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Abstract. Although there is a substantial body of work on preventing
bribery and coercion of voters in cryptographic election schemes for plu-
rality electoral systems, there are few attempts to construct such schemes
for preferential electoral systems. The problem is preferential systems
are prone to bribery and coercion via subtle signature attacks during the
counting. We introduce a minimum disclosure counting scheme for the
alternative vote preferential system. Minimum disclosure provides pro-
tection from signature attacks by revealing only the winning candidate.
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1 Introduction

Most cryptographic election schemes in the literature are designed for plurality
(first past the post) electoral systems, where each voter chooses a single candidate
and the winner is the candidate who receives the most votes. But using these
schemes for preferential electoral systems exposes voters to potential bribery and
coercion through signature attacks. We introduce a preferential counting scheme
that protects voters from such attacks.

Preferential electoral systems are widespread in Australia. Indeed, all
Australian parliamentary elections at national and state levels use preferential
systems. In most cases elections for the lower house use the alternative vote
and elections for the upper house use the single transferable vote. The single
transferable vote is a generalisation of the alternative vote for electing multiple
candidates rather than a single candidate. These preferential systems are also
common in Ireland and Malta, and they are sometimes used for local government
elections in parts of New Zealand, the UK, and the USA. In this paper we only
consider the alternative vote.

The aim of preferential electoral systems is to give voters greater scope in
expressing their choices. The distinguishing feature of these systems is that voters
rank candidates in order of preference. The alternative vote is one of the more
complex instances of preferential systems because the counting procedure has
many rounds of counting. In each round a candidate is excluded and the votes
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for this candidate are transferred to the remaining (not yet excluded) candidates
according to the preferences given on the ballots for that candidate. We elaborate
below on the mechanics of the counting procedure.

1.1 The Alternative Vote

The alternative vote, also known as preferential voting or instant runoff voting,
is a majoritarian system for filling a single vacancy. To be elected, a candidate
must receive a majority (more than half) of the votes.

Each ballot contains a sequence of preference votes. A voter fills out a ballot
by ranking every candidate in consecutive numerical order starting from 1 for the
first preference. A common variant is optional preferences, where voters assign a
minimum of one preference but need not assign all preferences.

The counting takes place in recursive rounds. Each round is a ‘last’ past the
post election. The election authorities tally the votes considering only the most
preferred remaining candidate in each ballot. Then they exclude the candidate
with the lowest round tally and transfer each vote for that candidate to the
next preferred remaining candidate on the corresponding ballot. The next round
is in effect a sub-election for the remaining candidates. The process recursively
repeats until a single candidate remains. The authorities announce this candidate
as the winner.

Notice that it is possible to stop the counting as soon as a candidate obtains a
majority. The counting algorithm we described performs a complete distribution
of the votes. For a given number of candidates, this algorithm has a constant
number of counting rounds.

In the event that multiple candidates have the lowest tally in a round, there are
a variety of tie-breaking rules used in practice to determine the last candidate,
for instance randomly or by comparing tallies from previous rounds. All such
rules eventually resort to breaking ties randomly or arbitrarily when a ‘true’ tie
occurs. In this paper we simply resolve all ties randomly and in future work we
describe more elaborate techniques for other common methods.

1.2 The Signature Attack

The information-rich nature of the ballots in preferential systems introduces
the possibility of a signature attack, commonly referred to as the Italian attack
due to its infamous use in Italian elections [3]. A signature attack potentially
compromises voter anonymity during the counting and is an effective technique
for bribing and coercing voters. Any election is open to this attack when the
number of possible voting options is relatively large compared to the number of
voters. Preferential elections are particularly vulnerable because the number of
possible preference permutations is factorial in the number of candidates.

To ‘sign’ a preferential ballot, a voter can for example allocate the first prefer-
ence to a particular candidate and use the ordering of the remaining preferences
as a covert channel that contains a signature. Even for a relatively modest num-
ber of candidates and a large voting population, such a signature is highly likely
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to be unique. For any prescribed first preference candidate, an election with C
candidates has (C − 1)! possible covert signatures. The national upper house
election in Australia has about 80 candidates, and so there are 79! possible sig-
natures. Even if every atom in the universe voted in this election, there would
still be a negligible probability that any randomly chosen signature would also
be cast by another voter.

A covert signature of this form is revealed when the ballots are exposed during
the counting, and it links the voter to the vote. In traditional paper elections,
only election authorities and independent scrutineers appointed by the candi-
dates can observe the ballots. We can only hope they are trustworthy. Alarm-
ingly in Australia, recent moves to improve the transparency of elections have
inadvertently made it trivial to perform signature attacks. In order to allow
independent scrutiny in elections that use electronic counting, a ruling under
Freedom of Information legislation [26] has led election authorities to publish
every ballot electronically!

