
R.V. O’Connor et al. (Eds.): EuroSPI 2009, CCIS 42, pp. 13–31, 2009.
© Springer-Verlag Berlin Heidelberg 2009

What Is a Test Case? Revisiting the Software
Test Case Concept

Dani Almog and Tsipi Heart

The Department of Industrial Engineering and Management
Ben Gurion University of the Negev

almog.dani@gmail.com, heart@bgu.ac.il

Abstract. Since the 1980s the term "Test Case" (TC) has been recognized as a
building block for describing testing items, widely used as a work unit, metric
and documentation entity. In light of the centrality of the TC concept in testing
processes, the questions this paper attempts to answer are: What are the uses of
TC in software testing? Is there a general, commonly agreed-upon definition of
a TC? If not, what are the implications of this situation?

This article reviews and explores the history, use and definitions of TCs, show-
ing that while extensively used in research and practice, there is no one formal
agreed upon definition of a TC. In this paper we point at undesirable implications
of this situation, suggest four criteria for a 'good' TC definition, and discuss the
benefits accrued from such a definition. We conclude by urging the academic and
professional community to formalize a TC definition for the benefits of the indus-
try and its customers, and strongly believe that this review paves the way to ar-
ticulating a formal TC definition. Such a definition, when widely accepted, will
clarify some of the ambiguity currently associated with TC interpretation, hence
with software testing assessment which relies on TCs as metrics. Furthermore, a
formal definition can advance automation of TC generation and management.

1 Introduction

A research initiated by the US Department of Commerce [1] estimated an annual
economic damage equivalent to $20 – $52 billion as a result of inadequate software
testing infrastructure and processes. The authors classified two primary categories of
damages: damages users incurred because of software malfunction, and damages
associated with software modification, fixing and re-testing. Although published some
six years ago, there is a sound indication that the situation has not significantly im-
proved. Hence, the alarming magnitude of damages caused by inappropriate software
testing merits closer investigation into plausible reasons and explanations to this un-
desirable situation in a quest for solutions and improvement.

Because software testing is a broad topic which cannot be grasped in a single work,
this study focuses on one specific aspect of the software testing domain – the test case
(TC), since TC is a cornerstone in software testing processes, and because, as shown
later on, it is posited that inconsistencies in TC definitions and use throughout the
testing process is perhaps a cause for fundamental flaws.

The questions this paper attempts to answer are: What is the role of TC in software
testing? Is there a general agreement about the definition of TC? If not, what are the
consequences of this situation?

14 D. Almog and T. Heart

We believe that answering these questions will clarify some of the ambiguity cur-
rently associated with TC interpretation, and pave the way to articulating a formal TC
definition. If and when widely accepted, it can relieve some of the ambiguity associ-
ated with software testing metrics that commonly relies on counting TCs. Further-
more, an appropriate formal definition can drive automation of TC generation and
management. Therefore, this work is clearly a contribution to software process im-
provement by dealing with an important aspect of testing – the test case.

The rest of the paper is organized as follows: common software testing processes and
practices are briefly described in the next chapter, showing the importance of testing
processes in software engineering, and the TC as the testing building block. We then
describe the literature survey methodology employed. Next, several definitions for TCs
are presented as a result of the literature survey, showing the conceptual variability of
these definitions. We then proceed to a review of the literature discussing the centrality
of TCs in testing processes, concluding with a suggestion of dimensions by which a TC
definition can be evaluated, as well as an evaluation of existing definitions based on
these dimensions. The paper concludes with a discussion of the implications of the lack
of a unified approach to TCs and whether there is a need to re-define this term.

2 Common Practices in Software Testing

In the following section the importance of testing in terms of its substantive role in
software development on the one hand, and of its complexity, on the other hand, is
briefly presented. This background clarifies the merit in further looking into TC use
and definitions, since TCs are building blocks of testing.

The testing effort undoubtedly comprises a significant portion of the programming
effort. For example, an early research conducted at NASA [2] found that testing ef-
forts comprise 30% of the time invested by programmers, and 37% of their actual
work days (Figure 1).

Fig. 1. Distribution of the effort among programmers' tasks (NASA) [2]

 What Is a Test Case? Revisiting the Software Test Case Concept 15

A more recent study conducted in Alberta, Canada [3] identified large variance
among projects regarding testing resources in terms of the ratio of developers to test-
ers, showing that about 50% of the studied projects allocated around two developers
to one tester (~50%), whereas 35% invested much less personnel resources in testing
(five developers to one tester, ~20%). Other studies generally support these findings,
substantiating the positive correlation between software development process matur-
ity and the degree of investment in software testing – around 35% of the overall in-
vestment [4, 5].

Testing tasks have been traditionally classified into three phases [6]: 1) Prepara-
tion: plan, design, construct, 2) Execution, and 3) Verification: verify results against
expected outcomes and report. These three stages were often performed sequentially
as in structured software development process models, demanding rather equal re-
source investment. Recently, however, there is a tendency to change this structured
model due to several reasons [7]. One reason is the growing popularity of new soft-
ware development models and techniques, such as agile methods, service oriented
architecture (SOA), and test driven development (TDD), all three indicating testing
processes that somewhat deviate from the structured process models. Along changes
in development models, testing automation has matured and is now more prevalent,
potentially easing the execution phase. Finally, verification and validation processes
become more complex due to the growing complexity of the developed applications
and the data units involved. For example, growing complexity can be attributed to
data representation simultaneously using various techniques as databases, XML files,
encryption, compression, coding, dynamic data location, etc. Consequently, a deeper
understanding of the data structure and characteristics is required during testing, as
well as more sophisticated tools and processes.

