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Preface

CHES 2009, the 11th workshop on Cryptographic Hardware and Embedded
Systems, was held in Lausanne, Switzerland, September 6–9, 2009. The work-
shop was sponsored by the International Association for Cryptologic Research
(IACR).

The workshop attracted a record number of 148 submissions from 29 coun-
tries, of which the Program Committee selected 29 for publication in the work-
shop proceedings, resulting in an acceptance rate of 19.6%, the lowest in the
history of CHES. The review process followed strict standards: each paper re-
ceived at least four reviews, and some as many as eight reviews. Members of the
Program Committee were restricted to co-authoring at most two submissions,
and their papers were evaluated by an extended number of reviewers.

The Program Committee included 53 members representing 20 countries and
five continents. These members were carefully selected to represent academia,
industry, and government, as well as to include world-class experts in various
research fields of interest to CHES. The Program Committee was supported
by 148 external reviewers. The total number of people contributing to the re-
view process, including Program Committee members, external reviewers, and
Program Co-chairs, exceeded 200.

The papers collected in this volume represent cutting-edge worldwide re-
search in the rapidly growing and evolving area of cryptographic engineering.
The submissions were sought in several general areas, including, but not limited
to, cryptographic hardware, cryptographic software, attacks against implemen-
tations and countermeasures against these attacks, tools and methodologies of
cryptographic engineering, and applications and implementation environments
of cryptographic systems. Ten years after its first workshop, CHES is now very
firmly established as the premier international forum for presenting scientific
and technological advances in cryptographic engineering research, the event that
bridges the gap between theoretical advances and their practical application in
commercial products.

In order to further extend the scope of CHES, this year’s CHES included
for the first time a special Hot Topic Session. The goal of this session was to
attract new authors and attendees to CHES by highlighting a new area, not
represented at CHES before, but of potential interest to CHES participants. The
topic of this year’s Hot Topic Session was: Hardware Trojans and Trusted ICs.
The session was chaired by Anand Raghunathan from Purdue University, USA,
who prepared a separate call for papers, and oversaw an evaluation of papers
submitted to this session. This evaluation was supported by a special Hot Topic
Session Committee, composed of six experts in the field of trusted integrated
circuit manufacturing. The session included two regular presentations, and an
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invited talk, entitled “The State-of-the-Art in IC Reverse Engineering,” delivered
by Randy Torrance from Chipworks, Inc., Canada.

Additionally, the workshop included two other excellent invited talks. Christof
Paar from Ruhr-Universität Bochum, one of the two founders of CHES, discussed
his vision of cryptographic engineering, and its evolution over years, in a talk
entitled “Crypto Engineering: Some History and Some Case Studies.” Srini De-
vadas, MIT, an inventor of PUF (Physical Unclonable Function), and a founder
of a company that develops practical products based on this new technology,
described his experiences in a talk entitled “Physical Unclonable Functions and
Secure Processors.”

The workshop also included two special sessions. Elisabeth Oswald chaired a
session on the DPA contest, which included an introduction and discussion of the
contest by one of the primary contest organizers, Sylvain Guilley from Telecom
ParisTech. Following the introduction was a short presentation by the winners
of the contest and a panel discussion devoted to the current and future rules
of the contest and the ethical issues associated with inadvertently facilitating
through the contest practical attacks against implementations of cryptography.
The second special session, chaired by Patrick Schaumont from Virginia Tech,
was on benchmarking of cryptographic hardware. The session included several
interesting short talks on problems and solutions related to fair and comprehen-
sive evaluation of the performance of cryptographic hardware. This session was
of particular significance in light of the ongoing evaluation of the SHA-3 can-
didates competing to become a new American, and a de-facto worldwide, hash
function standard. Additionally, the workshop included two traditional events:
a rump session, chaired by Guido Bertoni from STMicroelectronics, Italy, and a
poster session chaired by Stefan Mangard, Infineon Technologies, Germany. Our
great thanks go to all Special Session Chairs for their initiative, enthusiasm,
commitment, innovative spirit, and attention to every detail of their respective
sessions.

Through a nomination process and a vote, the Program Committee awarded
three CHES 2009 Best Paper Awards. The selected papers represent three dis-
tinct areas of cryptographic engineering research: efficient hardware implemen-
tations of public key cryptography, efficient and secure software implementations
of secret key cryptography, and side-channel attacks and countermeasures. The
winners of the three equivalent awards were: Jean-Luc Beuchat, Jérémie Detrey,
Nicolas Estibals, Eiji Okamoto, and Francisco Rodŕıguez-Henŕıquez for their pa-
per “Hardware Accelerator for the Tate Pairing in Characteristic Three Based on
Karatsuba-Ofman Multipliers,” Emilia Käsper and Peter Schwabe for their pa-
per “Faster and Timing-Attack Resistant AES-GCM,” and Thomas Finke, Max
Gebhardt, and Werner Schindler for their paper “A New Side-Channel Attack
on RSA Prime Generation.”

The selection of 29 best papers out of 148 predominantly very strong submis-
sions was a very challenging and difficult task. The Program Committee members
dedicated a very significant amount of time and effort in order to comprehen-
sively and fairly evaluate all submitted papers and provide useful feedback to
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the authors. Our deepest thanks go to the members of the Program Committee
for their hard work, expertise, dedication, professionalism, fairness, and team
spirit.

We deeply thank Marcelo Kaihara, the General Chair of CHES 2009, for
his excellent and always timely work on managing the local organization and
orchestrating conference logistics. Only because of his tireless effort, flexibility,
and team spirit were we able to fit so many additional events and special sessions
in the program of this year’s CHES. We would like to also thank EPFL for
providing an excellent venue for holding the workshop, and for assisting with
many local arrangements. Our gratitude also goes to the generous sponsors of
CHES 2009, namely, Cryptography Research, Inc., Nagravision Kudelski Group,
Oberthur Technologies, RCIS AIST Japan, Riscure, and Telecom ParisTech.

We are also very grateful to Çetin Kaya Koç for managing conference an-
nouncements and advertising as the Publicity Chair, and to Jens-Peter Kaps
for diligently maintaining the CHES website. The review and discussion process
was run using an excellent Web Submission and Review System developed and
maintained by Shai Halevi, who was always very quick and precise in addressing
our questions and concerns regarding the operation of the system.

We would like to deeply thank the Steering Committee of CHES, for their
trust, constant support, guidance, and kind advice on many occasions. Special
thanks go to Jean-Jacques Quisquater and Colin Walter, who were always first
to respond to our questions and concerns, and often volunteered the advice and
support needed to resolve a wide array of challenging issues associated with the
fair, firm, and transparent management of the evaluation process.

Finally, we would like to profoundly thank and salute all the authors from
all over the world who submitted their papers to this workshop, and entrusted
us with a fair and objective evaluation of their work. We appreciate your cre-
ativity, hard work, and commitment to push forward the frontiers of science. All
your submissions, no matter whether accepted or rejected at this year’s CHES,
represent the vibrant field of research that CHES is proud to exemplify.

September 2009 Christophe Clavier
Kris Gaj
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Jean-Sébastien Coron University of Luxembourg, Luxembourg
Joan Daemen STMicroelectronics, Belgium
Ricardo Dahab University of Campinas, Brazil
Markus Dichtl Siemens AG, Germany
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Faster and Timing-Attack Resistant AES-GCM

Emilia Käsper1 and Peter Schwabe2,�

1 Katholieke Universiteit Leuven, ESAT/COSIC
Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium

emilia.kasper@esat.kuleuven.be
2 Department of Mathematics and Computer Science

Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, Netherlands
peter@cryptojedi.org

Abstract. We present a bitsliced implementation of AES encryption in
counter mode for 64-bit Intel processors. Running at 7.59 cycles/byte on
a Core 2, it is up to 25% faster than previous implementations, while si-
multaneously offering protection against timing attacks. In particular, it
is the only cache-timing-attack resistant implementation offering compet-
itive speeds for stream as well as for packet encryption: for 576-byte pack-
ets, we improve performance over previous bitsliced implementations by
more than a factor of 2. We also report more than 30% improved speeds for
lookup-table based Galois/Counter mode authentication, achieving 10.68
cycles/byte for authenticated encryption. Furthermore, we present the first
constant-time implementation of AES-GCM that has a reasonable speed
of 21.99 cycles/byte, thus offering a full suite of timing-analysis resistant
software for authenticated encryption.

Keywords: AES, Galois/Counter mode, cache-timing attacks, fast im-
plementations.

1 Introduction

While the AES cipher has withstood years of scrutiny by cryptanalysts, its im-
plementations are not guaranteed to be secure. Side-channel attacks have become
the most promising attacks, and cache-timing attacks pose a security threat to
common AES implementations, as they make heavy use of lookup tables. Coun-
termeasures against cache-timing attacks on software implementations include
hardware-based defenses to limit cache leakage; or obscuring timing data, e.g.,
� The first author was supported in part by the European Commission through

the ICT Programme under Contract ICT-2007-216646 ECRYPT II, the IAP–
Belgian State–Belgian Science Policy BCRYPT and the IBBT (Interdisciplinary
institute for BroadBand Technology) of the Flemish Government, and by the
FWO-Flanders project nr. G.0317.06 Linear Codes and Cryptography. The sec-
ond author was supported by the European Commission through the ICT Pro-
gramme under Contract ICT–2007–216499 CACE, and through the ICT Programme
under Contract ICT-2007-216646 ECRYPT II. Permanent ID of this document:
cc3a43763e7c5016ddc9cfd5d06f8218. Date: June 15, 2009.

C. Clavier and K. Gaj (Eds.): CHES 2009, LNCS 5747, pp. 1–17, 2009.
c© International Association for Cryptologic Research 2009



2 E. Käsper and P. Schwabe

via adding dummy instructions. However, both approaches are generally deemed
impractical due to a severe performance penalty.

This leaves us with the third option: writing dedicated constant-time software.
While several cryptographic algorithms such as the Serpent block cipher [8] have
been designed with a lookup-table-free implementation in mind, it is generally
extremely difficult to safeguard a cipher against side-channel attacks a posteriori.

Matsui and Nakajima were the first to show a constant-time implementation of
AES on an Intel Core 2 processor faster than any other implementation described
before [24]. However, the reported speed of 9.2 cycles/byte1 is only achieved for
chunks of 2 KB of input data that are transposed into a dedicated bitsliced
format. Including format conversion, this implementation thus runs at around
10 cycles/byte for stream encryption. On the other hand, encrypting, say, 576-
byte packets would presumably cause a slowdown by more than a factor of 3,
making the approach unsuitable for many network applications.

Könighofer presents an alternative implementation for 64-bit platforms that
processes only 4 input blocks in parallel [22], but at 19.8 cycles/byte, his code
is even slower than the reference implementation used in OpenSSL.

Finally, Intel has announced a new AES-NI instruction set [17] that will pro-
vide dedicated hardware support for AES encryption and thus circumvent cache
leaks on future CPUs. However, processors rolled out to the market today do
not yet support these instructions, so cache-timing attacks will continue to be a
threat to AES for several years until all current processors have been replaced.

This paper presents a constant-time implementation of AES which only needs
7.59 cycles/byte on an Intel Core 2 Q9550, including costs for transformation of
input data into bitsliced format and transformation of output back to standard
format. On the newer Intel Core i7, we show even faster speeds of 6.92 cy-
cles/byte, while lookup-table-based implementations on the same platform are
still behind the 10 cycles/byte barrier. Not only is our software up to 30% faster
than any previously presented AES software for 64-bit Intel processors, it also
no longer needs input chunks of 2 KB but only of 128 bytes to achieve optimal
speed and is thus efficient for packet as well as stream encryption.

Secondly, we propose a fast implementation of Galois/Counter mode (GCM)
authentication. Combined with our fast AES encryption, we demonstrate speeds
of 10.68 cycles per encrypted and authenticated byte on the Core 2 Q9550. Our
fast GCM implementation, however, uses the standard method of lookup tables
for multiplication in a finite field. While no cache-timing attacks against GCM
have been published, we acknowledge that this implementation might be vulner-
able to cache leaks. Thus, we also describe a new method for implementing GCM
without lookup tables that still yields a reasonable speed of 21.99 cycles/byte.
The machine-level strategies for implementing AES-GCM in constant time might
be of independent interest to implementors of cryptographic software.

Note. All software presented in this paper is in the public domain and is available
online on the authors’ websites [19, 31] to maximize reusability of results.
1 From here on, we consider only AES-128. All results extend straightforwardly to

other key sizes, with an appropriate downscaling in performance.



Faster and Timing-Attack Resistant AES-GCM 3

Organization of the paper. In Section 2, we analyze the applicability of
cache-timing attacks to each component of AES-GCM authenticated encryption.
Section 3 gives an overview of the target platforms. In Sections 4 and 5, we
describe our implementations of AES and GCM, respectively. Finally, Section 6
gives performance benchmarks on three different platforms.

2 Cache Timing Attacks against AES and GCM

Cache-timing attacks are software side-channel attacks exploiting the timing
variability of data loads from memory. This variability is due to the fact that
all modern microprocessors use a hierarchy of caches to reduce load latency. If
a load operation can retrieve data from one of the caches (cache hit), the load
takes less time than if the data has to be retrieved from RAM (cache miss).

Kocher [21] was the first to suggest cache-timing attacks against cryptographic
algorithms that load data from positions that are dependent on secret informa-
tion. Initially, timing attacks were mostly mentioned in the context of public-key
algorithms until Kelsey et al. [20] and Page [30] considered timing attacks, includ-
ing cache-timing attacks, against secret-key algorithms. Tsunoo et al. demon-
strated the practical feasibility of cache-timing attacks against symmetric-key
ciphers MISTY1 [33] and DES [32], and were the first to mention an attack
against AES (without giving further details).

In the rest of this section, we analyze separately the cache-timing vulnerability
of three components of AES-GCM: encryption, key schedule, and authentication.

2.1 Attacks against AES Encryption

A typical implementation of AES uses precomputed lookup tables to implement
the S-Box, opening up an opportunity for a cache-timing attack. Consider, for
example, the first round of AES: the indices of the table lookups are then defined
simply by the xor of the plaintext and the first round key. As the attacker knows
or even controls the plaintext, information about the lookup indices directly
leaks information about the key.

Bernstein [3] was the first to implement a cache-timing key-recovery attack
against AES. While his attack relies on the attacker’s capability of producing
reference timing distributions from known-key encryptions on a platform iden-
tical to the target platform and has thus been deemed difficult to mount [29,9],
several improved attack strategies have subsequently been described by Bertoni
et al. [6], Osvik et al. [29], Acıiçmez et al. [18], Bonneau and Mironov [9], and
Neve et al. [28,27].

In particular, Osvik et. al. [29] propose an attack model where the attacker
obtains information about cache access patterns by manipulating the cache be-
tween encryptions via user-level processes. Bonneau and Mironov [9] further
demonstrate an attack detecting cache hits in the encryption algorithm itself, as
opposed to timing a process controlled by the attacker. Their attack requires no
active cache manipulation, only that the tables are (partially) evicted from cache
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prior to the encryption. Finally, Acıiçmez et. al. [18] note that if the encrypting
machine is running multiple processes, workload on the target machine achieves
the desired cache-cleaning effect, and provide simulation results suggesting that
it is possible to recover an AES encryption key via a passive remote timing
attack.

2.2 Attacks against AES Key Expansion

The expansion of the 128-bit AES key into 11 round keys makes use of the Sub-
Bytes operation which is also used for AES encryption and usually implemented
through lookup tables. During key schedule, the lookup indices are dependent on
the secret key, so in principle, ingredients for a cache-timing attack are available
also during key schedule.

However, we argue that mounting a cache-timing attack against AES key-
expansion will be very hard in practice. Common implementations do the key ex-
pansion just once and store either the fully expanded 11 round keys or partially-
expanded keys (see e.g. [2]); in both cases, table lookups based on secret data are
performed just once, precluding statistical timing attacks, which require multiple
timing samples.

We nevertheless provide a constant-time implementation of key expansion for
the sake of completeness. The cycle count of the constant-time implementation is
however inferior to the table-based implementation; a performance comparison
of the two methods is given in Section 6.

2.3 Attacks against Galois/Counter Mode Authentication

The computationally expensive operations for GCM authentication are multi-
plications in the finite field F2128 . More specifically, each block of input requires
multiplication with a secret constant factor H derived from the master encryp-
tion key. As all common general-purpose CPUs lack support for multiplication of
polynomials over F2, the standard way of implementing GCM is through lookup
tables containing precomputed multiples of H .

The specification of GCM describes different multiplication algorithms involv-
ing tables of different sizes allowing to trade memory for computation speed [25].
The basic idea of all of these algorithms is the same: split the non-constant factor
of the multiplication into bytes or half-bytes and use these as indices for table
lookups.

For the first block of input P1, this non-constant factor is C1, the first block
of ciphertext. Assuming the ciphertext is available to the attacker anyway, the
indices of the first block lookups do not leak any secret information. However,
for the second ciphertext block C2, the non-constant input to the multiplication
is (C1 · H) ⊕ C2. An attacker gaining information about this value can easily
deduce the secret value H necessary for a forgery attack.2

2 The authentication key H is derived from the master key via encrypting a known
constant. Thus, learning H is equivalent to obtaining a known plaintext-ciphertext
pair and should pose no threat to the master encryption key itself.
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The lookup tables used for GCM are usually at least as large as AES lookup
tables; common sizes include 4 KB, 8 KB and 64 KB. The values retrieved from
these tables are 16 bytes long; knowledge of the (64-byte) cache line thus leaves
only 4 possibilities for each lookup index. For example, the 64-KB implementa-
tion uses 16 tables, each corresponding to a different byte of the 128-bit input.
Provided that cache hits leak the maximum 6 bits in each byte, a 232 exhaustive
search over the remaining unknown bits is sufficient to recover the authentication
key.

We conclude that common implementations of GCM are potentially vulnera-
ble to authentication key recovery via cache timing attacks. Our software thus
includes two different versions of GCM authentication: a fast implementation
based on 8-KB lookup tables for settings where timing attacks are not consid-
ered a threat; and a slower, constant-time implementation offering full protection
against timing attacks. For a performance comparison of these two implementa-
tions, see Section 6.

3 The Intel Core 2 and Core i7 Processors

We have benchmarked our implementations on three different Intel microarchi-
tectures: the 65-nm Core 2 (Q6600), the 45-nm Core 2 (Q9550) and the Core i7
(920). These microarchitectures belong to the amd64 family, they have 16 128-bit
SIMD registers, called XMM registers.

The 128-bit XMM registers were introduced to Intel processors with the
“Streaming SIMD Extensions” (SSE) on the Pentium III processor. The in-
struction set was extended (SSE2) on the Pentium IV processor, other exten-
sions SSE3, SSSE3 and SSE4 followed. Starting with the Core 2, the processors
have full 128-bit wide execution units, offering increased throughput for SSE
instructions.

Our implementation mostly uses bit-logical instructions on XMM registers.
Intel’s amd64 processors are all able to dispatch up to 3 arithmetic instructions
(including bit-logical instructions) per cycle; at the same time, the number of
simultaneous loads and stores is limited to one.

Virtually all instructions on the amd64 operate on two registers; that is,a two-
operand instruction, such as an XOR, overwrites one of the inputs with the
output. This introduces an overhead in register-to-register moves whenever both
inputs need to be preserved for later reuse.

Aside from these obvious performance bottlenecks, different CPUs have spe-
cific limitations:

The pshufb instruction: This instruction is part of the SSSE3 instruction-set
extension and allows to shuffle the bytes in an XMM register arbitrarily. On
a 65-nm processor, pshufb is implemented through 4 µops; 45-nm Core 2 and
Core i7 CPUs need just 1 µop (see [15]). This reduction was achieved by the
introduction of a dedicated shuffle-unit [12]. The Core i7 has two of these shuffle
units, improving throughput by a factor of two.
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Choosing between equivalent instructions: The SSE instruction set in-
cludes three different logically equivalent instructions to compute the xor of two
128-bit registers: xorps, xorpd and pxor; similar equivalences hold for other
bit-logical instructions: andps/andpd/pand, orps/orpd/por.

While xorps/xorpd consider their inputs as floating point values, pxor works
on integer inputs. On Core 2 processors, all three instructions yield the same
performance. On the Core i7, on the other hand, it is crucial to use integer
instructions: changing all integer bit-logical instructions to their floating-point
equivalents results in a performance penalty of about 50% on our benchmark
Core i7 920.

What about AMD processors? Current AMD processors do not support the
SSSE3 pshufb instruction, but an even more powerful SSE5 instruction pperm
will be available for future AMDs. It is also possible to adapt the software to
support current 64-bit AMD processors. The performance of the most expensive
part of the computation—the AES S-box—will not be affected by this modifi-
cation, though the linear layer will require more instructions.

4 Bitsliced Implementation of AES in Counter Mode

Bitslicing as a technique for implementing cryptographic algorithms was pro-
posed by Biham to improve the software performance of DES [7]. Essentially,
bitslicing simulates a hardware implementation in software: the entire algorithm
is represented as a sequence of atomic Boolean operations. Applied to AES, this
means that rather than using precomputed lookup tables, the 8 × 8-bit S-Box
as well as the linear layer are computed on-the-fly using bit-logical instructions.
Since the execution time of these instructions is independent of the input values,
the bitsliced implementation is inherently immune to timing attacks.

Obviously, representing a single AES byte by 8 Boolean variables and evalu-
ating the S-Box is much slower than a single table lookup. However, collecting
equivalent bits from multiple bytes into a single variable (register) allows to com-
pute multiple S-Boxes at the cost of one. More specifically, the 16 XMM registers
of the Core 2 processors allow to perform packed Boolean operations on 128 bits.
In order to fully utilize the width of these registers, we thus process 8 16-byte
AES blocks in parallel. While our implementation considers 8 consecutive blocks
of AES in counter mode, the same technique could be applied equally efficiently

Table 1. Instruction count for one AES round

xor/and/or pshufd/pshufb xor (mem-reg) mov (reg-reg) TOTAL
SubBytes 128 – – 35 163
ShiftRows – 8 – – 8
MixColumns 27 16 – – 43
AddRoundKey – – 8 – 8
TOTAL 155 24 8 35 222
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to other modes, as long as there is sufficient parallelism. For example, while the
CBC mode is inherently sequential, one could consider 8 parallel independent
CBC encryptions to achieve the same effect.

Table 1 summarizes the instruction count for each component of AES. In
total, one full round of AES requires 222 instructions to process 8 blocks, or 1.73
instructions/byte. In comparison, a typical lookup-table-based implementation
performs 1 lookup per byte per round. As the Core 2 can issue up to 3 arithmetic
instructions per clock cycle, we are able to break the fundamental 1 cycle/byte
barrier of lookup-table-based implementations.

Several AES implementations following a similar bitslicing approach have
been reported previously [22,23,24]. However, compared to previous results, we
have managed to further optimize every step of the round function. Our imple-
mentation of SubBytes uses 15% fewer instructions than previously reported
software implementations. Also, replacing rotates with the more general byte
shuffling instructions has allowed us to design an extremely efficient linear layer
(see Section 4.3 and 4.4). In the rest of this section, we describe implementation
aspects of each step of the AES round function, as well as the format conversion
algorithm.

4.1 Bitsliced Representation of the AES State

The key to a fast bitsliced implementation is finding an efficient bitsliced rep-
resentation of the cipher state. Denote the bitsliced AES state by a[0], . . . , a[7],
where each a[i] is a 128-bit vector fitting in one XMM register. We take 8 16-byte
AES blocks and “slice” them bitwise, with the least significant bits of each byte
in a[0] and the most significant bits in the corresponding positions of a[7]. Now,
the AES S-Box can be implemented equally efficiently whatever the order of bits
within the bitsliced state. The efficiency of the linear layer, on the other hand,
depends crucially on this order.

In our implementation, we collect in each byte of the bitsliced state 8 bits
from identical positions of 8 different AES blocks, assuring that bits within each
byte are independent and all instructions can be kept byte-level. Furthermore,
in order to simplify the MixColumns step, the 16 bytes of an AES state are
collected in the state row by row. Figure 1 illustrates the bit ordering in each
128-bit state vector a[i].

Several solutions are known for converting the data to a bitsliced format and
back [22,24]. Our version of the conversion algorithm requires 84 instructions to
bitslice the input, and 8 byte shuffles to reorder the state row by row.
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Fig. 1. Bit ordering in one 128-bit vector of the bitsliced state
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Table 2. Instruction count for the AES S-Box

xor and/or mov TOTAL
Hardware 82 35 – 117
Software 93 35 35 163

4.2 The SubBytes Step

The SubBytes step of AES transforms each byte of the 16-byte AES state
according to an 8 × 8-bit S-Box S based on inversion in the finite field F28 .
We use well-known hardware implementation strategies for decomposing the S-
Box into Boolean instructions. The starting point of our implementation is the
compact hardware S-Box proposed by Canright [11], requiring 120 logic gates,
and its recent improvements by Boyar and Peralta [10], which further reduce the
gate count to 117. Our implementation of the SubBytes step is obtained by
converting each logic gate (xor, and, or) in this implementation to its equivalent
CPU instruction. All previous bitsliced implementations use a similar approach,
nevertheless, by closely following hardware optimizations, we have improved the
software instruction count by 15%, from 199 instructions [24] to 163.

We omit here the lengthy description of obtaining the Boolean decomposi-
tion; full details can be found in the original paper [11]. Instead, we highlight
differences between the hardware approach and our software “simulation”, as
the exchange rate between hardware gates and instructions on the Core 2 is not
one-to-one.

First, the packed Boolean instructions of the Core 2 processors have one source
and one destination; that is, one of the inputs is always overwritten by the result.
Thus, we need extra move instructions whenever we need to reuse both inputs.
Also, while the compact hardware implementation computes recurring Boolean
subexpressions only once, we are not able to fit all intermediate values in the
available 16 XMM registers. Instead, we have a choice between recomputing some
values, or using extra load/store instructions to keep computed values on the
stack. We chose to do away without the stack: our implementation fits entirely
in the 16 registers and uses 128 packed Boolean instructions and 35 register-
to-register move instructions. Table 2 lists the instruction/gate counts for the
S-Box in software and hardware.

4.3 The ShiftRows Step

Denote the 4 × 4-byte AES state matrix by [aij ]. ShiftRows rotates each row
of the matrix left by 0, 1, 2 and 3 bytes, respectively:⎡⎢⎢⎣

a00 a01 a02 a03
a10 a11 a12 a13
a20 a21 a22 a23
a30 a31 a32 a33

⎤⎥⎥⎦ �→
⎡⎢⎢⎣

a00 a01 a02 a03
a11 a12 a13 a10
a22 a23 a20 a21
a33 a30 a31 a32

⎤⎥⎥⎦ .
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Since each byte of the bitsliced state contains 8 bits from identical positions of
8 AES blocks, ShiftRows requires us to permute the 16 bytes in each 128-bit
vector according to the following permutation pattern:

[a00|a01|a02|a03|a10|a11|a12|a13|a20|a21|a22|a23|a30|a31|a32|a33] �→
[a00|a01|a02|a03|a11|a12|a13|a10|a22|a23|a20|a21|a33|a30|a31|a32].

Using the dedicated SSSE3 byte shuffle instruction pshufb, the whole ShiftRows
step can be done in 8 XMM instructions.

4.4 The MixColumns Step

MixColumns multiplies the state matrix [aij ] by a fixed 4× 4 matrix to obtain
a new state [bij ]:⎡⎢⎢⎣

b00 b01 b02 b03
b10 b11 b12 b13
b20 b21 b22 b23
b30 b31 b32 b33

⎤⎥⎥⎦ =

⎡⎢⎢⎣
02x 03x 01x 01x

01x 02x 03x 01x

01x 01x 02x 03x

03x 01x 01x 02x

⎤⎥⎥⎦ ·
⎡⎢⎢⎣

a00 a01 a02 a03
a11 a12 a13 a10
a22 a23 a20 a21
a33 a30 a31 a32

⎤⎥⎥⎦ .

Owing to the circularity of the multiplication matrix, each resulting byte bij can
be calculated using an identical formula:

bij = 02x · aij ⊕ 03x · ai+1,j ⊕ ai+2,j ⊕ ai+3,j ,

where indices are reduced modulo 4.
Recall that each byte aij is an element of F28 = F2[X ]/X8 +X4+X3 +X +1,

so multiplication by 02x corresponds to a left shift and a conditional masking
with 00011011b whenever the most significant bit aij [7] = 1. For example, the
least significant bit bij [0] of each byte is obtained as

bij [0] = aij [7] ⊕ ai+1,j [0] ⊕ ai+1,j [7] ⊕ ai+2,j [0] ⊕ ai+3,j [0].

As the bitsliced state collects the bits of an AES state row by row, computing
ai+1,j [0] from aij [0] for all 128 least significant bits in parallel is equivalent to
rotating a[0] left by 32 bits:

[a00|a01|a02|a03|a10|a11|a12|a13|a20|a21|a22|a23|a30|a31|a32|a33] �→
[a10|a11|a12|a13|a20|a21|a22|a23|a30|a31|a32|a33|a00|a01|a02|a03].

Similarly, computing ai+2,j (ai+3,j) requires rotation by 64 (resp. 96) bits. To
obtain the new bitsliced state vector b[0], we can now rewrite the above equation
as

b[0] = (a[7] ⊕ (rl32a[7])) ⊕ (rl32a[0]) ⊕ rl64(a[0] ⊕ (rl32a[0])).

Similar equations can be obtained for all state vectors b[i] (see App. A for a
complete listing). By observing that rl64a[i] ⊕ rl96a[i] = rl64(a[i] ⊕ rl32a[i]), we
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are able to save a rotation and we thus only need to compute two rotations
per register, or 16 in total. There is no dedicated rotate instruction for XMM
registers; however, as all our rotations are in full bytes, we can use the pshufd
32-bit-doubleword permutation instruction. This instruction allows to write the
result in a destination register different from the source register, saving register-
to-register moves. In total, our implementation of MixColumns requires 43
instructions: 16 pshufd instructions and 27 xors.

4.5 The AddRoundKey Step

The round keys are converted to bitsliced representation during key schedule.
Each key is expanded to 8 128-bit values, and a round of AddRoundKey
requires 8 xors from memory to the registers holding the bitsliced state. The
performance of the AddRoundKey step can further be slightly optimized by in-
terleaving these instructions with the byte shuffle instructions of the ShiftRows
step.

4.6 AES Key Schedule

The AES key expansion algorithm computes 10 additional round keys from the
initial key, using a sequence of SubBytes operations and xors. With the in-
put/output transform, and our implementation of SubBytes, we have all the
necessary components to implement the key schedule in constant time. The key
schedule performs 10 unavoidably sequential SubBytes calls; its cost in con-
stant time is thus roughly equivalent to the cost of one 8-block AES encryption.
The performance results in Section 6 include an exact cycle count.

5 Implementations of GCM Authentication

Galois/Counter mode is a NIST-standardized block cipher mode of operation
for authenticated encryption [25]. The 128-bit authentication key H is derived
from the master encryption key K during key setup as the encryption of an
all-zero input block. The computation of the authentication tag then requires,
for each 16-byte data block, a 128-bit multiplication by H in the finite field
F2128 = F2[X ]/(X128 + X7 + X2 + X + 1). Figure 2 illustrates the mode of
operation; full details can be found in the specification [25].

The core operation required for GCM authentication is thus Galois field mul-
tiplication with a secret constant element H . This section describes two different
implementations of the multiplication—first, a standard table-based approach,
and second, a constant-time solution. Both implementations consist of a one-
time key schedule computing H and tables containing multiples of H ; and an
online phase which performs the actual authentication. Both implementations
accept standard (non-bitsliced) input.
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Fig. 2. Galois/Counter Mode Authenticated Encryption

5.1 Table-Based Implementation

Several flavors of Galois field multiplication involving lookup tables of differ-
ent sizes have been proposed for GCM software implementation [25]. We chose
the “simple, 4-bit tables method”, which uses 32 tables with 16 precomputed
multiples of H each, corresponding to a memory requirement of 8 KB.

Following the ideas from [13], we can do one multiplication using 84 arithmetic
instructions and 32 loads.

The computation is free of long chains of dependent instructions and the
computation is thus mainly bottlenecked by the number of 32 loads per mul-
tiplication yielding a performance of 10.68 cycles/byte for full AES-GCM on a
Core 2 Q9550.

5.2 Constant-Time Implementation

Our alternative implementation of GCM authentication does not use any ta-
ble lookups or data-dependent branches and is thus immune to timing attacks.
While slower than the implementation described in Section 5.1, the constant-
time implementation achieves a reasonable speed of 21.99 cycles per encrypted
and authenticated byte and, in addition, requires only 2 KB of memory for pre-
computed values, comparing favorably to lookup-table-based implementations.

During the offline phase, we precompute values H, X · H, X2 · H, . . . , X127 ·
H . Based on this precomputation, multiplication of an element D with H can
be computed using a series of xors conditioned on the bits of D, as shown in
Algorithm 1.

For a constant-time version of this algorithm we have to replace the condi-
tional statements by a sequence of deterministic instructions. Suppose that we
want to xor register %xmm3 into register %xmm4 if and only if bit b0 of register
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Algorithm 1. Multiplication in F2128 of D with a constant element H .
Require: Input D, precomputed values H, X · H, X2 · H, . . . , X127 · H
Ensure: Output product DH = D · H

DH = 0
for i = 0 to 127 do

if di == 1 then
DH = DH ⊕ Xi · H

end if
end for

Listing 1. A constant-time implementation of conditional xor

1: movdqa %xmm0, %xmm1 # %xmm1 - tmp

2: pand BIT0 , %xmm1 # BIT0 - bit mask in memory

3: pcmpeqd BIT0 , %xmm1

4: pshufd $0xff, %xmm1, %xmm1 #

5: pand %xmm3, %xmm1 #

6: pxor %xmm1, %xmm4 #

%xmm0 is set. Listing 1 shows a sequence of six assembly instructions that imple-
ments this conditional xor in constant time. Lines 1–4 produce an all-zero mask
in register %xmm1 if b0 = 0 and an all-one mask otherwise. Lines 5–6 mask %xmm3
with this value and xor the result. We note that the precomputation described
above is also implemented in constant time, using the same conditional-xor tech-
nique.

In each 128-bit multiplication in the online phase, we need to loop through all
128 bits of the intermediate value D. Each loop requires 6 · 128 instructions, or
48 instructions per byte. We managed to further optimize the code in Listing 1
by considering four bitmasks in parallel and only repeating lines 1–3 of the code
once every four bits, yielding a final complexity of 3.75 instructions per bit, or
30 instructions/byte. As the Core 2 processor can issue at most 3 arithmetic
instructions per cycle, a theoretical lower bound for a single Galois field multi-
plication, using our implementation of the conditional xor, is 10 cycles/byte. The
actual performance comes rather close at around 14 cycles/byte for the complete
authentication.

6 Performance

We give benchmarking results for our software on three different Intel processors.
A description of the computers we used for benchmarking is given in Table 3;
all benchmarks used just one core.

To ensure verifiability of our results, we used the open eSTREAM benchmark-
ing suite [14], which reports separate cycle counts for key setup, IV setup, and
for encryption.
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Table 3. Computers used for benchmarking

latour berlekamp dragon

CPU Intel Core 2 Quad Q6600 Intel Core 2 Quad Q9550 Intel Core i7 920
CPU frequency 2404.102 MHz 2833 MHz 2668 MHz
RAM 8 GB 8 GB 3 GB
OS Linux 2.6.27.11 x86 64 Linux 2.6.27.19 x86 64 Linux 2.6.27.9 x86 64
Affiliation Eindhoven University National Taiwan National Taiwan

of Technology University University

Table 4. Performance of AES-CTR encryption in cycles/byte

�Packet size 4096 bytes 1500 bytes 576 bytes 40 bytes Simple Imix

latour

This paper 9.32 9.76 10.77 34.36 12.02
[5] 10.58 10.77 10.77 19.44 11.37
Cycles for key setup (this paper), table-based: 796.77
Cycles for key setup (this paper), constant-time: 1410.56
Cycles for key setup [5]: 163.25

berlekamp

This paper 7.59 7.98 8.86 28.71 9.89
[5] 10.60 10.77 10.75 19.34 11.35
Cycles for key setup (this paper), table-based: 775.14
Cycles for key setup (this paper), constant-time: 1179.21
Cycles for key setup [5]: 163.21

dragon

This paper 6.92 7.27 8.08 26.32 9.03
[5] 10.01 10.24 10.15 18.01 10.72
Cycles for key setup (this paper), table-based: 763.38
Cycles for key setup (this paper), constant-time: 1031.11
Cycles for key setup [5]: 147.70

Benchmarking results for different packet sizes are given in Tables 4 and 5.
The “simple Imix” is a weighted average simulating sizes of typical IP packages:
it takes into account packets of size 40 bytes (7 parts), 576 bytes (4 parts), and
1500 bytes (1 part).

For AES-GCM authenticated encryption, the eSTREAM benchmarking suite
reports cycles per encrypted and authenticated byte without considering final
computations (one 16-byte AES encryption and one multiplication) necessary
to compute the authentication tag. Cycles required for these final computations
are reported as part of IV setup. Table 5 therefore gives performance numbers
as reported by the eSTREAM benchmarking suite (cycles/byte and cycles re-
quired for IV setup) and “accumulated” cycles/byte, illustrating the “actual”
time required for authenticated encryption.

For AES in countermode, we also give benchmarking results of previously fastest
software [5], measured with the same benchmarking suite on the same computers.
Note however that this implementation uses lookup tables. The previous fastest
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Table 5. Cycles/byte for AES-GCM encryption and authentication

�Packet size 4096 bytes 1500 bytes 576 bytes 40 bytes Simple Imix

latour

Table-based (eSTREAM) 12.22 13.73 16.12 76.82 19.41
Table-based (accumulated) 12.55 14.63 18.49 110.89 23.41
Constant-time (eSTREAM) 27.13 28.79 31.59 99.90 35.25
Constant-time (accumulated) 27.52 29.85 34.36 139.76 39.93
Cycles for precomputation and key setup, table-based: 3083.31
Cycles for precomputation and key setup, constant-time: 4330.94
Cycles for IV setup and final computations for authentication, table-based: 1362.98
Cycles for IV setup and final computations for authentication, constant-time: 1594.39

berlekamp

Table-based (eSTREAM) 10.40 11.64 13.72 65.95 16.54
Table-based (accumulated) 10.68 12.39 15.67 94.24 19.85
Constant-time (eSTREAM) 21.67 23.05 25.34 82.79 28.44
Constant-time (accumulated) 21.99 23.92 27.62 115.57 32.30
Cycles for precomputation and key setup, table-based: 2786.79
Cycles for precomputation and key setup, constant-time: 3614.83
Cycles for IV setup and final computations for authentication, table-based: 1131.97
Cycles for IV setup and final computations for authentication, constant-time: 1311.21

dragon

Table-based (eSTREAM) 9.86 10.97 12.87 59.05 15.34
Table-based (accumulated) 10.12 11.67 14.69 85.24 18.42
Constant-time (eSTREAM) 20.00 21.25 23.04 73.95 25.87
Constant-time (accumulated) 20.29 22.04 25.10 103.56 29.36
Cycles for precomputation and key setup, table-based: 2424.50
Cycles for precomputation and key setup, constant-time: 3429.55
Cycles for IV setup and final computations for authentication, table-based: 1047.49
Cycles for IV setup and final computations for authentication, constant-time: 1184.41

bitsliced implementation [24] is not available for public benchmarking; based on
the results in the paper, we expect it to perform at best equivalent for stream en-
cryption; and significantly slower for all packet sizes below 2 KB.

For AES-GCM, there exist no benchmarking results from open benchmarking
suites such as the eSTREAM suite or the successor eBASC [4]. The designers
of GCM provide performance figures for 128-bit AES-GCM measured on a Mo-
torola G4 processor which is certainly not comparable to an Intel Core 2 [26].
Thus, we only give benchmarks for our software in Table 5. As a frame of refer-
ence, Brian Gladman’s implementation needs 19.8 cycles/byte using 64-KB GCM
lookup tables and 22.3 cycles/byte with 8-KB lookup tables on a non-specified
AMD64 processor [16]. LibTomCrypt needs 25 cycles/byte for AES-GCM on an
Intel Core 2 E6300 [1]. Our implementation of AES-CTR achieves up to 30%
improved performance for stream encryption, depending on the platform. Com-
pared to previous bitsliced implementations, packet encryption is several times
faster. Including also lookup-table-based implementations, we still improve speed
for all packet sizes except for the shortest, 40-byte packets.
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Similarly, our lookup-table-based implementation of AES-GCM is more than
30% faster than previously reported. Our constant-time implementation is the
first of its kind, yet its performance is comparable to previously published soft-
ware, confirming that it is a viable solution for protecting GCM against timing
attacks.

Finally, our benchmark results show a solid improvement from the older 65nm
Core 2 to the newer i7, indicating that bitsliced implementations stand to gain
more from wider registers and instruction set extensions than lookup-table-based
implementations. We conclude that bitslicing offers a practical solution for safe-
guarding against cache-timing attacks: several of the techniques described in this
paper extend to other cryptographic algorithms as well as other platforms.
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18. Acıiçmez, O., Schindler, W., Koç, Ç.K.: Cache based remote timing attack on the

AES. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 271–286. Springer,
Heidelberg (2006)

19. Käsper, E.: AES-GCM implementations (2009),
http://homes.esat.kuleuven.be/~ekasper

20. Kelsey, J., Schneier, B., Wagner, D., Hall, C.: Side channel cryptanalysis of product
ciphers. Journal of Computer Security 8(2-3), 141–158 (2000)

21. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

22. Könighofer, R.: A fast and cache-timing resistant implementation of the AES.
In: Malkin, T.G. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 187–202. Springer,
Heidelberg (2008)

23. Matsui, M.: How far can we go on the x64 processors? In: Robshaw, M.J.B. (ed.)
FSE 2006. LNCS, vol. 4047, pp. 341–358. Springer, Heidelberg (2006),
http://www.iacr.org/archive/fse2006/40470344/40470344.pdf

24. Matsui, M., Nakajima, J.: On the power of bitslice implementation on Intel Core2
processor. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp.
121–134. Springer, Heidelberg (2007),
http://dx.doi.org/10.1007/978-3-540-74735-2_9

25. McGrew, D.A., Viega, J.: The Galois/Counter Mode of operation (GCM),
http://www.cryptobarn.com/papers/gcm-spec.pdf

26. McGrew, D.A., Viega, J.: The security and performance of the Galois/Counter
Mode (GCM) of operation. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT
2004. LNCS, vol. 3348, pp. 343–355. Springer, Heidelberg (2004)

27. Neve, M., Seifert, J.-P.: Advances on access-driven cache attacks on AES. In: Bi-
ham, E., Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp. 147–162. Springer,
Heidelberg (2007)

28. Neve, M., Seifert, J.-P., Wang, Z.: A refined look at Bernstein’s AES side-channel
analysis. In: ASIACCS 2006: Proceedings of the 2006 ACM Symposium on Infor-
mation, computer and communications security, pp. 369–369. ACM Press, New
York (2006)

29. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: the
case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20.
Springer, Heidelberg (2006)

http://download.intel.com/technology/itj/2008/v12i3/Paper2.pdf
http://www.cryptopp.com
http://www.ecrypt.eu.org/stream/perf
http://www.agner.org/assem/
http://fp.gladman.plus.com/AES/
http://softwarecommunity.intel.com/isn/downloads/intelavx/AES-Instructions-Set_WP.pdf
http://softwarecommunity.intel.com/isn/downloads/intelavx/AES-Instructions-Set_WP.pdf
http://homes.esat.kuleuven.be/~ekasper
http://www.iacr.org/archive/fse2006/40470344/40470344.pdf
http://dx.doi.org/10.1007/978-3-540-74735-2_9
http://www.cryptobarn.com/papers/gcm-spec.pdf


Faster and Timing-Attack Resistant AES-GCM 17

30. Page, D.: Theoretical use of cache memory as a cryptanalytic side-channel. Tech-
nical report, Department of Computer Science, University of Bristol (June 2002),
http://www.cs.bris.ac.uk/Publications/Papers/1000625.pdf

31. Schwabe, P.: AES-GCM implementations (2009),
http://cryptojedi.org/crypto/#aesbs

32. Tsunoo, Y., Saito, T., Suzaki, T., Shigeri, M., Miyauchi, H.: Cryptanalysis of DES
implemented on computers with cache. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.)
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A Equations for MixColumns

We give the full equations for computing MixColumns as described in Sec-
tion 4.4. In MixColumns, the bits of the updated state are computed as follows:

bij [0] = aij [7] ⊕ ai+1,j [0] ⊕ ai+1,j [7] ⊕ ai+2,j [0] ⊕ ai+3,j [0]
bij [1] = aij [0] ⊕ aij [7] ⊕ ai+1,j [0] ⊕ ai+1,j [1] ⊕ ai+1,j [7] ⊕ ai+2,j [1] ⊕ ai+3,j [1]
bij [2] = aij [1] ⊕ ai+1,j [1] ⊕ ai+1,j [2] ⊕ ai+2,j [2] ⊕ ai+3,j [2]
bij [3] = aij [2] ⊕ aij [7] ⊕ ai+1,j [2] ⊕ ai+1,j [3] ⊕ ai+1,j [7] ⊕ ai+2,j [3] ⊕ ai+3,j [3]
bij [4] = aij [3] ⊕ aij [7] ⊕ ai+1,j [3] ⊕ ai+1,j [4] ⊕ ai+1,j [7] ⊕ ai+2,j [4] ⊕ ai+3,j [4]
bij [5] = aij [4] ⊕ ai+1,j [4] ⊕ ai+1,j [5] ⊕ ai+2,j [5] ⊕ ai+3,j [5]
bij [6] = aij [5] ⊕ ai+1,j [5] ⊕ ai+1,j [6] ⊕ ai+2,j [6] ⊕ ai+3,j [6]
bij [7] = aij [6] ⊕ ai+1,j [6] ⊕ ai+1,j [7] ⊕ ai+2,j [7] ⊕ ai+3,j [7].

In our bitsliced implementation, this translates to the following computation
on the 8 128-bit state vectors:

b[0] = (a[7] ⊕ (rl32a[7])) ⊕ (rl32a[0]) ⊕ rl64(a[0] ⊕ (rl32a[0]))

b[1] = (a[0] ⊕ (rl32a[0])) ⊕ (a[7] ⊕ (rl32a[7])) ⊕ (rl32a[1]) ⊕ rl64(a[1] ⊕ (rl32a[1]))

b[2] = (a[1] ⊕ (rl32a[1])) ⊕ (rl32a[2]) ⊕ rl64(a[2] ⊕ (rl32a[2]))

b[3] = (a[2] ⊕ (rl32a[2])) ⊕ (a[7] ⊕ (rl32a[7])) ⊕ (rl32a[3]) ⊕ rl64(a[3] ⊕ (rl32a[3]))

b[4] = (a[3] ⊕ (rl32a[3])) ⊕ (a[7] ⊕ (rl32a[7])) ⊕ (rl32a[4]) ⊕ rl64(a[4] ⊕ (rl32a[4]))

b[5] = (a[4] ⊕ (rl32a[4])) ⊕ (rl32a[5]) ⊕ rl64(a[5] ⊕ (rl32a[5]))

b[6] = (a[5] ⊕ (rl32a[5])) ⊕ (rl32a[6]) ⊕ rl64(a[6] ⊕ (rl32a[6]))

b[7] = (a[6] ⊕ (rl32a[6])) ⊕ (rl32a[7]) ⊕ rl64(a[7] ⊕ (rl32a[7])).
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Abstract. We demonstrate new techniques to speed up the Rijndael
(AES) block cipher using vector permute instructions. Because these
techniques avoid data- and key-dependent branches and memory ref-
erences, they are immune to known timing attacks. This is the first
constant-time software implementation of AES which is efficient for se-
quential modes of operation. This work can be adapted to several other
primitives using the AES S-box such as the stream cipher LEX, the
block cipher Camellia and the hash function Fugue. We focus on Intel’s
SSSE3 and Motorola’s Altivec, but our techniques can be adapted to
other systems with vector permute instructions, such as the IBM Xenon
and Cell processors, the ARM Cortex series and the forthcoming AMD
“Bulldozer” core.

Keywords: AES, AltiVec, SSSE3, vector permute, composite fields,
cache-timing attacks, fast implementations.

1 Introduction

Since the 2001 selection of the Rijndael block cipher [6] as the Advanced Encryp-
tion Standard (AES), optimization of this cipher in hardware and in software
has become a topic of significant interest.

Unfortunately, fast implementations of AES in software usually depend on a
large table – 4kiB in the most common implementation – to perform the S-box
and the round mixing function. While the table’s size is problematic only on
the most resource-constrained embedded platforms, the fact that the lookups
are key- and data-dependent leads to potential vulnerabilities [2]. In an extreme
case, Osvik et al. demonstrate how to extract the key from the Linux dm-crypt
encrypted disk implementation with 65 milliseconds of measurements and 3 sec-
onds of analysis [11].

This weakness seems to be intrinsic to the Rijndael algorithm itself. Except
in bit-sliced designs, no known technique for computing the S-box is remotely
competitive with table lookups on most processors, so that constant-time imple-
mentations are many times slower than table-based ones except in parallelizable
modes of operation. Despite this issue, the Rijndael S-box’ excellent crypto-
graphic properties have led to its inclusion in other ciphers, including the LEX
stream cipher [5], the Fugue hash function [7] and the Camellia block cipher [10].

C. Clavier and K. Gaj (Eds.): CHES 2009, LNCS 5747, pp. 18–32, 2009.
c© International Association for Cryptologic Research 2009
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Several processors — including the VIA C3 and higher, the AMD Geode
LX and the forthcoming Intel “Sandy Bridge” and AMD “Bulldozer” cores —
support hardware acceleration of Rijndael. This acceleration both speeds up the
cipher and reduces its vulnerability to timing attacks. However, such hardware
accelerators are processor-specific, and may not be useful in accelerating and
protecting Fugue, Camellia or LEX.

We examine another hardware option for accelerating and protecting Rijndael:
vector units with permutation instructions, such as the PowerPC AltiVec unit
or Intel processors supporting the SSSE3 instruction set. Such units allow us
to implement small, constant-time lookups with considerable parallelism. These
vector units have attracted attention from AES implementors before: Bhaskar
et al. considered a permutation-based implementation in 2001 [4], and Osvik et
al. mention such an implementation as a possible defense against cache-based
attacks [11].

To implement the S-box, we take advantage of its algebraic structure using
composite-field arithmetic [12], that is, by writing F28 as a degree-2 field exten-
sion of F24 . This allows efficient computation of the AES S-box without a large
lookup table, and so is commonly used in hardware implementations of AES [14].
Käsper and Schwabe’s software implementation in [8] takes this approach in a
bit-sliced software implementation; this implementation holds the current PC
processor speed record of 7.08 cycles/byte on the Intel Core i7 920 (“Nehalem”)
processor. Our technique achieves fewer cycles/byte on the PowerPC G4, but
not on Intel processors.

As usual, hardware-specific optimizations are necessary to achieve optimal
performance. This paper focuses on the PowerPC G4e1 and Intel Core i7 920
“Nehalem”, but the techniques can be used in other processors. To this end, we
demonstrate techniques that are not optimal on the G4e or Nehalem, but might
be preferable on other processors.

2 Preliminaries

2.1 Notation

Because we are working with fields of characteristic 2, addition of field elements
amounts to a bitwise exclusive or. We will still write it as “+”.

Over subfields of F28 , we will write x/y for xy254, which are equal when y �= 0
because y255 = 1. This extension of ·/· adds some corner cases when dividing
by 0. We will note such corner cases as they arise, and write ≈ instead of = for
formulae which are incorrect due to these corner cases.

The most frequent remedy for division by zero will be to set an “infinity flag”.
When dividing by a number with the infinity flag set, we will return 0 instead of
the normal value. The flag is bit 4 on AltiVec and bit 7 in SSSE3, for simplicity

1 “G4e” is an unofficial designation of the PowerPC 744x and 745x G4 processors,
commonly used to distinguish them from the earlier and considerably different line
of G4 processors, the PowerPC 7400 and 7410.
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we simply set all 4 high bits. On AltiVec, use of an infinity flag requires extra
masking to prevent the high bits of the input from interfering with the flag; in
SSSE3, this masking is required anyway.

We write a||b for the concatenation of a and b.
If v is a vector, then vi is its ith component. By 〈f(i)〉15i=0, we mean the 16-

element vector whose ith element is f(i). For example, if v has 16 elements, then
v = 〈vi〉15i=0.

We number bits from the right, so that bit 0 is the 20 place, bit 1 is the 21

place, and so on.

2.2 The Galois Fields F28 and F24

AES is expressed in terms of operations on the Galois field F28 . This field is
written as

F28 ∼= F2[x]/(x8 + x4 + x3 + x + 1)

When we write a number in hexadecimal notation, we mean to use this repre-
sentation of F28 . For example, 0x63 = x6 + x5 + x + 1.

Because F28 is too large for convenient multiplication and division using Al-
tiVec, we will work with the field F24 , which we will write cyclotomically:

F24 ∼= F2[ζ]/(ζ4 + ζ3 + ζ2 + ζ + 1)

For this generator ζ, we will express F28 as

F28 ∼= F24 [t]/(t2 + t + ζ)

The obvious way to represent elements of F28 is as a + bt where a, b ∈ F24 . A
more symmetric, and for our purposes more convenient, representation is to set
t̄ := t+1 to be the other root of t2 + t+ ζ, so that t+ t̄ = 1 and tt̄ = ζ. Then we
may write elements of F28 uniquely as xt + yt̄ with x, y ∈ F24 (here y = a and
x = a + b from above). We will use these representations throughout this paper,
and they will be reflected at the bit level: our implementations will compute
with either x||y or y||(x + y), depending on timing constraints.

2.3 AltiVec and the PowerPC G4

We implemented AES on the PowerPC G4’s AltiVec SIMD architecture, specif-
ically the PowerPC 7447a G4e. We will be treating its 128-bit vectors as vectors
of 16 bytes. In addition to bytewise arithmetic instructions, this processor has a
vector permute instruction:

vperm(a, b, c) := 〈(a||b)ci mod 32〉15i=0

That is, vperm(a, b, c) replaces each element ci of c with the element of the
concatenation of a and b indexed by ci’s 5 low-order bits.

We will find two uses for vperm. The first is to permute the block for the
ShiftRows and MixColumns steps of AES. In this case, c is a fixed permutation
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Table 1. Intel SSE configurations

Core SSE units pshufb units pshufb throughput pshufb latency

Conroe 3 1 2 cycles 3 cycles
Harpertown 3 1 1 cycle 1 cycle

Nehalem 3 2 1 cycle 1 cycle

and a = b is the input block. The second use is 16 simultaneous lookups in a
32-element table, or a 16-element lookup table when a = b.

The processor can dispatch and execute any two vector instructions of dif-
ferent types2 per cycle, plus a load or store. The arithmetic operations that we
will use have a 1-cycle effective latency, and the permute operations have a 2-
cycle effective latency; both types have a 1/cycle throughput. Because we won’t
be saturating either the dispatcher or the load-store unit, loads and stores are
effectively free in moderation.

2.4 Intel SSSE3

Intel’s SSSE3 instruction set includes a weaker vector permute operation called
pshufb. It differs from vperm in three ways. First, it only implements a 16-way
shuffle, implicitly taking a = b. Second, if the highest-order bit of ci is set, then
the ith output will be 0 instead of aci mod 16. This is useful for implementing
an infinity flag. Third, its operands follow a CISC 2-operand convention: its
destination register is always the same register as a, but c can be loaded from
memory instead of from a register.

We will show benchmarks on three different Intel processors: a Core 2 Duo
L7600 “Conroe”, a Xeon E5420 “Harpertown” and a Core i7 920 “Nehalem”.
These processors have much more complicated pipelines than the G4e. All three
can execute up to 3 instructions per cycle, all of which can be SSE logical
instructions. Their shuffle units have different configurations as shown in
Table 1 [1].

2.5 Log Tables

Implementing multiplication and division with log tables is a well-known tech-
nique. However, it is not trivial to apply it in SIMD. AltiVec’s vperm instruction
only uses the low-order 5 bits of the permutation, so we must ensure that these
5 bits suffice to determine the result. Furthermore, when dividing we may wish
to distinguish between 0/1, 0/0 and 1/0 in order to implement an infinity bit.
Within these constraints, we worked out the following tables largely by trial and
error.
2 There are 4 types of vector operations: floating-point operations; simple integer op-

erations; complex integer operations such as multiplies; and permutations including
whole-vector shifts, repacks and immediate loads.
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For log tables over F24 , we set

lognum(x) =
{

log(x) + 97, x �= 0
−64 ≡ 192, x = 0 and logdenom(y) =

{
log(1/y)− 95, y �= 0

65, y = 0

For multiplication, we perform an unsigned addition with saturation, defined as
a � b := min(a + b, 255) so that

lognum(x) � lognum(y) =
{

194 + log(xy) ≡ 2 + log(xy) ∈ [2, 30], xy �= 0
255 ≡ 31, xy = 0

For division, we perform a signed addition with saturation, defined as a

�

b :=
min(max(a + b,−128), 127) so that

lognum(x)

�

logdenom(y) =

⎧⎪⎪⎨⎪⎪⎩
−128 ≡ 0, x = 0 �= y

1, x = 0 = y
2 + log(x/y) ∈ [2, 30], x �= 0 �= y

127 ≡ 31, x �= 0 = y

Because these sums’ residues mod 32 depend only on xy or x/y (and in the same
way for both), a lookup table on the output can extract xy or x/y. Furthermore,
these log tables allow us to distinguish between 0/1, 1/0 and 0/0.

2.6 Cubic Multiplication

Because pshufb operates on tables of size at most 16, it does not appear to admit
a efficient implementation of log tables. It would be desirable to multiply instead
using the “quarter-squares” identity xy = (x+y)2/4−(x−y)2/4. Unfortunately,
this identity does not work over fields of characteristic 2. We can instead set ω
to a cube root of unity (so that ω2 = ω + 1) and use an “omega-cubes” formula
such as

xy2 = ω(x + ωy)3 + ω2(ωx + y)3 + (ω2x + ω2y)3

which is not as horrible as it looks because the map (x, y) → (x+ω
√

y, ωx+
√

y)
is linear. If x and y are given in this basis, xy can be computed with 3 table
lookups and 3 xors, but transforming into and out of this basis will cost 4-6
instructions. Alternatively, the above formula can be used to compute x/y2 and
x2/y in the high and low nibbles of a single register, but the lack of room for an
infinity flag makes this strategy less useful.

On the processors we studied, cubic multiplication does not appear to be opti-
mal technique for implementing AES, but it might be useful in other algorithms.

3 Implementing Inversion

This section deals with algorithms for inverting an element xt + yt̄ of F28 .
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3.1 Classical Inversion

The simplest way to compute 1/(xt + yt̄) is to rationalize the denominator:
multiplying top and bottom by xt̄ + yt gives

1
xt + yt̄

=
xt̄ + yt

x2tt̄ + xyt2 + xyt̄2 + y2tt̄
=

xt̄ + yt

xy + (x2 + y2)ζ
=

xt̄ + yt

(
√

xy/ζ + x + y)2ζ

This last, more complicated expression is how we actually perform the computa-
tion: the multiplications are computed with log tables; the squares, square roots
and multiplications and divisions by ζ come for free. This technique requires few
operations, but it has many lookups on the critical path. Therefore it is optimal
on the G4e in parallel modes, but not in sequential modes.

3.2 Symmetric Inversion

To improve parallelism, we can rearrange the above to the near-formula:

1
xt + yt̄

≈ t

x + ζ(x + y)2/y
+

t̄

y + ζ(x + y)2/x

This formula is incorrect when x = 0 or y = 0, but this is easily fixed using an
infinity flag. Since this technique can be computed in parallel, it is faster than
classical inversion in sequential modes.

3.3 Nested Inversion

The most efficient formula that we found for Intel processors uses the fact that

1
1/x + 1/ζ(x + y)

+ y ≈ xy + ζ(x2 + y2)
(1 + ζ)x + ζy

which leads to the monstrous near-formula

1
xt + yt̄

≈ t + ζ
1

1/y+1/ζ(x+y) + x
+

t̄ + ζ
1

1/x+1/ζ(x+y) + y

Division by zero is handled by using an infinity flag, which remarkably makes this
formula correct in all cases. This technique performs comparably to symmetric
inversion on the G4e3, but much better on Intel because it does not require
multiplication.

Figure 1 compares the parallelism of nested inversion and classical inversion.
This diagram omits setup and architectural details, but is nonetheless represen-
tative: nested inversion completes faster despite having more instructions.
3 In fact, their code is almost exactly the same. Nested inversion has different (and

fewer) lookup tables, and some xors replacing adds, but its dependencies are iden-
tical. It is due entirely to momentum that our G4e implementation uses symmetric
inversion.
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Fig. 1. Nested inversion (top) has more parallelism than classical inversion (bottom)

3.4 Factored Inversion

Another approach is to separate the variables, for example:

1
xt + yt̄

≈ 1
x
· 1
t + (y/x)t̄

Once we compute log(y/x), we can compute (the log of) the right term in the
form at+bt̄ with a pair of lookups. The formula is wrong when x = 0, but we can
look up a correction for this case in parallel with the rest of the computation.
This technique combines the low latency of symmetric inversion with the high
throughput of classical inversion. However, its many different lookup tables cause
register pressure, so we prefer to use the more specialized formulas above.

3.5 Brute Force

The implementation in [4] uses a brute-force technique: a lookup in each of 8
tables of size 32 can emulate a lookup in a table of size 256. This technique is
less efficient than symmetric or nested inversion on all the processors we tested.
For example, nested inversion requires 7 lookups into 4 tables of size 16 (with
an infinity flag) and 6 xors.

4 Implementing AES

4.1 The S-Box and the Multiplication by 0x02

Every inversion algorithm described above (other than brute force) ends by
computing f(a)+g(b) for some (f, g, a, b) using two shuffles and an xor. Therefore
the S-box’s linear skew can be folded into the tables for f and g. However, the
use of infinity flags (which may force a lookup to return 0) prevents folding in the
addition. Therefore, we use tables for skew(f(a)) and skew(g(b)); we add 0x63



Accelerating AES with Vector Permute Instructions 25

to the key schedule instead. Similarly, we can multiply by 0x02 by computing
2 skew(f(a)) + 2 skew(g(b)).

On the G4e, we make another modification to accomodate classical inversion.
It happens that in the basis we use for classical inversion, skew(at) and skew(bt̄)
are functions of the low-order 4 bits of 0x2 · skew(at) and 0x2 · skew(bt̄) but not
vice-versa. As a result, we use fewer registers if we compute 0x2 · skew(at) first.

4.2 ShiftRows and MixColumns

We have three options to perform the ShiftRows step and the MixColumns
rotations.

1. We could keep AES’ natural alignment, with each column in 4 contiguous
bytes. This would allow us to use an unmodified key schedule. On the G4e,
this technique makes MixColumns fast at the expense of ShiftRows. On Intel,
both require permutations.

2. We could align each row into 4 contiguous bytes. On the G4, this makes
ShiftRows fast at the expense of MixColumns, but relieves register pressure.
On Intel, it allows the use of pshufd for MixColumns, but the lack of SIMD
rotations means that ShiftRows requires a permutation. Also, an both an
input and an output permutation are required.

3. We could use permutations for the MixColumns step. We conjugate by the
ShiftRows permutation, so we need not physically perform ShiftRows at
all. There will be a different forward and backward permutation each round,
with a period of 4 rounds. For 128- and 256-bit keys, the number of rounds
is not a multiple of 4, so this technique requires either an input or an output
permutation, but not both. (With the MixColumns technique used for classi-
cal inversion on the G4e, this method will always require an input or output
permutation.) This technique seems to be the fastest both on the G4e and
on Intel.

In any case, it is not advantageous to compute ShiftRows directly before com-
puting MixColumns, because there are at least 2 registers live at all times. If
ShiftRows is to be physically computed at all, this should be done at the be-
ginning or end of the round, when only 1 register is live.

Let rk denote a left rotation by k elements. To compute MixColumns, we
compute x := (a, b, c, d) and 0x02 · x as above. We compute

y := r1(x) + 0x02 · x = (0x02 · a + b, 0x02 · b + c, 0x02 · c + d, 0x02 · d + a)

We then compute the desired output

r1(y) + y + r3(x) = (0x02 · a + 0x03 · b + c + d, . . .)

When using classical inversion, we compute 0x02 ·x before x, so we use a similar
addition chain that rotates 0x02 · x first.
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4.3 AddRoundKey and the Modified Key Schedule

Näıvely we would add the round key either at the end of the round, or just
before the end of the round, while waiting for a MixColumns permutation to
finish executing. However, for some implementations, it is more convenient to
add the round key during the S-box. Since every implementation of the S-box
other than brute force ends with f(a)+g(b) for some (f, g, a, b), we can compute
f(a)+k′ + g(b), with the addition of k′ in parallel with the computation of g(b).
This technique is more efficient on Intel and on the original G4, while performing
the same on the G4e.

However, this trick makes the key schedule more complicated: the vector k′

will be multiplied by

M :=

⎛⎜⎜⎝
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎞⎟⎟⎠
during MixColumns. Since M is its own inverse, this means that we should set
k′ = Mk. As a result, this trick may not be desirable when very high key agility
is required.

Our key schedule also differs from the standard schedule in that keys must
be transformed into the (t, t̄) basis for F28 and rotated by the ShiftRows
permutation.

5 Parallelism and Related Optimizations

5.1 Interleaving

On the G4e, the classical inversion algorithm gives few instructions, but a high
latency. What is more, the instructions are balanced: they put an equal toll on
the simple integer and permute units. As a result, they interleave very well: we
can run 2 rounds in 24 cycles, compared to 1 round in 20 cycles using classical
inversion or 17 cycles using symmetric inversion. For modes which allow parallel
encryption, this boosts encryption speed by about 40%. Similiarly, we can inter-
leave 4 rounds in 46 cycles, which should boost encryption speed by another 4%
or so.

5.2 Byte-Slicing

A more extreme transformation is to byte-slice encryption. This technique per-
forms 16 encryptions in parallel. Instead of holding state for each of the 16 bytes
in one encryption, a vector holds state for one byte in each of the 16 different
encryptions. This allows two speedups. First, since each byte is in a separate
register, no permutations are needed for ShiftRows and MixColumns. Second,
the same key byte is added to every position of the vector. As a result, we can
simply add this key byte to the exponentiation tables each round. Of course, to
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add this byte every round would save no time at all, but if we schedule each
round’s exponentiation table ahead of time, we will save an xor instruction.

We implemented this technique on the G4e, and found two difficulties. One
is that we must split the data to be encrypted into byte-sliced form, and merge
it back into ordinary form at the end of the encryption, which costs about 1/8
cycle per byte in each direction. A second problem is that the byte-sliced round
function becomes limited by integer operations, so that saving permutations
doesn’t help. To alleviate this problem, we can replace a vsrb (element shift
right) instruction with a vsr (whole-vector shift right) instruction, which uses
the permutation unit on the G4e. In conjunction with double-triple mixing, this
optimization reduces the cipher to 9.5 cycles per main round and 6.5 cycles for
the final round.

Conveniently, Rogaway et al’s OCB mode for authenticated encryption with
associated data [13] is simpler in byte-sliced form. The offset ∆ may be stored
for each slice; then most of the multiplication by 216 – that is, shifting left by
2 bytes – consists of renumbering slice n as slice n − 2. The lowest three slices
will be a linear function of the upper two slices and the lowest slice; this can
be computed with two shifts, 8 permutations and 6 xors. This representation is
highly redundant; it is possible that a more concise representation would allow
a more efficient computation of the OCB offset ∆.

5.3 Double-Triple Mixing

Let (a, b, c, d) be the output of the S-box. Our implementation of mixing for
standard round functions computed 2a then a. For highly parallel modes, we
can do better by computing 2a and then 3a. If we let

(α, β, γ, δ) := (3a + 2b, 3b + 2c, 3c + 2d, 3d + 2a)

then the output of the mixing function is

(β + γ + δ, α + γ + δ, α + β + δ, α + β + γ)

This output is easily computed using 10 xors instead of 12. The technique we
use computes

c0 := α, c1 := α + β, c2 := α + β + γ, c3 := α + β + δ,

c4 := β + γ = c2 + c0,

c5 := α + γ + δ = c3 + c4

c6 := β + γ + δ = c1 + c5

and outputs (c6, c5, c3, c2). In addition to taking only 10 xors, this method takes
its inputs in order (α, β, γ, δ) and immediately xors something into them. These
features lead to significant savings in register usage, latency and complexity. We
suspect that the savings would be even better on Intel hardware.
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5.4 Counter-Mode Caching

Bernstein and Schwabe [3] call attention to a useful optimization in Hongjun
Wu’s eStream implementation of counter mode. Except in every 256th block,
only the last byte of the input changes. As a result, only one S-box needs to
be computed the first round. Its output affects only 4 bytes, so only 4 S-boxes
need to be computed the second round. In a 10-round, 128-bit AES encryption,
this saves about 1.7 rounds on average, or about 17% (slightly more, because
the last round is shorter). What is more, it allows us to avoid transforming the
input into byte-sliced form.

5.5 Scalar-Unit Assistance

Following [4], we considered using the G4e’s scalar unit to perform two of the
vector xors, reducing the cipher to 9 cycles per round. However, the expense of
shuttling data between the vector and scalar units nullifies any advantage from
this technique.

6 Decryption

Decryption is more difficult than encryption, because the MixColumns step is
more complicated: the coefficients are (0x0E, 0x09, 0x0D, 0x0B), which are lin-
early independent over F2. As a result, all four coefficients must be looked up
separately. This requires 4 more tables than encryption (minus one for permu-
tations, because we can use only forward permutations with this method), and
on Intel means that the lookup tables spill to memory.

7 Benchmarks

We initially tested several experimental implementations on the G4e. They in-
clude heavily optimized implementations of several modes several modes, but
are also somewhat incomplete; in particular, we did not implement encryption
of unaligned data or any sort of decryption.

After realizing that the same techniques are applicable to Intel using SSSE3,
we set out to build a practical AES library for Intel machines. However, opti-
mization on x86 processors is much more difficult than on the PowerPC, so our
library does not yet approach its theoretical maximum performance. Our Intel
library also does not yet implement as many modes or techniques, but it does
implement encryption and decryption on aligned and unaligned data.

We tested our implementation on four machines, whose specifications are
listed in Table 2.

Our byte-sliced implementations are experimental and so far incomplete. We
benchmarked each individual component of the algorithm and added together
the times. Similarly, on the G4e we benchmarked only the streaming steps of
OCB mode, not the nonce generation and finalization. These consist of one
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Table 2. Bechmark machine specifications

Machine Processor Core Speed

altacaca Motorola PowerPC G4 7447a Apollo 7 1.67 GHz
peppercorn Intel Core 2 Duo L7500 Conroe 1.60 GHz
WhisperMoon Intel Xeon E5420 Harpertown 2.50 GHz
lahmi Intel Core i7 920 Nehalem 2.67 GHz

Table 3. Encryption timings on altacaca in cycles per byte

Implementation Par Mode 128-bit key 192-bit key 256-bit key
32 512 long 32 512 long 32 512 long

Symmetric 1 ECB 11.3 10.6 10.7 14.1 12.7 12.8 17.0 14.8 14.9
1 CBC 11.3 10.8 10.8 14.1 12.9 12.9 17.0 15.0 15.1

Classical 2 ECB 8.5 7.9 7.8 11.3 9.4 9.3 11.3 10.8 10.8
2 CTR 9.4 7.9 7.9 11.3 9.4 9.3 11.3 10.8 10.8
2 OCB 19.5 8.6 7.8 25.4 10.2 9.3 25.4 12.0 10.8

Classical (sliced) 16 CTR 5.4 6.7 7.9
16 OCB 6.6 7.8 9.0

openssl speed 1 CBC 32.6 36.4 40.5

encryption each, so we have added the time required for two encryptions. We
expect that a complete implementation would be slightly more efficient due to
function call overhead.

We tested encryption and decryption on messages of size 32, 512 and 4096
bytes, with 128-, 192- and 256-bit keys.

Our classical encryption code was optimized for OCB mode; we expect that
its ECB and CTR timings could be improved by 1-2% with further tuning. Due
to cache effects, encryption of long messages is slightly slower than encryption
of short messages in some cases.

7.1 Architecture-Specific Details

Alignment. We tested with 16-byte-aligned input, output and key. Our In-
tel code supports unaligned input and output; our G4e code does not. Both
implementations require 16-byte-aligned round keys, but this is enforced by our
library. Our code currently only supports messages which are an integral number
of blocks; we are intending to change this before release.

Loop unrolling. We did not unroll the round function at all, except in the byte-
sliced case, in which we unrolled it 4 ways. Experiments showed that unrolling
was generally unnecessary for optimum performance on the G4e, and our Intel
code is still largely unoptimized.
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Table 4. Encryption timings on peppercorn in cycles per byte

Implementation Mode 128-bit key 192-bit key 256-bit key
32 512 long 32 512 long 32 512 long

Nested ECB 22.0 21.6 21.5 26.3 25.3 25.5 30.6 29.9 30.1
ECB−1 27.0 26.5 26.3 32.3 31.7 31.4 37.8 37.1 37.0
CBC 22.3 21.6 21.4 26.5 25.8 25.6 31.0 30.0 30.0
CBC−1 27.4 26.3 25.9 32.4 31.7 31.4 37.8 37.3 36.9
CTR 22.2 21.5 21.8 26.5 25.8 25.8 30.7 30.1 29.9
OCB 44.2 23.6 22.3 52.8 28.2 26.5 61.4 32.5 30.8
OCB−1 54.7 28.7 27.4 64.5 34.4 32.8 75.4 40.0 37.8

openssl speed CBC 18.8 21.4 24.1

Table 5. Encryption timings on WhisperMoon in cycles per byte

Implementation Mode 128-bit key 192-bit key 256-bit key
32 512 long 32 512 long 32 512 long

Nested ECB 11.8 11.1 11.0 13.9 13.2 13.3 16.1 15.4 15.4
ECB−1 14.7 14.3 14.4 17.7 17.0 17.1 20.4 19.9 19.9
CBC 11.6 11.1 11.2 14.3 13.3 13.5 16.1 15.4 15.8
CBC−1 14.8 14.2 14.2 17.6 17.0 17.0 20.4 20.2 20.2
CTR 11.9 11.1 11.1 14.1 13.3 13.4 16.4 15.4 15.8
OCB 23.3 12.3 11.7 27.6 14.5 13.7 31.8 17.0 16.1
OCB−1 29.4 15.4 14.6 35.0 18.5 17.5 40.9 21.5 20.4

openssl speed CBC 18.7 21.3 23.9

Table 6. Encryption timings on lahmi in cycles per byte

Implementation Mode 128-bit key 192-bit key 256-bit key
32 512 long 32 512 long 32 512 long

Nested ECB 10.3 10.0 9.9 12.4 11.9 11.9 14.8 13.9 13.9
ECB−1 12.9 12.4 12.4 15.3 15.0 15.0 18.0 17.6 17.6
CBC 10.8 10.3 10.3 12.9 12.4 12.3 14.6 14.4 14.2
CBC−1 13.0 12.6 12.5 16.1 15.1 15.2 18.2 17.8 17.8
CTR 10.4 10.0 10.0 12.4 12.0 11.9 14.2 13.9 13.9
OCB 21.4 11.1 10.5 25.5 13.2 12.5 29.5 15.3 14.5
OCB−1 26.4 13.8 13.1 31.4 16.5 15.6 36.6 19.2 18.2

openssl speed CBC 17.6 20.2 22.6
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8 Other Processors

Our techniques are applicable to the PowerPC e600 (modern, embedded G4)
with essentially no modification. Other processors have different instruction sets,
pipelines and numbers of registers, and so our techniques will require modifica-
tion for optimimum implementation.

The earlier PowerPC 7410 (original G4) can only issue 2 instructions per
cycle instead of three. Because we no longer have “free” loads and branches,
more unrolling and caching is necessary. However, the 7410’s vperm instruction
has an effective latency for only 1 cycle. After accounting for these differences,
performance should be slightly faster than on the 7447 when using symmetric
inversion, and about the same speed when using interleaved classical inversion.
As a result, the interleaved case is less desirable.

The PowerPC 970 (G5) has much higher instruction latencies than the G4,
and penalties for moving data between functional units. As a result, more paral-
lelism is required to extract reasonable performance from the G5. It is possible
that brute force is the best way to compute the S-box, due to its very high
parallelism.

The IBM Cell’s SPEs have many more registers than the G4e. Further-
more, their spu shuffle instruction differs from vperm in that it assigns a
meaning to the top 3 bits of their input, so inputs need to be masked be-
fore permuting. Furthermore, the SPEs lack a vector byte add with satura-
tion, so a different log-table technique needs to be used. For multiplication,
we suggest mapping 0 to 0x50 and nonzero x to 0x30 + log x, so that log(0 ·
0) → 0xA0 and log(0 · x) → [0x80, 0x8E], all of which code for 0x00 in the
spu shuffle instruction. We estimate that with a byte-sliced 128-bit imple-
mentation, a Cell SPU would require approximately 8 clock cycles per byte
encrypted.

The forthcoming AMD “Bulldozer” core will feature an SSE5 vector permute
instruction similar to AltiVec’s. Like the Cell’s spu shuffle, this instruction
assigns additional meaning to the 3 bits of the input field, which means that
more masking and different log tables will be needed. SSE5 has fewer registers
than AltiVec, but its ability to take arguments from memory instead of from
registers may make up for this if the latency penalty is low enough.

ARM’s NEON vector instruction set features a vector permute instruction,
but its performance is significantly worse than SSSE3 or AltiVec. Nested inver-
sion is probably the most practical technique due to its smaller tables.

9 Conclusions and Future Work

We have presented a technique for accelerating AES using vector permute units,
while simultaneously thwarting known timing- and cache-based attacks. Our
technique is the first software design to yield a fast, constant-time implementa-
tion for sequential modes of operation. Our results include some 150%
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improvement over current implementations on the G4e4. On recent x86-64 pro-
cessors, it is some 41% slower than Käsper and Schwabe’s bitsliced implementa-
tion [8], but doesn’t require a parallel mode to attain this speed.

We expect that microarchitectural optimization can improve the speed of our
code significantly. This will be a major focus of future work. We also expect that
this work can be applied to other primitives; it would be interesting to see if
Camellia, Fugue or LEX can be implemented as efficiently.
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Abstract. Multivariate Public Key Cryptosystems (MPKCs) are often
touted as future-proofing against Quantum Computers. It also has been
known for efficiency compared to “traditional” alternatives. However, this
advantage seems to erode with the increase of arithmetic resources in
modern CPUs and improved algorithms, especially with respect to El-
liptic Curve Cryptography (ECC). In this paper, we show that hard-
ware advances do not just favor ECC. Modern commodity CPUs also
have many small integer arithmetic/logic resources, embodied by SSE2
or other vector instruction sets, that are useful for MPKCs. In partic-
ular, Intel’s SSSE3 instructions can speed up both public and private
maps over prior software implementations of Rainbow-type systems up
to 4×. Furthermore, MPKCs over fields of relatively small odd prime
characteristics can exploit SSE2 instructions, supported by most mod-
ern 64-bit Intel and AMD CPUs. For example, Rainbow over F31 can
be up to 2× faster than prior implementations of similarly-sized systems
over F16. Here a key advance is in using Wiedemann (as opposed to
Gauss) solvers to invert the small linear systems in the central maps. We
explain the techniques and design choices in implementing our chosen
MPKC instances over fields such as F31, F16 and F256. We believe that
our results can easily carry over to modern FPGAs, which often contain
a large number of small multipliers, usable by odd-field MPKCs.

Keywords: multivariate public key cryptosystem (MPKC), TTS, rain-
bow, �IC, vector instructions, SSE2, SSSE3, Wiedemann.

1 Introduction

Multivariate public-key cryptosystems (MPKCs) [35, 13] is a genre of PKCs
whose public keys represent multivariate polynomials over a small field K = Fq:

P : w = (w1, w2, . . . , wn) ∈ K
n �→ z = (p1(w), p2(w), . . . , pm(w)) ∈ K

m.
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Polynomials p1, p2, . . . have (almost always) been quadratic since MPKCs came
to public notice [30]. Since this is public-key cryptography, we can let P(0) = 0.

Of course, a random P would not be invertible by the legitimate user, so
almost always P = T ◦ Q ◦ S with two affine maps S : w �→ x = MSw + cS and
T : y �→ z = MT y+cT , and an “efficiently invertible” quadratic map Q : x �→ y.
The public key then comprise the polynomials in P , while the private key is
M−1

s , cs, M−1
T , cT , plus information to determine the central map Q.

MPKCs have been touted as (a) potentially surviving future attacks using
quantum computers, and (b) faster than “traditional” competitors — in 2003,
sflash was a finalist for the NESSIE project signatures, recommended for
embedded use. We seek to evaluate whether (b) is affected by the evolution of
computer architecture. Without going into any theory, we will discuss the imple-
mention of MPKCs on today’s commodity CPUs. We will conclude that mod-
ern single-instruction-multiple-data (SIMD) units also make great cryptographic
hardware for MPKCs, making them stay competitive speed-wise.

1.1 History and Questions

Conventional wisdom used to be: “MPKCs replace arithmetic operations on large
units (e.g., 1024+-bit integers in RSA, or 160+-bit integers in ECC) by faster
operations on many small units.” But the latter means many more memory ac-
cesses. People came to realize that eventually the memory latency and bandwidth
would become the bottleneck of the performance of a microprocessor [7, 36].

The playing field is obviously changing. When MPKCs were initially proposed
[25,30], commodity CPUs computed a 32-bit integer product maybe every 15–20
cycles. When NESSIE called for primitives in 2000, x86 CPUs could compute
one 64-bit product every 3 (Athlon) to 10 (Pentium 4) cycles. The big pipelined
multiplier in an AMD Opteron today can produce one 128-bit integer product
every 2 cycles. ECC implementers quickly exploited these advances.

In stark contrast, a MOSTech 6502 CPU or an 8051 microcontroller from Intel
multiplies in F256 in a dozen instruction cycles (using three table look-ups) —
not too far removed from the latency of multiplying in F256 in modern x86.

This striking disparity came about because the number of gates available has
been doubling every 18 to 24 months (“Moore’s Law”) for the last few decades.
Compared to that, memory access speed increased at a snail’s pace. Now the
width of a typical arithmetic/logic unit is 64 bits, vector units are everywhere,
and even FPGAs have hundreds of multipliers built in. On commodity hardware,
the deck has never seemed so stacked against MPKCs or more friendly to RSA
and ECC. Indeed, ECC over F2k , the only “traditional” cryptosystem that has
been seemingly left behind by advances in chip architectures, will get a new
special struction from Intel soon — the new carryless multiplication [27].

Furthermore, we now understand attacks on MPKCs much better. In 2004,
traditional signature schemes using RSA or ECC are much slower than TTS/4
and SFLASH [1,10,37], but the latter have both been broken [17,18]. Although
TTS/7 and 3IC-p seem ok today [8], the impending doom of SHA-1 [33] will force
longer message digests and thus slower MPKCs while leaving RSA untouched.
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The obvious question is, then: Can all the extras on modern commodity CPUs
be put to use with MPKCs as well? If so, how do MPKCs compare to traditional
PKCs today, and how is that likely going to change for the future?

1.2 Our Answers and Contributions

We will show that advances in chip building also benefit MPKCs. First, vector
instructions available on many modern x86 CPUs can provide significant speed-
ups for MPKCs over binary fields. Secondly, we can derive an advantage for
MPKCs by using as the base field Fq for q equal to a small odd prime such as 31
on most of today’s x86 CPUs. This may sound somewhat counter-intuitive, since
for binary fields addition can be easily accomplished by the logical exclusive-or
(XOR) operation, while for odd prime fields, costly reductions modulo q are
unavoidable. Our reasoning and counter arguments are detailed as follows.

1. Virtually all x86 CPUs today support SSE2 instructions, which can pack
eight 16-bit integer operands in its 128-bit xmm registers and hence dispatch
eight simultaneous integer operations per cycle in a SIMD style.
– Using MPKCs with a small odd prime base field Fq (say F31, as opposed

to the usual F256 or F16) enables us to take advantage of vector hardware.
Even with an overhead of conversion between bases, schemes over F31 is
usually faster than an equivalent scheme over F16 or F256 without SSSE3.

– MPKCs over Fq can still be faster than ECC or RSA. While q can be any
prime power, it pays to tune to a small set of carefully chosen instances.
In most of our implementations, we specialize to q = 31.

2. Certain CPUs have simultaneous look-ups from a small, 16-byte table:
– all current Intel Core and Atom CPUs with SSSE3 instruction PSHUFB;
– all future AMD CPUs, with SSE5 PPERM instruction (superset of PSHUFB);
– IBM POWER derivatives — with AltiVec/VMX instruction PERMUTE.

Scalar-to-vector multiply in F16 or F256 can get around a 10× speed-up;
MPKCs like TTS and Rainbow get a 4× factor or higher speed-up.

In this work, we will demonstrate that the advances in chip architecture do not
leave MPKCs behind while improving traditional alternatives. Furthermore, we
list a set of counter-intuitive techniques we have discovered during the course of
implementing finite field arithmetic using vector instructions.

1. When solving a small and dense matrix equation in F31, iterative methods
like Wiedemann may still beat straight Gaussian elimination.

2. X �→ Xq−2 may be a fast way to component-wise invert a vector over F∗
q .

3. For big-field MPKCs, some fields (e.g., F3115) admit very fast arithmetic
representations — in such fields, inversion is again by raising to a high power.

4. It is important to manage numerical ranges to avoid overflow, for which cer-
tain instructions are unexpectedly useful. For example, the PMADDWD (packed
multiply-add word to double word) instruction, which computes from two 8-
long vectors of 16-bit signed words (x0, . . . , x7) and (y0, . . . , y7) the 4-long
vector of 32-bit signed words (x0y0 + x1y1, x2y2 + x3y3, x4y4 + x5y5, x6y6 +
x7y7), avoids many carries when evaluating a matrix-vector product (mod q).
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Finally, we reiterate that, like most implementation works such as the one by
Bogdanov et al [6], we only discuss implementation issues and do not concern
ourselves with the security of MPKCs in this paper. Those readers interested in
the security and design of MPKCs are instead referred to the MPKC book [13]
and numerous research papers in the literature.

2 Background on MPKCs

In this section, we summarize the MPKC instances that we will investigate. Using
the notation in Sec. 1, we only need to describe the central map Q (MS and MT

are square and invertible matrices, usu. resp. of dim = n and m, respectively.
To execute a private map, we replace the “minus” components if needed, invert
T , invert Q, invert S, and if needed verify a prefix/perturbation.

Most small-field MPKCs — TTS, Rainbow, oil-and-vinegar [11, 12, 17, 29]
seem to behave the same over small odd prime fields and over F2k . Big-field
MPKCs in odd-characteristic were mentioned in [35], but not much researched
until recently. In some cases e.g., �IC-derivatives, an odd-characteristic version
is inconvenient but not impossible. Most attacks on and their respective defenses
of MPKCs are fundamentally independent of the base field. Some attacks are
known or conjectured to be easier over binary fields than over small odd prime
fields [5, 19, 9, 15], but never vice versa.

2.1 Rainbow and TTS Families of Digital Signatures

Rainbow(Fq, o1, . . . , o�) is characterized as follows as a u-stage UOV [14,17].

– The segment structure is given by a sequence 0 < v1 < v2 < · · · < vu+1 = n.
For l = 1, . . . , u + 1, set Sl := {1, 2, . . . , vl} so that |Sl| = vl and S0 ⊂ S1 ⊂
· · · ⊂ Su+1 = S. Denote by ol := vl+1 − vl and Ol := Sl+1 \Sl for l = 1 · · ·u.

– The central map Q has components yv1+1 = qv1+1(x), yv1+2 = qv1+2(x), . . . ,
yn = qn(x), where yk = qk(x) =

∑vl

i=1
∑n

j=i α
(k)
ij xixj+

∑
i<vl+1

β
(k)
i xi, if k ∈

Ol := {vl + 1 · · · vl+1}.
– In every qk, where k ∈ Ol, there is no cross-term xixj where both i and j are

in Ol. So given all the yi with vl < i ≤ vl+1, and all the xj with j ≤ vl, we can
easily compute xvl+1, . . . , xvl+1 . So given y, we guess x1, . . . xv1 , recursively
solve for all xi’s to invert Q, and repeat if needed.

Ding et al. suggest Rainbow/TTS with parameters (F24 , 24, 20, 20) and (F28 , 18,
12, 12) for 280 design security [8, 17]. According to their criteria, the former
instance should not be more secure than Rainbow/TTS at (F31, 24, 20, 20) and
roughly the same as (F31, 16, 16, 8, 16). Note that in today’s terminology, TTS is
simply a Rainbow with sparse coefficients, which is faster but less understood.

2.2 Hidden Field Equation (HFE) Encryption Schemes

HFE is a “big-field” variant of MPKC. We identify L, a degree-n extension of the
base field K with (Fq)n via an implicit bijective map φ : L → (Fq)n [34]. With
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y =
∑

0≤i,j<ρ aijxqi+qj

+
∑

0≤i<ρ bixqi

+ c, we have a quadratic Q, invertible
via the Berlekamp algorithm with x,y as elements of (Fq)n.

Solving HFE directly is considered to be sub-exponential [22], and a “stan-
dard” HFE implementation for 280 security works over F2103 with degree d = 129.
We know of no timings below 100 million cycles on a modern processor like a
Core 2. Modifiers like vinegar or minus cost extra.

The following multi-variable HFE appeared in [5]. First, randomly choose a
Lh → Lh quadratic map Q(X1, ..., Xh) = (Q1(X1, ..., Xh), · · · , Qh(X1, ..., Xh))
where each Q� = Q�(X1, . . . , Xh) =

∑
1≤i≤j≤h α

(�)
ij XiXj +

∑h
j=1 β

(�)
j Xj + γ(�)

is also a randomly chosen quadratic for � = 1, . . . , h. When h is small, this Q
can be easily converted into an equation in one of the Xi using Gröbner basis
methods at degree no higher than 2h, which is good since solving univariate
equations is cubic in the degree. The problem is that the authors also showed
that these schemes are equivalent to the normal HFE and hence are equally
(in-)secure.

It was recently conjectured that for odd characteristic, Gröbner basis attacks
on HFE does not work as well [15]. Hence we try to implement multivariate HFEs
over Fq for an odd q. We will be conservative here and enforce one prefixed zero
block to block structural attacks at a q-time speed penalty.

2.3 C∗, �-Invertible Cycles (�IC) and Minus-p Schemes

C∗ is the original Matsumoto-Imai scheme [30], also a big-field variant of MPKC.
We identify a larger field L with Kn with a K-linear bijection φ : L → Kn. The
central map Q is essentially Q : x �−→ y = x1+qα

, where K = Fq. This is
invertible if gcd(1 + qα, qn − 1) = 1.

The �-Invertible Cycle (�IC) can be considered as an improved extension of
C∗ [16]. Here we use the simple case where � = 3. In 3IC we also use an inter-
mediate field L = K

k, where k = n/3. The central map is Q : (X1, X2, X3) ∈
(L∗)3 �→ (Y1, Y2, Y3) := (X1X2, X2X3, X3X1). 3IC and C∗ maps have a lot in
common [16,20,11]. To sign, we do “minus” on r variables and use s prefixes (set
one or more of the variables to zero) to defend against all known attacks against
C∗ schemes [11]. This is written as C∗−p(q, n, α, r, s) or 3IC-p(q, n, r, s). Ding et
al. recommend C∗−p(24, 74, 22, 1), also known as the “pFLASH” [11].

To invert 3IC-p over a field like F3118 , from (Y1, Y2, Y3) we do the following.
1. Compute A = Y1Y2 [1 multiplication].
2. Compute B = A−1 [1 inverse].
3. Compute C = Y3B = X−2

2 [1 multiplication].
4. Compute D = C−1 = X2

2 and ±√
C = X−1

2 [1 sqrt+inverse].
5. Multiply X−1

2 to Y1, Y2, and D [3 multiplications].

We note that for odd q, square roots are non-unique and slow.

3 Background on x86 Vector Instruction Set Extensions

The use of vector instructions to speed up MPKCs is known since the seminal
Matsumoto-Imai works, in which bit slicing is suggested for MPKCs over F2 as



38 A.I.-T. Chen et al.

a form of SIMD [30]. Berbain et al. pointed out that bit slicing can be extended
appropriately for F16 to evaluate public maps of MPKCs, as well as to run the
QUAD stream cipher [2]. Chen et al. extended this further to Gaussian elimination
in F16, to be used for TTS [8].

To our best knowledge, the only mention of more advanced vector instructions
in the MPKC literature is T. Moh’s suggestion to use AltiVec instructions (only
available then in the PowerPC G4) in his TTM cryptosystem [31]. This fell into
obscurity after TTM was cryptanalyzed [21].

In this section, we describe one of the most widely deployed vector instruction
sets, namely, the x86 SIMD extensions. The assembly language mnemonics and
code in this section are given according Intel’s naming convention, which is
supported by both gcc and Intel’s own compiler icc. We have verified that the
two compilers give similar performance results for the most part.

3.1 Integer Instructions in the SSE2 Instruction Set

SSE2 stands for Streaming SIMD Extensions 2, i.e., doing the same action on
many operands. It is supported by all Intel CPUs since the Pentium 4, all AMD
CPUs since the K8 (Opteron and Athlon 64), as well as the VIA C7/Nano CPUs.
The SSE2 instructions operate on 16 architectural 128-bit registers, called the
xmm registers. Most relevant to us are SSE2’s integer operations, which treat
xmm registers as vectors of 8-, 16-, 32- or 64-bit packed operands in Intel’s termi-
nology. The SSE2 instruction set is highly non-orthogonal. To summarize, there
are the following.

Load/Store: To and from xmm registers from memory (both aligned and un-
aligned) and traditional registers (using the lowest unit in an xmm register
and zeroing the others on a load).

Reorganize Data: Various permutations of 16- and 32-bit packed operands
(Shuffle), and Packing/Unpacking on vector data of different densities.

Logical: AND, OR, NOT, XOR; Shift (packed operands of 16, 32, and 64 bits)
Left, Right Logical and Right Arithmetic (copies the sign bit); Shift entire
xmm register byte-wise only.

Arithmetic: Add/Subtract on 8-, 16-, 32- and 64-bits; Multiply of 16-bit (high
and low word returns, signed and unsigned, and fused multiply-adds) and 32-
bit unsigned; Max/Min (signed 16-bit, unsigned 8-bit); Unsigned Averages
(8/16-bit); Sum-of-differences on 8-bits.

3.2 SSSE3 (Supplementary SSE3) Instructions

SSSE3 adds a few very useful instructions to assist with our vector programming.

PALIGNR (“packed align right”): “PALIGNR xmm (i), xmm (j), k” shifts xmm (j)
right by k bytes, and insert the k rightmost bytes of xmm (i) in the space
vacated by the shift, with the result placed in xmm (i). Can be used to rotate
an xmm register by bytes.
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PHADDx,PHSUBx H means horizontal. E.g., consider PHADDW. If destination reg-
ister xmm (i) starts out as (x0, x1, . . . , x7), the source register xmm (j) as
(y0, y1, . . . , y7), then after “PHADDW xmm (i), xmm (j)”, xmm (i) will hold:
(x0 + x1, x2 + x3, x4 + x5, x6 + x7, y0 + y1, y2 + y3, y4 + y5, y6 + y7).
From 8 vectors v0, v1, . . . , v7, after seven invocations of PHADDW, we can
obtain

(∑
j v

(0)
j ,
∑

j v
(1)
j , . . . ,

∑
j v

(7)
j

)
arranged in the right order.

PSHUFB From a source (x0, x1, . . . , x15), and destination register (y0, y1, . . . , y15),
the result at position i is xyi mod 32. Here x16 through x31 are taken to be 0.

PMULHRSW This gives the rounded higher word of the product of two signed words
in each of 8 positions. [SSE2 only has PMULHW for higher word of the product.]

The source register xmm (j) can usually be replaced by a 16-byte-aligned memory
region. The interested reader is referred to Intel’s manual for further information
on optimizing for the x86-64 architecture [26]. To our best knowledge SSE4 do
not improve the matter greatly for us, so we skip their descriptions here.

3.3 Speeding Up in F16 and F256 via PSHUFB

PSHUFB enables us to do 16 simultaneous look-ups at the same time in a table
of 16. The basic way it helps with F16 and F256 arithmetic is by speeding up
multiplication of a vector v by a scalar a.

We will use the following notation: if i, j are two bytes (in F256) or nybbles
(in F16), each representing a field element, then i ∗ j will be the byte or nybble
representing their product in the finite field.

F16, v is unpacked, 1 entry per byte: Make a table TT of 16 entries, each
128 bits, where the i-th entry contains i ∗ j in byte j. Load TT[a] into
xmm (i), and do “PSHUFB xmm (i), v”.

F16, v 2-packed per byte or F16, a 2-packed: Similar with shifts and ORs.
F256: Use two 256 × 128-bit tables, for products of any byte-value by bytes

[0x00, 0x10, ..., 0xF0], and [0x00, 0x01, ..., 0x0F]. One AND, one
shift, 2 PSHUFBs, and one OR dispatches 16 multiplications.

Solving a Matrix Equation: We can speed up Gaussian elimination a lot
on fast row operations. Note: Both SSSE3 and bit-slicing require column-first
matrices for matrix-vector multiplication and evaluating MPKCs’ public maps.

Evaluating public maps: We can do zk =
∑

i wi

[
Pik + Qikwi +

∑
i<j Rijkwj

]
.

But on modern processors it is better to compute c := [(wi)i, (wiwj)i≤j ]T , then
z as a product of a m × n(n + 3)/2 matrix (public key) and c.

In theory, it is good to bit-slice in F16 when multiplying a scalar to a vector
that is a multiple of 64 in length. Our tests show bit-slicing a F16 scalar-to-64-
long-vector to take a tiny bit less than 60 cycles on a core of a newer (45nm)
Core 2 CPU. The corresponding PSHUFB code takes close to 48 cycles. For 128-
long vectors, we can still bit-slice using xmm registers. It comes out to around
70 cycles with bit-slicing, against 60 cycles using PSHUFB. This demonstrate the
usefulness of SSSE3 since these should be optimal cases for bit-slicing.
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4 Arithmetic in Odd Prime Field Fq

4.1 Data Conversion between F2 and Fq

The first problem with MPKCs over odd prime fields is the conversion between
binary and base-q data. Suppose the public map is P : Fn

q → Fm
q . For digital

signatures, we need to have qm > 2�, where � is the length of the hash, so that
all hash digests of the appropriate size fit into Fq blocks. For encryption schemes
that pass an �-bit session key, we need qn > 2�.

Quadword (8-byte) unsigned integers in [0, 264 − 1] fit decently into 13 blocks
in F31. So to transfer 128-, 192-, and 256-bit AES keys, we need at least 26, 39,
and 52 F31 blocks, respectively.

Packing Fq-blocks into binary can be more “wasteful” in the sense that one
can use more bits than necessary, as long as the map is injective and convenient
to compute. For example, we have opted for a very simple packing strategy in
which every three F31 blocks are fit in a 16-bit word.

4.2 Basic Arithmetic Operations and Inversion Mod q

Fq operations for odd prime q uses many modulo-q. We almost always replace
slow division instructions with multiplication as follows.

Proposition 1 ( [23]). If 2n+� ≤ Md ≤ 2n+� + 2� for 2�−1 < d < 2�, then⌊
X
d

⌋
=
⌊
2−�
⌊

XM
2n

⌋⌋
=
⌊
2−�
(⌊

X(M−2n)
2n

⌋
+ X
)⌋

for 0 ≤ X < 2n.

An instruction giving “top n bits of product of n-bit integers x, y” achieves �xy
2n �

and thus can be used to implement division by multiplication. E.g.,when we take
n = 64, � = 5, and d = 31, Q =

⌊ 1
32

(⌊ 595056260442243601 x
264

⌋
+ x
)⌋

= x div 31, R =
x − 31 Q, for an unsigned integer x < 264. Note often M > 2n as here.

Inverting one element in Fq is usually via a look-up table. Often we need
to invert simultaneously many Fq elements. As described later, we vectorize
most arithmetic operations using SSE2 and hence need to store the operands in
xmm registers. Getting the operands between xmm and general-purpose registers
for table look-up is very troublesome. Instead, we can use a (q−2)-th power
(“patched inverse”) to invert a vector. For example, the following raises to the
29-th to find multiplicative inverses in F31 using 16-bit integers (short int):

y = x∗x∗x mod 31; y = x∗y∗y mod 31; y = y∗y mod 31; y = x∗y∗y mod 31.

Finally, if SSSE3 is available, inversion in a Fq for q < 16 is possible using one
PSHUFB, and for 16 < q ≤ 31 using two PSHUFB’s and some masking.

Overall, the most important optimization is avoiding unnecessary modulo op-
erations by delaying them as much as possible. To achieve this goal, we need to
carefully track operand sizes. SSE2 uses fixed 16- or 32-bit operands for most of
its integer vector operations. In general, the use of 16-bit operands, either signed
or unsigned, gives the best trade-off between modulo reduction frequency (wider
operands allow for less frequent modulo operations) and parallelism (narrower
operands allow more vector elements packed in an xmm register).
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4.3 Vectorizing Mod q Using SSE2

Using vectorized integer add, subtract, and multiply instructions provided by
SSE2, we can easily execute multiple integer arithmetic operations simultane-
ously. A problem is how to implement vectorized modulo operations (cf. Sec. 4.2).
While SSE2 does provide instructions returning the upper word of a 16-by-16-bit
product, there are no facilities for carries, and hence it is difficult to guarantee
a range of size q for a general q. It is then important to realize that we do not
always need the tightest range. Minus signs are okay, as long as the absolute
values are relatively small to avoid non-trivial modulo operations.

– If IMULHIb returns “the upper half in a signed product of two b-bit words”, y =
x− q · IMULHIb

(⌊
2b

q

⌋
,
(
x +
⌊

q−1
2

⌋))
will return a value y ≡ x (mod q) such

that |y| ≤ q for b-bit word arithmetic, where −2b−1 ≤ x ≤ 2b−1 − (q − 1)/2.
– For q = 31 and b = 16, we do better finding y ≡ x (mod 31),−16 ≤ y ≤ 15,

for any −32768 ≤ x ≤ 32752 by y = x − 31 · IMULHI16 (2114, x + 15) . Here
IMULHI16 is implemented via the Intel intrinsic of __mm_mulhi_epi16.

– For I/O in F31, the principal value between 0 and 30 is y′=y−31& (y≫15) ,
where & is the logical AND, and ≫ arithmetically shifts in the sign bit.

– When SSSE3 is available, rounding with PMULHRSW is faster.

4.4 Matrix-Vector Multiplication and Polynomial Evaluation

Core 2 and newer Intel CPUs have SSSE3 and can add horizontally within
an xmm register, c.f., Sec. 3.2. Specifically, the matrix M can be stored row-
major. Each row is multiplied component-wise to the vector v. Then PHADDW
can add horizontally and arrange the elements at the same time. Surprisingly,
this convenience only makes at most a 10% difference for q = 31.

If we are restricted to using just SSE2, then it is advisable to store M in the
column-major order and treat the matrix-to-vector product as taking a linear
combination of the column vectors. For q = 31, each 16-bit component in v is
copied eight times into every 16-bit word in an xmm register using an __mm_set1
intrinsic, which takes three data-moving (shuffle) instructions, but still avoids
the penalty for accessing the L1 cache. Finally we multiply this register into one
column of M, eight components at a time, and accumulate.

Public maps are evaluated as in Sec. 3.3, except that we may further ex-
ploit PMADDWD as mentioned in Sec. 1.2, which computes (x0y0 + x1y1, x2y2 +
x3y3, x4y4 + x5y5, x6y6 + x7y7) given (x0, . . . , x7) and (y0, . . . , y7). We inter-
leave one xmm with two monomials (32-bit load plus a single __mm_set1 call),
load a 4×2 block in another, PMADDWD, and continue in 32-bits until the eventual
reduction mod q. This way we are able to save a few mod-q operations.

The Special Case of F31: We also pack keys (c.f., Sec. 4.1) so that the
public key is roughly mn(n + 3)/3 bytes, which holds mn(n + 3)/2 F31 entries.
For F31, we avoid writing the data to memory and execute the public map on
the fly as we unpack to avoid cache contamination. It turns out that it does
not slow things down too much. Further, we can do the messier 32-bit mod-q
reduction without __mm_mulhi_epi32 via shifts as 25 = 1 mod 32.
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4.5 Solving Systems of Linear Equations

Solving systems of linear equations are involved directly with TTS and Rain-
bow, as well as indirectly in others through taking inverses. Normally, one runs
a Gaussian elimination, where elementary row operations can be sped up by
SSE2.

However, during a Gaussian elimination, one needs frequent modular reduc-
tions, which rather slows things down from the otherwise expected speed. Say
we have an augmented matrix [A|b] modulo 31 in row-major order. Let us do
elimination on the first column. Each entry in the remaining columns will now
be of size up to about 1000 (312), or 250 if representatives are between ±16.

To eliminate on the second column, we must reduce that column mod 31
before looking up the correct multipliers. Note that reducing a single column
by table look-up is no less expensive than reducing the entire matrix when the
latter is not too large due to the overhead associated with moving data in and
out of the xmm registers, so we end up reducing the entire matrix many times.

We can switch to an iterative method like Wiedemann or Lanczos. To solve
by Wiedemann an n×n system Ax = b, one computes zAib for i = 1 . . . 2n for
some given z. Then one computes the minimal polynomial from these elements
in Fq using the Berlekamp-Massey algorithm.

It looks very counter-intuitive, as a Gaussian elimination does around n3/3
field multiplications but Wiedemann takes 2n3 for a dense matrix for the matrix-
vector products, plus extra memory/time to store the partial results and run
Berlekamp-Massey. Yet in each iteration, we only need to reduce a single vector,
not a whole matrix. That is the key observation and the tests show that Wiede-
mann is significantly faster for convenient sizes and odd q. Also, Wiedemann
outperforms Lanczos because the latter fails too often.

5 Arithmetic in Fqk

In a “big-field” or “two-field” variant of MPKC, we need to handle L = Fqk
∼=

Fq[t]/ (p(t)), where p is an irreducible polynomial of degree k. It is particularly
efficient if p(t) = tk − a for a small positive a, which is possible k|(q − 1) and in
a few other cases. With a convenient p, the map X �→ Xq in L, becomes an easy
precomputable linear map over K = Fq. Multiplication, division, and inversion
all become much easier. See some example timing for such a tower field in Tab. 1.

Table 1. Cycle counts for various F3118 arithmetic operations using SSE2

Microarchitecture MULT SQUARE INV SQRT INV+SQRT
C2 (65nm) 234 194 2640 4693 6332
C2+ (45nm) 145 129 1980 3954 5244
K8 (Athlon 64) 397 312 5521 8120 11646
K10 (Phenom) 242 222 2984 5153 7170
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5.1 Multiplication and the S:M (Square:Multiply) Ratio

When Fqk
∼= Fq[t]/(tk − a), a straightforward way to multiply is to copy each

xi eight times, multiply by the correct yi’s using PMULLW, and then shift the
result by the appropriate distances using PALIGNR (if SSSE3 is available) or un-
aligned load/stores/shifts (otherwise), depending on the architecture and com-
piler. For some cases we need to tune the code. E.g., for F319 , we multiply
the x-vector by y8 and the y-vector by x8 with a convenient 8 × 8 pattern
remaining.

For very large fields, we can use Karatsuba [28] or other more advanced mul-
tiplication algorithms. E.g. F3130 := F3115 [u]/(u2 − t)F3115 = F31[t]/(t15 − 3).
Then (a1u + a0)(b1u + b0) = [(a1 + a0)(b1 + b0)− a1b1 − a0b0]u + [a1b1t + a0b0].
Similarly, we treat F3154 as F3118 [u]/(u3−t), where F3118 = F31[t]/(t18−3). Then

(a2u
2 + a1u + a0)(b2u

2 + b1u + b0) = [(a2 + a0)(b2 + b0) − a2b2 − a0b0 + a1b1] u2

+ [(a1 + a0)(b1 + b0) − a1b1 − a0b0 + ta2b2] u + [t ((a2 + a1)(b2 + b1) − a1b1 − a2b2) + a0b0] .

For ECC, often the rule-of-thumb is “S=0.8M”. Here the S:M ratio ranges from
0.75 to 0.92 for fields in the teens of F31-blocks depending on architecture.

5.2 Square and Other Roots

Today there are many ways to compute square roots in a finite field [3]. For field
sizes q = 4k + 3, it is easy to compute the square root in Fq via √

y = ±y
q+1
4 .

Here we implement the Tonelli-Shanks method for 4k + 1 field sizes, as working
with a fixed field we can include pre-computed tables with the program “for free.”
To recap, assume that we want to compute square roots in the field L, where
|L| − 1 = 2ka, with a being odd.

0. Compute a primitive solution to g2k

= 1 in L. We only need to take a
random x ∈ L and compute g = xa, and it is almost even money (i.e., x is a
non-square) that g2k−1

= −1, which means we have found a correct g. Start
with a pre-computed table of (j, gj) for 0 ≤ j < 2k.

1. We wish to compute an x such that x2 = y. First compute v = y
a−1
2 .

2. Look up in our table of 2k-th roots yv2 = ya = gj . If j is odd, then y is a
non-square. If j is even, then x = ±vyq

−j
2 because x2 = y(yv2g−j) = y.

Since we implemented mostly mod 31, for F31k taking a square root is easy when
k is odd and not very hard when k is even. For example, via fast 31k-th powers,
in F319 we take square roots by raising to the 1

4

(
319 + 1

)
-th power

i. temp1 := (((input)2)2)2, ii. temp2 :=(temp1)2∗((temp1)2)2,
iii. temp2 :=

[
temp2 ∗ ((temp2)2)2

]31
, iv.temp2 := temp2 ∗ (temp2)31,

v. result := temp1 ∗ temp2 ∗ ((temp2)31)31 ;



44 A.I.-T. Chen et al.

5.3 Multiplicative Inverse

There are several ways to do multiplicative inverses in Fqk . The classical one is an
extended Euclidean Algorithm; another is to solve a system of linear equations;
the last one is to invoke Fermat’s little theorem and raise to the power of qk −2.

For our specialized tower fields of characteristic 31, the extended Euclidean
Algorithm is slower because after one division the sparsity of the polynomial is
lost. Solving every entry in the inverse as a variable and running an elimination
is about 30% better. Even though it is counter-intuitive to compute X3115−2 to
get 1/X, it ends up fastest by a factor of 2 to 3.

Finally, we note that when we compute
√

X and 1/X as high powers at the
same time, we can share some exponentiation and save 10% of the work.

5.4 Equation Solving in an Odd-Characteristic Field L = Fqk

Cantor-Zassenhaus solves a univariate degree-d equation u(X) = 0 as follows.
The work is normally cubic in L-multiplications and quintic in (d, k, lg q) overall.

1. Replace u(X) by gcd(u(X), Xqk − X) so that u factors completely in L.
(a) Compute and tabulate Xd mod u(X), . . . , X2d−2 mod u(X).
(b) Compute Xq mod u(X) via square-and-multiply.
(c) Compute and tabulate Xqi mod u(X) for i = 2, 3, . . . , d − 1.
(d) Compute Xqi

mod u(X) for i = 2, 3, . . . , k, then Xqk

mod u(X).
2. Compute gcd

(
v(X)(q

k−1)/2 − 1, u(X)
)

for a random v(X), where deg v =
deg u−1; half of the time we find a nontrivial factor; repeat till u is factored.

6 Experiment Results

Clearly, we need to avoid too large q (too many reductions mod q) and too small
q (too large arrays). The choice of q = 31 seems the best compromise, since it
also allows us several convenient tower fields and easy packing conversions (close
to 25 = 32). This is verified empirically.

Some recent implementations of MPKCs over F2k are tested by Chen et al. [8]
We choose the following well-known schemes for comparison: HFE (an encryp-
tion scheme); pFLASH, 3IC-p, and Rainbow/TTS (all signature schemes). We
summarize the characteristics and performances, measured using SUPERCOP-
20090408 [4] on an Intel Core 2 Quad Q9550 processor running at 2.833 GHz, of
these MPKCs and their traditional competitors in Tab. 2. The current MPKCs
are over odd-characteristic fields except for pFLASH, which is over F16. The
table is divided into two regions: top for encryption schemes and bottom for
signature schemes, with the traditional competitors (1024-bit RSA and 160-bit
ECC) listed first. The results clearly indicate that MPKCs can take advantage of
the latest x86 vector instructions and hold their speeds against RSA and ECC.

Tab. 3 shows the speeds of the private maps of the MPKCs over binary vs. odd
fields on various x86 microarchitectures. As in Tab. 1, the C2 microarchitecture
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Table 2. Current MPKCs vs. traditional competitors on an Intel C2Q Q9550

Scheme Result PubKey PriKey KeyGen PubMap PriMap
RSA (1024 bits) 128 B 128 B 1024 B 27.2 ms 26.9 µs 806.1 µs
4HFE-p (31,10) 68 B 23 KB 8 KB 4.1 ms 6.8 µs 659.7 µs
3HFE-p (31,9) 67 B 7 KB 5 KB 0.8 ms 2.3 µs 60.5 µs
RSA (1024 bits) 128 B 128 B 1024 B 26.4 ms 22.4 µs 813.5 µs
ECDSA (160 bits) 40 B 40 B 60 B 0.3 ms 409.2 µs 357.8 µs
C∗-p (pFLASH) 37 B 72 KB 5 KB 28.7 ms 97.9 µs 473.6 µs
3IC-p (31,18,1) 36 B 35 KB 12 KB 4.2 ms 11.7 µs 256.2 µs
Rainbow (31,24,20,20) 43 B 57 KB 150 KB 120.4 ms 17.7 µs 70.6 µs
TTS (31,24,20,20) 43 B 57 KB 16 KB 13.7 ms 18.4 µs 14.2 µs

Table 3. MPKC private map timings in kilocycles on various x86 microarchitectures

Scheme Atom C2 C2+ K8 K10
4HFE-p (31,10) 4732 2703 2231 8059 2890
3HFE-p (31,9) 528 272 230 838 259
C∗-p (pFLASH) 7895 2400 2450 5010 3680
3IC-p (31,18,1) 2110 822 728 1550 1410
3IC-p (16,32,1) 1002 456 452 683 600
Rainbow (31,16,16,8,16) 191 62 51 101 120
Rainbow (16,24,24,20) 147 61 48 160 170
Rainbow (256,18,12,12) 65 27 22 296 211
TTS (31,24,20,20) 78 38 38 65 72
TTS (16,24,20,20) 141 61 65 104 82
TTS (256,18,12,12) 104 31 36 69 46

refers to the 65 nm Intel Core 2, C2+ the 45 nm Intel Core 2, K8 the AMD Athlon
64, and K10 the AMD Phenom processors. The results clearly indicate that even
now MPKCs in odd-characteristic fields hold their own against prior MPKCs
that are based in F2k , if not generally faster, on various x86 microarchitectures.