Subtle variations of the signature attack may still be feasible with only partial
knowledge of the votes. An adversary can embed uncommon sequences of prefer-
ences in the signatures. Then the adversary can glean any available information
about these contrived sequences to narrow down the set of possible signatures.
For example if a candidate’s tally remains the same across two rounds, then that
candidate cannot be the next preference in any of the votes for the candidate
excluded in the first of those rounds. In this way even when the adversary cannot
identify exact signatures in the votes cast, it is still possible to determine that
particular signatures are not present. This possibility may well be sufficient to
allow coercion.

Election authorities frequently publish partial counting data such as the fi-
nal placing of each candidate and all the round tallies for each candidate. But
even releasing seemingly innocuous aggregate counting data has risks. Given
the subtlety of signature attacks, it is not always immediately obvious whether
disclosing particular information can have detrimental consequences.

Naturally much depends on the eventual distribution of the votes cast. Nev-
ertheless an adversary can make some educated guesses, especially when there
are few major candidates and many minor candidates. Several types of signature
attacks on partial information are currently known [25]. But determining pre-
cisely what information is useful for mounting signature attacks and how effective
are such attacks remains an open problem. Therefore revealing any information
apart from the identity of the winning candidate can potentially expose voters
to signature attacks.

Consequently, to eliminate the possibility of covert channels and intentional
or accidental information leakage, the precautionary principle suggests that a
conservative approach to secure counting is prudent. Ideally the counting process
should be entirely secret and reveal only the winning candidate. The challenge
for preferential systems lies in counting the votes in a secret yet universally
verifiable manner.
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1.3 Contributions

We introduce an alternative vote counting scheme that reveals only the identity
of the winning candidate. We call this level of privacy minimum disclosure. This is
the same notion of privacy used in Hevia and Kiwi’s yes/no election scheme [12].
Minimum disclosure provides the strongest possible protection against attacks on
counting information. In particular it prevents signature attacks on preferential
systems.

Our scheme also satisfies the usual security requirements of correctness, uni-
versal verifiability, and robustness against corrupt authorities. The scheme can
be used as an independent counting procedure or in conjunction with an existing
online voting scheme.

The idea behind our counting scheme is to perform the counting on encrypted
ballots. Each ballot is a list of encrypted preference votes in descending order of
preference and each preference vote is for a distinct candidate.

The counting scheme uses a hide and seek paradigm to manipulate lists of
ciphertexts without revealing anything about the order of a list. This approach
repeatedly applies a three-step process.
1. Execute a distributed operation to conceal the ordering of the ciphertexts.
2. Execute another distributed operation to identify ciphertexts with certain

properties.
3. Perform open operations, such as homomorphic addition, on the identified

ciphertexts.

The distributed operations are cryptographic protocols that require the collab-
oration of multiple authorities. As such the main drawback of the scheme is the
amount of work for the authorities. The extensive use of multiparty computation
techniques is an inevitable trade-off in achieving both minimum disclosure and
robustness, especially for electoral systems with elaborate counting algorithms,
such as the alternative vote. In an election with A authorities, C candidates
and V voters, the total computational and communication complexities for our
scheme are O(AC2V ).

1.4 Organisation

Section 2 discusses existing online voting schemes and preferential counting
schemes. Section 3 defines the security model and Section 4 covers the
necessary cryptographic building blocks. Section 5 describes the details of the
minimum disclosure counting scheme and Section 6 proposes an optimised tal-
lying protocol. Section 7 analyses the security and complexity of the scheme.
Section 8 explains how to combine the counting scheme with common online
voting schemes.

2 Related Work

In the general literature on cryptographic elections, preventing bribery and co-
ercion centres on the requirements of receipt-freeness and coercion-resistance. In-
formally, receipt-freeness [2] means that voters who cast valid votes cannot be
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bribed or coerced into proving how they voted because it is not possible for
them to prove how they voted. Coercion-resistance [15] is the stronger require-
ment that voters cannot even prove whether they abstained, or cast invalid or
random votes.

Receipt-free and coercion-resistant voting schemes focus on protecting voters
from bribery and coercion during the voting itself. But they rarely consider the
details of the counting. During the counting these schemes generally rely on
statistical uncertainty in the votes to prevent voters from being identified by
their votes. Every possible voting option must be likely to receive some votes
from honest voters. For simple plurality elections, this is generally a reasonable
assumption. But for preferential elections, it is not. This compromises receipt-
freeness and coercion-resistance.

Contemporary online voting schemes have two main approaches to counting
votes: public counting and private counting. Both methods reveal covert signa-
tures and also absent signatures.

Voting schemes that perform public counting [15,17,19,20] implement only
the voting stage of an election. Voters submit encrypted votes as their ballots.
Then the authorities anonymise the ballots (generally through mix-nets) before
decrypting them. To calculate the election result, any party can openly perform
a known counting algorithm on the publicly revealed plaintext votes.