In light of the growing complexity of the testing process, Bach [8] advocated ex-
ploratory testing, defined as “any testing to the extent that the tester actively controls
the design of the tests as those tests are performed and uses information gained while
testing to design new and better tests” (p. 2). This methodology addresses the asser-
tion that complete testing preparation is unlikely at an initial phase of the testing
process. Thus, Kaner [9] explained the advantages of exploratory testing in allowing
testers to learn while they test, to get more sophisticated as they learn, interpret and
design their tests differently as they learn more about the product, the market, the
variety of uses of the product, the risks, and the mistakes that are likely to be made by
the humans who wrote the code. Under exploratory testing the test plan evolves dur-
ing the test development and execution, rather than pre-planned before the actual
complexity of the product is realized. This realm, however, might be practically prob-
lematic when having to pre-estimate testing efforts as part of the overall project esti-
mation. Evidently, there is a broad agreement that testing is a complex task, hence
difficult to estimate and quantify. In-depth examination of various testing processes
and techniques is beyond the scope of this work, instead, we focus on the common
building block of all software testing techniques – the TC. Thus, in order to better
understand the problem at hand, we next bring a review of the literature, elaborating
on the single concept common to all testing processes and techniques – the TC.

16 D. Almog and T. Heart

3 Methodology

The following methodology has been employed in order to identify the literature
relevant for this review. First, Google and Google Scholar were used as search en-
gines to find sources with the keywords: "software testing", "software reliability",
"testing methodology", "black box testing", and "test case". This first search effort
yielded about 150 papers and about 25 books dated 1982 onwards, which were
scanned for relevance by reading their abstracts. Looking at citations appearing in the
elicited papers implied that there is merit in further expanding the search by using the
following keywords: "TDD", "SOA", "agile", "software cost estimation", "software
project management", "testing projects", "test case generation", and "testing automa-
tion". This search yielded about 100 additional papers and about 10 books spanning
the years 1980 till 2008.

A similar search has been conducted on leading journals and conferences, for
example relevant IEEE and EMSE journals and ICST conferences that directly or
indirectly included topics represented by the above keywords. These three rounds of
literature search resulted in a database of about 300 papers, books, and conference
proceedings. Endnote 9.0 has been used as the reference management tool, where
research notes have been added for classification purposes.

This reference database has been then reviewed, and each reference has been clas-
sified to sub-topics as in Table 4 (a paper could be related to more than one sub-
topic), as well as whether or not it included a formal definition of a TC. Those papers
which contained such a definition were further categorized based on the nature of the
definition, as appears in Table 3.

While classifying the papers, additional references and topics were searched by
scanning their reference list, which resulted in about 40 additional papers, bringing
the total number of papers and books reviewed to about 340, of which 267 directly
referred to TCs.

4 Literature Review

4.1 Historical Overview of the TC Concept

The TC concept appeared as a central concept underlying testing processes since the
beginning of formal software testing, for example as part of the Systematic Test &
Evaluation Processes (STEP) model [10], which defined feedback loops between
software development and testing. Three sources for TC generation were identified:
directly from the requirements, stemming from performance requirements, and based
on system's design [10]. A formal definition of a TC, however, was not included. In a
study published in the same year, Ostrand & Balcer]11[suggested to build TCs as a
collection of test frames and test scripts, yet these two terms were not precisely de-
fined although TCs were perceived to be measureable by their size. Weyuker [12]
brought a quite different approach when she maintained that TCs are formed by deci-
sion statements, and recognized that the more the number of decision statements in
the tested code, the more complex is the TC, recommending to limit the average

 What Is a Test Case? Revisiting the Software Test Case Concept 17

number of decision statements tested by one TC to 3.6. Interestingly, in spite of fre-
quent use of the term TC in her paper (76 times) it was not formally defined.

The centrality of the TC is evident in the work of Harrold, Gupta & Soffa [13],
who used TCs as the basis of a methodology to minimize testing efforts, realizing that
the testing process could in fact become indefinite because of the lack of indicators
for absence of errors. They developed a structured methodology to identify redundant
TCs and merge them into TC suites or execute these TCs in pairs. In this work TCs
were identified as TC requirements assuming that TCs stem from requirements.
Adopting an analogous line of thinking, Rosenberg, Hammer & Huffman [14] main-
tained that TC content should reflect the requirements, and therefore should be
controlled by a TC coverage matrix, which maps requirements to TCs, aimed at opti-
mizing the testing effort. Clearly, TCs and the resulting coverage matrix tend to be-
come more complex relative to the number and complexity of the requirements. In an
effort to handle this growing complexity, Iberle [15] developed a TC hierarchy meth-
odology at HP labs, where the test plan was formed by test groups based on the sys-
tem's functionality as defined by the requirements, the system's design and other
sources, and each test group is then further detailed into tests composed of TCs in the
leaves (Figure 2). Here again, the TC was the fundamental building block of the test-
ing process, yet no formal definition was provided.

Fig. 2. Test plan hierarchy [15]

Aichernig [16] was among the few researchers who attempted a formal TC defini-
tion by developing a mathematical description of a TC, although he suggested that
TCs were in fact abstractions of the requirements, or "highly abstract contracts" (p. 6).
Aichernig's mathematical approach to TC definition (brought later on in section 4.4)
was aimed at advancing a formal language essential for automation of TC generation.

18 D. Almog and T. Heart

In the first chapter of his book "Software Testing: A Craftsman Approach" Jorgensen
[17] reviewed the TC concept, noting that the TC was the key to the success of the test-
ing process. He distinguished between TCs identified by the functional requirements
(functional testing) and TCs identified by the software structure (structural testing).

