
R.V. O’Connor et al. (Eds.): EuroSPI 2009, CCIS 42, pp. 105–116, 2009.
© Springer-Verlag Berlin Heidelberg 2009

The QualOSS Process Evaluation:
Initial Experiences with Assessing Open Source Processes

Martín Soto and Marcus Ciolkowski

Fraunhofer Institute for Experimental Software Engineering
Fraunhofer-Platz 1

67663 Kaiserslautern, Germany
{soto,ciolkows}@iese.fraunhofer.de

Abstract. For traditional software development, process maturity models
(CMMI, SPICE) have long been used to assess expected product quality and
project predictability. For the case of OSS, however, these models are generally
perceived as inadequate. In practice, though, many OSS communities are well-
organized, and there is evidence of varying levels of process maturity in OSS
projects. This paper presents work in progress—performed as part of the EU
project QualOSS—on developing a process evaluation framework specifically
aimed at OSS projects. We present a first version of our evaluation procedures,
and discuss some lessons learned during its preliminary application to a small
number of OSS projects.

Keywords: Software process, Open Source Software, OSS, process assessment,
process evaluation, QualOSS, software quality.

1 Introduction

Since the introduction of the Capability Maturity Model (CMM) in the early 1980s,
maturity-oriented process assessment models have become a fundamental tool for
determining the extent to which an organization can deliver software on time and with
an acceptable level of quality. Currently, the most prominent examples of such proc-
ess assessment models are CMMI-DEV (Capability Maturity Model® Integration for
Development [10]) and SPICE (Software Process Improvement and Capability
dEtermination [4]).

The growing popularity of Open Source Software (OSS) constitutes a big chal-
lenge to software process assessment, since, at first sight, maturity-oriented models
appear very difficult to apply to OSS development. On the one hand, they seem to
expect an organizational structure that is not present in most OSS communities, and,
on the other hand, it is a widespread belief that OSS communities operate in an essen-
tially chaotic way, and that, for this reason, no systematic development processes can
be taking place during OSS development. Consequently, most casual observers would
regard traditional maturity models as completely inappropriate for OSS software.

We disagree with this vision. The main assumption underlying process assessment
approaches is that mature processes consistently lead to higher-quality products,

106 M. Soto and M. Ciolkowski

whereas for an organization with immature processes, the capacity to deliver high-
quality products is unreliable and cannot be predicted. There is no reason to believe
that this assumption is not valid for OSS. Concretely, we expect that a higher level of
process maturity will lead to better products and more sustainable communities, and
that successful OSS communities often owe a good portion of their success to the
introduction of sound software processes.

Indeed, many OSS communities have been able to consistently produce software of
adequate quality, making regular releases over the years. There is evidence that this
consistency does not stem from some mysterious property of OSS development that
makes it work against all odds, or from the sheer talent of individual developers, but
that it could be the result of good software development practices being applied and
enforced by OSS communities in a disciplined fashion [7]. For this reason, the EU
project QualOSS—which is generally concerned with the overall quality of OSS
products, as well as with the sustainability of the communities around them—decided
to add a process evaluation framework to its quality model, which is aimed at deter-
mining the ability of an OSS community to consistently deliver adequate products
over time.

In this paper, we describe the first version of this process evaluation framework,
and discuss our preliminary experience with applying it to a small number of OSS
projects. In order to provide some background to the reader, Section 2 briefly de-
scribes the overall quality model defined by the QualOSS project. After a short
discussion of related work in Section 3, Section 4 presents the QualOSS process
evaluation in detail. Our initial experience with the process evaluation is discussed in
Section 5. We close with some general conclusions and a brief discussion of future
work in Section 6.

2 The QualOSS Quality Model

The process evaluation framework we describe in this paper is one component of the
comprehensive quality model developed for the Quality of Open Source Software
(QualOSS) project. Since the process evaluation framework was designed from the
ground up to contribute to the overall QualOSS model, we start by describing it
briefly.

