case-Based Agents 63

Finally, we have also used the value of μj
i as the weights weighti, since it is

the same for all the runs. That means, that we do not weight the AG results, but
we are using the qualitative information about the ranking of the agents on the
results. Results obtained are shown in Figure 5, in which the excl voting line is
the one corresponding to this experiment, and compared to the previous voting
results. We can see that the voting schema, as we have proposed in section 3, is
the best.

5 Related Work

There are several works related to boosting CBR agents in particular, and en-
semble learning in general [17,10]. For example, in [13] two schemas are proposed:
bagging and boosting. In this work, the authors focus on how cases should be
shared among agents. We are not so worried about that, but in how to set up
the weights assigned to the agents thanks to a GA methodology.

A work closer to us is [12], in which the authors propose a corporate memory
for agents, so that each agent knows about a piece of the case, as in our case.
In [12], however, the authors propose a negotiated retrieval method based on
distributed constraint optimisation techniques. We are using the basic weighting
voting schema for combining CBR agents.

SEASALT [1] presents also a multi-agent architecture of case-based reasoning
agents. The application involved in this research, however, is related to com-
pound a solution from the sequence of different solutions provided by CBR
agents, instead of adopting a single solutions by a social choice method as pre-
sented in this paper. Nevertheless, we need to study in deeper this architecture
in order to incorporate some of the proposals regarding knowledge organisation.

Regarding research works on the use of GA in a boosting environment, it is
important to distinguish the approach followed in [7]. Here, the authors analyse
the greedy behaviour of Adaboost and suggest to use GAs to improve the results.
Another interesting work is [5], in which the AGs are used to search on the
boosting space for sub-ensembles of learners.

There are also some approaches that boost GAs. For example, in [14] a two
stage method is proposed, in which in a first step, genetic fuzzy classifiers provide
sets of rules, and in a second boosting stage, these classifiers are combined.
Nevertheless, our goal is the opposite to these works: we are not boosting GAs
but using GA to combine classifiers.

Finally, some interesting studies to which our research work is related is [6]. In
this case, agent’s trust is studied under the evolutionary paradigm. We believe
that our approach based on specialised agents is equivalent to it. This view of
ensemble weights as trust has also been studied in [2].

6 Conclusions

Boosting mechanism are a promising paradigm for multi-agent systems. In this
paper we have described a boosting mechanism based on CBR agents, in which

64 B. López et al.

the final result of the system is the weighted voting results of the different agents.
In order to determine the weights, we are using genetic algorithms. Due to the
randomness involved in GA, it is necessary to run several times the GAs, obtain-
ing different results. In this paper we present and analyse different multicriteria
decision making methods in order to deal with the different GA results, that
allow to determine a single weight for each agent.

The methods have been applied to a breast cancer diagnosis data base. The re-
sults show that MCDM methods obtain weights that are more robust to changes
on the examples. Among all the methods presented, the one based on the rank-
ing of the agents in each AG is the one that outperforms the other, although the
results are quite close.

Acknowledgments. This research project has been partially funded by
the Spanish MEC projects DPI 2006-09370, CTQ2008-06865-C02-02/PPQ,
TIN2008-04547/TIN, and Girona Biomedical Research Institute (IdiBGi)
project GRCT41.

References

1. Bach, K., Reichle, M., Reichle-Schmehl, A., Althoff, K.-D.: Implementing a co-
ordination agent for modularised case bases. In: AI 2008, 13th UK Workshop on
CCBR, pp. 1–12 (2008)

2. Birk, A.: Boosting cooperation by evolving trust. Applied Artificial Intelligence 14,
769–784 (2000)

3. Fawcett, T.: Roc graphs: Notes and practical considerations for data mining re-
searchers. Technical Report HPL-2003-4., HP Labs (2003)

4. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning
and an application to boostingg. Journal of Computer and System Sciences 55(1),
119–139 (1997)

5. Hernández-Lobato, D., Hernández-Lobato, J.M., Ruiz-Torrubiano, R., Valle, A.:
Pruning adaptive boosting ensembles by means of a genetic algorithm. In: Cor-
chado, E., Yin, H., Botti, V., Fyfe, C. (eds.) IDEAL 2006. LNCS, vol. 4224, pp.
322–329. Springer, Heidelberg (2006)

6. Komathyk, K., Narayanasamy, P.: Trust-based evolutionary game model as-
sisting aodv routing againsts selfishness. Journal of network and computer-
application 31(4), 446–471 (2008)

7. Yalabik, Ï., Yarman-Vural, F.T., Uçoluk, G., Sehitoglu, O.T.: A pattern classifica-
tion approach for boosting with genetic algorithms. In: 22th International Sympo-
sium on Computer and Information Sciences, pp. 1–6 (2007)

8. López, B., Pous, C., Gay, P., Pla, A.: Multi criteria decision methods for boosting
CBR agents with genetic algorithms. In: AAMAS workshop on Adaptative and
Learning Agents, pp. 55–209, 58 (2009)

9. López, B., Pous, C., Pla, A., Gay, P.: Boosting CBR agents with genetic algorithms.
In: McGinty, L., Wilson, D.C. (eds.) ICCBR 2009. LNCS (LNAI), vol. 5650, pp.
195–209. Springer, Heidelberg (2009)

10. Martin, F.J., Plaza, E., Arcos, J.L.: Knowledge and experience reuse through com-
munication among competent (peer) agents. International Journal of Software En-
gineering and Knowledge Engineering 9(3), 319–341 (1999)

Multi Criteria Decision Methods for Coordinating Case-Based Agents 65

11. Mitchell, M.: An Introduction to Genetic Algorithms. The MIT Press, Cambridge
(1998)

12. Nagendra-Prasad, M.V., Plaza, E.: Corporate memories as distributed case li-
braries. In: 10th Banff Knowledge Acquisition for Knowledge-based Systems Work-
shop, pp. 1–19 (1996)

13. Ontañon, S., Plaza, E.: Cooperative multiagent learning. In: Alonso, E., Kudenko,
D., Kazakov, D. (eds.) AAMAS 2000 and AAMAS 2002. LNCS (LNAI), vol. 2636,
pp. 1–17. Springer, Heidelberg (2003)

14. Özyer, T., Alhajj, R., Barker, K.: A boosting genetic fuzzy classifier for intrusion
detection using data mining techniques for rule pre-screening. In: Design and ap-
plication of hybrid intelligent systems, pp. 983–992. IOS Press, Amsterdam (2006)

15. Pous, C., Gay, P., Pla, A., Brunet, J., Sanz, J., López, B.: Modeling reuse on
case-base reasoning with application to breast cancer diagnosis. In: Dochev, D.,
Pistore, M., Traverso, P. (eds.) AIMSA 2008. LNCS (LNAI), vol. 5253, pp. 322–
332. Springer, Heidelberg (2008)

16. Pous, C., Gay, P., Pla, A., López, B.: Collecting methods for medical CBR devel-
opment and experimentation. In: Schaaf, M. (ed.) Workshop CBR in the Health
Sciences (ECCBR-HC), pp. 89–98. Tharax-Verlag (2008)

17. Teodorescu, E.I., Petridis, M.: An architecture for multiple heterogeneous case-
based reasoning employing agent technologies. In: CIMAS (2008),
http://ftp.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-375/

18. Torra, V., Narukawa, Y.: Modeling Decisions: Information Fusion and Aggregation
Operators. Springer, Heidelberg (2007)

19. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and tech-
niques, 2nd edn. Morgan Kaufmann, San Francisco (2005)

http://ftp.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-375/

Agent Cooperation for Monitoring and
Diagnosing a MAP

Roberto Micalizio and Pietro Torasso

Dipartimento di Informatica, Università di Torino, Torino, Italy
{micalizio,torasso}@di.unito.it

Abstract. The paper addresses the tasks of monitoring and diagnosing
the execution of a Multi-Agent Plan, taking into account a very challeng-
ing scenario where the degree of system observability may be so low that
an agent may not have enough information for univocally determining
the outcome of the actions it executes (i.e., pending outcomes).

The paper discusses how the ambiguous results of the monitoring
step (i.e., trajectory-set) are refined by exploiting the exchange of local
interpretations between agents, whose actions are bounded by causal
dependencies. The refinement of the trajectory-set becomes an essential
step to disambiguate pending outcomes and to explain action failures.

1 Introduction

The problem of supervising the execution of a multi-agent plan (MAP) is re-
ceiving an increasing attention; in fact, the idea of distributing the execution of
a complex plan among a number of cooperating agents, which execute actions
concurrently, has proved to be quite useful for several domains and applications.
The supervision is a complex task as one has to take into account plan threats,
which can cause action failures. In the last few years some approaches have been
proposed to attack the problem ([1,2,3]). Typically these approaches assume that
action failures are not consequences of plan flaws, but failures are due to the oc-
currence of exogenous events (such as unexpected changes in the environment,
occurrence of faults in some agents functionalities, etc.). Moreover, because of
causal dependencies between actions executed by different agents, the failure in
an action assigned to an agent may impact also the execution of the actions
assigned to other agents. For this reason, it is necessary to perform a plan diag-
nosis in order to detect an action failure as soon as possible, and to single out (if
possible) the reason for such a failure. In fact, the ability of an agent to perform
some form of the plan recovery and repair strongly depend on the capabilities
of inferring a precise diagnosis (see for example [4]).

In this paper we advocate a distributed approach to plan supervision, where
each agent is responsible for supervising (monitoring, detecting action failures
and performing plan diagnosis) the actions it executes. In particular, action mod-
els represent not only the nominal action behavior, but also the (usually non
deterministic) anomalous behavior due to the occurrence of exogenous events.
Of course, the adoption of non deterministic action models make the supervision
task even more complex.

L. Braubach et al. (Eds.): MATES 2009, LNAI 5774, pp. 66–78, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Agent Cooperation for Monitoring and Diagnosing a MAP 67

Moreover, since the system is distributed, each agent has just a limited view
of the progress of the global plan; in fact it receives only partial observations
from the environment. As a consequence an agent cannot, in general, precisely
detect the outcome (success or failure) of its actions on the sole basis of the
observations it receives. The proposed solution involves the exchange of local
interpretations of plan execution (i.e., action outcomes) among agents, in order
to refine the local point of view of each agent, and possibly to detect and explain
action failures.

The paper is organized as follows: first, we introduce the basic notions of global
and local plans, then we formalize the processes of monitoring and diagnosis of a
MAP and discuss the communication and cooperation among agents for inferring
the action outcomes which cannot be immediately determined.

2 Distributed Execution of a Multi-Agent Plan

In this paper we consider a specific class of multi-agent systems which can be
modelled as Multi-Agent Plan (MAP). In a MAP, a team T of agents strictly co-
operate to reach a common, complex goal G by exchanging one another services
and this cooperative behavior introduces causal (and precedence) dependencies
among their activities.

Global plan. The MAP P is modeled as the tuple 〈A, E, CL, CC, NC〉 (see
e.g., [5]) such that: A is the set of the action instances a the agents have to
execute, each action a is assigned to a specific agent in the team; E is a set of
precedence links between action instances, CL is a set of causal links of the form
l : a

q→ a′; the link l states that the action a provides the action a′ with the ser-
vice q, where q is an atom occurring in the preconditions of a′. Finally, CC and
NC are respectively the concurrency and non-concurrency symmetric relations
over the action instances in A: a pair 〈a, a′〉 in CC models a joint action, while
constraints in NC prevent conflicts for accessing the resources.

To keep the discussion simple, in this paper we do not consider joint actions
even though the approach can be extended to deal with them (see e.g. [3]).
Moreover, we translate the non-concurrency constraints into precedence links,
so that during the plan execution agents do not need to negotiate for accessing
resources (this is equivalent to the concurrency requirement introduced in [2]);
in particular, each non concurrency constraint 〈a, a′〉 ∈ NC (ruling the mutual
exclusion access to a resource res), is substituted either with a ≺res a′ or with
a′ ≺res a. The result of this translation procedure is a simple form of scheduling,
where actions assigned to different agents are explicitly related by means of a
(partial) precedence relation; formally, the MAP P to be executed (and super-
vised) is defined as P=〈A, E, CL, RE〉, where RE is the set of precedence links
ruling the access to the resources.

Local Plans. Since the MAP P is executed in a distributed way by the agents
in the team, each single agent is responsible just for a portion of a MAP called
local plan. Intuitively, a local plan P i is the projection of the global plan P over
the action instances assigned to the agent i. Thus, the plan P is decomposed into

68 R. Micalizio and P. Torasso

as many local plans as the agents in T ; however, the decomposition must keep
trace of the causal and precedence relations existing between action instances
assigned to different agents: the local plan P i for agent i is formally defined as
the tuple P i=〈Ai, Ei, CLi, T i

in, T i
out, REi

in, REi
out〉, where Ai, Ei and CLi have

the same meaning of the sets A, E and CL, respectively, restricted to actions
assigned to agent i. The remaining sets are used to keep a trace of the depen-
dencies existing between actions belonging to different local plans; in particular,
the causal links from (to) an action of agent i to (from) an action of another
agent j are collected in the sets T i

out (outgoing links) and T i
in (incoming links),

respectively. Similarly, the precedence links for accessing the resources are sub-
divided into REi

in (incoming links) and REi
out (outgoing links).

In order to simplify the discussion, we assume that each local plan P i is totally
ordered, thereby it can be represented as the sequence of actions 〈ai

0, a
i
1, . . . , a

i
∞〉.

Distributed execution and coordination under nominal conditions. As
an effect of the decomposition of the global plan, the execution of the local plans
is performed by the agents concurrently and asynchronously. In particular, we
assume an agent executes its next action a as soon as the preconditions of a are
satisfied; on the contrary, the agent will wait as long as the preconditions of a
are not satisfied.

Because of the causal and precedence constrains introduced by the planning
step, the agents have to coordinate one another by exchanging messages. All the
knowledge required for inter-agent communication is encoded in P i: every outgo-
ing causal (or precedence) link in T i

out (REi
out) is associated with a send-message

operation toward agent j. Similarly, every incoming causal (or precedence) link
in T i

in (or REi
in), is associated with a receive-message operation1.

Let us suppose that a causal link in T j
in states that the preconditions for

action a (to be executed by agent j) involve a service q provided by agent i: the
agent j will wait a message from i about the service q before executing a.

Plan threats. The nominal execution of the local plan may be affected by
plan threats, which typically cause action failures. In this paper, plan threats are
exogenous events which cause abrupt changes in the agent status; we will denote
as E the set of exogenous events which may occur during the plan execution;
while we will use the symbol ε to represent the absence of exogenous event.

Observe that communication and cooperation among agents are not only
needed under nominal execution of the plan, but are even more important in
presence of some failure. In fact, when agent i realizes that agent j cannot be
provided with service q due to an action failure, it has to exploit the causal link
in T i

out to send agent j a message about the non availability of service q: agent
j becomes aware that the preconditions of action a will never be satisfied.

The cooperation and communication becomes more critical if we want to deal
with cases when the system observability is so partial that an agent i is unable
to conclude that the service q has been provided or not, and therefore it cannot
guarantee the agent j that q has been achieved.

1 We assume that the inter-agent communication is reliable and instantaneous.

Agent Cooperation for Monitoring and Diagnosing a MAP 69

U N L O A D (A 1 , O m , L 2) M O V E (A 1 , L 2 , L 1) L O A D (A 1 , O l , L 1) C A R R Y (A 1 , O l , L 1 , L 2)

M O V E (A 2 , L 3 , L 2) L O A D (A 2 , O m , L 2) C A R R Y (A 2 , O m , L 2 , L 3) U N L O A D (A 2 , O m , L 3) M O V E (A 2 , L 3 , L 2)

A T (O m , L 2)
L 2

. . . .

.

. . . .

.

. . . .

.

. . . .

.

M O V E (A 3 , L 4 , L 3) L O A D (A 3 , O m , L 3) C A R R Y (A 3 , O m , L 3 , L 4) P U T - O N (A 3 , O m , O h , L 4) M O V E (A 3 , L 4 , L 3)

L 3

. . . .

.
. . . .
.

A T (O m , L 3)

a0

a1
1 a1

2 a1
3 a1

4

a2
5 a2

6 a2
7 a2

8 a2
9

a3
10 a3

11 a3
12 a3

13 a3
14

a∞

Fig. 1. The global plan to be monitored

In this way, agent j cannot be sure whether the preconditions of its next
action a (which include q) are satisfied or not. If j adopted a conservative policy,
it would not execute action a, and hence it would stop the execution of its local
plan; however, this kind of policy may result impractical in many domains. We
propose a weak commitment policy where we assume by default that service q
has been provided, so the agent j can execute the action a. Obviously such a
default assumption can be wrong in some cases and therefore the mechanisms
for detecting the action failure and for performing plan diagnosis are much more
complex when respect to the case no default assumption is made.

Running Example. Throughout the paper we will illustrate the proposed
methodology by means a simple example from the blocks world. Let us con-
sider three agents that cooperate to achieve a global goal G where a number of
objects O1,. . ., On must be moved from a source location L1 to a target position
L4, passing through the intermediate positions L2 and L3. All these positions
are critical resources as only one agent can access one of them at a given time
instant; moreover, these positions are the only locations where, under nominal
conditions, an agent can pick up or release a block. Figure 1 shows a portion of a
MAP achieving the goal G; in particular the picture shows the actions involved
in the delivery of the object Om: each agent is responsible for carrying the object
from a position to the next one: A1 from L1 to L2, A2 from L2 to L3, and A3 from
L3 to L4 where Om is put on the top of a stack of objects.

The three rectangles enclose the local plans assigned to the agents. It is easy
to see that the MAP is a DAG where nodes are action instances and edges
represent precedence or causal links. However, for the sake of readability, internal
precedence links (i.e., between actions in the same local plan) are not displayed,
while internal causal links (thin solid edges) are reported without labels. Instead,
the picture highlights causal (solid edges) and precedence (dashed edges) links
between actions in different local plans: these links represent relations between
agents. For example, the causal link between actions a1 and a6 means that the
agent A1 provides agent A2 with the service at(Om, L2) (i.e., the object Om is
located in position L2); whereas the precedence link between actions a2 and a5,
labeled with the resource id L2 means that action a5 can be executed only after

70 R. Micalizio and P. Torasso

the execution of action a2, i.e., only when the resource L2 is no longer used by
agent A1 and it is made available to agent A2.

3 Basic Concepts on Distributed MAP Monitoring

In this section we introduce the model-based methodology we adopt for mon-
itoring the execution of a MAP. In particular, the models we propose for the
agent state and actions take care of the inherent ambiguity of the system.

Agent state. Intuitively, the status of the system can be represented in terms
of the status variables of the agents in the team T and of the status of the global
resources RES available in the environment. However, given the decentralized
setting, the status of the system has to be represented in a distributed way by
considering the set VARi of status variables associated to each agent i. As usual
in approaches based on Discrete Event Systems (DESs), each variable v ∈ VARi

assumes values in a predefined and finite domain Dom(v).
The set of status variables VARi is partitioned into two subsets: END i and

ENV i. END i includes the endogenous variables which characterize the specific
agent i (and therefore there is no direct relation between the endogenous vari-
ables of two agents i and j); ENV i includes all the variables concerning the
environment (e.g., the status of a resource, or the position of an object). Note
that, because of the partitioning, each agent i maintains a private copy of the
variables in ENV i; more precisely, for each resource resk ∈ RES (k : 1..|RES |)
the private variable resk,i is included in the set ENV i. The consistency among
the private copies is guaranteed by the existence of precedence links in RE: the
status of a resource is known only by the agent that holds it, for all the other
agents the status of the resource is not-available.

As noted earlier, the relinquishment/acquisition of a resource happens through
the exchange of messages between the agent who releases the resource and the
agent who gets the resource (this is performed via the send and receive actions
associated to the precedence link).

Action models. The model of an action a takes into account not only the
nominal effects of the action, but also the non deterministic effects of exogenous
events affecting the action execution. Formally, an action model is the tuple
〈pre(a), eff(a), event(a), Δ(a)〉 where pre(a) and eff(a) are subsets of VARi, rep-
resenting the variables over which the preconditions and the effects are defined,
respectively; event(a) is a subset of exogenous events in E∪{ε} that may occur
during the execution of a. Finally, Δ(a) is a transition relation modeling how
the status of agent i changes after the execution of a. In particular, the state
transition 〈sl, ε, st+1〉 ∈ Δ(a) models the case of the nominal behavior: ε denotes
the case where there is no occurrence of any exogenous event, while sl and sl+1
represent two agent states (i.e., two complete assignments of values to the status
variables in VARi) at the steps l and l + 1, respectively. The state transition
〈sl, e, sl+1〉 (with e ∈ E), denotes the occurrence of the exogenous event e; note
that it is easy to model, within the transition relation Δ(a), the non determin-
istic effects of e. Since in some domains it could be impossible (or too costly)

Agent Cooperation for Monitoring and Diagnosing a MAP 71

to provide a complete model of the effects of a exogenous event, we extend the
domain Dom(v) of each variable v ∈ VARi by including the value unknown;
when a variable assume the value unknown in sl+1 the actual value of v is no
more predictable.

Running example. Let us assume that, in our blocks world example, the agent
A2 loses the object Om while A2 is moving from L2 to L3 (action a7 of Fig. 1).
To take into account this possibility, the transition relation of the carry action
includes, among others, a state transition describing the effects of the exoge-
nous event lose-object on the status of agent A2. Intuitively, the lose-object event
changes the value of the variable A2.carrying from Om to empty; at the same time,
the variable Om.position (representing the position of the object) changes from
on-board-A2 to unknown; in this case, in fact, it is unrealistic to have a precise
model for the lose-object, and some of its effects cannot be anticipated.

4 Dealing with Ambiguity in MAP Monitoring

In the distributed framework proposed in this paper, each agent is responsible
for monitoring the actions it executes. Intuitively, the monitoring task has to
keep track of the agent status while the agent is executing the actions in its lo-
cal plan, and todetect as soon as possible anomalous discrepancies between the
expected nominal behavior of the agent and the observed one. To meet the first
objective, each agent i maintains a “history”, namely a trajectory, representing
the sequence of state transitions occurred during the execution of a plan seg-
ment. To meet the second objective, the agent i must be able to determine the
outcome of the actions it has executed; in fact, an anomalous execution mani-
fests itself when the nominal effects of an action have not been achieved.

The monitoring task is made complex not only because of the non determin-
ism of the action model, but also because of the very partial observability of the
system, which impacts the monitoring process in two ways: first, the trajectory
of agent i cannot be precisely estimated, (and therefore a set of alternatives,
called trajectory-set, must be maintained); second, the agent i must be able to
deal with ambiguous action outcomes: i could not be able to determine whether
the nominal effects of an action have been achieved.

Agent Trajectory and Trajectory-set. An agent trajectory, denoted as
tri(0, l), is defined over a segment [ai

0, . . . , a
i
l] of the local plan P i, and con-

sists of an ordered sequence of agent states and exogenous events representing
an evolution of the status of agent i consistent with the observations it has
received so far, more formally:

Definition 1. The agent trajectory tri(0, l) over the plan segment P i[a0, . . . , al]
is tri(0, l)=〈s0, e0, s1, . . . , el, sl+1〉, where:

sk (k : 0..l+1) is the state of agent i at the k-th step such that obsi(k)∪sk �� ⊥.
eh (h : 0..l) is an event in E ∪ {ε} occurring during execution of action ah,

involved in the agent state transition from sh to sh+1.

72 R. Micalizio and P. Torasso

As mentioned above, we do not assume that the available system observability
guarantees to precisely determine the status of an agent after the execution of
each action. As a consequence of this ambiguity, the structure that the agent
i has to maintain is the trajectory-set Tri[0..l], which includes all the possible
agent trajectories tri(0, l) consistent with the observations received during the
execution of the plan segment P i[a0, . . . , al].

Albeit the trajectory-set Tri[0, l] maintains the history in the interval [0, l+1],
it is sometimes useful to single out the agent belief state at a given step k :

Definition 2. Given the consistent trajectory-set Tri[0..l], the agent belief state
Bi

k (k : 0..l + 1) is the set of all the consistent agent states inferred at the k-th
step. Formally, Bi

k= projectionsk
(Tri[0..l]).

Action Outcomes. Intuitively, the outcome of an action a is a synthetic piece
of information which states whether the nominal effects of a have been achieved
or not; of course, in the positive case the outcome of a is succeeded, the outcome
of a is failed otherwise.

In the Relational framework we propose, the nominal effects of an action a
result from the following expression:

nominalEff (a)=projectioneff (a)(selecte=εΔ(a)).

Namely, nominalEff (a) is the complete assignment of values to the status vari-
ables in eff(a), when no exogenous event occurs (i.e. e = ε).

The main problem in assessing the outcome of an action is the inherent ambi-
guity both in the action model and in the trajectory-set. For instance, in order to
assess the outcome action ai

l, agent i needs to check whether the nominal effects
of ai

l are satisfied in the agent belief state Bi
l+1. Unfortunately, given the partial

system observability, the agent belief state Bi
l+1 is in general ambiguous: it con-

tains states where the nominal effects of ai
l hold, and other states where they

do not hold. The following, conservative definitions allows agent i to univocally
determine the success or the failure of action ai

l.

Definition 3. The outcome of action ai
l is

succeeded iff for each state s ∈ Bi
l+1, s � nominalEff (ai

l).
failed iff for each state s ∈ Bi

l+1, s ∪ nominalEff (ai
l) � ⊥

However, in all those cases where these two definitions are not applicable we
adopt a weak commitment policy which allows the outcome of an action to be
pending; the assessment of the outcome is postponed till the belief state Bi

l+1
is sufficiently refined to conclude either the success or the failure. To this end,
the agent i maintains a list pOi of actions whose outcome has not been (yet)
determined.

The incremental monitoring process. Let us assume that the action ai
l re-

quires as precondition the service q provided by action aj
m (i.e., by another agent

j). Thus, as soon as action aj
m has been executed, agent j has to notify agent

i about the result of such an action by sending a message msg(aj
m, ai

l) to agent
i. Such a message includes only the tuple 〈ε, q〉 in case agent i can univocally

Agent Cooperation for Monitoring and Diagnosing a MAP 73

detect the success of action aj
m (i.e., no exogenous event occurred and the service

q has been provided). In case the outcome of action aj
m is pending (i.e., agent

j is not sure about the achievement of service q), the message includes not only
the nominal situation 〈ε, q〉, but also the anomalous situation 〈exo(j, aj

m),¬q〉,
where the service q is not achieved because of the occurrence of an exogenous
event denoted as exo(j, aj

m).
Since the action aj

m should provide the service q to action ai
l , the agent i

has to consume the message msg(aj
m, ai

l) during the monitoring of action ai
l; in

particular:

Definition 4. Tri[0, l] = selectobsi(l)[[Tri[0, l−1] × msg(aj
m, ai

l)] join Δ(ai
l))]

Intuitively, the Relational product Tri[0, l−1] × msgi
l is the mechanism through

which the agent i includes within its trajectory-set the info provided by agent j.
The join operation appends each possible transition in Δ(ai

l) at the end of each
trajectory tri(0, l − 1) in Tri[0, l − 1] iff the agent state sl (i.e., the last agent
state in the agent trajectory included the info provided by the message) satisfies
the preconditions of the action ai

l. The selection operation prunes the estima-
tions by removing all the predicted trajectories which are inconsistent with the
observations received as a feedback for the execution of ai

l. It is important to
note that the selection operator has an impact on the whole trajectory-set: the
agent trajectory tri(0, l) is removed from Tri[0, l] when the last agent state sl+1
is inconsistent with the observations. As we will discuss later, through this mech-
anism it is possible to refine the past history of the agent status, and possibly
determine the outcome of some past actions.

However, the above mechanism is not complete: it is possible, in fact, that
for some trajectories tri(0, l− 1) ∈ Tri[0, l− 1], the last state sl does not match
any of the transitions in Δ(ai

l); this happens when some variables in sl mention
the symbol unknown (i.e., that variables are no longer predictable). In order to
be able to incrementally extend also these trajectories for which the model of
the action is not directly applicable, the monitoring step makes use of a weak
prediction model:

Definition 5. Let tri(0, l−1) be an agent trajectory in Tri[0, l−1] such that sl

does not satisfy the preconditions for action ai
l; the agent trajectory tri(0, l−1) is

extended by appending a new state transition 〈sl, ε, sl+1〉, where for each variable
v ∈ VARi:

v assumes the value unknown in sl+1 iff v ∈ eff(ai
l)

v assumes in sl+1 the same value assigned in sl otherwise

The first condition states that the effects of the action ai
l become no longer

predictable; the second condition imposes the persistency for all those variables
which are not included in the definition of the nominal effects of the action ai

l.
Observe that also the predictions inferred by means of the weak model must be

consistent with the observations; when a variable v is unknown in sl, it assumes
in sl+1 the observed value in obs(ai

l), that is, the value unknown matches with
any possible observation.

74 R. Micalizio and P. Torasso

h - b r o k e n

h - b r o k e n
m - b r o k e n

T r A 2

h - b r o k e n
h - b r o k e n

T r A 3
ε

ε

ε

ε

ε

ε

ε

ε

ε

ε

ε

ε

ε

ε

ε

ε

ε

ε

ε

ε

exo(A2, a2
8)

B2
6

B2
7

B2
8 B2

9 B2
10

B3
11

B3
12 B3

13 B3
14

B3,msg
10

s2
1

s2
2

s2
3

s2
4

s2
5

s2
6

s2
7

s2
8

s2
9

s2
10

s2
11

s2
12

s2
13

s2
14

s2
15

s3
1

s3
2

s3
3

s3
4

s3
5

s3
6

s3
7

s3
8

s3
9

s3
10

s3
11

s3
12

s3
13

s3
14

s3
15

lose-object

lose-object

Fig. 2. The trajectory-sets computed by agents A2 and A3

Running example. Figure 2 shows two trajectory-sets, TrA2 and TrA3, built
during the plan execution by agents A2 and A3 respectively; these trajectory-sets
are consistent with the observations received by the agents so far. Note that each
rectangle encloses all the agent states within a given belief state. For instance,
the belief state B2

9 includes the states s2
7, s2

8, s2
9, and s2

10.
The trajectory-sets keep trace of the possible occurrence of exogenous events

during the execution of the actions: for example, the exogenous event lose means
that the agent can lose a block during a carry action; whereas m-broken and
h-broken refer to a fault respectively in the mobility and handling functional-
ity of the agent, the first fault affects the move action, the second affects the
load/unload actions.

More important, since there exists a causal link between actions a2
8 and a113,

the agent A2 sent a message to agent A3 about the service AT(Om,L3) (see
Figure 1). However, action a2

8 has a pending outcome, thereby the message re-
ceived by A3 is ambiguous and maintains a reference to an exogenous event,
which possibly occurred during the execution of a2

8; this ambiguous message has
been consumed by agent A3 and included in the trajectory-set TrA3 through the
two transitions between the belief states B3,msg

10 and B3
11: the transition labeled

with ε models the accomplishment of service AT(Om,L3), the transition labeled
with exo(A2, a2

8) models the occurrence of an exogenous event.

5 Cooperative Plan Monitoring and Diagnosis

In this section we discuss how the trajectory-set inferred by agent i can be re-
fined by exploiting pieces of information provided by other team members. The
refinement of the trajectory-set is an important step, which allows agent i to
determine the outcome of some pending actions in pOi. To reach this objective,
one has to single out which pieces of information should be exchanged among
the agents and when.

Agent Cooperation for Monitoring and Diagnosing a MAP 75

agent i

procedure PropagateSuccess(ai
l) {

for each link cl ∈ T i
in|cl : aj

m

q
→ ai

l

notify agent j:
service q in cl : aj

m

q
→ ai

l accomplished
}

agent j

procedure ExploitSuccess(q, cl) {
assert q in Bj

m+1 and prune Trj

assert outcome(aj
m) = succeeded

revaluate outcome for each action in pOj

}

Fig. 3. The procedures for success propagation

In principle, the agents could exchange one another the observations they re-
ceive from the environment. However, this approach may suffer from two draw-
backs: first, the amount of data the agents need to exchange could be too large;
second, the data concerning the observations received by an agent could not be
necessarily useful for another agent.

As discussed in the previous section, in our approach the agents exchange the
results of a local interpretation process aimed at inferring the action outcome.
In particular, the messages are sent not only when an agent detects the success
or failure of an action, but also in presence of ambiguity (pending outcome). In
the following of the section, we will show how the ambiguous results provided
by agent j to agent i can be refined on the basis of the feedback provided by
agent i, so that agent j can determine the outcome of some previously pending
action.

First of all, let us consider the case when agent i detects the nominal outcome
for action ai

l on the basis of the observations obs(ai
l). In this case, the trajectories

in Tri[0..l] resulting from the monitoring step involve only ε transitions, and the
agent i can conclude that the execution of all previous actions is nominal and all
the services needed for action ai

l have been provided; in this way it is possible to
determine the outcome of some pending action in pOi. Moreover, the nominal
outcome of action ai

l provides a positive feedback to agent j, in fact the following
property assures that at least the nominal outcome of action aj

m is detected.

Property 1. Let ai
l be an action in Ai, and let aj

m an action in Aj such that
there exists a causal link cl ∈ T i

in, cl : aj
m

q→ ai
l , and let us assume the outcome

of action aj
m is pending; if ai

l has outcome succeeded then q has been certainly
accomplished and aj

m has outcome succeeded.

For this reason agent i invokes procedure PropagateSuccess (see Figure 3) to
notify other agents about this outcome. Observe that the propagation is per-
formed by considering only the subset of agents which provide action ai

l with
some service q (see the incoming causal links in T i

in).
The message about the accomplished service q is exploited by agent j, by

invoking procedure ExploitSuccess, whenever the agent j is not sure to have
provided q. To consume this message, the agent j asserts the atom q within its
trajectory-set Trj; more precisely, since the atom q refers to the effects of action
aj

m, q must be asserted in the agent belief state inferred after the execution of
aj

m, namely Bj
m+1. It is worth noting that as a side effect, the trajectory-set Trj

can be refined by pruning off all those agent trajectories which are not consistent
with q. Therefore, after this first step, the agent j reconsiders each pending action

76 R. Micalizio and P. Torasso

agent i

procedure BackPropagateFailure (ai
l){

infer local diagnosis Di

let exist cl ∈ T i
in| cl : aj

m

q
→ ai

l

if the only explanation in Di refers to exo(j, aj
m)

notify agent j service q has not been provided
}

agent j

procedure ExploitBackPropFailure(q, cl){
assert ¬q in Bj

m+1 (pruning of Trj)
assert outcome(aj

m) = failed

revaluate outcome for each action in pOj

infer local diagnosis Dj

}

Fig. 4. The procedures for back propagation of an action failure

in pOj , as it is possible that the trajectory-set Trj has been sufficiently refined
to determine the outcome of some of them.

In case agent i detects the failure of action ai
l , a local diagnosis process is

immediately activated to provide some possible explanations for that failure. A
local diagnosis can be inferred directly from the trajectory-set as follows.

Definition 6. Given the failure of action ai
l, and the trajectory-set Tri[0..l], the

local diagnosis for that failure is Di= projection e0,...,el
Tri[0..l].

In other words, the local diagnosis for the failure of ai
l is a set of sequences of

events, where each sequence seq has the form 〈e0, e1, . . . , el〉 and represents a
possible explanation. Each event ek (k : 0..l) is in E ∪ {ε}, however, since a not
nominal outcome has been detected, in each sequence seq at least one anomalous
event must be occurred.

It is important to note that some of the explanations included in the local
diagnosis could refer to anomalous events concerning services provided by other
agents; that is, it is possible to explain the failure of action ai

l as an indirect
consequence of the failure of some actions performed by other agents.

In particular, when agent i is able to explain its local failure just as a conse-
quence of a failure in the local plan by agent j, it invokes the procedure Back-
PropagateFailure (see Figure 4), to notify agent j that service q has not been
provided. Whenever agent j receives such a message activate procedure Exploit-
BackPropFailure: the local trajectory-set of agent j is refined by asserting ¬q
in Bj

m+1; after this step it is therefore possible for agent j to determine whether
other actions, besides aj

m, are failed, and hence the outcome for each pending
action in pOi is evaluated again. Finally, agent j infers the local diagnosis Dj

according to definition 6.

Running example. Let us consider again the trajectory-sets in figure 2, and
assume that after the execution of action a9, agent A2 receives the message “Po-
sition equals L2”. This piece of information is used to prune the trajectory-set
of A2, which is able to conclude that action a9 has outcome succeeded (the agent
knows that it has reached position L2 as exepected). However, A2 does not know
whether the object Om has been delivered to agent A3 or not, thus its set of
pending outcomes is pOA2={a6, a7, a8}.

Now, let us assume that the set of pending outcomes for agent A3 is pOA3=
{a11, a12, a13}, but after the execution of action a13 the agent A3 receives the
observation “Object Om on top of object Oh”, also in this case the observation

Agent Cooperation for Monitoring and Diagnosing a MAP 77

is used to prune the trajectory-set of A3, in particular the result of the pruning
consists in removing all the anomalous trajectories, and as a consequence A3
determines the nominal outcome for each action in pOA3. Observe that, as soon
as agent A3 determines the nominal completion of action a11, depending on
services provided by A2, it notifies A2 that those services have been provided.
In fact, the nominal outcome of action a11 implies also a nominal outcome for
action a8, which in turn implies the successful completion also for action a6
and a7.

6 Discussion and Conclusion

In recent years increasing attention has been devoted to plan execution and
in particular to plan diagnosis ([1,6]). In fact, the early detection of an action
failure, and of a possible explanation of its causes, are essential to start a recovery
step (see e.g. [4]). The framework by Roos et al. [2] has many similarities with the
framework we propose as it considers a precise notion of multi-agent plan, where
actions are atomic and concurrently performed by a team of agents. However,
Roos et al. discuss a centralized approach: the diagnostic problem takes into
account all the agents in the team and all the available observations at a given
time. Moreover, their action models consider just the nominal action behavior,
while any abnormal behavior is unknown. On the contrary, the framework we
have discussed is distributed: each agent is responsible both for executing actions
and for diagnosing them. In addition to that, we can model the nominal as well
as the anomalous behavior of an action; in particular, the anomalous behavior
may be non deterministic or even abstracted by unknown.

It is important to note that the complexity of the plan diagnosis task strongly
depends on the amount of observations available to the agents. In previous works
([3]) we have described methods able to detect and diagnose action failures when
each agent has sufficient information for certainly detecting the outcome at least
of each action providing other agents with services.

In the present paper we have considered a very challenging scenario where
the degree of observability is so low, that an agent may not determine the out-
come of an action even when that action provides services to other agents. A
demanding consequence of such a scenario is that the agents must be able to
deal with ambiguous action outcomes and need to communicate one another to
refine as far as possible their beliefs. To face this problem we presented the weak-
commitment policy, which allows pending outcomes to be turned into success or
failure through the exchange of messages among agents. Notice that messages
are not raw data (such as low-level observations), but are action outcomes. The
advantage of this solution is twofold: first, agents reduce the amount of data to
be communicated; second, agents exchange much more informative data since
action outcomes are the results of (local) interpretation processes.

A preliminary set of experiments is currently carried on for testing the ap-
proach, which has been implemented by extending the software prototypes used
in [3], and by exploiting the symbolic formalism of the Ordered Binary Decision
Diagrams for compactly encoding both action models and trajectories.

78 R. Micalizio and P. Torasso

References

1. Kalech, M., Kaminka, G.A.: On the design of coordination diagnosis algorithms for
teams of situated agents. Artificial Intelligence 171(8-9), 491–513 (2007)

2. Roos, N., Witteveen, C.: Models and methods for plan diagnosis. Journal of Au-
tonomous Agent and MAS 19(1), 30–52 (2009)

3. Micalizio, R., Torasso, P.: Monitoring the execution of a multi-agent plan:dealing
with partial observability. In: Proc. of ECAI 2008, pp. 408–412 (2008)

4. Micalizio, R.: A distributed control loop for autonomous recovery in a multi-agent
plan. In: Proc. of the 21st IJCAI 2009 (to appear, 2009)

5. Cox, J.S., Durfee, E.H., Bartold, T.: A distributed framework for solving the mul-
tiagent plan coordination problem. In: Proc. AAMAS 2005, pp. 821–827 (2005)

6. Horling, B., Benyo, B., Lesser, V.: Using self-diagnosis to adapt organizational struc-
tures. In: Proc. Int. Conf. on Autonomous Agents (ICAA 2001), pp. 529–536 (2001)

Strategies for Exploiting Trust Models in
Competitive Multi-Agent Systems

Vı́ctor Muñoz, Javier Murillo, Beatriz López, and Dı́dac Busquets

Institut d’Informàtica i Aplicacions
Campus Montilivi, edifice P4, 17071 Girona

{vmunozs,jmurillo,blopez,busquets}@eia.udg.edu

Abstract. Multi-agent systems where agents compete against one an-
other in a specific environment pose challenges in relation to the trust
modeling of an agent aimed at ensuring the right decisions are taken.
A lot of literature has focused on describing trust models, but less in
developing strategies to use them optimally. In this paper we propose
a decision-making strategy that uses the information provided by the
trust model to take the best decisions to achieve the most benefits for
the agent. This decision making tackles the exploration versus exploita-
tion problem since the agent has to decide when to interact with the
known agents and when to look for new ones. The experiments were
performed using the ART Testbed, a simulator created with the goal of
objectively evaluate different trust strategies. The agent competed in and
won the Third International ART Testbed Competition held in Estoril
(Portugal) in March 2008.

Keywords: Competitive multi-agent systems, Trust, Reputation, ART
Testbed.

1 Introduction

There are, nowadays, various multi-agent environments in which agents act in-
dependently and compete to obtain the maximum benefits for themselves. These
environments are usually composed of a large number of self-interested agents
which interact with each other, offering and requesting services, in order to im-
prove their performance. In order to decide which agents to interact with, agents
generally use a built-in model of the other agents. This model gives the agent
the information it needs to know which agents to trust in order to accomplish
its objectives, as well as which agents to avoid. This is called the trust model of
the agent [12].

The way an agent uses the trust model is similar to the way a human does. For
instance, let us imagine a person, called John, who wants to buy a television.
Last year John bought a television at the Cheap & Good Store, but shortly
afterwards the television broke down. Consequently, John now has little trust
in the Cheap & Good Store, and when it comes to buying another television he
will prefer to buy it at another store. On the other hand, a relative of John, Joe,

L. Braubach et al. (Eds.): MATES 2009, LNAI 5774, pp. 79–90, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

80 V. Muñoz et al.

bought a television that worked well at the Best TV Store and he is therefore
very pleased with the purchase and has a lot of trust in the store he bought it
from. Joe mentions this to John who, as he trusts his relative, also has more
trust in the Best TV Store (although John himself has not had any interaction
with it). Finally, the Best TV Store can make publicity of itself, for example
through advertisements.

As seen in the example, three different kinds of interactions can change the
trust of an agent: (i) direct trust is based on personal experience, (ii) indirect
trust, also called reputation, is based on another’s experience of a third party, and
(iii) self trust is based on an agent’s advertising of itself. Although direct trust is
in principle the most accurate, it is generally achieved at a higher cost (in terms
of money, time, etc.) compared with the other kinds of trust [5]. Therefore, the
use of indirect and self trust is indispensable in large environments in which it is
not always possible (or it is too costly) to obtain direct trust. In such competitive
environments, however, the use of indirect and self trust may be harmful, since
some agents can act malevolently, given that a loss for a competitor may imply
a benefit for itself. In fact, as a result of competitiveness it is quite likely that a
considerable number of agents will not be honest, and try to deliberately produce
losses in other agents in order to benefit from that behavior [16]. There is a
distinction, though, between acting malevolently and giving bad quality service.
To follow on from the previous example, a particular store may sell products of
a higher quality than another, but this does not necessarily mean that the other
store is acting malevolently. Conversely, a person may have a bad opinion of a
particular store based on a bad past experience, and another person may have
a good opinion of the same store based on a good past experience. If a third
person asks them their opinions of the store, they will give opposing answers,
but neither of them will be lying.

Therefore, the key requirement if an agent is to perform well is for it to
have a trust model that takes into account all the above factors. However, a
perfect trust model is difficult to obtain, and therefore the design of a strategy
to take correct decisions based on an incomplete trust model (which may contain
mistakes) is also an important factor if the agent is to obtain maximum benefits.
In the decision-making process, the agent has to deal with the exploration versus
exploitation problem [15], because when it wants to request a service it must
decide whether to request it from one of the known agent providers (of services),
or to explore some unknown ones and possibly discover better provider agents. If
the agent is only focused on exploitation it might obtain good short-term results
but bad ones in the long term, since exploration allows the agent to discover
better provider agents than its normal providers, or to have substitute providers
in case one of the usual providers fails (i.e. leaves the market or decreases in
quality), a circumstance that is quite likely to happen when the agent is working
in dynamic environments. Furthermore, exploration allows the agent to adapt
to changes faster, given that if the quality of a provider diminishes for some
reason, the agent will be able to change to another. Therefore, as an agent is
usually limited in the number of interactions it can perform (due to time limits

Strategies for Exploiting Trust Models in Competitive Multi-Agent Systems 81

and interaction costs), it is necessary to decide which interactions to dedicate to
exploration, and which to exploitation.

In this paper we assume that a trust model has been previously selected and
we present a strategy to use it, dealing with the exploration versus exploitation
problem. To test the system, the ART (Agent Reputation and Trust) Testbed
simulator is used [4]. The aim of this testbed is to provide a standard problem
scenario which can be used to compare different approaches to modeling and
applying trust and strategies in multi-agent systems.

This paper is structured as follows. In the following section we survey existing
trust models available in the literature. Next, the strategy for using it is designed.
Later, we use the ART Testbed simulator to test the strategy. Finally, some
conclusions are given.

2 Related Work

Trust has been defined in different ways for different domains. For example, one
of the most frequently used is the definition of trust as “confidence in the honesty
or goodness of an agent”. In this case trust is measured by the behavior of an
agent, based on a decision about whether it is acting honestly or maliciously.
However, the definition in [5] is the most useful for our purposes: “Trust is the
confidence or belief in the competence, utility or satisfaction expected from other
agents concerning a particular context”. Under this definition, the trust in an
agent to provide a specific service can be understood as an estimator of the
expected quality that will be obtained from that service. For example, an agent
having a trust level of 1 for one provider and a trust level of 0.5 for another
provider (on a scale from 0 to 1, with 0 being the lowest trust level), the agent
would prefer to interact with the first one since the expected quality would be
higher.

We can find a good number of trust models in the literature, reviews of which
can be found in [11]. Trust models usually incorporate only direct and indirect
trust interactions, as for example REGRET [13], which calls individual dimen-
sion the direct experiences and social dimension the indirect ones. This work
introduces the ontological structure concept, that is, the reputation is considered
as a combination of different features (for example, the reputation of an airline
company can be composed of a set of features like delays, food quality, etc.)
from where the overall reputation value is computed after assigning weights to
the individual components. However, there are some approaches as in [1], where
a trust model based just on a reputation mechanism is proposed. Other works,
like [5], use three components of trust: direct, indirect and self. Conversely, FIRE
[7] presents four different kinds of trust: “interaction trust” which is equivalent
to direct trust, “witness reputation” which matches indirect trust, “certified rep-
utation” which is similar to self trust besides the fact that it is not the agent
itself who provides this trust but its partners (the agents more related to it), and
finally “role-based trust” for the trust associated to the set of agents belonging
to the same organization, and applied to all of its members.

82 V. Muñoz et al.

Other differences between the models concern the method used to manage
the information extracted from interaction, i.e. how the incoming information
is added to compute the trust model or update it. Most of the methods use
aggregation functions, as in [5,19]. Others are based on probability theory [8,17],
information theory [14], or the Dempster-Shafer theory [18], among others. In
order to work with dynamics (agents that change their services quality through
time) and incomplete information some works use a forgetting function that
enables the selection of the most relevant information to build the trust model,
as in [5] or [7].

More focused on the ART domain (explained in the results section), we also
find a large number of papers in which domain-dependent trust models and
strategies have been designed with the aim of participating in different inter-
national competitions. In [9], as in many other ART agents, the agent design
is divided in three parts: the strategy for modeling other agents (trust model),
the requesting strategy and the response strategy. The winner of the 2006 and
2007 ART international competitions, known as IAM [16], consists of three main
parts: a lie detector to detect malicious agents, a variance estimator to estimate
the quality of the other agents, and an optimal weight calculator to measure its
own behavior against others. A later improvement of the IAM agent presented
a trust model based on Bayesian reinforcement learning [15]. Another technique
that has been used to design ART agents in order to deal with untrustworthiness
is fuzzy logic. In [2], fuzzy logic is used to normalize the information received
from each agent.

3 Using the Trust Model

Although there is a lot of work about trust models, there is less about how to use
them. So, here we present a strategy for using a trust model. The trust model
can be any that provides the following features:

– The direct, indirect and self trust of the agents, for each of the services that
they offer, with a normalizable value between 0 and 1.

– The knowledge degree of a provider agent about a service (based only on
direct trust). This is a value (normalizable between 0 and 1) that represents
how much the agent has directly interacted with a provider, with 0 meaning
that the provider is totally unknown (the agent has never directly interacted
with that provider), and 1 totally known.

The information that the trust model provides is used by the agent to take
decisions regarding service requesting. It is important to note that even with a
very complex model of trust and a good strategy, if the information contained
in the model does not correspond to reality or is incomplete, the agent will not
be able to take advantage of it. For example, an agent that does not know all of
the agents will not be competitive against another agent that does know all of
them, even if the latter has a worse trust model than the former.

The decision-making process involves the resolution of the exploration versus
exploitation problem, given that the number of interactions to perform is usually

Strategies for Exploiting Trust Models in Competitive Multi-Agent Systems 83

limited. The key point here is the need to decide at every moment how much
effort to spend on exploring for new unknown providers, and how much on
exploiting the known ones.

In order to make this possible, our strategy is based on grouping the agents
in four categories, according to the information stored about them in the trust
model regarding a given service. Thus we consider the following categories:
– Group TK (Totally Known agents): The agents with a knowledge degree

equal to 1. The trust model says that they are well-known providers since
we have interacted with them many times.

– Group PK (Partially Known agents): Agents with a knowledge degree
lower than 1 and greater than 0. These providers would probably become
future providers in the event any of the existing ones failed.

– Group AU (Almost Unknown agents): Agents with a knowledge degree
equal to 0. These are the agents without any direct interaction, but for which
there is indirect or self information.

– Group TU (Totally Unknown agents): These are the agents without
any information about, either direct, indirect or self.

Note that the membership of agents in the different groups changes through
time, with all the agents belonging to the last group (TU) at the beginning.
Moreover, agents that belong to the group TK may switch to lower groups if the
trust model forgets old interactions (for dynamic environments).

These categories are used to define our exploration versus exploitation strat-
egy. The total number of interactions T is limited due to time and cost restric-
tions, depending on the domain. Given a new set of services to be fulfilled, the
agent exploits a set of M providers and explores a set of N agents, so that at
the end the number of interacted agents is T = M + N .

3.1 Exploitation

In order to select the agents for exploitation, it is preferable to select from the
providers belonging to the first group (TK), the ones that the agent thinks will
provide good quality (direct trust higher than a given threshold QT , parameter
that has to be set depending on the domain and the trust model) in supplying
the requested service, as they are the most reliable agents. The services provided
by these agents can be trusted since the agent has satisfactorily interacted with
them many times in the past, and consequently it is quite likely that future
interactions will be successful as well. In the case that there are not sufficient
agents conforming to the above restriction, the agent can use as providers the
rest of the agents from the first group, or the best agents from the second group
(at a higher level of risk). As a result of the exploitation, the parameter M will
be fixed (the number of agents with a direct trust higher than QT , with an upper
limit of T).

3.2 Exploration

The main idea of the exploration process is to gradually raise agents from lower
to higher groups until they conform to the first group’s constraints. It is not

84 V. Muñoz et al.

mandatory to use exploration, but its benefits are clear, since without it, if the
usual providers fail (the providers become unavailable or their quality decreases
too much), the agent would have to start searching, perhaps interacting with to-
tally unknown (potentially risky) agents in order to find new providers. Instead,
choosing correctly the agents for exploration will move more agents to the known
category, thus allowing the agent to have candidates for future exploitation, in
the event that any regular providers are lost.

The exploration process could be performed by choosing the unknown agents
randomly. However, we have designed a strategy that achieves a better outcome
(as demonstrated in the results section 4.4). This mechanism consists of three
phases and its objective is to optimally spread the exploration interactions of
the agent. The agents to explore are taken from the groups PK, AU and TU,
with the available interactions (N = T −M) being distributed according to the
three following phases:

1. Select agents from the PK group. Agents are sorted in descending order
according to their direct trust regarding the service to be covered, and only
the best are selected. The objective of this phase is to know completely these
agents, in order to move them to the TK group.

2. If there are still interactions left, the agents are taken from the AU group.
The agents in this set are arranged in descending order according to their
indirect trust, and only the best are selected. A single interaction is assigned
to each provider, until exhausted. These agents will belong to the PK group
in the next time step.

3. Finally, the agents are selected from the TU group, and a single interaction
is performed in order to move them to the AU group. Here, the providers
are selected at random, as we do not know anything about them.

The different phases of the mechanism are subsequently executed until the avail-
able exploration interactions (N) are exhausted.

3.3 Initial Time Steps Procedure

In the initial time steps no trust model has yet been built, and indirect trust
is not useful either, because initially nobody knows anybody, so any received
reputations would not be right. Therefore, the strategy here is to use the self
trust values obtained from the agents to decide which agents to rely on.

Another strategy for the initial time steps is to trust the agents that answer
our requests, and the agents that make requests to us. This is because we ex-
pect that agents interested in interacting with us will be truthful agents, while
untruthful agents are generally less interested in interacting with others.

3.4 Agent Behavior for Service Providing

Up to now we have discussed how our agent requests services to others (request-
ing services). Here we talk about strategies for the agent behavior with the other
agents’ requests (providing services).

Strategies for Exploiting Trust Models in Competitive Multi-Agent Systems 85

We believe that giving bad services qualities deliberately is not beneficial since
in the long term the other agents either stop trusting, stop requesting, or even
start giving bad qualities to us. Thus, we lose possible providers. Moreover, in
dynamic environments, an agent that at a given time is not a good provider
can become one in the future. Therefore, acting malevolently would produce a
reaction against us in the agents, so we decide to act always honestly.

Finally, with regard to reputation requests, we decided to answer them truth-
fully. In doing so, the agents with good trust models (models that make use of
indirect trust) are favored over the rest, and we expect them to answer back in
the same way, thereby achieving mutual collaboration.

4 Experimentation

In this section we explain the tool used to test our work: the ART Testbed, and
the results obtained on the ART Testbed international competition.

4.1 ART Testbed

The Agent Reputation and Trust Testbed1 is a simulator for the art appraisal
domain, “a working framework created with the goal of serving as an experimen-
tation tool of different trust models and strategies for them, as well as a forum in
which researchers can compare their technologies against objective metrics” [4].
It simulates an environment in which the participant agents act as art apprais-
ers that compete to obtain the most clients. Appraisers receive more clients, and
thus more profit, for giving more accurate appraisals. The simulator generates
a fixed total number of clients that request appraisals for paintings that belong
to different artistic eras (e.g. realism, impressionism, expressionism, etc.). The
appraisers have varying levels of expertise in the different eras, making them ex-
perts in some but ignorant about others. This expertise can vary through time.
During the game, the simulator progressively modifies the appraisers’ client share
according to the quality of their appraisals.

For the agents to perform the appraisals, they can ask other agents for their
opinions (especially for the eras in which they are not experts) and set a weight
for each of them in the simulator (expected to correspond to the agents trust).
The final appraisal is then computed by the simulator as the mean of the agents’
weighted appraisals. Each kind of interaction implies a payment from the request-
ing agent to the requested agent of a given amount of money, independent of the
quality obtained in the interaction. The payment costs are more expensive for
direct interactions than for other kinds of interactions. When the agent receives
opinion requests from other agents, it has to decide how much money to spend
on the opinion (the quality of the opinion depends on the amount of money
spent). This money represents the appraisal effort made by the agent.

In addition to conducting opinion transactions (direct trust), appraisers can
exchange reputations, or information about the trustworthiness of other apprais-
ers (indirect trust). The self trust in this domain is called certainty. An important
1 http://www.art-testbed.net

86 V. Muñoz et al.

feature of the ART Testbed is that it is not necessary for the agents to provide
good information. For each agent’s request they can decide whether to cooperate
or to act maliciously.

4.2 ART Agent

Figure 1 shows a simplified diagram of the interactions of our agent within the
ART Testbed simulator (only direct interactions are drawn). First, the simulator
sends the paintings to the agents (appraisal requests). The agent has to decide
which agents to request an opinion from about each painting. As a result, the
agent returns back the simulator a weight for each agent and era. The weight
for an agent x and era j represents the importance that the agent wants to give
to agent x’s opinion for the paintings appraised of era j. Finally, the simulator
calculates the final appraisal of the paintings and performs the weighted sum
(with the weight given by the agent) of the appraisals requested. At the following
time step, the agent will know the result of the appraisals given by other agents
since the simulator sends the true values of the paintings.

Trust model

D
ecisio

n
 m

akin
g

S
ervice

req
u

estin
g

S
ervice

p
ro

vid
in

g

paintings

weights

weights > 0 (exploitation)

weights = 0 (exploration) appraisals replies

appraisals

appraisals requests

S
IM

U
L

A
T

O
R

tim
e

Competitors

appraisals requests

appraisals replies

appraisals

Fig. 1. Interactions with the ART Testbed simulator

In this domain the agent can simulate exploration and exploitation with the
weights, by giving a weight greater than zero for exploitation, and equal to zero
for exploration. When a weight equal to zero is given to the simulator the request
is performed, so the agent will later know the appraisal given by agent but this
will not affect the final appraisal.

The amount of effort dedicated to exploitation (M interactions) is given by
the quality threshold QT , so that agents with a trust value higher than this
threshold will be used as appraisers, with a limit of T . This defines the maximum
number of questions that the agent wants to perform for each painting in order
to spend a given percentage (questionPercentage) of the earnings of an opinion
(clientFee

opinionCost). This limit is calculated according to Equation 1:

T = min
(

clientFee · questionPercentage

opinionCost
, maxNbOpinionRequests

)
(1)

Strategies for Exploiting Trust Models in Competitive Multi-Agent Systems 87

where clientFee, opinionCost and maxNbOpinionRequest are parameters of
the simulator representing, respectively, the price earned at each transaction,
the cost of a requested opinion, and the maximum number of opinion requests
that an agent can send for each painting at each time step. Alternatively, the
parameter questionPercentage is agent’s own and indicates the percentage of
the earnings that it wants to spend on asking other agents.

During the exploitation selection M interactions have been performed, if there
are still interactions left (if M < T), the rest (N = T − M) will be used in the
exploration process, following the phases previously explained in Section 3.

4.3 Exploration Algorithm Evaluation

With the aim of evaluating our exploration procedure for the selection of agents
to be discovered in the ART Testbed domain, the following experiment was
designed. We created a game with 10 copies of our agent equipped with the
trust-based exploration mechanism previously explained. We also added to the
game ten copies of the agent with a random selection of candidates to explore.
The trust model, the exploitation mechanism and the parameters were the same
for the two groups of agents. We also added dummy agents to the game: five
dishonest (act malevolently) and five honest. The parameters of the game were
the following: 100 time steps, 20 eras, 4 numberOfErasToChange. The rest of
the parameters were set to their default values.

In order to obtain a metric for the comparison we defined the useful infor-
mation index (UII), which measures the useful information that the agent has
found in the environment. This metric is defined as follows:

UII =
∑i<numEras

i=0 GA(i)
numEras

(2)

where the value of GA(i) is 1 when the agent has two or more agents with a
quality in the era i higher than the quality threshold (QT). The value is 0.5 if
there is only one agent satisfying this condition and 0 if there are no agents.

Figure 2 shows the UII average of the ten agents with the trust-based ex-
ploration mechanism and the UII average of the ten agents with the random
mechanism. We can see that a stabilization phase appears during the 20 first
time steps. During this phase the agents get to know the environment until they
arrive at a stabilization point. From that point, the UII value oscillates due to the
expertise changes produced in the environment. During the stabilization phase,
the UII grows faster and reaches a higher maximum value in the agents with
the trust-based exploration strategy than with the random mechanism. Further-
more, the value reached can be maintained at this higher value. Therefore, we
conclude that the designed strategy allows the agent to feed the trust model
with more useful information than a random method.

4.4 Competition Results

We now analyze the performance of the agent compared with other real agents.
We designed an agent named Uno2008 that uses a trust model similar to [5] with

88 V. Muñoz et al.

0

0,2

0,4

0,6

0,8

1

0 10 20 30 40 50 60 70 80 90

Timesteps

U
se

fu
l I

n
fo

rm
at

io
n

 In
d

ex

Trust-Based Selection Mechanism

Random Selection mechanism

stabilization time

100

Fig. 2. Comparison between the trust-based exploration mechanism and a random
exploration mechanism

0

50000

100000

150000

200000

250000

300000

350000

400000

Un
o2
00
8

Co
nn
ec
ted

Fo
rdP
ref
ec
t

Ne
xtA
ge
nt

S im
ple
t

Mr
R o
bo
to

arg
en
te2 iam Pe

les

OL
PA
ge
nt

Ha
ils
tor
m

se
im
mu
d_
4

se
im
mu
d_
3

se
im
mu
d_
1

se
im
mu
d_
2

se
im
mu
d_
5

A
vg

. m
o

n
ey

Fig. 3. Average and standard deviation of the earnings in the 2008 ART Competition

some adjustments. Due to space limitations we cannot explain the whole trust
model (for a detailed explanation see [10]). The parameter QT has been set to
0.7, and questionPercentage = 0.4; these values have been found empirically,
although the behavior of the agent does not change abruptly with similar values.

The results are taken from the 2008 International ART Testbed Competition
held in Estoril, at AAMAS. In this competition 11 agents were registered from
7 different countries. Five dummy agents were also added. The competition con-
sisted of three different kinds of games, the first with low dynamics (# eras to
change (ETC) = 1, amount of expertise change (AEC) = 0.05), the second with
medium (# ETC=3, AEC = 0.1) and the third with high dynamics (# ETC=3,

Strategies for Exploiting Trust Models in Competitive Multi-Agent Systems 89

AEC = 0.3). Each was repeated three times, and the average of earnings of the
agents in the three games was computed to determine the final scores.

The results are shown in Figure 3, where the y axis represents the average
earnings obtained for each agent in all the games, with its standard deviation.
Our agent, Uno2008, managed to win the competition by obtaining the highest
score, with Connected and FordPrefect completing the podium. Agent Uno2008
won eight of the nine games played. We must also highlight the big difference
in the first four players over the rest. The last five agents, called “seimmud”,
correspond to the dummy agents.

5 Conclusions

In environments with competitive agents, an agent can behave maliciously, trying
to harm other agents, with the aim of obtaining better results. Alternatively,
the agents can offer different service qualities. For these reasons, trust is a very
important factor as it allows us to know about the behavior of agents and to
predict the results of interactions with them, and consequently to make better
decisions. However, a perfect trust model is difficult to obtain, and therefore
the design of a strategy to take correct decisions based on an incomplete trust
model (which may contain mistakes) is also an important factor if the agent is
to obtain maximum benefits.

In this article, a strategy for using a trust model in a decision-making process
has been presented. The required trust model must be based on three different
trust components: direct, indirect and self. Direct trust is based on the agent’s
own experiences, indirect trust (reputation) is based on other agent’s experi-
ences, and self trust is the publicity that an agent transmits about itself. The
data of an agent’s trust model has to be processed in order for the best decisions
to be taken and leading to its benefits being maximized or its objectives being
obtained. The process of making the decisions involves the exploitation versus
exploration problem. To solve this problem, we classify the agents in four cate-
gories (totally known, partially known, almost unknown and totally unknown).
We use a method for exploration that combines the chance of finding good in-
formation in partially known agents with the random factor.

The design of the agent was tested in the ART Testbed domain. It participated
in the 2008 international competition held in Estoril (in AAMAS), which it won.
As future work, we are studying the possible application of these strategies in
other real domains, such as Internet electronic service providers, to check whether
they behave as well as they did in the ART competition.

Acknowledgments. This research project has been partially funded by the
Spanish MICINN project SuRoS (TIN2008-04547) and with the support of the
Commissioner for Universities and Research of the Department of Innovation,
Universities and Company of Generalitat of Catalonia and of the European Social
Background, and the University of Girona BR Grant program.

90 V. Muñoz et al.

References

1. Abdul-Rahman, S.H.A.: Supporting trust in virtual communities. In: The 33rd
IEEE International Conference on Systems Sciences, pp. 4–7 (2000)

2. Del Acebo, E., Hormazábal, N., de la Rosa, P.: Beyond Trust. Fuzzy Contextual
Corrective Filters for Reliability Assessment in MAS. In: The Workshop on Trust
in Agent Societies at AAMAS 2007, Honolulu, Hawaii, USA, May 15, pp. 44–48
(2007)

3. Falcone, R., Singh, M., Tan, Y.-H. (eds.): AA-WS 2000. LNCS (LNAI), vol. 2246,
pp. 54–72. Springer, Heidelberg (2001)

4. Fullam, K., Sabater, J., Barber, S.: Toward a testbed for trust and reputation
models. Trusting Agents for Trusting Electronic Societies, 95–109 (2005)

5. Gómez, M., Carbó, J., Benac, C.: Honesty and trust revisited: the advantages of
being neutral about other’s cognitive models. Autonomous Agent and Multi-Agent
Systems 15, 313–335 (2007)

6. Gui, C., Wu, Q., Wang, H.: Towards Trustworthy Resource Selection: A Fuzzy
Reputation Aggregation Approach. Autonomic and Trusted Computing 4610/2007,
239–248 (2007)

7. Huynh, T.D., Jennings, N., Shabdolt, N.R.: An integrated trust and reputation
model for open multi-agent systems. In: AAMAS 2005, pp. 512–518 (2005)

8. Josang, A., Ismail, R.: The beta reputation system. In: Proceedings of the 15th
Bled Conference on Electronic Commerce (2002)

9. Kafali, O., Yolum, P.: Trust Strategies for the ART Testbed. In: The Workshop on
Trust in Agent Societies at AAMAS 2006, pp. 43–49 (2006)

10. Muñoz, V., Murillo, J.: Agent UNO: Winner in the 2nd Spanish ART competition.
Revista Iberoamericana de Inteligencia Artificial 39, 19–27 (2008)

11. Ramchurn, S., Hyunh, D., Jennings, N.R.: Trust in multi-agent systems. The
Knowledge Engineering Review 19, 1–25 (2004)

12. Sabater, J.: Trust and Reputation for Agent Societies, Monografies de l’institut
d’investigació en intel.ligència artificial, 20, PhD Thesis (2003)

13. Sabater, J., Sierra, C.: Regret: A reputation model for gregarious societies. In:
Fourth Workshop of Deception, Fraud and Trust in Agent Societies, pp. 61–69
(2001)

14. Sierra, C., Debenham, J.: An information-based model of trust. In: AAMAS 2005,
pp. 497–504 (2005)

15. Teacy, W.T.L., Chalkiadakis, G., Rogers, A., Jennings, N.R.: Sequential Decision
Making with Untrustworthy Service Providers. In: AAMAS 2008, pp. 755–762
(2008)

16. Teacy, L., Huynh, T.D., Dash, R.K., Jennings, N.R., Luck, M., Patel, J.: The ART
of IAM: The Winning Strategy for the 2006 Competition. In: Proceedings of the
10th International Workshop on Trust in Agent Societies, pp. 102–111 (2007)

17. Teacy, W., Patel, J., Jennings, N., Luck, M.: TRAVOS: Trust and Reputation in
the Context of Inaccurate Information Sources. In: AAMAS, vol. 12, pp. 183–198
(2006)

18. Yu, B., Singh, M.: A social mechanism for reputation management in electronic
communities. In: Klusch, M., Kerschberg, L. (eds.) CIA 2000. LNCS (LNAI),
vol. 1860, pp. 154–165. Springer, Heidelberg (2000)

19. Zacharia, G., Maes, P.: Trust management through reputation mechanisms. Ap-
plied Artificial Intelligence 14, 881–907 (2000)

A Distributed Detecting Method for SYN Flood
Attacks and Its Implementation Using Mobile

Agents�

Masaki Narita, Takashi Katoh, Bhed Bahadur Bista, and Toyoo Takata

Iwate Prefectural University, Iwate, Japan

Abstract. In recent years, damage caused by DoS attacks is real and
causing substantive problems. Such threat is widespread from major
commercial sites to individual users. Therefore, it is important for net-
work administrators to develop means to comprehend the latest trend of
DoS attacks. In this paper, we propose a distributed detecting method
for SYN Flood attack which exploits a flow in TCP itself. Our proposed
system employs mobile agents to detect SYN Flood attack. We also show
the effectiveness of our proposal through experiment of detection of SYN
Flood attack in virtual network of simulation environment.