Conversely, voting schemes that perform private counting [1,2,13] implement
both the voting and counting stages of a plurality election. Voters submit votes
that are encrypted with an additively homomorphic cryptosystem. To calculate
the election result, the authorities use the homomorphic property to combine
all the encrypted votes into an encrypted tally for each possible voting option.
Then they decrypt only these tallies. This approach maintains the privacy of
individual votes because it publishes only the tallies. But as there are tallies
for every voting option, it still reveals the same information about the votes as
public counting. To calculate the result in a preferential election, any party can
still openly perform the appropriate counting algorithm on the publicly revealed
tallies.

To counter such signature attacks, Goh and Golle [7] propose an alternative
vote counting scheme that only discloses the round tallies for each candidate.
But there still remains some scope for signature attacks that exploit the round
tallies to cull the set of possible signatures. Keller and Kilian [16] also propose
a scheme with the same level of privacy.

Heather [11] describes a counting scheme for the more complex single trans-
ferable vote. In addition to revealing the candidates’ round tallies, the transfer
method also leaks partial sequences of preferences for previously excluded can-
didates. This extra information facilitates more effective signature attacks by
significantly narrowing down the set of possible signatures.

Teague et al. [25] propose a single transferable vote counting scheme that
achieves greater secrecy than the above schemes. When applied to the alterna-
tive vote, it conceals the round tallies and reveals only the order in which the
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candidates are excluded. But the scheme relies on the trustworthiness of a single
authority who can learn the plaintext contents of all the ballots.

3 Security Model

3.1 Participants and Adversary Model

The only participants in the counting scheme are the authorities who perform
the counting. All communication is public and via an authenticated bulletin
board. The security model is for a static, active adversary who can corrupt up
to a threshold of the authorities.

3.2 Security Requirements

A secure counting scheme must satisfy the following requirements.

Minimum Disclosure. Apart from the identity of the winning candidate, no
party or adversary gains any additional information about the candidates
or the ballots than what was known before the counting commenced. The
transcript of the counting is computationally indistinguishable from the tran-
script of the counting for any fake input list of the same number of valid votes
that elects the same winning candidate. Revealing only the winning candi-
date prevents potential signature attacks including those that exploit partial
counting information.

Correctness. All input votes are correctly counted and no other votes are
counted.

Universal Verifiability. Any observer can confirm that the counting is correct.
Robustness. The counting tolerates the corrupt or faulty behaviour of any

group of authorities up to a threshold.

Notice counting schemes do not consider requirements that only relate to voters
during the preceding voting stage, for instance individual verifiability, robustness
with respect to corrupt voters, and ensuring ballots are only cast by authentic
voters. In some cases an additional integration procedure between the voting
and counting may be necessary to transform the submitted ballots into a valid
form for the counting.

3.3 Why So Secretive?

In current elections the authorities typically publish certain counting informa-
tion for statistical purposes, and that published data alone is often sufficient
for mounting signature attacks. So on the surface it might appear that in prac-
tice minimum disclosure is an unnecessarily strong requirement for online elec-
tions. However any more relaxed approach to secrecy in counting schemes can be
problematic.

The amount and types of published data varies widely from election to elec-
tion. But regardless of what information the authorities decide to reveal, a
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counting scheme must not leak any partial information that aggravates signature
attacks. In other words any leaked information must be insignificant.

The problem is there is currently no method to determine if specific par-
tial information leakage is indeed insignificant. For example suppose a counting
scheme leaks the identity of the excluded candidate in each round. Such infor-
mation on its own would seem insignificant. Now suppose that the authorities
decide to publish all the round tallies without identifying the candidates. Again
such information would seem reasonably insignificant. But by combining these
two types of partial information, an adversary can make strong correlations be-
tween all the tallies and candidates. This can substantially improve the chance
of mounting successful signature attacks. Although this is a rather contrived
example, it illustrates the difficulty in analysing the risk of partial information
leakage. In fact the risk depends on context-specific factors such as the number of
voters, the number of candidates and the a posteriori distribution of preference
permutations.

In the absence of precise definitions of what partial information is sensitive,
a cryptographic counting scheme should provide the strongest possible level of
secrecy in order to suit any alternative vote election. Then if necessary the au-
thorities can explicitly weaken the scheme to reveal exactly the desired counting
data but nothing more. This approach mitigates the risk of additional unforeseen
attacks.

4 Cryptographic Preliminaries

The minimum disclosure counting scheme relies on several distributed crypto-
graphic protocols that provide privacy, universal verifiability and robustness.
Rather than depending on specific instances of these protocols, we simply model
them as ideal primitives. We state typical costs of the protocols in terms of a
security parameter k.