7 Concluding Remarks

Given the results in Sec. 6 and the recent interest into the theory of alge-
braic attacks on odd-characteristic HFE, we believe that odd-field MPKCs merit
more investigation. Furthermore, today’s FPGAs have many built-in multipli-
ers and intellectual properties (IPs), as good integer multipliers are common for
application-specific integrated circuits (ASICs). One excellent example of using
the multipliers in FPGAs for PKCs is the work of Güneysu and Paar [24]. We be-
lieve our results can easily carry over to FPGAs as well as any other specialized
hardware with a reasonable number of small multipliers. There are also a variety
of massively parallel processor architectures, such as NVIDIA, AMD/ATI, and
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Intel [32] graphics processors coming. The comparisons herein must of course be
re-evaluated with each new instruction set and new silicon implementation, but
we believe that the general trend stands on our side.
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Abstract. Most advanced security systems rely on public-key schemes
based either on the factorization or the discrete logarithm problem. Since
both problems are known to be closely related, a major breakthrough in
cryptanalysis tackling one of those problems could render a large set
of cryptosystems completely useless. The McEliece public-key scheme is
based on the alternative security assumption that decoding unknown lin-
ear binary codes is NP-complete. In this work, we investigate the efficient
implementation of the McEliece scheme on embedded systems what was
– up to date – considered a challenge due to the required storage of its
large keys. To the best of our knowledge, this is the first time that the
McEliece encryption scheme is implemented on a low-cost 8-bit AVR
microprocessor and a Xilinx Spartan-3AN FPGA.

1 Introduction

The advanced properties of public-key cryptosystems are required for many
cryptographic issues, such as key establishment between parties and digital sig-
natures. In this context, RSA, ElGamal, and later ECC have evolved as most
popular choices and build the foundation for virtually all practical security proto-
cols and implementations with requirements for public-key cryptography. How-
ever, these cryptosystems rely on two primitive security assumptions, namely the
factoring problem (FP) and the discrete logarithm problem (DLP), which are
also known to be closely related. With a significant breakthrough in cryptanal-
ysis or a major improvement of the best known attacks on these problems (i.e.,
the Number Field Sieve or Index Calculus), a large number of recently employed
cryptosystems may turn out to be insecure overnight. Already the existence of
a quantum computer that can provide computations on a few thousand qubits
would render FP and DLP-based cryptography useless. Though quantum com-
puters of that dimension have not been reported to be built yet, we already
want to encourage a larger diversification of cryptographic primitives in future
public-key systems. However, to be accepted as real alternatives to conventional
systems like RSA and ECC, such security primitives need to support efficient
implementations with a comparable level of security on recent computing plat-
forms. For example, one promising alternative are public-key schemes based on
Multivariate Quadratic (MQ) polynomials for which hardware implementations
were proposed on CHES 2008 [11].

C. Clavier and K. Gaj (Eds.): CHES 2009, LNCS 5747, pp. 49–64, 2009.
c© International Association for Cryptologic Research 2009
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In this work, we demonstrate the efficient implementation of another public-
key cryptosystem proposed by Robert J. McEliece in 1978 that is based on coding
theory [22]. The McEliece cryptosystem incorporates a linear error-correcting
code (namely a Goppa code) which is hidden as a general linear code. For Goppa
codes, fast decoding algorithms exist when the code is known, but decoding
codewords without knowledge of the coding scheme is proven NP-complete [5].
Contrary to DLP and FP-based systems, this makes this scheme also suitable
for post-quantum era since it will remain unbroken when appropriately chosen
security parameters are used [8].

The vast majority1 of today’s computing platforms are embedded systems.
Only a few years ago, most of these devices could only provide a few hundred
bytes of RAM and ROM which was a tight restriction for application (and secu-
rity) designers. Thus, the McEliece scheme was regarded impracticable on such
small and embedded systems due to the large size of the private and public keys.
But nowadays, recent families of microcontrollers provide several hundreds of
bytes of Flash-ROM. Moreover, recent off-the-shelf hardware such as FPGAs
also contain dedicated memory blocks and Flash memories that support on-chip
storage of up to a few megabits of data. In particular, these memories can be
used to store the keys of the McEliece cryptosystem.

In this work, we present first implementations of the McEliece cryptosystem
on a popular 8-bit AVR microcontroller, namely the ATxMega192, and a Xilinx
Spartan-3AN 1400 FPGA which are both suitable for many embedded system
applications. To the best of our knowledge, no implementations for the McEliece
scheme have been proposed targeting embedded platforms. Fundamental oper-
ations for McEliece are based on encoding and decoding binary linear codes in
binary extension fields that, in particular, can be implemented very efficiently
in dedicated hardware. Unlike FP and DLP-based cryptosystems, operations on
binary codes do not require computationally expensive multi-precision integer
arithmetic what is beneficial for small computing platforms.

This paper is structured as follows: we start with a brief introduction to
McEliece encryption and shortly explain necessary operations on Goppa codes.
In Section 4, we discuss requirements and strategies to implement McEliece on
memory-constrained embedded devices. Section 5 and Section 6 describe our
actual implementations for an AVR 8-bit microprocessor and a Xilinx Spartan-
3AN FPGA. Finally, we present our results for these platforms in Section 7.

2 Previous Work

Although invented already more than 30 years ago, the McEliece encryption
scheme has never gained much attention due to its large keys and thus has not
been implemented in many products. The most recent implementation of the
McEliece scheme is due to Biswas and Sendrier [10] and presented a slightly
modified version for PCs that achieves about 83 bit security (taken the attack in
1 Already in 2002, 98% of 32-bit microprocessors in world-wide production were inte-

grated in embedded platforms.
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Algorithm 1. McEliece Message Encryption
Input: m, Kpub = (Ĝ, t)
Output: Ciphertext c
1: Encode the message m as a binary string of length k
2: c‘ ← m · Ĝ
3: Generate a random n-bit error vector z containing at most t ones
4: c = c‘ + z
5: return c

Algorithm 2. McEliece Message Decryption
Input: c, Ksec = (P−1, G, S−1)
Output: Plaintext m
1: ĉ ← c · P−1

2: Use a decoding algorithm for the code C to decode ĉ to m̂ = m · S
3: m ← m̂ · S−1

4: return m

[8] into account). Comparing their implementation to other public key schemes,
it turns out that McEliece encryption can even be faster than that of RSA and
NTRU [7]. In addition to that, only few further McEliece software implemen-
tations have been published up to now and they were all designed for 32 bit
architectures [25,26]. The more recent implementation [26] is available only as
uncommented C-source code and was nevertheless used for the open-source P2P
software Freenet and Entropy [15].

Hardware implementations of the original McEliece cryptosystem do not exist,
except for a proof-of-concept McEliece-based signature scheme that was designed
for a Xilinx Virtex-E FPGA [9]. Hence, we here present the first FPGA-based
hardware and 8-bit software implementation of the McEliece public-key encryp-
tion scheme up to date.

3 Background on the McEliece Cryptosystem

The McEliece scheme is a public key cryptosystem based on linear error-correcting
codes. The secret key is the generator matrix G of an error-correcting code with
dimension k, length n and error correcting capability t. To create a public key,
McEliece defined a random k × k-dimensional scrambling matrix S and n × n-
dimensional permutation matrix P disguising the structure of the code by com-
puting the product Ĝ = S × G × P . Using the public key Kpub = (Ĝ, t) and
private key Ksec = (P−1, G, S−1), encryption and decryption algorithms can be
given by Algorithm 1 and Algorithm 2, respectively.

Note that Algorithm 1 only consists of a simple matrix multiplication with the
input message and then distributes t random errors on the resulting code word.
Thus, the generation of random error vectors requires an appropriate random
number generator to be available on the target platform.
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Decoding the ciphertext c for decryption as shown in Algorithm 2 is the
most time-consuming process and requires several more complex operations in
binary extension fields. In Section 3.1 we briefly introduce the required steps for
decoding codewords that we need to implement on embedded systems.

As mentioned in the introduction, the main caveat against the McEliece cryp-
tosystem is the significant size of the public and private key. The choice of even
a minimal set of security parameters (m = 10, n = 1024, t = 38, k ≥ 644)
according to [23] already translates to a size of 80.5 kByte for the public key
and at least 53 kByte for the private key (without any optimizations). However,
this setup only provides the comparable security of a 60bit symmetric cipher.
For appropriate 80bit security, even larger keys, for example the parameters
m = 11, n = 2048, t = 27, k ≥ 1751, are required (more details in Section 3.2).

Many optimizations (cf. Section 4.2) of the original McEliece scheme focus
on size reduction of the public key, since the public-key has to be distributed.
Hence, a size reduction of Kpub is directly beneficial for all parties. However,
the situation is different when implementing McEliece on embedded platforms:
note that the private key must be kept secret at all times and thus should be
stored in a protected location on the device (that may be used in a potentially
untrustworthy environment). An effective approach for secret key protection is
the use of secure on-chip key memories that would require (with appropriate
security features such as prohibited memory readback) invasive attacks on the
chip to reveal the key. However, secure storage of key bits usually prove costly
in hardware so that effective strategies are required to reduce the size of the
private key to keep costs low. Addressing this issue, we demonstrate for the first
time how to use on-the-fly generation of the large scrambling matrix S−1 for the
McEliece instead of storing it in memory as in previous implementations. More
details on the reduction of the key size are given in Section 4.2.

3.1 Classical Goppa Codes

Theorem 1. Let G(z) be an irreducible polynomial of degree t over GF (2m).
Then the set

Γ (G(z), GF (2m)) = {(cα)α∈GF (2m) ∈ {0, 1}n |
∑

α∈GF (2m)

cα

z − α
≡ 0} (1)

defines a binary Goppa code C of length n = 2m, dimension k ≥ n − mt and
minimum distance d ≥ 2t+1. The set of the cα is called the support of the code.
A fast decoding algorithm exists with a runtime of n · t.

For each irreducible polynomial G(z) over GF (2m) of degree t exists a binary
Goppa code of length n = 2m and dimension k = n − mt. This code is capable
of correcting up to t errors [4] and can be described as a k× n generator matrix
G such that C = {mG : m ∈ F k

2 } .
To encode a message m into a codeword c, represent the message m as a

binary string of length k and multiply it with the k × n matrix G.
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However, decoding such a codeword r on the receiver’s side with a (possibly)
additive error vector e is far more complex. For decoding, we use Patterson’s
algorithm [24] with improvements from [29].

Since r = c + e ≡ e mod G(z) holds, the syndrome Syn(z) of a received
codeword can be obtained from Equation (1) by

Syn(z) =
∑

α∈GF (2m)

rα

z − α
≡
∑

α∈GF (2m)

eα

z − α
mod G(z) (2)

To finally recover e, we need to solve the key equation σ(z) · Syn(z) ≡ ω(z)
mod G(z), where σ(z) denotes a corresponding error-locator polynomial and
ω(z) denotes an error-weight polynomial. Note that it can be shown that ω(z) =
σ(z)′ is the formal derivative of the error-locator and by splitting σ(z) into even
and odd polynomial parts σ(z) = a(z)2 + z · b(z)2, we finally determine the
following equation which needs to be solved to determine error positions:

Syn(z)(a(z)2 + z · b(z)2) ≡ b(z)2 mod G(z) (3)

To solve Equation (3) for a given codeword r, the following steps have to be
performed:

1. From the received codeword r compute the syndrome Syn(z) according to
Equation (2). This can also be done using simple table-lookups.

2. Compute an inverse polynomial T (z) with T (z) · Syn(z) ≡ 1 mod G(z)
(or provide a corresponding table). It follows that (T (z) + z)b(z)2 ≡ a(z)2

mod G(z).
3. There is a simple case if T (z) = z ⇒ a(z) = 0 s.t. b(z)2 ≡ z · b(z)2 · Syn(z)

mod G(z) ⇒ 1 ≡ z · Syn(z) mod G(z) what directly leads to σ(z) = z.
Contrary, if T (z) �= z, compute a square root R(z) for the given polynomial
R(z)2 ≡ T (z) + z mod G(z). Based on a observation by Huber [19] we can
then determine solutions a(z), b(z) satisfying

a(z) = b(z) · R(z) mod G(z). (4)

Algorithm 3. Decoding Goppa Codes
Input: Received codeword r with up to t errors, inverse generator matrix iG
Output: Recovered message m̂
1: Compute syndrome Syn(z) for codeword r
2: T (z) ← Syn(z)−1 mod G(z)
3: if T (z) = z then
4: σ(z) ← z
5: else
6: R(z) ←√T (z) + z
7: Compute a(z) and b(z) with a(z) ≡ b(z) · R(z) mod G(z)
8: σ(z) ← a(z)2 + z · b(z)2

9: end if
10: Determine roots of σ(z) and correct errors in r which results in r̂
11: m̂ ← r̂ · iG {Map rcor to m̂}
12: return m̂
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Finally, we use the identified a(z), b(z) to construct the error-locator poly-
nomial σ(z) = a(z)2 + z · b(z)2.

4. The roots of σ(z) denote the positions of error bits. If σ(αi) ≡ 0 mod G(z)
with αi being the corresponding bit of a generator in GF (211), there was
an error in the position i in the received codeword that can be corrected by
bit-flipping.

This decoding process, as required in Step 2 of Algorithm 2 for message decryp-
tion, is finally summarized in Algorithm 3.

3.2 Security Parameters

All security parameters for cryptosystems are chosen in a way to provide suf-
ficient protection against the best known attack (whereas the notion of “suffi-
cient” is determined by the requirements of an application). A recent paper [8]
by Bernstein et al. presents a state-of-the-art attack of McEliece making use of
a list decoding algorithm [6] for binary Goppa codes.

This attack reduces the binary work factor to break the original McEliece
scheme with a (1024, 524) Goppa code and t = 50 to 260.55 bit operations.
According to [8], Table 1 summarizes the security parameters for specific security
levels.

4 Design Criteria for Embedded Systems

In this section, we discuss our assumptions, requirements and restrictions which
are required when implementing the original McEliece cryptosystem on small,
embedded systems. Target platforms for our investigation are 8-bit AVR mi-
croprocessors as well as low-cost Xilinx Spartan-3AN FPGAs. Some devices
of these platforms come with large integrated Flash-RAMs (e.g., 192kByte
and 2,112kByte for an AVR ATxMega192 and Spartan-3AN XC3S1400AN,
respectively).

4.1 Requirements and Assumptions

For many embedded systems such as prepaid phones or micropayment systems,
the short life cycle or comparably low value of the enclosed product often does

Table 1. Security of the McEliece scheme

Security Level Parameters Size Kpub Size Ksec

(n, k, t), errors added in KBits (G(z), P, S) in KBits

Short-term (60 bit) (1024, 644, 38), 38 644 (0.38, 10, 405)
Mid-term (80 bit) (2048, 1751, 27), 27 3, 502 (0.30, 22, 2994)
Long-term (256 bit) (6624, 5129, 115), 117 33, 178 (1.47, 104, 25690)
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not demand for very long-term security, Hence, mid-term security parameters for
public-key cryptosystems providing a comparable security to 64-80 key bits of
symmetric ciphers are often regarded sufficient (and help reducing system costs).
Hence, our implementations are designed for security parameters that correspond
to an 80bit key size of a symmetric cipher. A second important design requirement
is the processing and storage of the private key solely on-chip so that all secrets
are optimally never used outside the device. With appropriate countermeasures
to prevent data extraction from on-chip memories, an attacker can then recover
the private key only by sophisticated invasive attacks. For this purpose, AVR µCs
provide a lock-bit feature to enable write and read/write protection of the Flash
memory [2]. Similar mechanisms are also available for Spartan-3AN FPGAs pre-
venting configuration and Flash readback from chip internals, e.g., using JTAG or
ICAP interfaces [27]. Note that larger security parameters of the McEliece scheme
are still likely to conflict with this requirement due to the limited amount of per-
manent on-chip memories of today’s embedded platforms.

Analyzing McEliece encryption and decryption algorithms (cf. Section 3.1),
the following arithmetic components are required supporting computations in
GF (2m): a multiplier, a squaring unit, calculation of square roots, and an in-
verter. Furthermore, a binary matrix multiplier for encryption and a permuta-
tion element for step 2 in Algorithm 1 are needed. Many arithmetic operations
in McEliece can be replaced by table lookups to significantly accelerate com-
putations at the cost of additional memory. For both implementations in this
work, our primary goal is area and memory efficiency to fit the large keys and
required lookup-tables into the limited on-chip memories of our embedded target
platforms.

The susceptibility of the McEliece cryptosystem to side channel attacks has
not extensively been studied, yet. However, embedded systems can always be
subject to passive attacks such as timing analysis [20] and power/EM anal-
ysis [21]. In [28], a successful timing attack on the Patterson algorithm was
demonstrated. The attack does not recover the key, but reveals the error vector
z and hence allows for efficient decryption of the message c. Our implementations
are not susceptible to this attack due to unconditional instruction execution, e.g.,
our implementation will not terminate after a certain number of errors have been
corrected. Differential EM/power attacks and timing attacks are impeded by the
permutation and scrambling operations (P and S) obfuscating all internal states,
and finally, the large key size. Yet template-like attacks [12] might be feasible if
no further protection is applied.

4.2 Reducing Memory Requirements

To make McEliece-based cryptosystems more practical (i.e., to reduce the key
sizes), there is an ongoing research to replace the code with one that can be
represented in a more compact way.

Using a näıve approach in which the support of the code is the set of all
elements in GF (2m) in lexicographical order and both matrices S, P are totally
random, the public key Ĝ = S×G×P becomes a random n×k matrix. However,
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since P is a sparse permutation matrix with only a single 1 in each row and
column, it is more efficient to store only the positions of the ones, resulting in
an array with n ·m bits.

Another trick to reduce the public key size is to convert Ĝ to systematic form
{Ik | Q}, where Ik is the k × k identity matrix. Then, only the (k × (n − k))
matrix Q is published [14].

In the last step of code decoding (Algorithm 3), the k message bits out of
the n (corrected) ciphertext bits need to be extracted. Usually, this is done by a
mapping matrix iG with G× iG = Ik. But if G is in systematic form, then this
step can be omitted, since the first k bits of the corrected ciphertext corresponds
to the message bits. Unfortunately, G and Ĝ cannot both be systematic at the
same time, since then Ĝ = {Ik | Q̂} = S × {Ik | Q} × P and S would be the
identity matrix which is inappropriate for use as the secret key.

For reduction of the secret key size, we chose to generate the large scrambling
matrix S−1 on-the-fly using a cryptographic pseudo random number generator
(CPRNG) and a seed. During key generation, it must be ensured that the seed
does not generate a singular matrix S−1. Depending on the target platform and
available cryptographic accelerators, there are different options to implement
such a CPRNG (e.g. AES in counter mode or a hash-based PRNG) on embedded
platforms. However, the secrecy of S−1 is not required for hiding the secret
polynomial G(z) [14].

5 Implementation on AVR Microprocessors

In this section, we discuss our implementation of the McEliece cryptosystem
for 8-bit AVR microcontrollers, a popular family of 8-bit RISC microcontrollers
(µC) used in embedded systems. The Atmel AVR processors operate at clock
frequencies of up to 32MHz, provide few kBytes of SRAM, up to hundreds of
kBytes of Flash program memory, and additional EEPROM or mask ROM.
For our design, we chose an ATxMega192A1 µC due to its 16 kBytes of SRAM
and the integrated crypto accelerator engine for DES and AES [2]. The crypto
accelerator is particularly useful for a fast implementation of a CPRNG that
generates the scrambling matrix S−1 on-the-fly. Arithmetic operations in the
underlying field GF (211) can be performed efficiently with a combination of
polynomial and exponential representation. We store the coefficients of a value
a ∈ GF (211) in memory using a polynomial basis with natural order. Given an
a = a10α

10+a9α
9+a8α

8+· · ·+a0α
0, the coefficient ai ∈ GF (2) is determined by

bit i of an unsigned 16bit integer where bit 0 denotes the least significant bit. In
this representation, addition is fast just by performing an exclusive-or operation
on 2×2 registers. For more complex operations, such as multiplication, squaring,
inversion and root extraction, an exponential representation is more suitable.
Since every element except zero in GF (211) can be written as a power of some
primitive element α, all elements in the finite field can also be represented by αi

with i ∈ Z2m−1. Multiplication and squaring can then be performed by adding
the exponents of the factors over Z2m−1 such as
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c = a · b = αi · αj = αi+j | a, b ∈ GF (211), 0 ≤ i, j ≤ 2m − 2. (5)

If one of the elements equals zero, obviously the result is zero. The inverse of a
value d ∈ GF (211) in exponential representation d = αi can be obtained from
a single subtraction in the exponent d−1 = α211−1−i with a subsequent table-
lookup. Root extraction, i.e., given a value a = αi to determine r = ai/2 is
simple, when i is even and can be performed by a simple right shift on index i.
For odd values of i, m − 1 = 10 left shifts followed by a reduction with 211 − 1
determine the square root.

To allow for efficient conversion between the two representations, we employ
two precomputed tables (so called log and antilog tables) that enable fast conver-
sion between polynomial and exponential representation. Each table consists of
2048 11-bit values that are stored as a pair of two bytes in the program memory.
Hence, each lookup table consumes 4 kBytes of Flash memory. Due to frequent
access, we copy the tables into the faster SRAM at startup time. Accessing the
table directly from Flash memory significantly reduces performance, but allows
migration to a (slightly) cheaper device with only 4 kBytes of SRAM. For multi-
plication, squaring, inversion, and root extraction, the operands are transformed
on-the-fly to exponential representation and reverted to the polynomial basis
after finishing the operation.

5.1 Generation and Storage of Matrices

All matrices as shown in Table 2 are precomputed and stored in Flash memory
of the µC. We store the permutation matrix P−1 as an array of 2048 16-bit un-
signed integers containing 11-bit indices. Matrix G is written in transposed form
to simplify multiplications (i.e., all columns are stored as consecutive words in
memory for straightforward index calculations). Additionally, arrays for the sup-
port of the code, its reverse mapping, and the precomputed inverse polynomials
(in the order as they correspond to the ciphertext bits) reside in Flash memory
as well. Since the scrambling matrix S−1 is too large to be stored in program
memory, we opted to generate it on-the-fly from an 80-bit seed, employing the
integrated DES-accelerator engine of the ATxMega as a CPRNG.

Encryption is a straightforward binary matrix-vector multiplication and does
not require field arithmetic in GF (211). However, the large public-key matrix
Kpub does not fit into the 192kByte internal Flash memory. Hence, at least
512kByte external memory are required for storing the public key Ĝ. Note that
the ATxMega can access external memories at the same speed as internal SRAM.

Table 2 shows the requirements of precomputed tables separated by actual size
and required size in memory including the necessary 16-bit address alignment
and/or padding.

5.2 System and Compiler Limitations

Due to the large demand for memory, we need to take care of some peculiarities
in the memory management of the AVR microcontroller. Since originally AVR
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Table 2. Sizes of tables and values in memory including overhead for address alignment

Use Name Actual Size Size in Memory

Encryption Public Key Ĝ 448,256 byte 448,512 byte

Decryption Private Key S−1 (IV only) 10 byte 10 byte
Decryption Private Key P−1 array 2,816 byte 4,096 byte

Decoding Syndrome table 76,032 byte 110,592 byte
Decoding Goppa polynomial 309 bits 56 byte
Decoding ω-polynomial 297 bits 54 byte
Decoding Log table 22,528 bits 4,096 byte
Decoding Antilog table 22,528 bits 4,096 byte

microcontrollers supported only a small amount of internal memory, the AVR
uses 16bit pointers to access its Flash memory. Additionally, each Flash cell
comprises 16bit of data, but the µC itself can only handle 8 bit. Hence, one
bit of this address pointer must be reserved to select the corresponding byte in
the retrieved word, reducing the maximal address range to 64KByte (or 32K
16bit words). To address memory segments beyond 64K, additional RAMP-
registers need to be used. Additionally, the used avr-gcc compiler internally
treats pointers as signed 16bit integer halving again the addressable memory
space. For this reason, all arrays larger than 32Kbyte need to be split into
multiple parts resulting in an additional overhead in the program code.

6 Implementation on Xilinx FPGAs

Since our target device is a low-cost Spartan-3 with moderate logic resources, we
only parallelized and unrolled the most time consuming parts of the algorithms
such as the polynomial multiplier and inverter. Alike the AVR implementa-
tion, we decided to implement less intensive operations of the field arithmetic
(i.e., inversion, division, squaring and square roots for single field elements over
GF (211)) using precomputed log- and antilog tables which are stored in dedi-
cated memory components (BRAM) of the FPGA (cf. Section 5.1). With such
precomputed tables being available, the number of computational units in hard-
ware can be reduced what also affects the number of required Lookup-Tables
(LUT) in the Configurable Logic Blocks (CLB) of the FPGA. However, note
that only 32 BRAMs are available on the Spartan-3AN 1400 FPGA (which is
the largest, low-cost device of its class). This limits the option to have more than
one instance of each table for allowing parallel access (besides using the dual-
port feature of the BRAM). Hence, lookups to these tables need to be serialized
in most cases. Since the runtime of polynomial multiplication and polynomial
squaring is crucial for the overall system performance (cf. Steps 7 and 8 of Algo-
rithm 3), we opted for a parallel polynomial multiplier instead of using the log
and antilog tables as well. The polynomial multiplier consists of 27 coefficient
multipliers over GF (211) (the topmost coefficient is treated separately) of which
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each coefficient multiplication is realized as logic directly in LUTs by linear com-
bination of the input bits and the field polynomial. Hence, the multiplication of a
polynomial B with a coefficient a (i.e., C = a ·B | a ∈ GF (211), B, C ∈ F [z]

G(z) ) can
be performed in a single clock cycle. All field operations, such as root extraction,
division, and inversion can be completed in 6 clock cycles using log and antilog
tables, of which two clock cycles are for the conversion to exponential representa-
tion, two are required for the corresponding operation and additional two cycles
for the reverse translation. Note that for several subsequent field computations
the conversion can be interleaved with the arithmetic operation so that only 4
cycles for each subsequent operations are required.

The remaining, time-critical component is the polynomial inverter which is
used in step 1 and step 2 of Algorithm 3, for example to compute the parity
check matrix H on-the-fly. An average of 1024 inverses need to be computed
for which we implemented the binary Extended Euclidean Algorithm (EEA)
over GF (211) in hardware. Note that each cycle of the polynomial EEA requires
exactly one coefficient division (which is realized again using the log and antilog
tables). In conclusion, the EEA is the largest component in our design (about
64%) and thus also comprises the critical path of the implementation. For the
generation of the inverse scrambling matrix S−1 on the FPGA, we implemented
a CPRNG based on the 80-bit low-footprint block cipher PRESENT. Note that
as an alternative, we store the large static table S−1 in the in-system Flash
memory of the FPGA. However, due to limitations of the serial SPI-Interface
we only can access a single bit of S−1 at a maximum frequency of 50MHz that
significantly degrades our decryption performance.

This limitation also applies to the public-key matrix Ĝ which is required for
the encoding process during encryption. Since this matrix is too large to fit into
the 32 18 kBit BRAMs of our Spartan-3AN device, we need to store it in Flash
memory. To avoid a performance penalty due to the slow SPI interface to the
Flash, we could first load Kpub into an external DDR2-333 memory at system
startup which then can be accessed via a fast memory controller to retrieve Kpub

for encryption. With such undamped access to Kpub, we could gain a performance
speedup for encryption by a factor of 62 (1.15 ms) with respect to loading Kpub

directly from Flash (71.44 ms). We successfully verified this approach by testing
our implementation on a test board providing external SRAM (however, no
DDR2 memory). The interface between SRAM and FPGA is realized as 16 bit
bus, clocked at 100MHz and two clock cycles access time per read.

Due to the limited logic on our FPGA, we thus opted for an individual device
configuration for encryption and decryption, of which one can be selected during
system startup. Both configurations can be stored within the large, internal Flash
memory of the FPGA. Using the multi-boot features of Spartan-3 devices, the
corresponding configuration can also be loaded by the FSM (using the internal
SPI-interface) during runtime whenever switching between encryption and de-
cryption is necessary. The McEliece implementation (decryption configuration)
for the Spartan-3AN FPGA is depicted in Figure 1.
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Fig. 1. McEliece implementation on a Spartan-3AN FPGA

7 Results

We now present the results for our two McEliece implementations providing
80bit security (n = 2048, k = 1751, t = 27) for the AVR 8-bit microcontroller
and the Xilinx Spartan-3AN FPGA. We report performance figures for the
ATxMega192A1 obtained from the avr-gcc compiler v4.3.2 and a Xilinx Spartan-
3AN XC3S1400AN-5 FPGA using Xilinx ISE 10.1. The resource requirements
for our µC design and FPGA implementation after place-and-route (PAR) are
shown in Table 3.

Table 4 summarizes the clock cycles needed for every part of the de- and
encryption routines both for the FPGA and the microcontroller implementation.

In our FPGA design, the CPRNG to generate S−1 based on the PRESENT
block cipher turns out to be a bottleneck of our implementation since the ma-
trix generation does not meet the performance of the matrix multiplication.
By replacing the CPRNG by a more efficient solution, we can untap the full

Table 3. Implementation results of the McEliece scheme with n = 2048, k = 1751, t =
27 on the AVR ATxMega192 µC and Spartan-3AN XC3S1400AN-5 FPGA after PAR

Resource Encryption Decryption Available

µ
C

SRAM 512 Byte 12 kByte 16 kByte
Flash Memory 684 Byte 130.4 kByte 192 kByte
External Memory 438 kByte − −

F
P
G

A

Slices 668 (6%) 11,218 (100%) 11,264
LUTs 1044 (5%) 22,034(98%) 22,528
FFs 804 (4%) 8,977 (40%) 22,528
BRAMs 3 (9%) 20 (63%) 32
Flash Memory 4,644 KBits 4,644 KBits 16,896 Kbits



MicroEliece: McEliece for Embedded Devices 61

Table 4. Performance of McEliece implementations with n = 2048, k = 1751, t = 27
on the AVR ATxMega192 µC and Spartan-3AN XC3S1400AN-5 FPGA

Aspect ATxMega192 µC Spartan-3AN 1400

E
n
cr

yp
t. Maximum frequency 32MHz 150 MHz

Encrypt c‘ = m · Ĝ 14,404,944 cycles (7,889,200)161,480 cycles
Inject errors c = c‘ + z 1,136 cycles 398 cycles

D
ec

ry
p
ti
o
n

Maximum frequency 32MHz 85 MHz

Undo permutation c · P−1 275,835 cycles combined with Syn(z)
Determine Syn(z) 1,412,514 cycles 360,184 cycles
Compute T = Syn(z)−1 1,164,402 cycles 625 cycles
Compute

√
T + z 286,573 cycles 487 cycles

Solve Equation (4) with EEA 318,082 cycles 312 cycles
Correct errors 15,096,704 cycles 312,328 cycles
Undo scrambling m̂ · S−1 1,196,984 cycles 1,035,684/217,800* cycles

* This figure is an estimate assuming that an ideal PRNG for generation of S−1

would be available.

Table 5. Comparison of our McEliece designs with single-core ECC and RSA imple-
mentations for 80 bit security

Method Platform Time Throughput
ms/op bits/sec

8
-b

it
µ
C

McEliece encryption ATxMega192@32MHz 450 3,889
McEliece decryption ATxMega192@32MHz 618 2,835

ECC-P160 (SECG) [17] ATMega128@8MHz 810/2031 197/7881

RSA-1024 216 + 1 [17] ATMega128@8MHz 430/1081 2,381/9,5241

RSA-1024 random [17] ATMega128@8MHz 10,990/27481 93/3731

F
P
G

A

McEliece encryption A Spartan-3AN 1400-5 1.072 1,626,5172

McEliece encryption B Spartan-3AN 1400-5 2.243 779,9483

McEliece decryption Spartan-3AN 1400-5 21.61/10.824 81,023/161,8294

ECC-P160 [16] Spartan-3 1000-4 5.1 31,200

RSA-1024 random [18] Spartan-3E 1500-5 51 20,275

NTRU encryption [3] Virtex 1000EFG860 0.005 50,876,908
1 For a fair comparison with our implementations running at 32MHz, timings at lower

frequencies were scaled accordingly.
2 These are estimates are based on the usage of an external DDR-RAM.
3 These are measurements based on our test setup with external SRAM running at

100MHz.
4 These are estimates assuming that an ideal PRNG to generate S−1 is used.
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performance of our implementation. Table 4 also gives estimates for a PRNG
that does not incur any wait cycles due to throughput limitations.

The public-key cryptosystems RSA-1024 and ECC-P160 are assumed2 to
roughly achieve a similar margin of 80bit symmetric security [1]. We finally
compare our results to published implementations of these systems that target
similar platforms (i.e., AVR ATMega µC and Xilinx Spartan-3 FPGAs). Note
that the figures for ECC are obtained from the ECDSA signature scheme.

Embedded implementations of other alternative public key encryption schemes
are very rare. The proprietary encryption scheme NTRUEncrypt has received
some attention. An encryption-only hardware engine of NTRUEncrypt-251-128-3
for more advanced Xilinx Virtex platform has been presented in [3]. An embed-
ded software implementation of the related NTRUSign performs one signature
on an ATMega128L clocked at 7,37MHz in 619ms [13]. However, comparable
performance figures of NTRU encryption and decryption for the AVR platform
are not available.

Note that all throughput figures are based on the number of plaintext bits pro-
cessed by each system and do not take any message expansion in the ciphertext
into account.

8 Conclusions

In this paper, we described the first implementations of the McEliece public-
key scheme for embedded systems using an AVR µC and a Xilinx Spartan-3AN
FPGA. Our performance results for McEliece providing 80bit security on these
systems exceed the throughput but could not outperform comparable ECC cryp-
tosystems with 160 bit in terms of number of operations per second. However,
although our implementations still leave room for further optimizations, our
results already show better performance than RSA-1024 on the selected plat-
forms. Thus, we believe with growing memories in embedded systems, ongoing
research and further optimizations, McEliece can evolve to a suitable and quan-
tum computer-resistant alternative to RSA and ECC that have been extensively
studied for years.
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Abstract. As computing devices become ever more pervasive, two con-
tradictory trends are appearing. On one hand computing elements are
becoming small, disseminated and unsupervised. On the other hand, the
cost of security breaches is increasing as we place more responsibility on
the devices that surround us. The result of these trends is that physical
attacks present an increasing risk that must be dealt with.

Physical Unclonable Functions (PUFs) are a tamper resistant way
of establishing shared secrets with a physical device. They rely on the
inevitable manufacturing variations between devices to produce an iden-
tity for a device. This identity is unclonable, and in some cases is even
manufacturer resistant (i.e., it is impossible to produce devices that have
the same identity).

We describe a few applications of PUFs, including authentication of
individual integrated circuits such as FPGAs and RFIDs, and the pro-
duction of certificates that guarantee that a particular piece of software
was executed on a trusted chip.

We present the design and implementation of two PUF-enabled de-
vices that have been built: a low-cost secure RFID that can be used
in anti-counterfeiting and other authentication applications, and a se-
cure processor capable of performing certified execution and higher-level
cryptographic functions.

The PUF-enabled RFID uses a simple challenge-response protocol for
authentication that shifts complexity to the reader or server and therefore
only requires a small number of transistors on the device side. The PUF-
enabled processor generates its public/private key pair on power-up so
its private key is never left exposed in (on-chip or off-chip) non-volatile
storage. It is capable of a broad range of cryptographic functionality,
including certified execution of programs.
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Abstract. In this paper, we show a very efficient side channel attack
against HMAC. Our attack assumes the presence of a side channel that
reveals the Hamming distance of some registers. After a profiling phase
in which the adversary has access to a device and can configure it, the
attack recovers the secret key by monitoring a single execution of HMAC-
SHA-1. The secret key can be recovered using a "template attack" with a
computation of about 2323κ compression functions, where κ is the num-
ber of 32-bit words of the key. Finally, we show that our attack can also
be used to break the secrecy of network protocols usually implemented
on embedded devices.

We have performed experiments using a NIOS processor executed on a
Field Programmable Gate Array (FPGA) to confirm the leakage model.
We hope that our results shed some light on the requirements in term of
side channel attack for the future SHA-3 function.

1 Introduction

HMAC is a hash-based message authentication code proposed by Bellare, Canetti
and Krawczyk in 1996 [3]. It is very interesting to study for at least three reasons:
HMAC is standardized (by ANSI, IETF, ISO and NIST) and widely deployed
(e.g. SSL, TLS, SSH, IPsec); HMAC has security proofs [2,3]; and it is a rather
simple construction. It is used in a lot of Internet standards. For instance em-
bedded devices running IPsec protocols [16] have to implement it. There are
many such efficient equipments on the market from router vendors that incor-
porate security protocols on their systems. It is crucial to study the security of
such implementations since Virtual Private Network (VPN) products are widely
deployed and used to secure important networks.

Recently, new attacks on HMAC based on Wang et al. [31,29,30,28] collision
attacks have emerged. However, either their complexity is very high, or they
attack a function no more widely used in practice such as HMAC-MD4, or the
security model is not really practical such as the related key model [6,24,8]. Here,
we focus on more practical attacks on HMAC. We show that when HMAC is

C. Clavier and K. Gaj (Eds.): CHES 2009, LNCS 5747, pp. 66–80, 2009.
c© International Association for Cryptologic Research 2009
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implemented on embedded devices, and the attacker has access to the physical
device to use a side channel, then there exist devastating attacks. These kind
of attacks do not rely on previous collision attacks and can be applied on many
hash functions, such as MD5 or SHA-2 for instance. Even though side channel
attacks are believed to be very intrusive techniques, we show that our attack can
be mounted using little contact with the targeted device.

We choose to illustrate our attack with HMAC since it is used in a lot of
Internet standards. Beyond the integrity attacks, the side channel attack we de-
scribe, can be used to attack the confidentiality of other Internet standards such
as the Layer Two Tunneling Protocol (L2TP [27]) or to attack the key deriva-
tion of IPsec in the Internet Key Exchange (IKE [13]) protocol. Our attack can
also be applied on a famous side channel countermeasure, proposed by Kocher
in [18] which is to derive a specific key for each call to the cryptographic appli-
cation. This kind of protection is very efficient against classical DPA techniques
and makes previous attacks infeasible. However our attack allows to recover the
master key after listening to only two derivation processes.

1.1 Description of SHA-1

All the computations in SHA-1 are made on 32-bit words. We use � to denote
the modular addition, and X≪n to denote the bit-wise rotation of X by n bits.
SHA-1 is an iterated hash function following the Merkle-Damgård paradigm.
The message is padded and cut into blocks of k bits (with k = 512 for SHA-1),
and the digest is computed by iterating a compression function, starting with
an initial value IV.

The compression function of SHA-1 is an unbalanced Feistel ladder with an
internal state of five 32-bit registers A, B, C, D, E. The compression function
has two inputs: a chaining value which is used as the initial value of the internal
registers A−1, B−1, C−1, D−1; and a message block cut into 16 message words
M0...M15. The message is expanded into 80 words W0...W79, such that Wi = Mi

for i < 16. Then we iterate 80 steps, where each step updates one of the registers.
Each step uses one word Wi of the expanded message. If we use Ai, Bi, Ci, Di, Ei

to denote the value of the registers after the step i, the compression function of
SHA-1 can be described by:

Step update: Ai+1 = Φi � A≪5
i � Wi � Ei � Ki

: Φi = fi(Bi, Ci, Di)
: Bi+1 = Ai Ci+1 = B≪30

i Di+1 = Ci Ei+1 = Di

Input: A−1 ‖ B−1 ‖ C−1 ‖ D−1 ‖ E−1
Output: A−1 � A79 ‖B−1 � B79 ‖C−1 � C79 ‖D−1 � D79 ‖E−1 � E79

1.2 Description of HMAC

HMAC is a hash-based message authentication code proposed by Bellare, Canetti
and Krawczyk [3]. Let H be an iterated Merkle-Damgård hash function. HMAC is
defined by

HMACk(M) = H(k̄ ⊕ opad ||H(k̄ ⊕ ipad ||M)),
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where M is the message, k is the secret key, k̄ its completion to a single block
of the hash function, ipad and opad are two fixed one-block values.

The security of HMAC is based on that of NMAC. Since H is assumed to be
based on the Merkle-Damgård paradigm, we denote by Hk the modification of
H where the public IV is replaced by the secret key k. Then NMAC with secret
key (k1, k2) is defined by:

NMACk1,k2(M) = Hk1(Hk2(M)).

We call k2 the inner key, and k1 the outer key. Due to the iterative structure of
H , HMACk is essentially equivalent to NMACH(k̄⊕opad),H(k̄⊕ipad).

Any key-recovery attack against NMAC can be used to recover an equivalent
inner key H(k̄⊕ ipad) and an equivalent outer key H(k̄ ⊕ opad) in HMAC. This
information is equivalent to the key of HMAC, since it is sufficient to compute
any MAC. Most previous attacks against HMAC are of this kind, but our attack
is different: we will use a side channel during the computation of H(k̄ ⊕ ipad)
and H(k̄⊕opad) to recover information about the key k. Thus our attack cannot
be used against NMAC.

1.3 Related Work on Side Channel Attacks

Since there is no efficient and practical attacks against HMAC, it is interesting
to study the security of this function against side channel attacks. Similarly,
Kelsey et al. have studied the security of block ciphers using different leakage
models [15,14].

A classical side channel attack on HMAC has been proposed without exper-
iments by Lemke et al. in 2005 using a Differential Power Analysis [19] in [20].
They show that a forgery attack can be mounted by performing a multi-bit DPA
since SHA-1 manipulates 32-bit registers. This attack allows to recover the inner
and outer keys of HMAC, but does not allow to retrieve the initial key. Note
that other DPA attacks are reported on HMAC based on other hash functions
such as [22,10,21]. But none of them allow to retrieve the initial key value as the
message is not directly mixed with the initial key but only with the derivated
subkeys.

To our knowledge, no Template Attacks (TA) [5,25] have never been applied
on HMAC. This is mainly due to the fact that the manipulated registers are 32
bits long which make classical templates attacks infeasible.

1.4 Our Results

The aim of this paper is two-fold. On the one hand, we assume that we have a
side channel that leaks the number of flipped bits when a value is loaded from
the memory to a register. We show that this side channel is sufficient to recover
the secret key used in HMAC. On the other hand, we show that this side channel
is available in practice. A similar attack can also be used against other standards
or against key derivation process.
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Our attack is quite different from previous side-channel attacks: we do not
require knowledge of the message being signed, and we only need to measure
one execution of HMAC. Thus some classical countermeasures against DPA will
not affect our attack.

In our attack model, the adversary can profile the device during a first offline
stage. This assumption is classical, and is used in template attacks. It seems
reasonable since the adversary can buy and test its own device. During this pro-
filing phase, the adversary generates curves when loading data from the memory
to a register with all the possible Hamming distances. Then, in a second online
stage, he has access to the targeted device during one execution of the imple-
mentation. During this phase, according to the recorded values, the Hamming
distance can be learned using a single matching between the curves. Finally,
all theses Hamming distances give some information about the key, and we can
combine them to recover the key, even though the secret-dependent variables are
not totally independent. The simulation of the attack has been experimentally
tested to show that we are able to recover the secret key in practice and to show
that the scale can be generated.

Our attack is based on two important facts. First, the key of HMAC is used
as a message in the hash function. The message is processed word by word, as
opposed to the IV which is used all at once, so we can extract information that
depends on only one word of the key. Second, we have two related computations
that leak information on the key. Note that it is important to have two different
values of W0: if HMAC were defined with k|| opad and k|| ipad, the two series of
measures in the first step would be exactly the same, and we would not have
enough information for a practical attack.

The main difference between our attack and classical template attacks is that
we do not consider the value of a register but its Hamming weight. This presents
the advantage to limit the number of profiling (only 33 records are needed instead
of 232 for 32-bit registers) even if it gives less information. If the targeted register
is manipulated a sufficient number of time, then we can combine the partial
information we have recovered to find the entire value of the initial register. To
sum up, this attack can be viewed as a combination of template attacks and
classical power consumption model. Classical template attacks usually separate
keys according to words or substrings of words. To our knowlegde and even if
it seems natural, it is the first time that a template attack is based on power
consumption models.

1.5 Organization of the Paper

In section 2, we describe SHA-1 and we present how our attack works. In sec-
tion 3, we give experimental results on a real implementation on the NIOS pro-
cessor embedded in a FPGA Altera Stratix. Finally, in section 4, we show that
our HMAC attack can be applied to other hash functions such as MD5 and
SHA2. We also show how a similar attack can be used against other construc-
tions: it can break the confidentiality of the L2TP protocol and can recover the
key materials of the IPsec protocol by attacking the key derivation function.
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2 Description of the Attack

2.1 SHA-1 Message Leak

In SHA-1, the message is introduced word by word, as opposed to the IV which
is introduced all at once. This means that the values manipulated during the
first rounds of SHA-1 depend only on the first message words. For instance, the
internal value A1 depends only on the IV and on m0. The value A1 is also used as
B2 and after a rotation as C3, D4 and E5. Each time this value is manipulated,
there will be some leakage depending only on m0. If we can model this leakage,
we will be able to recover m0: for all possible values of m0, we simulate the leak,
and we keep the values that give a good prediction. The full message recovery
algorithm is given by Algorithm 1.

Algorithm 1. Recovery of n message words
1: Profiling Stage
2: Study the device and model the leakage

3: Operational Stage
4: Get side-channel information from one run of the hash function

5: Message recovery
6: S ← {IV} � S is the candidate set
7: for 0 ≤ i < n do
8: S ′ ← ∅
9: for all s ∈ S do

10: for all mi ∈ Z232 do
11: Simulate the leak for (s,mi)
12: if it matches the measure then
13: S ′ ← S ′ ∪ (s, mi)
14: end if
15: end for
16: end for
17: S ← S ′

18: end for

The complexity of the message recovery depends on the size of the set of good
candidatesS: each iteration of the loop in line 7costs 232|S|. If we have γ candidates
matching each measure, the set S will be of size γi after iteration i, and the total
cost of the algorithm to recover n message words is about 232γn. The value of γ will
depend of the number of information leaked through the side channel.

2.2 HMAC Key Leak

If we look at HMAC, we see that the secret key is used as a message for the
hash function, so we can use the message leak in SHA-1 to recover the key of
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HMAC-SHA-1. Note that this does not apply to NMAC, where the key is used
as the initialization vector.

In fact, the secret key is used twice in the HMAC construction: it is used
in the inner hash function as H(k̄ ⊕ ipad) and in the outer hash function as
H(k̄ ⊕ opad). We can collect side-channel information from those two related
messages, which gives two sets of measures for the same key. This property is
crucial for our attack: with only one set of measures, we would have too many
candidates in the set S.

We will now study an implementation of SHA-1 on the NIOS processor to
check whether this leakage is sufficient to identify the secret key.

2.3 Modelization of the Attack

The side channel we will use in our practical experiments is a measure of the
electromagnetic radiation (see Section 3). We model it as follows: each time
the processor loads a data into a register, the electromagnetic signal depends on
the number of flipped bits inside this register.

More precisely, we target the ldw instruction (load word), which loads data
from the memory to a register. Since this instruction does not perform any
computation, we expect the EM signal to be quite clean, and we should be able
to read the number of flipped bits. When a value B is loaded into a register
whose previous value was A, we have a transition A → B, and we can measure
the Hamming weight of A⊕B.

2.4 Study of an Implementation of SHA-1

For our experiments, we used the code of XySSL1 which is an SSL library de-
signed for embedded processor. The compiled code for the round function of
SHA-1 is given in Table 1 in Appendix A, together with the values leaked from
the ldw instructions.

Using this implementation of SHA-1, we have 6 measures at each step of the
compression function, which gives 12 measures per key word of HMAC-SHA-1.
The Hamming weight of a 32-bit value contains 3.54 bits of entropy, so we
expect to have a small number of candidates for each key word. Note that the
measures are clearly not independent, which makes it difficult to compute the
number of expected candidates. Therefore, we ran some simulations to estimate
the complexity of the attack.

2.5 Simulations

To estimate the complexity of the attack, we can run the message recovery
step for some initial states. For a given state (Ai, Bi, Ci, Di, Ei), we consider
the 232 values of the message word Wi, and we compute the Hamming weight
of the measures given in Table 1. We can count the number of collisions in

1 Available at http://xyssl.org/code/

http://xyssl.org/code/
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Fig. 1. Distribution of the number of candidates γ, for the first message word W0

the measures, which will give the distribution of the number of candidates γ
matching the measure.

More precisely for the first message word W0, we know exactly the constants
involved in the measures: they are given in Table 1, and we will use them with
W0 = k0⊕ ipad and W0 = k0⊕opad. The distribution is given in Figure 1. It has
an average of 2.79 and a worst case value of 81. Experiments with random initial
state instead of the specified IV of SHA-1 give similar results (this simulates the
recovery of the other message words). Moreover, if we allow one of the measures
to be wrong with a difference of one, then we have 4.60 candidates on average,
and 140 in the worst case. This means that we can tolerate some errors in the
measures, without affecting too much the computation time.

In the end, we will assume that the measures give about three candidates at
each step. We expect that the recovery of a 32κ-bit HMAC key will use a set S of
size about 3κ, and the complexity of the attack will be about 232×3κ which will
take a few hours on a PC for a 128-bit key. To identify the correct key among
the set S, we can either use a known MAC, or use some leakage in the following
steps of the compression function.

3 Experimental Validation on a Known Implementation
of HMAC-SHA1

Our side channel attack recovers the message input of the compression function
if we can measure the number of bits flipped when loading from the memory
to a register with the ldw instruction. We experimentally validated this as-
sumption using an implementation of HMAC-SHA1 for a NIOS processor, on
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an Altera Stratix FPGA. The electromagnetic radiations are measured by near
field methods using a loop probe sensitive to the horizontal magnetic field. We
assume that the assembly code of is known, and we first study the implementa-
tion of the HMAC-SHA1 algorithm. Then, we focus on the leakage of the load
instruction.

Electromagnetic radiation signals are now considered as one of the most pow-
erful side channel signals [9,1,23]. One advantage of the EM side channel is that
is possible to focus on local emanations.

3.1 Leakage of HMAC-SHA1 Implementation

The Figure 2 shows the radiations measured during the computation of HMAC-
SHA1 with a 128-bit key and a 504-bit message M . We can clearly see the 5
executions of the compression function. A sharp analysis of this leakage needs
to be done in order to find out some more useful information. During the exper-
iments, we focus on the load instruction (referred as ldw by Stratix Assembly
Language) but other instructions could also give information about the Ham-
ming weight of the data used during the execution of SHA-1.

3.2 The Leakage of the ldw Instruction

The analysis in Section 2 shows that information leak from this instruction will
be sufficient to recover the secret key. The goal of this section is to validate

0 1ms 2ms

Fig. 2. HMAC-SHA1 Electromagnetic Execution. We see the three calls of the compres-
sion function to compute h = H(k̄⊕ ipad‖M) and two calls to compute H(k̄⊕opad ‖h).
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Fig. 3. Extremal Hamming Distances

that the Hamming distance between the mnemonic operands manipulated by
the instruction ldw leak with electromagnetic radiations. As an example, if the
register R, which value was A, is loaded with the new value B, we claim the
Hamming distance between A and B leaks with the electromagnetic radiations.

For validation, we precharged the register R to A = 0xae8ceac8, Altera
Stratix being a 32-bit register technology. Then two experiments have been per-
formed: in the first one, we use B1 = A = 0xae8ceac8 and in the second one,
we use B2 = Ā = 0x51731537. These two experiments are opposite regarding
the Hamming distance: H(A⊕B1) = 0 while H(A⊕B2) = 32. Fig. 3 illustrates
this link between radiations and Hamming distance.

We must now check if the measures allow to distinguish a small difference
in the Hamming weight, and if they are masked by the noise. For a success-
ful attack, we need to be able to distinguish a Hamming distance of 15 from
a Hamming distance of 16 since on average the frequency of this Hamming
distance is larger than the extremal values. To verify this, we used pairs of
values with those Hamming distance. Fig. 4 shows the results with the follow-
ing pairs: (0x00000000, 0xe0f00ff0), (0x55555555, 0x85a55aa5), (0x00000000,
0xffff0000), (0xffffffff, 0x0f0f0ff0), (0xaaaaaaaa, 0x00050000). We see
that the curve depends on the Hamming distance between the two values, and
not on the actual value of the register. Moreover, the noise level is sufficiently
low in our setting to be able to distinguish a difference of one in the Hamming
distance. These curves have been obtained by zooming on figure 3.
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0 1ns 2ns 3ns

∆w = 15 and A = 0x00000000
∆w = 15 and A = 0x55555555
∆w = 16 and A = 0x00000000
∆w = 16 and A = 0xFFFFFFFF
∆w = 18 and A = 0xAAAAAAAA

Fig. 4. Electromagnetic radiations for some Hamming distances

Thus, the Side Channel Analysis procedure can be done in two stages, a profil-
ing stage and an operational stage. 33 measures of load instructions with all the
possible Hamming distance are done during the profiling stage. This will allow us
to find the Hamming distance of all ldw instructions for the operational stage. The
profiling stage will also be used to study the timing of the SHA-1 computation, so
as to match each instruction with the assembly code. Then, the operational stage
consists in a Template Attack [5] on the ldw instructions. Following the attack of
Section 2, we expect to recover a secret key of κ words with only one HMAC mea-
sure and a workload of about 2323κ steps of the compressions function.

4 Extension to Other Hash Functions and to Other Usage

In this section, we show that the basic attack we proposed can be extended to
other hash functions, works even though the code is unknown and can also be
used to recover encryption keys in other protocols.

4.1 Other Hash Function of the MD4 Family

The other functions of the MD4 family (MD5, SHA-2, RIPEMD) have a very
similar design and the message words also enter the compression function one
by one. The assembly code of a specific implementation should be studied to
see how many load instructions are used and what information is leaked, but
we expect the attack to be just as efficient. Basically, our attack should work
against any hash function based on a Feistel ladder.
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4.2 Unknown Implementation

Even if we don’t have access to the assembly code of the implementation, our
attack is still applicable. The main difference with the previous analysis is that
previous value of the targeted register Ainit is unknown. Anyway, the attacker
can improve the profiling stage. Indeed, he can guess the value of Ainit with Cor-
relation Power Analysis(CPA) [4], making the secret key varying. Let’s remark
that instead of making a 32 bits CPA, the attacker can do 4 CPA, each one on
8 bits. This procedure permits to limit the computational cost of the profiling
stage. Then, thanks to this CPA procedure, the attacker can guess what was a
register value before the secret key bits are written on it. Furthermore, the CPA
peak permits to localize in time the load instruction.

With all these templates obtain at a very low computational cost, the attacker
will be able with only one curve (if the noise is as low as in our setting) to retrieve
the full key.

4.3 Other Attack Scenarios

In this section we identify some other construction where our attack can recover
a secret key. The basic requirement is that the secret key is used as the message
input of the hash function, and we need two related computations where the key
enters the hash function in two different states.

Confidentiality: The L2TP Example. The L2TP protocol [27] is a tunneling
protocol used to implement VPNs. It uses a shared secret K, and two known
values RV and AV . The plaintext is broken into 16-byte chunks, p1, p2, . . . The
ciphertext blocks are called c1, c2, . . . and the intermediate values b1, b2, . . . are
computed as follows:

b1 = MD5(AV ‖K‖RV ) c1 = p1 ⊕ b1
b2 = MD5(K‖c1) c2 = p2 ⊕ b2
b3 = MD5(K‖c2) c3 = p3 ⊕ b3 . . .

The secret key K enters the hash function in two different states for the com-
putation of b1 and b2, so we can apply our attack and recover the key.

Key Derivation. Key derivation is sometimes used as a countermeasure against
DPA attacks. The key derivation process described in [17], uses a hash function
H , a master key K and a counter ctr, and computes the sessions keys as SK =
H(ctr‖K). Using our attack, if we observe only two key derivation process, we
have enough information to recover the master key K.

Note About RIPEMD. The RIPEMD family of hash function uses two paral-
lel Feistel ladder, and combines the results in the end of the compression function.
This allows us to recover two series of measures, even if the secret key enters
the hash function only once. The original function RIPEMD-0 uses two lines
with the same permutation and different constants, which gives enough infor-
mation for our attack. Thus, any construction which uses a secret key as a part
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of a message to be hashed with RIPEMD-0 is vulnerable. The newer functions
RIPEMD-128 and RIPEMD-160 uses different permutations of the message in
the two lines; our attack can reduce the key-space but we don’t have a practical
key recovery with a single hash function call.

4.4 Possible Countermeasure

A possible countermeasure against our attack is to keep the internal state of
SHA-1 inside the processor registers. Our attack uses the fact that the internal
state is stored in the stack and moved in and out the registers: we measure the
radiations during this movement. If all the computations are done inside
the registers, we can still measure the radiations during the computations, but
the signal will have more noise. Another solution is to load random values be-
tween each ldw instruction or to use classical masking methods but this requires
a random generator and may downgrade the performance drastically.

5 Conclusion

In this paper, we show that the electromagnetic radiation of a device can leak
the number of flipped bits when data is loaded into a register. This information
could also be observed using a proper current power analysis. However, EM signal
allows to obtain emanations of local instructions and attacks are not intrusive
since they can be performed in the near field of the device and do not require
to modify the circuitry. Our experimentation studies the ldw instruction since
it is easier to characterize during the profiling stage, but the attack could be
improved by using other instructions. Our attack targets the message input of
the compression function, while previous attacks only considered the IV input.
This allows us to attack other standards and to recover crucial information such
as the master key in some key-derivation schemes.

Finally, these results give some information about the efficiency of side channel
attack on hash functions implemented on embedded processors. It is important
to see that the adversary model is very limited: access to a similar device for a
profiling stage and then one execution leads to an efficient key recovery.
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A SHA-1 Code

Table 1. SHA-1 code. The table shows the code for one step of the compression
function. The other steps are exactly the same, excepted that the mapping between
the internal state values A,B, C, D, E and the stack changes at each round.

Stack Registers Measure
Instruction 76 80 84 88 92 r2 r3 r4

Begin step 0 A0 B0 C0 D0 E0 X0 Y0 Z0

ldw r2 76(fp) A0 X0→A0

roli r4, r2, 5 A≪5
0

ldw r3, 84(fp) C0 Y0→C0

ldw r2, 88(fp) D0 A0→D0

xor r3, r3, r2 C0 ⊕ D0

ldw r2, 80(fp) B0 D0→B0

and r3, r3, r2 (C0 ⊕ D0) ∧ B0

ldw r2, 88(fp) D0 B0→D0

xor r2, r3, r2 Φ0

add r3, r4, r2 Φ0 � A≪5
0

ldw r2, 12(fp) W0 Φ0→W0

add r3, r3, r2 Φ0 � A≪5
0 � W0

ldw r2, 92(fp) E0 W0→E0

add r3, r3, r2 Φ0 � A≪5
0 � W0 � E0

movhi r2, 23170 0x5a820000
addi r2, r2, 31129 0x5a827999
add r2, r3, r2 A1

stw r2, 92(fp) A1

ldw r2, 80(fp) B0 A1→B0

roli r2, r2, 30 B≪30
0

stw r2, 80(fp) C1

Begin step 1 B1 C1 D1 E1 A1 X1 Y1 Z1

ldw r2, 92(fp) A1 X1→A1

...

We have the following relations:

Φi = fi(Bi, Ci, Di)

Bi+1 = Ai

Ci+1 = B≪30
i

Di+1 = Ci

Ei+1 = Di

Ai+1 = Φi � A≪5
i � Wi � Ei � Ki

Xi+1 = B≪30
i

Yi+1 = Φi � A≪5
i � Wi � Ei

Zi+1 = A≪5
i

We can make 8 measures per step, but this gives
only 6 informations leaks, because the transitions
Di+1 → Bi+1 and Bi+1 → Di+1 leaks the same in-
formation as Xi → Ai.
For instance, the leaks related to W0 are:

Φ0 → W0 W0 ⊕ 0x98badcfe

W0 → E0 W0 ⊕ 0xc3d2e1f0

A1 → B0 (W0 � 0x9fb498b3) ⊕ 0xefcdab89

X1 → A1 (W0 � 0x9fb498b3) ⊕ 0x7bf36ae2

Y1 → C1 (W0 � 0x45321f1a) ⊕ 0x7bf36ae2

A1 → D1 (W0 � 0x9fb498b3) ⊕ 0x98badcfe
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Abstract. The use of random permutation tables as a side-channel at-
tack countermeasure was recently proposed by Coron [5]. The counter-
measure operates by ensuring that during the execution of an algorithm,
each intermediate variable that is handled is in a permuted form de-
scribed by the random permutation tables. In this paper, we examine the
application of this countermeasure to the AES algorithm as described
in [5], and show that certain operations admit first-order side-channel
leakage. New side-channel attacks are developed to exploit these flaws,
using correlation-based and mutual information-based methods. The at-
tacks have been verified in simulation, and in practice on a smart card.
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1 Introduction

When a cryptographic algorithm is implemented in hardware or embedded soft-
ware, information may be leaked about the intermediate variables being pro-
cessed by the device. The class of implementation attacks called Side-Channel
Attacks (SCA) aims to exploit these leakages, and recover secret information
[11]. Masking is one of the most popular SCA countermeasures, used to protect
sensitive variables (i.e. variables whose statistical distribution is dependent on
the secret key) [4]. Masking has been well studied, and has been shown to be
effective against a number of types SCA [2,4], but remains ineffective in stronger
attack models (e.g. Higher-Order SCA [13]).

Recently, Coron presented the permutation tables countermeasure, as an al-
ternative to masking [5]. The new proposal can be viewed as a generalization
of the classical approach, where masking is no longer performed through a ran-
dom translation, but through a random permutation. Like classical masking, the
permutation tables countermeasure also requires a random bit string, which is
used at the start of the cryptographic algorithm to generate a permutation P .
In the case of an encryption algorithm, P is then applied to both the message x
to be encrypted and the secret key k, producing P (x) and P (k) respectively. It
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is these permuted variables that are used by the encryption algorithm. At each
stage of the algorithm, the cryptographic operations must be modified so that
all of the intermediate variables remain in the permuted form described by P .
If the countermeasure is applied correctly, the intermediate variables should all
have a uniform distribution independent of sensitive variables, thereby preclud-
ing side-channel attacks that rely on statistical dependency of the intermediate
variables with the secret key.

In this paper, we examine the application of the permutation tables counter-
measure to AES, as described by [5]. We show that certain sensitive intermediate
variables in this algorithm are, in fact, not uniformly distributed, and therefore
leak side-channel information about the secret key. However, because of the na-
ture of the permutation tables countermeasure, it is not possible to exploit these
flaws with classical approaches (such as those used in [6,7,9]). In fact, the main
issue is to exhibit a sound prediction function to correlate with the leakages in
correlation-based SCA (e.g. Correlation Power Analysis (CPA) [3]). After mod-
eling the side-channel leakage, we use the method proposed in [17] to exhibit
a new prediction function for the permuted sensitive variables. An analytical
expression for the optimal prediction function is derived, which, for the correct
key hypothesis, maximises the correlation with leakage measurements from the
algorithm.

Furthermore, since the flawed intermediate variables do not have a monotonic
dependency with the sensitive variables, we consider SCA attacks involving dis-
tinguishers able to exploit non-monotonic interdependencies. We investigate how
Mutual Information Analysis (MIA) [8,16] can be applied in order to exploit the
flaws, and compare it with the correlation-based approach. Both of these new
attacks are performed both in simulation and in practice on a smart card, and
are successful at breaking the countermeasure described in [5].

2 Preliminaries

2.1 Mathematical Background and Notation

We use calligraphic letters, like X , to denote finite sets (e.g. Fn
2 ). The corre-

sponding capital letter X is used to denote a random variable over X , while the
lowercase letter x denotes a particular element from X . The probability of the
event (X = x) is denoted p [X = x]. The uniform probability distribution over a
set X is denoted by U(X ), and the Gaussian probability distribution with mean
µ and standard deviation σ is denoted by N (µ, σ2). The mean of X is denoted
by E [X ] and its standard deviation by σ[X ]. The correlation coefficient between
X and Y is denoted by ρ [X, Y ]. It measures the linear interdependence between
X and Y , and is defined by:

ρ [X, Y ] =
Cov [X, Y ]
σ [X ]σ [Y ]

, (1)
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where Cov [X, Y ], called covariance of X and Y , equals E [XY ]−E [X ]E [Y ]. It
can be checked [17] that for every function f measurable on X , the correlation
ρ [f(X), Y ] satisfies:

ρ [f(X), Y ] = ρ [f(X), E [Y |X ]]× ρ [E [Y |X ] , Y ] . (2)

This implies (see Proposition 5 in [17]) the following inequality:

ρ [f(X), Y ] ≤ σ [E [Y |X ]]
σ [Y ]

. (3)

A sample of a finite number of values taken by X over X is denoted by (xi)i or
by (xi) if there is no ambiguity on the index, and the mean of such a sample is
denoted by x = 1

#(xi)

∑
i xi. Given two sample sets (xi) and (yi), the empirical

version of the correlation coefficient is the Pearson coefficient:

ρ̂ ((xi), (yi)) =
∑

i(xi − x)(yi − y)√∑
i(xi − x)2

√∑
i(yi − y)2

, (4)

The correlation and Pearson coefficients relate to affine statistical dependencies,
and two dependent variables X and Y can be such that ρ(X, Y ) = 0. To quan-
tify the amount of information that Y reveals about X (whatever the kind of
dependency is), the notion of mutual information is usually involved. It is the
value I(X ; Y ) defined by I(X ; Y ) = H(X)−H(X |Y ), where H(X) is the entropy
of X and where H(X |Y ) is the conditional entropy of X knowing Y (see [12] for
more details).

2.2 Side-Channel Attack Terminology

We shall view an implementation of a cryptographic algorithm as the processing
of a sequence of intermediate variables, as defined in [2]. We shall say that an
intermediate variable is sensitive if its distribution is a function of some known
data (for example, the plaintext) and the secret key, and is not constant with
respect to the secret key. Consequently, the statistical distribution of a sensitive
variable depends on both the key and on the distribution of the known data. If a
sensitive intermediate variable appears during the execution of a cryptographic
algorithm, then that implementation is said to contain a first-order flaw. Infor-
mation arising from a first-order flaw, that can be monitored via a side-channel
(such as timing information or power consumption), is termed first-order leak-
age. A first-order side-channel attack (SCA) against an implementation is a SCA
that exploits a first-order leakage, in order to recover information about the se-
cret key. Similarly, an rth-order SCA (Higher-Order SCA or HO-SCA) against
an implementation is a SCA that exploits leakages at r different times, which
are respectively associated with r different intermediate variables.

Remark 1. In [19], an alternative definition for HO-SCA is used, where an rth-
order SCA is defined with respect to r different algorithmic variables (which may
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be manipulated simultaneously, or which may correspond to a single interme-
diate variable). In this paper, we focus on the countermeasure of [5]; therefore,
we adhere to the HO-SCA definition in [5] (which is widely accepted in the
community [2,10,13,14]).

In order to prevent side-channel attacks on cryptographic implementations, many
countermeasures (such as masking and the permutation tables countermeasure)
aim to randomise the leakage caused by each intermediate variable. An imple-
mentation of a cryptographic algorithm can be said to possess first-order SCA
security if no intermediate variable in the implementation is sensitive. Similarly,
rth-order SCA security requires an implementation to be such that no r-tuple
of its intermediate variables is sensitive.

3 The Permutation Tables Countermeasure

3.1 Generation of Permutation Tables

In order to use permutation tables as a SCA countermeasure, a new permu-
tation table P must be generated at the beginning of each execution of the
cryptographic algorithm. Here, P is described in the context of the AES algo-
rithm, where the intermediate variables are 8-bit words. P comprises two 4-bit
permutations p1 and p2, and operates on an 8-bit variable x according to:

P (x) = p2(xh)||p1(xl) , (5)

where xh and xl respectively denote the high and low nibbles of x, and || denotes
concatenation. Upon each invocation of the algorithm, permutations p1 and p2
are randomly chosen from a set of permutations P , defined over F4

2. For efficiency
reasons, the set P is not defined as the set of all the permutations over F4

2.
Indeed, in such a case the random generation of an element of P would be
costly. In [5], Coron defines an algorithm to generate elements of the set P
from a 16-bit random value. Here, we will assume that the random variable P1
(respectively P2) associated with the random generation of p1 (resp. p2) satisfies
p [P1 = p1] = 1/#P (resp. p [P2 = p2] = 1/#P) for every p1 ∈ P (resp. p2 ∈ P).

3.2 Protecting AES Using Permutation Tables

The Advanced Encryption Standard (AES) is a well-known block cipher, and
details of the algorithm can be found in [5]. Essentially, the AES round function
for encryption operates on a 16-byte state (with each element labelled ai, 0 ≤ i ≤
15), and consists of four transformations: AddRoundKey, SubBytes, ShiftRows
and MixColumns.

In [5], Coron described how to protect the AES encryption algorithm against
side-channel attacks, by using the permutation tables countermeasure. We will
refer to this encryption algorithm as randomised AES. Firstly, after the random
permutation P has been generated (as described in [5]), it is applied to each byte
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of both the message and the key. For every byte x, we will refer to u = P (x) as the
P-representation of x. Each permuted value is passed to the AES round function,
where it is operated upon by the AES transformations listed above. As noticed by
Coron in [5], each of these AES transformations must be carefully implemented,
such that: (i) sensitive variables always appear in their P -representation, and (ii)
the output of each transformation is in P -representation form. Coron described
the following implementations of AddRoundKey and MixColumns (for details of
the other transformations, see [5]):

– Randomised AddRoundKey takes two bytes u = P (x) and v = P (y) as inputs,
and outputs P (x ⊕ y). In order to achieve this, two 8-bit to 4-bit tables are
defined (for (ul, vl) – resp. (uh, vh) – in (F4

2)
2):

XT1
4(ul||vl) = p1(p−1

1 (ul)⊕ p−1
1 (vl)) , (6)

XT2
4(uh||vh) = p2(p−1

2 (uh) ⊕ p−1
2 (vh)) . (7)

Tables XT1
4 and XT2

4 are calculated at the same time as P , and stored in
memory. An 8-bit XOR function, denoted by XT8, is then computed using
those table look-ups (for u, v ∈ F8

2):

XT8(u, v) = XT2
4(uh||vh)||XT1

4(ul||vl) . (8)

– Randomised MixColumns is computed as a combination of doubling and XOR
operations. To calculate randomised MixColumns from the P (ai)’s (the P -
representations of the bytes of the AES state), the XOR operations are
computed using the XT8 function in Eq. (8). For the doubling operations,
Coron defined a function D2, such that when applied to u = P (x), we get
D2(P (x)) = P ({02} • x) (where {·} denotes hexadecimal notation, and •
denotes multiplication modulo x8 + x4 + x3 + x + 1). The P -representation
of the first byte of the MixColumns output is then calculated using:

P (anew
0 ) = XT8(D2(a′

0), XT8(D2(a′
1), XT8(a

′
1, XT8(a

′
2, a

′
3)))) , (9)

where a′
i denotes the P -representation of ai. The other bytes in the ran-

domised MixColumns output can be similarly calculated.

At the completion of the last encryption round, the inverse permutation P−1 is
applied to each byte of the AES state, revealing the ciphertext.

4 Security of Randomized AES against First-Order SCA

4.1 Examining the Proof of Security

In [5], the author proposes the following Lemma to argue that the randomised
AES implementation is resistant against first-order SCA:

Lemma 1. For a fixed key and input message, every intermediate byte that
is computed in the course of the randomised AES algorithm has the uniform
distribution in {0, 1}8.
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In [5], the proof of Lemma 1 is based on the fact that any intermediate AES
data W is assumed to be represented as P (W ) = P2(Wh)||P1(Wl). However,
this assumption is incorrect for the implementation described in [5] and re-
called in Section 3.2. Indeed, when XT8(P (X), P (Y )) is computed (Eq. (8)), the
two functions XT1

4 and XT2
4 are parameterized with the intermediate variables

P1(Xl)||P1(Yl) and P2(Xh)||P2(Yh) respectively. Namely, the same permutation
P1 (resp. P2) is applied to the lowest and the highest nibbles of the intermediate
data W = Xl||Yl (resp. W = Xh||Yh). In this case W is not of the form P (W );
therefore, the statement made in [5] to prove Lemma 1 is incorrect. Actually, not
only the proof but the Lemma itself is incorrect. If two nibbles are equal, e.g.
Xl = Yl, then their P1-representations will also be equal, i.e. P1(Xl) = P1(Yl),
irrespective of P1. Otherwise, if Xl �= Yl, then P1(Xl) and P1(Yl) behave like two
independent random variables, except that they cannot be equal. This implies
that the variable P1(Xl)||P1(Yl) will have two different non-uniform distributions
depending on whether Xl equals Yl or not. This gives rise to first-order leakage.

4.2 First-Order Leakage Points

In the randomised AES, the function XT8 is employed to securely implement
every bitwise addition between 8-bit words. To compute the P -representation of
X ⊕ Y from the P -representations X ′ = P (X) and Y ′ = P (Y ), the following
successive operations are processed:

1. R1 ← XT1
4 (X ′

l ||Y ′
l )

2. R2 ← XT2
4 (X ′

h||Y ′
h)

3. output ← R2||R1

Register output contains P (X ⊕ Y ) at the end of the processing above. Let
us focus on the intermediate result R1 (the same analysis also holds for R2).
It is computed by accessing the table XT1

4 at address Z = X ′
l ||Y ′

l which, by
construction, satisfies:

Z = P1(Xl)||P1(Yl) . (10)

As discussed in Section 4.1, the manipulation of Z therefore induces a first-order
leakage in the AES implementation, whenever (Xl, Yl) statistically depends on a
secret information and a known data. This condition is satisfied when XT8 is used
to process the randomised AddRoundKey and randomised MixColumns operations
during the first round of AES:

– [Randomised AddRoundKey]During this step, XT8 takes the pair (P (A), P (K))
as operand, where K is a round key byte and A is a known byte of the AES
state. In this case, (10) becomes:

Z = P1(Al)||P1(Kl) . (11)

– [Randomised MixColumns] During this step, XT8 takes the pair (A′
1, A

′
2) =

(P (S[A1⊕K1]), P (S[A2⊕K2])) as operand, with S denoting the AES S-box,
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with A1 and A2 being two known bytes of the AES state and with K1 and
K2 being two round-key bytes.
In this case, (10) becomes:

Z = P1(S[A1 ⊕K1]l)||P1(S[A2 ⊕K2]l) , (12)

where S[·]l denotes the lowest nibble of S[·].

Both of the leakage points described above are first-order flaws, since they depend
on a single intermediate variable Z. In the next sections, we will develop first-
order side-channel attacks, that exploit these first order leakages. In both attacks,
we will use the notation Z(kl) (resp. Z(k1, k2)) for the random variable Z|(Kl =
kl) (resp. Z|(K1 = k1, K2 = k2)), each time we need to specify which key(s) Z
is related to. The random variable corresponding to the leakage on Z shall be
denoted by L. They are related through the following relationship:

L = ϕ(Z) + B , (13)

where ϕ denotes a deterministic function called the leakage function and B
denotes independent noise. We shall use the notation L(kl) (resp. L(k1, k2))
when we need to specify the key(s) involved in the leakage measurements.

5 Attacking the Randomised AddRoundKey Operation

There are currently two main ways to perform an attack on the manipulation of
a random variable Z. The first method relies on affine statistical dependencies
(for example CPA), whereas the second method relies on any kind of statis-
tical dependency (for example MIA). Here, we describe a CPA attack on the
first use of randomised AddRoundKey (performing an MIA attack on randomised
AddRoundKey is less pertinent, as will be discussed in Section 6).

5.1 CPA Preliminaries

In a CPA [3], the attacker must know a good affine approximation ϕ̂ of ϕ. It is
common to choose the Hamming Weight (HW) function for ϕ̂, as this is known to
be a good leakage model for devices such as 8-bit microcontrollers. The attacker
must also know a good affine approximation Ẑ of Z. Based on these assumptions,
key candidates k�

l are discriminated by testing the correlation between ϕ̂(Ẑ(k�
l ))

and L(kl), for a sample of leakage measurements from the target device, and the
corresponding known plaintexts.

Here, our attack targets the use of XT8 when the first randomised AddRoundKey
operation is performed. We assume that a sample of N leakages (�i) has been
measured for N known lowest nibbles (ai) of the AES state. Due to (11) and
(13), the �i’s and the ai’s satisfy the following relation:

�i = ϕ (p1,i(ai)||p1,i(kl)) + bi , (14)
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for 1 ≤ i ≤ N , where bi denotes the value of the noise for the ith leakage
measurement and where p1,i denotes the permutation used at the time of the
ith measurement.

To test a hypothesis k�
l on kl, the following Pearson’s coefficient ρ̂k�

l
is com-

puted for an appropriate prediction function f :

ρ̂k�
l

= ρ̂((�i)i, (f(ai, k
�
l ))i) . (15)

If f has been well chosen, the expected key will satisfy kl = argmaxk�
l
|ρ̂k�

l
|. This

is the case for leakage functions ϕ in (14) where E [ϕ[Z(kl)]] is not constant
on Kl (recall that Z(kl) equals P1(A)||P1(kl)). Almost all functions ϕ satisfy
this condition. However, this is not the case for functions ϕ where ϕ(X ||Y ) =
ϕ(X) + ϕ(Y ) (e.g. ϕ = HW). For those leakage functions, Pearson’s coefficient
(15) is not a sound key-distinguisher when applied directly to the leakages �i’s.
Indeed, in this case, (3) and σ [ϕ[Z(Kl)] | Kl] = 0 imply that ρ [L(kl), f(A, kl)] is
null, regardless of the prediction function f . For such functions ϕ, it makes sense
(see for instance [18]) to focus on higher order moments, and to compute the
following Pearson’s coefficient for an appropriate function f , which may differ
from the case when o = 1:

ρ̂k�
l

= ρ̂(((�i − �)o)i, (f(ai, k
�
l ))i) . (16)

For instance, if ϕ = HW, then the second order centered moments of the
ϕ[Z(kl)]’s are different, so (16) must be computed for o = 2.

Remark 2. For o = 1 (i.e. when the CPA focuses on the means), there is no need
to center the leakage measurements and the term � can be omitted. In the other
cases, centering the leakage measurements (and thus the predictions) improves
the CPA efficiency (see [17]).

When a good approximation ϕ̂ of ϕ is assumed to be known, the efficiency of the
CPA relies on the prediction function f that is chosen. This is especially true in our
case where data is not simply masked by the addition of a random value, but by a
random permutation, so that removing the effect of the masking (even biased) is
difficult. Designing a prediction function f , such that aCPA involving this function
in (16) succeeds, is not straightforward. Therefore, to exploit the flaw in (11) using
a CPA attack, we need to exhibit a sound prediction function f .

5.2 Designing fopt

The target intermediate variable Z in (11) takes the general form P1(X)||P1(Y ),
where P1, X and Y are random variables and where Y depends on kl. In [17], Prouff
et al. showed that for every function C : L �→ C(L), the optimal prediction func-
tion fopt is the function x, y �→ E [C(L(kl))|X = x, Y = y]. In our case, C(L(kl))
equals (L(kl) − E [L(kl)])o for a given order o. To mount the attack , we need an
analytical expression for the function fopt so that it can be estimated even when no
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information on the noise parameters is known (non-profiling attacks). Therefore,
we conducted an analytical study of the function fopt defined by:

fopt(x, y) = E [(L(kl) − E [L(kl)])o | X = x, Y = y] , (17)

for o ∈ N, for L equal to ϕ̂(Z) + B, for B ∼ N (ε, σ2) and for Z equal to
P1(X)||P1(Y ) with X, Y ∼ U(Fn

2 ) and P1 is a random variable over P .
Below we state the results of our analysis (the derivations of the formulas are

given in Appendix A):

– To compute (16), we suggest using the prediction function f defined for every
(ai, k

�
l ) ∈ (F4

2)
2 by:

f(ai, k
�
l ) =
∑

p1∈P
(ϕ̂ (p1(ai)||p1(k�

l )) − E
[
ϕ̂k�

l

]
)op [P1 = p1] , (18)

where:

E
[
ϕ̂k�

l

]
= 2−4

∑
a∈F4

2

∑
p1∈P

ϕ̂ (p1(a)||p1(k�
l ))p [P1 = p1] . (19)

For o ∈ {1, 2}, it is argued in Appendix A that the functions f above are
affine equivalent to fopt.

– Let δx(y) be the function defined by δx(y) = 1 if x = y, and δx(y) = 0
otherwise. If we assume that o = 2, ϕ̂ = HW, and that P1 has a uniform
distribution over P , we suggest using the following function:

fopt(ai, k
�
l ) = δai(k

�
l ) , (20)

which is affine equivalent to fopt.

5.3 Attack Results

In the attack simulations presented in Table 1, we give an estimation of the
minimum number of measurements required to achieve the success rate 0.9 for
P1 ∼ U(P) (where P is designed as proposed in [5]) and ϕ = ϕ̂ = HW. In
this case, Pearson coefficients have been computed between ((�i − �)2)i and
(fopt(ai, k

�
l ))i for the function fopt defined in (18) for o = 2. This success rate

is defined as the ratio of successful attacks involving N measurements to the
number of attacks involving N measurements. We assumed that an attack is
successful if the highest correlation is attained for the correct key. The simu-
lations show that for noiseless measurements, key nibbles can be successfully
recovered from the randomised AddRoundKey operation using only 100 power
traces. We also carried out the CPA attack on a practical smart card imple-
mentation of the randomised AES, as described by [5]. We used a Silvercard,
which contains a programmable 8-bit PIC16F877 microprocessor, and verified
that the power consumption of the card leaks information in the HW model.
For each plaintext sent to the card, the encryption operation was performed ten
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Table 1. Num. of measure-
ments required in simulated
CPA attack on randomised
AddRoundKey

Noise standard Number of
deviation measurements

0 100
0.5 1, 000
1 1, 500
2 4, 500
5 60, 000
7 230, 000
10 900, 000
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Fig. 1. CPA attack on smart card implementation of
randomised AddRoundKey

times (with the same random values used to generate the permutation tables)
and an average trace of the power consumption was recorded, in order to reduce
the effects of acquisition noise. For the attack, we calculated the correlations
between ((�i − �)2)i and (fopt(ai, k

�
l ))i for the simplified function fopt defined in

(20). The results of the attack are shown in Fig. 1 for various numbers of power
traces. The correlation for the correct key nibble is highlighted, showing that
the correct key nibble can be recovered using fewer than 1, 000 plaintext/power
trace pairs.

6 Attacking the Randomised MixColumns Operation

In this section, we describe CPA and MIA attacks that target the use of XT8
when the first MixColumns operation is performed. These attacks are of interest,
because they allow recovery of two key bytes (cf. Eq. (12)), as opposed to a
single key nibble when the AddRoundKey operation is targeted. We assume that
a sample of N leakages (�i)i has been measured for N pairs of known AES state
values ((a1,i, a2,i))i (where aj,i denotes the known value of byte aj at the time
of the ith measurement �i). Due to (12) and (13), the �i’s and the aj,i’s satisfy
the following relation:

�i = ϕ(p1,i(S[a1,i ⊕ k1]l)||p1,i(S[a2,i ⊕ k2]l) + bi , (21)

where bi and p1,i are as defined for Eq. (14).

6.1 MIA Preliminaries

In MIA attacks [8], key candidates k� are discriminated by estimating the mutual
information I(ϕ̂(Ẑ(k�)); L(k)). In an MIA, the attacker is potentially allowed to
make weaker assumptions on ϕ and on Z than in the CPA. Indeed, rather than a
good affine approximation of ϕ and of Z, we only require a pair (ϕ̂, Ẑ) such that
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I(ϕ̂(Ẑ(k)); L(k)) is non-negligible when the good key k is tested (which may
happen even if ρ(ϕ̂(Ẑ(k)), L(k)) = 0) (see [1,16] for more details). Therefore,
we do not require a lengthy derivation for a prediction function fopt, as was
required in Section 5.2 for the CPA. After assuming that a good approximation
ϕ̂ of the leakage function ϕ is known, an MIA attack can be performed by
estimating the mutual information between the random variable L associated
with the leakage measurements �i in (21) and the prediction function ϕ̂(S[A1 ⊕
k�
1 ]l||S[A2 ⊕ k�

2 ]l), for various hypotheses (k�
1 , k�

2) on key bytes (k1, k2). The
mutual information will attain its maximum value for the correct set of key
hypotheses.

Remark 3. As noted in Sec. 5, it was less pertinent to use mutual information as a
distinguisher when attacking the randomised AddRoundKey operation. The main
reason for this is that when ϕ is the Hamming weight function, the conditional
random variable ϕ(Z(k)) has the same entropy for each k. As discussed in [8,16],
a way to deal with this issue is to focus on the mutual information between
ϕ(Z(k)) and predictions in the form ϕ̂ ◦ ψ(Ẑ(k�)), where ψ is any non-injective
function. Even if this approach enables recovery of the key, we checked that for
various functions ψ (in particular for functions ψ selecting less than 8 bits in
Ẑ(k)), MIA attacks were much less efficient than CPA.

6.2 Attack Results

In simulation, we tested both an MIA attack and a CPA attack, targeting the first
call to XT8 in the first MixColumns operation. For the MIA, we used the Kernel
Density and Parametric estimation methods described in [16] to estimate the
mutual information. For the same reasons as given in Sec. 5.2 (and Appendix A),
the CPA simulations used the pre-processing described in Eq. (16), and the
following prediction function:

fopt(a1,i, k
�
1 , a2,i, k

�
2) = δ(S[a1,i⊕k�

1 ]l)(S[a2,i ⊕ k�
2 ]l) (22)

In the attack simulations presented in Table 2, we give a rough estimation of
the minimum number of measurements required to achieve the success rate 0.9
for the different distinguishers. In these experiments, one key byte was fixed
at the correct value, and the distinguishers were calculated for the 28 val-
ues of the second key byte. Fewer measurements are required for a successful

Table 2. Num. measurements required in MIA and CPA attacks on randomised
MixColumns (where ‘−’ implies no successful result with up to 1 million measurements)

Noise standard deviation 0 0.5 1 2 5 7 10 15 20
Nb of measurements [MIA with Kernel] 2, 500 20, 000 60, 000 290, 000 − − − − −
Nb of measurements [Parametric MIA] na 3, 000 4, 000 25, 000 250, 000 500, 000 800, 000 − −
Nb of measurements [CPA with fopt] 1, 000 1, 000 1, 500 6, 500 120, 000 550, 000 − − −
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Fig. 2. CPA attack on smart card imple-
mentation of randomised MixColumns
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Fig. 3. MIA attack on smart card imple-
mentation of randomised MixColumns

attack using CPA than are required when using MIA, for low-noise measure-
ments. This is to be expected, since in the simulations, the HW of the attack
variable leaks perfectly, so there is a linear relation between the deterministic
part of the leakage and the prediction. MIA is more useful when the relationship
between the leakage and the prediction is non-linear. It is interesting to note
that when the measurements are noisy, the parametric MIA attack is more effi-
cient than the CPA attack (even in this simulation context that is favourable to
CPA).

These attacks were also verified using measurements from the smart card
implementation, as shown in Figures 2 and 3 (where the distinguisher for the
correct key byte is highlighted). Since the noise in these acquisitions has been
reduced due to averaging, the CPA succeeds in fewer measurements (∼ 2, 000
power traces) than an MIA attack (∼ 23, 000 traces, using the histogram method
to estimate the mutual information [8]).

7 Conclusion

In this paper, we have shown that first-order flaws exist in the permutation tables
countermeasure proposed in [5]. In order to exploit this leakage, two attacks have
been developed. The first attack applies the recent work of [17] to develop an
optimal prediction function for use in a correlation-based attack. The second
attack is based on mutual information analysis, and uses estimation methods
proposed by [16]. The new attacks were verified in both simulation and practice.
In the extended version of this paper [15], we suggest a patch for the permutation
tables countermeasure, thereby removing the first-order leakage. It is interesting
to note that even if the permutation tables countermeasure is flawed, exploiting
this flaw requires more traces than, for instance, an attack on a flawed masking
scheme. Therefore, an avenue for further research is to examine the HO-SCA
resistance of the (patched) permutation tables countermeasure, as it may also
be more HO-SCA resistant than masking.



First-Order SCA on the Permutation Tables Countermeasure 93

References

1. Aumonier, S.: Generalized Correlation Power Analysis. Published in the Proceed-
ings of the Ecrypt Workshop Tools For Cryptanalysis 2007(2007)
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A Derivation of fopt for CPA Attacks

This section aims at deriving analytical expressions for the function fopt. We
begin with the expression fopt(x, y) = E [(L − E [L])o | X = x, Y = y] (Eq. (17)),
where for clarity reasons and because there is no ambiguity, we use the notation
L in place of L(kl). We recall that the random variable L is assumed to satisfy
L = ϕ̂(Z) + B and that Z equals P1(X)||P1(Y ) with P1 ∼ U(P). Since the
expectation is linear and the random variables B and (X, Y ) are independent,
developing (L − E [L])o leads to:

fopt(x, y) = E [(ϕ̂(Z) −m)o | (X, Y ) = (x, y)] + µo

+
o−1∑
i=1

(
o

i

)
µo−iE
[
(ϕ̂(Z) −m)i | (X, Y ) = (x, y)

]
, (23)

where m denotes the mean E [ϕ̂(Z)] and µi denotes the ith order central moment
of B ∼ N (ε, σ2). Let us notice that since µ1 is zero, the sum in (23) can start
from i = 2.

Example 1. For o equal to 1 and 2, we respectively have:

fopt(x, y) = E [ϕ̂(Z) −m | (X, Y ) = (x, y)]

and
fopt(x, y) = E

[
(ϕ̂(Z) −m)2 | (X, Y ) = (x, y)

]
+ µ2 .

The prediction function given in (18) corresponds to the development of the
terms in (23) that do not depend on noise parameters. It must be noticed that
in the cases o = 1 and o = 2, such an estimation of fopt is perfect since the terms
that depend on noise parameters are either null or constant.

Henceforth, we assume that P is the set of all permutations over F
n
2 and that

P1 is a random variable with uniform distribution over P . This assumption is
very favorable to the permutation table countermeasure since it implies that the
choice of the masking permutation P1 is not reduced to a sub-class of the set of
permutations over Fn

2 .
We now focus on the non-noisy term in (23), namely on the mean

E [(ϕ̂(Z) −m)o | (X, Y ) = (x, y)]. Moreover, we denote this conditional mean
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by g(x, y), and define δx(y) s.t. δx(y) = 1 if y = x and δx(y) = 0 otherwise (resp.
δx(y) = 1− δx(y)). We have the following Lemma:

Lemma 2. Let X and Y be two random variables with uniform distributions
over Fn

2 and let P1 be a random variable uniformly distributed over the set of all
permutations over F

n
2 . Then for every ϕ̂ the function g is 2-valued and satisfies:

g(x, y) =
2nδx(y) − 1

2n − 1
E [(ϕ̂(I||I) −m)o] +

2nδx(y)
2n − 1

E [(ϕ̂(I||J) −m)o] , (24)

where I and J are two independent random variables with uniform distribution
over Fn

2 .

Proof. For every (x, y) ∈ F2n
2 we have

g(x, y) =
∑

i,j∈Fn
2

(ϕ̂(i||j)−m)op [P1(x) = i, P1(y) = j] .

Since P1 is assumed to have uniform distribution over the set of permutations
over Fn

2 , for every (x, y) ∈ (Fn
2 )2 s.t. x �= y we have:

p [P1(x) = i, P1(y) = j] =
{

1/2n(2n − 1) if i �= j
0 otherwise. (25)

If x = y, we have

p [P1(x) = i, P1(y) = j] =
{

1/2n if i = j
0 otherwise. (26)

Combining (25) and (26) gives (24).

When the estimation ϕ̂ is the Hamming weight over F2n
2 , (24) can be further

developed. Indeed, in this case we have:

g(x, y) =
2nδx(y) − 1

2n − 1
2oE
[(

HW(I) − n

2

)o]
+

2nδx(y)
2n − 1

E [(HW(I||J) − n)o] ,

since m equals E [HW], i.e. n when HW is defined over F2n
2 .

As E [HW(I)] equals n
2 and E [HW(I||J)] equals n, the function g is constant

equal to 0 when o = 1. For o = 2, it satisfies:

g(x, y) = δx(y)
n2n−1

2n − 1
+

n(2n−1 − 1)
2n − 1

, (27)

since we have E
[
(HW(I) − n

2 )2
]

(resp. E
[
(HW(I||J) − n)2

]
) equal to

Var [HW(I)] = n
4 (resp. Var [HW(I||J)] = n

2 ).
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For o = 2, (27) implies that fopt is an affine increasing function of δx(y).
Since the correlation coefficient is invariant for any affine transformation of one
or both of its parameters, the function x, y �→ δx(y) itself (and every affine
transformation of it) is actually an optimal prediction function for o = 2. Hence,
in its simplest form the optimal function for o = 2 is defined for every (x, y) ∈ Fn

2
2

as:
fopt(x, y) = δx(y) . (28)

For o = 2, the function fopt in (28) can be applied to conduct CPA attacks
in the particular case of Coron’s construction of P (which is not the set of all
permutations over {0, ..., 15} but a subset of it with cardinality 164), without
losing a significant factor in attack efficiency (in terms of number of leakage
measurements).
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Abstract. Algebraic side-channel attacks have been recently introduced
as a powerful cryptanalysis technique against block ciphers. These at-
tacks represent both a target algorithm and its physical information
leakages as an overdefined system of equations that the adversary tries
to solve. They were first applied to PRESENT because of its simple alge-
braic structure. In this paper, we investigate the extent to which they can
be exploited against the AES Rijndael and discuss their practical speci-
ficities. We show experimentally that most of the intuitions that hold for
PRESENT can also be observed for an unprotected implementation of
Rijndael in an 8-bit controller. Namely, algebraic side-channel attacks can
recover the AES master key with the observation of a single encrypted
plaintext and they easily deal with unknown plaintexts/ciphertexts in
this context. Because these attacks can take advantage of the physical
information corresponding to all the cipher rounds, they imply that one
cannot trade speed for code size (or gate count) without affecting the
physical security of a leaking device. In other words, more intermediate
computations inevitably leads to more exploitable leakages. We analyze
the consequences of this observation on two different masking schemes
and discuss its impact on other countermeasures. Our results exhibit
that algebraic techniques lead to a new understanding of implementa-
tion weaknesses that is different than classical side-channel attacks.

1 Introduction

Template attacks [9] are usually considered as the most powerful type of side-
channel attacks and can be viewed as divided in two distinct phases. First, an
adversary profiles the device that he targets. That is, he builds a probabilistic
model for the leakages of this device, usually referred to as templates. Then in
a second phase, the adversary uses these templates to compare key-dependent
predictions of the leakages with actual measurements. By repeating successive
measurements and comparisons, he can eventually identify the secret data that
is manipulated by the leaking implementation. This key recovery is generally
performed using a divide-and-conquer strategy, recovering small pieces of the
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key one by one. Following, this description, an important practical question in
template attacks is to determine which templates to build. For example, one can
decide to profile key bits directly or to profile intermediate operations occurring
in a cryptographic implementation. But once templates have been built, it also
remains to determine which information to extract from the leaking device. Most
side-channel attacks in the literature directly recover key bytes. In this paper,
we tackle the question to know whether it is necessary to extract such a precise
information or if extracting some function of the intermediate values in a cryp-
tographic computation (that is easier to guess with the side-channels than key
bytes) can lead to a successful cryptanalysis with smaller data complexity.

As a matter of fact, this question is not new and several papers already dealt
with very similar issues. Most notably, collision attacks such as, e.g. [4,5,18,24,25]
don’t use the side-channels to recover key bytes. They rather detect pairs of
plaintexts giving rise to similar leakages for some intermediate values in the tar-
get algorithm. Then, in an offline cryptanalysis step, they use these collisions to
recover the complete block cipher key. More generally, papers such as [3,7,15]
also combine the side-channel leakages with black box (differential, impossible
differential, square) cryptanalysis techniques. Still, and as classical side-channel
attacks, these attacks mainly exploit the information provided by the first block
cipher rounds, where the diffusion is not yet complete. Very recently, a new
type of side-channel attacks, denoted as algebraic, has been introduced in order
to get rid of this limitation [23]. These attacks (inspired from [10]) first write
the target block cipher as a system of quadratic (or cubic, . . . ) equations. But
since solving such systems of equations is generally too hard, they additionally
add the physical information leakages provided by any intermediate computa-
tion during the encryption process to the system. In the previously investigated
example of the block cipher PRESENT implemented in an 8-bit controller, this
allowed to recover the cipher key with the observation of a single encryption.
Compared to classical side-channel attacks, algebraic techniques bring two in-
teresting features. First, they can take advantage of the information leakages in
all the cipher rounds. Second, they can exploit any type of information leakage.
In other words, whatever information about the intermediate computations can
be added to the system and the more intermediate computations (i.e. clock cy-
cles, generally), the more powerful the key recoveries. Hence, they can be viewed
as an extreme version of template attacks in which more intermediate leakage
points are targeted but less information need to be recovered from them.

The contributions of this paper are threefold. Since algebraic attacks have
first been applied to the block cipher PRESENT, due to its simple algebraic
structure, it is interesting to evaluate if a more conservative cipher would lead
to significantly different results. Hence, we follow the ideas of [23] and apply them
to the AES Rijndael. We show that algebraic attacks are still applicable in this
context, but also exhibit an increase in the attacks time complexity. Second, we
analyze the security of two different masking schemes and show how algebraic
attacks modify previous intuitions (e.g. more mask bits do not always imply
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more security anymore). Eventually, we discuss the influence of different design
choices and countermeasures in view of the new algebraic techniques.

2 Algebraic Side-Channel Attacks

A detailed description of algebraic side-channel attacks is given in [23]. In this
paper, we aim to evaluate the impact of various parameters on their effectiveness
and to apply them to a practical implementation of the AES Rijndael. Hence,
this section only provides a high level description of the different attack phases.

2.1 Offline Phase 1: Building the System of Equations

The goal of this first phase is to transform the AES into a big system of low
degree boolean equations. In this system, the key bits appear as variables in such
a way that solving the system is equivalent to recovering them. In this paper, we
exploit the techniques presented in [2] to build our system of equations. In the
case of the AES Rijndael with 128-bit plaintext and key, it results in a system
of approximately 18 000 equations in 10 000 variables (27 000 monomials).

2.2 Online Phase: Extracting the Physical Information

Since directly solving the system of equations representing the AES Rijndael is
generally too hard with present techniques, the idea of algebraic side-channel at-
tacks is to feed this system with additional information. Quite naturally, physical
leakages are very good candidates for this additional information. As detailed in
the introduction of this paper, the issue is then to decide what to extract from
the target implementation (a somewhat arbitrary decision). The more physical
information extracted, the easier the solving and the more interesting the alge-
braic techniques compared to standard DPA. Therefore, it yields two questions:

Which intermediate operations to target? This question mainly depends
on the target implementation. For example, our following experiments consider
the AES Rijndael with a 128-bit master key in an 8-bit PIC microcontroller. In
this context, SubBytes will generally be implemented as a 256-byte table lookup
and MixColumn will exploit the description of [13] in which it is implemented
with four 256-byte table lookups and 9 XOR operations (giving 13 potential leak-
age points). It is therefore natural to profile the target device in such a way that
the leakages corresponding to all these intermediate computations (additionally
considering the key additions) are exploited by the adversary.

Which information to recover from each target operation? Once the
target operations have been decided by the adversary, it remains to determine
what to learn about them. This again depends on the target device (and on
countermeasures that could possibly be included to the implementation). For
example, an unprotected implementation of the AES Rijndael in the PIC is such
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Fig. 1. Leakage traces, mean leakage traces and multiple byte success rate

that for each of the previously mentioned operations, the output data has to
commute on an 8-bit bus. During this clock cycle, the leakages will be highly
correlated to the Hamming weight of this output data. Hence, it is again natural
to perform a template attack such that these Hamming weights will be recovered.

Importantly, algebraic side-channel attacks exploit the leakages of several tar-
get operations at once. It implies that one needs to recover a correct information
about all these operations at once. Indeed, introducing false information into the
system of equations will generally lead to inconsistencies and prevent its proper
solving. Fortunately, this can be achieved for our target device. As an illustra-
tion, the left part of Figure 1 illustrates the leakage traces of different values
commuting on the PIC bus and their mean for different Hamming weights. In
the right part of the same figure, we plotted the probability that the Hamming
weight of large amounts of target bytes can be recovered with high confidence,
possibly exploiting simple error detection (ED) and likelihood rating (LR) tech-
niques (NEDLR means that we do not use these techniques).

– Error detection consists in rejecting side-channel information that gives rise
to incoherent input and output values for the S-boxes.

– Likelihood rating means that we only use a subset of all the Hamming weights
values extracted with the templates, starting with the most likely ones.

We stress the fact that all our attacks use a data complexity of q = 1. That is,
we use only the encryption of one single plaintext to perform our measurements.
This data complexity is different from the number of traces since we can some-
times repeat the same measurement. In our experiments, we use a repetition
umber of nr = 1 or 2. This is significantly different than standard DPA attacks
which usually require a much higher data complexity (typically, 10 ≤ q ≤ 100).
We see that using these techniques, roughly 200 Hamming weights can be recov-
ered with the observation of a single encrypted plaintext and that by repeating
the measurement of the same encryption, this number can be up to 700.

As previously mentioned, the implementation of the AES-128 that we attack
was profiled in such a way that we recovered the Hamming weights corresponding
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to AddRoundKey (16 weights), SubBytes (16 weights) and MixColumn (4 ∗ 13
weights in our implementation of the AES). For the 10 cipher rounds, it corre-
sponds to a maximum of 788 (not always necessary) correct Hamming weights.
It is essential to note that algebraic side-channel attacks in general could work
with totally different choices for the target operations and leakages. As a proof
of concept and because of their wide use and good connection with our target
device, we extracted Hamming weights from our power consumption traces. But
one can theoretically exploit any type of information leakage. A particularly in-
teresting open problem is to apply these attacks to advanced circuit technologies
with more complex leakage behaviors. It raises the question of how to best ex-
tract partial information that is both meaningful (i.e. allows to solve the system)
and robust (i.e. can be easily recovered with high confidence).

2.3 Offline Phase 2: Solving the System

Once the system of equation including the additional side-channel information is
written, it remains to attempt solving it. Different solutions have been proposed
in the literature for this purpose. The original attack of Courtois and Pieprzyk
proposed linearization techniques called XL or XSL [10]. Groebner basis-based
techniques have then been suggested as possible alternatives, e.g. in [6,12]. Yet
another possibility is to use a SAT solver as in [11]. In this paper, we take
advantage of this last solution. It implies that the system has to be expressed as
a satisfiability problem. The satisfiability problem is the reference NP-complete
problem and is widely studied (see [14] for a survey). It consists of determining if
a boolean formula (a formula combining boolean variables, AND, OR and NOT
gates) can be “satisfied”, i.e. if it exists at least one assignment of the variables
such that the whole formula is true. Most SAT solvers require a particular type of
formula denoted as a Conjunctive Normal Form (CNF). A CNF is a conjunction
(AND) of clauses, each clause being a disjunction (OR) of literals.

In practice, we can write a CNF from our system of equations so that the
only valid assignment corresponds to the solution of the system, as detailed
in [1]. But this conversion to a boolean formula can be done in a number of
ways. For example, the substitution boxes of the AES can either be written
as non-linear boolean equations (during the first offline phase of the attack)
that are then converted into a boolean formula, or as a set of clauses that are
introduced directly into the global CNF. While the first method seems more
complex and introduces (much) more intermediate variables, it gave rise to better
results in some of our experiments. We conjecture that the SAT solver better
handles certain hard instances of the attack with some redundancy and a few
additional intermediate variables. As an illustration, the first solution gives about
120 000 clauses of 4 literal per substitution box, versus 2048 clauses of 9 literals
for the second solution. The final size of the CNF derived from the system of
equations consequently depends on the conversion strategy. To the previous S-
boxes, one has to add the linear layers (MixColumn and AddRoundKey) that
produce approximately 45 000 clauses of 4 literals per round. Eventually, the
additional side-channel information can be defined by approximately 70 000
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clauses of up to 8 literals. This gives a formula containing between a minimum
of 500 000 and up to several millions of clauses of 1 to 9 literals (the SAT solver
used in our experiments [8] was not able to handle more than 5 millions of them).

3 Attacking the AES Key Scheduling Algorithm

Before starting the investigations of algebraic side-channel attacks against the
AES, a preliminary remark has to be made about attacks against its key schedul-
ing algorithm. Because of the relatively simple structure of the key expansion in
Rijndael, it is possible to write a system of equations only for this part of the
algorithm and to solve it successfully with (even a part of) the Hamming weights
gathered from its execution. Such attacks then closely connect to the SPA pro-
posed by Mangard in [19]. In the following, we consequently consider the more
challenging case in which round keys are pre-computed in a safe environment.

4 Attacking the AES Round Functions

In this section, we assess the practicability of algebraic side-channel attacks
against the AES. For this purpose, we considered several situations. First, we at-
tacked an unprotected implementation with a known pair of plaintext/ciphertext.
Then, we studied the influence of unknown plaintexts/ciphertexts. Finally, we
considered two different masking schemes and analyzed their resistance against
algebraic attacks. Each attack exploits the observation of a single encryption
trace from which side-channel information is extracted. Additionally, the amount
of information recovered by the adversary is used as a parameter in our eval-
uations. It is measured in “number of rounds of Hamming weights”, obtained
consecutively (i.e. the adversary recovers all the Hamming weights of a few con-
secutive rounds - the chosen rounds are picked starting in the middle of the block
cipher) or randomly (i.e. the adversary recovers the same amount of Hamming
weights randomly spread over the different intermediate computations).

We first assume that no incorrect side-channel information is used (which
would lead the SAT solver to fail). Hence, the experiments in Section 4.1, and
4.2 only focus on the second part of the offline phase described in Section 2.3.
Then, in Section 4.4, we discuss the tradeoff between the applicability of this
offline phase and the online information extraction described in Section 2.2.

Note that for difficult instances of the attack, the SAT solver is sometimes
unable to solve the system in a reasonable time. We consider that an attack
has failed whenever the solver has not found a solution within 3600 seconds.
Eventually, the SAT solver was running on an Intel-based server with a Xeon
E5420 processor cadenced at 2.5GHz running a linux 32-bit 2.6 Kernel.

4.1 Attacking an 8-Bit Device with Known Plaintext/Ciphertext

The results of this first scenario are in Figure 2 (solid lines). Each dot is obtained
from averaging on a set of 100 independent experiments. They illustrate that the
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Fig. 2. Success rate of the attacks against an unprotected implementation of the AES
Rijndael in function of the amount of exploited leakages. One round of side-channel
information is equivalent to 84 known Hamming weights.

success rate of the attacks depends heavily on whether the side-channel leakages
correspond to successive operations or not. Indeed, 3 rounds of consecutive leak-
ages (i.e. 252 Hamming weights) is enough to solve more than 95% of the cases,
whereas 8 rounds of randomly distributed leakages only give a 60% success rate.
It is interesting to note that it is in fact the leakage of the MixColumn operation
that seems to be the most critical when solving the system. Removing some of
the Hamming weights obtained from this operation highly impacts the attack ef-
fectiveness. This can be justified by recalling that MixColumn consumes a large
amount of clock cycles in a software implementation of the AES.

We finally remark that the SAT solver can also deal with less precise leakages.
For example, if one Hamming weight cannot be determined exactly, it is possible
to consider a pair of Hamming weights including the correct one and to add this
information to the system. This context is investigated in Figure 2 (circled line).

4.2 Attacking an 8-Bit Device with Unknown Plaintext/Ciphertext

The dotted lines in Figure 2 represent the results of an attack with unknown
plaintext and ciphertext. It is an interesting scenario to consider since classical
DPA attacks such as [17] would generally fail to recover keys in this context.
Intuitively, it is also a much harder case, since the plaintext and ciphertext
represent 256 unknown variables in our SAT problem. But excepted for a slight
reduction of the success rate, our results show that algebraic side-channel attacks
against the AES Rijndael are quite strongly immune against unknown inputs.
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This can be understood when considering that 3 consecutive rounds of Hamming
weight are enough to recover the complete master key.

4.3 Time Complexity and Attack Strategies

The solving times of the SAT problem for different instances of side-channel
algebraic attacks (represented in Figure 3) seem to follow an exponential distri-
bution. It means that a small number of instances require much more effort from
the SAT solver, which may be due to the intrinsic difficulty of these instances,
but also to some poor decisions made by the SAT solver. Therefore, the question
to know if good strategies could be applied in order to better cope with this
distribution directly arises. This section brings some insights with this respect.

In its basic version, the SAT solver behaves deterministically, always spending
the same amount of time on the same boolean formula, for the same result. How-
ever, it is possible to introduce randomness in the resolution process, thereby
forcing the solver to explore the search space differently. Figure 4 shows how
far the solver was able to go towards the resolution of the same SAT problem,
when launched 70 times with different random seeds. A successful run has to
assign 12577 variables within 3600 seconds. The bold line in the figure shows the
maximum number of variables that the solver was able to assign at a given time,
averaged over the 70 runs. All the other curves represent single runs. One can ob-
serve that the solving time for the same instance varies with random resolutions.
As previously, it seems to follow an exponential distribution (i.e. the probability
that a problem has not been solved after x seconds decreases exponentially in
x). Also, most of the time is spent in assigning the first 3000 variables. Once this
is done, finding the rest of the solution is almost instantaneous (this is observed
with the vertical jump of the single runs in the figure).

These results suggest that performing a serial of short random resolutions can
give better results than using a single long resolution. Unfortunately, it is not
possible to predict a priori how long the resolution will take. Hence, in order
to optimize the attack, we need to adapt the time limit in function of some

Fig. 3. Distribution of the solving times (8 consecutive rounds of Hamming weights)
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Fig. 4. Evolution of the solving for 70 random runs of the same SAT instance (8 rounds
of Hamming weights are known, randomly spread over the block cipher)

preliminary analyzes. For example, in our experiments, 90% of the resolutions
succeed in less than 100 seconds. Hence, a reasonable strategy would be to fix
the time limit at 100 seconds (rather than 3600, originally). In this setting, most
of the attacks will succeed in a single run, and the harder instances will hopefully
be solved by another random resolution. Of course, such strategies are mainly
interesting for attacks that are successful with high probability within reasonable
time constraints, which may not always be the case in practice.

4.4 Global Success Rate

Figure 4.4 finally presents the global success rate of our attack, combining the
success rate of the online side-channel phase (given in Figure 1) and the success
rate of the offline computation phase (given in Figure 2). It clearly illustrates
the tradeoff between these two phases. On the one hand, the success rate of the
side-channel information extraction decreases with the quantity of information
the attacker tries to recover. On the other hand, the success rate of the algebraic
cryptanalysis increases with the quantity of information available. This implies
that for a strictly limited amount of measurements (e.g. nr = 1 in the figure),
the best global success rate does not occur for the maximum amount of Ham-
ming weights inserted into the system. Note that this global success rate could
be improved by better dealing with failures in the solving. For example, if an
inconsistency is found, it is possible to reject a few Hamming weights and try
again to solve the system, hoping that the incorrect leakages have been rejected.

4.5 Attacking Masked Implementations

The previous section suggests that attacking an unprotected implementation
of the AES Rijndael in an 8-bit controller is not significantly more difficult
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Fig. 5. Global success rate for an unprotected implementation, with known P, C

than attacking the block cipher PRESENT in the same device in terms of data
complexity: both attacks succeed with the observation of a single encrypted
plaintext. Nevertheless, attacks against the AES exhibit a significantly increased
average time complexity (2.5 seconds for 31-round vs. 344 seconds for 10-round
AES). In this section, we investigate the extent to which the increased algebraic
complexity of the AES could lead to more hardly solvable systems if the target
implementation is protected with a masking scheme.

Masking is a very popular countermeasure against side-channel attacks. It
aims at rendering the power consumption of the device independent of the inter-
mediate values used by the cryptographic algorithm. This is achieved by com-
bining theses values with random “masks” internal to the cryptographic device
(hence hidden to the adversary), that vary from execution to execution. The
masks are generated at the beginning of the encryption, combined with the
plaintext and key, and propagated through the cryptosystem so that every value
transiting on the bus is a combination of the original intermediate value and
a mask. In terms of security, masking provably prevents certain types of side-
channel attacks. But it does not remove the existence of physically exploitable
leakages (since the secret data is still manipulated by the device and the cor-
rect encryption result has to be produced). In terms of cost overheads, mask-
ing affects the performances of an implementation, mainly because the masks
have to be propagated through the encryption process in a tractable manner.
For this reason, several masking schemes have been proposed in the open lit-
erature, trading effectiveness for more random masks (hopefully implying more
security).

In the following, we focus on two proposals that we believe illustrative of the
state-of-the art countermeasures. Namely, we first focus on the efficient masking
scheme proposed by Oswald and Schramm in [20] that uses one different mask
for every plaintext byte. Then we consider the AES software implementation
resistant to power analysis attacks proposed by Herbst et al. in [16].
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1. Masking in GF(24)2. As noticed in several publications, the most difficult
part of the AES to mask is its non-linear layer. This is because for a masked
input x+m, one needs to generate a masked SubBytes such that: MSubBytes(x+
m)=SubBytes(x)+m′ with m′ an output mask that can be propagated through
the cipher rounds. The practical issue for designers is to deal with different masks
efficiently. If the same mask m is used for all the AES bytes in all the rounds,
only one MSubBytes table needs to be computed, which can be done quite easily
prior to the encryption. But this may lead to security issues because different
intermediate variables are masked with the same value. On the opposite, using a
different mask for all the AES bytes implies to recompute MSubBytes anytime an
S-box is computed, which is generally too expensive for practical applications. In
order to get rid of this limitation, [20] proposes to take advantage of the algebraic
structure of the AES S-box to deal with multiple masks efficiently. The main idea
is to represent the non-linear part of the AES S-box as a multiplicative inverse
in the composite field GF(24)2. Doing this, it is possible to compute a masked
inverse “on-the-fly” in 14 table lookup operations and 15 XOR operations (this
requires to store a total of 1024 bytes of tables in ROM).

Assuming that we can obtain the Hamming weights corresponding to all these
intermediate computations, mounting an attack is straightforward. In fact, we can
even attack each S-box (anywhere in the cipher) separately and find a solution in
less than one second. This simplicity is due to the large quantity of side-channel
information leaked (more than 20 Hamming weights for one substitution) and the
extreme simplicity of the operations between two leakage points (one XOR or one
table look-up operation). As an illustration, Figure 6 presents the results of such
an attack mounted with partial information. It turns out that the amount of cycle
makes this masked implementation even easier to target than the original (unpro-
tected) implementation, due to the large redundancy of its leakages. We mention
that we considered the compact representation described in [20] and only targeted
8-bit intermediate values. But the efficient representation in the same paper would

Fig. 6. Attacking one masked AES S-box with partial information leakage
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make the situation even worse, allowing 4-bit values to be computed and observed
through their Hamming weights.