1 Introduction

The Internet is essential not only for daily life but also for business these days.
With such a situation, the risk for computers connected to the Internet being
attacked is increasing.

One of the threats on the Internet is DoS (Denial-of-Service) attack. DoS
attacks are malicious actions which place burden on network servers intentionally
to bring down or hinder the services.

DoS attacks are recognized as serious social problems all over the world. The
damage caused by DoS attacks has not decreased at all. On the contrary, DoS
attacks have become large-scale and complicated threat. Furthermore, it is ex-
pected that this situation will continue in the future.

Financial damage of victim companies is also not negligible because DoS at-
tack is used for the means of intimidation [1] as GovCert.nl (Dutch Computer
Emergency Response Team) [2] suggests. Moore et al. show that such DoS threat
is widespread from major commercial sites to individual users [3]. This situation
means that anybody has possibility to be a victim at any time. Thus, it is im-
portant for network administrators to develop means to comprehend the latest
trend of DoS attacks.

Moreover, nowadays users whose computers have been used for attacks with-
out their knowledge come under scrutiny even though they are not attackers
themselves. Because of this, to detect the latest trend of attacks promptly is
meaningful for not becoming attackers unknowingly, too.

� This work was supported by Grant-in-Aid for Young Scientists (B) (21700084).

L. Braubach et al. (Eds.): MATES 2009, LNAI 5774, pp. 91–102, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

92 M. Narita et al.

In this paper, we propose a distributed detecting method for SYN Flood at-
tacks. Our method is useful for network administrators because they can develop
strategies for attacks and get chances to protect their network itself. For example,
they can prevent generating DoS attackers unknowingly within their network.

The rest of this paper is organized as follows. Sect. 2 describes SYN Flood
attacks which we aim to detect. Sect. 3 describes existing works regarding SYN
Flood detection and their problems. In Sect. 4, we propose a distributed detecting
method for SYN Flood attacks. In Sect. 5, we show the effectiveness of our
proposal using simulation results. Finally, we conclude our work in Sect. 6.

2 SYN Flood Attacks

SYN Flood attack which we aim to detect is a kind of DoS (Denial-of-Service)
attack. DoS attack is a malicious action which places burden on the network
server intentionally to bring down or hinder the services.

DoS attacks can be classified by protocol into two types: TCP and UDP based
attacks. Moore et al. studied that 90% of all DoS attacks are TCP based [3].
The type of SYN Flood attack which we aim to detect is TCP based attack.

In this section, we explain the procedure of TCP connection establishment
before we refer to SYN Flood attacks. Then, we describe the mechanism of SYN
Flood attacks and their features.

2.1 TCP Connection and Connection Establishment

TCP is an Internet standard protocol based on reliability. The procedure of TCP
connection establishment is called 3-way handshake.

To explain the correct TCP establishment, we assume two hosts, host A and
host B (Fig. 1). First, host A sends a SYN packet to host B to request establishing
a connection. Host B replies with a SYN/ACK packet to host A to acknowledge
connection request and to request establishing a connection in reverse. Finally,
host A sends an ACK packet to host B to acknowledge connection request.

2.2 Mechanism of SYN Flood Attacks

SYN Flood attacks abuse TCP establishment procedure mentioned in the pre-
vious subsection. The overview of a SYN Flood attack is shown in Fig. 2.

An attacker sends a large amount of SYN packets whose source addresses
are spoofed, to a victim host. The victim host does not have means to identify
whether the source addresses of received packets are spoofed or not. Thus, the
victim host responds to those spoofed addresses.

Each connection information is managed respectively in the TCP protocol.
The victim host could expend all its listening queues just waiting for ACK
from source hosts. In other words, the victim host has to maintain half-open
connection to many irrelevant hosts on the Internet. The victim host is in danger
of slowing down or crashing in the worst scenario. The slowdown of the host
leads to degradation of service quality provided by the host and if it is crashed,
it cannot keep providing any services anymore.

A Distributed Detecting Method for SYN Flood Attacks 93

Fig. 1. 3-way handshake of TCP connec-
tion establishment

Fig. 2. Overview of SYN Flood attacks

2.3 Features of SYN Flood Attacks

Source addresses are spoofed in SYN Flood attacks as we mentioned above.
Thus, it is possible that SYN/ACK packets arrive at irrelevant hosts abruptly.
These packets are called backscatter. Catching these packets enables us to detect
SYN Flood attacks.

Most attacking tools (e.g. [4,5]) spoof their source addresses randomly in a
default setting. In that case, the backscatter will sparsely spread on the network.
In this paper, we mainly detect SYN Flood attacks spoofing source addresses
uniformly.

3 Related Works

3.1 Router Base SYN Flood Detection

There are some works regarding SYN Flood attack detection, e.g., [6,7]. Espe-
cially, Moore et al. monitored the class A network addresses for their research [3].
They defined the backscatter analysis and to quantify the DoS attacks for the
first time in the world.

The router base SYN Flood detection methods monitor backscatter at a
router. These methods, however, have following drawbacks:

– It is impossible to detect the attacks whose backscatter does not pass the
router.

– Administrative access to the router is required. This means general users will
have difficulties to acquire the information of SYN Flood attacks though it
is important even for general users not to become attackers unknowingly.

– It is difficult to detect attacks if the inside network of the router is small
because the number of backscatter which passes the router is almost propor-
tional to the size of its network if the sources addresses of SYN packets are
randomly spoofed.

94 M. Narita et al.

3.2 Distributed SYN Flood Detection

There are some existing distributed systems.
DShield [8] collects the firewall log from volunteers all over the world. Moni-

tored results are opened to the public on the web. It shows increasing accessed
port number, and interestingly attacker’s source IP address is also revealed.

@Police (National Police Agency, Japan) [9] places 57 network sensors in
Japanese police facilities. They collect intrusion detection system log and firewall
log. The result of analysis is updated per certain time as a graph and opened
to the public on the web. @Police has the system specialized for monitoring
backscatter to detect SYN Flood attacks [10].

When network administrators or individual users want to comprehend the
latest trend of attacks, it is natural that they access to the web server which
network monitoring organization provides. The information they get in this way
is, however, a summarized result by such organizations per some time interval.
Such a result may be an overview or fragmented information and it is difficult
to acquire detailed information. In addition, such a result may not be the latest
information.

From monitoring organization’s point of view, revealing network sensors’ ad-
dresses has a risk of being attacked. This implies they cannot reveal detailed
information without careful consideration.

In recent years, a method to detect static sensors is devised [11]. Attackers
can attack evading network sensors intentionally after detecting sensors using
this method. Thus, there is possibility that the accuracy of results provided by
monitoring organization decreases.

4 Proposal of a Distributed Detecting Method for SYN
Flood Attacks

All the hosts connected to the Internet directly have the possibility of receiving
backscatter. When some hosts receive backscatter, however, it is impossible to
confirm whether similar backscatter is monitored in another network or not.
Furthermore, one host cannot always receive sufficient amount of backscatter to
detect trend of attacks because the backscatter spreads sparsely as mentioned
above. Thus, it is difficult to detect the trend of attacks by only one host.

But if we can collect backscatter information among a number of distributed
hosts, it will be possible to detect the trend of attacks. In this paper, we propose
a distributed detecting method for SYN Flood attacks by collecting backscatter
information among a number of distributed hosts.

4.1 Procedure of Our Method

The information which we can focus inside backscatter (a SYN/ACK packet
to which ACK packets are not replied) is shown in Table 1. The source IP
address and the source port number are identified from these information. We
can comprehend the attacked host and attacked service by analyzing these two
items.

A Distributed Detecting Method for SYN Flood Attacks 95

Table 1. Information which we can focus inside backscatter

Source IP Address Attacked Host
Source Port Number Attacked Service
Destination IP Address Spoofed IP Address
Destination Port Number Port Number Used by Attacker
Acknowledge Number Sequence Number Used by Attacker + 1

Our method consists of the following three steps:

1. Extract backscatter information (usually from log files created by network
traffic monitoring software like tcpdump1) on each sensing point (a host or a
router). The backscatter information consists of 1) the received time, 2) IP
address and port number of source host (i.e., victim host), 3) IP address and
port number of destination host, of the packet.

2. Collect these information from several sensing points. Each sensing point
replies with the summarized information if it is requested for the information.
The summarization is done by counting the number of backscatter packets
for each source host which corresponds to the victim host of the SYN Flood
attack at some time interval. Table 2 is an example of collected backscatter
information using our proposal. In this example, time interval is 5 minutes.
When counting backscatter, we also count the number of unique sensing
points (destination hosts) which discover the backscatter generated by the
identical attack to acknowledge how far the backscatter is spread on the
Internet. We call this information The Number of Unique Sensing Points.
If the total number of backscatter packets is near to the number of unique
sensing points, we could assume that there was a SYN Flood attack whose
source IP address is randomly spoofed.

3. Analyze the collected information.

The reason to collect the number of unique sensing points instead of the
destination addresses themselves is that revealing network sensors’ addresses
(the destination addresses of backscatter) has a risk of being attacked.

4.2 Influence of Background Noise to Our Proposal

When SYN/ACK packets which are not backscatter arrive at a sensing point
abruptly, they may become background noise which causes undesirable effect on
the accuracy of detection result in our proposal.

Possible causes of such background noise are: (1) mis-configuration of a net-
work device, (2) bugs in network software, (3) SYN/ACK scan, etc.

The cases (1) and (2) are not a big problem because we can easily get at the
place of origin. Also, (3) SYN/ACK scan is very minor port scan method because
attackers cannot acquire useful information by this scan. Thus, we expect that
SYN/ACK scan is not used so frequently on the Internet.

1 http://www.tcpdump.org/

http://www.tcpdump.org/

96 M. Narita et al.

Table 2. Example of collected backscatter information

Counting Time Victim (Source) Host:Service The Number of Packets
30 Dec. 2008 8:30 111.111.0.2:1025 5

123.123.0.3:80 50
30 Dec. 2008 8:35 111.111.0.2:1025 10
30 Dec. 2008 8:40 111.111.0.2:1025 15
30 Dec. 2008 8:45 · · · · · ·

· · · · · · · · ·

The Number of Unique Sensing Points
111.111.0.2:1025 30
123.123.0.3:80 1

To confirm that such background noises are rarely generated, we investigated
background noises arriving to one host having a global IP address. We collected
traffic log on 2007/10/19–2007/10/22 and 2008/1/18–2008/1/21 (6 days) on the
host.

From the result of our investigation, no background noise was found. Thus,
we can conclude that we do not need to consider background noise too much in
our proposal.

Even if background noise is generated in one sensing point, we could correctly
judge those packets may be the result of the cases (1)–(3) using the number of
unique sensing points. For example, we consider the case of visiting 50 hosts to
collect backscatter information and 50 doubtful SYN/ACK packets were moni-
tored as a result. If these 50 packets were monitored in about 50 unique sensing
points, those packets information can be the correct result to detect the SYN
Flood attack. On the contrary, if these 50 packets were monitored in only one
sensing point, those packets information can be false positive generated by back-
ground noise.

4.3 Advantage of Our Proposal

As we mentioned in the previous section, router based detection has a difficulty
to acquire the information of backscatter from wider range of network. It also
has a difficulty for general users to acquire the information of backscatter.

Existing distributed systems for SYN Flood attack detection like @Police and
CAIDA use static network sensors. Static network sensors monitor traffic at the
same sensing points each time. Therefore, monitoring address range of network
is restricted.

Our proposal enables us to monitor traffic anywhere on the Internet in prin-
ciple because any host on the Internet can become a network sensor. Thus, even
individual users can collect the latest trend of attacks in wider range.

A Distributed Detecting Method for SYN Flood Attacks 97

5 Implementation and Evaluation of Our Proposal

We implemented our method and carried out an evaluation experiment to show
the effectiveness of our distributed detecting method for SYN Flood attacks.

Because it is difficult to carry out SYN Flood attack on the real Internet for
security reason, we carried out SYN Flood attacks inside the virtual network
built on the network simulator. Then, traffic log obtained by the simulation
is used for evaluation experiment. To collect backscatter information among
a number of distributed hosts, we used ABLA (Agent Based Log Analyzing
System) [12,13], which is a distributed Internet monitoring system.

In this section, we describe an overview of distributed Internet monitoring
system ABLA. Then, we explain our implementation and evaluation experiment.
Finally, we discuss our simulation result.

5.1 ABLA (Agent Based Log Analyzing System)

ABLA is a distributed Internet monitoring system developed under the GPL
(GNU General Public License). The main reason we choose it as a base system
is ABLA enables us to collect information from widely distributed hosts, that is
difficult for router based systems.

In recent years, many organizations develop Internet monitoring systems.
Most of those systems set up static sensors and pile up the data to one place
periodically. After piling them up, analyzing such data is a usual procedure of
most Internet monitoring systems.

On the contrary, ABLA is the Internet monitoring system which organizes a
P2P network connected ABLA nodes with each other. The overview of ABLA is
shown in Fig. 3. Each node in the ABLA network provides the network packets
log for ABLA users. Each node becomes dynamic sensor. Mobile agents migrate
among the ABLA nodes to analyze the packet log on each node.

This system is being developed for mainly individual users or small-scale net-
work administrators. The ABLA users can detect the latest trend of attacks like
new malware originating, and can make a countermeasure for the future attacks.

(3)

P2P network

: Mobile Agent

migration /
log collectionHost B

Host D

Host C

network
traffic log

Host A

User Request

(1)

(2)
(3)

(4)
(4)

(5)

Fig. 3. ABLA overview

P2P manager

Agent manager Resource manager

Host X

Network (TCP/IP)

Host Y

Data Flow
Logical Connection
(P2P Connection)

Mobile Agent

Log

Fig. 4. ABLA architecture

98 M. Narita et al.

Features of ABLA. ABLA has the following features.

Alleviation of Network Traffic: ABLA uses mobile agents to collect infor-
mation. ABLA users collect information by giving a request to the agent.
We do not need network resource to pile up data on one place, because an-
alyzing task is done on each ABLA node. Thus, ABLA can alleviate the
network traffic compared to other network monitoring systems.

Acquiring Dynamic Sensing Points: ABLA is an Internet monitoring sys-
tem in which an individual user can participate for monitoring attacks.
ABLA nodes can join or leave the ABLA network at any time. This en-
ables us to acquire many dynamic sensing points. This method also solves
the problem of evading static sensing points [11]. Additionally, ABLA can
get more information than static sensors by increasing the number of ABLA
nodes.

Establishing Anonymity: Anonymity of ABLA users is maintained all the
time. We manage ABLA nodes using hash values generated by combination
of IP address and using port number instead of IP address itself. There is
no possibility of each ABLA node being mapped to its real IP addresses.
Moreover, ABLA users can hide the information they do not want to reveal
according to their security policy.

ABLA Architecture. The architecture of ABLA is shown in Fig. 4. We briefly
review the role of each ABLA component and mobile agent as shown below.

Agent Manager: Agent manager generates mobile agents. When an agent is to
be sent to another host, agent manager serializes the agent. When an agent
manager receives an agent from another host, the agent manager deserializes
and executes the agent.

Resource Manager: Resource manager manages the log information analyzed
by each ABLA node. Resource manager analyzes the target log according to
the request of a mobile agent and replies the result.

P2P Manager: P2P manager is responsible for establishing a P2P network. It
is also responsible for making connection between two hosts via P2P network
and sending / receiving serialized agents, and responsible for exchanging
information of hosts that are directly connected by the P2P network (not
physical connection).

Mobile Agent: Mobile agent is generated by an agent manager. Mobile agents
migrate among the ABLA nodes according to the user request autonomously.
Mobile agents issue a request to resource manager and collect an analyzed
result of each ABLA node.

5.2 Implementation of Our Proposal

We implemented our method based on ABLA. We added a new module to the
resource manager in the ABLA components, which manages the log information
of each host, to implement a function for analyzing backscatter.

A Distributed Detecting Method for SYN Flood Attacks 99

Fig. 5. Proposal overview Fig. 6. Virtual network

This implementation allows ABLA users who want to detect SYN Flood at-
tacks to request mobile agents to analyze backscatter information for detecting
the trend of SYN Flood attacks. The overview of our proposal is shown in Fig. 5.

Generally speaking, it is difficult for general network administrators to get
the latest trend of SYN Flood attacks enough because they cannot necessarily
operate the large scale network monitoring system. Our proposal with ABLA
enables general network administrators to collect the latest trend of SYN Flood
attacks without such large scale network monitoring system.

5.3 Procedure of Evaluation Experiment

In the experiment, we generate specific patterns of SYN Flood attacks as shown
in Figs. 7 and 9. We verify if we can grasp the time transition of attacks by
changing the number of hosts mobile agents visit. To be more precise, we compare
the analyzed result of an agent migrated and gathered in the monitoring network
with the transition of all backscatter packets arrived at the monitoring network.

Evaluation experiment is composed of two steps.

Acquiring Attack Log: As the first step, we acquire attack traffic logs using
network simulator. We use a customized version of ‘Yet another network
simulator’ [14] Version 0.7.2 for our experiment. Virtual network is built
and we generate SYN Flood attacks inside the network simulator. When
backscatter arrives at the node on which ABLA is running, that backscatter
is dumped to a file.

We built a virtual network like Fig. 6 to monitor backscatter when a
SYN Flood attack whose source addresses are spoofed occurs. We made
three subnets. The first one is monitoring network for backscatter. This
network has 60,000 hosts including 200 ABLA nodes. The second and the
third subnets have the victim host and the attacker host respectively.

Collecting SYN Flood Attack Information using ABLA: As the second
step, we employ a simulation in which we issue an agent with a request
according to our proposed scheme on the ABLA network. Each ABLA node
has randomly assigned traffic log from the logs acquired by above-mentioned
procedure.

100 M. Narita et al.

5.4 Parameters of Evaluation Experiment

According to Moore et al. [3], 60% of all DoS attacks they monitored ended
within 10 minutes and 85% of all DoS attacks ended within an hour. Therefore,
we set the duration of SYN Flood attacks to 30 minutes in our experiment.

We assumed two attacking traffic patterns. One pattern is increasing attacking
packets proceeded with time (Fig. 7). The other pattern is generating two rapid
attacking within 30 minutes (Fig. 9).

60,000 hosts exist in the network simulator. 200 hosts are ABLA nodes in
those hosts. We collected backscatter information from 25, 50, 75 and 100 ABLA
nodes. We also changed an arriving rate of backscatter (a probability that a host
receives backscatter packets). We used 0.50, 0.40 and 0.25 for arriving rates of
backscatter. Thus 0.50n, 0.40n and 0.25n (where n = 60, 000) packets were sent
from a victim host.

5.5 Results and Discussion

Our simulation was carried out 10 times changing collecting hosts of backscat-
ter information randomly. The simulation result is an average value of every 5
minutes.

Result when Arriving Rate is 0.50 (Fig. 8 left, Fig. 10 left): When the
backscatter information is collected from 100, 75 and 50 nodes, we obtained
ideal detection results which are similar to the router traffic in both attacking
traffic patterns. In the case of 25 nodes, we can also grasp the time transition
of attack though attacking peak is a little vague in both attacking traffic
patterns.

Result when Arriving Rate is 0.40 (Fig. 8 middle, Fig. 10 middle):
When the backscatter information is collected from 100, 75 and 50 nodes,
we obtained ideal detection results in both attacking traffic patterns. In the
case of 25 nodes of attacking traffic pattern 1, it is also possible to grasp
the time transition of attack. However, in the case of 25 nodes of attacking
traffic pattern 2, we fail to detect the second attacking peak.

Result when Arriving Rate is 0.25 (Fig. 8 right, Fig. 10 right): When
the backscatter information is collected from 100 and 75 nodes, we can
grasp the time transition of attacks in both attacking traffic patterns though
collecting packets are small. In the cases of 50 and 25 nodes of attacking
traffic pattern 1, we fail to grasp the attacking peak. In the case of 50 nodes
of attacking traffic pattern 2, first attacking peak is not detected. In the
case of 25 nodes of attacking traffic pattern 2, because the line is flat, we
must say we fail to detect the time transition of attack.

From these results, we can conclude that our method can properly detect SYN
Flood attacks by gathering the backscatter information from wider range of
network.

A Distributed Detecting Method for SYN Flood Attacks 101

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 5 10 15 20 25 30 35

T
he

 N
um

be
r

of
 P

ac
ke

ts

Minutes

All backscatter packets arrived at monitoring network

111.111.0.2:1025

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 5 10 15 20 25 30 35

T
he

 N
um

be
r

of
 P

ac
ke

ts

Minutes

All backscatter packets arrived at monitoring network

111.111.0.2:1025

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 5 10 15 20 25 30 35

T
he

 N
um

be
r

of
 P

ac
ke

ts

Minutes

All backscatter packets arrived at monitoring network

111.111.0.2:1025

Fig. 7. Attacking traffic pattern 1 (Arriving rate: 0.50 (left), 0.40 (middle), 0.25 (right))

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30 35

T
he

 N
um

be
r

of
 P

ac
ke

ts

Minutes

Proposed Method

100 nodes
75 nodes
50 nodes
25 nodes

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30 35

T
he

 N
um

be
r

of
 P

ac
ke

ts

Minutes

Proposed Method

100 nodes
75 nodes
50 nodes
25 nodes

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30 35

T
he

 N
um

be
r

of
 P

ac
ke

ts

Minutes

Proposed Method

100 nodes
75 nodes
50 nodes
25 nodes

Fig. 8. Simulation result (Arriving rate: 0.50 (left), 0.40 (middle), 0.25 (right))

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 5 10 15 20 25 30 35

T
he

 N
um

be
r

of
 P

ac
ke

ts

Minutes

All backscatter packets arrived at monitoring network

111.111.0.2:1025

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 5 10 15 20 25 30 35

T
he

 N
um

be
r

of
 P

ac
ke

ts

Minutes

All backscatter packets arrived at monitoring network

111.111.0.2:1025

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 5 10 15 20 25 30 35

T
he

 N
um

be
r

of
 P

ac
ke

ts

Minutes

All backscatter packets arrived at monitoring network

111.111.0.2:1025

Fig. 9. Attacking traffic pattern 2 (Arriving rate: 0.50 (left), 0.40 (middle), 0.25 (right))

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 5 10 15 20 25 30 35

T
he

 N
um

be
r

of
 P

ac
ke

ts

Minutes

Proposed Method

100 nodes 75 nodes 50 nodes 25 nodes

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 5 10 15 20 25 30 35

T
he

 N
um

be
r

of
 P

ac
ke

ts

Minutes

Proposed Method

100 nodes 75 nodes 50 nodes 25 nodes

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 5 10 15 20 25 30 35

T
he

 N
um

be
r

of
 P

ac
ke

ts

Minutes

Proposed Method

100 nodes 75 nodes 50 nodes 25 nodes

Fig. 10. Simulation result (Arriving rate: 0.50 (left), 0.40 (middle), 0.25 (right))

102 M. Narita et al.

6 Conclusion

In this paper, we proposed a distributed detecting method for SYN Flood attacks
by collecting backscatter information among a number of distributed hosts. We
carried out simulation for detecting SYN Flood attacks using our method to
prove the effectiveness of our proposal in the virtual network.

We obtained prospective results which is similar to the assumed traffic pat-
terns as a consequence in the virtual network. Thus, we conclude our proposal
is effective to collect the latest trend of attacks. This means our method enables
small-scale network administrators to make a countermeasure according to the
latest trend of attacks without depending on Internet monitoring organizations.

Our future work is evaluation of our proposal on the Internet. Developing new
methodology for more detailed analysis is also our task, for example, automatic
generation of an alert, guessing the attacking scale and so on.

References

1. SECURITY.nl:
http://www.security.nl/article/12088/1/Zombienetwerk_bestond_uit_1.5_

milijoen_gehackte_computers.html

2. GovCert.nl (Dutch Computer Emergency Response Team):
http://www.govcert.nl.

3. Moore, D., Shannon, C., Brown, D.J., Voelker, G.M., Savage, S.: Inferring internet
denial-of-service activity. ACM Transactions on Computer Systems (TOCS) 24(2),
115–139 (2006)

4. Stacheldraht:
http://staff.washington.edu/dittrich/misc/stacheldraht.analysis

5. Synk4: http://www.hoobie.net/security/exploits/hacking/synk4.c
6. Kompella, R.R., Singh, S., Varghese, G.: On scalable attack detection in the net-

work. IEEE/ACM Transactions on Networking 15(1), 14–25 (2007)
7. Wang, H., Zhang, D., Shin, K.G.: Change-point monitoring for the detection of dos

attacks. IEEE Transactions on Dependable and Secure Computing 1(4), 193–208
(2004)

8. DShield: http://www.dshield.org
9. @Police: http://www.cyberpolice.go.jp

10. @Police: The system of monitoring syn flood attacks,
http://www.cyberpolice.go.jp/server/rd_env/pdf/synflood_detect.pdf

11. Shinoda, Y., Ikai, K., Itoh, M.: Vulnerabilities of passive internet threat monitors.
In: 14th USENIX Security Symposium (SEC 2005), pp. 209–224 (2005)

12. Katoh, T., Kuzuno, H., Kawahara, T., Watanabe, A., Nakai, Y., Bista, B.B., Takata,
T.: A wide area log analyzing system based on mobile agents. In: Computational In-
telligence for Modelling, Control and Automation, 2006 and International Confer-
ence on Intelligent Agents, Web Technologies and Internet Commerce., November
2006, 7 pages (2006)

13. ABLA Project, http://sourceforge.jp/projects/abla
14. Yet Another Network Simulator, http://yans.inria.fr

http://www.security.nl/article/12088/1/Zombienetwerk_bestond_uit_1.5_milijoen_gehackte_computers.html
http://www.security.nl/article/12088/1/Zombienetwerk_bestond_uit_1.5_milijoen_gehackte_computers.html
http://www.govcert.nl
http://staff.washington.edu/dittrich/misc/stacheldraht.analysis
http://www.hoobie.net/security/exploits/hacking/synk4.c
http://www.dshield.org
http://www.cyberpolice.go.jp
http://www.cyberpolice.go.jp/server/rd_env/pdf/synflood_detect.pdf
http://sourceforge.jp/projects/abla
http://yans.inria.fr

L. Braubach et al. (Eds.): MATES 2009, LNAI 5774, pp. 103–114, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Agent-Based Model for Decision Support in
Multi-Site Manufacturing Enterprises

Zhan Sheng Ng1, Aaron Yu Siang Tan1, Arief Adhitya2,
and Rajagopalan Srinivasan1,2

1 Department of Chemical and Biomolecular Engineering, National University of Singapore,
4 Engineering Drive 4, Singapore 117576, Singapore

2 Institute of Chemical and Engineering Sciences, A*STAR
(Agency for Science, Technology and Research),

1 Pesek Road, Jurong Island, Singapore 627833, Singapore

Abstract. Today’s supply chains span across continents, involve numerous
entities with different dynamics, and contend with various uncertainties. This
paper presents an agent-based model for decision support in a multi-site lube
additive manufacturing enterprise. The supply chain comprises raw material
suppliers, the lube additive enterprise, and customers. The enterprise consists of
a central sales department and a number of production sites at different loca-
tions. Each production site has its own commercial, scheduling, procurement,
storage, operations, and packaging departments. Supply chain operation in-
volves all these entities in three cycles of activities: enterprise-level coordina-
tion, plant operation, and inventory management. Each entity is modeled as an
agent, with its own goals and tasks, implemented in Jadex following the belief-
desire-intention (BDI) formalism. The model allows the user to simulate and
analyze different supply chain policies, configurations, parameters, and scenar-
ios. Its capability for decision support is illustrated through two case studies.

Keywords: Lube additive, agent-based modeling, simulation, supply chain,
decision support, BDI.

1 Introduction

Lubricant (lube) additives are chemical products which enhance the performance
characteristics of finished lubricating oils and greases. Additives are combined with
base oil to produce formulated lubricant. Different types of additive perform different
functions, for example, corrosion and rust inhibitors, anti-wear, anti-oxidants, anti-
foams, friction modifiers, detergents to reduce buildup of deposit, etc. A lube additive
package typically results from a complex formulation involving 10-15 ingredients.
Altogether there could be over 4000 formulations from 1500 substances. Specific
tailoring of lubricant composition is possible by using a different variety of base oils
and additives. Hence, the key competence of additive suppliers is their ability to for-
mulate unique additive packages that deliver required performance at competitive
prices. Details of the intrinsic chemical identities and their proportions in the formula-
tions are proprietary. Information about activities and relationships between compo-
nent suppliers, formulators, customers is also confidential business information.

104 Z.S. Ng et al.

Interesting dynamics abound in the global lube additive supply chains. Chevron
Oronite is one of the world’s four largest suppliers of lube additives. On 11 August
2005, Oronite issued a global force majeure notice to seek relief from contractual
requirements when performance is impossible due to events beyond their control.
This tipped the marine lubricants industry into crisis, creating a serious situation
which would affect deliveries of marine lubricants in ports in the Asia Pacific region.
Oronite blamed rising global demand and tightened supply of raw materials. Several
other factors might also have contributed to this undesirable situation. There was a
flash fire accident at Oronite’s Jurong Island (Singapore) plant in March 2005 which
led to the plant operating at reduced levels for several weeks. Oronite’s Belle Chasse
(Louisiana) plant was scheduled to undergo a 2.5-week turnaround in October 2005,
but Hurricane Katrina put this plant out of action in late August 2005. In the aftermath
of this incident, Sullivan [1] remarked, “Now it is back on track, but Oronite has
taken the position that back to normal is not good enough. The company has vowed to
become a more reliable supplier and has begun taking a number of steps toward that
end – increasing inventories, establishing supply-chain redundancies and keeping
open a plant that was scheduled to be shut.”

The Oronite example above illustrates the importance of supply chain management
(SCM) and its challenging nature as supply chains (SCs) span across continents, in-
volve numerous entities, and contend with various uncertainties. In this paper, we aim
to develop a simulation model of the lube additive SC for decision support, capturing
a whole range of knowns and possible unknowns in the SC operation. The simulation
model will enable a SC manager to assess the impact of uncertainties on business
performance and design suitable policies to define tradeoffs.

Decision-making in the lube additive SC operation is distributed across the various
departments in the enterprise and external entities such as customers, logistics provid-
ers, and suppliers. Each department has its own goals and tasks. For example, the
operations department makes products and the storage department manages inventory.
These departments communicate with one another to get the information necessary to
perform their tasks or to call for certain actions. The integrated, overall SC perform-
ance and its dynamics emerge from the combined effects of the SC entities.

There is limited literature on integrated modeling of a multi-site lube additive SC.
The general SC research has focused mainly on the discrete industries [2]. Mathe-
matical programming models have been proposed for managing the multi-site SC.
Timpe and Kallrath [3] presented a general mixed-integer linear programming
(MILP) model for planning of production, distribution, and marketing for the multi-
site SC. Dondo et al. [4] focused on the management of logistic activities in the multi-
site SC, proposing a MILP model for the problem of multiple-vehicle pickup and
delivery with time windows. Mathematical programming approaches generally do not
work as well for larger scale, stochastic problems as the search space may grow expo-
nentially and computational time becomes an issue.

Moon et al. [5] presented an integrated process planning and scheduling model for
the multi-plant SC, which includes operations sequencing, machine selection, and
operations scheduling. Their proposed solution strategy employs a genetic algorithm-
based heuristic approach. Julka et al. [6] proposed an agent-based simulation model of

 Agent-Based Model for Decision Support in Multi-Site Manufacturing Enterprises 105

the refinery SC, where each SC entity is modeled as an agent. Agent-based approach
is a natural way to model a system like a SC, where actions of individual components
determine system-level behaviors. In this paper, the lube additive SC is modeled as an
agent-based model in Jadex [7] using the belief-desire-intention (BDI) formalism [8].

The rest of the paper is organized as follows. The multi-site lube additive SC op-
eration is described in Section 2. The proposed agent-based model is discussed in
Section 3, followed by a case study in Section 4. Finally, some concluding remarks
are given in Section 5.

2 Multi-Site Lube Additive Supply Chain

Fig. 1 shows a schematic of the lube additive SC, which comprises customers, the
lube additive enterprise, and raw material suppliers. The lube additive enterprise
comprises a central sales department located at the headquarter and a number of pro-
duction plants in different geographical locations [9]. Each plant has its own func-
tional departments performing the different SC functions, i.e. commercial, scheduling,
operations, packaging, storage, procurement, and logistics. Materials flow from sup-
pliers to the plants and from the plants to customers (solid arrows in Fig. 1) as con-
trolled by the information exchanges (dotted arrows). Customers place their orders
with the central sales department, who then communicates with the different plants
before deciding to accept and assign a particular order to one of the plants, or to reject
it. The plants communicate with suppliers to procure raw materials. Three different
cycles of activities constitute the SC operation: enterprise-level coordination, plant
operation, and inventory management.

Fig. 1. Multi-site lube additive supply chain

106 Z.S. Ng et al.

Fig. 2. Sequence diagram of enterprise-level coordination

The SC operation can be represented clearly and conveniently using sequence dia-
grams. Fig. 2 shows the sequence diagram of the enterprise-level coordination cycle.
The diagram shows the sequence of activities (or tasks) performed by the different
entities and the interactions involved within one cycle. Each entity has a vertical
thread. The entity’s name is listed at the top and the human-stick figure illustrates if
the entity consists of just one or multiple instances. A vertical dotted line is the time
axis on which a task, represented by a rectangle, is placed. A solid arrow represents a
message from one entity to another, while a dotted arrow represents a reply. The ver-
tical position of a task shows its sequence relative to other tasks of any entity; the
earlier task is placed higher on the time axis. Note that the actual duration of a task or
between tasks is not represented in this diagram, only the relative sequence is. A ver-
tical bar shows when an entity is active within the cycle. It starts when the entity first
receives a message or performs its first task, and ends after it sends its last message or
performs the last task in its thread.

As shown in Fig. 2, the enterprise-level coordination cycle involves multiple cus-
tomers, one central sales department, and the different plants, specifically their com-
mercial and scheduling departments. The cycle starts with a customer placing an order
with sales, who then forwards the order detail to the commercial department of the
different plants to invite bids. After consulting scheduler, commercial replies to sales
with a proposal if it decides that the order is profitable. The proposal consists of a

 Agent-Based Model for Decision Support in Multi-Site Manufacturing Enterprises 107

price and a delivery date for the order. Following a certain policy, sales works the
proposals from the different plants into quotations for negotiation with the customer.
If after negotiation the customer accepts the price and delivery date, sales confirm the
order and assign it to the respective commercial department. Scheduler then inserts
the job into its schedule based on a scheduling policy. The cycle is repeated for each
new customer order.

The other two cycles are at the plant-level. Fig. 3 shows the sequence diagram of
the plant operation cycle. Scheduler drives the cycle by releasing a job from its
schedule, after checking raw material availability with storage, to be processed by
operations and packaging. The finished products are sent to customers through logis-
tics and 3PLs (third party logistics providers). The next job in the schedule follows
and the cycle is repeated. The sequence diagram of the inventory management cycle
is given in Fig. 4. This cycle aims to ensure raw material availability for processing
jobs. The procurement policy defines the trigger for procurement, e.g. in the reorder
point policy, procurement is triggered when raw material inventory falls to or below
the reorder point. When triggered, storage informs procurement of the amount and
type of raw material to buy from the supplier. The material is delivered to storage
through logistics and 3PLs. The three cycles are interrelated: Job schedule of sched-
uler connects enterprise-level coordination and plant operation and raw material in-
ventory of storage connects enterprise-level coordination and inventory management.

Fig. 3. Sequence diagram of plant operation

108 Z.S. Ng et al.

Fig. 4. Sequence diagram of inventory management

2.1 Decisions in Managing the Lube Additive Supply Chain

From the above description, it is clear that managing the supply chain involves deci-
sion-making by the different entities. In enterprise-level coordination, scheduler de-
cides how to slot a potential job into the existing schedule and what completion date it
can commit. Based on this, commercial decides the details of the proposal to be sub-
mitted to sales. Sales then decides what quotations to give the customer and negoti-
ates accordingly. Once agreement is reached, sales decides which plant to assign the
job to and scheduler of the corresponding plant updates its schedule. In plant opera-
tion, scheduler decides which job to process. It can follow the existing schedule or it
may need to reschedule, e.g. if raw material for a particular job is not available. In
inventory management, storage and procurement decides when, how much and which
raw material to buy. Besides these routine decisions, there are decisions to be made in
exceptional circumstances, e.g. how to deal with disruptions such as plant disruption,
supply disruption, etc.

The nature of these decisions is mostly decentralized as they are made by different
entities. The agent paradigm fits these characteristic well and the decision support
problems can be formulated naturally. For example, each plant “bids” for jobs, or
plants “collaborate” to deal with situations when one is affected by a disruption.
Hence, decision support for managing the SC can be provided by an agent-based
model of the enterprise and the SC.

3 Agent-Based Model of the Lube Additive Manufacturing
Enterprise

The multi-site lube additive SC described above has been modeled as an agent-based
model in Jadex [7] using the BDI formalism [8]. The SC entities in Figs. 2-4, which
include external entities (customer, supplier), headquarter entity (sales), and local plant
entities (commercial, scheduler, operations, packaging, storage, procurement), are each
modeled as an agent. In the current version of the model, the logistics department and
the 3PL are not explicitly modeled; delivery of raw materials is modeled as a time lag
between the purchase time and their arrival at the plant. In addition to the agents repre-
senting real SC entities, the model has two auxiliary agents to facilitate simulation:

 Agent-Based Model for Decision Support in Multi-Site Manufacturing Enterprises 109

manager and time. The manager agent creates all other agents and the graphical user
interface. The time agent manages the simulation clock. It starts the simulation, informs
all agents of the current time tick, advances the clock when all events within the tick
have been completed, and ends the simulation.

In the BDI formalism, agent rationality is modeled through the three mental attitudes
of belief, desire, and intention. Beliefs are facts and informational attitudes which keep
the agent aware of its internal states and external changes. Agents communicate through
messages and update their beliefs as they receive information. Desires are synonymous
to goals, which represent the ideal end states the agent is working towards. Intentions
are synonymous to plans, which are the courses of actions taken by the agent to reach its
goals. The tasks in Figs. 2-4 are captured through plans. A plan may consist of one task
or a sequence of tasks. A plan can be triggered by an agent’s own goal or by a message
from another agent. For example, in Fig. 4 the task “Trigger procurement of raw mate-
rial” of storage is triggered by its goal of maintaining raw material inventory, whereas
the task “Place order” of procurement is triggered by a message from storage.

In Jadex, capabilities are used for the modularization of agents. Capability defini-
tion files can be written to encapsulate sets of beliefs, goals, and plans, and contain
ready-to-use functionalities. There are several predefined capabilities in Jadex. Of
particular interest in the development of the simulation model is the Interaction Proto-
cols Capability which facilitates the usage of some of the predefined FIPA (Founda-
tion for Intelligent Physical Agents) interaction protocols. Two types of interaction
protocols are utilized in the simulation model, i.e. the Iterated Contract Net Protocol
(ICNP) and the Request Interaction Protocol (RP).

ICNP allows for the negotiations between one initiator and a number of participant
agents. More than one negotiation round may be performed, with the purpose to dele-
gate a task to the participant agents and let them execute the task on the initiator’s
behalf. The interaction between customer and sales prior to the confirmation of
the customer order involves the mutual negotiation of quotations devised by sales
(Fig. 2). ICNP exhibits features that assist the implementation of this interaction be-
tween customer and sales. As such, customer assumes the role of the initiator whereas
sales will act as the participant.

The ICNP interaction begins with the customer initiating a “call for proposals”
(cfp) by sending the product order details that it desires. Sales will then consolidate
job proposals from the plants’ commercial departments and formulate a set of profit-
able quotations, based on its goal to maximise the corporation’s profit. The quotation
which best fits the customer’s due date requirement is quoted at the highest price
amongst the available job proposals to the customer. The customer then evaluates the
utility value of the quotation according to some price and date utility functions. If the
quotation meets the utility criteria, with a combined utility value of, for example, 60
or greater, it is deemed acceptable. The customer will, thus, end the negotiation round
and task the sales department to commit to this confirmed order details. Otherwise,
rounds of negotiation can be carried out to evaluate the remaining quotations that are
available until the customer finally accepts one that fits its utility requirement, or until
no quotation is left for evaluation. In the latter case, the intended purchase for product
will be dropped by the customer.

RP handles the interaction between one initiator and one participant agent in which
the initiator wants the participant to perform some actions. The participant can then

110 Z.S. Ng et al.

decide if it is willing to execute the particular task that is being requested. Unlike
ICNP, there is no negotiation round involved. RP is used in the interaction between
sales and each plant’s commercial department to allow for the rational and autono-
mous decision making of the department in the bid for a job. Under this protocol,
sales will act as the initiator while the commercial department is the participant. Prior
to the sales replying to the customer with quotations in the ICNP communication, job
proposal will have to come from each commercial department. Thus, sales will send a
request for bid to each commercial department to initiate this RP interaction.

The commercial department will then check with its scheduler counterpart for time
information on which it will base the cost estimation for the job. Also, the commercial
department will forecast the plant’s utilization level for that time period and decide on
the price to charge. With this, the commercial department can then make an inde-
pendent decision as to whether it should participate in the bid for the job. If the for-
mulated price is higher than the estimated cost, the job is deemed profitable for the
plant and it will reply to sales with its job proposal. Otherwise, it will not participate
in the bid.

In this model, ICNP is used only in the interaction between customer and sales. RP
is used in many other interactions between the agents as described in Figs. 2-4.

3.1 Policies as Models of Decision Making

The decisions described in Section 2.1 are modeled through policies. Scheduler has a
policy for scheduling and estimating completion date of a potential job. Commercial
has a policy to set the price for the potential job in its proposal to sales. Sales has a
policy to formulate the quotations for negotiation with the customer. It also assigns
the order to a selected plant following a job assignment policy. Procurement buys raw
material following a procurement policy.

Different policies can be employed for each purpose. In job assignment policy,
sales may assign the job to the plant nearest to the customer, or the plant which is the
least busy, or the plant with the lowest cost, or a combination of these considerations
and others. Procurement can be done on a periodic basis or when a certain inventory
level is reached. Scheduling can be done by sequencing based on a certain parameter,
e.g. shortest processing time, first-come-first-serve, earliest due date, or more elabo-
rate algorithms.

4 Case Studies

The lube additive enterprise considered here has three make-to-order plants located in
Houston, Japan, and Singapore. Different plants may have different operating costs,
efficiency, and raw material delivery time. A more efficient plant processes the same
job faster than a less efficient one. Locations of plants, suppliers, and customers are
represented using (x, y) coordinates on a 2-D plane. Transportation time between two
locations is assumed to be linear to their straight line distance. There are three product
types, each with five different grades; each grade is produced using a specific recipe
from five additives and three base oils. Customer’s orders (type, grade, amount, due
date range) are randomly generated based on a demand curve. Processing and packag-
ing times are deterministic. Each plant has only one processing line; only one job can
be processed at a time.

 Agent-Based Model for Decision Support in Multi-Site Manufacturing Enterprises 111

In this case study, the three scheduling departments employ the PEDD (processing
earliest due date) scheduling policy. Each customer order comes with a due date
range, from earliest due date (EDD) to latest due date (LDD). PEDD is the earliest
date to start processing to meet the order’s EDD:

PEDD = EDD - Delivery Time - Packaging Time - Processing Time

PEDD refers to the earliest date that the plant should start processing the job in or-
der for the finished product to reach the customer by the agreed EDD. Under this
policy, the new jobs are sequenced such that the jobs with the earlier PEDDs are
placed with higher priorities. The procurement policy used is the reorder point policy.
Under this policy, the procurement department will raise a purchase order for raw
materials when it is informed that the inventory levels have fallen to or below the
reorder points, to bring them up to the top-up points. Procurement will keep track of
the pending inventories that have been purchased but have not arrived. This is impor-
tant to avoid any repeat orders for raw materials.

4.1 Case Study 1: Dealing with an Unreliable 3PL

The SC manager is interested in studying the impacts of the unreliable 3PL on the
overall performance. This unreliable 3PL has a 70% probability of late raw material
delivery, which can take 80% to 90% longer than the normal expected delivery time.
A simulation is run for 200 days with a total of 200 processed jobs assigned to the
three plants. In this first run, the reorder points used in the procurement policy are
[1000 for base oils, 100 for additives]. The results are given in Table 1(a). The total
tardiness for 200 jobs from the three plants is 110 days, which is very high and leads
to poor customer satisfaction. To study if this can be improved, a second simulation
run is done using higher reorder points of [4500 for base oils, 700 for additives]. The
results are given in Table 1(b). Fig. 5 shows the inventory of base oils in the three
plants, for both cases of low and high reorder points. The horizontal dotted lines indi-
cate the reorder points.

The orders from customers are the same in both cases. From Table 1, we can see
that the number of jobs processed by each plant in the two cases is different. This is
due to different job assignments, which depend on the bids submitted by each plant,
which in turn depend on the existing schedule, which may differ due to raw material
availability. Consequently, the total amount of product delivered by each plant is also
different in the two cases.

The higher reorder points improve the total tardiness to 43 days, down by 61%.
This is because the raw material inventory is kept high (see Fig. 5) such that there is
less probability of a job being delayed due to insufficient raw materials. A penalty is
imposed for late delivery proportional to the tardiness. The higher reorder points thus
also reduce late penalties by 61% to $215K. On the other hand, inventory cost in-
creases by 39% to $1012.5K, as higher inventory is maintained by having higher
reorder points. Overall, the profit decreases by 4%. Further experiments can be per-
formed to find more optimal reorder points. This case study demonstrates how the
simulation model can be used to study such tradeoffs and provide decision support.

112 Z.S. Ng et al.

Table 1. Simulation results for unreliable 3PL case study

 (a) Low Reorder Points
 Houston Japan Singapore Total
Jobs Processed 70 44 86 200
Product Delivered (volume unit) 63943 49212 67435 180590
Tardiness (days) 19 47 44 110
Late Penalties (k$) 95 235 220 550
Inventory Cost (k$) 285.6 245.7 195.9 727.2
Profit (million $) 5.10 3.22 6.02 14.34

 (b) High Reorder Points
 Houston Japan Singapore Total
Jobs Processed 73 58 69 200
Product Delivered (volume unit) 67554 55311 55472 178337
Tardiness (days) 9 1 33 43
Late Penalties (k$) 45 5 165 215
Inventory Cost (k$) 398.2 340.7 273.6 1012.5
Profit (million $) 5.30 4.01 4.52 13.82

Fig. 5. Raw material inventory of the three plants for low reorder point (left) and high reorder
point (right) for unreliable 3PL case study

Houston Plant Raw Material Inventory

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

0 20 40 60 80 100 120 140 160 180 200

Days

Base Oil 1 Base Oil 2 Base Oil 3

Japan Plant Raw Material Inventory

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

0 20 40 60 80 100 120 140 160 180 200

Days

Base Oil 1 Base Oil 2 Base Oil 3

Japan Plant Raw Material Inventory

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

0 20 40 60 80 100 120 140 160 180 200

Days

Base Oil 1 Base Oil 2 Base Oil 3

Houston Plant Raw Material Inventory

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

0 20 40 60 80 100 120 140 160 180 200

Days

Base Oil 1 Base Oil 2 Base Oil 3

Singapore Plant Raw Material Inventory

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

0 20 40 60 80 100 120 140 160 180 200

Days

Base Oil 1 Base Oil 2 Base Oil 3

Singapore Plant Raw Material Inventory

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

0 20 40 60 80 100 120 140 160 180 200

Days

Base Oil 1 Base Oil 2 Base Oil 3

 Agent-Based Model for Decision Support in Multi-Site Manufacturing Enterprises 113

4.2 Case Study 2: Effect of Production Scheduling Policy

In this case study, the SC manager notices that many customer orders are delivered
late. He consults with the schedulers and finds that they are using the PEDD schedul-
ing policy. Seeing that this policy, when inserting a new job to a slot in the schedule,
does not consider the due date of the jobs in the slots behind it, he proposes a new
scheduling policy. This policy is similar to PEDD with one modification: scheduler
will check to ensure that the insertion of the new job into the schedule will not result
in any of the jobs behind it becoming late. Otherwise, the new job will be moved to
the next slot, until no jobs behind it become late with its insertion. Thus a new job
insertion should not affect the completion times of previously committed jobs such
that they become late. These two policies – PEDD and PEDD-with-Late-Jobs-
Consideration – are examined through simulation and the results are shown in Table
2. The new policy significantly improves the total tardiness from 73 days to 9 days
(down by 88%) with comparable profit. This shows that a small modification to a
policy could have a big impact. This case study demonstrates how the simulation
model provides decision support for policy evaluation.

Table 2. Simulation results for new scheduling policy case study

 (a) PEDD
 Houston Japan Singapore Total
Jobs Processed 74 54 72 200
Product Delivered (volume unit) 69706 49819 59019 178,544
Tardiness (days) 22 22 29 73
Late Penalties (k$) 110 110 150 370
Profit (million $) 5.48 3.36 4.65 13.49

 (b) PEDD-with-Late-Jobs-Consideration
 Houston Japan Singapore Total
Jobs Processed 64 55 81 200
Product Delivered (volume unit) 64810 52107 61110 178,027
Tardiness (days) 5 2 2 9
Late Penalties (k$) 30 10 10 50
Profit (million $) 4.84 3.27 5.04 13.15

5 Concluding Remarks

The complex dynamics in a multi-site lube additive manufacturing enterprise necessi-
tate the development of a simulation model to support SCM. The agent-based model
presented in this paper adequately captures the integrated SC operation. The modular
structure of the model makes it easy to extend, for example to include a new plant.
The model enables simulation experiments to analyze policies, optimize parameters,
evaluate impacts of a disruption, devise disruption management strategies, provide
decision support at the strategic, tactical, and operational levels. The model can be
extended in a number of ways. It can be made more scalable by employing parallel

114 Z.S. Ng et al.

computing where the agents are distributed across multiple processors. Explicit mod-
eling of logistics and 3PL agents will add to the model’s depth and scope. Adaptive
optimization studies can be performed by giving each agent the capability to adapt
and change its parameters to maximize its utility as the simulation progresses. The
same modeling approach can also be extended to supply chains of other products.

Acknowledgments. We are indebted to Dr. Jean-Luc Herbeaux and Ms. Bonnie Tully
of Evonik (Degussa) South-East Asia for sharing their valuable insights and knowl-
edge on the multi-site lube additive supply chain operation.

References

1. Sullivan, T.: Special Report: Road to Recovery – Oronite Strives to Regain Customer Con-
fidence. Lube Report 6(25), June 21 (2006)

2. Srinivasan, R., Karimi, I.A., Vania, A.G.: Business decision making in the chemical indus-
try: PSE opportunities. In: Marquardt, W., Pantelides, C. (eds.) Computer-aided Chemical
Engineering, vol. 21, pp. 107–117. Elsevier, Amsterdam (2006)

3. Timpe, C.H., Kallrath, J.: Optimal planning in large multi-site production networks. Eur. J.
Op. Res. 126(2), 422–435 (2000)

4. Dondo, R., Mendez, C.A., Cerda, J.: Optimal management of logistic activities in multi-site
environments. Comput. Chem. Eng. 32(11), 2547–2569 (2008)

5. Moon, C., Kim, J., Hur, S.: Integrated process planning and scheduling with minimizing
total tardiness in multi-plants supply chain. Comput. Ind. Eng. 43(1-2), 331–349 (2002)

6. Julka, N., Karimi, I., Srinivasan, R.: Agent-based supply chain management – 2: a refinery
application. Comput. Chem. Eng. 26(12), 1771–1781 (2002)

7. Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: a BDI reasoning engine. In: Multi-Agent
Programming, vol. 15, pp. 149–174. Springer, US (2005)

8. Rao, A.S., Georgeff, M.P.: BDI agents: from theory to practice. In: Proceedings of the First
International Conference on Multiagent Systems, San Francisco, CA (1995)

9. Zhang, H., Wong, C.W.K., Adhitya, A., Srinivasan, R.: Agent-based Simulation of a Spe-
cialty Chemicals Supply Chain. In: Zhang, H., Wong, C.W.K., Adhitya, A., Srinivasan, R.
(eds.) International Conference on Infrastructure Systems: Building Networks for a Brighter
Future, Rotterdam, The Netherlands, November 10-12 (2008)

Embodied Organisations in MAS Environments

Michele Piunti1, Alessandro Ricci1, Olivier Boissier2, and Jomi F. Hübner2,3

1 Università degli studi di Bologna - DEIS, Bologna, Italy
{michele.piunti,a.ricci}@unibo.it

2 Ecole Nationale Superieure des Mines - G2I St-Etienne, France
{boissier,hubner}@emse.fr

3 Federal University of Santa Catarina - DAS, Florianópolis, Brazil
jomi@das.ufsc.br

Abstract. Agents and Artifacts model extended with organisation promotes ar-
tifact based environments aimed at supporting multiagent coordination and goal
oriented interactions and communication. Nevertheless, the use of artifacts for
organisational purposes constrains agents to be aware of complex structures de-
scribed in an organisational specification: an organisational specification: for in-
stance, agents have to understand and be able to manipulate low level primitives
which may be not proper of an application domain. To ease this requirement, we
propose “organisational embodiment rules” as a programmable layer for building
embodied organisational artifacts (EOA) through their binding to environment
artifacts. EOAs are aimed at transparently interceding with the organisational
structures, and at enabling possibly organisation-unaware agents to seamlessly
play in organisations with no need to deal with low level mechanisms of an or-
ganisational specification. We propose a formal description along with examples
enlightening benefits of the proposed approach with respect to related ones.

1 Introduction

A visitor entering in an organized environment has no need to directly communicate
with the organisation which is operating in such context, nor he/she needs to exhaus-
tively know how such organisation is structured. Indeed complex environments where
human beings live are often instrumented with media, resources, services and embodied
objects aimed at assisting human activities and letting users unaware of participating to
complex organisational patterns. This is why, for instance, visitors entering in an hospi-
tal through a “visit” door have no way to directly communicate with the hospital as an
organisational entity, nor need they a complete knowledge of the multiple organisational
schemes that are in action behind it. However, hospitals typically deploy several facil-
ities in order to promote specific patterns of cooperation, to which visitors unawarely
participate, i.e. by using those environment artifacts as support mechanisms which can
be straightforwardly afforded.

Following this suggestion, the contribution of this work aims at bridging the gap be-
tween actual agents and organisational programming models in Multi Agent Systems
(MAS). Being in an instrumented work environments means, for computational agents
as well as for visitors in the hospital, to not be forced to explicitly interact with the or-
ganisation, nor to have an explicit representation of the organisation in mind in order to

L. Braubach et al. (Eds.): MATES 2009, LNAI 5774, pp. 115–127, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

116 M. Piunti et al.

exploit its services. The proposed approach assumes agents’ worlds to be instrumented
by Embodied Organisational Artifacts (EOAs) supporting either interaction with the
environment resources, either the management of the organisation life cycle. Our major
concern is to conceive, on such basis, rules to embody organisational artifacts into the
environment artifacts. In particular we here provide a design model according to which
heterogeneous agents can concurrently operate in the same work environment being co-
ordinated and controlled by situated artifacts aimed at supporting such social activities.
After having discussed related works in Section 2, the A&A computational model is
formally introduced in Subsection 3.1 while Subsection 3.2 synthesises MOISE organi-
sational specification and its artifact based implementation ORA4MAS. The program-
ming model for instrumenting work environments with environment and organisational
artifacts is introduced in Section 4 and further described in Section 5 with an example
showing system dynamics.

2 Background

The complex requirements of wired and distributed software systems, as well as the in-
creasing computational power of hardware platforms are originating a growing interest
towards organisation oriented programming (see, among others, [6]). Recent develop-
ments in MAS area originated many proposals in this direction, which are straightfor-
wardly rooted in typical perspectives of agent oriented modeling. As noticed in [7], a
recurrent element in proposed approaches is the presence of middle-ware components
(organisational proxies) that actually mediate interactions between agents participating
the organisation and the infrastructures providing organisational services. On these ba-
sis, a series of modeling drawbacks rise when fine grained and cognitive interactions
between agents and organisational middleware are of concern. A first major issue is
the mismatch at the abstraction level between the entities playing the system. Whereas
the organisation is conceived as a series of services at a slightly “abstract” level, i.e.
defined in terms of norms, roles, global goals, etc., agents are built upon mentalis-
tic notions as beliefs, desires, intentions (assuming that BDI-like agents are in place).
This places the problem to bridge the conceptual gap between the elements and the re-
sources available at the organisational level and the notions and the constructs adopted
at the agent level. Moreover, the designers (and the agents) have typically to deal with
a twofold interaction medium composed by a virtual organisation (where agents adopt
roles, commit missions, coordinate themselves for fulfilling joint activities and work-
flows) and a physical, embodied environment1 (where agents perform actions, perceive
events, communicate, move, access shared resources etc.). Although their concerns are
similar, their reification usually leads to different approaches: dedicated layer in the case
of organisations, proper entities exploitable by agents in the case of environment. Fi-
nally, middleware based organisations bias an overwhelming power over agents which
are simply participants, hence placing the issue to play an active role in managing the
system, i.e. by creating, modifying, adapting the organisation on the need.

1 Embodied is here an abuse of notation. The term has to be intended as reified entity of agents
computational world, more than in its cybernetic notion of having a physical body.

Embodied Organisations in MAS Environments 117

Recent approaches have been addressed at bridging the conceptual gap between or-
ganisations, environments, agents by introducing organisation situated in MAS environ-
ments. Based on programming languages used to describe environments and normative
infrastructures, Okuyama et al. proposed a model for situated organisations instrument-
ing concrete environments where social interactions are of concern [9]. The proposal is
to distribute normative objects as reactive entities readable by agents working in nor-
mative places. The approach is assumed to improve emergent dynamics governed by
specific norms addressed at controlling agents behavior. In fact, normative objects are
supposed to indicate obligations, prohibitions, rights and are indeed affordable pieces
of information that agents can get and reason about with no previous knowledge.

The works on Electronic institutions (EI) envisaged particular organisational proxies
mediating between agents and organisation. Governors entities are assumed to rule and
enable the interactions in respect of communication protocols and norms [2]. Situated
Electronic Institutions (SEI) was recently proposed as an extension aimed at interced-
ing between environments (real world) and EI. In this case, special governors, namely
modelers, allow to bridge environmental structures to the EI by instrumenting environ-
ments with embodied devices controlled by the institutions. Participating agents can,
in this case, perform individual actions and interactions (either non message based)
while being monitored by the institution. Besides, staff agents are assumed to operate
on concrete world devices, i.e. judging norm violations.

The notion of observability of environmental states is also a pivotal one in the for-
mal model proposed by Dastani et al. [4] where agents behavior can be regulated by
regimenting and sanctioning rules which are triggered by the monitoring process of the
overall environment. The organisational module is here assumed to contain norms de-
fined on the basis of “count-as” and “sanctioning” rules, specified in terms of transitions
regulating the effects of the actions performed by agents in their environment.

As detailed in the next sections, the model presented here mainly differs form the
described ones for being natively conceived in terms of agents and artifacts (A&A). In
our proposal the overall organisational infrastructure is modeled in terms of distributed
artifacts, which are reactive components to be suitably exploited by agents for their
epistemic (artifacts have an observable state) and pragmatic (artifacts have triggerable
operations) purposes. A&A interactions obey to unambiguous rules defined at a plat-
form level, and it is modeled through agent native capabilities of action and perception.
Whereas artifact based environments works on a dedicated platform (i.e. CArtAgO),
agents can share the same organisational services simply by integrating the repertoire
of action and perception needed to join a workspace and work with artifacts. In addi-
tion, the computational model of artifacts is conceived on a rich set of relevant events to
be perceived by agents. More than in terms of observable states, the proposed approach
allows to deal with relevant changes occurring in the environments in terms of arti-
fact events which can be distributed across several workspaces and directly addressed
to agent’s reasoning processes in order to be handled. Basically this enables designers
(and agents) to recognize system dynamics at a finer granularity, effectively improv-
ing situatedness of the system. Finally, the functional link between artifacts allows a
comprehensive approach of the organisation, which is unambiguously divided in two
modules placed at two distinct conceptual levels: an organisational level containing a

118 M. Piunti et al.

detailed organisational specification (including norms, roles, groups specification) and
an embodied level, containing those environment artifacts to be monitored and con-
trolled by the organisation itself.

3 Agents and Artifact Systems

Before describing artifact based organisations, this section resume A&A and CArtAgO
respectively as the conceptual model and the related computational platform at the basis
of the proposed architecture.

3.1 Artifact Based Work Environments and CArtAgO

For the sake of simplicity, the CArtAgO computational model at the basis of artifact
based work environments presented here abstracts away from insights concerning agent
execution model, as well as a simplified model of artifacts is sketched (a more detailed
description is in [12]). We here adopt a formalism which is compatible with models of
agent which have been integrated in CArtAgO (i.e. Jason/AgentSpeak, 2APL, Jadex,
[10]). Some conventions are adopted, as the following meta-variables: instate ranging
over artifact state, τ over artifact templates, and σ over workspaces. Meta-variables for
the unique identifiers of agents and artifacts are denoted respectively as γ and α . Given
meta-variable x, a set of elements of kind x is denoted as x. Besides, meta-variables
that have no definition (like instate, manual, mstate, or any identifier) correspond to
constructs whose structure is not prescribed by a system specification, i.e. their details
depend on the actual integration with agent platforms.

A&A MAS. As depicted in Fig. 1, an agent and artifact system (AA−MAS) is a compo-
sition of agents (Agent) playing in environments structured in workspaces (Workspace).
An agent is represented by its identifier (AgentName) and its computational model
(AgentProg). Agents are assumed to join and work in multiple workspaces at a time:
joining a workspace, an AgentBody is created as interface between the mind part –
which depends on the specific agent model/architecture adopted– and the environment,
and it contains sensors and effectors allowing interaction with artifacts belonging to that
workspace. A workspace is thus defined by an identifier (σ), a set of artifacts (Artifact)
and a set of agent bodies (AgentBody).

Agents. Agents are those autonomous, pro-active entities designed in order to achieve
some kind of goal or task. Agents are also reactive, i.e. they are meant to continuously
perceive input from the environment and accordingly react. In this view, agent’s activi-
ties are based on perception and action. According to Fig. 1, an agent is defined at the
system level by its name (AgentName) and its system identifier γ . More than on agent
execution and programming model we are here interested in defining au unambiguous
interaction model defining agent-artifact interaction. In CArtAgO it is based on a se-
ries of basic actions to be included in agent’s repertoire. The tenet of this repertoire is
based on the activities of action (aimed at changing the world) and perception (aimed
at perceiving the world). Indeed, use, sense and observeProperty are the pivotal
actions which agent have in repertoire to require artifact’s operations and observe arti-
fact observable state. By executing focus or stopFocus, agents can initiate/terminate

Embodied Organisations in MAS Environments 119

AA−MAS ::= 〈Agent,Workspace〉 A&A System
Agent ::= 〈agentName,agentProg〉 Agent Entity

Workspace ::= 〈σ ,Artifact,AgentBody〉 Working space element
Artifact ::= 〈arti f actName,arti f actProg〉 Artifact Entity

artifactName ::= 〈α ,τ〉. Artifact
artifactProg ::= 〈uic,a−obs−prop,manual, instate〉 Artifact program

uic ::= 〈[guard]opName〉 Usage interface control
a−obs−prop ::= 〈artifactName,pname �→ pvalue〉 Artif. Observable property

a− ev ::= 〈a− prop− ev〉|〈a−op− ev〉 Artifact Event
a−prop− ev ::= 〈α : pname(evtValue : evtType)〉 Artif. Property(-related) event

a−op− ev ::= 〈α : opName(evValue : evType)〉 Artifact Operation(-related) event

Fig. 1. Definition of a Multi Agent System in the A&A model and CArtAgO

the long term activity aimed at perceiving artifact relevant changes in terms of events,
without directly operating over it. Other actions used by agents (i.e. to join and leave
workspaces, to create and dispose artifacts, etc.) are not detailed here.

Workspaces and Artifacts. Besides agents, an A&A system is modeled in terms of
workspaces, representing virtual locations containing sets of first-class entities called
artifacts. Artifacts are the basic building block of MAS environments, they represent
reactive and automatic resources that agents can share and use to ease their work. In this
view, artifacts are non-autonomous, function-oriented entities, designed to encapsulate
functionalities that agents can exploit, through an interface of available operations, to
achieve their goals. The set of artifacts in a workspace is dynamic: agents have basic
actions to dynamically enter/exit workspaces, and to create/dispose artifacts etc. An ar-
tifact is issued from a library of templates (τ) and is defined by its name ArtifactName
and by a system identifier (α) controlled by the environment platform. The ArtifactProg
element includes artifact execution model which is defined from the artifact usage inter-
face (uic), observable properties (prop), and finally an inner state (instate). The usage
interface includes a set of controls, each providing the name of the triggerable opera-
tion (op-name) and a possible guard function enabling the operation execution (guard).
Similarly to artifacts used by human, artifact computational model presents a manual
element as an additional construct inspectable by agents to “learn” their functioning.
The manual description, as well as the inner state and the artifact operation processes
denoting the internal execution model are not detailed here for simplicity.

Artifact computational model assumes observable states, events and signals as the
pivotal constructs to acknowledge agents about world changes. On the one side, the
execution of artifact’s operations – which occur asynchronously to agent processes –
can lead to the generation of observable events that the agents can perceive. Besides
events, each artifact can expose an observable state, in terms of one or multiple observ-
able properties whose value can be dynamically perceived by agents, without triggering
operations or processes over the artifact. As presented in Fig. 1, there are two types of
perceivable facts: (i) a-obs-prop, indicating observable properties, each specifying ar-
tifact identifier (ArtifactName), property name (pname), and property value (pvalue)
and (ii) a-ev, indicating events generated by the artifacts that the agent is scrutinizing,
called artifact events. In more details, an a-ev can be related to events coming from

120 M. Piunti et al.

artifact observable properties (a-prop-ev), each specifying artifact identifier (α), event
value (evtValue), and event type (evtType). Besides, a-ev can also indicate events related
to the execution of artifact operations (a-op-ev), namely events signalled by operation
processes, each specifying artifact identifier (α), the executed operation (opName), and
information about the outcome/result of the operation (resValue and resType). Whereas
A&A provides a conceptual design model, CArtAgO [1] puts in practice the enabling
technology and provides a programming platform to create and manage artifact based
working environments to which heterogeneous agents can join [10].

3.2 Artifact Based Organisations

Either the A&A conceptual model and the CArtAgO programming platform presented
in the above section allow the realisation of open environments based on artifacts and
workspaces where heterogeneous agents can play and cooperate in joint activities. The
envisaged model lacks of explicit organisational infrastructures, i.e. the presence of nor-
mative and institutional elements allowing to tackle directives at the system level as rul-
ing and governing agents behavior and social dynamics. To bridge this gap, ORA4MAS
has been recently proposed as an artifact based infrastructure, based on CArtAgO,
where organisational elements are modeled as artifacts, thus as first class entities of
the system [7]. The ORA4MAS artifacts are shaped on the basis of MOISE organisa-
tion modeling language [8]. MOISE is adopted to introduce normative elements and
specific cooperation patterns that allow to explicitly decompose the specification of an
organisation into structural, functional, and deontic dimensions. The structural dimen-
sion specifies the roles, groups, and links of the organisation. The definition of roles
states that when an agent decides to play some role in a group, it is accepting some
behavioral constraints related to this role. The functional dimension specifies how the
global collective goals should be achieved, i.e. how these goals are decomposed (in
global plans), grouped in coherent sets (i.e. missions) to be distributed to the agents.
The decomposition results in a goal-tree, called scheme, where the leaves-goals can be
individually achieved by agents. The deontic dimension is added in order to bind the
structural dimension with the functional one by the specification of norms (i.e. permis-
sions and obligations to be related to roles and missions).