In an attempt at identifying "what is a good test case?" Kaner [18] maintained that
a good TC was one that gave the required information which was the objective of the
particular test. He counted several testing objectives each requiring a different type of
TCs, and acknowledged that TCs greatly vary and hence using them as metrics is
problematic: "Also, under this definition, the metrics that report the number of test
cases are meaningless. What do you do with a set of 20 single-variable tests that were
interesting a few weeks ago but now should be retired or merged into a combination?
Suppose you create a combination test that includes the 20 tests. Should the metric
report this one test, twenty tests, or twenty one?" (p. 2).

Later works by Grindal and Colleagues [19, 20] included a review of mechanisms
to render software testing more efficient and effective, heavily relying on TC selec-
tion and execution, since they maintained that testing is "loosely considered to be the
dynamic execution of test cases" [19, p. 2]. An interesting approach has been adopted
by the aerospace industry where the Conformance and Fault Injection (CoFI) method-
ology has been used [21, 22]. Under this methodology, TCs were differentiated be-
tween those that aim at confirming the appropriate behavior of the tested product and
those that are aimed at creating faulty situations. The authors suggested a structured
approach to the definition of the two types of testing, and as a result, a systematic
creation of the relevant TCs.

Because of the centrality of the TC in the testing process, and due to the significant
effort invested in designing and generating TCs especially in large or complex pro-
jects, several studies have elaborated on TC management processes and tools. For
example, Desai [23] from Bell Laboratories described a tool which managed the con-
figuration and inventory of TCs separately from the testing tasks, compatible with the
IEEE 829 standard. A later work described a TC management and tracking tool,
where the term 'test item' is used in a context similar to TC [24], making the TC con-
cept even more ambiguous in the absence of a formal definition. The need to auto-
mate the generation and management of TCs was demonstrated in Jorgensen's [25]
work, where he noted that it took 141,306 TCs to test version 5.0.1 of Acrobat
Reader. It is noteworthy that Jorgensen did not define a TC unit in this work as the
basis for the counting method although the term was extensively used in this com-
mentary.

The likely variability among TCs has been acknowledged by Nagappan [26] who
developed the Software Testing and Reliability Early Warning (STREW) metric suite
for software testing effort estimation, using TCs as one of the model metrics. He
warned, however, that using TCs as a metric might not be well defined since "….one
developer might write fewer test cases each with multiple asserts checking various
conditions. Another developer might test the same conditions by writing many more
test cases, each with only one assert" (p. 39). This variability among TCs should be
taken into account when defining effort estimation model parameters. Table 1 shows
that TCs can greatly vary, for example by complexity, size (whether containing many
asserts or one assert), or by origin (requirements or other), hence cannot be unified as
indicating a singular metric.

 What Is a Test Case? Revisiting the Software Test Case Concept 19

Table 1. Software rating – defect density, [27]

Rating Very Low Defect Density Very High Defect Density
Test Cases Few test cases Many test cases
Test case asserts Asserts that only exercise

"success" behavior of the
product or do not
adequately cover the
functionality of the product

Asserts that exercise
various behaviors of each
requirements

Requirements Test cases do not relate to
requirements

At least one test case per
requirement

Code coverage Minimal coverage of
important functions

100% coverage

A further warning in this regard has been advocated by Hoffman [28], who pointed

at the possibility that definitions of TCs, as well as their number and content, might
change during the course of the project, jeopardizing the validity of metrics based on
these TCs.

4.2 TC Use and Generation in Modern Software Development

Not only have TCs been important in traditional software development processes,
they also continue to play an important role in more modern software development
methodologies and techniques.

Similar to the more traditional software development environments, the TC is a
fundamental entity in testing software in the object oriented environment. For exam-
ple, Binder [29] first developed a methodology for TC generation in an object ori-
ented environment, by introducing the 'testing points' concept, a mechanism used to
define test requirements and the relevant TCs. Later in his book Binder suggested to
define the TC as a method thereby including the test itself as part of the design of the
objects.

Agile software development methods have quite revamped traditional testing con-
cepts, particularly the division between testers and developers [30], since on-going
testing is one of the principles guiding development of very small and frequent soft-
ware iterations common to the agile methodology. Nonetheless, the centrality of the
TC concept has not changed as a result of utilizing these methodologies, although the
test planning method has.

TDD or TDM are software development methods that advocate writing TCs prior
to the actual software development to assure developing software that is testable [31,
32]. Here, the role of the TC is even magnified, yet evidence about the effectiveness
of this method is still mixed [31, 33].

Service oriented architecture (SOA) has introduced new testing challenges [34]
demonstrated for example by the inclusion of a testing mechanism in the SOA infra-
structure delivered by IBM [35]. Especially challenging is testing composed and
complex services that require new testing methods [36], making estimation of testing
scope and effort more difficult. The recent move to SOA has raised the interest in

20 D. Almog and T. Heart

software componentization [37, 38] and component-based testing, adding additional
ambiguity to the TC concept.

Some research has focused on automatic TC generation, a process requiring TC
formalization [39-42]. As use cases largely reflect functional requirements in the
UML environment, Nebut, Fleurey, Le Traon & Jיzיquel [43] suggested TC
generation from use cases, after incorporating the contract element they claim is a
component essential for translating a use case into a TC. Likewise, test objectives and
sequence diagrams also serve as sources for TC generation. Generally, several works
have developed techniques to generate TCs from UML diagrams, termed Model
Based Testing (MBT), mostly based on transforming use cases and states into TCs
[44, 45]. Although the attempts to automate TC generation resulted in some level of
formalization, the difficulties pertaining to the TC concept were not solved by this
mechanism, since use cases and scripts all suffer from the same fuzziness of defini-
tion regarding size, complexity, number of states, etc.