2. Masking with S-box pre-computation. As previously mentioned, an-
other approach for masking the AES, is to limit the number of 8-bit masks
applied to the cipher state so that a reasonable number of masked tables can
be pre-computed. The solution proposed by [16] is to use 2 masks m and m′ for
all the S-boxes inputs and outputs and 4 additional masks (m1, m2, m3, m4) for
the MixColumn operation, resulting in only 48 random bits to generate prior
to the encryption. In practice, this scheme turned out to be quite resistant to
an algebraic side-channel attack. About 20% of the instances were solved in less
than 24 hours of computation, and the fastest solving took about 5 hours. This
is surprising, since the masking only adds 48 new variables to the problem while
providing 32 more leaked values per round. From an intuitive point of view, this
again comes back to the fact that such a masking scheme adds randomness to
the computation without too much affecting the number of clock cycles required
to encrypt one plaintext. It also relates to the previous observation that Mix-
Column is an important source of side-channel information in our attacks and
becomes more complex because of the masking. For example, whereas the un-
protected AES leaks WH(a0 ⊕ a1) during the computation of MixColumn, the
masked version leaks WH(a0 ⊕ m1 ⊕ a1 ⊕ m2). That is, the masking doubles
the number of bytes in each Hamming weight leakage. The quantity of informa-
tion that one can extract from them is thus significantly less than that of the
unmasked implementation. Such a masking scheme in therefore better suited to
resist against an algebraic side-channel attack than [20].

5 Countermeasures

The previous section underlines that algebraic side-channel attacks shed a differ-
ent light on the security of cryptographic implementations. In general, resisting
against such attacks should follow different guidelines that we now detail:

1. Use block ciphers with high algebraic complexity.
2. Limit the number of clock cycles in the implementations (i.e. have each

elementary operation/instruction that has sufficient algebraic complexity).
3. Increase the algebraic complexity of the leakages (i.e. use large data buses,

add noise and countermeasures to the implementations).

With respect to masking in an 8-bit device, the impact of these observations has
been carefully analyzed in the previous section. In addition to the fact that [16]
seem to better resist algebraic cryptanalysis than [20], our results obviously con-
firm that one cannot mask the first/last rounds of a block cipher only. We now
discuss how the previous principles apply to practical countermeasures. First, us-
ing table-based implementations seems to be the most natural choice to improve
resistance against algebraic side-channel attacks. The AES Rijndael has nice fea-
tures with this respect (e.g. the ability to compute four S-boxes and MixColumn
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in four 256×4-byte table lookups and three XOR operations). Although this so-
lution is not directly applicable to small devices, preliminary experiments suggest
that removing all the Hamming weights of the MixColumn operation but the 4
output ones significantly increases the resistance against algebraic side-channel
attacks (we could only attack up to 70% of the SAT instances corresponding to
an 4-round AES in this context). Hence, implementing table-based implemen-
tations in 32-bit (or larger) devices where the leakages would depend on larger
amounts of intermediate bits (32 or more) is a challenging scenario for further
investigation. Then, increasing the algebraic complexity of the leakages implies
to reduce the amount of information provided by any elementary operation. Us-
ing large buses is helpful with this respect. But other countermeasures could be
helpful: noise addition, dual-rail circuits, . . . Eventually, we mention that time
randomization would also increase the difficulty of performing the attacks, by
preventing the direct profiling of the intermediate operations.

6 Conclusion and Open Problems

This paper shows that algebraic side-channel attacks can be applied to the AES
Rijndael implemented in an 8-bit controller. The observation of a single leakage
trace can be sufficient to perform a complete key recovery in this context and the
attack directly applies to certain masking schemes. Our experiments also suggest
interesting scenarios where less information is available (table-based implemen-
tations, typically) and for which solving the system of equations describing the
target cipher and its leakages becomes challenging. Open problems consequently
include the investigations of advanced strategies to attack protected devices (e.g.
exploiting the leakages in a more flexible manner, dealing with errors, . . . ). In
particular, circuit technologies where the leakage models are significantly differ-
ent than Hamming weights would be interesting to evaluate.

To properly understand the impact of this result, it is important to relate it
with theoretical and practical concerns. From a purely practical point of view,
one could argue that algebraic side-channel attacks do not improve previous at-
tacks against leaking ciphers. Indeed, these attacks require to recover the leakages
corresponding to a significant amount of operations. In other words, they can
be seen as (very) high-order attacks. Hence, a first-order DPA exploiting the
leakages corresponding to as many leakage points (but for different plaintexts)
would generally succeed as well. But from a theoretical point of view, the data
complexity that is required to reach high success rates is significantly decreased.
In other words, what eventually matters from a security point of view is the num-
ber of observed plaintexts required to recover a key. The attacks in this paper
allow reaching a success rate of one with the observation of a single encrypted
plaintext (which was never the case for previous side-channel attacks we are
aware of). Even if multiple measurements have to be made (we require a maxi-
mum of one or two measurements in the present paper), they still correspond to
a unique plaintext. By exploiting the leakages in all the cipher rounds, algebraic
side-channel attacks also get rid of the computational limitations of classical



110 M. Renauld, F.-X. Standaert, and N. Veyrat-Charvillon

DPA in which enumerating key candidates is necessary. Eventually, they have
an impact on the assumptions of constructions such as [21]. Hence, we believe
these results have both a theoretical and practical relevance.
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Abstract. We propose a new technique called Differential Cluster Anal-
ysis for side-channel key recovery attacks. This technique uses cluster
analysis to detect internal collisions and it combines features from pre-
viously known collision attacks and Differential Power Analysis. It cap-
tures more general leakage features and can be applied to algorithmic
collisions as well as implementation specific collisions. In addition, the
concept is inherently multivariate. Various applications of the approach
are possible: with and without power consumption model and single as
well as multi-bit leakage can be exploited. Our findings are confirmed
by practical results on two platforms: an AVR microcontroller with im-
plemented DES algorithm and an AES hardware module. To our best
knowledge, this is the first work demonstrating the feasibility of inter-
nal collision attacks on highly parallel hardware platforms. Furthermore,
we present a new attack strategy for the targeted AES hardware module.

Keywords: Differential Cluster Analysis, Side-channel Cryptanalysis,
Collision Attacks, Differential Power Analysis, AES Hardware.

1 Introduction

Side-channel analysis became a mature area in the past decade with many contri-
butions to new attacks, models and countermeasures since the pioneering results
of Differential Power Analysis (DPA) [14]. DPA exploits the fact that informa-
tion on secret key bits can leak through a side-channel. It typically requires
known input to the cryptographic algorithm. Many practical and more recently
some theoretical works have been published showing the importance of applying
known techniques and ideas from other research communities.

An internal collision attack (CA) is another kind of side-channel analysis.
Collision attacks have been introduced by Schramm et al. in [22]. A collision in
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an algorithm occurs if, for at least two different inputs, a function within the
algorithm returns the same output. If this happens, the side-channel traces are
assumed to be very similar in the time span when the internal collision persists.
Collision attacks use the side-channel to detect collisions and afterwards offline
computation with or without precomputed tables for key recovery. For both
steps there are different approaches proposed in the literature. Considering the
assumptions, attacks can be with either chosen or known inputs.

The work of [21] and in particular recent works on collision attacks [3,4,5,6,7]
veer away from long sequences of instructions [22,15], e.g. collisions that persist
for an entire round, and target short-scale intermediate results. Our approach
follows this development and shows that internal collisions can be the source for
both DPA and CA leakage.

More precisely, our work introduces Differential Cluster Analysis (DCA) as
a new method to detect internal collisions and extract keys from side-channel
signals. Our approach is to revisit collision attacks in the unsupervised analysis
setting, which can be two-fold e.g. viewed as collision and DPA approach. Our
strategy includes key hypothesis testing and the partitioning step similar to
those of DPA. Partitioning then yields collisions for the correct key which are
detected by cluster analysis. DCA typically requires known input data to the
cryptographic algorithm and can be applied to arbitrary algorithmic collisions
as well as to implementation specific collisions. Cluster analysis relates to some
extent to standard DPA, which is obvious for the univariate case. While DCA
is inherently multivariate, the technique inspires a simple extension of standard
DPA to multivariate analysis. The most interesting difference is that cluster
analysis is sensitive to more general leakage features and does not require a
power model for multi-bit collisions.

The idea of clustering for simple side-channel attacks was already used in the
work of Walter [25]. Therein, he uses clusters (called buckets) for partitioning
sets of similar measurements in order to reveal exponent digits for an attack on
sliding windows exponentiation. Our work is also related to Mutual Information
Analysis (MIA) [12] in that both approaches can succeed without but benefit
from a good power model. Also related to our work is the use of Gaussian
mixture models for masked implementations [16]. In this work parameters of
different Gaussian components that best fit to the observed mixed multivariate
side-channel leakage are estimated without knowing the masks.

Our experiments confirm the findings on two platforms. One platform is an
unprotected software implementation of the DES algorithm running on an Atmel
AVR microcontroller and the other one is a hardware implementation of AES-
128. Collision attacks on platforms like the latter are believed to be unfeasible
due to the high parallelism of operations, e.g., [5] states “the collision attacks
on AES are mainly constrained to 8-bit software implementations on simple
controllers”.

The paper is organized as follows: Section 2 describes our new approach to
collision detection by use of cluster analysis of measurement samples. Section 3
introduces the new classification of collisions into algorithmic and
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implementation specific collisions and presents examples for both classes. Exper-
imental results are provided in Section 4 and Section 5 summarizes the results
of this work.

2 Differential Cluster Analysis: The General Approach

An internal collision in a cryptographic algorithm occurs if, for at least two inputs
xi, xi′ ∈ {0, 1}u with xi �= xi′ and subkey k◦ ∈ {0, 1}v, values of one particular
intermediate state ∆ ∈ {0, 1}w collide. The intermediate state ∆ is a specific
property of the cryptographic algorithm. Although we provide examples from
symmetric schemes the general approach is also valid for public key schemes. In
the case of DES for example, the intermediate state is given by a few bits after
an S-box access. Let fk denote the key dependent function fk : {0, 1}u �→ {0, 1}w

that computes ∆ for a given input x in a cryptographic algorithm. The function
fk is said to be a many-to-one collision function if many inputs are mapped to
the same output.

Unlike previous collision attacks that search for similarity between different
power traces, the new key recovery attack aims at detecting significantly sep-
arated clusters as result of internal collisions. This is an unsupervised learning
process. The adversary observes the side-channel response on input patterns,
but has incomplete knowledge about the internal state of the system, especially
she does not know any key and therefore any true labels of samples. The adver-
sary, however, usually knows the number of different clusters, i.e., the number
of possible values for ∆.

DCA assumes that it is feasible to run statistics for all subkey candidates in
the algorithm, i.e., v is a small number. For common constructions of ciphering
algorithms such as AES and DES this assumption is clearly fulfilled. In the
first step of the attack, the adversary classifies measurement samples in (n ∈
{1, . . . , N}, where N is the total number of samples) with input1 xn into 2w

classes according to fk(xn) with guessed subkey hypothesis k. As result, the
adversary obtains 2w bins of classified measurements for each key guess.2 This
new attack tests whether clustering statistics, such as good cluster separation or
high cluster compactness, indicates a separation of distinct clusters. Note that
if k = k◦ the separation of the samples into the 2w bins corresponds to the
computation of the cryptographic device. If the side-channel leakage of different
values of ∆ is detectable, this in turn reveals the correct key. If the subkey
guess is wrong the measurements are generally classified into bins incorrectly,
i.e. almost all bins include samples that result from different values of ∆. As a
consequence, clusters of measurements resulting from different values of ∆ are
expected to broaden the statistical distribution of each bin and to smooth out
side-channel differences.

DCA classifies objects into classes according to special collisions that relate
to known inputs and a key hypothesis. Cluster statistics are used to detect
1 Note that this attack can be applied to both known and chosen input.
2 Note that not all 2w states might be possible in a given cryptographic algorithm.
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the collisions. Note that this collision and clustering attack is a multivariate
approach. Cluster statistics can be applied to measurements samples from a
single (univariate) or from multiple (multivariate) time instants. Multivariate
DCA benefits if prior knowledge on the relative distances of points in time that
contain exploitable side-channel leakage is available, e.g. as a result of profiling.
Furthermore, additional options exist for combining DCA results. One example is
to combine the outcomes of DCA for w 1-bit intermediate states for the analysis
of an w-bit intermediate state.

2.1 Cluster Statistics

We provide details about criterion functions for clustering and describe how
to measure the clustering quality. In literature, e.g. [11,24], cluster statistics
use a number of cluster characteristics. In Table 1 characteristics for c clusters
Di, i ∈ {1, . . . , c} with population ni of vectors x and total population N are
summarized. Note that in case of univariate analysis all vectors have only one
element.

The sum-of-squared-error is a widely used cluster criterion function. It com-
putes

JSSE =
c∑

i=1

∑
x∈Di

‖ x−mi ‖2 .

This function evaluates the sum of the squared Euclidean distances between the
vectors (x − mi). Informally speaking that is the sum of the scatter over all
clusters. The optimal partition minimizes JSSE . An alternative is the sum-of-
squares criterion. It evaluates the square of the Euclidean distance between the
cluster centroids mi and the total mean vector m:

JSOS =
c∑

i=1

ni ‖ mi −m ‖2 .

The optimal partition maximizes JSOS . An interesting observation is that the
sum of JSSE and JSOS is a constant, thus minimizing JSSE (yielding intra
cluster cohesion) is equivalent to maximizing JSOS (yielding inter cluster sepa-
ration) [24].

In the context of side-channel analysis computing variances can also be useful.
In such cases, one can either take variances into account explicitly or normalize

Table 1. Cluster Characteristics

Mean vector for the i-th cluster: mi = 1
ni

∑
x∈Di

x

Total mean vector: m = 1
N

∑c
i=1 nimi where

∑c
i=1 ni = N

Variance vector for the i-th cluster: vi = 1
ni

∑
x∈Di

(x − mi)2

Total variance vector: v = 1
N

∑c
i=1 nivi where

∑c
i=1 ni = N

Squared Euclidean norm (Rk → R): ||(z1, z2, . . . , zk)||2 =
∑k

j=1 z2
j
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the measurements before evaluating cluster criteria like JSOS and JSSE . The
variance test [23] is a criterion function that evaluates

JV AR =
‖ v ‖2

1
N

∑c
i=1 ni ‖ vi ‖2

,

i.e. the ratio between the overall variance and the weighted mean of intra clus-
ter variances. The optimal partition maximizes JV ar. The student’s T-test [13]
evaluates the distances between cluster centroids, normalized by intra cluster
variances and cluster sizes. We use it in the T-test criterion that evaluates the
sum of squared distances for all pairs of clusters

JSTT =
c∑

i,j=1;i�=j

‖ mi −mj ‖2√
‖vi‖2

ni
+ ‖vj‖2

nj

.

Again, the optimal partition maximizes JSTT .

2.2 The General Approach

Here we summarize our general approach:

1. Measure N samples in of power traces while the targeted device computes
the cryptographic algorithm with unknown fixed subkey k◦. For each sample,
store the associated known input xn for n = 1, 2, . . . , N .

2. For each subkey hypothesis k ∈ {0, 1}v do the following3:
(a) Sort the N measurements according to ∆i = fk(xi) into 2w clusters

D0, . . . ,D2w−1.
(b) For each cluster Di do the following: Compute mean value mi and vari-

ance vi.
(c) Compute a cluster criterion Jk (e.g. JSSE or JSOS) to quantitatively

assess the quality of the cluster separation.
(d) Store the pair of k and Jk: (k, Jk).

3. Rank the pairs (k, Jk) according to Jk.
4. Output the key candidate k with the value of Jk that leads to the best

clustering quality (min. or max., depending on the criterion function).

2.3 Refinements

Several refinements of the general approach can make the attack more efficient.

(i) Known input xn is assumed in the general approach. Noise due to non-
targeted operations can be highly reduced if the input xn can be chosen.
If the input can be further adaptively chosen this allows to apply an adap-
tive sieving of key candidates, thereby minimizing the number of samples
needed.

3 In practice, steps might be iterated for components of in, e.g., each iteration might
include samples of one or a few clock cycles of the device.
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(ii) In the general approach we do not include any assumption on similarity
of some clusters. Integration of a side-channel leakage model is possible
by merging of clusters, e.g., for a Hamming weight model the number of
clusters is reduced from 2w to w + 1. See Sect. 2.4 and 3 for a detailed
discussion.

(iii) Depending on the algorithm and the choice of ∆ related key hypotheses
that lead to so called “ghost peaks” [8] exist. For such key hypotheses the
formed clustering is, to a certain degree, identical to the correct clustering.
If such related key hypotheses exist this may allow for a special adaption
of the analysis.

(iv) Prior normalization of the N samples in to zero mean and unit standard
deviation is often useful in practice if the spread is due to noise. Transfor-
mation to principal components is another useful pre-processing step.

2.4 Detailed Comparison with DPA

Here, we compare DCA with DPA in more detail. For DPA, different variants are
known in literature [18]. The original approach for DPA [14] selects one bit of an
intermediate state to test whether there is a provable imprint of this bit in the
power traces. Kocher’s original DPA can be derived from DCA when restricted
to two clusters (w = 1) and one time instant. The proposed statistics, however,
differ to some extent.

Essential differences between DPA and DCA occur for w > 1. Multi-bit DPA
was first introduced by Messerges et. al. [19]. The main idea is that each bit in an in-
termediate state causes the same amount of leakage and that considering multiple
bits at once in an attack may be advantageous. A drawback of this “all-or-nothing”
DPA is the inefficient use of measurements: although 2w clusters exist, only two
of them are used. Correlation Power Analysis (CPA) [8] with a Hamming weight
or distance model correlates the predicted side-channel leakage with the measured
side-channel traces to check for provable correlation. CPA uses all available mea-
surements and canbe very efficient in practice. Potential drawbacks are the require-
ment for a good leakage model, which may be hard to come up with, and the fact
that CPA with a Hamming model may not capture all leakage details as Pearson
correlation solely tests for equidistance of cluster centroids, i.e. linearity.

The general DCA approach uses 2w clusters and all available measurements.
The assumption of a side-channel leakage model is only optional in multi-bit
DCA, e.g. an adjustment to the Hamming weight or distance model works with
w+1 clusters instead. Unlike CPA, DCA can also capture special features of the
leakage, e.g. unequal densities, non-spherical shapes, and unequal proximities.

Example for w = 2 where DCA is advantageous. The following example
shows that special cases of side-channel leakage exist that can neither be detected
with single-bit DPA nor with Hamming weight based CPA, but still with DCA.
We consider a general case with w = 2, i.e. four equally likely intermediate states
“00”, “01”, “10”, “11” that have a mean side-channel leakage of α0, α1, α2, α3,
respectively.
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Resistance against single-bit DPA requires that the following conditions must
hold: α0+α1 = α2+α3 and α0+α2 = α1+α3 in order to not reveal any information
on either the left or the right bit of the intermediate state. To achieve resistance
against Hamming weight CPA the following condition must hold: α0 = α3.

Resistance against both single-bit DPA and Hamming weight CPA is achieved
if the previous three conditions are combined, which leads to α0 = α3 and
α1 = α2. The trivial solution α0 = α1 = α2 = α3 implies a single joint cluster
and no information leakage at all. If α0 �= α1 two different clusters arise: a
joint cluster of intermediate states “00” and “11” as well as a joint cluster of
intermediate states “01” and “10”. These two separated clusters can be directly
detected with DCA which, assuming that the intermediate state results from
a non-injective mapping and depends on a secret subkey value, enables key
recovery. We acknowledge that an adapted selection function that tells apart
whether the two bits are equal or not would enable multi-bit DPA and CPA.
However, the general DCA approach detects such particular features by its own
nature while DPA and CPA require a guiding selection function. As mentioned
earlier, coming up with such a selection function may not always be easy and
can require detailed knowledge of the device’s leakage behavior.

3 Differential Cluster Analysis: Applications

In this section we first distinguish between two types of collisions, algorithmic
and implementation specific collisions. While an algorithm assumes a more ab-
stract concept, an implementation is a concrete realization of it. There may exist
many implementations of an algorithm. On the other hand, having an implemen-
tation, one can find just one algorithm corresponding to it.

In general, internal collisions may occur due to the algorithm or may be caused
by a particular implementation. In the former case, we speak about algorith-
mic collisions that are results of non-injective mappings within the algorithm.
Algorithmic collisions are therefore typically implementation independent. For
algorithmic collisions the adversary guesses the colliding intermediate state as it
is computed in the algorithm, e.g. a cryptographic standard. Neither a leakage
model nor any other information about implementation properties are used here.
The question is whether clusters for a complete or partial intermediate state can
be distinguished when applying cluster criterion functions.

On the other hand, implementation specific collisions can be observed merely
due to the way a certain algorithm is implemented. In other words, there can
be ways to implement an algorithm that induce this type of collisions, while
the collisions are not obvious in the algorithm. For implementation specific col-
lisions the adversary adds knowledge of confirmed or assumed implementation
properties to the algorithmic attack. Examples include targeting particular in-
termediate states of the implementation or applying a special leakage model.
Clusters are built according to such a special implementation specific intermedi-
ate state or clusters are merged according to such a special leakage model. Next
we present examples for both cases.



Differential Cluster Analysis 119

3.1 Algorithmic Collisions

Data Encryption Standard. We revisit collisions in isolated S-boxes [22]. The
S-box function is 4−to−1, i.e., it maps four inputs to one output. For each S-box,
the collision function fk = Si maps a group of four values of z ∈ {0, . . . , 26 − 1}
to one cluster of fk(z) ∈ {0, . . . , 24 − 1}. As z = x ⊕ k the mapping depends
on subkey k given known x. Alternatively, the 4-bit output differential of the
first round can be used as a collision function that evolves from tracking
the four output bits of the active S-box to the R-register in the next round.
For the correct key hypothesis, up to sixteen separated clusters are expected.

Advanced Encryption Standard. An isolated AES S-box is not a collision
function because one merely obtains a permutation of cluster labels for each key
guess. Targeting only r-bit (1 ≤ r < 8) of an S-box outcome, however, is an
applicable many-to-one collision function, at the cost of loosing predicted bits of
the full intermediate result.

Collisions also occur in a single output byte after the MixColumns transfor-
mation as described in [21], because this is a 224 − to − 1 collision function.
For the purpose of saving computation time, an attack with two measurement
series using two fixed input bytes to each MixColumns transformation is ad-
vantageous, if applicable. This leads to a 28 − to − 1 collision function. Let b00
be the first output byte of MixColumns, (x22, x33) the two fixed input bytes, S
the AES S-box, and (k00, k11) the target for key recovery. Then we have b00 =
02·S(x00⊕k00)⊕03·S(x11⊕k11)⊕c, where constant c = S(x22⊕k22)⊕S(x33⊕k33).
Without loss of generality we assume c = 0 and label clusters with the value
of b00, as there exists a bijective mapping from b00 to the correct cluster label
b00⊕c. Similarly, the second measurement series can be used to recover the other
two key bytes.

3.2 Implementation Specific Collisions

Examples for this type of collisions include hardware and software implemen-
tations at which some internal registers are used multiple times, e.g., in sub-
sequent rounds of an algorithm or during subsequent processing of functional
units. Hereby, internal collisions can be caused for intermediate results that are
not provided in an algorithmic description.

AES-128 hardware architecture. In Appendix A we describe an AES-128
hardware architecture that leaks such implementation dependent collisions and
that we analyze in the experimental part of this paper. The architecture is
very compact and suitable for smartcards and other wireless applications, which
makes the attacks extremely relevant.

Let xi ∈ {0, 1}8 (i ∈ {0, 1, . . . , 15}) denote the plaintext byte. Accordingly,
let ki ∈ {0, 1}8 be the corresponding AES key byte. By S we denote the AES
S-box. The targeted intermediate result is

∆ii′ = S(xi ⊕ ki) ⊕ S(xi′ ⊕ ki′) (1)
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with i �= i′. This intermediate result ∆ii′ is, e.g., given by the differential of two
adjacent data cells in the studied AES hardware architecture. ∆ii′ depends on
two 8-bit inputs to the AES S-box (xi ⊕ ki, xi′ ⊕ ki′) and that is crucial for the
new attacks. For the key-recovery attack we consider the pairs of known plaintext
(xi, xi′ ) and fixed unknown subkey (k◦

i , k◦
i′). Our attack is enabled because (1)

is the result of a 28-to-1 collision function.
Using the general approach one evaluates the clustering quality for 216 key

hypotheses, but for this particular internal collision a special approach is feasible:
for ∆ii′ = 0 equation (1) simplifies to

S(xi ⊕ ki) = S(xi′ ⊕ ki′) ⇒ xi ⊕ ki = xi′ ⊕ ki′ ⇒ ki ⊕ ki′ = xi ⊕ xi′ .

This leads to the observation that for all key guesses (ki,ki′) satisfying ki⊕ki′ =
k◦

i ⊕k◦
i′ the elements assigned to the class ∆ii′ = 0 are the same as in the correct

assignment (caused by (k◦
i , k◦

i′)). This allows for a two-step key recovery attack:

1. Determine the correct xor-difference k◦
i ⊕ k◦

i′ based on 28 hypotheses.
2. Determine the correct pair (k◦

i , k◦
i′) based on 28 hypotheses.

We illustrate these steps in Sect. 4.2. As a result of this approach, the complexity
of the key search is reduced from 216 to 29 hypotheses.

Note that this strategy is not exclusively accredited to DCA. This implementa-
tion specific attack strategy can also be applied using standard DPA techniques.

4 Experimental Results

In this section we describe the setups for our experiments, experimental settings
and provide results. The empirical evidence shows that the proposed attacks are
practical and lead to a successful key recovery.

4.1 DES in Software

Our experimental platform is an unprotected software implementation of the
DES running on an Atmel AVR microcontroller. The code executes in constant
time and the µC is clocked at about 4MHz. For our first experiments we used a set
of N = 100 power traces in. The samples represent the voltage drop over a 50Ω
shunt resistor inserted in the µC’s ground line. Power consumption was sampled
at 200 MS/s during the first two rounds of DES encryption with a constant
key k◦ = (k◦

0 , . . . , k◦
7). The plaintexts xn = (x0n, . . . , x7n) were randomly chosen

from a uniform distribution to simulate a known plaintext scenario. The targeted
4-bit intermediate result is S1(x̃1 ⊕ k̃1) where x̃1 and k̃1 denote respectively the
six relevant bits of plaintext and roundkey entering the first DES S-box (S1)
in the first round. Figure 1 shows results of our cluster analysis for the criteria
JSOS , JSSE , JV AR and JSTT . The plots show that all four criteria allow recovery
of k̃1 but also indicate that JV AR and JSTT are preferable. Furthermore, Figure 1
nicely illustrates the complementary character of JSOS and JSSE .
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Fig. 1. Results of Cluster Analysis with JSOS (top, left), JSSE (top, right), JV AR

(bottom, left) and JSTT (bottom,right) when using 26 key hypotheses on the subkey
k̃1 of S1. Results for the correct key guess are plotted in black, all other in gray.

Multivariate DPA. So far, integration of power or differential traces over
small time intervals was proposed for the re-construction of a DPA signal in
the presence of hardware countermeasures [10] and as a compression technique
for measurement traces [18]. More generally, DPA can be extended to capture
multiple well-separated leakage signals in two ways. The first approach applies
standard DPA statistics and combines the (absolute) scores of multiple leakage
signals afterwards. The second approach is to first combine, e.g. sum up, the mea-
surement samples from multiple selected time instants before running univariate
statistics. Both approaches were tested for CPA and yielded virtually identical
results if the second approach takes positive and negative side-channel contri-
butions at the different points in time into account, e.g. samples with positive
correlation are added and samples with negative correlation are subtracted. As
long as the number of instants is small, all possible combinations for combining
the leakage at these instants can be tested exhaustively if the right combination
is unknown.

Univariate vs. Multivariate Analysis. We study the performance of DCA
for univariate and multivariate statistics. To allow a fair comparison we also
provide results for univariate and multivariate CPA. Preliminary experiments
indicated that the least significant bit (LSB) of S1(x̃1⊕ k̃1) is a preferable target
for attacks. We thus focus on attacks using two clusters, i.e. w = 1, targeting
the LSB. Additionally, we identified three points in time (A,B,C) when the LSB
leaks most.

For this analysis we used 5000 measurements in one hundred sets of fifty mea-
surements. For each attack we used N = 15, 20, 25, . . . , 50 measurements and
repeated the attack one hundred times. We report the percentage of attack sce-
narios where an attack was successful, i.e. where the attack outputs the correct
subkey value.
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Table 2. Success rates in % for various univariate and multivariate attack scenarios

Test Model Point in time N=15 N=20 N=25 N=30 N=35 N=40 N=45 N=50
CPA LSB overall 3 15 37 62 84 95 96 98
CPA LSB A 42 64 69 77 89 93 94 96
CPA LSB B 64 77 83 93 96 98 98 99
CPA LSB C 17 28 29 38 50 55 59 65
JSSE LSB overall 3 15 37 62 84 95 96 98
JSSE LSB A 42 64 70 77 89 93 94 96
JSSE LSB B 64 78 82 93 96 98 98 99
JSSE LSB C 18 28 31 38 50 56 59 65
CPA LSB AB 70 85 90 96 99 100 100 100
JSSE LSB AB 70 83 91 97 99 100 100 100
CPA LSB ABC 76 90 96 99 100 100 100 100
JSSE LSB ABC 78 94 96 99 100 100 100 100

Table 2 shows the success rates for the various scenarios. Comparing univariate
CPA and DCA with the JSSE criterion we observe that the success rates are very
similar in all scenarios.The third block of results in the table shows success rates for
DCA and CPA still targeting only the LSB but exploiting the multivariate leakage
at points A,B, and C. Formultivariate CPA, the measurement valueswere summed
up, taking into account the respective signs of the correlation at each point in time,
before computing correlation coefficients. Both multivariate attacks perform also
very similar. It is clear that multivariate attacks are superior to univariate attacks,
but they usually require knowledge of the instants A,B, and C.

4.2 AES in Hardware

Our experimental platform is a prototype chip which implements an 8051-compa-
tible µC with AES-128 co-processor in 0.13 µm sCMOS technology without
countermeasures. The architecture of the AES co-processor, which is the target
of our attacks, is discussed in detail in Appendix A. The susceptibility of the chip
towards templates [9,13], stochastic methods [20,13], DPA and rank correlation
has already been analyzed in [2].

For our experiments we obtained a set of N = 50 000 power traces in. The
samples represent the voltage drop over a 50Ω resistor inserted in the dedicated
core VDD supply. Power consumption was sampled at 2 GS/s during the first
round of AES-128 encryption with a constant key k◦ = (k◦

0 , . . . , k◦
15). The plain-

texts xn = (x0n, . . . , x15n) were randomly chosen from a uniform distribution.
In all following examples we focus on the neighboring data cells C0,2 and

C0,3 of Figure 4 that represent AES state bytes 8 and 12, respectively. How-
ever, we point out that all key bytes can be attacked in the same way since all
corresponding state bytes enter the MixColumns circuit at some time.

DCA. We showed in Sect. 3.2 that clustering of the power consumption values
caused by the differential ∆ii′ has three interesting properties. First, for the cor-
rect hypotheses (k8, k12) on both involved key bytes all power traces are assigned
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Fig. 2. Results of Cluster Analysis with JSOS (top, left), JSSE (top, right), JV AR

(bottom, left) and JSTT (bottom,right) when using 28 hypotheses on the pair (k8, k12).
Results for the correct xor-difference are plotted in black, all other in gray.

to clusters ∆ii′ correctly which maximizes (minimizes) the cluster statistic Jk

over all clusters. Second, for a wrong hypothesis (k8, k12) where the xor-difference
k8 ⊕ k12 is correct (i.e. equal to k◦

8 ⊕ k◦
12) power traces are assigned to cluster

∆ii′ = 0 correctly and uniformly at random to all other clusters ∆ii′ �= 0. Third,
for a wrong hypothesis (k8, k12) power traces are assigned to all clusters ∆ii′

uniformly at random. The second property enables our two step attack.
The results reported in the remainder are based on either N1 = 50 000 or

N2 = 10 000 measurements. We restrict to univariate analysis and computed
JSOS , JSSE , JV AR and JSTT .

Step 1: Detecting (k8, k12) with the correct xor-difference. In order to
detect a hypothesis with the correct xor-difference one has to decide whether the
cluster ∆ii′ = 0 is different from all other clusters. We thus merge the clusters
∆ii′ �= 0 to analyze them as one single cluster. The statistic Jk is then evaluated
for the two cluster case, ∆ii′ = 0 and the union of the remaining clusters.

We sort N1 measurements into two clusters ∆ii′ = 0 and ∆ii′ �= 0 and evaluate
the cluster criterion functions for the two cluster case. Interestingly, for this
approach it does not matter whether one applies the Hamming distance model
or not, since in both cases the same measurements are assigned to ∆ii′ = 0 and
∆ii′ �= 0. Figure 2 shows the resulting cluster criteria. One can observe that the
criteria JSOS and JSST yield signals at the points in time when the collision
occurs.

Step 2: Detecting the correct key pair. We search all pairs (k8, k12) with
the now known xor-difference k◦

8 ⊕ k◦
12. Detecting the correct pair is easier than

detecting a pair with the correct xor-difference, because differences of many
clusters yield stronger side-channel signals. We can therefore work with fewer
measurements which speeds up the analysis (note that the measurements from
step 1 are re-used). For each hypothesis we sort N2 measurements into 256
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Fig. 3. Results of Cluster Analysis with JSOS (top, left), JSSE (top, right), JV AR

(bottom, left) and JSTT (bottom,right) when using 28 hypotheses on the pair (k8, k12).
Results for the correct key guess are plotted in black, all other in gray.

clusters and evaluate the cluster criteria. Figure 3 shows the cluster criteria for
this setting (without any power model).

We observe that all criterion functions are able to identify the correct guess.
We also evaluated the cluster criteria under the assumption of the Hamming
distance model, where we sorted the measurements into nine clusters according
to the Hamming weight of ∆ii′ . The results are similar and we do not present
them in detail. The results demonstrate the feasibility of our approach on both
platforms and show that it works with or without a power model. Among the
cluster criteria that we considered JSTT gives in general the best results but is
particularly error-prone when very few measurements are used.

Complexity. For the two-step attack, approximately 50 000 measurements were
needed to reveal the correct two key bytes and 2 ·28 key hypotheses were tested.
The general DCA approach tests 216 key hypotheses and the threshold for suc-
cessful key recovery is approximately at 5000 measurements. As result, our spe-
cial attack strategy for the AES hardware implementation allows to reduce the
number of hypotheses for which cluster criterion functions have to be computed
by a factor of 27 at the cost of a tenfold increase of measurements.

5 Conclusion

We propose a new technique for side-channel key recovery based on cluster anal-
ysis and detection of internal collisions. The technique is broader in applications
than previously known DPA attacks. It has obvious advantages when more than
two clusters are used. In particular DCA does not require but can benefit from
a good leakage model and it is inherently multivariate. DCA inspires a simple
extension of standard DPA to multivariate analysis that is also included in this
contribution. While previous works focus on internal collisions that are mainly
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results of algorithmic properties, we additionally consider implementation spe-
cific collisions. Our approach is confirmed in practice on two platforms: an AVR
microcontroller with implemented DES algorithm and an AES hardware module.
This is the first work demonstrating the feasibility of internal collision attacks
on highly parallel hardware platforms. Furthermore we present a new attack
strategy for the targeted AES hardware module.
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A similar implementation is described in [17]. The module includes the following
parts: data unit, key unit, and interface. The most important part is the data unit
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Fig. 4. The architecture of the AES module

(see Figure 4), which includes the AES operation. It is composed of 16 data cells
(Ci,j , where i, j ∈ {0, 1, 2, 3}) and four S-Boxes. A data cell consists of flip-flops
(able to store 1 byte of data) and some combinational logic (xors gates) in order
to perform AddRoundKey operations. It has the ability to shift data vertically
and horizontally, which is the feature exploited in our attacks. Load data is done
by shifting the input data column by column into the registers of the data cells.
The initial AddRoundKey transformation is performed in the fourth clock cycle
together with the load of the last column. To calculate one round, the bytes
are rotated vertically to perform the S-box and the ShiftRows transformation
row by row. In the first clock cycle, the S-Box transformation starts only for the
fourth row. Because of pipelining the result is stored after two clock cycles in the
first row. S-boxes and the ShiftRows transformations can be applied to all 16
bytes of the state within five clock cycles due to pipelining. The S-Boxes in the
AES module are implemented by using composite field arithmetic as proposed
by Wolkerstorfer et al. [26] following the original idea of Rijmen [1].
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Abstract. The paper describes a new attack on RSA–CRT employing
Montgomery exponentiation. Given the amount of so-called final sub-
tractions during the exponentiation of a known message (not chosen,
just known), it creates an instance of the well known Hidden Number
Problem (HNP, [2]). Solving the problem reveals the factorization of RSA
modulus, i.e. breaks the scheme.

The main advantage of the approach compared to other attacks [14,17]
is the lack of the chosen plaintext condition. The existing attacks, for
instance, cannot harm so-called Active Authentication (AA) mechanism
of the recently deployed electronic passports. Here, the challenge, i.e.
the plaintext, is jointly chosen by both parties, the passport and the
terminal, thus it can not be conveniently chosen by the attacker. The
attack described here deals well with such a situation and it is able to
solve the HNP instance with 150 measurements filtered from app. 7000.
Once the secret key used by the passport during AA is available to the
attacker, he can create a fully functional copy of the RFID chip in the
passport he observes.

A possible way to obtain the side information needed for the attack
within the electromagnetic traces is sketched in the paper. Having no
access to high precision measurement equipment, its existence has not
been experimentally verified, yet. The attack, however, should be taken
into account by the laboratories testing the resilience of (not only) elec-
tronic passports to the side channel attacks.

Keywords: RSA, Chinese Remainder Theorem, Montgomery exponen-
tiation, Hidden Number Problem, side channel attack, electronic pass-
port.

Introduction

Motivated by the recent deployment of the electronic passports, we study the
security of it anti-cloning measure called Active Authentication (AA, [5]). As
it is an RSA based challenge-response protocol, one can try to attack AA with
the well-known Schindler’s adaptive chosen plaintext attack [14] or Tomoeda’s
chosen plaintext attack [17]. It turns out, however, both of these approaches fail
in this scenario due to their chosen plaintext condition as the plaintext used in
AA is chosen jointly by both parties.
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In this paper we present a new side channel attack on RSA-CRT with Mont-
gomery multiplication [10]. Being a known plaintext attack, it suits well the AA
scenario. The side information that is available to the attacker is the same as in
[17], i.e. the amount of the final subtractions during Montgomery exponentiation
within one branch of the CRT computation (e.g. exponentiation mod p). It is
shown such information can be used to obtain modular approximations of one
of the factors of the RSA modulus. The side information is stronger variant of
the simple timing information used in [14].

The approximations suit perfectly as the input to the well-known Hidden
Number Problem [2] which can be efficiently solved using lattice reduction tech-
niques [9,4]. The attack presented using this side information is of indepen-
dent merit and can be applied in other scenarios where the side information is
available.

The existence of the side information in the electronic passport is yet to be
proven, however. Our simple measurements show the square-and-multiply-always
exponentiation can be identified very well in the electromagnetic trace surround-
ing the chip. More precise measurements are needed, however, to support the
hypothesis that Montgomery multiplication is used and that the amount of the
final subtractions is revealed.

As the existence of the side channel implies the insecurity of AA security
measure, the attack should be taken into account by the testing laboratories. No
further research is needed for this purpose. On the other hand, no theoretical
guarantee is given in the paper that the attack always works. Further research
is necessary for more theoretical results. The attack validity is supported by
the experiments with the emulated side information. As the electronic passports
are already deployed, we believe the attack should be made public at this stage
already.

The paper is organized as follows. The electronic passport and AA are
overviewed together with our simple electromagnetic measurements in Section
1. The RSA-CRT scheme with Montgomery multiplication is described in Sec-
tion 2. Briefly overviewing the existing attacks, we elaborate the conversion to
HNP here, as well. Remarks on HNP relevant to the scenario and the results of
the experiments with the emulated observations are given in Section 3. Several
possible directions for future research are suggested in Section 4.

1 e-Passport

The electronic passport is a modern travel document equipped with a RFID
(Radio Frequency IDentification) chip compatible with ISO 14443 [7] (on the
physical layer to the transport layer) and with ISO 7816 [8] (the application
layer).

The chip contains digitally signed electronic copy of the data printed on the
passport: the machine readable zone (MRZ) including the passport no., the photo
of the holder, as well as the public and private key for the Active Authentication
(AA) described in the next paragraph.
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Algorithm 1. Active authentication
Parties: T . . . terminal, P . . . passport
1: T: generate random 8-byte value V
2: T → P: V
3: P: generate random 106-byte value U
4: P: compute s = md modN , where m =“6A”||U ||w||“BC”, w = SHA-1(U ||V ) and d

is the passport’s secret AA key securely stored in the protected memory
5: P → T: s, U
6: T: verify m = se modN , where e is the passport’s public key stored in publicly

accessible part of passport memory

1.1 Active Authentication

Besides the required security mechanisms in [6] such as the passive authentica-
tion and the basic access control (BAC), the e-passport can optionally employ
cryptographically more sophisticated active authentication which aims to make
the duplication virtually impossible for the attacker. The challenge-response pro-
tocol used in AA is shown in Algorithm 1.

As we can see, the formatted message m being signed by the passport is chosen
jointly by the terminal and the passport, thus cannot be conveniently chosen by
the attacker on the terminal side.

1.2 Electromagnetic Side Channel Leakage

As previously mentioned, the e-passport is compatible with ISO 14443 on the
physical layer. To send the data to the terminal, the so-called near magnetic field
is employed. Depending on the data being sent, the passport loads its antenna
with a specific impedance circuit. Such an activity propagates in the surrounding
magnetic field which is detected by the terminal. The reader is encouraged to
see [3] for more details on the physical layer.

The question that is an interesting one to be asked in this scenario is whether
the passport can fully control the emanation of the antenna. It is not only the
special purpose circuit but also the other parts of the chip that load the antenna
with their impedances. Especially, one should ask whether any of the crypto-
graphic operations computed on the chip can be identified in the surrounding
field.

During the early stages of the research, we presumed square-and-multiply
algorithm with Montgomery exponentiation is employed during AA. This hy-
pothesis is partly supported by the measurements shown on Figure 1. The ratio
between the duration of two repetitive patterns corresponds to the execution
duration of square and multiply operations and they appear in two series of
512 repetitions. This measurement does not reveal, however, whether the Mont-
gomery multiplication is used. In case it is not, the attack described in the
following text can still be employed in other implementations that make use of
Montgomery multiplication.
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Fig. 1. Electromagnetic side channel measurement on an e-passport during the com-
putation s = md mod N within AA. The RFID chip on the passport is P5CD072
[13].

Since we presume square-and-multiply-always algorithm (see Algorithm 3) is
used for exponentiation, the secret exponent d cannot be directly extracted from
these measurements. We suspect however, it is possible to extract some informa-
tion about the exponentiation if higher precision measurements are available. In
fact, we believe the number of so-called final subtractions within the exponen-
tiation mod p can be revealed by this side channel. A method that is able to
make use of such information and discloses the secret key d is described in the
next section.

2 RSA–CRT with Montgomery Multiplication

Let N be the public RSA modulus and e be the public exponent. Let (p, q, d)
satisfying N = pq, d = e−1 modφ(N) be the corresponding private data.

Being given message m, the private RSA operation md modN is computed
using Chinese Remainder Theorem as follows

sp = (mp)dp mod p (1)
sq = (mq)dq mod q (2)
s = ((sq − sp) pinv mod q) p + sp (3)

where dp = dmod (p − 1), dq = dmod (q − 1), mp = mmod p, mq = mmod q
and pinvp = 1 (mod q). For our attack, we expect the exponentiation in (1)
and (2) is computed employing the standard square-and-multiply-always algo-
rithm with Montgomery representation of the integers (see Algorithm 3) with
Montgomery constant R = 2


log N
2 �.

One of the well-known countermeasures to prevent a simple SPA side channel
attack on Algorithm 3 is the execution of the dummy multiplication in step 8.
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Algorithm 2. Montgomery multiplication mont()
Input: x, y ∈ Zp

Output: w = xyR−1 mod p

1: s ← xy
2: t ← s(−p−1)modR
3: g ← s + tp
4: w ← g/R
5: if w > p then

6: w ← w − p (final subtraction)
7: return w

Algorithm 3. Montgomery exponentiation expmont()
Input: m, p, d

(
= (dn−1ed−2 . . . d1d0)2

)
Output: x = md mod p

1: u ← mRmod p
2: z ← u
3: for i ← n − 2 to 0
4: z ← mont(z, z, p)
5: if di == 1 then

6: z ← mont(z, u, p)
7: else

8: z′ ← mont(z, u, p) (dummy operation)
9: endfor

10: z ← mont(z, 1, p)
11: return z

This prevents an attacker from distinguishing if the operation mont(z, u, p) was
executed or not. We will see, however, this countermeasure has no effect on our
attack.

2.1 Schindler’s Observation

In [14], Schindler demonstrated an interesting property of the Montgomery mul-
tiplication algorithm (Algorithm 1). Let x be a fixed integer in Zp and B be
randomly chosen from Zp with uniform distribution. Then the probability that
the final subtraction (step 6 in Algorithm 2) occurs during the computation
mont(x, B) is equal to

xmod p

2R
(4)

This observation allowed attacking RSA-CRT with an adaptive chosen plaintext
timing attack.
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2.2 Trick by Tomoeda et al.

In [17], the original Schindler’s attack is modified to a chosen plaintext attack.
All of the values are chosen in advance by the attacker, i.e. they are not required
to be chosen during the attack.

With the probability of the final subtraction computation within one mul-
tiplication step given by Schindler (4), Tomoeda gave an estimate on the to-
tal number of final subtractions ni during the whole exponentiation operation
(mp,i)

dp mod p, where mp,i = mi mod p. In fact, the approximation (5)

miRmod p

p
≈ ni − nmin

nmax − nmin
(5)

is given for 0 ≤ i < k where nmax = max0≤i<k ni and nmin = min0≤i<k ni are
the maximal and the minimal number of FS during k observations. To justify
this approximation, the authors of [17] proposed experimental result similar to
the one shown on Figure 2.

Being an approximation, we cannot expect (5) to be as tight as Schindler’s
high-precision (4). Instead, we can empirically measure minimal precision of (5)
in bits. In section 2.4, we will see for 1024 bit modulus we can expect at minimum
4 bits with proper filtering of the measurements.
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Fig. 2. The relationship between the known number of FS during the computation
(mp,i)dp mod p and the unknown value miRmod p. We see it is strongly linear and
can be expressed as in (5).
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In [17], the attack used 512 measurements (in case without the RSA blinding)
to recover 512 bit long prime factor of N , i.e. one bit per measurement was used
on average. We will see in section 2.4, however, that the average number of bits
extracted per measurement and even their minimum can be much higher.

2.3 Conversion to HNP

Both approaches, Schindler’s [14] and Tomoeda’s [17], are chosen plaintext at-
tacks on RSA–CRT with Montgomery exponentiation. They cannot be applied
on AA in the e-passport scenario, however. As the plaintext (i.e. the formatted
challenge) is generated jointly by the terminal and the e-passport, it cannot be
conveniently chosen by the attacker.

The main contribution of this paper is the lack of the chosen plaintext condi-
tion while recovering the factorization of N . To do this we transform the prob-
lem of finding the secret factor of N to the well-known Hidden Number Problem
(HNP, see [12]). Being given the approximation (5), we first realize there exists
an integer ki such that miRmod p = miR− kip. Consequently, we multiply (5)
by N obtaining

miRq − kiN ≈ ni − nmin

nmax − nmin
N (6)
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and we substitute ti = miRmodN and ui = ni−nmin

nmax−nmin
N for 0 ≤ i < k.

We now have a “modular approximation” ui of a known ti-multiple of (hidden
number) q, i.e.

tiq + k′
iN − ui ≈ 0 (7)

for suitable k′
i, 0 ≤ i < k.

Even if the values ti and ui were taken at random from ZN , it would hold

|tiq − ui|N ≤ N

2
(8)

(let us remind |a|N = mink∈Z(a− kN)).
However, we expect (7) to be a better approximation than the random one

and we can measure its precision in bits and note it as li, i.e.

|tiq − ui|N ≤ N

2
2−li (9)

2.4 Approximation Precision and Filtering

During the one-time precomputation step we simulated the side channel mea-
surements over 212 RSA instances with 1024 bits long mudulus and 212 random
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Fig. 4. The precision of the approximation in bits as a function of the amount of FS
within the Montgomery exponentiation. During the attack, only the measurements
with at most 4 FS are taken into account as their minimal precision is approximately
4 bits.
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plaintexts for each instance. The minimal number of FS within the exponentia-
tion mod p was 0 while the maximal was 290.

For each measurement we computed so-called “ideal nmax”, the value for
which the approximation (6) becomes equality with nmin = 0. The value was
rounded to the nearest integer. The distribution of these values is shown on
Figure 3. The value 224 being the most frequent candidate for “ideal nmax”
value was used instead of the real value nmax = max0≤i<k ni during the following
steps. This simple adjustment increased the minimal precision lmin by 0.5 bit and
even by 1 bit within the filtered measurements described in the next paragraph.

The precision li of the i-th approximation ui (see (9)) was measured as li =
−1 + log N − log |tiq − ui|N . The interesting relationship between these values
and the number of FS is shown on Figure 4. We see the minimal precision of one
single bit is obtained for approximately 150 final subtractions. However, focusing
on the experiments with less than 5 final subtractions, the minimal precision
jumps to 4 bits. For this reason during the simulated experiment we filter all
of the measurements with 5 final subtractions or more resulting in 150 (27.2)
suitable measurements from the total of 6797 (212.7) measurements conducted
(simulated).

3 Hidden Number Problem

The Hidden Number Problem was first introduced in [2]. Being given k approx-
imations

|tix − ui|N <
N

2l+1 (10)

with ti, ui ∈ ZN , l ∈ N known for 0 ≤ i < k, the task is to find the hidden
number x ∈ Z

N
1
2
. In [2], the hidden number is a random unknown value from

ZN , however, this is not the case in our scenario. Here, the hidden number is a
factor of N with the expected size in order of N

1
2 . The lattice we use to solve

the HNP instance is adjusted for this purpose.
The usual technique to solve HNP is the employment of the lattices. The

problem is converted to one of the well studied lattice problem, the Approximate
Closest Vector Problem (ACVP). One constructs the lattice L spanned by the
rows of the basis matrix

B =

⎛⎜⎜⎜⎜⎜⎜⎝

N 0 · · · 0 0

0 N
. . .

...
...

...
. . . . . . 0 0

0 · · · 0 N 0
t0 · · · · · · tk−1 N

1
2 /2l+1

⎞⎟⎟⎟⎟⎟⎟⎠ (11)

and the vector V = (u0, . . . , uk−1, 0). The lattice vector

H =

(
t0x − α0N, . . . , tk−1x − αk−1N,

xN
1
2

2l+1

)



Known–Plaintext–Only Attack on RSA–CRT 137

is the hidden vector for suitable α0, . . . , αk−1 ∈ Z, as its last coordinate reveals
the hidden number x.

The hidden vector H belongs to lattice L. It is unknown, however. The con-
struction of lattice L and vector V yields existence of such α0, . . . , αk−1 that
||H − V || < N

2l . The first step in solving ACVP is finding an LLL-reduced basis
of L using the LLL algorithm [9] or its BKZ variant [15] with the time complex-
ity exponential on lattice dimension k + 1. Being given the reduced basis, the
second step is using Babai’s closest plane algorithm [1] to find a vector H ′ in L
close to V . One can now hope the vector H ′ reveals the hidden number x in its
last coordinate, i.e. H ′ is equal to hidden vector H or is “similar enough”.

It is shown in [12] that the probability of recovering the hidden number using
this approach is close to 1 if the precision l of the approximations is in order of
(log N)1/2 and reasonable amount of approximations is given.

In our scenario with 1024-bit long modulus N, we would need 32 bit mea-
surement precision in order to have the theoretical guarantee of success. As we
have seen previously this would hardly be the case with the electromagnetic side
channel which provides us with 4 bits at minimum, 7 bits on average. To over-
come this limitation we can lower the imprecision of the approach introduced
by Babai’s algorithm by heuristically converting the ACVP to Unique-SVP, as
shown in Appendix. More importantly, the lattice basis reduction algorithms
behave much better in real-life situations than what is guaranteed in theory [4].
Next section shows it is possible in fact to recover the hidden number q in our
scenario.

3.1 Experiments with Emulated Observations

We implemented the attack using NTL library [16]. The computing platform
was 64-bit GNU/Linux Debian running on Opteron 244 with 2GB RAM.

We first emulated the side channel and extracted the number of final subtrac-
tions li within the Montgomery exponentiation si = (mp,i)dp mod p. As justified
in Figure (4) only the measurements with at most 4 final subtractions were used
in order to keep the approximation precision on an acceptable level. In fact, the
minimal precision lmin within these measurements was 4.2 bits while it was as
high as 7.2 bits on average. We have to note however, these values are not known
during the attack, thus the lower bound has to be estimated. In order to collect
150 such measurements, the total number of 7000 measurement was emulated.
In real life, the physical measuring of such a collection should be feasible in order
of hours.

With the side information available, lattice L was constructed. The dimen-
sion of the lattice was 152, since the CVP problem was converted to Unique-SVP
adding 1 to the original dimension. The parameter l approximating the minimal
number of known bits was chosen from the set

{ 7
2 + t

4 , t ∈ 0, . . . , 19
}
, i.e. 20 lat-

tices were constructed in parallel as the exact precisions li of the approximations
are not known.

The lattices were first reduced with the basic LLL XD variant of LLL algo-
rithm implemented in NTL. Following, stronger G BZK XD reduction was run



138 M. Hlaváč

with BlockSize initially set to 4 being increased by 2 to up to 20. After each
BlockSize increase, the short vector of the reduced lattice was checked. In case
it revealed the hidden number q, the attack was successful.

In the experiment with 150 simulated measurements, the attack was successful
with parameter l equal to 9 and 9.5. The expensive lattice basis reduction steps
took approximately 40 minutes each.

Five different scenarios with random RSA instances were emulated and ex-
perimented with. The RSA modulus was successfully factored in each of these
instances.

4 Future Research

As mentioned several times, our main hypothesis—that the Montgomery multi-
plication is used and that the amount of final subtractions leaks—is to be verified.
Furthermore, the resilience of other HW modules against this side channel at-
tack in similar scenarios should be verified, as well. The probability of success
of the attack under given circumstances is to be elaborated.

5 Conclusion

We presented new known plaintext side channel attack on RSA–CRT with Mont-
gomery exponentiation in this paper. The lack of chosen plaintext condition
greatly increases its applicability in the scenarios based on random formatting
of the message being signed (probabilistic signature scheme). The existence of
the side information we used was questioned. We urge the testing laboratories
to verify it in the electronic passport scenario.
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i-th successive Minkowski minimum λi(L) of lattice L is the radius of the
smallest sphere containing at least i linearly independent (non-zero) vectors of
L. Especially, we see the first Minkowski minimum is the length of the shortest
non-zero lattice vector and we denote it as λ(L). The ratio λ2(L)

λ1(L) is called the
gap of the lattice.

A.1 Problems

Two lattice problems that are interesting in scope of this paper are the Unique
shortest vector problem (Unique-SVP) and the Closest vector problem (CVP).
Being given the lattice and its gap, Unique-SVP problem is to find the shortest
vector of the lattice. Analogically, CVP problem is to find closest lattice vector
to a given non-lattice vector. Sometimes, CVP is viewed as a non-homogenic
variant of SVP.

A.2 Solutions

The usual approach to solve Unique-SVP is the LLL algorithm [9] or one of its
variants [15]. In [4], it is experimentally shown it is possible to solve Unique-SVP
if the gap λ2

λ1
is at least 1.021k with BKZ-20 variant of LLL algorithm.

One can try to solve CVP with Babais closest plane algorithm [Ba85], the
experience shows, however, the heuristic conversion to Unique-SVP provides
better results. We use the same technique as in [11], i.e. we construct lattice

L′ with the basis matrix B′ =
(

B 0
V 1

)
. As the lattices L and L′ have the

same determinant and approximately the same dimension, we can expect their
respective shortest vectors to be approximately of the same size. Given the fact
that the hidden vector H is in L and close to V (section 3), we see the vector
V −H is short and belongs to L′. In fact, we can expect is to be the shortest vector
of L′. If the gap λ2

λ1
is sufficiently large, we can use the lattice basis reduction

techniques and check if the short vector found reveals the hidden number x in
(k + 1)-st coordinate (follows from the construction of lattice L in section 3).
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Abstract. We introduce and analyze a side-channel attack on a straight-
forward implementation of the RSA key generation step. The attack ex-
ploits power information that allows to determine the number of the trial
divisions for each prime candidate. Practical experiments are conducted,
and countermeasures are proposed. For realistic parameters the success
probability of our attack is in the order of 10–15 %.
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1 Introduction

Side-channel attacks on RSA implementations have a long tradition
(e.g. [8,9,12,13]). These attacks aim at the RSA exponentiation with the private
key d (digital signature, key exchange etc.). On the other hand only a few papers on
side-channel attacks, resp. on side-channel resistant implementations, exist that
focus on the generation of the primes p and q, the private key d and the public
key (e, n = pq) (cf., e.g. [4,1]). If the key generation process is performed in a se-
cure environment (e.g., as part of the smart card personalisation) it is infeasible to
mount any side-channel attack. However, devices may generate an RSA key pair
before the computation of the first signature or when applying for a certificate. In
these scenarios the primes may be generated in insecure environments.

Compared to side-channel attacks on RSA exponentiation with the secret key
d the situation for a potential attacker seems to be less comfortable since the
primes, resp. the key pair, are generated only once. Moreover, the generation
process does not use any (known or chosen) external input.

We introduce and analyse a power attack on a straight-forward implemen-
tation of the prime generation step where the prime candidates are iteratively
incremented by 2. The primality of each prime candidate v is checked by trial
divisions with small primes until v is shown to be composite or it has passed all
trial divisions. To the ‘surviving’ prime candidates the Miller-Rabin primality
test is applied several times. We assume that the power information discovers the
number of trial divisions for each prime candidate, which yields information on p
and q, namely p(mod s) and q(mod s) for some modulus s, which is a product
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of small primes. The attack will be successful if s is sufficiently large. Simu-
lations and experimental results show that for realistic parameters (number of
small primes for the trial divisions under consideration of the magnitude of the
RSA primes) the success probability is in the order of 10–15%, and that our
assumptions on the side-channel leakage are realistic.

Reference [4] considers a (theoretical) side channel attack on a careless imple-
mentation of a special case of a prime generation algorithm proposed in [7] that
is successful in about 0.1% of the trials. Reference [3] applies techniques from
[1], which were originally designated for the shared generation of RSA keys. We
will briefly discuss these aspects in Section 6.

The intention of this paper is two-fold. First of all it presents a side-channel
attack which gets by with weak assumptions on the implementation. Secondly,
the authors want to sensibilise the community that RSA key generation in po-
tentially insecure environments may bear risks. The authors want to encourage
the community to spend more attention on the side-channel analysis of the RSA
key generation process.

The paper is organized as follows: In Section 2 we have a closer look at the
RSA prime generation step. In Section 3 we explain our attack and its theoret-
ical background. Section 4 and Section 5 provide results from simulations and
conclusions from the power analysis of an exemplary implementation on a stan-
dard microcontroller. The paper ends with possible countermeasures and final
conclusions.

2 Prime Generation

In this section we have a closer look at the prime generation step. Moreover, we
formulate assumptions on the side-channel leakage that are relevant for the next
sections.

Definition 1. For any k ∈ N a k-bit integer denotes an integer that is con-
tained in the interval [2k−1, 2k). For a positive integer m ≥ 2 as usually Zm :=
{0, 1, . . . , m − 1} and Z∗

m := {x ∈ Zm | gcd(x, m) = 1}. Further, b(modm)
denotes that element in Zm that has the same m-remainder as b.

Pseudoalgorithm 1 (prime generation)
1) Generate a (pseudo-)random odd integer v ∈ [2k−1, 2k)
2) Check whether v is prime. If v is composite then goto Step 1
3) p := v (resp., q := v)

Pseudoalgorithm 1 represents the most straight-forward approach to generate
a random k-bit prime. In Step 2 trial divisions by small odd primes from a
particular set T := {r2, . . . , rN} are performed, and to the ‘surviving’ prime
candidates the Miller-Rabin primality test (or, alternatively, any other proba-
bilistic primality test) is applied several times. The ‘trial base’ T := {r2, . . . , rN}
(containing all odd primes ≤ some bound B) should be selected to minimize the
average run-time of Step 2.
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By the prime number theorem

# primes ∈ [2k−1, 2k) ≈ 2k

loge(2k)
− 2k−1

loge(2k−1)
=

2k−1

loge(2)

(
2
k
− 1

k − 1

)
. (1)

Consequently, for a randomly selected odd integer v ∈ [2k−1, 2k) we obtain

Prob
(
v ∈ [2k−1, 2k) is prime

) ≈ 2
loge(2)

(
2
k
− 1

k − 1

)
≈ 2

k loge(2)
. (2)

For k = 512 and k = 1024 this probability is ≈ 1/177 and ≈ 1/355, respectively.
This means that in average 177, resp. 355, prime candidates have to be checked
to obtain a k-bit prime. The optimal size |T | depends on k and on the ratio
between the run-times of the trial divisions and the Miller-Rabin tests. This
ratio clearly is device-dependent.

Hence Pseudoalgorithm 1 requires hundreds of calls of the RNG (random
number generator), which may be too time-consuming for many applications.
Pseudoalgorithm 2 below overcomes this problem as it only requires one k-bit
random number per generated prime. References [2,11], for example, thus recom-
mend the successive incrementation of the prime candidates or at least mention
this as a reasonable option. Note that the relevant part of Pseudoalgorithm 2
matches with Algorithm 2 in [2] (cf. also the second paragraph on p. 444). The
parameter t in Step 2d depends on the tolerated error probability.

Pseudoalgorithm 2 (prime generation)
1) Generate a (pseudo-)random odd integer v0 ∈ [2k−1, 2k)

v := v0;
2) a) i := 2;

b) while (i ≤ N) do {
if (ri divides v) then {

v := v + 2; GOTO Step 2a; }
i++;

}
c) m := 1;
d) while (m ≤ t) do {

apply the Miller-Rabin primality test to v;
if the primality test fails then {

v := v + 2; GOTO Step 2a; }
else m++;

}
3) p := v (resp., q := v)

Pseudoalgorithm 2 obviously ‘prefers’ primes that follow long prime gaps but
until now no algebraic attack is known that exploits this property. However, the
situation may change if side-channel analysis is taken into consideration. We
formulate two assumptions that will be relevant for the following.
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Assumptions 1. a) Pseudoalgorithm 2 is implemented on the target device.
b) Power analysis allows a potential attacker to identify for each prime candidate
v after which trial division the while-loop in Step 2b terminates. Moreover, he
is able to realize whether Miller-Rabin primality test(s) have been performed.

Remark 1. We may assume that
(i) a strong RNG is applied to generate the odd number v0 in Step 1 of Pseu-
doalgorithm 2.
(ii) the trial division algorithm itself and the Miller-Rabin test procedure are ef-
fectively protected against side-channel attack. This means that the side-channel
leakage does not reveal any information on the dividend of the trial divisions,
i.e. on the prime candidates v.

Remark 2. (i) If any of the security assumptions from Remark 1 are violated
it may be possible to improve our attack or to mount a different, even more
efficient side-channel attack. This is yet outside the scope of this paper. In the
following we merely exploit Assumption b)
(ii) Assumption b) is clearly fulfilled if the attacker is able to determine the
beginning or the end of each trial divisions. If all trial divisions require essentially
the same run-time (maybe depending on the prime candidates v) it suffices to
identify the beginning of the while-loop or the incrementation by 2 in Step 2b.
The run-time also reveals whether Miller-Rabin tests have been performed.
(iii) It may be feasible to apply our attack also against software implementations
on PCs although power analysis is not applicable there. Instead, the attacker may
try to mount microarchitectural attacks (cache attacks etc.).
(iv) We point out that more efficient (and more sophisticated) prime generation
algorithms than Pseudoalgorithm 2 exist (cf. Section 6 and [1,7,11], Note 4.51(ii),
for instance).

3 The Attack

In Section 3 we describe and analyze the theoretical background of our attack.
Empirical and experimental results are presented in Section 4 and Section 5.

3.1 Basic Attack

We assume that the candidate vm := v0 + 2m in Pseudoalgorithm 2 is prime,
i.e. p = vm. If for vj = v0 + 2j Pseudoalgorithm 2 returned to Step 2a after the
trial division by ri then vj is divisible by ri. This gives

vj ≡ 0 (mod ri)
vj = v0 + 2j
p = vm = v0 + 2m

⎫⎬⎭⇒ p = vj + 2(m− j) ≡ 2(m− j) (mod ri). (3)

Let

Sp := {2}∪{r ∈ T | division by r caused a return to 2a for at least one vj}. (4)
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We point out that ‘caused a return ...’ is not equivalent to ‘divides at least one
vj ’. (Note that it may happen that r ∈ T \ Sp divides some vj but loop 2b
terminates earlier due to a smaller divisor r′ of vj .) We combine all equations of
type (3) via the Chinese Remainder Theorem (CRT). This yields a congruence

ap ≡ p(mod sp) for sp :=
∏

r∈Sp

r (5)

with known ap. As pq = n we have

aq :≡ q ≡ a−1
p n(mod sp). (6)

By observing the generation of q we obtain

bq ≡ q(mod sq) and bp ≡ p ≡ b−1
q n(mod sq) (7)

where Sq and sq are defined analogously to Sp and sp. Equations (5), (6) and
(7) give via the CRT integers cp, cq and s with

s := lcm (sp, sq), cp ≡ p(mod s), cq ≡ q(mod s) and 0 ≤ cp, cq < s. (8)

By (8)

p = sxp +cp and q = syq +cq with unknown integers xp, yq ∈ IN (9)

while cp, cq and s are known. Lemma 1 transforms the problem of finding p and
q into a zero set problem for a bivariate polynomial over Z.

Lemma 1. (i) The pair (xp, yq) is a zero of the polynomial

f : Z × Z → Z, f(x, y) := sxy + cpy + cqx − t with t := (n − cpcq)/s. (10)

(ii) In particular

t ∈ IN, f is irreducible over Z, and (11)

0 < xp, yq < max
{p

s
,
q

s

}
<

2k

s
. (12)

Proof. Obviously,

0 = pq − n = (sxp + cp)(syq + cq) − n = s2xpyq + scpyq + scqxp − (n− cpcq),

which verifies (i). Since n ≡ cpcq(mods) the last bracket is a multiple of s,
and hence t ∈ Z. Since cp ≡ p �≡ 0(mod rj) and cq ≡ q �≡ 0(mod rj) for all
prime divisors rj of s we conclude gcd(s, cp) = gcd(s, cq) = 1, and in particular
gcd(s, cp, cq, t) = 1. Assume that f(x, y) = (ax+by+c)(dx+ey+f) for suitably
selected integers a, b, c, d, e and f . Comparing coefficients immediately restricts
to (a = e = 0) or (b = d = 0). The gcd-properties yield gcd(bd, bf) = 1 =
gcd(bd, cd), resp. gcd(ae, af) = 1 = gcd(ae, ce), and thus b = d = 1, resp.
a = e = 1, leading to a contradiction. Assertion (12) is obvious.
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In general finding zeroes of bivariate polynomials over Z is difficult. It is well-
known that ‘small’ integer solutions yet can be found efficiently with the LLL-
algorithm, which transforms the zero set problem to finding short vectors in
lattices.

Theorem 1. (i) Let p(x, y) be an irreducible polynomial in two variables over
Z, of maximum degree δ in each variable separately. Let X, Y be upper bounds for
the absolute value of the searched solutions x0, y0. Define p̃(x, y) := p(xX, yY )
and let W be the absolute value of the largest coefficient of p̃. If

XY < W 2/(3δ)

then in time polynomial in (logW, δ), one can find all integer pairs (x0, y0) with
p(x0, y0) = 0, |x0| < X,|y0| < Y .
(ii) Let p and q be k-bit primes and n = p · q. If integers s and cp are given with
s ≥ 2

k
2 and cp ≡ p(mods) then one can factorize n in time polnomial in k.

Proof. (i) [5], Corollary 2
(ii) We apply assertion (i) to the polynomial f(x, y) from Lemma 1. By (12) we
have 0 < xp < X := 2k/s and 0 < yq < Y := 2k/s. Let f̃(x, y) = f(xX, yY ) and
let W denote the maximum of the absolute values of the coefficients of f̃(x, y).
Then W ≥ sXY = 22k

s , and for s > 2
k
2 we get

XY =
(

2k

s

)2

<

(
22k

s

) 2
3

≤ W
2
3

where the first inequality follows from 2k < s2 by some equivalence transforma-
tions. Since the degree δ in each variable is one by (i) we can find (xp, yq) in
time polynomial in k.

3.2 Gaining Additional Information

Theorem 1 demands log2(s) > 0.5k. If log2(s) is only slightly larger than 0.5k the
dimension of the lattice (→ LLL-algorithm) has to be very large which affords
much computation time. For concrete computations thus log2(s) ≥ C > 0.5k is
desirable for some bound C that is reasonably larger than 0.5k.

If log2(s) ≥ C Theorem 1 can be applied and then the work is done. If
log2(s) < C one may multiply s by some relatively prime integer s1 (e.g. the
product of some primes in T \ (Sp ∪ Sq)) with log2(s) + log2(s1) > C. Of
course, the adversary has to apply Theorem 1 to any admissible pair of re-
mainders (p(mod (s · s1)), q(mod (s · s1))). Theorem 1 clearly yields the factor-
ization of n only for the correct pair (p(mod (s · s1)), q(mod (s · s1))), which in-
creases the workload by factor 2s1 . Note that p(mod (s · s1)) determines q(mod
(s · s1)) since n(mod (s · s1)) is known.

The basic attack explained in Subsection 3.1 yet does not exploit all inform-
ation. Assume that the prime ru ∈ T does not divide s, which means that
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ru /∈ Sp ∪ Sq or, equivalently, that the trial division loop 2b in Algorithm 2 has
never terminated directly after a division by ru. Assume that during the search
for p the prime candidates vj1 , . . . , vjτ have been divided by ru. Then

vj1 = p− 2(m − j1) �≡ 0 (mod ru)
...

vjτ = p− 2(m− jτ ) �≡ 0 (mod ru)
vm = p �≡ 0 (mod ru)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ =⇒ (13)

p �≡ 0, 2(m− j1), . . . , 2(m− jτ ) (mod ru). (14)

This yields a ‘positive list’

L′
p(ru)={0, 1, . . . , ru−1}\{0, 2(m−j1)( mod ru), . . . , 2(m−jτ )( mod ru)} (15)

of possible ru-remainders of p. Analogously, one obtains a positive list L′
q(ru)

for possible ru-remainders of q. The relation p ≡ nq−1(mod ru) reduces the set
of possible ru-remainders of p further to

Lp(ru) := L′
p(ru) ∩ (nL′

q(ru)−1(mod ru)
)
, and finally (16)

(p(mod ru), q(mod ru)) ∈ {(a, na−1(mod ru)) | a ∈ Lp(ru)}. (17)

For prime ru equations (16) and (17) provide

I(ru) := log2

(
ru

|Lp(ru)|
)

= log2 (ru) − log2 (|Lp(ru)|) (18)

bit of information. From the attacker’s point of view the most favourable case
clearly is |Lp(ru)| = 1, i.e. I(ru) = log2(ru), which means that p(mod ru) is
known. The attacker may select some primes ru1 , . . . , ruw ∈ T \ (Sp ∪ Sq) that
provide much information I(ru1 ), . . . , I(ruw ) (or, maybe more effectively, se-
lecting primes with large ratios I(ru1 )/ log2(ru1 ), . . . , I(rjw )/ log2(rjw )) where
w clearly depends on the gap C − log2(s). Then he applies Theorem 1 to
(s · s1) with s1 = ru1 · · · ruw for all |Lp(ru1)| · · · |Lp(ruw )| admissible pairs of
remainders (p(mod (s · s1)), q(mod (s · s1))). Compared to a ‘blind’ exhaustive
search without any information p(mod s1) (17) reduces the workload by factor
2I(ru1)+···+I(ruw ) or, loosely speaking, reduces the search space by I(ru1 )+ · · ·+
I(ruw ) bit.

After the primes p and q have been generated the secret exponents dp ≡
e−1( mod (p−1)) and dq ≡ e−1( mod (q−1)) are computed. These computations
may provide further information. Analogously to Assumptions 1 we formulate

Assumptions 2. The exponents dp and dq are computed with the extended Eu-
clidean algorithm, and the power consumption allows the attacker to determine
the number of steps that are needed by the Euclidean algorithm.

We may clearly assume p > e, and thus the first step in the Euclidean algorithm
reads p − 1 = α2e + x3 with α2 ≥ 1 and x3 = p − 1(mod e). The following
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steps depend only on the remainder p − 1(mod e), resp. on p(mod e). As p �≡
0(mod e) for j ∈ IN0 we define the sets

M ′(j)={x ∈ Z∗
e | for (e, x−1) the Euclidean alg. terminates after j steps}. (19)

Assume that the attacker has observed that the computation of dp and dq require
vp and vq steps, respectively. By definition, p(mod e) ∈ M ′(vp − 1) and q(mod
e) ∈ M ′(vq − 1). Similarly as above

Mp := M ′(vp − 1) ∩
(
n (M ′(vq − 1))−1 (mod e)

)
, and finally (20)

(p(mod e), q(mod e)) ∈ {(a, na−1(mod e)) | a ∈ Mp}. (21)

If e is relatively prime to s, resp. to s · s1 (e.g. for e = 216 + 1), the attacker
may apply Theorem 1 to s · e, resp. to s · s1 · e, and the gain of information is
I(e) = log2(e) − log2(|Mp|). If gcd(s, e) > 1, resp. if gcd(s · s1, e) > 1, one uses
e′ := e/ gcd(s, e), resp. e′ := e/ gcd(s · s1, e), in place of e.

Remark 3. In Section 2 we assumed p, q ∈ [2k−1, 2k). We note that our attack
merely exploits p, q < 2k, and it also applies to unbalanced primes p and q.

4 Empirical Results

The basic basic attack reveals congruences p(mods) and q(mods) for some
modulus s. If s is sufficiently large Theorem 1 allows a successful attack. The
term log2(s) quantifies the information we get from side-channel analysis. The
product s can at most equal

∏
r∈T r but usually it is much smaller. Experiments

show that the bitsize of s may vary considerably for different k-bit starting can-
didates v0 for Pseudoalgorithm 2. Theorem 1 demands log2(s) > k

2 , or (from a
practical point of view) even better log2(s) ≥ C for some bound C which allows
to apply the LLL-algorithm with moderate lattice dimension. We investigated
the distribution of the bitlength of s for k = 512 and k = 1024 bit primes and
for different sizes of the trial division base T = {r2 = 3, 5, 7, . . . , rN} by a large
number of simulations. Note that two runs of Pseudoalgorithm 2 generate an
RSA modulus n of bitsize 2k − 1 or 2k.

We implemented Pseudoalgorithm 2 (with t = 20 Miller-Rabin-tests) in
MAGMA [10] and ran the RSA-generation process 10000 times for each of sev-
eral pairs (k, N). For k = 512 and N = 54 we obtained the empirical cumulative
distribution shown in Figure 1. The choice N = 54 is natural since r54 = 251 is
the largest prime smaller than 256, and thus each prime of the trial division base
can be represented by one byte. Further results for k = 512 and k = 1024 are
given in Table 1, resp. in Table 2. The ideas from Subsection 3.2 are considered
below.

Further on, we analysed how the run-time of the LLL-algorithm and thus
the run-time of the factorization of the RSA modulus n by Theorem 1 depends
on the bitsize of s. We did not use the original algorithm of Coppersmith from
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Fig. 1. Basic attack: Cumulative distribution for rN = 251 and k = 512 (1024-bit RSA
moduli)

Table 1. Basic attack

k = 512
N rN Prob(log2(s) > 256) Prob(log2(s) > 277) log2(

∏
r≤rN

r)
54 251 0.118 0.055 334.8
60 281 0.188 0.120 388.3
70 349 0.283 0.208 466.5

Table 2. Basic attack

k = 1024
N rN Prob(log2(s) > 512) Prob(log2(s) > 553 log2(

∏
r≤rN

r)
100 541 0.125 0.065 729.7
110 601 0.178 0.113 821.2
120 659 0.217 0.150 914.5

[5]. Instead we implemented Coron’s algorithm from [6] in the computer algebra
system MAGMA [10].

The LLL-reduction in Coron’s algorithm uses a lattice of dimension ω =
(k̃ + δ)2 − k̃2 where δ denotes the degree of the polynomial and k̃ an adjustable
parameter of the algorithm. In our case δ = 1, so the lattice dimension is ω =
2k̃ + 1. For ω = 15 our implementation (i.e. the LLL-substep) never terminated
in less than one hour; we stopped the process in these cases. Table 3 provides
empirical results. (More sophisticated implementations may allow to get by with
smaller s (→ larger ω) but this is irrelevant for the scope of this paper.)

If the basic attack yields log2(s) ≤ k/2 or log2(s) < C the attacker may apply
the techniques from Subsection 3.2. Since the information I(e) is deduced from
the computation of gcd(e, p − 1) it is independent of the outcome of the basic
attack while I(ru1 )+ · · ·+I(ruw ) depends on the size of s. If log2(s) is contained
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Table 3. Empirical run-times for different lattice dimensions and moduli

Bitsize(n = pq) ω Min{Bitsize(s)| factorization
succesfull

} ≈ run − time(sec)
512 5 156 0.01
512 7 148 0.07
512 9 144 0.24
512 11 141 1.1
512 13 139 4.6
1024 5 308 0.02
1024 7 294 0.17
1024 9 287 0.66
1024 11 281 3.1
1024 13 277 13.2
1536 5 462 0.05
1536 7 440 0.36
1536 9 428 1.6
1536 11 420 8.1
1536 13 415 41.5
2048 5 616 0.06
2048 7 587 0.76
2048 9 571 3.3
2048 11 560 18.5
2048 13 553 87.4

in [230, 260], a relevant range for k = 512, for rN = 251 the mean value of
I(ru1) + · · ·+ I(ruw ) is nearly constant.

Simulations for k = 512, e = 216 + 1, and T = {3, . . . , 251} show that
(I(216 + 1), log2(216 + 1)) = (6.40, 16), while (I(ru1 ), log2(ru1 )) = (2.81, 6.39),
resp. (I(ru1 ) + I(ru2 ), log2(ru1) + log2(ru2 )) = (4.80, 13.11), resp. (I(ru1 ) +
I(ru2) + I(ru3 ), log2(ru1 ) + log2(ru2 ) + log2(ru3 )) = (6.42, 20.04), where ru1 , ru2

and ru3 (in this order) denote those primes in T \ (Sp ∪ Sq) that provide maxi-
mum information.

Multiplying the modulus s from the basic attack by e, resp. by e · ru1 , resp.
by e · ru1 · ru2 , resp. by e · ru1 · ru2 · ru3 , increases the bitlength of the modulus
by 16 bits, resp. by 16 + 6.39 = 22.39, resp. by 29.11, resp. by 36.04 in average
although the average workload increases only by factor 216−6.40 = 29.6, resp. by
29.6 · 26.39−2.81 = 213.18, resp. by 217.91, resp. by 223.22.

Combining this with the run-time of 13.2 seconds given in Table 3 with our im-
plementation we can factorize a 1024-BitRSAmodulus in atmost 213.18·13.2 sec ≈
34 hours (in about 17 hours in average) if the modulus s gained by the basic attack
only consists of 277 − 22 = 255 bits. According to our experiments this happens
with probability ≈ 0.119. Table 1 shows that the methods of Subsection 3.2 dou-
ble (for our LLL-implementation) the success probability. Further on we want to
emphasize that by Theorem 1 the attack becomes principally feasible if the basic
attack yields log2(s) > 256. So, at cost of increasing the run-time by factor 213.18

the modulus n can be factored with the LLL-algorithm if the basic attack yields a
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modulus s with log2(s) > 256−22 = 234. This means that the success probability
would increase from 11.8% to 21.2% (cf. Table 1).

5 Experimental Results

The central assumption of our attack is that the power consumption reveals the
exact number of trial divisions for the prime candidates v0 = v, v1 = v + 2, . . ..
To verify that this assumption is realistic we implemented the relevant part of
Pseudoalgorithm 2 (Step 1 to Step 2b) on a standard microcontroller (Atmel
ATmega) and conducted measurements.

The power consumption was simply measured as a voltage drop over a resistor
that was inserted into the GND line of this chip. An active probe was used. As the
controller is clocked by its internal oscillator running at only 1MHz a sampling-
rate of 25 MHz was sufficient. The acquired waveforms were high-pass-filtered
and reduced to one peak value per clock cycle.

Figure 2 shows the empirical distribution of the number of clock cycles per
trial division. We considered 2000 trial divisions testdiv(v, r) with randomly
selected 512 bit numbers v and primes r < 216. The number of clock cycles are
contained in the interval [24600, 24900], which means that they differ not more
than about 0.006µ cycles from their arithmetic mean µ. In our standard case
T = {3, . . . , 251} a maximum sequence of 53 consecutive trial divisions may
occur. We point out that it is hence not necessary to identify the particular
trial divisions, it suffices to identify those positions of the power trace that
correspond to the incrementation of the prime candidates by 2. Since short
and long run-times of the individual trial divisions should compensate to some
extent, this conclusion should remain valid also for larger trial bases and for
other implementations of the trial divisions with (somewhat) larger variance of
the run-times.

The crucial task is to find characteristic parts of the power trace that allow
to identify the incrementation operations or even the individual trial divisions.
The trial division algorithm and the incrementation routine were implemented
in a straight-forward manner in an 8-bit arithmetic. Since the incrementation
operations leave the most significant parts of the prime candidates v0, v1, . . .
unchanged and since all divisors are smaller than 255 it is reasonable to expect
that the power consumption curve reveals similar parts. Observing the following
sequence of operations confirmed this conjecture.

Prime generation and trial divisions

rnd2r (); // generates an odd 512 bit random number v
testdiv512 (v,3); // trial division by 3
testdiv512 (v,5);
testdiv512 (v,7);
incrnd (v); // increments v by 2
testdiv512 (v,3);
incrnd (v);
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Fig. 2. Empirical run-times of trial divisions

testdiv512 (v,3);
testdiv512 (v,5);

We measured the power-consumption xi for each clock cycle i. We selected short
sample sequences {y1 = xt, . . . , yM = xt+M−1} ⊂ {x1, x2, . . .} that correspond
to 10 to 20 consecutive cycles, and searched for similar patterns in the power
consumption curve. For fixed sample pattern (y1, . . . , yM ) we used the ‘similarity
function’,

aj =
1
M

M∑
i=1

|xi+j − yi| for shift parameter j = 1, . . . , N −M, (22)

which compares the sample sequence (y1, . . . , yM ) with a subsequence of power
values of the same length that is shifted by j positions. A small value aj in-
dicates that (xj , . . . , xj+M−1) is ‘similar’ to the sample sequence (y1, . . . , yM ).
It turned out that it is even more favourable to consider the minimum within
‘neighbourhoods’ rather than local minima. More precisely, we applied the values

bj = min {aj , . . . , aj+F−1} (23)

with F ≈ 100. Figure 3 shows three graphs of bj-values. The vertical grey bars
mark the position of the selected sample sequence (y1, . . . , yM ). For Curve (1)
the sample sequence was part of the random number generation process. Obvi-
ously, this sample sequence does not help to identify any trial division or the
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Fig. 3. Similarity curves (bj-values)

incrementation steps. For Curve (2) we selected a sample sequence within a
trial division. The high peaks of Curve (2) stand for ‘large dissimilarity’ and
identify the incrementation steps. Curve (3) shows the bj-values for a sample
sequence from the incrementation step, and low peaks show the positions of the
incrementation steps. Our experiments showed that the procedure is tolerant
against moderate deviations of M , F and the sample pattern (y1, . . . , yM ) from
the optimal values.

6 Countermeasures and Alternative Implementations

Our attack can be prevented by various countermeasures. The most rigorous
variants are surely to divide each prime candidate by all elements of the trial
base or to generate each prime candidate independent from its predecessors (→
Pseudoalgorithm 1). However, both solutions are very time-consuming and thus
may be inappropriate for many applications due to performance requirements.
Clearly more efficient is to XOR some fresh random bits to every τ th prime can-
didate v in order to compensate the side-channel leakage of the trial divisions of
the previous τ prime candidates. These random bits should at least compensate
the average information gained from the leakage or, even better, compensate the
maximum information leakage that is possible (worst-case scenario). In analogy
to (5) let sτ denote the product of all primes of T , after which the while loop in
Step 2b of Pseudoalgorithm 2 has terminated for at least one of the last τ prime
candidates vj . For τ = 10, for instance, the while-loop must have terminated at
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least three times after the trial division by 3 and at least once after a trial divi-
sion by 5. In the worst case, the remaining six loops terminated after the division
by one of the six largest primes of T , which gives the (pessimistic) inequality
log2(sτ ) ≤ log2(3 · 5 · rN−5 · · · · rN ). For k = 512 and T = {3, 5, . . . , 251}, for
instance, log2(s10) < log2(3 · 5 · 227 · . . . · 251) ≈ 51.2. Simulations showed that
the average value of log2(s10) is much smaller (≈ 18.6). By applying the ideas
from Subsection 3.2 the attacker may gain some additional information, in the
worst case yet not more than

∑48
j=4 log2(rj/(rj − 6)) ≈ 10.66 bit. The designer

should be on the safe side if he selects randomly at least 8 bytes of each 10th

prime candidate v and XORs 64 random bits to these positions. (Simulations
indicate that the average overall gain of information is less than 24 bit.)

We mention that several other, more sophisticated prime generation algo-
rithms have been proposed in literature. For instance, the remainders of the first
prime candidate v0 with respect to all primes in T may be stored in a table, sav-
ing the trial divisions for all the following prime candidates in favour of modular
additions of all table entries by 2 ([11], Note 4.51 (ii)). This prevents our attack
but, of course, a careless implemention of the modular additions may also reveal
side-channel information. A principal disadvantage is that a large table has to be
built up, stored and managed, which may cause problems in devices with little
resources. Alternatively, in a first step one may determine an integer v that is
relatively prime to all primes of a trial base T . The integer v then is increased
by a multiple of the product of all primes from the trial base until v is a prime.
Reference [3] applies techniques from [1], which were originally designated for
the shared generation of RSA keys. The authors of [3] yet point out that they
do not aim at good performance, and in fact, for many applications performance
aspects are crucial.

Reference [7] proposes a prime generation algorithm that uses four integer
parameters P (large odd number, e.g. the product of the first N−1 odd primes),
w, and bmin ≤ bmax. The algorithm starts with a randomly selected integer y0 ∈
Z∗

P and generates prime candidates vj = vj(yj) = (v+b)P +yj or vj(yj) = (v+b+
1)P − yj , respectively, for some integer b ∈ [bmin, bmax] and yj = 2jy0(mod P )
until a prime is found, or more precisely, until some vj passes the primality
tests. Reference [4] describes a (theoretical) side channel attack on a special
case of this scheme (with bmin = bmax = 0 and known (P, w)) on a careless
implementation that reveals the parity of the prime candidates vj . This attack
is successful in about 0.1% of the trials, and [4] also suggests countermeasures.
For further information on primality testing we refer the interested reader to the
relevant literature.

7 Conclusion

This paper presents an elementary side-channel attack which focuses on the RSA
key generation. The attack works under weak assumptions on the side-channel
leakage, and practical experiments show that these assumption may be realistic.
If the attack is known it can be prevented effectively.
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Reference [4] and the above results demonstatrate that the RSA key gen-
eration process may be vulnerable to side-channel attacks. It appears to be
reasonable to analyse implementations of various key generation algorithms in
this regard. New attacks (possibly in combination with weaker assumptions than
Remark 1) and in particular effective countermeasures may be detected.
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Abstract. Random delays are a countermeasure against a range of side
channel and fault attacks that is often implemented in embedded soft-
ware. We propose a new method for generation of random delays and
a criterion for measuring the efficiency of a random delay countermea-
sure. We implement this new method along with the existing ones on
an 8-bit platform and mount practical side-channel attacks against the
implementations. We show that the new method is significantly more
secure in practice than the previously published solutions and also more
lightweight.

Keywords: Side channel attacks, countermeasures, random delays.

1 Introduction

Insertion of random delays in the execution flow of a cryptographic algorithm is a
simple yet rather effective countermeasure against side-channel and fault attacks.
To our knowledge, random delays are widely used for protection of cryptographic
implementations in embedded devices, mainly smart cards. It belongs to a group
of hiding countermeasures, that introduce additional noise (either in time, am-
plitude or frequency domain) to the side channel leakage while not eliminating
the informative signal itself. This is in contrary to masking countermeasures,
that eliminate correlation between the side channel leakage and the sensitive
data processed by an implementation.

Hiding countermeasures increase complexity of attacks while not rendering
them completely impossible. They are not treated in academia as extensively as
masking but are of great importance in industry. A mixture of multiple hiding
and masking countermeasures would often be used in a real-life protected im-
plementation to raise the complexity of attacks above the foreseen capabilities
of an adversary.

There are two connected problems that arise in this field. The first one is
to develop efficient countermeasures, and the second one is how to measure the
efficiency of the countermeasures. In this paper we tackle both tasks for the case
of the random delays.
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Random delays. Most side-channel and fault attacks require an adversary to
know precisely when the target operations occur in the execution flow. This enables
her to synchronize multiple traces at the event of interest as in the case of Differ-
ential Power Analysis (dpa) and to inject some disturbance into the computations
at the right time as in the case of fault attacks. By introducing random delays into
the execution flow the synchronization is broken, which increases the attack com-
plexity. This canbe done in hardwarewith the so calledRandom Process Interrupts
(rpi) as well as in software by placing “dummy” cycles at some points of the pro-
gram. We give preliminary information on software random delays in Sect. 2.

Related work. First detailed treatment of the countermeasure was done by
Clavier et al. in [1]. They showed that the number of traces for a successful dpa
attack against rpi grows quadratically or linearly with the variance of the delay
(when integration is used). Mangard presented statistical analysis of random
disarrangement effectiveness in [2]. Amiel et al. [3] performed practical evaluation
of random delays as a protection against fault attacks.

To date, the only effort to improve the random delays countermeasure in
software was published by Benoit and Tunstall in [4]. They suggested to modify
the distribution of an individual independently generated random delay so that
the variance of the sum increases and the mean, in turn, decreases. As a result,
they achieve some improvement. We outline their method briefly here in Sect. 3.

Our Contribution. In this work, we propose a significantly more efficient
algorithm for generating random delays in software (see Sect. 4). Our main idea
is to generate random delays non-independently in order to obtain a much greater
variance of the cumulative delay for the same mean.

We also introduce a method for estimating the efficiency of random delays
based on the coefficient of variation (see Sects. 2 and 5). This method shows how
much variance is introduced by the sum of the delays for a given performance
overhead. We show that the plain uniform delays and the Benoit-Tunstall method
[4] both have efficiency in Θ

(
1/
√

N
)

only, where N is the number of delays in
the sum, whereas our method achieves Θ(1) efficiency with the growth of N .
For example, compared to the plain uniform delays and to the Benoit-Tunstall
method, for the sum of 10 delays our method is more than twice as efficient, and
for the sum of 100 delays – over 6 times more efficient.

Finally, we implement our new method along with the previously known meth-
ods on an 8-bit Atmel avr microcontroller and demonstrate by mounting prac-
tical side-channel attacks that it is indeed more efficient and secure (see Sect. 6).
It is also more lightweight in terms of implementation.

2 Software Random Delays and Their Efficiency

A common way of implementing random delays in software is placing loops of
“dummy” operations (like NOP instructions) at some points of the program. The
number of loop iterations varies depending on the delay value.
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A straightforward method is to generate individual delays independently with
durations uniformly distributed in the interval [0, a] for some a ∈ N. We refer to
this method as plain uniform delays. It is easily implementable in cryptographic
devices as most of them have a hardware random number generator (rng) on
board.

In [1] and [2] it was shown that the complexity of a dpa attack (expressed
as the number of power consumption traces required) grows quadratically or
linearly (in case integration techniques are used) with the standard deviation of
the trace displacement in the attacked point. That is why we are interested in
making the variance of random delays as large as possible.

Here are our preliminary assumptions about the attacker’s capabilities.

1. An attacker knows the times when the cryptographic algorithm execution
starts and ends. This is commonly possible by monitoring i/o operations of
a device, or operations like eeprom access.

2. It is harder for an attacker to eliminate multiple random delays than a few
ones.

3. The method of delay generation and its parameters are known to an attacker.

Note that it could be possible to place two sufficiently large and uniformly dis-
tributed delays in the beginning and in the end of the execution. That would
make each point in the trace uniformly distributed over time when looking from
the start of from the end, which is actually the worst case for an attacker. Unfor-
tunately, in this case it would be relatively easy to synchronize the traces with
the the help of cross-correlation (see [5] for an example). So we assume that in
this case resynchronization of traces can be performed by an attacker. Therefore,
we want to break the trace with relatively short (to keep performance) random
delays in multiple places.

It can be still possible to detect delays produced by means of “dummy” loops
in a side-channel trace because of a regular instruction pattern. To partially
hinder this, “dummy” random data may be processed within a loop. We do
not address this issue in this paper, just following the simple (but natural)
assumption 2.

So an attacker will typically face the sum of several random delays. Follow-
ing the Central Limit Theorem, the distribution of the sum of N independent
(and not necessarily uniform) delays converges to normal with mean Nµd and
variance Nσ2

d, where µd and σ2
d are correspondingly the mean and the variance

of the duration of an individual random delay. In other words, the distribution
of the sum of independent delays depends only on the mean and the variance of
individual delays but not on their particular distribution.

With all the above in mind, we adhere to the following criteria for random
delay generation.

1. The sum of random delays from start or end to some point within the exe-
cution should have the greatest possible variance.

2. The performance overhead should be possibly minimal.
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When estimating efficiency of random delay generation, one might be interested
what performance overhead is required to achieve the given variation of the sum
of N delays. Performance overhead can be naturally measured as the mean µ of
this sum. We suggest to estimate efficiency of random delay generation methods
in terms of the coefficient of variation σ/µ, where σ is the standard deviation
for the sum of N random delays. The greater this efficiency ratio σ/µ, the more
efficient the method is.

3 Method of Benoit and Tunstall

In [4], Benoit and Tunstall propose a way to improve the efficiency of the random
delays countermeasure. Their aim is to increase the variance and decrease the
mean of the sum of random delays while not spoiling the distribution of an indi-
vidual random delay. To achieve this aim, the authors modify the distribution of
an independently generated individual delay from the uniform to a pit-shaped
one (see Figure 1). This increases the variance of the individual delay. Further-
more, some asymmetry is introduced to the pit in order to decrease the mean of
an individual delay.

The delays are generated independently, so if an individual delay has mean
µbt and variance σ2

bt, the distribution of the sum of N delays converges to normal
(as in the case of plain uniform delays) with mean Nµbt and variance Nσ2

bt.
The authors estimate efficiency of their method by comparing it to plain

uniform random delays. In an example, they report an increase of the variance
by 33% along with a decrease of the mean by 20%. Distributions for a single delay
and for the sum of 10 delays (for the parameters from the example mentioned
above, see [4]) are shown in Figure 1 in comparison to plain uniform delays.

We note that the authors also pursued an additional criterion for the difficulty
of deriving the distribution of the random delay. But it seems reasonable to
consider this distribution to be known to an adversary, at least if the method is
published.
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Fig. 1. Distribution for the method of Benoit and Tunstall [4] compared to plain uni-
form delays: 1 delay (left) and sum of 10 delays (right)
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4 Our New Method: Floating Mean

In this section we present our new method for random delay generation in
software. The main idea of the method is to generate random delays non-
independently. This significantly improves the variance of the cumulative de-
lay and the method is also more efficient compared to [4] and to plain uniform
random delays.

By x ∼ DU [y, z] we will denote a random variable x following discrete uniform
distribution on [y, z], y, z ∈ Z, y < z.

Our method is as follows. First, we fix some a ∈ N which is the maximum
delay length.1 Additionally, we fix another parameter b ∈ N, b ≤ a. These
implementation parameters a and b are fixed in an implementation and do not
change between different executions of an algorithm under protection.

Now, in each execution, we first produce a value m ∈ N randomly uniformly
on [0, a−b], and then generate individual delays independently and uniformly on
[m, m+ b]. In other words, within any given execution individual random delays
have a fixed mean m + b/2. But this mean varies from execution to execution,
hence our naming of the method.

The resulting histograms in comparison to plain uniform delays are depicted in
Figure 2. This figure also shows how the properties of the method vary dependent
on the ratio b/a of the parameters of the method, that can take possible values
between 0 and 1.

In fact, Floating mean is a pure trade-off between the quality of the distri-
bution of single delay within a trace and that of the sum of the delays. When
b/a is small (like the case b = 50, a = 255, b/a ≈ 0.2 in Figure 2), the distri-
bution of an individual delay within a trace has a comparatively small variance,
but the variance of a single delay across traces and of the sum of the delays is
large. When b/a is large (like the case b = 200, a = 255, b/a ≈ 0.8 in Figure 2),
the distribution of an individual delay within a trace has large variance, but
the distribution of the sum of the delays converges to normal. The extreme case
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Fig. 2. Distribution for the Floating mean method with different b/a ratio compared
to plain uniform delays: histogram for 1 delay (left), for 1 delay within a single trace,
i.e. for some fixed m (center) and for the sum of 10 delays (right), a = 255
1 We consider a and other parameters below to be integers as in an embedded device

integer arithmetic would be the only option when generating delays.
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b/a = 0 just means that within an execution all delays have same length m,
while the distribution of the sum of N delays is uniform on the N -multiples in
[0, aN ]. In the other extreme case, b/a = 1, the methods simply converges to
plain uniform delays with each delay generated uniformly on [0, a].

To calculate the parameters of the distribution of the sum SN of N delays,
we represent an individual delay as a random variable di = m + vi, where
m ∼ DU [0, a − b] and vi ∼ DU [0, b] for i = 1, 2, . . .N are independent random
variables. The sum is then expressed as

SN =
N∑

i=1

di = Nm +
N∑

i=1

vi .

For the mean, we have

E(SN ) = E(Nm) + E

(
N∑

i=1

vi

)
= N · a− b

2
+ N · b

2
=

Na

2
.

For the variance, since m and vi are independent, all vi are identically distributed
and

Var(m) =
(a − b + 1)2 − 1

12
, Var(vi) =

(b + 1)2 − 1
12

, i = 1, 2, . . . , N

we have

Var(SN ) = Var

(
Nm +

N∑
i=1

vi

)
= N2 ·Var(m) + N ·Var(v1)

= N2 · (a − b + 1)2 − 1
12

+ N · b2 + 2b

12
.

So, the variance of the sum of N delays is in Θ
(
N2
)
, in comparison to plain

uniform delays and the method of [4] that both have variances in Θ (N). This is
because we generate random delays non-independently; namely in our solution
the lengths of the individual random delays are correlated: they are short if m
is small, or they are longer if m is larger. This enables us to get a much larger
variance than if the delays were generated independently, as in the plain uniform
method and the method of [4].

At the same time, if we look at the delays within a single execution and thus
under fixed m, the mean for the sum of N delays becomes N(m + b/2). This
implies that the cumulative delay for a given execution and therefore the length
of the execution depends on m. An adversary can thus accept only the short
traces, as they have short individual delays, and reject the long ones; this can
lower the complexity of the attack.

In order to relieve an adversary of such a benefit, we can generate the first
half of random delays (in the first half of the execution) uniformly on [m, m + b]
(that is, with mean m + b/2), and the second half of delays – uniformly on
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[a−m− b, a−m] (that is, with mean a−m− b/2). In this way, the distribution
of the sum of all the N = 2M delays for a given execution is independent of m
(the mean is aN/2 and the variance is N(b2 + 2b)/12). So an adversary cannot
gain any additional information about the distribution of the delays within an
execution by observing its length. Still, the variance of the sum of L < M delays
from start or end to some point up to the middle of the execution is in Θ(L2).

Floating mean method is described in Algorithm 1.1. It is easily implementable
in software on a constrained platform that has a built-in rng producing uni-
formly distributed bytes since parameters a and b can be naturally chosen so
that a − b = 2s − 1 and b = 2t − 1, where s, t ∈ N and 2s + 2t < 2n + 2 for
an n-bit target microcontroller. Random integers in the range [0, 2s − 1] and
[0, 2t − 1] can be obtained by a simple bit-wise AND with bit masks 2s − 1 and
2t − 1 correspondingly. The method requires no additional memory, as opposed
to [4]. We are describing our implementation of Floating mean in Sect. 6 and
Appendix B.

Algorithm 1.1 Floating mean method for generation of random delays
Input: a, b ∈ N, b ≤ a, N = 2M ∈ N

m ← DU [0, a − b]
for i = 1 to N/2 do

di ← m + DU [0, b]
end for
for i = N/2 + 1 to N do

di ← a − m −DU [0, b]
end for

Output: d1, d2, . . . , dN

4.1 A Method That Does Not Quite Work: Floating Ceiling

In this section we present another method that is based on the same principle
as the previous method: generate random delays non-independently to improve
the variance of the cumulative sum. However we explain below why this method
does not quite work.

The method is as follows. First, we fix some implementation parameter a ∈ N

which determines the maximum length of an individual random delay. Now, prior
to generation of the first delay in each execution of the algorithm we produce a
value c ∈ N randomly uniformly on [1, a − 1]. After that, within the execution
we generate individual delays randomly uniformly on [0, c]. Loosely speaking, c
is the “ceiling” for the length of the random delays that varies from execution
to execution. The resulting distributions are shown in Figure 6 in Appendix A.
For the sum SN of N delays we obtain the following mean and variance (see
Appendix A):

E(SN ) = N · a

4
, Var(SN ) = N2 · a2 − 2a

48
+ N · 2a2 + 5a

72
.
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As in the Floating mean method, here the variance of the sum of the delays
is also in N2 since we generate delays non-independently. However we have the
same undesired property as in the Floating mean method without the two halves.
Namely the mean length of the cumulative delay within a single trace (i.e. with
c fixed) is Nc/2. So an adversary can judge the mean length of the delays within
an execution by the total length of the execution that he can definitely measure.

If we try to fix this in the same manner by generating the first half of random
delays uniformly on [0, c] and the second half – uniformly on [0, a − c], the
mean of the sum of all N = 2M random delays within an execution becomes
constant and equal to Na/4. However, one can see that for a given execution
the distribution of the sum (and in particular its variance) still depends on c;
therefore an adversary could still derive information from c in a given execution
by measuring its length. For example, since the variance of the sum is maximal
when c = 0 or c = a, an adversary could select those executions in which a large
deviation from the mean is observed; this would likely correspond to small c
or large c; then the adversary would concentrate his attack on those executions
only.

The complete Floating ceiling method is defined by Algorithm 1.2. It does
not require any tables to be stored in memory, as opposed to [4]. However, its
implementation requires random integers on [0, c] for arbitrary positive integer
c. This can be inconvenient on constrained platforms as this requires to omit
rng outputs larger than c, thus leading to a performance decrease.

Algorithm 1.2 Floating ceiling method for generation of random delays
Input: a ∈ N, N = 2M ∈ N

c ← DU [1, a − 1]
for i = 1 to N/2 do

di ← DU [0, c]
end for
for i = N/2 + 1 to N do

di ← DU [0, a − c]
end for

Output: d1, d2, . . . , dN

5 Comparing Efficiency

In this section we compare our new method with the existing ones based on the
efficiency metrics σ/µ suggested in Sect. 2.

Efficiency ratios σ/µ for the sum of N delays for the new method and for
the existing ones are given in Table 1. Note that we are mostly interested in the
coefficient of variation somewhere around the middle of the trace.

In Figure 3, the efficiency ratio σ/µ for the sum of N delays for different
methods is depicted against N . For all methods, we have considered the max-
imum delay length a = 255. The mean µbt = 99 and the variance σ2

bt = 9281
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Table 1. Efficiency ratios σ/µ for different random delay generation methods

Plain uniform Benoit-Tunstall Floating mean

1√
3N

= Θ
(

1√
N

)
σbt
µbt

· 1√
N

= Θ
(

1√
N

) √
N((a−b+1)2−1)+b2+2b

a
√

3N
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Fig. 3. Efficiency of the random delay generation algorithms in terms of the efficiency
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Fig. 4. Distributions of the sum of 100 delays for random delay generation algorithms,
for the case of equal means

of an individual delay in the Benoit-Tunstall method was estimated empirically
for the parameters used as an example in [4].

It can be seen that our new Floating mean method presented in Sect. 4 is more
efficient compared to the previously published ones. Figure 4 further illustrates
the difference, presenting the distributions of the sum of 100 random delays for
different methods with the parameters that yield the same performance penalty,
i.e. the same mean of the sum. We see that for the same average performance
penalty, our method has a much larger variance.

In the case of independently generated individual delays the efficiency ratio
σ/µ for the sum of any N delays is σd/µd · 1/

√
N , where σd and µd are the
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standard deviation and the mean of an individual delay. One can increase σd/µd

ratio to improve efficiency, which was done in [4], but with an increase of the num-
ber of delays in the sum the efficiency of such methods decreases like Θ

(
1/
√

N
)
,

asymptotically tending to 0. Whereas for our method the efficiency is in Θ(1),
so with an increase of the number of delays it tends to a nonzero constant value.
This can be seen in Figure 3.

Thus, when implementing our method, one can benefit from using shorter but
more frequent delays, as this does not cause the decrease in efficiency. This is
an advantage as frequent short delays may be harder to eliminate than the long
but less frequent ones.

6 Implementation and Resistance to Practical Attacks

Here we present comparison between the practical implementations of plain uni-
form delays, table method of Benoit and Tunstall [4] and the new Floating mean
method by mounting Correlation Power Analysis (cpa) attack [6] against them.

We have implemented the methods on an 8-bit Atmel avr microcontroller.
Each delay is a multiple of 3 processor cycles (this granularity cannot be further
reduced for this platform). Further details on our implementation are presented
in Appendix B.

Random delays were introduced into aes-128 encryption. We put 10 de-
lays per each round: before AddRoundKey, 4 per SubBytes+ShiftRows, before each
MixColumn and after MixColumns. 3 “dummy” aes rounds that also incorporated
random delays were added in the beginning and in the end of the encryption.
Thus, the first SubByte operation of the first encryption round, which is the tar-
get for our attacks, is separated from the start of the execution, which is in turn
our synchronization point, by 32 random delays.

The parameters of the methods were chosen to ensure (nearly) the same per-
formance overhead across the methods. They were made sufficiently small to en-
able attacks with a reasonable number of traces. For the Floating mean method
we used parameters a = 18 and b = 3. For the table method of Benoit and Tun-
stall, the p.d.f. of the pit-shaped distribution was generated using the formula
y = �akx + bkN−x� from [4] with the parameters N = 19, a = 40, b = 34 and
k = 0.7. These parameters were chosen so that they lead to the table of 256 en-
tries with the inverse c.d.f. of the distribution. We use this table to produce delay
values on [0, 19] by indexing it with a random byte. For the plain uniform delays,
the individual delay values were generated on [0, 16]. On our 8-bit platform we
can efficiently produce random integers only on [0, 2i − 1] for i = 1, 2, ..., 8 (see
Sect. 4), so we could not make the performance overhead for this method to be
exactly the same as for the other methods.

We mounted cpa attack [6] in the Hamming weight power consumption model
against the first aes key byte for each of the methods, first SubByte operation
being the attack target. As a reference benchmark for our measurement con-
ditions we performed cpa attack against the implementation without random
delays. For implementations with random delays, we used power consumption
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Table 2. Practical effect of the sum of 32 delays for different methods

No delays Plain uniform Benoit-Tunstall [4] Floating mean

µ, cycles 0 720 860 862

σ, cycles 0 79 129 442

σ/µ − 0.11 0.15 0.51
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Fig. 5. cpa against random delays: correlation coefficient for all key byte guesses
against the number of power consumption traces. The trace for the correct guess is
highlighted.

traces as is without any alignment or integration to make a consistent compar-
ison. Table 2 presents the number of traces required for a successful (with the
1st-order success rate close to 1) key byte recovery along with estimated mean
µ, standard deviation σ and efficiency ratio σ/µ of the sum of 32 delays for each
of the methods. Figure 5 presents the cpa attack results.

It can be seen that the Floating mean method is more secure in practice
already for small delay durations and for a small number of delays. To break our
implementation, we require 45000 traces for Floating mean and 7000 traces for
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Benoit-Tunstall. That is, for the same performance penalty the Floating mean
method requires 6 times more curves to be broken. This ratio will increase with
the number of delays. However, our method is more efficient already for less
than 10 delays in the sum, as can be seen from Figure 4. This is important for
symmetric algorithm implementations that are relatively short. For inherently
long implementations of public key algorithms the number of delays in the sum
will be naturally large.

7 Conclusion

We proposed a new method for random delay generation in embedded software
– the Floating mean method – and introduced a way to estimate efficiency of
the random delays countermeasure. We presented the lightweight implementa-
tion of our method for protection of aes encryption on an 8-bit platform. We
mounted practical cpa attacks showing that for the same level of performance
the implementation of the new method requires 6 times more curves to be bro-
ken compared to the method of Benoit and Tunstall [4]. Thus, our method is
significantly more efficient and secure.
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A Distribution for the Floating Ceiling Method
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Fig. 6. Distribution for the Floating ceiling compared to plain uniform delays: 1 delay
(left) and sum of 10 delays (right) for a = 255

To calculate the mean and the variance for the Floating ceiling method, we rep-
resent an i-th individual delay as a random variable di ∼ DU [0, c], i = 1, 2, . . .N ,
where in turn c ∼ DU [1, a− 1]. The sum of N delays is expressed as

SN =
N∑

i=1

di .

For the mean, since di are identically distributed, we have

E(SN ) = NE(d1) = N

a−1∑
c=1

1
a − 1

E (d1|c) = N · 1
a− 1

a−1∑
c=1

c

2
= N · a

4
.

For the variance, in turn,

Var(SN ) = E
(
S2

N

)− (E (SN ))2 .

Again, since di are identically distributed, we have

E
(
S2

N

)
= E

⎛⎝( N∑
i=1

di

)2
⎞⎠ = E

(
N∑

i=1

d2
i

)
+ 2E (d1d2 + d1d3 + . . . + dN−1dN )

= NE
(
d2
1
)

+
(

N

2

)
· 2E (d1d2) .

Now, having

E
(
d2
1
)

=
a−1∑
c=1

1
a− 1

E
(
d2

i | c
)

=
1

a− 1

a−1∑
c=1

1
c + 1

c∑
j=0

j2 =
4a2 + a

36

and (since di|c and dj |c are independent for i �= j and identically distributed)
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E (d1d2) =
a−1∑
c=1

1
a − 1

E (d1d2 | c) =
1

a − 1

a−1∑
c=1

(E(d1 | c))2 =
2a2 − a

24
,

we finally obtain

Var(SN ) = N2 · a2 − 2a

48
+ N · 2a2 + 5a

72
.

B Implementation of Random Delays for an 8-bit AVR
Platform

Here we present the reference implementation of several delay generation meth-
ods in the 8-bit avr assembly language. Throughout the code, the following
registers are reserved: RND for obtaining the random delay duration, FM for storing
the value of m used in Floating mean during the execution, MASK for the bit mask that
truncates random values to the desired length.

Common ATmega16 microcontroller that we used does not have a built-in rng.
Hence, we have simulated the rng by pre-loading a pool of pseudorandom numbers
to microcontroller’s sram from the host pc prior to each execution and pointing the
X register at the beginning of the pool. Random numbers are then loaded successively
from sram to RND register by calling the randombyte function:

randombyte:

ld RND, X+ ; X is the dedicated address register

ret ; that is used only in this function

First, here is the basic delay generation routine. It produces delays of length 3 ·RND+C
cycles, where C is the constant overhead per delay. To reduce this overhead, the delay
generation can be implemented in-line to avoid the cost of entering and leaving the
function. The part of the code specific for delay generation methods is omitted and
will be given below.

randomdelay:

rcall randombyte ; obtain a random byte in RND

;

; <place for method-specific code>

;

tst RND ; mind balancing between zero and

breq zero ; non-zero delay values!

nop

nop

dummyloop:

dec RND

brne dummyloop

zero:

ret

Here are specific code parts for delay value generation. For plain uniform delays, the
code is just:
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and RND, MASK ; truncate random value to the desired length

The code for the floating mean is one instruction longer (namely, addition of the value m).

and RND, MASK ; truncate random value to the desired length

add RND, FM ; add ’floating mean’

Floating mean also requires initialization (namely, generation of m) in the beginning
of each execution:

rcall randombyte ; obtain a random byte in RND

mov FM, RND

ldi MASK, 0x0f

and FM, MASK ; trucate mean to the desired length

ldi MASK, 0x03 ; set mask for future use in individual delays

and “flipping” FM in the middle of the execution to make the total execution length
independent of the value of m.

ldi MASK, 0x0f

sub MASK, FM

mov FM, MASK

ldi MASK, 0x03

Finally, for the method of Benoit and Tunstall, the delay value is generated as follows.

ldi ZH, high(bttable)

mov ZL, RND

ld RND, Z

Here bttable is the table of 256 byte entries with the c.d.f of the pit-shaped distribution
that is pre-loaded into sram.

It can be seen that Floating mean is more “lightweight” in terms of both memory
and code than the table method of Benoit and Tunstall.
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Abstract. Differential Power Analysis (DPA) is a powerful side channel
key recovery attack that efficiently breaks block ciphers implementations.
In software, two main techniques are usually applied to thwart them:
masking and operations shuffling. To benefit from the advantages of the
two techniques, recent works have proposed to combine them. However,
the schemes which have been designed until now only provide limited
resistance levels and some advanced DPA attacks have turned out to
break them. In this paper, we investigate the combination of masking and
shuffling. We moreover extend the approach with the use of higher-order
masking and we show that it enables to significantly improve the security
level of such a scheme. We first conduct a theoretical analysis in which
the efficiency of advanced DPA attacks targeting masking and shuffling
is quantified. Based on this analysis, we design a generic scheme com-
bining higher-order masking and shuffling. This scheme is scalable and
its security parameters can be chosen according to any desired resistance
level. As an illustration, we apply it to protect a software implementation
of AES for which we give several security/efficiency trade-offs.