In ORA4MAS, each dimension of MOISE is managed by a specialized type of arti-
fact. Thus, three types of organisational artifacts (OAs henceforth) are conceived: group,
scheme, and normative artifacts. Each of them is automatically initialized on the basis of
the specification language –based on MOISE– contained in Norm-Org-Exp statements
(Fig. 2) Among ORA4MAS artifacts, the groupBoard artifact maintains the state of an
instance of group and provide operations related to this group. adoptRole(ρ) is used by
an agent to adopt a new role ρ in the group and leaveRole(ρ) is used to give up the
role. As observable properties, the group artifact shows the current status of the collec-
tive plan specified in the scheme in terms of agents and their actual roles in the group.
The schemeBoard artifact provides operations related to the execution of an instance of
a scheme: the operation commitMission(m) have to be used by an agent to commit to
the mission m; leaveMission(m) to decommit mission m and setGoalAchieved(g) to no-
tify the achievement of a goal g. As observable properties, it shows the list of agents
engaged with the scheme, their missions in the scheme and the state of corresponding

Embodied Organisations in MAS Environments 121

goals. Finally, the normBoard artifact provides no uic operations but a series of observable
properties which are inspectable to know the actual normative state of the organisation.
Linked to others OAs, the normBoard is conceived to take trace of the current state of the
organisation: since changes notified by other OAs, it automatically detects mismatches
indicating non-compliance to the norms issued by the organisation. The current state of
the norms vis-a-vis the members of the organisation are shown as observable proper-
ties so that special agents (i.e. staff agents) are able to decide about possible sanctions
as specified in organisational specification. For simplicity, we here abstract away from
the organisational specification as well as from the description of the effects elicited by
OAs operations. A detailed description of ORA4MAS as well as A&A modeling and
CArtAgO can be found in [11,7].

4 Situating Organisations in Agents Work Environments

As far as the ORA4MAS model is conceived, in order to exploit the organisation agents
need to know OA’s functioning before their use, and they need additional capabili-
ties to bring about organisational and normative notions (i.e. role, missions, schemes,
obligations etc.) which are not native constructs of their architectures. Similarly to the
approaches described in Section 2, to exploit organisational facilities agents need to per-
form a set of additional activities which are not concerned with the fulfilment of their
purposes but that are needed to explicitly notify the organisation about their activities.
For instance, an agent who wants to adopt a role needs to explicitly use an adoptRole op-
eration upon a particular OA, as well as an agent who achieves a goal needs to explicitly
notify it with a setGoalAchieved operation. This section shows how such weakness can
be effectively bridged by exploiting an additional layer of environment artifacts (EA)
situated in the work environment which are aimed at mediating between agents and
organisational infrastructures.

4.1 Embodied Organisational Artifacts (EOA)

Taking inspiration from complex organisation in which human beings operate, the pro-
posed environment model is instrumented with embodied resources aimed at assisting
agent activities at their micro level. In so doing, an artifact based organisation for an
open MAS is assumed to be composed by an heterogeneous set of Embodied Organi-
sational Artifacts (EOAs) which can be of two types: EAs and OAs. (i) Environmental
Artifacts (EAs) are a special kind of embodied resources placed in the working envi-
ronment which are directly deployed and controlled by the organisation with the aim to
rule and enable agent activities. (ii) Organisational Artifacts (OAs) embedding general
organisational services, as the one discussed in Subsection 3.2.

Whereas OAs provide mechanisms related to the organisational control, EAs embed
suitable facilities allowing to situate such organisational control in a work environment:
by ruling agents behavior EAs achieve coordination and prevent deviation from equi-
librium and undesirable states. By providing embodied organisational resources to be
exploited by agents in a transparent fashion, EAs are conceived to enable agents in
achieving their individual goals. Besides, EA can be used to mediate between organ-
isation and environment, so to give rise to functional, unaware, collective phenomena

122 M. Piunti et al.

which can be fully controlled by the organisation. On these basis, two kind of agents
are envisaged to dwell the work environment: Staff agents are explicitly designed to
operate upon the organisation, hence they can directly use OAs operations and perceive
OAs observable states. As an example, in an hospital scenario, medical and paramedical
staff are likely aware about the organisational schemes, as they have capabilities to di-
rectly operate upon the organisation or to intentionally exploit its services. On the other
side, unaware agents are not able to use OA operations, due to a lack in their model
or because, for a design choice, they have no access rights. In a hospital scenario, for
instance, patients and visitors have no knowledge about the organisational schemes and
thus they are likely unable to directly interact with the organisation.

4.2 Relating Organisations and Environments

Deploying environmental facilities aimed at aiding unaware agents tasks is thus estab-
lished as a functional (programmable) relation between EA based facilities and the OA.
To define this relation an abstraction mechanism provided by “count-as” and “enact-
ing” relations is adopted. A relation “count-as” is a special relation between the effects
of an action performed by an active entity in a specific context (i.e., an agent upon an
artifact) and those special effects produced by that action which can be addressed to the
institutional dimension of the system. Institutional actions, i.e., actions performed in the
normative context of an organisation, can be considered as particular actions endowed
with special effect of “count-as”. In this view, a normal action of an agent “count-as”
a conventional or an institutional action once it is situated in a particular institutional
context [13]. Thus, a given action performed by an agent acquires an additional effect
(“count-as” empowerment), due to the fact that the organisation recognizes the ongoing
activity and ascribe to it a normative outcome. Hence, the “count-as” effect is assumed
as a vehicle to route environmental facts to institutional ones. By adopting “count-as”
mechanisms, EAs are supposed to intercede between agents and organisation. In fact,
using or attempting to use an EA operation produces an event that, from the point of
view of the organisation in OAs, may “count-as” an institutional fact (and holds to the
same effects provided by operations like role adoption, mission commitment etc.). Be-
sides, using an EA operation may produce some undesired effects in environment that
“count-as” a norm violation.

Besides count-as, a second effect can be considered, that is an enactment effect deal-
ing with regimentation-enforcement aspects that the organisation may provide to con-
trol the system. In this case the organisation is aimed at producing a control effect
by enacting changes upon the environment and its embodied artifacts with the aim to
promote desirable states of equilibrium. Notice that a normative control that the organ-
isation may want to operate over the environment can be defined also in the normative
dimension written in the organisation specification. For example, a norm specifying that
a certain door “can be used by medical staff only” can be ensured by user’s personal
badges or keys and may not require a special enactment rule. In this example, the open-
ing procedure to open the door is the instrument that implements that norm. However,
norms for visitors like “pay an additional fee” do not need to (or cannot) be forced
by any embodied artifact in the same way it can force them to access only authorized
area. We are thus considering two main mechanisms to instrument norms, regimentation

Embodied Organisations in MAS Environments 123

ORG−AA−MAS ::= 〈Agent,Workspace,Org−Emb−Rule,Norm−Org−Exp〉 A&A Organisational System
Workspace ::= 〈σ ,Artifact,AgentBody〉

Artifact ::= 〈OA〉|〈EOA〉
EA ::= 〈artifactName,artifactProg〉 Environmental Artifact
OA ::= 〈artifactName,artifactProg,Norm−Org−Exp〉 Organisational Artifact

Org−Emb−Rule ::= 〈count−as〉|〈enact〉 Organisational Rules
count−as ::= 〈α : ev〉 −→ 〈α : uic〉 Count as Rules

enact ::= 〈α : org− ev〉 −→ 〈α : uic〉 Regimentation/Sanctioning Rules
ev ::= 〈env− ev〉|〈org− ev〉 Relevant Event

env− ev ::= 〈a− ev〉 Environment Relevant Event
org− ev ::= 〈a− ev〉 Organisation Relevant Event

Fig. 2. Embodied Organisational Artifacts: the definitions indicate the functional relations be-
tween OAs and EAs

and enforcement (this classification is based on the proposal in [5]). Regimentation is a
mechanism that simply prevents and makes impossible for the agents to perform actions
that are forbidden by a norm (i.e., barrier effect). In particular, the organisation regi-
ments some actions in order to preserve important features of the system. For instance,
the access to valuable resources as staff working rooms can be physically regimented
by the mean of EAs components, i.e. locks or badges readers instrumenting the enter-
ing door. Enforcement is a mechanism which can be applied after the detection of the
violation of some norm. Agents can indeed decide to obey or not the norm according to
their local view. From a system point of view, the fulfilment/unfulfillment of the norms
should be detected, evaluated as a violation or not, and then judged as worth of sanc-
tion/reward or not. For instance, by the mean of an EA which is being used by some
malicious agent, the organisation can automatically recognize a norm violation, thus
eliciting an enactment providing a sanction/regimentation feedback. It is worth remark-
ing that these two mechanisms allow to balance between constraining pivotal properties
of the system without affecting agents’ autonomy. This is of particular importance to let
the system to self-organize and evolve as in the case of open systems, where heteroge-
neous agents are supposed to enter and leave with unknown architectures and purposes.

4.3 Organisational Embodiment Rules

This section introduces a rule based mechanism enabling the definition and the regu-
lation of the functional relations between environmental artifacts (EAs) and organisa-
tional artifacts (OAs). The proposed mechanism is expressed through the specification
of functional linking relating EAs to OAs and viceversa. Fig. 2 slightly changes the
description of an A&A system (as it has been proposed in Fig. 1) by introducing an ad-
ditional organisational layer: an ORG-AA-MAS presents an additional series of rules for
the embodiment of OAs into EAs (Org-Emb-Rule) and a set of normative expressions
(Norm-Org-Exp). Either EAs and OAs are represented through an artifact identifier (Ar-
tifactName) and a proper computational model (ArtifactProg). OAs also include Norm-
Org-Exp, which are a subset of the normative rules specified in ORG-AA-MAS. These
normative rules are assumed to set the organisation by configuring the related OAs.
They can be automatically generated on the basis of the MOISE specification, as it has

124 M. Piunti et al.

been introduced in Subsection 3.2. It is worth remarking that, since the translation of
MOISE specification in terms of Norm-Org-Exp, an organisation becomes a normative
system, and it is completely defined on the basis of norm expression. For simplicity, the
syntax description of Norm-Org-Exp, as well as the automatic mechanisms generating
them since a MOISE specification, will be discussed in future works.

Structures defining Org-Emb-Rule in Fig. 2 refer, from the one side, to the environ-
mental events, which in our case are widely grounded to the work environment and
coincide with the EA related events (env-ev). On the other side, they refer to the organ-
isational events describing those relevant changes happening in the institutional layer
in terms of OA events (org-ev). Both env− ev and org− ev are then rooted in general
artifact relevant events a− ev. This allows to manage a series of rules describing the
functional relations between EA and OA. In particular, two kinds of Org-Emb-Rule are
expressed, namely Count-as and Enact rules. Count-as rules, state, for an event gener-
ated by an artifact α , which are the consequences at the organisational level. count-as
rules indicate how, since the actions performed by agents, the embodied organisational
artifacts automatically detects relevant changes (ev), thus relating them to execution of
some operation at the organisational level. In other terms, since a relevant event that
is generated by an embodied organisational artifact, an operation upon a given OAs is
automatically triggered through its uic interface. In so doing, either changes occurring
in the work environment (possibly operated by agents), either relevant events occurring
in the context of the organisation can be further translated in the opportune institutional
changes at the OA level, that updates itself accordingly.

Enact rules, state, for each institutional event, which are the control feedback at
the environmental level. enact rules express how, since the specified Norm-Org-Exp,
the OAs are assumed to control the EAs. In so doing, organisational events (i.e. role
adoption, mission commitment) can be further used to elicit changes in the work envi-
ronment, i.e. by mean of sanctioning and regimentation mechanisms.

5 An Example: Hospital Scenario

Let us consider the hospital “visit” service introduced in Section 1 as an example of
embodied organisation. The organisation assumes that a visitor agent (va) opening the
“visit door” is entering the room and playing the role “patient”, which purpose is to go
to the “visit desk” to provide personal information and ask for a medical visit. After
the visit, if va exits without paying, a staff agent (sa), that is in charge of managing
the visits on behalf of the hospital organisation, provides an enforcement to the visitor,
namely he/she sends a fine at visitor’s home. In MOISE functional description a “pa-
tient” mission m1 can be defined in terms of the following activities: (i) open the door,
(ii) book for a visit, (iii) pay at the billing machine (optional), and (iv) exit. The staff
agent holding the organisation, is indeed committed to the mission m2 by which he/she:
(i) recognise patients who exit without paying, (ii) use the terminal to automatically
send the increased fee at patient address.

To control social dynamics, the organisation adopts an organisational specification,
which is fed to the OAs as Norm-Org-Exp automatically translated from MOISE de-
scription. Let us assume that, to support these patterns, the organisation has introduced

Embodied Organisations in MAS Environments 125

N01 : players(patient,vgroup,V)∧ (V ≥ 10) → f ail(N01)
N02 : committed-mission(patient,m1) → obligation(patient,achieve-goal(book_visit))
N03 : committed-mission(patient,m1) → obligation(patient,achieve-goal(pay))
N04 : committed-mission(patient,m1) → obligation(patient,achieve-goal(exit))
N05 : committed-mission(sta f f ,m2) → obligation(sta f f ,achieve-goal(add- f ee))
N06 : violated(N03) → obligation(sta f f ,commit-mission(m2))

visitDoor : a-op-ev(enter($a),op_exec_start) → GroupBoard : adoptRole($a, patient)
visitDoor : a-op-ev(exit($a),op_exec_complete) → GroupBoard : leaveRole($a, patient)

GroupBoard : a-op-ev(adoptRole($a, patient),op_exec_complete) → SchemeBoard : commitMission($a,m1)
billingMachine : a-op-ev(signal,receipt) → SchemeBoard : setGoalAchieved($a, pay)
billingMachine : a-op-ev(signal,receiptAndFee) → SchemeBoard : setGoalAchieved($a,add- f ee)

visitDoor : a-op-ev(exit($a),op_exec_complete) → SchemeBoard : setGoalAchieved($a,exit)
terminal : a-op-ev(signal,”sent”) → SchemeBoard : setGoalAchieved($a,send- f ee)

SchemeBoard : a-op-ev(commitMission($va,m1)
,op_exec_complete) → visitRoom : disable($va,exit)

SchemeBoard : a-op-ev(setGoalAchieved($sa,send- f ee,$va)
,op_exec_complete) → visitRoom : enable($va,exit)

NormBoard : a-prop-ev(property_updated,N01, true) → visitRoom : disable(_,enter)
NormBoard : a-prop-ev(property_updated,N01, f alse) → visitRoom : enable(_,enter)

Fig. 3. Norm-Org-Exp (norm related) and Org-Emb-Rules (respectively Count-as and Enact) reg-
ulating the Hospital Scenario

particular environment artifacts EAs, which are deployed and controlled by the organ-
isation in order to instrument the work environment: a “visit” door, a billing machine
and a terminal, as they are detailed below:

artifactName: visitDoor, env.door
uic (operations): enter, exit
a-obs-prop: n_visitor
a-op-ev: enter,(op_exec_start)

enter,(op_exec_complete)
exit,(op_exec_start)
exit,(op_exec_complete)

a-prop-ev: n_visitor, (prop_changed)

artifactName: terminal, env.terminal
uic (operations): send
a-op-ev: send, (op_exec_start)

send, (signal, "sent")
send, (op_exec_complete)

artifactName: billingMachine,env.billingMachine
uic (operations): pay, payFee
a-op-ev: pay, (op_exec_start)

pay, (signal, receipt)
pay, (op_exec_complete)

As showed in Fig. 3, the organisation (OAs) has been programmed according to a set
of norms (i.e., Norm-Org-Exp). N01 indicates a regimentation for the cardinality of the
patient role by stating that no more than N agents can play the role patient in the group
vgroup. Besides, obligations (O) have been introduced for regulating mission commit-
ment (N02-N05) and for defining consequences of norm violation (N06). Namely, the
norm N03 states that a visitor agent committing to m1 is obliged to achieve the goal pay,
while the norm N06 states that, since a violation of N03 occurs, a staff agent is obliged
to commit to the mission m2.

Besides normative specification, Fig. 3 also indicates the Org-Emb-Rule that the or-
ganisation has specified to functionally link OAs to EAs artifacts. In this case, Count-as
effects are defined to indicate how, since a noticeable event occurring in the overall sys-
tem (fact), some additional outcomes need to be elicited at the organisational level. In
so doing, an event op_exec_start dispatched by the door once a given agent is using it
to enter, from the point of view of the organisation “count-as” adopting the role “pa-
tient”. This role-adoption event suddenly “count-as” committing to mission m1, while

126 M. Piunti et al.

using the door to exit “count-as” leaving the role “patient”. At the same time, the event
signalling that the staff agent has successfully used the terminal to send the fee to a
given patient “count-as” having achieved the goal send-fee. It is worth remarking that
events triggering count-as rules can rise either from EAs (as in the case of events occur-
ring in the door and in the terminal) either from OAs (as in the case of role adoption,
which is suddenly related to a mission commitment). Besides count-as, Enact effects
are defined to indicate how, from the events occurring at the organisational level, some
control scheme need to be applied to the environmental infrastructure. Notice that by
not respecting the specified norms, the NormBoard OA automatically dispatches events
indicating observable property change, which in short show ongoing violations. Viola-
tions are thus organisational events (org-fact) which suddenly elicit the application of
some Enact rule which can be exploited for regimenting the environment. For instance,
regimentations are installed by the organisation thanks to the enact rules stating that a
door has to be disabled until a patient has paid the visit or the staff agent has sent the
fee through the terminal. Besides, once the maximum cardinality for the role patient
is reached an inconsistency is elicited, indicating the physical impossibility to further
play that role. According to the norm N01, this result in an observable property update
on the NormBoard (i.e., f ail(N01)). Therefore, adopting the role patient when visitors
cardinality is reached is an event enacting the removal of the enter operation from door
uic (agents are no longer able to use it).

6 Conclusion

We described a computational model enabling agents that are not aware of organisa-
tional structures to operate in embodied, artifact based organisations. As a consequence,
agents result situated in their application domain and can achieve their goals reasoning
on native constructs as internal events and mental states. Besides, the model allows
agents unaware of complex organisational specification to participate at complex or-
ganisational patterns. Moreover, thanks to the event based model of artifacts, organisa-
tions can be automatically acknowledged about relevant fact and ongoing changes in the
work environment, thus easing the agents from the need to explicitly notify the systems
about their ongoing activities. We envisage this aspect as a contribute for openness in
MAS organisations and, as discussed in [3], a first step for the challenge of reconciling
emergence with cognition, intentional behavior with social function, planning agents
with unaware styles of cooperation/coordination.

References

1. http://cartago.sourceforge.net
2. Campos, J., Lòopez-Sànchez, M., Rodrìguez-Aguilar, J.A., Esteva, M.: Formalising Situat-

edness and Adaptation in Electronic Institutions. In: Proc., COIN 2008 (2008)
3. Catelfranchi, C.: Engineering Social Order. In: Omicini, A., Tolksdorf, R., Zambonelli, F.

(eds.) ESAW 2000. LNCS (LNAI), vol. 1972, pp. 1–18. Springer, Heidelberg (2000)
4. Dastani, M.M., Grossi, D., Meyer, J.-J.C., Tinnemeier, N.A.M.: Normative Multi-Agent Pro-

grams and Their Logics. In: Proceedings, KRAMAS 2008 (2008)

http://cartago.sourceforge.net

Embodied Organisations in MAS Environments 127

5. Grossi, D., Aldewered, H., Dignum, F.: Ubi Lex, Ibi Poena: Designing norm enforcement
in e-institutions. In: Noriega, P., Vázquez-Salceda, J., Boella, G., Boissier, O., Dignum, V.,
Fornara, N., Matson, E. (eds.) COIN 2006. LNCS (LNAI), vol. 4386, pp. 101–114. Springer,
Heidelberg (2007)

6. Hewitt, C.: Perfect Disruption:The Paradigm Shift from Mental Agents to ORGs. IEEE In-
ternet Computing 13 (2009)

7. Hübner, J.F., Boissier, O., Kitio, R., Ricci, A.: Instrumenting Multi-Agent Organisations with
Organisational Artifacts and Agents. Journal of Autonomous Agents and Multi-Agent Sys-
tems (2009)

8. Hübner, J.F., Sichman, J.S., Boissier, O.: Developing Organised Multi-Agent Systems Using
the MOISE+ Model: Programming Issues at the System and Agent Levels. Agent-Oriented
Software Engineering 1(3/4), 370–395 (2007)

9. Fabio, Y., Okuyama, R.H., da Rocha Costa, A.C.: A distributed normative infrastructure for
situated multi-agent organisations. In: Proc., AAMAS 2008 (2008)

10. Ricci, A., Piunti, M., Acay, L.D., Bordini, R., Hubner, J., Dastani, M.: Integrating Artifact-
Based Environments with Heterogeneous Agent-Programming Platforms. In: Proceedings of
AAMAS 2008 (2008)

11. Ricci, A., Piunti, M., Viroli, M., Omicini, A.: Environment programming in CArtAgO. In:
Multi-Agent Programming: Languages,Platforms and Applications, vol. 2. Springer, Heidel-
berg (2009)

12. Ricci, A., Viroli, M.: A Formal Model for Artifact-Based Environments in MAS Program-
ming. In: Programming Multi-Agent Systems, PROMAS 2009 (2009)

13. Searle, J.R.: The Construction of Social Reality. Free Press (1997)

L. Braubach et al. (Eds.): MATES 2009, LNAI 5774, pp. 128–140, 2009.
© Springer-Verlag Berlin Heidelberg 2009

MACSIMA: On the Effects of Adaptive Negotiation
Behavior in Agent-Based Supply Networks

Christian Russ1 and Alexander Walz2

1 Dacos Software GmbH, Science Park 2, D-66123 Saarbrücken, Germany
christian.russ@dacos.com

2 University of Stuttgart, Graduate School of Excellence Advanced Manufacturing
Engineering, Breitscheidstr. 2c, D-70174 Stuttgart, Germany

alexander.walz@GSaME.eu

Abstract. In this paper, we describe the multiagent supply chain simulation
framework MACSIMA that allows the design of large-scale supply network to-
pologies consisting of a multitude of autonomous agents. MACSIMA provides
all agents with an adaptive negotiation module providing the fine-tuning of
learning capabilities on the basis of genetic algorithms as well as of settings
controlling the exchange of information about finished negotiations with other
cooperating agents. On this basis the co-evolution and adaptation of price nego-
tiation strategies as well as coalition formation processes of self-interested
business agents in B2B-networked domains can be fine-tuned, simulated and
evaluated. Our evaluation of the effects of self-adaptation on the overall turno-
ver and profit of a five-tier supply network scenario shows that coordination
outcome and efficiency vary significantly in dependence on (a) the elaborate-
ness of used learn parameterizations, (b) on the homogeneity of the distribution
of learn parameter settings within the agent society and (c) on the information
exchange settings. System outcomes are measured on a macro-level in overall
turnover, profit, and communication efficiency as well as on a group-level in
the distributed group portions on turnover and profit. Our analysis shows that an
expert learn and information exchange parameterization of the agents results in
an increase of the overall system outcome in sales and profit by approx. 500
percent and thus has to be fine-tuned for reaching an efficient and effective
coordination outcome. Moreover, expert parameterizations result in an im-
proved communication efficiency and outcome stability on the macro- and the
group-level. Providing a subgroup of agents with superior learn capabilities re-
sults in a shift of sales and profit to the smarter agents.

Keywords: Distributed Artificial Intelligence, Multiagent Systems, Simulation
Modeling and Output Analysis, Intelligent Agents, Evolutionary Learning, Ex-
perimental Economics, Agent-based Supply Chain Management, Coordination
Mechanism Design, Bilateral Negotiation, Genetic Algorithms.

1 Introduction

A supply chain is a chain of possibly autonomous business entities that collectively
procure, manufacture and distribute certain products. Since today's markets are highly

 MACSIMA 129

dynamic, supply chain partner companies are forced to form supply chains on the
basis of more flexible and co-operative partnerships. As a result, dynamic B2B supply
networks evolve in which the partner companies are not fixed but partner selection
and supply transactions are negotiated iteratively and dynamically over electronic
B2B marketplaces providing facilities for posting offered or demanded materials,
products, and price ideas as well as for matchmaking. But the coordination of the
numerous resulting selection and negotiation processes often becomes too complex
for humans to be handled efficiently. To cope this dilemma several researchers, e.g.
Chaib-draa and Müller [1], suggest the use of intelligent agents acting on behalf of the
supply chain companies and being able to adapt themselves to varying circumstances
and partner companies quickly and efficiently. But so far there exist almost no consol-
idated findings about what coordination efficiency results if negotiations about the
exchange of goods in a large-scale B2B scenario are totally transferred to business
agents that are purely self-interested and thus try to outperform their partners by ela-
borated negotiation strategies. To examine the resulting dynamics within a supply
network built up by adaptively negotiating agents, we have instantiated MACSIMA
(Multi Agent Supply Chain SIMulAtion Framework).

2 The MACSIMA Framework

The MACSIMA framework has been implemented in Java and offers a set of generic
supply chain agent types for instantiating supply network scenarios with the ability to
take part in bilateral negotiations, as well as with elaborated learning capabilities,
enabling them to learn simultaneously from negotiation successes and failures.

2.1 Simulation Scenario Definition and Agent Types

In MACSIMA, simulation scenarios can be defined and parameterized in a very de-
tailed way as well as with a high degree of freedom, so that the user is totally free to
decide on the structure of topology graphs, the number of tiers and the number of
interacting agents on each tier. In our simulation runs conducted so far we have con-
centrated on different instantiations of a five-tier-supply-network for computer manu-
facturing, as sketched in figure 1.

Fig. 1. Scenario for computer manufacturing with the corresponding top-level GUI

130 C. Russ and A. Walz

MACSIMA also offers a graphical user interface (GUI) that not only simplifies the
definition of topologies but also enables one to parameterize the learning capabilities
of each agent that is instantiated for a simulation run in detail as described later. The
system designer can choose different agent types and their number to be instantiated.
He can assign them to different groups and set their information exchange as well as
their learning capabilities. The generic agent types offered by MACSIMA are:

1. resource or supplier agents (Ri) supply raw materials to the network.
2. producer agents (Pi) buy raw materials or semi-finished goods from other agents

as input goods to a production function and offer their output goods for purchase.
3. consumer agents (Ci) buy products from producer agents and have a consumption

function that specifies their maximal willingness to pay.
4. good agents (Gi) keep an account of the number of successful (transactions) or

unsuccessful (rejections) price negotiations concerning a specific good.

Further views for specifying the supply network graph, the available goods, the
negotiation strategies, the initial strategy pools, the available evolutionary algorithms
and learning capabilities etc. can be accessed via clicking on the corresponding tabs.

The instantiated agents find each other by a directory service that administrates all
the agents with their unique names, addresses, agent type and properties. Supply
agents use this directory to find other agents with possibly intersecting goals. To find
out if a mutually beneficial transaction can be carried out, each agent may select
another agent in the network for starting a bilateral negotiation.

Fig. 2. Control cycle of a MACSIMA agent and its bilateral price negotiation protocol

2.2 Negotiation Protocol and Strategy Parameters

In the bilateral negotiation process, all agents are provided with the same action
alternatives derived from Pruitt’s strategic choice model [4] which states that humans
select in every negotiation step from among five basic strategies (unilateral conces-
sion: competitive behavior, coordinative behavior, idleness, and demolition). [2]
states that this set can be further reduced to three negotiation action alternatives:

1. Accept: the price proposal of another agent is accepted and the transaction is con-
ducted. The buyer pays the end price to the seller and receives the product.

 MACSIMA 131

2. Propose: the agent at turn does not agree to the price proposal of his opponent and
makes a new proposal on his part (with or without a change to his last proposal).

3. Reject: an agent breaks off the negotiation and starts another negotiation.

On the basis of these three negotiation acts the agents in MACSIMA use the
negotiation protocol sketched in figure 2 that is sufficient for modeling bilateral price
negotiations between agents in the examined supply network application domain.

For modeling complex strategic negotiation behavior on this basis we use six strat-
egy parameters that are explained in detail in [6] and determine the negotiation strate-
gy of an agent. These can take on values from the interval [0;1] and are stored per
agent in a so-called genotype, a data structure suitable for processing by a genetic
algorithm:

1. acquisitiveness (A)
2. delta_change (DC)
3. delta_jump (DJ)
4. satisfaction (S)
5. weight_memory (WM)
6. reputation (R)

The acquisitiveness specifies the willingness of an agent to make a unilateral conces-
sion on the next move. The price distance between the last price proposal and counte-
roffer of an opponent is specified by the parameter delta_change. The margin
between the buying costs for input goods of an agent and the demanded selling price
is defined by the delta_jump parameter. According to the next parameter satisfaction
the agent checks in each round if the negotiation goes on or is aborted. Each agent
calculates an internally “sensed” market price (SMP) to avoid nonsensical behavior
and extortion offers. Therefore the agent stores the end prices of successful negotia-
tions in a data structure memory and calculates the SMP with the parameter
weight_memory and exponential smoothing according to:

memory = offeredPrice * weight_memory + memory * (1-weight_memory);

All counterproposals between the SMP and its double value are estimated as uncertain
and a possible negotiation abort is tested with the formula:

if (offeredPrice >= memory) {
// ...then random reject check
if (randomNumberIsHigherThan(p_satisfaction)) { reject = true; }
 // reject all offers more than double memory

if (memory != 0 && offeredPrice > 2 * memory) { reject = true; } }

All proposals exceeding the doubled SMP are rejected directly to avoid extortion
offers. The last parameter reputation specifies the probability of finishing a deal cor-
rectly. This leads to the strategy vector <A, DC, DJ, S, WM, R>.

2.3 Adaptive Negotiation Module and Learn Parameter Settings

Each negotiation module of an agent possesses a genetic pool of genotypes. This pool
contains numerous genotypes that are employed in negotiations. After a negotiation
has been finished a fitness value is calculated for the genotype depending on the nego-
tiation outcome. Then the genotype is stored in combination with the ascertained

132 C. Russ and A. Walz

fitness value as plumage in a data structure called population. The sizes of pool and
population can be flexibly set for the negotiation module of each agent.

After the start of a bilateral negotiation, the first step of an agent is to choose a ge-
notype - determining his strategy for this negotiation - out of his pool of genotypes.
Then, both agents negotiate until one of them aborts the negotiations or their price
proposals cross and they make a mutually beneficial deal. After a successful negotia-
tion both agents calculate a fitness value for the used genotype and store the resulting
combination of genotype and estimated fitness as a so-called plumage into the popula-
tion data structure. If their information exchange mode is set to external or mixed,
they will afterwards send the resulting plumage to other agents, receive plumages
from other allied agents and store the self-calculated as well as the received plumages
in their population. If the number of stored plumages is larger than the population size
the agents will start their learning process by using their individually parameterized
evolutionary learning mechanism.

Fig. 3. Co-action of negotiation, information exchange, and learn process

When the learning process is started all plumages within the population are as-
signed to a selection method, which selects the plumages with the best fitness values
and assigns as many plumages to a recombination process as the pool size allows. In
this recombination process selected genotypes are recombined to new genotypes.
Optionally, the newly built genotypes can be modified by probabilistic mutation after

 MACSIMA 133

the recombination step. In the last step of the learning process, the old population of
the agent is deleted and the newly generated pool is assigned to the agent according to
his specific replacement scheme. After that the agent may start new negotiations. The
possible parameter settings for the learning process are described in table 1. The de-
tailed parameterization is described in [6] and [7]. For this reason, we describe in the
following only some selected parameters settings: The agents can learn either by
themselves, i.e. do not exchange and use information with others or send and receive
so called plumages (genotypes used in successfully finished negotiations with a fit-
ness value) to other agents. In the external learning mode they learn exclusively from
the experience made by “colleagues” in the mixed learning mode.

Table 1. Parameter settings for the learn process instantiation in MACSIMA

Information Exchange Settings Pool and Population Settings
− Internal
− External
− Mixed

− Pool size
− Population size

Fitness Calculation Methods Selection Methods
− Price minus average (PMA)
− Percental average proceeds (PAP)
− Percental absolute proceeds(PAB)
− Percental mean proceeds (PMP)

− Binary competition
− Roulette-wheel-selection
− Deterministic selection
− Deterministic average selection
− Deterministic average selection
 with deleting the worst individual

Recombination Methods Mutation Methods
− N-point-crossover
− Random crossover
− No recombination

− Single mutation
− General mutation

Replacement Scheme Settings
− Elitism
− Weak elitism

Fitness Calculation
The fitness value can be calculated with several different methods. The simplest me-
thod is the price minus average (PMA) function where the fitness value is calculated
as fitness = average_price – current_price. The percental average proceeds (PAP)
method takes the duration of the negotiation in account by dividing the PMA value by
the average_price (negotiated by using the genotype) times the number of rounds in
which the genotype was used. The percental absolute proceeds (PAB) method replac-
es the average_price by a fixed basic_price. The percental mean proceeds (PMP)
method uses the mean value of the starting price proposals of both negotiation part-
ners (called medium_price) instead of the average price.

Selection
The binary competition (BC) compares two individuals Ik and Il randomly selected
from the current population and copies the one with the higher fitness value in the
new population until its maximum size is reached. The roulette wheel selection (RWS)
assigns a section on a wheel based on the fitness value according to the formula:

134 C. Russ and A. Walz

 , with

: Angel assigned to the kth individual, N: Number of individuals

: Fitness value of the kth individual

The deterministic selection (DS) method calculates an expectation value according to:

Expectation E(Ik) =

The deterministic average selection (DtS) calculates for all genotypes in the current
population an average fitness value (AFV) – in case a genotype was used several
times. The genotype with the best AFV is copied directly into the new population, the
genotype with the worst AFV is deleted and the remaining genotypes are selected
according to the DS method. The deterministic average selection (DAS) fills up the
new population by the genotypes from the current population with the pool_size - 1
best average fitness values. The last free place in the new population is filled by a
genotype whose genes are calculated as the mean of the genes of the genotypes that
have already been copied into the new population. Afterwards, the recombination
process breaks two genotypes at a time apart on n genes and links the resulting pieces
cross-over. To keep the diversity the resulting set of recombined genotypes may be
modified by several mutation methods before being copied into the new population.

3 Differentiation Factors of MACSIMA

An advantage of MACSIMA is the ability to set up nearly all possible supply network
layouts and to instantiate them with numerous intelligent agents using a learning
mechanism that can be adjusted to great detail. The experimental results of Lau et al.
[3] show that such an evolutionary learning approach for adaptive negotiation agents
in e-business scenarios can outperform a theoretically optimal negotiation mechanism
guaranteeing Pareto optimality.

This is a progressive step as compared to the limited learning features of precedent
approaches for the simulation and analysis of the effects of learning on the outcome
of negotiations in such environments. They offer only very limited learning capabili-
ties, e.g. Eymann [2] and Smith and Taylor [6], and almost no support in examining
the effects on the generation of social welfare quantitatively. One further differentiat-
ing factor consists in the fact that MACSIMA agents can use different information
exchange modes with respect to the extent of information exchange with other agents.
In this way, the experimenter is able to build cooperating groups out of several agents
on each tier and to examine the effects of coalition formation between agents. In this
way, the evolution of an agent’s negotiation strategy is not only guided by its own
experience but can also take the experience of other agents into account.

Both allows for comparing different learning mechanisms in combination with dif-
ferent information exchange modes under the same external influences and constraints
in a supply network. To our knowledge MACSIMA represents so far the only simula-
tion framework suitable for this kind of experimental simulation and outcome analysis.

α = 360
f (Ik)

f (In)
n=1

N∑
α

)(kIf

∑ =

N

n n

k
If

N
If

1
)(

)(

 MACSIMA 135

4 Simulation Results

The agents in MACSIMA log their internal status as well as their activities, negotia-
tion steps and final outcomes in several separated and statistically evaluable data files.
This raw data comprises information about the evolution of the agents’ individual
negotiation strategies, the course of negotiations together with their outcomes etc. and
can be easily transformed into diagrams that show the course of the evolution process
of the agents’ strategy parameters together with the emerging price fluctuations for
the traded goods in the time elapsed. In our simulation runs conducted so far we have
mainly concentrated on different instantiations of a five-tier-supply-network for com-
puter manufacturing as shown in figure 1. Scenarios have been run with 50 agents
each on an Intel Quadcore-architecture with 3 GB RAM and 32bit Windows Vista as
operating system. We have examined whether there exists a parameterization by
which - if applied by all the agents in a network - social welfare maximizing effects
may be expected.

4.1 Parameter Settings for Maximizing Profit, Turnover and Communication
Efficiency

Therefore we have defined 50 simulation scenarios including two “baseline”
scenarios each with a different parameterization of the learning process. In the first
baseline setting learning was turned off for all agents and in the second the STDEA
mechanism of Smith and Taylor [6] was used by all agents. An infelicitous parameter
choice results in a waste of welfare in such a way that overall turnover and sales may

Fig. 4. Expert parameterization maximizes overall profit and turnover

136 C. Russ and A. Walz

fall under the level of both baseline settings (see fig. 4). Otherwise, an expert
parameterization outperforms the first baseline by approximately 500 percent. The top
parameterization we found (scenario 50 in the following figures) has the settings:

<pool_size = 3, population_size = 40, information_exchange = mixed,
 selection_method = roulette-wheel, recombination = n-point-crossover,
 mutation_rate = 0.5, Gaussian_width = 0.01, replacement_scheme = elitism>.

Due to the non-deterministic behavior of the agents during each simulation run, the
values shown in fig. 4 represent the means of the overall sales and profit generated in
4 simulations runs that have been conducted for each of the 50 scenarios.

Profit and turnover correlate with the number of successfully finished negotiations,
i.e. transactions (see fig. 5). This is due to the fact that an expert parameterization of
the learning mechanism results in less negotiation break-offs since the agents adapt
their negotiation behavior better to the expectations of their opponents.

Fig. 5. Number of rejections and transactions in 50 scenarios

4.2 Expert Parameterization Improves Outcome Stability

The learning parameterizations generating the best outcomes with respect to sales and
profit not only achieve this in the average but also show significantly fewer variations
than the low-performing learning parameterizations of the scenarios 1 – 25.

This can be seen in fig. 6 showing the variation coefficients (= root mean square
deviation / mean) for overall sales and profit calculated from 4 simulation runs for
each scenario. But advanced learning parameterization not only produces more stable
system outcomes on a macro-level, but also stabilizes the system outcomes on a
medio-level, i.e. for the different interacting agent groups. Our analysis shows e.g.
that the variations of the sales and profit portions of the agent groups decrease with
the performance of the learning mechanism as can be seen in fig. 7 showing the
variation of the group outcomes for 5 clusters with 10 scenarios each.

 MACSIMA 137

Fig. 6. Variation coefficients for overall sales and profit in 50 scenarios

Fig. 7. Group sales and profit in 5 scenario clusters

This figure shows the results in a clustered manner for the sake of clarity. To un-
derline the findings, we show in figure 8 also the detailed mean values (from 4 simu-
lation runs) for the group sales and profits for the 10 lowest-performing (cluster 1)
and the 10 best-performing (cluster 5) scenarios. By comparing the charts (A) and (B)
as well as (C) with (D) it can be seen that the overall system outcome in sales and
profit is distributed much more evenly in cluster 5 than in cluster 1.

4.3 Effects of a Heterogeneous Parameterization of the Agents

So far we have only analyzed scenarios in which all agents use the same learning
parameterization. Now we examine the sales and profit distribution effects that occur
when an agent group is composed of agents with different learning capabilities.

138 C. Russ and A. Walz

Fig. 8. Sales and profit distribution in the 10 poorest and richest scenarios

Fig. 9. Agents with expert parameterization outperform their neighbors

As shown in figure 9, we have conducted a test run in which we designed the learn
capabilities of the 10 processor producer agents at level 3 of our 5 tier test supply
chain heterogeneously. We provided 5 agents with the fifth-best learn parameteriza-
tion used in scenario 45 from figure 4.

 MACSIMA 139

All other agents were provided with the STDEA parameterization from scenario
18. In figure 9 (C) it can be seen that this results in a slight increase in the collective
sales portion of all processor producer agents at the expense of the neighboring chip
and computer producers. Since the chip producers learn to make more concessions in
negotiations with the processor producers they transfer this adaptation to their negoti-
ation behavior in interactions with the upstream suppliers. The supplier agents take
advantage from this effect and also manage to increase their sales portion slightly. In
the overall sales portion of the processor producers, the 5 agents instantiated with the
expert learn parameterization realize a significantly disproportionate share of 72%.
Furthermore, figure 9 (D) shows that the 5 better parameterized agents realize a
similar share of 73% in the overall profit portion of all processor agents. Compared to
the setting in which all agents use the STDEA parameterization (see fig. 10 (B)) the
group of processor agents increases their profit portion by 7 percentage points at the
expense of significant losses at the neighbored tiers (chip producers -6 percentage
points and computer producers -5 percentage points) while the supplier agents benefit
from the “weakness” of the chip producers and increase their profit by 4 percentage
points.

5 Conclusion and Outlook

We have described the MACSIMA framework for simulating the negotiation-based
coordination of self-interested agents in B2B-enabled supply network domains. In
particular, we presented a negotiation protocol for bilateral price negotiations together
with the design of an adaptive negotiation module that can be used by the agents for
adapting their negotiation strategies. We have outlined simulation results with a first
focus on the effects of different learn mechanism parameterizations on the overall
profit and sales of a networked agent-based supply economy. The results show that, if
one intends to use negotiating agents for coordinating a supply network, the paramete-
rization of the learning mechanism of the agents has to be fine-tuned for reaching an
efficient and effective coordination outcome. Depending on the parameter settings of
the agents the overall profit and turnover of a supply network varies significantly such
that – compared to a scenario in which the agent have no learning capabilities (scena-
rio 18) – an endowment of all agents with an expert learn parameterization can in-
crease the overall system outcome by approx. 500 percent.

Moreover, an expert parameterization results in an improved communication effi-
ciency as well as in an increased outcome stability with respect to absolute and
distributed sales and profit results on the macro- and the group-level. Furthermore,
endowing a subgroup of agents on one tier of the supply chain with superior learn
capabilities results in a shift of sales and profit from neighbored tiers to the smarter
agents. Further work will be directed towards a detailed analysis of the micro- and
macro-effects (e.g. society loses welfare whereas some individuals benefit) in depen-
dence on varying learn and information exchange parameterizations on different tiers
of a supply chain. Beyond that, we intend to further improve the adaptation perfor-
mance of the negotiation module by integrating a second pool so that adaptation
processes for buy- and sell-negotiations can be conducted completely self-contained.

140 C. Russ and A. Walz

References

1. Chaib-draa, B., Müller, J.P. (eds.): Multiagent based Supply Chain Management. Springer,
Berlin (2006)

2. Eymann, T.: AVALANCHE - Ein agenten-basierter dezentraler Koordinationsmechanismus
für elektronische Märkte, Inaugural-Dissertation, Albert-Ludwigs-Universität Freiburg im
Breisgau (2000)

3. Lau, R.Y.K., et al.: An Evolutionary Learning Approach for Adaptive Negotiation Agents.
International Journal of Intelligent Systems 21(1), 41–72 (2006)

4. Pruitt, D.G.: Negotiation Behavior. Academic Press, New York (1981)
5. Russ, C., Walz, A.: MACSIMA: An Agent Framework for Simulating the Evolution of Ne-

gotiation Strategies in B2B-Networked Economies. In: Proceedings of the 23rd European
Conference on Modelling and Simulation, ECMS 2009 (upcoming, 2009)

6. Smith, R.E., Taylor, N.: A Framework for Evolutionary Computation in Agent-Based Sys-
tems. In: Looney, C., Castaing, J. (eds.) Proceedings of the 1998 International Conference
on Intelligent Systems, pp. S221–S224 (1998)

7. Weicker, K.: Evolutionäre Algorithmen. In: Leitfäden der Informatik, Frankfurt, B.G.
Teubner, Stuttgart – Leipzig – Wiesbaden (2002)

Towards Reactive Scheduling for Large-Scale
Virtual Power Plants

Martin Tröschel and Hans-Jürgen Appelrath

OFFIS - Institute for Information Technology, Escherweg 2, 26121 Oldenburg
martin.troeschel@offis.de

http://www.offis.de/

Abstract. Concerning distributed energy management, virtual power
plants are a frequently discussed topic. Although there are several dif-
ferent approaches to the coordination of distributed energy resources in
this context, the inherent dynamics of this complex task especially relat-
ing to reactive scheduling have mostly been neglected. As a consequence,
this paper discusses MARS, a multiagent-based coordination approach
contributing to the solution of the reactive scheduling problem for vir-
tual power plants. Following an introduction to scheduling in the energy
domain, a general formalization of scheduling in virtual power plants is
given. This formalization is used as starting point for the specification
of the control system coordinating the distributed energy resources. Fi-
nally, the performance of the resulting domain-specific multiagent system
is reviewed by means of simulation.

1 Introduction

Virtual power plants (VPP), defined as capacity bundling of distributed energy
resources (DER) by means of an IT-infrastructure, are expected to play an im-
portant role in the future energy supply. By application of different coordination
mechanisms, they allow for combined market participation of energy resources
such as combined heat and power (CHP) or photovoltaic (PV) plants, enable
enhanced load levelling in distribution grids [7] and contribute to a reduction
of the otherwise uncoordinated and stochastic electrical feed-in of distributed
energy resources [8].

Centralized architectures with a single control unit currently are the pre-
dominant ([1], [7], [8]) approach, as they allow for a simple implementation of
different optimization strategies. In contrast, recent works propose hierarchical
and decentralized architectures based on multiagent systems focusing on sin-
gle coordination strategies (q.v. Sec. 2). Generally, coordination strategies and
mechanisms for the control of distributed energy resources can be classified on
a temporal level. According to [3], two distinct scheduling modes can be distin-
guished: predictive scheduling, comprising resource scheduling tasks in long-term
and short-term planning, and reactive scheduling. The goal of predictive schedul-
ing, and day-ahead resource scheduling in particular, is the generation of optimal
operation schedules for power plants. Optimality depends on the application of

L. Braubach et al. (Eds.): MATES 2009, LNAI 5774, pp. 141–152, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

142 M. Tröschel and H.-J. Appelrath

the power plant, e.g. optimal matching of electrical power supply and demand,
profit maximization in energy trade, etc. The necessity for reactive mechanisms
in (virtual) power plant control particularly arises from inevitable forecasting
errors1. For conventional power plants like coal-fired power plants, day-ahead
scheduling is primarily dependent on forecasts of electric power demand. In vir-
tual power plants comprising a large number of distributed power units, however,
the quality of day-ahead scheduling also depends on forecasts of electrical power
supply, e.g. of PV plants, and of the estimated thermal demand of buildings
with CHP plants. Thus, the overall inaccuracy of the data used as the basis for
day-ahead operation scheduling increases, resulting in run-time deviations from
the initial schedules of single DER and the overall schedule of the VPP. As a
consequence of these schedule deviations, expensive balance energy has to be
provided by conventional power plants, thus impairing both the economic and
the ecological potential of distributed energy generation.

Dealing with schedule deviations is the main task of reactive scheduling. Upon
detection of a schedule deviation, the control mechanisms of a virtual power plant
has to provide alternative power capacities in order to mimimize the resulting
deviation of the overall schedule2. The typically large number of controlled DER
complicates this task: First, suitable rescheduling potential has to be identified.
The individual potential of each DER depends on on-site and time-dependent
state information like the charging level of the thermal water storage of a CHP
plant. Second, single DER might not be able to provide sufficient reschedul-
ing potential. In this case, multiple distributed plants have to be coordinated
adequately.

Despite its importance, reactive scheduling for virtual power plants currently
is a little considered research topic. Therefore, this work introduces a flexible
reactive control system for VPP that contributes to a minimization of over-
all schedule deviations and supports the realization of a more dependable dis-
tributed electrical power supply.

2 Related Work

In [1], a central supervision and control component for online optimization in
virtual power plants is proposed. The basic idea of online optimization is a
continuous re-optimization of resource schedules, adjusting them to up-to-date
information such as the resources’ states, weather conditions, etc. Since the con-
ceptual details are not explained, a final analysis regarding the suitability of this
approach is not possible.

In contrast, the PowerMatcher approach discussed in [6] introduces a hierar-
chically organized multiagent system for the optimized matching of electrical sup-
ply and electrical demand. Consumers and producers of electrical energy are
represented by individual agents, which are assigned to hierarchically superior SD-
Matcher agents (q.v. Fig. 1). Supply-demand-matching is realized by means of an
1 Both thermal and electrical demand depend on human behaviour.
2 Q.v. Sec. 3 for a formalization of this requirement.

Towards Reactive Scheduling for Large-Scale Virtual Power Plants 143

on-the-fly auction-based market mechanism, thus allowing for pareto-optimal re-
sults and avoiding the necessity of reactive mechanisms. The high quality of the re-
sulting coordination of DER is a major advantage of the PowerMatcher approach.
On the other hand, the focusing on a single coordination strategy restricts the po-
tential applications of virtual power plants. For example, a directed provision of
balance energy is not possible.

Fig. 1. Hierarchically organized supply-demand-matching according to [6]

Like PowerMatcher, DEZENT [9] is realized as a hierarchically organized mul-
tiagent system implementing an auction-based market mechanism. Since the con-
trol system of DEZENT aims at a real-time coordination of supply and demand
of electrical energy, the main difference regarding the PowerMatcher approach
is the temporal resolution of the auction cycles. Thus, the already identified
advantages and disadvantages of PowerMatcher also apply to DEZENT.

3 Formalization of Scheduling for Virtual Power Plants

The following section presents a formalization of scheduling for virtual power
plants. The terminology is a prerequisite for specification of the multiagent-
based control system proposed in Sec. 4.

To begin with, a set of resources is introduced:

Definition 1 (Resources). R = {r1, ..., rn} is a final, non-empty set of dis-
tributed energy resources.

Following the definition given in Sec. 1, a VPP supervises and controls all DER
r ∈ R by generating and adjusting operation schedules for a given scheduling
horizon:

Definition 2 (Scheduling horizon). The scheduling horizon T ⊂ IN is a
final, non-empty set of period identifiers. t ∈ T is called scheduling period.

Schedules assign a certain amount of scheduled electrical power to the given
scheduling periods t ∈ T :

144 M. Tröschel and H.-J. Appelrath

Definition 3 (Schedule). For scheduling period t ∈ T and scheduled power
p ∈ Q the function s : T → Q, s(t) = p, is called schedule. S is the set of all
schedules.

Operation schedules assign schedules s ∈ S to resources r ∈ R:

Definition 4 (Operation schedule). For resource r ∈ R and schedule sr ∈ S
the function os : R → S, os(r) = sr, is called operation schedule. OS is the
set of all operation schedules.

The overall schedule of a virtual power plant comprises all individual resource
schedules and can be derived from the associated operation schedule:

Definition 5 (Overall schedule). For a scheduling horizon T , a set of re-
sources R and an operation schedule os ∈ OS the overall schedule of a VPP
is defined by

ŝos(t) :=
∑
r∈R

sr(t) where sr = os(r) and t ∈ T. (1)

Predictive scheduling for virtual power plants particularly includes the task to
generate an initial operation schedule. In doing so, several constraints regarding
the resources’ characterstics have to be taken into account:

Definition 6 (Hard constraints). HC = {hc1, ..., hch} is a final set of hard
constraints. The specification of HC depends on the application scenario of the
VPP.

In the context of distributed energy resources, hard constraints can be classified
as time-invariant constraints and time-variant or rather state-dependent con-
straints. Examples for time-invariant constraints are technologically restricted
maxmimum (and minimum) power supply capacities or minimum run-times of
CHP plants. Examples for state-dependent constraints are the charging level of
storage devices for thermal or electrical energy, the electrical power feed-in of
PV plants or the thermal demand of buildings with CHP plants.

Definition 7 (Soft constraints). SC = {sc1, ..., scs} is a final set of soft
constraints. The specification of SC depends on the application scenario of the
VPP.

While hard constraints especially refer to technological attributes, soft con-
straints comprise economic and ecological preferences such as fuel costs or pre-
ferred usage of power supplies based on carbon dioxid-neutral energy sources.
By now, day-ahead scheduling can be defined as follows:

Definition 8 (Day-ahead scheduling problem). A day-ahead scheduling
problem for virtual power plants is given by the 5-tuple (R, T, f, HC, SC). It
comprises the task to find an operation schedule os ∈ OS for a set of resources
R and a scheduling horizon T w.l.o.g. maximizing a target function f : OS → Q
and complying with the constraints in HC and SC.

Towards Reactive Scheduling for Large-Scale Virtual Power Plants 145

As already mentioned in Sec. 1, deviations from the initially generated operation
schedule are likely to occur. Therefore, reactive scheduling is necessary. The
following definitions formalize this task.

Definition 9 (Partially realized schedule). For a scheduling period t ∈ T
and a schedule s ∈ S, the partially realized schedule s at time t is definded
by

s(ti) :=

{
s(ti) + α(ti) if ti ≤ t,

s(ti) else.
(2)

Partially realized schedules may exihibit positive and/or negative schedule de-
viations α(ti) for each scheduling period ti ≤ t, ti, t ∈ T , where t is the present
period in terms of execution time.

Definition 10 (Schedule deviation). For a scheduling period t ∈ T , a sched-
ule s ∈ S and the partially realized schedule s at time t the schedule deviation
is defined by

δ(s,s)(t) := s(t) − s(t). (3)

Schedule deviations may add up over time. The main goal of reactive scheduling
in VPP is the minimization of these deviations. The metric introduced below
is used to quantify the performance of reactive scheduling methods relating to
individual resource schedules:

Definition 11 (Mean schedule deviation). For a scheduling period t ∈ T , a
schedule s ∈ S and the partially realized schedule s at time t the mean schedule
deviation is defined by

Δ(s,s) :=

√
1
|T | ·

∑
t∈T

(δ(s,s)(t))2 =

√
1
|T | ·

∑
t∈T

(s(t) − s(t))2. (4)

The following definitions expand the concepts of partially realization and devi-
ations from schedules to operation schedules.

Definition 12 (Partially realized operation schedule). For a scheduling
period t ∈ T and an operation schedule os ∈ OS the partially realized opera-
tion schedule os at time t is defined by

os(r) := sr for all r ∈ R. (5)

Partially realized operation schedules assign partially realized schedules to re-
sources. Therefore, deviations from operation schedules are defined relating to
the overall schedule of a VPP:

Definition 13 (Operation schedule deviation). For a scheduling period t ∈
T , an operation schedule os ∈ OS and the partially realized operation schedule
os at time t the operation schedule deviation at time t is defined by

δ(os,os)(t) := δ(ŝos,ŝos)(t)

=
∑
r∈R

(sr(t) − sr(t)). (6)

146 M. Tröschel and H.-J. Appelrath

With this definition in mind, the following metric can be introduced to measure
the performance of reactive scheduling methods relating to the overall schedule
of a VPP:

Definition 14 (Mean operation schedule deviation). For a scheduling pe-
riod t ∈ T , an operation schedule os ∈ OS and the partially realized operation
schedule os at time t the mean operation schedule deviation at time t is
defined by

Δ(os,os) :=

√
1
|T | ·

∑
t∈T

(δ(os,os)(t))2 =

√
1
|T | ·

∑
t∈T

(
∑
r∈R

(sr(t) − sr(t)))2. (7)

With the background of definitions Def. 1 - Def. 14, it is possible to define
reactive scheduling for virtual power plants:

Definition 15 (Reactive scheduling problem). The reactive scheduling
problem for virtual power plants at execution time t is characterized by the
5-tuple RSP = (R, t, os, HC, SC). It comprises the task to find an operation
schedule õs ∈ OS minimizing the mean operation schedule variance Δ(os,os) of
an initial operation schedule os ∈ OS at time t ∈ T by generating individual
schedules for all resources r ∈ R in compliance with the constraints in HC and
(preferably) SC.

It must be pointed out that Def. 15 is limited, as it neglects the target function
of the day-ahead scheduling problem and therefore doesn’t take an online opti-
mization of the operation schedule into account. Therefore, an optimal solution
õs ∈ OS of a reactive scheduling problem RSP will result in Δ(õs,os) = 0, thus
avoiding unnecessary provision of balancing energy.

4 Reactive Scheduling for Virtual Power Plants

Based on Def. 1 - Def. 15, this section proposes MARS, a multiagent-based
control system able to solve the reactive scheduling problem for virtual power
plants. First, the domain-specific requirements concerning the coordination of
DER in VPP are identified. Second, two types of agents, namely resource agents
and order agents, are introduced. Last, the interactions necessary to resolve
schedule deviations are specified in compliance with the identified requirements.

4.1 Domain-Specific Requirements

Multiagent-based control systems have been successfully applied to scheduling in
different domains such as production planning and control [5] or transportation
scheduling [4]. Yet, scheduling for VPP is subject to a set of distinct, domain-
specific requirements:

– DSR1: The spatially distributed character of virtual power plants results
in location-dependent basic conditions for individual energy resources, e.g.
local solar irradiation, that have to be taken into account.

Towards Reactive Scheduling for Large-Scale Virtual Power Plants 147

– DSR2: Depending on individual power capacities, for certain applications
of VPP such as provision of balancing power the coordination of several
thousand DER may be required.

– DSR3: Future virtual power plants are not necessarily statically composed.
Thinking of e-mobility and of electric vehicles as mobile storage devices for
electrical energy in particular, the plant configuration of virtual power plants
may change even during run-time.

Due to their inherent robustness and flexibility, distributed control systems based
on intelligent agents are especially suitable to cover these requirements.

4.2 MARS – Multiagent-Based Reactive Scheduling System for
Virtual Power Plants

Given an exemplary set of constraints, Table 1 lists the tasks necessary to solve
RSP as well as the affected DER of a VPP:

Table 1. Tasks necessary for reactive scheduling in VPP.

ID task components

time-invariant hard constraints (e.g. regarding CHP plants or storage devices)

T1 adjust sr such that ∀t ∈ T : pr,min ≤ sr(t) ≤ pr,max, where pr,min

and pr,max are the minimum and maximum power capacities of
ressource r

r ∈ R

T2 adjust sr in compliance with the minimum and maximum run-
times of ressource r

r ∈ R

T3 adjust sr such that ∀t ∈ T : cr,min ≤ sr(t) ≤ cr,max, where
cr,min and cr,max are the minimum and maximum charging levels
of ressource r

r ∈ R

state-dependent hard constraints (e.g. regarding PV plants or storage devices)

T4 adjust sr such that ∀t ∈ T : pr,min ≤ sr(t) ≤ pr(t), where pr(t) is
the current power capacity of ressource r

r ∈ R

T5 adjust sr such that ∀t ∈ T : cr,min ≤ sr(t) ≤ cr(t), where cr(t) is
the current charging level of ressource r

r ∈ R

soft constraints (e.g. economical, local optimization)

T6 balance the utilization of ressource r over scheduling horizon r ∈ R
T7 maximize the degree of utilization of ressource r r ∈ R

global optimization

T8 minimize δ(sr,sr)(t) via negotiation of power capacities with alter-
native resources r′1, ..., r

′
k

r, r′1, ..., r
′
k ∈ R

Solving the reactive scheduling problem RSP = (R, t, os, HC, SC) at time t
therefore comprises at least the following steps:

1. For each resource r ∈ R, check the compliance of the partially realized
schedule sr with all time-invariant hard constraints in HC (T1 - T3).

148 M. Tröschel and H.-J. Appelrath

2. For each resource r ∈ R, check the compliance of the partially realized
schedule sr with all state-dependent hard constraints in HC (T4 - T5).

3. For each resource r ∈ R, try to minimize the schedule deviation δ(sr ,sr)(t)
by reassigning the required power capacity to alternative resources (T8).

4. For each resource r ∈ R, try to comply with all soft constraints in SC (T6 -
T7).

Since tasks T1 - T9 solely refer to a single resource r ∈ R and can thus be
solved locally, it is suitable to introduce a resource agent for every resource
r ∈ R of a VPP. A resource agent supervises it’s dedicated DER and takes care
of any schedule deviations occuring during execution time. Fig. 2 displays the
internal states of a resource agent: First, the partially realized schedule sr ∈ S of
resource r is adjusted to comply with both time-invariant and state-dependent
hard constraints in HC. Second, any schedule deviations resulting from the
adjustments made in previous steps have to be minimized by negotiating power
capacities with alternative resource agents. Third, sr can be locally optimized
regarding the soft constraints in SC.

Fig. 2. Internal state diagram of a resource agent

As displayed in Fig. 2, the state transitions are organized in a prioritized
manner. Thus, a resource agent will only try to optimize it’s resource’s schedule
regarding SC if all hard constraints are fulfilled and all schedule deviations are
handled. Furthermore, the resource agent ensures that schedule sr is feasible
and thus physically executable at any time. The successful handling of schedule
deviations (state 2) can be subdivided into two tasks: First, promising resources
have to be localized. Second, the required power capacity has to be negotiated.
Since a VPP may comprise a large number of distributed energy resources, find-
ing suitable negotiating partners is an independent problem (q.v. Sec. 6). Given
the possibly large number of DER and the fact that day-ahead scheduling re-
lies on several types of forecasts (q.v. Sec. 1), schedule deviations are likely to

Towards Reactive Scheduling for Large-Scale Virtual Power Plants 149

occur. Furthermore, the handling of schedule deviations can be extensive and
time-consuming. Thus, order agents solely responsible to complete task T10
are introduced. This yields the following specification of agent types:

Table 2. Specification of agent types of a distributed control system for VPP

agent type available information allocated tasks

properties of resource r ∈ R,
resource agent initial resource schedule sr ∈ S, T1 - T9

current resource schedule sr ∈ S,

target power capacity pt ∈ Q,
order agent deadline td ∈ T , T10

initiating resource agent

Based on the internal state diagram of resource agents in Fig. 2 and the
specification of agent types in Table 2, the process displayed in Fig. 3 allows for
a flexible and efficient3 handling of local schedule deviations δ(sri

,sri
).

Fig. 3. Handling of local schedule deviations

As simplification, it is assumed that all resource agents and order agents
mutually know each other. Thus, the search for negotiation partners can be mo-
mentarily omitted (q.v. Sec. 6). The handling of schedule deviations subdivides
into five steps:

1. At execution time t, the resource agent supervising resource ri detects a
local schedule deviation δ(sri

,sri
)(t). To handle this event, an order agent

o
(j)
ri is initiated with the goal to acquire the power capacity pt = δ(sri

,sri
)(t)

to balance the deviation.
3 Q.v. Sec. 5.

150 M. Tröschel and H.-J. Appelrath

2. Based on the Contract Net interaction protocol, the order agent o
(j)
ri ne-

giotiates with other order agents in order to find a complementary target
capacity. At best, o

(j)
ri (and one or more other order agents) acquires it’s

target capacity without the necessity of further negotiations with resource
agents.

3. If o
(j)
ri hasn’t reached it’s target capacity yet, it enters Contract Net-based

capacity negotiations with a set of resource agents selected from the known
resources.

4. If the target capacity pt is reached after the negotiations or the deadline td
has expired, the order agent reports back to the initiating resource agent ri,
which adjusts it’s schedule according to o

(j)
ri ’s successfully acquired capacity.

Then, o
(j)
ri terminates.

An advantage of the resource and order agents’ distributed competences is es-
pecially the possibilty to further specialize both agent types according to their
distinct tasks. Plus, resource agents provide a continuous supervision of their
associated distributed energy resource, since they don’t have to proactively4

negotiate with other agents. Concerning the domain-specific requirements iden-
tified at the beginning of this section, it has to be pointed out that especially
the requirements DSR1 and DSR3 are covered due to the distributed character
of the proposed control system. Requirement DSR2 is subject to the discussion
in Sec. 6.

5 Evaluation

5.1 Premises

The evaluation of MARS was realized using the simulation tool ”E3Sim - Sim-
ulation of Distributed Energy Resources, Energy Infrastructures and Energy
Management Systems”, which was developed in an interdisciplinary effort by
the ”Energy Research Alliance Lower Saxony” [7]. E3Sim models CHP and PV
plants, thermo-hydraulic properties of (non-business) buildings and power grid
characteristics. Three different configurations of VPP with an increasing number
NCHP of CHP plants providing the total electrical power Pel were simulated (q.v.
Table 3). The dimensioning of the simulated CHP units was based on the total
yearly thermal demand of the respective building regarding an average yearly
operation time of approximately 5000 to 6000 hours. All units were assumed to
support modulating operation and were additionally equipped with a thermal
storage able to buffer the thermal output of approximately two full load hours.
As day-ahead scheduling method, the system-load oriented operation mode of
CHP [7] was applied. As alternative reactive scheduling concept, a self-developed
central dispatcher (CDisp) controlling all DER was implemented. CDisp handles
schedule deviations by selecting available CHP plants from a fixed, unsorted list
and, if possible, adjusting their schedules to match the required balance capacity.
4 They have, of course, to react to capacity requests from order agents.

Towards Reactive Scheduling for Large-Scale Virtual Power Plants 151

Forecasting errors were modeled by distorting the thermal and electrical load
curves of the simulated buildings via multiplication with gaussian distributed
random numbers (mean 1.0, variance 0.05). For every season, the results were
obtained by averaging five simulation runs of typical days with a temporal res-
olution of 15-minute intervals.

5.2 Simulation Results

Table 3 presents exemplary simulation results of three scenarios varying in NCHP.
The factor λ represents the percentaged improved compliance of the simulated
VPP with it’s initial operation schedule regarding a reference value Δref

(os,os). The
latter was obtained by simulating a scenario without consideration of reactive
scheduling.

Table 3. Exemplary simulation results and key data for different seasons (S = summer,
T = transitional season, W = winter)

NCHP (Pel) season Δref
(os,os) ΔMARS

(os,os) λMARS ΔCDisp
(os,os) λCDisp

S 29.8 kW 25.5 kW 14.6 % 25.0 kW 16.2 %
11 (96.25 kW) T 30.1 kW 27.1 kW 9.9 % 27.2 kW 9.5 %

W 8.9 kW 8.2 kW 8.3 % 8.0 kW 10.0 %
S 134.8 kW 115.2 kW 14.6 % 117.7 kW 12.7 %

50 (437.5 kW) T 133.7 kW 121.6 kW 9.1 % 118.6 kW 11.3 %
W 35.6 kW 32.4 kW 8.9 % 33.2 kW 6.6 %
S 270.9 kW 223.6 kW 17.5 % 231.0 kW 14.7 %

100 (875 kW) T 265.4 kW 234.3 kW 11.7 % 236.9 kW 10.7 %
W 71.4 kW 66.4 kW 7.0 % 65.4 kW 8.4 %

Both MARS and CDisp perform best in summer. This effect is based on the
comparatively low thermal demand, resulting in a higher flexibility of the CHP
plants’ operation times. While λMARS varies little in the first two scenarios and
significantly improves in third scenario, λCDisp doesn’t exhibit a distinct trend.
A possible reason of the rather random performance is the following: CDisp ac-
quires balance capacity by iterating over a fixed list of plants. As a consequence,
the schedules of plants first in the list are changed often, thus leading to many
subsequent schedule deviations. In contrast, MARS distributes the schedule ad-
justments over several CHP plants. Expressed by a significant improvement of
λMARS in the third scenario, the results indicate a positive corellation of the
number of DER in a VPP and the flexibility of reactive scheduling. In summary,
the average improvements of the mean operation schedule deviation of about
10% to 15% are a good starting point for further investigations.

6 Conclusions and Future Work

The previous section indicated the suitability of a multiagent-based reactive
scheduling system for virtual power plants. Improving MARS’ performance

152 M. Tröschel and H.-J. Appelrath

regarding the minimization of Δ(os,os) is an important issue. In consideration
of the results in Table 3, a promising approach is the development of heuristics
for an optimized utilization of thermal storages. Thus, resource agents might be
able to increase the reactive potential of VPP. As yet, the locating of negotiation
partners for order agents is an unsolved problem (q.v. Sec. 4.2). Additionally,
the communication overhead of the distributed control system disproportionally
increases with the number of distributed energy resources in a VPP. In a static
context, the introduction of hierarchically superior agents along the lines of Pow-
erMatcher and DEZENT would be an appropriate solution of these problems.
Yet, taking the domain-specific requirement DSR3 from Sec. 4.1 into account,
a static hierarchy is not adequate to deal with the inherent dynamics of future
virtual power plants. Instead, implementing a dynamically adapting control hi-
erarchy along the lines of holonic manufacturing systems [2] seems to be a more
expedient approach. The potential of holonic virtual power plants will therefore
be subject to further research.