4.3 TCs as Metrics

During the testing phase, there is a need to manage and control the process, by meas-
uring its size, complexity, and quality, as a minimum. This, however, is easier said
than done, due to reasons brought in the previous sections. Thus, for example when
using the Goal – Questions – Metrics (GQM) method 1developed by V. Basili and D.
Weis for measurement development, Management strives to find metrics to answer
questions such as 'how long would it take to complete testing?', or 'how much re-
sources should be allocated to testing?', aimed at achieving managerial goals such as
appropriate resource allocation and adhering to schedules. Measures developed to
answer these questions often rely on number of TCs, for example "total number of
planned white/black box test cases run to completion, number of planned integration
tests run to completion, or number of unplanned test cases required during the test
phase" [26, p. 15]. The Software Testing Reliability Early Warning Model for Java
(STREW-J) developed by Nagappan [26] to estimate expected problems as a means
to estimate testing efforts used at least two estimation parameters that are based on
number of TCs: 1) number of test cases divided by source lines of code (R1) as an
indication of whether there are too few test cases written to test the body of source
code; and 2) number of test case divided by number of requirements (R2) as an indica-
tion of the thoroughness of testing relative to the requirements. Other TC-based met-
rics recommended as reflecting the status of the testing project were number or
percent of TCs run since testing started, number or percent of TCs run since the last
status report, number of percent of TCs that passed since the beginning of the testing
project, number or percent of TCs passed since the last status report, number or per-
cent of failed TCs, total number of open issues or TCs not run [46].

Elsewhere, eight of thirteen reports recommended as tools for testing monitoring
and control were based on TCs count, completion status, results etc. [47]. Further,
these same authors suggested eighteen indicators to monitor the project status, eleven
of which are based on tests or TCs. Two real-world examples of using TCs as the unit
for testing progress monitoring are presented in Figures 4 and 5. Figure 4 illustrates

1 We thank the reviewer for suggesting using GQM as a metric-generation methodology.

 What Is a Test Case? Revisiting the Software Test Case Concept 21

NASA's recommendation for test execution monitoring, and Figure 5 was drawn from
a real-world project at a large telecom enterprise, where three different projects were
tracked based on the number of TCs not yet executed (test backlog). Evidently, not
only all TCs were equally counted, but also TCs from different projects were com-
pared under the same unit of analysis, regardless of potential variance among TCs
stemming from the dissimilarity of the projects.

0

20

40

60

80

100

120

140

T
e
s
t
s

System Test Phase

Tests
Executed

Tests
Passed

Tests
Planned

Fig. 3. Testing execution progress monitoring, [48]

Fig. 4. Testing execution progress monitoring

In the next example (Table 2), number of tests was recommended as a metric to

track and control testing execution. Since tests are composed of TCs it is reasonable
to assume that this metric implies actually counting TCs from different software fea-
tures ignoring their likely differences.

22 D. Almog and T. Heart

Table 2. Number of tests is used as a metric for testing monitoring and control [46]

Project online trade Date: 5/23/2007
Feature
tested

Total
Tested

Complete

%
Complete

Success

%
Success

Open Acct 46 46 100 41 89
Sell Order 36 25 69 25 69
Buy Order 19 17 89 12 63
……

Totals 395 320 81 311 79

Similarly, IBM published reporting metrics for testing the software developed by

various vendors under IBM's supervision for the Sydney Olympic Games, all based
on counting number of TCs [49]: 1) Number of test cases defined, 2) Number of test
cases executed, 3) Number of test cases with failures but no associated defect records
4) The percentage of test cases attempted, used as an indicator of progress relative to
the completeness of the planned test effort.

TCs has also been used for testing effort estimation in few works where overall
project effort has been estimated based on distinctive estimation of the various devel-
opment phases [50-52]. In an attempt to overcome the problem of counting TCs of
various size and complexity Nageswaran [53] suggested using function points where
the number of TCs can be determined by the function points estimate for the corre-
sponding effort. Following this approach Aranha & Borba [54] presented a scheme
for collecting execution points for calculating and estimating testing efforts. It should
be noted, however, that none of these works formally defined the TC term although.

Evidently, TCs have been used as metrics for testing effort estimation, as well as
for testing monitoring and control. Common to most of the techniques suggested in
these works is the reliance on counting TCs, with only minimal reference to the fact
that TCs lack a standard definition and tend to greatly differ.

4.4 Test Case Definitions

As stated earlier, a thorough literature survey has been conducted in order to study
where and how TCs are defined. Interestingly, in spite of a plethora of research about
software quality assurance, few works formally define a TC, although most use this
term quite intensively. Perhaps most notable is the fact that an explicit definition of a
TC could not be located in the 2004 version of SWEBOK. Rather, the TC appears as
an integral part of the general software testing definition:"ïSoftware testing consists of
the dynamic verification of the behavior of a program on a finite set of test cases,
suitably selected from the usually infinite executions domain, against the expected
behavior" [55, p. 5-1]. Nonetheless, several definitions have been retrieved, classified
into four dominant approaches: 1) input-process-output-objectives, 2) states and tran-
sitions, 3) contractual approach, and 4) other definitions.