1 Introduction

Side Channel Analysis (SCA in short) exploits information that leaks from phys-
ical implementations of cryptographic algorithms. This leakage (e.g. the power
consumption or the electro-magnetic emanations) may indeed reveal information
on the secret data manipulated by the implementation. Among SCA attacks, two
classes may be distinguished. The set of so-called Profiling SCA corresponds to
a powerful adversary who has a copy of the attacked device under control and
who uses it to evaluate the distribution of the leakage according to the processed
values. Once such an evaluation is obtained, a maximum likelihood approach is
followed to recover the secret data manipulated by the attacked device. The sec-
ond set of attacks is the set of so-called Differential Power Analysis (DPA) [11].
It corresponds to a more realistic (and much weaker) adversary than the one
considered in Profiling SCA, since the adversary is only able to observe the
device behavior and has no a priori knowledge of the implementation details.
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This paper only deals with the set of DPA as it includes a great majority of the
attacks encountered e.g. by the smart card industry.

Block ciphers implementations are especially vulnerable to DPA attacks and
research efforts have been stepped up to specify implementation schemes counter-
acting them. For software implementations, one identifies two main approaches:
masking [2,7] and shuffling [8]. However, some advanced DPA techniques exist
that defeat these countermeasures [3, 15]. A natural approach to improve the
DPA resistance is to mix masking and shuffling [8,25,26]. This approach seems
promising since it enables to get the best of the two techniques. However, the
schemes that have been proposed so far [8, 26] only focus on first-order mask-
ing which prevents them from reaching high resistance levels. This is all the
more serious that advanced DPA attacks have turned out to be quite efficient in
breaking them [25,26].

In this paper, we conduct an analysis to quantify the efficiency of an attack
that targets either a masked implementation or a shuffled implementation or a
masked-and-shuffled implementation. Based on this analysis, we design a new
scheme combining higher-order masking and shuffling to protect software imple-
mentations of block ciphers. This scheme is scalable and its parameters can be
specified to achieve any desired resistance level. We apply it to protect a software
implementation of AES and we show how to choose the scheme parameters to
achieve a given security level with the minimum overhead.

2 Preliminaries

2.1 Masking and Shuffling Countermeasures

To protect cryptographic implementations against DPA, one must reduce the
amount of information that leaks on sensitive intermediate variables during the
processing. A variable is said to be sensitive if it is a function of the plaintext
and a guessable part of the secret key (that is not constant with respect to the
latter).

To thwart DPA attacks, countermeasures try to make leakages as independent
as possible of sensitive variables. Nowadays, two main approaches are followed
to achieve such a purpose in software: the masking and the shuffling. We briefly
recall hereafter the two techniques.

The core idea behind masking is to randomly split every sensitive variable X
into d + 1 shares M0,..., Md in such a way that the relation M0 � ... � Md = X is
satisfied for a group operation � (e.g. the x-or or the modular addition). Usually,
M1,..., Md (called the masks) are randomly picked up and M0 (called the masked
variable) is processed to satisfy M0 � ... � Md = X. The parameter d is usually
called the masking order. When carefully implemented (namely when all the
shares are processed at different times), dth-order masking perfectly withstands
any DPA exploiting less than d + 1 leakage signals simultaneously. Although
attacks exploiting d + 1 leakages are always theoretically possible, in practical
settings their complexity grows exponentially with d [2]. The design of efficient
higher-order masking schemes for block ciphers is therefore of great interest.



Higher-Order Masking and Shuffling for Software Implementations 173

However, even for small d, dealing with the propagation of the masks through
the underlying scheme is an issue. For linear operations, efficient and simple
solutions exist that induce an acceptable overhead irrespective of d. Actually,
the issue is to protect the non-linear S-boxes computations. In the particular
case d = 1, a straightforward solution called the table re-computation exists (see
for instance [1, 14]). Straightforward generalizations of the method to higher
orders d do not provide security versus higher-order DPA. Indeed, whatever
the number of masks, an attack targeting two different masked input/output
is always possible (see for instance [17]). To bypass this flaw, [23] suggests to
re-compute a new table before every S-box computation. This solution is very
costly in terms of timings and [5] shows the feasibility of third-order attacks, so
the scheme is only secure for d < 3. An alternative solution for d = 2 has been
proposed in [21] but the timing overhead is of the same order.

Shuffling consists in spreading the signal containing information about a sen-
sitive variable X over t different signals S1, . . . , St leaking at different times. This
way, if the spread is uniform, then for every i the probability that Si corresponds
to the manipulation of X is 1

t . As a consequence, the signal-to-noise ratio of the
instantaneous leakage on X is reduced by a factor of t (see Sect. 3.2 for details).
Applying shuffling is straightforward and does not relate to the nature (linear
or non-linear) of the layer to protect. Moreover, shuffling is usually significantly
less costly than higher-order masking when applied to non-linear layers.

Since higher-order masking is expensive and since first-order masking can be
defeated with quite reasonable efforts [17], a natural idea is to use shuffling
together with first-order masking. A few schemes have already been proposed
in the literature [8, 26]. In [8], an 8-bit implementation of AES is protected
using first-order masking and shuffling. The work in [26] extends this scheme
to a 32-bit implementation with the possible use of instructions set extension.
Furthermore, [26] proposes some advanced DPA attacks on such schemes whose
practicability is demonstrated in [25]. These works show that combining first-
order masking with shuffling is definitely not enough to provide a strong security
level. A possible improvement is to involve higher-order masking. This raises
two issues. First, a way to combine higher-order masking with shuffling must be
defined (especially for S-boxes computations). Secondly, the security of such a
scheme should be quantifiable. It would indeed be of particular interest to have a
lower bound on the resistance of the overall implementation by choosing a priori
the appropriate trade-off between masking and shuffling orders. In the rest of
the paper, we address those two issues.

2.2 Notations and Leakage Model

We use the calligraphic letters, like X , to denote finite sets (e.g. Fn
2 ). The corre-

sponding capital letter X is used to denote a random variable over X , while the
lowercase letter x - a particular element from X . The expectation of X is de-
noted by E [X ], its variance by Var [X ] and its standard deviation by σ [X ]. The
correlation coefficient [27] between X and Y is denoted by ρ [X, Y ]. It measures
the linear interdependence between X and Y and is defined by:
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ρ [X, Y ] =
Cov [X, Y ]
σ [X ]σ [Y ]

, (1)

where Cov [X, Y ], called covariance of X and Y , equals E [(X−E [X ])(Y −E [Y ])]
or E [XY ]− E [X ]E [Y ] equivalently.

In the next sections, we investigate the security of the combination of masking
and shuffling towards DPA. Our analysis is conducted in the Hamming weight
leakage model that we formally define hereafter. This model is very common
for the analysis of DPA attacks [9, 20, 26] and it has been practically validated
several times [15, 17].

Definition 1 (Hamming weight model). The leakage signal Si produced by
the processing of a variable Di satisfies:

Si = δi + βi · H(Di) + Ni , (2)

where δi denotes a constant offset, βi is a real value, H(·) denotes the Hamming
weight function and Ni denotes a noise with mean 0 and standard deviation σ.

When several leakage signals Si’s are jointly considered, we shall make three addi-
tional assumptions: (1) the constant βi is the same for the different Si’s (without
loss of generality, we consider βi = 1), (2) noises Ni’s are mutually independent
and (3) the noise standard deviation σ is the same for the different Ni’s.

3 Analysis of Advanced DPA Attacks against Masking
and Shuffling

Higher-order DPA attacks aim at recovering information on a sensitive variable
X by considering several non-simultaneous leakage signals. Let us denote by
S the multivariate random variable corresponding to those signals. The attack
starts by converting S into an univariate random variable by applying it a func-
tion g. Then, a prediction function f is defined according to some assumptions
on the device leakage model. Eventually, every guess X̂ on X is checked by esti-
mating the correlation coefficient between the combined leakage signal g(S) and
the so-called prediction f(X̂).

As argued in several works (see for instance [20, 12, 13, 23]), the absolute
value of the correlation coefficient ρ [f(X), g(S)] (corresponding to the correct
key guess) is a sound estimator of the efficiency of a correlation based DPA
characterized by the pair of functions (f, g). In [13, 24], it is even shown that
the number of leakage measurements required for the attack to succeed can be
approximated by c · ρ [f(X), g(S)]−2 where c is a constant depending on the
number of key guesses and the required success rate. In the following, we exhibit
in the Hamming weight model (see Sect. 2.2) explicit formulae of this coefficient
for advanced DPA attacks where the sensitive variable is either (1) protected
by (higher-order) masking, or (2) protected by shuffling or (3) protected with a
combination of the two techniques.
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3.1 Defeating Masking: Higher-Order DPA

When dth-order masking is used, any sensitive variable X is split into d+1 shares
X⊕M, M1, ..., Md, where M denotes the sum

⊕
i Mi. In the following, we shall

denote X ⊕M by M0. The processing of each share Mi respectively results in a
leakage signal Si. Since the Mi’s are assumed to be mutually independent, every
tuple of d signals or less among the Si’s is independent of X . Thus, to recover
information about X , the joint distribution of all the d + 1 signals must be con-
sidered. Higher-order DPA consists in combining the d+1 leakage signals by the
mean of a so-called combining function C(·, · · · , ·). This enables the construction
of a signal that is correlated to the sensitive variable X .

Several combining functions have been proposed in the literature. Two of them
are commonly used: the product combining [2] which consists in multiplying the
different signals and the absolute difference combining [15] which computes the
absolute value of the difference between two signals. As noted in [5, Sect. 1], the
latter can be extended to higher orders by induction. Other combining functions
have been proposed in [9, 16]. In a recent paper [20], the different combining
functions are compared for second-order DPA in the Hamming weight model.
An improvement of the product combining called normalized product combining
is proposed and it is shown to be more efficient than the other combining func-
tions1. In this paper, we therefore consider the normalized product combining
generalized to higher orders:

C (S0, S1 · · · , Sd) =
d∏

i=0

(Si − E [Si]) . (3)

We shall denote by Cd(X) the combined leakage signal C (S0, S1 · · · , Sd) where
the Si’s correspond to the processing of the shares X ⊕ M, M1, ..., Md in the
Hamming weight model. The following lemma gives the expectation of Cd(X)
given X = x for every x ∈ Fn

2 . The proof is given in the extended version of this
paper [22].

Lemma 1. Let x ∈ F
n
2 , then the expectation of Cd(x) satisfies:

E [Cd(x)] =
(
−1

2

)d (
H(x) − n

2

)
. (4)

Lemma 1 shows that the expectation of Cd(x) is an affine function of the Ham-
ming weight of x. According to the analysis in [20], this implies that the Ham-
ming weight of X maximizes the correlation. For the reasons given in [20], this
function can therefore be considered as an optimal prediction for Cd(X). Hence,
the HO-DPA we focus here consists in estimating the correlation between the
Hamming weight of the target variable H(X) and the combined leakage Cd(X).
The next proposition provides the exact value of this correlation. The proof is
given in the extended version of this paper [22].
1 This assertion is true while considering a noisy model. In a fully idealized model,

other combining may provide better results (see [20]).
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Proposition 1. Let X be a random variable uniformly distributed over Fn
2 . The

correlation between H(X) and Cd(X) satisfies:

ρ [H(X), Cd(X)] = (−1)d

√
n

(n + 4σ2)
d+1
2

. (5)

Notation. The correlation coefficient in (5) shall be referred as ρ(n, d, σ).

3.2 Defeating Shuffling: Integrated DPA

When shuffling is used, the signal containing information about the sensitive
variable X is randomly spread over t different signals S1, ..., St. As a result,
the correlation between the prediction and one of these signals is reduced by a
factor t compared to the correlation without shuffling. In [3], an integrated DPA
attack (also called windowing attack) is proposed for this issue. The principle is
to add the t signals all together to obtain an integrated signal. The correlation is
then computed between the prediction and the integrated signal. The resulting
correlation is reduced by a factor

√
t instead of t without integration. This is

formalized in the next proposition.

Proposition 2. Let (Si)1�i�t be t random variables identically distributed and
mutually independent. Let Y denote a signal Sj’s whose index j is a random
variable uniformly distributed over {1, · · · , t}. Let X be a random variable that
is correlated to Y and that is independent of the remaining Si’s. For every mea-
surable function f , the correlation between f(X) and S1 + · · · + St satisfies:

ρ [f(X), S1 + · · ·+ St] =
1√
t
ρ [f(X), Y ] . (6)

Proof. On one hand we have Cov [f(X), S1 + · · ·+ St] = Cov [f(X), Y ] and on
the other hand we have σ [S1 + · · ·+ St] =

√
t σ [Y ]. Relation (6) straightfor-

wardly follows. �

3.3 Defeating Combined Masking and Shuffling: Combined
Higher-Order and Integrated DPA

When masking is combined with shuffling, any sensitive variable X is split into
d + 1 shares X ⊕ M, M1, ..., Md whose manipulations are randomly spread
over t different times yielding t different signals Si. The (d + 1)-tuple of sig-
nals indices corresponding to the shares hence ranges over a subset I of the set
of (d + 1)-combinations from {1, · · · , t}. This subset depends on how the shuf-
fling is performed (e.g. the shares may be independently shuffled or shuffled all
together).

To bypass such a countermeasure, an adversary may combine integrated and
higher-order DPA techniques. The most pertinent way to perform such a com-
bined attack is to design a so-called combined-and-integrated signal by summing
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all the possible combinations of d + 1 signals among S1, ..., St [25,26]. That is,
the combined-and-integrated signal, denoted ICd,I(X), is defined by:

ICd,I(X) =
∑

(i0,...,id)∈I

C(Si0 , · · · , Sid
) . (7)

We show in the following proposition that the correlation coefficients of the
combined attacks relate on ρ(n, d, σ). The proof is given in the extended version
of this paper [22].

Proposition 3. Let X, M1, ..., Md be a family of d + 1 n-bit random vari-
ables uniformly distributed and mutually independent. Let I be a set of (d +
1)-combinations from {1, · · · , t} and let (i0, · · · , id) be a random vector uni-
formly distributed over I. Let (Di)i be a family of random variables such that
(Di0 , Dii , · · · , Did

) = (X ⊕⊕i Mi, M1, · · · , Md) and, for every j �= i0, ..., id,
Dj is uniformly distributed and mutually independent of (Di)i�=j . Let (Si)i be
a family of t signals following the Hamming weight model corresponding to the
processing of the Di’s. Then we have:

ρ [H(X), ICd,I(X)] =
1√
#I

ρ(n, d, σ) .

4 A Generic Scheme Combining Higher-Order Masking
and Shuffling

In this section, we propose a generic scheme to protect block cipher implemen-
tations by combining higher-order masking and shuffling. First we introduce the
general block cipher model and then we describe the proposed scheme. Afterward,
we investigate the possible attack paths and we deduce a strategy for choosing the
scheme parameters (i.e. the masking and shuffling orders, see Sect. 4.2).

4.1 Block Cipher Model

A block cipher is parameterized by a master key and it transforms a plaintext
block into a ciphertext block through the repetition of key-dependent round
transformations. We denote by p, and we call state, the temporary value taken
by the ciphertext during the algorithm. In practice, the cipher is iterative, which
means that it applies several times the same round transformation ϕ to the state.
This round transformation is parameterized by a round key k that is derived from
the master key.

In our model, ϕ is composed of different operations: a key addition layer (by
xor), a non-linear layer γ and a linear layer λ:

ϕ[k](p) = [λ ◦ γ](p⊕ k) .

We assume that the non-linear layer applies the same non-linear transformation
S, called S-box, on N independent n-bit parts pi of the state:
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γ(p) =
(
S(p1), · · · , S(pN )

)
. For efficiency reasons, the S-box is usually imple-

mented by a look-up table. The linear layer λ is composed of L linear oper-
ations λi that operate on L independent l-bit parts pi(l) of the state: λ(p) =(
λ1(p1(l)), · · · , λL(pL(l))

)
. We also denote by l′ � l the minimum number of bits

of a variable manipulated during the processing of λi. For instance, the Mix-
Columns layer of AES applies to columns of l = 32 bits but it manipulates some
elements of l′ = 8 bits. We further assume that the λi’s are sufficiently similar
to be implemented by one atomic operation that is an operation which has the
same execution flow whatever the index i.

Remark 1. Linear and non-linear layers may involve different state indexing. In
AES for instance, the state is usually represented as a 4× 4 matrix of bytes and
the non-linear layer usually operates on its elements p1,...,p16 vertically (starting
at the top) and from left to right. In this case, the operation λ1 corresponding to
the AES linear layer (that is composed of ShiftRows followed by MixColumns [6])
operates on p1(32) = (p1, p6, p11, p16).

In the sequel, we shall consider that the key addition and the non-linear layer
are merged in a keyed substitution layer that adds each key part ki to the corre-
sponding state part pi before applying the S-box S.

4.2 Our Scheme

In this section, we describe a generic scheme to protect a round ϕ by combining
higher-order masking and operations shuffling. Our scheme involves a dth-order
masking for an arbitrarily chosen d. Namely, the state p is split into d+1 shares
m0, ..., md satisfying:

m0 ⊕ · · · ⊕md = p . (8)

In practice, m1, ..., md are random masks and m0 is the masked state defined
according to (8). In the sequel, we shall denote by (mj)i (resp. (mj)i(l)) the
ith n-bit part (resp. the ith l-bit part) of a share mj . At the beginning of the
ciphering the masks are initialized to zero. Then, each time a part of a mask is
used during the keyed substitution layer computation, it is refreshed with a new
random value (see below). For the reasons given in Sect. 2.1, our scheme uses
two different approaches to protect the keyed substitution layer and the linear
layer. These are described hereafter.

Protecting the keyed substitution layer. To protect the keyed substitution
layer, we use a single d′th-order masked S-box (for some d′ � d) to perform all
the S-box computations. As explained in Sect. 2.1, such a method is vulnerable
to a second-order DPA attack targeting two masked inputs/outputs. To deal
with this issue, we make use of a high level of shuffling in order to render such
an attack difficult and to keep an homogeneous security level (see Sect. 4.4).

The input of S is masked with d′ masks r1, ..., rd′ and its output is masked
with d′ masks s1, ..., sd′ . Namely, a masked S-box S∗ is computed that is defined
for every x ∈ {0, 1}n by:
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S∗(x) = S
(
x ⊕

d′⊕
j=1

rj

)
⊕

d′⊕
j=1

sj . (9)

This masked S-box is then involved to perform all the S-box computations.
Namely, when the S-box must be applied to a masked variable (m0)i, the d
masks (mj)i of this latter are replaced by the d′ masks rj which enables the
application of S∗. The d′ masks sj of the obtained masked output are then
switched for d new random masks (mj)i.

The high level shuffling is ensured by the addition of dummy operations.
Namely, the S-box computation is performed t times: N times on a relevant part
of the state and t − N times on dummy data. For such a purpose, each share
mj is extended by a dummy part (mj)N+1 that is initialized by a random value
at the beginning of the ciphering. The round key k is also extended by such a
dummy part kN+1. For each of the t S-box computations, the index i of the parts
(mj)i to process is read in a table T . This table of size t contains all the indices
from 1 to N stored at random positions and its t−N other elements equal N +1.
Thanks to this table, the S-box computation is performed once on every of the
N relevant parts and t−N times on the dummy parts. The following algorithm
describes the whole protected keyed substitution layer computation.

Algorithm 1. Protected keyed substitution layer
Input: the shares m0, ..., md s.t.

⊕
mi = p, the round key k = (k1, · · · , kN+1)

Output: the shares m0, ..., md s.t.
⊕

mi = γ(p ⊕ k)

1. for iT = 1 to t

// Random index pick-up
2. i ← T [iT ]

// Masks conversion : (m0)i ⇐ pi

⊕
j rj

3. for j = 1 to d′ do (m0)i ← ((m0)i ⊕ rj) ⊕ (mj)i

4. for j = d′ + 1 to d do (m0)i ← (m0)i ⊕ (mj)i

// key addition and S-box computation: (m0)i ⇐ S(pi ⊕ ki) ⊕⊕j sj

5. (m0)i ← S∗((m0)i ⊕ ki

)
// Masks generation and conversion: (m0)i ⇐ S(pi ⊕ ki) ⊕⊕j (mj)i

6. for j = 1 to d′

7. (mj)i ← rand()
8. (m0)i ← ((m0)i ⊕ (mj)i) ⊕ sj

9. for j = d′ + 1 to d

10. (mj)i ← rand()
11. (m0)i ← (m0)i ⊕ (mj)i

12. return (m0, · · · , md)
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Remark 2. In Steps 3 and 8, we used round brackets to underline the order in
which the masks are introduced. A new mask is always introduced before remov-
ing an old mask. Respecting this order is mandatory for the scheme security.

Masked S-box computation. The look-up table for S∗ is computed dynamically
at the beginning of the ciphering by performing d′ table re-computations such as
proposed in [23]. This method has been shown to be insecure for d′ > 2, or for d′ >
3 depending on the table re-computation algorithm [5, App. A]. We will therefore
consider that one can compute a masked S-box S∗ with d′ � 3 only. The secure
computation of a masked S-box with d′ > 3 is left to further investigations.

Indices table computation. Several solutions exist in the literature to randomly
generate indices permutation over a finite set [10, 18, 19]. Most of them can be
slightly transformed to design tables T of size t � N containing all the indices 1
to N in a random order and whose remaining cells are filled with N +1. However,
few of those solutions are efficient when implemented in low resources devices. In
our case, since t is likely to be much greater than N , we have a straightforward
algorithm which tends to be very efficient for t � N . This algorithm is given in
Appendix A (Algorithm 3).

Protecting the linear layer. The atomic operations λi are applied on each
part (mj)i(l) of each share mj in a random order. For such a purpose a table
T ′ is constructed at the beginning of the ciphering that is randomly filled with
all the pairs of indices (j, i) ∈ {0, · · · , d} × {1, · · · , L}. The linear layer is then
implemented such as described by the following algorithm.

Algorithm 2. Protected linear layer
Input: the shares m0, ..., md s.t.

⊕
mi = p

Output: the shares m0, ..., md s.t.
⊕

mi = λ(p)

1. for iT ′ = 1 to (d + 1) · L
2. (j, i) ← T ′[iT ′ ] // Random index look-up
3. (mj)i(l) ← λi

(
(mj)i(l)

)
// Linear operation

4. return (m0, · · · , md)

Indices table computation. To implement the random generation of a permu-
tation T ′ on {0, · · · , d} × {1, · · · , L}, we followed the outlines of the method
proposed in [4]. However, since this method can only be applied to generate per-
mutations on sets with cardinality a power of 2 (which is not a priori the case
for T ′), we slightly modified it. The new version can be found in Appendix A
(Algorithm 4).

4.3 Time Complexity

In the following we express the time complexity of each step of our scheme
in terms of the parameters (t, d, d′, N, L) and of constants ai that depend on
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the implementation and the device architecture. Moreover, we provide practical
values of these constants (in number of clock cycles) for an AES implementation
protected with our scheme and running on a 8051-architecture.

Generation of T (see Appendix A). Its complexity CT satisfies:

CT = t× a0 + N × a1 + f(N, t) × a2 ,

where f(N, t) = t
∑N−1

i=0
1

t−i . As argued in Appendix A, f(N, t) can be approx-

imated by t ln
(

t
t−N

)
for t � N .

Example 1. For our AES implementation, we got a0 = 6, a1 = 7 and a2 = 9.

Generation of T ′. Let q denote �log2((d + 1)L)�. The complexity CT ′ satisfies:

CT ′ =
{

q × a0 + 2q × (a1 + q × a2) if q = log2((d + 1)L),
q × a0 + 2q × (a1 + q × a2) + 2q × a3 otherwise.

Example 2. For our AES implementation, we got a0 = 3, a1 = 15 and a2 = 14,
a3 = 17.

Generation the Masked S-box. Its complexity CMS satisfies:

CMS = d′ × a0 .

Example 3. For our AES implementation, we got a0 = 4352.

Protected keyed Substitution Layer.Its complexity CSL satisfies:

CSL = t× (a0 + d × a1 + d′ × a2) .

Example 4. For our AES implementation, we got a0 = 55, a1 = 37 and a2 = 18.

Protected Linear Layer. Its complexity CLL satisfies:

CLL = (d + 1)L × a0 .

Example 5. For our AES implementation, we got a0 = 169.

4.4 Attack Paths

In this section, we list attacks combining higher-order and integrated DPA that
may be attempted against our scheme. Section 3 is then involved to associate
each attack with a correlation coefficient that depends on the leakage noise
deviation σ, the block cipher parameters (n, N, l′, L) and the security parameters
(d, d′, t). As argued, these coefficients characterize the attacks efficiencies and
hence the overall resistance of the scheme.
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Remark 3. In this paper, we only consider known plaintext attack i.e. we assume
the different sensitive variables uniformly distributed. In a chosen plaintext at-
tack, the adversary would be able to fix the value of some sensitive variables
which could yield better attack paths. We do not take such attacks into account
and let them for further investigations.

Every sensitive variable in the scheme is (1) either masked with d unique masks
or (2) masked with d′ masks shared with other sensitive variables (during the
keyed substitution layer).
(1). In the first case, the d+1 shares appear during the keyed substitution layer
computation and the linear layer computation. In both cases, their manipulation
is shuffled.
(1.1). For the keyed substitution layer (see Algorithm 1), the d + 1 shares all
appear during a single iteration of the loop among t. The attack consists in
combining the d + 1 corresponding signals for each loop iteration and to sum
the t obtained combined signals. Proposition 2 implies that this attack can be
associated with the following correlation coefficient ρ1:

ρ1(t, d) =
1√
t
ρ(n, d, σ) . (10)

(1.2). For the linear layer (see Algorithm 2), the d+1 shares appear among (d+
1)·L possible operations. The attack consists in summing all the combinations of
d+1 signals among the (d+1)·L corresponding signals. According to Proposition
3, this attack can be associated with the following correlation coefficient ρ2:

ρ2(L, d) =
1√((d+1)·L
d+1

)ρ(l′, d, σ) . (11)

Remark 4. In the analysis above, we chose to not consider attacks combining
shares processed in the linear layers together with shares processed in the keyed
substitution layer. Actually, such an attack would yield to a correlation coeffi-
cient upper bounded by the maximum of the two correlations in (10) and (11).

(2). In the second case, the attack targets a d′th-order masked variable occurring
during the keyed substitution layer. Two alternatives are possible.
(2.1). The first one is to simultaneously target the masked variable (that appears
in one loop iteration among t) and the d′ masks that appear at fixed times (e.g.
in every loop iteration of Algorithm 1 or during the masked S-box computation).
The attack hence consists in summing the t possible combined signals obtained
by combining the masked variable signal (t possible times) and the d′ masks
signals (at fixed times). According to Proposition 3, this leads to a correlation
coefficient ρ3 that satisfies:

ρ3(t, d′) =
1√
t
ρ(n, d′, σ) . (12)

(2.2). The second alternative is to target two different variables both masked
with the same sum of d′ masks (for instance two masked S-box inputs or outputs).
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These variables are shuffled among t variables. The attack hence consists in sum-
ming all the possible combinations of the two signals among the t corresponding
signals. According to Proposition 3, this leads to a correlation coefficient ρ4 that
satisfies:

ρ4(t) =
1√

t · (t − 1)
ρ(n, 2, σ) . (13)

4.5 Parameters Setting

The security parameters (d, d′, t) can be chosen to satisfy an arbitrary resistance
level characterized by an upper bound ρ∗ on the correlation coefficients corre-
sponding to the different attack paths exhibited in the previous section. That is,
the parameters are chosen to satisfy the following inequality:

max(|ρ1|, |ρ2|, |ρ3|, |ρ4|) � ρ∗ . (14)

Among the 3-tuples (d, d′, t) satisfying the relation above, we select one among
those that minimize the timing complexity (see Sect. 4.3).

5 Application to AES

We implemented our scheme for AES on a 8051-architecture. According to Re-
mark 1, the ShiftRows and the MixColumns were merged in a single linear layer
applying four times the same operation (but with different state indexings). The
block cipher parameters hence satisfy: n = 8, N = 16, l = 32, l′ = 8 and L = 4.

Remark 5. In [8], it is claimed that the manipulations of the different bytes in
the MixColumns can be shuffled. However it is not clear how to perform such a
shuffling in practice since the processing differs according to the byte index.

Table 1 summarizes the timings obtained for the different steps of the scheme
for our implementation.

Remark 6. The unprotected round implementation has been optimized, in par-
ticular by only using variables stored in DATA memory. Because of memory
constraints and due to the scalability of the code corresponding to the protected
round, many variables have been in stored in XDATA memory which made the
implementation more complex. This explains that, even for d = d′ = 0 and t = 16
(i.e. when there is no security), the protected round is more time consuming than
the unprotected round.

We give hereafter the optimal security parameters (t, d, d′) for our AES imple-
mentation according to some illustrative values of the device noise deviation σ
and of correlation bound ρ∗. We consider three noise deviation values: 0,

√
2

and 4
√

2. In the Hamming weight model, these values respectively correspond
to a signal-to-noise ratio (SNR) to +∞, 1 and 1

4 . We consider four correlation
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Table 1. Timings for the different steps of the scheme for an AES implementation on
a 8051-architecture

T Generation CT = 112 + t
(
6 + 9
∑15

i=0
1

t−i

)
T ′ Generation CT ′ = 3q + 2q(15 + 14q) [+17 × 2q ]

Masked S-box Generation CMS = 4352d′

Pre-computations CT + CT ′ + CMS

Substitution Layer CSL = t(55 + 37d + 18d′)
Linear Layer CLL = 676(d + 1)

Protected Round CSL + CLL = 676(d + 1) + t(55 + 37d + 18d′)

Unprotected Round 432

Table 2. Optimal parameters and timings according to SNR and ρ∗

SNR = +∞ SNR = 1 SNR = 1
4

ρ∗ t d d′ timings t d d′ timings t d d′ timings
10−1 16 1 1 3.66 × 104 16 1 1 3.66 × 104 16 1 0 2.94 × 104

10−2 20 3 3 8.57 × 104 20 2 2 6.39 × 104 16 1 1 3.66 × 104

10−3 1954 4 3 5.08 × 106 123 3 3 3.13 × 105 16 2 2 5.75 × 104

10−4 195313 5 3 5.75 × 108 12208 4 3 3.15 × 107 19 3 3 8.35 × 104

bounds: 10−1, 10−2, 10−3, and 10−4. The security parameters and the corre-
sponding timings for the protected AES implementation are given in Table 5.
Note that all the rounds have been protected.

When SNR = +∞, the bound d′ � 3 implies an intensive use of shuffling in the
keyed substitution layer. The resulting parameters for correlation bounds 10−3

and 10−4 imply timings that quickly become prohibitive. A solution to overcome
this drawback would be to design secure table re-computation algorithms for
d′ � 3. Besides, these timings underline the difficulty of securing block ciphers
implementations with pure software countermeasures. When the leakage signals
are not very noisy (SNR = 1), timings clearly decrease (by a factor from 10 to
20). This illustrates, once again, the soundness of combining masking with noise
addition. This is even clearer when the noise is stronger (SNR = 1

4 ), where it
can be noticed that the addition of dummy operations is almost not required to
achieve the desired security level.

6 Conclusion

In this paper, we have conducted an analysis that quantifies the efficiency of
advanced DPA attacks targeting masking and shuffling. Based on this analysis,
we have designed a generic scheme combining higher-order masking and shuffling.
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This scheme generalizes to higher orders the solutions previously proposed in the
literature. It is moreover scalable and its security parameters can be chosen ac-
cording to any desired resistance level. As an illustration, we applied it to protect
a software implementation of AES for which we gave several security/efficiency
trade-offs.
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Method. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172.
Springer, Heidelberg (1999)

8. Herbst, P., Oswald, E., Mangard, S.: An AES Smart Card Implementation Resis-
tant to Power Analysis Attacks. In: Zhou, J., Yung, M., Bao, F. (eds.) ACNS 2006.
LNCS, vol. 3989, pp. 239–252. Springer, Heidelberg (2006)

9. Joye, M., Paillier, P., Schoenmakers, B.: On Second-order Differential Power Anal-
ysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 293–308.
Springer, Heidelberg (2005)

10. Knuth, D.: The Art of Computer Programming, 3rd edn., vol. 2. Addison-Wesley,
Reading (1988)

11. Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

12. Mangard, S.: Hardware Countermeasures against DPA – A Statistical Analysis of
Their Effectiveness. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp.
222–235. Springer, Heidelberg (2004)

13. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks – Revealing the Secrets
of Smartcards. Springer, Heidelberg (2007)

14. Messerges, T.: Securing the AES Finalists against Power Analysis Attacks. In:
Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 150–164. Springer, Heidelberg
(2001)



186 M. Rivain, E. Prouff, and J. Doget

15. Messerges, T.: Using Second-order Power Analysis to Attack DPA Resistant Soft-
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A Algorithms for Index Tables Generations

Generation of T . To generate T , we start by initializing all the cells of T to
the value N + 1. Then, for every j � N , we randomly generate an index i < t
until T [i] = N + 1 and we move j into T [i]. The process is detailed hereafter.

Algorithm 3. Generation of T
Input: state’s length N and shuffling order t
Output: indices permutation table T

1. for i ← 0 to t − 1
2. do T [i] ← N + 1 // Initialization of T

3. j ← 1
4. for j ← 1 to N

5. do i ← rand(t) while T [i] = N +1 // Generate random index i < t

6. T [i] = j and j ← j + 1
7. return T

Complexity Anlysis of loop 4-to-6. The expected number f(N, t) of itera-
tions of the loop 4-to-7 in Algorithm 3 satisfies:

f(N, t) = t · (Ht −Ht−N ) , (15)

where for every r, Hr denotes the rth Harmonic number defined by Hr =
r∑

i=1

1
i .

Let us argue about (15). For every j � N , the probability that the loop do-
while ends up after i iterations is

(
t−j

t

) · ( jt )i−1
: at the jth iteration of the for

loop, the test T [i] = N+1 succeeds with probability pj =
(

j
t

)
and fails with prob-

ability 1− pj =
(

t−j
t

)
. One deduces that for every j � N , the expected number

of iterations of the loop do-while is
∑

i∈N
i·pi−1

j ·(1−pj). We eventually get that
the number of iterations f(N, t) satisfies f(N, t) =

∑N−1
j=0
∑

i∈N
i · (pj

i−1 − pj
i
)
,

that is f(N, t) =
∑N−1

j=0
∑

i∈N
i·pj

i−1−∑N−1
j=0
∑

i∈N
(i + 1)·pj

i+
∑N−1

j=0
∑

i∈N
pj

i.
As the two first sums in the right-hand side of the previous equation are equal,
one deduces that f(N, t) equals

∑N−1
j=0
∑

i∈N
pj

i that is
∑N−1

j=0
1

1−pj
. Eventually,

since pj equals j
t , we get f(N, t) =

∑N−1
j=0

t
t−j which is equivalent with (15).

Since Hr tends towards ln(r) + γ, where γ is the Euler-Mascheroni constant,
we can approximate Ht − Ht−N by ln(t) − ln(t − N). We eventually get the
following relation for t � N :

f(N, t) ≈ t · ln
(

t

t−N

)
.

Generation of T ′. In view of the previous complexity, generating a permuta-
tion with the same implementation as for T is not pertinent (in this case t = N).
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To generate the permutation T ′, we follow the outlines of the method proposed
in [4]. However, since this method can only be applied to generate permutations
on sets with cardinality a power of 2 (which is not a priori the case for T ′),
we slightly modified it. Let 2q be the smallest power of 2 which is greater than
(d + 1)L. Our algorithm essentially consists in designing a q-bit random permu-
tation T ′ from a fixed q-bit permutation π and a family of q random values in F

q
2

(Steps 1 to 6 in Algorithm 4). Then, if (d + 1)L is not a power of 2, the table T ′

is transformed into a permutation over {0, · · · , d} × {1, · · · , L} by deleting the
elements which are strictly greater than (d + 1)L− 1. The process is detailled in
pseudo-code hereafter.

Algorithm 4. Generation of T ′

Input: parameters (d, L) and a n′-bit permutation π with q = �log2((d + 1)L)�
Output: indices permutation table T ′

1. for i ← 0 to q − 1
2. do aleai ← rand(q) // Initialization of aleas
3. for j ← 0 to 2q − 1
4. do T ′[j] ← π[j]
5. for i ← 0 to q − 1
6. do T ′[j] ← π[T ′[j] ⊕ aleai] // Process the ith index
7. if q �= (d + 1)L
8. then for j ← 0 to (d + 1)L − 1
9. do i ← j

10. while T ′[i] ≥ (d + 1)L
11. do i ← i + 1
12. T ′[j] ← T ′[i]
13. return T ′

With Algorithm 4, it is not possible to generate all the permutations over
{0, · · · , d} × {1, · · · , L}. In our context, we assume that this does not introduce
any weakness in the scheme.

Complexity Anlysis of loop 8-to-12. The number of iterations of loop 8-to-
12 in Algorithm 4 in the worst case is 2q.
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Abstract. A design methodology of Random Switching Logic (RSL) us-
ing CMOS standard cell libraries is proposed to counter power analysis
attacks against cryptographic hardware modules. The original RSL pro-
posed in 2004 requires a unique RSL-gate for random data masking and
glitch suppression to prevent secret information leakage through power
traces. However, our new methodology enables to use general logic gates
supported by standard cell libraries. In order to evaluate its practical
performance in hardware size and speed as well as resistance against
power analysis attacks, an AES circuit with the RSL technique was im-
plemented as a cryptographic LSI using a 130-nm CMOS standard cell
library. From the results of attack experiments that used a million traces,
we confirmed that the RSL-AES circuit has very high DPA and CPA re-
sistance thanks to the contributions of both the masking function and
the glitch suppressing function. This is the first result demonstrating re-
duction of the side-channel leakage by glitch suppression quantitatively
on real ASIC.

1 Introduction

Since Kocher et al. proposed side-channel attacks [1,2], many countermeasures
such as data masking and power equalization techniques have been studied and
implemented as FPGA and ASIC circuits. However, most of them require custom
logic gates and/or design tools specialized to their methods, or implementations
using standard libraries can be compromised by glitch signals, unbalanced signal
delays and power consumptions. A DPA countermeasure called Random Switch-
ing Logic (hereafter RSL) [3] is a strong countermeasure that combines a masking
function using random numbers and a function that suppresses glitch signals.
The original authors further improve RSL in [4] by adding re-mask processing to
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each RSL gate to counter high-order DPA [5,6] and such DPAs as identify ran-
dom numbers for each waveform with the use of filtering [7,8]. RSL is, however,
difficult to develop under a general environment compared with other counter-
measures like Wave Dynamic Differential Logic (WDDL) [9] since it uses a logic
gate that does not exist in standard CMOS cell libraries. In contract, we pro-
pose a design methodology of RSL that enables implementation in a standard
CMOS library, and show the design flow using a standard design tool. An AES
circuit with the RSL countermeasure is designed and implemented on a crypto-
graphic LSI using a 130-nm CMOS standard cell library [10], and its hardware
performances in gate counts and operating speed are evaluated. DPA and CPA
experiments are also applied on the LSI, and the effectiveness of our methodol-
ogy as DPA and CPA countermeasure is demonstrated. In addition, the effects
of the RSL function that suppresses glitches is detailed in the evaluation of the
power analysis resistance.

2 RSL Using Standard Cell and Security Evaluation

RSL is a DPA countermeasure at the transistor level using a custom RSL gate
that consists of a majority logic gate with output-control signal shown in Fig. 1.
Table 1 shows a pseudo code of NAND operation by RSL. Random numbers are
used to mask data and then signal transitions of the RSL gate lose correlation
with selection functions of DPA. However, a simple random masking without
signal delay control may cause glitches that do have correlation with the selection
functions [3,11]. In order to prevent the glitches, the RSL gate manages the delay
relationship of the output-control signal (en), input signals (xz ,yz), and random
mask signals (rz). Re-mask operation is independently performed in each RSL
gate so that high-order DPAs [5,6] cannot identify the random numbers in each
waveform even using filtering techniques [7,8]. For more details about RSL, refer
to [4].

This section proposes a new method to realize RSL using only a standard
CMOS cell library, while the original RSL scheme using the custom gate requires
high development cost and long design period. Fig. 2 shows an RSL NAND logic
using standard CMOS gates, a Majority-Inverter (MAJI) or OR-AND-Inverter
(OAI222), and a NOR for output control, which as a whole provide compatible
operation with the RSL-NAND gate in Fig. 1. We call this compatible logic
“pseudo RSL”. The majority operation needs to be performed at the front step,
and the output-control signal is enabled at the final step to suppress glitch signals
on the output of the pseudo RSL gate.

According to [12], side-channel leakage occurs in non-linear data operations
and is amplified in linear/non-linear operations. We hence estimate side-channel
leakage of the MAJI logic in Fig. 2, which operates non-linearly on data inputs,
using the leakage models mentioned in [12]. The change of the MAJI gate inputs
(x, y, r) at the i-th cycle is denoted as

(xi−1, yi−1, ri−1) → (xi, yi, ri).
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Fig. 2. NAND operation by pseudo RSL

Table 1. Pseudo-code of NAND opera-
tion by RSL

NAND operation by RSL
input en, x = a ⊕ rx, y = b ⊕ ry,

rxz = rx ⊕ rz, ryz = ry ⊕ rz, rz

output z = a · b ⊕ rz

begin
/∗Operation 1: Suppress glitches ∗/
en <= 0;

/∗Operation 2(a): Re-mask x ∗/
xz <= x ⊕ rxz (= a ⊕ rz)

/∗Operation 2(b): Re-mask y ∗/
yz <= y ⊕ ryz (= b ⊕ rz)

/∗Operation 3: Input data
to the RSL gate ∗/
z <= RSL-NAND(xz, yz, rz, en)

/∗Operation 4: The enable signal en
rise after all other
input signals are fixed ∗/

en <= 1 after max delay(xz, yz, rz);
end

As the selection functions of DPA, we use ai(= xi ⊕ ri), bi(= yi ⊕ ri), which
are unmasked signals of xi, yi at the i-th cycle. The average number of signal
transitions, N(i) and N(i + 1), including glitches caused by the input signals
(x, y, r) at MAJI gate, are evaluated. The transitions for two (the i-th and (i+1)-
th) cycles are used to assess the bias of the numbers based on the cycle when an
operation including the DPA selection function takes place. Table 2 shows the
transition counts of the MAJI gate for each input pattern in each delay condition.
For example, in the delay condition 1, when (ai, bi, ri) = (1, 0, 0), the average
number of signal transitions during (xi−1, yi−1, ri−1) → (xi, yi, ri) is N(i) = 1,
and the number during (xi, yi, ri) → (xi+1, yi+1, ri+1) is N(i + 1) = 1/2. Next,
the amount of leakage is calculated from Table 2 for each delay condition and
selection function. The amount of leakage at the i-th cycle, Ndiff(i), is defined
according to [12] as follows.

Ndiff(i) = Nα=1(i) −Nα=0(i)

where Nα=δ is the average number with the selection function being α and its
value δ.

Table 3 shows the amount of leakage for each delay condition calculated from
Table 2. Each condition includes cases where Ndiff �= 0, and thus pseudo RSL
does not meet the security conditions described in [12] when it is strictly eval-
uated as a single gate. However, leakage model in [12] is inapplicable to pseudo
RSL, which assumes the leakage is amplified by following gates. As stated before,
pseudo RSL prevents the spread of the glitches after MAJI by the output-control
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Table 2. Signal transitions of a MAJI
gate

Delay condition 1
delay(x) < delay(y) < delay(r)

ai, bi, ri xi, yi, ri N(i) N(i + 1)
0 0 0 0 0 0 1/2 1/2
0 0 1 1 1 1 1/2 1/2
0 1 0 0 1 0 1 1
0 1 1 1 0 1 1 1
1 0 0 1 0 0 1 1/2
1 0 1 0 1 1 1 1/2
1 1 0 1 1 0 1/2 1
1 1 1 0 0 1 1/2 1

Delay condition 2
delay(x) < delay(r) < delay(y)

ai, bi, ri xi, yi, ri N(i) N(i + 1)
0 0 0 0 0 0 1/2 1/2
0 0 1 1 1 1 1/2 1/2
0 1 0 0 1 0 1/2 1
0 1 1 1 0 1 1/2 1
1 0 0 1 0 0 1 1/2
1 0 1 0 1 1 1 1/2
1 1 0 1 1 0 1 1
1 1 1 0 0 1 1 1

Delay condition 3
delay(r) < delay(x) < delay(y)

ai, bi, ri xi, yi, ri N(i) N(i + 1)
0 0 0 0 0 0 1/2 1/2
0 0 1 1 1 1 1/2 1/2
0 1 0 0 1 0 1/2 1
0 1 1 1 0 1 1/2 1
1 0 0 1 0 0 1 1
1 0 1 0 1 1 1 1
1 1 0 1 1 0 1 1/2
1 1 1 0 0 1 1 1/2

Table 3. Leakage amount of a MAJI
gate

Delay condition 1
delay(x) < delay(y) < delay(r)
Cycle Selection function Ndiff

i ai 0
i bi 0

i + 1 ai 0
i + 1 bi 1/2

Delay condition 2
delay(x) < delay(r) < delay(y)
Cycle Selection function Ndiff

i ai 1/2
i bi 0

i + 1 ai 0
i + 1 bi 1/2

Delay condition 3
delay(r) < delay(x) < delay(y)
Cycle Selection function Ndiff

i ai 1/2
i bi 0

i + 1 ai 0
i + 1 bi 0

signal, and hence the 1/2 transition bias of the MAJI gate in Table 3 does not
propagate. Therefore, the amount of leakage in the entire circuit is at most k/2,
where k is the the number of MAJI gates whose input bits are used as selection
functions.

In short, pseudo RSL provides the same level of security as RSL if there exists
a lower limit of |Ndiff | detectable by DPA, denoted as ε, such that k/2 < ε. It
is hard to give the threshold ε value, because it depends on the side-channel
evaluation environment and the device characteristics, but it is easy to calculate
the maximum of k. For instance, k is 2 for the AES circuit in Section 5. The
circuit size is about 30 Kgates and the average number of signal transitions per
cycle using virtual delay is approximately 15,000, which implies that if DPA fails
to detect the bias of 1/15,000 transitions per DPA trace, pseudo RSL can make
the circuit sufficiently secure.

3 Design Flow of Cryptographic Circuits Using RSL

Fig. 3 shows the design flow of the RSL and pseudo RSL circuits, and Fig. 4
is the abstract of the hardware architecture. It is assumed that the circuit is
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designed in RTL and netlist is generated by a logic synthesis tool. In this flow,
RSL or pseudo RSL circuit is generated from an existing cryptographic design
without DPA countermeasure. The flow is largely made up of the following five
steps.

STEP 1 Selection of the target circuit.
STEP 2 Pipelining of the evaluation/pre-charge phase.
STEP 3 Addition of masking and timing control circuits.
STEP 4 Logic synthesis.
STEP 5 Delay adjustment of the timing control circuit.

In STEP 1, a cryptographic circuit is selected to convert into RSL logics, but
circuits that fall into the following two cases cannot be used. The first case is that
the circuit data paths contain successive non-linear operations. For example, if
SubBytes circuit of AES is implemented by AND-XOR-type 2-step logic such as
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Positive Polarity Reed-Muller (PPRM), it contains high-order product terms.
Then the precise delay control and random number re-masking for each 2-input
NAND is extremely difficult. Integer arithmetic that includes successive non-
linear operations such as addition and multiplication is not suitable either. In
contrast, SubBytes implementation that employs composite field arithmetic [13]
is very suitable because it has a nested structure of AND-XOR operations with a
few non-linear steps. The second case is that the circuit is designed as behavior
model or using a large look-up table description, because its logic structure
depends on synthesis tools.

In STEP 2, a tentative logic synthesis is performed to evaluate delays in the
whole circuit chosen in STEP 1. Afterward, a pipeline register is inserted to
divide the circuit into two parts and thereby to let the RSL evaluation and pre-
charge phases run in parallel. The register location is determined in consideration
of the tradeoff between the operating frequency and the circuit area. A high
frequency is expected by dividing the critical path at the center, but there may
be a large number of intermediate signals that require a large register. In our
prototypic LSI described in Section 5, the pipeline register is located at the
output of SubBytes to minimize the number.

STEP 3 replaces logic gates for non-linear operations with RSL or pseudo
RSL gates, and puts random number generators for data masking. Note that
RSL need not be applied to linear operations such as XOR because they do not
generate side-channel leakage as long as the inputs to them are masked. The
replacement is applied only to the gates related to secret key operations. Fig. 5
shows a conversion example of a NAND gate, in which three random number
input ports are added. In the case of a loop architecture, the initial data masking
and the final data unmasking need an additional XOR circuit shown in Fig. 4.
The above operations determine the number of random number generator and
unmasking/re-masking circuits to be added. The timing control logic for output-
control signals of each RSL gate is also designed. At this time, timing adjustment
to prevent glitches is not required. In the implementation example of AES in
Section 5, the number of RSL stages from the data register to the pipeline register
is 4, but no RSL stage exists between the pipeline register to data register because
there is only a linear transformation. Pseudo-random number generators using
two 33-bit LFSR are designed in the AES circuit. Quality and characteristics of
random numbers required by a masking method is an open question.

In STEP 4, ordinary logic synthesis is performed while the structures of RSL
gates and the timing control circuits are protected not to be modified. In con-
sideration of the increase of the critical path delay for timing adjustment in the
next step, logic synthesis must be performed with some margin for performance
in speed.

In STEP 5, the delay is adjusted by modifying the timing control logic part of
the netlist created in STEP 4. First, the maximum delay before the RSL gates
(logic step 1) located at the upper-most of Fig. 4 is extracted. The path of the
output-control signal is not included in the delay. Next, temporary buffers in
the timing control circuit are replaced to have delays longer than the extracted
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Table 4. Our implementation
environment

Process TSMC 130nm
CL013G [10]

Logic synthesis Design Complier
version 2004.12.SP4

Simulator NC-Verilog
version 05.40-p004
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Fig. 6. SubBytes logic with composite field arithmetic

delay. This modification is repeated until timing simulation using the netlist
and Standard Delay File (SDF) created in STEP 4 and 5, meets the security
conditions of RSL.

4 Performance Evaluation of the Prototype Circuit

Table 4 summarizes our implementation environment applying the pseudo RSL
scheme to the Verilog-HDL source code [14] designed with composite field arith-
metic for the SubBytes function. It uses one round function block with a 16-byte
SubBytes block for the loop architecture, and key expansion is processed on-the-
fly using a 4-byte SubBytes block. The pseudo RSL is only applied to the 16-byte
SubBytes block, which is the only non-linear function in the round operations.
The composite gate OAI222 in the TSMC’s 130-nm CMOS standard cell library
CL013G is used as the majority logic. The pipeline register is placed at the out-
put of SubBytes and is implemented as negative edge triggered flip-flops to have
the same number of clock cycles as that of the original circuit without pseudo
RSL. As described in the previous section, the number of RSL stages contain-
ing SubBytes before the pipeline register is 4, and numbers of the pseudo RSL
gates in each stage are 9, 3, 6, and 18. Therefore three 36-bit random numbers
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Table 5. Performance evaluation result

Evaluation item Before applying [14] After applying
Gate counts 14.5 Kgate 30.5 Kgate

Maximum delay 16.77 ns 14.77 ns
Maximum operation frequency 59.6 MHz 33.8 MHz

Processing performance (at fmax) 763 Mbps 432 Mbps

Table 6. Our experimental environment

Parameters Explanation
Target device TSMC 130-nm cryptographic LSI on SASEBO-R

Operating frequency 24 MHz (standard setting on the board)
Measuring point Resistance (2.2 Ω) between power supply and ASIC

Oscilloscope Agilent DSO8104A
Sampling frequency 2 GHz

Number of power traces 1,000,000 traces

(rz , rxz, and ryz) are needed for the mask operations. Fig. 6 summarizes this
configuration.

Table 5 shows the performances of the AES circuits with and without the
pseudo RSL. The experimental cryptographic LSI that contains these AES cir-
cuits is operated at a low frequency of 24 MHz, and hence speed constraints
for the circuits were not specified to a logic synthesis tool. The throughput of
432 Mbps at 33.8 MHz of the pseudo RSL circuit can be applied to many em-
bedded applications including smart cards. The gate counts are doubled to 30.5
Kgates, including all the components of RSL-AES such as the encryption block,
key scheduler and pseudo-random number generator, but this number is small
enough for any practical use. A simple performance comparison cannot be made
between an AES circuit using pseudo RSL and the one using WDDL in [15]
because their design environments are different. However, we believe that our
pseudo RSL logic has high advantages over WDDL in both hardware size and
speed because the AES circuit with WDDL in [15] requires about three times as
many gates as and its operating speed is degraded down to 1/4 in comparison
to the original AES circuit without WDDL.

5 Power Analysis Attack against Prototype LSI

Power analysis attacks against the pseudo RSL-AES circuit implemented on
the experimental LSI is performed by using a circuit board SASEBO-R (Side-
channel Attack Standard Evaluation Board, see Fig. 16 in Appendix A), which
is specially designed for the side-channel attack experiments [16]. The evaluation
environment is detailed in Table 6. The random masking and glitch suppressing
functions in the pseudo RSL-AES circuit can be enabled separately by setting
a mode register. The DPA and CPA attacks are performed on four possible
combinations of the functions to reveal the final round key.
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5.1 Comparison of the Power Traces

Fig. 7 shows the mean power traces of 1,000 encryptions in each operation
mode: (a) “combined” enabling the both functions, (b) “suppressing” with
only the glitch suppressing, (c) “masking” with only the random masking, and
(d) “none” disabling the both functions. The original AES circuit without the
pseudo RSL is also measured as the power trace in Fig. 7.

In all figures, large and relatively small peaks can be observed synchronizing
rising and falling edges of system clock, respectively. In the pseudo RSL-AES
circuit, by comparing the traces of none and masking, or those of suppressing
and combined, it is observed that the peaks (power consumption) are increased
by the mask operation. The glitch suppression works to reduce the peaks as can
be seen in the same way by comparison of none and suppressing, or masking
and combined.

The glitch suppression enables to reduce the increase of the peak current that
the data masking causes. The decrease in peak current of circuits is an important
issue for some devices such as contactless smart cards. We thus believe that RSL
is suitable for those devices.

5.2 Leakage Analysis

Fig. 8 shows DPA traces in none with correct predictions for one input bit to
SubBytes circuit in successive four rounds. The spikes in DPA traces appear at
appropriate time frame corresponding to the target rounds, and thus they are
information leakage but not noise signals. We call this evaluation using correct
internal information known by evaluators “leakage analysis”. Even if information
leakage is confirmed by the leakage analysis, it does not mean the implementation
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is weak against power analysis attacks because the spikes for wrong keys (called
ghost peaks) would be larger than correct ones [17], or key search space would
be too large to attack while we know the correct key in the leakage analysis.
Therefore, the analysis is the most powerful scheme to evaluate security of cryp-
tographic modules against power analysis attacks.

Figs. 9 and 10 show the DPA traces by the leakage analysis of the RSL-AES
circuit in four operation modes. Each input bit of one 8-bit S-box and each input
bit of eight NAND gates in SubBytes circuit are used as selection functions. The
effects of the random mask are not taken into account for the selection functions.
In other words, random numbers are assumed to be 0 in the functions. The traces
for suppressing, masking and none show spikes of information leakage while
no leakage is observed in combined. The peak values of suppressing and none
in Fig. 9 are larger than those in Fig. 10, but the values of masking in Fig. 9 is
smaller than that of Fig. 10. Therefore, a selection function suitable for attacks
varies depending on the circuit implementation. Both in Figs. 9 and 10, the peak
values for suppressing and masking are smaller than those for none while
their shapes are similar. These results clearly show that each countermeasure
has some independent effect to reduce the leakage, but the pseudo RSL scheme
that is a combination of the two countermeasures provides very high security.

5.3 CPA and DPA Attacks

CPA [17] and DPA attacks are performed using 1,000,000 power traces to reveal
the final round key of the pseudo RSL-AES circuit in each mode. In the following
discussion, the results for two out of sixteen 8-bit S-box circuits are displayed.



A Design Methodology with RSL Techniques 199

50 100
   

256

16 

1  
   

combined

R
a

n
k

 o
f 

co
rr

ec
t 

k
ey

50 100
   

256

16 

1  
   

suppressing

50 100
   

256

16 

1  
   

masking

50 100
   

256

16 

1  
   

none

50 100
   

256

16 

1  
   

R
a

n
k

 o
f 

co
rr

ec
t 

k
ey

Number of waveforms 
(x 10,000)

50 100
   

256

16 

1  
   

Number of waveforms 
(x 10,000)

50 100
   

256

16 

1  
   

Number of waveforms 
(x 10,000)

50 100
   

256

16 

1  
   

Number of waveforms 
(x 10,000)

SubBytes 0

SubBytes 1

Fig. 11. CPA results of SubBytes 0-1

50 100
   

256

16 

1  
   

combined

R
a

n
k

 o
f 

c
o

r
r
e
c
t 

k
e
y

50 100
   

256

16 

1  
   

R
a

n
k

 o
f 

c
o

r
r
e
c
t 

k
e
y

Number of waveforms 
(x 10,000)

50 100
   

256

16 

1  
   

suppressing

50 100
   

256

16 

1  
   

Number of waveforms 
(x 10,000)

50 100
   

256

16 

1  
   

masking

50 100
   

256

16 

1  
   

Number of waveforms 
(x 10,000)

50 100
   

256

16 

1  
   

none

50 100
   

256

16 

1  
   

Number of waveforms 
(x 10,000)

SubBytes 1

SubBytes 0

Fig. 12. 1-bit DPA results of SubBytes 0-1 with SubBytes input as selection function

CPA results are shown in Fig. 11, where Hamming distance of a data register
is used for the selection function. The vertical axis shows the logarithm plots
representing the ranks of a correct 8-bit partial key and the horizontal axis shows
the number of traces. The correct keys for the two S-boxes were found with
very few number of traces in suppressing and none, but the attack failed in
combined and masking using the random mask. This is because the Hamming
distance of the masked data cannot be estimated from the partial key and a
ciphertext.

Single-bit DPA results are shown in Fig. 12, where each input bit of the 8-bit S-
box is used as the selection function. Therefore, eight estimations for one correct
partial key are shown in each graph. The correct key was identified by some
selection functions in suppressing and none but the attack was completely
failed in combined. There are some selection functions that lead relatively high
rank for the correct key, but it would be difficult to identify the answer. In
contrast, The DPA using NAND gate input as the selection function successfully
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Fig. 13. 1-bit DPA results of SubBytes 0-1 with NAND gate input as selection function
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Fig. 14. 8-bit DPA results of SubBytes 0-1 with with SubBytes input as selection
function

revealed the correct key as shown in Fig. 13. These results are consistent with
the leakage analysis in Figs. 9 and 10.

Multi-bit DPAs, extended version of DPA, are more powerful attacks [18,19].
We explain the attack results by the multi-bit DPA in [19], which worked fine as
an attack to our circuit. This is an attack method that uses the sum of absolute
values of differential power of multi-bits. Fig. 14 shows the results of 8-bit DPA
using the 8-bit input to the S-box circuit in the final round. In the same way
as the single-bit DPA, the correct key was identified in suppressing and none,
but not in combined and masking. The multi-bit DPA that generates only one
DPA trace for each partial key makes the key estimation easier than the single-
bit DPA that creates eight DPA traces that contain wrong keys. In Fig. 15, each
input to eight NAND gates of the S-box circuit is used as a selection function.
The results also show the correct key estimation more clearly than the single-
bit DPA. However, the attack in combined still failed. It would be difficult
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Fig. 15. 8-bit DPA results of SubBytes 0-1 with NAND gate input as selection function

to form a special selection function such as the input to the specific NAND
gate without design information about the target device. However, the method
presented in [20] enables us to seek an efficient selection function. Therefore,
the glitch suppressing function in the pseudo RSL is important for pursuing
sufficient security for power analysis attacks.

6 Conclusion

In this paper, we proposed design methodology of RSL using CMOS standard
libraries, which we call “pseudo RSL”. Conditions to guarantee security of the
pseudo RSL are also discussed. AES circuits with (and without) the pseudo RSL
gates are implemented on an experimental LSI using a 130-nm CMOS standard
cell library according to the proposed design flow. The pseudo RSL scheme
doubles the hardware resource and halves the operating speed in comparison with
original AES circuit. However, this result shows high advantages in hardware
performance over the WDDL scheme that needs three times as many gates and
reduces the operating frequency down to 1/4. Various CPA and DPA attacks on
the LSI controlling data masking and glitch suppressing function demonstrated
that the pseudo RSL-AES circuit has a very high security against the attacks.
We also confirmed that the AES circuit with the pseudo RSL has a very high
power analysis resistance thanks to the contributions of the masking and the
glitch suppressing functions. This is the first result demonstrating reduction of
the side-channel leakage by glitch suppression quantitatively on real ASIC.

However, in the pseudo RSL-AES circuit, a specific 1-bit intermediate signal
was found to be used as a selection function to identify a specific 1-byte partial
key (See Appendix A). We have confirmed that some signal paths do not satisfy
the delay conditions for pseudo RSL by static timing analysis using design tools.
Therefore, new LSIs have been developed, where the detailed delay information
to satisfy the security conditions were fed back to their layouts. We have just
started evaluation of the new LSIs, and no information leakage has been found
so far. Detailed experimental results will soon be reported.
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Appendix A: Weakness Detected in Our Prototype LSI

A photograph of an evaluation board used in our experiment is shown in Fig. 16.
Our pseudo RSL-AES co-processor can toggle on/off independently the two func-
tions to prevent leakage, the random masking and glitch suppressing functions
by setting the values of the mode register implemented in the prototype LSI
shown in Fig. 17.

As for combined, Fig. 18 shows the results of attacks by 1 bit DPA that uses
all input data to the SubBytes circuit as the selection function. The figure shows
that there is a bit where the correct answer key ranks 1 with a million traces.
Similar tendency is also observed in the experimental result shown in Fig. 19
changing selection functions.

This could be caused by some input signals not satisfying the delay conditions
of the pseudo RSL. We have already confirmed some timing violations in a report
of static timing analysis. Therefore, new LSIs have been developed, where the de-
tailed delay information to satisfy the security conditions were fed back to their
layouts. We have just started evaluation of the new LSIs, and no information leak-
age has been found so far. Detailed experimental results will soon be reported.

Also, in Fig. 18, as the number of trace increases, the correct key goes higher in
rank and stays there for a while, and then goes down. This is caused by the bias

Fig. 16. Experimental board SASEBO-R Fig. 17. Our prototype LSI

http://www.rcis.aist.go.jp/special/SASEBO/index-en.html
http://www.usenix.org/
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Fig. 18. 1-bit DPA result of all on combined with SubBytes input as selection function
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Fig. 19. 1-bit DPA result of all on combined with NAND gate input as selection
function

of pseudo-random number for the masking. This trend is changed if the order of
selecting trace data changes in the statistical processing. This case shows that
it is difficult to know how many waveforms justify the end of attacks.
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Abstract. Power-based side channel attacks are a significant security
risk, especially for embedded applications. To improve the security of
such devices, protected logic styles have been proposed as an alternative
to CMOS. However, they should only be used sparingly, since their area
and power consumption are both significantly larger than for CMOS.
We propose to augment a processor, realized in CMOS, with custom
instruction set extensions, designed with security and performance as
the primary objectives, that are realized in a protected logic. We have
developed a design flow based on standard CAD tools that can automat-
ically synthesize and place-and-route such hybrid designs. The flow is
integrated into a simulation and evaluation environment to quantify the
security achieved on a sound basis. Using MCML logic as a case study,
we have explored different partitions of the PRESENT block cipher be-
tween protected and unprotected logic. This experiment illustrates the
tradeoff between the type and amount of application-level functionality
implemented in protected logic and the level of security achieved by the
design. Our design approach and evaluation tools are generic and could
be used to partition any algorithm using any protected logic style.

1 Introduction

Security is a fundamental requirement for modern embedded systems. Math-
ematically strong cryptographic algorithms are insufficient due to the advent
of side channel attacks, which exploit weaknesses in the underlying hardware
platform rather than directly attacking the algorithm itself. At present, there
is no perfect protection against side channel attacks. Hence, combining coun-
termeasures implemented at different abstraction levels is necessary to reach a
significant security level. In this context, solutions exploiting a dedicated tech-
nology such as protected logic styles are interesting because they directly tackle

C. Clavier and K. Gaj (Eds.): CHES 2009, LNCS 5747, pp. 205–219, 2009.
c© International Association for Cryptologic Research 2009
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the problem of information leakage at their source. These logic styles can also be
combined with software countermeasures to increase the difficulty of performing
an attack.

The main drawback of protected logic styles proposed so far is that their area
and power consumption are both significantly greater than that of traditional
CMOS. They can also significantly increase the design time compared to circuits
built from standard cells. Hence, complete processors and ASICs implemented
in protected logic styles are generally too costly for practical applications, and
would likely have low production volumes.

To overcome this issue without compromising security, protected logic styles
must be used sparingly. With this respect, an interesting alternative is to build
processors and ASICs that are realized primarily in CMOS logic, with a small
and security-critical portion of the design realized in a protected logic. This
creates a new and challenging partitioning problem that designers must be able
to solve. But doing so will be quite difficult unless there is a suitable metric to
evaluate and compare the security of a computation performed in either CMOS
or a protected logic. Additionally, CAD tools must be able to support complex
design flows that mix different logic styles. Finally, there is a distinct need for
a comprehensive evaluation framework that combines a simulation environment
with suitable metrics and provides a fair and accurate comparison of designs in
respect to different criteria (e.g., power consumption, area, throughput, security).

To this end, this paper proposes a complete design flow for implementing and
verifying circuits realized combining protected and non protected logic styles.
Our design flow is built from standard CAD tools and is integrated with a
methodology to evaluate the security of the designs that have been partitioned,
following a theoretical framework for analyzing the information leakage provided
by side-channel attacks. Focusing on a processors augmented with custom In-
struction Set Extensions (ISEs) realized in protected logic styles, we explore the
tradeoffs between the type and amount of application-level functionality imple-
mented in protected logic and the level of security that can be achieved by the
design. In our experiments, in particular, we vary the portions of the crypto-
graphic algorithm that are realized in protected logic and CMOS, which gives
us a better understanding of the tradeoffs between the usage of protected logic
and security.

Starting from an RTL description of the target processor and a software im-
plementation of a cryptographic algorithm, our tool allows the user to manually
select the sensitive parts of the algorithm to be protected. Our design flow then
automatically generates the new software, the ISEs and their interface to the
processor, synthesizing a complete system as described above. The power con-
sumption of the full system is simulated at the SPICE level while running the
application. These power traces are then used to compute an information theo-
retic metric in order to evaluate the information leakage of the protected core. We
have selected MOS Current Mode Logic (MCML) as the protected logic for use
in this study. However, the ideas presented in this paper are generally amenable
to any type of protected logic that is compatible with a CMOS process.
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The remainder of the paper is organized as follows. Section 2 summarizes
previous works in the area of side channel attacks. Section 3 recalls the metric
used to evaluate the side-channel leakage and presents several extensions that
were necessary to make it usable in the context of our design flow. Section 4
describes our hybrid design and evaluation methodology. Section 5 presents the
results we obtained applying our methodology to the PRESENT block cipher
and discusses the security vs. cost tradeoffs. Section 6 concludes the paper.

2 Background and Related Work

Side channel attacks are a powerful and easy to perform class of physical attacks.
Consequently they have received much attention from the scientific community.
The most frequently considered sources of side-channel information are power
consumption and timing characteristics [13,12]. To perform Differential Power
Analysis (DPA), the attacker executes the cryptographic algorithm on a tar-
get device multiple times, and then uses statistical methods to evaluate the
information observed from the executions. Countermeasures, such as algorith-
mic techniques [7,23], architectural approaches [11,18,19], and hardware-related
methods [20,27] can help to protect against DPA. Even if none of them are
perfect, these countermeasures increase the efforts required to mount a success-
ful attack. In this paper, we are mainly concerned with technological solutions,
usually denoted as DPA-resistant logic styles in the literature.

Many DPA-resistant logic styles have been proposed in the past. Sense Am-
plified Base Logic (SABL) [27], for example, combines dual-rail and pre-charged
logic [17]. SABL cells consume constant power, provided that they are designed
and implemented in a carefully balanced way. Other proposed DPA-resistant
logic styles include: Wave Dynamic Differential Logic (WDDL) [28], which bal-
ances circuit activity with complementary logic gates; Dynamic Current Mode
Logic (DyCML) [2,15], a dual-rail pre-charge logic, similar to SABL, but with
a reduced power-delay product; Low-swing current mode logic (LSCML) [9],
which is similar to DyCML, but is independent of transistor sizes and load ca-
pacitances; Masked Dual-Rail Pre-charge Logic (MDPL) [21], which attempts to
eliminate routing constraints that plague other dual-rail style gates; Gammel-
Fischer Logic (GF) [8], a form of masked logic that protects against information
leakage in the presence of glitches; finally, MCML that will be our running ex-
ample [22], a MOS transistor-based current mode logic.

One of the key challenges when implementing protected logic styles is to an-
alyze the DPA-resistance of the different operators in an application. This task
is even more critical when partitioning a design between CMOS and a protected
logic. To address possible shortcomings, Standaert et al. [24] introduced a combi-
nation of metrics that can be used to describe the amount of information leaked
by a cryptographic device and the effectiveness of a side-channel adversary to ex-
ploit this information. When analyzing new countermeasures, it is primarily the
information theoretic metric that is most useful, since it quantifies the reduction
in information leakage resulting from the countermeasure using a sound criteria.
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In theory, this metric yields an adversary-independent image of the asymptotic
security of the device. This metric was first applied to DPA-resistant logic styles
by Mace et al. [16], who describe in detail how to compute the entropy of a secret
key conditionally with respect to the physical leakage in different scenarios. In
this paper, we follow and extend this application of the metric.

Various studies on partitioning designs between CMOS and protected logic
have been published in the literature. The most relevant work related to our con-
cerns is probably the one of Tillich and Großschädl [26]. These authors analyze
the resistance against side channel attacks of a processor extended with custom
ISE for AES. They consider the possibility of implementing the most security-
critical portions of the processor datapath in a DPA-resistant logic style. Our
paper extends these initial ideas, providing different novel contributions. We
present a fully automated design flow that allows realizing and simulating a
complete environment (core + protected ISE). This proves the feasibility of com-
bining CMOS and protected logic styles on the same chip and provides realistic
measurements for area and power consumption. We also provide a more precise
evaluation of the resistance against power analysis attacks for each design, due
to the integration of an objective metric that quantifies the information leaked
by different protected implementation. Lastly, our quantitative analysis applies
jointly to security and performance issues and drives the process of ISE iden-
tification and synthesis; to the best of our knowledge, prior ISE identification
methods have been driven primarily by performance [10,4,25].

3 Security Evaluation

The evaluation of the power consumption leakage provided by our simulation
environment follows the principles of [24]. The goal of this methodology (that
we don’t detail here) is to provide fair evaluation metrics for side-channel leakage
and attacks. In particular and as far as evaluating countermeasures or protected
logic styles is concerned, the information theoretic metric that we now summa-
rize allows being independent of a particular DPA attack scenario. It intuitively
measures the resistance against the strongest possible type of side-channel at-
tacks. In summary, let K be a random variable representing the key that is to be
recovered in the side-channel attack; let X be a random variable representing the
known plaintexts entering the target (leaking) operations; and let L be a random
variable representing the power consumption traces generated by a computation
with input x and key k. In our design environment, L is the output of a SPICE
simulation trace T to which we add a certain amount of normally distributed
random noise R, i.e. L = T +R. We compute the conditional entropy (or mutual
information) between the key K and its corresponding leakage L, that is,

H[K|L] = −
∑

k

Pr[k] ·
∑

x

Pr[x]
∫

Pr[l|k, x] · log2 Pr[k|l, x] dl.

There are different factors that influence this conditional entropy. The first is
the shape of the simulated traces T . The second is the standard deviation of
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the noise in the leakage L. The number of dimensions in the traces is also im-
portant. Simulated traces contain several thousands of samples. Hence, directly
applying multivariate statistics on these large dimensionality variables is hardly
tractable. Mace et al. [16] reduce the dimensionality using Principal Component
Analysis (PCA), and then evaluate the conditional entropy. Thus, the number
of dimensions remaining after PCA is a third parameter that we consider.

Our usage of the metric builds on Mace et al.’s in two respects. First, we move
from a 1-dimensional analysis to a multi-dimensional analysis, and we discuss
the extent to which more samples increase the estimated value of H[K|L]. Ad-
ditionally, we analyze complete designs, rather than 2-input logic gates, thereby
establishing the scalability of the aforementioned metric and evaluation tools.

4 The Proposed Hybrid Design Flow

This section describes the entire design flow, from RTL to the integration with
the information theoretic metric discussed in the preceding section. For any
application, there exists a range of possible architectural and electrical imple-
mentations, such as ASIC vs. processor, or standard cell vs. full custom design.
The choice of the platform has historically been dictated by performance, area,
and/or power consumption, each of which can be measured accurately. Once the
initial design point is fixed, designers consider a fine-grained space of possible
solutions, and only at this point is security typically considered, often based
mainly on empirical evaluation. The aim of this work is to bring security to the
forefront of design variables for embedded systems by associating it with a clear
quantitative metric. To achieve our goal, we propose a flexible and fully auto-
mated design flow based on standard CAD tools. The flow supports partitioning
of a design between CMOS and protected logic, and includes a sound metric to
measure resistance against side-channel attacks.

Figure 1 depicts the design flow, which is an extension of prior simulation-
based methodologies to evaluate resistance to power analysis attacks [6,22]. The
key idea is to use commodity from EDA tools and to leverage on transistor level
simulation to provide a high degree of accuracy. The design flow that is used
in this study targets an embedded processor that is augmented with instruction
set extensions. The ISE are designed using information leakage as part of the
objectives to optimize, and are implemented in a protected logic style. This
point represents a major innovation, since in recent years, ISEs have been used
primarily to improve performance, rather than to enhance security.

The flow has two inputs: the RTL description of an embedded processor that
supports ISEs, and a software implementation of a cryptographic algorithm. The
software code is passed to a tool that automatically extracts its data flow graph.
The user manually select from the aforementioned graph the portion of the al-
gorithm to be implemented in protected ISEs. Once this selection is done, the
remainder of the flow is fully automated: the rewritten software, including an
explicit call to the ISE is generated, along with an RTL description of the ISE
and its interface to the processor. The output of the flow is a place-and-routed
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Fig. 1. Full view of the design flow

hardware design that is evaluated using a sound metric that measures informa-
tion leakage. By iterating through different ISE implementations, an architect
could generate a set of a design among which select the most suitable one.

In the newly generated software, calls to the ISE are automatically generated
using the correct syntax, consistent with the RTL code, and thus supported by
the compiler. The corresponding binary file is generated and simulated using
an interpreter that mimics full system behavior, including the boot loader, and
generates the corresponding values of the processor pins for each cycle of software
execution. The pin values are then used in every validation step, including the
generation of test vectors for use in SPICE level simulation. The SPICE level
simulation of the full core (core + protected ISE) generates power traces which
are used to measure the leakage of the processor.

To generate the customized processor, we begin with an HDL description of
the processor core and a software implementation of a cryptographic algorithm.
The first step is to select from an automatically generated data flow graph one or
more ISEs to realize in protected logic; at present, this selection is the only step
still performed manually, although we intend to automate it in the future. Once
the HDL description of the ISE(s) has been generated, the circuit is synthesized
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using protected logic based on a standard cell library using Synopsys Design
Compiler. The circuit is then placed and routed with Cadence Design Systems
SoC Encounter. A parasitics file (in spef format) is produced, along with the
Verilog netlist of the circuit and an sdf file for back annotation of the delays. The
library file describing the ISE (i.e., timing information, power and dimension)
and the layout exchange format file (the abstract view for placement and routing)
are generated to integrate the ISE as a black box during synthesis and placement
and routing of the complete design. Next, the complete design (i.e., the processor
augmented with ISEs as a black-box) is synthesized and placed and routed using
a standard CMOS flow. For the front end, the ISE library file is loaded by Design
Compiler; the unit is recognized by the synthesis engine and the ISE’s timing
information is used during the synthesis process. During the physical design
phase, the ISE is treated as a macro just like typical IP blocks and is pre-placed
into the core. The flow produces the spef and sdf files and the Verilog netlists of
the whole design.

Post-place-and-route simulation is now performed using ModelSim, with the
previously generated sdf files (CMOS and protected logic) under the considered
cryptographic benchmark. This simulation verifies the functionality of the pro-
cessor and generates the test vectors for transistor-level simulation that will be
used to generate power traces that will be input to the security evaluation. Syn-
posys Nanosim performs transistor-level simulation, using the spef files for the
protected ISE and CMOS core, with the relative Verilog netlists, SPICE mod-
els of the technology cells and the transistor models. This simulation generates
vector-based time-varying power profiles which are stored in a simple text for-
mat. This data typically corresponds to the simulated traces represented by the
variable T in Section 3 which concludes the treatment of the flow.

5 Case Study and Results

In this section we present the results of the evaluation of our design flow evaluated
with different metrics of performances and security.

5.1 PRESENT Algorithm and the Considered Versions Overview

PRESENT [5] is a block cipher based on an SP-network that consists of 31
rounds. The block length is 64 bits and two key lengths of 80 and 128 bits are
supported. During the encryption process, three different transformations are it-
erated 31 times. The three basic transformations are: addRoundKey, sBoxLayer,
and pLayer : the first is function of the state and the secret key, while the fi-
nal two are only functions of the state. At the completion of the last round an
extra addRoundKey transformation is performed. The added key is different in
each round and these round keys are generated by a key schedule routine that
takes the secret key and executes an expansion as specified in algorithm descrip-
tion. The evaluation performed in this work, is done on a reduced version of the
PRESENT algorithm, composed of just addRoundKey and sBoxLayer of 4 by 4
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bit. We selected PRESENT as case of study for this work because the size of its
S-box permits an exhaustive search of the design space without compromising
the generality of the proposed methodology and results.

For our experiments, we considered the five possible implementations of the
algorithm, that are depicted in Figure 2. Each implementation has a different
section realized in protected logic. The first version, Full CMOS, is the reference
version, in which the core is completely implemented in CMOS and the software
does not leverage on any kind of ISE. In the second, XOR ISE, the full program
is executed on the CMOS core, except for the secret key, that is stored into
a protected register and the keyAddition, that is implemented using protected
ISE. The third version, S-box ISE, implements only the sBoxLayer in a protected
ISE, while the rest of the algorithm executes on the CMOS core. The fourth,
XOR + S-box ISE, stores the secret key in a protected register and executes both
addRoundKey and sBoxLayer using a protected ISE, but writes the result back
to the processor register file, which is unprotected. Lastly, full ISE implements
addRoundKey and sBoxLayer in protected logic, and stores the secret key and
the result in a protected register that is part of the ISE as well.

5.2 Experimental Setup

The processor used in this work is an OpenRISC 1000 [14], a five stage pipelined
in-order embedded processor. The processor provides a 32-bit datapath and a
32-entry single write-port, dual read port register file. The processor includes
extra opcode space to support ISEs and is provided with a gcc cross-compiler.

We have selected MOS Current-Mode Logic (MCML) as secure logic style
to implement the protected ISEs. MCML cells are low-swing, fully-differential
circuits built with networks of differential pairs biased with a constant cur-
rent source [1]. The constant DC current and the differential nature of the cells
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Fig. 3. Example of an ISE and its source in C: the XOR + S-box

provide an almost constant current consumption profile, which is independent
of the switching activity. In theory, this results in a dramatic decrease of side-
channel leakage and thus increased resistance against DPA attacks [22,29]. The
increased DPA-resistance in differential logic circuits is obtained by the simul-
taneous and opposite switching of differential signal pairs resulting in almost
perfect cancellation of current transients. In order to obtain consistently robust
circuits, it is therefore critical to match the time constants in the two wires of
each pair. This implies that each pair of wires must be physically routed along
the exact same path, in order to equalize the length and parasitics of individ-
ual routes. To achieve this, the design flow proposed in [3] is used in this work.
This entirely automated methodology enables the implementation of standard
cell based-differential circuits from RTL with true differential routing, using a
classical timing-driven design flow without human intervention. With this ap-
proach, the sensitive parts of the processor are implemented with secure logic
and converter circuits are inserted at the boundary to interface between the
two different logic styles. This increases security in a transparent way, without
additional effort from the designers.

One example of an automatically generated ISE, reported in Figure 3, depicts
the hardware view corresponding to the XOR + S-box ISE. The figure includes
the converters between CMOS and MCML, which are necessary to interface the
protected logic with the processor. These conversion circuits are automatically
added at the inputs and outputs of the ISE.

We performed our experiments using the following versions of the design tools:
Mentor Graphics Modelsim 6.2d for logic simulation, Synopsys Design Compiler
2007.12 for synthesis, and Cadence Design System SoC Encounter 7.1, for place-
menting and routing. Our CMOS target library was a 0.18µm commercial stan-
dard cell library. SPICE level simulation was carried on using Synopsys Nanosim
2007.03, and the transistor model is BSIM 3.3.

5.3 Results

Each of the five implementations presented in this paper has been synthesized
to run at a clock frequency of 100 MHz, under worst-case process conditions.
The same clock frequency is used for each of the ISEs.

Table 1 reports the area and average power consumption of the base Open-
RISC1000 processor, as well as all the four versions augmented with protected
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Table 1. Area occupation and average power consumption of each implementation

Power Full Die ISE Gate
Version Consumption Size Size Count

(mW) (mm2) (mm2) (GE)

full CMOS 87.77 1.8603 - 139071
XOR ISE 129.24 1.9810 0.1207 140787
S-box ISE 129.42 1.9838 0.1235 140843

XOR + S-box ISE 129.81 1.9844 0.1241 140853
full ISE 129.83 1.9849 0.1246 140865
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Fig. 4. Mutual information leaked by different implementations in function of a noise
standard deviation, for different dimensions kept after application of the PCA
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Fig. 5. Mutual information leaked by different implementations in function of a noise
standard deviation, with 5 dimensions kept after application of the PCA

ISEs. The average power consumption is calculated for each core during the
execution of the PRESENT algorithm, including calls to the ISEs. We report
the silicon area occupation and the gate count. The absolute silicon area provides
a clear measure for the physical cost of each implementation, while the number
of equivalent gates highlights the complexity of the circuit. We calculated the
number of equivalent gates for each implementation, with appropriate weights
to account for the disparity in sizes between reference gates for CMOS and
MCML. In our experiments, the difference in area penalty between the largest
and smallest ISE is 0.2%. This is primarily due to the small size of the PRESENT
algorithm, which tends to be overshadowed by the size of the conversion circuitry
at the CMOS-MCML boundary.

The full ISE implementation, which is the most resistant to DPA, increases
the power consumption by 47.9% with respect to the full CMOS design, while the
area overhead is to 6.7%. A similar level of leakage using the same protected logic
would be possible by implementing a full processor in MCML. Our results show
that this would increase the power consumption by a factor of approximately 40
time higher compared to a CMOS implementation, while increasing the total area
2.65 times. The large power difference is due to the static current consumption
of MCML gates, whose power consumption becomes close to CMOS gates for
high switching activity and operating frequancy. The MCML library, which has
been developed internally, has not been tuned for battery operated devices; an
MCML library tagetting these devices would significantly improve the results.

Preliminary results of our security evaluations using the information theoretic
metric of Section 3 are plotted in Figure 4 for different implementations. They
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show that increasing the number of dimensions to evaluate the mutual informa-
tion I(K, L) improves the quality of the evaluations up to a certain extent, where
the noise variance is sufficiently large for hiding the small information leakage
in the higher dimensions of the transformed traces.

Figures 5 and 6 compare the results for the five different processor and ISE
combinations. Figure 5 plots the mutual information leaked by the different
implementations. Figure 6 takes the opposite point of view, and illustrates the
amount of noise that is required to reduce the leakage up to a threshold. The
goal of a robust countermeasure is to reduce the information leakage.

These two figures concisely illustrate and confirm our intuition, namely, that
protecting a part of the algorithm reduces the leakage; however, the overall
security of a system depends on its weakest point. Consequently, there is a
significant improvement when considering a fully protected ISE. The analysis
shows that the fully protected ISE has no obvious logical weaknesses; however,
it remains to be determined the extent to which a fabricated piece of silicon can
be built to confirm the results of the simulations. Anyway, these results confirm
the applicability of our proposed design flow up to the analysis of the side channel
leakage. The computation of the evaluation metrics, including the selection of
the points of interest in the leakage traces with a PCA, is fully automated.

6 Conclusions

With the increased use of embedded systems in security applications, protec-
tion against side channel attacks has become increasingly important. This paper
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summarizes the first attempt to integrate a meaningful information leakage met-
ric into an industrial design flow for secure systems. Our results establish the
feasibility of the proposed flow, and show that the use of ISEs in protected logic
styles is a reasonable and low-cost method to provide the desired security. Fu-
ture work will focus on manufacturing the most promising implementations. It
is in fact well known that the decisive proof of robustness is obtained only when
the actual fabricated microchip is attacked using high frequency probes and an
oscilloscope. Nonetheless, our design flow is fundamental to perform a deeper
design space exploration before the fabrication.
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Abstract of the Extended Abstract. In this extended abstract, I
will first try to describe briefly the developments in the cryptographic
engineering community over the last decade. After this, some hopefully
instructive case studies about cryptographic implementations in the real
world will be given.

1 Timing the Market or: Why Did CHES Grow So
Rapidly?

Exactly 10 years have passed since Cetin Koc and myself started the CHES
(Cryptographic Hardware and Embedded Systems) workshop series. When the
idea for the workshop was conceived in 1998 we had planned for a small, highly
focused workshop in our favorite research area of cryptographic hardware, and
we expected 50, perhaps 60, attendees. When almost 160 people showed up,
Cetin and I knew that there was something special about this field. Even though
this was a pleasant surprise, I had no idea how broad the area of cryptographic
engineering would evolve in the years to come. In the following I would like to
take the chance and speculate a bit about the reasons why CHES has grown to
one of the most important events in applied cryptography.

At that time of the first CHES, my main interest and expertise was in hard-
ware and software algorithms for asymmetric cryptography. Since public-key
algorithms were very arithmetic intensive and both hardware and software per-
formance was a far cry from what it is today, it was clear that much research
was needed. Implementing RSA with an astronomically large modulus of 512
bit on 1990s PCs with acceptable run times was a major undertaking. Thus,
at the time we started to plan CHES, the main focus in cryptographic engi-
neering was on fast public-key implementation techniques, such as, for example
[8,5]. Even though there was certainly some work done on fast block cipher im-
plementations (especially DES, but also IDEA and other ciphers), most of the
scientifically challenging work targeted asymmetric implementations.

Thus, my view on the field where research in crypto engineering should take
place was roughly described by the rather compact Table 1.

C. Clavier and K. Gaj (Eds.): CHES 2009, LNCS 5747, pp. 220–224, 2009.
c© International Association for Cryptologic Research 2009
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Table 1. My world view on crypto engineering, ca. 1998

HW impl. SW impl.
asymmetric alg. x x

In the late 1990s, several developments took place which lead to an almost
explosive growth of the area of cryptographic engineering. I see (at least) four
main driving forces:

Side-Channel Attacks. The notion of

Crypto Engineering = Efficient Implementation

started to change in the second half of the 1990s. In 1996, the Bell Core
attack as one of the first fault injection attack was published [3]. In the
next three years timing attacks, simple power analysis and differential power
analysis were presented [9]. Not only the smart card industry was under shell
shock, but the crypto implementation community realized very quickly that
its formula had to be extended to:

Crypto Engineering = Efficient Implementation + Secure Implementation

AES. In 1997 the AES selection process had started. For the community of im-
plementers, the AES competition became interesting in earnest in 1998/99,
in other words, after the algorithms had been submitted and the first ciphers
were excluded. This sparked an increase interest in the implementation as-
pects of symmetric-key algorithms.

Cryptology Research Matured. Until the early 1990s, there were relatively
few researchers working in cryptography outside government agencies. The
field of cryptographic implementations was only a niche discipline with even
fewer active people doing research. Publications were scattered over the cryp-
tographic and engineering literature. The cryptographic community was well
served by two flagship conferences, namely CRYPTO and EUROCRYPT,
which were sufficient for reporting the most important developments in cryp-
tology every year. However, the increasing number of researchers together
with the increased understanding of many theoretical and practical issues
in cryptology triggered a specialization and extension of the crypto confer-
ence landscape. Starting with FSE (Fast Software Encryption) in 1993, PKC
(Public-Key Cryptography) in 1998 and CHES in 1999, several new work-
shops in sub-areas of cryptography served the need of a larger and more
specialized scientific community. I believe this is the natural and healthy
evolution of a discipline which is maturing.

Internet Boom. The last development which helped to push CHES and the
field of crypto engineering was the dot-com boom in the late 1990s. There
was both a perceived and a real need for everything that was related to infor-
mation technology. Applied cryptography was considered part of the whole
brave new world of the Internet area, and many companies started or en-
larged their security groups. As part of that development, crypto engineering
was also receiving more attention.
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Table 2. The field of crypto engineering in 2009

HW impl. SW impl. Secure impl. TRNG cryptanal. PUF
lightweight high speed lightweight high speed passive fault inj. HW

asymmetric x x x x x x x x xsymmetric x x x x x x

All of these factors contributed to extend the scope of CHES considerably.
Within three years, there were more than 200 attendees and more than 100
submissions. Hence in hindsight, the reason why CHES has become such an im-
portant conference was there was almost a perfect market timing for starting
CHES in 1999: the time was simply ripe for such an event.

In the years since then, new topics such as lightweight crypto, true random
number generators (TRNG), cryptanalytical hardware and physical unclonable
functions (PUF) were also added to the repertoire of topics treated at CHES.
Thus, a current listing of the sub-areas of modern crypto engineering is more
accurately described by this table:

The table should certainly not be taken as the final verdict on the spectrum of
topics within crypto engineering. For instance, new topics like Trojan hardware
(as evident by the Hot Topics Session of this year’s CHES), are emerging and
should certainly be included.

2 Embedded Cryptography in the Wild:
Some Case Studies

Cryptography has sneaked into everything, from web browsers and email pro-
grams to cell phones, bank cards, cars and even into medical devices. In the
near future we will find many new exciting applications for cryptography such
as RFID tags for anti-counterfeiting or car-to-car communications. I want to
briefly mention research projects we have been involved in which cryptography
was instrumental for securing new embedded applications.

Lightweight Cryptography for RFID Tags and such. With the advent of perva-
sive computing, an increasing demand to integrate cryptographic functions in
applications has risen. Different from the past, it is often desirable to have cryp-
tographic primitives that are as small as possible. There are two main reasons
for this. First, there are applications constrained by a hard limit with respect to
gate count or power. The prime example are RFID tags on which it is simply
physically impossible to implement RSA-1024. The second reason are applica-
tions which are heavily cost constrained, e.g., high-volume consumer devices.
Here it would be possible to integrate non-optimized crypto engines but it is
highly desirable to use implementations which cause the smallest possible cost
increase for the product.

With this goal in mind, a team of researchers developed the PRESENT block
cipher [2]. It can be implemented with as little as 1000 gate equivalences [11]
which is close to the theoretical limit if one has to store 64 state bits and 80 key
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bits. For the asymmetric case, we developed an extremely small elliptic curve
engine which requires between roughly 10,000 and 15,000 gate equivalences, de-
pending on the security level [10].

High Performance Elliptic Curve Engine for Car-to-Car Communication. Air
pollution is not the only health hazard posed by cars. They are also quite deadly
when it comes to accidents. In the developed world, traffic fatalities are, by a
far margin, the most common cause of death caused by accidents. Both in the
European Union and in the USA there are more than 40,000 traffic fatalities
annually, and world-wide they are the leading cause of death for people in the
age range of 10–24. Given that many mechanically safety measure such as seat
belts, air bags and anti-block brake (ABS) systems are very far advanced, there
has been a push in the last few years to develop electronic driver assistant sys-
tems. One major motivation is to reduce the number of accidents. Some driver
assistant systems are based on car-to-car (C2C) and car-to-infrastructure (C2I)
communication. If such systems were in place, many collisions between vehicles
could be avoided. One requirement of C2C and C2I systems is that the com-
munication should be secure. It does not take much fantasy to imagine how an
attacker could cause quite serious trouble if, for instance, faked collision warning
messages are issued to cars driving on the German autobahn with 200 km/h.

The IEEE Standard 1609 calls for a digital signature over every position mes-
sage sent out by every car. In a high-density traffic environment that could
translate in 1000 or more digital signatures which have to be verified per second.
The challenge here is to develop an ECC engine that can support thousands of
verifications per second at affordable costs. We developed new ECC engines that
make use of the DSP cores available on modern FPGAs. Our engine can verify
more than 2000 ECC signatures (224 bit NIST curve) with a mid-size commer-
cial FPGA [6]. Previously such speeds were only achievable with expensive and
power-consuming parallel CPUs or with ASICs. Our design scales theoretically
to more than 30,000 signatures per second on high-end FPGAs.

Side-Channel Attacks against Remote Keyless Entry Systems. Ever since side-
channel analysis (SCA) were proposed (cf. the first section of this abstract) it
was recognized that they pose a major risk for real-world systems. There had
been many anecdotal reports, especially from the smart card industry, about
the vulnerability against SCA. However, despite hundreds of research papers in
this area, there had been hardly any descriptions of an SCA against an actual
system.

Last year we attacked the KeeLoq remote keyless entry system using SCA.
KeeLoq was an instructive target. It is a 1980s symmetric cipher against which
several analytical attack had been proposed in short sequence [1,4,7]. However,
due to the mode of operation of keyless entry systems, the required plaintext-
ciphertext pairs are almost impossible to obtain in the real world. In contrast,
using a DPA-like attack, we showed that both the individual transmitter keys
(which are typically embedded in garage door openers or car keys) as well as
system-wide manufacturer keys can be extracted. Once the manufacturer key
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has been recovered after a few thousands measurements, transmitters can be
cloned after simply eavesdropping on one or two communications.
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Abstract. This paper is devoted to the design of fast parallel accel-
erators for the cryptographic Tate pairing in characteristic three over
supersingular elliptic curves. We propose here a novel hardware imple-
mentation of Miller’s loop based on a pipelined Karatsuba-Ofman multi-
plier. Thanks to a careful selection of algorithms for computing the tower
field arithmetic associated to the Tate pairing, we manage to keep the
pipeline busy. We also describe the strategies we considered to design our
parallel multiplier. They are included in a VHDL code generator allowing
for the exploration of a wide range of operators. Then, we outline the ar-
chitecture of a coprocessor for the Tate pairing over F3m . However, a final
exponentiation is still needed to obtain a unique value, which is desir-
able in most of the cryptographic protocols. We supplement our pairing
accelerator with a coprocessor responsible for this task. An improved
exponentiation algorithm allows us to save hardware resources.

According to our place-and-route results on Xilinx FPGAs, our de-
sign improves both the computation time and the area-time trade-off
compared to previoulsy published coprocessors.

Keywords: Tate pairing, ηT pairing, elliptic curve, finite field arith-
metic, Karatsuba-Ofman multiplier, hardware accelerator, FPGA.

1 Introduction

The Weil and Tate pairings were independently introduced in cryptography by
Menezes, Okamoto & Vanstone [34] and Frey & Rück [16] as a tool to attack
the discrete logarithm problem on some classes of elliptic curves defined over fi-
nite fields. The discovery of constructive properties by Mitsunari, Sakai & Kasa-
hara [38], Sakai, Oghishi & Kasahara [42], and Joux [26] initiated the proposal of
an ever increasing number of protocols based on bilinear pairings: identity-based
encryption [11], short signature [13], and efficient broadcast encryption [12] to
mention but a few.
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Miller described the first iterative algorithm to compute the Weil and Tate
pairings back in 1986 [35,36]. In practice, the Tate pairing seems to be more effi-
cient for computation (see for instance [20,31]) and has attracted a lot of interest
from the research community. Supersingular curves received considerable atten-
tion since significant improvements of Miller’s algorithm were independently
proposed by Barreto et al. [4] and Galbraith et al. [17] in 2002. One year later,
Duursma & Lee gave a closed formula in the case of characteristic three [14]. In
2004, Barreto et al. [3] introduced the ηT approach, which further shortens the
loop of Miller’s algorithm. Recall that the modified Tate pairing can be computed
from the reduced ηT pairing at almost no extra cost [7]. More recently, Hess,
Smart, and Vercauteren generalized these results to ordinary curves [24,45,23].

This paper is devoted to the design of a coprocessor for the Tate pairing on
supersingular elliptic curves in characteristic three. We propose here a novel
architecture based on a pipelined Karatsuba-Ofman multiplier over F3m to im-
plement Miller’s algorithm. Thanks to a judicious choice of algorithms for tower
field arithmetic and a careful analysis of the scheduling, we manage to keep
the pipeline busy and compute one iteration of Miller’s algorithm in only 17
clock cycles (Section 2). We describe the strategies we considered to design our
parallel multiplier in Section 3. They are included in a VHDL code generator
allowing for the exploration of a wide range of operators. Section 4 describes
the architecture of a coprocessor for the Tate pairing over F3m . We summarize
our implementation results on FPGA and provide the reader with a thorough
comparison against previously published coprocessors in Section 5.

For the sake of concision, we are forced to skip the description of many im-
portant concepts of elliptic curve theory. We suggest the interested reader to
review [46] for an in-depth coverage of this topic.

2 Reduced ηT Pairing in Characteristic Three Revisited

In the following, we consider the computation of the reduced ηT pairing in char-
acteristic three. Table 1 summarizes the parameters of the algorithm and the
supersingular curve. We refer the reader to [3, 8] for more details about the
computation of the ηT pairing.

2.1 Computation of Miller’s Algorithm

We rewrote the reversed-loop algorithm in characteristic three described in [8],
denoting each iteration with parenthesized indices in superscript, in order to
emphasize the intrinsic parallelism of the ηT pairing (Algorithm 1). At each
iteration of Miller’s algorithm, two tasks are performed in parallel, namely: a
sparse multiplication over F36m , and the computation of the coefficients for the
next sparse operation. We say that an operand in F36m is sparse when some of
its coefficients are either zero or one.



Hardware Accelerator for the Tate Pairing in Characteristic Three 227

Table 1. Supersingular curves over F3m

Underlying field F3m , where m is coprime to 6

Curve E : y2 = x3 − x+ b, with b ∈ {−1, 1}

Number of
rational points

N = #E(F3m) = 3m + 1 + µb3(m+1)/2, with

µ =

{
+1 if m ≡ 1, 11 (mod 12), or

−1 if m ≡ 5, 7 (mod 12)

Embedding degree k = 6

ψ : E(F3m)[�] −→ E(F36m)[�] \ E(F3m)[�]

(x, y) �−→ (ρ− x, yσ)Distortion map

with ρ ∈ F33 and σ ∈ F32 satisfying ρ3 = ρ+ b and σ2 = −1

Tower field F36m = F3m [ρ, σ] ∼= F3m [X,Y ]/(X3 −X − b, Y 2 + 1)

Final exponentiation M =
(
33m − 1

) · (3m + 1) ·
(
3m + 1− µb3(m+1)/2

)

Parameters of
Algorithm 1

λ =

{
+1 if m ≡ 7, 11 (mod 12), or

−1 if m ≡ 1, 5 (mod 12), and

ν =

{
+1 if m ≡ 5, 11 (mod 12), or

−1 if m ≡ 1, 7 (mod 12)

Sparse multiplication over F36m (lines 6 and 7). The intermediate result
R(i−1) is multiplied by the sparse operand S(i). This operation is easier than a
standard multiplication over F36m .

The choice of a sparse multiplication algorithm over F36m requires careful
attention. Bertoni et al. [6] and Gorla et al. [18] took advantage of Karatsuba-
Ofman multiplication and Lagrange interpolation, respectively, to reduce the
number of multiplications over F3m at the expense of several additions (note
that Gorla et al. study standard multiplication over F36m in [18], but extending
their approach to sparse multiplication is straightforward). In order to keep the
pipeline of a Karatsuba-Ofman multiplier busy, we would have to embed in our
processor a large multioperand adder (up to twelve operands for the scheme
proposed by Gorla et al.) and several multiplexers to deal with the irregular
datapath. This would negatively impact the area and the clock frequency, and
we prefer considering the algorithm discussed by Beuchat et al. in [10] which
gives a better trade-off between the number of multiplications and additions
over the underlying field when b = 1. We give here a more general version of
this scheme which also works when b = −1 (Algorithm 2). It involves 17 mul-
tiplications and 29 additions over F3m , and reduces the number of intermediate
variables compared to the algorithms mentioned above. Another nice feature of
this scheme is that it requires the addition of at most four operands.

We suggest to take advantage of a Karatsuba-Ofman multiplier with seven
pipeline stages to compute S(i) and R(i−1) ·S(i). We managed to find a scheduling
that allows us to perform a multiplication over F3m at each clock cycle, thus
keeping the pipeline busy. Therefore, we compute lines 6 and 7 of Algorithm 1
in 17 clock cycles.
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Algorithm 1. Computation of the reduced ηT pairing in characteristic three.
Intermediate variables in uppercase belong to F36m , those in lowercase to F3m .
Input: P = (xP , yP ) and Q = (xQ, yQ) ∈ E(F3m)[�].
Output: ηT (P,Q)M ∈ F

∗
36m .

1: x(0)
P ← xp − νb; y(0)p ← −µbyP ;

2: x(0)
Q ← xQ; y

(0)
Q ← −λyQ;

3: t(0) ← x
(0)
P + x

(0)
Q ;

4: R(−1) ← λy
(0)
P · t(0) − λy(0)Q σ − λy(0)P ρ;

5: for i = 0 to (m − 1)/2 do

6: S(i) ← − (
t(i)

)2
+ y

(i)
P y

(i)
Q σ − t(i)ρ− ρ2;

7: R(i) ← R(i−1) · S(i);

8: x
(i+1)
P ← 3

√
x
(i)
P ; y

(i+1)
P ← 3

√
y
(i)
P ;

9: x
(i+1)
Q ←

(
x
(i)
Q

)3
; y

(i+1)
Q ←

(
y
(i)
Q

)3
;

10: t(i+1) ← x
(i)
P + x

(i)
Q ;

11: end for

12: return
(
R((m−1)/2)

)M
;

Computation of the coefficients of the next sparse operand S(i+1)

(lines 8 to 10). The second task consists of computing the sparse operand
S(i+1) required for the next iteration of Miller’s algorithm. Two cubings and an
addition over F3m allow us to update the coordinates of point P and to determine
the coefficient t(i+1) of the sparse operand S(i+1), respectively.

Recall that the ηT pairing over F3m comes in two flavors: the original one
involves a cubing over F36m after each sparse multiplication. Barreto et al. [3]
explained how to get rid of that cubing at the price of two cube roots over F3m to
update the coordinates of point Q. It is essential to consider such an algorithm
here in order to minimize the number of arithmetic operations over F3m to be
performed in the first task (which is the most expensive one).

According to our results, the critical path of the circuit is never located in
a cube root operator when pairing-friendly irreducible trinomials or pentanomi-
als [2, 21] are used to define F3m . If by any chance such polynomials are not
available for the considered extension of F3 and the critical path is in the cube
root, it is always possible to pipeline this operation. Therefore, the cost of cube
roots is hidden by the first task.

2.2 Final Exponentiation (Line 12)

The final step in the computation of the ηT pairing is the final exponentiation,
where the result of Miller’s algorithm R((m−1)/2) = ηT (P, Q) is raised to the
M -th power. This exponentiation is necessary since ηT (P, Q) is only defined up
to N -th powers in F∗

36m .
In order to compute this final exponentiation, we use the algorithm presented

by Beuchat et al. in [8]. This method exploits the special form of the exponent M
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Algorithm 2. Sparse multiplication over F36m .
Input: b ∈ {−1, 1}; t(i), y(i)P , and y

(i)
Q ∈ F3m ; R(i−1) ∈ F36m .

Output: R(i) = R(i−1) · S(i) ∈ F36m , where S(i) =
(
− (

t(i)
)2

+ y
(i)
P y

(i)
Q σ − t(i)ρ− ρ2

)
.

1: p(i)0 ← r
(i−1)
0 · t(i); p

(i)
1 ← r

(i−1)
1 · t(i); p

(i)
2 ← r

(i−1)
2 · t(i);

2: p(i)3 ← r
(i−1)
3 · t(i); p

(i)
4 ← r

(i−1)
4 · t(i); p

(i)
5 ← r

(i−1)
5 · t(i);

3: p(i)6 ← t(i) · t(i); p
(i)
7 ← −y(i)P · y

(i)
Q ;

4: s(i)0 ← −r(i−1)
0 − r(i−1)

1 ; s
(i)
1 ← −r(i−1)

2 − r(i−1)
3 ;

5: s(i)2 ← −r(i−1)
4 − r(i−1)

5 ; s
(i)
3 ← p

(i)
6 + p

(i)
7 ;

6: a(i)0 ← r
(i−1)
2 + p

(i)
4 ; a

(i)
2 ← br

(i−1)
4 + p

(i)
0 + a

(i)
0 ; a

(i)
4 ← r

(i−1)
0 + r

(i−1)
4 + p

(i)
2 ;

7: a(i)1 ← r
(i−1)
3 + p

(i)
5 ; a

(i)
3 ← br

(i−1)
5 + p

(i)
1 + a

(i)
1 ; a

(i)
5 ← r

(i−1)
1 + r

(i−1)
5 + p

(i)
3 ;

8: p(i)8 ← r
(i−1)
0 · p(i)6 ; p

(i)
9 ← r

(i−1)
1 · p(i)7 ; p

(i)
10 ← s

(i)
0 · s(i)3 ;

9: p(i)11 ← r
(i−1)
2 · p(i)6 ; p

(i)
12 ← r

(i−1)
3 · p(i)7 ; p

(i)
13 ← s

(i)
1 · s(i)3 ;

10: p(i)14 ← r
(i−1)
4 · p(i)6 ; p

(i)
15 ← r

(i−1)
5 · p(i)7 ; p

(i)
16 ← s

(i)
2 · s(i)3 ;

11: r(i)0 ← −ba(i)0 − p(i)8 + p
(i)
9 ; r

(i)
1 ← −ba(i)1 + p

(i)
8 + p

(i)
9 + p

(i)
10 ;

12: r(i)2 ← −a(i)2 − p(i)11 + p
(i)
12 ; r

(i)
3 ← −a(i)3 + p

(i)
11 + p

(i)
12 + p

(i)
13 ;

13: r(i)4 ← −a(i)4 − p(i)14 + p
(i)
15 ; r

(i)
5 ← −a(i)5 + p

(i)
14 + p

(i)
15 + p

(i)
16 ;

14: return r
(i)
0 + r

(i)
1 σ + r

(i)
2 ρ+ r

(i)
3 σρ+ r

(i)
4 ρ2 + r

(i)
5 σρ2;

(see Table 1) to achieve better performances than with a classical square-and-
multiply algorithm. Among other computations, this final exponentiation in-
volves the raising of an element of F∗

36m to the 3(m+1)/2-th power, which Beuchat
et al. [8] perform by computing (m + 1)/2 successive cubings over F∗

36m . Each
of these cubings requiring 6 cubings and 6 additions over F3m , the total cost of
this step is 3m + 3 cubings and 3m + 3 additions.

We present here a new method for computing U3(m+1)/2
for U = u0 + u1σ +

u2ρ+u3σρ+u4ρ
2+u5σρ2 ∈ F

∗
36m by exploiting the linearity of the Frobenius map

(i.e. cubing in characteristic three) to reduce the number of additions. Indeed,
noting that σ3i

= (−1)iσ, ρ3i

= ρ + ib and (ρ2)3
i

= ρ2 − ibρ + i2, we obtain the
following formulae for U3i

, depending on the value of i:

U3i

= (u0 − ε1u2 + ε2u4)
3i

+ ε3 (u1 − ε1u3 + ε2u5)
3i

σ + (u2 + ε1u4)
3i

ρ +

ε3 (u3 + ε1u5)
3i

σρ + u3i

4 ρ2 + ε3u
3i

5 σρ2,

with ε1 = −ib mod 3, ε2 = i2 mod 3, and ε3 = (−1)i.
Thus, according to the value of (m + 1)/2 modulo 6, the computation of

U3(m+1)/2
will still require 3m + 3 cubings but at most only 6 additions or sub-

tractions over F3m .
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3 Fully Parallel Karatsuba-Ofman Multipliers over F3m

As mentioned in Section 2.1, our hardware accelerator is based on a pipelined
Karatsuba-Ofman multiplier over F3m . This operator is responsible for the com-
putation of the 17 products involved in the sparse multiplication over F36m oc-
curing at each iteration of Miller’s algorithm. In the following we give a short
description of the multiplier block used in this work.

Let f(x) be an irreducible polynomial of degree m over F3. Then the ternary
extension field F3m can be defined as F3m ∼= F3[x]/ (f(x)). Multiplication in F3m

of two arbitrary elements represented as ternary polynomials of degree at most
m−1 is defined as the polynomial multiplication of the two elements modulo the
irreducible polynomial f(x), i.e. c(x) = a(x)b(x) mod f(x). This implies that we
can obtain the field product by first computing the polynomial multiplication of
a(x) and b(x) of degree at most 2m − 2 followed by a modular reduction step
with f(x). As long as we select f(x) with low Hamming weight (i.e. trinomi-
als, tetranomials, etc.), the modular reduction step can be accomplished at a
linear computational complexity O(m) by using a combination of adders and
subtracters over F3. This implies that the cost of this modular reduction step is
much lower than the one associated to polynomial multiplication. In this work,
due to its subquadratic space complexity, we used a modified version of the clas-
sical Karatsuba-Ofman multiplier for computing the polynomial multiplication
step as explained next.

3.1 Variations on the Karatsuba-Ofman Algorithm

The Karatsuba-Ofman multiplier is based on the observation that the polynomial
product c = a · b (dropping the (x) notation) can be computed as

c = aLbL + xn
[
(aH + aL)(bL + bH)− (aHbH + aLbL)

]
+ x2naHbH ,

where n = �m
2 �, a = aL + xnaH , and b = bL + xnbH .

Notice that since we are working with polynomials, there is no carry prop-
agation. This allows one to split the operands in a slightly different way: For
instance Hanrot and Zimmermann suggested to split them into odd and even
part [22]. It was adapted to multiplication over F2m by Fan et al. [15]. This
different way of splitting allows one to save approximatively m additions over
F3 during the reconstruction of the product. This is due to the fact that there is
no overlap between the odd and even parts at the reconstruction step, whereas
there is some with the higher/lower part splitting method traditionally used.

Another natural way to generalize the Karatsuba-Ofman multiplier is to split
the operands not into two, but into three or more parts. That splitting can be
done in a classical way, i.e. splitting each operand in ascending parts from the
lower to the higher powers of x, or splitting them using a generalized odd/even
way, i.e. according to the degree modulo the number of split parts. By apply-
ing this strategy recursively, in each iteration each polynomial multiplication
is transformed into three or more polynomial multiplications with their degrees
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progressively reduced, until all the polynomial operands collapse into single coef-
ficients. Nevertheless, practice has shown that is better to truncate the recursion
earlier, performing the underlying multiplications using alternative techniques
that are more compact and/or faster for low-degree operands (typically the so-
called school book method with quadratic complexity has been selected).

3.2 A Pipelined Architecture for the Karatsuba-Ofman Multiplier

The field multiplications involved in the reduced ηT pairing do not present de-
pendencies among themselves and thus, it is possible to compute these products
using a pipelined architecture. By following this strategy, once that each stage of
the pipeline is loaded, we are able to compute one field multiplication over F3m

every clock cycle. The pipelined architecture was achieved by inserting registers
in-between the computation of the partial product operations associated to the
divide-and-conquer Karatsuba-Ofman strategy, where the depth of the pipeline
can be adjusted according to the complexity of the application at hand. This
approach allows us to cut the critical path of the whole multiplier structure.

In order to study a wide range of implementation strategies, we decided to
write a VHDL code generator tool. This tool allows us to automatically gen-
erate the VHDL description of different Karatsuba-Ofman multiplier versions
according to several parameters (field extension degree, irreducible polynomial,
splitting method, etc.). Our automatic tool was extremely useful for selecting the
circuit that showed the best time, the smallest area or a good trade-off between
them.

4 A Coprocessor for the ηT Pairing in Characteristic
Three

As pointed out by Beuchat et al. [9], the computation of R((m−1)/2) and the
final exponentiation do not share the same datapath and it seems judicious to
pipeline these two tasks using two distinct coprocessors in order to reduce the
computation time.

4.1 Computation of Miller’s Algorithm

A first coprocessor based on a Karatsuba-Ofman multiplier with seven pipeline
stages is responsible for computing Miller’s loop (Figure 1). We tried to minimize
the amount of hardware required to implement the sparse multiplication over
F36m , while keeping the pipeline busy. Besides the parallel multiplier described
in Section 3, our architecture consists of four main blocks:

– Computation of the coefficients of S(i+1). The first block embeds four regis-
ters to store the coordinates of points P and Q. It is responsible for comput-
ing x

(i+1)
P , y

(i+1)
P , x

(i+1)
Q , y

(i+1)
Q , and t(i+1) at each iteration. It also includes

dedicated hardware to perform the initialization step of Algorithm 1 (lines 1
and 2).
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– Selection of the operands of the multiplier. At each iteration of Miller’s al-
gorithm, we have to provide our Karatsuba-Ofman multiplier with t(i), y

(i)
P ,

and y
(i)
Q in order to compute the coefficients of S(i) (see Algorithm 1, line 6).

An accumulator allows us to compute s
(i)
0 , s

(i)
1 , and s

(i)
2 on-the-fly. We store

p
(i)
6 , p

(i)
7 , and s

(i)
3 in a circular shift register: this approach allows for an easy

implementation of lines 8, 9, and 10 of Algorithm 2.
– Addition over F3m . A nice feature of the algorithm we selected for sparse

multiplication over F36m is that it requires the addition of at most four
operands. Thus, it suffices to complement the Karatsuba-Ofman multiplier
with a 4-input adder to compute s

(i)
3 , a

(i)
j , and r

(i)
j , 0 ≤ j ≤ 5. Registers

allow us to store several products p
(i)
j , which is for instance useful when

computing s
(i)
3 ← p

(i)
6 + p

(i)
7 .

– Register file. The register file is implemented by means of Dual-Ported RAM
(DPRAM). In order to avoid memory collisions, we had to split it into two
parts and store two copies of r

(i)
0 , r

(i)
1 , and r

(i)
2 .

The initialization step (Algorithm 1, lines 1 to 4) and each iteration of Miller’s
loop (Algorithm 1, lines 6 to 10) require 17 clock cycles. Therefore, our copro-
cessor returns R(m−1)/2 after 17 · (m + 3)/2 clock cycles.