The QualOSS quality model (or, simply, “QualOSS model” for short) is intended
to support the quality evaluation of OSS projects, with a focus on evolvability and
robustness. One central, underlying assumption while defining the model has been
that the quality of a software product is not only related to the product itself (code,
documentation, etc.), but also to the way the product is developed and distributed. For
this reason, and since the development of OSS products is the responsibility of an
open community, the QualOSS model takes both product- and community-related
issues into account on an equal basis, and as comprehensively as possible.

The QualOSS model is composed of three types of interrelated elements: quality
characteristics, metrics, and indicators. Quality characteristics correspond to the con-
crete attributes of a product or community that we consider relevant for evaluation (see
below for an explanation of how these characteristics were chosen). Metrics corre-
spond to concrete aspects we can measure on a product or on its associated community
assets that we expect to be correlated with our targeted quality characteristics. Finally,

 The QualOSS Process Evaluation 107

indicators define how to aggregate and evaluate the measurement values resulting from
applying metrics to a product or community in order to obtain a consolidated value that
can be readily used by decision makers when performing an evaluation.

The quality characteristics in the model are organized in a hierarchy of two levels
that we call characteristics and subcharacteristics for reasons of simplicity. The sub-
characteristics are considered to contribute in one way or another to the main charac-
teristic they belong to. For defining our hierarchy of quality characteristics, we relied
mainly on three sources: (1) related work on OSS quality models, (2) general stan-
dards for software quality, such as ISO 9126 [6], and (3) expert opinion. For the third
source, we conducted interviews among industry stakeholders to derive relevant crite-
ria for the QualOSS model.

Given our emphasis on covering not only OSS products but also the communities
behind them, we have grouped the quality characteristics into two groups: those that
relate to the product, and those that relate to the community. On the product side, the
QualOSS model covers the following top-level quality characteristics:

− Maintainability: The degree to which the software product can be modified. Modi-
fications may include corrections, improvements, or adaptation of the software to
changes in the environment, and in requirements and functional specifications.

− Reliability: The degree to which the software product can maintain a specified
level of performance when used under specified conditions.

− Transferability (Portability): The degree to which the software product can be
transferred from one environment to another.

− Operability: The degree to which the software product can be understood, learned,
used and is attractive to the user, when used under specified conditions.

− Performance: The degree to which the software product provides appropriate per-
formance, relative to the amount of resources used, under stated conditions.

− Functional Suitability: The degree to which the software product provides func-
tions that meet stated and implied needs when the software is used under specified
conditions.

− Security: The ability of system items to protect themselves from accidental or ma-
licious access, use, modification, destruction, or disclosure.

− Compatibility: The ability of two or more systems or components to exchange in-
formation and/or to perform their required functions while sharing the same hard-
ware or software environment.

The community side of the model, in turn, covers the following characteristics:

− Maintenance capacity: The ability of a community to provide the resources neces-
sary for maintaining its product(s) (e.g., implement changes, remove defects, pro-
vide support) over a certain period of time.

− Sustainability: The likelihood that an OSS community remains capable of main-
taining the product or products it develops over an extended period of time.

− Process Maturity: The ability of a developer community to consistently achieve
development-related goals (e.g., quality goals) by following established processes.
Additionally, the level to which the processes followed by a development commu-
nity are able to guarantee that certain desired product characteristics will be present
in the product.

108 M. Soto and M. Ciolkowski

The QualOSS process evaluation framework is aimed at covering the last characteris-
tic mentioned, namely, process maturity. In what follows, we describe this framework
in more detail.

3 Related Work: OSS Assessment

In recent years, Open Source Software has often been used as the target of quantita-
tive analyses of code quality, mostly due to the fact that large code repositories are
available for analysis. Many publications exist on (semi-)automatic analysis of code,
mailing lists, bug tracking, and versioning systems. Contrary to what happens with
code and repository analysis, few publications have addressed OSS processes so far.
A paper by Michlmayr [7] is one notable exception, providing evidence of disciplined
processes in OSS projects and relating it with project success.