The input-process-output-objectives perspective conceptualizes a TC as a set of in-
puts into a pre-defined process, aimed at yielding a desired output, based on the test

 What Is a Test Case? Revisiting the Software Test Case Concept 23

C
at

eg
or

y
D

ef
in

it
io

n
So

ur
ce

In
pu

t-P
ro

ce
ss

-
O

ut
pu

t-
O

bj
ec

tiv
es

"A
 s

et
 o

f c
on

di
tio

ns
 o

r v
ar

ia
bl

es
 u

nd
er

 w
hi

ch
 a

 te
st

er
 w

ill
 d

et
er

m
in

e
if

an
 a

pp
lic

at
io

n
or

 a

so
ftw

ar
e

sy
st

em
 m

ee
ts

 s
pe

ci
fic

at
io

ns
…

.
It

m
ay

 t
ak

e
m

an
y

te
st

 c
as

es
 t

o
de

te
rm

in
e

th
at

 a

so
ftw

ar
e

pr
og

ra
m

 o
r s

ys
te

m
 is

 fu
nc

tio
ni

ng
 c

or
re

ct
ly

"

w
w

w
.w

ik
ip

ed
ia

.o
rg

"A

 t
es

t c
as

e
is

 th
e

co
m

bi
na

tio
n

of
 te

st
 d

at
a

an
d

or
ac

le
 in

fo
rm

at
io

n
to

 d
et

er
m

in
e

th
e

va
lid

ity

of
 th

e
te

st
"

[5
6,

 p
. 9

]

"A

 s
et

 o
f

te
st

 in
pu

ts
, e

xe
cu

tio
n

co
nd

iti
on

s,
an

d
ex

pe
ct

ed
 r

es
ul

ts
 d

ev
el

op
ed

 f
or

 a
 p

ar
tic

ul
ar

ob

je
ct

iv
e,

 s
uc

h
as

 t
o

ex
er

ci
se

 a
 p

ar
tic

ul
ar

 p
ro

gr
am

 p
at

h
or

 t
o

ve
rif

y
co

m
pl

ia
nc

e
w

ith
 a

sp

ec
ifi

c
re

qu
ire

m
en

t"

[2
4,

 p
. 1

87
]

"T

es
t c

as
e

is
 a

 te
st

 v
ec

to
r c

on
si

st
in

g
of

 a
 se

t o
f t

es
t i

np
ut

s a
nd

 th
e

co
rr

es
po

nd
in

g
te

st
 o

ut
pu

ts

(p
re

 a
nd

 p
os

t c
on

di
tio

na
l a

ss
er

tio
ns

)"

[4
5,

 p
. 2

]

"T

es
t

C
as

e
is

 a
n

id
en

tif
ie

d
se

t
of

 i
nf

or
m

at
io

n
in

cl
ud

in
g

in
pu

ts
 a

nd
 e

xp
ec

te
d

ou
tp

ut
s

as
so

ci
at

ed
 w

ith
 a

 p
ar

tic
ul

ar
 p

ro
gr

am
 b

eh
av

io
r"

[1

7,
 p

. 7
]

"A

 t
es

t c
as

e
is

 a
 fi

ni
te

 s
tru

ct
ur

e
of

 in
pu

t a
nd

 e
xp

ec
te

d
ou

tp
ut

: a
 p

ai
r o

f i
np

ut
 a

nd
 o

ut
pu

t i
n

th
e

ca
se

 o
f d

et
er

m
in

is
tic

 tr
an

sf
or

m
at

iv
e

sy
st

em
s,

a
se

qu
en

ce
 o

f i
np

ut
 a

nd
 o

ut
pu

t i
n

th
e

ca
se

of

 d
et

er
m

in
is

tic
 r

ea
ct

iv
e

sy
st

em
s,

an
d

a
tre

e
or

 a
 g

ra
ph

 i
n

th
e

ca
se

 o
f

no
n-

de
te

rm
in

is
tic

re

ac
tiv

e
sy

st
em

s

[3
2,

 p
. 2

]

St
at

es
 a

nd

Tr
an

si
tio

ns

"A
 s

eq
ue

nc
e

of
 o

ne
 o

r
m

or
e

su
bt

es
ts

 e
xe

cu
te

d
as

 a
 s

eq
ue

nc
e

be
ca

us
e

th
e

ou
tc

om
e

an
d/

or

fin
al

 st
at

e
of

 o
ne

 su
bt

es
t i

s t
he

 in
pu

t a
nd

/o
r i

ni
tia

l s
ta

te
 o

f t
he

 n
ex

t.
Th

e
w

or
d

‘te
st

’ i
s u

se
d

to

in
cl

ud
e

su
bt

es
ts

, t
es

ts
 p

ro
pe

rti
es

, a
nd

 te
st

 su
ite

s"
.

[5
7,

 p
. 1

3]

"A

 t
es

t
ca

se
 s

pe
ci

fie
s

th
e

pr
et

es
t

st
at

e
of

 t
he

 i
m

pl
em

en
ta

tio
n

un
de

r
te

st
 (

IU
T)

 a
nd

 i
ts

en

vi
ro

nm
en

t,
th

e
te

st
 i

np
ut

s
or

 c
on

di
tio

ns
,

an
d

th
e

ex
pe

ct
ed

 r
es

ul
t.

Th
e

ex
pe

ct
ed

 r
es

ul
t

sp
ec

ifi
es

 w
ha

t
th

e
IU

T
sh

ou
ld

 p
ro

du
ce

 f
ro

m
 t

he
 t

es
t

in
pu

ts
.

Th
is

 s
pe

ci
fic

at
io

n
in

cl
ud

es

m
es

sa
ge

s
ge

ne
ra

te
d

by
 th

e
IU

T,
 e

xc
ep

tio
ns

, r
et

ur
ne

d
va

lu
es

, a
nd

 r
es

ul
ta

nt
 s

ta
te

 o
f

th
e

IU
T

an
d

its
 e

nv
iro

nm
en

t.
Te

st
 c

as
es

 m
ay

 a
ls

o
sp

ec
ify

 in
iti

al
 a

nd
 r

es
ul

tin
g

co
nd

iti
on

s
fo

r
ot

he
r

ob
je

ct
s t

ha
t c

on
st

itu
te

 th
e

IU
T

an
d

its
 e

nv
iro

nm
en

t.”