4.1 Additively Homomorphic Threshold Cryptosystem

An additively homomorphic cryptosystem is a public-key cryptosystem that en-
ables any party to efficiently compute an encryption of the sum of two messages
given only the encryptions of the individual messages. For concreteness we de-
scribe the scheme using the Paillier cryptosystem [21], which is semantically
secure under the Decisional Composite Residuosity Assumption. The public key is
(g, n), where n = pq is an RSA modulus and g = n + 1. All plaintext operations
are modulo n and all ciphertext operations are modulo n2. For simplicity we
omit the modular reduction in the notation.

A message m ∈ Zn is encrypted by randomly generating r ∈ Z
∗
n and comput-

ing the ciphertext
�m� = gmrn ∈ Z

∗
n2 .

The Paillier cryptosystem has two homomorphic properties.
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Addition. For plaintexts m1, m2 ∈ Zn,

�m1� � �m2� = (gm1rn
1 ) × (gm2rn

2 )
= gm1+m2 (r1r2)

n

= �m1 + m2� .

Multiplication by a constant. For a plaintext m ∈ Zn and constant c ∈ Zn,

c � �m� = (gmrn)c

= gcm (rc)n

= �cm� .

In the threshold version of Paillier [4,6], each authority has a share of the private
key. A quorum of authorities must collaborate to decrypt any ciphertext. The
decryption process is universally verifiable and reveals no additional information
to any coalition of authorities smaller than the quorum.

To decrypt a ciphertext share and prove correctness, each authority performs
O(k) modular multiplications and broadcasts O(k) bits. Publicly verifying and
combining the shares of the A authorities costs O(Ak).

4.2 Plaintext Equality and Inequality Tests

Plaintext equality and inequality tests compare the plaintexts of given cipher-
texts without revealing the plaintexts. Given a pair of encrypted messages �m1�
and �m2�, a plaintext equality test [14] determines whether m1 = m2, and a
plaintext inequality test [22,24] determines whether m1 > m2. In both cases the
only public output is the boolean result of the test.

As for decryption in a threshold cryptosystem, the protocols to perform these
tests are distributed operations that require the collaboration of a quorum of
authorities, each of whom has a secret share of the private key. In fact the
last step of these protocols requires a threshold decryption to reveal the result.
The tests are universally verifiable and reveal no additional information to any
coalition of authorities smaller than the quorum.

Plaintext equality tests have the same complexity as threshold decryptions.
Plaintext inequality tests are more expensive, with the dominant additional cost
being a bit extraction step described below. The total complexity for A authori-
ties is O(Alk) multiplications when the plaintexts are in a known range

[
0, 2l

)
. In

the counting scheme inequality tests are only used to compare encrypted tallies,
and for V voters each tally is at most l = �log2 V � bits.

4.3 Secure Bit Extraction

A bit extraction protocol [24] converts an encrypted message into separate en-
cryptions of the individual bits of the message. Given an encrypted message �m�,
where 0 ≤ m < 2l and the binary representation is m = m0, . . . , ml−1, the out-
put is �m0�, . . . , �ml−1�. The bit extraction is a universally verifiable threshold
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protocol and reveals no additional information to any coalition of authorities
smaller than the quorum.

In the bit extraction protocol each authority privately performs O(lk) multi-
plications including proofs of correctness. Publicly verifying and combining the
individual results of the A authorities costs O(Alk).

4.4 Verifiable Mix-Nets and Rotators

A verifiable re-encryption mix-net [8,10,18] is a series of servers that each ran-
domly mix (by permuting and re-encrypting) a list of messages. In the case that
each message is a tuple of ciphertexts rather than a single ciphertext, such as
with preferential ballots, the mix-net re-encrypts every ciphertext in the tuple
individually and preserves the structure of the tuple.

A verifiable rotator cascade [5] is similar to a mix-net. The difference is that
each server randomly rotates (by cyclically shifting and re-encrypting) a list of
messages. Rotation is particularly useful when it is necessary to preserve the
relative ordering of the messages. Although it is possible to construct rotators
using mix-nets [23], a direct implementation is more efficient.

Both mix-nets and rotator cascades conceal the correspondence between in-
put and output messages as long as at least one server is honest. The mixing
and rotating are both universally verifiable. For l ciphertexts, re-encrypting and
proving correctness typically costs O(lk) multiplications for each server. Publicly
verifying the entire protocol when there are A servers costs O(Alk).

5 The Minimum Disclosure Counting Scheme

The minimum disclosure counting scheme implements secure counting for al-
ternative vote elections. It commences after the voting has finished and the
authorities have performed all necessary ballot processing including the removal
of invalid ballots.

We describe the counting scheme as a series of high-level protocols. Multiple
authorities collaborate to execute the protocols. They post the result of every
operation on an authenticated bulletin board with full revision tracking.