As a reaction to the insight that software quality is not restricted to code aspects,
assessment models for OSS projects have emerged whose aim is to support potential
OSS users in making decisions regarding the selection of OSS products. The most
prominent examples are the Qualification and Selection of Open Source Software
(QSOS) model [9], two different models called Open Source Maturity Model
(OSMM)—one from CapGemini [2] and one from Navica [8]—and the Open Busi-
ness Readiness Rating (OpenBRR) model [1]. Although these models take the OSS
product into account (i.e., code, documentation), as well as the community that pro-
duces it, they only have a rudimentary process perspective, if any. For example,
QSOS considers two process criteria: quality assurance processes (with levels none,
informal, supported by tools), and bug/feature request tools (none, standard tools,
active use of tools), which, in our opinion, are far from covering the wide variety of
quality-relevant processes typically observed in OSS development. This lack of cov-
erage for the process perspective constitutes one of our main motivations for propos-
ing the more comprehensive approach discussed here.

4 Towards a Process Maturity Model for OSS

As discussed in the introduction, the idea of assessing an OSS community in order to
determine which good practices it follows, as well as how established these practices are,
is perfectly reasonable. Still, it is true that existing process assessment models cannot
generally be applied directly to OSS, as they include too many elements that are specific
to companies and other conventional development organizations. In this section, we de-
scribe our process evaluation framework, which is directly aimed at OSS development.
This model reuses a number of the ideas present in existing maturity models, but adapts
them in order to make them more directly applicable in an OSS context.

4.1 Maturity Models as a Basis for Open Source Process Assessment

In order to create an assessment model for OSS process maturity, we started by review-
ing existing maturity models with the purpose of extracting, and, where necessary,
adapting some of their elements to the specifics of OSS. Concretely, we used the Capa-
bility Maturity Model for Software Development (CMMI-DEV) as a starting point. Re-
leased in 2006, the current CMMI-DEV model is the latest version in a series of

 The QualOSS Process Evaluation 109

maturity models started in the 1980s by Humphrey's Capability Maturity Model
(CMM). CMMI-DEV covers 22 process areas, ranging from process improvement prac-
tices to specific development practices. Each process area is subdivided into a number
of goals, which, in turn, are structured as sets of practices. Goals and practices are asso-
ciated to process maturity levels (also called capability levels when they are related to a
single process area). In order to be classified at a particular maturity level, an organiza-
tion must have implemented all practices required by that level.

Given how comprehensive CMMI-DEV is, reaching its highest capability levels
represents a serious challenge for any software development organization. Clearly,
OSS communities are not an exception in this respect, and, in addition, the vast ma-
jority of them are not involved in any explicit process improvement efforts. Conse-
quently, most, if not all, OSS communities are still quite far from reaching the levels
of process discipline required by the higher levels of CMMI-DEV.

This last fact notwithstanding, there is evidence of good practices being applied in
an established and disciplined fashion by a variety of OSS communities and with re-
gard to different areas of the software development process. We think that many of
these practices correspond to the spirit, if not directly to the letter, of the practices and
goals specified by CMMI-DEV.

Some examples of such disciplined good practices, observed in prominent OSS
communities, are:

− Version/Configuration Management: Many OSS projects rely on advanced ver-
sioning tools for managing their source code. In most cases, access to such systems
will be carefully regulated, and the processes for creating new versions are well es-
tablished and enforced.

− Release Management: The GNOME Desktop project, as well as the popular
GNU/Linux distribution Ubuntu, both have strict 6-month release cycles that have
been successfully operating for years. The complex coordination process required
for each such cycle is well documented and carefully supervised and enforced by
an established release board.

− Requirements Management: The community behind the Python programming lan-
guage has a well-documented requirements elicitation and management process as
represented by the so-called Python Improvement Proposals (PIPs). Proposals for
language enhancements are presented by community members and thoroughly re-
fined through feedback from the community until they are considered ready for
implementation. The process is conducted in the open and actively enforced by the
community.