References

1. Bitsch, R., Feldmann, W., Aumayr, G.: Virtuelle Kraftwerke - Einbindung dezen-
traler Energieerzeugungsanlagen (in German). etz 9, pp. 16-23 (2002)

2. Brussel, H.V., Wyns, J., Valckenaers, P., et al.: Reference Architecture for Holonic
Manufacturing Systems: PROSA. Computers in Industry 37(3), 255–274 (1998)

3. Crastan, V.: Elektrische Energieversorgung, Teil 2 (in German). Springer, Heidel-
berg (2008)

4. Fischer, K., Müller, J.P., Pischel, M.: Cooperative Transportation Scheduling: an
Application Domain for DAI. Applied Artificial Intelligence 10, 1–33 (1996)

5. Raheja, A.S., Subramaniam, V.: Reactive Recovery of Job Shop Schedules - A Re-
view. International Journal of Advanced Manufacturing Technology 19, 756–763
(2002)

6. Kamphuis, R., Kok, K., Hommelberg, M., et al.: Massive coordination of dispersed
generation using PowerMatcher based software agents. In: Proceedings of the 19th
International Conference on Electricity Distribution, Vienna (2007)

7. Pielke, M., Tröschel, M., Kurrat, M., Appelrath, H.-J.: Operation strategies to in-
tegrate CHP micro units in domestic appliances into the public power supply. In:
Proceedings of the VDE-Kongress 2008, Munich (2008)

8. Pudjianto, D., Ramsay, C., Strbac, G.: Virtual power plant and system integration
of distributed energy resources. In: Renewable Power Generation IET(1), pp. 10–16
(2007)

9. Wedde, H.F., Lehnhoff, S., Handschin, E., et al.: Real-Time Multi-Agent Support for
Decentralized Management of Electric Power. In: Proceeding of the 18th Euromicro
Conference on Real-Time Systems (ECRTS 2006), pp. 43–51 (2006)

Concurrently Decomposable Constraint Systems

Cees Witteveen1, Wiebe van der Hoek2, and Nico Roos3

1 Delft University of Technology, Dept of Software Technology,
P.O. Box 5031, 2600 GA Delft, The Netherlands

2 University of Liverpool, Dept of Computer Science,
Ashton Street, Liverpool, L69 3BX, United Kingdom

3 Maastricht University, Maastricht ICT Competence Center,
P.O. Box 616, 6200 MD Maastricht, The Netherlands

Abstract. In constraint satisfaction, decomposition is a common technique to
split a problem in a number of parts in such a way that the global solution can
be efficiently assembled from the solutions of the parts. In this paper, we study
the decomposition problem from an autonomous agent perspective. Here, a con-
straint problem has to be solved by different agents each controlling a disjoint set
of variables. Such a problem is called concurrently decomposable if each agent
is (i) capable to solve its own part of the problem independently of the others,
and (ii) the individual solutions always can be merged to a complete solution of
the total problem. First of all, we investigate how difficult it is to decide whether
or not a given constraint system and agent partitioning allows for such a concur-
rent decomposition. Secondly, we investigate how difficult it is to find suitable
reformulations of the original constraint problem that allow for concurrent de-
composition.

1 Introduction

Our problem is simple to state: Let C be a set of formulae (or constraints) over a par-
titioned set X = {Xi}n

i=1 of variables. Each block Xi of variables is controlled by an
actor Ai who, independently from the other actors, tries to find a satisfying assignment
τi for its subset Ci ⊆ C of formulas over Xi. Suppose that these local assignments
τi are merged to a global assignment τ for X . Can we guarantee τ to be a satisfying
assignment for C if we don’t have any control over the choice of the locally satisfying
assignments τi? And if not, how can we change C such that it satisfies this property?

As a simple example, suppose that Alice and Bob plan a party. Alice would like to
invite Charles (c) or Diane (d) or both, while Bob, independently from Alice, wants
to make an (inclusive) choice between Fred (f), Gerald (g) and Harald (h). It is also
known, however, that inviting both Charles and Gerald will result in a disastrous party,
hence, we would not like to have them both invited. So, let C = {c∨d, f∨g∨h,¬(c∧g)}
and let X = {c, d, f, g, h} be partitioned into X1 = {c, d} and X2 = {f, g, h}. Now
Alice, controlling X1 = {c, d}, chooses a satisfying assignment for C1 = {c∨d}, while
Bob, controlling X2 = {f, g, h}, takes a satisfying assignment for C2 = {f ∨ g ∨ h}.
Note that ¬(c∧g) does not belong to C1 or C2, since it is not a formula over X1 and nei-
ther over X2. In this case, it is easy to see that we can’t guarantee the existence of a glob-
ally satisfying assignment τ . For example, Alice might choose τ1 = {c = 1, d = 0},

L. Braubach et al. (Eds.): MATES 2009, LNAI 5774, pp. 153–164, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

154 C. Witteveen, W. van der Hoek, and N. Roos

while Bob might take τ2 = {f = 0, g = 1, h = 1}, but then the constraint ¬(c ∧ g) is
violated by the merge τ = {c = 1, d = 0, f = 0, g = 1, h = 1} of these assignments,
implying that the party is over.

Some questions can be raised almost immediately. For example, it is clear that the
composition of satisfying local assignments cannot always be guaranteed to be a satis-
fying global assignment, but how difficult is it to decide exactly whether such a guar-
antee can be given or not? What is the connection between this problem and deciding
(in)consistency of the set of formulae C? Does it help if we already know some assign-
ment satisfying C? These questions are all pertaining to the role of available information
in answering this decision problem.

There is, however, also another, more constructive, way of looking to this problem as
suggested in the general description of it above: Suppose that we have a no-instance of
the problem, that is, an instance for which such a global satisfying assignment cannot
always be guaranteed. Could we, by changing this instance, turn it into a yes-instance?
For example, if, in the example above we could force Bob to choose between Fred and
Harald, without having the possibility to choose Gerald, the existence of a globally sat-
isfying assignment can be guaranteed. But of course, this also raises a lot of questions,
like, which conditions to impose on the changed problem instance? Shouldn’t we aim
at a minimal change? But what is minimality in this respect? And how difficult is it to
find an allowable change or a minimal change?

In this paper, we will only touch upon some of these questions. First, we will briefly
discuss some related work and provide some general motivation for this research sub-
ject. Then we provide some formalisation by introducing a general framework for dis-
tributed constraint satisfaction problems and we define our problem in a more precise
way. Next, we discuss the complexity of some associated decision problems and the
problems associated with (minimally) changing the problem such that a global satisfy-
ing assignment can be guaranteed.

2 Motivation and Background

In constraint satisfaction, decomposition is a common technique to split a problem in
a number of parts in such a way that the global solution can be efficiently assembled
from the solutions of the parts. Most of these decomposition techniques that have been
applied are structurally motivated, that is, the decomposition is performed by analyzing
the structure of the set C of constraints. On the basis of the properties of C the original
problem is split into a set of subproblems that can be solved in an easier way. The sets
of variables associated with the resulting subproblems do not need to be completely
disjunct, but do need to cover the global set X of variables. In general, the subprob-
lems are easy to solve by guaranteeing that the resulting subproblems are acyclic: it
is well-known that acyclic constraint solving problems can be solved efficiently, i.e. in
polynomial time [1]. (Here, acyclicity refers to a property of the (hyper)graph underly-
ing an instance of the constraint problem, see [3].)

There is an extensive set of literature [2,4,5,6,8,11] on this constraint decomposition
problem with quite a number of different approaches to achieve suitable decomposi-
tions, like e.g. bi-connected components, (hyper)tree decomposition, hinge decompo-
sition, query decomposition, tree clustering methods, and so on. A common aspect of

Concurrently Decomposable Constraint Systems 155

all these approaches, however, is that (i) the structure of the problem (i.e., the set of
constraints) dictates the way in which the subproblems are generated and (ii) the sub-
problems generated do not have to be completely independently solvable, that is, in
general, the decomposition will not allow the problems to be concurrently solvable.

In this paper we would like to study the decomposition problem from an autonomous
agent perspective. We assume that a general (constraint) problem has to be solved by
different parties (agents) that, each using their own approach, do want to solve their
own part of the problem. This own part is determined by the capacities of the agents
and not vice-versa. Moreover, we assume that each agent wants to solve its subproblem
completely independently from the others. Such independent solving of subproblems,
for example, might be required if the agents are not able (or not willing) to communicate
during the problem solving process.

Hence, this problem differs in some respects from the problem solved by these struc-
tural decomposition methods. First of all, while in structural decomposition methods
the partitioning (or covering) of the variables is a result of the decomposition technique
and depends upon the structure of the constraint problem, using the autonomous agent
perspective we are interested in decomposition methods that take a given partitioning
of the variables into account.

Secondly, we require a complete decomposition of the original problem instance,
that is, we would like to find a set of subproblems that can be solved concurrently and
independently to obtain a complete solution to the original instance.

Note that this concurrent decomposition problem viewed from the agent perspective
also can be viewed as a mechanism design problem (see e.g. [10]: we have to design
a method that ensures that, whatever solution an individual agent proposes to its part
of the problem, such a solution always can be used to compose a total solution. Hence,
this mechanism should ensure that no agent is capable to prevent the construction of a
global solution by the choice of its own partial solution.

3 Preliminaries

We consider (abstract) constraint systems S = (X, D, C) where X is a (finite) set of
variables X , D is a set of (value) domains Di for every variable xi ∈ X and C is a set
of constraints on X .

We assume constraints c ∈ C to be specified as formulas over some language. A
solution s of the system is an assignment s = {xi := di}n

i=1 of all variables in X such
that each c ∈ C is satisfied. A partial solution is just an assignment to a subset X ′ ⊆ X
of the variables. We will assume that we have a constant di in the language for every
domain element di, and we often will identify di with di and think of an assignment
s = {xi := di}n

i=1 as a formula
∧n

i=1(xi = di) or a set of formulas {(xi = di)}n
i=1.

To preserve generality, we don’t feel the need to specify the set of allowable operators
used in the constraints c ∈ C and their interpretation.

By Sol(S) we denote the set of solutions s, i.e., satisfying assignments, to a con-
straint system S. The system S is called consistent if Sol(S)
= ∅. For every c ∈ C, let
V ar(c) denote the set of variables mentioned in c. For a set of constraints C, we put
V ar(C) =

⋃
c∈C V ar(c). Given S = (X, D, C) we obviously require V ar(C) ⊆ X .

156 C. Witteveen, W. van der Hoek, and N. Roos

Similarly, if D is a set of value domains Di for variables xi ∈ X and we have X ′ ⊆ X ,
then DX′ is the set of value domains Di

X′ for variables xi ∈ X ′ with the obvious
condition that for all xi ∈ X ′, Di = Di

X′ . Given a set of constraints C and a set of
variables X ′ we let CX′ denote the subset {c ∈ C | V ar(c) ⊆ X ′}. Furthermore, if
X1, X2, . . . , Xn are subsets of X and, for i = 1, 2, . . . , n, si is an assignment of values
to variables in Xi, then the composition s = s1�s2� . . .�sn denotes an assignment of
values to variables in X1 ∪X2∪ . . .∪Xn. In particular, this assignment is well-defined
if these sets Xi are pairwise disjoint.

3.1 Simple Constraint Systems

Given a constraint system S = (X, D, C) we often want to concentrate on the con-
straints relevant to a subset X ′ of the variables X . Selecting such a subset of variables
and the constraints associated with it will induce just another constraint system, being
a subsystem of the original system:

Definition 1. Let S′ = (X ′, D′, C′) and S = (X, D, C) be two constraint systems.
Then we say that S′ is a subsystem of S, written S′ � S, if the following holds:

1. X ′ ⊆ X
2. D′ = DX′

3. C′ = CX′

Furthermore, let s = {xi := di}n
i=1 be a solution for S � S′. Then sS′ = s(X′,D′,C′)

is the assignment {xi := di | xi := di ∈ s, xi ∈ X ′}.

It seems reasonable to assume that if a global constraint system S = (X, D, C) is
consistent, any subsystem S′ = (X ′, DX′ , CX′) with X ′ ⊆ X derived from it, is also
consistent (note that this hinges on monotonicity of the underlying logic).

Note that, by definition of a constraint system S = (X, D, C), we have V ar(C) ⊆
X . Now, given a constraint system S = (X, D, C), there are at least three natural ways
to obtain a subsystem S′ = (X ′, D′, C′) from it:

1. Fix a set X ′ ⊆ X and from that, derive D′ and C′ using Definition 1. In this case,
we will write S′ = SX′ .

2. Fix a subset set D′ of value domains from D and find a set X ′ such that D′ = DX′ .
This can always be done by removing from X those variables that take a value in a
domain in D but not in D′. The set of constraints C′ is then also directly obtained:
C′ = CX′ . We write: S′ = SD′ .

3. Fix a subset C′ of the constraints of C and find a smallest set X ′ such that C′ ⊆
CX′ . This can always be done by removing from X those variables that do occur
in C, but not in C′. The set of domain values D′ is then also directly obtained:
D′ = DX′ . We write: S′ = SC′′ .

With respect to the subsystem relation �, we assume our constraint systems to satisfy
the following Preservation property:

Preservation

Let (X1, D1, C1) = S1 and S1 � S2. Then s ∈ Sol(S2) implies sS1 ∈ Sol(S1).

Constraint systems that satisfy Preservation will be called Simple Constraint Sys-
tems.

Concurrently Decomposable Constraint Systems 157

3.2 Distributed Constraint Systems

Sometimes constraint systems S are distributed, that is, there is a set of actors Ai, each
being able to make assignments or adding relations for/to a subset Xi of variables and
these agents are collectively responsible for producing a global solution for S. More
specifically, if S = (X, D, C) is a constraint system and Xi ⊆ X is the subset of
variables controlled by agent Ai, then Si = (Xi, DXi , CXi) is the subsystem that has
to be solved by agent Ai, where DXi is the set of domains for the variables in Xi, and
CXi is as defined above.

If
⋃n

i=1 Xi = X , while for 1 ≤ i
= j ≤ n, Xi ∩ Xj = ∅, the collection {Xi}n
i=1

constitutes a partitioning of X , and each Xi is called a block of {Xi}n
i=1. If {Xi}n

i=1
is a partitioning of X , we let S = ({Xi}n

i=1, D, C) denote a distributed constraint
system.

4 The Concurrent Decomposition Problem

In general, the distributed constraint solving problem can be simply stated as follows:

Given a distributed constraint system S = ({Xi}n
i=1, D, C), is it always possi-

ble to find a global solution s ∈ Sol(S) using arbitrary solutions si ∈ Sol(Si)
for its induced subsystems Si = (Xi, DXi , CXi)?

While there are quite a few proposals for solving distributed systems [12], they almost
all come down to some (distributed) backtracking process needed to resolve conflicts
between partial solutions. Basically, what we are interested in are backtracking-free
concurrent solutions. That is, we would like to investigate the following concurrent
decomposition problem:

Given a distributed constraint system S = ({Xi}n
i=1, D, C), is it true that the

composition s = s1 � s2 � . . . � sn of arbitrary solutions si ∈ Sol(Si), where
Si = (Xi, DXi , CXi), is always a solution for the total system S?

If the answer is yes, we say that a distributed constraint system is concurrently decom-
posable. This has to be conceived as a decomposition that allows for concurrent solving
of the decomposed parts of the system.

Definition 2 (Concurrent decomposition). A (consistent) distributed constraint sys-
tem S = ({Xi}n

i=1, D, C) is concurrently decomposable if Sol(S1)� . . .� Sol(Sn) ⊆
Sol(S), that is, for every (s1, . . . , sn) ∈ Sol(S1) × . . . × Sol(Sn) it holds that s =
s1 � s2 . . . � sn ∈ Sol(S). Here, for every i = 1, . . . , n, Si = (Xi, DXi , CXi).

We note that most constraint systems S will not allow us to simply decompose S into
partial constraint systems Si derived from S, determine the solutions si to the partial
systems and then just merge or compose these (partial) solutions to obtain the solution
to the original system.

158 C. Witteveen, W. van der Hoek, and N. Roos

Example 1. Take a simple constraint system S = (X, D, C) where X = {x1, x2} and
is partitioned into X1 = {x1} and X2 = {x2}, and D1 = D2 = N. Let C = {x1
=
x2} ∪ {ni < xi ≤ mi : i = 1, 2} for some given numbers n1 + n2 + 5 < m1 + m2. It
is easy to see that the partial solutions s1 for S{x1} and s2 for S{x2} cannot always be
joined to a global solution, since x1 might be given the same value as x2.

Example 2. Take a meeting scheduler, which has the aim to schedule two different
meetings at a University in one and the same week. Meeting m1 should be among
faculty members of a specific Department, its Head, and its Dean, while meeting m2
involves the Head of Department, the Dean and the Vice Chancellor. Moreover, we
should keep in mind that no person can attend different meetings at the same time.
Again, the partial solutions cannot always be joined to obtain a global solution.

Note that in both cases splitting the problem into several parts means that some con-
straints c such as x1
= x2 (Example 1) and the constraint that two meetings cannot
overlap if there is a person that should attend both of them (Example 2) are not taken
into account while solving the partial constraint systems individually. These constraints
are the so-called inter-block constraints. Therefore, concurrent decomposability should
also be viewed upon as a specification of a special relation between the set of intra-block
constraints CXi and this set of inter-block constraints.

It is not difficult to show that, indeed, if the sets CXi of constraints covered by
the partition blocks Xi together imply all constraints in C, that is also the inter-block
constraints c ∈ C such that V ar(c) is not contained in a single partition block, then the
constraint system is concurrently decomposable:

Proposition 1. Let S = ({Xi}n
i=1, D, C) be a consistent distributed constraint system

and for i = 1, . . . , n, let Si = (Xi, DXi , CXi). Then Sol(S1)×. . .×Sol(Sn) ⊆ Sol(S)
iff

⋃n
i=1 CXi |= C.

Proof (Sketch). Assume that Sol(S1) × . . . × Sol(Sn) ⊆ Sol(S). Take an arbitrary s
satisfying

⋃n
i=1 CXi . Then s can be written as s = s1 � s2 � . . . � sn where each si

satisfies CXi and therefore, si ∈ Sol(Si). By assumption, s ∈ Sol(S). Therefore, s
satisfies C.

Conversely, assume
⋃n

i=1 CXi |= C. Then every solution s satisfying
⋃n

i=1 CXi will
satisfy C. Each such a solution s can be written as s = s1 � s2 � . . . � sn where each
si satisfies CXi . Hence, Sol(S1) × . . . × Sol(Sn) ⊆ Sol(S). �

The last proposition suggests that the problem whether a given distributed constraint
system is concurrently decomposable or not is computationally closely related to de-
ciding propositional logical consequence, which is coNP-complete. Indeed, as the next
proposition shows, this is the case, even in the most simple distributed cases:

Proposition 2. Let S = ({Xi}n
i=1, D, C) be a distributed constraint system. The prob-

lem to decide whether S is concurrently decomposable is a coNP-complete problem.

Proof. Membership of coNP is easy: just guess a set of solutions {si}n
i=1, where each

si is a solution guessed for subsystem Si. Now check for each i = 1, 2, . . . , n whether
si ∈ Sol(Si) and then check the compatibility of these solutions. The violation of
inter-block constraints c is easily verified using the composed global solution s.

Concurrently Decomposable Constraint Systems 159

Completeness follows using the following reduction from the coNP-complete LOG-
ICAL CONSEQUENCE problem (Given a set of variables U , a set of clauses C over U
and a clause c, is c implied by C?): Given an instance (U, C, c) of this problem, we
consider the distributed constraint system

S = ({U, {x}}, {{0, 1}i}|U|+1
i=1 , C ∪ {c′} ∪ {¬x}),

where the set of variables is partitioned in the set U and the set {x}, and c′ = c ∪
{x} is the clause c extended with the new atom x
∈ U . Clearly, using this parti-

tioning, S is decomposed into two systems SU = (U, {{0, 1}i}|U|
i=1, C), and S{x} =

({x}, {{0, 1}}, {¬x}).
Now, assume (U, C, c) to be a no-instance of the Logical Consequence problem, so

let τ be any assignment verifying C, but falsifying c. Then τ is a solution for SU and
together with the only possible solution {x = 0} for S{x} it constitutes an assignment
τ � {x = 0} that also falsifies c′ = c ∪ {x}. Hence, τ � {x = 0} is a certificate for
non-decomposability of the distributed constraint instance S. For the converse, assume
that S is a non-decomposable instance. Then there are local assignments τ1 and τ2 such
that τ1 is a solution for SU and τ2 is a solution for S{x}, while τ1 � τ2 does not satisfy
S. Then, clearly, τ1 must satisfy C, but does not satisfy c. Hence, (U, C, c) must be a
no-instance of LOGICAL CONSEQUENCE. �

Note that this proof shows that this problem is already coNP-complete for the simplest
possible distributed case where a partition contains only 2 blocks.

Remark 1. It is well-known that for general constraint systems finding a solution is
NP-hard [3]. We therefore might ask whether having additional information about a
satisfying assignment would help us in solving the decomposition problem. This turns
out not be the case:

Proposition 3. Let S = ({Xi}n
i=1, D, C) be a distributed constraint system and s ∈

Sol(S) a satisfying assignment. Then the problem to decide whether S is concurrently
decomposable is coNP-complete.

Proof. Take a formula φ(x1, x2, . . . xn) over some alphabet X = {x1, x2, . . . , xn}.
Without loss of generality we may assume that n > 1. Consider the constraint system
S = (X ∪ {y}, D, C) where C = {φ(x1, x2, . . . xn) ∨ y, y ∨ ¬y}, D is a set of
{0, 1} domains and the partitioning of X is X = {{xi}n

i=1, {y}}. Let s be an arbitrary
assignment where y = 1. S is consistent and is concurrently decomposable exactly iff
φ(x1, x2, . . . xn) is a tautology, the latter being a coNP-complete problem. �

It is easy to see that the same proof can be used to show that the availability of a partial
solution that can be extended to a complete solution will not alleviate the difficulty of
the decomposition problem.

Finally, note that if we are given all satisfying truth assignments s to the constraint
solving problem, the concurrent composability problem can be seen to be polynomially
solvable, but of course, this comes at the price of an exponential blow-up: we might be
forced to take into account exponentially many assignments.

160 C. Witteveen, W. van der Hoek, and N. Roos

5 Finding Suitable Concurrently Decomposable Alternatives

As we have seen, the problem whether a distributed constraint problem is concurrently
decomposable is an intractable problem (unless P=NP). But what happens if we could
change a particular instance in such a way that it would become a yes-instance of the
concurrent decomposition problem? Let us consider an example we discussed before:

Example 3. Take the system S = (X, D, C) where X = {x1, x2} is partitioned into
X1 = {x1} and X2 = {x2}, and D1 = D2 = N. Let C = {x1
= x2} ∪ {ni < xi ≤
mi} for some given numbers n1 + n2 + 5 < m1 + m2. The system is not concurrently
decomposable, but if we add the constraints ‘x1 is odd’ and ‘x2 is even’ to the set of
constraints, joining individual solutions will always deliver a global solution. Hence,
this latter instance is a yes-instance of the concurrent decomposability problem. �

A first obvious restriction on the set of allowable changes of a given distributed con-
straint system S = ({Xi}n

i=1, D, C) would be to preserve the set of solutions of S: For
every resulting system S′ it must hold that Sol(S′) ⊆ Sol(S). A second restriction we
impose is that the sizes |S| and |S′| of S and S′, respectively, are polynomially related,
i.e., there should exist a polynomial p such that |S′| ≤ p(|S|). If these conditions do
hold, we say that S′ is a suitable concurrently decomposable alternative for S.

Of course, first of all one would like to know whether such suitable alternatives
always exist. The following proposition shows that for every consistent distributed con-
straint system there always exists a suitable concurrently decomposable alternative:

Proposition 4. Given a simple distributed constraint system S = ({Xi}n
i=1, D, C),

there always exists a polynomially related concurrently decomposable distributed sys-
tem S′ = ({Xi}n

i=1, D, C′) such that Sol(S′) ⊆ Sol(S).

Proof. Since S is consistent, there exists a solution s = {xi = di}n
i=1 ∈ Sol(S).

We show that the system S′ = ({Xi}n
i=1, D, C ∪ s) is concurrently decomposable

and satisfies the solution preservation condition. For an arbitrary i, take the subsystem
S′

i = (Xi, DXi , CXi ∪ {sXi}). By Preservation, sXi ∈ Sol(S′
i) and every solution

s′
= sXi will violate at least one constraint xj = dj occurring in sXi . Hence, for every
Xi ∈ {Xi}n

i=1, Sol(S′
i) = {sXi}. Likewise, we have Sol(S′) = {s}. Therefore, S′ is

concurrently decomposable and Sol(S′) ⊆ Sol(S). �

Note that the proof of this proposition immediately shows that finding a solution to a
simple constraint system S is at least as hard as finding a suitable concurrently decom-
posable alternative S′ for a distributed variant of S: Once we have found a solution to
S, we can use this solution to obtain a suitable concurrently decomposable alternative.
In fact, is not difficult to see that both problems (finding a solution for a constraint
system S and finding a decomposable alternative for the distributed variant of S) are
polynomially related.

Proposition 5. Given a consistent constraint system S = (X, D, C), the problem to
find a suitable concurrently decomposable alternative S′ = ({Xi}n

i=1, D, C′) such
that Sol(S′) ⊆ Sol(S) and such that S′ is polynomially related to S and the problem
to find an arbitrary solution to S are polynomially related.

Concurrently Decomposable Constraint Systems 161

Proof. Given Proposition 4, it suffices to prove that a solution s ∈ Sol(S) can be
obtained if a polynomially related concurrently decomposable alternative S′ has been
found. So let S be a constraint system. Consider a partitioning {{xi}}n

i=1 of the set
X = {x1, x2, . . . , xn} and let S′ be a suitable corresponding distributed concurrently
solvable alternative of S. By applying node consistency we can simply verify for each
of the variables xi a value using the constraints C′

{xi}. Since S′ is polynomially related
to S each such a solution can be found in polynomial time. The composition of these
partial solutions constitutes a global solution s ∈ Sol(S′) ⊆ Sol(S) and can be found
in polynomial time, too. �

6 Concurrently Decomposable Alternatives and Minimal Change

Finding an arbitrary suitable concurrently decomposable system might not always what
we want. As we have seen in the previous section sometimes quite a lot of additional
constraints might be added and sometimes the set of solutions of the original system
might be seriously affected. In general, therefore, instead of adding an arbitrary set of
constraints, we would like to apply the idea of minimal change to finding a suitable
concurrently solvable alternative: how could we minimally change the original system
S to a concurrently decomposable alternative S′. Applying this idea of minimal change,
basically, there are two different approaches:

1. maximize the set of solutions Sol(S′) such that the difference |Sol(S) − Sol(S′)|
is minimized;

2. minimize the amount of constraint change necessary to obtain the system S′.

We could view the first approach as a semantically inspired approach, and the second as
a syntactical approach. While the latter ensures that the syntactical difference between
the two constraint systems is minimized, the first approach does not care which syntac-
tical changes have to be applied but takes care for minimizing the loss of information
associated with the transition to a decomposable system.

Here the bad news is: both the syntactical and the semantical approach give rise to
intractable problems. To start with the latter approach, let S = ({Xi}n

i=1, D, C) be an
instance of the distributed constraint problem. Following the semantical approach, we
would like to obtain a distributed system S′ such that

1. S′ = ({Xi}n
i=1, D, C′);

2. Sol(S′) ⊆ Sol(S) and |Sol(S) − Sol(S′)| is minimal;
3. S′ is fully decomposable, i.e., Sol(S′) = Sol(S′

1) × . . . × Sol(S′
n).

This problem, however, can be easily shown to be intractable, even if the set of solutions
to the original system is of polynomial size and can be obtained in polynomial time:

Proposition 6. Let S = ({Xi}n
i=1, D, C) = (X, D, C) be a distributed constraint

system. The problem to find a set of decomposed subsystems {S′
i = (Xi, Di, C

′
i)}n

i=1
such that (i) Xn

i=1Sol(S′
i) ⊆ Sol(S) and (ii) Xn

i=1Sol(S′
i) is a cardinality maximal

subset of Sol(S), is an NP-hard problem.

162 C. Witteveen, W. van der Hoek, and N. Roos

Proof (Sketch). Consider the COMPLETE BIPARTITE SUBGRAPH problem: Given a bi-
partite graph G = (V1 ∪ V2, E) and a positive integer K does there exists a complete
subgraph of order K in G? This problem can be easily shown to be NP-complete by a
reduction from the CLIQUE problem. Let G = (V1 ∪ V2, E) be an instance of the NP-
hard MAXIMUM COMPLETE BIPARTITE SUBGRAPH problem. We create an instance
of the minimal change problem as follows: Let S = (X1, X2, D, C) be a distributed
constraint system where X = {x1, x2} is partitioned as X1 = {x1} and X2 = {x2}
with domains V1 and V2, respectively. Let C contain the constraint (x1, x2) ∈ rE iff
{x1, x2} ∈ E.

Finding a suitable concurrently decomposable alternative S′ for S that would min-
imize the difference |Sol(S) − Sol(S′)| implies that we have to find two subsystems
S1 = ({x1}, {V }, C1) and S2 = ({x2}, {V }, C2), such that C1×C2 is a maximal sub-
set of r() (Here we represent the unary relations C1 and C2 just by their extension, i.e.
subsets of V1 and V2). But that is of course equivalent to finding a maximum complete
bipartite subgraph of G. �

Taking the syntactical approach, let us define a distributed constraint system S =
({Xi}n

i=1, D, C) to be k-decomposable if a partial assignment to k variables in X al-
ready suffices to decompose S in independently solvable subsystems.1 Here, we assume
that after adding the k assignments to the variables, the original system of constraints
is simplified by taking these assignments into account, i.e., replacing the variables by
their values.

Note that, by definition, a 0-decomposable distributed constraint system is just a
concurrently decomposable system. Also note that a consistent distributed constraint
system is always n-decomposable: just use a solution s ∈ Sol(S) and add s to the set
of constraints C.

The general problem to decide whether or not a system is k-decomposable for some
k ≥ 0 turns out to be harder than just checking whether the system is concurrently
decomposable:

Proposition 7. Let S = ({Xi}n
i=1, D, C) be a distributed constraint system, a par-

titioning of X and k a positive integer. The problem to decide whether S is k-
decomposable is Σp

2 -complete.

Proof. To show that the problem is in Σp
2 , given a constraint system S and a partitioning

{Xi}n
i=1 for X , guess a partial solution s for k-variables in X and add the constraints

x = s(x) for all x ∈ dom(s) to C. Then, use a coNP-oracle to check 0-decomposability
of the resulting constraint problem S′.

To show that the problem is Σp
2 -hard, we take the Σp

2 -complete SUCCINCT SET

COVER problem [9]: Given a collection T = {φ1, φ2, . . . , φm} of 3-DNF formulae on
a set Σ of variables and a positive integer k, is there a subset T ′ of T with |T ′| = k
such that �

∨
φ∈T ′ φ ? The reduction from this problem is as follows: Let (Σ, T =

{φ1, φ2, . . . , φm}, k) be an instance of SUCCINCT SET COVER. Construct a distributed
constraint system S = ({X1, X2}, D, C) where

1 Of course, there are many other ways to specify the syntactical approach and to define other
ways of constraint change, for example by restricting the domains of variables.

Concurrently Decomposable Constraint Systems 163

1. X1 = Σ, X2 = {x1, x2, . . . , xm}}, and, for j = 1, . . . n, xj
∈ Σ;
2. C contains two constraints Σφi∈T (φ′

i + xi) ≥ 1 and Σm
i=1xi = m− k, where each

φ′
i is obtained from φi by replacing ∨ by + and ∧ by +;

3. D a set of {0, 1}-domains for each of the variables occurring in X = Σ ∪
{x1, . . . xm}.

Suppose there is a subset T ′ ⊆ T of size k such that �
∨

φ∈T ′ φ. Then, for ev-
ery φi
∈ T ′, add a constraint xi = 1 to C. Consider the two subsystems SX1

and SX2 . Due to the presence of the variables xi in C, the set of constraints CX1 is
empty. Hence, any assignment s1 to the variables in Σ can be proposed as a solution
s ∈ Sol(SΣ). Considering an arbitrary assignment s2 satisfying SX2 (after addition
of the set of constraints {xi = 1 : φi
∈ T ′}). There is exactly one such assignment:
s2 = {xi = 1 : φi
∈ T ′} ∪ {{xi = 0 : φi ∈ T ′}. We will prove that the assignment
s = s1 � s2 is a solution to S.

This only requires to prove that s will satisfy Σφi∈T (φ′
i + xi) ≥ 1. This is easy to

see, since �
∨

φ∈T ′ φ implies that Σφi∈T ′(φ′
i + xi) ≥ 1 for every assignment s. Since

s(xi) = 1 for every φi ∈ T − T ′, s also satisfies Σφi∈T−T ′(φ′
i + xi) ≥ 1. Hence, by

adding m − k assignment constraints, the constraint system becomes decomposable.
The converse is proven along the same lines. �

Note that the proof of this proposition again shows that Σp
2 -completeness already holds

for the simplest distributed case where we have a partition into two blocks.

7 Discussion

Although there remains a lot to investigate, we can draw three preliminary conclusions.
First, testing whether a distributed constraint system is concurrently decomposable, be-
ing a coNP-complete problem, is likely to be intractable. Secondly, given a constraint
problem S, the problem to find a suitable alternative for a distributed variant of S is
as hard as finding an arbitrary solution to S. Thirdly, finding a syntactically minimal
change alternative that is concurrent decomposable, is an even harder problem occur-
ring at the second level of the polynomial hierarchy. The reason is that there are two
sources of complexity: finding a minimal set of additional constraints and, secondly,
testing whether the resulting system is concurrently decomposable.

Although from a computational perspective these results might seem to offer a some-
what disappointing view on the applicability of concurrently decomposable systems,
they also clearly point out where to look for efficiently constructible decomposable
systems. As we have shown, the problem of finding a suitable decomposable alterna-
tive of a system is as hard (neglecting polynomial differences) as finding solutions to a
constraint system. Therefore, we should look at efficiently solvable constraint systems.
And, indeed, there are already clear examples of efficiently decomposable systems:
Simple Temporal Networks (STNs), being efficiently solvable constraint systems, for
example, have been shown to be concurrently decomposable in an efficient way using a
technique called Temporal Decoupling [7].

We envisage three further directions for this kind of research. First of all, we would
like to investigate whether some of the complexity results obtained in the general case

164 C. Witteveen, W. van der Hoek, and N. Roos

still do hold if we restrict the class of allowable constraints. For example, what are
the most complex distributed constraint systems for which finding minimally different
concurrently solvable alternatives is tractable? What are the distinguishing features of
such classes? Next, we would like to investigate what happens if in the case of minimal
change we do not constrain the objects that can be added to partial assignments i.e.,
unary constraints, but also allow refinements of general constraints to be added. How
does this e.g. influence the complexity of the k-decomposability?

Thirdly, in studying decomposability, we should also pay attention to other solution
concepts than solution preserving decompositions. For example, in distributing con-
straints we could allow parties to express their preferences or resource constraints and
to add them to the constraint system without bothering about composability of solu-
tions, but only guaranteeing that whatever constraints are added, preservation of global
consistency is preserved, whenever local consistency is preserved.

Acknowledgements

We would like to thank Léon Planken for fruitful discussions and suggestions.

References

1. Beeri, C., Fagin, R., Maier, D., Yannakakis, M.: On the desirability of acyclic database
schemes. Journal of the ACM 30(3), 479–513 (1983)

2. Cohen, D.A., Gyssens, M., Jeavons, P.: A unifying theory of structural decompostions for
the constraint satisfaction problems. In: Complexity of Constraints. Dagstuhl Seminar Pro-
ceedings 06401 (2006)

3. Dechter, R.: Constraint Processing. Morgan Kaufmann Publishers, San Francisco (2003)
4. Dechter, R., Pearl, J.: Tree clustering for constraint networks. Artif. Intell. 38(3), 353–366

(1989)
5. Gottlob, G., Leone, N., Scarcello, F.: A comparison of structural csp decomposition methods.

Artificial Intelligence 124, 2000 (1999)
6. Hsu, C.-W., Wah, B.W., Huang, R., Chen, Y.: Constraint partitioning for solving planning

problems with trajectory constraints and goal preferences. In: IJCAI, pp. 1924–1929 (2007)
7. Hunsberger, L.: Algorithms for a temporal decoupling problem in multi-agent planning. In:

AAAI 2002 (2002)
8. Naanaa, W.: A domain decomposition algorithm for constraint satisfaction. J. Exp. Algorith-

mics 13, 1.13–1.23 (2009)
9. Schaefer, M., Umans, C.: Completeness in the polynomial-time hierarchy: A compendium.

SIGACT News 33(3), 32–49 (2002)
10. Shoham, Y., Leyton-Brown, K.: Multiagent Systems: Algorithmic, Game-Theoretic, and

Logical Foundations. CUP, New York (2009)
11. Wah, B.W., Chen, Y.: Constraint partitioning in penalty formulations for solving temporal

planning problems. Artificial Intelligence 170(3), 187–231 (2006)
12. Yokoo, M., Hirayama, K.: Distributed breakout algorithm for solving distributed constraint

satisfaction problems. In: AAMAS1996, pp. 401–408 (1996)

SMIZE: A Spontaneous Ride-Sharing System
for Individual Urban Transit

Xin Xing1, Tobias Warden1, Tom Nicolai2, and Otthein Herzog1

1 Center for Computing and Communication Technologies,
Universität Bremen, Germany
{xing,warden,herzog}@tzi.de

2 Urban Team, Bremen, Germany
nicolai@urban-team.com

Abstract. We introduce a ride-sharing concept for short distance travel
within metropolitan areas which is designed to handle spontaneous ride-
sharing requests of prospective passengers with transport opportunities
available on short call. The system has been designed as a multiagent
system. We present a methodology to determine the feasibility of our
ride-sharing approach for specific metropolitan areas and predefined op-
eration requirements using multiagent-based simulation. Concrete exper-
iments have been conducted for the city of Bremen, (Germany) in the
FIPA-compliant multiagent-based simulation system PlaSMA.

1 Introduction

A continuous increase of traffic volume is among the major problems for traffic
planning and management in urban and larger metropolitan areas. According
to statistics from Eurostat [1, chap.10], the increasing demand in mobility is
thereby mostly met with more individual passenger cars. As a consequence, ex-
isting traffic routes become over-strained which leads to regular traffic congestion
and transport delays. At the same time however, passenger cars in urban areas
are seldom used to their full capacity. From both a logistic as well as an eco-
logical perspective, there is therefore potential for optimization. A wide range
of approaches has been proposed to counter these development, for instance,
an expansion of public mass transit, the establishment of car-free zones or con-
gestion charges. We consider a further alternative, namely the installation of a
ride-sharing system for individual urban transit. Compared to public transit,
this approach retains the planning flexibility of individual transport, both with
respect to the travel schedule and travel destination. It also offers the benefits
of the utilization of passenger cars to people who do not have a vehicle of their
own.

The concept of ride-sharing has recently seen an increase in popularity.
Besides traditional stationary ride-sharing organizations and offices, numerous
web-based ride-sharing systems have been established. These service platforms
usually provide an electronic market place where car owners can offer ride-sharing

L. Braubach et al. (Eds.): MATES 2009, LNAI 5774, pp. 165–176, 2009.
� Springer-Verlag Berlin Heidelberg 2009

166 X. Xing et al.

opportunities for travels scheduled in the near future on the one hand, and pas-
sengers can search for interesting offers and negotiate terms of operation on the
other hand. Restrictions in the usability of this class of ride-sharing systems are
twofold: First, due to a strong focus on long-distance travel between different
cities across a country, the transport granularity is too coarse for urban tran-
sit. Second, classical ride-sharing focusses on users, both drivers and passengers,
that have a plan to go on a journey several hours or even days after the interac-
tion with the respective service provider (e.g. placing an offer of a ride-sharing
opportunity). As a consequence, spontaneous operation for users acting on short
notice, i.e. in a time frame of up to an hour, may not be served adequately.

However, the aforementioned restrictions have been partially handled in the
context of several research projects. In 1995, the University of Washington
started the Seattle Smart Traveler project to research the concept of ”dynamic
rideshare matching”[2]. Volunteers recruited from students and staff of the uni-
versity were asked to use a ride-sharing prototype accessible via a web-interface
over the course of a year. During that period both the service adoption and
the rate of successfully handled requests was analyzed statistically. The personal
logistic system Corona (1998) was designed to offer ride-sharing matching ser-
vices for car owners, in the run-up to the start of individual travels [3]. Corona
was evaluated in simulation with a real street map. The conducted experiments
were thereby focused on the potential reduction in globally traveled kilometers
that could be achieved using the proposed ride-sharing concept and the question
whether the flexibility of transport could be retained at the same time. In 2006,
the work groups of Winter and Nittel developed an ad-hoc shared-ride trip plan-
ning system where drivers and passengers were represented as agents which live
in a grid network and communicate with each other via radio-based messages [4].
The goal of this research was the identification of suitable communication strate-
gies for agents in mobile ad-hoc network environments.

Although these research prototypes handle spontaneous ride-sharing requests
for car owners and passengers, the relationship between the numbers of partici-
pating drivers and passengers with respect to success rate and acceptable travel
time has not been investigated so far. Hence, based on a multiagent system
(MAS) for spontaneous ride sharing, outlined in the next section, and by means
of multiagent-based simulation (MABS), we focus on the following research ques-
tion. Given (a) a particular metropolitan area as well as (b) specific estimates
of the average number of car owners willing to offer ride-sharing opportunities
and (c) the average number of residents interested in using the spontaneous
ride-sharing service at each point in time for that area: Is the operation of the
ride-sharing system feasible with regard to a certain quality of service measured
in terms of travel time and the percentage of successful ride negotiations?

2 Spontaneous Ride-Sharing Concept

Embracing the paradigm of a multiagent-based application design, the Smize ride-
sharing system comprises two classes of software agents. First, there is the class

SMIZE: A Spontaneous Ride-Sharing System for Individual Urban Transit 167

SMIZE MAS

:

log on

ride sharing request

transport details

log on

transport details

drive route

GSM/UMTS Comm.

GPS Localization

pr.

pr.

PA

DA

DARouting
Agent

Node
Agent

Mobile User
Mobile User

Mobile User

pr.

bidirectional Comm.

unidirectional Comm.

drive routetransport details

:

:

pr.pr.
PA

DA DriverAgent

PassengerAgent

User Profile +
Ride-Sharing Prefs

Routing
Agent

Fig. 1. Smize structure with scenario: Anna is a passenger who has a ride-sharing
request; Bob and Sofi were identified as appropriate ride-sharing drivers for Anna

of user agents, which can be thought of as a software surrogate of ride-sharing
users. Based on requirements specified by these users, their corresponding agents
act proactively as goal-oriented decision makers with tactical autonomy in the
sense of [5]. Driver agents (DriverAgent) advertise and manage new ride-sharing
opportunities from drivers, while passenger agents (PassengerAgent) search and
negotiate ride-sharing agreements for passengers looking for a transport opportu-
nity. Neither of these tasks can be solved in isolation by the respective user agents.
Problem solving in fact requires interaction with other members of the agent com-
munity. In particular, specific problem solving competences, such as the ability to
compute routes are out-sourced to specialists acting as service agents. Instead of
proactively and continuously pursuing their own agenda, these agents merely of-
fer services for the user agents to help them perform their job. To be precise, the
community of user agents relies on service of an appropriate number of routing
agents (RoutingAgent) for the calculation of drive and walk routes and, for the
time being, a single administrative agent (NodeAgent) which maintains and pro-
vides access to a database of drive route information of active vehicles as well as
ride-sharing preferences of their drivers (cf. figure 1).

Routing agents in our system calculate the shortest drive route between the
start and destination node of a vector street map. The A�-algorithm [6] is applied
to determine the best way to the respective destination, using the driving time
between two graph nodes for the heuristic function. The calculation of the driving
time of a vehicle on a particular street segment thereby depends on the road
classification of that segment. Relevant distinctions in metropolitan areas include
amongst others residential areas (30 km/h), regular urban roads (50 km/h) or
throughways with 60km/h. Routing agents also offer a walk route service for
passengers whose start or destination node is located in a pedestrian zone. In
this situation, a boundary node of this pedestrian zone need to be identified.
In succession, the shortest path from the start node of the passenger to the

168 X. Xing et al.

Table 1. Personal information and ride-sharing preferences of passengers/drivers

(a) Personal User Information

User Profile Passenger Driver

Name � �
Gender � �
Smoker � �
#Passengers � —
#Free Seats — �
Phone Number � �

(b) Ride-Sharing Preferences

Ride-Sharing Preferences Passenger Driver

Gender � �
Smoker � �
Service Response Time � —
Walk to Pickup Point? � —
Transfer OK? � —
Pickup Detour OK? — �
Desired Travel Fees � �

boundary node, or from the boundary node to the destination can be computed.
The passenger may then walk to the boundary node by foot along this walk route,
in order to take a ride, or, if his or her destination is located in the pedestrian
zone, he can get off his ride at the boundary node and walk the remainder of
the route to the destination.

In the current version of our system concept, the NodeAgent manages a global
database which comprises ride-sharing preferences (cf. table 1) and sharing sta-
tus (free or occupied) for each active driver, as well as a spatio-temporal rep-
resentation of registered, i.e. currently active drive routes. These are stored as
sequences of 3-tuples of the form (n, d, tn) where n denotes a particular node of
the street network, d the driver and tn the corresponding expected arrival time
of this driver at the node. Based on the temporally annotated route database,
the NodeAgent can provide support for passenger agents in their search for ap-
propriate transport candidates.

In the following, the operation of the user agents, the interaction between users
and their corresponding user agents, as well as the system interaction between
user agents and service agents are outlined step by step:

Once a driver has specified details of a new ride-sharing offer and communi-
cated this offer along with his ride-sharing preferences via, for instance, a web
front-end, Smize creates a new DriverAgent. This driver agent is responsible for
(a) the acquisition of a detailed drive route through interaction with a rout-
ing agent, (b) the calculation of expected driving times on the route segments
in order to annotate the route nodes with arrival times, (c) the forwarding of
the temporally annotated route data to the NodeAgent and the user, and (d)
the response to ride-sharing request of interested passenger agents. Initially, the
sharing status of the driver is set to free rendering him eligible as potential
ride-sharing provider.

For each passenger (or group of passengers traveling conjointly) communicat-
ing a ride request to our ride-sharing system, a new PassengerAgent is instan-
tiated. This passenger agent is responsible for the identification of the driver
candidate which can give the passenger a ride to the destination in minimal
travel time. First, the passenger agent retrieves the local neighborhood of the
passenger’s starting point. It is defined as the subset of all street nodes which

SMIZE: A Spontaneous Ride-Sharing System for Individual Urban Transit 169

can be reached via a path from the starting point whose total length is below a
parametrized threshold, e.g. three kilometers. This set of nodes and the desired
start time for the transport request are subsequently specified as parameters of
a query to the NodeAgent. This service agent then computes the set of drivers
to pass at least one street node within the local neighborhood of the passenger’s
starting point soon after the specified point in time. The set of pickup candi-
dates and their respective ride-sharing preferences is sent back to the passenger
agent which consequently filters candidates whose user profile and ride-sharing
preferences do not match with those specified by the passenger.

If, at this point, the list of pickup candidates is empty, either because no suit-
able drivers have been suggested by the NodeAgent in the first place or all of the
proposed candidates have been filtered out in the preferences matching process,
the passenger agent adjourns the processing of its user’s ride-sharing request for
a specified amount of time (e.g. two minutes). Afterwards, it repeats the search
process, based on the rationale that additional ride-sharing opportunities may
have been offered after the processing of its initial query to the NodeAgent. The
passenger agent may adjourn processing and consequently resume search for a
fixed number iterations. If no ride-sharing candidates can be determined by then,
the passenger is notified that the ride-sharing system is unable serve his particu-
lar ride-sharing request. Otherwise, i.e. when pickup candidates have eventually
become available, the next step is the identification of those drivers that are
also suitable transport candidates. Hence, the driving routes of the candidates
are compared with the travel destination of the passenger. A driver is deemed
suitable, if his drive route matches at least one of the street nodes in the local
neighborhood of the passenger’s destination. It is thereby accounted for that in
order to drop of the passenger at his desired destination, the driver might have
to drive a short detour.

In case there are no appropriate drivers that can take the passenger the whole
way from start to destination, the passenger agent adapts its search strategy and
begins to seek compound transfers with a single change of vehicle. An appropriate
connecting driver must fulfill three conditions: (a) its drive route will intersect
the route of one of the previously computed pickup candidates, (b) its drive route
will pass through the passenger’s local destination neighborhood, and (c) its ride-
sharing preferences coincide with those of the passenger. If such a connecting
driver can be identified, the group of drivers - one for pickup and the first part
of the actual transport, another for the remaining transport - is included as a
compound transport candidate. While conceptually possible, general multi-tier
transports1 has not yet been investigated further as it presupposes a careful
investigation of the computational complexity when compiling routes with more
than two transport tiers.

If the driver candidate list is non-empty at this point, the passenger agent
selects the best driver (or the best combination of drivers, if there are no direct
connections for the passenger). The pivotal criterion for selection is thereby the

1 Which might become particularly interesting for instance when considering multi-
modal transport combining individual and public transport.

170 X. Xing et al.

:

:

Vehicle Route Detour

Vehicle Boarding/Switch/Unboarding

Pedestrian Zone

Dest. Bob

Dest. Sofi

Dest. Anna

Fig. 2. Schema for a composite route offered as a transport solution

accumulated travel duration. Once the choice has been made, a ride-sharing
request is sent to those driver agents representing the chosen driver candidate.
The message contains the personal information of the passenger, the meeting
point with the passenger and the drive route to get off point as determined by
the passenger agent. Thereafter, the passenger agent sends back the complete
transport details with driver(s) information, pick up and get off point(s) as well
as the possible walk route to the passenger.

Upon reception of the ride-sharing request from a passenger agent, the notified
driver agents change their sharing status to occupied which is retained until
the transport is completed. We recognize, that this design decision neglects the
capacity utilization of the transport vehicles and thus the possibility of additional
passengers joining a transport which is already in progress.

Figure 2 presents a composite route of passenger Anna, her first driver Bob
and connecting driver Sofi. In this case, both the start and destination point of
Anna are located in a pedestrian zone. Therefore Anna first needs to walk to
the pick up point on the boundary of the pedestrian zone where she can meet
with Bob. In order to take up Anna, Bob has made a detour from his original
route to the boundary point. Driver Sofi has waited at the crossing point with
Bob for the arrival of Anna, and drives Anna to a suitable drop off point on the
boundary of the pedestrian zone in which her destination is located. From there,
Anna has to walk the final part of her travel, while Sofi continues to drive to her
original destination along a new route. The total travel time of Anna consists of
the service response time, the basic transport duration, the expected wait time
for the arrival of the transport vehicles at the pick up points and walk times.

3 Multiagent-Based Simulation

Multiagent-based simulation (MABS) applies the concepts of multiagent systems
to simulation. According to Herrler and Klügl [7, p. 575] MABS “is a perfect

SMIZE: A Spontaneous Ride-Sharing System for Individual Urban Transit 171

means to represent and examine emergent effects in distributed systems. Mul-
tiagent simulation models may be used to gain insights into system interdepen-
dencies, to make predictions and also for testing software systems”. Besides for
function tests of our Smize prototype, we use MABS predominantly as a means
to analyze on a conceptual level the feasibility of the particular spontaneous
ride-sharing approach proposed in the previous section. That is, we use it do ad-
dress the economically motivated question: If specific estimates about both the
average number of car owners willing to offer a ride-sharing opportunity at each
point in time and the number of residents interested in using the spontaneous
ride-sharing service exist for a certain metropolitan area, is the operation of the
ride-sharing system feasible with regard to a certain quality of service measured
in terms of travel time and the percentage of successful ride negotiations?

For the conduction of our simulation experiments, we used the multiagent-
based simulation environment PlaSMA2[8] which has been developed as flexible
simulation platform for the Collaborative Research Centre 637 “Autonomous
Cooperating Logistic Processes: A Paradigm Shift and its Limitations“ at the
University of Bremen. PlaSMA is a simulation middleware which enhances the
underlying FIPA3 compliant agent platform JADE [9] with means for simula-
tion. It handles experiment initialization, time management including message
passing, as well as agent life-cycle management.

4 Experimental Setup

For the simulation of ride-sharing scenarios which differ in the numbers of partic-
ipating passengers and drivers, we have implemented an external service agent
as part of the simulation environment. It creates a continuous stream of user
(i.e. passenger and driver) inquiries to the system which are consequently han-
dled by new instances of adequate the user agent types introduced in section 2.
These inquiries comprise the respective user profile, ride-sharing preferences as
shown in the table on the left side of figure3, as well as start and destination
point which were chosen randomly from the street map shown on the right in
figure 3. The generation process thereby respected the constraint that neither
start nor end point of a DriverAgent can be located in a pedestrian zone. For
all conducted experiments the Smize system could be realized with a basic set
of service agents, namely a single instance of both of the NodeAgent and the
RouteAgent without thus creating a noticeable performance bottleneck.

In order to run the simulation experiments on the street map of a real-word
urban environment, detailed map material of the Bremen metropolitan area
(11.000 crossings and 19.200 street segments) was downloaded from the Open-
StreetMap4 project. The map material was parsed into an ontologically modeled
directed graph as required by the PlaSMA simulation system. Street segments
2 Web site: http://plasma.informatik.uni-bremen.de (visited: July 17, 2009).
3 Foundation for Intelligent Physical Agents.

Web site: http://www.fipa.org (visited: July 17, 2009).
4 Web site: http://www.openstreetmap.com (visited: July 17, 2009).

http://plasma.informatik.uni-bremen.de
http://www.fipa.org
http://www.openstreetmap.com

172 X. Xing et al.

Ride-Sharing Preferences Passenger Driver

Gender don’t care don’t care
Smoker don’t care don’t care
Service Response Time 20 min.
Walk to Pickup Point? yes
Transfer OK? yes
Pickup Detour OK? yes
Desired Travel Fees standard standard

Fig. 3. Left: ride-sharing preferences for passenger and driver agents in the simulation
experiments; Right: simplified street map of Bremen with 2.103 nodes and 4.448 edges

were thereby modeled as directed edges, crossings as nodes. Each directed edge
was annotated with its speed limit and segment length. Since the ontology is
imported into main memory (and validated in the process) upon simulation
start, the load time for a scenario run strongly depends on the complexity of the
directed scenario graph and the particular simulation system. In order to accel-
erate the load time, the original street map was simplified using the following
strategies: (a) all of the streets in residential areas (30 km/h) were rejected; (b)
streets with multi-segment curves, multiple traffic lanes or complex connections
via traffic circles were represented with as few edges and nodes as possible. The
resulting graph that has been used in all simulation experiments was comprised
of 2.103 street nodes and 4.448 edges (cf. figure 3, right).

For the basic experiment outlined in the following section, the travel time of
a passenger is determined directly by the speed limit of those street segments
passed by the utilized ride-sharing vehicle(s). We thereby use the simplifying
assumption that a continuous travel at maximum allowed speed is possible. Thus,
the simulation model did not yet reflect traffic densities or congestions which pose
an effective upper bound to effective travel speeds.

In some experiments outlined below, it was necessary to simulate passengers
whose desired travel route roughly features a certain predetermined length (cf.
section 5.1). In these cases, a random street node was chosen and set as starting
point of the passenger. From this node and along an arbitrary direction, a route
according to the shortest travel time was constructed incrementally until the
travel time as computed by the A�-algorithm roughly corresponded with the
required travel length. The end node of this route was set as the destination of
this passenger.

5 Results

For the evaluation of the Smize concept, simulation experiments were conducted
for the investigation of the relationship between travel time of passengers and
number of participated drivers and in a further step for the comparison of the
travel time with public transport.

SMIZE: A Spontaneous Ride-Sharing System for Individual Urban Transit 173

Number of Drivers

N
um

be
r

of
 T

es
ts

Number of Drivers

Tr
av

el
Ti

m
e

of
 P

as
se

ng
er

s
[m

in
]

true false
Successful Ride Agency

54.7%

67.3%

80.7%

89.3% 90.7% 90.0% 92.0% 92.7%

Fig. 4. The simulation result for one passenger with different number of participating
drivers (with a maximum of 350). Left: The frequency of successful ride-sharing; Right:
Distribution of travel time of a single passenger.

5.1 Influence of the Number of Smize Participants on Travel Time

The total number and distribution of active participants of a spontaneous ride-
sharing system is a critical factor with regard to service quality, measured in the
ratio of successful ride negotiations and the resulting travel times. We assumed
(a) that the average travel time for certain routes is dependent on the ratio
rp/d = |pass|/|driv| of passengers and active drivers, (b) that the desired success
rate within a given travel time (i.e. effectiveness of operation) range requires at
least rp/d ≤ θsucc, and finally (c) that the aspired transport quality requires an
rp/d ≤ θqual ≤ θsucc.

In order to verify this assumption a two-tiered test scenario was set up. On
the first tier of the test, the goal was to find the minimum number of active
drivers |driv|min required for successful operation with a minimum number of
ride-sharing requests. Thus, for each point in time there is only a single passenger
(|pass| = 1) while the number of active drivers was kept constant for single
scenario runs and was increased in discrete steps in succeeding scenario runs
(i.e. |driv| = n ∈ {20, 50, 100, 150, 200, 250, 300, 350}). In each scenario run, 150
transport requests by the passenger were simulated. For each transport request
the start and destination point of the passenger were drawn randomly from the
vertices of the street map.

The travel length between the passenger’s start and destination must be ap-
proximately equal each time such that a meaningful average travel time of the
passenger can be computed. Long travel routes were avoided due to the fact
that in a significant number of cases, the starting or destination point of the
passenger was located near to the boundary of the map, where the through-
put of vehicles was lower than in inner-city areas. This could cause unsuccessful
ride-sharing cases, due to the limitation of the simulated regional scope rather
than the Smize concept. The simulation result for one passenger with a travel
length corresponding to eight minutes of pure travel time and a varying number
of participating drivers is shown in figure 4.

174 X. Xing et al.

Number of Passengers

N
um

be
r

of
 T

es
ts

Number of Passengers

Tr
av

el
Ti

m
e

of
 P

as
se

ng
er

s
[m

in
]

true false
Successful Ride Agency

93.5% 91.9%

85.2%

74.5%

62.9%

Fig. 5. The simulation result for various number of passengers (with a random travel
length of 8 minutes) with 150 drivers. Left: The frequency of successful ride-sharing;
Right: Distribution of travel time of passengers.

The result shows that with a constant amount of 150 participating drivers,
the success rate of ride-sharing cases for a single passenger reaches 89.3%. A
further increase of the amount of participating drivers yields only a low incre-
ment in success rate (only 3.4% when adding 200 active drivers). The average
travel time of one passenger with 100 drivers is 13.8 � 4.7 minutes and was not
improved significantly by the increasing of the number of drivers. If we consider
the results for achievable success rates together with the average travel time of
a passenger, we can determine the minimal participating number of drivers for
our spontaneous ride-sharing system in the Bremen scenario as |driv|min = 150.

On the second tier of this test, we investigated for which amount of passengers
the ride-sharing system could offer an acceptable service with the minimal partic-
ipating number of 150 drivers. In this test, the number of drivers was kept fixed
at |driv|min = 150, while the number of passengers was increased in succeeding
scenario runs. We started with 10 passengers sending ride-sharing requests to
Smize concurrently. Each passenger has a random start and destination point.
The travel length of each passenger is 8 minutes. This case was executed 300
times, so the total number of tests is 3000. Thereafter, the number of passengers
was increased to 20 for each time and the executing times of this case was 150
(20 �150 = 3000). After this, the number of passengers was increased to 50, 100
and 150 and the executing times were respectively 60, 30 and 20.

Figure 5 presents the simulation result of this test. It shows that when there
are more than 20 passengers sending a ride-sharing request in one time window
(rp/d = 20/150), the success rate of ride-sharing cases dropped below 90%. For
the case that both of the participating number of passengers and drivers are
150 (rp/d = 1), the success rate is still at 62.9%. The average value of travel
time of passengers for the case with 10 passengers (rp/d = 10/150) is 14.4 � 5.1
minutes and for the case with 20 passengers 14.6 � 5.1 minutes. Thus, there
is no significant difference between those two cases. Both of them have only a

SMIZE: A Spontaneous Ride-Sharing System for Individual Urban Transit 175

deviate of circa one minute in comparison with the case of a single passenger (see
above) and are longer as the shortest travel time (8 minutes) up to 12 minutes.

To summarize, in the Bremen scenario the spontaneous ride-sharing system
Smize can offer ride-sharing matching services for up to 20 passengers with a
success rate of 90%, when there are at least 150 actively participating drivers in
a same time window. If the travel segment of a passenger is not located in the
boundary area where fewer resident live, the travel time with the ride-sharing
service is expected to take up to 1.5 times the shortest travel time.

5.2 Comparison of Travel Time with Public Transport

A second test case was set up for the travel time comparison with public
transport. Here, one passenger was simulated with different number of drivers
(|driv| = n ∈ {20, 50, 100, 150, 200, 250, 300, 350}). The simulated average travel
time of this passenger was compared with the travel time to be expended for
the same travel segment using public transport. This test was executed three
times. Each time, the start and destination point of the passenger were ran-
domly chosen from the street map. The simulation result shows that with a
minimal participating number of 50 to 200 active drivers, a single passenger can
be taken to his or her destination with a high success rate of nearly 100%, if his
or her start and destination point are analog to those of the test passenger. The
travel time of the passenger with Smize (in three cases) is generally shorter than
by taking public transport. The average reduction is circa the half. We have to
note, however, that in this test case, there has been only a single passenger in
this simulation who wants to take part in a ride-sharing. In the reality there
are several passengers who send ride-sharing requests at the same time. As a
consequence, the competition in the search for appropriate drivers might be sig-
nificant. Therefore, we understand that our simulation result for this simplified
test scenario underestimates the ride-sharing travel times to some degree.

6 Future Work

In its current incarnation the simulation environment employed as a testbed for
the Smize system is based on a significantly simplified street map and uses a basic
calculation of expected travel duration for vehicles on travelled route segments.
Beneficial extensions towards greater realism of the simulation model include
the implementation and connection of a realistic traffic model for the simulated
metropolitan area or the use of real world traffic data. The latter could also act
as a basis to render the simulation of user inquiries more realistic with regard to
temporal and spatial variations in the demand of the ride-sharing service.

During the search for appropriate drivers for particular ride-sharing requests,
the ride-sharing preferences of drivers and passengers were compared using rather
strict matching rules which demand far-reaching agreement of the respective
data. Thus, even the mismatch of a single preference item let to the filtering
of the driver from the transport candidate list. In the future, it is possible to

176 X. Xing et al.

order the transport candidates in a priority queue according to their respective
degree of fulfillment of preference match and transport efficiency (expected driv-
ing and wait time for pick up). Then, even in situation where no completely
matching candidate exists, slightly inferior yet tolerable alternatives might still
be available.

In the experiment outlined in section 5.2, we opposed individual and pub-
lic mass transport with regard to travel times when using exclusively either
transport modality. Spontaneous ride-sharing was thus conceived as a poten-
tial substitute for public transit. Another approach is to take a rather holistic
point of view an conceive ride-sharing and public transport as compliments to
be combined in a multi-modal travel planning system.

Finally, we need to address the bottleneck induced by the use of a single
NodeAgent, as it hinders the scaling of our current ride-sharing concept from
several hundred to thousands of active participants.

Acknowledgement. The presented research was partially funded by the German
Research Foundation (DFG) within the Collaborative Research Centre 637 ”Au-
tonomous Cooperating Logistic Processes: A Paradigm Shift and its Limitations”
(SFB 637) at the University of Bremen, Germany.

References

1. Eurostat: Regions: Statistical Yearbook 2006. Technical report, European Commu-
nities, Luxembourg: Office for Official Publications of the European Communities
(2006)

2. Dailey, D.J., Loseff, D., Meyers, D., Haselkorn, M.P.: Seattle Smart Traveler. In:
Transportation Research Board 76th Annual Meeting, Washington DC, USA (1997)

3. Zegartowski, L.: Definition, Teilimplementation und Verifikation eines vollautoma-
tischen Vermittlungssystems für den Personentransport. Ph.D thesis, Universität
Bremen, Bremen, Germany (1998)

4. Winter, S., Nittel, S.: Ad-hoc Shared-ride Trip Planning by Mobile Geosensor Net-
works. Int. Journal of Geographical Information Science 20, 899–916 (2006)

5. Timm, I.J.: Strategic Management of Autonomous Software Systems. Professorial
Dissertation, Universität Bremen (2006)

6. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn.
Prentice Hall, Upper Saddle River (2003)

7. Herrler, R., Klügl, F.: Simulation. In: [10], pp. 575–596
8. Schuldt, A., Gehrke, J.D., Werner, S.: Designing a Simulation Middleware for

FIPA Multiagent Systems. In: 2008 IEEE/WIC/ACM International Conference on
Web Intelligence and Intelligent Agent Technology, Sydney, Australia, pp. 109–113
(2008)

9. Bellifemine, F., Caire, G., Greenwood, D.: Developing Multi-agent Systems with
JADE, 1st edn. Wiley Series in Agent Technologies. Wiley Inter-Science, Chichester
(2007)

10. Kirn, S., Herzog, O., Lockemann, P., Staniol, O. (eds.): Multiagent Engineering:
Theory and Applications in Enterprises. In: International Handbooks on Informa-
tion Systems. Springer, Heidelberg (2006)

Towards a Verification Framework for
Communicating Rational Agents

Nils Bulling1 and Koen V. Hindriks2

1 Department of Informatics
Clausthal University of Technology, Germany

bulling@in.tu-clausthal.de
2 Faculty Electrical Engineering, Mathematics and Computer Science

Delft University of Technology, The Netherlands
k.v.hindriks@tudelft.nl

Abstract. We present an abstract framework for verifying communi-
cative actions for rational agent programming languages. Firstly, a
multi-agent verification logic based on the computational semantics is
introduced; and subsequently, this multi-agent logic is embedded into a
more expressive modal logic over a standard run-based semantics. We
formally relate both logics, prove expressivity results, and argue why it
is useful to have a (more expressive) standard modal logic and semantics
at hand.

1 Introduction

In the literature the gap between agent programming languages and agent logics
has frequently been discussed and first steps for bridging and analysing it have
been done [5,6]. Just recently, a computational semantics for the GOAL agent
programming language for communicative actions based on mental models was
proposed in [4,1].

In this paper we relate such agent programming languages offering communi-
cation abilities to a “standardized” agent logic. For this purpose we propose an
abstract setting for communicating agents, based on the message-passing sys-
tem introduced in [3], and extend the verification logic from [5] to be applicable
to the communicative setting. We continue to show that the computational se-
mantics can be embedded into a run-based modal semantics. This result can be
seen as a conservative extension of the single-agent result presented in [5] to the
multi-agent setting introduced here; however, in this paper we leave out some
operators whose addition is straightforward.

Due to the space limitations we will often refer to [1] for more details and the
proofs of the main theorems.

2 Preliminaries

In the following we present the basic multi-agent model, sketch the essentials of
an agent programming language and its extension by communicative actions.

L. Braubach et al. (Eds.): MATES 2009, LNAI 5774, pp. 177–182, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

178 N. Bulling and K.V. Hindriks

The Multi-agent Model. For our multi-agent model we reuse the well-established
theory on distributed systems from [3]. Our model assumes a fixed number of
agents with associated agent names Agt = {a1, . . . , an}. A global state g of a
multi-agent system (Mas) is a tuple 〈la1 , . . . , lan , le〉 where lai is the local state
of agent ai. We use ga to denote the local state of agent a. The non-empty set
G = La1 × . . . × Lan represents all (global) states.

In each state an agent a may perform an action, drawn from a set of actions
Acta where Acta ∩ Actb = ∅ when a
= b. We use αi to denote actions and Act
denotes the union of the action sets of all agents.

The effects of performing an action are represented by a transition function
τ : G × Act → G. Actions are assumed to update only the local state of the
agent performing it. That is, τ(g, α)a = ga whenever α
∈ Acta. An exception
to this rule will be made below for communicative actions. The behavior of a
multi-agent system is given by a run r which is a mapping N → G × Act . r1(i)
(resp. r2(i)) is used to denote the projection of r(i) onto the first (resp. second)
component of r(i). We thus use an interleaving semantics to model the execution
of a Mas, i.e. one action is executed per time step. A multi-agent system model
R, system for short, is defined as a set of runs.