4.2 Final Exponentiation

Our first attempt at computing the final exponentiation was to use the uni-
fied arithmetic operator introduced by Beuchat et al. [8]. Unfortunately, due to
the sequential scheduling inherent to this operator, it turned out that the final
exponentiation algorithm required more clock cycles than the computation of
Miller’s algorithm by our coprocessor. We therefore had to consider a slightly
more parallel architecture.
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three
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Noticing that the critical operations in the final exponentiation algorithm
were multiplications and long sequences of cubings over F3m , we designed the
coprocessor for arithmetic over F3m depicted in Figure 2. Besides a register file
implemented by means of DPRAM, our coprocessor embeds a parallel-serial mul-
tiplier [44] processing 14 coefficients of an operand at each clock cycle, and a
novel unified operator for addition, subtraction, accumulation, Frobenius map
(i.e. cubing), and double Frobenius map (i.e. raising to the 9th power). This
architecture allowed us to efficiently implement the final exponentiation algo-
rithm described for instance in [8], while taking advantage of the improvement
proposed in Section 2.2.

5 Results and Comparisons

Thanks to our automatic VHDL code generator, we designed several versions
of the proposed architecture and prototyped our coprocessors on Xilinx FPGAs
with average speedgrade. Table 2 provides the reader with a comparison between
our work and accelerators for the Tate and the ηT pairing over supersingular
(hyper)elliptic curves published in the open literature (our comparison remains
fair since the Tate pairing can be computed from the ηT pairing at no extra
cost [7]). The third column measures the security of the curve as the key length
required by a symmetric-key algorithm of equivalent security. Note that the
architecture proposed by Kömürcü & Savas [32] does not implement the final
exponentiation, and that Barenghi et al. [1] work with a supersingular curve
defined over Fp, where p is a 512-bit prime number.

Most of the authors who described hardware accelerators for the Tate pairing
over F3m considered only low levels of security. Thus, we designed a first archi-
tecture for m = 97. It simultaneously improves the speed record previously held
by Jiang [25], and the Area-Time (AT) product of the coprocessor introduced
by Beuchat et al. [10].

Then, we studied a more realistic setup and placed-and-routed a second ac-
celerator for m = 193, thus achieving a level of security equivalent to 89-bit
symmetric encryption. Beuchat et al. [7] introduced a unified arithmetic oper-
ator in order to reduce the silicon footprint of the circuit to ensure scalability,
while trying to minimize the impact on the overall performances. In this work,
we focused on the other end of the hardware design spectrum and significantly
reduced the computation time reported by Beuchat et al. in [7]. A much more
unexpected result is that we also improved the AT product. The bottleneck is
the usage of the FPGA resources: the unified arithmetic operator allows one to
achieve higher levels of security on the same circuit area.

Our architectures are also much faster than software implementations. Mit-
sunari wrote a very careful multithreaded implementation of the ηT pairing over
F397 and F3193 [37]. He reported a computation time of 92 µs and 553 µs, re-
spectively, on an Intel Core 2 Duo processor (2.66 GHz). Interestingly enough,
his software outperforms several hardware architectures proposed by other re-
searchers for low levels of security. When we compare his results with our work,
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Table 2. Hardware accelerators for the Tate and ηT pairings

Curve
Security

FPGA
Area Freq. Calc. AT

[bits] [slices] [MHz] time [µs] prod.

Kerins et al. [30] E(F397 ) 66 xc2vp125 55616 15 850 47.3
Kömürcü & Savas [32] E(F397 ) 66 xc2vp100 14267 77 250.7 3.6
Ronan et al. [39] E(F397 ) 66 xc2vp100-6 15401 85 183 2.8
Grabher & Page [19] E(F397 ) 66 xc2vp4-6 4481 150 432.3 1.9
Jiang [25] E(F397 ) 66 xc4vlx200-11 74105 78 20.9 1.55
Beuchat et al. [7] E(F397 ) 66 xc2vp20-6 4455 105 92 0.4
Beuchat et al. [10] E(F397 ) 66 xc2vp30-6 10897 147 33 0.36
This work E(F397 ) 66 xc2vp30-6 18360 137 6.2 0.11

E(F397 ) 66 xc4vlx60-11 18683 179 4.8 0.09

Shu et al. [43] E(F2239 ) 67 xc2vp100-6 25287 84 41 1.04
Beuchat et al. [7] E(F2239 ) 67 xc2vp20-6 4557 123 107 0.49

Keller et al. [28] E(F2251 ) 68 xc2v6000-4 27725 40 2370 65.7
Keller et al. [29] E(F2251 ) 68 xc2v6000-4 13387 40 2600 34.8

Li et al. [33] E(F2283 ) 72 xc4vfx140-11 55844 160 590 32.9
Shu et al. [43] E(F2283 ) 72 xc2vp100-6 37803 72 61 2.3

Ronan et al. [40] E(F2313 ) 75 xc2vp100-6 41078 50 124 5.1
Ronan et al. [41] C(F2103 ) 75 xc2vp100-6 30464 41 132 4.02

Barenghi et al. [1] E(Fp) 87 xc2v8000-5 33857 135 1610 54.5

Beuchat et al. [7] E(F2459 ) 89 xc2vp20-6 8153 115 327 2.66
Beuchat et al. [7] E(F3193 ) 89 xc2vp20-6 8266 90 298 2.46
This work E(F3193 ) 89 xc2vp125-6 46360 130 12.8 0.59

E(F3193 ) 89 xc4vlx100-11 47433 167 10.0 0.47

we note that we increase the gap between software and hardware when con-
sidering larger values of m. The computation of the Tate pairing over F3193 on
a Virtex-4 LX FPGA with a medium speedgrade is for instance roughly fifty
times faster than software. This speedup justifies the use of large FPGAs which
are now available in servers and supercomputers such as the SGI Altix 4700
platform.

Kammler et al. [27] reported the first hardware implementation of the Optimal
Ate pairing [45] over a Barreto-Naehrig (BN) curve [5], that is an ordinary curve
defined over a prime field Fp with embedding degree k = 12. The proposed design
is implemented with a 130 nm standard cell library and computes a pairing in
15.8 ms over a 256-bit BN curve. It is however difficult to make a fair comparison
between our respective works: the level of security and the target technology are
not the same.

6 Conclusion

We proposed a novel architecture based on a pipelined Karatsuba-Ofman multi-
plier for the ηT pairing in characteristic three. The main design challenge that we
faced was to keep the pipeline continuously busy. Accordingly, we modified the
scheduling of the ηT pairing in order to introduce more parallelism in the Miller’s
algorithm. Note that our careful re-scheduling should allow one to improve the
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coprocessor described in [10]. We also introduced a faster way to perform the
final exponentiation by taking advantage of the linearity of the cubing operation
in characteristic three. Both software and hardware implementations can benefit
from this technique.

To our knowledge, the place-and-route results on several Xilinx FPGA devices
of our designs improved both the computation time and the area-time trade-
off of all the hardware pairing coprocessors previously published in the open
literature [28,29,1,30,19,32,41,40,39,7,43,10,25]. We are also currently applying
the same methodology used in this work to design a coprocessor for the Tate
pairing over F2m , with promising preliminary results.

Since the pipeline depth in the Karatsuba-Ofman multiplier is fixed by our
scheduling, one could argue that the clock frequency will decrease dramatically
for larger values of m. However, at the price of a slightly more complex final
exponentiation, we could increase the number of pipeline stages: it suffices to
perform the odd and even iterations of the main loop of Algorithm 1 in parallel
(we multiply for instance R(2i−2) by S(2i) and R(2i−1) by S(2i+1) in Algorithm 1),
so that the multiplier processes two sparse products at the same time. Then, a
multiplication over F36m , performed by the final exponentiation coprocessor, will
allow us to compute the ηT (P, Q) pairing. We wish to investigate more deeply
such architectures in the near future.

Another open problem of our interest is the design of a pairing accelerator
providing the level of security of AES-128. Kammler et al. [27] proposed a first
solution in the case of an ordinary curve. However, many questions remain open:
Is it for instance possible to achieve such a level of security in hardware with
supersingular (hyper)elliptic curves at a reasonable cost in terms of circuit area?
Since several protocols rely on such curves, it seems important to address this
problem.
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Abstract. This paper describes a new method to speed up Fp-arithmetic
for Barreto-Naehrig (BN) curves. We explore the characteristics of the
modulus defined by BN curves and choose curve parameters such that
Fp multiplication becomes more efficient. The proposed algorithm uses
Montgomery reduction in a polynomial ring combined with a coefficient
reduction phase using a pseudo-Mersenne number. With this algorithm,
the performance of pairings on BN curves can be significantly improved,
resulting in a factor 5.4 speed-up compared with the state-of-the-art
hardware implementations. Using this algorithm, we implemented a pair-
ing processor in hardware, which runs at 204 MHz and finishes one ate
and R-ate pairing computation over a 256-bit BN curve in 4.22 ms and
2.91 ms, respectively.
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1 Introduction

A bilinear pairing is a map G1 × G2 → GT where G1 and G2 are typically
additive groups and GT is a multiplicative group and the map is linear in each
component. Many pairings used in cryptography such as the Tate pairing [1],
ate pairing [11], and R-ate pairing [13] choose G1 and G2 to be specific cyclic
subgroups of E(Fpk), and GT to be a subgroup of F∗

pk .
The selection of parameters has a substantial impact on the security and

performance of a pairing. For example, the underlying field, the type of curve, the
order of G1, G2 and GT should be carefully chosen such that it offers sufficient
security, but still is efficient to compute. In this paper, we focus on efficient
implementation of pairings over BN curves [17]. BN curves are defined over Fp

where p = 36t̄4 +36t̄3+24t̄2 +6t̄+1 for t̄ ∈ Z such that p is prime. In this paper,
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when choosing t̄ = 2m + s, where s is a reasonably small number, the modular
multiplication in Fp can be substantially improved. Existing techniques to speed
up arithmetic in extension fields (see [7,6] for fast operation in Fp2 , Fp6 and
Fp12) can be used on top of it. The proposed modular reduction algorithm and
parameters for BN curves result in a significant improvement on the performance
of ate and R-ate pairing.

The remainder of the paper is organized as follows. In Sect. 2 we review cryp-
tographic pairings and their computation. In Sect. 3 we present a new modular
multiplication algorithm and compare its complexity with known algorithms.
The details of the hardware implementation and results are given in Sect. 4 and
Sect. 5, respectively. We conclude the paper in Sect. 6.

2 Previous Works

2.1 Bilinear Pairings

Let Fp be a finite field and let E(Fp) be an elliptic curve defined over Fp. Let
r be a large prime dividing #E(Fp). Let k be the embedding degree of E(Fp)
with respect to r, namely, the smallest positive integer k such that r|pk − 1. We
use E(K)[r] to denote the K-rational r-torsion group of the curve for any finite
field K. For P ∈ E(K) and an integer s, let fs,P be a K-rational function with
divisor

(fs,P ) = s(P ) − ([s]P ) − (s − 1)O,

where O is the point at infinity. This function is also known as Miller func-
tion [14,15].

Let G1 = E(Fp)[r], G2 = E(Fpk)/rE(Fpk) and G3 = µr ⊂ F∗
pk (the r-th

roots of unity), then the reduced Tate pairing is a well-defined, non-degenerate,
bilinear pairing. Let P ∈ G1 and Q ∈ G2, then the reduced Tate pairing of P, Q
is computed as

e(P, Q) = (fr,P (Q))(p
k−1)/r.

The ate pairing is similar but with different G1 and G2. Here we define G1 =
E(Fp)[r] and G2 = E(Fpk)[r] ∩ Ker(πp − [p]), where πp is the Frobenius endo-
morphism. Let P ∈ G1, Q ∈ G2 and let tr be the trace of Frobenius of the
curve, then the ate pairing is also well-defined, non-degenerate bilinear pairing,
and can be computed as

a(Q, P ) = (ftr−1,Q(P ))(p
k−1)/r.

The R-ate pairing is a generalization of the ate pairing. For the same choice of
G1 and G2 as for the ate pairing, the R-ate pairing on BN curves is defined as

Ra(Q, P ) = (f · (f · laQ,Q(P ))p · lπ(aQ+Q),aQ(P ))(p
k−1)/r,
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Algorithm 1. Computing the R-ate pairing on BN curves [7]
Input: P ∈ E(Fp)[r], Q ∈ E(Fpk)[r]

⋂
Ker(πp − [p]) and a = 6t̄ + 2.

Output: Ra(Q, P ).
1: a =

∑L−1
i=0 ai2i.

2: T ← Q, f ← 1.
3: for i = L − 2 downto 0 do
4: T ← 2T .
5: f ← f2 · lT,T (P ).
6: if ai = 1 then
7: T ← T + Q.
8: f ← f · lT,Q(P ).
9: end if

10: end for
11: f ← (f · (f · laQ,Q(P ))p · lπ(aQ+Q),aQ(P ))(p

k−1)/r.
Return f .

where a = 6t̄ + 2, f = fa,Q(P ) and lA,B denotes the line through point A
and B.

Due to limited space, we only describe the algorithm to compute the R-ate
pairing. The algorithms for Tate and ate pairings are similar, and can be found
in [7].

2.2 Choice of Curve Parameters

The most important parameters for cryptographic pairings are the underlying
finite field, the order of the curve, the embedding degree, and the order of G1,
G2 and GT . These parameters should be chosen such that the best exponential
time algorithms to solve the discrete logarithm problem (DLP) in G1 and G2
and the sub-exponential time algorithms to solve the DLP in GT take longer
than a chosen security level. In this paper, we will use the 128-bit symmetric
key security level.

Barreto and Naehrig [17] described a method to construct pairing-friendly
elliptic curves over a prime field with embedding degree 12. The finite field,
trace of Frobenius and order of the curve are defined by the following polynomial
families:

p(t) = 36t4 + 36t3 + 24t2 + 6t + 1,
tr(t) = 6t2 + 1,
n(t) = 36t4 + 36t3 + 18t2 + 6t + 1.

The curve is defined as E : y2 = x3 + v for some v ∈ Fp. The choice of t̄ must
meet the following requirements: both p(t̄) and n(t̄) must be prime and t̄ must
be large enough to guarantee a chosen security level. For the efficiency of pairing
computation, t̄, p(t̄) and tr(t̄) should have small Hamming-weight.

For example, [7] suggested to use t̄ = 0x6000000000001F2D, which is also
used in [10] and [12]. With this parameter, pairings defined over p(t̄) achieves
128-bit security.
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Table 1. Selection of t̄ for BN curves in [7]

t̄ HW(6t̄ + 2) HW(tr) HW(p) log(2, p)
0x6000000000001F2D 9 28 87 256

2.3 Multiplication in Fp

We briefly recall the techniques for integer multiplication and reduction. Given
a modulus p < 2n and an integer c < 22n, the following algorithms can be used
to compute c mod p.

Barrett reduction. The Barrett reduction algorithm [2] uses a precomputed
value µ = � 22n

p � to help estimate c
p , thus integer division is avoided. Dhem [8]

proposed an improved Barrett modular multiplication algorithm which has a
simplified final correction.

Montgomery reduction. The Montgomery reduction method [16] precom-
putes p′ = −p−1 mod r, where r is normally a power of two. Given c and p, it
generates q such that c + qp is a multiple of r. As a result, (c + qp)/r is just a
shift operation. Algorithm 2 shows both Barrett and Montgomery multiplication
algorithms.

Chung-Hasan reduction. In [4,5], Chung and Hasan proposed an efficient
reduction method for low-weight polynomial form moduli p = f(t̄) = t̄n +
fn−1t̄

n−1 + .. + f1t̄ + f0, where |fi| ≤ 1. The modular multiplication is shown in
Alg. 3.

Algorithm 2. Digit-serial modular multiplication algorithm.
Barrett [8] Montgomery [16]
Input: a = (an−1, .., a0)d,
b = (bn−1, .., b0)d,
p = (pn−1, .., p0)d,0 ≤ a, b < p,
2(n−1)w ≤ p < 2nw , d = 2w.
Precompute µ =

⌊
dn+3/p

⌋
.

Output: c = ab mod p.

1: c ← 0.
2: for i = n − 1 downto 0 do
3: c ← c · d + a · bi.
4: q̂ ← ⌊(�c/dn−2� · µ)/2w+5

⌋
.

5: c ← c − q̂ · p.
6: end for
7: if c ≥ p then
8: c ← c − p.
9: end if

Return c.

Input: a = (an−1, .., a0)d,
b = (bn−1, .., b0)d,
p = (pn−1, .., p0)d, 0 ≤ a, b < p,
r = dn,
Precompute p′ = −p−1 mod d, d = 2w.
Output: c = abr−1 mod p.

1: c ← 0.
2: for i = 0 to n − 1 do
3: c ← c + abi.
4: u ← c mod d, q ← (up′) mod d.
5: c ← (c + qp)/d.
6: end for
7: if c ≥ p then
8: c ← c − p.
9: end if

Return c.
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Algorithm 3. Chung-Hasan multiplication algorithm [4].
Input: positive integers a =

∑n−1
i=0 ait

i, b =
∑n−1

i=0 bit
i, modulus p = f(t) = tn +

fn−1t
n−1 + .. + f1t + f0.

Output: c(t) = a(t)b(t) mod p.
1: Phase I: Polynomial Multiplication
2: c(t) ← a(t)b(t).
3: Phase II: Polynomial Reduction
4: for i = 2n − 2 down to n do
5: c(t) ← c(t) − cif(t)ti−n.
6: end for

Phase III: Coefficient Reduction
7: cn ← �cn−1/t̄�, cn−1 ← cn−1- cn t̄.
8: c(t) ← c(t) − cnf(t)t.
9: for i = 0 to n − 1 do

10: qi ← �ci/t̄�, ri ← ci- qit̄.
11: ci+1 ← ci+1 + qi, ci ← ri.
12: end for
13: c(t) ← c(t) − qnf(t)t.
Return c(t).

The polynomial reduction phase is rather efficient since f(t) is monic, making
the polynomial long division (step 3) simple. Barrett reduction is used to perform
divisions required in Phase III. The overall performance is more efficient than
traditional Barrett or Montgomery reduction algorithm [4]. In [5], this algorithm
is further extended to monic polynomials with |fi| ≤ s where s ∈ (0, t̄) is a small
number. Note that the polynomial reduction phase is efficient only when f(t) is
monic.

3 Fast Modular Reduction Algorithm for BN Curves

Instead of using a general modular reduction algorithm such as Montgomery or
Barrett algorithm, we explore the special characteristics of the prime p. Note
that the polynomial p(t) = 36t4 + 36t3 + 24t2 + 6t + 1 defined by BN is not
monic, but has the following characteristics:

1. p(t) has small coefficients.
2. p(−1)(t) = 1 mod t.

The second condition implies via Hensel’s lemma that p(−1)(t) mod tn has in-
teger coefficients. This suggests that multiplication and reduction with Mont-
gomery’s algorithm in the polynomial ring could be efficient. We first present
a modular multiplication algorithm for polynomial form primes that satisfy
p(−1)(t) = 1 mod t and then apply this method to BN curves.

3.1 Hybrid Modular Multiplication

Algorithm 4 describes a modular multiplication algorithm for polynomial form
moduli. The algorithm is composed of three phases, i.e. polynomial multiplication
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(step 3), polynomial reduction (step 4-6), and coefficient reduction phase (step 9).
Note that we present the algorithm in a digit-serialmanner. The polynomial reduc-
tion uses the Montgomery reduction, while the coefficient reduction uses division.
We call this algorithm Hybrid Modular Multiplication (HMM).

Note that algorithm 4 works for any irreducible polynomial p(t) satisfying the
condition p(−1)(t) = 1 mod t or equivalently, p(t) = 1 mod t. It can also be easily
modified to support p(t) satisfying p(−1)(t) = −1 mod t.

Algorithm 4 requires division by t̄ in both step 4 and step 9. Like Chung-
Hasan’s algorithm, division can be performed with the Barrett reduction algo-
rithm [4]. However, the complexity of division can be reduced if t̄ is a pseudo-
Mersenne number. Algorithm 5 transfers division by t̄ to multiplication by s for
t̄ = 2m + s where s is small.

3.2 Modular Multiplication for BN Curves

In order to apply Alg. 4 and Alg. 5 to BN curves, we select t̄ = 2m + s where s
is small. Note that any choice of t̄ which makes p and n primes of the required
size will suffice. As such we can choose t̄ = 2m + s where s is small; an example
is shown in Table 2.

Algorithm 4. Hybrid Modular Multiplication Algorithm
Input: a(t) =

∑n−1
i=0 ait

i, b(t) =
∑n−1

i=0 bit
i, and modulus p(t) =

∑n−1
i=1 pit

i + 1.
Output: r(t) = a(t)b(t)t−n mod p(t).
1: c(t)(=

∑n−1
i=0 cit

i) ← 0 .
2: for i = 0 to n − 1 do
3: c(t) ← c(t) + a(t)bi .
4: µ ← c0 div t̄, γ ← c0 mod t̄.
5: g(t) ← (pn−1t

n−1 + .. + p1t + 1)(−γ).
6: c(t) ← (c(t) + g(t))/t + µ.
7: end for
8: for i = 0 to n − 2 do
9: ci+1 ← ci+1 + (ci div t̄), ci ← ci mod t̄.

10: end for

Return r(t) ← c(t).

Algorithm 5. Division by t̄ = 2m + s

Input: a, t̄ = 2m + s with 0 < s < 2�k/2�.
Output: µ and γ with a = µt + γ, |γ| < t̄.
1: µ ← 0, γ ← a.
2: while |γ| ≥ t̄ do
3: ρ ← γ div 2m, γ ← γ mod 2m.
4: µ ← µ + ρ, γ ← γ − sρ.
5: end while

Return µ, γ.
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Table 2. Selection of t̄ = 2m + s for BN curves

t̄ HW(6t̄ + 2) HW(tr) HW(p) log(2, p)
263 + 29 + 28 + 26 + 24 + 23 + 1 6 20 68 257

Algorithm 6. Hybrid Modular Multiplication Algorithm for BN curves
Input: a(t) =

∑4
i=0 ait

i, b(t) =
∑4

i=0 bit
i. p(t) = 36t4 + 36t3 + 24t2 + 6t + 1, p−1(t) =

1 mod t, t̄ = 2m + s.
Output: r(t) = a(t)b(t)t−5 mod p(t).
1: c(t)(=

∑4
i=0 cit

i) ← 0 .
2: for j = 0 to 4 do
3: c(t) ← c(t) + a(t)bj .
4: µ ← c0 div 2m, γ ← (c0 mod 2m) − sµ.
5: g(t) ← (36t4 + 36t3 + 24t2 + 6t + 1)(−γ).
6: c(t) ← (c(t) + g(t))/t + µ.
7: end for
8: for i = 0 to 3 do
9: µ ← ci div 2m, γ ← (ci mod 2m) − sµ.

10: ci+1 ← ci+1 + µ, ci ← γ.
11: end for
12: Repeat step 8-11.
Return r(t) ← c(t).

With t̄ = 2m + s as shown in Table 2, Algorithm 6 describes a modular
multiplication algorithm for BN curves which we call HMMB.

The following lemma provides bounds on the input value such that Algorithm
6 gives a bounded output. The proof is in the appendix.

Lemma 1. Given t̄ = 2m + s and ξ = (36s + 1) < 2m/2−7 (i.e. m ≥ 26), if the
input a(t) and b(t) satisfy

0 ≤ |ai|, |bi| < 2m/2, i = 4,
0 ≤ |ai|, |bi| < 2m+1, 0 ≤ i ≤ 3,

then r(t) calculated by Alg. 6 satisfies

0 ≤ |ri| < 2m/2, i = 4,
0 ≤ |ri| < 2m+1, 0 ≤ i ≤ 3.

This algorithm is suitable for high performance implementation on multi-core
systems. One can see that the first loop of HMMB algorithm can be easily paral-
lelized. This is an intrinsic advantage of this algorithm, i.e. no carry propagation
occurs during polynomial multiplication. The coefficient reduction phase can
also be parallelized. We modify the last two loops of the HMMB algorithm and
give a parallel version.
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loop1 µi ← ci div 2m, γi ← (ci mod 2m) − sµi 0 ≤ i ≤ 3.
ci ← γi + µi−1 1 ≤ i ≤ 3.
c0 ← γ0, c4 ← µ3.

loop2 µi ← ci div 2m, γi ← (ci mod 2m) − sµi 0 ≤ i ≤ 3.
ci ← γi + µi−1 1 ≤ i ≤ 3.
c0 ← γ0, c4 ← c4 + µ3.

From the proof of Lemma 1 we know ci < 5 · 22m+3 for 0 ≤ i ≤ 4. Thus, after
loop1, we have

|ci| = |µi−1|+ |γi| < 5 · 2m+3 + 5 · 2m+3s + 2m < s2m+6.

Furthermore, after loop2, we have

|ci| = |µi−1|+ |γi| < s26 + 26s2 + 2m < 2m+1.

3.3 Complexity of Algorithm 6

We compare the complexity of Alg. 6 with Montgomery’s and Barrett’s algorithm
for 256-bit BN curves. We assume a digit-serial method is used with digit-size
64-bit. Note that Alg. 6 requires four 64-bit words together with one 32-bit word
to represent a 256-bit integer.

For Montgomery multiplication, nine 64x64 multiplications are required in
each iteration, resulting in 36 subword multiplications in total. Barrett multipli-
cation has the same complexity as Montgomery algorithm.

For HMMB, in the first loop four 64x64 and one 32x64 multiplications are re-
quired in step 3, one �log2(s)�x�log2(µ)� multiplication is required in step 4. The
last iteration takes four 32x64 and one 32x32 multiplications. In total, the first
loop takes one 32x32, eight 32x64, sixteen 64x64, and five �log2(s)�x�log2(µ)�
multiplications, where µ < 2k+6 as shown in the proof of Lemma 1. Note that
p(t)γ can be performed with addition and shift operation, e.g. 36γ = 25γ + 22γ.

The coefficient reduction phase requires eight �log2(s)�x�log2(µ)� multiplica-
tions. From the proof of Lemma 1 we know that ci < 5 · 22k+3, thus µ < 2k+6 in
the first for loop (step 8-10). In the second for loop (step 12), as shown in the
end of section 3.2, we have µ < s26.

Table 3 compares the number of multiplications required by the Barrett,
Montgomery and the HMMB algorithm. Compared to Barrett and Montgomery
reduction, HMMB has much lower complexity. One can see that sµ can be effi-
ciently computed if s is small (see Table 2). Especially, if s is of low Hamming-
weight, sµ can be performed with shift and addition operations.

Table 3. Complexity comparison of different modular multiplication algorithms

Algorithm 32x32 32x64 64x64 �log2(s)�x�log2(µ)�
Barrett 36

Montgomery 36
HMMB 1 8 16 13
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4 Hardware Design of Pairings

As a verification of the efficiency of the HMMB algorithm, we made a hardware
implementation of the ate and R-ate pairing using this algorithm. We chose
t̄ = 263+s, where s=29+28+26+24+23+1. With this setting, the implementation
achieves 128-bit security.

4.1 Multiplier

Figure 1 shows the realization of the HMMB algorithm. A row of multipliers
is used to carry out step 3, namely, aibj for 0 ≤ i ≤ 4. We used a 64x16 bit
multiplier, thus four cycles are required for each iteration. One can adjust the
size of multiplier for different design purposes, i.e. high clock frequency, small
area and so on. The partial product is then reduced by the ”Mod t” component.
The ”Mod t” component, which is composed of a multiplier and a subtracter,
generates µ and γ from ci, namely, µ ← ci div 2m and γ ← (ci mod 2m) − sµ.
Note that the ”Mod t” component below rc0 is slightly different, where γ ←
(sµ − (rc0 mod 2m)).

The dataflow of this implementation is slightly different from that in Alg. 6.
Instead of performing coefficient reduction in the end, we reduce the coefficients
before polynomial reduction. This reduces the length of ci and rci in Fig. 1, and
one instead of two coefficient reduction loop is required in the end. The ”Mod t”
components are reused to perform the final reduction loop. After that, r(t) is
ready in the accumulators.

Fig. 1. Fp multiplier using algorithm HMMB
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Fig. 2. Block diagram of the system architecture

4.2 Pairing Processor Architecture

Using the multiplier described above, we built a pairing processor. Figure 2
shows the block diagram of the processor. It consists of a micro-controller, a
program ROM, an Fp multiplier and adder/subtracter, a register file and an
IO buffer. The data is stored in a 64-bit single port RAM. The program ROM
contains subroutines that are used in Miller’s loop, such as point addition, point
doubling, line evaluation, multiplication in Fp12 , and so on. The micro-controller
realizes Miller’s loop by calling the corresponding sub-routines.

The ALU is able to execute multiplication and addition/subtraction instruc-
tions in parallel. A simple example is shown in Fig. 2. When performing the mul
operation, the micro-controller fetches the next instruction and checks if it is an
add or sub instruction. If it is, then it is executed in parallel if there is no data
dependency on the ongoing mul instruction. Table 4 gives the number of clock
cycles that are required for each subroutine and pairing.

Table 4. Number of clock cycles required by different subroutines

2T T+Q lT,T (P ) lT,Q(P ) f2 f · l f (pk−1)/r ate R-ate
#Cycles 574 984 422 260 1541 1239 281558 861724 592976

5 Implementation Results

The whole system is synthesized using 130 nm standard cell library. It can run
at a maximum frequency of 204 MHz. The pairing processor alone uses around
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183 kGates, including 70 kGates used by Register File and 25 kGates used by
controller and Program ROM. It finishes one ate and R-ate pairing computation
in 4.22 ms and 2.91 ms, respectively. Table 5 compares the result with the state-
of-the-art implementations.

Kammler et al. [12] reported the first, and so far the only, hardware imple-
mentation of cryptographic pairings achieving a 128-bit security. They chose
t̄=0x6000000000001F2D to generate a 256-bit BN curve. The Montgomery algo-
rithm is used for Fp multiplication. Compared with this design, our implemen-
tation is about 5 times faster in terms of R-ate pairing calculation. The main
speedup comes from fast modular multiplication in Fp and larger register file.
For an Fp multiplication, the multiplier shown in Fig. 1 takes 23 cycles exclud-
ing memory access, while 68 cycles are required in [12]. Though the area of our
design is around 1.9 times larger, the area-latency product is still smaller than
that in [12].

The results of software implementations [10,9] are quite impressive. On an
Intel 64-bit core2 processor, R-ate pairing requires only 4.17 ms. The advantages
of Intel core2 is that it has a fast multiplier (two full 64-bit multiplication in 8
cycles) and relatively high clock frequency. Though it takes 16 times more clock
cycles (107 cycles for R-ate [10]) than our hardware implementation, the overall
speed is only 1.4 times lower.

There are also some hardware implementations [18,3] for ηT pairing over bi-
nary or cubic curves. Note that the security achieved using the reported param-
eters is much lower than 128-bit, which makes a fair comparison difficult.

Table 5. Performance comparison of software and hardware implementations of pairing

Design Pairing Security Platform Area Frequency Performance
[bit] [MHz] [ms]

this design ate 128 130 nm ASIC 183 kGates 204 4.22
R-ate 2.91
Tate 34.4

[12] ate 128 130 nm ASIC 97 kGates 338 22.8
R-ate 15.8

[10] ate 128 64-bit core2 - 2400 6.25
R-ate 4.17

[9] ate 128 64-bit core2 - 2400 6.01
[18] ηT over F2239 67 XC2VP100-6 25278 slices 84 0.034

ηT over F2283 72 37803 slices 72 0.049
[3] ηT over F397 66 XC4VLX60-11 18683 slices N/A 0.0048

ηT over F3193 89 XC4VLX100-11 47433 slices N/A 0.010

6 Conclusions

In this paper, we studied a new fast implementation of cryptographic pairings
using BN curves. We introduce a new modular multiplication algorithm and a
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method to select multiplication-friendly parameters. We show that with careful
selection of parameters the proposed algorithm has much lower computational
complexity than traditional Barrett or Montgomery methods.

As a verification, we also implemented ate and R-ate pairing in hardware us-
ing this algorithm. Our results outperform previous hardware implementations
by a factor of roughly 5. Note that smaller digit size can be used when targeting
a compact hardware implementation. For future work, it is also definitely inter-
esting to see the performance of this algorithm implemented in software. Finally,
we remark that the described algorithms also generalize to other pairing friendly
finite fields and even more generally, to other types of finite fields.
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APPENDIX

A: Proof of lemma 1

Proof. The proof proceeds in two parts. The first part proves a bound on the
coefficients of c(t) after Step 7 and the second part analyzes the two coefficient
reduction loops (Step 8-12).

Denote ci,j the coefficients of c(t) at the beginning of the j-th iteration, so
c(t) in Step 7 has coefficients ci,5 (i.e. j ≤ 5). Let ∆ = 22m+3 then we first show
by induction on j that

|ci,j | ≤ j∆ . (1)

Clearly Equation (1) holds for j = 0, since ci,0 = 0. Now assume that (1) holds
for j, then we will show the inequality holds for j + 1. In Step 3, ci,j increases
by maximum 22m+2. In Step 4, we thus obtain

|µ| ≤ 2m+2 +
j∆

2m
and |γ| ≤ 2m + s|µ| .

In Step 5, we have |gi| ≤ 36|γ|, so in Step 6 we finally obtain

|ci,j+1| ≤ 22m+2 + j∆ + 36|γ|+ |µ| = (j + 1)∆ − 22m+2 + 36|γ|+ |µ| ,

so it suffices to prove that 36|γ|+ |µ| ≤ 22m+2. Rewriting this leads to

http://eprint.iacr.org/
http://eprint.iacr.org/
http://crypto.stanford.edu/miller/miller.pdf


Faster Fp-Arithmetic for Cryptographic Pairings on BN Curves 253

36 · 2m + (36s + 1)|µ| = 36 · 2m + ξ|µ| ≤ 22m+2 ,

which concludes the proof of (1).
For c3,5 we need to obtain a better bound since the bound on the final r4 is

also smaller. Note that coefficient c3,5 is computed as c3,5 = a4b4 + 36γ where γ
can be bounded by 2m + 2m+6s. This finally leads to the bound

c3,5 < 2m + 36(2m + 2m+5s) < 37 · 2m + 2m+m/2−1 .

For the first coefficient reduction step, it is easy to see that for i = 0, 1, 2 we
have |µ| ≤ 5 · 2m+3 + 5 · 23, so after the first reduction we obtain for i = 0, . . . , 3

|ci| ≤ 2m + s|µ| < 2m + (5 · 2m+3 + 5 · 23)s < 2m+6s .

For c3 however, we obtain |µ| < 37 + 2m/2−1 + 26s which becomes c4.
For the second coefficient reduction step, it is again easy to see that i = 0, 1, 2

we have |µ| ≤ 26s and thus |ci| ≤ 2m + 26s2 < 2m+1. For c4 we obtain, c4 =
37 + 2m/2−1 + 27s < 2m/2, since m > 26. ��



Designing an ASIP for Cryptographic Pairings
over Barreto-Naehrig Curves�

David Kammler1, Diandian Zhang1, Peter Schwabe2, Hanno Scharwaechter1,
Markus Langenberg3, Dominik Auras1, Gerd Ascheid1, and Rudolf Mathar3

1 Institute for Integrated Signal Processing Systems (ISS),
RWTH Aachen University, Aachen, Germany

kammler@iss.rwth-aachen.de
2 Department of Mathematics and Computer Science

Eindhoven University of Technology, Eindhoven, Netherlands
peter@cryptojedi.org

3 Institute for Theoretical Information Technology (TI),
RWTH Aachen University, Aachen, Germany

mathar@ti.rwth-aachen.de

Abstract. This paper presents a design-space exploration of an
application-specific instruction-set processor (ASIP) for the computa-
tion of various cryptographic pairings over Barreto-Naehrig curves (BN
curves). Cryptographic pairings are based on elliptic curves over finite
fields—in the case of BN curves a field Fp of large prime order p. Effi-
cient arithmetic in these fields is crucial for fast computation of pairings.
Moreover, computation of cryptographic pairings is much more complex
than elliptic-curve cryptography (ECC) in general. Therefore, we facili-
tate programming of the proposed ASIP by providing a C compiler.

In order to speed up Fp arithmetic, a RISC core is extended with
additional scalable functional units. Because the resulting speedup can be
limited by the memory throughput, utilization of multiple data-memory
banks is proposed.

The presented design needs 15.8 ms for the computation of the
Optimal-Ate pairing over a 256-bit BN curve at 338 MHz implemented
with a 130 nm standard cell library. The processor core consumes
97 kGates making it suitable for the use in embedded systems.

Keywords: Application-specific instruction-set processor (ASIP),
design-space exploration, pairing-based cryptography, Barreto-Naehrig
curves, elliptic-curve cryptography (ECC), Fp arithmetic.

� This work has been supported by the UMIC Research Centre, RWTH Aachen Uni-
versity. The third author was supported by the European Commission through the
ICT Programme under Contract ICT–2007–216499 CACE and through the ICT
Programme under Contract ICT-2007-216646 ECRYPT II. Permanent ID of this
document: 7e38974d56cc76a7f572f328ee4a3761. Date: 2009/06/15.

C. Clavier and K. Gaj (Eds.): CHES 2009, LNCS 5747, pp. 254–271, 2009.
c© International Association for Cryptologic Research 2009



Designing an ASIP for Cryptographic Pairings over BN Curves 255

1 Introduction

Pairings were first introduced to cryptography as a means to break cryptographic
protocols based on the elliptic-curve discrete-logarithm problem (ECDLP) [1],
[2]. Joux showed in 2000 that they can also be used constructively for tripartite
key agreement [3]; Subsequently, different cryptographic protocols have been
presented involving cryptographic pairings, including identity-based encryption
[4] and short digital signatures [5]. A discussion of various applications that
would be impossible or very hard to realize without pairings is given in [6].

Cryptographic pairings are based on elliptic curves. To meet both, security re-
quirements and computational feasibility, only elliptic curves with special proper-
ties can be considered as basis for cryptographic pairings. State-of-the-art curves
for high-security applications are 256-bit Barreto-Naehrig curves (BN curves),
introduced in [7]. They achieve 128-bit security according to [8] or 124-bit secu-
rity according to [9]. Fast arithmetic on these curves demands for fast finite field
arithmetic in a field Fp of prime order p, where p is determined by the curve
construction.

Several high-performance software implementations of pairings over BN curves
exist for general-purpose desktop and server CPUs [10,11,12]. However, the so far
only implementation targeting an embedded system was published by Devegili et
al. in [10] (updated in [13]) for a Philips HiPerSmart

TM
smart card; a complete

pairing computation requires 5.17 s at 20.57 MHz, certainly too much time for
interactive processes.

This result shows that in order to make state-of-the-art pairing applications
available to the embedded domain we need dedicated hardware to accelerate
pairing computations. However, the variety and complexity of pairing applica-
tions demand for a flexible and programmable solution, that cannot be satisfied
by a static hardware implementation. Application-specific instruction-set proces-
sors (ASIPs) are a promising candidate to find a good trade-off between these
contradicting demands of speed, flexibility and ease of programmability.

This paper shows a design-space exploration of an ASIP for pairing computa-
tions over BN curves. We describe how to trade off execution time against area
making the ASIP suitable for use in the embedded domain. Dedicated scalable
functional units are introduced that speed up general Fp arithmetic. Moreover,
their critical path delay can be modified in order to be integrated with any exist-
ing RISC-like architecture without compromising its clock frequency. We show
that the speedup from the special functional units is limited by a memory system
with a single memory port. Hence, we introduce a memory system utilizing mul-
tiple memory banks. The number of banks can be altered without modification
to the pipeline or the target architecture tools including the C compiler. This
enables fast design-space exploration. The proposed ASIP thus offers a flexible
and scalable implementation for pairing applications.

We are—up to our knowledge—the first to implement and time a complete
implementation of high-security cryptographic pairings on dedicated specialized
hardware.
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We would like to thank Jia Huang for supporting the implementation. We fur-
thermore thank Daniel J. Bernstein, Tanja Lange, Ernst Martin Witte, Filippo
Borlenghi, and the anonymous reviewers for suggesting many improvements to
our explanations.

Related work. Several architectures for the computation of cryptographic pair-
ings have been proposed in the literature [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 26]. All these implementations use supersingular curves over fields of char-
acteristic 2 or 3, achieving only very low security levels, sometimes even below
80 bit.

Barenghi et al. recently proposed a hardware architecture for cryptographic
pairings using curves defined over fields of large prime characteristic [27]. They
use a supersingular curve (with embedding degree 2) defined over a 512-bit field
and thus achieve only 72-bit security, according to [9].

Another architecture targeting speedup of pairings and supporting fields of
large prime characteristic has been proposed in [28]. The instruction set of a
SPARC V8 processor is extended for acceleration of arithmetic in F2n , F3m and
Fp. However, the focus is put on minor modifications of the datapath resulting
in a performance gain for multiplications in Fp which is two-fold only.

The architectures closest to the one proposed in this paper are accelerating
arithmetic in general Fp for elliptic-curve cryptography (ECC) [29,30]. However,
these designs have not been reported to be used for pairing computations.

Some other architectures for ECC over prime fields limit their support to a
prime p which allows for particularly fast modular reduction (see i.e. [31]). These
approaches are not adequate for pairing-based cryptography where additional
properties of the elliptic curves are required. Thus, a detailed comparison with
these architectures is omitted here.

Organization of the paper. Section 2 of the paper gives an overview of cryp-
tographic pairings and Barreto-Naehrig curves. Section 3 describes our approach
of an ASIP suitable for pairing computation. In Section 4 we discuss the results.
The paper is concluded and future work is outlined in Section 5.

2 Background on Cryptographic Pairings

We only give a short overview of the notion of cryptographic pairings, a com-
prehensive introduction is given in [32, chapter IX].

For three groups G1, G2 (written additively) and G3 (written multiplicatively)
of prime order r a cryptographic pairing is a map e : G1 ×G2 → G3,

– Bilinearity:
e(kP, Q) = e(P, kQ) = e(P, Q)k for k ∈ Z.

– Non-degeneracy:
For all nonzero P ∈ G1 there exists Q ∈ G2 such that e(P, Q) �= 1 and
for all nonzero Q ∈ G2 there exists P ∈ G1 such that e(P, Q) �= 1.

– Computability:
There exists an efficient algorithm to compute e(P, Q) given P and Q.
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We consider the following construction of cryptographic pairings: Let E be an
elliptic curve defined over a finite field Fp of prime order. Let r be a prime
dividing the group order #E(Fp) = n and let k be the smallest integer, such
that r | pk − 1. We call k the embedding degree of E with respect to r. Let t
denote the trace of Frobenius fulfilling the equation n = p + 1 − t.

Let P0 ∈ E(Fp) and Q0 ∈ E(Fpk) be points of order r such that Q0 /∈ 〈P0〉,
let O ∈ E(Fp) denote the point at infinity. Define G1 = 〈P0〉 and G2 = 〈Q0〉.
Let G3 = µr be the group of r-th roots of unity in F∗

pk .
For i ∈ Z and P ∈ E a Miller function [33] is an element fi,P

of the function field of E, such that the principal divisor of fi,P is
div(fi,P ) = i(P ) − ([i]P ) − (i− 1)O.

Using such Miller functions, we can define the map

es : G1 ×G2 → µr; (P, Q) �→ fs,P (Q)(p
k−1)/r.

For certain choices of s the map es is non-degenerate and bilinear. For s = r we
obtain the reduced-Tate pairing τ and for s = T = t− 1 we obtain the reduced-
Ate pairing α by switching the arguments [34]. Building on work presented in
[35], Vercauteren introduced the Optimal-Ate pairing in [36] which for BN curves
can be computed using s ≈ √

t and a few additional computations (see also [37]).
Using twists of elliptic curves we can further define the generalized reduced-η

pairing [34], [38]. In [12] a method to compute the Tate and η pairing keeping
intermediate results in compressed form is introduced. We refer to the resulting
algorithms as Compressed-Tate and Compressed-η pairing, respectively.

2.1 Choice of an Elliptic Curve

For cryptographic protocols to be secure on the one hand and the pairing com-
putation to be computationally feasible on the other hand, the elliptic curve E
must have certain properties: Security of cryptographic protocols based on pair-
ings relies on the hardness of the discrete logarithm problem in G1, G2 and G3.
For the 128-bit security level, the National Institute of Standards and Technol-
ogy (NIST) recommends a prime group order of 256 bit for E(Fp) and of 3072
bit for the finite field Fpk [8].

Barreto-Naehrig curves, introduced in [7], are elliptic curves over fields of
prime order p with embedding degree k = 12. The group order n = r of E(Fp) is
prime by construction, the values p and n can be given as polynomial expressions
in an integer u as follows:

p = p(u) = 36u4 + 36u3 + 24u2 + 6u + 1 and

n = n(u) = 36u4 + 36u3 + 18u2 + 6u + 1.

For our implementation we follow [10] and set u = 0x6000000000001F2D,
yielding two primes p(u) and n(u) of l = 256 bit. The field size of Fpk then has
256 ·k = 3072 bit. Note, that according to [9], a finite fields of size 3072 bit offers
only 124-bit security. In this paper we follow the more conservative estimations
of [9] and claim only 124-bit security for pairings over 256-bit BN curves.
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2.2 Computation of Pairings

The computation of cryptographic pairings consists of two main steps: the com-
putation of fs,P (Q) for Tate and η pairings or of fs,Q(P ) when considering the
Ate pairing and the final exponentiation with (pk − 1)/r.

The first part is usually done iteratively using variants of Miller’s algorithm
[33]. Several optimizations of this algorithm have been presented in [39]. The
resulting algorithm is often referred to as BKLS algorithm. For BN curves even
more optimizations can be applied by exploiting the fact that such curves have
sextic twists. A detailed description of efficient computation of pairings over BN
curves, including the computation of Miller functions and the final exponentia-
tion is given in [10]. Our implementation follows this description in large parts.

Finite field computations constitute the bulk of the pairing computation –
in software implementations typically more than 90% of the time is spent on
modular multiplication, inversion and addition, the number of these operations
for the implemented pairing algorithms is the following:

Number of Opt. Ate Ate η Tate Comp. η Comp. Tate

multiplications 17,913 25,870 32,155 39,764 75,568 94,693
additions 84,956 121,168 142,772 174,974 155,234 193,496
inversions 3 2 2 2 0 0

Throughout the pairing computation we keep points on elliptic curves in Jaco-
bian coordinates and can thus almost entirely avoid field inversions; our targets
for hardware acceleration are thus multiplication and addition in Fp, inversion
is implemented as exponentiation with p− 2.

3 An ASIP for Cryptographic Pairings

To implement various pairing algorithms (Optimal Ate, Ate, η, Tate, Compressed
η and Compressed Tate), a programmable and therefore flexible architecture is
targeted in this paper. Standard architectures like embedded RISC cores are
flexible, but they are lacking sufficient computational performance for specific
applications. Therefore, we apply the ASIP concept to cryptographic-pairing
applications in order to reduce the computation time while maintaining pro-
grammability. Development and implementation of our ASIP have been carried
out using the Processor Designer from CoWare [40].

Keeping control over the data flow on the higher layers of the pairing
computation, like Fp12 or E(Fp2) arithmetic, is a rather complex task. This calls
for a convenient programming model. However, on the lower level realizing the
Fp arithmetic, computational performance is of highest priority. Therefore, we
decided to extend a basic 5-stage 32-bit RISC core with special Fp instructions
for modular multiplication, addition and subtraction. Inversions are not con-
sidered for special instructions as they are used very seldom (≤ 3×) in any of
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the targeted applications. The available C compiler enables convenient applica-
tion development on higher levels, while the computational intensive tasks are
mapped to the specialized instructions accessible via intrinsics1.

Among the targeted Fp operations, the most challenging one to implement is
fast modular multiplication, especially for a large word width (e.g. 256 bit). In
general, multiplication in Fp can be done by first multiplying the two 256-bit
factors and then reducing the 512-bit product. This might indeed be the fastest
approach, if p could be chosen of a special form as for example specified in [41]
or [42]. However, due to the construction of BN curves (see [7]) we cannot use
such primes. Therefore, our approach uses Montgomery arithmetic [43].

3.1 Data Processing: A Scalable Montgomery-Multiplier Unit

In 1985 Montgomery introduced an algorithm for modular multiplication of two
integers A and B modulo an integer M [43]. The idea of the algorithm is to
represent A as Â = AR mod M and B as B̂ = BR mod M for a fixed integer
R > M with gcd(R, M) = 1. This representation is called Montgomery repre-
sentation. To multiply two numbers in Montgomery representation we have to
compute ÂB = ÂB̂R−1 mod M . For certain choices of R this computation can
be carried out much more efficiently than usual modular multiplication: Let us
assume that M is odd and let l be the bit length of M . Choosing R = 2l clearly
fulfills the requirements on R and allows for modular multiplication that replaces
division operations by shifts, allowing for an efficient hardware implementation.

In the context of Fp-multiplication the modulus M corresponds to p. All
Fp operations can be performed in Montgomery representation. Therefore, all
values can be kept in Montgomery representation throughout the whole pairing
computation.

Nibouche et al. introduced a modified version of the Montgomery multiplica-
tion algorithm in [44]. It splits the algorithm into two multiplication operations,
that can be carried out simultaneously, and allows for using carry save (CS) mul-
tipliers. This results in a fast architecture that can be pipelined and segmented
easily. Therefore, it is chosen as basis for our development. A 4×4-bit example
is shown in Fig. 1.

The actual multiplication is carried out in the left half of the architecture,
while the reduction is performed in the right part simultaneously. The left part is
a conventional multiplier built of gated full adders (gFAs), whereas the right part
consists of a multiplier with special cells for the least-significant bits (LSBs). The
LSB cells are built around a half adder (HA). Their overall delay is comparable
to that of a gFA. A more detailed description can be found in [44].

Due to area constraints we decided to implement only subsets of the regular
structures of the multiplier and perform the computation in multiple cycles. The
CS-based design provides the opportunity to not only make horizontal but also
vertical cuts while the critical path of the multiplier unit depends on its height

1 An adoption of our code to general purpose processors using the GMP library instead
of intrinsics is available from http://cryptojedi.org/crypto/

http://cryptojedi.org/crypto/
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Fig. 1. Montgomery-multiplier based on Nibouche et al. [44]

(H) only. This makes the design adaptable to existing cores in terms of timing
maintaining the performance of their general instruction set. Once the height of
the multiplier unit is chosen (in our case H = 8), the width (W ) can be selected
to adapt the design to the desired computational performance and to trade off
area vs. execution time of the multiplication.

Multiplication and reduction are carried out simultaneously starting from the
most-significant bit (MSB) of their second operand (B and M) first. However,
the reduction cannot be started until the incoming data for the LSB cells are
available from the two’s complementer. Therefore, reduction starts after the first
H lines of multiplication have been executed and remains delayed for

⌈
l

W

⌉
cycles

(required for the computation of H lines). Eventually, the CS results need to be
transformed back to two’s complement number representation (by addition #1
and addition #2 ) before they are combined to the result by addition #3. This
is necessary since the result lies in the range of 0 to 2M − 1, and requires a
final comparison against M , which is difficult to handle in CS representation.
The comparison including a necessary subtraction of M is performed in another
functional unit introduced later. Equation (1) gives the number of required cycles
cMM to perform a Montgomery multiplication with the proposed multi-cycle
architecture for the general case.

cMM =
(⌈

l

H

⌉
+ 1

)
·
⌈

l

W

⌉
+ 2 (1)

For evaluation, we implemented this multi-cycle Montgomery-multiplier (MMM)
in three different sizes (W×H): 32×8 bit, 64×8 bit and 128×8 bit, resulting
in an execution time of 266, 134 and 68 cycles respectively. However, the area
savings for smaller (and slower) architectures do not scale as well as the execution
time. This results from the increased complexity of the required multiplexing for
smaller MMM units. In order to keep the amount of multiplexers small, we
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Fig. 2. Structure of the multi-cycle Montgomery-multiplier (MMM)

designed special 256-bit shift registers, that enable a circular shift by W bits for
the operands B, M and the corresponding intermediate CS values. This solution
is suitable, since the input values are accessed in consecutive order by blocks
of W bits. Still, area savings when scaling a 128×8-bit architecture down to
32×8-bit are about 50%.

Fig. 2 shows the overall resulting structure of the MMM unit. The two’s
complementer is included in the multiplication unit, while the reduction unit
contains additional LSB cells that produce input for the gFA cells on the fly (as
depicted in Fig. 1). The input shift registers are initialized step by step during
the first

⌈
l

W

⌉
cycles. After the whole process, the result is stored in the registers

for temporary CS values (CM , SM , CR, SR). The adders for the final summations
are not depicted.

An advantage of stepwise executing the multiplication is that the total mul-
tiplication width l can be configured at runtime in steps of W . The overall
dependence of the execution time on l is quadratic. Modular multiplication is
thus significantly faster for smaller multiplication width. This may be interesting
for ECC applications requiring lower security.

Similar to the MMM unit we developed a multi-cycle adder unit for modular
additions and subtractions, which reads two operands block-wise and simultane-
ously. For evaluation, a 32-bit and a 64-bit version of this unit have been imple-
mented. Details are omitted here since the implementation is straightforward.

Both, MMM and adder unit require a final subtraction of M whenever the
result exceeds this prime number. A special writeback unit takes care of this
subtraction right before writing back the data, operating block-wise in multiple
cycles as well. This unit has been implemented with a width of 32, 64 and 128 bit.

During the execution of multi-cycle operations for modular addition, sub-
traction and multiplication the pipeline is stalled. Three special instructions
are implemented triggering these operations. Instruction arguments are regis-
ters containing the starting address of each of the three 256-bit operands. Since
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the modulus M is not changed during an application run, a special register is
utilized and implicitly accessed by the instructions. This register is initialized
with p at the beginning of an application via another dedicated instruction.

3.2 Data Access: An Enhanced Memory Architecture

Due to the large width of the operands, the existing 16x32-bit general purpose
register file could only store two operands simultaneously. This results in frequent
memory accesses consuming additional cycles and thus decreasing the overall
performance of the architecture significantly. Enlarging the register file would be
very costly in terms of area consumption. Hence, the instructions triggering the
multi-cycle operations for modular addition, subtraction and multiplication are
implemented as memory-to-memory instructions. This way, the memory accesses
can be almost completely hidden in the actual computation.

The resulting throughput demands on the memory system are quite high. Es-
pecially the modular addition/subtraction requires a throughput higher than one
32-bit word per cycle. The following two evident mechanisms to increase mem-
ory throughput for ASIP designs are not well suited here: First, using memories
with multiple ports is costly. The number of ports is limited to two for SSRAMs
and the required area is roughly doubled. Second, designing a dedicated system
with several (often specialized) memories targets highest performance, but is
a complex task. The data memory space gets segmented irregularly, making it
difficult to access and manage for a compiler.

Due to the drawbacks of these two approaches we apply a different technique,
which we would like to introduce as transparent interleaved memory segmentation
(TIMS). Its basic principle is to extend the number of ports to the memory
system in order to increase the throughput by using memory banks. These banks
are selected on the basis of address bits and can be accessed in parallel. In case of
our ASIP, the LSBs of the address are used for the memory bank selection. This
results in an addressing scheme, where the memory is selected by calculating the
address modulo the number of memories md, which has to be a power of two.

In principle, the distribution of accesses to a banked memory system can be
handled in software or hardware. However, memory-access conflicts can occur
when simultaneous accesses refer to the same memory. Solving these conflicts in
software requires an extension of the C compiler in order to avoid multiple simul-
taneous accesses to the same memory bank. If these conflicts can be ruled out at
compile time, this approach results in very efficient code. However, if the conflicts
do occur at runtime, additional code to resolve the conflict needs to be included
in the target software at the cost of increased execution time. Especially when
pointers are used and function calls have a substantial degree of nesting (which
is the case for the targeted pairing applications), detecting the conflicts at com-
pile time is often impossible. It requires a significant extension of the C compiler
functionality and comes at the cost of increased code size and execution time.

However, due to fairly simple mechanisms and regularity, the distribution
of accesses to the memories and resolution of access conflicts can be handled
efficiently at runtime by a dedicated hardware block, the memory-access unit
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(MAU) that distributes the memory accesses from the pipeline to the correct
memory. Memory accesses are requested concurrently by the pipeline on demand
resulting in multiple independent read or write connections (unidirectional) be-
tween pipeline and MAU. The MAU takes care of granting accesses. Therefore,
a simple handshaking protocol is used between pipeline and MAU, which is able
to confirm a request within the same cycle in order not to cause any delay cycles
when trying to access the fast SSRAMs.

One advantage of this mechanism is, that from the perspective of the core,
the memory space remains unchanged, regardless of the number of memories.
Existing load and store instructions are sufficient to access the whole data mem-
ory space. Even when special instructions perform concurrent memory accesses,
a modification in the memory system (e.g. changing number of memories) does
not result in a change of the core or the C compiler. This enables orthogonal im-
plementation and modification of the base architecture and the memory system.

A priority-based hardware resolution of access conflicts is implemented in the
MAU in two ways. Static priorities can be used if certain accesses always have
higher priority than others. For instance write accesses from later pipeline stages
should always have higher priority than read accesses from prior stages. When
the priority is changing at runtime, dynamic priority management is required.
Then, dedicated additional communication lines between core and MAU indicate
a change of priority. In our design this is required by the adder unit.

Fig. 3 depicts the four different connection schemes between MAU and
pipeline. The number and type of connections between MAU and pipeline are
determined by the number and type of independent memory accesses initiated
by the pipeline, while the number of actual memory connections depends on
the number of attached data memories md (md = 2 in this example). For sake
of clarity, the actual interconnections within the MAU have been omitted in
Fig. 3. The access-control block combines the enable and priority signals with
the log2(md) LSBs of the address signals from the read and write connections in
order to produce the grants. At the same time the enable signals for the SSRAMs
are set accordingly by this unit. It also controls the crossbars that are switching
the correct address, read data and write data signals to the memory ports. Please
note, that the read data crossbar is switched with one cycle delay compared to
the address crossbar in order to be in sync with the single cycle read latency
of the SSRAMs. Effects of TIMS on physical parameters like timing and area
consumption are discussed in detail in the result section.

Overall, the TIMS approach enables to extend any existing architecture with
memory banks without altering the existing pipeline or the basic instruction set.
The specialized memory-to-memory instructions can take full advantage of paral-
lel accesses to these banks reducing execution time. It is not necessary to extend
the C compiler of the base architecture with more than intrinsics for the special
instructions. The compiled executable can be used on any architecture variant
independently from the number of memory banks. As the MAU hides the actual
memory system from the pipeline, the number of memory banks can be changed
without modification to the pipeline enabling a fast design space exploration.
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Fig. 3. Interconnect of memory-access unit (MAU)

Still, memory access collisions decrease the performance of the system and
cannot be avoided completely due to the automatic address management of
the C compiler. However, in our case this effect is kept minimal due to the
good distribution of the 256-bit words. For additions and multiplications this
causes a maximum additional delay of one cycle only. This results in a maximum
performance degradation caused by memory-access conflicts of less than 2% for
any of the implemented pairing applications.

4 Results

Overall, we have implemented nine variants of our ASIP with different design
parameters regarding number of data memories and width of the computational
units for modular multiplication, modular addition and multi-cycle writeback
(Table 1). The number of data memories is closely coupled with the width of the
adder and the writeback unit. Other combinations would operate functionally
correctly, but would waste either performance or area. The implementation of
a 16-bit adder for the single memory case would not significantly reduce area
due to additional multiplexing and is therefore neglected. All synthesis results
have been obtained with Synopsys Design Compiler [45] using a 130 nm CMOS
standard cell library with a supply voltage of 1.2 V and are given before place
and route. The memories are synchronous single-port SRAMs with a latency
of one cycle. The total data-memory size is 2048 words for each of the design
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Table 1. Implemented design variants of the ASIP for pairings

Variant 128m4 64m4 32m4 128m2 64m2 32m2 128m1 64m1 32m1

mod mul size (bit) 128×8 64×8 32×8 128×8 64×8 32×8 128×8 64×8 32×8
mod add width (bit) 64 64 64 32 32 32 32 32 32
writeback width (bit) 128 128 128 64 64 64 32 32 32
# data memories 4 4 4 2 2 2 1 1 1

total areaa (kGates) 195 186 182 164 153 148 145 134 130
core areab (kGates) 96 87 83 97 86 81 93 83 79
timing (ns) 3.69 3.65 3.52 2.96 2.97 3.02 2.95 3.03 3.09

Optimal Ate (ms) 17.5 21.8 29.9 15.8 19.4 27.3 19.2 23.4 32.0
Ate (ms) 25.3 31.4 42.6 22.8 27.9 38.9 27.6 33.5 45.6
η (ms) 32.3 39.5 52.8 28.8 35.0 48.1 34.6 41.6 56.2
Tate (ms) 38.5 47.0 62.7 34.4 41.6 57.1 41.1 49.5 65.3
Compressed η (ms) 38.6 55.0 86.2 34.5 48.2 77.1 41.6 56.5 85.8
Compressed Tate (ms) 48.2 68.9 107.8 43.2 60.3 96.5 52.0 70.7 107.3
a Including area for data memories.
b Without area for memories, but including area for MAU.

variants. The program memory is not included in the area reports, since it is not
changing through the different designs and could be implemented differently (as
ROM, RAM, synthesized logic etc.) depending on the final target system. The
plain RISC (32-bit, 5-stage pipeline, 32-bit integer multiplier) without memories
and extensions consumes 26 kGates and achieves a timing of 2.89 ns.

Fig. 4 shows the area distribution of the different ASIP variants. While the
basic core only shows moderate area increase from 17 to 21 kGates for all

Fig. 4. ASIP area consumption and distribution
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Fig. 5. Area-time trade-off for different ASIP variants (Optimal Ate pairing)

variants (resulting from decoder extensions and additional pipeline registers),
the area for the register file increases from 9 to 28 kGates compared to the plain
RISC. The reason are specialized 256-bit registers storing the prime number
and intermediate results of the modular operations. These registers are indepen-
dent from the width of any of the additional functional units. The area of the
cryptographic extensions is dominated by the MMM unit.

Observe that splitting the memory into two of half the size results in a data-
memory area increase of 31%. Utilizing a dual port memory instead would in-
crease area by over 83%. The area overhead due to the MAU lies between only
0.5 and 1.2 kGates, when two memories are attached. Even for four attached
memories it is below 3.5 kGates.

However, limitations of TIMS utilizing the proposed MAU become visible
when looking at the timing of the different variants of the ASIP. While attach-
ing one or two data memories barely affects the critical path with respect to
the original RISC architecture (within design tool accuracy, see Table 1), an in-
creased delay is observed when four memories are attached. This delay is caused
by the complexity of priority resolution for four attached memories combined
with four independent memory accesses with dynamic priority, which are neces-
sary to implement the 64-bit adder.

The execution times of all six implemented pairing applications on all nine
ASIP variants are shown in Table 1. For all applications performance improves
significantly with increasing width of the MMM. Also, the number of cycles de-
creases when increasing the number of connected data memories. Unfortunately,
the longer critical path of the four-memory system leads to a lower performance
than for the designs with two memories. The overall fastest design is variant
128m2, executing the Optimal-Ate pairing in 15.8 ms. With the smallest and
slowest variant completing the task in 32.0 ms, the user is offered a quite broad
design space enabling trade-offs.

In order to evaluate the efficiency of the different design variants, Fig. 5 shows
the area-time trade-off for the Optimal-Ate pairing. It can be seen clearly that the
best AT product is obtained by the 128m2 design. This shows the importance of
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investigating the memory architecture of ASIPs during design-space exploration.
In our case the best results are obtained with TIMS and two data memories in
spite of the considerable area increase due to the memory splitting.

4.1 Performance Comparison

To our best knowledge there exists no literature reporting performance figures
resulting from actual implementations of cryptographic pairings on dedicated
hardware achieving a 124-bit security level. Hardware implementations for lower
security levels can obviously be much faster than the proposed design.

Table 2 gives an overview of performance and area consumption for various
pairing implementations on dedicated hardware; the given security levels are
according to [9]. Whenever more than one design variant is given in a publication,
the fastest one with the highest security level is listed in the table. The previous
results listed in Table 2 are hardly comparable to the design proposed in this
paper. Not only do they achieve lower security levels, they also mainly focus on
FPGAs rather than standard cells and mostly use curves over binary or ternary
fields. In the following we therefore give a comparison with standard cell designs
which accelerate Fp arithmetic for elliptic-curve cryptography and finally discuss
our design in the context of smart cards.

Comparison with standard cell designs for ECC. Other publications de-
scribing dedicated-hardware implementations for ECC over fields of large prime

Table 2. Performance and area comparison for pairings

Freq. Field
Secu-

Time
Design Technology Area

(MHz)
Pairing

Characteristic
rity

(ms)
(bit)

this work 130 nm std. cell 97 kGates 338 Opt. Ate 256-bit prime 124 15.8
[14] Xilinx xc2vp20 8 kSlices 90 Tate 3 97 0.298
[14] Xilinx xc2vp20 8 kSlices 115 Tate 2 97 0.327
[21] Xilinx xc2vp100 44 kSlices 33 Tate 2 80 0.146

[18], [46] Xilinx xc2vp100 38 kSlices 72 Tate 2 76 0.049
[20] Xilinx xc2v6000 25 kSlices 47 Tate 2 76 2.81
[19] Xilinx xc2v6000 15 kSlices 40 Tate 2 76 3.0
[27] Xilinx xc2v8000 34 kSlices 135 Tate 512-bit prime 72 1.61
[23] Xilinx xc4vlx200 74 kSlices 199 ηT 3 68 0.008
[16] Altera ep2c35 19 kLEs 147 ηT 3 68 0.027
[17] 180 nm std. cell 194 kGates 200 ηT 3 68 0.047
[15] Xilinx xc4vlx15 2 kSlices 203 ηT 3 68 0.137
[25] Xilinx xc2vp100 15 kSlices 85 ηT 3 68 0.183
[26] Xilinx xc2vp200 14 kSlices 77 Tate 3 68 0.251
[22] Xilinx xc2vp4 4 kSlices 150 Tate 3 68 0.432
[24] Xilinx xc2vp125 56 kSlices 15 Tate 3 68 0.85
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Table 3. Performance and area comparison for scalar multiplication

Design Technology Area
Freq. Scalar log2(|Fp|) Time

(MHz) Mult. Alg. (ms)

this work 130 nm std. cell 97 kGates 338 NAF recoding 256 0.998
[30] 130 nm std. cell 122 kGates 556 NAF recoding 256 1.01
[29] 130 nm std. cell 107 kGates 138 NAF recoding 256 2.68

characteristic give performance figures in terms of time needed for a scalar mul-
tiplication with a scalar k of a certain size, i.e. the computation of [k]P for some
P ∈ E(Fp). An overview is presented in Table 3.

In order to compare the results of this work with these architectures we im-
plemented scalar multiplication on the 256-bit Barreto-Naehrig curve that we
also used for pairing computation. Our design does not accelerate field inversion
through hardware, so we use Jacobian projective coordinates to represent the
points on the curve, trading inversions for several multiplications.

A scalar multiplication with a 256-bit scalar takes 0.998 ms for the 128m2
variant of the proposed design. This number includes transformation of the scalar
into NAF and a transformation from Jacobian into affine coordinates at the end.
Note that ASIP variant 128m2 is not only slightly faster than the designs in [29]
and [30], but also consumes less area.

Application to smart cards. In [10] (updated in [13]), Devigili et al. report
5.17 s for the computation of the Ate pairing over a 256-bit Barreto-Naehrig
curve on a Philips HiPerSmart

TM
smart card operating at 20.57 MHz. This smart

card contains a SmartMIPS-based 32-bit architecture and is manufactured in
180 nm technology. For interactive processes this execution time is not sufficient
even when the smart card operates at its maximum frequency of 38MHz. Our de-
sign achieves—synthesized in a 180 nm CMOS standard cell library with a supply
voltage of 1.8 V—over 230 MHz. Even running our smallest design variant 32m1
at the clock speed of 20.57 MHz (leaving a substantial margin for place and route
and implementation of protection mechanisms against side channel attacks), the
Ate pairing takes 0.71 s and the Optimal Ate pairing is executed in 0.50 s, which
is already sufficient for interactive processes. Depending on the design variant
used, speedups of over 20× could be achieved. This gives an impression of the
achievable performance increase for the computation of cryptographic pairings
in the embedded domain when more specialized hardware is used.

5 Conclusion and Outlook

In this paper we presented a design-space exploration of an ASIP for computation
of cryptographic pairings over BN curves. The design is based on extensions of an
existing RISC core, which are completely transparent and independent from the
original pipeline. Therefore, they could be applied to any RISC-like architecture,
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which can stall the pipeline during multi-cycle operations. The extensions are
adaptable in terms of timing and allow for a trade-off between execution time
and area. A flexible and transparent memory-architecture extension making use
of multiple memories (TIMS) enables fast design space exploration and the usage
of existing compilers, since the address space remains unsegmented. We are—up
to our knowledge—the first to implement and time a complete implementation
of high-security cryptographic pairings on dedicated specialized hardware.

Future objectives include countermeasures against side-channel attacks, which
are not implemented in the current design, either in hard- or in software.

References

1. Menezes, A.J., Okamoto, T., Vanstone, S.A.: Reducing elliptic curve logarithms
to logarithms in a finite field. IEEE Trans. Information Theory 39(5), 1639–1646
(1993)

2. Frey, G., Rück, H.G.: A remark concerning m-divisibility and the discrete logarithm
in the divisor class group of curves. Math. of Computation 62(206), 865–874 (1994)

3. Joux, A.: A one round protocol for tripartite Diffie-Hellman. In: Bosma, W. (ed.)
ANTS 2000. LNCS, vol. 1838, pp. 385–394. Springer, Heidelberg (2000)

4. Boneh, D., Franklin, M.: Identity based encryption from the Weil pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

5. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. J.
Cryptology 17(4), 297–319 (2004)

6. Boneh, D.: A brief look at pairings based cryptography. In: Proceedings of the 48th
Annual IEEE Symposium on Foundations of Computer Science – FOCS 2007, pp.
19–26 (2007)

7. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In:
Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer,
Heidelberg (2006)

8. Barker, E., Barker, W., Burr, W., Polk, W., Smid, M.: Recommendation for key
management – part 1: General (revised). National Institute of Standards and
Technology, NIST Special Publication 800-57 (2007)
http://csrc.nist.gov/publications/nistpubs/800-57/

sp800-57-Part1-revised2 Mar08-2007.pdf
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comparison between hardware accelerators for the modified Tate pairing over F2m

and F3m . In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209,
pp. 297–315. Springer, Heidelberg (2008)

15. Beuchat, J.-L., Brisebarre, N., Detrey, J., Okamoto, E., Shirase, M., Takagi, T.:
Algorithms and arithmetic operators for computing the ηt pairing in characteristic
three. IEEE Trans. Comput. 57(11), 1454–1468 (2008)

16. Beuchat, J.-L., Shirase, M., Takagi, T., Okamoto, E.: An algorithm for the ηt

pairing calculation in characteristic three and its hardware implementation. In:
Proc. 18th IEEE Symp. Computer Arithmetic – ARITH 2007, pp. 97–104 (2007)

17. Beuchat, J.-L., Doi, H., Fujita, K., Inomata, A., Kanaoka, A., Katouno, M.,
Mambo, M., Okamoto, E., Okamoto, T., Shiga, T., Shirase, M., Soga, R., Tak-
agi, T., Vithanage, A., Yamamoto, H.: FPGA and ASIC implementations of the ηt

pairing in characteristic three. Cryptology ePrint Archive, Report 2008/280 (2008),
http://eprint.iacr.org/2008/280

18. Shu, C., Kwon, S., Gaj, K.: FPGA accelerated Tate pairing based cryptosystems
over binary fields. In: Proc. IEEE Int’l Conf. Field Programmable Technology –
FPT 2006, pp. 173–180 (2006)

19. Keller, M., Ronan, R., Marnane, W., Murphy, C.: Hardware architectures for the
Tate pairing over GF(2m). Computers & Electrical Eng. 33(5-6), 392–406 (2007)

20. Keller, M., Kerins, T., Crowe, F., Marnane, W.: FPGA implementation of a
GF(2m) Tate pairing architecture. In: Bertels, K., Cardoso, J.M.P., Vassiliadis,
S. (eds.) ARC 2006. LNCS, vol. 3985, pp. 358–369. Springer, Heidelberg (2006)

21. Ronan, R., Ó hÉigeartaigh, C., Murphy, C., Scott, M., Kerins, T.: FPGA accel-
eration of the Tate pairing in characteristic 2. In: Proc. IEEE Int’l Conf. Field
Programmable Technology, pp. 213–220 (2006)

22. Grabher, P., Page, D.: Hardware acceleration of the Tate pairing in characteristic
three. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 398–411.
Springer, Heidelberg (2005)

23. Jiang, J.: Bilinear pairing (Eta T pairing) IP core. Technical report (2007),
http://www.cs.cityu.edu.hk/~ecc/doc/etat_datasheet_v2.pdf

24. Kerins, T., Marnane, W.P., Popovici, E.M., Barreto, P.S.L.M.: Efficient hardware
for the Tate pairing calculation in characteristic three. In: Rao, J.R., Sunar, B.
(eds.) CHES 2005. LNCS, vol. 3659, pp. 412–426. Springer, Heidelberg (2005)
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26. Kömürcü, G., Savas, E.: An efficient hardware implementation of the Tate pairing
in characteristic three. In: Proc. Third Int’l Conf. Systems – ICONS 2008, pp.
23–28 (2008)

27. Barenghi, A., Bertoni, G., Breveglieri, L., Pelosi, G.: A FPGA coprocessor for
the cryptographic Tate pairing over Fp. In: Proc. Fifth Int’l Conf. Information
Technology: New Generations – ITNG 2008, pp. 112–119 (2008)
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Abstract. In this paper we propose a new family of very efficient hard-
ware oriented block ciphers. The family contains six block ciphers divided
into two flavors. All block ciphers share the 80-bit key size and security
level. The first flavor, KATAN, is composed of three block ciphers, with
32, 48, or 64-bit block size. The second flavor, KTANTAN, contains the
other three ciphers with the same block sizes, and is more compact in
hardware, as the key is burnt into the device (and cannot be changed).

The smallest cipher of the entire family, KTANTAN32, can be imple-
mented in 462 GE while achieving encryption speed of 12.5 KBit/sec (at
100 KHz). KTANTAN48, which is the version we recommend for RFID
tags uses 588 GE, whereas KATAN64, the largest and most flexible can-
didate of the family, uses 1054 GE and has a throughput of 25.1 Kbit/sec
(at 100 KHz).

1 Introduction

Low-end devices, such as RFID tags, are deployed in increasing numbers each
and every day. Such devices are used in many applications and environments,
leading to an ever increasing need to provide security (and privacy). In order to
satisfy these needs, several suitable building blocks, such as secure block ciphers,
have to be developed.

The problem of providing secure primitives in these devices is the extremely
constrained environment. The primitive has to have a small footprint (where
any additional gate might lead to the solution not being used), reduced power
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consumption (as these devices either rely on a battery or on an external elec-
tromagnetic field to supply them the required energy), and with sufficient speed
(to allow the use of the primitive in real protocols).

The raising importance as well as the lack of secure and suitable candidates,
has initiated a research aiming to satisfy these requirements. The first candidate
block cipher for these devices was the DESL algorithm [19]. DESL is based on the
general structure of DES, while using a specially selected S-box. DESL has key
size of 56 bits and a footprint of 1848 GE. The second candidate for the mission
is the PRESENT block cipher [4]. PRESENT has an SP-Network structure, and
it can be implemented using the equivalent of 1570 GE. A more dedicated im-
plementation of PRESENT in 0.35µm CMOS technology reaches 1000 GE [20].1

The same design in 0.25µm and 0.18µm CMOS technology consumes 1169 and
1075 GE, respectively.

Some stream ciphers, such as grain [11] and trivium [6] may also be considered
fit for these constrained environments, with 1293 and 749 GE2 implementations,
respectively. However, some protocols cannot be realized using stream ciphers,
thus, leaving the issue of finding a more compact and secure block cipher open.

In this paper we propose a new family of block ciphers composed of two
sets. The first set of ciphers is the KATAN ciphers, KATAN32, KATAN48 and
KATAN64. All three ciphers accept 80-bit keys, and have a different block size
(n-bit for KATANn). These three block ciphers are highly compact and achieve
the minimal size (while offering adequate security). The second set, composed
of KTANTAN32, KTANTAN48, and KTANTAN64, realize even smaller block
ciphers in exchange for agility. KTANTANn is more compact than KATANn,
but at the same time, is suitable only for cases where the device is initialized with
one key that can never be altered, i.e., for the KTANTAN families, the key of
the device is burnt into the device. Thus, the only algorithmic difference between
KATANn and KTANTANn is the key schedule (which may be considered slightly
more secure in the KATANn case).

While in this paper we put emphasis on the smallest possible variants, it can be
easily seen that increasing the speed of the implementation is feasible with only a
small hardware overhead. Therefore, we provide more implementation results in
Appendix B. We implemented all six ciphers of the family using an fsc0l d sc tc
0.13µm family standard cell library tailored for UMC’s 0.13µm Low Leakage
process. We compare our results with previous constructions in Table 1. We note
here that some of the implementations achieve an amazingly low gate count due
to the number of GE per bit of memory used. This is the issue inherent not only
to the encryption algorithm, but also a matter of the technology that is used.
Thus, we give a detailed explanation addressing the possible bit representation.

1 Comparing to 0.13µm CMOS technology we note here that the physical size of the
chip (in µm2) is about 8 times bigger than the design with the same number of gate
equivalents in 0.13µm CMOS technology.

2 This work is a full-custom design implemented with C2MOS dynamic logic [16]. The
die size is equivalent to 749 standard CMOS logic NAND gates. The clock frequency
required for this solution is far from being suitable for constrained environments.
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Table 1. Comparison of Ciphers Designed for Low-End Environments (optimized for
size)

Cipher Block Key Size Gates per Throughput� Logic
(bits) (bits) (GE) Memory Bit (Kb/s) Process

AES-128 [8] 128 128 3400 7.97 12.4 0.35 µm
AES-128 [10] 128 128 3100 5.8 0.08 0.13 µm
HIGHT [12] 64 128 3048 N/A 188.25 0.25 µm
mCrypton [15] 64 64 2420 5 492.3 0.13 µm
DES [19] 64 56 2309† 12.19 44.4 0.18 µm
DESL [19] 64 56 1848† 12.19 44.4 0.18 µm
PRESENT-80 [4] 64 80 1570 6 200 0.18 µm
PRESENT-80 [20] 64 80 1000 N/A 11.4 0.35 µm
Grain [9] 1 80 1294 7.25 100 0.13 µm
Trivium [16] 1 80 749 2♦ 100‡ 0.35 µm
KATAN32 32 80 802 6.25 12.5 0.13 µm
KATAN48 48 80 927 6.25 18.8 0.13 µm
KATAN64 64 80 1054 6.25 25.1 0.13 µm
KTANTAN32 32 80 462 6.25 12.5 0.13 µm
KTANTAN48 48 80 588 6.25 18.8 0.13 µm
KTANTAN64 64 80 688 6.25 25.1 0.13 µm
� — A throughput is estimated for frequency of 100 KHz.
† — Fully serialized implementation (the rest are only synthesized).
‡ — This throughput is projected, as the chip requires higher frequencies.
♦ — This is a full-custom design using C2MOS dynamic logic.

We organize this paper as follows: In Section 2 we describe the design criteria
used in the construction of the KATAN family. Section 3 presents the building
blocks used in our construction as well as the implementation issues related to
them. In Sections 4 and 5 we present the KATAN and the KTANTAN families,
respectively. The security analysis results are given in Section 6. Several com-
partive tradeoffs concerning the implemtnation speed and size of the KATAN
and KTANTAN families are reported in Appendix B. Finally, we summarize our
results in Section 7.

2 Motivation and Design Goals

Our main design goal was to develop a secure 80-bit block cipher with as min-
imal number of gates as possible. Such ciphers are needed in many constrained
environments, e.g., RFID tags and sensor networks.

While analyzing the previous solutions to the problem, we have noticed that
the more compact the cipher is, a larger ratio of the area is dedicated for storing
the intermediate values and key bits. For example, in grain [11], almost all of
the 1294 gates which are required, are used for maintaining the internal state.
This phenomena also exist in DESL [19] and PRESENT [4], but to a lesser
degree. This follows two-fold reasoning: First, stream ciphers need an internal
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state of at least twice the security level while block ciphers are exempt from
this requirement. Second, while in stream ciphers it is possible to use relatively
compact highly nonlinearity combining function, in block ciphers the use of S-
box puts a burden on the hardware requirements.

Another interesting issue that we have encountered during the analysis of
previous results is the fact that various implementations not only differ in the
basic gate technology, but also in the number of gate equivalents required for
storing a bit. In the standard library we have used in this work, a simple flip-flop
implementation can take between 5 and 12 GE. This, of course, depends on the
type of the flip-flop that is used (scan or standard D flip-flop, with or without
set/reset signals, input and output capacitance, etc). Typical flip-flops that are
used to replace a combination of a multiplexer and a flip-flop are, so called, scan
flip-flops of which the most compact version, in our library, has a size equivalent
to 6.25 GE. These flip-flops basically act as a combination of a simple D flip-flop
and a MUX2to1. Use of this type of flip-flops is beneficial both for area and
power consumption.

Here, we can notice that in PRESENT [4], the 80-bit key is stored in an area
of about 480 GE, i.e., about 6 GE for one bit of memory, while in DESL, the
64-bit state is stored in 780 GE (about 12 GE for a single bit). As we have
already discussed, this is related to many different factors such as the type of
flip-flops, technology, library, etc. Finally, we note that in some cases (which do
not necessarily fit an RFID tag due to practical reasons) it is possible to reduce
the area required for storing one memory bit to only 8 transistors (i.e., about
2 GE) [16]. This approach achieves a much better comparison between different
implementations, as usually changing the memory technology we can relatively
easily counter the effects of implementers knowledge (or lack of), and discuss
the true size of the proposed algorithm.

An additional issue which we observed is that in many low-end applications,
the key is loaded once to the device and is never changed. In such instances,
it should be possible to provide an encryption solution which can handle a key
which is not stored in memory, preferably in a more efficient manner.

A final issue related to reducing the area requirements of the cipher is the block
size. By decreasing the block size, it is possible to further reduce the memory
complexity of the cipher. On the other hand, reducing the plaintext size to less
than 32 bits has strong implications on the security of the systems using this
cipher. For example, due to the birthday bound, a cipher with block size smaller
than 32 bits is distinguishable from a family of random permutations after 216

blocks.
The life span of a simple RFID tag indeed fits this restriction, but some RFID

tags and several devices in sensor networks may need to encrypt larger amounts
of data (especially if the used protocols require the encryption of several values
in each execution). Thus, we decided to offer 3 block sizes to implementers —
32 bits, 48 bits, and 64 bits.
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Our specific design goals are as follows:

– For an n-bit block size, no differential characteristic with probability greater
than 2−n exists for 128 rounds (about half the number of rounds of the
cipher).

– For an n-bit block size, no linear approximation with bias greater than 2−n/2

exists for 128 rounds.
– No related-key key-recovery or slide attack with time complexity smaller

than 280 exists on the entire cipher.
– High enough algebraic degree for the equation describing half the cipher to

thwart any algebraic attack.

We note that the first two conditions ensure that no differential-linear attack (or
a boomerang attack) exist for the entire cipher as well. We also had to rank the
possible design targets as follows:

– Minimize the size of the implementation.
– Keeping the critical path as short as possible.
– Increase the throughput of the implementation (as long as the increase in

the foot print is small).
– Decrease the power consumption of the implementation.

3 General Construction and Building Blocks

Following the design of KeeLoq [17], we decided to adopt a cipher whose structure
resembles a stream cipher. To this extent we have chosen a structure which
resembles trivium [6], or more precisely, its two register variant bivium as the
base for the block cipher. While the internal state of trivium was 288 bits to
overcome the fact that each round, one bit of internal state is revealed, in the
block cipher this extra security measure is unnecessary. Hence, we select the
block size and the internal state of the cipher to be equal.

The structure of the KATAN and the KTANTAN ciphers is very simple — the
plaintext is loaded into two registers (whose lengths depend on the block size).
Each round, several bits are taken from the registers and enter two nonlinear
Boolean functions. The output of the Boolean functions is loaded to the least
significant bits of the registers (after they were shifted). Of course, this is done
in an invertible manner. To ensure sufficient mixing, 254 rounds of the cipher
are executed.

We have devised several mechanisms used to ensure the security of the cipher,
while maintaining a small foot print. The first one is the use of an LFSR instead
of a counter for counting the rounds and to stop the encryption after 254 rounds.
As there are 254 rounds, an 8-bit LFSR with as sparse polynomial feedback can
be used. The LFSR is initialized with some state, and the cipher has to stop
running the moment the LFSR arrives to some predetermined state.

We have implemented the 8-bit LFSR counter, and the result fits a gate
equivalent of 60 gates, while using an 8-bit counter (the standard alternative)
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took 80 gate equivalents. Moreover, the expected speed of the LFSR (i.e. the
critical path) is shorter than the one for the 8-bit counter.

Another advantage for using LFSR is the fact that when considering one of the
bits taken from it, we expect a sequence which keeps on alternating between 0’s and
1’s in a more irregularmanner than in a counter (of course the change is linear). We
use this feature to enhance the security of our block ciphers as we describe later.

One of the problems that may arise in such a simple construction is related
to self-similarity attacks such as the slide attacks. For example, in KeeLoq [17]
the key is used again and again. This made KeeLoq susceptible to several slide
attacks (see for example [5,13]). A simple solution to the problem is to have the
key loaded into an LFSR with a primitive feedback polynomial (thus, altering the
subkeys used in the cipher). This solution helps the KATAN family to achieve
security against the slide attack.

While the above building block is suitable when the key is loaded into memory,
in the KTANTAN family, it is less favorable (as the key is hardcoded in the
device). Thus, the only means to prevent a slide attack is by generating a simple,
non-repetitive sequence of bits from the key. To do so, we use the “round counter”
LFSR, which produces easily computed bits, that at the same time follow a non-
repetitive sequence.

The third building block which we use prevents the self-similarity attacks and
increases the diffusion of the cipher. The cipher actually has two (very similar
but distinct) round functions. The choice of the round function is made according
to the most significant bit of the round-counting LFSR. This irregular update
also increases the diffusion of the cipher, as the nonlinear update affects both
the differential and the linear properties of the cipher.

Finally, both KATAN and KTANTAN were constructed such that an imple-
mentation of the 64-bit variants can support the 32-bit and the 48-bit variants
at the cost of small extra controlling hardware. Moreover, given the fact that
the only difference between a KATANn cipher and KTANTANn is the way the
key is stored and the subkeys are derived, it is possible to design a very compact
circuit that support all six ciphers.

4 The KATAN Set of Block Ciphers

The KATAN ciphers compose of three variants: KATAN32, KATAN48 and
KATAN64. All the ciphers in the KATAN family share the key schedule which
accepts an 80-bit key and 254 rounds as well as the use of the same nonlinear
functions.

We start by describing KATAN32, and describe the differences for KATAN48
and KATAN64 later. KATAN32, the smallest of this family has a plaintext and
ciphertext size of 32 bits. The plaintext is loaded into two registers L1, and L2
(of respective lengths of 13 and 19 bits) where the least significant bit of the
plaintext is loaded to bit 0 of L2, while the most significant bit of the plaintext
is loaded to bit 12 of L1. Each round, L1 and L2 are shifted to the left (bit i is
shifted to position i + 1), where the new computed bits are loaded in the least
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significant bits of L1 and L2. After 254 rounds of the cipher, the contents of
the registers are then exported as the ciphertext (where bit 0 of L2 is the least
significant of the ciphertext).

KATAN32 uses two nonlinear function fa(·) and fb(·) in each round. The
nonlinear function fa and fb are defined as follows:

fa(L1) = L1[x1] ⊕ L1[x2] ⊕ (L1[x3] · L1[x4]) ⊕ (L1[x5] · IR)⊕ ka

fb(L2) = L2[y1]⊕ L2[y2] ⊕ (L2[y3] · L2[y4]) ⊕ (L2[y5] · L2[y6]) ⊕ kb

where IR is irregular update rule (i.e., L1[x5] is XORed in the rounds where the
irregular update is used), and ka and kb are the two subkey bits. For round i,
ka is defined to be k2i, whereas kb is k2i+1. The selection of the bits {xi} and
{yj} are defined for each variant independently, and listed in Table 2.

After the computation of the nonlinear functions, the registers L1 and L2 are
shifted, where the MSB falls off (into the corresponding nonlinear function), and
the LSB is loaded with the output of the second nonlinear function, i.e., after the
round the LSB of L1 is the output of fb, and the LSB of L2 is the output of fa.

The key schedule of the KATAN32 cipher (and the other two variants KATAN48
and KATAN64) loads the 80-bit key into an LFSR (the least significant bit of
the key is loaded to position 0 of the LFSR). Each round, positions 0 and 1 of
the LFSR are generated as the round’s subkey k2i and k2i+1, and the LFSR is
clocked twice. The feedback polynomial that was chosen is a primitive polyno-
mial with minimal hamming weight of 5 (there are no primitive polynomials of
degree 80 with only 3 monomials):

x80 + x61 + x50 + x13 + 1.

We note that these locations compose a full difference set, and thus, are less likely
to lead to a guess and determine attacks faster than exhaustive key search.

In other words, let the key be K, then the subkey of round i is ka||kb =
k2·i||k2·i+1 where

ki =
{

Ki for i = 0 . . . 79
ki−80 ⊕ ki−61 ⊕ ki−50 ⊕ ki−13 Otherwise

The differences between the various KATAN ciphers are:

– The plaintext/ciphertext size,
– The lengths of L1 and L2,
– The position of the bits which enter the nonlinear functions,
– The number of times the nonlinear functions are used in each round.

While the first difference is obvious, we define in Table 2 the lengths of the
registers and the positions of the bits which enter the nonlinear functions used
in the ciphers. The selection of the bits {xi} and {yj} are defined for each variant
independently, and are listed in Table 2.

For KATAN48, in one round of the cipher the functions fa and fb are applied
twice. The first pair of fa and fb is applied, and then after the update of the
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Table 2. Parameters defined for the KATAN family of ciphers

Cipher |L1| |L2| x1 x2 x3 x4 x5

KATAN32/KTANTAN32 13 19 12 7 8 5 3
KATAN48/KTANTAN48 19 29 18 12 15 7 6
KATAN64/KTANTAN64 25 39 24 15 20 11 9
Cipher y1 y2 y3 y4 y5 y6

KATAN32/KTANTAN32 18 7 12 10 8 3
KATAN48/KTANTAN48 28 19 21 13 15 6
KATAN64/KTANTAN64 38 25 33 21 14 9
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Fig. 1. The Outline of a round of the KATAN/KTANTAN ciphers

registers, they are applied again, using the same subkeys. Of course, an efficient
implementation can implement these two steps in parallel. In KATAN64, each
round applies fa and fb three times (again, with the same key bits).

We outline the structure of KATAN32 (which is similar to the round function
of any of the KATAN variants or the KTANTAN variants) in Figure 1.

Finally, specification-wise, we define the counter which counts the number of
rounds. The round-counter LFSR is initialized to the all 1’s state, and clocked
once using the feedback polynomial x8 + x7 + x5 + x3 + 1. Then, the encryption
process starts, and ends after 254 additional clocks when the LFSR returns to the
all 1’s state. As mentioned earlier, we use the most significant bit of the LFSR
to control the irregular update (i.e., as the IR signal). For sake of completeness,
in Table 3 in the Appendix we give the sequence of irregular rounds.

We note that due to the way the irregular update rule is chosen, there are no
sequences of more than 7 rounds that share the pattern of the regular/irregular
updates, this ensures that any self-similarity attack cannot utilize more than 7
rounds of the same function (even if the attacker chooses keys that suggest the
same subkeys). Thus, it is easy to see that such attacks are expected to fail when
applied to the KATAN family.

We implemented KATAN32 using Synopsys Design Compiler version
Y-2006.06 and the fsc0l d sc tc 0.13µm CMOS library. Our implementation
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requires 802 GE, of which 742 are used for the sequential logic, and 60 GE
are used for the combinational logic. The power consumption at 100 KHz, and
throughput of 12.5 Kbps is only 381 nW. This is a gate level power estimation
obtained using Synopsys Design Compiler3.

For KATAN48 the implementation size is 927 GE (of which 842 are for the
sequential logic) and the total power consumption is estimated to 439 nW. For
the 64-bit variant, KATAN64, the total area is 1054 GE (of which 935 are for
the sequential logic) and the power consumption 555 nW.

Here we would like to note that the further area reduction for KATAN48
and KATAN64 is possible by utilizing a clock gating technique. As explained
above, the only difference between KATAN32 on one hand and KATAN48 and
KATAN64 on the other, is the number of nonlinear functions fa and fb applied
with the same subkeys per single round. Therefore, we can clock the key register
and the counter such that they are updated once in every two (three) cycles
for KATAN48 (KATAN64). However, this approach reduces the throughput two
(three) times respectively, and is useful only when the compact implementa-
tion is an ultimate goal. An area of 916 GE with the throughput of 9.4 Kb/s
(at 100 KHz) is obtained for KATAN48 and 1027 GE with the throughput of
8.4 Kb/s (at 100 KHz) for KATAN64.

At the cost of little hardware overhead, a throughput of the KATAN family
of block ciphers can be doubled or even tripled. To increase the speed of the
cipher, we double (triple) the logic for the nonlinear functions fa and fb as well
as the logic for the feedback coefficients of the counter and the key register. The
implementation results are given in Appendix B.

5 The KTANTAN Family

The KTANTAN family is very similar to the KATAN family up to the key
schedule (i.e., the only difference between KATANn and KTANTANn is the
key schedule part). While in the KATAN family, the 80-bit key is loaded into a
register which is then repeatedly clocked, in the KTANTAN family of ciphers,
the key is burnt (i.e., fixed) and the only possible “flexibility” is the choice of
subkey bits. Thus, the design problem in the KTANTAN ciphers is choosing a
sequence of subkeys in a secure, yet an efficient manner.

In order to minimize the hardware size, while maintaining the throughput,
we treat the key as 5 words of 16 bits each. From each 16-bit word we pick the
same bit (using a MUX16to1) according to the four most significant bits of the
round controlling LFSR. Then, out of the five bits we choose one using the four
least significant bits of the round-counting LFSR.

Formally, let K = w4||w3||w2||w1||w0, where the least significant bit of w0 is
the least significant bit of K, and the most significant bit of w4 is the most signif-
icant bit of K. We denote by T the round-counting LFSR (where T7 is the most

3 Although the gate level power estimation gives a rough estimate, it is useful for
comparison with related work reported in the literature.
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significant bit), then, let ai = MUX16to1(wi, T7T6T5T4), where MUX16to1(x, y)
gives the yth bit of x. Then, the key bits which are used are

ka = T3 · T2 · (a0) ⊕ (T3 ∨ T2) ·MUX4to1(a4a3a2a1, T1T0),

kb = T3 · T2 · (a4) ⊕ (T3 ∨ T2) ·MUX4to1(a3a2a1a0, T1T0)

(where MUX4to1(x, y) is a MUX with 4 input bits and 1 output bit).
When considering ka or kb, of the 80-bit key, only one bit is used only twice,

15 are used four times, and the remaining 64 bits are used 3 times (but in total
each key bit is used at least 5 times). Moreover, even if an attacker tries to pick
two keys which realize the same subkey sequence for either ka or kb, the maximal
length of such a sequence for either ka of kb is 35 rounds (i.e., necessarily after
35 rounds the sequences differ). We also note that due to the irregular update,
during these 35 rounds, the round function is going to be different in any case.

The last issue concerning the KTANTAN key schedule is finding the most
efficient way to implement it. One possible solution is to have the entire selec-
tion logic in one round. This approach requires 5 parallel MUX16to1 and our
hardware implementations show that the total area consumed by the MUXes is
about 180 GE. A second approach is to use one MUX16to1 and re-use it over 5
clock cycles. At a first glance, this approach may lead to a smaller circuit (while
the implementation is slower). However, due to the cost of the extra control
logic, this approach is not only slower, but leads to a larger circuits.

We implemented KTANTAN32 using the same fsc0l d sc tc 0.13µm CMOS
library. Our implementation requires 462 GE, of which 244 are used for the
sequential logic, and 218 GE are used for the combinational logic. The simulated
power consumption at 100 KHz, and throughput of 12.5 Kbps is only 146 nW.
For the synthesis and the power estimation we have again used the same version
of Synopsys Design Compiler.

For KTANTAN48 the implementation size of 588 GE (of which 344 are used
for the sequential logic) is obtained together with the estimated power consump-
tion of 234 nW. For the 64-bit variant, KTANTAN64, the total area is 688 GE
(of which 444 are for the sequential logic) and the power consumption 292 nW.
By using the clock gating as explained above, the area of 571 GE (684 GE) and
the throughput of 9.4 Kb/s (8.4 Kb/s) for KATAN48 (KATAN64) is achieved.

Similar to KATAN family, we can also double (triple) a throughput for all
the versions of KTANTAN family. To do that, we double (triple) the number of
MUX16to1, MUX4to1, round functions fa and fb, and all the logic used for the
feedback coefficients of the counter. Additionally, a few more gates are necessary
to perform the key schedule efficiently.

6 Security Analysis

Our design philosophy was based on offering a very high level of security. To do
so, we designed the ciphers with a very large security margins. For example, as a
design target we have set an upper bound for the differential probability of any
128-round differential characteristic at 2−n for an n-bit block size.
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6.1 Differential and Linear Cryptanalysis

We have analyzed all ciphers under the assumption that the intermediate encryp-
tion values are independent. While this assumption does not necessarily hold, it
simplifies the analysis and is not expected to change the results too much. More-
over, in our analysis we always take a “worst case” approach, i.e., we consider
the best scenario for the attacker, which is most of the times do not happen.
Hence, along with the large security margins, even if the assumption does not
hold locally, it is expected that our bounds are far from being tight.

To simplify the task of identifying high probability differentials, we used
computer-aided search. Our results show that depending on the used rounds, the
best 42-round differential characteristic for KATAN32 has probability of 2−11

(it may even be lower for different set of rounds). Hence, any 126-round differen-
tial characteristic must have probability no more than (2−11)3 = 2−33. Similar
results hold for linear cryptanalysis (the best 42-round linear approximation has
a bias of 2−6, i.e., a bias of 2−16 for 126-round approximation).

For KATAN48, the best 43-round differential characteristic has probability of
at most 2−18. Hence, any 129-round differential characteristic has probability of
at most (2−18)3 = 2−54. As the probability of an active round is at least 2−4 this
actually proves that our design criteria for 128-round differential characteristics
is satisfied. The corresponding linear bias is 2−10 (for 43 rounds) or 2−28 (for
129 rounds).

Finally, repeating the analysis for KATAN64, our computer-aided search found
that the best 37-round differential characteristic has probability 2−20. Hence, any
111-round differential characteristic has probability of at most 2−60, along with
the fact that the best 18-round differential characteristic has probability of at
most 2−5, then the best 129-round differential characteristic has probability of
no more than 2−65. The linear bounds are 2−11 for 37 rounds and 2−31 for 111
rounds.

Hence, we conclude that the KATAN family is secure against differential and
linear attacks. As there is no difference between the KATAN and the KTANTAN
families with respect to their differential and linear behaviors, then the above is
also true for the KTANTAN family.

6.2 Combined Attacks

As shown in the previous section, the probability of any differential characteristic
of 128 rounds can be bounded by 2−n for KATANn. Moreover, even for 64
rounds, there are no “good” characteristics. Hence, when trying to combine
these together, it is unexpected to obtain good combined attacks.

For example, consider a differential-linear approximation. As noted before, the
differential characteristic of 42-round KATAN32 has probability at most 2−11.
The bias of a 42-round KATAN32 is at most 2−6. Hence, the best differential-
linear property for 120 rounds is expected to have bias of at most 2·2−11·(2−6)2 =
2−22 (we assume a worst case assumption that allows the attacker to gain some
free rounds in which the differential is truncated). Of course, an attacker may
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try to construct the differential-linear approximation using a different division
of rounds. However, as both the probability and bias drop at least exponentially
with the number of rounds, a different division is not expected to lead to better
differential-linear approximations.

The same goes for the (amplified) boomerang attack. The attack (just like the
differential-linear attack) treats the cipher as composed of two sub-ciphers. The
probability of constructing a boomerang quartet is p̂2q̂2, where p̂ =√∑

β Pr 2[α → β] where α is the input difference for the quartet, and β is
the output difference of the characteristic in the first sub-cipher. Again, as
p̂2 ≤ maxβ Pr[α → β] which is bounded at 2−22 for 84-round KATAN32. The
same goes with respect to q̂, and thus, the probability of a boomerang quartet
in 128-round KATAN32 is at most 2−44.

The same rationale can be applied to KATAN48 and KATAN64, obtaining
similar bounds. Specifically, the bounds for differential-linear bias is 2−37 (for
140 rounds) and 2−50 (for 160 rounds), respectively. The bounds for constructing
a boomerang quartet for 128 rounds are 2−54 and 2−65, respectively.

Another combined attack which may be considered is the impossible differen-
tial attack. This attack is based on finding a differential which has probability
zero of as many rounds as possible. The most common way to construct such
a differential is in a miss-in-the-middle manner, which is based on finding two
(truncated) differentials with probability 1 which cannot co-exist. Due to the
quick diffusion, changing even one bit would necessarily affects all bits after at
most 42 rounds (37 for KATAN48 and 38 for KATAN64), and thus, there is no
impossible differential of more than 168 rounds (after 42 rounds, change of any
bit may affect all bits, and thus, after 84 rounds, each differential may have any
output difference).

Hence, we conclude that the KATAN family (as well as the KTANTAN family)
of block ciphers is secure against combined attacks.

6.3 Slide and Related-Key Attacks

As mentioned before, the way KATAN and KTANTAN were designed to foil
self-similarity attacks by using two types of rounds which are interleaved in a
non-repeating manner. First, consider the slide attack, which is based on finding
two messages such that they share most of the encryption process (which are
some rounds apart). Given the fact that there is a difference between the deployed
round functions, this is possible only for a very small number of rounds. Even if
we allow these relations to be probabilistic in nature (i.e., assume that the bit
of the intermediate value is set to 0 thus preventing the change in the function
to change the similarity between the states). For example, when considering
KATAN32, there is no slide property with probability 2−32 starting from the
first round of the cipher. The first round from which such a property can be
constructed is round 19. If an attacker achieves the same intermediate encryption
value after round 19 and round 118, he may find a “slid” pair which maintains
the equality with probability 2−31 until the end of the cipher (i.e., the output of
the second encryption process will be the same as the intermediate encryption
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value of the first encryption at round 155). This proves that there are no good
slid properties in the cipher family (we note that this probability is based on the
assumption that the subkeys are the same, which is not the case, unless the key
is the all zeros key). When it comes to KATAN48 or KATAN64, this probability
is even lower (as there are more bits which need to be equal to zero), i.e., 2−62

and 2−93, respectively, rendering slide attacks futile against the KATAN and the
KTANTAN families (these values are actually an upper bound as they assume
that all the subkeys are the same).

Now consider a related-key attack. In the related-key settings, the attacker
searches for two intermediate encryption values as well as keys which develop in
the same manner for as many rounds as possible. As noted before, there are no
“good” relations over different rounds, which means that the two intermediate
encryption values have to be in the same round. However, by changing even
one singly bit of the key causes a difference after at most 80 rounds of similar
encryption process. Hence, no related-key plaintext pairs (or intermediate en-
cryption values) exist for more than 80 rounds (similarity in 80 rounds would
force the key and the intermediate encryption value to be the same). As this is
independent of the actual key schedule algorithm, it is easy to see that both the
KATAN and the KTANTAN families are secure against this attack.

The only attack in this category which remains is related-key differential at-
tack. This is the only attack where there is a difference between the two families
of ciphers according to their key schedule algorithm. We first consider the case
of the KATAN family. The key schedule of the KATAN family expands linearly
the 80-bit key into 508 subkey bits (each is used once in KATAN32, twice in
KATAN48, and thrice in KATAN64). We note that the probability of the differ-
ential is reduced any time a difference enters one of the nonlinear functions (i.e.,
the AND operation). Thus, it is evident that good related-key differentials have
as little active bits as possible. Moreover, we can relate the number of active bits
throughout the encryption process to the issue of active bits in the key schedule.
Each active bit of the subkey (i.e., a subkey bit with a difference) either causes a
difference in the internal state (which in turn incurs probability and activation
of more bits), or is being canceled by previous differences. We note that each ac-
tive subkey bit which is not canceled, necessarily induces probability “penalty”
of 2−2 in KATAN32, 2−4 in KATAN48, and 2−6 in KATAN64. Moreover, due
to the way the cipher works, each active bit can “cancel” at most four other
active subkey bits.4 Hence, if the weight of the expanded subkey difference is
more than 80, then it is assured that the probability of any related-key differ-
ential of KATAN32 is at most 2−32 (this follows the fact that each active bit in
the intermediate encryption value may cancel up to four subkey bit differences
injected, and we shall assume a worst case assumption that the positions align
“correctly). For KATAN48, due to the increased penalty, it is sufficient that
the minimal weight of the expanded subkey difference is more than 60, and for

4 We note that five or six can be canceled, but in this case, the probability penalty of
an active bit is increased by more than the “gain” offered by using this active bit
more times.
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KATAN64 the minimal weight needs to be at least 54. We were analyzing the
minimal weight using the MAGMA software package, and the current bounds
are between 72 and 84. Hence, we conclude that the KATAN family of block
ciphers is expected to be resistant to related-key differential attacks.

For the KTANTAN family, due to the fixed key, the concept of related-key at-
tacks is of theoretical interest. Still, we can follow a more detailed analysis using
the same ideas as we used for regular differential searches. While the search space
is huge, our current results show that there is no related-key differential charac-
teristic for more than 150 rounds of KTANTAN32 with probability greater than
2−32. Similar results are expected to hold for KTANTAN48 and KTANTAN64.

6.4 Cube Attacks and Algebraic Attacks

Given the low algebraic degree of the combining function, it may look as if
KATAN and KTANTAN are susceptible to algebraic attacks or cube attack [7].
However, when considering the degree of the expressions involving the plaintext,
one can see that after 32 rounds (for KATAN32) the degree of each internal state
bit is at least 2, which means that after 160 rounds, the degree of each internal
state bit can reach 32. For KATAN48, the degree is at least 2 after 24 rounds,
(or about 48 after 144 rounds), and for KATAN64 it is 2 after 22 rounds and
can reach 64 after 132 rounds). Hence, as the degree can reach to the maximal
possible value (and there are some more rounds to spare), it is expected that the
KATAN and KTANTAN families are secure against algebraic attacks.

Another possible attack is the cube attack, which was successful against
reduced-round variants of Trivium (with less initialization rounds than in the
Trivium). We note that in trivium the internal state is clocked four full cycles
(i.e., each bit traverse all the registers exactly four times). In KATAN32, most
bits traverse the registers eight times (where a few does so only seven times), go-
ing through more nonlinear combiners (each Trivium round uses only one AND
operation per updated bit), and thus is expected to be more secure against this
attack than Trivium. The same is also true for KATAN48 (where about half of
the bits traverse the registers 10 times, and the other bits do so 11 times) and
KATAN64 (where most of the bits traverse the registers 12 times, and a few do
that only 11 times).

7 Summary

In this paper we have presented two families of hardware efficient encryption
algorithms. The family of cipher is suitable for low-end devices, and even offer
algorithmic security level of 80 bits in cases where the key is burnt into the device
(of course, the implementation has to be protected as well). As the proposal
have a simple structure and use very basic components, it appears that common
techniques to protect the implementation should be easily adopted.
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A The Irregular Update Sequence

Table 3. The sequence of the irregular updates. 1 means that the irregular update
rule is used in this round, while 0 means that this is not the case.

Rounds 0–9 10–19 20–29 30–39 40–49 50–59
Irregular 1111111000 1101010101 1110110011 0010100100 0100011000 1111000010
Rounds 60–69 70–79 80–89 90–99 100–109 110–119
Irregular 0001010000 0111110011 1111010100 0101010011 0000110011 1011111011
Rounds 120–129 130–139 140–149 150–159 160–169 170–179
Irregular 1010010101 1010011100 1101100010 1110110111 1001011011 0101110010
Rounds 180–189 190–199 200–209 210–219 220–229 230–239
Irregular 0100110100 0111000100 1111010000 1110101100 0001011001 0000001101
Rounds 240–249 250–253
Irregular 1100000001 0010
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B Implementation Trade-Offs

Table 4. Area-Throughput Trade-Offs

Cipher Block Key Size Gates per Throughput� Logic
(bits) (bits) (GE) Memory Bit (Kb/s) Process

KATAN32 32 80 802 6.25 12.5 0.13 µm
KATAN32 32 80 846 6.25 25 0.13 µm
KATAN32 32 80 898 6.25 37.5 0.13 µm
KATAN48† 48 80 916 6.25 9.4 0.13 µm
KATAN48 48 80 927 6.25 18.8 0.13 µm
KATAN48 48 80 1002 6.25 37.6 0.13 µm
KATAN48 48 80 1080 6.25 56.4 0.13 µm
KATAN64† 64 80 1027 6.25 8.4 0.13 µm
KATAN64 64 80 1054 6.25 25.1 0.13 µm
KATAN64 64 80 1189 6.25 50.2 0.13 µm
KATAN64 64 80 1269 6.25 75.3 0.13 µm
KTANTAN32 32 80 462 6.25 12.5 0.13 µm
KTANTAN32 32 80 673 6.25 25 0.13 µm
KTANTAN32 32 80 890 6.25 37.5 0.13 µm
KTANTAN48† 48 80 571 6.25 9.4 0.13 µm
KTANTAN48 48 80 588 6.25 18.8 0.13 µm
KTANTAN48 48 80 827 6.25 37.6 0.13 µm
KTANTAN48 48 80 1070 6.25 56.4 0.13 µm
KTANTAN64† 64 80 684 6.25 8.4 0.13 µm
KTANTAN64 64 80 688 6.25 25.1 0.13 µm
KTANTAN64 64 80 927 6.25 50.2 0.13 µm
KTANTAN64 64 80 1168 6.25 75.3 0.13 µm
� — A throughput is estimated for frequency of 100 KHz.
† — Using clock gating.
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Abstract. Elliptic Curve Cryptography implementations are known to
be vulnerable to various side-channel attacks and fault injection attacks,
and many countermeasures have been proposed. However, selecting and
integrating a set of countermeasures targeting multiple attacks into an
ECC design is far from trivial. Security, performance and cost need to be
considered together. In this paper, we describe a generic ECC coproces-
sor architecture, which is scalable and programmable. We demonstrate
the coprocessor architecture with a set of countermeasures to address a
collection of side-channel attacks and fault attacks. The programmable
design of the coprocessor enables tradeoffs between area, speed, and
security.

1 Introduction

Elliptic-curve cryptography (ECC) is the algorithm-of-choice for public-key cryp-
tography in embedded systems. Performance, security and cost are the three
important dimensions of ECC implementations. ECC accelerators should sup-
port multiple security and performance levels, allowing the system to adjust
its security-performance to application-specific needs [1]. To achieve these goals,
much research has been conducted targeting different aspects, and most research
topics fall into two categories: efficient implementations and security analysis.

The computational intensive kernel of ECC is well suited for hardware accel-
eration, and many Hardware/Software (HW/SW) codesigns have been proposed
to evaluate the tradeoffs between cost and performance. The challenge is how
to perform optimizations at multiple abstraction levels (e.g. how to devise more
efficient scalar multiplication algorithms or how to minimize the communication
overhead for the HW/SW interface) and how to map the ECC system archi-
tecture to various platforms (e.g. resource-constrained 8-bit platforms or more
powerful 32-bit microprocessor with bus systems).

For security analysis, ECC implementations are known to be vulnerable to var-
ious side-channel attacks (SCA), including power analysis (PA) attacks, electro-
magnetic attacks (EMA) and fault attacks (FA). Since Kocher et al. [2] showed

C. Clavier and K. Gaj (Eds.): CHES 2009, LNCS 5747, pp. 289–303, 2009.
c© International Association for Cryptologic Research 2009
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the first successful PA attacks, there have been dozens of proposals for new SCA
attacks and countermeasures. These attacks and countermeasures all tend to
concentrate on a single abstraction level at a time [7]. For example, the Smart
Card software is developed on fixed hardware platforms, so the results in that
area are software-based solutions. At the same time, many special circuit styles
[32,33] have been developed to address PA at the hardware level. Such circuit-
level solutions are treated independently from the software-level solutions.

From the above descriptions, we have found two gaps in current ECC research.
First, security has been generally treated as a separate dimension in designs and
few researchers have proposed countermeasures targeting at system integration.
For example, some of the fault attack countermeasures or fault detection meth-
ods are just like software patches applied to the original algorithms (e.g. perform
Point Verification (PV) [23] or Coherence Check [3,34] during computation). The
fault model is hypothesized without considering how to introduce faults in an
actual platform. Further, the impact of circuit-level PA countermeasures on area,
performance and power consumption in large designs remains unclear. Second,
most published papers proposed their own attacks with corresponding counter-
measures and very few researchers discussed countermeasures targeting multiple
attacks. Since a cryptosystem will fail at its weakest link [4] it is not surprising
to see how a given countermeasure can actually introduce a new weakness, and
thus enable another attack [5]. Although there has been some effort to connect
the PA and FA countermeasures [6], solutions at system integration level are
unexplored.

Therefore the question now becomes how to fill both of the gaps in one system
design. Specifically, we try to move these two research topics to the next step by
building a flexible ECC coprocessor architecture with the ability to consider effi-
ciency and security simultaneously and provide a unified countermeasure which
can be easily integrated into system designs.

The contributions of this research are three-fold. First, we propose a generic
programmable and parallel ECC coprocessor architecture. The architecture is
scalable and can be adapted to different bus interfaces. Since it is programmable,
both of the efficient ECC scalar multiplication algorithms and algorithmic level
countermeasures can be uploaded to the coprocessor without hardware modifi-
cations. Second, after review of the security risks for ECC implementations, we
suggest a set of countermeasure to protect the the coprocessor against different
types of passive attacks and fault injection attacks. Finally, we implement a pro-
grammable and parallel ECC coprocessor on an FPGA to show the feasibility of
the method. The implementation is scalable over area, cost, and security. The
resulting platform allows us to quantify and compare the performance overhead
of various algorithmic-level countermeasures.

The remainder of this paper is as follows. Section 2 gives a brief description of
ECC implementation and related attacks with corresponding countermeasures.
Our proposed generic programmable and parallel coprocessor architecture will be
discussed in section 3. The unified countermeasure is analyzed in section 4. The
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FPGA implementation of our proposed architecture with unified countermeasure
is described in section 5. Section 6 concludes the paper.

2 ECC Background

2.1 Implementation of ECC over GF(2m)

A non-supersingular elliptic curve E over GF (2m) is defined as the set of solu-
tions (x, y) ∈ GF (2m) ×GF (2m) of the equation:

E : y2 + xy = x3 + ax2 + b , (1)

where a, b ∈ GF (2m), b �= 0, together with the point at infinity.
A basic building block of ECC is the Elliptic Curve Scalar Multiplication

(ECSM), an operation of the form K · P where K is an integer and P is a
point on an elliptic curve. A scalar multiplication can be realized through a
sequence of point additions and doublings (see Fig.1). This operation dominates
the execution time of cryptographic schemes based on ECC.