Many other similar examples can be found by directly observing the dynamics of OSS
communities. This led us to believe that, despite the inviability of applying a full-
fledged process maturity model to OSS, a process evaluation model for OSS is not
only viable, but potentially very useful in order to gauge the ability of OSS communi-
ties to consistently deliver software of appropriate quality. This belief constitutes the
main motivation for the QualOSS process evaluation framework described here.

4.2 The Generic QualOSS Process Evaluation

In its current form, our Open Source process evaluation framework covers a number
of basic software development tasks (described in more detail in the next subsection).

110 M. Soto and M. Ciolkowski

Each of these tasks is evaluated with respect to five main questions, which constitute
a simplified form of the sort of assessment a standard maturity model would require:

1. Is there a documented process for the task?
2. Is there an established process for the task?
3. If there is an established process, is it executed consistently?
4. If both an established, consistent process, and a documented process could be

found, do they match?
5. Is the process adequate for its intended purpose?

In order to produce assessment results that allow for comparison of a project's per-
formance in different areas, the answers to these questions are encoded in a prede-
fined, normalized form. These basic results, in turn, are used to compute indicators
that are integrated into the QualOSS model, and that, similar to other QualOSS met-
rics, are intended to contribute to an overall view of an OSS project's quality.

In order to address these questions for each of our selected tasks, we have already
defined simple evaluation procedures. In the following, we outline these procedures.

Question 1 is concerned with process documentation. Although process documen-
tation is seldom found under that name for Open Source projects, many projects have
indeed documented procedures for a variety of development tasks. The reasons for
providing documentation are often related with making it easier for external contribu-
tors to perform certain tasks (e.g., submit a problem report or a so-called patch file
with a correction), as well as with making certain tasks more reliable (release proc-
esses are a typical case). Our procedure for finding documentation for a task is based
on searching through the Internet resources made available by a given project for the
relevant information as follows:

1. Check project resources for documentation regarding the task. Perform an Internet
search if necessary. Acceptable documentation are explicit documents (Web/Wiki
pages, archived mail/forum messages) that contain direct instructions about per-
forming the task. In some cases, these are presented as templates, or as a set of ex-
amples.

2. If no explicit documentation was found, check if a tool is being used to support the
task. If this is the case, check if the tool can be used in a self-explanatory manner.
If this is the case, this can be accepted as documentation.

3. If 30 minutes of search do not yield any positive results, stop searching.

The final step confines the evaluation to a time box. This is important because, in fact,
we can never be sure that there is no documentation about a task, only that it could
not be found with reasonable search effort.

The second question is concerned with how established a process is. Notice that
this question is, to a large extent, independent from the first one, because undocu-
mented processes can nonetheless be well established, and documented processes may
not be followed as prescribed. In order to check for established processes, standard
maturity models use the fact that such processes leave a paper trail behind them that
can be used to observe them in a very reliable manner. If such a trail cannot be found,
the odds are very high that the process is not established, e.g., not followed at all, or
not followed in a consistent manner. Strictly speaking, of course, a paper trail cannot
be found for OSS processes, but a data trail is often seen when looking at the diverse
data repositories that belong to a project, such as:

 The QualOSS Process Evaluation 111

− Internetbased tools, if the process is supported by a tool. For example, such proc-
esses as defect reporting and issue management can be analyzed by looking at the
discussions stored in a project's bug/issue tracking system.

− Mailing lists, forums, Wikis, etc, used by community members to collaborate while
performing the process. These repositories are useful, for instance, to track deci-
sion-related processes such as release planning, or to follow the interaction be-
tween developers and testers in preparation for a release.

− Internet-based repositories used to publish the results of a process, such as version-
ing repositories or download servers.

The procedure used to evaluate how established a process is consists of identifying
specific instances of process execution in the potential process trail:

1. Determine the period of time the process has been/was active, by looking at the
dates for the identified instances.

2. Identify instances where the process was successfully completed.
3. Identify instances where the process was not successfully completed/was left un-

finished.
4. Identify currently running instances.
5. Use the identified instances to classify the process (see below).
6. If the number of instances available is large, the analysis can be performed by ran-

domly sampling a smaller number of them.