Programming with Mental Models. Rational agents are programs that derive
their choice of action from their beliefs and goals. An agent programming lan-
guage provides a framework for programming with mental models that consist
of an agent’s beliefs and goals. Whereas in the single agent setting a mental
model consists of the agent’s own beliefs and goals only, in the multi-agent set-
ting, that we consider here, we use the notion of a mental state that consists of
mental models of other agents as well (cf. [4,1]). The idea is that these mental
models are used to (partially) reconstruct the beliefs and goals of another agent.

The beliefs and goals of an agent are declarative sentences which are repre-
sented in standard propositional logic LPL built over a set of propositional atoms
Atom and the usual Boolean connectives. |=PL denotes the usual consequence
relation associated with LPL.

Formally, a mental model is a pair 〈Σ, Γ 〉 with Σ ⊆ LPL a belief and Γ ⊆ LPL

a goal base which satisfy the usual rationality constraints: (i),(ii) Consistency of
beliefs and goals; and (iii) goals are not believed to be achieved (cf. [1,4]).

Finally, a mental state is a mapping m from Agt to mental models, i.e. m(a) =
〈Σ, Γ 〉 is a mental model for each a ∈ Agt . The set of all mental states is denoted
by MS (Agt). The intuition is that a mental state ma encodes a’s beliefs about
b’s beliefs and goals by mapping agent name b to a mental model ma(b) = 〈Σ, Γ 〉
where Σ encodes b’s beliefs and Γ encodes b’s goals.

Agents need to be able to inspect their mental state and the different mental
models part of it. Thus, the language of mental state conditions over Agt ,
LMS(Agt), is defined by: ψ ::= Baφ | Gaφ | ¬ψ | ψ ∧ ψ where a ∈ Agt
and φ ∈ LPL. The semantics of mental state conditions is defined relative to
a mental state m where m(a) = 〈Σa, Γa〉. So, we have, for instance, m |=MS
Baφ iff Σa |=PL φ; and m |=MS Gaφ iff ∃γ ∈ Γa such that γ |=PL φ. The se-
mantics for negation and conjunction is given in the usual way.

Towards a Verification Framework for Communicating Rational Agents 179

Communication Among Agents. The communicative actions that we introduce
here affect the mental state of the receiving agent. Following [4,1], a communica-
tive action is of the form send(a, b,msg) ∈ Acta where msg denotes a message
that is being sent by agent a to b. Three indicators are introduced that intu-
itively correspond with the sentence types most often used in natural language:
• for declarative, ? for interrogative, and ! for imperative sentences. Hence, a
message is of the form •φ, ?φ, or !φ where φ ∈ LPL.

3 The Formal Model for Communicating Agents

In this section we present a formal and abstract model for communicating ratio-
nal agents based on the concepts introduced in Section 2 (again, we try to be as
brief as possible and refer to [1] for a more detailed presentation). Mental states
of an agent can be seen as concrete instantiations of the local states of Section 2;
thus, we get G = MSa1 × . . . × MS an where MSai denotes the set of mental
states for agent ai. The behavior of an agent is determined by its mental state.
Here, the transition functions τ of Section 2 are therefore named mental state
transformers. A corresponding run is called a(n) (agent) trace. τ(g, α)a(b) must
satisfy the three rationality constraints of mental models for any a, b ∈ Agt .
Here, τ(g, α) denotes a global state, τ(g, α)a denotes the mental state of agent
a, and τ(g, α)a(b) denotes the mental model agent a associates with agent b, a
notation we will often use below.

We extend a mental state transformer τ : G × Act → G to message-passing
mental state transformer such that it can be applied to send(a, b,msg) by im-
posing the following constraints:

1. If b
= a, α ∈ Acta, α
= send(a, b, m), then τ(g, α)b = gb

2. If α = send(a, b, m), then (i) τ(g, α)i = gi ∀i ∈ Agt \ {b},
(ii) τ(g, α)b(i) = gb(i) ∀i ∈ Agt \ {a}, and

τ(g, α)b(a) :=

⎧⎪⎨
⎪⎩
〈Σa ⊕ φ, {γ ∈ Γa | Σa ⊕ φ
|= γ}〉 if m = •φ
〈Σa � φ, Γa〉 if m = ?φ

〈Σa � φ, Γa ∪ {φ}〉 if m = !φ

Following [4,1], communicating a message m thus modifies the mental model
〈Σa, Γa〉 of the sender a maintained by receiver b. ⊕ and � are understood as
update and revision operators. For details we refer to [4,1].

The Verification Language LV. The temporal language LV to reason about
communicating agents is an extension of the verification logic introduced in [5].
We enrich the logic by Bb

aφ (a believes that b believes φ), and by Gb
aφ (a believes

that b has goal φ). The verification language LV is given by the set of formulae
χ defined by the following grammar:

χ ::= Bb
aφ | Gb

aφ | ¬χ | χ ∧ χ | χUχ | Xχ | donea(α)

where φ ∈ LPL, α ∈ Act a and a, b ∈ Agt . We also write Ba for Ba
a and Ga

for Ga
a. A trace generated by several agents and a message passing mental state

180 N. Bulling and K.V. Hindriks

transformer serves as a model for LV. Given such a trace t and a time point
i ∈ N the semantics of LV-formulae is defined in a straightforward way:

t, i |=V Bb
aφ iff ga |=MS Bbφ where g = t1(i)

t, i |=V Gb
aφ iff ga |=MS Gbφ where g = t1(i)

t, i |=V Xχ iff t, i + 1 |=V χ
t, i |=V χUχ′ iff ∃j ≥ i : t, j |=V χ′ and ∀k : i ≤ k < j ⇒ t, k |=V χ
t, i |=V donea(α) iff i > 0 and t2(i − 1) = α

and in the usual way for negation and conjunction. This logic allows to verify
basic properties of a multi-agent system.

4 Embedding LV in the Modal Logic LM

One disadvantage of LV is that it is non-standard and not very expressive. In
this section we introduce the modal logic LM which is used to reason about runs.
Then, we relate the verification logic LV and its semantics to the modal logic
LM and present expressiveness results.

LM: Syntax and Semantics. The language LM given by the grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Baϕ | Gaϕ | �ϕ | ϕUψ | Donea(α)

is built over atoms p ∈ Atom and the temporal constructs �ϕ for ϕ holds in
the next state, ϕUψ for ϕ holds until ψ holds, belief operators Baϕ for a ∈
Agt believes ϕ, goal operators Gaϕ for a has goal ϕ, and Donea(α) for a has
performed α ∈ Act .

The behavior of a Mas is modelled by a set of runs (cf. Section 2); thus, an
LM-model M is a tuple 〈R, {Ba | a ∈ Agt}, {Ga | a ∈ Agt}, V 〉 consisting of a
set R of runs, serial belief and goal accessibility relations, one for each agent
Ba,Ga ⊆ R×N ×R×N, and a valuation function V : R×N → P(Atom)which
labels states with the facts true in it.

Formulae are interpreted over LM-models in the standard way (see e.g. [3]).
We use M, r, i |= ϕ to denote that ϕ is satisfied on r at time i in model M.
Again, we skip the standard cases (see [1] for more details):

M, r, i |= Baϕ iff ∀(r′, i′) ∈ Ba(r, i) : M, r′, i′ |= ϕ
M, r, i |= Gaϕ iff ∀(r′, i′) ∈ Ga(r, i) : M, r′, i′ |= ϕ
M, r, i |= �ϕ iff M, r, i + 1 |= ϕ
M, r, i |= ϕUψ iff ∃j :j ≥ i and M, r, j |= ψ s.t. ∀k : i ≤ k< j⇒M, r, k |= ϕ
M, r, i |= Donea(α) iff i > 0 and r2(i − 1) = α ∈ Acta

We define Xa(r, i) = {(r′, i′) | Xa(r, i, r′, i′)} for X ∈ {B,G} and, as usual,
abbreviate Baϕ ∧ ϕ as Kaϕ.

Equivalence and Correspondence Results. We formally relate the logics LV and
LM by embedding LV into LM. We do so by introducing a translation tr from
LV-formulae to LM-formulae defined as stated below:

Towards a Verification Framework for Communicating Rational Agents 181

tr(Bb
aφ) =

{
BaBbφ if a
= b

Baφ if a = b

tr(Gb
aφ) =

{
BaGb♦φ if a
= b

Ga♦φ if a = b

tr(¬ϕ) = ¬tr(ϕ)
tr(ϕ ∧ ψ) = tr(ϕ) ∧ tr(ψ)

tr(Xϕ) = �tr(ϕ)
tr(ϕUφ) = tr(ϕ)Utr (ψ)

tr(donea(α)) = Donea(α)

We show that this translation preserves truth which shows that the logic LM

can be used to reason about communicating agents instead of the non-standard
LV. Our first result shows that LM and its models are at least as expressive as
LV over traces; i.e., the modal logic can be used to reason about traces.1

Theorem 1. Let t be a trace. Then there is an LM-model M = 〈R, {Ba | a ∈
Agt}, {Ga | a ∈ Agt}, V 〉 and a run r t ∈ R such that for all ϕ ∈ LV and i ∈ N

we have: t, i |=V ϕ iff M, r t, i |= tr(ϕ).

To obtain a correspondence result in the other direction, it is clear we need to
impose some constraints on LM-models to ensure they model mental states and
meet the rationality constraints of mental states and message passing mental
state transformers. The consistency requirements for beliefs and goals are sat-
isfied due to the seriality of the belief and goal relations. To match the third
condition (goals are not believed to be achieved), we introduce the following
postulate:

(R1) ∀a, b ∈ Agt : Gb
a(r, i) ⊆ [[♦ϕ]]M ⇒ Bb

a(r, i)
⊆ [[ϕ]]M

where [[ϕ]]M := {(r, i) | M, r, i |= ϕ}, the denotation of ϕ, consists of the points
that satisfy ϕ and Bb

a(r, i) := (Bb ◦ Ba)(r, i) = {(r′, i′) | ∃(r′′, i′′) ∈ Ba(r, i) :
(r′, i′) ∈ Bb(r′′, i′′)}). Gb

a := Gb ◦ Ba is defined analogously. The subscript M is
omitted if clear from context.

In order to be able to match the communication semantics of message-passing
mental state transformers, two additional postulates are required. Let r be a run
and X ∈ {B, G}. The second postulate says that only the beliefs and goals of
an action executing agent may change provided it is not a send action; and the
third that only the mental state of the agent who receives the message is allowed
to change in the prescribed way.

(R2) If send(·, ·,msg)
= r2(i) ∈ Acta then for all c, d ∈ Agt , c
= a: Xc(r, i) =
Xc(r, i + 1) and Xd

c (r, i) = Xd
c (r, i + 1)

(R3) If r2(i) = send(a, b,msg) then for all c, d ∈ Agt : Xc(r, i) = Xc(r, i + 1)
and Xd

c (r, i) = Xd
c (r, i + 1) except if:

msg = •ϕ and ϕ consistent then Ba
b (r, i + 1) ⊆ [[ϕ]];

msg = ?ϕ and ϕ no tautology then Ba
b (r, i + 1)
⊆ [[ϕ]];

msg = !ϕ and ϕ no tautology then Ba
b (r, i + 1)
⊆ [[ϕ]] and Ga

b (r, i + 1) ⊆
Ga

b (r, i) ∩ [[♦ϕ]].

1 Proofs can be found in [1].

182 N. Bulling and K.V. Hindriks

A run is called trace-consistent if it satisfies (R1-3); and an LM-model is said
to be trace-consistent if it contains at least one trace-consistent run.

Theorem 2. Let M be a trace-consistent LM-model. For each trace-consistent
run r, all ϕ ∈ LV, and i ∈ N: M, r, i |= tr(ϕ) iff t, i |= ϕ.

Benefits of the Modal Logic Approach. Why do we need two logics (LV and
LM) for the same purpose? An advantage of LM is that it is more standard and
thus better comparable to other logics, it is more expressive and allows to reuse
existing results and tools (e.g. wrt. model checking). Hence, LM seems especially
suitable for the specification and verification of communication in MAS.

5 Conclusion and Related Work

We proposed first steps towards a theoretical model for communicating rational
agents. We extended the verification logic from [5] to be applicable to the new
setting and introduced a more expressive modal logic over standard models,
based on [3], to reason about communicating agents. Links between both logics
were established allowing to use the benefits of the “standard” modal logic.

The expressiveness of the logic to reason about communicating agents is lim-
ited compared to other logics that have been proposed [7,2], and remains an
issue for future research, but an advantage of our approach is that it is based on
the computational semantics introduced in [4]. Our work is very much related
to [5]; actually, it can be seen as an extension of it. Here, however, we are even
more general and relate agent programming languages to standard modal logic
rather than Cohen and Levesque’s Intention Logic [2].

References

1. Bulling, N., Hindriks, K.V.: Communicating Rational Agents: Semantics and Verifi-
cation. Technical Report, Clausthal, Germany, Clausthal University of Technology
(2009)

2. Cohen, P.R., Levesque, H.J.: Communicative actions for artificial agents. In: Proc.
of the 1st Int. Conf. on Multi-agent Systems, ICMAS 1995 (1995)

3. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about Knowledge. MIT,
Cambridge (1995)

4. Hindriks, K.V., van Riemsdijk, M.B.: A Computational Semantics for Communicat-
ing Rational Agents Based on Mental Models. In: The 7th International Workshop
on Programming Multiagent Systems, ProMAS 2009 (2009)

5. Hindriks, K.V., van der Hoek, W.: Goal agents instantiate intention logic. In:
Hölldobler, S., Lutz, C., Wansing, H. (eds.) JELIA 2008. LNCS (LNAI), vol. 5293,
pp. 232–244. Springer, Heidelberg (2008)

6. Meyer, J.-J.C.: Our quest for the holy grail of agent verification. In: Olivetti, N.
(ed.) TABLEAUX 2007. LNCS (LNAI), vol. 4548, pp. 2–9. Springer, Heidelberg
(2007)

7. Singh, M.P.: Multiagent Systems: A Theoretical Framework for Intentions, Know-
How, and Communications. Springer, Heidelberg (1994)

Designing Organized Multiagent
Systems through MDPs�

Moser Fagundes, Roberto Centeno, Holger Billhardt, and Sascha Ossowski

Centre for Intelligent Information Technologies (CETINIA)
University Rey Juan Carlos, Madrid, Spain

{moser.fagundes,roberto.centeno,holger.billhardt,
sascha.ossowski}@urjc.es

Abstract. In this paper we present an approach to design an Organized Mul-
tiagent Systems (OMAS) for teamwork. We use a general formal model for
OMAS that employs the notion of organizational mechanisms. The purpose of
such mechanisms is influencing the behaviour of the agents towards more ef-
fectiveness with regard to some objectives. To achieve our goal we use Markov
Decision Processes (MDPs) as a framework to design the organizational mecha-
nisms. In order to illustrate our approach we use the medical emergencies domain
where ambulances have to be selected in order to assist and transport patients to
the hospitals.

1 Introduction

Ongoing research goals on Multiagent Systems (MAS) include the development of
autonomous agents capable of reasoning and acting in open systems. Heterogeneous
agents with different designs may join these open systems, and there is no guarantee
that they will follow any behavior pattern, neither that they understand other entities.
In this context the organizational concept can be of great value to provide support and
regulate these MAS, ensuring the well-functioning of the whole system.

The paper [2] claims that the concept of organization is not restricted to the exis-
tence of some entity with a global purpose. Organizational structures may also exist
(or emerge) as a mean to aid agents in their decision making processes in an uncer-
tain environment. That work proposes a general formal framework for organizations,
founded on the idea of organizational mechanisms that can be classified as informative
or regulative. Informative mechanisms are well-suited for MAS where the agents have
incomplete (and possibly inaccurate) knowledge about the environment, including other
agents. These agents have to estimate and evaluate the expected utility of each possi-
ble action course (or of the actions it is aware of) to decide what actions to take next.
From a micro level perspective any additional information may improve the agent’s de-
cision. From a macro perspective the informative mechanisms can be used to influence
the agents’ behavior without any adjustment on their autonomy. On the other hand the

� The present work has been partially funded by the Spanish Ministry of Science and Innovation,
grants TIN2006-14630-C03-02 (FPI grants program) and CSD2007-00022 (CONSOLIDER-
INGENIO 2010).

L. Braubach et al. (Eds.): MATES 2009, LNAI 5774, pp. 183–188, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

184 M. Fagundes et al.

regulative mechanisms adjust the agents’ autonomy by changing their capabilities and
actions’ outcome. This hard enforcement aims to regulate the agents’ behavior when
particular environmental states take place.

In this paper we explore organizational mechanisms for efficient teamwork in an Or-
ganized Multiagent System (OMAS). To achieve our goal we design the organizational
mechanisms with Markov Decision Processes (MDPs)[1]. Such Markovian models are
well-known and have already been applied successfully in multiagent teaming [5]. To
illustrate our approach we use the medical emergencies context where people request
medical assistance for emergencies. The employment of advances on MAS to improve
this type of medical service [4,3] is an area of significant potential since agent systems
provide tools to simulate and evaluate different organizational models before applying
changes on real-world systems.

This paper is organized as follows: in Section 2 we define Organized Multiagent Sys-
tems and detail the organizational mechanisms to be explored along the paper; Section 3
presents our design for an OMAS for medical emergencies done with MDPs; finally in
Section 4 we draw the conclusion and future work.

2 Organized Multiagent Systems

According to [2] an OMAS is a tuple 〈RA,A,χ ,φ ,x0,ϕ ,OM〉 where: RA is a set of rational
agents; A is a possibly infinite action space that includes all possible actions that can be
performed in the system; χ is the environmental state space; φ :χ×A|RA|×χ→[0..1] is
the transition probability distribution which describes how the environment evolves as a
result of agents’ joint actions; x0 stands for the initial environmental state of the system;
ϕ :RA×χ×A→{0,1} is the agents’ capability function describing the actions the agents
are able to perform in a given environmental state ϕ(a,x,ac)=1 (ϕ(a,x,ac)=0) means
that an agent is able (not able) to perform action ac in the state x; OM is a non-empty
set of organizational mechanisms.

The organizational mechanisms OM can be divided in two kinds: informative and
regulative. An informative organizational mechanism is a function that given a partial
description of an internal state of an agent and taking into account the partial view that
the mechanism has of the current environmental state, provides information:

Γ :S’×χ’→I

where:

– S’ represents the set of possible partial descriptions of agents’ internal states;
– χ’ is the set of partial views of environmental states;
– I represents an information space.

The information provided may consist of a set of actions an agent can take but it is
possibly not aware of, a recommendation of a particular action, or information about
the consequences that a given action may have.

Regulative mechanisms produce modifications in the environment with the aim to
improve the system’s behavior from a macro level perspective. They can be divided in
two types:

Designing Organized Multiagent Systems through MDPs 185

– An incentive mechanism ϒinc for an OMAS is a function that given a description
of the environmental state of OMAS produces changes in the transition probability
distribution of OMAS:

ϒinc:χ’→[χ×A|RA|×χ→[0..1]]

– A coercive mechanism ϒcoe for an OMAS is a function that given a description
of the environmental state of OMAS produces changes in the agent’s capability
function of OMAS:

ϒcoe:χ’→[RA×χ×A→{0,1}]

3 An OMAS Approach for Medical Emergencies

Different emergency centres may have different ways for handling their assistances,
however they have common roles and procedures: centres receive help requests and
send ambulances to assist the patients; if the ambulance crew is not able to provide the
adequate treatment in situ, then the patient is transported to a hospital.

3.1 OMAS Specification

In our medical emergencies OMAS the rational agents can play one of the following
roles: ambulance, patient or hospital. It is assumed that the system has p ambulances, q
patients and r hospitals.

RA = {ambulance1, ..., ambulancep, patient1, ..., patientq,
hospital1, ..., hospitalr}

The action space A consists of: move for moving to an adjacent position; assist j when
an ambulance assists the jth patient; admit j for admitting the jth patient in a hospital;
release j for releasing the jth patient; wait for waiting for medical assistance; and skip
for doing nothing.

A = {move, assist j , admit j, release j, wait, skip}

An environmental state space consists of a set of features χ=Ξ 1×...×Ξ n, where each
Ξ i, 1≤i≤n, corresponds to a single feature. Each feature Ξ i can have a single value to
be selected from a vector of possible values. The set of features to be specified in our
MAS are decomposed in following subsets:

χ = χambulances×χ patients× χhospitals

The χambulances is composed by the ambulances’ state and position. Their state Ξ as[i]
can assume the values available, what means the ambulance is not committed and con-
sequently it is available for a new mission, or patient j, what corresponds to ambulancei

assisting patient j. The ambulances’ position Ξ ap[i] can assume the value that corre-
sponds to the area the ambulance is located in. Within χ patients the feature Ξ pp[j] corre-
sponds to the patient j’s position, while the feature Ξ ps[j] stands for patient j’s state. The

186 M. Fagundes et al.

patient’s initial state is healthy, but when she gets sick she requests help and changes
her state to waiting. When the ambulance begins the assistance the patient j’s state Ξ ps[j]
assumes the value ambulance. When the patient is hospitalized her state assumes the
value hospital until she becomes healed. Finally, the hospitalk’s location is represented
in the feature Ξ hp[k].

χambulances= Ξ as[1]×...×Ξ as[p]× Ξ ap[1]×...×Ξ ap[p]
χ patients= Ξ ps[1]×...×Ξ ps[q]× Ξ pp[1]×...×Ξ pp[q]
χhospitals= Ξ hp[1]×...×Ξ hp[r]

Ξ as[i]={available, patient1, ..., patientq} where 1≤i≤p
Ξ ap[i]={area1, ..., arean} where 1≤i≤p
Ξ ps[j]={healthy, sick, waiting, ambulance, hospital, healed} where 1≤j≤q
Ξ pp[j]={area1, ..., arean} where 1≤j≤q
Ξ hp[k]={area1, ..., arean} where 1≤k≤r

The set of available actions for a rational agent in a particular environmental state is
given by a capability function ϕ :RA×χ×A→{0,1}. Table 1 summarizes the set of
available actions (column A) for the agents (column RA) in particular environmental
states (column χ). As an example, the action move is available for ambulances in all
states of the world. The action assist j is available for an ambulance only in environ-
mental states where the ambulance and patient j occupy the same physical location, the
ambulance is available and the patient is waiting for medical assistance.

Table 1. Capabilities for agents involved in the medical emergencies domain

RA A χ
ambulancei move ALL

assist j (Ξ ap[i]=Ξ pp[j]) ∧ (Ξ as[i]=available) ∧ (Ξ ps[j]=waiting)

release j (Ξ as[i]=patient j) ∧ (Ξ ps[j]=ambulance)

hospitalk admit j (Ξ hp[k]=Ξ pp[j]) ∧ (Ξ ps[j]=sick)

release j Ξ ps[j]=healed

patient j move Ξ ps[j]=healthy

wait Ξ ps[j]=sick

ALL skip ALL

The function ϕ defines the agents’ capabilities for particular states of the world,
but it does not provide information regarding how the environment evolves when an
agent executes an action. Such environmental modifications are driven by the transition
function φ :χ×A|RA|×χ→[0..1], which gives the probability distribution over states of
the world that can take place through the execution of actions on the current state.

To specify the function φ for each x∈χ can be exhausting for a χ with a high number
of features. In order to facilitate the specification of φ (qualitative and quantitatively)
we use the following rules:

Designing Organized Multiagent Systems through MDPs 187

(r1) if patient j executes move then she will move to the adjacent position;
(r2) if patient j executes wait then Ξ ps[j]=waiting.
(r3) if ambulancei executes move then she will move to the adjacent position; if Ξ as[i]=

patient j and Ξ ps[j]=ambulance then Ξ pp[j] assumes the same value as Ξ ap[i] (if
ambulancei is transporting patient j then their position have to be the same);

(r4) if n ambulances execute assist j (assist the same patient) at the same time then
the chances of success for each one is 1/n; if ambulancei is successful then Ξ as[i]=
patient j and Ξ ps[j]=ambulance, otherwise Ξ as[i]=available;

(r5) if ambulancei executes release j then Ξ as[i]=available and Ξ ps[j]=sick;
(r6) if hospitalk executes admit j then Ξ ps[j]=hospital;
(r7) if hospitalk executes release j then Ξ ps[j]=healthy;

These rules represent the knowledge agents have a priori about the world. In exception
of (r4) the remaining rules are deterministic. However these rules can be easily modified
in order to model the uncertainty on the agent’s actions, e.g., the rules of the actions
could be adjusted to have a probability p of success.

3.2 Organizational Mechanisms

As previously stated organizational mechanisms consist of processes for regulating the
behavior of agents. In our case, we concentrate on the aim to assure rapid assistance for
each possible patient. We assume that once a patient is assisted, the ambulance crew will
provide the best possible treatment including a fast transport to a hospital if required.
As organizational mechanisms we propose to use incentive and informative actions. We
specify a reward function ROM that motivates the agents in the OMAS to behave like
a MDP. In our case, we consider a reward function ROM: χ×RA→[0..1], that assigns
rewards to agents in environmental states. By default, all rewards are zero.

In our application the organizational action space AOM contains incentive mecha-
nisms (aom1–2) and informative mechanisms (aom3–5):

(aom1) change the rewards for ambulances when assisting a patient.
(aom2) change the rewards for ambulances being located at different areas.
(aom3) inform each ambulance that patient j at areax is waiting for assistance and the

reward it would receive for assisting the patient.
(aom4) inform each ambulance that patient j at areax has already been attended.
(aom5) inform each ambulance about the reward it would receive in each area.

The informative actions represented in (aom3) and (aom5) inform agents about the
benefit their actions will have. (aom4) is intended to avoid unnecessary movement of
ambulances. The incentive actions (aom1) aims to assure assistance and tends to avoid
situations where multiple ambulances go for the same patient. Finally (aom2) intends
to keep the city covered by giving incentives to the ambulances to move to uncov-
ered areas. The reward function ROM is changed with respect to (aom1) and (aom2) as
follows:

(aom1) ROM((Ξ as[i]=patient j), ambulancei)=r, where r is proportional to the distance
ambulancei had to patient j in the moment when patient j asked for help. (r is nor-
malized to the interval [0.5..1], where r=1 for the nearest and r=0.5 for the farthest
ambulance);

188 M. Fagundes et al.

(aom2) ROM((Ξ ap[i]=areax) ∧ (Ξ as[i]=available), ambulancei)=r, where r is inversely
proportional to the density of ambulances in areax (r is normalized to the interval
[0..0.5], where r=0.5 for the area with the lowest and r=0 for area with the highest
density of ambulances);

4 Conclusion and Future Work

This paper presents an OMAS design for effective multiagent teamwork in the medical
emergency domain. Our approach aims to bridge the gap between the abstract organiza-
tional model and the OMAS development by exploring MDPs. In this paper we focused
on the organizational mechanisms, leaving the agents’ design outside of our scope. We
assume that agents are rational and, thus, tend to maximize their rewards.

By employing MDPs to build organizational mechanisms we highlight how they can
be thought. Since we are dealing with autonomous agents, there is no guarantee that
the usage of such mechanisms will bring the desired outcomes. Through informative
mechanisms agents can be persuaded by receiving relevant information, but there is a
chance that these agents do not take that information into account. By using incentive
mechanisms it is possible to change actions outcomes, however there is no guarantee
the agents will perceive such changes. Additionally, these incentives may not have an
influence on the pursuit of the agents’ intentions remember agents may not be aware of
others’ goals. Combining incentive with informative mechanisms, we assure that agents
are aware of the possible outcomes their actions will have and can act accordingly.

Future work on Organized MAS is twofold. The first research direction consists of
applying learning techniques for MDPs to design dynamic organizations. The second
one aims the investigation of medical emergency scenarios with complex interactions,
competition and establishment of commitment between involved parties (e.g. ambu-
lance companies have to compete to assist a patient, and independent of the circum-
stance at least one ambulance has to be assigned to help that patient).

References

1. Bellman, R.: A Markovian Decision Process. Journal of Mathematics and Mechanics 6, 679–
684 (1957)

2. Centeno, R., Billhardt, H., Hermoso, R., Ossowski, S.: Organising MAS: A Formal Model
Based on Organisational Mechanisms. In: Shin, S.Y., Ossowski, S. (eds.) 24th Annual ACM
Symposium on Applied Computing (SAC 2009), Hawaii, USA, pp. 740–746. ACM, New York
(2009)

3. Centeno, R., Fagundes, M.S., Billhardt, H., Ossowski, S.: Supporting Medical Emergencies
by MAS. In: Håkanson, A., Nguyen, N.T., Hartung, R.L., Howlett, R.J., Jain, L.C. (eds.) KES
AMSTA 2009. LNCS, vol. 5559, pp. 823–833. Springer, Heidelberg (2009)

4. López, B., Innocenti, B., Busquets, D.: A Multiagent System to Support Ambulance Coordi-
nation of Urgent Medical Transportation. IEEE Intelligent Systems 23(5), 50–57 (2008)

5. Nair, R., Tambe, M.: Hybrid BDI-POMDP Framework for Multiagent Teaming. Journal of
Artificial Intelligence Research (JAIR) 23, 367–420 (2005)

A Reference Architecture for Modelling of
Emotional Agent Systems

Julia Fix and Daniel Moldt

University of Hamburg, Department of Informatics,
Vogt-Koelln-Str. 30, D-22527 Hamburg, Germany
http://www.informatik.uni-hamburg.de/TGI/

Abstract. In this contribution E-Mulan (Emotional Mulan (Multi-
agent Petri nets)) are introduced. On the one hand it is a reference
architecture for modeling emotion in MAS. On the other hand it is the
technical realisation based on our tool set Renew and Capa.

1 Introduction

First efforts of the DAI research focused on the possibility of implementing the
functionality of natural emotional phenomena in (multi-)agent systems, address-
ing problems of action selection, resource allocation, multi-agent co-ordination,
social control and structuration of artificial societies etc (see e.g. [15] for an
overview).

On the most general level, we aim to provide more profound theoretical un-
derpinning for MAS-models of emotion. We expect to do so by modelling and
integrating interdisciplinary approaches to emotion within a single modelling
framework. For the development, analysis and understanding of socio-technical
aspects of MAS we aim at analytical separation of cognitive and emotional com-
ponents of a MAS model. This separation is illustrated in this paper with the
proposed reference model of emotion based MAS architecture.

2 Conceptual and Technical Background

We seek to accomplish the integration of cognitive science and social science
approaches to emotion using a general modelling technique that allows building
a unique integrative model of emotion that (a) is usable in an MAS context and
(b) provides general theoretical underpinnings for an implementation of emotion
in (distributed) artificial systems.

2.1 Formal Modelling Techniques: Petri Nets and Reference Nets

A practical evaluation of the reference net formalisms has revealed its important
advantages for modelling different sociological theories (see [10] and [11] for
general compact summaries of the research in this area for more than a decade.).

L. Braubach et al. (Eds.): MATES 2009, LNAI 5774, pp. 189–194, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.informatik.uni-hamburg.de/TGI/

190 J. Fix and D. Moldt

Basing upon these results, we propose the application of Petri Net / Reference
Net modelling technique for modelling emotion-based processes and concepts in
multi-agent systems.

The graphical representation of Petri nets, which is intuitive and easy to
understand also without extensive additional instructions, has proven to be es-
pecially useful in interdisciplinary endeavours, constituting a general communi-
cations language, e.g. for collaboration of computer scientists and sociologists
(see [10]; [7]). Unlike other automata formalisms Petri nets allow for direct mod-
elling of concurrency (i.e. independent events and processes). Moreover, high-
level Petri nets permit the representation of recursive structures and emergent
processes and are able to inherently express structural as well as process con-
cepts at the same time. Well established extensions of the basic formalism and
sophisticated tool sets for most of these extensions exist.

Together with these extensions, Petri nets thus provide a powerful instrumen-
tarium for modelling dynamic, hierarchical and recursive structures, as described
by psychological, neurological and social theories of emotion. Due to its opera-
tional semantics and the broad range of available analytical methods, modelling
with Petri nets allows an evaluation and formal checking of semantics of the mod-
els, however, neglecting the Java code. In addition, the formal representation of
emotion models facilitates their integration into the computational domain. Fur-
ther details on reference nets modelling are omitted here, but can be found in
several of the given references in this text. The practical side of reference nets
can be found in an efficient editing and simulating tool called Renew (Refer-
ence Net Workshop, [12]), which provides a powerful support for designing and
evaluating Petri net / reference net models.

2.2 Social Models Based on the Mulan-Architecture

The proposed architecture is based on the Mulan multi-agent architecture ([6];
[13]), which is a conceptual implementation of the agent concept on the basis of
the reference net formalism [8]. It has the general structure as depicted in the
central section of figure 1.

While Mulan provides four conceptual levels of abstraction, that are used to
describe hierarchies in a multi-agent system, Capa provides a FIPA-compliant
embedding for practical use (FIPA, [4]). Since we concentrate on the underlying
conceptual model, the implementation details are omitted here and can be found
in [13]. While Mulan and Capa are usually used to directly model and / or
implement usual distributed software artefacts, we use it here in the spirit of
our Socionics projects (as documented in [10], [7], [11] etc.). This means that
different levels of abstraction of software are associated with specific levels of
social systems.

Each (white) box describes one level of abstraction in terms of the net hierar-
chy. Each upper level net contains net tokens, whose structures are made visible
by the ZOOM lines.

A Reference Architecture for Modelling of Emotional Agent Systems 191

The figure shows a simplified version of Mulan, since for example several
inscriptions and all synchronous channels are omitted. Nevertheless Mulan is
an executable model.

in

in

protocols

outgoingincoming

new destroy

knowledge base

e

 external
communication

out

accessnew

stop

prore p

out

appraisal/
emotion processing/

emotion control

p1

platformss3

O

s1

s2

internal
communication

new destroy
e

(re-)produce social structure

 external
communication

in

outgoingincoming knowledge base

reactive
emotion

generation new

stop

proactive
emotion

generation

emotion
protocols

ep

out

access

social
 structures

Z

MO

in out

appraisal/
emotion processing/

emotion control

social system

multi-agent system

agent structure

protocol

social structure

agent emotion model

agent platform

emotional protocol

Fig. 1. A MULAN-based Reference Architecture for Modelling Emotion in MAS

2.3 Modelling Emotion within Mulan: E-Mulan

In this subsection we introduce a layered framework for modelling emotions,
based on Mulan-concepts, that functions in parallel to the conventional non-
emotional Mulan-architecture. The formal model, on which the representation
bases, is the recursive formalism of reference nets, as described in the previous
subsection.

General Setting. Assuming an important influence of emotion on fundamen-
tal processes of human and artificial intelligence (e.g. [9]), we aim to establish
a modelling framework, which explicitly separates emotions from cognitive pro-
cesses. In this way we expect to facilitate the investigation and implementation

192 J. Fix and D. Moldt

of the interdependences between emotional and cognitive processes. We postu-
late that supplementary to cognitive parts of a model emotional counterparts
exist. Actually within our previous models of sociological theories (see e.g. [10])
we integrated cognitive and emotional models, since this is a usual perspective
in sociology: The mutual dependencies of emotion and cognition lead to an in-
tegrated modelling. We propose here an analytical separation of concerns for
emotion and cognition.

We use the existing Mulan-architecture to model the cognitive component
of the architecture and then enhance it with special components for modelling
emotions, which is for its turn based on Mulan modelling concepts. The link-
age between the proposed framework and the conventional architecture may be
realized in a simple and homogenous manner, based on the applied modelling
techniques: The existing (cognitive) models are completed with further models
of emotion. The statements of the sociological (and other) emotion theories ei-
ther deal with pure emotion-based interdependences, in which case they are to
be integrated only in the emotion models, or emotions are additionally claimed
to influence social structures and processes. In the latter case, linkage to the
rational elements of the model has to be created, which is technically accom-
plished by means of synchronous channels. Thus any possible linkage of actions
from different layers of the proposed architecture can be represented.

Based on our experiences from socionics projects (i.e. [10]; [7]), we distinguish
four layers for modelling emotion as follows (these four layers can be found as
the white boxes in Fig. 1):

Social System View. The first layer represents social aggregates (groups, fields
etc.) that constitute the social structure of the (artificial or natural) society. On
this layer social macro-structures, as they are specified in sociological theories
of emotion, can be positioned.

Social Structure View. The second layer of the proposed framework specifies
the social structures. These social objectives are defined through the platform
and are valid for all actors/agents residing on the platform. They influence emo-
tions of the individual and are influenced by emotions on their turn. Further,
agents can interact and communicate their emotions by message exchange. At
this level we can model theories of emotion, which describe the functions of emo-
tion for the structuration of society or the interdependences between emotion
and social control structures, like social norms, behavioural rules, etc. E.g., the
social constructionist theories of emotion, which consider emotions as socially
constructed phenomena, whereby the emotional arousal and expression is facili-
tated mainly by socially negotiated norms (feeling rules and expression rules [5]
or display rules [2]) would be positioned at this layer.

Agent View. On the third layer we can describe the model of emotion of an
actor or agent as a whole. The conventional (cognitive) model of an agent must
be extended with an internal emotional model, specifying mechanisms of emo-
tion generation (appraisal processes) by means of emotional protocols. In case
of an emotional agent, not only activities of the agent, but also his emotions

A Reference Architecture for Modelling of Emotional Agent Systems 193

are modelled with protocols. In accordance with the conventional Mulan agent
model the selection of these protocols can succeed either reactively, correspond-
ing to automatic emotional responses (primery or basic emotions [1]) that are
generated as immediate reactions on certain (critical) events in the agent’s dy-
namic environment, or proactively, by means of a complex deliberative process
of emotion generation (appraisal), which can be started also without external
eliciting condition and are specified through the relation of agents beliefs, desires
and observations of the environment.

Through the parallel linking to a cognitive agent model we can specify the
influence of generated emotion on deliberation, i.e. behaviour, action selection,
planning etc., as far as these influences are specified in the modelled theory of
emotion.

Emotion View. The last layer enables the representation of actually active
emotions that were dynamically generated on the third level or that make up the
basic underlying processes of the emotions. These emotions are structurally and
conceptually equivalent to the dynamically generated behaviours/actions of an
agent. They can run independent of each other and interact with each other via
the agent, that is the environment for the emotions. Thus the proposed architec-
ture enables modelling of interactions between agent’s emotions. Futhermore, as
protocols representing agents activities and emotions can run simultaneously, we
can also model the (mutual) influences between generated emotions and actions
of an agent, specifying the influence of emotion on deliberation, i.e. behaviour,
action selection, planning etc.

The possibility to design discrete emotions and their specific components as
explicit states or processes which are integrated into the existing (rational) models
still remains unelaborated, but is a goal for future work. Although the approach
presented here allows a sharp distinction, it does not enforce it, since restrictions
of the flexibility might be possible. However, these restrictions should only arise
from the requirements of the specific theories of emotion, which can provide the
appropriate and substantial arguments.

3 Discussion

The main contribution of this paper is the E-Mulan reference architecture,
which allows for the conceptual separation of concerns for emotion and cogni-
tion when modelling complex multi-agent systems. Beside the conceptual con-
tribution our technical solution based on Renew and Capa allows for a direct
implementation of such models.

Especially the multi-agent systems, which we usually model accordingly to
the FIPA-standard with Mulan, can now be enhanced by a smooth integration
of emotion models into the whole agent systems. It is important to notice that
we propose to establish the possibility to apply an emotion perspective at all
modelling levels of MASs: the overall system / society level, the platform /
group or field level, the agent / actor level, and at the protocol level.

194 J. Fix and D. Moldt

In this way we can investigate emotions in terms of their internal and external
causes and consequences for the actor’s behaviour and deliberation, for the social
structure, e.g. enforcement and maintenance of social norms, or for the dynamics
of the social system at the most abstract level. The implementation and analysis
of the respective models, which directly use or apply the social models of emotion
is still a subject to future work.

References

1. Damasio, A.R.: Looking for Spinoza: Joy, Sorrow, and the Feeling Brain. Harvest
Books (2003)

2. Ekman, P., Friesen, W.V.: Unmasking the Face. Prentice Hall, Englewood Cliffs
(1975)

3. Elliott, C.D.: The Affective Reasoner. A Process Model of Emotions in a Multi-
Agent System. Phd thesis, Intitute for the Learning Sciences, Northwestern Uni-
versity (1992)

4. FIPA – homepage, http://www.fipa.org
5. Hochschild, A.R.: Emotion work, feeling rules, and social structure. American Jour-

nal of Sociology 85(3), 551–575 (1979)
6. Köhler, M., Moldt, D., Rölke, H.: A Discussion of Social Norms with Respect

to the Micro-Macro Link. In: Proceedings of the 2nd International Workshop on
Regulated Agent-Based Social Systems (RASTA 2003), Edinburgh (2003)

7. Köhler, M., Moldt, D., Rölke, H., Valk, R.: Linking micro and macro description of
scalable social systems using reference nets. In: Fischer, K., Florian, M., Malsch, T.
(eds.) Socionics. LNCS (LNAI), vol. 3413, pp. 51–67. Springer, Heidelberg (2005)

8. Kummer, O.: Referenznetze. Logos Verlag, Berlin (2002)
9. LeDoux, J.E.: Cognition and Emotion: Processing Functions and Brain Systems.

In: Gazzaniga, M.S. (ed.) Handbook of Cognitive Neuroscience, pp. 357–368.
Plenum Press, New York (1984)

10. Lüde, R.v., Moldt, D., Valk, R.: Sozionik: Modellierung soziologischer Theorie.
Reihe: Wirtschaft – Arbeit – Technik, vol. 2. Lit-Verlag, Münster (2003)

11. Lüde, R.v., Moldt, D., Valk, R.: Selbstorganisation und Governance in knstlichen
und sozialen Systemen. Reihe: Wirtschaft – Arbeit – Technik, vol. 5. Lit-Verlag,
Münster (2009)

12. Renewthe reference net workshop homepage (2008), http://www.renew.de/
13. Rölke, H.: Modellierung von Agenten und Multiagentensystemen - Grundlagen und

Anwendungen, vol. 2. Logos Verlag, Berlin (2004)
14. von Scheve, C., Moldt, D.: Emotion: Theoretical Investigations and Implications

for Artificial Social Aggregates. In: Lindemann, G., Moldt, D., Paolucci, M. (eds.)
RASTA 2002. LNCS (LNAI), vol. 2934, pp. 189–209. Springer, Heidelberg (2004)

15. Trappl, R., Petta, P., Payr, S. (eds.): Emotions in Humans and Artifacts. MIT
Press, Cambridge (2003)

http://www.fipa.org
http://www.renew.de/

Towards a Taxonomy of Decision Making Problems in
Multi-Agent Systems

Christian Guttmann�

School of Primary Health Care
Faculty of Medicine, Nursing and Health Sciences, Monash University

Notting Hill, 3168, VICTORIA, Australia
christian.guttmann@gmail.com

Abstract. Taxonomies in the area of Multi-Agent Systems (MAS) classify prob-
lems according to the underlying principles and assumptions of the agents’ abili-
ties, rationality and interactions. A MAS typically consists of many autonomous
agents that act in highly complex, open and uncertain domains. A taxonomy can
be used to make an informed choice of an efficient algorithmic solution to a class
of decision making problems, but due to the complexity of the agents’ reason-
ing and modelling abilities, building such a taxonomy is difficult. This paper
addresses this complexity by placing model representation, acquisition, use and
refinement at the centre of our classification. We classify problems according to
four agent modelling dimensions: model of self vs. model of others, learning vs.
non-learning, individual vs. group input, and competition vs. collaboration. The
main contributions are extensions of existing MAS taxonomies, a description of
key principles and assumptions of agent modelling, and a framework that enables
a choice for an adequate approach to a given MAS decision making problem.

1 Introduction

Coordination of activities in natural and engineered systems often require that agents
make individual and joint decisions. Multi-Agent Systems (MAS) consists of au-
tonomous agents that make their own decisions (and do not follow decisions made
by others) and have their own beliefs (and do not rely on beliefs maintained by other
agents) [1,2]. Choosing an adequate method for effective coordination requires a thor-
ough understanding of the underlying assumptions and principles of how agents model
their social surroundings and how these models are used in decision making.

An autonomous agent requires a model of its own behaviour and that of other agents
to make informed decisions about taking its next action. Knowledgeable agents (i.e.,
agents that have models) can predict its own actions and those of other agents. A sys-
tem with such agents is structured and predictable. This is opposed to a system with
ignorant agents associated with chaotic behaviour [1,2]. Research has demonstrated
that using agent models benefits agent coordination in a variety of scenarios [3,4,5].
However, despite the importance of agent models in coordination, previous taxonomies
do not place a notable emphasis on an agent’s ability to model agent behaviour for
its decision making processes. Instead, taxonomies often organise the problem space

� This research was supported in part by Linkage Grant LP0774944 from the Australian Re-
search Council.

L. Braubach et al. (Eds.): MATES 2009, LNAI 5774, pp. 195–201, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

196 C. Guttmann

considering macro features of decision making problems. For example, [6,7] centre
the issue of how many agents are required to perform one or several tasks. [8] considers
how to classify different types of joint activity problems, and [9] classifies based on het-
erogeneity, distribution, and autonomy. This research offers useful insights into MAS
coordination, but it does not emphasise a central feature of agent systems: the complex-
ity involved when an agent maintains models of itself and others to make decisions. A
better understanding of the appropriateness of an approach to a problem requires a re-
organisation of the problem space based on the underlying assumptions and principles
of MAS.

This paper offers extensions to existing MAS taxonomies and advances the state of
the art in artificial intelligence, and particularly MAS, as follows.

– Organisation of the space of decision making problems. Unlike previous tax-
onomies, we propose a classification structure of decision making problems in
MAS that places the role of agent models at its centre.

– Analysis of the problem space. We identify critical assumptions that define four
agent modelling dimensions across the space of problems. The location of a deci-
sion making problem in this space requires an analysis against these assumptions.

– Prescriptive framework. Our taxonomy enables an informed choice of an ap-
proach for a given problem class as we have a clear understanding of the underlying
assumptions and principles of the role of agent models in coordination.

– Identification of research opportunities. This taxonomy is used to classify well-
known approaches, some offer provable, others heuristical solutions to problems.
Our taxonomy indicates underexplored types of decision making problems.

This research arranges decision making problems in MAS emphasising the use of mod-
els maintained by agents. This taxonomy is a first attempt to find an appropriate ap-
proach for a given problem, and offers a basis to develop a unified model.

Section 2 discusses related research. Section 3 defines the four agent modelling di-
mensions, offers a classification scheme and positions well known existing approaches.
Section 4 discusses a possible unified approach. Section 5 concludes this paper.

2 Related Research

Section 2.1 discusses the use of agent models in of MAS coordination. Section 2.2
reviews related MAS taxonomies.

2.1 Role of Agent Models

[1] argue that the coordination of MAS will be chaotic if agents are not able to predict
their own behaviour and that of others. Enabling agents to maintain models of the be-
haviour of other agents is an important requirement for the coordination of MAS [1].
Previous research has demonstrated that using agent models benefits agent coordination
in predicting the decisions made by collaborators [4], matching students with tutors
in collaborative support environments [5], and predicting the performance of soccer-
agents in RoboCup [3]. Each initiative makes distinct assumptions that influence what
to model (feature selection), how to model it (feature representation), and how to use
models (model usage). Previous research has not adequately addressed the classification
of MAS decision making based on the role of agent models.

Towards a Taxonomy of Decision Making Problems in Multi-Agent Systems 197

Model of
Self

Decision
Making Problem

Model of
Others

LearningNon-
Learning

Individual
Input

Group
Input

Competitive Collaborative Competitive Collaborative

LearningNon-
Learning

Competitive Collaborative Competitive Collaborative

LearningNon-
Learning

Individual
Input

Group
Input

Competitive Collaborative Competitive Collaborative

LearningNon-
Learning

Competitive Collaborative Competitive Collaborative

Fig. 1. A taxonomy on decision making problems in MAS

2.2 Multi-Agent System Taxonomies

Modelling the behaviour of agents is a crucial skill of an agent [1], but many MAS tax-
onomies do not place the role of agent models at the centre of the classification [9,6,7,8].
[7] has been widely used for task classifications and uses four categories.

Task execution requires one agent Task execution requires several agents
Separate task Single Agent - Single Task (SA–ST) Mult. Agents - Single Task (MA–ST)
Simultaneous tasks Single Agent - Mult. Tasks (SA–MT) Mult. Agents - Mult. Tasks (MA–MT)

This taxonomy demonstrates how a well structured classification can assist in under-
standing a complex problem space. As such, the taxonomy offers a useful starting point
to understand fundamental types of decision making problems. However, this MAS
taxonomy (as well as many others [6,7,8,9]) has a significant limitation as the classifi-
cation is not based on models maintained by agents. Our taxonomy structures this space
by placing the complexity of building agent models at the taxonomy’s centre.

3 Four Agent Modelling Dimensions

The complex role of models maintained by agents is central to our MAS decision mak-
ing taxonomy. We consider the role of agent models in being able to make particular
types of decisions. This taxonomy enables positioning of a problem in the decision mak-
ing space. As with other MAS taxonomies (e.g., [6,7]), our taxonomy identifies classes
of decision making problems where provable optimal solutions exist while other classes
can only be solved using heuristics. While this taxonomy is not exhaustive, it charac-
terises the complexity of agent modelling in MAS decision making problems. Four axes
describe the space of MAS decision making problem (defining 16 classes, Figure 1). We
now discuss a rationale for each axis.

3.1 Dimension 1: Self Model versus Model of Others

Does an agent model only its own performance or also that of others? At one extreme,
an agent has information that pertains to itself, for example, it estimates its own perfor-
mance or it holds a value that represents the estimated pay-off for taking a particular

198 C. Guttmann

a
1

a
2

a
3

a
n

Decision
Making
Process

Decision
Making
Process

Decision
Making
Process

Decision
Making
Process

Conseq a
1

Conseq a
n

Conseq a
3

Conseq a
2

(a) Multiple-Individual

a
1

a
2

a
3

a
n

Decision
Making
Process

Conseq a
n

Conseq a
3

Conseq a
2

Conseq a
1

(b) Group

Fig. 2. Input offered by several agents (a) for each agent’s decision making process with conse-
quences for itself, or (b) for group decision making process with consequences for entire group

action. Many approaches based on each agent’s knowledge of its own behaviour are
market-driven approaches, because each agent is assumed to know its own performance
best and accurately. In the Contract Net (CNET) protocol, a manager agent announces
a task, each contractor assesses how well it performs the task and makes a bid, and
the manager then assigns the task to the contractor which made the most adequate bid.
The CNET protocol works best when the agents have accurate self-estimations, because
the manager can rank the bids and select the highest bidder [10].

At the other extreme, an agent has information that pertains to other agents. Ap-
proaches where an agent requires information of other agents’ behaviour are referred to
as agent modelling approaches. Agent models are used to predict decisions of collab-
orators [4], match students with tutors in collaborative support environments [5], and
predict the performance of soccer-agents in RoboCup [3].

3.2 Dimension 2: Individual Input versus Group Input

The input of a decision making process is either derived from an individual, or a group
(Figures 2(a) and 2(b)). At one end of this spectrum, an individual agent makes a deci-
sion and uses as input for the decision making process its own knowledge (Figure 2(a)).
An example here is Multi Agent Reinforcement Learning (MARL), where multiple
agents execute tasks individually and use reinforcement learning to coordinate their ac-
tions, taking into account various configurations (e.g., if agents can observe each others’
actions) [11,12,13]. MARL agents do not jointly select a team which then executes a
given task, instead MARL is concerned with the internal coordination of a team.

At the other end of this spectrum, we have decision making processes that require
the input of several agents (Figure 2(b)), which we refer to as group decision making.
Voting is a preference aggregation procedure applied in situation where agents have
conflicting preferences – agents “compete” as each aims to see its own preference im-
plemented [14,15]. The aim of preference aggregation is to find a “collective decision”
of what best reflects the “will” of the group.

3.3 Dimension 3: Learning versus Non-learning

We can divide this space by considering decision making problems that are made only
once, or over multiple rounds where learning plays an important role [16]. In the latter
case, each agent requires adequate processes to maintain models and refine them over
time. For example, an agent can update its models whenever new information of its

Towards a Taxonomy of Decision Making Problems in Multi-Agent Systems 199

own behaviour and that of agents is available. This information may be acquired from
different sources. For example, [17]’s agents update their models using observations of
other agent’s behaviour over several iterations. Agent models in [5] are refined using
information derived from explicit communication. Further discussions on related topics
of MAS learning can be found in [16]).

Many other MAS decisions do not consider multiple rounds and learning is therefore
not required. The Contract Net (CNET) protocol is an example which considers only a
single round before a decision is made [10]. In particular, the CNET protocol and many
of its extensions describe how a contract is made after a single announcement of the
task (i.e., in a single round). In these cases, managers and contractors are not required
to be able to learn. Similarly, in many voting frameworks, a group makes a decision
with little consideration to long term consequences [14,15].

3.4 Dimension 4: Collaboration versus Competition

An agent’s decision making style can range from being collaborative to being compet-
itive. That is, an agent makes a decision intending to improve the welfare of a group or
task (collaborative) or its own welfare (competitive).

Collaborative agents aim to maximise the welfare of the group, e.g., by finding the
best allocation of a team to a task (i.e., an agent maximises the group or task utility
before its own). These agents aim to offer a best “global solution” as opposed to com-
petitive procedures that aim to find adequate trade-off’s between several parties. For
example, [18]’s agents are collaborative, because each agent aims to detect and resolve
problems that could jeopardise a successful completion of a mission.

A competitive agent exhibits behaviour that maximises its own utility – a behaviour
also referred to as self-rational or self-interested. Agents exhibit self-rational behaviour
in settings where resources are limited or different agents have opposing or conflicting
beliefs. For example, in auctioning, a group decision is made based on the competitive
bids of agents [19,20]. In these settings, an agent may only have information of its own
evaluation of the auctioned item in question, but information by competing agents may
be unreliable and its accuracy can not be trusted.

4 A Unified Approach to Distributed Decision Making?

Can we find a unified approach that represents and solves the problem classes defined
in our taxonomy? Our taxonomy shows that there is a multitude of MAS approaches
for decision making, and many are located at different ends of the dimensions as we
discussed in Section 3. How can we build a computational model that unifies many, if
not all approaches to decision making problems classified in our taxonomy?

[21] offers an initial framework that captures a wide variety of decision making prob-
lems located across the dimensions discussed in Section 3. [21] studies the refinements
of allocations based on group decisions. We refer to this as Collective Iterative Allo-
cation (CIA), because decisions are made together and allocations can be refined (and
iterated over time). In CIA, agents model their own performance (as in CNET) and that
of others. It allows for single round decision problems as well as for multiple rounds
(where agents are able to learn). Different competition and collaboration approaches
can be defined by the group decision policy. The CIA framework assumes that a deci-
sion is always made by a group (that is, the voting policy requires input from several

200 C. Guttmann

agents). One way to address this issue is to consider the conditions under which each
agent should make its own decisions (e.g., as is done in MARL) or follow the decisions
made by the group decision policy.

5 Conclusion

This paper discusses a taxonomy for MAS decision making problems. This paper offers
extensions to existing taxonomies on decision making in MAS and makes four contri-
butions. We propose a classification structure of decision making problems in MAS that
places the role of agent models at its centre (this classification can be represented using
a tree structure where classes are clearly separated). We identified critical assumptions
which define four agent modelling dimensions in the space of problems. A location of
a decision making problem in this space requires an analysis against these assumptions.
Our taxonomy enables an informed choice of an approach for a given problem class
as we have a clearer understanding of the underlying assumptions and principles of the
role of agent models in coordination. Finally, this taxonomy can be used to identify
research opportunities as it classifies well-known approaches. We also discussed that
the CIA framework is a first step towards a unified approach for many decision making
problems. A future research direction is to extend this framework to enable further unifi-
cation. In future works, we aim to offer a comprehensive survey of existing approaches,
as well as to continue the formalisation of the taxonomy discussed in this paper.

References

1. Bond, A.H., Gasser, L.: An analysis of problems and research in DAI. In: Bond, A.H., Gasser,
L. (eds.) Readings in Distributed Artificial Intelligence (1988)

2. Wooldridge, M.: Introduction to Multiagent Systems. John Wiley & Sons, Inc., Chichester
(2002)

3. Stone, P., Riley, P., Veloso, M.M.: Defining and using ideal teammate and opponent agent
models. In: Proceedings of the Innovative Applications of Artificial Intelligence Conference
(IAAI), pp. 1040–1045 (2000)

4. Gmytrasiewicz, P.J., Durfee, E.H.: Rational communication in multi-agent environments.
Autonomous Agents and Multi-Agent Systems 4(3), 233–272 (2001)

5. Vassileva, J., McCalla, G.I., Greer, J.E.: Multi-agent multi-user modeling in I-Help. User
Modeling and User-Adapted Interaction 13(1–2), 179–210 (2003)

6. Dudek, G., Jenkin, M., Milios, E., Wilkes, D.: A taxonomy for multi-agent robotics. Au-
tonomous Robots 3(4), 375–397 (1996)

7. Gerkey, B., Mataric, M.: Are (explicit) multi-robot coordination and multi-agent coordination
really so different. In: Proceedings of the AAAI Spring Symposium on Bridging the Multi-
agent and Multi-robotic Research Gap, pp. 1–3 (2004)

8. Klein, G., Feltovich, P., Bradshaw, J., Woods, D.: Common ground and coordination in joint
activity. Organizational Simulation (2004)

9. Bird, S.: Toward a taxonomy of multi-agent systems. International Journal of Man-Machine
Studies 39(4), 689–704 (1993)

10. Smith, R.G.: The contract net protocol: High-level communication and control in a dis-
tributed problem solver. IEEE Transactions on Computers 29(12), 1104–1113 (1980)

11. Claus, C., Boutilier, C.: The dynamics of reinforcement learning in cooperative multiagent
systems. In: Proceedings of the Fifteenth National Conference on Artificial Intelligence
(AAAI), pp. 746–752 (1998)

Towards a Taxonomy of Decision Making Problems in Multi-Agent Systems 201

12. Shoham, Y., Powers, R., Grenager, T.: Multi-agent reinforcement learning: A critical survey.
In: AAAI Fall Symposium on Artificial Multi-Agent Learning (2004)

13. Sandholm, T.: Perspectives on Multiagent Learning. Artificial Intelligence (Special Issue on
Multiagent Learning) 171, 382–391 (2007)

14. Arrow, K.J.: Social choice and individual values. J. Wiley, New York (1951)
15. Fishburn, P.: The theory of social choice. Princeton University Press, Princeton (1973)
16. Stone, P., Veloso, M.M.: Multiagent systems: A survey from a machine learning perspective.

Autonomous Robots 8(3), 345–383 (2000)
17. Suryadi, D., Gmytrasiewicz, P.J.: Learning models of other agents using influence diagrams.

In: Proceedings of the seventh International Conference on User Modeling (UM), Banff,
Canada, pp. 223–232 (1999)

18. Tambe, M.: Towards flexible teamwork. Journal of Artificial Intelligence Research 7, 83–124
(1997)

19. Vickrey, W.: Counterspeculation, Auctions, and Competitive Sealed Tenders. The Journal of
Finance 16(1), 8–37 (1961)

20. Boutilier, C., Goldszmidt, M., Sabata, B.: Sequential auctions for the allocation of resources
with complementarities. In: Proceedings of the Sixteenth International Joint Conference on
Artificial Intelligence (IJCAI), pp. 527–523 (1999)

21. Guttmann, C.: Collective Iterative Allocation. PhD thesis, Monash University (2008)

L. Braubach et al. (Eds.): MATES 2009, LNAI 5774, pp. 202–207, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Modeling Tools for Platform Specific Design of
Multi-Agent Systems

Geylani Kardas1, Erdem Eser Ekinci2, Bekir Afsar2, Oguz Dikenelli2,
and N. Yasemin Topaloglu2

1 Ege University, International Computer Institute, 35100 Bornova, Izmir, Turkey
geylani.kardas@ege.edu.tr

2 Ege University, Department of Computer Engineering, 35100 Bornova, Izmir, Turkey
erdemeserekinci@gmail.com,

{bekir.afsar,oguz.dikenelli,yasemin.topaloglu}@ege.edu.tr

Abstract. In this paper, we introduce platform specific modeling and code gen-
eration tools for the model driven development of multi-agent systems (MAS).
These tools enable agent developers to model their MASs for the SEAGENT
and the JADEX agent platforms based on the semantics and design principles of
these platforms. The toolkit also provides automatic code generation for agent
developers in order to implement their MASs on the target platforms. Generated
codes may vary on type (e.g. Java class files, XML documents or ontologies)
according to each platform’s requirements.

1 Introduction

Model Driven Development (MDD), which aims to change the focus of software
development from code to models, may also provide rapid and easy development of
Multi-agent Systems (MAS). However, such a development process should be sup-
ported by modeling tools in order to assist developers during their design. Many re-
searchers in Agent-oriented software engineering (AOSE) community propose model
driven approaches (e.g. [1], [2] and [3]) in MAS development and also introduce
related modeling tools for their approaches. This study contributes to these efforts by
introducing new graphical modeling tools for different MAS platforms.

Based on the well-known MDD realization called Model Driven Architecture
(MDA)1, our ongoing work aims to define a MAS development process which will
consider the ontologies as the basic components of the MAS architecture. The pro-
posed development process includes definition of metamodels for each layer of the
MDA architecture; called the Computation Independent Model (CIM), the Platform
Independent Model (PIM), and the Platform Specific Model (PSM) and provides
modeling software tools for modeling in each layer. This study introduces the soft-
ware modeling tools which can be used at the PSM level. The developers can use
these tools to model MASs for SEAGENT [4] and JADEX [5] platforms and obtain
auto-generated software codes of their agent systems for the related platforms.

 1 http://www.omg.org/mda/

 Modeling Tools for Platform Specific Design of Multi-Agent Systems 203

The paper is organized as follows: In Section 2, we briefly discuss design and use
of the tools. Visual modeling and code generation for SEAGENT and JADEX agents
are discussed in Section 3 and 4 respectively. Section 5 covers related work. Conclu-
sion and future work are given in Section 6.

2 Design and Use of the Modeling Tools

The modeling tools introduced in this paper are developed on Eclipse2 platform by
using Graphical Modeling Framework (GMF)3. GMF is a framework for building
graphical modeling editors for various domains. In our study, we (1) provide domain
models of SEAGENT and JADEX agent platforms as Ecore4 metamodels, (2) prepare
graphical elements representing the agent domain elements and their relations, (3)
map agent components with the related graphical nodes and (4) generate the agent
modeling editors as the Eclipse plug-ins.

The developers use editors for visually modeling their agent systems. Agent do-
main elements and their relationship links are represented in the editor palettes. The
developers choose desired elements and links from palettes and visually create their
agent models as will be discussed in the following sections. The editor environment
also supports developers in model consistency and prevents wrong relation establish-
ments between agent model elements.

The outputs of the visual modeling are the model documents for the designed agent
systems. The next step is the automatic generation of agent software codes, ontology
documents and any other system files from visually created agent models. We employ
the Abstract Syntax Tree (AST) and related parser in the Eclipse Java Development
Tools (JDT) for automatic generation of SEAGENT agent software, plan documents
and ontology files. On the other hand, MOFScript5 is used to generate JADEX agent
description files and agent plan codes. Above mentioned code generations are com-
pletely abstract from the developers and hence developers do not deal with the gen-
eration process.

In order to illustrate practical use of the introduced tools, let us consider a multi-
agent based e-barter system. A barter system is an alternative commerce approach
where customers meet at a marketplace in order to exchange their goods or services
without currency. An agent-based e-barter system consists of agents called Customer
that exchange goods or services of owners corresponding to their preferences. The
Barter Manager agent manages all trades in the system. This agent is responsible for
collecting barter proposals, matching proper barter proposals and tracking the bar-
gaining process between customer agents. In the following sections, the registration
scenario of customer agents with the Barter Manager agent is discussed for the dem-
onstration of the modeling tools. Interested readers may refer to [6] for the complete
design and description of the related e-barter MAS system.

 2 http://www.eclipse.org/
 3 http://www.eclipse.org/gmf/
 4 http://www.eclipse.org/modeling/emf/
 5 http://www.eclipse.org/gmt/mofscript/

204 G. Kardas et al.

3 Modeling SEAGENT Agents

SEAGENT [4] is an agent development platform in which Semantic Web enabled
MASs can be developed in an interactive and test-driven manner. SEAGENT Agents
manage all of their internal knowledge using OWL6 ontologies and can interact with
the semantic web services. Development of SEAGENT MASs includes MAS model-
ing according to 4 viewpoints called Organization, Plan, Protocol and Domain.
Within Organization Model, agents, organizations, roles, goals and responsibilities of
the roles are declared. Plan Model provides internal planning of the agents based on
the Hierarchical Task Network (HTN) [7] paradigm. Protocol Models include proto-
cols for the interactions between SEAGENT agents. Finally, Domain Model com-
poses the ontological representation of the related business domain elements. Our
modeling toolkit includes editors for all 4 base models of the SEAGENT. However,
due to space limitations only editor for the Plan model is discussed in here.

In the SEAGENT framework, agents execute their tasks according to HTN. HTN
planning creates plans by task decomposition. This decomposition process continues
until the planning system finds primitive tasks that can be performed directly. In the
HTN formalism, there are two types of tasks: complex tasks called behaviours and
primitive tasks called actions. Each plan has a root task which is a behaviour itself
consisting of subtasks (actions) that are composed to achieve a predefined goal. Be-
haviours hold a “reduction schema” data structure that defines the decomposition of
the complex task to subtasks and the information flow between these subtasks and
their parent task. Actions, on the other hand, are primitive tasks that can be executed
by the SEAGENT planner using the Java Reflection API.

Our toolkit provides the editor called HTN planner for the visual modeling of the
SEAGENT agent plans (Fig. 1). In this editor, agent developers can create plan mod-
els including agent behaviours, actions and linkage between behaviour and their sub-
tasks by first selecting proper elements from the component palette and then entering
their attribute values. Fig. 1 also depicts the HTN plan model of the Barter Manager
agent for the customer registration scenario. The Barter Manager has the behaviour
“BHResponseRegistration” which can be decomposed into three actions called “AC-
CheckExistence”, “ACRegisterCompany” and “ACAcceptCompany Registration”. In
these actions, the agent first controls whether the customer already has been regis-
tered, then checks customer’s registration data according to the related ontology if it
is a new customer and finally realizes the registration.

SEAGENT platform executes the artifacts which are stored in two different repre-
sentation formats: OWL and Java. Considering HTN plans of SEAGENT agents, our
editor has built-in model to text translators for automatic generalization of agent be-
haviour ontologies and template Java class codes of the related behaviour’s actions.
As shown in Fig. 1, the developer just needs to right-click on the proper model ele-
ment, chose code generation and set required parameters (e.g. source code folder,
namespace and action method name). Then the editor automatically generates re-
quired plan ontologies (for the root behaviours) and action Java codes (for subtasks).

 6 http://www.w3.org/2004/OWL/

 Modeling Tools for Platform Specific Design of Multi-Agent Systems 205

Fig. 1. Modeling SEAGENT Agent HTN plans

4 Modeling JADEX Agents

Our toolkit includes modeling and automatic code generation utilities for another agent
development platform called JADEX. JADEX [5] provides an engine and a program-
ming platform for developing well-known Belief-Desire-Intention (BDI) [8] agents.
The development of JADEX agents is based on a hybrid approach in which declaration
of static agent properties and programming of executable agent plans take place. Dec-
laration of static agent properties is given in files called Agent Definition Files (ADF).
An ADF file is written using XML and specifies the BDI model of the related agent.
On the other hand, agent plans are executable components and they are given in Java
program files. In order to assist agent developers in design and development of JADEX
BDI agents, we provided a graphical modeling editor and an automatic code generation
tool based on the design principles discussed in Section 2. Developers can model the
BDI architecture of the agents by choosing appropriate model elements from the com-
ponent palette, drawing the relationship links between elements and setting model
attributes. The editor environment (Fig. 2) provides visualization of the BDI model of
the agents and supports easy and efficient development of JADEX agents. The editor
also prevents users from wrong relationship establishments between BDI elements. For
example, Body of the plan node can only be linked with the Plan node according to the
BDI semantics of the JADEX metamodel. Hence the editor does not allow linking
Body nodes with any other nodes except the Plan node.