2.2 Types of Attacks

Several kinds of attacks on cryptographic devices have been published. They can
be categorized into two types: passive attacks and active attacks [15]. Passive
attacks are based on the observation of side-channel information such as the
power consumption of the chip or its electromagnetic emanations. Examples of
passive attacks include Simple Power Analysis (SPA), Differential Power Anal-
ysis (DPA), Simple Electromagnetic Analysis (SEMA) and Differential Electro-
magnetic Analysis (DEMA). On the other hand, active attacks, including fault
injection attacks, deliberately introduce abnormal behavior in the chip in order
to recover internal secret data.

As mentioned earlier, a cryptosystem will fail at its weakest link and one
countermeasure against one SCA attack may benefit another attack. Therefore,
in this paper we want to consider active as well as passive attacks, and define
a unified countermeasure that resists a collection of published attacks. Before

ECC Scalar Multiplication
(double-and-add-always)

Input: P, K={kn-1,..,k0}
Output: Q=K•P
1: Q[0] P
2: for i=n-2 to 0 do
3: Q[0]  2Q[0]

Q[1]  Q[0] + P
Q[0]  Q[ki]

Return Q[0]

ECC Scalar Multiplication
(Montgomery Ladder)

Input: P, K={kn-1,..,k0}
Output: Q = K•P
1: Q[0] P, Q[1] 2P;
2: for i=n-2 to 0 do
3: Q[1-ki]  Q[0] + Q[1]

Q[ki]  2Q[ki]

Return Q[0]

Fig. 1. Elliptic Curve Scalar Multiplication (ECSM) algorithms
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Passive Attacks 
(SPA/DPA, SEMA/DEMA Attacks) 

w/ Countermeasures

Active Attacks 
(Fault Attacks) 

w/ Countermeasures

Elliptic Curve 
Scalar Multiplication

(ECSM)

Curve Parameters

Base Point

Scalar K

Coordinate

Field

Randomize the base point [16].
Randomize the scalar.
Randomize the projective coordinate.

Invalid Curve Attacks [3,20,23]
Permanent Faults Injection [20]

Check curve parameters and the base point 
[3,20].

Sign Change Attacks [21]
Avoid the use of y-coordinate
(e.g. Montgomery ladder ECSM) [21].

ECSM Configuration Phase

ECSM Computation Phase

(Classic left-to-right binary algorithm [16])

Transient Faults Injection [20]
Coherence check (relationship between 
intermediate results) [20].

Safe Error Attacks [22]
Avoid safe errors occurred in the final 
results calculation.

Doubling Attacks [19]
Reduce the possibility of collisions and 
increase the number of required samples.

Differential Fault Attacks [23]
Point Verification of input (or base) points 
and output points [23].

Twist Curve Attacks [24]
Simply include intermediate y value for 
final results calculation.

Use Montgomery Ladder with 
Double-and-add always method [9].

SPA Attacks [9]
SEMA Attacks [17]

Use multiple independent 
processing elements that randomly 
proceed [18].

SEMA Attacks [17]
DEMA Attacks 

Input: P E, 
K = {kn, , k0} {0,1}n

Output: R = K•P

R = .
for j from n down to 0 do

R = 2 R.
if kj = 1 then R = R + P.

return R

DPA Attacks [16]
DEMA Attacks [17]

Fig. 2. Summary of attacks and corresponding countermeasures on ECC

proposing our unified countermeasure we first review the known security risks of
ECC, as well as the corresponding countermeasures. A brief discussion of each
attack and corresponding countermeasure will be provided in section 4.2.

As shown in Fig. 2, we divide all the countermeasures into two categories:
protection at the ECSM configuration phase and computation phase. Most fault
injection attacks are specific to the ECC algorithm and most of them are com-
bined with passive attacks. Besides, some of the active attacks are very powerful.
Even if countermeasures of standard passive attack are used, attackers can still
easily retrieve the secret scalar K with only a few power traces (e.g. two power
traces for the doubling attacks [19]).

3 Proposed Programmable and Parallel Coprocessor
Architecture

Integration of various countermeasures into an existing ECC coprocessors can
be very challenging. First, for many proposed ECC coprocessors with single dat-
apath, the added countermeasures will sometimes largely sacrifice its efficiency.
Second, the research of side-channel attacks keeps on evolving. Thus, how to
devise a flexible ECC coprocessor which can support security updates is also
very important. Therefore, a novel generic ECC coprocessor architecture design
is proposed to solve the above problems. The architecture of this coprocessor is
shown in Fig. 3 and all the design considerations will be discussed below.
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CPU
(Main Control)
Software Driver

Bus Interface

Programmable & Parallel ECC Coprocessor

Bus System

CPU Instruction Decoder

FSM

ST0

ST2

ST1ST3

(Sub-Control)

FSM1

ST0

ST2

ST1ST3

ECC

datapath_1

Finite
Field
ALU

Function Descriptions:

System

SW Driver: 

HW/SW IF:

send scalar K and receive 
results

interface for the INS decoder 
and bus

ECC 
Coprocessor

INS Decoder: perform data transfers 

INS Sequencer: generate instructions for 
point operations

Datapath: field arithmetics

Local
Storage

INS Sequencer

(Sub-Control)

FSM1

ST0

ST2

ST1ST3

ECC

datapath_N

Finite
Field 
ALU

Local
Storage

INS Sequencer

Fig. 3. The structure of generic programmable and parallel ECC coprocessor

The hardware/software partitioning method adopted in this design is trying
to offload the field arithmetic operations from the CPU and execute them in a
dedicated ECC coprocessor [13,14]. For traditional ECC coprocessor designs, all
other higher level point operations, such as point addition/doubling, are imple-
mented in software running on CPU. However, this partitioning may result in
a HW/SW communication bottleneck since the lower-level field multiplication
function will always be called by upper-level point operations, including a large
amount of instruction and data transfers.

Targeting the above communication bottleneck problem we tried to optimize
the HW/SW boundary in two steps: reducing data transfers as well as acceler-
ating instruction transfers. As a result, the CPU is only in charge of sending ini-
tialization parameters and receiving final results, and the instruction sequencer
will issue all the required instructions for a full ECSM. A further optimization
has been made to make the ECC coprocessor programmable, which is out of two
concerns. First, in general the field operations can already be very fast (a digit-
serial multiplier with digit size of 82 can finish one multiplication in GF (2163)
in 2 clock cycles [11]) and big performance gain of the whole ECC system can
only be obtained if new point operation algorithms are proposed. In this case,
by fixing the lowest level field operations in hardware, updating an ECC sys-
tem is just replacing the software assembly codes in the instruction sequencer
with the new point operation algorithms without the need to rewrite the HDLs
and synthesize the whole design. Second, this method can also enable the inte-
gration of the latest countermeasures against side-channel attacks for security
updates.
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3.1 Programmability

For our proposed structure, the CPU (main control) is not only able to send
data/instructions through the bus, like the controller in most of the HW/SW
codesigns, but also to program the instruction sequencer as a sub-controller in
the coprocessor. The coprocessor consists of a CPU instruction decoder and sin-
gle/multiple ECC datapaths, and each ECC datapath is composed of an instruc-
tion sequencer, a dedicated instruction decoder, ALU and local memory. Each
ECC datapath can be programmed to carry out field operations independently.

However, the design of an instruction sequencer in the ECC datapath can be
tricky. Since we have defined it to support the programmable feature, the direct
use of hardware FSMs does not work. Another option is using a microcoded
controller. However, the design of a dedicated controller with FSMs to dispatch
instructions from microcoded controller itself can still be complex and inflexible.
Finally, we come to a solution by customizing an existing low-end microcontroller
to meet our requirements.

This programmable architecture gives us the freedom to efficiently utilize var-
ious countermeasures against different side-channel attacks. For example, we can
program the sub-controller component so that it performs Montgomery ladder in
order to thwart SPA attacks. We can easily add base point randomization to it in
order to thwart DPA attacks. Finally, if the implementation requires resistance
to fault attacks, we can update the program in the sub-controller to add coher-
ence check [3] and so on. In short, the flexibility of programmable sub-controller
makes the coprocessor able to update with the latest countermeasures.

3.2 Scalability

As shown in Fig.3, our proposed generic coprocessor architecture is scalable
for parallel implementations because the ECC datapath can execute the scalar
multiplication almost independent of the bus selections and CPU. Once the
CPU sends the scalar K to each ECC datapath to initialize the computation,
the datapath will work independently. The scalability here means the maximum
number of independent ECC datapaths attached to the CPU instruction decoder
is purely dependent on the bus latency. As shown in Fig.4, the CPU can control
one ECC coprocessor with N datapaths, and N point multiplications can be
performed at the same time.

According to the iteration structure shown in Fig. 4, we can derive an equation
to express the relation between the maximum number of parallel ECC datapaths
and bus latency. The basic idea is to overlap the communication time with the
computation time. Here, we assume the bus latency is T delay cycles per transfer,
and scalar K and results (X , Y ) each needs the same M times bus transfers
(including both instruction and data transfers), and the ECSM on one ECC
datapath requires T comp cycles to complete, so the effective maximum number,
N max , of parallel ECC datapath can be expressed as

Nmax = (Tcomp/MTdelay) + 1. (2)
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Fig. 4. Exploration of the parallelism within the proposed generic coprocessor archi-
tecture

Due to this massive parallel architecture, we can get the fastest implementation
with T avg min = 3MTdelay cycles. This means for the fastest ECC coprocessor
configuration with maximum number of parallel ECC datapath, the minimum
computation time in average is only related to the bus latency. The system
configuration for meeting this upper bound is to make the ECSM computation
time be exactly overlapped with the communication time. For actual operations
shown in Fig. 4, let the CPU keep sending scalar K and initiating ECSM until
the first ECSM computation ends and then start to receive results. Also, we can
have tradeoff designs between area and speed with different number of parallel
ECC datapath to fit for different embedded applications, and then we can get
the computation time in average, T avg as

Tavg =
(2N + 1)MTdelay + Tcomp

N
. (3)

4 Selection of Countermeasures

Indeed, one can not simply integrate all the countermeasures targeting different
attacks, as shown in Fig. 2, to thwart multiple attacks due to complexity, cost
and the fact that a countermeasure against one attack may benefit another one
[5]. For example, the double-and-add-always method to prevent SPA can be used
for Safe Error attacks [22]. Unified countermeasures to tackle both the passive
and active attacks are attractive. Kim et al. proposed a unified countermeasure
for RSA-CRT [25]. Baek et al. extended Shamir’s trick, which was proposed for
RSA-CRT, to secure ECC from DPA and FA [6]. However, Joye showed in [26]
non-negligible portion of faults was undetected with the unified countermeasure
and settings in [6].

In this paper, we suggest a set of existing countermeasures to thwart both
passive and active attacks on ECC. Especially, we focus on ECC over binary
extension field. We try to take into account as many attacks/countermeasures
as possible. Three countermeasures are selected.

1. Montgomery Ladder Scalar Multiplication [9]. The Montgomery Pow-
ering Ladder, shown in Fig. 1, performs both point addition and poing doubling
for each key bit. In theory, it is able to prevent SPA and TA.



296 X. Guo et al.

2. Random Splitting of Scalar [27]. This method randomly splits K =
K1 + K2, and performs Q1 = K1 · P and Q2 = K2 · P . Eventually, K · P is
calculated as Q1 + Q2.

3. Point Verification [3,23]. PV checks if a point lies on an curve or not.
Let E : y2 + xy = x3 + ax2 + b be an elliptic curve defined over GF (2m), one
can check the validity of a point P (xp, yp) by simply verifying the equation
y2

p + xpyp = x3
p + ax2

p + b.

4.1 Security Analysis of the Proposed Unified Countermeasure

SPA/SEMA attacks [9,17] use a single measurement to guess the secret bits. The
use of Montgomery Scalar Multiplication computes point addition and doubling
each time without depending on the value of each bit of scalar K. Therefore, it
is secure against SPA attacks. For SEMA, though in [28] the authors indicated
that this can also resist SEMA, we think it is too early to conclude that since in
[17] the capability of multi-channel EMA attacks has not been comprehensively
investigated.

DPA/DEMA attacks [16,17] use statistical models to analyze multiple mea-
surements. The random scalar splitting was proposed in [27] and the idea behind
it is very similar to Coron’s [16] first countermeasure against DPA. As for DEMA,
the random splitting of K can be considered as a signal information reduction
countermeasure [17] against statistical attacks, including DEMA.

Doubling attacks [19] explore the operand reuse in scalar multiplication for two
ECSMs with different base point. Borrowing the authors’ analysis on Coron’s
first countermeasure in [19], the random splitting of 163 bit scalar K can simply
extend the search space to 281 (birthday paradox applies here), which is enough
to resist the doubling attack.

Safe Error attacks [22] introduce safe errors when redundant point operations
are used (e.g. double-and-add-always ECSM). No safe errors can be introduced
based on our proposed scheme. In order to pass the PV, the outputs from the
coordinate conversion must be correct, which means both intermediate results
P1 and P2 must be used in order to calculate the y value at the last step of
coordinate conversion. So, no safe errors can be introduced in either P1 or P2.

Invalid Curve attacks [20,23] need to compute the ECSM on a cryptograph-
ically weaker group. When using López-Dahab coorindates and Montgomery
Scalar Multiplication, all the curve parameters will be used for calculating the
final results in affine coordinates. So, if any of the curve parameters is changed
in order to force the computation on a weaker elliptic curve, it cannot pass the
final point verification.

Differential Fault attacks [23] try to make the point leave the cryptographically
strong curve. The use of PV at the final step is the standard countermeasure to
resist this kind of attacks.

Permanent Faults Injection attacks [20] target the non-volatile memory for
storing the system parameters. All the curve parameters and base points in our
design can be hardwired to prevent malicious modifications. If needed, the curve
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parameters can also be made flexible as well, but then their integrity will need
to be verified. This can be done, for example, using a hash operation.

Transient Faults Injection attacks [20] try to modify the system parameters
when they are transferred into working memory. By using the random scalar
splitting scheme (K = K1 + K2) the final results have to be obtained through
two steps of point operations. For the first step, we use López-Dahab projective
coordinates and Montgomery Scalar Multiplication to get two results for K1 · P
and K2 · P. If transient faults are inserted during this step, before coordinate
conversion the invariant relation of intermediate point Q[0] and Q[1] (see Fig.
1) will be destroyed. As a result, K · P=(K1 · P + K2 · P ) cannot pass the final
PV since the errors will propagate in the affine point addition.

Twist Curve attacks [24] apply to the case when performing Montgomery
Scalar Multiplication, the y-coordinate is not used. However, for our case, to
obtain the final results both x and y are needed for final affine point addition.

Sign Change attacks [21] change the sign of a point when the scalar is encoded
in Non-adjacent form (NAF). The point sign change implies only a change of
sign of its y-coordinate. The use of Montgomery Scalar Multiplication and López-
Dahab coordinates can resist this attack.

4.2 Map the Unified Countermeasure to the Coprocessor

In Fig. 5, the dataflow of the ECSM using our proposed unified countermeasures
is illustrated. After randomly splitting the scalar K into K1 and K2 on the CPU,

CPU ECC Datapath_1 ECC Datapath_2

Split K = K1 + K2

Send K1

Send K2

K1

K2if K1i =1
Madd, Mdouble
else
Madd, Mdouble

if K2i =1
Madd, Mdouble
else
Madd, Mdouble

loop for 
K1

loop for 
K2

Wait until both datapaths complete

Send K2.x to DP1

Send K2.y to DP1

Receive Res.y
Receive Res.x

MXY

MXY

Point Addition in 
Affine Coordinate

Projective
Coordinate

Affine
Coordinate

CPU INS Decoder

Point Verification (PV) 
of final point

K·P.x
K·P.y

Check curve equation
y2+xy = x3+ax2+b
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K·P.x
K·P.y

K1.x

K1.y

Coordinate
Conversion

Fig. 5. Dataflow of ECSM with splitting K and PV countermeasures
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K1 and K2 will be sent to the ECC coprocessor. Then, the calculation of K1
· P and K2 · P are processed concurrently, and after that the two intermedi-
ate resulting points in Affine Coordinate from both datapaths will be added,
generating K · P. The point verification will be performed before the output is
generated.

4.3 Operation Modes

In order to support the countermeasures suggested above, it is obvious that
two point multiplications have to be computed with an extra final affine point
addition. Both introduces performance overhead. Therefore, we can make the
ECC coprocessor work under different operation modes. Below, four modes have
been defined with different security requirements:

1. Normal Operation Mode. Two ECC datapaths can calculate different K and
return two separate point multiplication results. Note that this normal mode can
also implement the basic duplication [31] or concurrent processing comparison
[3] to detect faults by sending the same K to the two datapaths.

2. Safe Mode with the splitting K countermeasure. Two ECC datapaths com-
pute the split K values in projective coordinate and then perform one affine
point addition in the end. PV is not used here.

3. Safe Mode with the PV countermeasure. Based on the normal operation
mode, we can add the PV to both datapaths before outputting the final results.

4. Safe Mode with both splitting K and PV countermeasures. This is the op-
eration mode with the highest security level described in Fig. 5.
Combining the aforementioned programmable feature with the above defined
four operation modes, we can customize a protocol of how to efficiently select
modes to reduce the performance overhead.

5 FPGA Implementation

In order to prove the feasibility of the proposed generic ECC coprocessor archi-
tecture and give a concrete example with quantitative experimental results, we
have also built the generic coprocessor on an FPGA based SoC platform.

When comparing the actual implementation in Fig. 6 with the generic archi-
tecture in Fig. 3, the CPU becomes the 32-bit MicroBlaze, PLB bus is used, the
instruction sequencer is replaced with programmable Dual-PicoBlaze microcon-
trollers, the finite field ALU is implemented with addition, multiplication and
square function units, and the 163-bit register array is used as local storage.

There are many design options for ECC implementations, and different ap-
proaches differ in the selection of coordinate system, field and type of curves
[8]. In our design we will use Montgomery Scalar Multiplication and López-
Dahab projective coordinates [9]. For hardware implementations of the lowest
level field arithmetic, the field multiplication is implemented both as bit-serial
[10] and digit-serial multipliers [11] with different digit sizes; the field addition is
simply logic XORs; the field square is implemented by dedicated hardware with
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Fig. 6. Block diagram of the proposed ECC SoC architecture on FPGA

square and reduction circuits [12]; the field inversion consists of a sequence of
field multiplications and squares based on Fermat’s Theorem [12].

For the implementation of the instruction sequencer, 8-bit PicoBlaze micro-
controllers are used. The PicoBlaze has a predictable performance. It takes al-
ways two clock cycles per instruction. It costs 53 slices and 1 block RAM on the
Virtex-5 XC5VLX50 FPGA. The use of PicoBlaze as a new control hierarchy was
first proposed in [29] and based on that we in [30] proposed a Dual-PicoBlaze
based design to achieve a high instruction rate of 1 instruction per cycle by
interleaving instructions from two PicoBlazes. However, by applying the Dual-
Picoblaze architecture we can only get performance enhancement. Therefore, we
decided to customize the Picoblaze by replacing the instruction ROM with a
dual-port RAM to incorporate the programmable feature.

Based on the discussion on Section 3.2, the timing profile of parallel imple-
mentations of multiple ECC datapaths based on the Processor Local Bus (PLB)
on a Xilinx FPGA platform can be obtained. The PLB interface is a memory-
mapped interface for peripheral components with typical bus transfer latency,
Tdelay , of 9 clock cycles. Instruction and data transfers for one operand require
M = 20 times bus transfers. As we use digit size 82 (denoted as D82), one
scalar multiplication on ECC defined on GF (2163) takes 24,689 clock cycles, i.e.
Tcomp = 24, 689. If we just consider the ideal case for data/instruction transfers
without any software overhead (e.g. function calls), the minimum average time,
Tavg min , is about of 540 clock cycles. However, 139 ECC datapaths in parallel
are required to achieve this minimum delay, which makes it impractical. Still,
we can find reasonable tradeoffs through Equation 3.

Following the discussion in Section 4.2, we also implement a ECC coprocessor
with two datapath to integrate our proposed unified countermeasure. It is shown
in Fig. 6. Moreover, we designed the coprocessor to support different operation
modes as defined in section 4.3.

Since the PLB bus is 32-bit wide and our targeting implementation is based on
GF(2163), we need 6 times bus transfers to send one scalar K to the coprocessor,
which means we still have 29 bits left when transfer the last word. Therefore, we
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encode these bits as function bits and they can be interpreted by the MicroBlaze
Instruction Decoder to make the coprocessor work under different modes.

Another advantage of this proposed architecture is that we can quantify the
security cost when different countermeasures are used. Without changing the
hardware, we can simply make changes in the software driver running on Mi-
croBlaze to turn the ECC coprocessor into different operation modes. This is
similar with the workload characterization in software-only implementations [35].
Hence, the security cost can be expressed in terms of pure performance overhead.

In Fig. 7, we compare the timing profiling of the design working in four opera-
tion modes. Here, we select two extreme coprocessor configurations, the smallest
(with bit-serial multiplier, BSMUL) and the fastest (D82), for detailed compar-
ison. The whole system works at 100MHz, and the maximum frequency of both
coprocessors with BSMUL and D82 is 165.8MHz. The logic critical path mainly
goes through the programmable PicoBlaze. The hardware cost for the bit-serial
multiplier based design is 2,179 slices and 6,585 slices for the D82-based design
when implemented on a Vertex-5 XC5VLX50 FPGA.

Note that the cycle counts for normal mode and safe mode with only PV are
the average speed for two ECSMs in parallel. From [31], the authors conclude
that if fair performance evaluations are performed, many fault attack counter-
measures are not better than the naive solutions, namely duplication or repeti-
tion. So, this means it is also important to find a universal platform to quantify
the security cost. From Fig. 7, it is easy to see that based on our proposed
generic ECC coprocessor architecture we can quantify the overhead of these
countermeasures in terms of a single metric – cycle counts.

To compare with other similar ECC codesigns [13,14,29,30,36,37], our proposed
ECC coprocessor architecture considers optimizations for performance, flexibility
and security at the same time. For performance, the designs described in [29,30],
same as the base design of the ECC coprocessor architecture proposed in this pa-
per with single ECC datapath, have already shown good tradeoffs between area
and speed. For flexibility, the programmable coprocessor is addressed for its ad-
vantages of both performance and security enhancement, and the massively par-
allel architecture can be explored to meet various application requirements. For
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security, unlike [14,36,37] which only consider passive attacks (e.g. power analy-
sis attacks and timing attacks), our design can defend most existing passive and
active attacks. Besides, it can be easily updated with new algorithmic-level coun-
termeasures to resist new attacks without hardware changes.

6 Conclusions

In this paper we have presented a generic ECC coprocessor architecture, which
can fill the gap between efficient implementation and security integration at the
architecture level. For security, a unified countermeasure is proposed by com-
bining the random scalar splitting [27] and Point Verification [3,23]. For perfor-
mance, the introduction of distributed storage and new control hierarchy into
the ECC coprocessor datapath can greatly reduce the communication overhead
faced by a traditional centralized control scheme. Scalable parallelism can also
be explored to achieve tradeoff designs between area and speed. The feasibility
and efficiency of our proposed generic ECC coprocessor architecture and uni-
fied countermeasure are verified and shown from an actual implementation on
FPGA. Experimental results show that the proposed programmable and paral-
lel ECC coprocessor architecture can be suitable for a wide range of embedded
applications with different user defined security requriments.
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Abstract. In this paper we propose to take one step back in the use of double
base number systems for elliptic curve point scalar multiplication. Using a mod-
ified version of Yao’s algorithm, we go back from the popular double base chain
representation to a more general double base system. Instead of representing an
integer k as

∑n
i=1 2bi3ti where (bi) and (ti) are two decreasing sequences, we

only set a maximum value for both of them. Then, we analyze the efficiency of our
new method using different bases and optimal parameters. In particular, we pro-
pose for the first time a binary/Zeckendorf representation for integers, providing
interesting results. Finally, we provide a comprehensive comparison to state-of-
the-art methods, including a large variety of curve shapes and latest point addition
formulae speed-ups.

Keywords: Double-base number system, Zeckendorf representation, elliptic curve,
point scalar multiplication, Yao’s algorithm.

1 Introduction

In order to compute elliptic curve point multiplication, that is to say kP where P is a
point on an elliptic curve, defined over a prime field, and k is an integer, a lot of effort
has been made to adapt and optimize generic exponentiation methods (such as Non-
adjacent form (NAF), window NAF and fractional window NAF). In 1995, Dimitrov
and Cooklev [8] have introduced the use the double base number system (DBNS) to
improve modular exponentiation speed. The idea is to represent k as a sum of terms
of the form ci2bi3ti with ci = 1 or −1. The main advantage of this representation is
the fewer number of terms it requires. A very interesting case is when the base element
x is fixed, so that one can precompute all the x2bi 3ti mod p. The DBNS seems to be
not that efficient in the case of a randomly chosen element. In order to overcome this
problem and adapt the DBNS to elliptic curve point multiplication, Dimitrov, Imbert
and Mishra have introduced the concept of double base chains, where the integer k is
still represented as a sum of ci2bi3ti but with the restriction that (bi) and (ti) must be
two decreasing sequences [9]. The restriction causes the number of terms to increase,
but allows to perform the scalar multiplication using a Horner like scheme. Allowing
ci to belong to a larger set than {−1, 1} as well as choosing optimal parameters based
on the ratio of the number of doublings to that of triplings also helped to achieve better
results.
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The original double base representation has probably not been utilized as much as it
should have been for developing improved exponentiation algorithms. To the end, our
contribution is to show that the use of a modified version of Yao’s algorithm allows to
partly overcome the drawbacks of the DBNS. By imposing a maximum bound on bi’s
and ti’s, that is clearly less restrictive than the double base chain condition, we show
that our method provides significant improvement even when compared to the most
recently optimized double base methods. Moreover, we introduce a binary/Zeckendorf
method which, on the classical Weierstrass curve, provides similar results.

2 Background

In this section, we give a brief review of the materials used in the paper.

2.1 Elliptic curves

Definition 1. An elliptic curve E over a field K denoted by E/K is given by the equa-
tion

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

where a1, a2, a3, a4, a6 ∈ K are such that, for each point (x, y) on E, the partial
derivatives do not vanish simultaneously.

In this paper, we only deal with curves defined over a prime finite field (K = Fp) of
characteristic greater than 3. In this case, the equation can be simplified to

y2 = x3 + ax + b

where a, b ∈ K and 4a3 + 27b2 �= 0. Points are affine points (x, y) satisfying the curve
equation and a point at infinity. The set of points E(K) defined over K forms an abelian
group. There exist explicit formulae to compute the sum of two points that involves
field inversions. When the field inversion operation is considerably costlier than a field
multiplication, one usually uses a projective version of the above equation. In this case, a
point is represented by three, or more, coordinates, and many such projective coordinate
systems have been proposed to speed up elliptic curve group operations. For a complete
overview of those coordinates, one can refer to [7,14].

Another feature of the elliptic curve group law is that it allows fast composite oper-
ations as well as different type of additions. To take full advantage of our point scalar
multiplication method, and in addition to the classical addition (ADD) and doubling
(DBL) operations, we consider the following operations:

– tripling (TPL): point tripling
– readdition (reADD): addition of a point that has been added before to another

point
– mixed addition (mADD): addition of a point in affine coordinate (i.e. Z = 1) to

another point.
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In addition to those coordinate systems and composite operations, many curve shapes
have been proposed to improve group operation formulae. In this paper, we will con-
sider a variety of curve shapes including:

– tripling oriented Doche-Icart-Kohel curves (3DIK) [10]
– Edwards curves (Edwards) [13,3] with inverted coordinates [4]
– Hessian curves [6,15,16]
– Extended Jacobi Quartics (ExtJQuartic) [6,12,15]
– Jacobi intersections (JacIntersect) [6,17]
– Jacobian coordinates (Jacobian) with the special case a4 = −3 (Jacobian-3).

Table 1 summarize the cost of those operations on all the considered curves.

Table 1. Elliptic curve operations cost

Curve shape DBL TPL ADD reADD mADD

3DIK 2M+7S 6M+6S 11M+6S 10M+6S 7M+4S
Edwards 3M+4S 9M+4S 10M+1S 10M+1S 9M+1S

ExtJQuartic 2M+5S 8M+4S 7M+4S 7M+3S 6M+3S
Hessian 3M+6S 8M+6S 6M+6S 6M+6S 5M+6S

InvEdwards 3M+4S 9M+4S 9M+1S 9M+1S 8M+1S
JacIntersect 2M+5S 6M+10S 11M+1S 11M+1S 10M+1S

Jacobian 1M+8S 5M+10S 11M+5S 10M+4S 7M+4S
Jacobian-3 3M+5S 7M+7S 11M+5S 10M+4S 7M+4S

(1) proposed in this work.

Finally, some more optimizations can be found in [21,19] for the quintupling formu-
lae. In section 4, we use the specific formulae from [20] using the z-coordinate trick
to compute Fibonacci number point multiples. One can also refer to [2] for an exten-
sive overview of different formulae, coordinates systems, curve shapes and their latest
updates.

2.2 Double Base Number System

Let k be an integer. As mentioned earlier, one can represent k as the sum of terms of
the form ci2bi3ti , where ci ∈ {−1, 1}. Such a representation always exists. In fact, this
number system is quite redundant. One of the most interesting properties is that, among
all the possible representations for a given integer, some of them are really sparse, that
is to say that the number of non-zero terms is quite low.

To compute DBNS representation of an integer, one usually use a greedy algorithm.
It consists of the following: find the closest integer of the form 2bi3ti to k, subtract it
from k and repeat the process with k′ = k − 2bi3ti until it is equal to zero.

Performing a point scalar multiplication using this number system is relatively easy.
Letting k be equal to

∑n
i=1 ci2bi3ti , one just needs to compute [ci2bi3ti ]P for i = 1 to

n and then add all the points. If the number of additions is indeed quite low, in practice
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such a method requires too many doublings and triplings. That is why the general DBNS
representation has been considered to be not suitable for point scalar multiplication.

To overcome this problem, Dimitrov, Imbert, and Mishra [9] have introduced the
concept of double-base chains. In this system, k is still represented as

∑n
i=1 ci2bi3ti ,

but with the restriction that (bi) and (ti) must be two decreasing sequences, allowing a
Horner-like evaluation of kP using only b1 doublings and t1 triplings. Computing such
a representation can be done using Algorithm 1. The main drawback of this method is
that it significantly increases the number of point additions.

Algorithm 1. Computing a double-base chain computing k

Input: k ≥ 0
Output: k =

∑n
i=1 si2bi3ti with (bi, ti) ↘

1: while k �= 0 do
2: s = 1
3: Find the best default approximation of k of the form z = 2b3t with b ≤ bmax and

t ≤ tmax

4: Print(s, b, t)
5: bmax = b; tmax = t
6: if k < z then s = −s
7: k = |k − z|
8: end while

Some improvements have been proposed by applying various modifications includ-
ing the possibility for ci to be chosen in a larger set than {−1, 1} [11], the use of mul-
tiple bases [21], etc. One can finally refer to [1] for a view of the latest optimizations.

3 Modified Yao’s Algorithm

3.1 Yao’s Algorithm

Published in 1976 [22], Yao’s algorithm can be seen as the right-to-left counterpart
of the classical Brauer algorithm. Let k = kl−12l−1 + · · · + k12 + k0 with ki ∈
{0, 1, . . . , 2w − 1}, for some w. The algorithm first computes 2iP for all i lower than
l − 1 by successive doublings. Then it computes d(1)P, . . . , d(2w − 1)P , where d(j)
is the sum of the 2i such that ki = j. Said differently, it mainly consists in considering
the integer k as

1 ×
∑
ki=1

2i

︸ ︷︷ ︸
d(1)

+2 ×
∑
ki=2

2i

︸ ︷︷ ︸
d(2)

+ · · ·+ (2w − 1)×
∑

ki=2w−1

2i

︸ ︷︷ ︸
d(2w−1)

.

We can see that d(1) is the sum of all the powers of 2 associated to digit 1, d(2) is the
sum of all the powers of 2 associated to digit 2 etc. Finally kP is obtained as d(1)P +
2d(2)P +· · ·+(2w−1)d(2w−1)P . In order to save some group operations, it is usually
computed as d(2w−1)P+(d(2w−1)P+d(2w−2)P )+· · ·+(d(2w−1)P+· · ·+d(1)P ).
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Example 1. Let k = 314159. We have NAF3(k) = 100 0300 1003 0000 5007, l = 19
and 2w − 1 = 7. One can compute kP in the following way:

– consider k as 1× (218 + 211) + 3 × (214 + 28) + 5 × 23 + 7 × 20

– compute P, 2P, 4P, . . . 218P
– d(1)P = 218P + 211P , d(3)P = 214P + 28P , d(5)P = 23P , d(7)P = P
– kP = 2(d(7)P ) + 2(d(7)P + d(5)P ) + 2(d(7)P + d(5)P + d(3)P ) + d(7)P +

d(5)P + d(3)P + d(1)P = 7d(7)P + 5d(5)P + 3d(3)P + d(1)P

In this example, we have:

d(1) = 100 0000 1000 0000 0000
d(3) = 000 0100 0001 0000 0000
d(5) = 000 0000 0000 0000 1000
d(7) = 000 0000 0000 0000 0001

k = 100 0300 1003 0000 5007
= 7d(7) + 5d(5) + 3d(3) + d(1)

3.2 Modified Yao’s Algorithm

Now, we adapt the preceding algorithm in order to take advantage of the DBNS rep-
resentation. To do so, let us consider k in (one of) its DBNS form: k = 2bn3tn +
· · · + 2b13t1 . As in Yao’s original algorithm, we first compute 2iP for all i lower than
max(bj). Then, for all j lower than max(ti), we define d(j)P as the sum of all the 2biP
such that ti = j. Finally we have kP = d(0)P + 3d(1)P + . . . 3max(ti)d(max(ti))P .

Example 2. Let k = 314159. One of the representations of k in the DBNS is

21035 + 2835 + 2103 + 2232 + 32 + 2,

max(ai) = 10 and max(bi) = 5. One can compute kP in the following way:

– compute P, 2P, 22P, . . . , 210P
– d(0)P = 2P , d(1)P = 210P , d(2)P = 22P + P , d(5) = 210P + 28P
– kP = 3(3(33d(5)P +d(2)P )+d(1)P )+d(0)P = 35d(5)P +32d(2)P +3d(1)P+

d(0)P

We can see that the number of operations is max(bi) doublings, max(ti) triplings and
n − 1 additions. With our modified algorithm, we obtain the same complexity as the
double-base chain method. However, in our case, the numbers of doublings and triplings
are independent, which means that 2max(bi)3max(ti) can be quite larger than k. It can be
seen as a waste of operations, as we could expect it to just as large as k . In order to
reduce this additional cost, we simply propose to use a maximum bound for both the
bi’s and the ti’s so that 2max(bi)3max(ti) ∼ k .
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4 Extending the Modified Yao’s Algorithm

We have seen how Yao’s algorithm can be adapted to the double-base number system.
In this section, we generalize our approach to different number systems via an extended
version of Yao’s algorithm.

4.1 Generalization of Yao’s Algorithm

We have seen that Yao’s algorithm can be efficiently adapted to the double-base number
system. We can now derive a general form of Yao’s algorithm based on any number
system using two sets of integers.

Let A = {a1, . . . , ar} and B = {b1, . . . , bt} be two sets of integers. Let k be an
integer that can be written as

∑n
i=1 af(i)bg(i) with f : {1, . . . n} → {1, . . . r} and g :

{1, . . . n} → {1, . . . t}. It is possible to use a generalized version of Yao’s algorithm to
compute kP . To do so, we first compute the biP ’s, for i = 1 . . . t. Then, for j = 1 . . . r,
we compute d(j)P as the sum of all the bg(i)P such that f(i) = j. In other terms,
d(1)P will be the sum of all the bg(i)P associated to a1, d(2)P will be the sum of all
the bg(i)P associated to a2 etc. Finally, kP = a1d(1)P + a2d(2)P + · · ·+ and(n)P .

It is easy to see that with a proper choice of sets, we find again the previous forms
of the algorithm. The original version is associated to the sets A = {1, 2, . . . , 2n}
and B = {1, 3, 5, . . . , 2w − 1} and the double-base version to A = {1, 2, . . . , 2bmax}
B = {1, 3, . . . , 3tmax}. We also remark that both sets can contain negative integers. As
the operation P → −P is almost free on elliptic curves, we always consider signed
representation in our experiments.

The aim of the following subsections is to present a different set of integers to im-
prove the efficiency of our method.

4.2 Double-Base System Using Zeckendorf Representation

Let (Fn)n≥0 be the Fibonacci sequence defined as F0 = 0, F1 = 1, ∀n ≥ 0, Fn+2 =
Fn+1 + Fn. Any integer can be represented as a finite sum of Fibonacci numbers [23].
Just like in the case of the classical double-base system, we introduce a mixed binary-
Zeckendorf number system (BZNS). It simply consists of representing an integer k as
2bnFZn + · · · + 2b1FZ1 . Computing such a representation can be done using the same
kind of greedy algorithm as with the classical DBNS.

Remark 1. The choice of such a representation is not arbitrary. It is based on the fact
that on elliptic curves in Weierstraßform, the sequence F2P, . . . FnP can be efficiently
computed thanks to the formulae proposed in [20]. In that case, each point addition is
performed faster than a doubling.

We now apply our generalized Yao’s algorithm to the sets {F2, . . . , FZmax} and
{1, 2, . . . , 2bmax}. In this case, we first compute FiP for all i lower than Zmax, by
consecutive additions. Then, for all j lower than max(bi), we define d(j)P as the
sum of all the FZiP such that bi = j. Finally we have kP = d(0)P + 2d(1)P +
. . . 2max(bi)d(max(bi))P .
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Example 3. Let k = 314159. One of the representations of k in the BZNS is

28F16 + 28F13 + 25F10 + 2F9 + 2F5 + F2

max(bi) = 8 and max(Zi) = 16. One can compute kP in the following way:

– consider k as 28(F16 + F13) + 25F10 + 2(F9 + F5) + F2
– compute P, 2P, 3P, . . . , F16P
– d(0)P = F2P , d(1)P = F9P + F5P , d(5)P = F10P , d(8) = F16P + F13P
– kP = 2(24(23d(8)P + d(5)P ) + d(1)P ) + d(0)P = 28d(8)P + 25d(5)P +

2d(1)P + d(0)P.

5 ECC Implementation and Comparisons

In this section, we provide a comprehensive comparison between our different versions
of Yao’s algorithm and the most recent double-base chain methods.

5.1 Caching Strategies

Caching intermediate results while computing an elliptic curve group operation is one
very important optimization criteria. In this subsection, we show that the use of our
generalized algorithm allows some savings that cannot be done with the traditional
methods. To better clarify this point, we fully detail our caching strategy for curves
in Weierstraßform using jacobian coordinates with parameter a = 3 (Jac-3). Similar
methods are applicable to all the different curve types.

Addition:
P = (X1, Y1, Z1), Q = (X2, Y2, Z2) and P + Q = (X3, Y3, Z3)

A = X1Z
2
1 , B = X2Z

2
1 , C = Y1Z

3
2 , D = Y2Z

3
1 , E = B −A,

F = 2(D − C), G = (2E)2, H = E ×G, I = A ×G,

and

X3 = F 2 −H − 2I Y3 = F (F −X3) − 2CH, Z3 = ((Z1 + Z2)2 − Z2
1 − Z2

2 )E

Doubling:
2P = (X3, Y3, Z3)

A = X1Y
2
1 , B = 3(X1 − Z1)2(X1 + Z1)2

and

X3 = B2 − 8A, Y3 = −8Y 4
1 + B(4A−X3), Z3 = (Y1 + Z1)2 − Y 2

1 − Z2
1 .

One can verify that these two operations can be computed using 11M+5S and 3M+5S
respectively. It has been shown that some of the intermediate results can be reused
under particular circumstances. More precisely, if a point P = (X1, Y1, Z1) is added
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to any other point, it is possible to store the data Z2
1 and Z3

1 . During the same scalar
multiplication, if the point P is added again to another point, reusing those stored values
saves 1M+1S. This is what is usually called a readdition and its cost is 10M+4S instead
of 11M+5S. With mixed and, of course, the general addition (one of the added points
has its z-coordinate equal to 1), this is the only kind of point additions that can occur in
all the traditional scalar multiplication methods.

Our new method allows more variety in caching strategies and point addition situa-
tions. From the doubling formulae, we can see that if we store Z2

1 after the doubling of
P and if we have to add P to another point, reusing Z2

1 saves 1S. Adding a point that
has already been doubled will be called dADD.

We now apply this to our scalar multiplication algorithm. We first compute the se-
quence P → 2P → · · · → 2bmaxP . For each doubled point (i.e. P → 2P → · · · →
2bmax−1P ) , it is possible to store Z2. Different situations can now occur:

– addition after doubling (dADD): addition of a point that has already been doubled
before

– double addition after doubling (2dADD): addition of two points that have already
been doubled before

– addition after doubling + readdition (dreADD): addition of a point that has al-
ready been doubled before to a point that has been added before

– double readition (2reADD): addition of two points that has been added before
– addition after doubling + mixed addition dmADD: addition of a point that has

already been doubled before to a point in affine coordinate (i.e. Z = 1)
– mixed readdition (mreADD): addition of a point in affine coordinate (i.e. Z = 1)

to a point that has been added before

Remark 2. It is also possible to cache Z2 after a tripling. Adding a point that has already
been tripled has the same cost as that has been after a doubling. Thus, we will still call
this operation dADD.

In Table 2 we summarize the costs of the different operations for each considered curve.

Table 2. New elliptic curve operations cost

Curve shape dADD 2dADD dreADD 2reADD dmADD mreADD

3DIK 11M+6S 11M+6S 10M+6S 9M+6S 7M+4S 6M+4S
Edwards 10M+1S 10M+1S 10M+1S 10M+1S 9M+1S 9M+1S

ExtJQuartic 7M+3S 7M+2S 7M+2S 7M+2S 6M+2S 6M+2S
Hessian 6M+6S 6M+6S 6M+6M 6M+6S 5M+6S 5M+6S

InvEdwards 9M+1S 9M+1S 9M+1S 9M+1S 8M+1S 8M+1S
JacIntersect 11M+1S 11M+1S 11M+1S 11M+1S 10M+1S 10M+1S

Jacobian 11M+4S 10M+4S 10M+3S 9M+3S 7M+3S 6M+3S
Jacobian-3 11M+4S 10M+4S 10M+3S 9M+3S 7M+3S 6M+3S
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5.2 Implementations and Results

We have carried out experiments on 160-bit and 256-bit scalars over all the elliptic
curves mentioned in section 2.1 and all values of bmax, tmax and Zmax such that
2bmax3tmax and 2bmaxFZmax are 160-bit or 256-bit integers. For each curve and each
set of parameters, we have:

– generated 10000 pseudo random integers in {0, . . . , 2m − 1}m = 160, 256 ,
– converted each integer into the DBNS/BZNS systems using the corresponding pa-

rameters,
– counted all the operations involved in the point scalar multiplication process.

Table 3. Optimal parameters and operation count for 160-bit scalars

Curve shape Method bmax tmax Zmax # multiplications

3DIK
4-NAF - - - 1645.8

DB chain 80 51 - 1502.4
Yao-DBNS 44 74 - 1477.3

Edwards
4-NAF - - - 1321.6

DB chain 156 3 - 1322.9
Yao-DBNS 140 13 - 1283.3

ExtJQuartic
4-NAF - - - 1308.5

DB chain 156 3 - 1311.0
(2,3,5)NAF 131 12 - 1226.0
Yao-DBNS 140 13 - 1210.9

Hessian
4-NAF - - - 1601.9

DB chain 100 38 - 1565.0
Yao-DBNS 113 30 - 1501.8

InvEdwards
4-NAF - - - 1287.8

DB chain 156 3 - 1290.3
(2,3,5)NAF 142 9 - 1273.8
Yao-DBNS 140 13 - 1258.6

JacIntersect
4-NAF - - - 1389.4

DB chain 150 7 - 1438.8
Yao-DBNS 143 11 - 1301.2

Jacobian
4-NAF - - - 1573.8

DB chain 100 38 - 1558.4
Yao-DBNS 131 19 - 1534.9
Yao-BZNS 142 - 28 1534.8

Jacobian-3
4-NAF - - - 1511.9

DB chain 100 38 - 1504.3
(2,3,5)NAF 131 12 - 1426.8
Yao-DBNS 131 19 - 1475.3
Yao-BZNS 142 - 28 1476.9
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In Tables 3 and 4, we report the best results obtained for each case, with the best choice
of parameters. Results are given in number of base field multiplications. To do so and in
order to ease the comparison with previous works, we assume that S = 0.8M . However,
different ratios could give slightly different results.

As the efficiency of any method is directly dependent on that of the curve operations,
in appendix, we give in Tables 5, 6, 7 and 8 the curve operation count of our methods, in
order to ease comparisons with future works that might use improved formulae. How-
ever, one has to be aware that those operation counts are only valid for the parameters
they correspond to. A significant improvement of any of those curve operations may
significantly change the optimal parameters for a given method.

As shown in Tables 3 and 4, our new method is very efficient compared to pre-
viously reported optimized double-base chains approaches [1] or optimized w-NAF
methods [5], whatever the curve is. We obtain particularly good results on extended

Table 4. Optimal parameters and operation count for 256-bit scalars

Curve shape Method bmax tmax Zmax # multiplications

3DIK
4-NAF - - - 2603.3

DB chain 130 80 - 2393.2
Yao-DBNS 63 122 - 2319.2

Edwards
4-NAF - - - 2088.5

DB chain 252 3 - 2089.7
Yao-DBNS 220 23 - 2029.8

ExtJQuartic
4-NAF - - - 2068.9

DB chain 253 2 - 2071.2
Yao-DBNS 215 26 - 1911.4

Hessian
4-NAF - - - 2542.4

DB chain 150 67 - 2470.6
Yao-DBNS 185 45 - 2374.0

InvEdwards
4-NAF - - - 2038.7

DB chain 252 3 - 2041.2
Yao-DBNS 220 23 - 1993.3

JacIntersect
4-NAF - - - 2185.4

DB chain 246 7 - 2266.1
Yao-DBNS 236 13 - 2050.5

Jacobian
4-NAF - - - 2492.1

DB chain 160 61 - 2466.2
Yao-DBNS 185 45 - 2416.2
Yao-BZNS 227 - 44 2419.8

Jacobian-3
4-NAF - - - 2391.8

DB chain 160 61 - 2379.0
Yao-DBNS 185 45 - 2316.2
Yao-BZNS 22 - 44 2329.2
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Jacobi Quartics, with which we improve the best results found in the literature, even
taking into account the recent multi-base chains (or (2,3,5)NAF) [18]. However, one
should note that part of those improvements are due to the fact that [1] and [5] uses
older formulae for Extended JQuartic and Hessian curves. As an example, doubling is
performed using 3M+4S instead of the actual 2M+5S. This saves 0.2M per doublings,
that is to say around 32M (160×0.2M) for 160-bit scalars.

We can also see the interest of our new binary/Zeckendorf number system, for each
curve where Euclidean additions are fast, it gives similar results as the classical double-
base number system. It could be really interesting to generalize this number system to
other curves and find more specific optimizations.

Finally, growing in size makes our algorithm even more advantageous, for every
curves. Considering the (2,3,5)NAF method, no data are given for 256-bit scalars in the
original paper. Due to lack of time, we have not been able to implement by ourselves
this algorithm but we expect a similar behavior.

6 Conclusions

In this paper we have proposed an efficient generalized version of Yao’s algorithm, less
restrictive than the double-base chain method, to perform the point scalar multiplication
on elliptic curves defined over prime fields. The main advantage of this representation
is that it takes advantage of the natural sparseness of the double-base number system
without any additional and unnecessary computations. In the end, our method performs
faster than all the previous double-base chains methods, over all types of curves. On the
extended Jacobi Quartics, it also provides the best result found literature, faster than the
(2,3,5)NAF, recently claimed as the fastest scalar multiplication algorithm. Finally we
have proposed a new number system, mixing binary and Zeckendorf representation. On
curves providing fast Euclidean addition, the BZNS provides very good results.
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invaluable comments.
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A Detailed Operation Counts

Table 5. Detailed operation count for the Yao-DBNS scalar multiplication using 160-bit scalar

Curve shape DBL TPL ADD reADD dADD 2dADD 2reADD dreADD mADD dmADD mreADD

3DIK 43.50 73.43 1.20 0.64 16.10 3.49 0.01 0.29 0.66 0.45 0.01
Edwards 139.12 12.84 1.68 1.55 18.48 0.97 0 0.01 1.59 0.22 0.01

ExtJQuartic 139.12 12.84 1.68 1.55 18.48 0.97 0 0.01 1.59 0.22 0.01
Hessian 112.22 29.73 1.26 1.07 17.40 1.63 0.01 0.17 1.07 0.28 0.03

InvEdwards 139.12 12.84 1.68 1.55 18.48 0.97 0 0.01 1.59 0.22 0.01
JacIntersect 142.19 10.94 2.40 1.64 17.71 0.81 0 0.13 2.22 0.29 0.03

Jacobian 130.10 18.71 1.43 1.09 18.36 1.11 0 0.14 1.31 0.25 0.03
Jacobian-3 130.10 18.71 1.43 1.09 18.36 1.11 0 0.14 1.31 0.25 0.03

Table 6. Detailed operation count for the Yao-BZNS scalar multiplication using 160-bit scalars

Curve shape DBL ZADD ADD reADD mADD 2reADD mreADD

Jacobian 141.27 25.53 19.55 0.48 1.72 0 0
Jacobian-3 141.27 25.53 19.55 0.48 1.72 0 0

Table 7. Detailed operation count for the Yao-DBNS scalar multiplication using 256-bit scalar

Curve shape DBL TPL ADD reADD dADD 2dADD 2reADD dreADD mADD dmADD mreADD

3DIK 62.48 121.72 1.33 1.07 23.78 6.17 0.01 0.49 0.66 0.52 0.03
Edwards 219.17 22.89 1.87 2.37 28.46 1.61 0 0.23 1.48 0.35 0.06

ExtJQuartic 214.29 25.86 1.93 1.93 27.88 1.92 0.01 0.29 1.73 0.32 0.01
Hessian 184.33 44.73 1.38 1.47 26.58 2.57 0.01 0.21 1.18 0.34 0.03

InvEdwards 219.17 22.89 1.87 2.37 28.46 1.61 0 0.23 1.48 0.35 0.06
JacIntersect 235.26 12.94 2.37 3.04 29.31 1.39 0.02 0.24 2.25 0.33 0.05

Jacobian 184.33 44.78 1.38 1.47 26.58 2.57 0.01 0.21 1.18 0.34 0.03
Jacobian-3 184.33 44.78 1.38 1.47 26.58 2.57 0.01 0.21 1.18 0.34 0.03

Table 8. Detailed operation count for the Yao-BZNS scalar multiplication using 256-bit scalars

Curve shape DBL ZADD ADD reADD mADD 2reADD mreADD

Jacobian 226.3 41.4 30.01 0.74 1.20 0 0.02
Jacobian-3 226.3 41.4 30.01 0.74 1.20 0 0.02
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Abstract. We have devised a frequency injection attack which is able
to destroy the source of entropy in ring-oscillator-based true random
number generators (TRNGs). A TRNG will lock to frequencies injected
into the power supply, eliminating the source of random jitter on which
it relies. We are able to reduce the keyspace of a secure microcontroller
based on a TRNG from 264 to 3300, and successfully attack a 2004 EMV
(‘Chip and PIN’) payment card. We outline a realistic covert attack on
the EMV payment system that requires only 13 attempts at guessing a
random number that should require 232. The theory, three implementa-
tions of the attack, and methods of optimisation are described.

1 Introduction

Random numbers are a vital part of many cryptographic protocols. Without
randomness, transactions are deterministic and may be cloned or modified. In
this paper we outline an attack on the random number generators used in se-
cure hardware. By injecting frequencies into the power supply of a device we
can severely reduce the range of random numbers used in cryptography. Fig. 1
illustrates the patterns from our attack on a secure microcontroller.

Consider an example in the EMV banking protocol (initiated by Europay,
MasterCard and Visa, marketed as ‘Chip and PIN’ in the UK) [1]. For cash
withdrawal an automatic telling machine (ATM) picks an unpredictable number
from four billion possibilities. Imagine if an insider can make a small covert
modification to an ATM to reduce this to a small number, R.

He could then install a modified EMV terminal in a crooked shop. A customer
enters and pays for goods on their card. While the modified terminal is doing
the customer’s EMV transaction with their secret PIN, it simulates an ATM by
performing and recording

√
R ATM transactions. The customer leaves, unaware

that extra transactions have been recorded.
The crooked merchant then takes a fake card to the modified ATM. The ATM

will challenge the card with one of R random numbers. If the shop recorded
a transaction with that number, he can withdraw cash. If not, the fake card
terminates the transaction (as might happen with dirty card contacts) and starts
again. By the Birthday Paradox we only need roughly

√
R attempts at the ATM

C. Clavier and K. Gaj (Eds.): CHES 2009, LNCS 5747, pp. 317–331, 2009.
c© International Association for Cryptologic Research 2009
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(a) No injection,
70 × 140 bits

(b) 1.822880 MHz
injection, 70 × 140
bits

(c) 1.929629 MHz
injection, 73 × 146
bits

Fig. 1. TRNG bitstream from secure microcontroller with frequency injection, raster
scanning left-to-right then top-to-bottom. Bit-widths chosen to illustrate sequences
found. Recording into SRAM of 28KB of sequential random bytes at maximum rate,
later replayed through the serial port as a hexadecimal string.

before, at least, a 50% chance of success. The customer has no defence: both their
card and PIN were used in the transaction, just not at the time they expected.

In this attack we have reduced the ability of a microcontroller known to be
used in ATMs to produce 4 billion (232) random numbers, to just 225 (< 28)
(illustrated in Fig. 1). For more than a 50% chance of a successful attack we only
need to record 13 transactions in the shop and try 13 transactions at the ATM.
Our attack is based on injecting signals into the power supply of a smartcard or
secure microcontroller. It is made possible by adding a small number of extra
components costing tens of dollars.

2 Random Number Generation

A true random number generator (TRNG) must satisfy two properties: uniform
statistics and contain a source of entropy. Non-uniform statistics might enable
the attacker to guess common values or sequences. Entropy comprises a source of
uncertainty in a normally predictable digital system. Failure of these properties
in even subtle ways leads to weaknesses in cryptographic systems ([2], [3]).

A common implementation of a TRNG is provided by comparing free-running
oscillators. These are designed to be sensitive to thermal, shot or other types of
random noise, and present it as timing variations. Such timing variations can be
measured by a digital system, and the entropy collected. An oscillator that is
easy to fabricate on a CMOS digital integrated circuit is the ring oscillator (see
Fig. 2), which is used in many TRNG designs.

Practical TRNG sources are typically whitened by post-processing before
cryptographic use, to ensure uniform statistics. Typically whitening functions
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Whitening
eg LFSR

Sampling
clock

D-type
latch

Random
bitstream

Ring r

1 2 ... nr

Ring 1

1 2 ... n1

Fig. 2. Outline of the basic ring oscillator TRNG

include calculating the remainder of a polynomial division using a linear-feedback
shift register (LFSR), or hash functions. If the entropy source is removed, TRNG
outputs revert to a repeating sequence from the whitening function.

In this paper we examine the operation of the ring oscillator, and explain how
the principle of injection locking may be used by an attacker to take control of
this entropy source.

3 Theory

3.1 Ring Oscillator TRNG Operation

Hajimiri et al.[4] give the frequency of a single-ended1 CMOS ring oscillator
formed from N inverters with equal-length NMOS and PMOS transistors to be:

f0 ≡ ω0

2π
≈ µeffWeffCox(VDD

2 − VT)
8ηNLqmax

(1)

This relates the fundamental frequency f0 to the gate-oxide capacitance per
unit area Cox, transistor length L, power supply voltage VDD, gate threshold
voltage VT and proportionality constant η ≈ 1. qmax is the amount of charge a
node receives during one switching period. We consider both NMOS and PMOS
transistors together, giving effective permeability µ and transistor width W :

Weff = Wn + Wp (2)

µeff =
µnWn + µpWp

Wn + Wp
(3)

These are all physical constants determined in the construction of the oscillator.
A ring oscillator with no other effects would be completely predictable.

Oscillators do not have a perfectly stable output. In the time domain, random
noise means they sometimes transition before or after the expected switching
time. In the frequency domain this implies small random fluctuations in the
phase of the wave, slightly spreading its spectrum. This same effect is referred
to as jitter in the time domain and as phase noise in the frequency domain.
These are both cumulative over time (seen in Fig. 3).
1 In a single-ended ring the connection between each node is a single unbalanced signal,

as opposed to a differential ring, in which each connection is a balanced pair.
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t 0

t∆

σ
∆ t

Fig. 3. Jitter in the time domain causes increasing uncertainty in the timing of tran-
sitions

In a single-ended ring oscillator, a time ∆t after the starting, Hajimiri derives
that the jitter due to thermal noise will have a standard deviation:

σ∆t ≈
√

8
3η

√
kT

P

VDD

Vchar
(4)

where P is the power consumption and kT the Boltzmann constant multiplied
by temperature. Vchar is the characteristic voltage across a MOSFET – in the
long-channel mode it is 2

3 ((VDD/2)− VT).
This is equivalently written as a phase noise spectrum:

L{ω} ≈ 8
3η

kT

P

VDD

Vchar

ω2
0

ω2 (5)

where ω0 is the natural angular frequency of the oscillator and variable ω is some
deviation from it (ie ω = 0 at ω0).

In a TRNG based on ring oscillators jitter is converted into entropy by measur-
ing the timing of transitions: jitter causes the exact timing to be unpredictable.
There are two main ways to construct such a TRNG: relatively prime ring lengths
([5] and several patents) and identical ring lengths [6]. Both employ a topology
based on that of Fig. 2. The combined signals from the rings are sampled at
some uncorrelated frequency, producing a stream of bits, which is then whitened
before cryptographic use.

In the identical rings context, we have two or more rings running at the same
frequency. Entropy is wasted when jitter from one transition overlaps jitter from
another since only one transition is measured. Sunar et al.[6] extends this to tens
or hundreds of rings to increase the probability that at time t there will be a
ring R that does not transition. Cumulative jitter is measured as the phase drift
between each ring.

With relatively prime rings, the outputs slide past each other, minimising the
likelihood of two rings transitioning together. Transition timing is based on a
prime factor and the integral of past jitter. Sunar points out that fabrication
of relatively prime rings to produce more concentrated entropy is expensive.
In our experimental work we concentrate on relatively prime rings, since, we
suggest, these are more difficult to lock to an input frequency (or frequencies).
For identical rings it should be much simpler.
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3.2 Frequency Injection Attacks

Bak [7] describes how a dynamical system will, at certain frequencies, resonate,
and, at others, be chaotic. A resonator, such as a pendulum, with natural fre-
quency m, will lock when driven by any frequency n forming a rational m/n.
Adler [8] describes the conditions for lock as applied to a vacuum tube LC elec-
tronic oscillator. This effect is known as injection locking.

Our attack constitutes injecting a signal of frequency fi ≡ ωi/2π and magni-
tude Vi into the ring oscillators, causing them to lock to the injected frequency.
Locking is a steady state: at lock the relative phase φ between the two oscilla-
tors is constant, so dφ/dt = 0. Once lock has been achieved, the ring’s natural
frequency is irrelevant; jitter in the injecting signal will be received equally by
all the rings, impairing any TRNG that compares jitter between oscillators.

Mesgarzadeh and Alvandpour [9] analyse this for a three-ring CMOS oscil-
lator deliberately made asymmetric by the forcing input being an additional
gate overdriving one signal. They prove Adler’s work also applies to their ring
oscillator. Rearranging their condition for lock in Adler’s form, we have:

2Q

∣∣∣∣(ωi

ω0
− 1

)∣∣∣∣ <
Vi

V0
(6)

where V0 is the amplitude of the oscillator at its natural frequency and Q is its
quality factor, a measure of the damping of the oscillator. From our experiments,
Fig. 4 shows the difference between rings sliding past each other and in lock.

To achieve injection locking, we must ensure our interference can reach the
ring oscillators in a secure circuit. In this paper we achieve it by coupling the
injection frequency on to the power supply of the device.

The difficulty in proceeding with an analytic solution is determining Q. Adler
originally derived the formulation in the context of an LC tank that has a natural
sinusoidal operating frequency. Such an oscillator converts energy between two

(a) No injected signal, rings slide past
each other

(b) Strong injection, traces lock phase

Fig. 4. Injection locking effect shown on oscilloscope persistent display (discrete in-
verter experiment from Sec. 4). View dimensions 8V × 200 ns; 5V power supply.
Triggering on 3-element ring, with 5-element-ring trace in front. Note in particular
how resonances are set up in the ring oscillators that increase the amplitude above the
power rails from 5Vp-p to 10Vp-p.
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forms, voltage and current in this case. It synchronises to an external signal of
suitable frequency to maximize the energy extracted from this driving source.
For instance, a pendulum will adjust phase so an external periodic displacement
will accelerate its own velocity.

A ring oscillator lacks a clear system-wide change between two alternating
states, being just a circle where a rising and a falling edge chase each other,
without any natural point defining where a new cycle starts. An idealised 3-
element ring consists of three identical inverters, connected via three identical
transmission lines. All three inverters and transmission lines oscillate in exactly
the same way, but 120◦ out of phase. A waveform applied via the power supply
or an EM field is a global stimulus that affects all three inverters equally. It will,
therefore, encourage the ring oscilator to synchronise simultaneously with three
versions of the stimulus, all 120◦ apart in phase. Their synchronising effect is
thus largely cancelled out.

A global stimulus can only be effective if the three parts are not exactly
identical. In a real-world ring oscillator layout asymmetries, device variations,
and loading due to the output tap all break this 120◦ symmetry and will allow
one of the 120◦ alternatives to win over the other two. How quickly the ring will
lock on to a global stimulus will largely depend on the size of this asymmetry.

Unlike pendula or LC tanks, ring oscillators are also non-linear. In short rings,
such as N = 3, each gate is in a constant state of transition, so operates linearly,
and the output more clearly resembles a sinusoid. But in longer rings, where
N � 10, each gate spends a small fraction of the time in transition, so the ring
output is more like a square wave. Adler’s model fits this case less well.

3.3 Effect of Injection on Jitter

Mesgarzadeh and Alvandpour indicate their injection can operate on the ring
signals as a first-order low-pass filter with a single pole located at:

p = 2πωi ln
1

1 + S
(7)

where S is the injection ratio Vi/V0 or, in power terms,
√

Pi/P0. In other
words, the function in the domain of the Laplace transform is:

H(jω) =
1

1 + (2πωi ln 1
1+S )jω

(8)

where j =
√−1. It is analogous to a series R-C filter with RC = p.

If we can locate pole p close enough to the origin we can filter out high
frequency and large cycle-to-cycle jitter. Increased injection power S reduces
this filtering effect.

A successful attack is the intersection of two regions. From (6), if the injection
power is too low the system will not lock. From (8), if the power is too high jitter
will not be filtered out. For the TRNG system a weaker condition is required:
if the jitter of the rings mirrors that of the driving oscillator, the attack is a
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success. The TRNG measures differences in jitter between rings, so will not
measure jitter common to all rings.

We analyse the attack on relatively prime rings but demonstrate our attack
in ‘black box’ experiments with no knowledge of device construction. Therefore
we assume that we are reducing jitter by the effect of equalising jitter between
rings, rather than a reduction of jitter in the whole system.

Yoo et al.[10] describes locking effects due to poor layout but generally not in
an adversarial manner. They investigate changing the DC supply voltage, but
not its AC components. Sunar [6] considers active glitch attacks and concludes
these are only able to attack a finite number of bits due to their limited duration.
The frequency injection attack is much more powerful, since it can attack all bits
simultaneously for as long as desired.

4 Discrete Logic Measurements

We set out to measure phase differences in two relatively prime rings. Given their
primality, the ring outputs should drift past each other, based on a combination
of cumulative jitter and the underlying ring frequency differences. For non-locked
rings, we expect phase lag to be uniformly distributed. When locked, phase lag
will be concentrated on one value.

Oscilloscope

+5V

IC1: 74HC04N

100 Ω

Vss

Vdd

IC2: 74HC04N
Vss

Vdd

GND

900mV pk-pk

  ADT1-1WT
(0-800MHz @ <3dB)

finject
50 Ω

(a) Schematic

(b) Test board

Fig. 5. Measurement experiment using 74HC04 inverter ICs
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Injection locking is very difficult to simulate in a transient analysis tool such
as SPICE [11]. It requires very small timesteps for each oscillation cycle, and
a high Q oscillator may require thousands of cycles to lock. When close to the
natural frequency the beat frequency may be a few tens of Hertz. To measure
this accurately in a simulation with picosecond-scale steps requires an infeasibly
long simulation time. In addition, the asymmetries of a real system will not be
modelled in a simulated ideal design.

Due to I/O buffering, it is difficult to measure such behaviour of fast analogue
signals inside an FPGA or ASIC. We first measured the effect in discrete logic.
With limited complexity possible, we investigated the simplest ring oscillators:
the outputs from three- and five- element rings, with and without frequency
injection in the power supply. We used the 74HC04 inverter chip to construct the
two mutually-prime rings seen in Fig. 5(a). Phase lag was measured by triggering
an oscilloscope on the rising edge of the three-element ring, and measuring the
time up to the rising edge of the five-element ring. Such short rings are used in
real TRNGs – though they may have a greater region of linear operation than
longer rings.

We set up a Tektronix AFG3252 function generator to inject a sine wave at
900mV pk-pk into the 5 V power rails and by sweeping frequency we observed
locking at 24MHz. A Tektronix TDS7254B oscilloscope measured the phase lag
between the two rings when injecting and the resulting histograms are plotted
in Fig. 6. A very clear clustering around 10 ns can be seen, indicating a lock.
This effect is visible in the time domain traces seen in Fig. 4, which show a
marked reduction in the variability of the 5-element output. The slight clus-
tering seen in Fig. 6(a) is, we believe, due to slightly non-uniform oscilloscope
triggering.
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Fig. 6. Phase delay between 74HC04 3- and 5- element rings. (a) with no injection, (b)
with 24MHz at 900 mV pk-pk injected into power supply. (25000 samples).
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5 Secure Microcontroller

We tested an 8051-compatible secure microcontroller which has been used in
ATMs and other security products. It includes features such as an anti-probing
coating and tamper detection and at release claimed to be the most secure
product on the market. Our example had a date code of 1995 but the device is
still recommended for new payment applications by the manufacturer.

It provides a hardware TRNG based on frequency differences between two ring
oscillators and timing from the user’s crystal (11.059MHz here), and produces 8
bits every 160µs. 64 bits from the TRNG may be used as the internal encryption
key. No further operation details are documented.

We programmed the device to deliver the random bitstream as hexadecimal
digits through the serial port and displayed it in realtime as a two dimensional
black and white image. We adjusted the function generator to inject a sinusoid
at 500mV peak-peak into the chip’s power supply as shown in Fig. 7.

By sweeping the frequency we spotted changes in the patterns produced by the
TRNG. The most interesting finject was at about 1.8MHz. Obviously periodic
sequences were visible: see Fig. 1(a)–1(c). In particular the sequence length of
the TRNG was controlled by the injected frequency. With another choice of
finject we could also prevent the TRNG returning any values. At no time during
any of these tests did the microcontroller otherwise misbehave or detect a fault
condition. The device is designed to operate at 5 V with a minimum operating
voltage of 4.25V so it is running within specification.

Fig. 1(b) indicates a distinct 15-bit long texture, on top of a longer 70-bit
sequence. Uncertainty is only present at the overlap between these textures.
In a 420-bit sample, we estimate 18 bits of noise. In a 15-bit sequence that
means 0.65bits may be flipped. The attacker knows the base key is the sequence
010101010. . . , but not where the 15-bit sequence starts (15 possibilities) or the
noise. In most cases noise is constrained to 3 bits at the start of the 15 bit
sequence. In the full 64-bit sequence, the bit flips are 0.65 × 4 = 2.6. 3 bits
flipped over the whole 64-bit sequence in one of 12 positions gives

(12
3

)
= 220

combinations. Thus we estimate that the total keyspace is smaller than 220 ×
15 = 3300. In a key length of 32bits there are 1.3 bits of noise; the equivalent
calculation with 2 bits gives a keyspace of less than

(6
2

)× 15 = 225 ≈ 28.

+5V

GND

VDD (chip)

GND (chip)

47nF

10

Secure
Microcontroller

500mV
pk-pk

Ω

50 Ω
f
inject

Fig. 7. Frequency injection to secure microcontroller
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6 EMV Smartcard Attack

We applied this methodology to an EMV payment card issued in 2004 by a
British High Street bank. We picked the first available; with no knowledge of
the internals we treated it as a ‘black box’. This is a non-invasive attack where
no modifications are required to the card under attack.

First we needed to deduce the operating frequency of the card’s TRNG. We
assumed that such a card would have power analysis protection, so we performed
an electromagnetic assessment. An electric field antenna was constructed on a
test card. Copper foil was attached beneath the chip as shown in Figs. 8 and 9,
with foil traces between the backside foil patch and the ground pad of the chip.
The card was inserted into a Chipdrive Micro 100 card reader, and standard
ISO7816-4 GET CHALLENGE commands used to read the RNG.

We measured three different spectra: (a) not powered or attached to reader
(background interference); (b) powered, attached to reader but held in reset and
not clocked; and (c) when reading random numbers.

Since a ring oscillator is likely to remain powered even when the card is not
initialised, we looked for frequencies that exist when the card is inserted into the
reader and unclocked, but not present when the card is removed. We found four
such frequencies in the range 0–500MHz: we chose finject to be 24.04MHz, the
only frequency below 100MHz. As this is a black-box system, we do not know
if this is optimal; it is merely the first frequency we tried.

We modified the reader to inject a signal as shown in Fig. 10, and observed
the random number statistics. Sweeping the injected frequency and graphically
viewing random bits, we saw no obvious pattern changes. However statistical
analysis of the random data revealed injecting finject at 1 V pk-pk across the
card powered at 5 V caused the random function to skew. At all times during
measurement the card continued to respond correctly to ISO7816-4 commands
and would perform EMV transactions while under attack.

Copper foil on underside
of card below chip

Topside copper foil
on ground pad of chip

Copper tape overlaid on each side
to minimise magnetic loop area

P7330 0-3.5GHz
differential probe

IN

CH3 OUTCH3

Anritsu MS2601B
spectrum analyser

Tektronix TDS7254B
oscilloscope (used as
passthrough amplifier,

internal bandwidth
filters off)

Fig. 8. Electric field characterisation of EMV smartcard
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Fig. 9. Electric field antenna on under-
side of example smartcard

GND (reader)

39 100nF
10

VDD (card) GND(card)

VDD (reader)

finject Ω
Ω50 Ω

Fig. 10. Smartcard frequency injection
circuit

Table 1. Statistical test results from injection into EMV card

NIST Pass Fail

No injection 187 1
Injection 28 160
Dieharder Pass Poor Weak Fail

No injection 86 6 6 9
Injection 28 16 5 58

The statistics were analysed using all the tests in the NIST [12] and Dieharder
[13]2 test suites using 1.56×109 bits. An outline of the results are shown in Table
1, with tabulated NIST results in the Appendix. By failing most of the tests
we can see that the sequence has become non-random. The FFT test reveals
periodicities of around 2000 and 15000 bits. The Rank test, where a 32 × 32
matrix of random bits should have a rank > 28 (true for our control data), fails
with many ranks as low as 19 implying rows or columns are not independent.

7 Recommendations and Further Work

7.1 Optimisation of the Attack

In the Introduction we outlined an attack on the EMV payment system, which
works whether the smartcard uses Static or Dynamic Data Authentication pro-
tocols.

An ATM is a computer in a safe, comprising either a PC or custom circuit
boards. At least one ATM uses the secure microcontroller we tested as its cryp-
toprocessor. ATM physical security focuses on preventing access to the money
held inside; this attack needs no access to the cash compartment. Adding in-
jection hardware involves adding a tap to one wire on the PCB – this could be
done by an insider or simply by picking the mechanical locks. June 2009 reports
[14] uncovered malware in ATMs installed by insiders, while in another case [15]
an attacker bought up ‘white-label’ ATMs (normally found in shops and bars),
fitted internal recording devices and resold them.
2 Dieharder version 2.28.1, a superset of the DIEHARD suite.
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The required number of transactions is small and unlikely to raise alerts at the
bank, which is afraid of false alarms. Customers complain about false positives,
so there is commercial pressure to be lenient. If the cash withdrawal is performed
before the card is used again by the customer, the bank has no way of knowing
the transaction was recorded earlier. ATMs are typically only serviced when
they go wrong. Even if our proposed frequency injector could be spotted by a
technician, it may be many months before they are on site.

While we developed our attack with laboratory equipment, the cost of char-
acterising each smartcard, card reader or ATM processor can be made very low.
An electric field antenna may be fitted inside a commercial reader, so that noth-
ing is fixed to the card surface. A commercial tunable radio receiver may be
attached to the antenna to scan for frequencies of interest, while the frequency
synthesiser in a similar receiver may be modified as a cheap way to generate
injection frequencies. Given a quantity of identical cards (cheaply acquired on
the black market, having little value once expired or cancelled by the bank) the
search is easy to parallelise.

Attacking the TRNG on a card can be optimised by listening to other com-
mands it performs. Each card provides an Answer To Reset – a response from
the card software which can also be used to fingerprint its manufacturer [16].
We found cards with the same ATR emitted the same frequencies, most likely
if they were built on the same operating system/hardware combination. After
characterisation, the attacker can decide which frequencies to inject to a live
card based on the ATR. This logic can be built into a terminal or ATM tap;
interception of the card serial data line will reveal the ATR.

Due to electromagnetic interference (EMI) regulations, devices are designed
to operate in the presence of interference. Neither of the commercial devices
tested failed to operate at any point during these attacks. It is difficult to see
how TRNGs could actively detect such attacks without compromising their EMI
immunity.

7.2 Defences

We have demonstrated this attack allows the keyspace to be reduced to a size
easily brute-forced. As soon as the attacker knows some plaintext, the key may be
easily found. The simplest defence is to prevent a brute-force attack. Therefore
the best system allows few permitted guesses, which raises the risks for the
attacker. Preventing the attacker gaining large quantities of random material
would also prevent device characterisation.

To prevent interference a device can filter injected frequencies. Voltage regula-
tion or merely extra power supply smoothing may prevent locking, or shielding
may be required for electromagnetic attacks. Devices could refuse to operate
at their known-vulnerable frequencies. While this may render them less EMI-
immune, it may be acceptable in high security applications. TRNG designs where
the feedback loop is combined with logical or register elements [17] may be suf-
ficient to break the locking effect.
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Designers can work towards preventing locking by reducing asymmetries in the
rings. Carefully balanced transistors may be used, as may equal tapping points
on each node. Also, the differential ring oscillator is less affected by supply and
substrate noise [18]. It may be feasible to use this instead of the single-ended
ring commonly used. Careful design is required to ensure reducing susceptibility
does not destroy the source of entropy – Hajimiri [4] indicates the differential
oscillator increases the phase noise, which may be beneficial.

7.3 Further Work

We have outlined the principles of this attack but there are many ways in which
it could be refined.

Further analysis of the effect of power supply injection is necessary. In the
literature, injection locking has mostly been analysed through direct coupling to
the signal undergoing oscillation, while, here, we use a different mode of coupling,
by co-ordinated biasing of the gates it passes through. It would be instructive
to determine the minimum power required for this attack and, in particular,
how much it can be reduced by on-chip filtering. There are some well-known
defences against passive power analysis; it would be interesting to evaluate these
for protecting against frequency injection attacks.

In addition, it may also be feasible to perform this attack via high-powered
electromagnetic radiation, which is more easily focused and more difficult to
mitigate than a power attack. This could be done using magnetic loops to in-
duce currents into the device at the appropriate frequencies, or using the device
itself to demodulate the injected frequency (such as a 3 GHz carrier amplitude-
modulated by 1.8MHz); the carrier will more readily propagate, but be filtered
away by parasitic capacitance on the chip leaving the 1.8MHz harmonic.

Systems with identical ring lengths may be particularly vulnerable due to their
shared resonant frequencies. There is further scope for directing this attack if
the ring geometries are known. Fig. 1 shows some texture of our TRNG; it may
be interesting to use this approach to reverse engineer a TRNG’s design from
the bitstream.

8 Conclusion

In this paper we have outlined an attack on ring-oscillator based random num-
ber generators. We have described the effect, and measured its consequences
on a security microcontroller used in the EMV system, and in an EMV card.
We believe this is an important effect, which all designers of random number
generators should test.

Acknowledgements. Markus Kuhn suggested the experiments with the secure
microcontroller and provided many components of the experimental setup plus
valuable feedback on the paper. Steven Murdoch provided the Python EMV
protocol library used to drive communication with the smartcard.
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Appendix

Tabulated NIST Test Results from EMV Smartcard

Table 2. NIST results from EMV smartcard

No injection Apply finject

χ2 P-value Passes Overall χ2 P-value Passes Overall
Frequency 0.3215 97.44% PASS 0.0000 21.54% FAIL
Block Frequency 0.6262 98.97% PASS 0.0000 0.51% FAIL
Cumulative Sums 0.2904 97.95% PASS 0.0000 22.05% FAIL
Cumulative Sums 0.3902 97.95% PASS 0.0000 21.54% FAIL
Runs 0.3811 99.49% PASS 0.0000 40.00% FAIL
Longest Run 0.3548 98.97% PASS 0.0000 73.85% FAIL
Rank 0.5501 100.00% PASS 0.0000 0.00% FAIL
FFT 0.0001 100.00% PASS 0.0000 0.51% FAIL
Non-Overlapping
Templatea

0.4523 99.00% PASS 0.0000 90.89% FAIL

Overlapping
Template

0.4470 98.97% PASS 0.0000 9.23% FAIL

Universal 0.0211 98.97% PASS 0.1488 98.46% PASS
Approximate
Entropy

0.1879 98.97% PASS 0.0000 1.54% FAIL

Random
Excursionsb

0.3050 99.26% PASS 0.2836 99.50% PASS

Random Excursions
Variantc

0.4922 99.39% PASS 0.3053 99.56% PASS

Serial 0.1168 100.00% PASS 0.0000 0.00% FAIL
Serial 0.5501 98.97% PASS 0.0000 0.00% FAIL
Linear Complexity 0.0358 99.49% PASS 0.9554 98.46% PASS

Dataset of 195 × 106 random bytes. NIST performed 195 runs each using fresh 106

bytes. Minimum pass rate 96.86% except Random Excursions (96.25% no injection,
93.03% injected)

a Mean over 148 tests.
b Mean over 8 tests.
c Mean over 18 tests.
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Abstract. Using a Physically Unclonable Function or PUF to extract
a secret key from the unique submicron structure of a device, instead
of storing it in non-volatile memory, provides interesting advantages
like physical unclonability and tamper evidence. However, an additional
Helper Data Algorithm (HDA) is required to deal with the fuzziness of
the PUF’s responses. To provide a viable alternative to costly protected
non-volatile memory, the PUF+HDA construction should have a very
low overhead. In this work, we propose the first HDA design using soft-
decision information providing an implementation that occupies 44.8%
less resources than previous proposals. Moreover, the required size of the
used PUF can be reduced upto 58.4% due to the smaller entropy loss.

Keywords: Physically Unclonable Functions, Helper Data Algorithm,
FPGA Implementation, Soft-Decision Decoder, Toeplitz Hash.

1 Introduction

The theoretical study of a cryptographic scheme aims to provide a well defined
and quantitative understanding of its security. However, when the scheme enters
the practical domain, more parameters join in the game. A security application
does not only need to be as secure as possible, but also as inexpensive, fast,
power-efficient and flexible as possible, which often means that the security is
reduced in order to improve these practical characteristics. Moreover, the vast
expansion of physical attacks on cryptographic implementations has shown that
certain assumptions upon which the theoretical security of a scheme is based
do not necessarily hold in practice, e.g. the existence of secure key storage. Pri-
vate keys often need to be stored in publicly accessible devices, e.g. smart cards
or RFID-tags, allowing adversaries to physically attack the implementation [1].
Tampering attacks [2,3], in which an attacker physically invades the device in
order to extract sensitive information, are among the strongest known physical
attacks and are in general always able to obtain the private key if no specific
countermeasures are taken. Advanced techniques to detect and/or resist tam-
pering in integrated circuits (e.g. [4,5]) are indispensable in security-sensitive
applications, but unavoidably add to the overhead of the security aspect.

C. Clavier and K. Gaj (Eds.): CHES 2009, LNCS 5747, pp. 332–347, 2009.
c© International Association for Cryptologic Research 2009
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Among the proposed tampering countermeasures, Physically Unclonable
Functions or PUFs [6] take a special place because of their interesting prop-
erties and the cost-effective solutions they offer. A PUF implements a function-
ality that is highly dependent on the exact physical properties of the embedding
device, down to a submicron level. PUFs on integrated circuits (ICs) take ad-
vantage of the intrinsic physical uniqueness of the device caused by unavoidable
random deep-submicron manufacturing variations, which makes their behavior
unique and unclonable. Moreover, since tampering attacks are bound to alter the
physical integrity of the chip, they will also change the PUF’s behavior [7] and
PUFs can hence be used as a tamper detection mechanism. Their instance-
specific unique behavior and their anti-tampering properties make PUFs on
ICs ideal constructions for secure key storage, i.e. the PUF responses can be
used to generate a unique and physically unclonable device key [8]. In addition,
since the unique PUF behavior arises automatically, no non-volatile memory is
needed for storing a key. A number of possible PUF implementations on ICs
have been proposed, based on delay measurements [9,10] and power up values
of memory elements [11,12]. In the latter category, SRAM-based PUFs exhibit
convenient qualities: the power up states of SRAM cells are dependent on intrin-
sically present manufacturing variability which increases with shrinking technol-
ogy nodes, SRAM cells are small, commonly used and available early in a new
manufacturing process.

Since a PUF evaluation implies a physical measurement, the extraction of a
key from the responses is not straightforward. Physical measurements are sus-
ceptible to noise and the measured random variables often come from a non-
uniform source. On the other hand, we expect cryptographic keys to be highly
reliable and to have full entropy to be secure. In order to bridge this gap, Helper
Data Algorithms (HDAs) have been introduced [13,14], which are able to trans-
form noisy and non-uniform variables into reliable and uniformly distributed bit
strings using public helper data. This helper data, although it can be made pub-
lic without disclosing any information about the extracted key, will always leak
some entropy on the PUF responses. In short, one always needs to input more
entropy into a HDA than the actual extracted key will contain, since part of it
is leaked by the helper data. This entropy loss is a function of the noise levels of
the input, and is an important characteristic of a HDA which should be mini-
mized. In case of an SRAM PUF, the amount of entropy loss in the HDA relates
directly to the number of SRAM cells needed in the PUF to extract a key and
hence the size of the PUF on silicon. Since it is in our interest to minimize the
implementation cost of the key storage, we would like this number to be as small
as possible. The HDA itself also causes an overhead cost and its implementation
should hence also be resource-optimized.

Contributions. In this work, we propose a new low-overhead design for a HDA
that uses available soft-decision information. A practical FPGA implementation
of the design is provided with a considerably lower implementation cost than pre-
vious HDA implementations [15], concerning both the required PUF size (58.4%
smaller) and the resource usage of the HDA (44.8% smaller).
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Related Work. SRAM PUFs were introduced in [11] and similar constructions
are studied in [16,17,12]. They provide a practical PUF implementation because
of the ease of use and general availability of SRAM cells on regular silicon de-
vices. The concept of HDAs has been introduced as shielding functions in [14]
and fuzzy extractors in [13]. A first efficient implementation on FPGA of a HDA
for key extraction was proposed in [15]. We will refer regularly to this work
and compare our results. The use of soft-decision information to improve perfor-
mance is a long known result in channel coding and its usefulness for HDAs was
first demonstrated in [18]. To the best of our knowledge, this work is the first to
propose an efficient HDA implementation using soft-decision information.

2 Preliminaries

2.1 Helper Data Algorithms

A noisy and partially random variable, like a PUF response or a biometric, is
often referred to as a fuzzy secret. Helper Data Algorithms (HDAs) are used to
extract cryptographic keys from fuzzy secrets, and have been introduced as fuzzy
extractors in [13] or shielding functions in [14]. We will use the formal definition
of a fuzzy extractor from [13]:

Definition 1 (Fuzzy Extractor). A (m, n, δ, µ, ε)-fuzzy extractor is a pair of
randomized procedures, generate (Gen) and reproduce (Rep):

1. The generation procedure Gen on input X ∈ {0, 1}m outputs an extracted
string S ∈ {0, 1}n and helper data W ∈ {0, 1}∗.

2. The reproduction procedure Rep takes an element X ′ ∈ {0, 1}m and a bit
string W ∈ {0, 1}∗ as inputs. The correctness property of fuzzy extractors
guarantees that if the Hamming distance dist [X ; X ′] ≤ δ and S, W were
generated by (S, W ) ← Gen(X), then Rep(X ′, W ) = S.

3. The security property guarantees that for any distribution � on {0, 1}m of
min-entropy µ, the string S is nearly uniform even for those who observe
W : if (S, W ) ← Gen(X ← �), then it holds that the statistical distance
∆ [(S, W ); (U ← �n, W )] ≤ ε, with �n the uniform distribution on {0, 1}n.

The used notions of min-entropy and statistical distance are described in Ap-
pendix A. The correctness property of fuzzy extractors takes care of possible
noise in the fuzzy secret. As long as the distance between the fuzzy secret dur-
ing generation and reproduction is limited, the same extracted output can be
obtained. This is also known as information reconciliation. The security prop-
erty tells us that the extracted output is very close to uniform as long as the
fuzzy secret contains a sufficient amount of min-entropy, even when the helper
data is observed. This is called privacy amplification. The important contribu-
tion of HDAs is the ability to extract a private key from a fuzzy secret if a public
helper channel is available. It is however important to guarantee the integrity
of the helper data [19]. The information reconciliation and privacy amplification
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Fig. 1. Constructions of a helper data algorithm

functionality of a HDA are typically implemented by two separate algorithms.
We elaborate on a common construction for both:

Information Reconciliation with the Code Offset Technique [13]. A binary linear
block code C with parameters [n, k, d] contains code words of length n, dimension
k and minimal Hamming distance d and is able to correct at least t = �(d−1)/2�
bit errors occurring in a single code word. The code offset technique picks a
uniformly random code word, denoted as C ← C, in the generation phase and
calculates the offset between the fuzzy secret X and C: ω = X ⊕ C. This offset
ω is made publicly available as helper data. In the reproduction phase, a new
version X ′ of the fuzzy secret is measured and C′ = X ′ ⊕ ω is calculated. If
dist [X ; X ′] ≡ dist [C; C′] ≤ t then C′ can be corrected to C: C = Correct(C′),
which allows the reproduction of X = C ⊕ ω. As observed in [13], publishing ω

amounts to a min-entropy loss of n−k, i.e. H̃∞ (X |ω) = H∞ (X)−n+k. We aim
to minimize this loss while maintaining an acceptable level of error-correction.

Privacy Amplification with Universal Hash Functions [20]. A universal hash fam-
ily H with parameters [a, b] is a set of functions {hi : {0, 1}a → {0, 1}b} such
that the collision probability on two distinct inputs is at most 2−b for a ran-
domly picked function from H: Pr (hR(x) = hR(x′)) ≤ 2−b, ∀x �= x′ ∈ {0, 1}a

and hR ← H. The left-over hash lemma [21] states that universal hash functions
can act as a “magnifying glass” for randomness: when taking a random variable
with limited min-entropy as input, the output distribution will be close to uni-
form. Upon generation, a function hσ ← H is randomly selected and applied
to X to obtain a random output S = hσ(X). The index σ is made available as
helper data such that the same hash function can be used in the reproduction
procedure to reproduce S from X ′ after information reconciliation.

Complete helper data algorithm. Using the two techniques mentioned above, a
complete HDA can be constructed, as shown in Figure 1(a). The helper data
W consists of the code offset ω and the hash function index σ: W = (ω, σ).
The two main blocks to be implemented in order to perform this HDA are an
error-correcting decoder and a universal hash function. In this work, we carefully
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select the parameters of these blocks and provide a resource-optimized design
and implementation for reconfigurable hardware devices.

2.2 Soft-Decision Error Correction

A classic method to increase the performance of an error-correcting decoder, and
hence decrease the code redundancy (n − k), is using soft-decision information
in the decoding algorithm. This technique could equivalently lower the entropy
loss of a HDA. Soft-decision decoding is possible when reliability measures for
received bits are available, which is called the soft-decision information. Two
well known soft-decision decoding algorithms are the Viterbi algorithm for con-
volutional codes [22] and the belief propagation algorithm for LDPC codes [23].
However, both types are inappropriate for use in the code offset technique since
they require very long data streams to work efficiently while the length of a fuzzy
secret is often limited. We would like to use a soft-decision decoding algorithm
for rather short linear block codes (n ≤ 28) in order to maintain efficiency. We
discuss two such decoders:

Soft-decision Maximum-Likelihood Decoding (SDML) is a straightforward algo-
rithm that selects the code word that was most likely transmitted based on the
bit reliabilities. SDML achieves the best error-correcting performance possible,
but generally at a decoding complexity exponential in the code dimension k.
Repetition codes (k = 1) can still be efficiently SDML decoded. Conversely, if
k = n, SDML decoding degenerates to making a hard decision on every bit in-
dividually based on its reliability, and if k = n − 1, the block code is a parity
check code and SDML decoding is done efficiently by flipping the least reliable
bit to match the parity. This last technique is known as Wagner decoding [24].

Generalized Multiple Concatenated Codes (GMC). An r-th order Reed-Muller
code RMr,m, is a linear block code with parameters n = 2m, k =

∑r
i=0

(
m
i

)
and

d = 2m−r. It is well known that RMr,m can be decomposed in the concatenation
of two shorter inner codes, RMr−1,m−1 and RMr,m−1, and a simple length-2
block code as outer code. This decomposition can be applied recursively until
one reaches RM0,m′ , which is a repetition code, or RMr′−1,r′ (or RMr′,r′), which
is a parity check (or degenerated) code, all of which can be efficiently soft-
decision decoded with SDML. This technique, known as Generalized Multiple
Concatenated decoding (GMC) [25], yields a much lower decoding complexity
then SDML, but only a slightly decreased error-correcting capability.

2.3 SRAM PUFs and Soft-Decision Helper Data

Extensive experiments in [11] show that the power up value of a randomly se-
lected SRAM cell is random over {0, 1}, but tends to take the same value at
every power up. This is due to the random manufacturing mismatch between
the electrical parameters defining the cell’s behavior. The power up values of
SRAM cells can hence be used as PUF responses, and the function taking an
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SRAM cell’s address as challenge and returning its power up value as response
is called an SRAM PUF. Occasionally, a cell is encountered with no distinct
preference toward 0 or 1, introducing noisy bits.

Previous proposals concerning key extraction from an SRAM PUF [11,15] as-
sume that the bit error probability of a response is constant, i.e. every response
bit has the same probability of being measured incorrectly. However, experi-
mental data shows that this is not quite the case, as most cells only very rarely
produce a bit error while a minority of cells are faulty more often. In fact, the
error probability of a randomly selected cell is itself a random variable drawn
according to a certain distribution, and hence not a constant value. A theoretical
derivation of this distribution, based on a model for the manufacturing variabil-
ity in SRAM cells, was given in [18] and is summarized in Appendix B. It is
clear that using a block code adapted to the average bit error rate, as in [11,15],
is overly pessimistic for the majority of the bits, as most of them have an error
probability much smaller than the average. The distribution of the error proba-
bility in both cases is shown in Figure 2, and from Figure 2(b) it is clear that in
this case, around 60% of the bits have an error probability which is smaller than
the assumed fixed average. A construction that takes into account the specific er-
ror probability of the individual bits would achieve a better overall performance,
needing less redundancy and hence causing a smaller min-entropy loss. This is
precisely what soft-decision decoding achieves. A HDA based on soft-decision
decoding in the code-offset technique is shown in Figure 1(b).

In Section 3.1 we present a hardware design for an information reconciliation
algorithm that uses the individual error probabilities of the response bits as soft-
decision information. The bit error probability is measured during the generation
phase and made publicly available as helper data. It is hence important to know
the min-entropy leakage caused by revealing the error probabilities. It turns
out that revealing Pe does not leak any min-entropy on the response X , i.e.
H̃∞ (X |Pe) = H∞ (X). A proof for this statement is given in [18]. Measuring
the bit error probability amounts to performing multiple measurements of every
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Fig. 2. Distributions of the bit error probability as assumed respectively in [18]
and [11,15]. The expected value for Pe is set equal for both cases: � [Pe] = 15%.
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response bit and estimating the most-likely value, which could be inefficient. Our
simulations show that an estimate based on a limited amount of measurements,
in the order of 10 to 100, already greatly improves the decoder performance.
Moreover, this measurement should be performed only once for every PUF.

3 Designing a Soft-Decision HDA for FPGA

This section provides the main contribution of this work, i.e. a low-overhead
design of a soft-decision helper data algorithm for a reconfigurable hardware
device. A first efficient HDA implementation for FPGAs was given in [15]. We
will build upon this work and try to improve their results. Sections 3.1 and 3.2
describe the respective design choices for the information reconciliation and the
privacy amplification algorithm that we choose to implement.

3.1 Soft-Decision Information Reconciliation Design

The code offset technique as described in Section 2.1 is an efficient technique for
turning an error-correcting decoder into an information reconciliation algorithm.
As motivated in Section 2.3, we will use a soft-decision decoder to reduce the
min-entropy loss of the information reconciliation.

Representing the Soft-Decision Information. As stated in Section 2.3 and shown
in Fig. 1(b), the error probability pei of an individual SRAM cell i will be used
as soft-decision helper data. In general, pei takes real values in ]0, 1

2 [ and we
need to determine a way of representing pei in binary format, such that it can
be efficiently used in a soft-decision decoder. We denote a codeword C from a
block code C of length n as C = (C0, . . . , Cn−1), an n-bit SRAM PUF response
as X = (X0, . . . , Xn−1) and the corresponding vector with error probabilities as
pe = (pe0 , . . . , pen−1). When receiving an n-bit possibly noisy code word C′ =
X ′⊕ω, with ω the code offset helper data as defined in 2.1, a soft-decision decoder
tries to find the corrected code word C∗ which maximizes the (log-)likelihood:

C∗ = argmax
C ∈ C

n−1∏
i=0

(1 − pei)
(C′

i⊕Ci) · p(1⊕C′
i⊕Ci)

ei ,

= argmax
C ∈ C

n−1∑
i=0

(−1)Ci · (−1)C′
i · (logβ(1 − pei)− logβ(pei)

)
,

with β > 1 a design parameter. For convenience, we work with the log-likelihood
and choose the soft-decision helper data si of an SRAM PUF response bit i to
be:

si
def= �logβ(1 − pei) − logβ(pei)�, (1)

which is a deterministic function of the error probability and an integer ap-
proximation of the magnitude of the log-likelihood of bit i. For a noisy PUF
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Algorithm 1. SDML-DECODE-Repetitionn(L) with soft output
L∗ :=

∑n−1
i=0 Li

return (L∗, . . . , L∗)n

Algorithm 2. GMC-DECODE-RMr,m(L) with soft output
define F (x, y) := sign (x · y) · min {|x| , |y|}
define G(s, x, y) := � 1

2
(sign (s) · x + y)�

if r = 0 then
L∗ = SDML-DECODE-Repetition2m(L)

else if r = m then
L∗ = L

else
L

(1)
j = F (L2j−1, L2j),∀j = 0 . . . 2m−1 − 1

L(1)∗ = GMC-DECODE-RMr−1,m−1(L(1))
L

(2)
j = G(L(1)∗

j , L2j−1, L2j),∀j = 0 . . . 2m−1 − 1
L(2)∗ = GMC-DECODE-RMr,m−1(L(2))
L∗ =

(
F (L(1)∗

0 , L
(2)∗
0 ), L(2)∗

0 , . . . , F (L(1)∗
2m−1−1

, L
(2)∗
2m−1−1

), L(2)∗
2m−1−1

)
end if
return L∗

response X ′, the soft-decision information that enters the decoder is calcu-
lated as: Li = (−1)X′

i⊕ωi · si. The decoder tries to find the code word C∗ =
argmaxC ∈ C

∑n−1
i=0 (−1)Ci · Li. In the remainder of the text, si and Li will be

represented by 8-bit signed (2’s-complement) integers ∈ [−128, 127]. The log-
base β is a design parameter that is chosen large enough to avoid overflows in
the decoder algorithm, but as small as possible to keep the approximation error
small.

Choosing a Soft-Decision Decoder Algorithm. Among the linear block codes,
Reed-Muller codes have a relatively high error-correcting performance similar
to BCH codes, and are easier to decode. As explained in Section 2.2, there
exists also a relatively efficient algorithm for soft-decision decoding of Reed-
Muller codes based on GMC. Bösch et al. [15] demonstrate that using code
concatenation, where the decoded words from an inner code form a code word
from an outer code, can substantially reduce the min-entropy loss. A balanced
concatenation of two different codes, e.g. a repetition code and a Reed-Muller
code, will achieve a better performance than the case were only a single code is
considered. Taking all this into account, we decide to implement a soft-decision
decoder as a concatenation of a SDML repetition decoder for the inner code and
a GMC Reed-Muller decoder for the outer code.

SDML repetition decoding of soft-decision information L amounts to calcu-
lating L∗ =

∑n−1
i=0 Li. The most-likely transmitted code word was all zeros if

L∗ > 0 and all ones if L∗ < 0. Moreover, the magnitude of L∗ gives a reliability
for this decision which allows to perform a second soft-decision decoding for the



340 R. Maes, P. Tuyls, and I. Verbauwhede

outer code. Algorithm 1 outlines the simple operation for the SDML decoding
of a repetition code. As an outer code, we use a RMr,m code and decode it with
an adapted version of the soft-decision GMC decoding algorithm as introduced
in [25]. The soft-decision output of the repetition decoder is used as input by
the GMC decoder. The operation of the GMC decoder we use is given by Algo-
rithm 2. Note that this a recursive algorithm, calling itself twice if 0 < r < m.

Decoder Design. We propose a hardware architecture to efficiently execute the
soft-decision decoders given by Algorithms 1 and 2. Since our main design goal
is providing an as small as possible HDA implementation, we try to minimize
the used hardware resources. As a general architecture, we opt for a highly serial
execution of the algorithms using a small 8-bit custom datapath. Looking at the
algorithms, we identify the following major operations:

– Algorithm 1 performs a summation of n 8-bit integers. We implement this
serially using an 8-bit signed accumulator.

– To evaluate the function F (x, y) in Algorithm 2, we propose a 3-cycle ex-
ecution. In the first two cycles, x + y and x − y are computed and their
signs c+ and c− are stored. In the third cycle, the output is computed as
F (x, y) = c+ · (x · (c+ �= c−) + y · (c+ = c−)). This last operation amounts
to choosing between x and y and possibly changing the sign based on the
values of c+ and c− and can be done with an adder/subtracter with one of
the inputs set to zero.

– For G(s, x, y) in Algorithm 2, we propose a 2-cycle execution. In the first
cycle, the sign of s is loaded and in the second cycle, G(s, x, y) can be
calculated as an addition or subtraction of x and y based on sign (s), followed
by a bit shift.

To be able to execute these operations, we propose the arithmetic unit (AU)
depicted in gray in Figure 3. The signed adder/subtracter can change the sign
of any of its inputs, or put them to zero. The sign bits of the two previous AU
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Fig. 3. Details of the soft-decision decoder architecture. The datapath consists of an
Arithmetic Unit (AU) and an input and output register file. The controller contains
the microcode to execute the decoder algorithm.
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outputs are used as control signals. The AU is combined with an input and
output dual port register file into a custom 8-bit datapath as shown in Figure 3.
Dual port register files can be efficiently implemented on an FPGA using SRAM-
based Lookup Tables (LUTs). The depth of the register files depends on the
choice of the decoder parameters. The algorithm execution is controlled by an
FSM applying the consecutive algorithm steps that are stored as microcode.
An operational example of a soft-decision decoder using this design is presented
in Section 4, providing detailed implementation parameters and performance
results.

3.2 Privacy Amplification Design

In Section 2.1, it was mentioned that privacy amplification amounts to applying
a universal hash function. Krawczyk [26] proposed an LFSR-based Toeplitz uni-
versal hash algorithm which performs the multiplication of a random Toeplitz
matrix with the hash argument. As Krawczyk already showed, this algorithm
can be efficiently implemented in hardware, since the columns of the pseudoran-
dom Toeplitz matrix can be generated by an LFSR, and the resulting product
of each column with the hash input is accumulated to calculate the full matrix
product. This construction is shown in Figure 4(a) and was implemented on an
FPGA in [15]. However, the need for an LFSR and an accumulator register of
the same size as the key (e.g. 128 bit) and an input register of the argument
size (e.g. 64 bit) yields a relatively expensive implementation on an FPGA,
when regular flip-flops are used to implement them. This is because the num-
ber of available flip-flops on typical FPGAs is rather low. In [15], this results
in the hash algorithm occupying the major part of the used resources for the
HDA. More resource-efficient methods for implementing shift registers on FP-
GAs exist [27], however, they cannot be used directly in Krawczyk’s algorithm,
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since parallel access to all the bits in the LFSR is required. The implementation
from [27] only allows parallel access to every 16th bit of the LFSR state. We
reworked the algorithm such that it can be executed in a serial way, using the
resource-efficient shift register implementations. This required some modifica-
tions to the datapath, but the functional behavior of the algorithm is preserved.
The basic idea behind the serialization is that, in stead of accumulating an en-
tire 128-bit product in every cycle, only a partial product (using the accessible
bits) is calculated and accumulated in 16-bit rotation shift registers. The result-
ing datapath is shown in Figure 4(b). This drastically decreases the resource
usage of the FPGA implementation as shown by the implementation results in
Section 4.

4 Implementation Parameters and Results

In this section, details of a full HDA implementation are provided and compared
to the results from [15]. In order to make a fair comparison, the same values for
the average bit error probability (15%), the amount of min-entropy in the SRAM
PUF responses (78%) and for the decoder failure rate (≤ 10−6) are chosen.

Determining the decoder parameters. We simulated our decoder proposal in soft-
ware with SRAM PUF responses sampled according to the proposed distribution
from [18]. The bit error probabilities are estimated from 64 measurements. We
compared the number of SRAM PUF response bits that were necessary to obtain
�128/0.78� = 171 non-redundant bits after decoding with a failure rate ≤ 10−6

for different parameters (n, r, m) of the decoder. The best decoder we tested is
the one with code parameters (n = 3, r = 2, m = 6) and the design parameter
β = 1.8, and uses �171/22� × 3 × 64 = 1536 SRAM PUF response bits.

FPGA implementation. We described our design in VHDL and synthesized and
implemented it on a Xilinx Spartan-3E500 FPGA using Xilinx ISE Design Suite
10.1. The implementation results concern the routed netlist. The functional cor-
rectness and the cycle count is tested by applying test benches with ModelSim.

Soft-Decision Decoder: The decoder takes 192 × 8-bit log-likelihoods as in-
put and every three consecutive values are accumulated (repetition decoded) to
obtain 64 × 8-bit inputs for the RM2,6-decoder which outputs a 64-bit error-
corrected code word. To execute Algorithm 2, the input and output register file
size are respectively set to 64 × 8-bit and 32 × 8-bit. The instructions to carry
out Algorithm 2 are stored as embedded microcode. The FPGA implementa-
tion occupies 164 slices and 2× 16-kbit Block RAMs. The critical path is 19.9ns
and one complete decoding cycle (input + decode + output) finishes in 1248
cycles.

LFSR-based Toeplitz hash: The universal hash function accepts 64-bit mes-
sage blocks and hashes them in a 128-bit value. Our implementation occupies
59 slices. The critical path is 9.2ns and one complete hash cycle (input seed +
input message + hash + output) finishes in 432 cycles.
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Table 1. Implementation and performance results on a Xilinx Spartan-3E500 FPGA
compared to the results from [15]. The given results concern HDA implementations
which take SRAM PUF response bits with a 15% average error probability and 78%
min-entropy as an input and produce a full-entropy 128-bit key with failure rate ≤ 10−6.

(1) The soft-decision HDA implementation as proposed in this section.
(2) The HDA implementation from [15] with the lowest SRAM usage.
(3) The HDA implementation from [15] with the lowest HDA resource overhead.

(1) (2) (3)
Slices 164 580 110

Decoder Block RAMs 2 ?∗ ?∗

(1 round) Cycles 1248 1716 855
SRAM Usage 192 bit 264 bit 176 bit

Toeplitz Hash Slices 59 327 319
(1 round) Cycles 432 96 64

Slices 237 ≥ 907 ≥ 429
(Spartan-3E500) (5.1%) (≥ 19.5%) (≥ 9.2%)

Complete HDA Block RAMs 2 ?∗ ?∗

(Spartan-3E500) (10%) (?∗) (?∗)
Critical Path 19.9 ns 6.6 ns 5.7 ns
Rounds 8 14 35
Cycles 10298 ≥ 24024 ≥ 29925

128-bit
Performance

205 µs ≥ 159 µs ≥ 171 µs
Key Extraction @ 50.2 MHz @ 151.5 MHz @ 175.4 MHz

SRAM Usage 1536 bit 3696 bit 6160 bit
Helper Data Size 13952 bit 3824 bit 6288 bit

∗ The results from [15] for (2) and (3) do not include the resources for the controller,
hence the number of Block RAMs needed for algorithm control cannot be compared.

Complete HDA: The complete HDA executes the decoder �171/22� = 8 times
and hashes the 8 corrected 64-bit words into a 128-bit key. The implementation
of the full HDA + control occupies 237 slices and 2×16-kbit Block RAMs for the
microcode. The critical path is 19.9ns and the complete key generation (initialize
+ 8× decode and hash + output) finishes in 10298 cycles.

Discussion with respect to previous results. The two main parameters we want to
optimize are the SRAM usage of the SRAM PUF and the resource overhead of
the HDA implementation. Table 1 compares our implementation results (1) to
two different implementations from [15]: (2) the implementation with the lowest
SRAM usage, implementing a concatenation of a Golay[24,13] code and a Rep-
etition[11,1] code1 and (3) the implementation with the lowest HDA resource
overhead, implementing a concatenation of a RM1,4 code and a Repetition[11,1]
code. It is clear from Table 1 that our soft-decision based implementation out-
performs the previous implementations on both characteristics. The construction

1 We remark that a decoder with an even lower SRAM usage than (2), but still higher
than our implementation, is proposed in [15], based on BCH codes. However, no
implementation is provided and no fair comparison can be made.
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proposed in this section uses 58.4% less SRAM bits and over 44.8% less slices
than the respective optimized implementations from [15]. These improvements
come at the cost of an increased helper data size (×3.6) and the need to perform
multiple measurement during generation to obtain the soft-decision information.
On the other hand, more helper data is not necessarily a problem in many ap-
plications, since the helper data can be (externally) stored and transfered in
plain without revealing information about the key, only its integrity should be
guaranteed. The actual PUF+HDA implementation, e.g. residing on an embed-
ded device, remains small. Measuring the error probability of the SRAM PUF
cells can be done together with the regular functional testing of the IC right
after manufacturing. Performing 10 to 100 measurements can be done relatively
fast. Even when very few (< 10) measurements are available, the reconfigurable
decoder allows to use stronger codes and remains more efficient than hard deci-
sion decoding. We also note that an average error of 15%, as assumed here and
in [15] is very safe. Experiments on SRAM PUFs show error probabilities as low
as 5%, requiring less initial measurements for the soft-decision decoder to be
effective.

5 Conclusion

The bit error probability of an SRAM PUF is not a constant value, but a ran-
dom variable for every individual response bit. This observation suggests the
use of soft-decision information to lower the min-entropy loss of the helper data
algorithm, resulting in a more efficient use of the SRAM PUF. We propose a
design of a soft-decision helper data algorithm and implement it on an FPGA.
A soft-decision Reed-Muller decoder is implemented using a small custom 8-bit
datapath which can be easily reconfigured to work with different code parame-
ters depending on the noise levels. The privacy amplification is performed by a
serialized LFSR-based Toeplitz hash implementation that makes optimal use of
the available FPGA resources. Both constructions constitute to a HDA which
has a considerably lower implementation overhead than previous proposals and
can even be of independent interest in other domains. The drawbacks of having
to store more helper data and having to perform multiple initial measurements
are no issue in many applications and should be considered as trade-offs. In any
case, this work presents a new direction in the exploration of the design space
of efficient helper data algorithms.
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A Measures of Randomness

We briefly describe some concepts from information theory which are used to
quantify the notion of the amount of randomness present in a measured variable,
i.e. statistical distance and min-entropy. Let X and Y be two (discrete) possibly
correlated random variables taking values from a set S. We define:

– The statistical distance between (the distributions of) X and Y as:
∆[X ; Y ] def= 1

2

∑
s∈S |Pr (X = s) −Pr (Y = s) |.

– The min-entropy of (the distribution of) X as:
H∞ (X) def= − log2 max {Pr (X = s) : s ∈ S} .

– The average conditional min-entropy [13] of (the distribution of) X given Y

as: H̃∞ (X |Y ) def= − log2�y

[
2−H∞(X|Y =y)

]
.

B SRAM PUF Response Model and Distribution

As is clear from the construction of an SRAM PUF as described in Section 2.3,
and also in [11], the generation of an SRAM PUF response bit is determined
by the stochastic mismatch of the electrical parameters in an SRAM cell. A
simple model for this mismatch is proposed in [18] and summarized here. Let M
and N be two normally distributed random variables with respective probability
density functions ϕµM ,σM and ϕ0,σN . ϕµ,σ is the probability density function of
a normal distribution with mean µ and standard deviation σ. A value mi ← M
is i.i.d. sampled every time a new SRAM cell i is manufactured and represents
the random device mismatch in the cell caused by manufacturing variation. A
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value n
(j)
i ← N is i.i.d. sampled at the j-th power up of cell i and represents

the amplitude of the stochastic noise voltage acting on cell i at the time of the
power up. The power up state of SRAM cell i after the j-th power up is denoted
as x

(j)
i ∈ {0, 1}, and it is assumed that x

(j)
i is fully determined by mi and n

(j)
i :

x
(j)
i =

{
0 , if mi + n

(j)
i > T ,

1 , if mi + n
(j)
i ≤ T ,

(2)

with T a threshold parameter for a specific SRAM technology.
The power up behavior of an SRAM cell i is described by the probability

pxi that this cell powers up as ’1’, and the related probability pei that this cell
produces a bit error. Both parameters are themselves random variables. They
are sampled for a particular SRAM cell at manufacturing time according to their
respective distributions:

pdfPr
(x) =

λ1 · ϕ
(
λ2 − λ1 · Φ−1(x)

)
ϕ (Φ−1(x))

, and

pdfPe
(x) = pdfPr

(x) + pdfPr
(1 − x),

with λ1 = σN/σM and λ2 = (T −µM )/σM and ϕ = ϕ0,1. The derivation of these
distributions and an experimental validation thereof are given in [18].
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Abstract. We introduce a new technique for extracting unique finger-
prints from identical CDs. The proposed technique takes advantage of
manufacturing variability found in the length of the CD lands and pits.
Although the variability measured is on the order of 20 nm, the technique
does not require the use of microscopes or any advanced equipment. In-
stead, we show that the electrical signal produced by the photodetector
inside the CD reader is sufficient to measure the desired variability. We
investigate the new technique by analyzing data collected from 100 iden-
tical CDs and show how to extract a unique fingerprint for each CD.
Furthermore, we introduce a technique for utilizing fuzzy extractors over
the Lee metric without much change to the standard code offset construc-
tion. Finally, we identify specific parameters and a code construction to
realize the proposed fuzzy extractor and convert the derived fingerprints
into 128-bit cryptographic keys.

Keywords: Optical discs, fingerprinting, device identification, fuzzy
extractor.

1 Introduction

According to the Business Software Alliance about 35% of the global software
market, worth $141 Billion, is counterfeit. Most of the counterfeit software is dis-
tributed in the form of a compact disc (CD) or a digital video disc (DVD) which
is easily copied and sold in street corners all around the world but mostly in de-
veloping countries. Given the severity of the problem at hand, a comprehensive
solution taking into account the manufacturing process, economical implications,
ease of enforcement, and the owner’s rights, needs to be developed. While this
is an enourmous undertaking requiring new schemes at all levels of implemen-
tation, in this work, we focus only on a small part of the problem, i.e. secure
fingerprinting techniques for optical media.

To address this problem the SecuRom technology was introduced by Sony
DADC. The technology links the identifiers produced to executable files which
may only be accessed when the CD is placed in the reader. The main advantage of
� This material is based upon work supported by the National Science Foundation
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this technology is that it can be used with existing CD readers and writers. While
the specifics of the scheme are not disclosed, in practice, the technology seems to
be too fragile, i.e. slightly overused CDs become unidentifiable. Another problem
is at the protocol level. The digital rights management (DRM) is enforced too
harshly, therefore significantly curtailing the rights of the CD owner.

In this paper we take advantage of CD manufacturing variability in order to
generate unique CD fingerprints. The approach of using manufacturing variabil-
ity to fingerprint a device or to build cryptographic primitives has been applied
in several contextes. A popular example is a new hardware primitives called
Physical Unclonable Functions (PUFs). These primitives were proposed for
tamper-detection at the physical level by exploiting deep-submicron and nano-
scale physical phenomena to build low-cost tamper-evident key storage devices
[7,8,6,12]. PUFs are based on the subtleties of the operating conditions as well
as random variations that are imprinted into an integrated circuit during the
manufacturing process. This phenomenon, i.e., manufacturing variability, creates
minute differences in circuit parameters, e.g., capacitances, line delays, threshold
voltages etc., in chips which otherwise were manufactured to be logically identi-
cal. Therefore, it becomes possible to use manufacturing variability to uniquely
fingerprint circuits. More recently, another circuit fingerprinting technique was
introduced. The technique exploits manufacturing variability in integrated chips
to detect Trojan circuits inserted during the manufacturing process [5].

Another secure fingerprinting technology named RF-DNA was developed by
Microsoft Research [1]. The RF-DNA technology provides unique and unclon-
able physical fingerprints based on the subtleties of the interaction of devices
when subjected to an electromagnetic wave. The fingerprints are used to pro-
duce a cryptographic certificate of authenticity (COA) which when associated
with a high value good may be used to verify the authenticity of the good and to
distinguish it from counterfeit goods. Another application of manufacturing vari-
ability is fingerprinting paper objects. In [4] the authors propose Laser Surface
Authentication which uses a high resolution laser microscope to capture the im-
age texture from which the fingerprint is developed. In a more recent proposal, a
cheap commodity scanner was used to identify paper documents [3]. While most
of the results cited above were developed in the last decade, the idea of using
physical fingerprints to obtain security primitives is not new at all. According
to [1], access cards based on physical unclonable properties of media have been
proposed decades ago by Bauder in a Sandia National Labs technical report [2].