Each step in the protocol execution is either a distributed operation that re-
quires a quorum of authorities to collaborate or a completely open operation
that any party can compute from posted messages. The distributed operations
are the distributed protocols described in Section 4, as well as operations con-
structed from those protocols. All other operations are open operations. A single
arbitrary authority posts the results of the open operations but each authority
individually performs the operations and verifies the correctness of the posted
results.

Some of the open steps require a known encryption of a known plaintext
message. In such cases, rather than probabilistically encrypting the plaintext
with a secret randomness value, the authority deterministically encrypts the
plaintext with a known randomness value of 1 and subsequent operations are
used to add any necessary secret randomness.
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Note in the following protocol descriptions we sometimes abuse notation to
have �x� refer to a variable that contains an encryption of x.

5.1 Data Structures and Auxiliary Protocols

The counting stores the following encrypted information in list-based data
structures:

Candidates A list of encrypted remaining (non-excluded) candidates in ran-
dom order.

Ballot A list of encrypted preference votes. Each preference vote is for
a remaining candidate, and the list ordering represents a voter’s
preferences for the candidates in descending order.

Ballots A list of Ballot objects each of which corresponds to a valid
vote cast by a voter.

Counters A dictionary of encrypted candidate-tally mappings each of the
form (�c�, �t�), where the key c is a candidate and t is the tally
for c in the current round. We represent the dictionary as a list
of encrypted pairs.

In addition to the count, tally and exclude protocols specified in the following
subsections, several auxiliary protocols are used to manipulate the encrypted
data:

pet (�m1�, �m2�) Perform a plaintext equality test on the input ciphertexts.
pit (�m1�, �m2�) Perform a plaintext inequality test on the input cipher-

texts.
mix (List) Randomly permute and re-encrypt a list of messages. Each

message can be a single ciphertext or a pair of ciphertexts.
rotate (List) Randomly cyclically shift and re-encrypt a list of mes-

sages. Each message can be a single ciphertext or a pair
of ciphertexts.

append (List, m) Append the message m to List. The message can be a
single ciphertext or a pair of ciphertexts.

remove (List, �m�) Remove all ciphertexts matching �m� from List. In the
counting scheme only one element will be removed by this
protocol. We implement the remove protocol by executing
pet (�m�, �item�) for each �item� ∈ List. If List is a
dictionary, then remove the mapping corresponding to the
key m. In this case we use pet to compare �m� with the
encrypted keys in List.

These protocols reveal no information about their encrypted inputs apart from
the returned values, except that the remove protocol also reveals the position
of the removed item in the list. In this case prior mix or rotate operations ensure
the revealed position is random.
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5.2 Count Protocol

The count protocol (Protocol 1) is the top-level protocol for calculating the elec-
tion result. It invokes several sub-protocols to count the ballots. The inputs are
the lists Candidates and Ballots. The output is the identity of the winning
candidate.

1: count(Candidates, Ballots)
2: if Candidates has 1 remaining candidate �c�
3: decrypt(�c�) and post c
4: else
5: Counters← tally(Candidates, Ballots)
6: Counters← mix(Counters)
7: �cex�← min(Counters)
8: Ballots← exclude(Ballots, �cex�)
9: Candidates← remove(Candidates, �cex�)

10: count(Candidates, Ballots)

Protocol 1: Counting for the alternative vote

Before the counting commences the authorities create the list Candidates.
To do this they deterministically encrypt each valid candidate and then mix
the ciphertexts. Additionally each ballot in Ballots must contain an encrypted
preference vote for each valid candidate. In Section 8 we discuss how to ensure
the input ballots are valid.

The count protocol is a recursive procedure that performs a complete dis-
tribution of the votes, continuing until there is only one remaining candidate.
Each recursive step corresponds to a round of counting that invokes the tally
protocol to privately calculate the round tally and then the exclude protocol to
privately exclude a candidate.

The excluded candidate cex is the candidate with the minimum round tally.
The min protocol locates �cex� in Counters by executing pit (�ti�, �tj�) for
pairs of candidate-tally mappings (�ci�, �ti�) , (�cj�, �tj�) ∈ Counters. Tracking
the counter with the current minimum tally and updating the minimum counter
according to the result of pit requires (C − 1) invocations of pit for C counters.
As min reveals a partial ordering of the counters, a preceding mix operation is
necessary to ensure the revealed ordering is random. The min protocol resolves
ties randomly and avoids revealing whether any ties occur.

5.3 Tally Protocol

The tally protocol (Protocol 2) calculates the round tally for each remaining
candidate without revealing the tallies, the candidates, or the contents of the
ballots. The inputs are the lists Candidates and Ballots. The output is the
list Counters, which contains the round tally for each remaining candidate.