Considering our case study, the BDI model of the Barter Manager agent can be
visualized as given in Fig. 2. Registration information received from the customer
agents is given as the initial facts (beliefs) for the Barter Manager (at the upper left of

206 G. Kardas et al.

Fig. 2. Modeling JADEX BDI Agents

the model in Fig. 2). The model also includes agent’s goals to be achieved (at the
lower left of the model), the plan structure (at the right of the model) and their
relations. After modeling of the JADEX Agent system is completed, developers can
obtain the ADF and related agent plan’s Java classes by using the integrated code
generator. Agent BDI models are stored as Ecore files. The code generator uses these
files as input, applies a model-to-text transformation using MOFScript and finally
outputs related ADF and template Java class files for the designed agent system.

5 Related Work

Several MAS software tools exist for modeling agent systems according to various
AOSE methodologies e.g. agentTool7 for O-Mase, IDK8 for INGENIAS, TAOM4e9
for Tropos and PDT10 for Prometheus. These tools mostly cover analysis and design
of MASs and a few of them only consider implementation and provide code genera-
tion for specific agent platforms. On the other hand, studies like [1] and [2] utilize
tools for MDD of MASs but only one MAS development platform and its PSM are
taken into consideration. The graphical modeling editor introduced in [9] has the same
design principles with our toolkit. The editor is GMF based and supports MDD of
MASs at the PIM level. The toolkit introduced in this paper contributes to those
noteworthy studies by supporting platform specific modeling and implementation of
MASs according to MDA principles.

 7 http://agenttool.cis.ksu.edu/
 8 http://sourceforge.net/projects/ingenias/
 9 http://sra.itc.it/tools/taom4e/
10 http://www.cs.rmit.edu.au/agents/pdt/

 Modeling Tools for Platform Specific Design of Multi-Agent Systems 207

6 Conclusion and Future Work

In this paper, platform specific modeling and code generation tools for the MDD of
SEAGENT and JADEX agents are introduced. These tools enable agent developers to
design and implement their MASs on different target platforms which vary on the
design principles such as BDI, HTN and Semantic Web integration. In our future
work, we plan to develop another modeling toolkit for the platform independent mod-
eling of MASs. The toolkit will be again based on the GMF and use the enhanced
version of the PIM discussed in [3]. This new toolkit will be integrated into the devel-
opment environment introduced in this paper.

Acknowledgements

This work is funded by The Scientific and Technological Research Council of Turkey
(TUBITAK) Electric, Electronic and Informatics Research Group (EEEAG) under
grant 108E141.

References

[1] Perini, A., Susi, A.: Automating Model Transformations in Agent-Oriented Modeling. In:
Müller, J.P., Zambonelli, F. (eds.) AOSE 2005. LNCS, vol. 3950, pp. 167–178. Springer,
Heidelberg (2006)

[2] Pavon, J., Gomez, J., Fuentes, R.: Model Driven Development of Multi-Agent Systems. In:
Rensink, A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 284–298.
Springer, Heidelberg (2006)

[3] Kardas, G., Goknil, A., Dikenelli, O., Topaloglu, N.Y.: Modeling the Interaction between
Semantic Agents and Semantic Web Services using MDA Approach. In: O’Hare, G.M.P.,
Ricci, A., O’Grady, M.J., Dikenelli, O. (eds.) ESAW 2006. LNCS (LNAI), vol. 4457, pp.
209–228. Springer, Heidelberg (2007)

[4] SEAGENT MAS Development Framework, http://seagent.ege.edu.tr/
[5] JADEX BDI Agent System, http://jadex.informatik.uni-hamburg.de/
[6] Cakirlar, I., Ekinci, E.E., Dikenelli, O.: Exception Handling in Multi-Agent Systems. In:

9th Workshop on Engineering Societies in the Agents World, Saint-Etienne (2008)
[7] Williamson, M., Decker, K., Sycara, K.: Unified Information and Control Flow in Hierar-

chical Task Networks. In: AAAI 1996 Workshop, pp. 142–150 (1996)
[8] Rao, A., Georgeff, M.: BDI Agents: From Theory to Practice. In: First International Con-

ference on Multi-Agent Systems, San Francisco, pp. 312–319 (1995)
[9] Warwas, S., Hahn, C.: The concrete syntax of the platform independent modeling language

for multiagent systems. In: ATOP 2008 Workshop, Estoril, pp. 94–105 (2008)

L2-SVM Training with Distributed Data

Stefano Lodi1, Ricardo Ñanculef2, and Claudio Sartori1

1 Dept. of Electronics, Comp. Sc. and Systems, University of Bologna, Italy
2 Department of Informatics, Federico Santa Maŕıa University, Chile

Abstract. We propose an algorithm for the problem of training a SVM
model when the set of training examples is horizontally distributed across
several data sources. The algorithm requires only one pass through each
remote source of training examples, and its accuracy and efficiency follow
a clear pattern as function of a user-defined parameter. We outline an
agent-based implementation of the algorithm.

1 Introduction

The Support Vector Machine (SVM) [1] is one of the most effective methods
to learn classifiers from data, and is currently used in a number of real-world
applications. In this work, we address the problem of distributed SVM learning,
i.e., learning a SVM when the examples are fragmented among the sites of a net-
work, and the amount of data which is transmitted over the network must be as
small as possible, to meet constraints of autonomy, scalability, and transmission
load. Under such constraints, transmitting the data to a single site and applying
a centralized method on the collected data is clearly an infeasible approach. On
the other hand, distributed algorithms for the problem currently require several
accesses to the data sources in order to achieve a reasonable approximation to
the centralized solution [2,3]. The algorithm we propose requires in contrast only
one access to each remote location and can be as accurate as desired, trading off
complexity and accuracy.

2 SVMs and Minimal Enclosing Balls

Support Vector Machines (SVMs) [4] address the problem of binary classification
by building a hyperplane to represent the boundary between the two classes.
This hyperplane (wT z + b = 0) is built in a feature space Z = φ(X) implicitly
induced from X by means of a kernel function k which computes the dot products
zT
1 z2 = φ(x1)T φ(x2) in Z directly on X . The so called L2-SVM builds the

separating hyperplane by solving the following convex optimization problem:

min(α) :
∑

i,j∈I αiαj

(
yiyjk(xi,xj) + yiyj + δij

C

)
(1)

st: 0 ≤ αi,
∑

i αi = 1

The parameter C trades off training accuracy and smoothness of the solution.
Its optimal value is determined using model selection techniques and depends on

L. Braubach et al. (Eds.): MATES 2009, LNAI 5774, pp. 208–213, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

L2-SVM Training with Distributed Data 209

the degree of noise and overlap among the classes [4]. From the solution α the
hyperplane parameters as recovered as w =

∑
i yiαizi and b =

∑
i αiyi. Note

that the solution finally depends only on the examples for which αi
= 0 which
are called the support vectors.

Although the L2-SVM is slightly different from the original SVM formulation,
both models obtain comparable performance in practice [5]. As shown in [5] the
main appeal of the L2 implementation is that it supports a convenient reduction
to a minimal enclosing ball (MEB) problem when the kernel used in the SVM
is normalized, that is k(x,x) = Δ ∀x ∈ X . The advantage of this equivalence
is that the Bădoiu and Clarkson algorithm [6] can efficiently approximate the
solution of a MEB problem with any degree of accuracy.

The ball B(c, R) of center c ∈ Z̃ and radius R in R is the subset of points
z̃ ∈ Z̃ for which ‖z̃ − c‖2 ≤ R2. The minimal enclosing ball of a set of points
S = {z̃i : i ∈ I} in Z̃ is in turn the ball B∗(S, c∗, R∗) of smallest radius that
contains S, that is the solution to the following optimization problem:

min(R, c) : R2 (2)
st: ‖z̃− c‖2 ≤ R2 ∀z̃ ∈ S

The algorithm of Bădoiu and Clarkson [6] to approximate the solution to this prob-
lem exploits the ideas of core-set and ε-approximation to the minimal enclosing
ball of a set of points. A set CS ⊂ S will be called a core-set of S if the minimal
enclosing ball computed over CS is equivalent to the minimal enclosing ball con-
sidering all the points in S. A ballB(c, R) is said a ε-approximation to the minimal
enclosing ball B∗(S, c∗, R∗) of S if R ≤ R∗ and it contains S up to precision ε, that
is S ⊂ B(c, (1+ ε)R). Consequently, a set CS,ε is called a ε-core-set if the minimal
enclosing ball of CS,ε is a ε-approximation to B∗(S, c∗, R∗). Now, the algorithm of
Bădoiu and Clarkson is a greedy approach to find a ε-core-set of S, which converges
in no more than O(1

ε) iterations. Since each iteration adds only one point to the
core-set, the final size of the core-set is also O(1

ε). Hence, the accuracy/complexity
tradeoff of the obtained solution monotonically depends on ε.

3 Distributed Learning of the L2-SVM

We assume a collection of datasets Sj = {(xj
i , y

j
i); i ∈ Ij}, j = 1, . . . , p, and a

pool of nodes N = {N1, . . . , Np} such that Sj is located in Nj . Our task is to
train a SVM model on the union of the datasets S =

⋃p
j=1 Sj . To this purpose

we identify a coordinator node C which serves as an organizer of local learning
tasks and integrator of the results of the remote nodes.

A first approach to the task could be the following: since the SVM only de-
pends on the support vectors, we can compute local SVMs at each node, identify
the local support vectors SVj and send them to the coordinator node, which fi-
nally builds a SVM with the union of the support sets. This algorithm requires
only one access to the remote nodes. However, it can be shown for the L1-SVM
that the union of the SVj does not coincide with the support vectors identified
when training the SVM with the complete training set [2,7].

210 S. Lodi, R. Ñanculef, and C. Sartori

Our method is based in contrast on the following observation.

Proposition 1. Let Z̃ be a normalized dot-product space, S = S1∪ . . .∪Sp ⊂ Z̃
and Cj a core-set for Sj, j = 1, . . . , p,. Then CS =

⋃p
j=1 Cj is a core-set for S.

Recall from Section 2 that for a kernel-induced normalized feature space, training
a L2-SVM on a dataset D is equivalent to building a minimal enclosing ball of
D. Then, if we are able to first compute a core-set for S we can then build the
ball only with the points in the core-set. However, if D is the union of the remote
subsets by Proposition 1 we can compute core-sets for each remote Dj and then
join the core-sets to build the SVM. If the computation of the remote core-sets
is exact the final computation of the SVM is also correct and we only need one
access to the remote nodes. Moreover, since the local computation of the core-
sets is only dependent on the local training set, neither communication nor data
exchange is required among the nodes. This contrasts with other methods which
iterate among the remote nodes until convergence [2], mimicking working-set
selection methods for (centralized) training of SVMs [4].

Algorithm (1) summarizes our procedure. To turn this exact procedure into
an efficient one in terms of both the amount of computation carried out by local
nodes and the amount of data sent to the coordinator, instead of computing
an exact core-set at each remote node we proceed using the Bădoiu-Clarkson
algorithm. This method approximates the core-set with any degree of accuracy
ε. Both the time incurred in the computation and the final size of the core-
sets grow as O(1

ε). Thus, ε directly controls the tradeoff between efficiency and
exactness of our method.

Algorithm 1. Distributed Algorithm for Training the L2-SVM
1: Estimate the hyper-parameters C and kernel-specific parameters.
2: for Each Remote Node i = 1, . . . , p
3: Receive hyper-parameters from the coordinator. If not available estimate

them locally.
4: Compute a core-set Ci of Si using the corresponding kernel and parameters.
5: Send the core-set to the coordinator.
6: end for
7: Join the core-sets CS = C1 ∪ . . . ∪ Cp

8: Compute the minimal-enclosing-ball of CS .

4 Experiments

We provide simulations of our procedure in two classification problems: Breast-
Cancer-Wisconsin and Handwritten-Digits available and described in [8]. Since
the first problem is multi-class we select the digits 1 and 7, as in previous re-
search, to obtain a binary problem. Both datasets are partitioned randomly
among a set of 5 nodes. Then we analyze the scalability of the method in the
number of nodes.

L2-SVM Training with Distributed Data 211

The statistics to consider at each experiment will be computed after 50 trials.
At each repetition an independent random sample corresponding to the 85% of
the available examples will be selected as training set. All the SVMs are trained
using a gaussian kernel k(x1,x2) = exp(−‖x1−x2‖2/σ2) and the scale parameter
σ2 is estimated as the averaged distance among training examples.

We contrast the distributed solution with the full centralized method which
imports all the data from the remote nodes to train a L2-SVM model. Addition-
ally, we include the centralized L1-SVM in the analysis. Our research hypothe-
sis is that the distributed solution can closely approximate the full centralized
method even with a lower network load.

Figure (1) compares the average testing among the trials against the value
of hyper-parameter C which is usually determined using a model selection ap-
proach. Means are depicted with two standard deviations around. We can ob-
serve that the greater the precision with which the remote nodes solve the local
learning tasks, the greater the precision with which the distributed solution ap-
proximates the centralized solution. For the greatest precision considered in this
work (10−5) the differences between the means differs in around 0.1% of cor-
rect classification in the handwritten-digits experiment and 2% or less in the
breast-cancer problem. The differences tend to decrease if we focus in the val-
ues of C which give the best classification results, which are the targets of the
model selection approach used to determine this parameter. Finally, except for
lower values of ε, the variances of centralized and distributed solutions (among
trials) also follow a common pattern. Figure (2) shows the fraction of the data
imported from remote nodes by the distributed solution. For a reasonable preci-
sion of 10−3 we obtain a reduction of 80% in the digit recognition problem and

ε = 10−5 ε = 10−3 ε = 10−1

+4 +3 +2 +1 0 −1 −2 −3

0.4

0.5

0.6

0.7

0.8

0.9

1

+4 +3 +2 +1 0 −1 −2 −3

0.4

0.5

0.6

0.7

0.8

0.9

1

+4 +3 +2 +1 0 −1 −2 −3

0.4

0.5

0.6

0.7

0.8

0.9

1

ε = 10−5 ε = 10−3 ε = 10−1

+4 +3 +2 +1 0 −1 −2 −3

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

1.005

+4 +3 +2 +1 0 −1 −2 −3

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

1.005

+4 +3 +2 +1 0 −1 −2 −3

0.7

0.75

0.8

0.85

0.9

0.95

1

Fig. 1. Testing Accuracy (y axis) vs. value of Parameter C (x axis, C = 104 : 10−3)
for different values of ε. First row: cancer experiment. Second row: handwritten digits
experiment. Circles: distributed L2-SVM; Squares: centralized L2-SVM; Diamonds:
centralized L1-SVM.

212 S. Lodi, R. Ñanculef, and C. Sartori

−5 −4 −3 −2 −1
0

0.05

0.1

0.15

0.2

0.25

104 103 102 101

−5 −4 −3 −2 −1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

104 103 102 101

Fig. 2. Fraction of data imported from remote nodes (y axis) vs. Precision ε
of the enclosing-balls (x axis, ε = 10−5 : 10−1) for different values of C = 105 : 101.
First column: cancer problem. Second column: handwritten digits problem.

85% in the breast-cancer problem comparing with the full centralized solutions
which need to import all the data. Figure (3) additionally shows the dependence
of training time and precision ε of the remote computations. We conclude that
ε monotonically controls the tradeoff accuracy/efficiency.

Finally, we carried out a short experiment to measure the scalability of the
method if we change the number of nodes with the handwritten-digits dataset
and a fixed value of C (= 10). We can observe that accuracy is highly indepen-
dent of the number of nodes, whereas the total amount of data imported from
them tends to decrease with the number of nodes.

−5 −4 −3 −2 −1
0

0.5

1

1.5

2

2.5

104 103 102 101

−5 −4 −3 −2 −1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

104 103 102 101

Fig. 3. Training Time (y axis) versus Precision ε (x axis, ε = 10−5 : 10−1) for
different values of C = 104 : 101. First column: cancer problem. Second column:
handwritten digits problem. The figure overlaps.

5 Agent-Oriented Negotiation of Parameters

Although the sites where the distributed data reside are co-interested in the con-
struction of an accurate overall model, they might also be in conflict for setting
the global parameter C, which influences the performance of the SVM model in
a data-dependent way. Different sites may attain optimal model performance for
different valutes of C, and the optimal value for the overall model may be still
different. Also the parameter ε controls the accuracy of the model; however, it
affects the final solution monotonically and all the sites in a similar way. There-
fore, negotiation is not crucial for ε. For C, negotiation is needed to guarantee

L2-SVM Training with Distributed Data 213

2 3 4 5 6 7 8 9 10

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

10−5

10−3

10−1

Fig. 4. Accuracy (y axis, left) and Total N of Examples Imported (y axis,right)
versus N of Nodes (2 to 10) for the digits problem. Results for different precisions
ε: 10−5 (circles), 10−3 (squares) and 10−1 (diamonds).

that a single value falling inside the set of admissibile values specified by each
site is chosen. To this end, we assume exactly one agent for each site, including
the coordinator, manages all interaction with the other sites and the needed
iteration through different values of C.

Initially, the coordinator sends a call for proposal to every site agent for an
admissibile set of intervals for C, with a deadline for replying. The agents com-
pute locally SVM models for an autonomously chosen set of values of C and
send a proposal consisting of the two extremal values of every contiguous set of
C values satisfying a threshold on model accuracy. The coordinator intersects
the intervals; on non-empty intersection, sends a proposal with the mean of the
intersection; otherwise, informs the pairs of agents proposing disjoint intervals a
negotiation is required to extend the nearest intervals bounds until an overlap
is obtained. At the end of each negotiation, the parties inform the coordinator
of the resulting interval. The coordinator finally proposes the final value for C
and upon accept from all agents, informs all agents. The agents compute the
core-sets and inform of their content the coordinator, which computes the global
model using the final value for C.

References

1. Hofmann, T., Schölkopf, B., Smola, A.J.: Kernel methods in machine learning. An-
nals of Statistics 36(3), 1171–1220 (2008)

2. Caragea, D.: Learning Classifiers from Distributed, Semantically Heterogeneous,
Autonomous Data Sources. PhD thesis, Iowa State University (2004)

3. Hazan, T., Man, A., Shashua, A.: A parallel decomposition solver for svm: Dis-
tributed dual ascend using fenchel duality, pp. 1–8 (June 2008)

4. Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Reg-
ularization, Optimization, and Beyond. MIT Press, Cambridge (2001)

5. Tsang, I., Kwok, J., Cheung, P.M.: Core vector machines: Fast svm training on very
large data sets. Journal of Machine Learning Research 6, 363–392 (2005)

6. Bădoiu, M., Clarkson, K.L.: Optimal core-sets for balls. Comput. Geom. Theory
Appl. 40(1), 14–22 (2008)

7. Syed, N.A., Liu, H., Sung, K.K.: Incremental learning with support vector machines.
In: Proc. of the 16th IJCAI (1999)

8. Asuncion, A., Newman, D.: UCI machine learning repository (2007),
http://www.ics.uci.edu/~mlearn/MLRepository.html

http://www.ics.uci.edu/~mlearn/MLRepository.html

L. Braubach et al. (Eds.): MATES 2009, LNAI 5774, pp. 214–219, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Framework for Dynamic Life Critical Situations
Using Agents

Jenny Lundberg1 and Anne Håkansson2

1 Blekinge Institute of Technology
Box 520, 37225 Ronneby, Sweden
2 Computer and Systems Sciences

Forum 100, SE-164 40 Kista, Sweden
jlu@bth.se, anneh@dsv.su.se

Abstract. In this paper, we present a framework incorporating a multi-agent
system (MAS) that enables aid for international effect-based operation in emer-
gency situations. The outcome is to empower emergency personnel, which can
support collaboration between different international services by informing
them about the emergency, matching competences and resources of the teams
and volunteers. The challenge in emergency contexts is the abbreviations form-
ing an information-carrying structure, which is especially important when ab-
breviations are exchanged between different services like rescue, military and
emergency. We propose a framework, which provides the right information,
rescue team, and services at the right place. The MAS can support information
dissemination in dynamic situations in context, based on the information extrac-
tion and matching of the contents of the underlying ontologies. In the frame-
work the system poses a sensible solution to the international rescue teams’
need of a high quality handling of life critical situations.

Keywords: Multi-agent systems, intelligent agents, emergency.

1 Introduction

International support in emergency services is necessary to handle natural catastro-
phes like the earthquake creating a Tsunami in the Indian Ocean 2004. Many coun-
tries were suffering from this catastrophe, with approximately 223.000 fatalities,
mainly due to citizens were taking vacation on the coasts of South-East Asia. The
rescue actions from the Swedish government failed and from an investigation it was
found that it suffered criticism due to the lack of an organisation managing such seri-
ous crisis. But the criticism also concerned lack of understanding the extent of the
disaster, the collection of relevant information and coordination of measures [1]. Pre-
sumably, a closer connection between international rescue organisations in the in-
volved countries can build a ground for a solid unified action of accurate force to
meet disasters that pose immediate negative effects on several countries. Therefore,
we need proper ICT systems to support disaster relief [10]. Multi-agent systems in
emergency contexts have been used [2] [11] [12], but it is desirable to develop a
framework with agents and ontologies to handle dynamic emergency contexts.

 Framework for Dynamic Life Critical Situations Using Agents 215

To receive comprehensive information and disseminate it fast, the emergency op-
erators write abbreviations in the system, which is translated into for nationally rescue
teams, commonly utilised and understandable language. This language needs to be
interpreted by international rescue teams. We suggest using Multi-agent system
(MAS) to support the dissemination of the information to international teams. From
the input of comprehensive information to MAS, the agents handle the conversion of
abbreviations into understandable language and translations into other languages.

In dynamic emergency areas, the use of acronym and abbreviations are widely
spread, such as, Air Traffic Control, operator control of critical infrastructures and
several other medical applications [9]. Abbreviations are context sensitive [13], and as
early as 1975, Woods [3] stated the importance of semantics and not only syntax. In
this paper, we work with an awareness of syntax and semantics as we apply multi-
agent systems in the real world context of international emergency handling.

2 Scenario

To develop MAS, we look at a future scenario based on the real world Tsunami 2004:
Sweden and other related countries become alerted about the Tsunami through the
early warning systems, and establish contacts with Thailand’s SOS centres, simulta-
neously as the earthquake starts, which is approximately 2 hours before the wave hit
the shore. Sweden sends Jumbo jets with rescue service and nursing staff, and com-
municates with Thailand via international language on board the Jumbo jet. They plan
the rescue action and make strategies for the rescue, match competences and commu-
nicate with local rescue services. When the Swedish rescue force arrives, vehicles are
waiting for them for quick transport to rescue areas, hospitals and collapsed buildings.
Swedish SOS (at the scene and in Sweden) must control which other international
resources are available and match their recourses and competences. They must also
identify a large number of volunteers without rescue education. These will be given
quick training on place. Since it is a tsunami this training is lead by rescue competent
personnel. The matching of rescue competence against the requirements in the action
plan is made in a unified process including search for proper rescue leading compe-
tences. Furthermore, when all the rescue teams arrive on the scene of disaster, the
cooperation is established and will be maintained with responsible person in charge.

3 The Multi-Agent System

The MAS need to handle several different data representation forms and solve prob-
lems quickly. Each agent has a task to accomplish but a result is reached when several
agents have found their piece of the information, which is assembled to constitute a
result. The task for the agents in our research is to inform, search, match and group
information in different parts in the framework, see Figure 1, to be able to combine
the extracted information to get more comprehensible and understandable informa-
tion. The ontologies form a framework for the agents to act upon, selecting the most
suitable ontology matching the intention of the agent. The abbreviations are a natural
part in the ontologies, however to be treated with specific concern. When extended
information is needed, the MAS provide a possibility to search and find it externally,
i.e., the web.

216 J. Lundberg and A. Håkansson

Ontologies

Multi-agent
system

Different
agents Abbreviations

 Web

Fig. 1. Simplified architecture of the multi-agent system

The task is performed in episode in which the agents perform a single task. The
call to the system is divided into parts, and each part is processed by an agent. For
each time the system is invoked with new or more information, the agents must find
solutions according to that information. Finding several solutions can granulate the
output, which in comparison can support the system to give more accurate output that
is more correct according to the situation. In these situations, where searching can be
simplified and speeded up using several agents, multi-agent systems are useful [4] [5].
The agents in the multi-agent system must coordinate information from several dif-
ferent sources from which they can produce and deliver more complex information in
right time to the right place [6], to the appropriate users. The output is the description
of the critical situation in international language, as well as, priority of the cases. The
information is directives to the rescue services, from which the services can evaluate
the situation and determine what kind of service is needed at the scene.

Agents can allow searching for information in several different ontologies and
support reasoning with the findings [7]. We need this distributed problem solving to
search for information in ontologies and priorities in the cases. The agents search for
information from several different ontologies and correlate it to match the context of
the scene. The international abbreviations are the same, but the interpretation of them,
leading to different actions. As for example a drowning situation requires rescue ser-
vice action in the form of finding, lifting up the human and securing the area prevent-
ing other injuries. The ambulance service focuses on Heart-Lung-Rescue, and on
giving proper drugs to save the persons life.

4 The Agents

We suggest intelligent agents that learn by being sensible to new or changed envi-
ronments in combination with using meta-agents. The meta-agents are built on the
agents linked to the ontologies, constituting high-level connections between different
possible definitions, and matching them to the information collected for the case. The
system is launched by the input, which is performed by the agents needed for the task.
All the types of agents are invoked to perform their assignment see Figure 2. The
“inform” agents work with information and matching the abbreviations to their corre-
sponding words and notify the rescue teams. Some words are explaining seriousness
in the case and therefore, some words are used for prioritising.

 Framework for Dynamic Life Critical Situations Using Agents 217

Fig. 2. Inform, search, group and match agents, implemented by BDI model

The ”Search agents” search for competence and other teams to work with and
“Match” agents perform matching to find right competences for right situations. The
agents collect and build up information, which is describing the life critical situations
corresponding to the information from the emergency call.

Geography
ontology

Case
categorizations
ontology

Medical
index
ontology

-semantic connections, inference rules & organisational
rules
-relational meta-data
-semantic relations between mainly domain ontologies,
some ontology instances but also natural language
ontologies (expressed in logic)

Lexical ontology

Ambulance
ontology

Military
ontology

Healthcare
ontology

Snomed Rescue ontology

Fig. 3. High-level architecture of ontologies

In emergencies several ontologies are to be used, see Figure 3. The agents’ combina-
tion of the content of the ontologies determines the situations in which the emergency
has arisen. They consist of types, properties and relationships are the knowledge foun-
dation on which the agents perform their work. If a person have a heart stop and do not
breathe, Heart-Lung-Rescue actions are to be initiated. From the information, the re-
quired services with specific equipment are called. If suitable, the meta-data learn the
combination and can be reused for future combinations. These meta-agents are built on
the successful agents’ performances. Successful agents are the agents that give correct
information according to emergency services.

Inform

Search

Group

Match

If OK
Then
Process plan
(BDI)
Else
Display
knowledge/
calculation
sources

218 J. Lundberg and A. Håkansson

In the organizational ontology that is depicted as the military, ambulance, rescue,
and healthcare ontology in figure 3, the different parts of the organization are defined
and interpreted with the semantic connections including organizational rules. The
produced outcome by the agents as they act upon the ontology is: the rescue team that
can handle an ambulance case, and the number of operators that should cooperate in
handling the accidents. The ontologies are based on measurement of behaviors, such
as operator coordination patterns. Another part is structure, which is based on opera-
tors own tagging of related information, as used in web 2.0. And example cases of
normative behavior are included.

The medical index ontology contains of index with instructions about the support
that should be given to minimize possible injuries as consequence to the event. For
example, the instructions can be how the operator can give Heart-Lung-Rescue sup-
port via phone, or which special precautions to take if the person has got diabetes. In
the categorization ontology, there are structures for how the cases are to be catego-
rized (not to be confused with the ontologies relationships). In the geographical on-
tology there is special support for geographical spots that can have several different
names, such as a town park. A town park can have several names, a name on the map,
a popular name, and yet another name of the park in relation to its location or sur-
roundings. Alignments tools such as minimal mappings can preferably be used how-
ever validations assuring correct connection to the domain need to be performed.

In the categorization ontology the abbreviations are defined. The example of an
abbreviation is: H1.11.23. For the trained operator H1.11.23 is: Human, highest prior-
ity, animal bite, and unconscious, which mean that a specific ambulance, with correct
equipment and geographical location has to be dispatched. In the healthcare ontology,
organisational healthcare rules are defined. Snomed1 [8], a national specialist language
for healthcare is connected. The multi-agent system works with ontologies, internally
in the system, to find words and produce messages corresponding to the abbrevia-
tions, and, externally at the Web, to find geographic location with waved ground.
Relations and rules that are not already defined and connected are stored in a database
and then further used and updated in suitable ontology. Furthermore, the evaluation of
the result of the agents is made in relation to the debriefing session, were also the
actions of the agents are collected and evaluated.

5 Conclusions

In this paper, we provided a multi-agent technology to support international handling
of life critical cases. The agents act upon input data from the scene of accident, and
match information from the ontologies, which are processed to meet the demand. The
agents search, match, group and inform the rescue team about the situation, and are
implemented by using BDI model. This article is a contribution to the empowering of
emergency personnel in life critical contexts performing effect-based operations on an
international arena.

1 Thus, Snomed is not an ontology but a human readable conception system, which (most

probably) can form a solid basis for a machine readable ontology.

 Framework for Dynamic Life Critical Situations Using Agents 219

References

1. http://www.riksdagen.se/webbnav/
index.aspx?nid=3281&dok_id=GTB3104d1

2. Lundberg, J., Håkansson, A.: An Approach towards using Agent in Multi-Agent Systems
to streamline emergency services. In: Proceedings of 5th International Conference on In-
formation Technology and Applications, Cairns, Queensland, Australia (2008)

3. Woods, W.A.: What’s in a link: Foundations for semantic networks. In: Bobrow, D.G.,
Collins, A.M. (eds.) Representation and Understanding. Academic Press, New York
(1975)

4. Shoham, Y., Leyton-Brown, K.: Multiagent Systems: Algorithmic, Game-Theoretic, and
Logical Foundations. Cambridge University Press, Cambridge (2008)

5. Bratman, M.E.: Intention, Plans, and Practical Reason. CSLI Publications, Stanford
(1987/1999)

6. Apelkrans, M., Håkansson, A.: Information Coordination Using Meta-agents in Informa-
tion Logistics Processes. In: Lovrek, I., Howlett, R.J., Jain, L.C. (eds.) KES 2008, Part III.
LNCS (LNAI), vol. 5179, pp. 788–798. Springer, Heidelberg (2008)

7. Hartung, R.L., Håkansson, A.: Using Meta-agents to Reason with Multiple Ontologies. In:
Nguyen, N.T., Jo, G.-S., Howlett, R.J., Jain, L.C. (eds.) KES-AMSTA 2008. LNCS
(LNAI), vol. 4953, pp. 261–270. Springer, Heidelberg (2008)

8. http://www.socialstyrelsen.se/Amnesord/inter_fragor/
SnomedCT/specnavigation/Aktuellt/aktuellt.htm

9. Pakhomov, S.: Semi-supervised maximum entropy based approach to acronym and abbre-
viation normalization in medical texts. In: ACL 2002, Proceedings of the 40th annual meet-
ing on association for computational linguistics (2001)

10. Denning, P.J.: Hastily formed networks. Com. of the ACM 49(4) (April 2006)
11. Molina, M., Blasco, G.: A Multi-agent System for Emergency Decision Support. In: Liu,

J., Cheung, Y.-m., Yin, H. (eds.) IDEAL 2003. LNCS, vol. 2690, pp. 43–51. Springer,
Heidelberg (2003)

12. Schoenharl, T., Madey, G., Szabó, G., Barabási, A.-L.: WIPER: A multi-agent system for
emergency response. In: Proceedings of the 3rd International community on information
systems for crises response and management Conference, Newark, NJ, USA (2006)

13. Lundberg, J., Rune, G.: Robust approach towards context dependant information sharing in
distributed environments. In: ICEIS 2009, Milan, Italy (2009)

Unifying JIAC Agent Development with AWE

Marco Lützenberger, Tobias Küster, Axel Heßler, and Benjamin Hirsch

DAI-Labor, Technische Universität Berlin
{marco.luetzenberger,tobias.kuester,axel.hessler,

benjamin.hirsch}@dai-labor.de

Abstract. In this paper we describe the Agent World Editor, a tool
for designing multi-agent systems and generating executable agent code.
The tool also unifies the handling of different agent frameworks through
an abstract agent model and an extensible transformation infrastruc-
ture. Currently, the tool supports three different agent frameworks of
the JIAC family, and we feel confident that the approach holds for other
frameworks as well as for the generation of multi-agent systems on het-
erogenous platforms.

1 Introduction

Over the last decade, Agent Oriented Software Engineering (AOSE) has gained at-
tention as a suitable methodology for providing quality assurance within software
development processes. However, there are at least as many agent methodologies
as there are agent frameworks, and each has its own drawbacks and advantages.
At present, the DAI-Labor has three derivatives of its agent framework JIAC in
use, each one streamlined to a specific field of application:

– JIAC IV [8] has been developed as an agent framework for telecommunica-
tion related MAS. The system design is specified in an XML syntax which
differentiates three type of agents (platforms, agents and roles) and a set of
components like knowledge, services, or plan elements.

– JIAC V [5] was designed to support large agent systems in a scalable way. To
this end, the successful features of JIAC IV have been rebuilt with current
technologies, which provided an overall improvement in performance and
maintainability. The system design is based on the Spring framework to
represent the supported agent types (platforms and agents) as well as their
components (services or knowledge).

– MicroJIAC [3] is JIAC’s lightweight edition for devices with limited re-
sources. The system design is done by an XML based domain model, which
provides classes for both supported agent types (platforms and agents) and
the framework components (e.g. services and rules), which are used to define
specific functionalities or reactive behaviours.

Although the JIAC frameworks — and other agent frameworks as well — feature
similarities, there are subtle differences, too. Each framework uses a different
model file syntax and provides different libraries.

L. Braubach et al. (Eds.): MATES 2009, LNAI 5774, pp. 220–225, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Unifying JIAC Agent Development with AWE 221

Fig. 1. Agent World Editor showing the Service Centric Banking scenario

An abstract conceptualisation of these native library elements enables a com-
prehensive, framework independent design and constitutes the main idea of the
Agent World Editor, or AWE, which is described in this paper. AWE allows to
design multi-agent systems (MAS) and translate the results into different agent
frameworks, namely JIAC IV, JIAC V, and MicroJIAC. This paper is based on
the diploma thesis of the first author [7].

2 Introducing the Agent World Editor

In AWE, complex multi-agent systems can be conveniently modelled in a single
diagram, showing the various agent types, their components and their relation-
ships (see Figure 1). Formal background to these diagrams is a highly generic
domain model, which is capable of representing agent system instances of each
JIAC derivative. After the MAS has been designed, a framework associated
transformation unit can be invoked in order to produce executable agent code
and stubs for potentially unimplemented components.

2.1 Generalising JIAC — The AWE Domain Model

The Domain model was designed to encompass the configuration metamodels
of at least the three JIAC derivatives, but also to hold for capabilities beyond
JIAC. To this end, we accounted for the diverging agent types, i.e. agents, roles
and platforms, and countered the remaining challenges by more elaborate mech-
anisms, which we describe below.

222 M. Lützenberger et al.

Components: JIAC, like other agent frameworks as well, provides a set of basic
agents which are capable of elementary functionality (like communication or
environment awareness) and allow individual extension by appending closed
and reusable components. The domain model reflects this mechanism with
the Component class, which is used as an abstraction from the component
architectures of specific frameworks.

Library Support: In order to provide support for library elements of multiple
agent frameworks, AWE’s domain model features the Concept class, which is
used to provide a framework independent description of their functionality.
These conceptualisations are part of AWE’s base application and accessed
by each installed framework extension by defining an according implementa-
tion. Although a comprehensive set of concepts is already provided, AWE’s
modular architecture allows for easy extension as well. Currently we sup-
port development with basic concepts like standard agency, but also provide
advanced concepts like an SMS gateway, a calendar feature, and others.

Framework Openness: In order to support frameworks beyond the JIAC scope,
each domain model element provides a Key-Value property mechanism. Sim-
ple aspects which are not covered by the current model (e.g. teams) can thus
be defined. The decision on how these additional attributes are specified as
well as their interpretation lies with the developer of the framework extension.
An additional object property mechanism enables extensions in an arbitrary
granularity.

2.2 Implementation

AWE has been implemented using Eclipse GMF and is based on a plug-in ar-
chitecture, where each plug-in realises a distinct part of functionality. Support
for each agent framework is respectively encapsulated by an individual plug-
in, which is loosely coupled to the base application. The standardised structure
of these extension plug-ins encourages development of custom solutions, as de-
scribed in the next section. AWE provides system design in a Drag-and-Drop
manner and supports the developer during this process with on-the-fly error val-
idation, an expressive customised visual notation and mechanisms which help to
accelerate and simplify recurring tasks. Furthermore, AWE inherits many useful
features from GMF, such as unlimited undo and redo, auto-arrange, snap-to-
grid, modelling assistance, a graphical outline, picture export, and many more.

2.3 Framework Extensions

Each extension plug-in includes the framework’s components, defines a map-
ping from AWE’s abstract concepts to a specific counterpart and defines a code
generation for the respective configuration files. The code generation procedure
works straight-forward: After the diagram has been validated, the Agent World
model is exported, iterating over the several agents, roles and platforms, where-
upon the several abstract concept elements are substituted with the respective
framework-specific implementations provided by the plug-in. Currently, AWE
provides extension plug-ins for the three frameworks of the JIAC family.

Unifying JIAC Agent Development with AWE 223

2.4 Transformation Example

In the following example, a setup consisting of a platform with two agents, a
custom Component (DetectorBean) and a Concept element (SMS Gateway) is
mapped to both MicroJIAC and JIAC V. In both cases an XML file is created
according to the syntax used for the respective framework. The component in
both cases yields a reference to a Java class (creating a stub, if the class does not
yet exist). Most interesting, however, is the mapping of the Concept element:
Here, different classes are used for MicroJIAC and JIAC V, namely the library
elements implementing this concept as specified in the transformation plug-ins.
Figure 2 shows a schematic representation of the transformation.

Fig. 2. Code Generation to JIAC V (left) and MicroJIAC (right)

3 Related Work

We have evaluated a number of similar tools, some of them already seeing the
3rd generation [1,9].

The agentTool system [10, p. 245–259] is a visual design environment for top-
down design of multi-agent systems. In its 3rd edition it is supplemented by
a consistency checker, code generation, a metrics calculator and process engi-
neering support. All aspects of an agent-oriented design can be modelled nicely,
whereas the code generation feature is more or less an open issue.

The INGENIAS Development Kit (IDK) [4] is a visual development tool,
targeting the INGENIAS Agent Framework. Any model element results in a
skeleton that can be extended by the programmer. The IDK has been developed
on the basis of an extensible plug-in architecture [4], while the main focus here
lies on code generation extensions. Currently, a full translation of the design into
executable JADE code is provided.

224 M. Lützenberger et al.

The JACK Development Environment(JDE) [10, p. 261–277] supports the
development of JACK based applications. It provides for the creation and ma-
nipulation of each JACK component by means of visual engineering and en-
compasses several other specialised tools. MAS design is accomplished by the
JDE Design Tool [2], which provides visual engineering on the basis of Drag-
and-Drop. Code generation and execution is provided by the JDE as well. The
Compiler Utility Tool translates the developed diagrams into Java classes and
supports both, execution and debugging.

The Component Agent Framework for domain-Experts (CAFnE) Toolkit [6]
provides domain experts a suitable way to easily build multi-agent systems.
CAFnE operates on a framework-unspecific domain model, which allows for
platform independent design. The toolkit supports visual modelling, code gener-
ation, compilation and execution of agent based applications. Currently, a com-
plete transformation module for JACK is available, which converts the platform
independent domain model to an executable agent design by using a transfor-
mation configuration and a set of transformation rules. The entire mechanism
is particularly interesting for this work, since a similar feature is developed as
well.

The JIAC IV Toolipse [9] is an IDE which facilitates MAS development within
the JIAC IV framework. Toolipse provides visual engineering of agent applica-
tions in terms of diagrams and supports the JIAC Methodology. Toolipse en-
compasses a set of tools, each one for a specific task. Particularly interesting
for this work is the Agent Role Editor (ARE), which is used during the ap-
plication deployment, in order to define the MAS design. Since ARE has been
applied for several years now, various improvement ideas have been considered
and inspired this work. Especially its separated representation of agent roles,
agents and platforms is considered a major drawback in the system design of
multi-agent systems using Toolipse.

4 Conclusion

The Agent World Editor (AWE) is a tool for the visual design of multi-agent
systems. It can be used for configuring the various roles, agents, their distribu-
tion on several platforms, as well as the components to be used by the agents,
e.g. knowledge and capabilities. The aim of the AWE is to be framework inde-
pendent and highly extensible, such that one agent world model can be used
to create setups for different agent frameworks. For this purpose, we introduced
the notion of the Concept element, representing an abstract capability of an
agent without the need to commit to a specific framework. Upon code gener-
ation, Concept elements referenced by an agent in the design are mapped to
counterparts in the targeted agent framework. Until now, we have implemented
framework extension plug-ins for the JIAC family: JIAC IV, JIAC V and Micro-
JIAC. For the near future we are planning to extend this scope by a respective
implementation for the JACK framework. Furthermore, AWE will be extended
with additional functionality – e.g. a visualisation of the interdependencies of

Unifying JIAC Agent Development with AWE 225

the several components, especially regarding communication – and it will be
integrated into a larger tool suite: While AWE allows for connecting existing
components to agents, the development of these components is as yet not sup-
ported. Altogether, a versatile set of tools will be combined to an IDE to provide
a uniform development application for agent systems.

References

1. The agentTool III Project, http://agenttool.cis.ksu.edu/
2. Agent Oriented Software Pty. Ltd. JACK Intelligent Agents — Design Tool Man-

ual, 5.3 edn. (June 2005),
http://www.aosgrp.com/documentation/jack/DesignTool_Manual.pdf

3. Erdene-Ochir, T., Patzlaff, M.: Collecting Gold: MicroJIAC Agents in Multi-Agent
Programming Contest. In: Dastani, M.M., El Fallah Seghrouchni, A., Ricci, A.,
Winikoff, M. (eds.) ProMAS 2007. LNCS (LNAI), vol. 4908, pp. 251–255. Springer,
Heidelberg (2008)

4. Garćıa-Magariño, I., Gómez-Sanz, J.J., Agüera, J.R.P.: A Complete-Computerised
Delphi Process with a Multi-agent System. In: Proceedings of the Sixth Inter-
national Workshop on Programming Multi-Agent Systems, Estoril, Portugal, pp.
187–202 (2008)

5. Hirsch, B., Konnerth, T., Heßler, A.: Merging Agents and Services — the JIAC
Agent Platform. In: Bordini, R., Dastani, M., Dix, J., Seghrouchni, A.E.F. (eds.)
Multi-Agent Programming: Languages, Tools and Applications, pp. 159–185.
Springer, Berlin (to appear, 2009)

6. Jayatilleke, G., Thangarajah, J., Padgham, L., Winikoff, M.: Component Agent
Framework for domain-Experts (CAFnE) Toolkit. In: Proceedings of the Fifth
International Joint Conference on Autonomous Agents and Multiagent Systems,
Hakodate, Japan, May 2006, pp. 1465–1466. ACM, New York (2006)

7. Lützenberger, M.: Development of a Visual Notation and Editor for Unifying the
Application Engineering within the JIAC Framework Family. Diploma thesis, Tech-
nische Universität Berlin, Berlin, Germany (March 2009)

8. Sesseler, R.: Eine modulare Architektur für dienstbasierte Interaktionen zwischen
Agenten. PhD thesis, Technische Universität Berlin (January 2002)

9. Tuguldur, E.-O., Heßler, A., Hirsch, B., Albayrak, S.: Toolipse: An IDE for Devel-
opment of JIAC Applications. In: Proceedings of PROMAS 2008, Estoril, Portugal
(May 2008)

10. Weiß, G., Jakob, R.: Agentenorientierte Softwareentwicklung — Methoden und
Tools. Xpert.press. Springer, Berlin/Heidelberg (2005)

http://agenttool.cis.ksu.edu/
http://www.aosgrp.com/documentation/jack/DesignTool_Manual.pdf

L. Braubach et al. (Eds.): MATES 2009, LNAI 5774, pp. 226–231, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Formalizing ARTIS Agent Model Using RT-Maude

Toufik Marir1, Farid Mokhati2, and Hassina Seridi-Bouchelaghem3

1 Computer Science Departement, University of Khenchela, Algeria
2 Computer Science Departement, University of Larbi Ben M’hidi, Algeria

3 Computer Science Departement, University of Badji Mokhtar, LabGED, Algeria
{Marir.Toufik,Mokhati}@yahoo.fr, Seridi@labged.net

Abstract. Real-time multi-agent systems represent a promising area in the
computer science domain. The majority of works realized in such a domain
have been developed without tacking into account the formal specification of
agent model. Formalizing real time multi-agent systems may offer a solid basis
for their verification and validation. We present, in this paper, a formal ap-
proach supporting the specification and validation of ARTIS agent using RT-
Maude. Based on rewriting logic, RT-Maude is an extension of Maude for
specifying and analyzing the real-time and the hybrid systems. Maude is power-
ful language based on rewriting logic for specifying and analyzing of concur-
rent systems. Thus, RT-Maude seems to be an appropriate tool for specification,
validation and verification of real-time multi-agent systems. The proposed ap-
proach essentially allows: (1) translating the description of ARTIS agent, in a
RT-Maude specification and, (2) providing a sound description preserving the
coherence and supporting their validation process. The generated RT-Maude
specifications are validated by simulation. A case study is presented to illustrate
the proposed approach.

Keywords: Formal specification, ARTIS Agent, Real-Time Maude, Validation.

1 Introduction

Real-time computer systems represent a big part of the computer systems in our soci-
ety. In fact, there are many applications under the real-time constraints. Which are
generally, complexes, distributed and their principal inconvenient is the difficulty of
managing efficiently the applications that work over large data quantity. Thus, the use
of real time multi-agent systems seems appropriate and offer more important perspec-
tives. However, the majority of the proposed methodologies for the development of
these systems are still in an earlier stage of maturity. Therefore, according to [1] the
application of the recent advance in formal method can be helpful in the development
of agent-based systems. Consequently, this paper aim to be a first step to formalizing
real time multi-agent systems.

The last decade has witnessed the emergence of a number of models and architectures:
ANYMAS [2], ARTIS [3], SIMBA [4] supporting the development process of Real
Time Multi-Agent Systems (RTMAS). In this paper, the ARTIS model is chosen, thanks
to its characteristics. ARTIS model’s architecture [3] is one of the interesting answers in
the domain of RTMAS development. This architecture is constituted of two levels of
agents: ARTIS agent and a set of internal agent (in-agent). The main features of ARTIS

 Formalizing ARTIS Agent Model Using RT-Maude 227

agent are: the guaranteed of all critical time requirements by means of off-line scheduling
analysis of all reflex actions and existence of toolkit (called InSiDE) that facilitate the
design and debugging of ARTIS agent. We note, that only the execution of reflex actions
is guaranteed. The temporal restrictions of cognition phase are not guaranteed.

There are many reasons motivating the choice of ARTIS agent as a base for this
work. Among these reasons, we can mention: (01) this model guarantees all the hard
real-time constraints by means of off-line scheduling; (02) it provides a different
layers of abstraction which facilitates the design of complex application; (03) it uses
the two well-known methods of Real-Time Artificial Intelligence (anytime method
and multiple method) that provide a wide range of choice to the designer depending
on future application; (04) it is a model in full evolution where exists many studies
and extension based on ARTIS like SIMBA [4] or RT-MESSAGE [5].

Based on rewriting logic, RT-Maude is an extension of Maude for specifying and
analyzing the real-time and the hybrid systems. Maude is a powerful language based
on rewriting logic for specifying and analyzing of concurrent systems [6]. It has the
ability to describe multi-agent systems [7]. Thus, RT-Maude seems to be an appropri-
ate tool for specification, validation and verification of real-time multi-agent systems.

In this paper we propose a formal framework to formalizing a real time agent
model baptized ARTIS [3] using RT-Maude [8]. The proposed approach essentially
allows: (1) translating the description of ARTIS agent, in a RT-Maude specification
and, (2) providing a sound description preserving the coherence and supporting their
validation process. The remainder of this paper is structured as follows: In section 2
we illustrate the translation process. Section 3 presents the proposed approach through
a concrete case study. Finally, some conclusions are presented in section 4.

2 Translation Process

We developed a formal framework allowing the specification of real-time multi-agent
system based on ARTIS agent. As illustrated in figure 1, our framework is composed of
several modules: six functional modules (KNOWLEDGE, BLACKBOARD, KNOWL-
EDGE-SOURCE, KNOWLEDGE-SOURCE-LIST, MULTI-LEVEL-KNOWLEDGE-
SOURCE and MULTI-LEVEL-KNOWLEDGE-SOURCE-LIST), an Object-Oriented
module (IN-AGENT) and a Timed Object-Oriented module (ARTIS-AGENT). Due to
limitation space and a considerable size of the proposed framework, we prefer discuss in
brief the functional modules and detail the principal modules (IN-AGENT and ARTIS-
AGENT).

The functional module KNOWLEDGE is used to define and manipulate the knowl-
edge, which is described using the frame structure. Knowledge is defined essentially
by: its title, its kind, its appearance date and its remainder validity time. We have two
kinds of knowledge: timed knowledge which is bounded validity time’s knowledge
and general knowledge which is without validity time restriction.

The functional module BLACKBOARD imports the module KNOWLEDGE in or-
der to define and manipulate the blackboard structure containing agent’s knowledge.
This later should be updating during time progressing, especially it should be sup-
pressed if its validity is expired. For each knowledge we associated a list of the InA-
gent and Knowledge sources that used it, called InterestedElementList. This list can
be obtained by the function getInterestedElementList.

228 T. Marir, F. Mokhati, and H. Seridi-Bouchelaghem

Fig. 1. The framework’s architecture

To describe the agent’s knowledge source, we define the module KNOWLEDGE-
SOURCE in which the knowledge source is defined by: an identifier, an execution
time and its remainder execution time. This module is used to define the functional
module KNOWLEDGE-SOURCE-LIST in which we define a list of knowledge source
for defining the action ability of an in-agent. On the other hand, the module KNOWL-
EDGE-SOURCE is used to define the functional module MULTI-LEVEL-
KNOWLEDGE-SOURCE. Multi-level knowledge source is defined as an ordered list
of knowledge source level for implementing the anytime algorithm.

The functional module MULTI-LEVEL-KNOWLEDGE-SOURCE-LIST contains
the different necessary type declarations and operations used to defining a list of multi
level knowledge source which is served to specify perception and cognition agent’s
ability.

The object-oriented module IN-AGENT (fig. 3) describes the form of in-agents. It
imports the MULTI-LEVEL-KNOWLEDGE-SOURCE-LIST and KNOWLEDGE-
SOURCE-LIST modules. For a formal description of in-agent, the class InAgent is
proposed. The definition of this class has the necessary attributes for describing the in-
agent. These attributes reflect various parameters included in ARTIS architecture, like
the deadline, the period and the priority of in-agent. Among these attributes we quote:

PerceptionAbility, CognitiveAbility and ActionAbility which specify, respectively,
perception, cognitive and action ability of in-agent; ReactivityParameter which define
the reactivity's degree of in-agent; PerceptionKnowledgeSourceTriggered, Cogni-
tiveKnowledgeSourceTriggered and ActionKnowledgeSourceTriggered which specify
triggered knowledge source from, respectively, PerceptionAbility, CognitiveAbility
and ActionAbility. The triggered perception and cognitive knowledge source should
be scheduling with respect of reactivity’s degree of in-agent. The scheduling of
knowledge source that means it is inserted to PerceptionAndCogitiveScheduled-
KnowledgeSource’s list. The attribute EstimateTimeForAction is used to estimate the
necessary time to execute all triggering action knowledge source before deadline. The
attribute TimerIs represents a relative timer which estimates the remainder time of
active or wait cycle.

CurrentState represent the current state of in-agent. This later can be on of the
three possible state: Activated, Suspended or Wait. On the other hand, the attribute
InAgentKind of sort Kind is used to distinguish critical from not critical agent. For
clarity reason, we prefer to illustrate in the rewriting rules only the in-agent’s attrib-
utes which are necessary to their execution.

The timed object-oriented module ARTIS-AGENT is the main module. It imports
the IN-AGENT and BLACKBOARD modules. For a formal description of ARTIS

 Formalizing ARTIS Agent Model Using RT-Maude 229

agents, the class ArtisAgent is proposed. The definition of this class has the InA-
gentListIs, BlackboardContent, NbrOfEventIs, NbrOfInAgentIs and TimerIs attrib-
utes, to contain, in this order, a list of in-agent, a blackboard, a number of events
which are not treated, a number of in-agents and a timer.

The ARTIS agent’s behavior is specified by two kinds of rules: general rules and
specific rules. General rules describe the kernel of agents’ behavior which stays un-
changed for all ARTIS based applications. The meaning of specific rules is the rules
which are specified for each knowledge source of each in-agent. They specify, natu-
rally, the preconditions and post conditions of knowledge source’s execution.

In this module we define many messages which are used to construct ARTIS
agent’s behavior. The most important messages are: Add, Suppress, Update which are
used to manipulate blackboard; the messages Executing, Scheduling and Act are used
to indicate the current phase of the in-agent’s execution cycle; the message Current-
Priority which is used as indicator of the priority of the current execution in-agent;
the message Event which represents the event perceived by the in-agent. We think
that the most important rule is the one that progresses the time, which is called "tick
rule". To ensure the uniform progression of time for all timers of in-agents and AR-
TIS agent, we use a single tick rule. Naturally, in time progression, the ARTIS Agent
updates his timer and the validity time of his blackboard. Moreover, ARTIS agent
passes the message TimeProgressToken to other in-agent and event for update their
timers. In this way, the tick rule don’t re-execute before the update of all in-agent’s
and event’s timers. Indeed, the update of in-agent’s timer (or event’s timers) depends
on the current state of the in-agent: if the in-agent is in its activated state then the in-
agent will decrease its timer and the remainder execution time of knowledge source.
If the in-agent execute knowledge source from its action ability then it will decrease
its timer, its remainder execution time of the knowledge source and its EstimateTime-
ForAction. However, if the in-agent is in suspended or wait state then it will only
decrease its timer. We note that for not critical in-agent we preserve the same cases
but we do not decrease the timer of in-agent because not critical in-agent has not pe-
riod and deadline. For the events we only decrease the appearance date of the event
while it is not appeared. Each in-agent can manipulate the blackboard using add,
suppress or update messages. In this case, all in-agents and knowledge sources con-
cerned by such a manipulation should be informed. We use the message Trigger to
trigger all the knowledge source and in-agent exist in the interested elements list of
the updated frame.

3 Case Study

This section illustrates the application of the proposed approach on a concrete exam-
ple taken from [9]. It consists of the formalization of mobile robot based on ARTIS
agent architecture. Firstly, we present a brief description of this robot, after that, we
validate the developed framework by two possible scenarios.

The formal description of the mobile robot based on ARTIS agent architecture im-
plies all previously defined modules with adding some specific rules relative to its
behavior. The interaction between the system and the environment is assured by a set
of events: an event to detect the obstacle, and another to indicate periodically the
position. To detect the malfunction of robot, two events are used which indicate the

230 T. Marir, F. Mokhati, and H. Seridi-Bouchelaghem

level of power and the connection state. Finally, the request’s users transmit via an
event which precise the requested task. These events are used to update the system’s
knowledge. In fact, the blackboard of systems includes the following knowledge:
Position, Map, LevelOfPower, PlannedTask, PlannedTrajectory and ConnectionState.

To detect the obstacles; the in-agent should have a topological map of the envi-
ronment and the current position of the robot. Otherwise, the triggering of the knowl-
edge source ReadSensor is canceled.

After the detection of the obstacle, the system triggers the first level of the cognitive
multi level knowledge source consist in the first initiative to avoid the obstacle (for
example stop movement). Furthermore, the system should update the current map of the
environment.

Fig. 2. The initial and final configuration of
the first scenario

Fig. 3. The initial and the final configuration
of the second scenario

Our approach is validated by using two possible scenarios. In the first scenario,
there are many events represents the evolution of system's state like: position, level of
power, connection state. Among the events presented in the initial configuration, we
have an obstacle detected in the second unit of time and user’s request appeared at the
40th unit of time. In its initial state, the blackboard includes a description of the envi-
ronment (Map knowledge) and the current position of the robot. As it is illustrated by
the figure (fig.2), the result of the execution of specification is, essentially, the update
of the state of blackboard. Indeed, new frames have been added, representing the
planned tasks and planned trajectory to serve the request of user. At the same time,
the position frame is suppressed because it is timed knowledge and the in-agent
charged to identify the new position has not be executed. Furthermore, we remark that
the appearance date of the Map frame is six units of time, because the system recog-
nized an obstacle.

We take again the same configuration in the second scenario, but the description of
environment is omitted from the blackboard. Evidently, if there is not a topological
map, the planned tasks of system can not construct the necessary trajectory to serve
the request of user. This situation appears in final configuration where the blackboard
includes only a planned task frame (Fig. 3).

4 Conclusion and Future Work

The formalization of the real-time agent represents an important activity during the
development process of multi-agents systems. It produces a rigorous description and
offers a solid basis for the verification and the validation activities. In this paper we

 Formalizing ARTIS Agent Model Using RT-Maude 231

presented the formalization of one of the well-known real-time agents called ARTIS
Agent. We formalized only ARTIS agent which is based on progressive method. Our
approach is based on the formal and object-oriented language RT-Maude. It charac-
terizes by the power of description and integrates several tools of verification and
validation. In this paper, we only applied the simulation as validation tool.

As future work, we attempt to use this framework for the verification of same
properties of real-time agent using the model-checking technique.

References

1. Kefalas, P., Holcombe, M., Eleftherakis, G., Gheorghe, M.: A Formal Method for the De-
velopment of Agent-Based Systems. In: Plekhanova, V. (ed.) Intelligent Agent Software
Engineering. IDEA Group Publishing, USA (2003)

2. Duvallet, C., Sadeg, B., Cardon, A.: How to build real-time multi agent system with any-
time techniques. In: Computers and Their Applications 2000, pp. 325–329 (2000)

3. Botti, V., Carrascosa, C., Julian, V., Soler, J.: The ARTIS Agent Architecture: Modelling
Agents in Hard Real-Time Environments. In: Garijo, F.J., Boman, M. (eds.) MAAMAW
1999. LNCS (LNAI), vol. 1647, pp. 63–76. Springer, Heidelberg (1999)

4. Julian, V., Carrascosa, C., Robello, M., Soler, J., Botti, V.: SIMBA: an approach for Real-
Time Multi-Agent Systems. In: Escrig, M.T., Toledo, F.J., Golobardes, E. (eds.) CCIA
2002. LNCS (LNAI), vol. 2504. Springer, Heidelberg (2002)

5. Julian, V., Botti, V.: Developing real time multi agents systems. Integrated Computer-Aided
Engineering 11, 135–149 (2004)

6. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C.: aude
Manuel (version 2.3) (July 2007),

 http://maude.cs.uiuc.edu/maude2-manual/html/index.html
7. Mokhati, F., Boudiaf, N., Badri, M., Badri, L.: Translating AUML Diagrams into Maude

Specifications: A Formal Verification of Agents Interaction Protocols. Journal of Object
Technology 6(4) (May-June 2007),

 http://www.jot.fm/issues/issue_2007_05/article2/
8. Carrascosa, C., Bajo, J., Julian, V., Corchado, J.M., Botti, V.: Hybrid multi-agent architec-

ture as a real-time problem-solving model. Expert Syst. Appl. 34(1), 2–17 (2008)
9. Soler, J., Julian, V., Carrascosa, C., Botti, V.: Applying the ARTIS Architecture to Mobile

Robot Control. In: IBERAMIA-SBIA 2000, pp. 359–368 (2000)

Implementing Over-Sensing in Heterogeneous
Multi-Agent Systems on Top of Artifact-Based

Environments

Alessandro Ricci and Michele Piunti

DEIS, Alma Mater Studiorum – Università di Bologna
via Venezia 52, 47023 Cesena, Italy

{a.ricci,michele.piunti}@unibo.it

Abstract. Along with direct interaction models, relying on message-based ex-
plicit communication, indirect interaction models can play an important role for
designing coordination strategies in Multi-Agent Systems (MAS). Among in-
direct models, those based on agent observability such as over-sensing achieve
coordination by letting agents observe and possibly reason about (each) others’
actions and state. In this paper we describe how over-sensing and, more gener-
ally, agent observability mechanism can be used in practice to program MAS in
the context of artifact-based environments by exploiting the support provided by
CArtAgO technology.

1 Agent Observability in Multi-Agent Programs

In multi-agent systems observation-based coordination approaches exploit some kind
of observability of either the environment or the agents’ themselves – in particular of
their actions and possibly of their state – to achieve coordination among agents. Existing
works in agent literature have remarked the features and effectiveness of observation-
based interaction and coordination. A main example is the work of Platon and col-
leagues [7], who introduce the notion of over-sensing as a mechanism to let agents
observe other agents working in the same environment, providing a first theoretical
treatment and discussion of the possible applications. Over-sensing can be seen as a
generalisation of over-hearing, an indirect communication type that allows agents lis-
tening to conversations without the status of addressee [4], in other words to let an agent
A to perceive the communication messages exchanged by two or N other agents. Over-
hearing has been successfully applied in MAS for monitoring teams of agents and plan
recognition [5]. Over-sensing generalises over-hearing by conceptually conceiving ob-
servations not (only) related to speech acts but to agent actions/state in general. A com-
prehensive conceptual account of the role of observation for agent coordination – in
particular for cognitive agents – has been provided by Tummolini and colleagues [12],
discussing in particular how proper environments supporting observability of agent ac-
tions can be effectively exploited in theory to realise different forms of coordination
among cognitive agents.

In the context of agent-oriented software engineering (AOSE) – which is the main
perspective of this paper – no concrete technology has been devised so far to exten-
sively exploit over-sensing and agent observability in practice. To this end, in this paper

L. Braubach et al. (Eds.): MATES 2009, LNAI 5774, pp. 232–237, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Implementing Over-Sensing in Heterogeneous Multi-Agent Systems 233

we describe a support for agent observability and over-sensing in multi-agent systems
composed by agents that interact and work inside artifact-based computational envi-
ronments running on top of CArtAgO.

CArtAgO (Common Artifact infrastructure for Agent Open environment) has been
proposed as a general-purpose framework & infrastructure for building shared computa-
tional worlds that agents, possibly belonging to heterogeneous agent platforms and writ-
ten using different agent programming languages, can exploit to work together [9,10,8].
Being based on the A&A (Agents and Artifacts) meta-model [6], CArtAgO’s computa-
tional environments are modelled as set of distributed workspaces, containing dynamic
sets of artifacts. From the agent viewpoint, artifacts are first-class entities of agents’
world, representing resources and tools that agents can dynamically instantiate, share
and use to support individual and collective activities. From the MAS designer view-
point, artifacts are useful to uniformly design and program those abstractions inside
a MAS that are not suitably modelled as agents, and that encapsulate functions to be
exploited by individual agents or the overall MAS—for instance mediating and empow-
ering agent interaction and coordination, or wrapping external resources.

CArtAgO provides a concrete computational and programming model for arti-
facts [9], composed by a set of Java-based API to program artifacts on the one side,
and agent API to work inside artifact-based environment on the other side1.

By integrating an agent programming language or frameworks with CArtAgO, the
repertoire of agent actions is extended with a new set of actions for playing inside
an artifact-based environment, including actions to join and leave workspaces, cre-
ate/lookup/dispose artifacts, use artifacts, and observe artifacts without directly using
them2.

Enabling agent observability and over-sensing in artifact-based environments ac-
counts for making it observable the actions that agents perform on artifacts, in par-
ticular to execute operations: this point is developed in next section, while in Section 3
we briefly sketch the possible applications of this mechanism.

2 Enabling Agent Observability in CArtAgO

Given the basic CArtAgO model, the observability of agent actions can be enabled by
making it observable as artifacts the agent bodies, that are those architectural compo-
nents that – in CArtAgO – are introduced inside the infrastructure to situate agents

1 The main features of the artifact abstraction are extensively described in [6,10,9]. Briefly, each
artifact has a usage interface listing a set of usage interface controls that can be used to trigger
and monitor the execution of operations inside the artifact. By executing operations, an artifact
can generate observable events (signals) that can be perceived by both by the agent using the
artifact and by all those that are focussing (observing) it. Besides observable events, an artifact
can have observable properties, whose value (and changes) are automatically perceived by all
the observing agents.

2 The full description of agent API is provided in [9,8]. Briefly, the use action is provided to
trigger the execution of an operation on an artifact, specifying the usage interface control and
parameters; the focus action enables the continuous perception of the observable properties
of an artifact as percepts and of all the observable events generated by the artifact in executing
operations as external events, possibly managed through sensors provided by the agent body.

234 A. Ricci and M. Piunti

inside workspaces. For each agent joining a workspace, an agent body is created, con-
taining effectors to act upon workspace artifacts and sensors to perceive workspace ob-
servable events, and which governed by the agent mind which is in execution externally,
on the agent platform side and possibly programmed using different agent languages.
So, we achieved observability by artifact-ising agent bodies, i.e. by conceiving agent
bodies not just as architectural components but as fully-fledged artifacts belonging to
the workspace, which can be observed by other agents.

We achieved this by introducing a new built-in kind of artifact called
AgentBodyArtifact, which is instantiated each time an agent joins a workspace
– using the agent name as artifact logic name - and removed as soon as the
agent quits. The artifact function is twofold: (a) to make agent actions – in par-
ticular use, focus, observeProperty, stopFocussing observable, by generat-
ing proper observable events whenever such actions are performed by the agent.
Events are of the kind doing(What,When), where What can be use(ArName,Op)
for use actions on the artifact ArName is the artifact name and Op is a repre-
sentation of the operation triggered, and focus(ArName), stopFocus(ArName),
observeProperty(ArName,PropName) with the obvious meaning; (b) to let the
agent manifest an observable state, which is represented as observable properties of the
agent body artifact. To this end, the repertoire of actions available to agents for working
inside workspaces is extended with new ones for manipulating its own observable state,
in particular for adding/reading/updating/removing observable properties.

Given this support, an agent can observe another agent’s behaviour (or state) just
by doing a focus action on its agent body artifact. By focussing the body, the agent
will perceive all the observable events generated by the artifact and agent observable
properties as percepts, in this case related to what the target agent is doing and to the
state that the agent has made observable. In so doing, two agents can be mutually aware
of each other actions by simply focussing on each other body artifacts.

We clarify the approach through a simple example3 with three agents, observer,
user1, user2 working in the same workspace, where observer observes and logs the
actions done by the other two agents which share and interact with a simple artifact
functioning as a counter. All the agents are programmed using the Jason agent pro-
gramming language and platform [2], while the counter artifact is programmed with
the Java-based CArtAgO API. Fig. 1 shows the source code of user1 and user2. The
agent user1 simply instantiates a Counter artifact named a-counter which then will
be used by the user2 agent, and starts observing it, printing a message on the console
artifact4 as soon as it perceives a change in the value of count, which is an observable
property of the counter. The agent user2 locates and uses the counter, incrementing
it few times by acting upon the inc usage interface control. This agent also shows an
observable property – called state – which is used to manifest its working state: first
it is idle, then, as soon as it starts working with the counter, it is set by the agent to
working and finally it is set back to idle as soon as the agent has completed its work.

3 The example is part of the CArtAgO technology distribution and can be downloaded at
http://cartago.sourceforge.net

4 The console artifact is available by default in each workspace and can be used by agents to
print messages on standard output.

http://cartago.sourceforge.net

Implementing Over-Sensing in Heterogeneous Multi-Agent Systems 235

inc

2count

println

console artifact

counter artifact

user1 agent

user2 agent

observe

observer agent observe

create

observe use

use

us
e

idlestate

+go_on : true
<- cartago.makeArtifact("a-counter",

"counter.Counter",C);
cartago.focus(C).

+count(X) : true
<- cartago.use(console,println(

"new count value observed: ",X)).