Our Contribution: We introduce a method which exploits CD manufactur-
ing variability to generate unique fingerprints from logically identical CDs. The
biggest advantage of our approach is that it uses the electrical signal gener-
ated by the photodiode of a CD reader. Thus no expensive scanning or imaging
equipment of the CD surface is needed. This means that regular CD readers can
implement the proposed method with minimal change to their design. We inves-
tigate the new approach with a study of over 100 identical CDs. Furthermore,
we introduce a new technique, called the threshold scheme, for utilizing fuzzy
extractors over the Lee metric without much change to the standard code offset
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construction [10]. The threshold scheme allows us to use error correcting codes
working under the Hamming metric for samples which are close under the Lee
metric. The threshold scheme is not restricted to CDs, and therefore can serve
in any noisy fingerprinting application where the Lee metric is relevant. With
the aid of the proposed fuzzy extractor we give specific parameters and a code
construction to convert the derived fingerprints into 128-bit cryptographic keys.

The remainder of the paper is organized as follows. In Section 2, we discuss the
physical aspects of CD storage, the sources of manufacturing variability and the
statisticalmodel capturing theCDvariability.Section3presents experimentaldata
to verify our statistical model. In Section 4 we discuss the fingerprint extraction
technique and determine the parameters necessary for key generation. We discuss
the robustness of the fingerprint in Section 5 and finally conclude in Section 6.

2 Pits and Lands

On a typical CD data is stored as a series of lands and pits formed on the surface
of the CD. The pits are bumps separated by the lands to form a spiral track on
the surface of the CD. The spiral track starts from the center of the CD and
spirals outward. It has a width of about 0.5 µm and a 1.6 µm separation. The
length of the land or pit determines the stored data. The encoding length can
assume only one of nine lengths with minimum value in the range 833 to 972 nm
up to a maximum of 3054 to 3563 nm with increments ranging from 278 to 324
nm. Note that the range is dependent on the speed used while writing the CD.
To read the data on the CD the reader shines a laser on the surface of the CD
and collects the reflected beam. When the laser hits the pits it will reflect in a
diffused fashion thus appearing relatively dark compared to the lands. Upon the
collection of the reflected beam, the reader can deduce the location and length
of the lands and pits which results in reading the data on the CD.

CDs are written in two ways, pressing and burning. In pressed CDs a master
template is formed with lands and pits corresponding to the data. The master
template is then pressed into blank CDs in order to form a large number of
copies. In burned CDs, the writing laser heats the dye layer on the CD-R to a

Fig. 1. Lands and pits image using an
optical microscope

Fig. 2. Lands and pits image using a scan-
ning electron microscope
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point where it turns dark, thus reflecting the reading laser in a manner consistent
with physical lands. Note that burned CDs will not have physical lands and pits
but will act as if they had these features. Figures 1 and 2 show the lands and
pits of a pressed CD. We captured Figure 1 using an optical microscope and
Figure 2 using a scanning electron microscope.

2.1 Source of Variation

Similar to any physical process, during the writing process CDs will undergo
manufacturing variation which will directly affect the length of the lands and
pits. For burned CDs this variability will be a direct result of the CD velocity
while writing takes place. This velocity is assumed to be at a fixed rate between
1.2 and 1.4 m/s where the velocity variation during writing should be within
±0.01m/s [11]. Pressed CDs are manufactured by molding thermoplastics from a
micro or nanostructured master prepared by lithographic methods. The molding
process itself is optimized for replication fidelity and speed with typical repli-
cation variations on the order of tens of nanometers [17]. The molding process
involves contacting the thermoplastic with the master slightly above the glass
transition temperature of the material, with a preset pressure for a brief amount
of time, cooling the master and the thermoplastic to below the glass transition
temperature and demoulding. Local variations of polymer material’s mechani-
cal and thermal properties, local variations of the temperature and pressure all
potentially lead to variations in the imprinted structures. The thermal stresses
induced during cooling and demoulding also potentially lead to variations. In this
paper we aim at using the small variation in the length of lands and pits in order
to form a unique fingerprint for each CD. In the next section we characterize the
length features of lands and pits.

2.2 Single Location Characterization

Together lands and pits form the full spiral track. Therefore, it makes sense
to fingerprint only lands or pits. The length of both lands and pits will fol-
low similar distributions which is why we will simply use the term location to
refer to either of them. We label the lengths of n consecutive locations by start-
ing from a reference point on the track, as L1, L2, . . . , Ln. In the ideal setting
Li = ci · L for a small constant integer ci ∈ [3, 4, . . . , 11] and L ≈ 300 nm.
However, due to the subtle variations we discussed in the previous section we
expect Li = ci ·L+ �i. The variable �i is expected to be quite small compared to
Li, and therefore difficult to measure precisely. Still our measurements should
be centered around the ideal length. Hence, quite naturally across all identical
CDs we model Li as a random variable drawn from a Gaussian distribution
Hi = N(Mi, Σ) where Mi = ci · L and Σ denotes the mean and the standard
deviation respectively1.

1 N(µ, σ) is a normal distribution with mean µ and standard deviation σ.
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Here we are assuming that regardless of the location, the standard deviation
Σ will be the same. This is a quite a realistic assumption since Σ essentially
captures the manufacturing variability which should affect all locations similarly.
The more precise the manufacturing process is, the less of a standard deviation
we would expect Hi to have. A perfect manufacturing process would yield Σ = 0
and would therefore give all CDs the same exact length of a specific location
across all identical CDs. On the other hand, for better identification of CDs we
would like Hi to have a relatively large Σ.

In a typical CD reader, the reading laser is reflected from the CD surface
back into a photodiode which generates an electrical signal that depends on
the intensity of the reflected laser. Therefore, the electrical signal is expected
to depict the shape of the CD surface. If these electrical signals are used to
measure the length of any given location, we expect these measurements to have
a certain level of noise following a Gaussian distribution. So for location i on
CDj we denote this distribution by Dij = N(µij , σ). The noise in the length
measurements is captured through the standard deviation σ. Since this quantity
mainly depends on the readers noise, we assume that its the same for all CDs
and all CD locations. Contrary to Σ, to identify different CDs using the length
information of CD locations we would like to see a relatively small σ.

3 Experimental Validation

To validate the statistical model outlined in the previous section, we conducted
extensive experiments on a number of CDs. We directly probed into the electri-
cal signal coming out of the photodiode constellation inside the CD reader. The
intensity of this signal will reflect the CD surface geometry, and therefore can be
used to study the length of the CD locations. To sample the waveform we used
a 20 GHz oscilloscope. Each CD was read a number of times in order to get an
idea of the actual D distribution. Similarly, we read from the same locations of
about 100 identical CDs in order to generate the H distribution. Each collected
trace required about 100 MBytes of storage space. Moreover, synchronizing the
different traces to make sure that the data was captured from the same location
of the CD was quite a challenge. We had to assign a master trace which repre-
sented the locations we were interested in studying and then ran the other traces
through multiple correlation stages with the master to finally extract synchro-
nized signals from the same locations on different CDs. Automating the process
in order to accurately capture this massive amount of data was a time consuming
challenge. However, we note that all this work would be almost trivially elimi-
nated if we had access to the internal synchronization signals of the CD reader
chip. The captured signals were then further processed using Matlab to extract
the location lengths and obtain the distributions. After processing, we extracted
the length of 500 locations (lands) on the CDs. We used commercially pressed
CDs for all the experiments reported in this paper.2

2 We have verified a similar behavior for burned CDs. Not surprisingly, data coming
from burned CDs had a much larger variation and was easier to analyze.
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Figure 3 shows the histogram of lengths extracted from 550 reads for a ran-
domly chosen location on one CD. The mean length of the histogram is about
µij = 958 nm. This histogram captures the D distribution. The other locations
observe similar distributions with different mean lengths which will depend on
the encoded information. When considering data coming from different locations
and different CDs we obtain σ = 20 nm (with an average standard deviation of
2 nm on σ). This will be a good estimate for the noise observed during prob-
ing of the electrical signals. These results verify the assumption that the noise
in the electrical signal can be approximated as Gaussian noise. Note that with
Gaussian noise simple averaging can be used to substantially reduce the noise
level. As we are interested in studying the behavior of the location lengths across
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Fig. 3. Histogram of reads coming from
the same location on the same CD
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Fig. 4. Histograms of reads coming from
the same location on two identical CDs

different CDs, we next shift our attention to two CDs before we look at a larger
batch of CDs. Figure 4 captures a histogram for the length of the same location
on two identical CDs. What is important here is the distance between the two
Gaussians. The larger this distance becomes the easier it is to identify CDs.
Our basic thesis for fingerprinting CDs is that the length of a single location
will vary across multiple identical CDs. As pointed out earlier, this behavior
can be modeled with the Gaussian distribution Hi. The histogram in Figure 4
captures this for two CDs. To generalize these results and estimate the Hi dis-
tribution we need a larger sample space. The major problem here is that each
data point needs to come from a different CD. Therefore, to obtain a histogram
which clearly depicts a Gaussian we would need to test on the order of 500 CDs.
This was not possible as each CD required substantial time, computing power
and storage space in order to produce final data points. However, we were able
to carry out this experiment for about 100 CDs. Each CD was read about 16
times to reduce the noise. Finally, we extracted the lengths of 500 locations for
each of the CDs. Figure 5 depicts the histogram over 100 CDs for a randomly
chosen location out of the 500 extracted locations. The histogram in Figure 5
has a mean of about 940 nm. Overall locations, Σ had a mean of 21 nm (with
an average standard deviation of 1.8 nm on Σ). The histogram in Figure 5 looks
similar to a Gaussian distribution generated from 100 data points. However, it
would be interesting to get a confirmation that with more data points this his-
togram would actually yield a Gaussian. To do so, we normalized the lengths
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Fig. 5. Histograms of reads coming from
the same location on 100 identical CDs
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Fig. 6. Histograms of reads coming from
500 locations on 100 identical CDs

of each location by subtracting the average length for that particular location.
Since the distribution for each location had roughly the same Σ the normal-
ization process effectively made all these distributions identical with a mean of
0 and a standard deviation of Σ. We then collected all these data points (on
the order of 50,000 points) and plotted the corresponding histogram. This is
shown in Figure 6. The histogram of Figure 6 strongly supports our thesis of
normally distributed location lengths across different CDs. One might observe
a slight imbalance on the positive side of the Gaussian. This behavior seems to
be a result of the DC offset observed while reading some of the CDs. Fortu-
nately, this will not pose a problem for our fingerprinting technique as we will
be normalizing each batch of data to have a mean of zero, thus removing any
DC components. We finish this section by showing the histogram in Figure 7.
The main purpose of this histogram is to confirm that what we are studying is
in fact the length of data locations written on the CD. We elaborated earlier
that on a CD data is stored in discrete lengths ranging from about 900 nm to
about 3300 nm taking 9 steps in increments of about 300 nm. We build the
histogram in Figure 7 using the data collected from 500 locations over the 100
CDs without normalizing each location’s length to zero. In Figure 8 we show
a similar histogram with data extracted by processing images coming from a
scanning electron microscope.
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Fig. 7. Histogram of location lengths us-
ing the electrical signal

Fig. 8. Histogram of location areas using
electron microscope images
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4 CD Fingerprinting

There are many challenges in deriving a robust and secure fingerprint. One
important issue is the reading noise. Similar to a human fingerprint, we saw in
the previous section that the readings used to extract the CD fingerprint are
inherently noisy. The extraction of a deterministic and secure fingerprint from
noisy data has been previously studied in the literature [15,14,10]. Most relevant
to our work is the fuzzy extractor technique proposed by Dodis et al. in [10]. For
the remainder of this section we will present a quick review of the fuzzy extractor
technique and then discuss how this technique can be modified and applied to
the CD setting. Moreover, we will discuss the experimental results and present
various bounds needed to achieve high levels of security.

4.1 Fuzzy Extractors

Loosely speaking a fuzzy extractor is a technique to extract an almost uniform
random string from a given input such that it is possible to reproduce the same
output string from a noisy version of the input. In [10] the authors show how a
fuzzy extractor can be built using an error correcting code along with a universal
hashing function. Their construction requires that the output of the fingerprint
(the biometric data in their language) be represented as an element of Fn for
some field F and an integer n which represents the size of the fingerprint. More-
over, it is naturally assumed that the noise experienced by the fingerprint is
upper bounded by a constant distance from the original fingerprint in order to
guarantee identical reproduction of the extracted key. We start by quoting the
following theorem introduced in [10], and then give the specific construction
which the theorem describes.

Theorem 1. ([10]) Given any [n, k, 2t+1]F code C and any m, ε, there exists an
average-case (M, m, �, t, ε)-fuzzy extractor, where � = m+kf−nf −2 log(1

ε )+2.
The generation algorithm GEN and the recovery algorithm REP are efficient if
C has efficient encoding and decoding.

We explain the parameters in the theorem by outlining an actual construction.
This construction is proposed in [10] and further explained in [12]. As stated in
the theorem, C is an error correcting code over the field F , where f = log(|F|).3
For the construction we will also need a family of universal hashing functions
H.4 The generation algorithm GEN takes the fingerprint x ∈ Fn as input and
outputs the triplet (k, w, v). Here, x is drawn from some distribution X over Fn

which has min-entropy m. Note that in our context the parameter m captures the
entropy provided by the CD variability. GEN starts by computing w = x+c for a
randomly chosen code word c ∈ C and then computes the key k = hv(x) ∈ {0, 1}�

for some string v chosen uniformly at random such that hv ∈ H. The recovery al-
gorithm REP takes in the helper data (w, v) along with x′, a noisy version of the

3 Note that all logarithms in this paper are with respect to base 2.
4 For details on universal hashing the reader is referred to [9].
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fingerprint x, and returns the key k. REP starts by computing c′ = w−x′ which is
a noisy version of c. If the Hamming distance between x and x′ is less than t then
so will the Hamming distance between c and c′. Therefore, using the error cor-
recting code C, REP can reproduce c from c′. Next, REP computes x = w−c and
consequently compute k = hv(x) which will conclude the recovery algorithm. All
that remains to be defined is the parameter ε which captures the security of the
fuzzy extractor. Specifically, if the conditional min-entropy5 H∞(X |I) (meaning
X conditioned on I)6 is larger than m then SD((k, (w, v), I), (U�, (w, v), I) ≤ ε)
where SD(A, B)= 1

2

∑
v |Pr(A = v) − Pr(B = v)| is the statistical distance

between two probability distributions A and B. Finally, U� is the uniform dis-
tribution over {0, 1}� and I is any auxiliary random variable.

With this construction we will have a clear way to build a fuzzy extractor.
However, the key size � and the security parameter ε will both depend on m
and the code used. Moreover, the code will depend on the noise rate in the
fingerprint. We finish this section by relating the min-entropy and the error rate
of the fingerprint. Recall, that x is required to have a min-entropy of m and
at the same time using the above construction x will have n symbols from F .
To merge these two requirements we define the average min-entropy in every
symbol δ = m/n. We also define ν to be the noise rate in the fingerprint x and
F = |F|. With these definitions we can now prove the following simple bound
relating the noise rate and the min-entropy rate δ/f .

Proposition 1. For the fuzzy extractor construction of Theorem 1, and for any
meaningful security parameters of ε < 1 and � > 2 we have HF (ν) < δ

f . Where
HF is the F -ary entropy function.

Proof. From Theorem 1 we now that � = m + kf − nf − 2 log(1
ε ) + 2. Let

A = � + 2 log(1
ε ) − 2 = m + kf − nf . From the conditions above we now that

A > 0 and therefore m+kf−nf > 0. Let R = k/n which yields (δ+Rf−f)n > 0
and therefore R > 1−δ/f . Using the sphere packing bound where R ≤ 1−HF (ν)
we immediately get HF (ν) < δ

f .

As it is quite difficult to calculate the min-entropy for a physical source we will
estimate this quantity over the symbols of x. The bound given above will give us
an idea whether the min-entropy in the symbols of x will be sufficient to handle
the measured noise rate. Next we shift our attention to the fingerprint extraction
technique. Note here that we still did not address how the data extracted from
the CDs will be transformed into the fingerprint x.

4.2 Fingerprint Extraction

In Section 3 we described how the empirical data suggests that every CD has
unique location lengths. These location lengths as can be seen from Figure 7

5 The definition of min entropy is H∞(A) = − log(maxaPr[A = a]).
6 Typically we use the | operator to mean concatenation. This will be the only part

of the paper where it will have a different meaning.
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Fig. 9. Length variation over 500 loca-
tions from CD1 with the bottom trace
taken 3 months after the top two traces

Fig. 10. Length variation over 500 loca-
tions from CD2 with the bottom trace
taken 3 months after the top two traces

will have different values depending on the encoded information. Moreover, we
discussed earlier that the raw data measured from the electrical signal will some-
times have different DC offsets. Therefore, it is important to process the data
before the different locations can be combined together in order to produce the
final fingerprint x. The first step in processing the data coming from every lo-
cation on every CD is to remove the signal noise. To achieve this, the length
of every location on a CD is averaged over a number of readings. Since we are
assuming Gaussian noise, the noise level σ will scale to σ/

√
a where a is the

number of readings used for averaging. Next, we normalize the data using the
ideal average of each location. As the ideal location lengths are discretized it
becomes easy to find the ideal length for every location and subtract it from
the measured lengths. This will guarantee that all location lengths have similar
distributions as we saw in Figure 6. Finally, to remove the DC component we
need a second normalizing step. We subtract the mean of the reading coming
from different locations of the same CD. Figures 9 and 10 show the variation
in the length of 500 locations for two identical CDs after being averaged and
normalized. Each figure contains three traces with an added horizontal shift to
set the traces apart. The top two traces in each figure are obtained from readings
taken at different times using one CD reader. The bottom trace in each figure
was obtained three months after the first two traces using a second CD reader
with a different brand and model. The vertical axis represents the variation in
nanometers from the ideal length of that location. These figures clearly support
the idea of identical CDs having different fingerprints which are reproducible
from different readers. We still need to outline a technique to extract a final
fingerprint. Even after the previous averaging and normalization steps we will
still have errors in the length readings. Although we will be using a fuzzy ex-
tractor to correct the errors, the biggest challenge towards achieving an efficient
extraction technique will be the nature of these errors. The noise is Gaussian
over the real values of the lengths. This means that even when the data is dis-
cretized the error will manifest itself more as a shift error from the ideal length
rather than a bit flip error. Unfortunately, the Hamming metric does not nat-
urally accommodate for this kind of error. Moreover, if we assume that every
location length of the CD will be a symbol in the extracted fingerprint, then
the error rate would be very high as it is very difficult to get the same exact
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Table 1. Formulation of the threshold scheme for CD fingerprint extraction

Threshold Scheme: (GEN,REP) parameterized by M, m, , t, ε, l, C,H, τ = 2s

GEN: (k, w, v) ← GEN(CDj)
1. Obtain (a) samples for the length of each of the n locations on CDj.
2. Generate z = zn . . . z1:

a. Average the lengths over a samples,
b. Subtract the ideal mean from the averaged reads,
c. Normalize the sequence to have a zero mean and set that to z.

3. Find u such that −2u−1 ≤ zi ≤ 2u−1 − 1 for all i, and shift zi to 0 ≤ zi ≤ 2u − 1.
4. Shift the binary representation of zi left by l bits, round to an integer and set to ẑi.
5. Form z2,i, the lowest s + 1 bits of ẑi, and xi = z1,i, the remaining bits of ẑi.
6. Set x = xn . . . x1 to be the fingerprint template.
7. Choose a random code word c ∈ C, such that c = cn . . . c1.
8. Compute wi = (xi|z2,i) + (c|τ ) and form w = wn . . . w1.
9. Randomly choose v to compute k = hv(x) where hv ∈ H, and output (k, w, v).
REP: k ← REP(CDj, w, v)
1. Generate z′ = z′

n . . . z′
1 as ẑ = ẑn . . . ẑ1 was generated in Steps 1 through 4 of GEN.

2. Set c′i to be the highest u + l − s − 1 bits of wi − z′
i.

3. Use C to correct c′ = c′n . . . c′1 to c = cn . . . c1.
4. Compute xi = wi − ci.
5. Form x = xn . . . x1 and return k = hv(x).

length for the CD locations. A more natural distance metric in this situation
would be the Lee metric [16]. However, this will require finding long codes that
have good decoding performance under the Lee metric. To solve this problem we
propose a threshold scheme which uses the Hamming distance while allowing a
higher noise tolerance level. The threshold scheme also works naturally with the
fuzzy extractor construction of Theorem 1. Table 1 shows a formulation of the
threshold scheme applied to the CD setting. The threshold τ solves the error cor-
recting problem with respect to the Lee distance. In particular, τ helps control
the error rate which arises when treating the real values as symbols over some
field. Without a threshold scheme (τ = 0), the error rate will be very high. On
the other hand, if τ grows too large then the error rate will be low. However, the
Hamming distance between the extracted fingerprint originating from different
CDs will decrease thus decreasing distinguishability between CDs. An important
aspect about the threshold scheme is that it is very simple to compute and does
not require previous knowledge of the distribution average.

4.3 Entropy Estimation and 128-Bit Security

The previous sections dealt with the theoretical aspects of extracting the CD
fingerprint. In this section we take more of an experimental approach where we
are interested in computing actual parameters. The most important parameters
that we need to estimate are the entropy of the source (the CD variability) and
the noise level. With these two parameters the rest of the parameters can be
determined. The first and hardest task here will be to decide the amount of
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entropy generated by the source. In [12] and [13] the authors use a universal
source coding algorithm in order to estimate the secrecy rate. In particular it
was proposed to use the Context-Tree Weighting Method (CTW) [19]. What is
quite useful about the CTW algorithm is that in [18] it was shown that for any
binary stationary and ergodic source X , the compression rate achieved by CTW
is upper bounded by the min-entropy H∞(X) as the length of the input sequence
approaches infinity. This is a good indication about the entropy produced by the
source provided enough bits are fed to the algorithm. To apply this algorithm to
our setting we start by using the data coming from the 100 CDs. On each CD we
collected data from 500 locations and processed the data with a threshold value
of τ = 22. The final data came out to be in the range [0, 25 − 1] and we did not
use any fractional bits so l = 0. With these parameters the size of the symbols
was f = 2. This means that every CD produced 1000 bits. The data was fed into
the CTW algorithm which resulted in a compression rate of about 0.83 bits of
entropy per extracted bit. Recall here that these samples were not averaged over
multiple reads. Therefore the error rate is quite high. When we averaged over
16 samples the combined entropy rate became 0.71. This is expected since the
noise will add to the entropy. In order to get a more precise estimate for the min
entropy we decided to average over 225 reads. With this many reads we had to
restrict our sample to only 14 CDs as the amount of data quickly becomes large.
With the new sample the compression rate of the CTW algorithm was about
0.675 which seemed to be a good estimate of our min-entropy. For this sample,
the average error rate is Pe = 0.08. On the other hand the collision probability
Pc, the probability of extracting similar bits between two different CDs, is about
0.46.

Proposition 1 suggests that for a noise rate of 0.08 and f = 2 the entropy
of the source should be at least 0.40 which translates to δ = 0.8 < 1.35, and
therefore we conclude that we have enough entropy in our source. However, with
this level of entropy we are placing stringent conditions on R, i.e. the rate of
the error correcting code.7 To relax the restriction on the code rate we took a
closer look at our source bits. Ideally the two bits would have the same entropy.
However, looking at Figure 9 and 10 and multiple similar figures we clearly see
that there is a degree of dependency between the adjacent locations. There is a
low probability of a sharp change in the length variability from one location to
its neighbor. With this observation we would suspect that the most significant
bit will have less entropy as it is less likely to change across adjacent locations.
To verify this observation, we applied the CTW algorithm to each of the two
extracted bits separately. For the most significant bit, the entropy for the cases
of no averaging, averaging over 16 reads, and averaging over 225 reads was 1, 0.9
and 0.6-bits of entropy, respectively. When we repeated this process for the least
significant bit we obtained 1, 1 and 0.98-bits of entropy, respectively. Clearly, we
have more entropy in the least significant bit. It seems reasonable to only use
the least significant bit to form the fingerprint and the final key. This would

7 Recall from the prof of Proposition 1 that R ≥ A/nf + (1− δ/f) for a security level
of at least A =  + 2ε − 2.



360 G. Hammouri, A. Dana, and B. Sunar

effectively increase the entropy of our source while very slightly affecting the
error rate and the collision rate. For this least significant bit scheme we obtained
Pe = 0.08 and Pc = 0.46.

We now have Pe = 0.08, δ = 0.98 and f = 1. With these parameters we
can build a fuzzy extractor which can extract secure keys from CD fingerprints.
For a 128-bit key we set � = 128. Similarly, to achieve a fuzzy extractor output
which reveals very little information about the fingerprint we set ε = 64. Using
the equation of Theorem 1 we require that the error correcting code in the fuzzy
extractor should satisfy k ≥ 190 + 0.02n. Note that although Pe = 0.08, this is
the expected error rate. For a practical scheme we require the fuzzy extractor
to correct around a 0.17 error rate. These parameters can now be satisfied using
a binary BCH code of [255, 45, 88]. More specifically, we define a code word
containing 7 code words of this BCH code, which will make n = 1785. With
this construction the failure probability8 Pfail will be on the order of 10−6. Note
here that treating the 7 code words separately to generate separate parts of
the key would significantly decrease ε but will decrease the failure probability.
Therefore, in our failure probability we treat the 7 code words as a single entity.
As we noted earlier, our data suffers from higher error rates due to the external
connections which we used. With an on-chip process we can expect the error
rate to drop significantly.

5 Robustness of the Fingerprint

A CD fingerprint can be used to tie software licenses to individual CDs where
the software is stored. Under this use scenario it becomes important to address
the robustness of the fingerprint. In all our experiments the data collected came
from locations in the same sector of the CD. In a real application readings would
typically be collected from different sectors. Thus ensuring that a scratch or any
physical damage to a specific location will not render the CD fingerprint useless.

Another important concern regarding the robustness of the fingerprint is that
of aging. Although no quantitative estimate of fingerprint durability can be given
within the scope of this work, mechanisms related to viscoelastic relaxation in
optical disc patterns need to be discussed briefly. Optical discs are printed on
polymeric substrates, which have glass transition temperatures typically above
150 oC. The viscosity of such materials are temperature dependent and gov-
erned by an Arrhenius type exponential temperature dependence, described by
an activation energy defined by the glass transition temperature. In its simplest
form, the Arrhenius model assumes that the rate of change is proportional to
e

−Ea
kT where Ea is the activation energy, k is the Boltzmann constant (an in-

variant physical parameter) and T is the absolute temperature (temperature
in degrees Kelvin). Even at lower temperatures (natural operating and storage
temperature range of the optical disc), viscosity of the polymer remains finite.
During the molding process, most of the internal stresses are relieved upon cool-
ing, resulting in fluctuations in the nanoscale structure of the bit patterns. The

8 Here, Pfail = 1 − (
1 −∑t=43

i=0

(
n
i

)
P i

e(1 − Pe)n−i
)7

.
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pressed discs have a thin metal coating, which is typically coated on to the poly-
mer disc by evaporation or sputter coating, that results in the increase of the
surface temperature by up to 50 oC. This process is also likely to be a source of
local thermoelastic stress buildup which relaxes over the lifetime of the CD. In a
first order approximation, the disc material can be thought of as a Kelvin-Voigt
material, and creep relaxation can be approximated by a single time-constant
exponential behavior. In such a case, most of the viscoelastic relaxation will oc-
cur at the early stages of disc production, and latter time scales will have less of
an effect. It may be speculated that the fingerprints due to length fluctuations
of 25 nm upon 300 nm characteristic bit length will persist within at least 10%
of the CD lifetime, which is predicted to be 217 years at 25 oC and 40% relative
humidity conditions. This gives an estimated 20 year lifetime for the fingerprint
[20]. Due to the exponential dependence of the relaxation on time, by recording
the signature on a slightly aged optical disc (months old), the persistance of the
signature can be increased.

6 Conclusion

In this paper we showed how to generate unique fingerprints for any CD. The
proposed technique works for pressed and burned CDs, and in theory can be
used for other optical storage devices. We tested the proposed technique using
100 identical CDs and characterized the variability across the studied CDs. We
also gave specific parameters and showed how to extract a 128-bit cryptographic
keys. This work opens a new door of research in the area of CD IP-protection.
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Abstract. This paper gives an overview of the place of reverse engi-
neering (RE) in the semiconductor industry, and the techniques used to
obtain information from semiconductor products.

The continuous drive of Moores law to increase the integration level
of silicon chips has presented major challenges to the reverse engineer,
obsolescing simple teardowns, and demanding the adoption of new and
more sophisticated technology to analyse chips. Hardware encryption
embedded in chips adds a whole other level of difficulty to IC analysis.

This paper covers product teardowns, and discusses the techniques
used for system-level analysis, both hardware and software; circuit ex-
traction, taking the chip down to the transistor level, and working back
up through the interconnects to create schematics; and process analysis,
looking at how a chip is made, and what it is made of. Examples are also
given of each type of RE. The paper concludes with a case study of the
analysis of an IC with embedded encryption hardware.

1 Introduction

One of the most basic business requirements is the need to know what the
competition is doing. If a company wants to get into a new area of business,
the simplest thing to do is buy an existing product and take it apart to see
what is inside it. Having done that, we know the parts list involved, and the
technological challenges to be faced in manufacturing the new version.

Reverse engineering (RE) can cover objects from as large as aircraft down to
the smallest microchip, and the motivations have varied from the paranoia of
the Cold War, through commercial piracy, to competitive intelligence, product
verification, and courts of patent law. If we look back over the last few decades,
reverse engineers around the world have had a significant influence on the dis-
semination of technology in the electronics industry.

RE is now a recognised part of the competitive intelligence field, and is com-
monly used to benchmark products and support patent licensing activities. A
side area is the need to RE archaic parts that have gone out of service, and need
replacing in long-lived equipment such as military systems, nuclear reactors,
airliners, and ships.

A fact of life these days is that simple teardowns of products are just not good
enough any more. Advances in semiconductor technology, namely the massive

C. Clavier and K. Gaj (Eds.): CHES 2009, LNCS 5747, pp. 363–381, 2009.
c© International Association for Cryptologic Research 2009



364 R. Torrance and D. James

integration of billions of individual devices and masses of functions into single
components, have forced RE to evolve into a specialised niche of the engineering
profession.

2 RE in the Semiconductor Industry

The question most often asked about reverse engineering is “is it legal?” The
short answer is – yes! In the case of semiconductors, RE is protected in the US
by the Semiconductor Chip Protection Act, which allows it “for the purpose of
teaching, analyzing, or evaluating the concepts or techniques embodied in the
mask work or circuitry. . . ” There is similar legislation in Japan, the European
Union, and other jurisdictions.

In the semiconductor business, RE customers fall into two groups: those who
are interested in technical information, and those that are interested in patent-
related information. The technical information customers are usually within
manufacturing companies, performing product development, or strategic mar-
keting or benchmarking studies. The patent clients are usually patent lawyers
or intellectual property (IP) groups within companies. There are also companies
that are purely licensing companies, and deal only in IP.

Types of RE

Reverse engineering of semiconductor-based products can broadly take several
forms:

• Product teardowns – identify the product, package, internal boards, and
components

• System level analysis – analyse operations, functions, timing, signal paths,
and interconnections

• Process analysis – examine the structure and materials to see how it is
manufactured, and what it is made of

• Circuit extraction – delayer to transistor level, then extract interconnections
and components to create schematics and netlists.

3 Product Teardowns

Product teardowns are the simplest type of RE in the electronics arena; the unit
is simply disassembled, the boards and sub-assemblies are photographed, and
the components are inventoried. Reverse engineers are usually only interested in
what components are in the device at this level, but there are also companies
that use the data to provide a bill of materials and tentative costing for the
manufacture.

Figure 1 shows an Apple 8 GB iPod nano personal media player, partly torn
down to expose the internal board and the ICs used [1]. Optical and x-ray
analyses (Fig. 2) showed that the 64 Gb flash memories were actually 2 x 32 Gb
stacked packages, each containing four 8 Gb dice (total 64 Gb). In this case, we
continued with detailed process analyses of the 8 Gb flash chips, since they were
leading edge devices from Samsung and Toshiba.
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Fig. 1. Partial Teardown of Apple 8 GB iPod Nano: a) Top b) Bottom

Fig. 2. Optical and X-Ray Images of 64 Gb Flash Devices
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4 System Level Analysis

Just as there is a huge variation in electronic systems, there is also a variety
of methods for system analysis. Electronic systems can consist of hardware,
software, firmware, communications, transducers, etc. System analysis is useful
for all of these.

4.1 Hardware

Hardware analysis takes one of two forms: reverse engineering or functional
analysis.

Reverse engineering is a hierarchical analysis method. Take the example of
a cell phone. The first phase of reverse engineering is to tear down the phone,

Fig. 3. Delayered Nine Layer PCB from Cell Phone
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Fig. 4. Probing SanDisk SD Memory Card for Functional Analysis

making notes of all connections between subsystems. Next, the main board is
reverse engineered. Photos are taken of the board for future work. All compo-
nents on the board are catalogued and then selectively removed. If the board is
multi-layered, it can be delayered and imaged (Figure 3). The connections be-
tween all components are then identified and entered into the board schematic.
Alternatively, electrical probing can sometimes be used to find the connections.
Either way, a complete schematic of the board can be re-created.

Functional analysis entails system monitoring during functional operation. A
system can be instrumented with probes wherever needed (sometimes with great
difficulty, but it can usually be done, as shown in Figure 4). Microprobing is used
to monitor on-chip signals. Test cases are developed, and stimulus created for
operating the system in its functional modes. Signal generators, logic analyzers,
and oscilloscopes are used to drive the system and collect the results. The signals
and full system are then analyzed. Using the cell phone example once again, the
phone can be partially disassembled, but still electrically connected to allow for
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operation. Probes can be used to monitor key buses, pins of chips, and connec-
tors. The phone can then be operated, and the signals analyzed, to understand
the operation.

4.2 Software

As with hardware, software can be analyzed using the same two techniques;
reverse engineering and functional analysis.

Software reverse engineering is the process of taking machine code and con-
verting it back into human-readable form. The first task is often extraction of
embedded code from an on-chip memory. Many techniques are available, such
as EEPROM programmers, bus monitoring during code upload, and schematic
extraction. Sometimes the code is protected with software or hardware locks.
These can often be disabled via a collection of techniques. A chip’s test port
can be a good method of accessing its contents. IC microsurgery can be used to
modify or bypass hardware locks. Usually these techniques require circuit anal-
ysis first, in order to identify the locks and find modifications that will disable
them.

Encrypted code requires encryption analysis, followed by decryption. This
requires both the keys and an understanding of the encryption algorithm. The
keys can often be read from the embedded memory, along with the code, using
the techniques described above. The encryption algorithm can sometimes be
discovered via documentation or functional analysis. If these methods fail, then
circuit extraction can often be used to reverse engineer the algorithm.

Once the code is extracted, disassemblers can be used as long as the processor
and instruction set are known. Tools are then available to help take assembly
code and structure it into a more C-like format. This structured code can then be
analyzed by software experts. Code can be analyzed in either “static” (“dead”)
mode or “dynamic” (“live”) mode. Live analysis is undertaken when it is possible
to obtain the full control of the processor: starting and stopping code, inspecting
registers, memory, tracing code execution. Live analysis is always preferable to
dead code analysis which consists of analyzing just the instructions without
the ability to inspect the code while running. Using software simulators enables
another mode of software RE which is in between these two.

Software functional analysis is similar to hardware functional analysis. Test
cases are designed, stimulus is created, the code can be instrumented, and the
software executed. The outputs of this software can take many forms, from cre-
ating charts or driving a GUI, to controlling a robot or playing a song. These
outputs can be analyzed to better understand the software or system.

5 Process Analysis

Process analysis of chips is straightforward in theory, since micro-analytical tools
have been around for some time. Every wafer fab has a range of equipment for
process control and failure analysis, and Chipworks uses the lab-scale equivalent.
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Fig. 5. Disassembly of CMOS Image Sensor from Camera Module

Fig. 6. Plan-View SEM of Pixels at the Polysilicon Level

Using a Sony DCR-DVD505 Handycam as an example, we were interested in the
CMOS image sensor in the camera.

We removed the camera module from the unit and took it apart, recording
the details as we went, and ended up with the CMOS imager die (Figure 5),
which turns out to be a Sony Clearvid IMX013 chip.

Then we get into the actual chip analysis. This part was a fairly leading-edge
sensor, with a small pixel size of 2.85 µm x 2.85 µm, so the emphasis was on a
detailed examination of the pixel. Figures 6 to 9 show some of the features seen
in the pixel area.

When performing process analysis, plan-view imaging gives limited process
information, so the primary source of data is cross-sectional analysis,
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Fig. 7. Cross-Sectional SEM of Pixels

Fig. 8. TEM Cross Section of Pixel Transfer Transistor

usually using SEM, TEM, and scanning capacitance microscopy (SCM). For
details of the chemical composition, the most commonly used technique is en-
ergy dispersive x-ray analysis, although occasionally we use other methods such
as secondary ion mass spectrometry or Auger analysis.

A few words of explanation here with respect to Figures 8 and 9. A TEM
looks through the sample to give high resolution images of the device structure,
and SCM is a way of seeing the positive and negative doping that makes up the
actual working transistors, resistors, etc., in the silicon chip.

Looking at Figure 6, we see a plan-view image of part of the pixel array,
showing the transfer transistor (T1), and the T2 reset transistor and T3 source
follower transistors, comprising the 3 transistor pixel circuit. The short black
line in the centre of the image represents a metal 1 strap joining the floating
diffusion (FD), between T1 and T2, to the gate of T3.

Figure 7 shows a cross section of the pixel structure, illustrating the organic and
nitride lenses, the colour filters, three layers of copper metallization in the array,
and the T3 transistors on the substrate. There is also a fourth aluminium metal
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Fig. 9. SCM Cross Section of Pixels

layer, not shown in this section, used for bond pads and as a light shield (the white
bars in the die photograph in Figure 4). The 28◦ angle of acceptance is also shown.

Figure 8 is a TEM image of the transfer transistor gate, and it is clear that
the nitride layer used for the sidewall spacer has only been partially etched off
the top of the gate; the residual nitride on the photocathode (left) side has been
used as an antireflective (AR) layer in the photocathode area.

The doping structure of the pixels is illustrated in the SCM image in Figure 9.
Chemical staining has been used for decades to highlight the doped areas in
silicon, but even after many years of experiment, it is still more of an art than
a science. The development of the SCM allows us to distinguish features such
as the P-pinning layer above the photocathode, and the floating diffusion, more
clearly. The deeper blue areas are the P-type isolation regions in the N-substrate.

There are two parallel trends in semiconductor processing. There is the well
publicized Moores law shrinkage of dimensions, moving to the 45 nm node and
below, with the introduction of high-k/metal gate transistors, and there is a
drive to more process integration as RF/mixed signal and embedded memory
processes are merged into CMOS logic processes.

As can be imagined, examining features deep into the nanometer scale (gate
oxides are now 1.2 nm - 1.5 nm thick) stretches analytical capabilities to the
limits. They can be imaged with high-resolution electron microscopy, but ob-
taining details of the chemical composition of the structure is now in the realm
of counting atoms [5,6].

Similarly to the other forms of RE, our final documents can take several
forms, from reports specifically focused on a feature described in a patent claim,
to comprehensive reports detailing the full structural and process analysis of a
high-end chip. It all depends on what the customer wants!

6 Circuit Extraction

Circuit extraction of semiconductor chips becomes increasingly more difficult
with each new generation. In the “good old days” of 10 to 20 years ago, a circuit
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Fig. 10. As RE Used to be Done!

analyst’s life was much simpler. A typical IC of those days may have had one
layer of metal, and used 1 µm - 2 µm technology. After package removal, all
features could usually be seen from the top level metal planar view.

The die could then be put under optical imaging equipment in order to take
multiple high-magnification images. The photographs were developed and taped
together in an array to recreate an image of the chip. Engineers then used the
“crawl-aroundon- the-floor” technique (Figure 10), where they annotated the
wires and transistors. This was followed by drawing out the schematic first on
paper, then in a schematic editor.

Life has changed since those days. The complexity of devices has followed
Moores law, and we are now extracting circuits from 45 nm chips. Moreover, these
devices now have up to 12 layers of metal, and use an esoteric combination of mate-
rials to create both the conductors and dielectrics [2,3]. They may have hundreds
of millions of logic gates, plus huge analog,RF, memory, and other macrocell areas.
MEMs, inductors, and other devices are also being integrated onchip.

The circuit extraction flow proceeds as follows:
• Package removal (known in the industry as device “depot”)
• Delayering
• Imaging
• Annotation
• Schematic read-back and organization
• Analysis

6.1 Device Depot

Depot may well be the only step of the process that still follows the traditional
methods. Typically, packages are etched off in a corrosive acid solution (Fig-
ure 11). A variety of acids at various temperatures are used depending on the
composition and size of the particular package. These solutions dissolve away
the packaging material, but do not damage the die.
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Fig. 11. Into the Acid Bath, My Pretty!

Hermetic and ceramic packages require different techniques that usually in-
volve mechanical or thermal treatment to remove lids, or dice from substrates,
or even polish away a ceramic substrate.

6.2 Device Delayering

Modern semiconductor devices range from 1.0 µm single metal bipolar chips,
through 0.35 µm BiCMOS diffused MOS (BCDMOS) chips, to 45 nm 12 metal
microprocessors, and everything in between. Both aluminum and copper can
be used for metal on the same chip. Depending on the process generation, the
polysilicon gates and source/drains can use different silicides. A variety of low-k
dielectrics are now interspersed with fluorosilicate glass (FSG), phosphosilicate
glass (PSG), and SiO2. Layer thicknesses vary greatly. For instance, on a 7 metal
65 nm Texas Instruments (TI) [4] baseband processor chip we recently analyzed
(Figure 12), we found:

• Interconnect layers included Cu, Al, TiN, and TaN
• Metal thicknesses ranged from 0.15 to 1.4 µm
• Dielectrics included silicon nitride, oxynitride, oxide, SiOC, SiONC, and PSG
• Dielectric thicknesses varied from ∼ 0.3 µm to 2.6 µm (with individual layers

of particular materials as thin as 47 nm), and gate oxide was 2.2 nm thick.

A delayering lab needs to create a single sample of the device at each metal
layer, and at the polysilicon transistor gate level. As such, it needs to accurately
strip off each layer, one at a time, while keeping the surface planar. This requires
detailed recipes for removal of each layer. These recipes include a combination
of methods such as plasma (dry) etching, wet etching, and polishing. As the
complexity and variation of chips increases, so too does the number of recipes. A
modern chipdelayering lab would now have over a hundred such recipes, specific
to different processes and materials.

For unknown or unusual chips, it is advisable to start with a cross section
(Figure 12). The cross section can be analyzed using scanning electron micro-
scopes (SEM), transmission electron microscopes (TEM), and other techniques
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Fig. 12. SEM Cross Section of 65 nm TI Baseband Chip for Nokia

to determine the composition and thickness of all the layers. A delayering tech-
nician uses this information to choose the best delayering recipe for a chip. The
recipe also varies depending on the type of imaging to be performed. Optical
imaging looks best if the transparent dielectric is left on over the layer to be
imaged. SEM, due to its operating methodology of electron reflection from a
non-planar surface, requires the dielectric to be removed.

6.3 Imaging

Advanced RE labs currently use two types of imaging, optical and SEM. Up to
and including the 0.25 µm generation of semiconductor chips, optical imaging
was sufficient. However, for 0.18 µm technologies and smaller, optical imaging
cannot resolve the smallest features, and SEM must be used (Figure 13).

The size of ICs, and the large magnifications required for the advanced feature
sizes, now means that manually shooting images is no longer practical. Imaging
systems now must have automated steppers integrated with the microscope. Our
twodimensional steppers allow us to set up a shoot in the evening, and come back
in the morning to find the entire layer imaged.

Next we use specially developed software to stitch the thousands of images
per layer together, with minimal spatial error. Then more software is required to
synchronize the multiple layers so that there is no misalignment between layers.
Contacts and vias must be lined up with the layers above and below in order for
extraction to proceed.

6.4 Annotation

Once all images are stitched and aligned, the actual work of reading back the
circuit begins. Full circuit extraction requires taking note of all transistors, ca-
pacitors, diodes, and other components, all interconnect layers, and all contacts
and vias. This can be done manually or using automation.
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Fig. 13. Optical (top) and SEM images of 130-nm chip

Fig. 14. Power Net of an RF-Switch Inductor and VCO Subsystem

There are multiple tools available to help with this process, including Chip-
works’ ICWorks Extractor. This tool is used to view all the imaged layers of a
chip individually and aligned to each other. In one mode it allows several layers
of a chip to be visible in multiple windows simultaneously (Figure 14). Each
window shows the same two-dimensional area in each layer. A lock-step cursor
allows the engineer to see exactly what lies above or below the feature he is
looking at in one layer.

An extraction engineer can then use the tool to annotate and number all wires
and devices in his area of interest (Figure 15). 2D and 3D image recognition and
processing software can be used (Figure 16), or the engineer may do it manually.
Image recognition software can also be used to recognize standard cells in digital
logic. This can greatly aid the extraction of large blocks of digital cells.
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Fig. 15. Annotated VDD net on an RF Transceiver

Fig. 16. Automated feature extraction from SEM images

6.5 Verification and Schematic Creation

The annotation process can be error prone. Often the images are not perfect,
manual techniques are used, bits of dust fall on the chip during imaging, or the
image recognition software introduces an error. Hence, verification is performed
at this stage. Design rule checks can find many issues, such as below minimum
sized features or spaces, hanging wires, vias without wires, etc.

At this stage the ICWorks tool can automatically extract a netlist from the
annotations, and from this netlist create a flat schematic (see Fig. 17). The
schematic, netlist, and annotations are all associated with each other, such that
one cannot be changed without changing all three.

The netlist and schematic can now be checked for other simple rule violations.
Floating gates, shorted outputs, nets with no inputs or outputs, and shorted
supplies can be checked.

6.6 Schematic Analysis and Organization

This is one of the steps requiring the most thought, since the schematic organi-
zation on a page, or in hierarchy, goes a long way to making a design coherent.
Devices placed poorly on a schematic, or a strange hierarchy, can make the design
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Fig. 17. Flat Schematic Auto-Exported from Annotated Images

very difficult to understand. Hence, this step usually requires very experienced
analysts.

The analysis phase can be very iterative, and use many sources of information.
Often public information is available for devices. This can take the form of
marketing information, datasheets, technical papers, or patents. These can often
help with the schematic organization, for instance if block diagrams are available.
They can also help in the understanding of architectures and sometimes circuit
designs.

Analysis can also be done using typical chip design techniques. A circuit can be
hand analyzed using transistor and logic theory. Layout structures are often rec-
ognizable, for instance differential pairs, bipolar devices for bandgap references,
etc. In fact, The ICWorks tool can find these structures automatically. Hierar-
chy can also sometimes be seen in the layout. If not, it can be created using
a bottom-up schematic organization approach. Functional and timing analysis
can be further validated using simulation. Multiple methods are usually used for
verification.

The final product of circuit reverse engineering can take many forms. A com-
plete set of hierarchical schematics can be delivered. This set of schematics can
be used to also create a hierarchical netlist. Simulated waveforms, block dia-
grams, timing diagrams, analysis discussion, and circuit equations can be used
to round out the report.

Since RE companies analyze so many ICs, they can also create comparative
and trend reports. For instance, Chipworks has analyzed many CMOS image
sensors over the years. As the technology and circuit designs evolve, they are
monitored. The evolution can be shown from both a process point of view and
a circuit point of view.

7 A Case Study

Used together, the above techniques can be very powerful. To illustrate that
point, lets review a project we just finished; analyzing a digital ASIC with
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Fig. 18. Annotated digital logic

Fig. 19. Metal 1 image of mask programmed ROM

embedded analog and memory blocks, and including embedded encryption hard-
ware. The goal of the project was to fully understand the ASIC, build a model
of the ASIC, and get simulations up and running.

The first step was to run system level functional tests while the chip was still
in its system. Logic probes were connected, the system was powered up, and
vectors were collected which could be used later for simulations.

Next, the chip was depotted, delayered, imaged, stitched, and aligned. We
found the chip contained 12,000 gates of digital logic and an embedded EEP-
ROM. The entire chip was annotated, and the ICWorks tool created a netlist
and flat schematic from this annotation. A portion of the digital logic annota-
tion is shown in Figure 18. Annotation and schematic rule checks were used to
verify a quality schematic starting point. In fact, for this project we annotated
the entire chip twice, then compared the results to minimize annotation errors.
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Fig. 20. Logic Scan Control Circuit

The schematics were then partially organized. The memory schematic was
completely organized, and the main registers of the digital block were grouped.
A few of the major busses were labeled and the I/Os were connected to the
major blocks.

In order to run a full chip simulation on the netlist, we would need to ex-
tract all the contents of the chip, including both the hardware and memory
contents. Different memory types have different challenges in reading them. Em-
bedded SRAMs are the simplest. These memories are volatile, no data is stored
in them during power down, so they do not need to be extracted. ROMs can be
extracted using traditional RE techniques of physically reading back the mask
programming. Figure 19 shows a metal 1 mask programmed ROM. Unfortu-
nately EEPROMs are more difficult than either of these.

We knew up front that this chip included on-chip encryption, and that the keys
were stored in the EEPROM. Hence, we anticipated a challenge in being able
to access this memory. As expected, the memory was well protected, and much
of this memory could not be directly read off-chip. Additionally, the interface
to this chip was encrypted, so we had no idea how to generate a memory read
command anyhow. The solution to this was to use the test hardware embedded
in the chip.

This particular chip had both scan path test circuitry for the digital logic, and
memory BIST for the EEPROM. Once we had organized the test and memory
circuits, we set to work analyzing them. The scan test control circuit is shown
in Figure 20. We found a method where we could almost read out the memory
locations using a combination of the digital and memory test circuitry. A single
application of microsurgery looked as though it would unlock the bits.

We took a single chip, used jet-etching to remove a portion of the package,
then used focused ion beam (FIB) techniques to modify a connection on the
chip (Figure 21). Next we used our analysis to create scan path vectors, with
the appropriate control signals, and successfully read out the encryption keys
and other memory contents via the test port.
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Fig. 21. Microsurgery Altered Chip Being Pico-probed

At this point, we created a memory model to use with our netlist. The vectors
collected from the actual system were run on the netlist, and we verified that our
chip model gave the same outputs as the actual chip tested. Hence, we confirmed
our netlist and memory contents were correct.

The encryption algorithm also needs to be understood to be able to complete
the analysis of this chip. This was accomplished via schematic organization and
simula- tion. As we organized the chip, we found some interesting structures,
such as a 56 bit register. Therefore, we ran our simulations, and monitored the
busses in the area of this register. Sure enough, keys were read from our memory
model, loaded into this embedded block, and a standard DES algorithm was
observed.

Now we understood the encryption, had the keys, and had full chip simulations
running. Since we had a full netlist, we were able to run full chip simulations and
monitor any internal nodes required. This allowed us to complete the analysis
of this chip and understand all the commands it could execute.

8 Summary

In this paper we have reviewed the different types of reverse engineering pertinent
to the semiconductor industry. For reverse engineers, life will not get any easier
in the electronics business. In semiconductors, the next challenge will be the 32
nm node devices already being ramped up in development fabs. The consumer
electronics business keeps bouncing from new toy to yet another new toy, and it
is necessary to be aware of all the new products that keep appearing.

As is shown in this paper, the RE business has to keep evolving to keep up
with the changes in electronics and design, and it has become a discipline in
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itself, created by the needs of the global market for competitive intelligence and
IP support.
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Abstract. The general trend in semiconductor industry to separate de-
sign from fabrication leads to potential threats from untrusted integrated
circuit foundries. In particular, malicious hardware components can be
covertly inserted at the foundry to implement hidden backdoors for unau-
thorized exposure of secret information. This paper proposes a new class
of hardware Trojans which intentionally induce physical side-channels
to convey secret information. We demonstrate power side-channels engi-
neered to leak information below the effective noise power level of the de-
vice. Two concepts of very small implementations of Trojan side-channels
(TSC) are introduced and evaluated with respect to their feasibility on
Xilinx FPGAs. Their lightweight implementations indicate a high resis-
tance to detection by conventional test and inspection methods. Further-
more, the proposed TSCs come with a physical encryption property, so
that even a successful detection of the artificially introduced side-channel
will not allow unhindered access to the secret information.

Keywords: Trojan Hardware, Side-Channel Analysis, Covert Channel,
Trojan Side-Channel, Hardware Trojan Detection.

1 Introduction

Historically the choice to implement cryptographic routines in hardware was
mainly driven by high-security applications such as banking or government sys-
tems. Nowadays, this has changed since the trend towards system-on-a-chip so-
lutions has facilitated the integration of high-performance cryptography also in
commercial off-the-shelf silicon devices. For example, the majority of current
PCs and laptops are sold with built-in trusted platform module (TPM) chips.
Another pertinent example is the trend towards pervasive embedded comput-
ing, bringing hardware cryptography to products such as smartphones, payment
cards, RFID-equipped goods or medical devices. Since these personal devices can
be physically accessed by their owners, their security often relies on hardware-
based security modules. In this context, security modules implemented in sili-
con are generally considered more trustworthy than software solutions. This is
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mainly due to the need for expensive tools to modify and probe circuits on the
submicron scale, which imposes a significant barrier to attackers and thus im-
plicitly provides a basic level of protection against key extractions and algorithm
manipulations.

Due to the recent fabless trends in semiconductor industry, malicious circuit
manipulations such as “hardware Trojans” can be furtively implanted into the
genuine integrated circuits (IC) to compromise their security. Such attacks on
the hardware design of chips lead to serious consequences, as (1) a very large
number of devices will be affected, e.g., millions of e-banking authentication to-
kens or TPM chips, (2) the attack might not be noticed for a very long time and
perhaps more importantly, (3) security breaks of this kind are almost impossible
to fix because there is no practical hardware equivalent for software updates.
Even though there is no solid evidence on malicious manipulations of commer-
cial devices at manufacturing time up to now, “Trojan hardware” is considered
a serious threat for security modules of all kinds [1]. Given the complexity of
the current semiconductor supply chain including fabless semiconductor compa-
nies, there is an urgent need to implement organizational measures [2] to enable
trusted IC manufacturing.

Several recent academic works highlighted potential threats by demonstrat-
ing concepts of possible hardware Trojans. In [3] a malicious core embedded into
a central processing unit (CPU) is proposed. This work rates the detectabil-
ity of such Trojans as low mainly due to the small hardware overhead (a to-
tal of 2300 gates for the Trojan circuits) and timing perturbations. In [5], the
register-transfer-level (RTL) netlist of a cryptographic application on reconfig-
urable hardware is manipulated with additional logic to implement malicious
hardware. This Trojan has a complicated triggering pattern that will most likely
remain undetected in conventional function tests. Another work highlights the
possibilities to use hardware Trojans to covertly leak secret information through
wireless channels such as thermal, optical and radio channels [6]. Nevertheless
this work still requires trigger circuitry and most of the proposed channels are
realized by signals on output pins. This might be a drawback when it comes to
the detectability of the malicious circuitry.

Well-designed cryptographic hardware modules are very difficult to be ana-
lyzed or modified. However, for the same reasons it is also difficult for
chip-designers to detect malicious manipulations that were introduced to their
circuitry during the manufacturing process. Modern ICs often contain large
blocks of unused circuits, which may be left from previous versions of the design
or for temporary testing purposes. Malicious hardware can be hidden in these
unused chip-areas. As long as the TSC circuits are tiny, for example less than
100 gates, they cannot be easily distinguished from other hundreds of thousands
of gates by basic chip layout inspection.

To detect hardware Trojans, three general approaches [7] have been proposed.
The failure analysis community employs sophisticated techniques for visual in-
spection such as optical and scanning electron microscopy (SEM) or even picosec-
ond imaging circuit analysis [8]. These methods are very dependent on laboratory



384 L. Lin et al.

instrumentation and are often not feasible to be applied to production-run ICs.
Other approaches generate test patterns using the standard VLSI fault detec-
tion tools to find unexpected device behavior generated by malicious hardware
[9,10]. However, this method may not detect Trojans with complicated trigger-
ing patterns or carefully hidden channels that are leaking information. The third
approach profiles an IC by various analog measurements of, e.g., power traces
or internal delays. Then the profile of a trusted Trojan-free IC is used as ref-
erence for analyzing suspicious ICs. In [11], the power consumption of ICs is
profiled to detect Trojans by means of a subspace projection analysis [12]. Other
works based on side-channel and path delay profiles are described in [13,14].
Evaluators following this approach can only detect Trojan hardware circuits if
at least 0.1-0.01% of the pristine ICs circuit area is modified [11]. This translates
into hundreds of extra gates for most modern devices. To summarize, there are
no feasible evaluation techniques to our knowledge that can detect hardware
manipulations with very small gate counts.

In general, IC function tests do not include side-channel analysis (SCA). SCA
allows to extract information from physical channels inherently existing in elec-
tronic devices. The most commonly analyzed side-channels are the power con-
sumption and the electromagnetic radiation [15] of running ICs. In addition,
many other physical properties like timing behavior or sound waves [16,17] have
been shown to leak exploitable information. During the last decade many differ-
ent side-channel analyses have been demonstrated, that exploit physical infor-
mation leakage to compromise the security of cryptographic routines especially
in embedded devices.

So far to the best of our knowledge, most research works examine side-channels
as undesired phenomena that require special attention to protect devices from
sophisticated attacks. In this paper we change this perspective and use intention-
ally introduced side-channel leakage as a building block for Trojan circuitry. We
propose and demonstrate hardware Trojans which are much more subtle than
introducing complex logic blocks, but still can completely compromise otherwise
secure hardware by leaking exploitable information. In particular, we design Tro-
jans using less than 100 gates to generate artificial power side-channels suitable
to covertly leak secret information. We refer to these covert channels as “Trojan
side-channels” (TSC).

This paper is organized as follows: Section 2 introduces the basic concepts
of TSC. Section 3 presents two different approaches for TSCs that are built
upon spread-spectrum theory and artificial leakage functions induced on the key
schedule of cryptographic algorithms. In Section 4, we discuss further work and
research related to the concept of TSCs, before we finally draw conclusions in
Section 5.

2 Introducing the Trojan Side-Channel

Before discussing the concept of Trojan side-channels, we introduce the parties
involved in a Trojan side-channel scenario. We refer to the party implanting the
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Trojan hardware into the genuine ICs as attacker, and the party attempting to
detect infected ICs as evaluator. An attacker could be for example an untrusted
IC foundry, and an evaluator, who attempts to verify correctness and integrity
of an IC, a Common Criteria Testing Laboratory (CCTL).

Furthermore we assume that the designers implemented all cryptographic
schemes on their device with state-of-the-art countermeasures against SCA at-
tacks, such as the use of side-channel resistant logic styles. Hence, the initial
implementation on the chips should be considered as side-channel resistant and
not exposing any secret information by side-channel leakage. Note that a device
protected at this level is likely to be evaluated according to its side-channel resis-
tance. Thus, a Trojan implanted in such a device needs to be designed to evade
detection even during evaluation of the pristine IC’s side-channel resistance by
sophisticated methods such as higher-order power analysis or template attacks.

Based on these requirements we define the following design goals for a circuit-
level implementation of a TSC:

– Detectability:
• Size: The required amount of logic gates has to be minimized to evade

detection of the TSC by evaluators.
• Side-Channel Leakage: The TSC must not be detected when performing

power analyses targeting the pristine ICs functionality. As a minimum
requirement, the relative power consumption of the TSC circuit with
respect to the overall power should be negligible so that it cannot be
obtained from the power traces just by visual inspection.

• Trigger: The TSC must not effect functionality of the device in any way
to avoid detection by extensive functionality testing. This also prohibits
triggering and communication using external pins.

– Usability:
• The TSC must not be exploited by anyone else than the attacker, who

knows all details of the modification. We call this “encryption property”.

The principle of a TSC is visualized in Figure 1. The compromised device is mod-
eled by an IC having an embedded crypto core. Without TSC, the secret key K
cannot be recovered by means of SCA. During the IC manufacturing process, the
attacker covertly inserts a TSC circuit that encodes K into physical leakage. We
model this encoding by an encryption function1 e(K), which is designed to reserve
usage and detection of the side-channel only to the implementing attacker. Once
the IC is deployed in the field, an evaluator must not be able to detect the TSC.
Furthermore, the encryption property of the Trojan is designed to avoid usage of
the Trojan even by an evaluator that is aware of the existence of the TSC.

TSCs that incorporate such an encryption property require special attention
during IC security evaluation. A good encryption property requires an evaluator
to overcome an infeasible computational or experimental effort, e.g., 280 calcu-
lations or 240 measurements, to access the secret information that is exposed.
1 Note that the notion of encryption in this context does not necessarily imply the strong

security properties as commonly assumed for cryptographic schemes.
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Attacker: -1

Evaluator:

Fig. 1. Principle of Trojan side-channels

On the other side the attacker (who designed the TSC) needs to have some
advantageous knowledge, allowing him to make use of the TSC within feasible
efforts.

The class of TSCs introduced in this work use an internal state (artificially
introduced as part of the TSC or an inherently existing internal state) to encode
the secret information to be leaked by means of a logic combination function.
The output of this logic is then connected to a building block acting as an
artificial leakage source. For the side-channel based on power consumption, such
a leakage circuit can be realized, for example, using big capacitances, toggling
logic or pseudo-NMOS gates. Note that the amount of generated leakage is part
of the TSC design space and can be engineered to take any desired signal-to-
noise ratio (SNR). This choice of a SNR affects both, attacker and evaluator, as
it determines the amount of measurement samples required to detect and use
the TSC. In addition, it might also affect the size of the TSC.

3 Implementations of TSCs

In the following sections, we demonstrate two very different ways to imple-
ment TSCs. These examples shall provide a first impression of the flexibility
of the introduced concept of TSCs and highlight the wide range of design op-
tions available to attackers. Although TSCs aim to be implemented in ASICs,
we preliminary demonstrate their capability by practical experiments on FPGA
implementations. Note that these FPGA implementations should be regarded as
proof-of-concept implementations only, because FPGAs are (due to their course-
grain logic elements) not able to fully mimic the design options and structural
characteristics that apply for ASICs.

3.1 TSCs Based on Spread-Spectrum Theory

Our first TSC design is a side-channel adapting the concepts from spread-
spectrum communications (also known as code-division multiple access
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(CDMA)) to distribute the leakage of single bits over many clock cycles. The
basics of the CDMA encoding are very similar to conventional stream-ciphers.
A bit sequence (the code) is used to modulate information bits using XOR.
Contrary to the stream-cipher concept, CDMA uses many code bits to transfer
single bits of information, i.e., the code bits are changing much faster than the
information bits. This strategy spreads the information contained in a single bit
along a longer bit (or code) sequence which allows transmission and recovery of
information in subliminal channels even below noise level. This property makes
CDMA the method of choice to implement hidden military communication chan-
nels. The demodulation used to decode CDMA channels helps to understand
how CDMA can establish channels in this sub-noise domain. The process of
decoding using a correlation demodulator is very close to what the community
of cryptographers knows as correlation power analysis. The demodulator uses
subsequent power measurements and correlates them to the synchronized code
sequence. If the correct code has been used, this leads to a positive correlation
coefficient for encoded zeros and a negative correlation coefficient for encoded
ones. The more power traces the demodulator analyzes, the more “process gain”
(which is the ratio of code sequence length to the bit information length in
spread-spectrum encoding) is available to overcome a low demodulation SNR.
Note that the CDMA channel can only be demodulated using the correct code
sequence and demodulation with different code sequences will not lead to any
significant correlation. Therefore it is possible to transfer bits on multiple CDMA
channels simultaneously, as each CDMA channel is indistinguishable from noise
for all other channels.

Our TSC employs this method by using a pseudo-random number generator
(PRNG) to create a CDMA code sequence. This sequence is then used to XOR-
modulate the secret information bits. The modulated sequence is forwarded to a
leakage circuit (LC) to set up a covert CDMA channel in the power side-channel.
In this model, the advantage of the attacker is the knowledge about the exact
setup of the code generator (more precisely, the initialization vector and feedback
coefficients of the implemented PRNG) which are required to predict the code
sequence. Knowing all details of the PRNG used gives the attacker the essential
advantage over evaluators who cannot distinguish the covert channel from noise.
For decoding this channel, the attacker performs a correlation demodulation on
measurement points of subsequent clock cycles as described above. When evalu-
ating side-channel leakage of the compromised device, the leakage due to the TSC
will not be detected during attacks on the pristine IC core. Note that depending
on the leakage generating circuit, it might be necessary to consider a mapping of
the used code with respect to a suitable power model prior to correlation-based
demodulation. Note further that to amplify the quality of results, the attacker
can repeat measurements several times and average the corresponding traces to
reduce the overall impact of noise.

Experimental Results. To demonstrate the applicability of the proposed
TSC, we implement an entire AES cryptosystem and a TSC using the linear
feedback shift register (LFSR) shown in Figure 2 on a Xilinx Spartan-3E FPGA
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Fig. 2. Diagram of a spread-spectrum TSC circuit based on a pseudo-random number
generator (PRNG) and a separate leakage circuit (LC)

running at 50 MHz. We use a 1 Ω serial current-sensing resistor to probe the
power consumption of the FPGA core, similar to the experimental setups de-
scribed in [22,23]. The transient power traces are measured by an Agilent Infini-
ium 54832D oscilloscope. In this experiment, we used a single CDMA channel
to transmit a single key bit. The leakage generating circuit (LC) was realized
by connecting eight identical flip-flop elements to the single output of the XOR
gate to mimic a large capacitance. To demodulate the CDMA channel, the at-
tacker has to take into account that the flip-flops do not leak a good Hamming
weight signal. Therefore, the power consumption behavior of the leakage circuit
has to be modeled to map the CDMA code to the leakage circuit. In this case the
flip-flops will cause short circuit currents when toggling, and additional currents
from discharging their load capacitances on one-to-zero transitions. The latter
can be used to distinguish the transmitted data during demodulation: For en-
coded bits which are one, the circuit will have a higher leakage on all zero-to-one
transitions of the code, while for encoded zeros the circuit will generate more
leakage currents on one-to-zero transitions of the code. The attacker uses the
resulting two different code sequences for demodulation. The higher correlation
coefficient will identify the actually transferred bit.

In our setup, the PRNG is based on a simple LFSR using the primitive poly-
nomial x20+ x13+ x9+ x5+ 1. This PRNG thus generates a code sequence with
a maximum order of 220-1. We successfully extracted the secret key bit with
code lengths of at least 1030 bits. In Figure 3, the correlation coefficient for the
code sequence identifying the transmitted bit is with 0.04 considerably larger
than the correlation coefficients resulting from wrong choices of code sequences
and false guesses of the transmitted bit. The FPGA implementation of this TSC
circuit requires 42 flip-flops (FF) and 6 look-up tables (LUT) occupying 23 slices
(49 gates would be required for the corresponding ASIC circuit). Note that these
resource consumption is nearly negligible with respect to our iterative AES im-
plementation that requires 531 slices utilizing 442 FFs and 825 LUTs (this does
even not take additional resources for control or I/O into account).
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Fig. 3. Required number of power traces to extract key bits from TSC based on spread-
spectrum technique

Detectability. The additional leakage of this spread-spectrum inspired TSC
only depends on the key and a fixed code-generator. An evaluator can exploit
this, by first averaging many traces using a fixed input and then, in a second
step, averaging over another set of traces, where only a single key bit has been
flipped. By calculating the difference of means of those traces he might get
enough information to recover the code sequence that has been used to leak the
toggled key bit. To harden the proposed TSC against this method we suggest to
transfer only combination of bits, such that further interpretation by means of
algebraic equations is required to understand and use the TSC. An alternative
method to prevent unauthorized use of our TSC by an evaluator is to create an
interdependence between plaintext input and initialization vector of the PRNG,
i.e., either we generate the PRNG’s initialization value based on a combinatorial
circuit from the plaintext or we introduce a previous initialization phase and
clock all plaintext bits through the PRNG using a separate shift register and
an additional XOR gate (similar to the initialization of the A5/1 streamcipher).
Although these approach requires additional logic and/or clock cycles, this in-
volves a significantly higher effort for the evaluator to get access to the Trojan’s
communication channel.

3.2 TSCs Using Known Input Values

Our second proposal is a subtle TSC that leaks secret information obtained
during the run of a block-cipher’s key schedule. More precisely, we demonstrate
an attack on the AES-128 block-cipher and its corresponding key schedule in
this section. While the TSC following spread-spectrum theory used subsequent
leakages to implement a CDMA channel, this design was inspired by conventional
side-channel analysis. The idea is to artificially introduce leaking intermediate
states in the key schedule that depend on known input bits and key bits, but
that naturally would not occur during regular processing of the cipher. These



390 L. Lin et al.

values can then be exploited by differential power analysis attacks. The TSC
proposed uses an artificial intermediate state consisting of only a single bit of
generated leakage. We evaluated several functions for combining input bits with
key bits to find methods that

1. theoretically allow a good discrimination of wrong and right key bit guesses
in a differential power analysis using the correlation coefficient,

2. use only a few input bits (≤ 16),
3. require a few logic gates (< 100),
4. do not lead to any exploitable correlation in case intermediate values the

crypto-core processes during his regular operation are attacked.

For our demonstration TSC, we selected a very straightforward AND-XOR com-
bination that is based on up to 16 input bits, but promises easily detectable
results. This function uses AND conjunctions to pairwise combine each key bit
with another input bit. The output of the AND gates are then combined to the
leaked intermediate value by XORing all of them.

The encryption property of this TSC results from the attackers choice to
select which of the 128 input bits of the AES cipher are combined with which
key bits. Note that the attacker’s secret to access the TSC is based on a permuted
choice; in other words it can be implemented solely by wiring. For the sake of
simplicity, we propose to leak 1-2 bytes of the AES round key for each round of
the key schedule. This could be, for example, the first and the third byte of each
round key. Note that if only one byte is leaked, the key space is already reduced
sufficiently (128− 10 · 8 = 48 bit) for an attacker to mount a brute-force attack
on a known plaintext-ciphertext pair, e.g., by using special-purpose hardware
as a COPACOBANA [4]. On the other hand, designing the TSC to extract two
bytes simultaneously enables the attacker to reveal the whole key without the
need to apply brute-force to any unknown bits.

Analyzing the available key space, we consider an intermediate value gener-
ated as described above using 8 key bits and 8 input bits. In AES-128, we have
16 possible key bytes that can be leaked by a TSC2. There are 128!/120! different
choices for selecting a sequence of 8 different bits from 128 bits. Therefore, we
estimate the effective key space to 128!/120!·16 ≈ 9.22 ·1017 possible keys, which
corresponds to a key length of approximately 59 bits. For combination functions
using 16 bits the keyspace is significantly larger.

Experimental Results. We evaluated this TSC by implementing an AES key
schedule connected to the proposed TSC on a SASEBO standard side-channel
evaluation board [18]. The target FPGA on this board is a Xilinx Virtex-2 PRO
XC2VP7-5 FPGA. The implemented TSC is sketched in Figure 4 and is based
only on 8 plaintext bits and 8 bits of the round key register within the AES-128
key schedule. Note that many real-world implementations store the plaintext

2 It makes sense to use complete bytes instead of unrelated bits, due to the SBOX
inside the g-function of the AES key schedule. This facilitates reconstruction of the
AES key from the leaked round key snippets.
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Fig. 4. Diagram showing an alternative TSC circuit attacking 8 bits of an AES-128
key schedule. It consists of a combinatorial circuit taking a set of plaintext and round
key bits as inputs that are combined into a single output bit, finally leaked into the
power signature using a leakage circuit (LC).

input in the state which is overwritten in subsequent rounds. Hence, the TSC
might require an additional register to store the used plaintext bits for the entire
runtime of the attack.

In this setup, we additionally employed a leakage circuit (LC) that can be imple-
mented very efficiently with FPGAs (although our main focus are TSCs on ASICs,
this could be a solution for the case that an FPGA is the target device). We config-
ured a single LUT of the FPGA as 16-bit shift register (SRL16 feature) and loaded
it with an initial alternating sequence of zeros and ones. The shift register is only
clocked in case the input to the leakage circuit is one, which results in an additional
dynamic power consumption. Including the logic from the combinatorial circuit,
the overall size of the implemented TSC results to only 14 LUTs occupying a total
of 7 slices (equivalent to 29 gates when implemented as ASIC).

Our experimental results demonstrate that a recovery of the TSC information
can easily be achieved by means of a correlation power analysis. The plots of
the correlation coefficient show very distinct peaks for correct key guesses. The
example detection given in Figure 5 shows 10 peaks each indicating a covert
transmission of another key byte. The figure to the right shows the correlation
coefficients used to identify the content of the fourth transmitted byte as the
value 65.

Detectability. This TSC approach can also be detected and exploited by dili-
gent evaluation of the device. In this case an evaluator again uses variations of
traces that differ only in single plaintext or key bits. This allows him to distin-
guish which key bits and plaintext bits were used in the combination function.
While flipping combinations of bits, analysis of the corresponding behavior of
the TSC will finally allow to reverse-engineer the used combination function.
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(a) Subsequent exposure of 10 key bytes (b) Discrimination of the key byte for the
4th transmission

Fig. 5. Recovery of the TSC Information by means of the correlation coefficient

To make our TSC less susceptible for these types of detection strategies, we
suggest to extend the applied combination function by XORing additional plain-
text bits, logic combinations of plaintext bits, key bits or even combinations of
key bits. By introducing such complex linear or non-linear equations, the inter-
pretation of the observed differences by the evaluator can be complicated to an
unfeasible level. Such an improvement also assists the attacker to detect a key
that only consists of zeros. Up to now, the detection of the zero key is based
on the absence of any correlation for all other key guesses, which might be an
undesired property.

4 Further Work

In this work, we introduce a general concept of Trojan side-channels and still
let room for many improvements for both the implementation and the detec-
tion perspective. In this section we discuss aspects beyond the scope of this
paper that are subject to (our) current research: the detectability and availabil-
ity of TSCs by third parties and evaluators has not been sufficiently verified
experimentally yet. Upcoming designs of TSCs in ASICs have to be tested with
special attentions to these properties, so that their threats can be better under-
stood and judged. Improvements to the TSCs include smaller and more subtle
combination functions, better leakage circuits and more elegant methods for
CDMA code generation. For example, the shift register of the input dependent
TSC could be omitted by shifting the contents of the register containing the
plaintext bits instead. The leakage circuit could even completely be omitted by
using a combination function with well-designed leakage behavior. For a first
idea on TSC performance in ASICs, we have already performed experiments
using circuit-level simulations of the CDMA-based TSC implemented in a 45nm
predictive transistor model. These experiments also indicate feasibility of our
concept in real hardware implementations beyond the limited scope of FPGAs
with its very coarse-grain logic elements. Therefore, the ASIC implementations
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of the TSCs require much less gates than the logic required for our preliminary
FPGA experiments.

5 Conclusions

Trojan side-channels form a subtle class of hardware Trojans that are very
promising to evade detection strategies applied by evaluators. The known meth-
ods for detection of “conventional” Trojan hardware circuits, such as optical
inspection of metal layers or fingerprinting of circuits, will most likely fail on
TSCs due to their extremely small size. TSCs also do not require a direct con-
nection to I/O pins and do not effect the functional behavior of the pristine
IC. Since TSCs are only dependent on inputs of the cryptographic implementa-
tion under attack, the design space of TSCs allows for a multitude of potential
TSC properties. The two types of TSCs demonstrated in this work show how
considerable these differences might be, resulting in completely different TSC
applications and detection schemes. Moreover, the degrees of freedom include
the selection of

– physical channels (power, EM radiation, timing, heat, etc.),
– combination functions,
– internal states determining also time and/or input dependence of the leakage
– leakage circuits depending on their input or on transitions of their input

TSCs implemented during the manufacturing process in untrusted semiconduc-
tor foundries pose a very serious threat to all kinds of security modules. We
provided a short discussion on the detectability of our TSCs by side-channel
evaluators. Given the flexibility of TSCs with better hiding methods, further
research is required for evaluators to develop more practical detection schemes
to recognize the next generation TSCs.

TSCs based on CDMA are an universal tool for leaking information indepen-
dent of the cryptographic algorithm used. Moreover, information other than the
mere key can be leaked through the CDMA side-channel. We would like to stress
that CDMA-based TSCs can potentially also find applications in constructive
uses.

– Since TSC can be viewed as a form of physical encryption, one can imagine
other cryptographic protocols and applications using TSC as building blocks.

– TSC can be used for anti-counterfeiting in a straightforward manner: au-
thentic ICs can identify themselves via the TSC by sending an ID, whereas
illegal but functionally correct copies lack this capability.

– TSC can be used for conveying internal status information about a circuit
to facilitate the testability of a circuit.
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Abstract. In order to ensure trusted in–field operation of integrated
circuits, it is important to develop efficient low–cost techniques to detect
malicious tampering (also referred to as Hardware Trojan) that causes
undesired change in functional behavior. Conventional post–
manufacturing testing, test generation algorithms and test coverage met-
rics cannot be readily extended to hardware Trojan detection. In this
paper, we propose a test pattern generation technique based on multiple
excitation of rare logic conditions at internal nodes. Such a statistical ap-
proach maximizes the probability of inserted Trojans getting triggered
and detected by logic testing, while drastically reducing the number of
vectors compared to a weighted random pattern based test generation.
Moreover, the proposed test generation approach can be effective towards
increasing the sensitivity of Trojan detection in existing side–channel ap-
proaches that monitor the impact of a Trojan circuit on power or current
signature. Simulation results for a set of ISCAS benchmarks show that
the proposed test generation approach can achieve comparable or better
Trojan detection coverage with about 85% reduction in test length on
average over random patterns.

1 Introduction

The issue of Trust is an emerging problem in semiconductor integrated cir-
cuit (IC) security [1,2,3,8] This issue has become prominent recently due to
widespread outsourcing of the IC manufacturing processes to untrusted foundries
in order to reduce cost. An adversary can potentially tamper a design in these
fabrication facilities by the insertion of malicious circuitry. On the other hand,
third-party CAD tools as well as hardware intellectual property (IP) modules
used in a design house also pose security threat in terms of incorporating mali-
cious circuit into a design [3]. Such a malicious circuit, referred to as a Hardware
Trojan, can trigger and affect normal circuit operation, potentially with catas-
trophic consequences in critical applications in the domains of communications,
space, military and nuclear facilities.
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(a) Generic comb. Trojan (b) Generic sequential Trojan

(c) Comb. Trojan example (d) Sequential Trojan example

Fig. 1. Generic model for combinational and sequential Trojan circuits and correspond-
ing examples

An intelligent adversary will try to hide such tampering of IC’s functional
behavior in a way that makes it extremely difficult to detect with conventional
post–manufacturing test [3]. Intuitively, it means that the adversary would en-
sure that such a tampering is manifested or triggered under very rare conditions
at the internal nodes, which are unlikely to arise during test but can occur dur-
ing long hours of field operation [13]. Fig. 1 shows general models and examples
of hardware Trojans. The combinational Trojans as shown in Fig. 1(a) do not
contain any sequential elements and depend only on the simultaneous occurrence
of a set of rare node conditions (e.g. on nodes T1 through node Tn) to trigger a
malfunction. An example of a combinational Trojan is shown in Fig. 1(c) where
the node S has been modified to S�, and malfunction is triggered whenever the
condition a = 0, b = 1, c = 1 is satisfied. The sequential Trojans shown in Fig.
1(b), on the other hand, undergo a sequence of state transitions (S1 through Sn)
before triggering a malfunction. An example is shown in Fig. 1(d), where the
3–bit counter causes a malfunction at the node S on reaching a particular count,
and the count is increased only when the condition a = 1, b = 0 is satisfied at
the positive clock–edge. We refer to the condition of Trojan activation as the
triggering condition and the node affected by the Trojan as its payload.

In order to detect the existence of a Trojan using logic testing, it is not only
important to trigger a rare event at a set of internal nodes, but also to propagate
the effect of such an event at the payload to an output node and observe it. Hence,
it is very challenging to solve the problem of Trojan detection using conventional
test generation and application, which are designed to detect manufacturing de-
fects. In addition, the number of possible Trojan instances has a combinatorial
dependence on the number of circuit nodes. As an example, even with the as-
sumption of maximum 4 trigger nodes and a single payload, a relatively small
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ISCAS–85 circuit such as c880 with 451 gates can have ∼109 triggers and ∼1011

distinct Trojan instances, respectively. Thus, it is not practical to enumerate all
possible Trojan instances to generate test patterns or compute test coverage.
This indicates that instead of an exact approach, a statistical approach for test
vector generation for Trojans can be computationally more tractable.

In this paper, we propose a methodology, referred to as MERO (Multiple
Excitation of Rare Occurence) for statistical test generation and coverage de-
termination of hardware Trojans. The main objective of the proposed methodol-
ogy is to derive a set of test patterns that is compact (minimizing test time and
cost), while maximizing the Trojan detection coverage. The basic concept is to
detect low probability conditions at the internal nodes, select candidate Trojans
triggerable by a subset of these rare conditions, and then derive an optimal set
of vectors than can trigger each of the selected low probability nodes individually
to their rare logic values multiple times (e.g. at least N times, where N is a given
parameter). As analyzed in Section 3.1, this increases the probability of detec-
tion of a Trojan having a subset of these nodes as its trigger nodes. By increasing
the toggling of nodes that are random–pattern resistant, it improves the proba-
bility of activating a Trojan compared to purely random patterns. The proposed
methodology is conceptually similar to N-detect test [5,6] used in stuck-at ATPG
(automatic test pattern generation), where test set is generated to detect each
single stuck-at fault in a circuit by at least N different patterns, in the process
improving test quality and defect coverage [6]. In this paper, we focus on digital
Trojans [13], which can be inserted into a design either in a design house (e.g.
by untrusted CAD tool or IP) or in a foundry. We do not consider the Trojans
where the triggering mechanism or effect are analog (e.g. thermal).

Since the proposed detection is based on functional validation using logic
values, it is robust with respect to parameter variations and can reliably de-
tect very small Trojans, e.g. the ones with few logic gates. Thus, the technique
can be used as complementary to the side–channel Trojan detection approaches
[1,9,10,11] which are more effective in detecting large Trojans (e.g. ones with
area > 0.1% of the total circuit area). Besides, the MERO approach can be
used to increase the detection sensitivity of many side-channel Trojan detection
techniques such as the ones that monitor the power/current signature, by in-
creasing the activity in a Trojan circuit. Using an integrated Trojan coverage
simulation and test generation flow, we validate the approach for a set of ISCAS
combinational and sequential benchmarks. Simulation results show that the pro-
posed test generation approach can be extremely effective for detecting arbitrary
Trojan instances of small size, both combinational and sequential.

The rest of the paper is organized as follows. Section 2 describes previous work
on Trojan detection. Section 3 describes the mathematical justification of the
MERO methodology, the steps of the MERO test generation algorithm and the
Trojan detection coverage estimation. Section 4 describes the simulation setup
and presents results for a set of ISCAS benchmark circuits with detailed analysis.
Section 5 concludes the paper.
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2 Trojan Detection: Previous Work

Previously proposed Trojan detection approaches can be classified under two
main classes: (1) destructive approaches and (2) non–destructive approaches.
In the destructive approaches, the manufactured IC is de–metallized layer by
layer, and chip microphotographs of the layers are integrated and analyzed by
advanced software to detect any tampering [4]. However, the applicability of
such approaches is limited by the fact that the hacker is most likely to modify
only a small random sample of chips in the production line. This means that the
success of detecting the Trojan depends totally on correctly selecting a manufac-
tured IC instance that has actually been tampered. Also, destructive methods
of validating an IC are extremely expensive with respect to time and cost and
technology intensive, with validation of a single IC taking months [3]. Hence, it is
important to investigate efficient non–destructive Trojan detection approaches.

Two non-destructive Trojan detection techniques can be categorized into two
broad classes: (1) Side-channel Analysis based and (2) Logic Testing based tech-
niques. The side–channel analysis based techniques utilize the effect of an in-
serted Trojan on a measurable physical quantity, e.g. the supply current [1,11]
or path delays [10]. Such a measured circuit parameter can be referred as a fin-
gerprint for the IC [1]. Side–channel approaches of detecting Trojans belong to
a class of generic powerful techniques for IC authentication, and are conceptu-
ally applicable to Trojans of all operational modes and to designs of arbitrary
size and complexity. Only local activation of the Trojans is sufficient to detect
them, and methods have been proposed to maximize the possibility of locally
activating Trojans [9]. However, there are two main issues with the side–channel
based approaches that limit their practical applicability:

1. An intelligent adversary can craft a very small Trojan circuit with just a few
logic gates which causes minimal impact on circuit power or delay. Thus it
can easily evade side–channel detection techniques such as the ones described
in [1,10].

2. The fingerprint is extremely vulnerable to process variations (i.e. process
noise) and measurement noise. Even advanced de–noising techniques such
as those applied in [1] fail to detect arbitrarily small Trojans under process
variations.

Logic testing based approaches, on the other hand, are extremely reliable un-
der process variations and measurement noise effects. An important challenge
in these approaches is the inordinately large number of possible Trojans an ad-
versary can exploit. Relatively few works have addressed the problem of Trojan
detection using logic testing. In [12], a design methodology was proposed where
special circuitry was embedded in an IC to improve the controllability and ob-
servability of internal nodes, thereby facilitating the detection of inserted Trojans
by logic testing. However, this technique does not solve the problem of detecting
Trojans in ICs which have not been designed following that particular design
methodology.
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3 Statistical Approach for Trojan Detection

As described in Section 1, the main concept of our test generation approach
is based on generating test vectors that can excite candidate trigger nodes in-
dividually to their rare logic values multiple (at least N) times. In effect, the
probability of activation of a Trojan by the simultaneous occurrence of the rare
conditions at its trigger nodes increases. As an example, consider the Trojan
shown in Fig. 1(c). Assume that the conditions a = 0, b = 1 and c = 1 are very
rare. Hence, if we can generate a set of test vectors that induce these rare con-
ditions at these nodes individually N times where N is sufficiently large, then a
Trojan with triggering condition composed jointly of these nodes is highly likely
to be activated by the application of this test set. The concept can be extended
to sequential Trojans, as shown in Fig. 1(d), where the inserted 3–bit counter
is clocked on the simultaneous occurrence of the condition ab′ = 1. If the test
vectors can sensitize these nodes such that the condition ab′ = 1 is satisfied
at least 8 times (the maximum number of states of a 3–bit counter), then the
Trojan would be activated. Next, we present a mathematical analysis to justify
the concept.

3.1 Mathematical Analysis

Without loss of generality, assume that a Trojan is triggered by the rare logic
values at two nodes A and B, with corresponding probability of occurrence p1
and p2. Assume T to be the total number of vectors applied to the circuit under
test, such that both A and B have been individually excited to their rare values
at least N times. Then, the expected number of occurrences of the rare logic
values at nodes A and B are given by EA = T ·p1≥N and EB = T ·p2≥N , which
lead to:

T≥N

p1
and T≥N

p2
(1)

Now, let pj be the probability of simultaneous occurrence of the rare logic values
at nodes A and B, an event that acts as the trigger condition for the Trojan.
Then, the expected number of occurrences of this event when T vectors are
applied is:

EAB = pj ·T (2)

In the context of this problem, we can assume pj > 0, because an adversary
is unlikely to insert a Trojan which would never be triggered. Then, to ensure
that the Trojan is triggered at least once when T test vectors are applied, the
following condition must be satisfied:

pj ·T≥1 (3)

From inequality (1), let us assume T = c·N
p1

. where c≥1 is a constant depending
on the actual test set applied. Inequality (3) can then be generalized as:

S = c·pj

p1
·N (4)
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where S denotes the number of times the trigger condition is satisfied during
the test procedure. From this equation, the following observations can be made
about the interdependence of S and N :

1. For given parameters c, p1 and pj , S is proportional to N , i.e. the expected
number of times the Trojan trigger condition is satisfied increases with the
number of times the trigger nodes have been individually excited to their
rare values. This observation forms the main motivation behind the MERO
test generation approach for Trojan detection.

2. If there are q trigger nodes and if they are assumed to be mutually indepen-
dent, then pj = p1·p2·p3· · ·pq, which leads to:

S = c·N ·
q∏

i=2

pi (5)

As pi < 1 ∀i = 1, 2, · · ·q, hence, with the increase in q, S decreases for a
given c and N . In other words, with the increase in the number of trigger
nodes, it becomes more difficult to satisfy the trigger condition of the inserted
Trojan for a given N . Even if the nodes are not mutually independent, a
similar dependence of S on q is expected.

3. The trigger nodes can be chosen such that pi≤θ ∀i = 1, 2, · · ·q, so that θ
is defined as a trigger threshold probability. Then as θ increases, the cor-
responding selected rare node probabilities are also likely to increase. This
will result in an increase in S for a given T and N i.e. the probability of
Trojan activation would increase if the individual nodes are more likely to
get triggered to their rare values.

All of the above predicted trends were observed in our simulations, as shown in
Section 4.

3.2 Test Generation

Algorithm 1 shows the major steps in the proposed reduced test set generation
process for Trojan detection. We start with the golden circuit netlist (without
any Trojan), a random pattern set (V ), list of rare nodes (L) and number of
times to activate each node to its rare value (N). First, the circuit netlist is read
and mapped to a hypergraph. For each node in L, we initialize the number of
times a node encounters a rare value (AR) to 0. Next, for each random pattern
vi in V , we count the number of nodes (CR) in L whose rare value is satisfied.
We sort the random patterns in decreasing order of CR. In the next step, we
consider each vector in the sorted list and modify it by perturbing one bit at a
time. If a modified test pattern increases the number of nodes satisfying their
rare values, we accept the pattern in the reduced pattern list. In this step we
consider only those rare nodes with AR < N . The process repeats until each node
in L satisfies its rare value at least N times. The output of the test generation
process is a minimal test set that improves the coverage for both combinational
and sequential Trojans compared to random patterns.
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Algorithm 1. Procedure MERO
Generate reduced test pattern set for Trojan detection
Inputs: Circuit netlist, list of rare nodes (L) with associated rare values, list of
random patterns (V ), number of times a rare condition should be satisfied (N)
Outputs: Reduced pattern set (RV )

1: Read circuit and generate hypergraph
2: for all nodes in L do
3: set number of times node satisfies rare value (AR) to 0
4: end for
5: set RV = Φ
6: for all random pattern in V do
7: Propagate values
8: Count the # of nodes (CR) in L with their rare value satisfied
9: end for

10: Sort vectors in V in decreasing order of CR

11: for all vector vi in decreasing order of CR do
12: for all bit in vi do
13: Perturb the bit and re-compute # of satisfied rare values (C

′
R)

14: if (C
′
R > CR) then

15: Accept the perturbation and form v
′
i from vi

16: end if
17: end for
18: Update AR for all nodes in L due to vector vi

19: if v
′
i increases AR for at least one rare node then

20: Add the modified vector v
′
i to RV

21: end if
22: if (AR≥N) for all nodes in L then
23: break
24: end if
25: end for

3.3 Coverage Estimation

Once the reduced test vector set has been obtained, computation of Trigger and
Trojan coverage can be performed for a given trigger threshold (θ) (as defined in
Section 3.1) and a given number of trigger nodes (q) using a random sampling ap-
proach. From the Trojan population, we randomly select a number of q–trigger
Trojans, where each trigger node has signal probability less than equal θ. We as-
sume that Trojans comprising of trigger nodes with higher signal probability than
θ will be detected by conventional test. From the set of sampled Trojans, Trojans
with false trigger conditions which cannot be justified with any input pattern are
eliminated. Then, the circuit is simulated for each vector in the given vector set
and checked whether the trigger condition is satisfied. For an activated Trojan, if
its effect can be observed at the primary output or scan flip-flop input, the Trojan
is considered “covered”, i.e. detected. The percentages of Trojans activated and
detected constitute the trigger coverage and Trojan coverage, respectively.
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(a) (b)

Fig. 2. Impact of sample size on trigger and Trojan coverage for benchmarks c2670
and c3540, N = 1000 and q = 4: (a) deviation of trigger coverage, and (b) deviation of
Trojan coverage

(a) (b)

Fig. 3. Impact of N (number of times a rare point satisfies its rare value) on the
trigger/Trojan coverage and test length for benchmarks (a) c2670 and (b) c3540

3.4 Choice of Trojan Sample Size

In any random sampling process an important decision is to select the sample
size in a manner that represents the population reasonably well. In the con-
text of Trojan detection, it means further increase in sampled Trojans, renders
negligible change in the estimated converge. Fig. 2 shows a plot of percentage
deviation of Trigger and Trojan coverage (q = 4) from the asymptotic value for
two benchmark circuits with varying Trojan sample size. From the plots, we ob-
serve that the coverage saturates with nearly 100,000 samples, as the percentage
deviation tends to zero. To compromise between accuracy of estimated coverage
and simulation time, we have selected a sample size of 100,000 in our simulations.

3.5 Choice of N

Fig. 3 shows the trigger and Trojan coverage for two ISCAS–85 benchmark
circuits with increasing values of N , along with the lengths of the corresponding
testset. From these plots it is clear that similar to N–detect tests for stuck-at
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fault where defect coverage typically improves with increasing N , the trigger
and Trojan coverage obtained with the MERO approach also improves steadily
with N , but then both saturate around N = 200 and remain nearly constant for
larger values of N . As expected, the test size also increases with increasing N .
We chose a value of N = 1000 for most of our experiments to reach a balance
between coverage and test vector set size.

3.6 Improving Trojan Detection Coverage

As noted in previous sections, Trojan detection using logic testing involves si-
multaneous triggering of the Trojan and the propagation of its effect to output
nodes. Although the proposed test generation algorithm increases the probabil-
ity of Trojan activation, it does not explicitly target increasing the probability
of a malicious effect at payload being observable. MERO test patterns, how-
ever, achieves significant improvement in Trojan coverage compared to random
patterns, as shown in Section 4. This is because the Trojan coverage has strong
correlation with trigger coverage. To increase the Trojan coverage further, one
can use the following low-overhead approaches.

1. Improvement of test quality: We can consider number of nodes observed along
with number of nodes triggered for each vector during test generation. This
means, at step 13-14 of Algorithm 1, a perturbation is accepted if the sum
of triggered and observed nodes improves over previous value. This comes at
extra computational cost to determine the number of observable nodes for
each vector. We note that for a small ISCAS benchmark c432 (an interrupt
controller), we can improve the Trojan coverage by 6.5% with negligible
reduction in trigger coverage using this approach.

2. Observable test point insertion: We note that insertion of very few observable
test points can achieve significant improvement in Trojan coverage at the
cost of small design overhead. Existing algorithm for selecting observable
test points for stuck-at fault test [14] can be used here. Our simulation with
c432 resulted in about 4% improvement in Trojan coverage with 5 judiciously
inserted observable points.

3. IncreasingNand/or increasing the controllability of the internal nodes: Internal
node controllability can be increased by judiciously inserting few controllable
test points or increasing N . It is well-known in the context of stuck-at ATPG,
that scan insertion improves both controllability and observability of internal
nodes. Hence, the proposed approach can take advantage of low-overhead de-
sign modifications to increase the effectiveness of Trojan detection.

4 Results

4.1 Simulation Setup

We have implemented the test generation and the Trojan coverage determination
in three separate C programs. All the three programs can read a Verilog netlist
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Fig. 4. Integrated framework for rare occurrence determination, test generation using
MERO approach, and Trojan simulation

Table 1. Comparison of Trigger and Trojan coverage among ATPG patterns [7], Ran-
dom (100K, input weights: 0.5), and MERO patterns for q = 2 and q = 4, N = 1000,
θ = 0.2

ATPG patterns Random (100K patterns) MERO Patterns
Nodes q = 2 q = 4 q = 2 q = 4 q = 2 q = 4

Ckt. (Rare/ Trig. Troj. Trig. Troj. Trig. Troj. Trig. Troj. Trig. Troj. Trig. Troj.
Tot.) Cov. Cov. Cov. Cov. Cov. Cov. Cov. Cov. Cov. Cov. Cov. Cov.

(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)
c2670 297/1010 93.97 58.38 30.7 10.48 98.66 53.81 92.56 30.32 100.00 96.33 99.90 90.17
c3540 580/1184 77.87 52.09 16.07 8.78 99.61 86.5 90.46 69.48 99.81 86.14 87.34 64.88
c5315 817/2485 92.06 63.42 19.82 8.75 99.97 93.58 98.08 79.24 99.99 93.83 99.06 78.83
c6288 199/2448 55.16 50.32 3.28 2.92 100.00 98.95 99.91 97.81 100.00 98.94 92.50 89.88
c7552 1101/3720 82.92 66.59 20.14 11.72 98.25 94.69 91.83 83.45 99.38 96.01 95.01 84.47

s13207‡ 865/2504 82.41 73.84 27.78 27.78 100 95.37 88.89 83.33 100.00 94.68 94.44 88.89
s15850‡ 959/3004 25.06 20.46 3.80 2.53 94.20 88.75 48.10 37.98 95.91 92.41 79.75 68.35
s35932‡ 970/6500 87.06 79.99 35.9 33.97 100.00 93.56 100.00 96.80 100.00 93.56 100.00 96.80
Avg. 724/2857 74.56 58.14 19.69 13.37 98.84 88.15 88.73 72.30 99.39 93.99 93.50 82.78

‡These sequential benchmarks were run with 10,000 random Trojan instances to reduce run time of
Tetramax.

and create a hypergraph from the netlist description. The first program, named
as RO-Finder (Rare Occurence Finder), is capable of functionally simulat-
ing a netlist for a given set of input patterns, computing the signal probability
at each node and identifying nodes with low signal probability as rare nodes.
The second program MERO implements algorithm-1 described in Section 3.2
to generate the reduced pattern set for Trojan detection. The third program,
TrojanSim (Trojan Simulator), is capable of determining both Trigger and
Trojan coverage for a given test set using random sample of Trojan instances.
A q-trigger random Trojan instance is created by randomly selecting the trigger
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nodes from the list of rare nodes. We consider one randomly selected payload
node for each Trojan. Fig. 4 shows the flow-chart for the MERO methodology.
Synopsys TetraMAX was used to justify the trigger condition for each Trojan
and eliminate the false Trojans. All simulations and test generation were car-
ried out on a Hewlett-Packard Linux workstation with a 2GHz dual-core Intel
processor and 2GB RAM.

4.2 Comparison with Random and ATPG Patterns

Table 1 lists the trigger and Trojan coverage results for a set of combinational
(ISCAS-85) and sequential (ISCAS-89) benchmarks using stuck-at ATPG pat-
terns (generated using the algorithm in [7]), weighted random patterns and
MERO test patterns. It also lists the number of total nodes in the circuit and the
number of rare nodes identified by RO-Finder tool based on signal probability.
The signal probabilities were estimated through simulations with a set of 100,000
random vectors. For the sequential circuits, we assume full-scan implementation.
We consider 100,000 random instances of Trojans following the sampling policy
described in Section 3.4, with one randomly selected payload node for each Tro-
jan. Coverage results are provided in each case for two different trigger point
count, q = 2 and q = 4, at N = 1000 and θ = 0.2.

Table 2 compares reduction in the length of the testset generated by the
MERO test generation method with 100,000 random patterns, along with the
corresponding run-times for the test generation algorithm. This run-time in-
cludes the execution time for Tetramax to validate 100,000 random Trojan in-
stances, as well as time to determine the coverage by logic simulation. We can
make the following important observations from these two tables:

1. The stuck-at ATPG patterns provide poor trigger and Trojan coverage com-
pared to MERO patterns. The increase in coverage between the ATPG and
MERO patterns is more significant in case of higher number of trigger points.

2. From Table 2, it is evident that the reduced pattern with N=1000 and θ =
0.2 provides comparable trigger coverage with significant reduction in test

Table 2. Reduction in test length with MERO approach compared to 100K random
patterns along with runtime, q = 2, N=1000, θ=0.2

Ckt. MERO test length % Reduction Run-time (s)
c2670 8254 91.75 30051.53
c3540 14947 85.05 9403.11
c5315 10276 89.72 80241.52
c6288 5014 94.99 15716.42
c7552 12603 87.40 160783.37

s13207† 26926 73.07 23432.04
s15850† 32775 67.23 39689.63
s35932† 5480 94.52 29810.49
Avg. 14534 85.47 48641.01

†These sequential benchmarks were run with 10,000 ran-
dom Trojan instances to reduce run time of Tetramax.
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(a) (b)

Fig. 5. Trigger and Trojan coverage with varying number of trigger points (q) for
benchmarks (a) c3540 and (b) c7552, at N = 1000, θ = 0.2

length. The average improvement in test length for the circuits considered
is about 85%.

3. Trojan coverage is consistently smaller compared to trigger coverage. This
is because in order to detect a Trojan by applying an input pattern, besides
satisfying the trigger condition, one needs to propagate the logic error at
the payload node to one or more primary outputs. In many cases although
the trigger condition is satisfied, the malicious effect does not propagate to
outputs. Hence, the Trojan remains triggered but undetected.

4.3 Effect of Number of Trigger Points (q)

The impact of q on coverage is evident from the Fig. 5, which shows the decreas-
ing trigger and Trojan coverage with the increasing number of trigger points for
two combinational benchmark circuits. This trend is expected from the analysis
of Section 3.1. Our use of TetraMAX for justification and elimination of the false
triggers helped to improve the Trojan coverage.

4.4 Effect of Trigger Threshold (θ)

Fig. 6 plots the trigger and Trojan coverage with increasing θ for two ISCAS-85
benchmarks, at N = 1000 and q = 4. As we can observe, the coverage values
improve steadily with increasing θ while saturating at a value above 0.20 in
both the cases. The improvement in coverage with θ is again consistent with the
conclusions from the analysis of Section 3.1.

4.5 Sequential Trojan Detection

To investigate the effectiveness of the MERO test generation methodology in de-
tecting sequential Trojans, we designed and inserted sequential Trojans modeled
following Fig. 1(d), with 0, 2, 4, 8, 16 and 32 states, respectively (the case with
zero states refers to a combinational Trojan following the model of Fig. 1(c)). A
cycle-accurate simulation was performed by our simulator TrojanSim, and the
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(a) (b)

Fig. 6. Trigger and Trojan coverage with trigger threshold (θ) for benchmarks (a) c3540
and (b) c7552, for N = 1000, q = 4

Table 3. Comparison of sequential Trojan coverage between random (100K) and
MERO patterns, N = 1000, θ = 0.2, q = 2

Trigger Cov. for 100K Random Vectors Trigger Cov. for MERO Vectors
(%) (%)

Ckt. Trojan State Count Trojan State Count
0 2 4 8 16 32 0 2 4 8 16 32

s13207 100.00 100.00 99.77 99.31 99.07 98.38 100.00 100.00 99.54 99.54 98.84 97.92
s15850 94.20 91.99 86.79 76.64 61.13 48.59 95.91 95.31 94.03 91.90 87.72 79.80
s35932 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Avg. 98.07 97.33 95.52 91.98 86.73 82.32 98.64 98.44 97.86 97.15 95.52 92.57

Trojan Cov. for 100K Random Vectors Trojan Cov. for MERO Vectors
(%) (%)

Ckt. Trojan State Count Trojan State Count
0 2 4 8 16 32 0 2 4 8 16 32

s13207 95.37 95.37 95.14 94.91 94.68 93.98 94.68 94.68 94.21 94.21 93.52 92.82
s15850 88.75 86.53 81.67 72.89 58.4 46.97 92.41 91.99 90.62 88.75 84.23 76.73
s35932 93.56 93.56 93.56 93.56 93.56 93.56 93.56 93.56 93.56 93.56 93.56 93.56
Avg. 92.56 91.82 90.12 87.12 82.21 78.17 93.55 93.41 92.80 92.17 90.44 87.70

Trojan was considered detectable only when the output of the golden circuit
and the infected circuit did not match. Table 3 presents the trigger and Trojan
coverage respectively obtained by 100,000 randomly generated test vectors and
the MERO approach for three large ISCAS-89 benchmark circuits. The superi-
ority of the MERO approach over the random test vector generation approach
in detecting sequential Trojans is evident from this table.

Although these results have been presented for a specific type of sequential
Trojans (counters which increase their count conditionally), they are represen-
tative of other sequential Trojans whose state transition graph (STG) has no
“loop”. The STG for such a FSM has been shown in Fig. 7. This is a 8-state
FSM which changes its state only when a particular internal node condition Ci

is satisfied at state Si, and the Trojan is triggered when the FSM reaches state
S8. The example Trojan shown in Fig. 1(d) is a special case of this model, where
the conditions C1 through C8 are identical. If each of the conditions Ci is as
rare as the condition a = 1, b = 0 required by the Trojan shown in Fig. 1(d),
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Fig. 7. FSM model with no loop in state transition graph

then there is no difference between these two Trojans as far as their rareness of
getting triggered is concerned. Hence, we can expect similar coverage and test
length results for other sequential Trojans of this type. However, the coverage
may change if the FSM structure is changed (as shown with dotted line). In this
case, the coverage can be controlled by changing N .

4.6 Application to Side-Channel Analysis

As observed from the results presented in this section, the MERO approach can
achieve high trigger coverage for both combinational and sequential Trojans.
This essentially means that the MERO patterns will induce activity in the Tro-
jan triggering circuitry with high probability. A minimal set of patterns that
is highly likely to cause activity in a Trojan is attractive in power or current
signature based side-channel approach to detect hardware Trojan [1,9,11]. The
detection sensitivity in these approaches depends on the induced activity in the
Trojan circuit by applied test vector. It is particularly important to enhance sen-
sitivity for the Trojans where the leakage contribution to power by the Trojan
circuit can be easily masked by process or measurement noise. Hence, MERO ap-
proach can be extended to generate test vectors for side-channel analysis, which
requires amplifying the Trojan impact on side-channel parameter such as power
or current.

5 Conclusions

Conventional logic test generation techniques cannot be readily extended to
detect hardware Trojans because of the inordinately large number of possible
Trojan instances. We have presented a statistical Trojan detection approach
using logic testing where the concept of multiple excitation of rare logic values at
internal nodes is used to generate test patterns. Simulation results show that the
proposed test generation approach achieves about 85% reduction in test length
over random patterns for comparable or better Trojan detection coverage. The
proposed detection approach can be extremely effective for small combinational
and sequential Trojans with small number of trigger points, for which side-
channel analysis approaches cannot work reliably. Hence, the proposed detection
approach can be used as complementary to side-channel analysis based detection
schemes. Future work will involve improving the test quality which will help in
minimizing the test length and increasing Trojan coverage further.
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Abstract. Tamper-proof devices are pretty powerful. They can be used to have
better security in applications. In this work we observe that they can also be ma-
liciously used in order to defeat some common privacy protection mechanisms.
We propose the theoretical model of trusted agent to formalize the notion of pro-
grammable secure hardware. We show that protocols not using tamper-proof de-
vices are not deniable if malicious verifiers can use trusted agents. In a strong key
registration model, deniability can be restored, but only at the price of using key
escrow. As an application, we show how to break invisibility in undeniable signa-
tures, how to sell votes in voting schemes, how to break anonymity in group/ring
signatures, and how to carry on the Mafia fraud in non-transferable protocols.
We conclude by observing that the ability to put boundaries in computing de-
vices prevents from providing full control on how private information spreads:
the concept of sealing a device is in some sense incompatible with privacy.

1 Introduction

Tamper-proof hardware devices have been used quite massively in industrial and com-
mercial applications. There exists a wide spectrum of tamper-proof devices, ranging in
their price and security, from simple smartcards to the IBM 4758, which has several
physical penetration sensors, including temperature, radiation, pressure, etc. Clearly,
people are currently surrounded by devices (aimed at) instantiating trusted agents. Peo-
ple wear smart cards, secure tokens, their PCs have Trusted Computing Platforms, their
media readers have secure hardware to deal with DRMs, their iPhones have a self-
blocking secure hardware, passports have secure RFID tags, etc.

So far, secure hardware devices have been used to implement some strong security
protocols with the hypothesis that they are tamper-resistant. The idea of using tamper-
proof devices to realize cryptographic functionalities goes back (at least) to 1986 [10].
Due to existence of all side channel attacks, whether tamper resistance is possible in
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practice is still an open question. Current allegedly tamper-resistant devices are (at least)
trusted by banks, mobile telephone operators, companies selling access control devices,
software companies, media content providers, hardware manufacturers, governments,
and so on. It is unlikely that none of these organizations would ever try to take any
malicious advantage out from their devices. So, assuming some adversaries would use
tamper-proof devices for attacks is a legitimate assumption. In this paper we show how
to make several privacy attacks using trusted tamper-proof devices.

In this work, we formalize the notion of programmable secure hardware by intro-
ducing the trusted agent model. Informally speaking, the trusted agent model consists
in assuming that it is possible to acquire a trusted device (agent) that runs honestly a
known program in a secure environment (tamper proof) without any way of running an-
other program. At the first time it is switched on, we can load a code whose digest will
be permanently displayed. Later, we can interact with the device through the interface
defined by this program only. Quite importantly, every output will be appended to the
digest of the original program so that someone looking at the display is ensured that the
output is produced by a device having been set up with a program of displayed digest.
We show that within this model, it is possible

– to transfer proofs of zero-knowledge protocols after completion (in particular: to
transfer the verification of an invisible signature);

– to register rogue public keys and prove the ignorance of a secret key (which then can
be used to break anonymity in ring signatures or non-transferability mechanisms);

– to sell ballots in e-voting systems.

In a nutshell, for any interactive proof protocol, we can load the verifier algorithm in a
trusted agent and make a malicious verifier relay protocol messages between the prover
and the trusted agent. Afterward completion, the agent ends up in a state which tes-
tifies that the proof protocol was correctly run and provide some kind of forensic ev-
idence. Clearly, such a honest device could be used to defeat the invisible signature
paradigm [6] when maliciously used. One could say that this trivial attack could be
defeated by classical non-transferability techniques like having a Public Key Infras-
tructure (PKI) for verifiers [2,11,15,16]. However, this would work only if the prover is
convinced that the verifier possesses himself a secret key. A trusted agent could still be
maliciously used to register a key whose secret part would be ignored by the verifier.
Later, the agent could prove that the verifier must ignore the secret key and continue to
defeat non-transferability. Finally, the only key registration model which could fix this
would imply some kind of key escrow: some information making the registrating au-
thority able to impersonate the verifier would eventually have to leak in order to thwart
the previous attack. Key escrow however leads us to other privacy concerns.

Another possible use of registering a public key whose secret component is sealed
in a trusted tamper-proof hardware would be to break anonymity in group signatures or
ring signatures [23]. Interestingly, it makes it possible to prove ignorance. It could also
be used in voting systems and open the door to vote selling.

While it is debatable if the trusted agent model is realizable or not, assuming it cannot
be used by adversaries is a much greater error than assuming that it can. For this reason,
we believe that cryptographers should mind the proposed trusted agent model when
designing future protocols.
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Related work. Classical ZK proof systems fulfill a privacy property called deniabil-
ity [21] stating that the verifier cannot prove knowledge to a third party after interact-
ing with the prover. That is, the verifier cannot transfer the proof upon completion.
The more general concept of non-transferability is also central in some cryptographic
schemes, such as invisible signatures [6]1 that use interactive verification in order to
prevent the signature to be authenticated to an unauthorized third party. A different way
to enforce deniability of a signature is to use a group or ring signature [23] between the
signing party and the verifier. In this case, the signer can deny the signature by claiming
that it was computed by the other party.

Several flaws have been found to non-transferability protocols, and improvements
have been proposed (see e.g. [2,11,15,16]). The attacks are focused in adversaries that
are online with the verifier during the interaction period. For offline attacks, it is ac-
cepted that the protocols are secure. However, herein we will present an offline attack
that will render several non-transferability protocols useless under the assumption that
the participants can trust tamper-proof devices.

The idea of using tamper-proof hardware to transfer proofs of ZK protocols was first
introduced in the context of quantum memory [18,19].

In general, setup phases in cryptographic protocols is a critical issue. Participants are
often assumed to securely register their public keys, although doing so is not trivial. Key
setup is a problem for the Universal Composability (UC) framework by Canetti [3]. For
instance, the key registration model by Barak, Canetti, Nielsen and Pass [1] assumes
that the secret key of honest participants is safely stored by the key registration au-
thority. In [22], Ristenpart and Yilek considered several variants of key registration
protocols and have shown tricky interference with the security in several group sig-
nature protocols. They noticed that security proofs often assume that all participants
send their secret keys to a trusted authority in a KOSK model (as for Knowledge Of
Secret Key) although some signature schemes could still be secure in a less demanding
key registration process such as producing a self-signed certificate for the public key,
what they call the POP (as for Proof Of Possession). Our results show that POP is ei-
ther not enough in the trusted agent model, or compromises some other cryptographic
property.

Katz [17] used another approach consisting in assuming the existence of tamper-
proof hardware tokens. These tokens could be used to achieve commitment, thus any
well-formed functionality. Contrarily to these hardware tokens, we assume that trusted
agents are private (namely: their holders do not give them to another user) and display
the initial code (or its digest) so that any other party can trust that it is in a state which is
a consequence of having set it up with this code. The question whether a tamper-proof
hardware can be trusted to run what it is supposed to is discussed e.g. in [14].

In [21], Pass introduced the notion of deniable zero-knowledge which is immune
to offline proof transfer. ZK in the standard model is essentially deniable. However,
zero-knowledge in the common reference string (CRS) model is not always deniable.

1 As suggested by several authors, we use the term of invisible signature to designate what is
more often called undeniable signature since the term undeniable is a little confusing, espe-
cially when we introduce the notion of deniability.
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Structure of the paper. The paper is organized as follows, in Section 2 we introduce the
trusted agent model and the nested trusted agent model. In Section 3 we study denia-
bility. We show that deniability is impossible if honest participants do not use trusted
agents but the malicious verifier does. We show that deniability is possible when the
prover uses trusted agents. In other cases, it is impossible in the nested trusted agent
model, and possible in the trusted agent model. Section 4 studies a key registration
model. It shows that key registration with key escrow makes non-transferability possi-
ble. We provide examples of malicious use of trusted agents in Section 5. Finally, we
draw some conclusions in Section 6.

2 The Trusted Agent Model

Multiparty computation model. In a multiparty setting, several participants or function-
alities2 run different algorithms and can communicate using pairwise communication
channels. Channels are assumed to be secure in the sense that leakage or corruption
in transmitted messages can only be made by one of the two end participants on this
channel. We consider a static adversarial model in which participants are either honest
or corrupted. Honest participants run predefined algorithms whereas corrupted partici-
pants may run arbitrary algorithms and talk to an (imaginary) adversary to collude. We
use calligraphic characters (e.g., PV or FTA) to denote participants and functionalities
and capital characters (e.g., V or M) to denote the algorithms they run. By convention
we will denote with a star ∗ the corrupted participants in a static model. Sometimes, a
participant P invoking a functionality O will be referred to P querying an oracle O and
we will write P O for this type of communication. Later, a trusted agent will be defined
by a functionality and used as an oracle. At the beginning, an arbitrary environment E
sends input to all participants (including the adversary and functionalities) and collect
the output at the end.