The protocol starts by initialising Counters. Each encrypted key is an exact
copy of an encrypted candidate �c� ∈ Candidates, and each encrypted tally is
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1: tally(Candidates, Ballots)
2: Counters← {}
3: for each �c� ∈ Candidates
4: �t�← �0�
5: Counters← append(Counters, (�c�, �t�))
6: for each Ballot ∈ Ballots
7: Counters← mix(Counters)
8: �v�← the highest preference vote in Ballot
9: (�c�, �t�)← lookup(Counters, �v�)

10: �t�← �t� � �1�

11: return Counters

Protocol 2: Calculating the round tallies

the deterministic encryption of the initial tally 0. Subsequent mixing introduces
secret randomness into all the ciphertexts.

The protocol iteratively calculates the tallies using the highest preference vote
(the head of the list) in each ballot. For each ballot the protocol locates the cor-
rect counter and then increments it by homomorphically adding the deterministic
encryption of 1. The lookup protocol locates the matching counter (�c�, �t�) ∈
Counters by executing pet (�v�, �c�) for each (�c�, �t�) ∈ Counters. Since
lookup reveals the position of the incremented counter, a prior mix operation is
necessary to ensure the revealed position is random.

5.4 Exclude Protocol

The exclude protocol (Protocol 3) deletes the excluded candidate from each
ballot without revealing the identity of the excluded candidate, or the contents of
any ballot. The inputs are the list Ballots and the encrypted excluded candidate
�cex�. The output is the updated list Ballots.

1: exclude(Ballots, �cex�)
2: for each Ballot ∈ Ballots
3: Ballot← append(Ballot, �m�)
4: Ballot← rotate(Ballot)
5: Ballot← remove(Ballot, �cex�)
6: Ballot← rotate(Ballot)
7: Ballot← remove(Ballot, �m�)
8: Ballot← restore(Ballot)
9: return Ballots

Protocol 3: Deleting the excluded candidate from each ballot

For each Ballot the protocol executes remove to delete the encrypted prefer-
ence vote �v� with v = cex. However, as the remove protocol leaks the position
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of the removed item, it is necessary to conceal the position of �v�. Hence the
exclude protocol first executes a rotate operation. Then although the ran-
domly shifted position of �v� is known at the instant of deletion, there is no
correlation with its original position in the ballot.

At this point exclude must undo the rotation to return the ballot to its orig-
inal ordering. To permit this, prior to the original rotate the protocol appends
a deterministically encrypted marker �m� (where m is a publicly known and
invalid preference) to the end of the ballot. Then afterwards it executes remove
to delete �m�. This also reveals the end of the ballot and the restore operation
simply shifts the list of preferences back to its original ordering. Note the rotate
before the marker is removed conceals the relative positions of �v� and �m�.

5.5 Optional Preferences Variant

A common variation in preferential systems is that voters are only required to
assign one preference, and the remaining preferences are optional. The minimum
disclosure counting scheme can also accommodate this situation. In this case we
still require that ballots contain an encrypted preference vote for each valid
candidate. Every ballot simply contains an additional encrypted null candidate
�⊥� as a terminator after the last desired preference. The voter, or possibly the
voting application, enters the remaining preferences in arbitrary order after �⊥�.

The only change needed in the counting scheme is in the count protocol. The
list Candidates now contains �⊥� and the recursion terminates when there are
two remaining candidates (the winner and ⊥). To conceal exhausted ballots the
tally protocol treats the null candidate the same as any other candidate. But
the counting must disregard the null candidate’s tally in order to avoid excluding
the null candidate. Hence immediately before executing min, the count protocol
must perform an additional remove (Counters, �⊥�) step.

6 Optimised Tally Protocol

We can optimise the tally protocol by using a radix M representation to encode
each candidate as in Baudron et al.’s voting scheme [1]. Let C be the number
of candidates, V be the number of voters, L = �log2 V � and M = 2L. Then we
encode the ith candidate as ci = M i−1 for i ∈ {1, . . . , C}.

The optimised tally protocol (Protocol 4) homomorphically adds the highest
preference vote in each ballot to compute a single encryption of the sum s =∑C

i=1 tici, where ti is the tally for ci. Under the radix M = 2L encoding, s is an
integer of length CL bits where the ith block of L bits corresponds to the bit
representation of ti.