The outcome of this evaluation should be one of the following four possible results:

1. No established process: no data trail found, or too few instances to be representa-
tive.

2. Dead process: tried at some point, but no evidence of continued use, no instances
currently active.

3. Young/immature process: introduced recently, few actual instances, but instances
appear active.

4. Established process: many successful completed instances, significant number of
active instances.

The third question, which is subordinated to the previous one, refers to the consis-
tency with which a process is executed over time. Clearly, this question can also be
answered by looking at the process trail in order to sample instances of the established
process for consistency. The purpose of this inspection is to look for potential signifi-
cant variations in the way individual instances are executed. The evaluation should
result in one of the following values:

1. Not applicable: no established process.
2. Low consistency: instances vary strongly in the way they are executed.
3. High consistency: relatively few variations between instances.

The fourth question has to do with the degree of coincidence between the documented
process and the process that is actually executed. It is the last question of those con-
cerned with the process maturity in itself, and depends on the previous ones being
answered in a positive way. The evaluation procedure, of course, consists of compar-
ing a representative number of instances of the process with the identified process
documentation. Possible results for this evaluation are:

112 M. Soto and M. Ciolkowski

1. Not applicable: no documented process, no consistent process.
2. Low agreement: low agreement between documentation and established practice.
3. High agreement: high agreement between documentation and established practice.

The fifth and final question is concerned with how adequate the process is for the task it
is intended for. This is, of course, a difficult question, not only because it is specific to
each particular task, but because experts often disagree regarding the practices that are
appropriate for a certain task. Our approach to handling this problem is to provide a list
of additional questions that address the specificities of every task. These questions are
normally not comprehensive, but provide a minimum checklist that helps to make sure
that essential aspects of the corresponding process are being taken into account. We see
these questions only as complementary to the first four assessment questions, because,
clearly, if a process is established in the sense defined above, it is probably adequate to a
certain measure, given how pragmatic OSS communities usually are.

4.3 Process Areas Currently Covered by QualOSS

As already mentioned, the QualOSS process evaluation covers a number of software
development related tasks that are usually important for the success of an OSS pro-
ject. The following table lists the tasks that are currently covered (left column) and
provides a brief description for each of them, together with some information about
where their process data trail could be found (right column). This is just an initial se-
lection of tasks, which we are likely to extend as we gain experience with the process
evaluation.

Task Description and Evidence Sources

Change submission Submit changes (e.g., defect corrections, enhancements),
typically in the form of so-called patch files, to the pro-
ject for potential inclusion. This task is restricted to
changes proposed by community members who do not
have commit rights to the main project versioning reposi-
tory, and thus cannot change the project's code directly.

Common methods used to submit changes include
sending them to a mailing list, putting them in an issue
tracking system, or, more recently, publishing modified
code using a distributed version control system. After
identifying the method used by a project, individual
change submission instances can be studied using the
generic evaluation procedure.

Review changes
submitted by the
community

This task is complementary to the previous task, namely,
changes submitted by community members must be re-
viewed and either rejected with an appropriate justifica-
tion, or accepted and integrated into the project's main
code repository.

This task can be analyzed in a way similar to the pre-
vious task.

 The QualOSS Process Evaluation 113

Task Description and Evidence Sources

Promote actively
contributing members
of the community to
committers

Community members who provide valuable contributions
to the project over a period of time often receive rights to
contribute directly to a project's code repository.

Instances of this process can sometimes be seen on a
project's development mailing lists.

Review changes by
committers

In some projects, changes proposed by developers with
direct commit rights are also subject to review by other
community members. This type of peer reviews can sig-
nificantly contribute to code quality.

This process can be evaluated by looking at the
project's change log files or at the log messages written
when committing changes to the code repository.