!use_the_counter.
+!use_the_counter : true

<- cartago.addMyObsProperty(state,"idle").

+go_on : true
<- cartago.updateMyObsProperty(state,"working");

!discover_counter(C);
+cycle(0) ;
!use_counter(C);
cartago.updateMyObsProperty(state,"idle").

+!discover_counter(C): true
<- cartago.lookupArtifact("a-counter",C).

-!discover_counter(C) : true
<- .wait(1); !discover_counter(C).

+!use_counter(C) : cycle(N) & N < 4
<- -cycle(N);

cartago.use(C,inc,s0);
cartago.sense(s0,op_exec_completed(_));
+cycle(N+1) ;
!use_counter(C).

+!use_counter(C) : cycle(4).

Fig. 1. (Top-Left) A schematic representation of the agents and artifacts involved in the example,
with in evidence the relationships among the entities. (Bottom-Left) Jason source code of the
user1 agent. (Right) Jason source code of the user2 agent.

// observer initial goal
!observe_agents.

+!observe_agents : true
<- !discover_agent("user1");

!discover_agent("user2").

// plans to discover an agent

+!discover_agent(AgName)
<- cartago.lookupArtifact(AgName,AgBody);

cartago.focus(AgBody);
.send(AgName,tell,go_on).

-!discover_agent(AgentName)
<- .wait(1); !discover_agent(AgName).

// plans to react to events related to
// observed agents’ actions

+doing(use(ArName,OpName,Params),LocalTime)
[source(Who)]

<- cartago.use(console,println("the agent ",Who,
" did ",OpName," on ",ArName)).

+doing(focus(ArName),LocalTime)
[source(Who)]

<- cartago.use(console,println("the agent ",Who,
" started observing ",ArName)).

+state(X)[artifact(Who)]
<- cartago.use(console,println("the agent ",Who,

" state changed to ",X)).

Fig. 2. Jason source code of the observer agent

package counter;
import alice.cartago.*;

public class Counter extends Artifact {

@OPERATION void init(){
defineObsProperty("count",0);

}

@OPERATION void inc(){
int count =

getObsProperty("count").intValue();
updateObsProperty("count",count+1);

}
}

MAS test {
environment:

alice.c4jason.CEnvStandalone
agents:

observer observer agentArchClass
alice.c4jason.CAgentArch;

user1 count_user1 agentArchClass
alice.c4jason.CAgentArch;

user2 count_user2 agentArchClass
alice.c4jason.CAgentArch;

}

Fig. 3. (Left) The implementation of the counter artifact using the Java based CArtAgO API. The
body of artifact operations is implemented by methods annotated by the @OPERATION tag. (Right)
The Jason main MAS file, containing the declaration of the set of the booting agents and of the
kind of environment where the agent lives.

236 A. Ricci and M. Piunti

To add an observable property to its body (artifact) the new addMyObsProperty action
is used, and updateMyObsProperty to change its value.

The key agent of the example is the observer agent, whose goal is to observe the
actions performed by user1 and user2 and then to log a message on the console
artifact as soon as either a new agent action is detected or a change of their agent state
is perceived (in this case the state property of user2). Fig. 2 shows the source code
of observer agent in Jason. By means of plans reacting to +doing(...) events, the
agent prints a message on the console artifact, as soon as an event related to a use or
focus action performed by the agents is perceived. A message is printed also whenever
the belief about a change in the value of the state percept is detected (plan +state(X)
[...] <- ...) – which in this case corresponds to a change to the observable property
of the user2 agent. For completeness, Fig. 3 shows how the counter is implemented
using CArtAgO API and the main Jason MAS file, declaring the initial set of agents
composing the multi-agent systems – user1, user2 and observer – and the kind of
environment where the agents live – a CArtAgO environment.

Despite its simplicity, the example should be effective in showing how the approach
makes it possible quite easily to program agents that choose dynamically which agents
to observe, possibly observing multiple agents at a time, and that eventually use in-
formation resulting from the observation for deliberating and choosing actions to do.
It’s worth remarking that the same agent can be observed by multiple observer agents,
concurrently.

In the example a single not-distributed workspace is used. However the support
works analogously also to observe agents not residing on the computational node where
the observer is running: in other words, the agent observability support can be exploited
in fully distributed work environments. This comes for free by exploiting the native sup-
port to distribution provided by CArtAgO: an agent can join and work simultaneously
on multiple workspaces, possibly distributed in different CArtAgO nodes.

3 Exploiting Over-Sensing

The basic observability mechanism can be exploited for different purposes in MAS
exploiting artifact-based environments.

A first main application for the mechanism is observation-based coordination, as
mentioned in Section 1, in the different forms described in [12]. In particular, agents
can decide what actions to do and which artifacts to use by observing the behaviour
of other agents working in the same environment—which, in this case, do not need to
be necessarily aware of the observer agents and to directly communicate with them.
By being aware, however, interesting advanced coordination strategies can be enacted,
such as behavioural implicit communication [3].

Besides coordination, the mechanism can be used for monitoring the observable be-
haviour of agents inside the systems, a feature which is particularly useful in the case of
MAS organisations and Electronic Institutions [11] to detect anomalies/violations and,
more generally, to enact some kind of security policies which need to trace the interac-
tion between agents and the environment. It’s worth noting that in this case the observer
agents are not mediators of agent actions, such as in the model proposed for situated e-
Institutions [1], where agent actions are first sent to a mediator agent (governor), which

Implementing Over-Sensing in Heterogeneous Multi-Agent Systems 237

is then responsible to execute such actions if they are compatible with the overall norms
of the system. In our case, instead, the action is executed directly on the environment
(artifacts) and the event related to the action is eventually perceived and processed by
observer agents, concurrently.

Finally, monitoring can be used also for profiling purposes, with observer agents
keeping track of the timing related to the observed actions of possibly different agents
executing core tasks inside the system, so as to reason about the overall performances
and eventually identifying dynamically how to adapt the system – for instance chang-
ing/adapting the artifacts used by the agents – so as to improve it.

References

1. Arcos, J.L., Noriega, P., Rodrı́guez-Aguilar, J.A., Sierra, C.: E4mas through electronic insti-
tutions. In: Weyns, D., Van Dyke Parunak, H., Michel, F. (eds.) E4MAS 2006. LNCS (LNAI),
vol. 4389, pp. 184–202. Springer, Heidelberg (2007)

2. Bordini, R., Hübner, J., Wooldridge, M.: Programming Multi-Agent Systems in AgentSpeak
Using Jason. John Wiley & Sons, Ltd., Chichester (2007)

3. Castelfranchi, C.: When doing is saying – the theory of behavioral implicit communication.
Technical report, Istituto Science e Tecnologie Cognitive (2003). Draft,
http://www.istc.cnr.it/doc/62a_20050131162326t_

WhenDoingIsSayingADVANCED.rtf

4. Dignum, F.P., Vreeswijk, G.A.: Towards a testbed for multi-party dialogues. In: Dignum,
F.P.M. (ed.) ACL 2003. LNCS (LNAI), vol. 2922, pp. 212–230. Springer, Heidelberg (2004)

5. Kaminka, G., Pynadath, D., Tambe, M.: Monitoring teams by overhearing: A multi-agent
plan-recognition approach. JAIR 17, 83–135 (2002)

6. Omicini, A., Ricci, A., Viroli, M.: Artifacts in the A&A meta-model for multi-agent systems.
Autonomous Agents and Multi-Agent Systems 17(3) (December 2008)

7. Platon, E., Sabouret, N., Honiden, S.: Oversensing with a softbody in the environment. In: In
Proc. of Modelling Others from Observation, MOO 2005 (2005)

8. Ricci, A., Piunti, M., Acay, L.D., Bordini, R., Hübner, J., Dastani, M.: Integrating artifact-
based environments with heterogeneous agent-programming platforms. In: Proc. of the 7th
Int. Joint Conf. on Autonomous Agents and Multiagent Systems (AAMAS 2008). IFAA-
MAS, Estoril, Portugal, May 12-16, 2008, pp. 225–232 (2008)

9. Ricci, A., Piunti, M., Viroli, M., Omicini, A.: Environment programming in CArtAgO. In:
Bordini, R.H., Dastani, M., Dix, J., El Fallah-Seghrouchni, A. (eds.) Multi-Agent Program-
ming: Languages, Platforms and Applications, vol. 2, pp. 259–288. Springer, Heidelberg
(2009)

10. Ricci, A., Viroli, M., Omicini, A.: The A&A programming model & technology for devel-
oping agent environments in MAS. In: Dastani, M.M., El Fallah Seghrouchni, A., Ricci, A.,
Winikoff, M. (eds.) ProMAS 2007. LNCS (LNAI), vol. 4908, pp. 89–106. Springer, Heidel-
berg (2008)

11. Sierra, C., Rodrı́guez-Aguilar, J.A., Noriega, P., Esteva, M., Arcos, J.L.: Engineering multi-
agent systems as electronic institutions. European Journal for the Informatics Profes-
sional V(4) (August 2004)

12. Tummolini, L., Castelfranchi, C., Ricci, A., Viroli, M., Omicini, A.: “Exhibitionists” and
“voyeurs” do it better: A shared environment approach for flexible coordination with tacit
messages. In: Weyns, D., Van Dyke Parunak, H., Michel, F. (eds.) E4MAS 2004. LNCS
(LNAI), vol. 3374, pp. 215–231. Springer, Heidelberg (2005)

http://www.istc.cnr.it/doc/62a_20050131162326t_WhenDoingIsSayingADVANCED.rtf
http://www.istc.cnr.it/doc/62a_20050131162326t_WhenDoingIsSayingADVANCED.rtf

Requirements and Tools for the Debugging of
Multi-Agent Systems

Lawrence Cabac, Till Dörges, Michael Duvigneau, and Daniel Moldt

Department of Computer Science, TGI, University of Hamburg
http://www.informatik.uni-hamburg.de/TGI/

Abstract. Debugging of multi-agent systems (MAS) is hard due to their
distributed, concurrent, adaptive, highly interactive, flexible, mobile and
heterogeneous nature. We identify three dimensions (activities, scale, and
coupling) that span the area of debugging and derive general require-
ments for a debugging toolset in the multi-agent context. An implemen-
tation of a toolset w.r.t. the requirements given for the MAS reference
architecture Mulan is presented. This toolset comprises general low level
debugging possibilities that are included in the virtual machine (execu-
tion engine Renew), specialized Mulan-dependent debugging facilities
that enable debugging on higher (agent concepts and independent debug-
ging aspects that rely on publicly available information – i.e. message logs
– together with advanced techniques, such as visualization and mining.

Keywords: Debugging, multi-agent systems, requirements, Mulan,
toolset.

1 Introduction

Debugging is the process of locating and fixing bugs. Especially the “locating”
part is one of the most time consuming and difficult tasks nowadays in software
development projects. But before a bug can even be located, its existence needs
to be detected. At best, bugs should be detected before the system goes into
production. A common approach to check for yet unknown bugs in a project
under development is testing [15,12].

In this paper, we concentrate on detecting and locating bugs within multi-
agent systems from a software-engineering point of view. Thus the main emphasis
lies on multi-agent system-related metaphors for structure (agents) and processes
(interactions). The tasks of detecting and locating bugs are already a challeng-
ing task in the case of distributed and concurrent systems. Here reproduction
of events, control over executing entities and causal dependencies are in many
cases beyond the control of the developer. But multi-agent systems are not only
concurrent and distributed systems, but also composable and adaptable systems
where interfaces of the entities (agents) may change during runtime. This fact
imposes another challenge onto testing and debugging as the correctness of a sys-
tem may vary in different configurations. On the other hand, multi-agent system

L. Braubach et al. (Eds.): MATES 2009, LNAI 5774, pp. 238–247, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Requirements and Tools for the Debugging of Multi-Agent Systems 239

concepts impose a strong structure on a software architecture. It is advisable to
try to benefit from this structure in the process of testing and debugging.

We examine the main characteristics of debugging of multi-agent systems by
presenting the requirements for the debugging of multi-agent systems based on
the fundamental concepts that are present in such systems as well as in their
development processes. Tools are the central means for implementation support
as well as sufficient concepts, metaphors, techniques etc. to allow for an effective
and efficient productive development setting. For the Mulan/Capa [7] frame-
work we have developed techniques and tools to reduce the time consumption
of the debugging phase.

The paper is structured as follows. Section 2 presents the basic concepts of
the debugging process and classifies the related aspects with respect to three
dimensions (scale, coupling and activities). On the ground of these dimensions
we identifies the resulting requirements. Section 3 introduces our view on multi-
agent system development and the matching tools to support detecting and
locating bugs. In Section 4 we present related work.

2 Debugging Requirements

The task of detecting and locating bugs involves several activities that can be
categorized based on their effect within the debugging process. However, activ-
ities are not the only dimension to exploit when concerned with debugging a
MAS. As a multi-agent system uses metaphors both on micro and macro levels
to impose a strong structure on the artifacts that make up a software system, the
dimension of scale needs to be considered as well. Furthermore, MAS are com-
posable, concurrent, and distributed systems. We group these properties under
the dimension of coupling. Depending on the kind of bug, the developer has to or
needs not to care about the issues imposed by such properties. Thus, debugging
activities are spread along this dimension, too.

The most prominent one of the three dimensions is obviously activities. Here
we find activities that are common to debugging in any paradigm: starting,
observing, fixing, compiling and many others. Scale on the other hand is a di-
mension that only gets important in complex systems. While debugging these
systems there is an obvious difference whether one examines a method of a
class or whether the focus of investigation lies on component level dependen-
cies or even inter-machine coordination. The last dimension coupling seems hard
to grasp at first, but it should also be obvious that different (maybe also more
elaborate) techniques need to be applied when concurrent systems are debugged.
With distributed systems also the debugger’s (person or tool) limited knowledge
of the whole system asks for other approaches.

Debugging multi-agent systems has many aspects in common with debugging
normal modular, distributed and concurrent systems. The FIPA standards dic-
tate agent communication via asynchronous message passing. Thus techniques
for the debugging of (synchronous) remote procedure calls are not applicable.
For example, there is no such thing as a “distributed thread of control”. Further-
more, an agent’s roles (comparable to interface declarations or class definitions)

240 L. Cabac et al.

are exchangeable during a system’s lifetime. No global control or state is present,
each agent has incomplete local information, no agent is guaranteed to be able
to collect all information about a system’s current state or behavior. The con-
sequence is that much information available by design in conventional software
systems has to either be recovered via observation in multi-agent systems or
volunteered by the agents [10]. When information is recovered from observation,
techniques such as mining or the exploitation of design artifacts [14] can be ap-
plied. The situation becomes slightly better when we add debugging capabilities
to a platform instead of injecting a debugging agent as a peer within the MAS,
because the platform can inspect all local agents and messages while they are
executed or sent. Since many platforms provide a framework for agent imple-
mentation, the framework can be enriched to observe or manipulate an agent’s
internals – of course thus violating the agent’s autonomy.

From the three dimensions (scale, coupling, activities) given in above the
following requirements can be derived:

Display information, on various levels of detail (observation). This is the
most basic requirement, it covers the whole dimensions of scale and cou-
pling.

Automation, of the debugging cycle1 – at least as widely as possible. This
relates mainly to the activity preparation. The integration of all debugging,
testing and development tools helps to satisfy this requirement.

Logging/Tracing. The course of asynchronous events needs to be recorded to
investigate the cause of error conditions but also for low scale components
logging – as done in conventional debugging approaches – can be of advan-
tage.

Replay. It can be very tedious to manually reproduce an error condition. There-
fore a replay mechanism for logged events is desirable.

Distribution. To cover the whole dimension of coupling, debugging tools should
be able to remotely connect to every part of the multi-agent system.

Linking, information and artifacts enables the activity “navigation”. Zooming
into an entity (interactive behavior, internal behavior, agent, platform, sys-
tem) or out of it means moving along the dimension of scale. Being able to
analyze distributed objects relates to the domain of coupling.

Message analysis, is crucial, because agents only communicate via messages.
This comprises filtering and mining [1,3] which are essential methods in
loosely coupled systems.

Information aggregation, means to be able to condense data as needed. One
(simple) example would be to display the number of agents present on a
platform rather than each agent individually [1]. Also see the Linking and
Visualization requirements.

Visualization, features displaying results from mined data, like for example the
communication between a pair of agents or the social network of agents [13].

1 The debugging cycle defines the process of debugging. This includes starting, ob-
serving, finding bugs, determining possible causes, fixing, compiling, restarting, etc.
of the system. For more details w.r.t. the Mulan debugging cycle see [5].

Requirements and Tools for the Debugging of Multi-Agent Systems 241

Manipulation. All the previous requirements did not change the system being
debugged. But capabilities for hot code replacement or data manipulation
may speed up the debugging cycle [5]. In contrast to Myers statement that
changes should only be done on source code and not on the running system,
in multi-agent systems it might be desired or even necessary to do exactly
this.

3 Application of Debugging in Mulan

In this section we introduce Mulan, a FIPA-compliant multi-agent platform,
and its use to build multi-agent systems within PAOSE, an interpretation of
Gaia [17]. Furthermore, we present the facilities that allows us to efficiently
debug a multi-agent system. These are the Capa platform running within the
Renew runtime environment, the Mulan-Viewer and the Mulan-Sniffer.

3.1 Mulan/Capa

Mulan [7] is a reference architecture for multi-agent systems. Mulan models a
multi-agent system as a canonical, hierarchical structure of nested, encapsulated
elements. A multi-agent system consists of a communication infrastructure, plat-
forms located within the infrastructure, agents residing on platforms, and each
agent’s internal elements comprising instantiatable protocols (plans), a knowl-
edge base, and internal behaviors (planning, decision components). Platforms
offer internal and external communication for agents and harbor special (immo-
bile and privileged) agents that offer AMS and DF functionality. Agents offer
and use services and are associated with roles that define responsibilities, abil-
ities, involved interactions and behavioral triggers. Agents communicate with
each other using FIPA-ACL.

Mulan in specified in java reference nets (see section 3.2). The specifica-
tion serves as implementation due to the operational semantics of Petri nets.
Capa adds an efficient and elaborated platform implementation to Mulan that
supports FIPA-compliant message communication via HTTP.

Due to the fact that multi-agent systems in general and Mulan systems in
special are highly structured and loosely coupled, we are able to implement test
beds for parts/areas of the system/processes. For decision components (interior
processes, DCs) as well as for inter-agent interactions we have developed a tech-
nique that allows us to test them in a predefined setting independent of the rest
of the system. The designed processes and nets are tested against dummy data
or within a crafted multi-agent setup. Such component tests can be run either
to detect bugs or to narrow the cause of some error condition down.

3.2 Renew and Java Reference Nets

Java reference nets are a Petri net-based Java extension that allow to conve-
niently program and run concurrent systems. Java’s threading and object com-
munication facilities are replaced by Petri net facilities. Each Petri net graph is

242 L. Cabac et al.

executable code comparable to a class definition. Any statements inscribed to
Petri net transitions are executed concurrently, unless restricted by places and
arcs. Net instances and Java objects can be used interchangeably. Bidirectional
synchronous channels provide a powerful communication mechanism.

The virtual machine that executes the code (Renew [8]) has already sev-
eral built in features to inspect code at runtime. The Petri net token game can
be thought of as a visual debugger that helps to follow the control flow and
deeply inspect a system’s state. Tokens can be inspected in several ways; as
string representation or as UML-like deep inspection (see ellipse highlight in
Figure 1) of the object’s state. Navigation between encapsulated entities is sup-
ported through hyperlink-like functionality, where reference tokens function as
links. Renew supports elaborated breakpoints for all relevant entities. However,
there are some shortcomings when it comes to the visualization of the overall
structure of the (local) system. The next tools avail of the structure of a Mu-
lan-based multi-agent system to present more abstract views of the system.

3.3 Mulan-Viewer

The Mulan-Viewer [2] is particularly strong w.r.t. the requirements linking in-
formation and artifacts, as it is able to navigate any local or remote multi-agent
system (dimension coupling) as well as entire platforms or internal items from an
agent’s knowledge base (dimension scale). The main components of the Mulan-
Viewer are the platform inspector and the graphical user interface. An arbitrary
number of platforms can be inspected both locally and remotely.

The user interface consists of two views: a MAS overview on the left and the
detail view on the right (see Figure 1). The hierarchical structure of the multi-
agent system is represented as a tree view. The levels of the tree view correspond
directly to three of the four levels known from the Mulan model (the outermost
level – system infrastructure – is missing). The message transport system agent
(MTS) associated with each platform can be seen on the bottom left. If desired,
messages can be collected and listed. The detail view allows inspection of chosen
elements and provides integration with Renew debugging facilities. It supports
direct navigation to Petri net code (as well as net instances) of agents, protocols,
decision components and knowledge bases. Additionally, all reactive protocols of
an agent are listed so that breakpoints can be set directly from within the tool.

In Figure 1 the running instance of the net Bank_DC_Account from agent
bank#7 on platform poire has been opened in the detail view (right hand side
of the Mulan-Viewer) and can be seen in the background. The superimposed
rectangles2 indicate which elements from the detail view correspond to those in
the inspected nets. In this case the string addResources shown in the detail view
of the Mulan-Viewer is contained by the place in question. The parts marked
by superimposed ellipses2 show how inspection levels can be nested: First the
Mulan-Viewer allows for navigation (left hand side of the Mulan-Viewer) to
the desired agent and its protocols. Then the Petri nets can be inspected using
2 Note that the original color of superimposed elements is red.

Requirements and Tools for the Debugging of Multi-Agent Systems 243

Fig. 1. Mulan-Viewer linking to Renew token game and inspection

Renew. In the example the place on the top contains one token of type Account,
which is inspected as UML object hierarchy (token bag).

Recently, the Mulan-Viewer has been enhanced [5] by powerful (and addi-
tional) direct manipulation and control features. These surpass Renew’s control
and manipulation facilites by utilizing interfaces of Mulan-imposed structure
of the multi-agent system. The Mulan-Viewer allows to directly manipulate
knowledge base entries (i.e. hot data replacement), allows to start (and stop)
arbitrary (e.g. pro-active) protocols, decision components, agents and platforms.
Additionally, a “new-protocol-wizard” supports the exchange of faulty protocols
(or other nets) by new versions during runtime in a comfortable way.3

Thus a cohesion between inspecting, location and fixing of bugs is achieved
within the development tool support.

3.4 Mulan-Sniffer

The Mulan-Sniffer [2] was inspired by the JADE sniffer [6]; other related tools
and approaches are the ACLAnalyser [1] and the sniffer in MadKit [11]. It uses
(agent) interaction protocols (AIP) for visualization and debugging [4,14]. The
Mulan-Sniffer focuses on analyzing messages sent by agents in a multi-agent sys-
tem. Besides from being portable (realized in Java) and modular (has complete
plugin system), the key features are distribution, logging, analysis, and visualiza-
tion. The Mulan-Sniffer is able to gather messages from both local and remote
3 Dynamic loading of nets is already supported by Renew.

244 L. Cabac et al.

Fig. 2. Mulan-Sniffer UI with generated sequence diagram

platforms. Messages can be selected using stateful or stateless filters. Basic fil-
tering primitives (from, to, . . .) are provided. More sophisticated filters may be
added via the plugin system. Offline filtering is also possible. Mining-chains can
be used to apply arbitrary analysis algorithms to the messages (for examples
see [3]). Apart from showing elementary statistics (total number of messages
sent, . . .) each message can thoroughly be inspected. Moreover sequence dia-
grams are auto-generated (in function of the filters applied) on the fly. More
complex visualizations can – of course – be realized as plugins.

It is interesting to note that the sequence diagrams resulting from visualiza-
tion can actually be re-used as agent interaction protocol diagrams. Petri net
code stubs for agent protocols can be generated from these diagrams [4]. Thus,
agent behavior can be defined by observing a running system turning user inter-
action (manually) into agent behavior or even allowing the agents to use these
observations to adapt their own behaviors.

Figure 2 shows the Mulan-Sniffer’s main window, while sniffing the messages
from a teaching project. The main window is divided in three major areas. The
top-left one displays the agents known from sniffing the messages. Here, agents
can be selected for simple filtering. The right area shows the Message list. The
currently selected message is displayed in detail in the bottom left area of the
main window. Next to the Message list tab one can select from a couple of
viewer plugins loaded already. Online SocialNetwork (accessible via the arrow
next to Offline SocialNetwork) for example allows to visualize the frequency of

Requirements and Tools for the Debugging of Multi-Agent Systems 245

message exchange by pairs of agents. Additionally a part of the on-the-fly auto-
generated sequence diagram is shown. Selecting a message arrow in the diagram
will highlight the corresponding message in the message list and display the
content in the message detail view (tabs: AclMessage and Envelope) and vice
versa. The Mulan-Sniffer uses the same interface of the platform as the Mulan-
Viewer for the collection of messages.

4 Related Work

Liedekerke and Avouris [16] describe the need for tool support for multi-agent
application development. They propose Developer’s Concepual Models (Perspec-
tives), from which they directly derive views that are manifested as GUI work-
bench perspectives. The presented system provides visualization covering most of
the scale dimension. One main aspect is that the system receives, displays and
offers information as an agent of the system. While the approach is modular,
generic and abides to the agent-oriented paradigm, there are some drawbacks
concerning debugging. Considering that all agents are autonomous entities, it is
not guaranteed that operations that query or manipulate data or code are suc-
cessful. Concerning the dimension of coupling, the architecture seems tempting
in the way that the debugging capabilities are naturally remote, concurrent and
autonomous. However, direct manipulation of running systems is not discussed.

Ndumu et al. [13] tackle the “notoriously difficult task” of multi-agent system
debugging by visualization (of several diverse perspectives of the system) and
corroboration. They describe some control features of the system but do not
emphasize on a coherent integration of the different tasks of detecting, locating
and fixing bugs.

Botia et al. [1] present an elaborated system (ACLAnalyzer) for Jade plat-
forms that focuses on the analysis of ACL messages and the visual presentation
of direct or inferred data. Their focus is on the communication level and presents
overviews of whole agent organizations. Through this focus on the inferred sys-
tem organization and the inter-agent communication (interactions) it becomes
clear that the tool is mainly for analysis and visualization, while the manipula-
tion features are restricted.

Lynch et al. [10] propose an integrated development environment for multi-
agent system. Information about the system or details and control is communi-
cated via messages and the focus lies on the gathering of commonly available
information of heterogeneous systems. The agents volunteer the information.
Although manipulation and control features are not excluded in the extensible
architecture, their support within the basic implementation is limited.

Lam & Barber [9] take a similar approach of gathering information by modify-
ing existing agent code so that the agents report their internal state to a central
debugging component.

Myers [12] presents a thorough investigation into testing – mentioning debug-
ging as associated to testing – stresses the fact that the error of fixing of bugs

246 L. Cabac et al.

in runtime code should be avoided. In contrast, we believe that for multi-agent
systems (i.e. systems that include adaptive behavior) it is explicitly necessary
to manipulate the state directly. Moreover, multi-agent systems actually provide
meaningful technical constraints for such manipulations.

Poutakidis et al. [14] focus on the debugging of interactions. They incorporate
design artifacts that are developed during the design phase with the Prometheus
methodology, i.e. AUML Interaction Protocols, for error detection during run-
time. This is a highly specialized approach that is able to find sets of possible
erroneous interactions. Errors include mis-sent messages (wrong address) and
deadlocks. Such errors are easily and direct detectable in process-oriented multi-
agent systems, such as Mulan.

5 Conclusion

This paper investigates the process of debugging multi-agent system from a
practical point of view. We base the requirements for debugging of multi-agent
systems on three orthogonal dimensions (scale, coupling, activities) that span
the field of debugging. Requirements cover gathering, processing and display-
ing information as well as control and manipulation features of the debugging
system.

Table 1. Overview of tools and their capabilities

Observable objects Viewer Sniffer Renew Component Tests
agents on platforms ++ − + −
agent state + − ++ −
protocols of agents ++ − + ++

protocol state ◦ − ++ +

transferred messages + ++ ◦ +

interactions − ++ − ++

communication infrastructure − + − +

We present the concrete toolset to debug Mulan-based multi-agent systems
and point out the particular strengths of each tool with respect to the require-
ments. Table 1 summarizes the features of the debugging toolset for Mulan
with respect to the dimension of scale. The Mulan-Viewer focuses on present-
ing the system structure – including agent internals – and provides control and
manipulation features. The Mulan-Sniffer observes the system by gathering,
visualizing and mining agent messages externally. Renew provides visual and
interactive debugging features for the underlying Petri net code. Together all
three form a comprehensive debugging toolset to locate and fix bugs within a
Mulan-based multi-agent systems. Component tests allow to detect and locate
bugs in a reproducible manner.

Requirements and Tools for the Debugging of Multi-Agent Systems 247

References

1. Botía, J.A., Hernansaez, J.M., Skarmeta, F.G.: Towards an approach for debug-
ging mas through the analysis of acl messages. In: Lindemann, G., Denzinger, J.,
Timm, I.J., Unland, R. (eds.) MATES 2004. LNCS (LNAI), vol. 3187, pp. 301–312.
Springer, Heidelberg (2004)

2. Cabac, L., Dörges, T., Rölke, H.: A Monitoring Toolset for Paose. In: van Hee,
K.M., Valk, R. (eds.) PETRI NETS 2008. LNCS, vol. 5062, pp. 399–408. Springer,
Heidelberg (2008)

3. Cabac, L., Knaak, N., Moldt, D., Rölke, H.: Analysis of multi-agent interactions
with process mining techniques. In: Fischer, K., Timm, I.J., André, E., Zhong,
N. (eds.) MATES 2006. LNCS (LNAI), vol. 4196, pp. 12–23. Springer, Heidelberg
(2006)

4. Cabac, L., Moldt, D.: Formal semantics for AUML agent interaction protocol dia-
grams. In: Odell, J.J., Giorgini, P., Müller, J.P. (eds.) AOSE 2004. LNCS, vol. 3382,
pp. 47–61. Springer, Heidelberg (2005)

5. Cabac, L., Moldt, D., Schlüter, J.: Adding runtime net manipulation features to
mulanviewer. In: AWPN 2008, September 2008. CEUR Workshop Proceedings,
vol. 380, pp. 87–92. Universität Rostock (2008)

6. The Sniffer for JADE. Online documentation (January 2008),
http://jade.cselt.it/doc/tools/sniffer/index.html

7. Köhler, M., Moldt, D., Rölke, H.: Modelling mobility and mobile agents using
nets within nets. In: van der Aalst, W.M.P., Best, E. (eds.) ICATPN 2003. LNCS,
vol. 2679, pp. 121–139. Springer, Heidelberg (2003)

8. Kummer, O., Wienberg, F., Duvigneau, M.: Renew– User Guide. University of
Hamburg, Faculty of Informatics, Theoretical Foundations Group, Hamburg, re-
lease 2.1.1 edn., (July 2008), http://www.renew.de/

9. Lam, D.N., Barber, K.S.: Debugging agent behavior in an implemented agent sys-
tem. In: Bordini, R.H., Dastani, M.M., Dix, J., El Fallah Seghrouchni, A. (eds.)
PROMAS 2004. LNCS (LNAI), vol. 3346, pp. 104–125. Springer, Heidelberg (2005)

10. Lynch, S., Rajendran, K.: Providing integrated development environments for
multi-agent systems. In: Bergmann, R., Lindemann, G., Kirn, S., Pěchouček, M.
(eds.) MATES 2008. LNCS (LNAI), vol. 5244, pp. 123–134. Springer, Heidelberg
(2008)

11. MadKit (January 2008), http://www.madkit.org
12. Myers, G.J.: The art of software testing, 2nd edn. Wiley & Sons, Hoboken (2004)
13. Ndumu, D.T., Nwana, H.S., Lee, L.C., Collis, J.C.: Visualising and debugging

distributed multi-agent systems. In: Agents, pp. 326–333 (1999)
14. Poutakidis, D., Padgham, L., Winikoff, M.: Debugging Multi-agent Systems Using

Design Artifacts: The Case of Interaction Protocols. In: Proceedings of AAMAS
2002, pp. 960–967 (2002)

15. Sommerville, I.: Software engineering, 6th edn. Addison-Wesley, Redwood City
(1995)

16. Van Liedekerke, M.H., Avouris, N.M.: Debugging multi-agent systems. Information
and Software Technology 37, 103–112 (1995)

17. Wooldridge, M., Jennings, N., Kinny, D.: The Gaia methodology for agent-oriented
analysis and design. The International Journal of Autonomous Agents and Multi-
Agent Systems 3(3), 285–312 (2000)

http://jade.cselt.it/doc/tools/sniffer/index.html
http://www.renew.de/
http://www.madkit.org

SONAR∗: A Multi-Agent Infrastructure for
Active Application Architectures and

Inter-organisational Information Systems

Michael Köhler-Bußmeier and Matthias Wester-Ebbinghaus

University of Hamburg, Department of Informatics
Vogt-Kölln-Str. 30, D-22527 Hamburg

{koehler,wester}@informatik.uni-hamburg.de

Abstract. Whenever the IT infrastructure is managed by different or-
ganisational units the software architecture has to balance the conflicting
aims of local autonomy and global coherence. Self aware organisational
models help to achieve this goal.

In this paper we describe the architecture of a generic organisational
agent, called GOPA. This agent is used as the target platform for Sonar-
models. Sonar is a formal framework for the specification of multi-agent
organisations. Sonar-models are semantically rich enough to compile a
GOPA network from the model in an automatic way.

Keywords: Active architectures, multi-agent systems, middleware,
organisations, Petri nets, SONAR.

1 Motivation

Organisation-centred design (OCD) models the organisational structure explic-
itly. OCD has its origins in actor-centred software design and in computational
organisation theory [1]. Obviously this approach induces some overhead into the
software development processes. Nevertheless these additional modelling costs
(in form of resources like time and money) pay out in at least two cases: (1)
Whenever software systems are developed for organisation-wide purposes OCD
provides the natural metaphors leading to a clear, sometimes even to a clearer
design – compared to approaches not aware of organisational structures. This ap-
proach is called business-IT alignment. (2) Whenever software is not developed
as a ‘single shot’ product but undergoes a constant change then the explicit
modelling of the organisational structure has a clear advantage. For example,
one major task in ‘business re-engineering’ is the survey of the organisational
relationships and their evaluation – a central part of organisational change man-
agement. It would not only be nice but also very interesting from the financial
point of view to evaluate and reorganise (if necessary) in an automated manner,
i.e. to have an active architecture. Therefore reflectivity and self-organisation of
business structure can be seen as essential for business information systems.

The situation becomes even more complicated if we do not consider one or-
ganisation, but a confederation, like Airbus, an European Aeronautic Defence

L. Braubach et al. (Eds.): MATES 2009, LNAI 5774, pp. 248–257, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A Multi-Agent Infrastructure for Inter-organisational Systems 249

and Space (EADS) company. Citing the company’s web page: “Manufacturing,
production and sub-assembly of parts for Airbus aircraft are distributed around
16 sites in Europe, with final assembly in Toulouse and Hamburg.” Different sites
are organisations with some local autonomy which results in a decentralised IT
infrastructure with separated authority domains.

This is a typical example where the classical approach of IT management does
no longer apply since the whole IT infrastructure is spread over autonomous
organisational units. E.g. the IT infrastructure in Hamburg is managed by a
different organisational unit than the infrastructure of Toulouse and both are
quite independent. The local organisational units enjoy a certain local auton-
omy. On the other hand, the confederation as a whole tries to guarantee global
coherence. This interplay of local autonomy and global coherence characterises
the qualitative step from IT management to IT governance which heavily relies
on self-awareness.

Our formal model Sonar (Self Organising Net ARchitecture) is one step into
this direction of self-aware information systems. Firstly, Sonar provides a for-
mal model with a clear semantics. Sonar models come along with a notion of
well-formedness that can easily be checked. Secondly, Sonar also provides a
clear approach, called Sonar∗, to implement the models as a distributed sys-
tem, namely as a multi-agent system and this implementation (or: deployment)
process is carried out as an automated compilation for the most part. Therefore
Sonar can be seen as a modelling framework and as a middleware for distributed
information systems at the same time.

The paper is structured as follows: Section 2 introduces our concept of holonic
organisational networks based on position agents. Section 3 gives a short intro-
duction into Sonar, our formal model of organisations based on Petri nets. The
set of possible interaction networks, called teams, is modelled as a delegation
net and the set of possible interactions is formalised using multi-party workflow
nets. Section 4 describes Sonar∗ – the generic architecture of the common agent
structure. The paper closes with a conclusion and an outlook.

2 Conceptual Approach: Position Network

In this section, we describe the fundamental concepts of our approach before
we supply it with a theoretical background and operational specifications in the
following sections. Our approach is closely related to a current trend in MAS
engineering that takes an organisation-oriented stance and specifically borrows
the mechanism of formalisation from social organisations. Formalisation in this
context refers to the extent, to which expectations on behaviour are explicitly
specified, and to the extent, to which these specifications are independent from
the particular occupants of social positions [2]. In this respect, rationality resides
in a social structure itself, not only in the individual participants.

While these are basically analytical distinctions in social sciences, applying
them to MAS engineering allows for separation of concerns with respect to not
only design but also implementation of agents and organisations. In [3], one

250 M. Köhler-Bußmeier and M. Wester-Ebbinghaus

can find an overview and a comparison of MAS approaches that all employ the
principle of organisational specifications not just resting “in the heads” of domain
agents but instead being encapsulated and managed by an explicit middleware
layer. Thus, the formal part of an organisation is software technically reified.
The middleware layer allows arbitrarily heterogeneous agents to participate in
the organisation. It is also useful to provide a persistent and coherent system level
in an open MAS environment where agents belonging to different stakeholders
continuously enter and leave, behaving in possibly unpredicted ways.

Figure 1 illustrates our specific philosophy concerning MAS organisations util-
ising the middleware approach. We describe a formal organisation in terms of
interrelated organisational positions (see the following section for details). Com-
pared to other middleware layers, we advocate complete distribution. Instead of
introducing one or more middleware managers that watch over the whole organi-
sation (cf. the manager in S-MOISE+ [4]) or at least over considerable parts (cf.
institution, scene, transition managers in Amelie [5]), we associate each position
with its own organisational position agent (OPA). We provide a more detailed
comparison of our approach to other MAS middleware approaches in [6] where
we also derive conclusions concerning best fits between different approaches and
application contexts.

Operator BOperator A

Alice

Executive

organisational

 membership

organisational

 position

organisational

position agent

organisational

member agent

pos

formal channel

informal channel

external agent

Formal Organisation

Coordinator

Group 2Group 1

ElvisCharly

Deborah

Bob

Fiona

Sub-Organisation

Organisation
Multi-Agent System

Fig. 1. An Organisation as an OPA/OMA Network

An OPA network embodies a formal organisation. An OPA represents an or-
ganisational artifact and not a member/employee of the organisation. However,
each OPA represents a conceptual connection point for an organisational mem-
ber agent (OMA). An organisation is not complete without OMAs. It depends
on domain agents that actually carry out organisational tasks, make decisions
where required and thus implement/occupy the formal positions. Note that an
OMA can be an artificial as well as a human agent. An OPA both enables and
constrains organisational behaviour of its associated OMA. Only via an OPA
an OMA can effect the organisation and only in a way that is in conformance
with the OPA’s specification. In addition, the OPA network as a whole relieves
its associated OMAs of a considerable amount of organisational overhead by au-
tomating coordination and administration. To put it differently, an OPA offers
its OMA a “behaviour corridor” for organisational membership. OMAs might of

A Multi-Agent Infrastructure for Inter-organisational Systems 251

course only be partially involved in an organisation and have relationships to
multiple other agents than their OPA (even to agents completely external to the
organization). From the perspective of the organisation, all other ties than the
OPA-OMA link are considered as informal connections.

To conclude, an OPA embodies two conceptual interfaces, the first one be-
tween micro and macro level (one OPA versus a network of OPAs) and the
second one between formal and informal aspects of an organisation (OPA ver-
sus OMA). We can make additional use of this twofold interface. Whenever we
have a system of systems setting with multiple scopes or domains of authority
(e.g. virtual organisations – like in the Airbus scenario, strategic alliances, or-
ganisational fields), we can let an OPA of a given organisation act as a member
towards another OPA of another (sub-)organisation as illustrated on the right
of Figure 1. For the second OPA, nothing changes. It treats the first OPA as an
ordinary member that may or may not maintain further informal relationships.
For the first OPA, this move adds just another dimension to its macro level
functionality. This basically combines the middleware perspective with a holonic
perspective (cf. [7]) and is not as easily to be conceptualised in the context of
other middleware approaches that take a less distributed/modular perspective.
In Section 4, we address the specific activities of an OPA network in detail.

3 The Underlying Theoretical Model: SONAR

In the following we give a short introduction into our modelling formalism, called
Sonar. A detailed discussion of the formalism can be found in [8], its theoretical
properties are studied in [9]. A Sonar-model encompasses (i) a data ontology,
(ii) a set of interaction models (called distributed workflow nets), (iii) a model,
that describes the team-based delegation of tasks (called role/delegation nets),
(iv) a network of organisational positions, and (v) a set of transformation rules
(cf. [9,8] for details).

O6: Prod2

O2: Prod

O5: Prod1

O7: Prod

O1: Prod,Cons

O8: Cons2

O3: Cons

O7: DMO9: Cons1

p1 p2

p3 p4 p6 p7

t2 t5

t7

t1

t11t9 t10

t4

p5

t8

p0t6 t3 PC

PC2 PC2

PC

Prod1

PC

DMCons1

PC

PC3 PC2

Cons

PC3

Cons2Prod2

{Prod,

Cons}

requester

firm 2firm 1 sub 1 adm sub 2

PC PC

Prod

virtual firm

broker
start

produce

send receive

consume

start

stop

stop

item

acknowledgment

ConsProd

[]

[]

receive

ackowledge

acknowledge

firm 3

The Organisation Net
A DWF net = interaction protocol

Fig. 2. A Sonar-Model

252 M. Köhler-Bußmeier and M. Wester-Ebbinghaus

All these components are illustrated in Figure 2. It describes the relationship
between the positions: broker, virtual firm, requester, etc. – and the roles: Pro-
ducer, Consumer etc. From a high-level perspective, we have a requester and a
supplier of some product. They are loosely coupled and need not even necessarily
know each other. Instead, coupling is provided by a broker service. (Note, that
for this simplified model brokerage is an easy job, since there is exactly one pro-
ducer and one consumer. In general, we have several instances for both groups
with a broad variety of quality parameters making brokerage a real problem.)
From a lower-level, more fine-grained perspective the supplier itself has an inner
substructure. It consists of one management level and two subcontractors. The
two subcontractors may be legally independent firms that integrate their core
competencies in order to form a virtual enterprise. One common separation of
concerns is to distinguish fabrication from manufacturing in the development of
a product. The coupling between the firms constituting the virtual enterprise is
apt to be tighter and more persistent than between requester and supplier at the
next higher system level, which provides more of a market-based and on-the-spot
connection.

In Sonar a formal organisation is characterised as a network of organisational
positions . Each position is responsible for the delegation/execution of several
tasks and can delegate subtasks to other positions. In our model Role/Delegation
(R/D) nets [9] are used to describe all the information about task delegation. A
R/D net is a Petri net (P, T, F) where each task is modelled by a place p and
each task implementation (delegation/execution) is modelled by a transition t.
A place p with •p = ∅ models an initial task , while •p
= ∅ models a subtask .
Transitions t ∈ T with t•
= ∅ are called delegative, transitions with t• = ∅ are
called executive. Each place p is labelled by a role R(p) and each transition t
with a DWF net D(t) (see below). An example R/D net is given on the left side
of Figure 2. The positions of our example model in Figure 2 are drawn as grey
boxes. It has the positions: broker, virtual firm, requester, etc.

A distributed workflow net (DWF net) is a multi-party version of the well-
known workflow nets [10] where the parties are called roles. Roles are used in
DWF nets to abstract from concrete agents. For example, the two roles Producer
and Consumer have the same form of trading interaction no matter which agent
is producing or consuming. The right side of Figure 2 shows the DWF net PC
that describes the interaction between both roles: First the producer executes
the activity produce, then sends the produced item to the consumer, who receives
it. The consumer sends an acknowledge to the producer before he consumes the
item.1 Technically speaking roles are some kind of type for an agent describing
its behaviour. Note, that agents usually implement several roles.

Positions define which entity is responsible for the existing delegation tasks.
This relationship is modelled as a set of disjoint subsets of the nodes P ∪ T of

1 To simplify the presentation we have omitted all data-related aspects in our discus-
sion of distributed workflow nets. In Sonar each DWF net uses data object based
on the model’s ontology.

A Multi-Agent Infrastructure for Inter-organisational Systems 253

the R/D net.2 Each initial task (i.e. the places p with •p = ∅) are the starting
points of organisational activity.

Definition 1. Let D be a DWF universe and R the role universe. A (formal)
organisation net is the tuple Org = (N,O, R, D) where:

1. N = (P, T, F) is a Petri net with |p•| > 0 for p ∈ P and |•t| = 1 for t ∈ T .
2. O is a partition on the set P ∪ T . An element O ∈ O is called position.
3. R : P → R is the role assignment.
4. D : T → D is the DWF net assignment.

In a well-formed organisation the roles of the DWF net D(t) are consistently
related to the roles of the places in the preset and the postset such that no role
behaviour is lost or added during the delegation. In a well-formed organisation,
termination of the interaction described by a DWF net is guaranteed. Cf. [9] for
details.

In general a delegation t comes along with a behaviour refinement. In the ex-
ample the position requester implements the role Cons by generating subtasks
for the roles Cons 1, DM, and Cons 2. These subtasks are handled by the posi-
tions sub 1, adm, and sub 2 that implements their role according to the DWF
PC 2 (not shown here) which decomposes the behaviour of role Cons into the
composition of Cons 1, DM, and Cons 2. For the formal definition the interested
reader is referred to [9].

If one marks one initial place of an organisation net Org = (N,O, R, D)
with a token, each firing process of the Petri net models a possible delegation
process. More precisely, the token game is identical to the team formation process
(cf. Theorem 4.2 in [9]). It generates a team net and a team DWF : Teams are
modelled as an acyclic R/D nets. More precisely: An R/D net G is called a team
net if it is a connected causal net (i.e. an acyclic net) with exactly one minimal
node: |◦G| = 1. The team DWF is derived from the DWF inscriptions D(t) of
the team’s maximal nodes t ∈ G◦.

As another aspect, Sonar-models are equipped with transformation rules.
Transformation rules describe which modifications of the given model are al-
lowed. They are specified as graph rewrite rules [11]. The minimal requirement
for rules in Sonar is that they must preserve the correctness of the given organ-
isational model. Cf. [8] for more details. Sonar-transformations are formulated
in such a composite way that it is possible to apply them not only to the Sonar
model itself but also to the OPA network generated from the model. In the latter
case the OPAs perform the transformation within their second-order teamwork
(see Section 4).
2 There is a close connection between organisation nets and the commonly used or-

ganisation charts. In fact, organisation charts are a special sub-case of our model.
Organisation nets encode the information about delegation structures – similar to
charts – and also about the delegation/execution choices of tasks, which is not present
in charts. If one fuses all nodes of each position O ∈ O into one single node, one ob-
tains a graph which represents the organisation’s chart. Obviously, this construction
removes all information about the organisational processes.

254 M. Köhler-Bußmeier and M. Wester-Ebbinghaus

4 SONAR∗: The Generic Position Agent’s Architecture

Now that we have obtained a precise picture of what constitutes a formal or-
ganisation according to our approach, we can elaborate on the activities of a
position network according to Section 2.

We distinguish organisational activities of first- and of second-order. First-
order activities target at carrying out business processes to accomplish business
tasks. In this case, the organisation is referred to as a static context. In Sonar
the first order activities are: Team Formation, Team Plan Formation, Team Plan
Execution, and Hierarchic propagation within the holonic structure.

Second-order activities target at evaluation and reorganisation efforts that
transform the organisation, which is consequently referred to as a variable.

All OPAs share a common structure which we call the generic OPA (GOPA).
An OPA O is an instance of this GOPA that is parametrised by that part of
the organisational model that describes O, i.e. its inner structure (subtask and
delegation/execution activities) and all the surrounding OPAs. The architecture
of the GOPA is shown in Figure 3. In the following we explain its constituting
parts. For an in-depth discussion we refer to [12].

Ontology

Goals

Knowledge

Local Planning

Distributed Planning

Team Formation

Team Negotiation
Monitoring

&

Reorganisation

Transformation

Rules

y

x

Ontology

Goals

Knowledge Base

Data Services Organisation

Local Planning

Distributed Planning

Team Formation

Team Negotiation
Monitoring

&

Reorganisation

Transformation

Rules

Fig. 3. Sonar∗: The Architecture of the Generic OPA

In Sonar∗ the GOPA specification is formalised using high-level Petri nets.
Our first Sonar∗ prototype uses Renew [13], a Petri net tool, to simulate the
specification directly. To put it short, we have agent nets that in turn utilise
protocol nets for agent interactions. Additionally, we employ GOPA deployment
nets inside protocol nets that guide and control the interaction flow. A screen-
shot of the running system is shown in Figure 4. It highlights the case of team
formation.
Ontology and Knowledge Base. The ontology describes the data types and their
relationships. This level uses semantic web technology, like OWL. The data types
include basic ones (like integers, strings etc.) and composed ones (like key-value
tuples etc). This is the block Data in Figure 3. An OPA stores data about e.g.
the performance of its neighbour OPAs in it Knowledge Base.

A Multi-Agent Infrastructure for Inter-organisational Systems 255

Fig. 4. Screen-Shot of the Executed GOPA Specification

Also DWF nets are described by data types (block Services) since the GOPA
has to reason about them at run-time when selecting the next action to execute.
The third central part describes the organisational parameters of the GOPA
(block organisation) which includes types as: task, subtask, delegation, execu-
tion, in-neighbour, out-neighbour, etc.
Transformation Rules. A special part of the OPAs knowledge is the data base
of transformation rules. The knowledge about data, services and organisation
can be seen as first-order knowledge used in first-order team-processes. Trans-
formation rules are used in second-order processes, i.e. in teamwork processes
that manipulate the first-order data. Typically a second-order process, which
carries out a transformation, manipulates the organisational knowledge.
Goals. Each OPA has certain goals. These are not so much concerned with
desires like: “Buy a good for the best possible price in the market.” since such
goals are typically part of the member, the OMA, and not of the OPA. The
goals of an OPA are concerned with desires like “I like to minimise the team
negotiation overhead in this organisation.”
Team Formation. The OPAs use their knowledge about the organisational struc-
ture to generate teams for an given task. An Sonar-model provides all the
information to describe all the allowed teams. The knowlege about an OPA’s
neighbour is used to decide which of the possible teams might be the best for a
given task. The concrete algorithm has been discussed in Section 4. Additional
details of this team formation algorithm can be found in [14].
Local Planning. After a team has been formed all participating OPAs and OMAs
articulate their local preferences. In the local planning phase agents deal with

256 M. Köhler-Bußmeier and M. Wester-Ebbinghaus

partial plans which also incorporate different choices. This partiality is used in
the negotiation phase.

In “normal” interactions only OMAs have an attitude towards different choices
within one DWF net. This is different when the team has to carry out a trans-
formation. In this case OPA has strong attitudes which option may improve the
organisation best while OMA has no opinion on this organisational topic.
Team Negotiation. After the local preferences have been assigned to the partial
plans the team has to negotiate about a compromise. The distributed algorithm
for team negotiation is generic and works for each possible team (more details
can be found in [8]). It exploits the team structure which is a tree. Each father
node in the team-tree investigates the partial plans of it sons. The protocol uses
the module for distributed planning to compute a compromise among the sons.
The result is again a partial plan which is presented to the next level above.
In a recursive way this process finally reaches the root of the tree. At the root
OPA the preferences of all team members have been taken into account. The
best option among the root’s partial plan is chosen as the team plan.
Distributed Planning. This modules is used in the negotiation phase in two
ways. First it defines how a compromise is computed among the sons’ partial
plans. Usually it tries to optimise the teams benefit, but also the individual
benefit of the team members. Usually both aims contradict each other and the
module has to decide which one should be prioritised.

As a second task the distributed planning module has ensure that the lo-
cally derived plans do not contradict the organisational constraints. Within the
Sonar-model the designer can assign temporal logic constraints to the delega-
tion/execution activities of the organisation net (an issue we have omitted in Sec-
tion 3). Whenever a local plan contradicts one of the constraints the distributed
planner adjusts the preferences in a minimal way to guarantee accordance with
the constraints.
Monitoring and Reorganisation. After the negotiation phase the team has com-
puted a team plan which is communicated among all team members. Each OPA
is responsible to inform its OMA about the team plan. To enforce OMA’s com-
pliance with the team plan OPA monitors OMA’s behaviour. In the case that
OMA derivates from the team plan an error has occurred. In this case the moni-
tor module is responsible for the error handling, which might a suspension of this
OMA or simply message that the action cannot be performed and that another
action has to be chosen.

5 Conclusion

In this contribution we presented the generic architecture for an organisational
middleware based on multi-agent systems. Our generic OPA-architecture is used
as the implementation target of our formal framework Sonar.

In this paper we developed a prototype implementation based on the GOPA
specification. In a first attempt we have chosen to exploit the GOPA speci-
fication, which is expressed in high-level nets, directly within the Petri net

A Multi-Agent Infrastructure for Inter-organisational Systems 257

simulator Renew. As a second, future step we plan to re-implement the specifi-
cation within the Jade(x)-framework [15] to improve the system’s performance.

References

1. Carley, K.M., Gasser, L.: Computational organisation theory. In: Weiß, G. (ed.)
Multiagent Systems, pp. 229–330. MIT Press, Cambridge (1999)

2. Scott, W.R.: Organizations: Rational, Natural and Open Systems. Prentice Hall,
Englewood Cliffs (2003)

3. Boissier, O., Hübner, J., Sichman, J.S.: Organization oriented programming: From
closed to open organizations. In: O’Hare, G.M.P., Ricci, A., O’Grady, M.J.,
Dikenelli, O. (eds.) ESAW 2006. LNCS (LNAI), vol. 4457, pp. 86–105. Springer,
Heidelberg (2007)

4. Hübner, J.F., Sichman, J.S., Boissier, O.: S-moise: A middleware for developing
organised multi-agent systems. In: International Workshop on Organizations in
Multi-Agent Systems (OOOP 2005), pp. 107–120 (2005)

5. Esteva, M., Rodriguez-Aguilar, J., Rosell, B., Arcos, J.: Ameli: An agent-based
middleware for electronic institutions. In: Sierra, C., Sonenberg, L., Tambe, M.
(eds.) Autonomous Agents and Multi-Agent Systems (AAMAS 2004), pp. 236–243
(2004)

6. Wester-Ebbinghaus, M., Köhler-Bußmeier, M., Moldt, D.: From multi-agent to
multi-organization systems: Utilizing middleware approaches. In: Artikis, A., Pi-
card, G., Vercouter, L. (eds.) Engineering Societies in the Agents World, ESAW
2008 (2008)

7. Fischer, K., Schillo, M., Siekmann, J.: Holonic multiagent systems: A foundation
for the organization of multiagent systems. In: Mařík, V., McFarlane, D.C., Val-
ckenaers, P. (eds.) HoloMAS 2003. LNCS (LNAI), vol. 2744, pp. 71–80. Springer,
Heidelberg (2003)

8. Köhler-Bußmeier, M., Wester-Ebbinghaus, M., Moldt, D.: A formal model for or-
ganisational structures behind process-aware information systems. Transactions
on Petri Nets and Other Models of Concurrency. Special Issue on Concurrency in
Process-Aware Information Systems 5460, 98–114 (2009)

9. Köhler, M.: A formal model of multi-agent organisations. Fundamenta Informati-
cae 79(3-4), 415–430 (2007)

10. Aalst, W.v.d.: Verification of workflow nets. In: Azéma, P., Balbo, G. (eds.)
ICATPN 1997. LNCS, vol. 1248, pp. 407–426. Springer, Heidelberg (1997)

11. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of algebraic graph
transformation. Springer, Heidelberg (2006)

12. Köhler-Bußmeier, M.: SONAR: Eine sozialtheoretisch fundierte Multiagenten-
systemarchitektur. In: Lüde, R.v., Moldt, D., Valk, R. (eds.) Selbstorganisation
und Governance in künstlichen und sozialen Systemen. Lit Verlag, Münster (2009)

13. Kummer, O., Wienberg, F., Duvigneau, M.: Renew – the Reference Net Workshop,
Release 2.1. (1999-2009), http://www.renew.de/

14. Köhler-Bußmeier, M., Wester-Ebbinghaus, M.: Automatic generation of distributed
team formation algorithms from organizational models. In: Hubner, J.F., et al.
(eds.) COIN 2008. LNCS (LNAI), vol. 5428, pp. 64–79. Springer, Heidelberg (2009)

15. Braubach, L., Pokahr, A., Lamersdorf, W.: Jadex: A short overview. In: Net. Ob-
jectDays 2004, pp. 195–207 (2004)

http://www.renew.de/

An Architecture for Simulating
Internet-of-Services Economies

Stefan König1, Isaac Pinyol2, Daniel Villatoro2, Jordi Sabater-Mir2,
and Torsten Eymann1

1 University of Bayreuth
Chair of Information Systems Management

Bayreuth, Germany
stefan.koenig@uni-bayreuth.de

2 Artificial Intelligence Research Institute (IIIA)
Spanish National Research Council (CSIC) Bellatera, Barcelona, Spain

Abstract. The Internet-of-Services describes a general paradigm of dis-
tributed computing with transparent service selection in a shared infras-
tructure. One particular question to be solved is how to match service
supply and demand dynamically, while information is asymmetrically
distributed between buyers and sellers (represented by agents). As buy-
ers can not investigate the computation service before use, sellers can
behave strategically. Including trust-enhancing market concepts or rep-
utation mechanisms can help to lower this information gap. Researching
into this effect requires the setup of simulation environments, that al-
low to change policies (e.g. market structure or reputation parameters).
In this paper, we present an architecture of a simulation environment
integrating electronic institutions from multi-agent research to simulate
Internet-of-Services systems.

1 Introduction

Businesses have to encounter several different challenges, when it comes to using
Information Technology (IT). The increasing dynamism of markets leads to a
continuous need for IT-Business-Alignment and the control of IT investments
and resources. The Internet-of-Services (IoS) describes a general computational
paradigm, which allows companies to procure computational resources externally
and thus to save both, internal capital expenditures and operational costs. For
the provider of Internet-of-Services, the business model lies on the economies of
scales.

From a technical point of view, Internet-of-Services virtualizes physical re-
sources to logical units, which can be assigned to different users. Thus, using
resources in parallel becomes possible, leading to overall better utilization and
the execution of computationally intensive jobs within shorter time. One impor-
tant characteristic is the distributed and perhaps redundant provision of storage,
processing power, or more abstract services that extend over different organiza-
tions [1,2]. The heterogeneity of services and resources is opaque to the end
user.

L. Braubach et al. (Eds.): MATES 2009, LNAI 5774, pp. 258–267, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

An Architecture for Simulating Internet-of-Services Economies 259

1.1 Markets to Allocate Resources and Services

An efficient allocation mechanism between service demand and supply is needed
to get such an environment running – a market. But introducing markets will lead
to other problems, e.g. asymmetrically distributed information between service
providers and consumers. Service providers usually have more information about
quality or availability of the services, than their potential users (consumers).
This case of asymmetrically distributed information usually leads to suboptimal
results due to the uncertainty on the consumer side, and thus to an inferior
usage of the service environment in total. Symmetrically, consumers have more
information about their liquidity. In addition, both transaction participants deal
with uncertainty caused by environmental factors (e.g. network failures). Effects,
which are observed in physical markets, can be found in service environments
as well [3,4]. Without regulation and coordination mechanisms, the Internet-of-
Services can thus suffer from low quality of service (QoS), like in the proverbial
”market of lemons” [5].

Because of these economic issues, policies as kind of rules need to be defined
to overcome these shortcomings. In this sense, finding strategies and defining
policies to ensure certain QoS in the Internet-of-Services must rely on (1) prede-
fined negotiation protocols, following institutional approaches and (2) subjective
distributed mechanism, following social approaches (for instance, by the use of
reputation and trust mechanisms). Because of the context-dependence of both
conditions, simulating tools seem a good solution to test theoretical hypotheses
if they allow to change these policies. Therefore we recommend to make use of
electronic institutions.

1.2 The Usage of Electronic Institutions in the IoS

On the one hand, negotiation protocols must provide general policies that all
participants have to follow. On the other hand, since not all policies are enforce-
able in all system physiologies, trust and reputation mechanisms, similar to those
used in e-Commerce applications, arise as a good distributed solution. Especially
systems involving different organizations or open systems hamper the introduc-
tion of consistent policies [4]. However, our understanding of trust extends the
prevalent technical-oriented views in service environments. Secure communica-
tion and digital certificates are necessary, but not sufficient to generate trust
both to the system and to other participants. However, trust has also to be seen
as a social paradigm, which can be built dynamically between agents with regard
to its past behaviour. This social approach offers as well an interaction control
that escapes from the security approach and becomes critical for achieving a
well-fare market with asymmetrically distributed information.

The use of eI in the simulation tool provides us several advantages in the
context of simulating policies for the IoS:

– A completely integrated and widely used framework to graphically design and
deploy eI through EIDE1. This provides us with tools to easily design

1 http://e-institutor.iiia.csic.es

260 S. König et al.

negotiation protocols, improving their conceptualization and possible mod-
ifications. Further, it provides tools for monitoring at run-time agent’s perfor-
mances in the negotiation protocols.

– An extensible agent architecture (E-Agent) to allow software agents to par-
ticipate in eI. Then, software agents using complex architectures like BDI
(Belief, Desire, Intention) can easily participate in eI.

– Reputation and trust models management. The E-Agent architecture ensures
a completely interoperability of agents using different reputation models in
the same eI[6].

– Direct applicability for real applications. In fact, EIDE provides a set of
tools to allow humans to participate in eI. Therefore, after an experiment
has been simulated using the platform, exactly the same design of eI could
be used as negotiation protocols involving humans and virtual agents.

The paper is structured as follows: In the next section we state some related work.
Afterwards, in section 3 we expose a brief background on electronic institutions
concepts and tools, together with the conceptualization of Internet-of-Services
economies as electronic institutions. Also in this section we explain how eIs deal
with reputation mechanisms. In section 4 we describe the abstract architecture
and put the simulation to work by presenting an instantiation of a possible
simulation and showing some results. Finally, we conclude the paper and present
the future work in section 5.

2 Related Work

Using intelligent agents for trading resources in the Internet-of-Services is not
really new. Foster et al. [7] state that both, Grid computing and software agents,
are about the design of distributed systems. Whereas the Grid community fo-
cused on the development of the ”infrastructure and tools for secure and reliable
resource sharing within dynamic and geographically distributed virtual organi-
zations (VOs)” [7, p. 1], the agent community focused on the development of
intelligent agents being able to act in uncertain and dynamic environments.

In order to model different characteristics of services and resources, we use a
two-layer market, which has been evaluated through a prototype in the CAT-
NETS project (see figure 1). The project defines a market for services (SaaS-
market) and infrastructures (IaaS-market). The main differences of this paper to
this approach are the assumptions regarding agents’ behaviour: the agents are
not assumed to act cooperatively.

A set of additional simulation toolkits for distributed systems has been de-
signed. One of the most promising ones is the OptorSim toolkit [8]. However, this
system is not further developed as of 2006 and therefore lacks user support and
adoption to future network settings. GridSim [9] presents a quite comprehen-
sive simulation framework; it focuses strongly on Grid Computing applications,
thus stressing technical details such as scheduling or generation of virtual orga-
nizations and advance reservation of resources. Instead, our aim is to build an
architecture combined with some existing tools that enables an easy-to-deploy

An Architecture for Simulating Internet-of-Services Economies 261

Fig. 1. SaaS and IaaS Markets

simulation environment, even for researchers that are not really familiared with
programming simulations.

In the next section we give a brief description of the main concepts and char-
acteristics of electronic institution.

3 Electronic Institutions for Internet-of-Services
Economies

3.1 Electronic Institutions: Basic Concepts and Tools

In everyday life, we, as individuals, deal with many other people in order to
achieve our goals. Many of these interactions are regulated by an institution
that takes care we are following a set of norms and protocols. The concept of
electronic institution [10] is inspired from these human institutions. Open multi-
agent systems are composed of autonomous entities that interact to achieve indi-
vidual or collective goals. The behaviour of these entities cannot be guaranteed.
Therefore, and similar to what happens in human societies, we need mechanisms
to guarantee the well working of the system in spite of local behaviours. The use
of an electronic institution that regulates the behaviour of agents is one of this
mechanisms, and can be complemented by other mechanisms like, for example,
the use of reputation. You can find a running example [11] of the usage of elec-
tronic institutions for the usage of simulating the behavior of humans in hybrid
experiments.

Summarizing, we identify the following main components regarding eI: Agents
are the players in an electronic institution, interacting by the exchange of illocu-
tions, whereas roles are defined as standard patterns of behaviour. EIs establish
the acceptable speech acts by defining the ontology and the common language
for communication and knowledge representation, which are bundled in what
is called a Dialogical Framework. Interactions between agents are articulated
through agent group meetings (which are called scenes) with a well-defined pro-
tocol. Protocols in a scene are considered to be the specification of the possible
dialogues the participating agents may have. Scenes can be connected, composing
a work flow, in a so-called performative structure. The specification of a perfor-
mative structure contains a description of how agents can legally move from

262 S. König et al.

scene to scene. The purpose of the normative rules is to modify the behaviour
of agents by imposing obligations or prohibitions. Institutional agents are com-
mitted to undertake the required actions so as to ensure that non-institutional
agents abide by institutional rules.

The Electronic Institutions Development Environment (EIDE), an integrated
development environment for Electronic Institutions, is a set of tools developed
at the IIIA-CSIC aimed at engineering multiagent systems as electronic institu-
tions. ISLANDER [12] is the graphical tool to specify eI, and AMELI [13] is the
agent-based middleware to run eI. In the next subsection we use these concepts
to specify an eI that captures the nature of Internet-of-Services economies in the
context of a multiagent system.

3.2 Using Electronic Institutions in the Context of Service
Economies

To use an eI, it is necessary to define agents and roles, a dialogical framework,
scenes, a performative structure and normative rules in accordance to the iden-
tified service markets (see figure 1) and agent roles:

Complex Service agents buy high level services on the service market. Resource
agents, on the other side, sell their resources (e.g. disk space or CPU power) on
the resource market. Basic Service agents are the only agent type acting on both
markets. They offer their services on the service market and buy and recombine
resource services on the resource market. Beside these agents we have to define
staff agents, which offer auction services. The participating agents can optional
exhibit the role of an staff agent. That means, they can sell their own products
or demands. Ontological problems that occur in real distributed systems are not
addressed by this paper.

A bit more interesting seems to be the performative structure of our Internet-
of-Services use case. Figure 2 illustrates the definition made with the ISLANDER
tool [12].

We will now consider the most important scenes. Some of them have just
“technical” reasons. After the mandatory initial state all agents have to register
at the eI. Additionally, Resource agents are able to register their resources. Once
the resource agent has successfully sold its resource for a certain time it can
decide how to proceed: leaving the e-Institution (as kind of marketplace) or
providing another resource service again. With the latter case, we are able to
simulate one kind of cheating behaviour of single agents. The Complex Service
agents’ possibilities are analogous to the resource agents: after buying a service
they can choose between leaving the system or buying another service. A bit more
complicated is the route of the Basic Service agents through the different scenes:
a Basic Service agent has to buy resources on the resource market. The resource
auction is implemented through the scene AuctionRM. Only after succeeding on
the resource market the Basic Service agent is able to provide its basic service
on the service market. To do this, it has to join the ItemRegisterSM scene. After
finishing the service auction there, the Basic Service agent can decide if it leaves
the e-Institution or runs through this cycle again.

An Architecture for Simulating Internet-of-Services Economies 263

Fig. 2. Service Economy Model implemented as e-Institution. In the scenes AuctionRM
and AuctionSM agents participate in auctions in the resource market and the service
market respectively. Previously, all agents and products have been registered in some
of the other scenes.

In the ServiceExecution scene all agent types meet up after performing suc-
cessful transactions on the markets. They try to execute the service invocation.
If the resource agent for example decides to cheat and not to execute the service,
it notifies the other agents in this scene.