The protocol uses an extract operation (see Section 4.3) to convert �s� into
an encrypted bit representation (�b0�, . . . , �bCL−1�). The protocol reconstructs
each encrypted tally �ti� from its bit representation and forms the encrypted
candidate-tally pairs as in the original tally protocol. The only difference is that
AllCounters contains a counter for each valid candidate including previously
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1: tally(Candidates, Ballots)
2: �s�← �0�
3: for each Ballot ∈ Ballots
4: �v�← the highest preference vote in Ballot
5: �s�← �s� � �v�

6: (�b0�, . . . , �bCL−1�)← extract(�s�, CL)
7: AllCounters← {}
8: for each i ∈ {1, . . . , C}
9: �ti�← �0�

10: for each j ∈ {0, . . . , L− 1}
11: �ti�← �ti� �

(
2j � �b(i−1)L+j�

)

12: AllCounters← append(AllCounters, (�ci�, �ti�))
13: AllCounters← mix(AllCounters)
14: Counters← {}
15: for each remaining candidate �r� ∈ Candidates
16: (�c�, �t�)← lookup(AllCounters, �r�)
17: Counters← append(Counters, (�c�, �t�))
18: return Counters

Protocol 4: Optimised tallying

excluded candidates. The final part of the protocol filters out the counters for
excluded candidates to produce Counters for only the remaining candidates.

Note that this optimisation is only appropriate when the sum s fits in the
plaintext space, that is C �log2 V � < k for a k-bit length public key. Of course it
is always possible to increase k but the increased work in performing operations
under a larger key may not be worthwhile. In most cases there should be no
problem because C tends to be reasonably small (typically less than 20) in
alternative vote elections.

The optimised tally protocol is essentially an efficient minimum disclosure
counting scheme for plurality systems. All that remains is to mix the coun-
ters then locate the counter with the maximum tally and decrypt the winning
candidate. Locating the maximum counter is analogous to the min protocol in
Section 5.2.

7 Analysis

7.1 Security

The counting scheme satisfies minimum disclosure, correctness, universal verifi-
ability and robustness.

Minimum Disclosure. Minimum disclosure follows from the privacy prop-
erties of the underlying primitives and the application of the hide and seek
paradigm. Apart from the final decryption to reveal the winning candidate, only
the plaintext equality and inequality tests potentially leak any information.
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The equality tests are used to construct the remove and lookup protocols
(Sections 5.1 and 5.3). Both protocols reveal only the position of an encrypted
message in a list of ciphertexts. The preceding mix or rotate ensures the revealed
position is random.

The inequality tests are used to construct the min protocol (Section 5.2).
This protocol reveals a partial ordering of a list of ciphertexts according to the
plaintexts. The preceding mix ensures the revealed partial ordering is random.

Therefore all the leaked information is random and reveals nothing about the
private counting state.

Correctness. The high-level description of the counting scheme doubles as a
specification of a (non-cryptographic) counting algorithm for the alternative vote.

Universal Verifiability and Robustness. The authenticated bulletin board
enables any party to examine and verify every step of the protocol execution.
Each step is universally verifiable and robust. There are two types of steps:
distributed operations and open operations.

1. A distributed operation requires the authorities to post non-interactive zero-
knowledge proofs that explicitly provide verifiability and robustness. Any
party can then check whether the operation is correct.

2. An open operation is a knowndeterministic function on previouslyposted mes-
sages. An arbitrary authority posts the result. Any party can verify the open
operationby independently computing the function as specified in the protocol
and then comparing the result to the posted result. Robustness follows as each
authority can also compute the result and compare it to the posted result. In
the event of inconsistencies, all the authorities post their results. The correct
result is the one that is identical for the quorum of honest authorities.

7.2 Complexity

Using typical costs of the underlying cryptographic primitives, we provide es-
timates of the computational and communication complexity. We use modular
multiplication as the unit of measure and assume that a modular exponentiation
costs O(k) multiplications for a security parameter k. For all the primitives used,
the number of modular multiplications performed has the same asymptotic com-
plexity as the number of bits transferred, and so the computational complexity
below also refers to the communication complexity.

In an election with A authorities, C candidates and V voters, the total cost of
performing or verifying the counting is O(AC2V k). Each authority individually
performs O(C2V k) operations. Publicly verifying and combining the individual
results of the authorities has an additional cost of O(AC2V k).

The total O(AC2V k) complexity arises from the O(ACV k) cost per counting
round, with

(
C−1

)
rounds in total. In each round the tally protocol costs each

authority O(V ) mix operations on O(C) ciphertexts, O(CV ) plaintext equality
tests, and O(ACV k) verification operations, resulting in an asymptotic complex-
ity of O(ACV k). The exclude protocol has the same cost. The min protocol does
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not affect the complexity as it only performs O(C) plaintext inequality tests, each
at a cost of O((A log V ) k).

Although the optimised tally protocol only costs O(V +(AC log V ) k) due to
the O(V ) homomorphic additions and the O((AC log V ) k) extraction of C log V
bits, the overall complexity remains the same because the exclude protocol still
costs O(ACV k) per round.

8 Integration with Voting Schemes

We can construct an end to end solution for cryptographic preferential elec-
tions by combining the minimum disclosure counting scheme with an existing
receipt-free or coercion-resistant online voting scheme (see Section 2). A common
approach in voting schemes is for the ballot to contain an encrypted vote for a sin-
gle candidate. The voter provides a non-interactive zero-knowledge proof of vote
validity so that anyone can verify the ballot is for a valid candidate. Adapting
such a voting scheme for preferential voting requires the following modifications.