We stress that we do not necessarily assume that malicious participants have the same
privileges as honest participants, which means that they can have access to different sets
of functionalities. For instance, a malicious participant may use a trusted agent as a tool
for cheating while we would not want a honest one to need an extra device.

Recall that an interactive machine is a next-message deterministic function applied
to a current view. The view of the algorithm is a list containing all inputs to the machine
(including the random coins) and all messages which have been received by the machine
(with a reference to the communication channel through which it was delivered so that
they can see which ones come from a trusted agent). The view is time dependent and
can always be expanded by adding more messages.

We denote by P ↔V two interactive algorithms P and V interacting with each other,
following a given protocol. When there is a single message sent by e.g. P to V , we
say that the protocol is non-interactive and we denote it by P → V . If OP (resp. OV )
is the list of functionalities that participant PP (resp. PV ) may invoke when running
the algorithm P (resp. V ) we denote by POP ↔ V OV the interaction. More precisely,
we denote by POP(rOP)(xP;rP) ↔ V OV (rOV )(xV ;rV ) the experiment of running P with

2 Following the traditional terminology of universal composability [3], a functionality is a virtual
participant performing honestly a specific cryptographic task.
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input xP and random coins rP with access to OP initialized with random coins rOP and
interacting with V with input xV and random coins rV with access to OV initialized with
random coins rOV . We denote by ViewV (POP(rOP)(xP;rP) ↔ V OV (rOV )(xV ;rV )) the final
view of V in this experiment, i.e. xV , rV and the list of messages from either P or OV .

The trusted agent model. We assume that it is possible to construct a trusted device
(agent) that runs honestly a known program (a minimal boot loader) in a secure en-
vironment (tamper proof) without any way of running another program. Moreover we
assume that the device’s memory is private, and that the only way to interact with the
device is by using the interface defined by the program. A device is attached to a par-
ticipant called its holder. He entirely controls the communication with it. The holder
may however show the display of the device to another participant which would give
him some kind of evidence of the outcome produced by a trusted agent. Below, we
model trusted agents in a similar way as Katz’s secure tokens [17]. Differences will be
discussed in the full version of the paper.

We consider (probabilistic) interactive Turing machines with four kinds of tapes:
the input tape, the working tape, the output tape, and the random tape. We define their
state by the state of the automaton and the content of the working tape. We consider
a programming language to specify the code of the transition function of the Turing
machine and its initial state. All trusted agents are modeled by a functionality FTA. To
access to a particular trusted agent, we use a sid value. For each used sid, FTA stores
a tuple in memory of form (sid,P ,r,C,state,out), where P identifies the holder of the
trusted agent, r denotes its random tape, C the loaded code to be displayed, state its
current state, and out its output tape. FTA treats the following queries.

Query SEND(sid,m) from participant P : If there is a tuple (sid,P ′, . . .) registered
with a participant P ′ �= P , ignore the query. Otherwise:

– If there is a tuple with correct participant, parse it to (sid,P ,r,C,state,out) and
set in to the value of m.

– If there is no tuple registered, interpret m as a code C. Extract from it the value
state of its initial state. Then set in and out to the empty string. Pick a string r of
polynomial length at random. Then, store a new tuple (sid,P ,r,C,state,out).

Then, define a Turing machine with code C and initial state state, random tape set
to r, input tape set to in, and output tape set to out. Then, reset all head positions
and run the machine until it stops, and at most a polynomial number of steps. Set
state to the new state value, set out to the content of the output tape, and update the
stored tuple with the new values of state and out.
Note that the registered (sid,P ,r,C) are defined by the first query and never changed.

Query SHOWTO(sid,P ′) from participant P : If there is no tuple of form (sid,P ,
r,C,state,out) with the correct (sid,P ), ignore. Otherwise, send to P ′ the pair
formed by the code C and the content out.

Here, the holder P asks for the creation of a new trusted agent by invoking a fresh
instance sid of the functionality which becomes an agent. The holder is the only par-
ticipant who can send messages to the agent. The holder can define to whom to send
response messages by the SHOWTO message. (Incidentally, the holder can ask to see
the output message himself.) The response message (as displayed on the device) con-
sists of the originally loaded code C and the current output out. Since the channel from
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FTA to P ′ is secure, P ′ is ensured that some instance of FTA (i.e. some trusted agent)
was run with code C and produced the result out. Showing a trusted agent may pro-
vide a simple way to authenticate some data. By convention, we denote by [C : out]
an incoming message from FTA composed by a code C and a value out. The action of
checking [C : out] means that the receiver checks that it comes form FTA, that C matches
the expected code, and that out matches the expected pattern from the context.

One important property of this functionality is that it is well-formed. We say that a
list of oracles O is well-formed if for any pair (P0,P1) of participants and any algorithm
M with access to O, there exists an algorithm S with access to O such that the two
following experiments are indistinguishable from the environment:

1. P0 runs MO and P1 runs an algorithm doing nothing.
2. P0 runs and algorithm defined by

– for any incoming message m from P �= P1, P0 sends [P ,m] to P1;
– for any incoming message [P ,m] from P1, P0 sends m to P ;
– upon message [out,m] from P1, the algorithm ends with output out.

The participant P1 runs SO .

Typically, S emulates the algorithm M by treating all messages forwarded by P0 and by
using P0 as a router. This means that the output of O is not modified if the algorithm M
is run by P0 or by P1. Informally, being well-formed means that the distribution of roles
among the participants does not affect the behavior of O. An example of a functionality
for which this is not the case is a key registration functionality who registers the name
of the sending participant and reports it to a directory. So, the adversary could check
if the key was registered by P0 or by P1 and tell it to the environment. As for FTA, it
checks that messages come from the same holder but his identity has no influence.

Relevance of the model in practice. Our model for trusted agent could easily be imple-
mented (assuming that tamper-resistance can be achieved) provided that we could trust a
manufacturer and that nobody could counterfeit devices. Obviously this is a quite strong
assumption but this could make sense in applications where there is a liable entity which
must be trusted. For instance, digital payment relies on trusted agents issued by a liable
bank: credit cards have a tamper-proof embedded chips and e-banking is often based
on trusted secure tokens such as secureID. Nation-wide e-governance could be based
on protocols using trusted agents. It is already the case for passports, ID documents, or
health cards with tamper-proof RFID chips. In this paper, we demonstrate that such de-
vices can be used for malicious reasons and not only to protect the user against attacks.
We show in Appendix A that our trusted agent model can perform bit commitment.
Following Katz’s reasoning [17], since we can realize commitments in the FTA-hybrid
model we can also realize many protocols which suffer from being impossible to realize
in the bare model. Namely, we can realize any well-formed functionality [5].

Nested trusted agents. Regular trusted agents run Turing machines which cannot in-
teract with other functionalities during their computation time. We can consider more
general trusted agents who can use external oracles. Typically, we will consider gener-
alized trusted agents (which we call nested trusted agents) who can become the holder
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of another trusted agents. To take an example, a (human) holder may communicate with
a trusted agent “of depth 2” modeled by the functionality F 2

TA. The participant may then
receive [C : out] messages from F 2

TA (if the holder asked to) or from the functionality
F 1

TA of regular trusted agents (upon the request by the nested trusted agent).
Formally, if O is a list of functionalities, we consider the functionality F O

TA which
looks like FTA with the difference that the running code C can now send messages to
all functionalities in O. Note that if O = ⊥ this means that no oracle is used and then,
F O

TA is the regular FTA functionality. When O designates a trusted agent functionality,
we assume that F O

TA keeps a record of which instance sid of F O
TA queries which instance

sid′ of O so that only the holder device F O
TA(sid) can communicate to a designated

trusted agent O(sid′), just like for human holders. Equivalently, we can say that F O
TA

works by cloning itself in clones F O
TA(sid).

We define F 0
TA =⊥ (this is a dummy functionality doing nothing) and F n

TA = F F n−1
TA

TA

iteratively. We have F 1
TA = FTA. We further define FNTA = F FNTA

TA . That is, instances
of FNTA can invoke FNTA. We obtain a hierarchy of functionalities starting with ⊥ and
FTA and ending with FNTA. To simplify, we consider F n

TA as a restricted usage of FNTA

for all n. That is, holders load nested trusted agents with codes which are clearly made
for an agent of a given depth. A participant receiving a message [C : out] from FNTA

can see that it is from a trusted agent of depth bounded by n.

3 Forensic Attacks Based on a Trusted Witness (Deniability Loss)

We recall here the definitions of a hard predicate and a zero-knowledge argument of
knowledge system [12,13]. We slightly adapt it so that the prover and the verifier can
talk to a specific list of oracles (typically: trusted agents). If a list is specified as ⊥ or
unspecified, we consider that no oracle is used. Quite importantly, we do not necessarily
assume that honest and malicious verifiers have access to the same oracles.

Definition 1 (Hard predicate). Let R(x,w) be a predicate relative to a statement x
and a witness w. We say that R is a hard predicate if (1) there is a polynomial-time
Turing machine A such that A(x;w) yields 1 if and only if R(x,w) and (2) there is no
probabilistic polynomial-time Turing machine B such that for any x, B(x;r) returns w
such that R(x,w) with non-negligible probability (over the random coins r).

Definition 2 (Zero-knowledge argument). Let R(x,w) be a predicate relative to a
statement x and a witness w, OP,OV ,O∗

V be three lists of oracles initialized using a
list of random coins rI . An argument of knowledge for R relative to (OP,OV ) is a
pair (POP ,V OV ) of polynomial-time interactive machines POP(x,w;rP) and V OV (x,z;rV )
such that: x is a common input; P has a secret input w; V has an auxiliary input z and
produces a binary output (accept or reject); and, moreover, the system fulfills the fol-
lowing properties:

– Completeness: for any rI ,rP,rV ,x,w,z such that R(x,w) holds, the outcome of in-
teraction POP(x,w;rP) ↔V OV (x,z;rV ) makes V accept.
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– Soundness: there exists a polynomial-time algorithm E (called extractor) which is
given full black-box access3 to the prover such that for any x and z, any polynomial-
time algorithm P∗ with access to OP, if the probability (over all random coins)
that P∗OP(x;rP) ↔ V OV (x,z;rV ) makes V accept is non-negligible, then EP∗(x;r)
produces w such that R(x,w) with non-negligible probability (over r).

The argument system is called zero-knowledge (ZK) relative to O∗
V (or O∗

V -ZK) if for
any polynomial-time algorithm V ∗O∗

V with access to O∗
V there exists a polynomial-time

algorithm SO∗
V (called simulator), which could be run by the verifier, such that for any x,

w, and z such that R(x,w), the experiments of either computing ViewV (POP(x,w;rP)↔
V ∗O∗

V (x,z;rV )) or running SO∗
V (x,z;r) produce two random (over all random coins) out-

puts with indistinguishable distributions.

As shown by the following classical lemma, our definition of zero-knowledge is essen-
tially deniable because the simulator can be run by the verifier [21]. This means that V ∗
cannot produce some y which could serve to feed a malicious prover P∗.4

Lemma 3. Let (POP ,V OV ) be an argument of knowledge system for R. The system is
O∗

V -ZK if and only if for any polynomial-time algorithm V ∗O∗
V producing a final out-

put y, there exists a polynomial-time algorithm SO∗
V which could be run by the ver-

ifier such that for any x, w and z such that R(x,w), the experiments of either running
POP(x,w;rP)↔V ∗O∗

V (x,z;rV ) and getting the final output y of V ∗ or running SO∗
V (x,z;r)

produce two random outputs with indistinguishable distributions.

In the next lemma, we show that if the honest verifier has access to OV , a malicious
verifier V ∗ holding a nested trusted agent NOV can defeat deniability.

Lemma 4 (Transference Lemma). Let OP,OV be any oracle lists. We assume OV is
well-formed. Let NOV be a nested trusted agent with OV embedded. Let (POP ,V OV ) be an
argument of knowledge for R. We assume that V only receives messages from either OV

or the prover PP. There exists a non-interactive argument of knowledge (QOP,NOV ,W )
for R and a malicious verifier V ∗NOV producing a final string y such that the random
variables

ViewW

(
POP(x,w;rP) ↔V ∗NOV (x;rV ) →W (x;rW )

)
and

ViewW

(
QOP,NOV (x,w;rP) →W (x;rW )

)
are indistinguishable.

Proof. We define a code C implementing the algorithm V OV to be run by NOV . The code
terminates the protocol by yielding either “x accepted” or “abort”.

3 This means that E can call P∗ as a subroutine, choose all inputs including the random tape (i.e.
it has “rewindable access”), see all outputs including queries to the oracles invoked by P∗ and
simulate their responses.

4 This notion of deniability is sometimes called self-simulatability [1] to avoid confusion with
other notions of deniability which are used in encryption or signature.
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To construct QOP,NOV , we first load NOV with the same C. Then, we simulate the pro-
tocol between POP and NOV . Finally, Q sends SHOWTO PW where PW is the partici-
pant running W . To define W , we just make it check that the message is [C : x accepted]
with the correct C and x and that the message comes from a trusted agent. Clearly,
(QOP,NOV ,W ) is an argument of knowledge for R: it is complete, and for soundness we
observe that if W accepts, then it must have received [C : x accepted] from a trusted
agent who thus must have run the code C and complete the proof verification. This

means that from the malicious Q∗OP,NOV interacting with NOV we can first extract an
algorithm P∗OP to complete the proof with V OV and then extract a witness.

To construct V ∗N , we simply let V ∗ load NOV with C and relay messages between
POP and NOV . Finally, V ∗ sends SHOWTO PW . Clearly, ViewW (POP ↔V ∗N ↔W ) and
ViewW (QOP,N ↔W ) are identically distributed. ��
For OV =⊥, this result tells us that we can make any argument of knowledge non-
interactive by using a trusted agent. In other words, a malicious verifier V ∗ equipped
with a trusted agent O, after interacting with the prover P, can behave as a prover Q to
transfer non-interactively the argument of knowledge to any verifier W offline. This is
done by simply certifying a correct execution of V by O. Clearly, trusted agents make
the whole notion of NIZK pretty simple to achieve. This further leads us to making
deniable zero-knowledge collapse.

Theorem 5. Let OP,OV be any oracle lists. We assume OV is well-formed. Let NOV be
a nested trusted agent with OV embedded. Let R be any hard predicate. No argument of
knowledge (POP ,V OV ) for R such that V only receives messages from OV or the prover
PP is NOV -ZK.

In particular, if O is a trusted agent, no (P,V ) argument for R is O-ZK. In clear, if a ma-
licious verifier can use a trusted agent but the honest participants do not, the argument
system is not zero-knowledge.

Proof. Let (POP ,V OV ) be a NOV -ZK argument of knowledge for a relation R such that
V only receives messages from OV or the prover PP. We define V ∗,Q,W by Lemma 4.
Due to Lemma 3, there must exist a simulator SNOV making a string y without interact-
ing with POP . This string is indistinguishable from the one generated by V ∗N after the
interaction with POP , so it must be accepted by W . Since (QOP,NOV ,W ) is an argument
of knowledge for R, we can use an extractor on SNOV to get a witness w for x. This
contradicts that R is hard. ��
Our result shows the inadequacy of deniable zero-knowledge as soon as adversaries
can use trusted agents. It does not mean that deniable zero-knowledge is impossible
in this model since honest participants could also use trusted agents to protect against
transference attacks.

Indeed, if the prover uses a trusted agent which can directly send messages to the
verifier (which is excluded in the hypothesis of Theorem 5), then it is possible to realize
deniable zero-knowledge as depicted in Figure 1.5 The code C makes FTA waits for

5 More formally: we can realize, in the sense of the universal composability framework, a zero-
knowledge functionality FZK in the FTA-hybrid model.
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Trusted Agent Prover Verifier

witness: w common: 1λ,x aux.: z

C←−−−−−−−−−−−−−
b = R(x,w)

x,w←−−−−−−−−−−−−−
output (b,x)

[C:b,x]−−−−−−−−−−−−−→ (SHOWTO PV )
[C:b,x]−−−−−−−−−−−−−→ check trusted agent

check C,x and b = 1

Fig. 1. UC-realization of the FZK in the FTA-hybrid model

(x,w), computes b = R(x,w), and outputs (b,x). Clearly, for this protocol to work it is
essential that in the last step, the message [C : b,x] reaches V from the prover’s TA via an
authenticated channel. The protocol is sound, because if the TA yields [C : 1,x], it must
be the case that it received w such that R(x,w) = 1 and the extractor can see messages
from P to it. Moreover, it is deniable, because ViewV (PFTA(x,w;rP) ↔ V ∗(x,z;rV )) =
〈x,z,rV ,FTA : [C : 1,x]〉 and this string could be forged from x,z,rV by the verifier run-
ning S(x,z;rV ).

If the prover uses no oracle, the situation is more complicated. Actually, in the asym-
metric case where the verifier uses a nested trusted agent of depth n but the malicious
verifier uses a nested trusted agent of higher depth, no zero-knowledge is feasible due
to Th. 5. Note that the attack in Th. 5 requires an oracle NOV for V ∗ with higher depth
than OV for V . In fact, in symmetric cases where both verifiers use a nested TA F n

TA

with same depth n, zero-knowledge is possible.6 In symmetric cases where verifiers use
FNTA (i.e. nested trusted agents of unbounded depth), no zero-knowledge is possible
since F FNTA

TA = FNTA. Feasible ZK results are summarized in the following table.

oracle for P oracle for V oracle for V ∗ feasibility comment
none none none yes classical situation
none F n

TA F n
TA yes

none F n
TA F n+1

TA no Th. 5
none FNTA FNTA no Th. 5
FTA any any yes Fig. 1, V receives messages

from the prover’s TA

4 Attacks Based on Public Key Registration Shift

ZK protocols have the property that a verifier cannot simulate a prover after completion
of the attack. Nevertheless, the verifier could still play the Mafia fraud attack [9]. In-
deed, if a third party, say Eve, and the verifier V ∗ are online, V ∗ may just relay messages
between the prover and Eve while Eve may play a role of a honest verifier. This type

6 We can show this by having V make a commitment (using a TA) to a random challenge prior
to a Σ-protocol so that we transform a honest-verifier zero-knowledge protocol into a full zero-
knowledge one.
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of attack is addressed by a stronger notion of non-transferability. More concretely, we
define non-transferability based on [20].

Definition 6. Let OP,OV ,O∗
V ,O∗

W be some lists of oracles. Let (POP ,V OV ) be an inter-
active argument of knowledge for a relation R in the key registration model. We as-
sume that the verifier PV is designated by a reference given as an extra common input.
We say that the argument is non-transferable relative to O∗

V |O∗
W if, for any malicious

(polynomial-time) verifier V ∗O∗
V run by PV , and any polynomial-time W ∗O∗

W interacting
with V ∗ and not run by PV , there exists a simulator SO∗

V run by PV such that for any x,
w and z such that R(x,w) the random variables (over all random coins)

ViewW ∗(POP(x,PV ,w;rP) ↔V ∗O∗
V (x,PV ,z;rV ) ↔W ∗O∗

W (x;rW ))

and ViewW ∗(SO∗
V (x,z;r) ↔W ∗O∗

W (x;rW )) are indistinguishable.

Thanks to Lemma 3, by using a dummy W ∗ receiving a single message y and do-
ing nothing else we can see that for any O∗

W , non-transferability relative to O∗
V |O∗

W
implies O∗

V -zero-knowledge. Hence, non-transferability is a stronger notion than zero-
knowledge (thus deniability).

Interestingly, the protocol of Fig. 1 using no key registration is non-transferable since
for any V ∗ we can simulate the fact that the algorithm receives the string [C : 1,x]
without the help of the prover. But maybe this is not the ideal non-transferable protocol
that we want to use because it requires a secure channel from the prover’s TA to the
verifier. So, in what follows we assume that the prover uses no trusted agent.

A classical technique to achieve such a strong non-transferability uses proofs to a
designated verifier V . This verifier is designated by its public key. That is, the ver-
ifier holds a public/private key pair (k,s). One way to make interactive proofs non-
transferable consists of replacing the proof of knowledge for secret w by a proof of
knowledge of either w or s. This way, a malicious verifier trying to transfer the proof
to someone else will not prove knowledge of w since the verifier is assumed to hold s.
This works because the verifier is not able to deny knowing s.

Practically, non-transferability strongly relies on the key setup assumption. To for-
malize this, we use a key registration model. If P wants to register a public key k, he
runs the (Reg,Dir) registration protocol with the registration authority. We model the
key registration authority by a new functionality F Dir

CA which registers (P ,k) in a direc-
tory. We assume that this functionality is first set up with coins rD. An instance of the
functionality is referred to by sid.

Query REGISTER(sid) from P : launch a Dir protocol session to interact with P . If an
output k is produced, store (P ,k). Ignore any further REGISTER(sid) query.

Query CHECK(sid,P ,k) from P ′: if (P ,k) is stored, sends (sid,yes) to P ′. Otherwise
sends (sid,no) to P ′.

In [22], Ristenpart and Yilek define several key registration models. They consider an
arbitrary key registration protocol (Reg,Dir) in which Reg(k,s;rR) is run by any reg-
istrant participant P with secret key s willing to register a public key k (e.g. generated
by some algorithm G) and Dir(rD) is run by a certificate authority which is assumed to
be trusted. Several examples of key registration protocols are defined in [22]. The Plain
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protocol simply consists of sending a public key from Reg to Dir. The Kosk protocol
(as for Knowledge Of Secret Key) consists of sending a public key joined with the secret
key from Reg to Dir so that the directory authority can check that the registrant knows
a secret key consistent with the registered public key. This quite strong model has a
brother protocol consisting of making the authority generate the key pair and sending it
to the registrant. This protocol is called KRK as for Key Registration with Knowledge in
[1]. This is the model that could be used when discussing about identity-based protocols
because of their intrinsic escrow property. The SPop protocol (as for Signature-based
Proof of Possession) consists of sending a public key as a self-signed certificate. The
Dir protocol first checks the signature before accepting the public key. This is indeed
what is used in many practical cases to register a key in a Public Key Infrastructure
(PKI). However, the SPop protocol is a pretty weak proof of possession while the Kosk
protocol leads to important privacy concerns due to key escrow. We enrich this list with
a ZKPop protocol which is an arbitrary zero-knowledge proof of knowledge for the
secret key attached to the public key.

Our point is that if proving ignorance of s is doable for V ∗ then the transference
attack could still apply with this construction. More formally, in a protocol where V
receives messages from the prover and OV only, with O∗

W = OV , if V ∗ acts as a relay
between the prover and W ∗ and is able to register a public key generated by W ∗ without
knowing the secret key, then V ∗ literally transfers the proof to W ∗. We have thus to
check which registration model makes it possible for V ∗ to register a public key k while
being able to prove ignorance of the secret key s. This is clearly the case of the Plain
and ZKPop models: since V ∗ and W ∗ are colluding, V ∗ can just relay messages between
the registering authority and W ∗ and learns nothing about s. In the SPop model (where
V ∗ acting the same would have to learn more than the public key to register), we have to
assume that a self-signed certificate does not provide any extra information to simulate a
malicious prover to show that the proof is transfered. On the other side, this is clearly not
the case of protocols based on key escrow such as the Kosk or KRK models. Indeed, key
escrow surprisingly helps privacy by restoring non-transferability in the trusted agent
model.

Theorem 7. Let O∗
V ,O∗

W be two lists of oracles. In the key registration model using

Kosk there exists some argument of knowledge (P,V F Dir
CA ) which is non-transferable

relative to O∗
V |O∗

W .

Consequently, (P,V F Dir
CA ) is a O∗

V -ZK even when O∗
V includes trusted agents.

Proof. We use a Σ protocol defined by four algorithms P1(x,w;rP) = (a,t), P2(t,e) = z,
Extract(x,a,e,z,e′,z′) = w, and Simulate(x,e;r) = (a,z), a bitlength �(λ) defining the
domain for e, and a polynomially computable predicate V0(x,a,e,z). Following [7], the
Σ protocol P(x,w;rP) ↔V (x;rV ) works as follows: the prover runs P1(x,w;rP) = (a,t)
and sends a to V ; The verifier picks a random bitstring e of �(λ) bits and sends it to
P; The prover runs P2(t,e) = z and sends z to V ; The verifier accepts if and only if
V0(x,a,e,z) holds. Following the definition of Σ-protocols, the verifier always accept
if R(x,w) holds and the protocol is correctly executed; Extract(x,a,e,z,e′,z′) must re-
turns a witness w′ such that R(x,w′) whenever the conditions e �= e′, V0(x,a,e,z), and
V0(x,a,e′,z′) are satisfied (this is the special soundness property); and for any x and e,
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Prover Verifier

private witness: w common input: 1λ,x,PV auxiliary input: ε
random coins: rP = e2||r1||r2 random coins: rV = rs||rR||e

G(1λ;rs) = (kV ,sV )
REGISTER(sid)

CHECK(sid,PV ,kV )
sid,kV←−−−−−−−−−−−−−−−− Reg(kV ,sV ;rR)

if answers no, abort
P1(x,w;r1) = (a1,t)

Simulate(kV ,e2;r2) = (a2,z2)
a1,a2−−−−−−−−−−−−−−−−→

e←−−−−−−−−−−−−−−−−
e1 = e⊕e2, P2(t,e1) = z1

e1,z1,e2,z2−−−−−−−−−−−−−−−−→ check V0(x,a1,e1,z1)
check V0(kV ,a2,e2,z2)
check e1 ⊕e2 = e

Fig. 2. A non-transferable ZK proof system

Simulate(x,e;r) = (a,z) should define a random (a,e,z) triplet such that V0(x,a,e,z)
holds with same distribution as the triplets generated by the honest run of the protocol
(this is the special zero-knowledge property).

We modify the protocol of [8] as depicted on Fig. 2. Relative to the Kosk key reg-
istration model, obtain a non-transferable argument of knowledge. If V ∗ does not send
any valid kV binded to PV to P, the simulation is trivial since it does not use w. Other-
wise, V ∗ must have sent some kV together with sV to F Dir

CA . A simulator for V ∗ could
then use sV to simulate P in the OR proof. ��
In this construction based on key escrow, the registering authority could abuse the pro-
tocol and make a cheating prover to the designated verifier. We further show that this
(bad) property is necessary for any (P,V F Dir

CA ) protocol which is non-transferable.

Theorem 8. Let OP,OV be two lists of oracles. We assume that OV is well-formed and
that PV can only receive messages from either OV , F Dir

CA , or PP. Let PD be an authority
who runs an emulator D for the F Dir

CA functionality for a given protocol (Reg,Dir). Let

(POP ,V OV ,F Dir
CA ) be an argument of knowledge for R which is non-transferable relative to

⊥ |OV . We let Ṽ OV (x,PV ,z;rV ) denote the protocol who simulates V OV F Dir
CA (x,PV ,z;rV )

with all messages for PD and PP sent to the same counterpart. There exists an algorithm
D∗OP(x,z;r) such that for any rI , x, z, D∗OP ↔ Ṽ OP accepts with high probability.

This means that if an interactive proof using well-formed oracles for the verifier is non-
transferable and with the property that the registering authority cannot cheat with the
verifier, then the verifier PV must receive messages from an oracle OP, e.g. using a TA.

Proof. We let W ∗OV = Ṽ OV be run by a participant PW with PV as counterpart. Here,
V ∗ is “router” who “reroutes” the requests by W ∗ to the registration authority to PD

and others to PP. Clearly, POP ↔ V ∗F Dir
CA ↔ W ∗OV makes W ∗ always accept since OV

is well-formed. Thanks to the definition of non-transferability, there is a simulator S
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such that the view from W ∗ to either POP ↔ V ∗F Dir
CA ↔ W ∗OV or SF Dir

CA ↔ W ∗OV are
indistinguishable. We can thus define D∗ = SF Dir

CA so that D∗ ↔ Ṽ accepts with high
probability. ��

5 Malicious Applications

5.1 Shedding Light on Invisible Signatures (Invisibility Loss)

Undeniable signatures (aka invisible signatures) were invented by Chaum and
van Antwerpen in [6] and have two basic features: (i) interactive verification, that is,
the verification process is interactive and so the signer can choose who can verify his
signature; (ii) disavowal protocol which allows the signer to prove that a given signa-
ture is a forgery. The first feature enables the signer to restrict the verification of the
signature to those he wishes to. If the document leaks, a third party would not be able
to verify the signature alone.

More formally, an invisible signature scheme is defined by two algorithms and a
relation R: algorithm Setup(1λ;Ks) = Kp is making keys and algorithm Sign(m,Ks;r) =
s is making signatures. The relation R(x,w) with witness w = Ks defines valid signatures
x = (m,s,Kp). The scheme also comes with two ZK proof of knowledge protocols

(PConfirm(x,Ks;rP),VConfirm(x;rV )) and (PDeny(x,Ks;rP),VDeny(x;rV ))

for the relations R and ¬R, respectively. Besides the zero-knowledge proof of knowl-
edge properties, the scheme requires signature to be existentially unforgeable and invis-
ible. Several definitions for invisibility exist in the literature. The weakest one requires
the existence of a simulator S(m,Kp;r) = s that makes strings look like signatures, such
that no algorithm based on Kp only can distinguish between Sign and S. This does
not prevent from transferability issues. Clearly, a verifier V ∗ for (Confirm or Deny)
equipped with a trusted agent O could transfer a proof universally from Lemma 4 to
any offline W . Somehow, this malicious verifier would remove the “invisibility shield”
on the signature which would then become visible.

There are some invisible signature schemes featuring non-transferability proper-
ties [20]. They however require verifiers to be given public and privates keys as well.
We have seen how to defeat this protection in Section 4.

5.2 Selling Votes (Receipt-Freeness Loss)

Another application where transferring the protocol to a trusted agent would be dan-
gerous is for e-voting: clearly, a trusted agent casting a ballot on behalf of a malicious
elector could later testify the ballot content and receipt-freeness would be broken. E-
democracy could collapse due to corruption with the help of trusted agents.

5.3 Denying Ring Signatures (Anonymity Loss)

Ring signatures were proposed by Rivest, Shamir and Tauman [23] to allow members
of a certain group to sign a message without conveying any information on who inside
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the group signed the message. Informally, the ring signature works as follows. A signer
creates a “ring” of members including himself. Each ring member 1≤ i≤ n has a public
ki and secret key si. The public key specifies a trapdoor permutation and the secret key
specifies the trapdoor information needed to compute its inverse. The signing process
generates a ciphertext that could have been generated by anyone knowing at least one
secret key. The verification process only requires the knowledge of the public keys. This
way, the signer can hide in a ring that he created himself. Ring signature can be used
e.g. for whistleblowing in order to protect the signer. Ring signatures can be used as a
countermeasure to spamming. The idea is to have every email sent together with a ring
signature of a ring consisting of the sender P and the receiver V . The reason to have
email signed by the sender is to authenticate its origin and moreover, to make the email
somehow binding. The reason to have the receiver in the ring is to prevent him from
exhibiting the signed email to a third party W ∗. In such a case, the email could have
been forged by the receiver V ∗ so the sender can deny it.

If one member, say Victor, of the ring can prove the ignorance of his own secret
key, then he can show that he was not able to sign any message with the ring signature,
that is, he denies the signature. One way for Victor doing this in the Plain registration
model is to take some pseudorandom generator π, some seed x and publish as public
key k = π(x). In this way he could present the pseudorandom generator and the seed
to a third party W ∗ and convince him that he was not able to use the ring signature,
since he did not know the secret key. To fix this, the key registration model should at
least mandate the use of a proof of possession of a secret key, e.g. using self-signed
certificates like the SPop or ZKPop protocol.

To defeat this, Victor owning a trusted agent could have his agent to simulate a key
registration process so that only the agent would know the secret key. The attack could
be more vicious here since the agent could still be used to sign messages in a ring.
The only difference is that the agent would keep record of all signed messages and
could, upon request, certify that a message was signed or not. The signature by the
trusted agent of the certificate together with its code is an evidence to anyone trusting
the agent.

In [22], Ristenpart and Yilek proved that ring signatures could guaranty anonymity
for rings larger than 2 even when the adversary can select the keys under the key reg-
istration model using an SPop protocol. Clearly, this result is no longer valid in the
trusted agent model.

Once again, the attack relies on the public key registration issue, and the only way
to thwart it seems to use key escrow: the Kosk protocols. This however enables the
registration authority to forge a ring signature with a ring consisting of honest P and V :
having V ’s secret key makes it possible to impersonate P to V . Finally, it seems that we
either have to choose between having signatures deniable or forgeable.

We could still fix this problem by making honest participants use trusted agents
to help registering keys in a Kosk-like model still ensuring privacy: a trusted agent
could simulate Dir running Kosk. The certificate from the trusted agent could then be
sent to D to register. Again, this fix is void if malicious registrants use nested trusted
agents.
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6 Conclusions

We have defined the Trusted Agent Model. In the past, several cryptographic protocols
requiring trusted agents have been proposed but researchers prefer to develop protocols
without them. However it does not prevent to maliciously use such devices if they exist.
We devised scenarii in which adversaries equipped with such devices could defeat sev-
eral cryptographic properties, e.g. invisibility in invisible signatures, receipt-freeness in
e-voting, or anonymity in ring signatures. Fundamentally, these failures come from the
strange nature of deniability in protocols. We have shown that deniability is not pos-
sible for regular protocols (namely, protocols not using trusted agents) if adversaries
can use trusted agents. Deniability becomes possible again if honest and corrupted ver-
ifiers can use trusted agents. It collapses again if the malicious verifier can use a nested
trusted agent of depth higher than the one the honest verifier is using. It can be restored
again in a key registration model. We can even achieve non-transferability which is a
stronger form of deniability, but this comes at the price of key escrow: if a protocol
is non-transferable, then the key registration authority has the privilege to create mali-
cious provers. Namely, non-transferability requires giving the authority some piece of
information which could be used to cheat with proofs, which is pretty bad for privacy.
An ultimate solution consists of making the proving part trivial by having proofs (resp.
signatures) assessed by a trusted agent instead of running a protocol with the prover.

Although our “attacks” are pretty trivial, we think the issue of malicious use of
trusted devices in practice has been overlooked so far. Clearly, these devices could de-
feat some privacy protocols. To the authors it does not seem acceptable on one hand, to
accept tamper-proof hardware, and on the other hand, assume that adversaries cannot
use such hardware and its properties to perform attacks.

Probably, the most interesting question that this paper opens is whether privacy is
a self-contradicting concept or not. As shown herein, as soon as we place boundaries
around devices, we can no longer control how private data spreads, so boundaries are
somehow harming privacy. On the other hand, privacy strongly relies on setting bound-
aries on data.
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A Secure Commitment Using Trusted Agents

We consider the Fcom functionality7 defined by

Query COMMIT(sid,P ,P ′,b) from P : record b, send the message [receipt,sid,P ,P ′]
to P ′, and ignore any future COMMIT queries.

Query OPEN(sid) from P : if no value b was recorded, ignore. Otherwise, send
[open,sid,b] to P ′.

Here is a protocol to realize this ideal functionality using trusted agents:

– To emulate COMMIT(sid,P ,P ′,b) by P , participant P sets a code C as detailed
below, makes the queries SEND(sid,C) to FTA, then SEND(sid,b), then SHOWTO
(sid,P ′). Participant P ′ gets a message [C : receipt,N], checks that it comes from
FTA, that C is correct (as defined below), and stores N.

– To emulate OPEN(sid), P queries SEND(sid, /0) to FTA and finally SHOWTO
(sid,P ′). Participant P ′ gets a message [C : open,N′,b′], checks that it comes from
FTA, that C is still correct, and that N = N′. The value b′ is revealed.

The code C takes a first message b as input, picks a random nonce N, stores N and
b, and responds by (receipt,N). Then it waits for a dummy message and responds by
(open,N,b).

Given a static adversary A interacting with P , P ′ and FTA in the real world, we
define a simulator S interacting with P , P ′ and FTA in the ideal world so that for any
environment E interacting with P , P ′ and A resp. S , the real and ideal views of E are
indistinguishable. Therefore, the protocol UC-realizes Fcom in the FTA-hybrid model.

Indeed, when P and P ′ are both honest or both corrupted, constructing the simulator
is trivial. When P is honest but P ′ is corrupted, the [C : receipt,N] message to P ′ can
be perfectly simulated from the [receipt,sid,P ,P ′] by picking a fresh nonce N and
maintain a table of sid↔ N pairs. The [C : open,N′,b′] message can be simulated upon
message [open,sid,b] from Fcom by looking up at the table for the correct N′ and setting
b′ = b. Thanks to the trusted agent property and the C code there must be an appropriate
pair. When P is corrupted and P ′ is honest, the messages to FTA with correct code C
can be perfectly simulated from the message COMMIT(sid,P ,P ′,b) resp. OPEN(sid)
to Fcom.

7 The functionality Fmcom [4] could be used as well.
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UCL Crypto Group, Université catholique de Louvain, B-1348 Louvain-la-Neuve
{nicolas.veyrat,fstandae}@uclouvain.be

Abstract. The Mutual Information Analysis (MIA) is a generic side-
channel distinguisher that has been introduced at CHES 2008. This pa-
per brings three contributions with respect to its applicability to practice.
First, we emphasize that the MIA principle can be seen as a toolbox in
which different (more or less effective) statistical methods can be plugged
in. Doing this, we introduce interesting alternatives to the original pro-
posal. Second, we discuss the contexts in which the MIA can lead to
successful key recoveries with lower data complexity than classical at-
tacks such as, e.g. using Pearson’s correlation coefficient. We show that
such contexts exist in practically meaningful situations and analyze them
statistically. Finally, we study the connections and differences between
the MIA and a framework for the analysis of side-channel key recovery
published at Eurocrypt 2009. We show that the MIA can be used to com-
pare two leaking devices only if the discrete models used by an adversary
to mount an attack perfectly correspond to the physical leakages.

1 Introduction

The most classical solutions used in non profiled side-channel attacks are
Kocher’s original DPA [14] and correlation attacks using Pearson’s correlation
coefficient, introduced by Brier et al. [5]. In 2008, another interesting side-channel
distinguisher has been proposed, denoted as Mutual Information Analysis (MIA)
[12]. MIA aims at genericity in the sense that it is expected to lead to successful
key recoveries with as little assumptions as possible about the leaking devices it
targets. In this paper, we confirm and extend the ideas of Gierlichs et al. and
tackle three important questions with respect to this new distinguisher.

1. How to use MIA? In general, MIA can be viewed as the combination of
two subproblems. In a first stage of the attack, an adversary has to estimate
the leakage probability density functions for different key-dependent models. In
a second stage of the attack, this adversary has to test the dependence of these
models with actual measurements. In the original description of [12], the MIA
is using histograms for the first stage and a Kullback-Leibler divergence for the
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second stage. In this paper, we argue that in fact, the MIA can be seen as a
toolbox in which different probability density estimation techniques and notions
of divergence can be used. We show that these different solutions (some of them
being introduced in [3,19]) yield different results for the attack effectiveness. We
also introduce an alternative test that is at least as generic as the original MIA
but does not require an explicit estimation of the leakage probability densities.

2. When to use MIA? In a second part of this paper, we analyze the contexts
in which MIA can be necessary (i.e. when other side-channel attacks would not
succeed). In [19], it is argued that MIA is particularly convenient in higher-
order side-channel attacks because of its simple extension to multi-dimensional
scenarios. In this paper, we show that MIA can also be useful in univariate
side-channel attacks, if the models used by an adversary to mount an attack are
not sufficiently precise. Hence, we complement the original experiment of [12]
against a dual-rail pre-charged implementation. In order to further validate this
intuition, we analyze an arbitrary degradation of the leakage models and show
that after a certain threshold, MIA leads to a more effective key recovery than
the corresponding correlation attack using Pearson’s coefficient. We also discuss
the effect of incorrect models theoretically and intuitively.

3. Why to use MIA? Eventually, in a third part of the paper, we investigate
the relations between the MIA and the information theoretic vs. security model
of [22]. We exhibit that although having similar foundations, MIA and this model
have significantly different goals and are not equivalent in general. We also show
that in certain idealized contexts (namely, when adversaries can exploit leakage
predictions that perfectly correspond to the actual measurements), the MIA can
be used as a metric to compare different cryptographic devices.

2 Background

2.1 Information Theoretic Definitions

Entropy. The entropy [7] of a random variable X on a discrete space X is a
measure of its uncertainty during an experiment. It is defined as:

H [X ] = −
∑
x∈X

Pr [X = x] log2(Pr [X = x]).

The joint entropy of a pair of random variables X, Y expresses the uncertainty
one has about the combination of these variables:

H [X, Y ] = −
∑

x∈X ,y∈Y
Pr [X = x, Y = y] log2(Pr [X = x, Y = y]).

The joint entropy is always greater than that of either subsystem, with equality
only if Y is a deterministic function of X . The joint entropy is also sub-additive.
Equality occurs only in the case where the two variables are independent.

H [X ] ≤ H [X, Y ] ≤ H [X ] + H [Y ] .
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Finally, the conditional entropy of a random variable X given another variable
Y expresses the uncertainty on X which remains once Y is known.

H [X |Y ] = −
∑

x∈X ,y∈Y
Pr [X = x, Y = y] log2(Pr [X = x|Y = y]).

The conditional entropy is always greater than zero, with equality only in the
case where X is a deterministic function of Y . It is also less than the entropy of
X . Equality only occurs if the two variables are independent.

0 ≤ H [X |Y ] ≤ H [X ] .

All these measures can be straightforwardly extended to continuous spaces by
differentiation. For example, the differential entropy is defined as:

H [X ] = −
∫

x∈X
Pr [X = x] log2(Pr [X = x]).

The differential entropy can be negative, contrary to the discrete entropy.

Mutual information. The mutual information is a general measure of the
dependence between two random variables. On a discrete domain, the mutual
information of two random variables X and Y is defined as:

I (X ; Y ) =
∑

x∈X ,y∈Y
Pr [X = x, Y = y] log2

(
Pr [X = x, Y = y]

Pr [X = x] · Pr [Y = y]

)
.

It is directly related to Shannon’s entropy, and can be expressed using entropies:

I (X ; Y ) = H [X ]−H [X |Y ]
= H [X ] + H [Y ]−H [X, Y ]
= H [X, Y ] −H [X |Y ] −H [Y |X ]

It can also be straightforwardly extended to the continuous case:

I(X ; Y ) =
∫

x∈X

∫
y∈Y

Pr [X = x, Y = y] log2

(
Pr [X = x, Y = y]

Pr [X = x] · Pr [Y = y]

)
.

2.2 Pearson’s Correlation Coefficient

This coefficient is a simpler measure of dependence between two random variables
X and Y . Computing it does not require the knowledge of the probability density
functions of X and Y but it only measures the linear dependence between these
variables (whereas mutual information is able to detect any linear or non-linear
dependence). It is defined as follows (with X the mean value of X):

ρ (X, Y ) =

∑
x∈X ,y∈Y

(
x −X

) · (y − Y
)√∑

x∈X
(
x −X

)2 ·∑y∈Y
(
y − Y

)2
.
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2.3 Side-Channel Analysis

In a side-channel attack, an adversary tries to recover secret information from
a leaking implementation, e.g. a software program or an IC computing a cryp-
tographic algorithm. The core idea is to compare key-dependent models of the
leakages with actual measurements. Typically, the adversary first defines the
subkeys that he aims to recover. For example, in a block cipher implementa-
tion, those subkeys could be one byte of the master key. Then, for each subkey
candidate, he builds models that correspond to the leakage generated by the en-
cryption of different plaintexts. Eventually, he evaluates which model (i.e. which
subkey) gives rise to the best prediction of the actual leakages, measured for the
same set of plaintexts. As a matter of fact and assuming that the models can be
represented by a random variable X and the leakages can be represented by a
random variable Y , the side-channel analysis can simply be seen as the problem
of detecting a dependence between those two variables. Pearson’s coefficient and
the mutual information can be used for this purpose.

In the following, we consider side-channel attacks restricted by two important
assumptions. First, we investigate univariate attacks, i.e. attacks in which one
compares the leakage models X with a single sample in the leakage traces. It
means that the variable Y has only one dimension. Second, we consider dis-
crete leakage models, i.e. we assume that the variable X is discrete (by contrast,
the actual leakage variable Y can be continuous). We note that univariate at-
tacks are typical scenarios in standard DPA attacks such as [14] and discrete
leakage models are also a very natural assumption as long as the side-channel
attacks cannot be enhanced with profiling and characterization [6]. Hence, these
two assumptions can be seen as reasonable starting points for the analysis of
MIA.

3 How to Use MIA: The Information Theoretic Toolbox

Following the previous informal description, let us denote the subkey candidates
in a side-channel attack as kj and the models corresponding to those subkeys as
Xj . The distinguisher used in a mutual information analysis is defined as:

dj = Î(Xj ; Y ).

For simplicity, we will omit the j subscript in the following of the paper. The
idea behind this procedure is that a meaningful partition of Y where each subset
corresponds to a particular model value will relate to a side-channel sample dis-
tribution P̂r[Y |X = x] distinguishable from the global distribution of P̂r[Y ]. The
estimated mutual information will then be larger than zero. By contrast, if the
key guess is incorrect, the false predictions will form a partition corresponding
to a random sampling of Y and therefore simply give scaled images of the total
side-channel probability density function (pdf for short). Hence, the estimated
mutual information will be equal (or close) to zero in this case.
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Fig. 1. Probability densities and associated leakage partitions for correct (left) and
wrong (right) subkey hypotheses in the case of a single bit DPA attack
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Fig. 2. Probability densities and associated leakage partitions for correct (left) and
wrong (right) subkey hypotheses in the case of a 4-bit DPA attack

Example. Let us imagine a target implementation in which the adversary re-
ceives leakages of the form y = Hw(S(p⊕k))+n where Hw is the Hamming weight
function, S the 4-bit S-box of the block cipher Serpent, p a known plaintext, k
the target subkey of the attack and n is a Gaussian noise. Let us also assume
two different attacks: in the first one, the model X corresponds to a single bit
of S(p ⊕ k); in the second one, the model X corresponds to Hw(S(p ⊕ k)). Fig-
ures 1 and 2 illustrate what happens asymptotically to the correct and a wrong
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subkey hypotheses in the case these two attacks. They clearly show the higher
dependence for the correct subkey (i.e. the left figures) that is expected by [12].

In theory, the MI distinguisher tests a null hypothesis stating that the pre-
dicted leakage values and the side-channel samples are independent if the subkey
hypothesis is false. When this hypothesis is not verified, the adversary assumes
that he found the correct subkey. However, in practice there may exist certain
dependencies between a wrong subkey candidate and the actual leakages (e.g.
ghost peaks as in [5]). Hence, the adversary generally selects the subkey that
leads to the highest value of the distinguisher. This description underlines that
a MIA is essentially composed of the two problems listed in introduction:

1. An estimation of some probability density functions, namely those of the
global samples and of the samples corresponding to each modeled leakage.

2. The test of a null hypothesis stating that the predicted leakages and their
actual side-channel values are independent.

As a matter of fact, different solutions can be considered for this purpose. There-
fore, in the remainder of this section, we first review some possible techniques to
estimate the probability density functions used in a side-channel attack. Then we
present various probability-distance measures that can replace the usual relative
entropy in mutual information analysis. Eventually, we discuss the possibility to
compare two pdf without explicitly estimating them and briefly mention alter-
native attack techniques inspired from “all-or-nothing” multiple-bit DPA.

3.1 Probability Density Function Estimation

The problem of modeling a probability density function from random samples
of this distribution is a well studied problem in statistics, referred to as density
estimation. A number of solutions exist, ranging from simple histograms to kernel
density estimation, data clustering and vector quantization. The authors of [12]
used histograms for density estimation as a proof of concept for MIA. But in
certain contexts, an attack can be greatly improved by using more advanced
techniques. In the following, we summarize a few density estimation tools that
have been initially suggested in [3] as relevant to side-channel attacks and then
applied to MIA in [19]. They are detailed in Appendix A.

Non-parametric methods. One interesting feature of the MIA is that it does
not rely on particular assumptions on the leakages. Hence, it is natural to con-
sider non-parametric estimation techniques first since, e.g. assuming Gaussian
leakages would again reduce the genericity of the distinguisher. In practice, two
techniques can generally be used for this purpose:

– Histograms perform a partition of the samples by grouping them into bins.
Each bin contains the samples of which the value falls into a certain range.
The respective ranges of the bins have equal width and form a partition of
the range between the extreme values of the samples. Using this method,
one approximates a probability by dividing the number of samples that fall
within a bin by the total number of samples (see Appendix A.1).
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– Kernel density estimation is a generalization of histograms. Instead of
bundling samples together in bins, it adds (for each observed sample) a
small kernel centered on the value of the leakage to the estimated pdf. The
resulting estimation is a sum of small “bumps” that is much smoother than
the corresponding histogram. It usually provides faster convergence towards
the true distribution. Note that although this solution requires to select a
Kernel and a bandwidth (details are given in Appendix A.2), it does not
assume anything more about the estimated pdf than histograms.

Parametric methods. Contrary to the previous techniques, parametric meth-
ods for density estimation require certain assumptions about the leakages. They
consequently trade some of the genericity of the MIA for a hopefully better
effectiveness, i.e. they are an intermediate solution between attacks using the
correlation coefficient and the original MIA of [12]. In this context, a partic-
ularly interesting tool is the finite mixture estimation. A mixture density is a
probability density function that consists in a convex combination of probability
density functions. Given a set of densities p1(x), . . . , pn(x), and positive weights
w1, . . . , wn verifying

∑
wi = 1, the finite mixture is defined as:

P̂r[x] =
n−1∑
i=0

wi pi(x).

A typical choice is to assume a mixture of Gaussian densities (see, e.g. [15]),
which leads to an efficient parametric estimation of the pdf (see Appendix A.3).

3.2 Probability-Distance Measures

Once the probability densities have been estimated, one has to test whether
the predicted leakages are correlated with the actual measurements. This de-
pendence is tested using a probability-distance measure which allows deciding
which subkey is the most likely to be the correct one. As in the previous section,
different solutions can be used, that we detail and connect to the original MIA.

Kullback-Leibler divergence. The Kullback-Leibler divergence, or relative
entropy [7], is a measure of the difference between two probability density func-
tions P and Q. It is not a distance, as it is non-commutative and does not satisfy
the triangle inequality. The KL divergence of Q from P, where P and Q are two
probability functions of a discrete random variable X , is defined as:

DKL (P‖Q) =
∑
x∈X

Pr [X = x, X ∼ P] log
Pr [X = x, X ∼ P]
Pr [X = x, X ∼ Q]

,

where Pr [X = x, X ∼ P] denotes the probability that the random variable X
equals x when it follows the density function P. The mutual information can be
defined in terms of Kullback-Leibler divergence, as being the divergence between
the joint distribution Pr [X = x, Y = y] and the product distribution Pr [X = x]·
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Pr [Y = y], or as the expected divergence between the conditional distribution
Pr [Y = y|X = x] and Pr [Y = y]. In other words:

I (X ; Y ) = DKL (Pr [X = x, Y = y] ‖Pr [X = x] · Pr [Y = y])
= Ex∈X (DKL (Pr [Y = y|X = x] ‖Pr [Y = y]))

Hence, it can be seen as the expected value of the divergence between the leakage
distributions taken conditionally to the models and the marginal distribution.

F-divergences. The f -divergence [9] is a function of two probability distri-
butions P and Q that is used to measure the difference between them. It was
introduced independently by Csiszàr [8] and Ali and Silvey [1] and is defined as:

If (P, Q) =
∑
x∈X

Pr [X = x, X ∼ Q]× f

(
Pr [X = x, X ∼ P]
Pr [X = x, X ∼ Q]

)
,

where f is a parameter function. Some classical examples include:

– Kullback-Leibler divergence: f(t) = t log t
– Inverse Kullback-Leibler: f(t) = − log t
– Pearson χ2–divergence: f(t) = (t − 1)2

– Hellinger distance: f(t) = 1 −√
t

– Total variation: f(t) = |t − 1|
As detailed in [12], the qualitative motivation for using the mutual information
as a metric of dependence is sound. But one can wonder about its effectiveness.
That is, all the previous f functions ensure an asymptotically successful attack.
But are there significant differences in the convergence of the corresponding
distinguishers? We note that the previous list is not exhaustive. For example, one
could consider the Jensen-Shannon divergence that is a popular method based
on the Kullback-Leibler divergence, with the useful difference that it is always a
finite value: DJS (P‖Q) = 1

2 (DKL (P‖M) + DKL (Q‖M)) , where M = 1
2 (P +Q).

Similarly, the earth mover’s or Mallow distances [4,17] could also be used.

3.3 Distinguishing without Explicit pdf Estimation

Interestingly, an explicit pdf estimation is not always necessary and there also
exist statistical tools to compare two pdfs directly from their samples. The
Kolmogorov-Smirnov test is typical of such non parametric tools. For different
samples xi and a threshold xt, it first defines an empirical cumulative function:

F (xt) =
1
n

n∑
i=1

χxi≤xt , where χxi≤xt =
{

1 if xi ≤ xt

0 otherwise.

Then, the Kolmogorov-Smirnov distance is defined by:

DKS (P‖Q) = sup
xt

|FP (xt)− FQ(xt)|.
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This distance can then be used to test a null hypothesis. Since it is based on a
supremum rather than a sum as the previous distances, it is better integrated
to the following (MIA-inspired) distinguisher:

Ex∈X (DKS (Pr [Y = y|X = x] ‖Pr [Y = y]))

This is further improved by normalizing each KS distance with the number of
samples used in its computation, taking into account the convergence:

Ex∈X

(
1

|Y |X = x|DKS (Pr [Y = y|X = x] ‖Pr [Y = y])
)

,

where |Y |X = x| is the number of leakages samples with modeled value x. Fi-
nally, an even more efficient alternative to the KS test is the two sample Cramér-
von-Mises test [2], which is also based on the empirical cumulative function.

DCvM (P‖Q) =
∫ +∞

−∞
(FP (xt) − FQ(xt))

2 dxt.

3.4 All-or-Nothing Comparisons

Eventually, we mention that the MIA is defined as the expected value of a diver-
gence between the leakage distributions conditionally to the model values and the
marginal leakage distribution, i.e. Ex∈X (DKL (Pr [Y = y|X = x] ‖Pr [Y = y])).
But divergences between the conditional distributions could be considered as
well, as in “all-or-nothing” DPA attacks (see, e.g. [3] for an example).

3.5 How Much Does It Matter? Experimental Results

The previous sections illustrate that MIA is in fact a generic tool in which dif-
ferent statistics can be plugged in. A natural question is to evaluate the extend
to which different pdf estimations and definitions of divergence affect the effec-
tiveness of the distinguisher. For this purpose, we carried out attacks based on
the traces that are publicly available in the DPA Contest [10] and computed the
success rate defined in [22] in function of the number of traces available to the
adversary (i.e. encrypted messages), over 1000 independent experiments, using a
Hamming weight leakage model. The results of these experiments are in Figure
3 from which we can extract different observations: First, classical attacks using
the correlation coefficient are the most effective in this simple context. Second,
the pdf estimation tools have a stronger impact than the notion of divergence
on the MIA-like attacks. In particular and as far as non-parametric pdf estima-
tions are concerned, the Kernel-based MIA performs significantly better than its
counterpart using histograms. Eventually, it is worth noting the good behavior
of the normalized KS and Cramér-von-Mises tests for which pdf estimation is
not required. They are interesting alternatives to the other tests because of their
simple implementation which makes them comparable to plain histograms in
terms of processing workload. The Cramér-von-Mises criterion seems to behave
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Fig. 3. Success rate of different attacks against the first DES S-box in the DPA Contest

as efficiently as the kernel-based methods, while avoiding the (hard) problem
of choosing the kernel bandwidth. Hence, an intriguing open problem is to de-
termine wether this test can be as efficient in more challenging contexts (e.g.
implementations protected with masking or other countermeasures).

4 When To Use It: MIA versus Correlation

The experiments of Figure 3 suggest (as already emphasized by the authors in
[12]) that when a reasonable leakage model is known by the adversary, standard
DPA techniques such as using Pearson’s correlation coefficient are more efficient
than MIA. Hence, an obvious question is to determine the existence of contexts in
which MIA would be necessary. With this respect, it is shown in [19] that higher-
order attacks against masking schemes are good examples of such situations. This
is essentially because MIA easily generalizes to multivariate statistics and hence
does not need to worry about the combination of the leakages such as, e.g. [18].
In this section, we aim to show that MIA can even be useful in a univariate
context, as soon as the adversary’s leakage model is sufficiently imprecise.

Theoretically, this can be easily explained as follows. Let us assume that the
leakages Y can be written as the sum of a deterministic part XP (representing
a perfect model) and a gaussian distributed random part R (representing some
noise in the measurements): Y = XP + R and that a side-channel adversary
exploits a leakage model XA = f(XP ). In ideal scenarios, we have XA = XP but
in practice, there generally exist deviations between the adversary’s model and
the perfect model, here represented by the function f . Correlation attacks are
asymptotically successful as long as ρ(Xg

A, Y ) > ρ(Xw
A , Y ), i.e. the correlation for

the model corresponding to a correct subkey (with g superscript) is higher than
the one for a wrong subkey candidate (with w superscript). If the adversary’s
model can again be written as XA = XP +R′ with R′ another additive Gaussian
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Fig. 4. Weight of the first leaking bit versus number of messages needed to reach a
success rate of 50% (left), 75% (middle) and 90% (right), for different attacks

noise, then correlation attacks will obviously remain the best solution. But in
general, imprecisions in the models can take any shape (not only additive). This
may lead correlation attacks to fail where, e.g. MIA can still succeed.

As an illustration, an interesting case that is reasonably connected to practice
is to assume a data bus in a micro-controller such that one bit (say the LSB) leaks
significantly more than the others (e.g. because of a larger capacitance). Taking
the example of Section 3, this time with the 8-bit AES S-box, we could imagine
that the leakages equal: y =

∑8
i=1 ai ·[S(p⊕k)]i. If the bit coefficients ai = 1 for all

i, we have Hamming weight leakages again. But by increasing a coefficient (e.g. a1)
and keeping the same Hamming weight model for the adversary, we can force this
model to be arbitrarily wrong. Figure 4 illustrates the results of attacks that sim-
ulate this scenario. It shows that the number of messages required to reach a given
success rate always increases with a1 for the attacks using the correlation coeffi-
cient. By contrast, it stabilizes at some point for the MIA and KS test. Hence, for
a sufficiently “wrong” leakage model, MIA-like attacks become useful. It is worth
noting that the stabilization observed for the MIA and KS tests can be understood
by looking at the pdf for a correct subkey candidate in Appendix B (again simpli-
fied to a 4-bit example): once a1 is sufficiently heavy for the globalpdf to be made of
two disconnected pdf (one for [S(p⊕k)]1 = 0, one for [S(p⊕k)]1 = 1), the effective-
ness of these distinguishers remains constant. Eventually, it is worth mentioning
that while the MIA better resists to incorrect models than correlation attacks, it is
not immune against them. One still requires that I(Xg

A; Y ) > I(Xw
A ; Y ). In other

words, choosing random models will obviously not lead to successful attacks.

5 Why To Use It: MIA as an Evaluation Metric

Since the primary goal of the MIA is to distinguish subkeys, an adversary is not
directly concerned with the value of I(Xg

A; Y ) but rather with the fact that it is
higher than I(Xw

A ; Y ). However, once a successful attack is performed, one can
also wonder about the meaning of this value. In other words, can the mutual
information I(Xg

A; Y ) additionally be used as an evaluation metric for side-
channel attacks, as the information theoretic metric suggested in [22]?
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In order to discuss this question, we can again take the simple example of
the previous section in which the leakages are the sum of a perfect model and
a Gaussian noise: Y = XP + R. Say the target subkey in a side-channel attack
is denoted by a variable K. The model in [22] suggests to evaluate a leaking
implementation with H[K|Y ]. Because of the additive noise, this can be written
as: H[K|Y ] = H[K|XP ] + H[XP |Y ]. Additionally assuming that R = 0, we
find: H[K|Y ] = H[K|XP ]. By contrast, the MIA does not directly apply to the
subkey variable, but to subkey-dependent leakage models. That is, assuming
that an adversary performs MIA with a perfect leakage model, it computes:
I(XP ; Y ) = H[XP ] −H[XP |Y ] with H[XP |Y ] = 0 if R = 0. Using the relation:

I(K; XP ) = H[K]−H[K|XP ],

we have that if an adversary performs the MIA with a perfect leakage model
and no noise (and a perfect pdf estimation tool), the following equation holds:

H[K|Y ] = H[K|XP ] = H[K]− I(XP ; Y ),
or similarly: I(K; Y ) = I(XP ; Y ).

It implies that MIA and the metric of [22] can be used equivalently in this case.
Adding additive noise R to the leakages will not change the situation since it
will simply add a term H[XP |Y ] to the previous equations. But as in Section 4,
this equality does not hold anymore if the adversary’s model is not perfect and
the imperfections are not simply additive, i.e. if we have Y = f(XP ) �= XP +R.
Then, the previous equality will turn into an inequality:

H[K|Y ] ≤ H[K]− I(XP ; Y ),
or similarly: I(K; Y ) ≥ I(XP ; Y ).

That is, the mutual information computed by the MIA with an incorrect leakage
model will tend to underestimate the amount of information leaked by the chip.
In other words, MIA is a generic distinguisher while the conditional entropy
H[K|Y ] is a generic evaluation metric for side-channel attacks. The reason of this
genericity comes from the information theoretic nature of these tools. In practice,
MIA can be used to approach a fair evaluation metric if a perfect leakage model
is available to the adversary but it deviates from this metric as soon as this
conditions is not respected anymore1. This deviation essentially comes from the
need to use an intermediate variable (corresponding to an intermediate value in
the target algorithm, e.g. an S-box output) in non profiled side-channel attacks
rather than considering the subkey leakages directly. That is, MIA computes
I(XP ; Y ) rather than H[K|Y ]. Summarizing, the MIA and the model of [22] have
different objectives, namely recovering keys for MIA and allowing fair evaluations
of leaking devices for the model. They also generally exploit different adversarial
contexts, namely non-profiled attacks for the MIA and profiled attacks for the
model. But eventually, the reason for using these tools is similar since they
both allow capturing any kind of dependencies in the physical leakages and
consequently lead to generic attacks and evaluation of the attacks and leakages.
1 When moving to multivariate statistics, perfect models should be considered for each

sample which yields the open question of how to efficiently exploit multiple models.
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A Density Estimation Techniques

A.1 Histograms

For n bins noted bi, the probability is estimated as:

P̂r[bi ≤ x ≤ bi] =
#bi

q
, where q =

∑
0≤j≤n

#bj

The optimal choice for the bin width h is an issue in Statistical Theory, as
different bin sizes can greatly modify the resulting model. For relatively sim-
ple distributions, which is usually the case of side-channel leakages, reasonable
choices are Scott’s rule [20] (h = 3.49 × σ̂(x) × n−1/3) and Freedman-Diaconis’
rule [11] (d = 2× IQR(x)×n−1/3, IQR = interquartile range). While histograms
are quite easy to implement, they generally provide a very slow convergence
towards the target pdf, lack smoothness and heavily depend on bin width.

A.2 Kernel Density Estimation

The probability is estimated as:

P̂r[X = x] =
1

nh

∑
i

K

(
x − xi

h

)
,

where the kernel function K is a real-valued integrable function satisfying
∫∞
−∞ K

(u) du = 1 and K(u) = −K(u) for all u. Some kernel functions are in Table 1.
Similarly to histograms, the most important parameter is the bandwidth h. Its
optimal value is the one minimizing the AMISE (Asymptotic Mean Integrated
Squared Error), which itself usually depends on the true density. A number of
approximation methods have been developed, see [23] for an extensive review.
In our case , we used the modified estimator [21,13]:

h = 1.06×min
(

σ̂(x),
IQR(x)

1.34

)
n− 1

5

http://eprint.iacr.org/
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Table 1. Some kernel functions. i is defined as: i(u) = 1 if |u| ≤ 1, 0 otherwise.

Kernel K(u) Kernel K(u)
Uniform 1

2
i(u) Triweight 35

32
(1 − u2)3i(u)

Triangle (1 − |u|)i(u) Tricube 70
81

(1 − |u|3)3i(u)
Epanechnikov 3

4
(1 − u2)i(u) Gaussian 1√

2π
exp

(− 1
2
u2

)
Quartic 15

16
(1 − u2)2i(u) Cosinus π

4
cos

(
π
2
u
)
i(u)

A.3 Gaussian Mixtures

This parametric method models the pdf as:

P̂r(X = x) =
n−1∑
i=0

wi N (x, µi, σi),

where the µi and σi are the respective means and deviations of each mixture
component. This method can be thought of as a generalization of the kernel
density estimation with gaussian kernels, where one is not restricted to wi = 1

nh
or σi = 1

h . The main advantage of the finite mixture method is that it usually
leads to a number of mixture elements significantly smaller than the number
of samples used to form the model in a kernel density estimation. An efficient
algorithm called the Expectation Maximization (EM) algorithm [16] allows one
to give a good approximation of a pdf in the form of a finite mixture. Given the
number of components in the mixture, it computes their weights and gaussian
parameters. Some additional procedures have been proposed that help choosing
the number of components to be used in a mixture, for example in [24].

B Effect of Incorrect Leakage Models

all x ∈ X X = 0 X = 1

X = 2 X = 3 X = 4

y

Pr [X = x, Y = y]

y

Pr [X = x, Y = y]

Fig. 5. Behavior of the probability densities for the correct subkey in a 4-bit DPA,
assuming a Hamming weight leakage model and a1 = 3 (up) and a1 = 5 (down)
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Abstract. Fault attacks exploit hardware malfunctions to recover se-
crets from embedded electronic devices. In the late 90’s, Boneh, DeMillo
and Lipton [6] introduced fault-based attacks on crt-rsa. These at-
tacks factor the signer’s modulus when the message padding function is
deterministic. However, the attack does not apply when the message is
partially unknown, for example when it contains some randomness which
is recovered only when verifying a correct signature.

In this paper we successfully extends rsa fault attacks to a large class
of partially known message configurations. The new attacks rely on Cop-
persmith’s algorithm for finding small roots of multivariate polynomial
equations. We illustrate the approach by successfully attacking several
randomized versions of the iso/iec 9796-2 encoding standard. Practical
experiments show that a 2048-bit modulus can be factored in less than
a minute given one faulty signature containing 160 random bits and an
unknown 160-bit message digest.

Keywords: Fault attacks, digital signatures, rsa, Coppersmith’s the-
orem, iso/iec 9796-2.

1 Introduction

1.1 Background

rsa [21] is undoubtedly the most common digital signature scheme used in em-
bedded security tokens. To sign a message m with rsa, the signer applies an
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encoding (padding) function µ to m, and then computes the signature σ =
µ(m)d mod N . To verify the signature, the receiver checks that σe = µ(m)
mod N. As shown by Boneh, DeMillo and Lipton [6] and others (e.g. [18]), rsa
implementations can be vulnerable to fault attacks, especially when the Chinese
Remainder Theorem (crt) is used; in this case the device computes σp = µ(m)d

mod p and σq = µ(m)d mod q and the signature σ is computed from σp and σq

by Chinese Remaindering.
Assuming that the attacker is able to induce a fault when σq is computed while

keeping the computation of σp correct, one gets σp = µ(m)d mod p and σq �=
µ(m)d mod q and the resulting (faulty) signature σ satisfies

σe = µ(m) mod p , σe �= µ(m) mod q .

Therefore, given one faulty σ, the attacker can factor N by computing

gcd(σe − µ(m) mod N, N) = p . (1)

Boneh et al.’s fault attack is easily extended to any deterministic rsa encoding,
e.g. the Full Domain Hash (fdh) [5] encoding where σ = H(m)d mod N and
H : {0, 1}∗ �→ ZN is a hash function. The attack is also applicable to probabilistic
signature schemes where the randomizer used to generate the signature is sent
along with the signature, e.g. as in the Probabilistic Full Domain Hash (pfdh)
encoding [11] where the signature is σ‖r with σ = H(m ‖ r)d mod N . In that
case, given the faulty value of σ and knowing r, the attacker can still factor N
by computing gcd(σe −H(m ‖ r) mod N, N) = p.

1.2 Partially-Known Messages: The Fault-Attacker’s Deadlock

However, if the message is not entirely given to the attacker the attack is
thwarted, e.g. this may occur when the signature has the form σ = (m‖r)d mod
N where r is a random nonce. Here the verifier can recover r only after complet-
ing the verification process; however r can only be recovered when verifying a
correct signature. Given a faulty signature, the attacker cannot retrieve r nor in-
fer (m‖r) which would be necessary to compute gcd(σe− (m‖r) mod N, N) = p.

In other words, the attacker faces an apparent deadlock: recovering the r
used in the faulty signature σ seems to require that σ is a correctly verifiable
signature. Yet, obviously, a correct signature does not factor N . These conflicting
constraints cannot be conciliated unless r is short enough to be guessed by
exhaustive search. Inducing faults in many signatures does not help either since
different r values are used in successive signatures (even if m remains invariant).
As a result, randomized rsa encoding schemes are usually considered to be
inherently immune against fault attacks.

1.3 The New Result

We overcome the deadlock by showing how to extract in some cases the unknown
message part (ump) involved in the generation of faulty rsa signatures. We de-
velop several techniques that extend Boneh et al.’s attack to a large class of
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partially known message configurations. We nonetheless assume that certain
conditions on the unknown parts of the encoded message are met; these con-
ditions may depend on the encoding function itself and on the hash functions
used. To illustrate our attacks, we have chosen to consider the iso/iec 9796-2
standard [16]. iso/iec 9796-2 is originally a deterministic encoding scheme often
used in combination with message randomization (e.g. in emv [13]). The encoded
message has the form:

µ(m) = 6A16 ‖m[1] ‖H(m) ‖ BC16
where m = m[1] ‖m[2] is split into two parts. We show that if the unknown part
of m[1] is not too large (e.g. less than 160 bits for a 2048-bit rsa modulus), then
a single faulty signature allows to factor N as in [6]1. The new method is based
on a result by Herrmann and May [12] for finding small roots of linear equations
modulo an unknown factor p of N ; [12] is itself based on Coppersmith’s technique
[7] for finding small roots of polynomial equations using the lll algorithm [19].
We also show how to extend our attack to multiple umps and to scenarii where
more faulty signatures can be obtained from the device.

1.4 The iso/iec 9796-2 Standard

iso/iec 9796-2 is an encoding standard allowing partial or total message recovery
[16,17]. The encoding can be used with hash functions H(m) of diverse digest
sizes kh. For the sake of simplicity we assume that kh, the size of m and the
size of N (denoted k) are all multiples of 8. The iso/iec 9796-2 encoding of a
message m = m[1] ‖m[2] is

µ(m) = 6A16 ‖m[1] ‖H(m) ‖ BC16
where m[1] consists of the k−kh−16 leftmost bits of m and m[2] represents the
remaining bits of m. Therefore the size of µ(m) is always k − 1 bits. Note that
the original version of the standard recommended 128 ≤ kh ≤ 160 for partial
message recovery (see [16], §5, note 4). In [9], Coron, Naccache and Stern intro-
duced an attack against iso/iec 9796-2; the authors estimated that attacking
kh = 128 and kh = 160 would require respectively 254 and 261 operations. After
Coron et al.’s publication, iso/iec 9796-2 was amended and the current official
requirement (see [17]) is now kh ≥ 160. In a recent work Coron, Naccache, Ti-
bouchi and Weinmann successfully attack the currently valid version of iso/iec
9796-2 [10].

To illustrate our purpose, we consider a message m = m[1] ‖m[2] of the form

m[1] = α ‖ r ‖α′ , m[2] = data

where r is a message part unknown to the adversary, α and α′ are strings known
to the adversary and data is some known or unknown string2. The size of r is
1 In our attack, it does not matter how large the unknown part of m[2] is.
2 The attack will work equally well in both cases.



Fault Attacks on RSA Signatures with Partially Unknown Messages 447

denoted kr and the size of m[1] is k−kh−16 as required in iso/iec 9796-2. The
encoded message is then

µ(m) = 6A16 ‖α ‖ r ‖α′ ‖H(α ‖ r ‖α′ ‖data) ‖ BC16 (2)

Therefore the total number of unknown bits in µ(m) is kr + kh.

2 Fault Attack on Partially-Known Message iso/iec
9796-2

This section extends [6] to signatures of partially known messages encoded as
described previously. We assume that after injecting a fault the opponent is in
possession of a faulty signature σ such that:

σe = µ(m) mod p , σe �= µ(m) mod q . (3)

From (2) we can write

µ(m) = t + r · 2nr + H(m) · 28 (4)

where t is a known value. Note that both r and H(m) are unknown to the
adversary. From (3) we obtain:

σe = t + r · 2nr + H(m) · 28 mod p .

This shows that (r, H(m)) must be a solution of the equation

a + b · x + c · y = 0 mod p (5)

where a := t − σe mod N , b := 2nr and c := 28 are known. Therefore we
are left with solving equation (5) which is linear in the two variables x, y and
admits a small root (x0, y0) = (r, H(m)). However the equation holds modulo
an unknown divisor p of N and not modulo N . Such equations were already
exploited by Herrmann and May [12] to factor an rsa modulus N = pq when
some blocks of p are known. Their method is based on Coppersmith’s technique
for finding small roots of polynomial equations [7]. Coppersmith’s technique uses
lll to obtain two polynomials h1(x, y) and h2(x, y) such that

h1(x0, y0) = h2(x0, y0) = 0

holds over the integers. Then one computes the resultant between h1 and h2 to
recover the common root (x0, y0). To that end, we must assume that h1 and
h2 are algebraically independent. This ad hoc assumption makes the method
heuristic; nonetheless it turns out to work quite well in practice. Then, given the
root (x0, y0) one recovers the randomized encoded message µ(m) and factors N
by gcd.
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Theorem 1 (Herrmann-May [12]). Let N be a sufficiently large composite
integer with a divisor p ≥ Nβ. Let f(x, y) = a+b ·x+c ·y ∈ Z[x, y] be a bivariate
linear polynomial. Assume that f(x0, y0) = 0 mod p for some (x0, y0) such that
|x0| ≤ Nγ and |y0| ≤ N δ. Then for any ε > 0, under the condition

γ + δ ≤ 3β − 2 + 2(1 − β)3/2 − ε (6)

one can find h1(x, y), h2(x, y) ∈ Z[x, y] such that h1(x0, y0) = h2(x0, y0) = 0
over Z, in time polynomial in log N and ε−1.

We only sketch the proof and refer the reader to [12] and [8] for more details.
Assume that b = 1 in the polynomial f (otherwise multiply f by b−1 mod N)
and consider the polynomial

f(x, y) = a + x + c · y
We look for (x0, y0) such that f(x0, y0) = 0 mod p. The basic idea consists in
generating a family G of polynomials admitting (x0, y0) as a root modulo pt for
some large enough integer t. Any linear combination of these polynomials will
also be a polynomial admitting (x0, y0) as a root modulo pt. We will use lll
to find such polynomials with small coefficients. To do so, we view any polyno-
mial h(x, y) =

∑
hi,jx

iyj as the vector of coefficients
(
hi,jX

iY j
)
i,j

and denote
by ‖h(xX, yY )‖ this vector’s Euclidean norm. Performing linear combinations
on polynomials is equivalent to performing linear operations on their vectorial
representation, so that applying lll to the lattice spanned by the vectors in G
will provide short vectors representing polynomials with root (x0, y0) mod pt.

We now define the family G of polynomials as

gk,i(x, y) := yi · fk(x, y) · Nmax(t−k,0)

for 0 ≤ k ≤ m, 0 ≤ i ≤ m− k and integer parameters t and m. For all values of
indices k, i, it holds that gk,i(x0, y0) = 0 mod pt. We first sort the polynomials
gk,i by increasing k values and then by increasing i values. Denoting X = Nγ

and Y = N δ, we write the coefficients of the polynomial gk,i(xX, yY ) in the
basis xk′ · yi′ for 0 ≤ k′ ≤ m and 0 ≤ i′ ≤ m − k′. Let L be the corresponding
lattice; L’s dimension is

ω = dim(L) =
m2 + 3m + 2

2
=

(m + 1)(m + 2)
2

and we have
det L = XsxY sy NsN

where

sx = sy =
m∑

k=0

m−k∑
i=0

i =
m(m + 1)(m + 2)

6

and

sN =
t∑

i=0

(m + 1 − i) · (t − i) .
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We now apply lll to the lattice L to find two polynomials h1(x, y) and h2(x, y)
with small coefficients.

Theorem 2 (LLL [19]). Let L be a lattice spanned by (u1, . . . , uω). Given the
vectors (u1, . . . , uω), the lll algorithm finds in polynomial time two linearly
independent vectors b1, b2 such that

‖b1‖, ‖b2‖ ≤ 2ω/4(detL)1/(ω−1) .

Therefore using lll we can get two polynomials h1(x, y) and h2(x, y) such that

‖h1(xX, yY )‖, ‖h2(xX, yY )‖ ≤ 2ω/4 · (detL)1/(ω−1) . (7)

Using Howgrave-Graham’s lemma (below), we can determine the required bound
on the norms of h1 and h2 to ensure that (x0, y0) is a root of both h1 and h2
over the integers:

Lemma 1 (Howgrave-Graham [14]). Assume that h(x, y) ∈ Z[x, y] is a sum
of at most ω monomials and assume further that h(x0, y0) = 0 mod B where
|x0| ≤ X and |y0| ≤ Y and ‖h(xX, yY )‖ < B/

√
ω. Then h(x0, y0) = 0 holds

over the integers.

Proof. We have

|h(x0, y0)| =
∣∣∣∑hijx

i
0y

i
0

∣∣∣ =
∣∣∣∣∑hijX

iY j
(x0

X

)i (y0

Y

)j
∣∣∣∣

≤
∑∣∣∣∣hijX

iY j
(x0

X

)i (y0

Y

)j
∣∣∣∣ ≤ ∑∣∣hijX

iY j
∣∣

≤ √
ω‖h(xX, yY )‖ < B

Since h(x0, y0) = 0 mod B, this implies that h(x0, y0) = 0 over the integers. ��
We apply Lemma 1 with B := pt. Using (7) this gives the condition:

2ω/4 · (detL)1/(ω−1) ≤ Nβt

√
ω

. (8)

[12] shows that by letting t = τ · m with τ = 1 −√
1 − β, we get the condition:

γ + δ ≤ 3β − 2 + 2(1 − β)3/2 − 3β(1 +
√

1 − β)
m

Therefore we obtain as in [12] the following condition for m:

m ≥ 3β(1 +
√

1 − β)
ε

.

Since lll runs in time polynomial in the lattice’s dimension and coefficients, the
running time is polynomial in log N and 1/ε.
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2.1 Discussion

For a balanced rsa modulus (β = 1/2) we get the condition:

γ + δ ≤
√

2 − 1
2

∼= 0.207 (9)

This means that for a 1024-bit rsa modulus N , the total size of the unknowns
x0 and y0 can be at most 212 bits. Applied to our context, this implies that
for iso/iec 9796-2 with kh = 160, the size of the ump r can be as large as 52
bits. Section 3 reports practical experiments confirming this prediction. In [8]
we provide a Python code for computing the bound on the size of the unknown
values (kr + kh) as a function of the modulus size.

2.2 Extension to Several Unknown Bits Blocks

Assume that the ump used in iso/iec 9796-2 is split into n different blocks,
namely

µ(m) = 6A16 ‖α1 ‖ r1 ‖α2 ‖ r2 ‖ · · · ‖αn ‖ rn ‖αn+1 ‖H(m) ‖ BC16 (10)

where the umps r1, . . . , rn are all part of the message m. The αi blocks are
known. In [8], we show how to recover p from one faulty signature, using the
extended result of Herrmann and May [12]. It appears that if the total number
of unknown bits plus the message digest is less than 15.3% of the size of N ,
then the umps can be fully recovered from the faulty signature and Boneh et
al.’s attack will apply again. However the number of blocks cannot be too large
because the attack’s runtime increases exponentially with n.

2.3 Extension to Two Faults Modulo Different Factors

Assume that we can get two faulty signatures, one incorrect modulo p and the
other incorrect modulo q. This gives the two equations

a0 + b0 · x0 + c0 · y0 = 0 mod p
a1 + b1 · x1 + c1 · y1 = 0 mod q

with small unknowns x0, y0, x1, y1. We show in [8] that by multiplying the two
equations, we get a quadri-variate equation modulo N which can be solved by
linearization under the following bound:

γ + δ ≤ 1
6
∼= 0.167 .

This remains weaker than condition (9). However the attack is significantly faster
because it works over a lattice of constant dimension 9. Moreover, the 16.7%
bound is likely to lend itself to further improvements using Coppersmith’s tech-
nique instead of plain linearization.
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2.4 Extension to Several Faults Modulo the Same Factor

To exploit single faults, we have shown how to use lattice-based techniques to
recover p given N and a bivariate linear equation f(x, y) admitting a small root
(x0, y0) modulo p. In this context, we have used Theorem 1 which is based on
approximate gcd techniques from [15]. In the present section we would like to
generalize this to use � different polynomials of the same form, each having a
small root modulo p. More precisely, let � be a fixed parameter and assume that
as the result of � successive faults, we are given � different polynomials

fu(xu, yu) = au + xu + cuyu (11)

where each polynomial fu has a small root (ξu, νu) modulo p with |ξu| ≤ X and
|νu| ≤ Y . Note that, as in the basic case, we re-normalized each polynomial fu to
ensure that the coefficient of xu in fu is equal to one. To avoid double subscripts,
we hereafter use the Greek letters ξ and ν to represent the root values. We would
like to use a lattice approach to construct new multivariate polynomials in the
variables (x1, · · · , x�, y1, · · · , y�) with the root R = (ξ1, · · · , ξ�, ν1, · · · , ν�). To
that end we fix two parameters m and t and build a lattice on a family of
polynomials G of degree at most m with root R modulo B = pt. This family is
composed of all polynomials of the form

yi1
1 yi2

2 · · · yi�

� f1(x1, y1)j1 f2(x2, y2)j2 · · · f�(x�, y�)j� Nmax(t−j,0) ,

where each iu, ju is non-negative, i =
∑�

u=1 iu, j =
∑�

u=1 ju and 0 ≤ i + j ≤ m.
Once again, let L be the corresponding lattice. Its dimension ω is equal to the
number of monomials of degree at most m in 2� unknowns, i.e.

ω =
(

m + 2�

2�

)
.

Since we have a common upper bound X for all values |ξu| and a common bound
for all |νu| we can compute the lattice’s determinant as

det(L) = XsxY sy NsN ,

where sx is the sum of the exponents of all unknowns xu in all occurring monomi-
als, sy is the sum of the exponents of the yu and sN is the sum of the exponents of
N in all occurring polynomials. For obvious symmetry reasons, we have sx = sy

and noting that the number of polynomials of degree exactly d in � unknowns is(
d+�−1

�−1

)
we find

sx = sy =
m∑

d=0

d

(
d + �− 1

�− 1

)(
m− d + �

�

)
.

Likewise, summing on polynomials with a non-zero exponent v for N , where the
sum of the ju is t− v we obtain

sN =
t∑

v=1

v

(
t− v + �− 1

�− 1

)(
m − t + v + �

�

)
.
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As usual, assuming that p = Nβ we can find a polynomial with the correct root
over the integers under the condition of formula (8).

Concrete Bounds: Using the notation of Theorem 1, we compute effective
bounds on γ + δ = log(XY )/ log(N) from the logarithm of condition (8), drop-
ping the terms

√
ω and 2ω/4 which become negligible as N grows. For concrete

values of N , bounds are slightly smaller. Dividing by log(N), we find

sx · (γ + δ) + sN ≤ βtω .

Thus, given k, t and m, we can achieve at best

γ + δ ≤ βtω − sN

sx
.

In [8], we provide the achievable values of γ+δ for β = 1/2, for various parameters
and for lattice dimensions 10 ≤ ω ≤ 1001.

Recovering the Root: With 2� unknowns instead of two, applying usual
heuristics and hoping that lattice reduction directly outputs 2� algebraically
independent polynomials with the prescribed root over the integers becomes a
wishful hope. Luckily, a milder heuristic assumption suffices to make the attack
work. The idea is to start with K equations instead of � and iterate the lattice re-
duction attack for several subsets of � equations chosen amongst the K available
equations. Potentially, we can perform

(
K
�

)
such lattice reductions. Clearly, since

each equation involves a different subset of unknowns, they are all different. Note
that this does not suffice to guarantee algebraic independence; in particular, if
we generate more than K equations they cannot be algebraically independent.
However, we only need to ascertain that the root R can be extracted from the
available set of equations. This can be done, using Gröbner basis techniques,
under the heuristic assumption that the set of equations spans a multivariate
ideal of dimension zero i.e. that the number of solutions is finite.

Note that we need to choose reasonably small values of � and K to be able
to use this approach in practice. Indeed, the lattice that we consider should not
become too large and, in addition, it should be possible to solve the resulting
system of equations using either resultants or Buchberger’s algorithm which
means that neither the degree nor the number of unknowns should increase too
much.

Asymptotic Bounds: Despite the fact that we cannot hope to run the multi-
polynomial variant of our attack when parameters become too large, it is inter-
esting to determine the theoretical limit of the achievable value of γ + δ as the
number of faults � increases. To that end, we assume as previously that β = 1/2,
let t = τm and replace ω, sx and sN by the following approximations:

ω ∼= m2�

(2�)!
, sx

∼=
m∑

d=0

d� (m− d)�

(�− 1)! �!
, sN

∼=
t∑

v=1

v
(t − v)�−1(m− t + v)�

(�− 1)! �!
.
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Table 1. Bound for the relative size γ +δ of the unknowns as a function of the number
of faults �

� 1 2 3 4 5 6 7 8 9 10
γ + δ 0.207 0.293 0.332 0.356 0.371 0.383 0.391 0.399 0.405 0.410

For small � values we provide in Table 1 the corresponding bounds on γ + δ.
Although we do not provide further details here due to lack of space, one can
show that the bound γ+δ tends to 1/2 as the number of faults � tends to infinity
and that all γ + δ values are algebraic numbers.

3 Simulation Results

Assuming that fault injection can be performed on unprotected devices (see Sec-
tion 4), we simulated the attack. In the experiment we generated faulty signa-
tures (using the factors p and q) and applied to them the attack’s mathematical
analysis developed in the previous sections to factor N . For our experimental
results of physical fault injection see Section 4.

3.1 Single-Fault Attack Simulations

We first consider a single-ump, single-fault attack when H = sha-1 i.e. kh = 160.
Using the sage library lll implementation, computations were executed on a
2ghz Intel notebook.

Experimental results are summarized in Table 2. We see that for 1024-bit rsa,
the randomizer size kr must be quite small and the attack is less efficient than
exhaustive search3. However for larger moduli, the attack becomes more efficient.
Typically, using a single fault and a 158-bit ump, a 2048-bit rsa modulus was
factored in less than a minute.

Table 2. Single fault, single ump 160-bit digests (kh = 160). lll runtime for different
parameter combinations.

modulus size k ump size kr m t lattice dim. ω runtime

1024 6 10 3 66 4 minutes
1024 13 13 4 105 51 minutes
1536 70 8 2 45 39 seconds
1536 90 10 3 66 9 minutes
2048 158 8 2 45 55 seconds

3 Exhausting a 13-bit randomizer took 0.13 seconds.
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3.2 Multiple-Fault Simulations

To test the practicality of the approach presented in Section 2.4, we have set
(�, t, m) = (3, 1, 3) i.e. three faulty signatures. This leads to a lattice of dimension
84 and a bound γ + δ ≤ 0.204. Experiments were carried out with 1024, 1536
and 2048 bit rsa moduli. This implementation also relied on the sage library
[20] running on a single pc. Quite surprisingly, we observed a very large number
of polynomials with the expected root over the integers. The test was run for
three random instances corresponding to the parameters in Table 3.

Table 3. Three faults, single ump, 160-bit digests (kh = 160). lll runtime for different
parameter combinations.

modulus size k ump size kr runtime

1024 40 49 seconds
1536 150 74 seconds
2048 250 111 seconds

Three faults turn-out to be more efficient than single-fault attacks (Table 3
vs. Table 2). In particular for a 1024-bit rsa modulus, the three-fault attack
recovered a 40-bit ump r in 49 seconds4, whereas the single-fault attack only
recovered a 13-bit ump in 51 minutes.

4 Physical Fault Injection Experiments

We performed fault injection on an unprotected device to demonstrate the entire
attack flow. We obtain a faulty signature from a general-purpose 8-bit micro-
controller running an rsa implementation and factor N using the mathematical
attack of Section 2.

Our target device is an Atmel ATmega128 [3], a very pupular risc microcon-
troller (µc) with an 8-bit avr core. The µc was running an rsa-crt implemen-
tation developed in C using the BigDigits multiple-precision arithmetic library
[4]. The µc was clocked at 7.3728 mhz using a quartz crystal and powered from
a 5V source.

We induced faults using voltage spikes (cf. to [1] and [2] for such attacks on
similar µcs). Namely, we caused brief power cut-offs (spikes) by grounding the
chip’s Vcc input for short time periods. Spikes were produced by an fpga-based
board counting the µc’s clock transitions and generating the spike at a precise
moment. The cut-off duration was variable with 10ns granularity and the spike
temporal position could be fine-tuned with the same granularity. The fault was
heuristically positioned to obtain the stable fault injection in one of the rsa-crt
branches (computing σp or σq). A 40ns spike is presented in Figure 1. Larger
spike durations caused a µc’s reset.
4 We estimate that exhaustive search on a 40-bit ump would take roughly a year on

the same single pc.
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Fig. 1. Spike captured with a dso: control signal from fpga, power supply cut-off, and
induced glitch in the clock signal

[8] provides more details on a 1536-bit rsa signature experiment conducted
using our setup.

5 Conclusion

The paper introduced a new breed of partially-known message fault attacks
against rsa signatures. These attacks allow to factor the modulus N given a
single faulty signature. Although the attack is heuristic, it works well in prac-
tice and paradoxically becomes more efficient as the modulus size increases. As
several faulty signatures are given longer umps and longer digests become vul-
nerable.
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Abstract. Differential Fault Analysis (DFA) is a powerful cryptana-
lytic technique that disturbs cryptographic computations and exploits
erroneous results to infer secret keys. Over the last decade, many works
have described and improved DFA techniques against block ciphers thus
showing an inherent need to protect their implementations. A simple and
widely used solution is to perform the computation twice and to check
that the same result is obtained. Since DFA against block ciphers usually
targets the last few rounds, one does not need to protect the whole ci-
phering thus saving computation time. However the number of rounds to
protect must be chosen very carefully in order to prevent security flaws.
To determine this number, one must study DFA targeting middle rounds
of the cipher. In this paper, we address this issue for the Data Encryption
Standard (DES) algorithm. We describe an attack that breaks DES by
introducing some faults at the end of round 9, 10, 11 or 12, more or less
efficiently depending on the fault model and the round number.

1 Introduction

Fault analysis is a class of implementation attacks that consists in disturbing
cryptographic computations to recover secret keys. Among these attacks, one
merely identifies two families which differ in the information exploited to re-
cover the key. Differential Fault Analysis (DFA) [3] exploits the difference be-
tween correct and faulty results while other attacks focus on the behavior of the
corrupted computation, namely on whether the induced fault effectively pro-
vokes an erroneous result or not. Among them, one lists safe-error attacks [26]
on exponentiation algorithms as well as Ineffective Fault Analysis (IFA) [9, 23]
and Collision Fault Analysis (CFA) [16] against block ciphers implementations.

IFA and CFA consider an adversary that is able to set an intermediate variable
of its choice to a known value (usually to 0). If the result is erroneous or if a fault
is detected, the attacker knows that the intermediate variable was different from
the induced value. Obtaining this information for several encryptions enables
key-recovery. A simple way to thwart this kind of attack is to use data mask-
ing [15, 2] which is often applied to protect embedded implementation against
power analysis [18]. Indeed, masking ensures that no single intermediate variable
provides information on the secret key. However, masking does not ensure the
result integrity and is hence ineffective against DFA [5].

C. Clavier and K. Gaj (Eds.): CHES 2009, LNCS 5747, pp. 457–469, 2009.
c© International Association for Cryptologic Research 2009
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DFA on block ciphers was first introduced by Biham and Shamir against
DES [3]. Since then, several DFA were proposed on AES [11,4,13,22,7,25,17] as
well as on other block ciphers such as IDEA [10] and CLEFIA [8,24]. These dif-
ferent works demonstrate the vulnerability of block ciphers towards DFA and the
subsequent need of including countermeasures to embedded implementations. A
straightforward way to protect any algorithm against DFA is to compute it twice
and check whether the obtained results are equal or not. Another similar solu-
tion is to verify the integrity of an encryption by a decryption and vice versa.
It is also possible to include redundancy and coherence checking at the opera-
tion level; the complexity-security ratio of such schemes is usually of the same
order than the one of computation doubling [19]. An advantage of computation
doubling is the scalability on the number of rounds to protect. In fact, most
of DFA techniques target the last few rounds of the block cipher. To thwart
these attacks, one only need to double the computation of these last few rounds
thus saving computation time. However, a question remains: how many rounds
should be protected to obtain a good security level towards DFA? To answer
this question, we need to investigate DFA on middle rounds of the cipher.

This issue has been addressed in [21] by Phan and Yen for the AES block
cipher. They apply block cipher cryptanalysis techniques to improve DFA on
AES and exhibit some attacks against rounds 7, 6 and 5. Concerning DES, the
original work by Biham and Shamir [3] described an attack that exploits a fault
corrupting either round 16, 15 or 14 (and equivalently the end of round 15, 14
or 13). In his PhD thesis [1], Akkar investigates the application of differential
cryptanalysis techniques to attack earlier rounds of DES. In a first place, the
considered attacker is assumed to be able to induce a differential of its choice in
the DES internal value at the end of some round. The last round key is recovered
by guessing every 6-bit parts independently and by selecting, for each subkey,
the candidate that produces the expected differential at the S-box output the
more frequently. The obtained attacks are quite efficient but, as mentioned by
the author, the fault model is not realistic. Akkar then applies this attack under
two more realistic fault models: a single bit switch at a fixed position (in the left
part of the DES internal state) and a single bit switch at a random position (in
the right part of the DES internal state). For the fixed position bit error model,
the attack needs a few hundred fault injections at the end of round 11 and it fails
on round 9 (the attack on round 10 is not considered). For the random position
bit error model, the attack needs a few dozen fault injections at the end of round
12 and it fails on round 11.

In this paper, we generalize and improve the attack described by Akkar in [1].
We consider various realistic fault models for an error induced in the left part of
the DES internal state, including the bit error model and the byte error model
with chosen error position or random error position. As we will argue, disturbing
the left part leads to better attacks than disturbing the right part. Moreover,
we use more accurate distinguishers than the one proposed in [1]. In the usual
(chosen position) byte error model, our attack recovers the whole last round key
with a 99% success rate using 9 faults on round 12, 210 faults on round 11 and
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13400 faults on round 10. In the (chosen position) bit error model, these numbers
are reduced to 7, 11 and 290, respectively.

2 Data Encryption Standard

The Data Encryption Standard (DES) [12] is a block cipher that was selected
by the US National Bureau of Standards in 1976 as an official standard for data
encryption. DES uses a 56-bit key (usually represented on 64 bits including 8
parity check bits) and it operates on 64-bit blocks. It has an iterative structure
applying 16 times the same round transformation F which is preceded by a bit-
permutation IP and followed by the inverse bit-permutation IP−1. Every round
transformation is parameterized by a 48-bit round key kr that is derived from
the secret key through a key schedule process. To summarize, a ciphertext C is
computed from a plaintext P as follows:

C = IP−1 ◦ (©16
r=1Fkr

) ◦ IP(P ) .

The round transformation follows a Feistel scheme, namely, the block is split
into two 32-bit parts L (the left part) and R (the right part), and F is defined
as:

Fkr (L, R) = (R, L⊕ fkr(R)) ,

where f is a function parameterized with a 48-bit key and operating on a 32-bit
block. This structure is illustrated on Fig. 1. In the sequel, the output block of
the r-th round shall be denoted as (Lr, Rr). Defining (L0, R0) = IP(P ), we have
(Lr, Rr) = Fkr (Lr−1, Rr−1) for every r ≤ 16 and C = IP−1(L16, R16).

The function f of the DES first applies an expansion layer E that expands
the 32 input bits into 48 output bits by duplicating 16 of them. The round key
is then introduced by bitwise addition afterward the block is split into eight
6-bit blocks, each entering into a different substitution box (S-box) Si producing
a 4-bit output. Finally, the 32 bits from the eight S-box outputs are permuted
through a bit-permutation P which yields the 32-bit output block.

In the sequel, Ei and P−1
i denote the i-th 6-bit coordinate of the expansion

layer E and the i-th 4-bit coordinate of the bit-permutation P−1, respectively.

Fig. 1. Round transformation in the Feistel scheme
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Similarly, kr,i shall denote the i-th 6-bit part of a round key kr. We hence have
the equality:

P−1
i (fkr (·)) = Si(Ei(·) ⊕ kr,i) . (1)

3 Fault Models

Our attack consists in corrupting some bits of the left part of the DES internal
state at the end of the r-th round with r ∈ {9, 10, 11, 12}. We shall consider
different fault models depending on the statistical distribution of the induced
error. We first consider the bit error model : one and one single bit of the left
part is switched. We also consider the byte error model : one byte of the left
part is switched to a random and uniformly distributed value. Furthermore, the
fault position may be either chosen by the attacker or random among the 32
bit-positions or the 4 byte-positions of the left part.

In the sequel, L̃i and R̃i will respectively denote the corrupted value of the
left part Li and the right part Ri at the end of round i and C̃ = IP−1(L̃16, R̃16)
will denote the faulty ciphertext. We shall further denote by ε the induced error
that is defined as ε = Lr ⊕ L̃r.

4 Attack Description

4.1 General Principle

Let us denote by ∆ the bitwise difference between the correct value and the
corrupted value of the left part at the end of the fifteenth round: ∆ = L15⊕ L̃15.
Due to the Feistel scheme, we have the following relation:

R16 ⊕ R̃16 = fk16(L16)⊕ fk16(L̃16)⊕∆ . (2)

Based on (2), an adversary that knows ∆ can mount a key recovery attack. The
principle is to make a guess on the value of the round key k16. Then, given a pair
of ciphertexts (C, C̃), the attacker checks whether (2) is consistent for this guess.
If not, the guess is discarded. In this way, k16 is uniquely determined using few
pairs of ciphertexts. Due to the structure of f (see (1)), the attacker does not
need to guess the whole round key k16 but he can guess and check each subkey
k16,i independently. When an error is induced in the final rounds, the differential
∆ (or at least a part of it) can be predicted according to the pair (C, C̃) which
enables the attack [3]. This is no more the case for an error induced in a middle
round; in that case the attack must be extended.

As noted in [1], if an error ε is induced in the left part at the end of the
thirteenth round then ∆ equals ε. Therefore, an attacker that is able to induce a
chosen (or at least known) error in L13 can apply the previous attack. For a fault
induced in the left part during an earlier round, the equality ∆ = ε does not hold
anymore. However the statistical distribution of ∆ may be significantly biased
(depending on the fault model and the round number). Indeed, as illustrated
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in Fig. 2, a fault injection in the left part skips one round before propagating
through the function f . Besides, the error propagation path from Lr to L15
sticks through the function f only once for r = 12, twice for r = 11, etc.
This is quite low considering the slow diffusion of the function f . As a result,
a fault induced in Lr may produce a differential ∆ with a distribution that
is significantly biased. As described hereafter, this bias enables a key recovery
attack based on a statistical distinguisher.

Remark 1. From Fig. 2, it can be noticed that the injection of an error ε in Lr

is equivalent to the injection of ε in Rr+1. This demonstrates the relevance of
attacking the left part rather than the right one. Besides, this explains why the
attack on the right part described in [1] is inefficient compared to the one on the
left part on the same round.

Let us define, for every i ∈ {1, · · · , 8}, the function gi as the prediction of the
i-th 4-bit coordinate of P−1(∆) according to a pair (C, C̃) and to a guess k on
the value of k16,i:

gi(C, C̃, k) = Si

(
Ei(L16) ⊕ k

)⊕ Si

(
Ei(L̃16) ⊕ k

)⊕ P−1
i

(
R16 ⊕ R̃16

)
.

(a) From L12 to L15. (b) From L11 to L15.

Fig. 2. Error propagation paths
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From (1) and (2), it can be checked that, for the correct key guess, gi(C, C̃, k)
equals P−1

i (∆). On the other hand, for a wrong key guess, gi(C, C̃, k) can be
assumed to have a uniform distribution. This is a classical assumption in block
cipher cryptanalysis known as the wrong-key assumption.

Let us define, for every i ∈ {1, · · · , 8} and for every δ ∈ {0, · · · , 15}, the
probability pi(δ) as:

pi(δ) = Pr
[
P−1

i (∆) = δ
]

.

To summarize, according to the wrong-key assumption, we have:

Pr
[
gi(C, C̃, k) = δ

]
=

{
pi(δ) if k = k16,i
1
16 otherwise (3)

Provided that the distribution pi(·) is significantly biased, (3) clearly exhibits a
wrong-key distinguisher for k16,i.

4.2 Wrong-Key Distinguishers

We define hereafter two possible distinguishers d(k) for a key candidate k which
are expected to be maximal for the correct key candidate k = k16,i. These
distinguishers take as input a set of N pairs (Cn, C̃n), 1 ≤ n ≤ N . The choice of
the distinguisher to use depends on the attacker’s knowledge of the fault model.

Likelihood distinguisher. The attacker is assumed to have an exact knowledge
of the fault model, namely he knows the distribution of ε. In that case, he can
compute (or at least estimate) the distribution pi(·) in order to use a maximum
likelihood approach. The likelihood of a key candidate k is defined as the product
of the probabilities pi

(
gi(Cn, C̃n, k)

)
for n = 1, · · · , N . For practical reasons, we

make the classical choice to use the logarithm of the likelihood, namely d(k) is
defined as:

d(k) =
N∑

n=1

log
(
pi

(
gi(Cn, C̃n, k)

))
.

Squared Euclidean Imbalance (SEI) distinguisher. The attacker does not
have a precise knowledge of the fault model and is hence not able to estimate
the distribution pi(·). In that case, an alternative strategy is to look for the
strongest bias in the distribution of gi(Cn, C̃n, k). This is done by computing
the squared Euclidean distance to the uniform distribution (known as squared
Euclidean imbalance), namely d(k) is defined as:

d(k) =
15∑

δ=0

(
#{n; gi(Cn, C̃n, k) = δ}

N
− 1

16

)2

.

4.3 Chosen Error Position Strategies

In a chosen error position fault model scenario, we further have to define a
strategy to choose the positions where to induce the errors.
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Table 1. Destination S-boxes for the input bits of f

bits 1,32 2,3 4,5 6,7 8,9 10,11 12,13 14,15
S-boxes 1,8 1 1,2 2 2,3 3 3,4 4

bits 16,17 18,19 20,21 22,23 24,25 26,27 28,29 30,31
S-boxes 4,5 5 5,6 6 6,7 7 7,8 8

Bit error model. In the bit error model, ε has a single bit to 1 which implies
that the function f in round r + 2 has one or two active S-boxes. That is, the
correct output and the corrupted output of f only differ for one or two S-boxes.
Indeed, as shown in Table 1, the expansion layer sends every input bit of f
in one or two S-boxes. In order to maximize the bias in the distribution of ∆,
the bit-positions should be chosen among the ones entering in a single S-box
hence slowing the error propagation. Our strategy is simply to first choose a
bit-position entering in S-box 1 only, then in S-box 2 only, and so on until S-box
8 and start over with S-box 1, etc.

Remark 2. Relation (3) implicitly assumes that the i-th S-box in the sixteenth
round is active, otherwise gi(C, C̃, k) equals 0 for every k. For a chosen position
bit error attack on round 12, each selected bit-position implies that two S-boxes
are inactive in round 16. However, the pair of inactive S-boxes differs for each
bit-position which ensures the soundness of the attack.

Byte error model. Concerning the byte error model, every input byte of f
is spread over four S-boxes. This can be checked from Table 2 that gives the
destination S-boxes of every input byte of f . As a result, a byte error in Lr

always implies four active S-boxes in the output differential of f in round r + 2.
For the attacks in the chosen position byte error model, the four byte-positions
are hence equivalently chosen since they all induce the corruption of exactly four
S-boxes in round r + 2.

Remark 3. In a chosen error position attack, several fault models are involved
hence, for a given i, different distributions pi(·) are induced. Consequently, the
SEI distinguisher shall not be directly applied but the SEI of pi(·) shall be
estimated for every error position independently. The SEI distinguisher is then
defined as the sum of the SEIs for the different error positions.

Remark 4. In our attack simulations, we tried more specific strategies taking
into account the bias in the (pi(·))i distributions resulting from the different
bit-error positions. These strategies did not yield substantial improvements.

Table 2. Destination S-boxes for the input bytes of f

bytes 1 2 3 4
S-boxes 8,1,2,3 2,3,4,5 4,5,6,7 6,7,8,1
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5 Attack Simulations

This section presents some experimental results. We performed attack simula-
tions for each of the fault models introduced in Sect. 3 with a fault induced at the
end of round 12, 11, 10 or 9. For every round number and every fault model, we
applied the likelihood distinguisher and the SEI distinguisher (see Sect. 4.2). For
the likelihood distinguisher, we empirically computed the distributions (pi(·))i

based on several1 ciphertexts pairs, each obtained from the correct and faulty
encryptions of a random plaintext2.

In what follows, we consider an attack successful when the whole last round key
is determined with a 99% success rate. This strong requirement is motivated by
the fact that, for a triple DES, too many key bits remain to perform an exhaustive
search once the last round key has been recovered. Therefore, one shall fully deter-
mine the sixteenth round key before reiterating the attack on the fifteenth and so
on. Every subsequent attack on a previous round key can be performed by using the
same set of ciphertexts pairs and is expected to be substantially more efficient since
the error propagates on fewer rounds. This way, if the last round key is recovered
with a 99% success rate then the cipher can be considered fully broken.

Fig. 3 shows the success rate (over 1000 simulations) of the different attacks
(chosen/random position bit/byte error, likelihood/SEI distinguishers) on round
12, 11 and 10. Fig. 4 shows the success rate (over 10 to 100 simulations) for the
attacks on round 9 in the bit error model. Attacks on round 9 in the byte error
model all required more than 108 faults. The numbers of faults required for a
99% success rate are summarized in Table 3.

Attack efficiency vs. round number. The attacks on rounds 11 and 12 are very
efficient: less than 25 faults are sufficient on round 12 while, on round 11, less than
100 faults are sufficient in a bit error model and less than 1000 faults are sufficient
in a byte error model. On round 10, the attacks are still fairly efficient: the best
attack (chosen position bit error model, likelihood distinguisher) requires 290
faults whereas the least efficient attack (chosen position byte error model, SEI
distinguisher) requires 26400 faults. It is on round 9 that the attacks become
quite costly since the most efficient attack in the bit error model (chosen position,
likelihood distinguisher) requires around 3.4 · 105 faults and all the attack in the
byte error model require more than 108 faults3.

Attack efficiency vs. fault model. As expected, we observe that, for a given
setting (random/chosen position, likelihood/SEI distinguisher), a bit error model
always leads to more efficient attacks than a byte error model. Similarly, a chosen
position usually leads to more efficient attacks than a random position. Some
exceptions are observed for the SEI distinguisher for which a random position
sometimes leads to more efficient attacks than a chosen position. The reason of

1 107 for bit errors models and 108 for byte errors models.
2 Note that the value of the key does not change the (pi(·))i distributions.
3 The most efficient one (chosen position byte error model, likelihood distinguisher)

yielded a 0% success rate (over 10 attack simulations) for 108 faults.
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Fig. 3. Attacks on rounds 10, 11 and 12: success rate w.r.t. number of faults
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Fig. 4. Attacks on rounds 9, bit error model: success rate w.r.t. number of faults

Table 3. Number of faults to recover the 16-th round key with a 99% success rate

bit error byte error
round distinguisher chosen pos. random pos. chosen pos. random pos.

12 Likelihood 7 11 9 17
SEI 14 12 17 21

11 Likelihood 11 44 210 460
SEI 30 71 500 820

10 Likelihood 290 1500 13400 18500
SEI 940 2700 26400 23400

9 Likelihood 3.4 · 105 2.2 · 107 > 108 > 108

SEI 1.4 · 106 > 108 > 108 > 108

this phenomenon may be that in a chosen position bit (resp. byte) error model,
8 (resp. 4) different SEIs are estimated based on 8 (resp. 4) times less faults
than in the random position model where a single SEI is estimated (see Remark
3). As a result, these estimations are less precise which may render the attack
less efficient than in the random position model. In these cases, the attacker
can compute a single SEI based on all the faults, which amounts to perform the
attack in the random position model.

To summarize, we naturally have that a bit error is better than a byte error
and a chosen position is better than a random position. What was not a priori
straightforward is the superiority of the random position bit error model com-
pared to the chosen position byte error model. Except on round 12 where both
cases are almost equivalent, our results show that the attacks in the random po-
sition bit error model are significantly more efficient than the ones in the chosen
position byte error model.

Another interesting observation is that, in the bit error model, the ability to
choose the error position is more advantageous than in the byte error model.
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This phenomenon results from the strategy for the choice of the bit-positions
(see Sect. 4.3) which selects 8 positions over 32 leading to more important bias
in the distributions pi(·) than the average case, whereas, in the chosen position
byte error model, the 4 byte-positions are equivalently used.

Likelihood vs. SEI. As expected, the likelihood distinguisher always leads to
more efficient attacks than the SEI distinguisher. It is interesting to note that
this difference of efficiency is always greater in a chosen position model than in
a random position model. Once again, this phenomenon results from the fact
that, for a chosen position model, several different SEIs are estimated based on
4 or 8 times less faults compared to the random position model where a single
SEI is estimated.

6 How Many Rounds To Protect ?

The question of the number of rounds to protect does not have a unique answer.
Indeed, the answer to this question depends on the ability of an attacker to induce
faults and on the number of correct and faulty ciphertexts pairs that he can collect.
Besides, more efficient attacks that those described in this paper may exist.

What provide our paper are some lower bounds on the number of rounds to pro-
tect. We have shown that in a realistic fault model, efficient DFA attacks can be
performed by inducing some faults until round 10. It seems therefore reasonable
to protect at least the last seven rounds of the cipher. However, this may not suf-
fice while considering a strong adversary model. We have shown that in a chosen
position bit error model, 3.4 · 105 faults induced at the end of round 9 are suffi-
cient to recover the last round key with a 99% confidence. Consequently, in order
to thwart an adversary able to induce a single bit fault at a chosen position and to
gather about 105 ciphertexts pairs, one shall at least protect the last eight rounds.

Attacks on initial rounds. As noted in [14], if an attacker has access to a de-
cryption oracle then any DFA attack can be transposed on the initial rounds of
the cipher. In fact, the attacker may obtain a faulty ciphertext C̃ from a plain-
text P by inducing a fault at the end of the first round. The plaintext P can
then be viewed as the faulty result of a decryption of C̃ for which a fault has
been induced at the beginning of the last round. The attacker then asks for the
decryption of C̃ which provides him with a plaintext P̃ . The pair (P̃ , P ) thus
constitutes a pair of correct and faulty results of the decryption algorithm with
respect to an error induced at the beginning of the last round. According to this
principle, any fault attack on an initial round of an encryption can be transposed
to a fault attack on a final round of a decryption, provided that the attacker has
access to a decryption oracle. In that case, the same number of rounds should
be protected at the beginning and at the end of the cipher in order to obtain an
homogenous security level. For a simple DES, based on our study, we recommend
to protect the whole cipher. For a triple DES, one can only protect some rounds
at the beginning of the first DES computation and some rounds at the end of
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the last DES computation; the number of protected rounds being at least seven
according to our study.

7 Conclusion

In this paper, we have investigated differential fault analysis on DES middle
rounds. We have described a generic attack and we have demonstrated its ef-
ficiency under various realistic fault models. We have shown that DES can be
broken by inducing some faults at the end of rounds 12, 11, 10 and 9, more or
less efficiently depending on the round number and the fault model. Although
we focused on DES, our attack could be applied on any Feistel scheme.
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4. Blömer, J., Seifert, J.-P.: Fault Based Cryptanalysis of the Advanced Encryption
Standard. In: Wright, R.N. (ed.) FC 2003. LNCS, vol. 2742, pp. 162–181. Springer,
Heidelberg (2003)

5. Boscher, A., Handschuh, H.: Masking Does Not Protect Against Differential Fault
Attacks. In: Breveglieri et al. [6], pp. 35–40

6. Breveglieri, L., Gueron, S., Koren, I., Naccache, D., Seifert, J.-P. (eds.): Fault
Diagnosis and Tolerance in Cryptography – FDTC 2008. IEEE Computer Society
Press, Los Alamitos (2008)

7. Chen, C.-N., Yen, S.-M.: Differential Fault Analysis on AES Key Schedule and
Some Countermeasures. In: Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003. LNCS,
vol. 2727, pp. 118–129. Springer, Heidelberg (2003)

8. Chen, H., Wu, W., Feng, D.: Differential Fault Analysis on CLEFIA. In: Qing, S.,
Imai, H., Wang, G. (eds.) ICICS 2007. LNCS, vol. 4861, pp. 284–295. Springer,
Heidelberg (2007)

9. Clavier, C.: Secret External Encodings Do Not Prevent Transient Fault Analysis.
In: Paillier, Verbauwhede [20], pp. 181–194

10. Clavier, C., Gierlichs, B., Verbauwhede, I.: Fault Analysis Study of IDEA. In:
Malkin, T.G. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 274–287. Springer, Heidel-
berg (2008)

11. Dusart, P., Letourneux, G., Vivolo, O.: Differential Fault Analysis on A.E.S. In:
Zhou, J., Yung, M., Han, Y. (eds.) ACNS 2003. LNCS, vol. 2846, pp. 293–306.
Springer, Heidelberg (2003)

12. FIPS PUB 46-3. Data Encryption Standard (DES). National Institute of Standards
and Technology, October 25 (1999)

13. Giraud, C.: DFA on AES. In: Dobbertin, H., Rijmen, V., Sowa, A. (eds.) AES
2005. LNCS, vol. 3373, pp. 27–41. Springer, Heidelberg (2005)



Differential Fault Analysis on DES Middle Rounds 469

14. Giraud, C.: Attaques de cryptosystémes embarqués et contre-mesures associées.
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Knežević, Miroslav 272
Kuo, Eric Li-Hsiang 33

Langenberg, Markus 254
Leblebici, Yusuf 205
Lee, Frost Yu-Shuang 33
Lemke-Rust, Kerstin 112
Leurent, Gaëtan 66
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