The way staff agents take through the performative structure is like follows:
they create new instances of their scenes, e.g. the Service Auctioneer (and anal-
ogous the Resource Auctioneer) creates an instance of the AuctionSM (i.e. the
service market). After that it just waits for products to sell. Note: Currently we
have just implemented an electronic Institution market definition for auctions.
Changing this to some other (smarter) negotiation protocols will be future work.

3.3 Reputation Mechanisms and Electronic Institutions

As we mention in the introduction, a social vision of trust provides another level
of interaction control. The security approach guarantees privacy, authenticity
and integrity of information, and the institutional approach guarantees proto-
cols of interaction and performative structures. From a social approach it is
desirable that the same customers, as autonomous entities, have access to some
social information to dynamically build their trust towards other members of
the society. One source of social information is reputation.

From a computational point of view, trust and reputation models have at-
tracted increasing interest in the field of multiagent systems. The models that
appeared in the literature mainly follow two different and well-distinguished
approaches. On the one hand, centralized reputation models consider trust or
reputation as a global and public property of the agent that everybody can ob-
serve. In this sense, reputation values are kept by a central authority that is

264 S. König et al.

accessible for all participants. These kinds of models are widely used in online
markets like eBay or Amazon. On the other hand, distributed models consider
trust or reputation as a subjective property of the agent. So, each agent has its
own vision of the society. Through its experience, observation and maybe com-
munications from other members each agent creates its own opinion, that can
be shared, or not.

– Centralized Models in eI: These models need a considerable amount of
information to be reliable. Therefore, the most sensible thing is that they
could be denoted as a service of an eI. Different reputation models are pro-
vided through the usage of the eI.

– Distributed Models in eI: In this case, each agent has its own reputa-
tion model, and because of that, another problem arises: the interoperability
between agents using different reputation models. This problem is partially
solved in [6], by proposing a common ontology on reputation concepts that
all agents have to share and use when communicating with other agents.

4 Integrating eI into an Internet-of-Services Simulator

This section briefly describes the overall architecture. The e-Institutions are used
as a kind of marketplace to trade resources or services. In such a marketplace
different negotiation protocols can be implemented. On the one hand resources
and services (auctions) or demand (reverse auctions) can be offered or both of
them (double sided markets like Continuous Double Auctions or through bar-
gaining). On the other hand, agents must be able to use a central or distributed
reputation mechanism to consider the reputation impacts on service markets.

While the last section focused on the e-Institutions layer, we will now consider
the functionalities of the simulator core and the agent architecture.

In an advanced stage of the prototype implementation different competing
marketplaces could be thinkable. Most of the agent process phases (i.e. Selection,
Negotiation, Execution and Enforcement phase) are fulfilled by the eI functional-
ity. Only the Execution phase, as a very specific one, has to be added (simulated
or real). Further, different scenarios can be simulated, for example some agents
defecting all the time, with a certain probability or the smartest one, agents de-
ciding based on their strategy if they cooperate or defect, to allow for strategic
agent behaviour.

4.1 Simulator Core Functionalities

A Scenario Generator is able to generate a grid network. The Application Layer
Network is composed of different interconnected nodes. Each node can host
different agents, which represent a certain resource or resource bundle (Resource
agent) or a higher abstracted service (Basic Service and Complex Service agents).
The network determines the time delay between sending a message and receiving
it. So, a service with a very short-term time restriction might fail due to the
message time delay between the corresponding nodes.

An Architecture for Simulating Internet-of-Services Economies 265

The network representing an IoS is defined by a connected non-oriented graph,
represented by a set of network sites S = {1, .., n} and a set of links between the
sites L = {〈i1, j1〉, .., 〈im, jm〉}. In addition, a failure probability fSi is defined
for each node. When a failure occurs during simulation, the node is not able to
answer any request or routing further messages. Which site will fail in each time
tick, is chosen randomly. Furthermore, on each node a set of the three different
agent types, Complex Service Agents (CSA), Basic Service Agents (BSA) and Re-
source Agents (RA) is initialized. For each site the number of economic agents is
|CSASi | ≥ 0, |BSASi| ≥ 0, |RASi| ≥ 0. A node without any associated economic
agent is a router. Each link 〈i, j〉 between two nodes has a certain bandwidth. A
higher bandwidth leads to an increased data transfer. In our simulation model, the
bandwidth is biased, which means that a link is defined or not. Nodes, which are
not directly linked can be addressed through a routing table that is calculated by
a common routing algorithm, the Dijkstra algorithm [14].

Further, a network connection between nodes might break down. Agents are
not longer connected to each other. This might also cause problems during service
execution. In addition to these functionalities, the simulator provides a resource
locking model. If resources are sold, they are locked and can not provide their
capacity to other agents. This does not avoid the cheating behaviour that agents
might sell a service or resource twice. But during the execution phase, the re-
source can be locked only once, such that one service can not be fulfilled by the
agent.

4.2 Experimenting with the Simulation Platform

In the following, we present a simple instantiation of the simulation platform
to illustrate the potential of this tool. Even when the objective of this paper is
not to test any experimental hypothesis we want to show the flexibility that our
simulator offers when testing Internet-of-Services economies.

In this case, taking as a base the eI specified in figure 2 we decided to use
an English Auction protocol for both, resource and service markets negotiation.
ISLANDER offers graphical tools to specify such protocols. Thus, the modifi-
cation or even a complete exchange of interaction protocols is quite simple and
furthermore, can be used in both the simulation platform or real environments
where eI is used. The simulation process works as mentioned in subsection 3.2.
The entry point to the simulation is the CSA. The CSA has to fulfill an external
generated demand. In our simulation the demand is generated by an uniformly
distributed interval span. The kind of Basic Service that the CSA has to buy is
also given by demand generation. The BSA on the other hand has to compose
different resources by a certain combination. The demanded resource bundle can
differ between the BSA-types. After the agents have found an agreement, the
settlement phase is simulated through the exchange of messages, which are sent
from the invoking agent to the sold agent, together with their corresponding
answer, if the invocation has been successful.

Figure 3 shows the market price on the service and on the resource market.
This simulation run has been conducted with ten nodes, hosting eleven CSAs,

266 S. König et al.

Fig. 3. Price evolution

seven BSAs and four RAs. More than 20 interactions have been fulfilled. The
agents follow a very simple strategy and use their reservation price when bidding
in an English Auction. If they succeed, they decrease their own reservation price,
otherwise they increase it in order to be able to win the next auction.

This results could be easily compared with simulations using other negotiation
protocols (for instance a Dutch auction protocol), other reputation models and
other agent strategies2.

5 Conclusion and Future Work

We have presented a simulation platform that uses agents, electronic institutions
and the paradigm of the Internet-of-Services. This seems to be a promising combi-
nation when talking about service markets where reputation-based trust plays an
important role. The main characteristics of an agent participating in both different
environments have been extracted, and merged into one that is able to participate
in a simulated environment like that one. With our simulation tool based on the
Electronic Institutions, it will be possible to vary different parameters regarding
policies in the Internet of Services, i.e. the interaction protocols, the reputation
models or the network topology of the overall system. Our tool set can contribute
to the vision of Internet of Services and service markets becoming reality as it alle-
viates the side effects, which occur by introducing markets to trade resources and
services. Finally, changing the simulation core against a real middleware imple-
mentation will provide a proof-of-concept system as future work.

Acknowledgments

This work was supported by the EC under the FP6 programme [eRep
project CIT5-028575]; the Spanish Education and Science Ministry [AEI project
TIN2006-15662-C02-01, AT project CONSOLIDER CSD2007-0022, INGENIO
2 The source code of a beta version of the platform together with this particular

simulation can be downloaded at http://sourceforge.net/projects/erepsim

An Architecture for Simulating Internet-of-Services Economies 267

2010]; Proyecto Intramural de Frontera MacNorms [PIFCOO-08-00017] and the
Generalitat de Catalunya [2005-SGR-00093]. Daniel Villatoro is supported by a
CSIC predoctoral fellowship under JAE program.

References

1. Kesselman, C., Foster, I.: The Grid: Blueprint for a New Computing Infrastructure.
Morgan Kaufmann Publishers, San Francisco (1998)

2. Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The physiology of the grid: An open
grid services architecture for distributed systems integration (2002)

3. Streitberger, W., Hudert, S., Eymann, T., Schnizler, B., Zini, F., Catalano, M.: On
the simulation of grid market coordination approaches. Journal of Grid Computing;
Special Issue on Grid Economics 6(3) (2008)

4. Eymann, T., König, S., Matros, R.: A framework for trust and reputation in grid
environments. Journal of Grid Computing; Special Issue on Grid Economics 6(3),
225–237 (2008)

5. Akerlof, G.A.: The market for ’lemons’: Quality uncertainty and the market mech-
anism. The Quarterly Journal of Economics 84, 488–500 (1970)

6. Pinyol, I., Sabater-Mir, J., Cuni, G.: How to talk about reputation using a com-
mon ontology: From definition to implementation. In: Proceedings of the Ninth
Workshop on Trust in Agent Societies, Hawaii, USA, pp. 90–101 (2007)

7. Foster, I., Jennings, N., Kesselman, C.: Brain meets brawn: Why grid and agents
need each other (2004)

8. Bell, W.H., Cameron, D.G., Millar, A.P., Capozza, L., Stockinger, K., Zini, F.:
Optorsim: A grid simulator for studying dynamic data replication strategies. In-
ternational Journal of High Performance Computing Applications 17(4), 403–416
(2003)

9. Buyya, R., Murshed, M.: Gridsim: A toolkit for the modeling and simulation of
distributed resource management and scheduling for grid computing. Concurrency
and Computation: Practice and Experience (CCPE) 14, 1175–1220 (2002)

10. Esteva, M.: Electronic Institutions: from specification to development. IIIA PhD
Monography, vol. 19 (2003)

11. Brito, I., Pinyol, I., Villatoro, D., Sabater-Mir, J.: Hiherei: Human interaction
within hybrid environments. In: The Eighth International Conference on Au-
tonomous Agents and Multiagent Systems, AAMAS 2009 (2009)

12. Esteva, M., de la Cruz, D., Sierra, C.: Islander: an electronic institutions editor.
In: Proceedings of AAMAS 2002, Bologna, Italy, pp. 1045–1052 (2002)

13. Esteva, M., Rodŕıguez-Aguilar, J., Rosell, B., Arcos, J.: Ameli: an agent-based
middleware for electronic institutions. In: Proceedings of AAMAS 2004 (2004)

14. Dijkstra, E.: A note on two problems in connexion with graphs. Numerische Math-
ematik 1(1), 269–271 (1959)

Applying JIAC V to Real World Problems:
The MAMS Case

Alexander Thiele, Thomas Konnerth, Silvan Kaiser, Jan Keiser,
and Benjamin Hirsch

Technische Universität Berlin, DAI Labor

Abstract. In this paper we describe the execution platform for the
MAMS service framework which provides an infrastructure for the cre-
ation, deployment and execution of service compositions created by non-
IT-experts. The MAMS framework consists of an elaborate graphical
service creation environment as well as the service execution platform
based on intelligent agents which we describe in this paper. Our plat-
form provides a flexible service execution environment, which utilizes
agent technology to improve scalability, management and stability. Fur-
thermore, it serves as a testing ground for enhanced features like service
matching, runtime load balancing and self healing mechanisms.

1 Introduction

By now, the technologies for global provisioning of services are well established,
but it is still difficult for small and medium enterprises (SME) to act as service
providers. The reasons for this come from the need for technical know-how to
create services and the necessary infrastructure to provide the created services.
The existing service authoring tools are not intended to be used by non-technical
persons and the needed hardware as well as the software to run the services
must be purchased, configured and maintained, which makes the provisioning of
services costly and therefore often unprofitable for SMEs.

The project MAMS (Multi Access - Modular Services) [16] addresses these
issues by allowing non-technical persons to fast and easily create, deploy and
manage services, according to the users needs.

With the incorporation of agent technology, we have realized an open dis-
tributed service delivery platform (ODSDP) as part of the overall MAMS frame-
work. The ODSDP is built using the JIAC V [12] agent framework and addresses
several important issues relevant for service provisioning, e.g. deployment, exe-
cution and management. It also enables adaptability to dynamic environments.

In this paper, we first describe the project context from which we derive re-
quirements for our service delivery platform. In Section 3) we introduce the
agent-based ODSDP for deployment, execution and management of services
which is followed by a report of experiences with the framework. In the next
section we give an overview of previous and related work and finally, a short
conclusion and a precise outlook of future work is given.

L. Braubach et al. (Eds.): MATES 2009, LNAI 5774, pp. 268–277, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Applying JIAC V to Real World Problems: The MAMS Case 269

2 The MAMS Project

The development of new services for telecommunication applications and other
IT systems is one of the most important vehicles of innovation for telecommuni-
cation and other service providers. Competition and ever growing expectations of
users require a faster service development and the means to deliver those services
promptly. Thus, the acceleration of the service development process requires the
development of new concepts and tools. The MAMS project [4] develops tools
and agent-based approaches as answers to these problems.

It is not the focus of this paper to go deeply into the details of the MAMS
framework as we want to describe the multi-agent based service delivery and
execution platform. Instead, we will show the process from service creation to
execution here and derive requirements that motivate our work.

In MAMS new services are created by combining several basic services into
a service composition. The combination is data flow driven where output ports
of a basic service are connected to input ports of another service. The user, a
non-IT-expert, is supported by a visual service creation environment where new
services are created easily by drag ’n drop and connecting matching ports.

Following the creation process, the service compositions are deployed into a
runtime environment and may afterwards be started and used via a webinterface.
This leads to certain requirements for the runtime environment. First of all, it is
obviously necessary to provide a deployment method for service compositions at
runtime. These service compositions have to be executed at some point, which
requires the ability to find and invoke referenced basic services dynamically. One
step further, we also want to provide additional reliability and fault tolerance
with the ability to find alternatives for these references services, be it because a
basic service is broken, or because it cannot be found any more.

Fig. 1. ODSDP structure

Additionally, as these service compositions are
generated by non-experts who are not familiar with
the execution environment, we need to make sure
that the execution happens in a controlled envi-
ronment, because we do not want flawed compo-
sitions to affect the whole platform. In order to
ensure scalability and responsiveness in the case of
large numbers of service compositions, we also need
mechanisms to balance and control the resources
consumed by the execution, which we address with
appropriate load balancing mechanisms.

Finally, our runtime environment has to provide
support for the development and deployment of ba-
sic services. We need an embedded user manage-
ment, which provides methods for authentification
and authorization. Additionally, the functionalities
for basic services are often already available in the

form of web services or other libraries, so our runtime environment needs to be
able to access other technologies in order to utilize these functionalities.

270 A. Thiele et al.

3 Service Execution Framework

The ODSDP is the agent-based service execution environment of the MAMS
framework. As shown in Figure 1 the ODSDP consists of agent nodes, i.e. physi-
cal software environments bound to actual machines, where agents are deployed
which provide the services. All agent nodes are connected by a Java Message
Service(JMS) based message broker. This allows an organisational as well as
a physical distribution of the services. Additional to the message broker and
a comprehensive Java Management Extensions(JMX) based management inter-
face, optional agent node components may provide infrastructure functionality,
e.g. a distributed service directory connected by the message broker for announc-
ing and searching of services in a peer-to-peer manner without a centralized
database. A caching mechanism can be activated to speed up the global search.
Both kinds of services (basic services and composed end-user services) are pro-
vided by agents, which can be deployed on agent nodes at runtime by using the
management interface as well. Advantage of this approach is that the services
can be transparently distributed over different nodes, and that they have their
own knowledge and an own thread of control instead of being dependent on a
shared engine.

Agent Technology in MAMS
The enabling technology for integration and inter operation of the different com-
ponents of the MAMS Framework is a service execution environment based on
a multi agent system. While some of its concepts and features are presented
in the next sections, here we argue that using a multi agent system for service
execution environment has several advantages.

First, when used as an organizational and functionally closed entity, agents
provide straight forward means to map functionalities such as basic services or
service compositions to logical entities such as agents. Thus, a clear separation
of both entities is enforced by an multi-agent-system. Based on this mapping, it
is now possible to provide each service stakeholder (e.g. platform provider) with
a set of introspective and - if applicable - management features that again are
clearly separated. As a consequence, the agent management infrastructure can
be extended with more features like accounting without the need to rearrange
or redesign the service execution environment. Another important aspect of the
organizational agent-to-entity mapping is the fact that the distributed system is
highly scalable. In general, the only bottleneck are available platform resources,
especially network bandwidth, since CPU power and storage capacity can eas-
ily be added. While the above mentioned advantages are aspects of the system
design, there are other more functional aspects of agent technology that can be
usefully applied in the context of a service execution environment. Agent tech-
nology and especially multi agent systems are well suitable for creating systems
that incorporate adaptive behaviour [8,15,5,7]. We have have designed adaptive
agents and mechanisms that deal with dynamic load balancing mechanisms and
self healing. We will refer to these scenarios in the next sections and in section
future work.

Applying JIAC V to Real World Problems: The MAMS Case 271

Agent Architecture
A MAMS agent (as shown in Figure 2) is based on a modular and manageable
component architecture, which contains two mandatory components: a memory
for the storage of agent-internal knowledge and an execution cycle to enable pro-
active behaviour and scheduling of all actions. Optional application-independent
components allow amongst others the communication with other agents by us-
ing the message broker of the agent node, the access to the agent node’s service
directory by using the communicationcomponent, the semantic matching of ser-
vices by using the access to the service directory, the processing of rules by using
the service execution, and the execution of composed services by using the ser-
vice matcher, communication and service adaptors.

Fig. 2. A MAMS agent

These adaptors either directly pro-
vide basic services or generically
integrate services based on other tech-
nologies, e.g. web services, UPnP or
FIPA. The interaction between all
components inside an agent (see dot-
ted arrows) takes place via the
memory according to the blackboard
metaphor, i.e. each component has ac-
cess to the memory and is triggered
by the execution cycle. Security mech-
anisms such as Single Sign-On(SSO)
based authentication and authorization
ensure that the management interface
and the services can only be used by

these groups of users which are specified by the responsible service provider or
platform provider.

Service Compositions with DFL
The service composition language itself, is based on the JIAC Agent Description
Language (JADL) [13] and it also unites ontology based data structures and
service-oriented programming. The declarative part of the DFL is completely
based on OWL [17], including OWL-S [3] for the service descriptions. This allows
us to resort to existing reasoning and service matching implementations and
concentrate on the integration into our agents.

The new feature of the scripting language however is the notion of abstract
service invocation. Each invocation of a basic service within a service composition
(i.e. a DFL script) is represented by the invocation of a service template. This
service template is basically an OWL-S description that may be incomplete.
This approach has the advantage that the same mechanism can be used for
precise service invocation (if the parts of the template that are provided identify
the service unambiguously) or for a goal driven approach. In the latter case,
the template is regarded as a goal and the agent tries to find and execute a
service that matches the template. By using the preconditions and effects that

272 A. Thiele et al.

are given in an OWL-S description, we can improve the matching process, verify
the results, and even apply planning from first principles if appropriate.

Another advantage of using an interpreted scripting language is, that we can
fully control the execution of a service composition. This means that we can
stop the execution and resume it later, at any point of the composition. The fact
that each service composition is deployed in its own agent greatly enhances the
possibilities for monitoring and management of the ODSDP.

Load Balancing
As mentioned in section above agent technology offers many possibilities to apply
adaptive behaviour. We have implemented an adaptive load balancing mecha-
nism that incorporates a two stage load balancing process - start time and run-
time load balancing - based on resource evaluation. This approach is needed
in order to react to the deployment of new services at runtime by controlling
the distribution of services among the different Nodes. Furthermore stability of
service execution is increased by preventing and handling high system load.

Load balancing ensures that the platform optimises usage of available re-
sources. Services that use a lot of resources should run on hosts that have few to
none other services running in parallel or that can provide the resources needed.
Load balancing on the ODSDP therefore aims distributing services in a running
system. This mechanism focuses on improved resource usage (CPU utilisation,
memory, network and hard disk storage capacities) in a best effort approach.

Start time load balancing is a common strategy applied by most cluster and
grid systems and relies on a scheduler that assigns new jobs to specific hosts
according to current load parameters. When new agents are deployed, a specific
component checks the current load of the platform by using the Load Reporter
services. Based upon the available load data and several coordination require-
ments, it is then decided at which node the new agent is to be deployed.

As service usage and thus system load in a multi agent system is highly dy-
namic, forecasting load distribution at start time is very inaccurate. Thus, a
runtime load balancing mechanism is applied to react to local load peaks. Run-
time load balancing dynamically relocates services while they are running and
thus can react to the development of system load on the active hosts. This ap-
proach is primarily used for long running jobs and less useful for jobs that have
short lifetimes [11,25]. At runtime, a specific component periodically checks the
current load of the local node. If high system load is detected, it tries to migrate
local agents to other nodes taking into account several coordination consider-
ations to prevent useless migrations and oscillations. However, transferring an
agent is a costly process, thus transfers take place only if the load of the target
node is less than the load of the source node, with a significant load difference in
order to prevent migrations at minimal load differences. Other constraints need
also be evaluated, like resource availability.

Self Healing
We consider Self Healing as being a phrase referring to the automated detection
of specific types of system errors in conjunction with an automatically generated

Applying JIAC V to Real World Problems: The MAMS Case 273

countermeasure that resolves the error and lets the system perform its intended
operations.

In the context of service execution, possible errors that might occur are ser-
vice failure, failure of resources e.g. connection to legacy systems or connections
to other nodes. We focus on errors that directly prevent service usage and use
redundant strategies as well as a straight forward mapping of errors to counter-
measure strategies to resolve the error. In a first scenario we have applied service
matching technology to circumvent failure of basic services.

In order to invoke a basic service while executing a service composition the
DFL interpreter needs to search the service directory in order to find out where
this service is located and who provides the service. The service directory is a
good place to detect most types of service failures. The directory sends a special
keep-alive-message to each registered service to check whether the service does
respond. The service has to answer within a certain time. This way it can be
detected if the service is physically accessible and if it can be invoked. In case a
service does not respond the service directory removes the service from its list
of known services. Search requests for this service are then prompted with an
error. The DFL interpreter receives the error and reacts in a defined manner.
It tries to substitute the failed service by invoking a service matching based on
precondition and effects. If a substitute service can be found it is invoked and
execution of the service composition can be continued. By applying a redundant
strategy we can increase chances that a substitute service might be found. A
simple approach is to deploy each service at least twice such that each service
runs on a different node.

4 Experiences and Results

During the MAMS project, we had multiple test scenarios for the verification
of our approach. We cooperated with different partners including specialists in
the areas of health care and telecommunications as well as small and medium
enterprises to create realistic scenarios for the testing the framework and our
multi agent platform.

One of these testing scenarios was the creation of a diary of vitals signs for
rehab patients. This diary is composed of multiple service compositions that
allow both, the patient and the attending physician to review and analyse the
entries of the diary. The patient can access his diary via the web, make new en-
tries, and have both, himself and his physician be notified via different messaging
technologies, if any uncommon or critical measurements occur.

The service compositions that constitute this diary typically consist of calls
to the UI-Service, one or more calls to the persistence services and sometimes
a messaging service in the end. Additionally, physicians and patients may use
service compositions that enable a video conference via the IMS-based services.

Scenarios like this were used to evaluate the complete processes defined in
MAMS for the creation of services by non-IT-experts, including service compo-
sition, deployment and service execution.

274 A. Thiele et al.

Our testing scenarios showed, that we are able to quickly deploy both, basic
services and service compositions, on a running platform. We were able to ensure
stability and scalability of all components due to the strict separation provided
by the agent metaphor. This proved to be especially valuable when testing new
basic services, as errors in those services did not affect the whole platform.

Regarding the agent platform, it showed that it ran stable even for multiple
months. As most basic services were developed as needed in an iterative manner,
we had of course regularly agents that would crash or otherwise become inactive.
However, this never affected the platform or the other agents. So when one basic
service crashed, the platform and the other agents would continue to work and
only service compositions that used the specific defective agent would be affected.
We were able to have our platform available at almost any time, which we regard
as very good performance for a prototype platform.

5 Related and Previous Work

There are different fields where related work is situated. First of all there are
the commercial service delivery platform from vendors such as BEA, IBM, Mi-
crosoft, or HP. Common to them is that while they provide powerful delivery
platforms, they generally do neither address the convergence between IT and
telecommunications, nor do they deal with semantic service descriptions and
their execution [20].

While easy service creation is not the focus of this work, we want to mention
a number of European projects there are working in this area. OPUCE [19] pro-
vides a graphical tool based on a modelling language similar to UML for easy
composition of services by non-professional service providers. SPICE [24] in addi-
tion considers semantical information to allow a more automatically composition
of their rule-based services. LOMS [14] uses a template approach to support re-
ally non-technical service providers by integrating an additional service operator
role. There has been an increasing focus within the agent community on the
interaction of agents and services, and a number of workshops and textbooks
(e.g. [23]) deal with the topic.

Many researchers looked at the relevance of webservices agents, for exam-
ple [8,5,26]). The integration of webservices into agents has been looked at by
e.g. Greenwood and Calisti [10] who developed a webservice gateway mediates
between FIPA agents and webservices. Zinnikus et al. [27] follow a similar ap-
proach where the agent’s actions are exposed as webservices. Using these kind
of approaches, a certain flexibility within service orchestrations can be achieved.

Others deal with the integration of workflows and agents, which is closer to the
aims of the MAMS project. Already during the mid90ties, the ADEPT project
used agents that provided services and organised themselves to achieve business
goals ([2,18]). The focus here was however on the use of workflow and not so
much on the technical issues like deployment.

Singh et al. used agents to manage workflows [22]. The WADE system [6]
extends JADE to allow agents to orchestrate methods to workflows. The system

Applying JIAC V to Real World Problems: The MAMS Case 275

can however not be used by non-experts. As the engine compiles the workflows
down to Java byte code, the tight execution control and its associated features
are not available.

Most of these approaches come either from a rather theoretical point of view
and do not address the needs of a modern IT-infrastructure or they do not
cover the semantical layers that are necessary for using ontologies and service
matching. At the DAI Labor, service oriented agents have been used for some
time in the JIAC IV framework(see e.g. [1,9,21]). While JIAC IV had powerful
features such as planning from first principles and integrated ontologies [13], it
was not up to the requirements of the MAMS system.

As discussed above, the existing platforms were not able to provide an en-
vironment for service execution that could support stable and secure service
deployment and provision coupled with a semantic approach that allowed for
abstract services. This was our main motivation for creating an agent framework
that merges service technologies with semantical descriptions and reasoning.

6 Conclusion

In this paper we have demonstrated the usefulness of applying agent technology
in the context of service execution. We have created an agent-based service deliv-
ery platform - the ODSDP - which incorporates important features such as scal-
ability and manageability. We have shown that these features can be efficiently
integrated into a service execution environment with the help of agent-oriented
software design. By assigning each new service composition to a single execution
agent, runtime deployment and control of service execution could be achieved.
We have successfully applied adaptive service execution strategies by including
load balancing and semantic service matching mechanisms. We conclude that
multi agent technology is of great benefit in the design and implementation of a
service execution environment as shown in this paper.

Future Work
Based upon the components described in Section 3, two load balancing strategies
have been designed. There are still open issues though. The start time load
balancing process contains no queuing mechanism and thus does not prevent a
general overload of the whole platform. At runtime the selection of the local agent
to be migrated can be used to further improve load balancing. Instead of picking
a random agent, strategies for selecting the most appropriate candidate (e.g.
with respect to resource usage) would further improve runtime load balancing
and are topic of future work.

The service matching process could be further enhanced but finding a service
chain that could substitute a failed service. Because service matching and plan-
ning chains of services can be time consuming these processes would need to
run in background, e.g. while the platform has plenty of resources left, not just
in case of failure. The service directory could then trigger service matching and
provide results on the fly in case of service failure.

276 A. Thiele et al.

While the notion of ”self” implies detection and reaction by the platform itself,
it is still a great challenge to actually learn to detect and react to errors which the
system has not been told to recognize and handle. Especially finding the ”right”
actions in production systems proves to be difficult because it is not clear how
these actions would effect the overall stability and functioning of the platform,
since the system might perform countermeasures that have unwanted side effects.
We think that nature inspired approaches or self organization combined with
traditional learning mechanisms (e.g. neural networks) might provide ways in
resolving these issues.

Acknowledgements. We would like to thank Axel Hessler and the Competence
Centre Agent Core Technologies for their support.

This work has been sponsored by the Federal Ministry of Education and
Research. (Project funding reference number 01BS0813).

References

1. Albayrak, S., Wieczorek, D.: JIAC - an open and scalable agent architecture
for telecommunication applications. In: Albayrak, S. (ed.) Intelligent Agents in
Telecommunications Applications - Basics, Tools, Languages and Applications. IOS
Press, Amsterdam (1998)

2. Alty, J.A., Griffiths, D., Jennings, N.R., et al.: Adept - advanced decision environ-
ment for process tasks: Overview & architecture. In: Proc. BCS Expert Systems
96 Conference, pp. 5–23 (1994)

3. Barstow, A., Hendler, J., Skall, M., et al.: OWL-S: Semantic Markup for Web
Services (2004), http://www.w3.org/Submission/OWL-S/

4. Freese, B., Stein, H., Magedanz, T., Dutkowski, S.: Multi-access modular-services
framework – supporting smes with an innovative service creation toolkit based on
integrated sdp/ims infrastructure. In: 11th Int. Conf. on Intelligence in Service
Delivery Networks (2007)

5. Bozzo, L., Mascardi, V., Ancona, D., Busetta, P.: CooWS: Adaptive BDI agents
meet service-oriented programming. In: Isaias, P., Nunes, M.B. (eds.) Proceedings
of the IADIS International Conference WWW/Internet 2005, vol. 2, pp. 205–209.
IADIS Press (2005)

6. Caire, G., Gotta, D., Banzi, M.: WADE: A software platform to develop mission
critical applications exploiting agents and workflows. In: Berger, M., Burg, B.,
Nishiyama, S. (eds.) Proc. of 7th Int. Conf. on Autonomous Agents and Multiagent
Systems, May 2008, pp. 29–36 (2008)

7. Casella, G., Mascardi, V.: From AUML to WS-BPEL. Technical Report DISI-
TR-06-01, Dipartimento di Informatica e Scienze dell’Informatione, Università di
Genova (2006)

8. Dickinson, I., Wooldridge, M.: Agents are not (just) web services: Considering BDI
agents and web services. In: Proceedings of the 2005 Workshop on Service-Oriented
Computing and Agent-Based Engineering (2005)

9. Fricke, S., Bsufka, K., Keiser, J., et al.: Agent-based telematic services and telecom
applications. Commun. ACM 44(4), 43–48 (2001)

10. Greenwood, D., Calisti, M.: Engineering web service - agent integration. In: IEEE
International Conference on Systems, Man and Cybernetics, vol. 2, pp. 1918–1925
(2004)

http://www.w3.org/Submission/OWL-S/

Applying JIAC V to Real World Problems: The MAMS Case 277

11. Harchol-Balter, M., Downey, A.B.: Exploiting process lifetime distributions for
dynamic load balancing. ACM Trans. Comput. Syst. 15(3), 253–285 (1997)

12. Hirsch, B., Konnerth, T., Heßler, A.: Merging agents and services — the JIAC
agent platform. In: Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A.
(eds.) Multi-Agent Programming: Languages, Tools and Applications, pp. 159–185.
Springer, Heidelberg (2009)

13. Konnerth, T., Hirsch, B., Albayrak, S.: JADL — an agent description language
for smart agents. In: Baldoni, M., Endriss, U. (eds.) DALT 2006. LNCS (LNAI),
vol. 4327, pp. 141–155. Springer, Heidelberg (2006)

14. LOMS. Local mobile services, http://www.loms-itea.org
15. Luck, M., McBurney, P., Shehory, O., Willmott, S.: Agent Technology: Computing

as Interaction (A Roadmap for Agent Based Computing). In: AgentLink (2005)
16. MAMS. MAMS multi access - modular services, http://www.mams-platform.de/
17. Martin, D., Hodgson, R., Horrocks, I., Yendluri, P.: OWL 1.1 web ontology lan-

guage (2006), http://www.w3.org/Submission/2006/10/
18. O’Brien, P.D., Wiegand, W.: Agent based process management: Applying intelli-

gent agents to workflow. Knowledge Engineering Review 13(2), 1–14 (1998)
19. OPUCE. Open platform for user-centric service creation and execution,

http://www.opuce.tid.es

20. Preuveneers, D., Pauty, J., Van Landuyt, D., et al.: Comparative evaluation of con-
verged service-oriented architectures. In: 21st Int. Conf. on Advanced Information
Networking and Applications, vol. 1, pp. 989–994 (2007)

21. Sesseler, R., Albayrak, S.: JIAC IV - an open, scalable agent architecture for
telecommunications applications. In: Proc. of the 1st int. NAISO Congress on Au-
tonomous Intelligent Systems. ICSC Interdisciplinary Research (2002)

22. Singh, M.P., Huhns, M.N.: Multiagent systems for workflow. Int. Journal of Intel-
ligent Systems in Accounting, Finance and Management 8, 105–117 (1999)

23. Singh, M.P., Huhns, M.N.: Service-Oriented Computing. Wiley, Chichester (2005)
24. SPICE. Service platform for innovative communication environment,

http://www.ist-spice.org

25. Stender, J., Kaiser, S., Albayrak, S.: Mobility-based runtime load balancing in
multi-agent systems. In: Proceedings of the 17th Software engineering and knowl-
edge engineering conference (SEKE), KSI, 3420 Main Street, Skokie, IL 60076,
USA, p. 688. Knowledge Systems Institute (2006)

26. Walton, C.: Uniting agents and web services. In: Agentlink News. AgentLink,
vol. 18, pp. 26–28 (2005)

27. Zinnikus, I., Hahn, C., Fischer, K.: Model-driven, agent-based approach for the
integration of services into a collaborative business process. In: Pagham, Parkes,
Müller, Parsons (eds.) Proc. of 7th Int. Conf. on Autonomous Agents and Multia-
gent Systems, pp. 241–248 (2008)

http://www.loms-itea.org
http://www.mams-platform.de/
http://www.w3.org/Submission/2006/10/
http://www.opuce.tid.es
http://www.ist-spice.org

Agent-Based Semantic Search at motoso.de

Nils Weber1, Lars Braubach2, Alexander Pokahr2, and Winfried Lamersdorf2

1 motoso.de GmbH & Co. KG
nilsweber@gmx.de

2 Distributed Systems and Information Systems
Computer Science Department, University of Hamburg

{braubach,pokahr,lamersdorf}@informatik.uni-hamburg.de

Abstract. Searching for information in large rather unstructured real-
world data sets is a difficult task, because the user expects immediate
responses as well as high-quality search results. Today, existing search
engines, like Google, apply a keyword-based search, which is handled
by indexed-based lookup and subsequent ranking algorithms. This kind
of search is able to deliver many search results in a short time, but
fails to guarantee that only relevant data is presented. The main reason
for the low search precision is the lack of understanding of the system
for the original user intention of the search. In the system presented in
this paper, the search problem is tackled within a closed domain, which
allows semantic technologies to be used. Concretely, a multi-agent system
architecture is presented, which is capable of interpreting a key-words
based search for the car component domain. Based on domain specific
ontologies the search is analyzed and directed towards the interpreted
intentions. Consequently, the search precision is increased leading to a
substantial improvement of the user search experience. The system is
currently in beta state and it is planned to roll out the functionality in
near future at the car component online market-place motoso.de.

1 Introduction

Searching for information is a difficult task and is considered to be an important
skill for internet users. Despite this difficulty, currently well known search engines
like Google are mainly based on keyword-oriented search requests. A search pro-
cess often involves several rounds in which the user has to iteratively refine the
query according to the preliminary gathered results. One reason for this way of
searching is that the request style is easy to employ for the users. Nevertheless,
the user intentions cannot be understood well, because only the occurrence of cer-
tain keywords decides about the result relevance and its inclusion in the result set.
Understanding user intentions in general is very hard but becomes easier when
the search topic is constrained in beforehand e.g. by considering a closed domain
only. In this case semantic technologies, like ontologies and corresponding reason-
ing mechanisms, can be applied to analyze and comprehend the query. Such an
approach has the potential to combine the ease of use of a keyword-oriented search
request with the semantic expressiveness of a metadata based query.

L. Braubach et al. (Eds.): MATES 2009, LNAI 5774, pp. 278–287, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Agent-Based Semantic Search at motoso.de 279

In this article, semantic search techniques are applied to the car domain at
the German Internet marketplace motoso.de [11]. The platform is mainly spe-
cialized in new and used replacement and tuning components, tires and wheels
as well as garage services for all types of vehicles. Currently, the total number
of components is about 5.8 Million, whereby 85% is located in the passenger car
category. In addition, roundabout 400.000 complete automobiles are registered
in the database. The adverts are primarily placed by commercial customers and
can contain a lot of detail information that is possibly of interest for poten-
tial buyers. In order to manage the adverts they are grouped into a tree-like
structure with main and subcategories (e.g. 16 main categories for components
with circa 700 branches of varying depth), which also exhibit links to the car
types as well as their model and variant refinements. In addition to the base
information containing a short and long description, price, state, origin, etc., a
lot of category specific attributes with different types and allowed values can be
specified. This allows a very precise (semi-structured) description, which should
enable potential customers to find adequate offers. In this context, one serious
problem is that descriptions are entered by different service providers in very
different ways leading to variable data quality. This variable data quality causes
non optimal search results, because the search is based on full text indices and
might not take into account relevant but poorly described adverts.

In the next section the background and related works concerning semantic
search is shortly summarized. Thereafter, in Section 3 the system architecture
of the agent-based semantic search engine is presented. Its realization within
motoso.de is described in Section 4 and the paper closes with a summary and
an outlook on planned future work.

2 Analysis of the Search Problem

The motoso.de portal can be seen as representative for a wide range of internet-
or intranet-based systems, i.e. the class of systems, which provide a search func-
tion as the main entry point to access its contents. These kinds of systems share
a number of common properties:

– a common theme or domain for the whole portal,
– huge data sets,
– large diversities of data contents,
– heterogeneity with respect to data quality and data completeness (e.g. due

to heterogeneous data sources),
– multiple search alternatives including a ’flat’ keyword-based quick search

as well as extended search and/or browsing capabilities based on domain
specific metadata and categorizations.

The assets of such a kind of portal are the stored entries, where entries can
be offered goods or services in marketplace like eBay (or motoso.de), but also
e.g., publications in a scientific research portal. The main purpose of the portal’s

280 N. Weber et al.

web interface is to provide an interested user access to those (and only those)
entries that match its current interest. The different search alternatives provide
the means for the user to express this interest to the system. As an example,
two search alternatives are described in the following and discussed with respect
to their advantages and disadvantages.

Quick Search. A single search phrase can be entered that (by default) leads
to a keyword search matching those entries where all words appear in some
part of the entry.

Advanced (or extended) Search. The user is offered detailed control over
which parts of the entries data should be searched (e.g. title, text, specific
attributes). Moreover, queries a not entered as ’flat’ text but follow domain
specific representations (e.g. two number fields for entering a price range,
a drop down list or a set of check boxes for choosing among predefined
categories).

Quick search is the kind of search that most search engines like Google offer
and that is therefore well known by virtually every internet user. Among the
biggest advantages of the quick search is its intuitivity and ease of use. The
disadvantage is the generally poor result quality of purely keyword-based search
[1,10]. Therefore, most search engines improve the perceived result quality by
applying stemming, and removing stop words from the search phrase and by
sorting the results using complex ranking algorithms. Nevertheless, this approach
can not incorporate domain knowledge for interpreting search requests.

The advanced search approach requires that knowledge about the domain of
the portal is explicitly incorporated into the system (for providing differentiated
search options), but also assumes that the user is knowledgeable in the domain
itself (to make use of the advanced search options). The disadvantage of this
approach is therefore the complicated query formulation that might deter inex-
perienced users. On the other hand, experienced users benefit from the ability
of formulating very precise queries with respect to the relevant properties of the
considered domain.

The two described search alternatives form extremes with respect to the trade-
off between usability and result quality. Recently, semantic approaches have been
introduced that try to combine both advantages. The general idea of these ap-
proaches is to offer a simple free form query, but use semantic technologies for
interpreting the query and thus improving search results. An overview of several
of these approaches is given in the rest of this section. The overview is coarsely
divided into semantics for broad-based search engines vs. semantically enriched
vertical, i.e. domain-specific, engines.

Introducing semantics is typically much more ambitious for broad-based search
engines, because they cannot easily draw initial implications from the query. An
elegant solution for this problem are semantic web search engines that are capa-
ble of performing an attribute-based retrieval process on typical semantic web
resources like ontology A-boxes and RDF resources. These engines can directly
make use of semantic technologies like ontological reasoners but currently can

Agent-Based Semantic Search at motoso.de 281

operate on a small database only. Regrettably, they are subject to the basic chicken
and egg problem of the semantic web, i.e. people don’t see the reason to be one
of the early adopters for meta tagging their sites because the merits of this over-
head remain unclear as long as no critical mass has been achieved [5]. Examples of
this category are the SHOE1 and Swoogle2 [4] search engines. Other approaches
like Powerset3 and Cognition4 (e.g. compared in [7]) try to semantically interpret
the query using natural language processing (NLP) techniques. Basically, these
approaches translate the user query into a canonical query over the database of
indexed documents [6]. Some NLP search approaches also classify the interpreted
query according to several predefined areas of expertise. In a second step these
approaches can then use domain-specific for interpreting the categorized query
similar to vertical search engines (see next paragraph). An example of this ap-
proach is the Hakia search portal5, which supports queries in multiple languages
and covers already a diversity of different domains.

Vertical search engines are developed for specific domains and include domain
knowledge for retrieving optimized search results. Classical vertical search en-
gines operate similar to standard search engines and use indices for looking up
search results. These engines have clear advantages in the crawling and indexing
process, because the spiders only have to be sensitive for web pages that contain
keywords from the considered domain and the index is also constrained by the
domain vocabulary [12]. The quality of search can be further enhanced when
vertical search engines are enriched with semantic technologies. An ontology for
the target domain can be developed by experts from the specific area. The on-
tology can then be used to understand terms and possibly also combinations of
terms in the query leading to a (more or less vague) interpretation of the user
intention. As described above, for this interpretation, sophisticated NLP algo-
rithms can be applied, though, at least some indication exist [3] that a vague but
simple ontology-based interpretation of a query can for some application cases
be more appropriate than a thorough NLP analysis. One example is the vertical
semantic search engine UpTake6 for holiday planning. It tries to extract the gen-
eral intention of the trip planning such as “family holidays” versus a “romantic
trip”. On basis of this broad categorization the search is directed to the right
data by knowing ontologically, what makes up the interpreted type of trip. This
information can then be used to rank the results accordingly.

The system described in this paper uses ontology-based reasoning for improv-
ing the search in a domain-specific portal. It therefore follows a similar approach
like UpTake. The main reasons for this choice are its relative simplicity and
effectiveness compared to other (e.g. NLP) approaches.

1 http://www.cs.umd.edu/projects/plus/SHOE/search/
2 http://swoogle.umbc.edu/
3 http://www.powerset.com/
4 http://www.cognition.com/
5 http://www.hakia.com/
6 http://www.uptake.com/

http://www.cs.umd.edu/projects/plus/SHOE/search/
http://swoogle.umbc.edu/
http://www.powerset.com/
http://www.cognition.com/
http://www.hakia.com/
http://www.uptake.com/

282 N. Weber et al.

3 Semantic Search System Architecture

In this section the general architecture of the semantic search system and its im-
plementation will be introduced. Its main purpose is to transform an incoming
quick search query to an advanced query with explicit structure via interpreta-
tion of the formerly unstructured search phrase. In addition, the system shall also
be capable of improving its behavior constantly by incorporating user feedback
on the search quality.

3.1 System Design

The main architecture of the ASQP (agent-based semantic query processing)
system is depicted as Prometheus [8] system overview diagram in Fig. 1. An
incoming quick search request is directed towards the monitor component that
is responsible for its complete processing and therefore can be considered as
the control unit of the system. In a first step the control unit decomposes the
request into a list of single words and word chunks up to a predefined length
and distributes it together with the original request to all active parsers. Each
parser analyzes the request according to its domain knowledge, whereby the
system can provide an arbitrary number of differently specialized parsers. Hence,
a parser tries to identify the semantics of the single tokens and small token
chunks of the request by operating on a specific ontology or taxonomy and sends
its interpretation back to the monitor. The monitor collects the answers and
in case the last answer arrived or a defined timeout occurs preevaluates the
results. If there are conflicting interpretations of words or chunks from different
parsers the results are forwarded to a mediator. The mediator has access to all

Fig. 1. ASQP system architecture

Agent-Based Semantic Search at motoso.de 283

ontologies, previous evaluations and probabilistic observation data and decides
for each conflicting word or token which decision to follow. The arbitrated results
are then forwarded to a solver, which has the purpose to generate the final
solution. Therefore, it mainly resorts to an ontology of search pattern behavior,
in which search intentions are stored for groups of semantic components. The
search intention together with the semantically analyzed request is then handed
over to the monitor, which redirects the request as attribute-based search to
other established components outside of the ASQP system.

The incorporation of user feedback in the system is realized via a dedicated
evaluator component. This component is fed with user evaluation data con-
cerning single requests and calculates evaluations for the parsers, mediator and
solver. These evaluations are stored in a specific evaluation database, and allow
estimating the system’s standard of performance. Furthermore, the specific eval-
uations are also forwarded to the corresponding components, which in this way
get a chance to adapt their behavior accordingly.

3.2 System Implementation

The ASQP architecture has been implemented as multi-agent system using Jadex
0.96 [2]. Each of the roles, as defined in the design, has been mapped to a sepa-
rate BDI agent type. The agents operate on the RDF and OWL ontologies using
the semantic web framework Jena27. In order to meet the performance criteria
for a real-time search engine, most ontologies have been indexed using LARQ
(Lucene + A SPARQL Processor for Jena). This allows a quick full text search
on the ontologies with LARQ-extended SPARQL [13] queries. To reduce the
number of matches in beforehand of the processing, additionally a Lucene-score
can be used. Reasoning capabilities are currently only used in the solver agent.
This agent instantiates an inference ontology consisting of the parser results and
applies (currently quite simple) inference rules to deduce the user intention. Fi-
nally, the integration of the system with the existing search infrastructure and
with the user interface had to be considered. The connection to the existing
system infrastructure is minimal and is restricted to a search call on the tradi-
tional attribute-based search service. On the other hand, the user interacts via
the browser with the system the Jadex webbridge framework [9] could used to
simplify the delegation of user requests via Java servlets to the agent tier and
back. Finally, the user interface of the portal itself was changed slightly. The
user now has the possibility to explicitly turn on/off the semantic search facility.
In addition, a new feedback dialog is generated, in which a user can state if the
extracted intention was right or not.

4 Realization within motoso.de
To incorporate the ASQP system into the motoso.de portal8, two distinct tasks
had to be performed. For the system to provide meaningful results with respect
7 http://jena.sourceforge.net
8 A test version of the motoso.de semantic search is available at:
http://semanticmotoso.mine.nu/

http://jena.sourceforge.net
http://semanticmotoso.mine.nu/

284 N. Weber et al.

to the automotive domain, specific ontologies and inference rules had to be pro-
vided. Additionally, different modes of operation were implemented, providing
different strategies, how the system interacts with a user.

4.1 Domain-Specific Ontologies and Inference Rules

Domain knowledge for the motoso.de portal is reflected in three separate ontolo-
gies, which are used by the respective parser agents (cf. 3.1). The purpose of each
of the parser agents is to assign meaning to single keywords or phrases. Each
parser only considers a specific ontology and therefore only assigns meaning to
those keywords that match some concept of this ontology. For the interpreta-
tion of the ontological concepts, all domain-specific ontologies refer to a common
general-purpose ontology containing basic concepts and properties such as ’is-
PartOf’ and ’equivalent’. The domain-specific ontologies, described below, all
contain type as well as instance data.

Car Brands and Model Series Ontology. On the type level, this ontology
introduces broad concepts like ’Manufacturer’ and ’VehicleType’, but also
very detailed conceptual structures for describing properties of model vari-
ants, etc. The instance level contains data about a wide range of car types
and is taken from the corresponding German federal authority (Kraftfahrt-
bundesamt).

PARTS Ontology. PARTS is an acronym for (replacement) parts, accessories,
rims/tires, tuning parts, and services. The PARTS ontology therefore con-
tains type and instance level data about specific parts or services. This on-
tology has been created by domain experts in a manual process by analyzing
the existing offers. Special care has been taken to extract all the synonyms
and abbreviations used for describing the same concept (e.g. ’window lifter’
vs. ’window winder’), as these are important for improving the search result
quality.

Geographic Locations Ontology. This ontology contains information about
German cities, districts, states, and regions as well as German postal codes.

To exemplify the usage of the domain ontologies, consider the search queries ’audi
100’ and ’audi 22527’. Based on the information in the car brands ontology, the
first query can be matched as a complete phrase to a specific car type (Audi 100).
For the second query, no match for the phrase exists, but the separate keywords
can be matched, i.e. ’audi’ represents a manufacturer (car brands ontology) and
’22527’ is a postal code belonging to a district of Hamburg (geographic ontology).

As described in Section 3.1, the combined (and possibly conflicting) meanings
provided by the three parsers are collected and interpreted by the solver agent.
The solver agent uses domain specific reasoning rules that operate on the results
from the parsers. The reasoning rules are responsible for assessing the query in-
tention (e.g. is the search geared towards parts or a complete vehicle). The rules
are manually derived by experts and represent their experience, how unstruc-
tured queries should be matched to the domain-specific attributes. In addition,
the solver can use evaluation data of previous requests to resolve conflicts due
to incompatible semantic interpretations from the different parsers.

Agent-Based Semantic Search at motoso.de 285

4.2 Modes of Operation

The ASQP system takes a user query, which is then augmented with semantic
annotations. The system itself makes no assumptions, how these annotations
should be reflected in a portals web presence. In the prototype developed at
motoso.de, the user can choose from three different options of using the ASQP
system:

Show. In this mode, the semantic interpretation of the users search phrase is
presented to the user without altering the search itself. This mode is help-
ful for inexperienced users to learn how their queries would be interpreted.
Moreover, this mode is used during the evaluation and training phase of the
system (see below).

Suggest. Based on the semantic interpretation of the search phrase, this mode
will offer alternatives these (e.g. synonymous or related concepts) in addition
to the originally identified search terms.

Do. This mode transforms the original user query into a new attribute-based
search, that reflects the predicted user intention.

Fig. 2. Screenshot of the system in ’eval’ mode

286 N. Weber et al.

Ideally, the system would work only in ’do’ mode, once it is productive, i.e. con-
stantly providing an improved search result quality without bothering the user
about the complex semantic internals that operate behind the scenes. Yet, as
the dynamic content of the portal represents a moving target and the ontologies
and reasoning rules are hand-crafted, it needs a certain amount of training for
the system to produce stable results. Therefore a fourth mode (’eval’) is im-
plemented, that makes use of the evaluation feature of ASQP. In ’eval’ mode,
the semantic interpretation of an issued query is presented to the user, who can
then rate each of the recognized intentions and concepts as being (in)correctly
identified (see Fig. 2). The evaluation result is fed back into the ASQP system,
which stores all evaluations to improve future query analysis (cf. Section 3.2).

5 Summary and Outlook
In this paper a general architecture and a concrete, domain-specific implemen-
tation of an agent-based semantic search system are presented. It is argued that
semantically enriched search technology can fill a gap between an easy to use but
limited ’quick search’ and a powerful but complicated attribute-based ’advanced
search’. An overview of existing approaches is given and related to the semantic
approach used in this paper.

The proposed ASQP (agent-based semantic query processing) architecture
combines semantic technology with a multi-agent system collaborative problem
solving approach. The architecture is flexible and extensible in the sense that
arbitrary agents, which are knowledgeable in a specific area, can easily be added
and removed at any time. The different agents are thus able to interpret different
portions of a user query and ultimately allow deriving user intentions from the
query text. The architecture was developed in the context of a concrete applica-
tion domain (the motoso.de portal) and also realized in this context. Different
ontologies relevant for the car domain were devised and provided to separate
agents. The results of the semantic query interpretation can be used in the por-
tal to provide suggestions to users or directly transform the search request in
accordance to the assumed user intention.

Currently, the system is running as a prototype and is used for internal eval-
uations of the technology at motoso.de. The evaluation is also performed for
training of the system with respect to the domain in order to improve the over-
all query interpretation accuracy. On a technical level, the system runs stable
with average response times below one second. If the ongoing evaluation ul-
timately confirms the initially promising results it is planned to integrate the
system into the public motoso.de search interface.

References

1. Blair, D., Maron, M.: An evaluation of retrieval effectiveness for a full-text
document-retrieval system. Communications of the ACM 28(3), 289–299 (1985)

2. Braubach, L., Pokahr, A., Lamersdorf, W.: Jadex: A BDI Agent System Com-
bining Middleware and Reasoning. In: Unland, R., Calisti, M., Klusch, M. (eds.)
Software Agent-Based Applications, Platforms and Development Kits, pp. 143–168.
Birkhäuser, Basel (2005)

Agent-Based Semantic Search at motoso.de 287

3. Catone, J.: Semantic travel search engine uptake launches. ReadWriteWeb (2008),
http://www.readwriteweb.com/archives/semantic_travel_search_uptake.php

4. Ding, L., Finin, T., Joshi, A., Pan, R., Cost, S., Peng, Y., Reddivari, P., Doshi,
V., Sachs, J.: Swoogle: a search and metadata engine for the semantic web. In:
Grossman, D., Gravano, L., Zhai, C., Herzog, O., Evans, D. (eds.) Proceedings
of the 2004 ACM CIKM International Conference on Information and Knowledge
Management, Washington, DC, USA, November 8-13, 2004, pp. 652–659. ACM,
New York (2004)

5. Hendler, J.: Web 3.0: Chicken farms on the semantic web. IEEE Computer 41(1),
106–108 (2008)

6. Iskold, A.: Semantic search: The myth and reality. ReadWriteWeb (2008),
http://www.readwriteweb.com/archives/semantic_search_the_myth_and_
reality.php

7. Karandikar, N.: Powerset vs. cognition: A semantic search shoot-out. GigaOM
Tech News and Views (2008),
http://gigaom.com/2008/06/07/
powerset-vs-cognition-a-semantic-search-shoot-out/

8. Padgham, L., Winikoff, M.: Developing Intelligent Agent Systems: A Practical
Guide. John Wiley & Sons, Chichester (2004)

9. Pokahr, A., Braubach, L.: The webbridge framework for building web-based agent
applications. In: Dastani, M.M., El Fallah Seghrouchni, A., Leite, J., Torroni, P.
(eds.) LADS 2007. LNCS (LNAI), vol. 5118, pp. 173–190. Springer, Heidelberg
(2008)

10. Shafi, S.M., Rather, R.A.: Precision and recall of five search engines for retrieval
of scholarly information in the field of biotechnology. Webology 2(2) (2005),
http://www.webology.ir/2005/v2n2/a12.html

11. Weber, N.: Ontologien zur multiagentengestützten Suche - Einsatz in der Automo-
bildomäne unter Verwendung von Jadex. Diplomarbeit, Distributed Systems and
Information Systems Group, Computer Science Department, University of Ham-
burg (2009) (in German)

12. Wikipedia. Vertical search — wikipedia, the free encyclopedia (2009) (accessed
May 6, 2009)

13. World Wide Web Consortium (W3C). SPARQL Query Language for RDF (January
2008)

http://www.readwriteweb.com/archives/semantic_travel_search_uptake.php
http://www.readwriteweb.com/archives/semantic_search_the_myth_and_reality.php
http://www.readwriteweb.com/archives/semantic_search_the_myth_and_reality.php
http://gigaom.com/2008/06/07/powerset-vs-cognition-a-semantic-search-shoot-out/
http://gigaom.com/2008/06/07/powerset-vs-cognition-a-semantic-search-shoot-out/
http://www.webology.ir/2005/v2n2/a12.html

Author Index

Adhitya, Arief 103
Afsar, Bekir 202
Appelrath, Hans-Jürgen 141

Behrens, Tristan 4
Benevides, Mario 16
Billhardt, Holger 183
Bista, Bhed Bahadur 91
Boissier, Olivier 115
Braubach, Lars 278
Bulling, Nils 177
Burmeister, Birgit 1
Busquets, Dı́dac 79

Cabac, Lawrence 238
Centeno, Roberto 183

Delgado, Carla 16
Dikenelli, Oguz 202
Dörges, Till 238
Duvigneau, Michael 238

Ekinci, Erdem Eser 202
Eymann, Torsten 258

Fagundes, Moser 183
Fix, Julia 189

Gay, Pablo 54
Guttmann, Christian 195

H̊akansson, Anne 214
Herzog, Otthein 165
Heßler, Axel 220
Hindriks, Koen V. 29, 177
Hirsch, Benjamin 220, 268
Hübner, Jomi F. 115

Kaiser, Silvan 268
Kardas, Geylani 202
Karlsson, Lars 41
Katoh, Takashi 91
Keiser, Jan 268
Klügl, Franziska 41
Köhler-Bußmeier, Michael 248

König, Stefan 258
Konnerth, Thomas 268
Küster, Tobias 220

Lamersdorf, Winfried 278
Lodi, Stefano 208
López, Beatriz 54, 79
Lundberg, Jenny 214
Lützenberger, Marco 220

Marir, Toufik 226
Micalizio, Roberto 66
Mokhati, Farid 226
Moldt, Daniel 189, 238
Muñoz, Vı́ctor 79
Murillo, Javier 79

Ñanculef, Ricardo 208
Narita, Masaki 91
Ng, Zhan Sheng 103
Nicolai, Tom 165

Ossowski, Sascha 183

Pinyol, Isaac 258
Piunti, Michele 115, 232
Pla, Albert 54
Pokahr, Alexander 278
Pous, Carles 54

Ricci, Alessandro 115, 232
Roberti, Tijmen 29
Roos, Nico 153
Russ, Christian 128

Sabater-Mir, Jordi 258
Sartori, Claudio 208
Schärfig, Randolf 4
Seridi-Bouchelaghem, Hassina 226
Srinivasan, Rajagopalan 103

Takata, Toyoo 91
Tan, Aaron Yu Siang 103
Thiele, Alexander 268
Topaloglu, N. Yasemin 202
Torasso, Pietro 66
Tröschel, Martin 141

290 Author Index

van der Hoek, Wiebe 153
Villatoro, Daniel 258

Walz, Alexander 128
Warden, Tobias 165
Weber, Nils 278

Wester-Ebbinghaus, Matthias 248
Winkler, Tim 4
Witteveen, Cees 153

Xing, Xin 165

	Title Page
	Preface
	Organization
	Table of Contents
	Invited Talk
	Industrial Application of Agent Systems: Lessons Learned and Future Challenges
	References

	Full Papers
	Multi-Agent Navigation Using Path-Based Vector Fields
	Introduction
	MAS
	Navigation
	Path Based Potential Fields
	Geometry Based Approach
	Image Processing Approach
	Implementation and Comparison

	Related Work
	Conclusions and Future Work
	References

	Verification of Epistemic Properties in Probabilistic Multi-Agent Systems
	Introduction
	Modeling Probabilistic MAS
	The Logic K-PCTL
	Verification
	Conclusion
	References

	GOAL as a Planning Formalism
	Introduction
	PDDL Fragment: Axioms + ADL + Plan Constraints
	The Agent Programming Language GOAL
	GOAL Framework
	Temporal GOAL

	Compiling PDDL Problems into GOAL Agents
	Conclusion
	References

	Towards Pattern-Oriented Design of Agent-Based Simulation Models
	Introduction
	Pattern-Oriented Modeling
	Patterns in the Agent World
	“Patterns” in the Simulation World

	Agent-Based Simulation Model Design Patterns
	Pattern Schema
	Agent Architecture Patterns
	Agent Population Patterns
	Interaction Patterns
	Environment Patterns

	Future Challenges: Formalization and Evaluation
	Conclusion
	References

	Multi Criteria Decision Methods for Coordinating Case-Based Agents
	Introduction
	Boosting CBR Agents
	Multi-Criteria Decision Making Methods for Coordination
	Genetic Algorithm
	Multi-Criteria Decision Methods

	Application to Breast Cancer Diagnosis
	Experimental Set Up
	Results

	Related Work
	Conclusions
	References

	Agent Cooperation for Monitoring and Diagnosing a MAP
	Introduction
	Distributed Execution of a Multi-Agent Plan
	BasicConceptsonDistributed MAP Monitoring
	Dealing with Ambiguity in MAP Monitoring
	Cooperative Plan Monitoring and Diagnosis
	Discussion and Conclusion
	References

	Strategies for Exploiting Trust Models in Competitive Multi-Agent Systems
	Introduction
	Related Work
	Using the Trust Model
	Exploitation
	Exploration
	Initial Time Steps Procedure
	Agent Behavior for Service Providing

	Experimentation
	ART Testbed
	ART Agent
	Exploration Algorithm Evaluation
	Competition Results

	Conclusions
	References

	A Distributed Detecting Method for SYN Flood Attacks and Its Implementation Using Mobile Agents
	Introduction
	SYN Flood Attacks
	TCP Connection and Connection Establishment
	Mechanism of SYN Flood Attacks
	Features of SYN Flood Attacks

	Related Works
	Router Base SYN Flood Detection
	Distributed SYN Flood Detection

	Proposal of a Distributed Detecting Method for SYN Flood Attacks
	Procedure of Our Method
	Influence of Background Noise to Our Proposal
	Advantage of Our Proposal

	Implementation and Evaluation of Our Proposal
	ABLA (Agent Based Log Analyzing System)
	Implementation of Our Proposal
	Procedure of Evaluation Experiment
	Parameters of Evaluation Experiment
	Results and Discussion

	Conclusion
	References

	Agent-Based Model for Decision Support in Multi-Site Manufacturing Enterprises
	Introduction
	Multi-Site Lube Additive Supply Chain
	Decisions in Managing the Lube Additive Supply Chain

	Agent-Based Model of the Lube Additive Manufacturing Enterprise
	Policies as Models of Decision Making

	Case Studies
	Case Study 1: Dealing with an Unreliable 3PL
	Case Study 2: Effect of Production Scheduling Policy

	Concluding Remarks
	References

	Embodied Organisations in MAS Environments
	Introduction
	Background
	Agents and Artifact Systems
	Artifact Based Work Environments and {\sf CArtAgO}
	Artifact Based Organisations

	Situating Organisations in Agents Work Environments
	Embodied Organisational Artifacts (EOA)
	Relating Organisations and Environments
	Organisational Embodiment Rules

	An Example: Hospital Scenario
	Conclusion
	References

	MACSIMA: On the Effects of Adaptive Negotiation Behavior in Agent-Based Supply Networks
	Introduction
	The MACSIMA Framework
	Simulation Scenario Definition and Agent Types
	Negotiation Protocol and Strategy Parameters
	Adaptive Negotiation Module and Learn Parameter Settings

	Differentiation Factors of MACSIMA
	Simulation Results
	Parameter Settings for Maximizing Profit, Turnover and Communication Efficiency
	Expert Parameterization Improves Outcome Stability
	Effects of a Heterogeneous Parameterization of the Agents

	Conclusion and Outlook
	References

	Towards Reactive Scheduling for Large-Scale Virtual Power Plants
	Introduction
	Related Work
	Formalization of Scheduling for Virtual Power Plants
	Reactive Scheduling for Virtual Power Plants
	Domain-Specific Requirements
	MARS – Multiagent-Based Reactive Scheduling System for Virtual Power Plants

	Evaluation
	Premises
	Simulation Results

	Conclusions and Future Work
	References

	Concurrently Decomposable Constraint Systems
	Introduction
	Motivation and Background
	Preliminaries
	Simple Constraint Systems
	Distributed Constraint Systems

	The Concurrent Decomposition Problem
	Finding Suitable Concurrently Decomposable Alternatives
	Concurrently Decomposable Alternatives and Minimal Change
	Discussion
	References

	SMIZE: A Spontaneous Ride-Sharing System for Individual Urban Transit
	Introduction
	Spontaneous Ride-Sharing Concept
	Multiagent-Based Simulation
	Experimental Setup
	Results
	Influence of the Number of Smize Participants on Travel Time
	Comparison of Travel Time with Public Transport

	Future Work
	References

	Short Papers
	Towards a Verification Framework for Communicating Rational Agents
	Introduction
	Preliminaries
	The Formal Model for Communicating Agents
	Embedding $\mathcal{L}V$ in the Modal Logic $\mathcal{L}M$
	Conclusion and Related Work
	References

	Designing Organized Multiagent Systems through MDPs
	Introduction
	Organized Multiagent Systems
	An OMAS Approach for Medical Emergencies
	OMAS Specification
	OrganizationalMechanisms

	Conclusion and Future Work
	References

	A Reference Architecture for Modelling of Emotional Agent Systems
	Introduction
	Conceptual and Technical Background
	Formal Modelling Techniques: Petri Nets and Reference Nets
	Social Models Based on the Mulan-Architecture
	Modelling Emotion within Mulan: E-Mulan

	Discussion
	References

	Towards a Taxonomy of Decision Making Problems in Multi-Agent Systems
	Introduction
	Related Research
	Role of Agent Models
	Multi-Agent System Taxonomies

	Four Agent Modelling Dimensions
	Dimension 1: Self Model versus Model of Others
	Dimension 2: Individual Input versus Group Input
	Dimension 3: Learning versus Non-learning
	Dimension 4: Collaboration versus Competition

	A Unified Approach to Distributed Decision Making?
	Conclusion
	References

	Modeling Tools for Platform Specific Design of Multi-Agent Systems
	Introduction
	Design and Use of the Modeling Tools
	Modeling SEAGENT Agents
	Modeling JADEX Agents
	Related Work
	Conclusion and Future Work
	References

	L2-SVM Training with Distributed Data
	Introduction
	SVMs and Minimal Enclosing Balls
	Distributed Learning of the L2-SVM
	Experiments
	Agent-Oriented Negotiation of Parameters
	References

	Framework for Dynamic Life Critical Situations Using Agents
	Introduction
	Scenario
	The Multi-Agent System
	The Agents
	Conclusions
	References

	Unifying JIAC Agent Development with AWE
	Introduction
	Introducing the Agent World Editor
	Generalising JIAC — The AWE Domain Model
	Implementation
	Framework Extensions
	Transformation Example

	Related Work
	Conclusion
	References

	Formalizing ARTIS Agent Model Using RT-Maude
	Introduction
	Translation Process
	Case Study
	Conclusion and Future Work
	References

	Implementing Over-Sensing in Heterogeneous Multi-Agent Systems on Top of Artifact-Based Environments
	Agent Observability in Multi-Agent Programs
	Enabling Agent Observability in {\sf CArtAgO}
	Exploiting Over-Sensing
	References

	Exhibition Papers
	Requirements and Tools for the Debugging of Multi-Agent Systems
	Introduction
	Debugging Requirements
	Application of Debugging in Mulan
	Mulan/Capa
	Renew and Java Reference Nets
	Mulan-Viewer
	Mulan-Sniffer

	Related Work
	Conclusion
	References

	SONAR*: A Multi-Agent Infrastructure for Active Application Architectures and Inter-organisational Information Systems
	Motivation
	Conceptual Approach: Position Network
	The Underlying Theoretical Model: SONAR
	SONAR*: The Generic Position Agent’s Architecture
	Conclusion
	References

	An Architecture for Simulating Internet-of-Services Economies
	Introduction
	Markets to Allocate Resources and Services
	The Usage of Electronic Institutions in the IoS

	Related Work
	Electronic Institutions for Internet-of-Services Economies
	Electronic Institutions: Basic Concepts and Tools
	Using Electronic Institutions in the Context of Service Economies
	Reputation Mechanisms and Electronic Institutions

	Integrating eI into an Internet-of-Services Simulator
	Simulator Core Functionalities
	Experimenting with the Simulation Platform

	Conclusion and Future Work
	References

	Applying JIAC V to Real World Problems: The MAMS Case
	Introduction
	The MAMS Project
	Service Execution Framework
	Experiences and Results
	Related and Previous Work
	Conclusion
	References

	Agent-Based Semantic Search at motoso.de
	Introduction
	Analysis of the Search Problem
	Semantic Search System Architecture
	System Design
	System Implementation

	Realization within motoso.de
	Domain-Specific Ontologies and Inference Rules
	Modes of Operation

	Summary and Outlook
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