Propose significant
enhancements

Some projects have disciplined processes that allow
community members to formally propose enhancements
for discussion by the community.

Enhancement proposals may take many forms, includ-
ing web pages, Wiki pages, and messages submitted to a
mailing list or forum.

Report and handle
issues with the
product

For obvious reasons, this process is present in almost
all Open Source projects in some form or another.

Except for very small projects, this task is normally
supported by an issue tracking system, in which case
process instances correspond to the reports in the system,
as well as their accompanying discussions. Small projects
may handle this through a mailing list, in which case in-
stances are the messages reporting the problem and the
discussions following it.

Test the program or
programs produced
by the project

Most projects doing repeatable testing do it by defining
an automated test suite. If no test suite is available, there
may be explicitly defined manual test cases, but this is
much less likely to happen. Test suites and defined test
cases are normally part of the source code and can be
found in the code repository. Instances of this process are
test reports, either created automatically by running the
test suite or manually.

Decide at which point
in time a release will
be made.

Either releases are done on a time-based fashion or based
on a feature “road map”. Instances of any of these two
documents can often be found as part of a project's web
or Wiki pages, or, occasionally, as messages to a certain
mailing list or forum.

114 M. Soto and M. Ciolkowski

Task Description and Evidence Sources

Release new versions
of the product

Release processes in Open Source often include the crea-
tion of a number of alpha, beta and release-candidate
versions that are delivered by the developers in order to
obtain feedback from the community (active users of an
OSS system are often willing to test these versions and
report about problems they may find). Release processes
also often include running a test suite or performing other
forms of formal testing.

This process can be followed by looking at release an-
nouncements for preliminary versions in a project's mail-
ing lists or forums. Actual releases can be easily found in
software download repositories.

Backport corrections
in the current release
to previous stable
releases

When a stable and an unstable (development) branch of a
project are maintained simultaneously, so-called back-
ports are often necessary that move corrections or se-
lected improvements made to the development branch
into the stable branch.

Backports are often announced in project mailing lists
or forums.

5 Initial Experience with the QualOSS Process Evaluation

To this date, our experience with the QualOSS process evaluation is still quite limited,
since we have applied it to only a handful of projects so far. A larger number of full
QualOSS OSS assessments—which include the process assessment—is planned for
the final, evaluation phase of the QualOSS project. We expect this effort to result in
significant adjustments to the process assessment framework, as we better understand
its limitations and improve it accordingly.

Nonetheless, our current experience has already taught us some valuable lessons:

− In its current form, the QualOSS process evaluation can be applied to small to me-
dium OSS projects in about six hours of work. This makes its costs reasonable for
a number of purposes, including comparison when selecting between OSS alterna-
tives. A caveat here is that, so far, evaluations have been conducted exclusively by
an OSS and process expert. We still have to evaluate our approach when applied
by other assessors who may lack this expertise. This includes, among other aspects,
studying inter-rater reliability in this context.

− The time box limitation of 30 minutes of searching may lead to important informa-
tion being missed. One alternative for handling the collection of information about
a task would be to ask the community directly, for example, by writing to an ap-
propriate mailing list. This would not only make this aspect of the process evalua-
tion fairer, but would potentially create opportunities for the community to learn
from the evaluation and improve based upon it.

 The QualOSS Process Evaluation 115

− In some cases, the number of instances of a particular task is too high for manual
inspection. For example, some projects have databases of reported issues that have
been operating for years and contain thousands of reports. So far, we have ana-
lyzed such data repositories by manually choosing a small number of instances “at
random”, but this method is clearly unsatisfactory due to the high risk of introduc-
ing biases. Ideally, we should be able to guarantee that we did a fair, random sam-
ple, and that the number of instances observed is representative. We still have to do
more research in appropriate methods for this purpose, and, potentially, provide
software tools to assist this procedure.