[2
9,

 p
. 4

7]

"T

es
t c

as
e

is
 c

om
po

se
d

of
 s

ev
er

al
 c

om
po

ne
nt

s:
 te

st
 c

as
e

va
lu

es
, p

re
fix

 v
al

ue
s,

ve
rif

y
va

lu
es

,
ex

it
co

m
m

an
ds

 a
nd

 e
xp

ec
te

d
ou

tp
ut

s"

[5
8,

 p
. 2

8]

"T

es
t C

as
e

is
 a

 v
er

ifi
ca

tio
n

of
 s

om
e

as
pe

ct
 o

f t
he

 S
ys

te
m

 U
nd

er
 T

es
t (

SU
T)

. T
es

t C
as

e
fo

r
an

y
fe

at
ur

e
of

 a
ny

 S
U

T
ca

n
be

 d
ef

in
ed

 a
s f

ol
lo

w
s:

Pe

rf
or

m
 v

er
ifi

ca
tio

n,
 V

v
W

hi
ch

 m
ay

 b
e

pr
ec

ed
ed

 b
y

a
se

qu
en

ce
 o

f a
ct

io
ns

, A
a

W
hi

ch
 m

ay
 re

qu
ire

 a
 se

t o
f d

at
a,

 D
d

[5
9,

 p
. 5

1]

T
ab

le
 3

. T
es

t C
as

e
D

ef
in

it
on

s
an

d
So

ur
ce

s

24 D. Almog and T. Heart

W
hi

ch
 m

ay
 re

qu
ire

 p
re

co
nd

iti
on

s,
Pp

A

ll
of

 w
hi

ch
 ru

ns
 in

 e
nv

iro
nm

en
t,

Ee

H
en

ce
, a

 T
es

t C
as

e,
 T

t =
 E

e
Pp

 D
d

A
a

V
v"

C

on
tra

ct

"T
es

t-c
as

es

co
m

m
on

in

so

ftw
ar

e
en

gi
ne

er
in

g
ar

e
in

fa

ct

co
nt

ra
ct

s
(h

ig
hl

y
ab

st
ra

ct

co
nt

ra
ct

s)
…

 H
ow

ev
er

, o
ur

 r
es

ul
t t

ha
t t

es
t-c

as
es

 a
re

 a
bs

tra
ct

io
ns

 h
ol

ds
 f

or
 g

en
er

al
 c

on
tra

ct

st
at

em
en

ts
 in

vo
lv

in
g

us
er

 in
te

r-
ac

tio
n"

.

[1
6,

 p
. 8

]

"a

 fo
rm

 o
f c

on
tra

ct
 b

et
w

ee
n

a
se

rv
ic

e
pr

ov
id

er
 a

nd
 a

 se
rv

ic
e

us
er

"
[6

0,
 p

. 2
]

O
th

er

"A
n

em
pi

ric
al

 fr
am

e
of

 re
fe

re
nc

e,
 ra

th
er

 th
an

 a
 th

eo
re

tic
al

 o
ne

"
[6

1,
 p

.3
59

]

"…
te

st
 c

as
e

is
 a

 q
ue

st
io

n
th

at
 y

ou
 a

sk
 o

f t
he

 p
ro

gr
am

. T
he

 p
oi

nt
 o

f r
un

ni
ng

 th
e

te
st

 is
 to

 g
ai

n
in

fo
rm

at
io

n,
 fo

r e
xa

m
pl

e,
 w

he
th

er
 th

e
pr

og
ra

m
 w

ill
 p

as
s o

r f
ai

l t
he

 te
st

"
[1

8,
 p

. 2
]

"A

 te
st

 id
ea

 is
 a

 b
rie

f
st

at
em

en
t o

f
so

m
et

hi
ng

 th
at

 s
ho

ul
d

be
 te

st
ed

. F
or

 e
xa

m
pl

e,
 if

 y
ou

're

te
st

in
g

a
sq

ua
re

 r
oo

t f
un

ct
io

n,
 o

ne
 id

ea
 f

or
 a

 te
st

 w
ou

ld
 b

e
‘te

st
 a

 n
um

be
r

le
ss

 th
an

 z
er

o’
.

Th
e

id
ea

 is
 to

 c
he

ck
 if

 th
e

co
de

 h
an

dl
es

 a
n

er
ro

r c
as

e"

[1
8,

 p
. 2

]

"a

 sp
ec

ifi
c

se
t o

f a
ttr

ib
ut

e
va

lu
es

 th
at

 te
st

s a
 g

iv
en

 lo
gi

ca
l s

itu
at

io
n"

[6

2,
 p

. 3
]

"a

 te
st

 c
as

e
ca

n
be

 c
on

si
de

re
d

as
 a

 p
re

da
to

r w
hi

le
 a

 m
ut

an
t p

ro
gr

am
 is

 a
na

lo
go

us
 to

 a
 p

re
y"

[6

3]

T
ab

le
 3

. (
co

nt
in

ue
d)

 What Is a Test Case? Revisiting the Software Test Case Concept 25

objective. The states and transitions approach considers a TC as a set of transition
patterns among states. The contractual approach defines TC as a contract since the
outcomes of pre-defined conditions are fully defined. Finally, there are several other
definitions stemming from various contexts. Table 3 lists examples of definitions in
each category. The implications of this variability are discussed next.