1. Each voter casts a ballot containing a list of encrypted preference votes in de-
scending order of preference. As in the optimised tally protocol
(Section 6) we use the radix M representation to encode candidates. The
voter also provides an explicit proof of preferential vote validity.

2. After removing all unauthentic ballots and ballots with incorrect proofs of
vote validity, the authorities use the minimum disclosure counting scheme
to compute the election result.

Since a ballot must now contain an encrypted vote for each valid candidate, the
proof of preferential vote validity is more complex than for a plurality scheme.
First the voter must prove that each encrypted preference vote �vi� in the ballot
is for a valid candidate, for instance using Damgård and Jurik’s proof [4].

Next the voter must show that each preference vote vi is for a distinct can-
didate. An efficient solution is Groth’s proof of vote validity for the Borda vote
[9]. The proof is for a ballot that consists of a single encrypted preferential vote
�v�. A valid vote is of the form v =

∑C
i=1 π (i) vi, where C is the number of

candidates, π is a permutation of the rankings 1, . . . , C, and vi is a preference
vote for a valid candidate.

To use this proof the voter must first convert the list of encrypted preference
votes �v1�, . . . , �vC� into a single encrypted preferential vote �v�. In addition
the conversion must be universally verifiable. The homomorphic cryptosystem
provides a natural solution as anyone can compute �v� = (1 � �v1�)�(2 � �v2�)�
. . . � (C � �vC�).

Casting a ballot is efficient for the voter. The cost of creating a ballot is
O(Ck) and the total cost of constructing or verifying a proof of vote validity is
O((C log C) k).
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9 Conclusion

We introduced a minimum disclosure counting scheme for secure counting in
alternative vote elections. Its main contribution is that it achieves privacy in the
counting by performing operations only on ciphertexts and decrypting only the
winning candidate. Hence it thwarts signature attacks for bribery and coercion.
The scheme provides stronger security than both contemporary cryptographic
counting schemes and traditional manual counting. It can function as a stan-
dalone counting scheme or can be combined with an online voting scheme to
form a complete online election scheme.

Even if the election authorities deliberately weaken the counting scheme to
reveal specific counting data, minimum disclosure in the protocol is still im-
portant in order to ensure there is no additional and unintended information
leakage. This can be especially relevant when initially adopting cryptographic
counting. For instance it may be desirable to use the counting scheme in parallel
with manual counting and then compare the results. Since the manual count
must resolve any ties using the same random choices as the counting scheme,
then in this case it would be necessary to reveal some counting data such as the
order of exclusions.

Worldwide, plurality electoral systems are the most common for government
elections. Interestingly, preferential electoral systems are gradually becoming
more widespread. New Zealand and Scotland have recently adopted preferential
systems for some elections. In parts of Canada, the UK and the USA, there is
currently a push to switch to preferential systems.

Historically, a barrier to the adoption of preferential systems has been the
complexity of manual counting. But now computers can automate the counting.
Indeed many preferential elections already use electronic counting, where election
authorities manually enter votes from paper ballots into an electronic database
and a computer calculates the result. In fact for some preferential systems, such
as the version of the single transferable vote recently introduced for local elections
in New Zealand, the counting algorithm is so complicated that manual counting
is infeasible.

Electronic counting offers many advantages. However the shift towards naive
electronic counting without cryptographic safeguards is an alarming trend. One
serious concern is unauthorised access to the voting data. Compromising the
electronic database of plaintext votes opens the door to the potential for large-
scale bribery and coercion of voters through signature attacks. Another issue is
the lack of verifiability. It is notoriously difficult to detect flaws in the software
implementation and the hardware. Publicly releasing the complete voting data
for independent verification, as required in Australia, violates the secret ballot
and jeopardises effective democracy. Therefore verifiably secure cryptographic
approaches to preferential counting have an important role to play in both paper
and electronic elections.

Cryptographic counting for the alternative vote raises two open problems.
First, what is the optimal complexity? For C candidates and V voters, the
lower bound is at least O

(
CV

)
from the O

(
C

)
rounds and O

(
V

)
distributed
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ballot operations per round. Intuitively the limiting factor is the exclusion of a
candidate without revealing its identity or ranking in any ballot. Regardless of
the ballot representation, this seems to require O

(
C

)
work per ballot. Then the

optimal cost would be O
(
C2V

)
.

Second, is it possible to precisely define what counting information is sensi-
tive? In the context of signature attacks it appears very difficult to develop an
appropriate definition. However a weaker requirement than minimum disclosure
might enable coercion-resistant schemes of lower cost.
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