− The importance of some of the tasks listed in the previous section may vary
depending on the size of the evaluated project. For instance, many small OSS
projects have a single maintainer who is the only person with access to the main
versioning repository. Such projects will rarely, if ever, accept new permanent con-
tributors, and thus having a defined process for this purpose would be simply un-
necessary. On the other hand, large projects with tens or even hundreds of official
developers definitely require an explicit process for accepting new members. For
this reason, we are considering the idea of giving variable importance to different
tasks depending on such characteristics of a project as its number of active con-
tributors or its code size.

Future versions of the QualOSS process evaluation framework are likely to incorpo-
rate enhancements based on the previous observations.

6 Conclusions and Future Work

The purpose of the QualOSS project is to produce a comprehensive quality model for
assessing OSS projects. In this paper, we have presented a small portion of this work,
namely, a process evaluation framework aimed at OSS. We expect OSS process
evaluation to provide a better foundation for judging a community's ability to deliver
high-quality software, as well as its long-term sustainability (“will this project exist in
10 years?”). Indeed, sustainability of suppliers is critical to many stakeholders, and is
also a problem with commercial software. For example, the European defense consor-
tium EADS decided to turn a critical piece of software into OSS in order to become
independent of specific suppliers [11].

Moreover, highly regulated industries, such as the automotive, medical, or pharma-
ceutical industries, have established standards for evaluating software, which include
assessment of the supplier [3] [5]. These industries often find it problematic to use
OSS, because there is little support for the assessments required by their quality stan-
dards. Consequently, we believe that OSS assessment models that include a process
assessment may help to increase the adoption of OSS in these industries.

As mentioned in Section 5, our experience with applying the QualOSS process as-
sessment is still very limited. The final, evaluation phase of the QualOSS project will
provide us with a valuable opportunity to introduce some initial improvements—such
as those suggested in Section 5—as well as to collect more experience with using the
process evaluation framework. We expect this experience to allow us to produce a
much more robust and reliable framework during the next few months.

116 M. Soto and M. Ciolkowski

Acknowledgments

This work was supported in part by the EU QualOSS project (grant number: 033547,
IST-2005-2.5.5). We would like to thank Sonnhild Namingha, from Fraunhofer IESE,
for proofreading this paper.

References

[1] Business Readiness Rating, http://www.openbrr.org/ (last check March 9, 2009)
[2] Cap Gemini: OSS Partner Portal. Internet address,

http://www.osspartner.com/ (last check March 9, 2009)
[3] International Society for Pharmaceutical Engineering (ISPE): Good Automated Manu-

facturing Practice (GAMP-4) Supplier Guide for Validation of Automated Systems in
Pharmaceutical Manufacture (1995)

[4] ISO/IEC 15504-5:2006, Software Process Improvement and Capability Determination,
Part 5

[5] ISO/IEC 61508:1998, Functional safety of electrical/electronic/programmable electronic
safety-related systems

[6] ISO/IEC 9126 International Standard, Software engineering – Product quality, Part 1:
Quality model (2001)

[7] Michlmayr, M.: Software Process Maturity and the Success of Free Software Projects.
In: Zieliński, K., Szmuc, T. (eds.) Software Engineering: Evolution and Emerging Tech-
nologies

[8] Navica Software Web Site, http://www.navicasoft.com/ (last check March 9,
2009)

[9] Qualification and Selection of Open Source software (QSOS) Web Site,
http://www.qsos.org/ (last check March 9, 2009)

[10] Software Engineering Institute (SEI): Capability Maturity Model Integration (CMMI)
for Development, Version 1.2 (2006)

[11] TOPCASED: Toolkit in Open Source for Critical Applications & Systems Development,
http://www.topcased.org/ (last check March 13, 2009)

	The QualOSS Process Evaluation: Initial Experiences with Assessing Open Source Processes
	Introduction
	The QualOSS Quality Model
	Related Work: OSS Assessment
	Towards a Process Maturity Model for OSS
	Maturity Models as a Basis for Open Source Process Assessment
	The Generic QualOSS Process Evaluation
	Process Areas Currently Covered by QualOSS

	Initial Experience with the QualOSS Process Evaluation
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