5 Discussion

The TC serves as the backbone of testing processes, and is a fundamental unit for test
planning, execution, monitoring and control. It is also used as a common metric in
quantifying testing effort, scope and status. Furthermore, there is a growing quest to
automate TC generation, execution and management. Nonetheless and quite interest-
ingly, there is no consensus regarding the formal definition of a TC.

From the papers reviewed for this work it is evident that the TC concept is fre-
quently used in various contexts, yet infrequently formally defined (Table 4). Please
note that numbers in Tables 4 and 5 do not add up because papers could be classified
to more than one sub-topic.

Table 4. TC-related papers, definitions and contexts used

Total
Automation/

GenerationMetrics
UML/MBT
OO/SOA

Manage-
ment

Cost/ROI
Estimations

Topic

267 4425 46 6986TCs Papers
Reviewed

38 (14%) 14 (32%) 4 (16%) 26 (57%) 19 (28%) 11 (13%) Formal TC
Definition

Table 4 shows that 267 reviewed papers referring to TCs covered five different
topics, yet only in 38 papers (14%) a formal definition of TC was attempted, particu-
larly in studies focusing on OO related issues and TC automation and Management. It
is thus valid to wonder why only 14% of authors bothered to formally define the cen-
tral concept of their work in spite of heavily using this term (some mention TC more
than a hundred). Thus, in the 38 papers where TC was defined, various definitions
were employed representing all four definition categories: input-process-output-
objective, states & transitions, contract, and other. It is thus interesting to examine
whether there is an association between the definition category used and the specific
context (Table 5). For example, it could be expected that works in the UML/MBT/OO
context would use states & transitions definitions that stem from the OO world. This,
however, could not be substantiated by the present literature review, as those few
authors who have used the TC definition in their OO-related work chose definitions
from all categories (Table 5). Moreover, no author has articulated the reasons for
choosing one definition or another. As seen in Table 5, authors using TCs in the con-
text of OO/MBT/UML more frequently used the input-process-output-objective
(termed hereinafter process-based for brevity sake) definitions rather than the more
naturally related states & transitions definitions, which turn out as the most popular
definition category. Evidently, no correlation could be deduced between the definition
category and the context, possibly attesting to the arbitrary choice of the former.

26 D. Almog and T. Heart

Table 5. TC definition distribution by research context

Context Definition category

 Process States Contract Other Defined
Cost/ROI 6 1 1 3 11
Management / Project 11 4 1 3 19
OO/ MBT/UML/SOA 12 6 2 6 26
Measurements/Metrics 1 1 1 1 4
Automation/Regression 10 1 1 2 14
Total 18 11 2 8 38

The lack of formal TC definition and the fact that most studies do not include any
definition raise several questions: Is such a definition required? Are there deficiencies in
the existing definitions? What are the implications of the lack of a formal definition?

We maintain that a formal definition is indeed required, encouraged by the fact that
in real-world testing of life-threatening projects a formal definition is an important
part of the testing guidelines. For example, based on the IEEE standard, chapter 6 of a
manual for testing safety applications in a nuclear reactor environment greatly elabo-
rates on TC types, definitions, content, and documentation [64]. Four types of TCs are
specified: 1) verification TC, 2) validation TC, 3) demonstration TC, 4) general suit-
ability TC. Each TC is defined by a general description including reference number,
geometry, flow features, experimental data, existing simulations, related experiments,
and rating of the challenge the test case poses. These details should be accompanied
by further documentation describing the test environment for each TC.

It is suggested that a formal TC definition could render several benefits if satisfy-
ing at least four requirements: 1) Unambiguousness: such TCs would be uniformly
understood by the various stakeholders participating in a testing endeavor, 2) Gener-
alizability: TCs would hold upon transforming from one platform to another, from
one testing domain to another, and so on, 3) Quantifiability: only quantifiable TCs
would be sensibly measured, and 4) Automatability: some might argue that this trait is
an outcome of the above three characteristics, yet we chose to explicitly indicate it as
a desirable feature because of its importance.

Unambiguousness ensures a unified view shared by all professionals involved in
software testing regardless of their prior experience, background, testing environ-
ments, methods and techniques. This trait is important because it will ease the current
'Tower of Babylon' dominating the testing world, and rive sharing expertise among
various testing schools and perceptions. Generalizability ensures maintaining testing
assets and investments along various testing efforts, namely, TC generation tools and
techniques would be valid in different testing environments. Quantifiability is clearly
beneficial because of the importance of the TC as a fundamental metric. Currently,
measurements involving counting TCs are clearly inconsistent. Finally, there is no
need to explain the benefits rendered by the ability to automate TC generation, execu-
tion and management. Several attributes are mandatory for TC automation, among
them is a formal definition of the TC structure.

Examining the existing definitions by the four categories illustrates the deficiencies
in each type. The input-process-output-objective definitions are generally unambiguous,

 What Is a Test Case? Revisiting the Software Test Case Concept 27

but not necessarily generalizable. For example, non-functional requirements, such as
testing a user experience, are difficult to define using this type of definition. Likewise,
the 'process' part of the TC can vary in size and complexity hence difficult to quantify
and measure. For instance, a process can be as simple as 'check for existence of a certain
value' or quite complex as 'create a customer order'. Consequently, this type of defini-
tion is problematic to automate. The state & transitions definitions may satisfy the un-
ambiguousness and quantifiability traits but are hardly generalizable since they stem
from the state-machine world, therefore not transferrable to other testing domains. For
example states and transitions that are a result of dynamic environmental conditions and
data would be rather impossible to define as a finite number of states and transitions.
TCs defined as States & Transitions, however, are quite convenient to quantify and
automate due to their origination in the state-machine domain. The contract group of
definitions is becoming popular, mainly in SOA platforms, yet these definitions clearly
violate the unambiguousness criterion. For example, Aichernig [16] defined a test as a
contract between the user and the software provider, Mikhailova et al. [65] defined
testing as a contract between the system under test and its environment, and Bruno et al.
[66] thought it was a contract ensuring service compliance between releases. Clearly,
only a formal definition of the contract, such as the one attempted by Aichernig [16] is
unambiguous. For similar reasons it cannot be generalized, quantifiable or automatable
unless formalized. Finally, it is quite obvious that the other definitions do not meet most
of the above requirements.

We maintain that the absence of a formal definition for TCs causes test planning,
execution, and monitoring malfunctioning. For example, reporting testing effort es-
timation or testing progress by number of executed TCs is clearly misleading, often
resulting in projects not meeting time and budget constraints, or in inadequate soft-
ware quality. Testing automation efforts are likewise contingent upon formal defini-
tion of TCs, hence its absence is possibly one of the barriers to a broader diffusion of
automation tools. These shortcomings are quite likely among the causes for the huge
annual economic damage as a result of inadequate software testing infrastructure and
processes reported by the US Department of Commerce [1]. Hence, further work
towards a formal TC definition that meets the above requirements is advocated.

6 Conclusions

TC is a cornerstone for planning, designing, and monitoring testing projects, as well as a
means for work, effort and cost estimation. This work demonstrated not only the cen-
trality of the TC but also the variance among TC definitions. Further, the official profes-
sional taxonomies, for example those presented in the joint ISO-IEEE Guide to the
Software Engineering Body of Knowledge – SWEBOK does not explicitly define TC.

This situation is possibly a barrier to improving the testing infrastructure leading to
higher software quality, therefore decreasing the enormous resulting damage. It is
suggested that establishing a formal, unambiguous, generic, quantifiable and struc-
tural definition for a TC would be a significant contribution to the world of software
testing, and software quality in general. Such a definition would pave the way to stan-
dard TC generation techniques, as well as to measurement and evaluation tools.

28 D. Almog and T. Heart

Referring to Kaner's [18] question "what is a good Test case?" and his assertion that
"good TC is one that gives the required information", we see benefits in formalizing a
unified, well defined and structured TC entity that satisfies all the above dimensions.
We suggest pursuing, determining and proposing an improved and comprehensive defi-
nition of a test Case.

References

[1] Tassey, G.: The Economic Impacts of Inadequate Infrastructure for Software Testing. Na-
tional Institute of Standards and Technology (2002)

[2] Basili, V., Caldiera, G., McGarry, F., Pajerski, R., Page, G., Waligora, S.: The software
engineering laboratory: an operational software experience factory. In: Proceedings of the
14th international conference on Software engineering. ACM, New York (1992)

[3] Geras, A.M., Smith, M.R., Miller, J.: A survey of software testing practices in alberta.
Canadian Journal of Electrical and Computer Engineering 29(3), 183–191 (2004)

[4] Grindal, M., Offutt, J., Mellin, J.: On the Testing Maturity of Software Producing Or-
ganizations. In: Proceedings of the Testing: Academic and Industrial Conference-Practice
and Research Techniques TAIC PART (2006)

[5] Ng, S.P., Murnane, T., Reed, K., Grant, D., Chen, T.Y.: A Preliminary Survey on Soft-
ware Testing Practices in Australia. In: Software Engineering Conference (2004)

[6] Illes, T., Herrmann, A., Paech, B., Rockert, J.: Criteria for Software Testing Tool Evalua-
tion. A Task Oriented View. In: Proceedings of the 3rd World Congress for Software
Quality (2005)

[7] Almog, D.: Verification Points for Better Testing Efficiency. In: StarEastSQE (2007)
[8] Bach, J.: Exploratory Testing Explained,

http://www.satisfice.com/articles/et-article.pdf
[9] Kaner, C.: The Ongoing Revolution in Software Testing. In: Software Test & Perform-

ance Conference (2004)
[10] Gelperin, D., Hetzel, B.: The Growth of Software Testing. Communications of the

ACM 31(6), 687–695 (1988)
[11] Ostrand, T.J., Balcer, M.J.: The Category-Partition Method for Specifying and Generat-

ing Functional Tests. Commun. ACM 31(6), 676–686 (1988)
[12] Weyuker, E.J.: The Cost of Data Flow Testing: An Empirical Study. IEEE Transactions

on Software Engineering 16(2), 121–128 (1990)
[13] Harrold, M.J., Rajiv, G., Mary Lou, S.: A Methodology for Controlling the Size of a Test

Suite. ACM Trans. Softw. Eng. Methodol. 2(3), 270–285 (1993)
[14] Rosenberg, L., Hammer, T.F., Huffman, L.L.: Requirements, Testing and Metrics. In:

15th Annual Pacific Northwest Software Quality Conference (1998)
[15] Iberle, K.: Divide and Conquer: Making Sense of Test Planning. In: The International

Conference on Software Testing, Analysis and Review, STARWEST (1999)
[16] Aichernig, B.K.: Test-Case Calculation through Abstraction. In: International Symposium

of Formal Methods. Springer, Heidelberg (2001)
[17] Jorgensen, P.: Software Testing: A Craftsman’s Approach. CRC Press, Boca Raton

(2002)
[18] Kaner, C.: What Is a Good Test Case? In: Star East (2003)
[19] Grindal, M., Offutt, J., Andler, S.F.: Combination Testing Strategies: a Survey. Software

Testing Verification and Reliability 15(3), 167 (2005)

 What Is a Test Case? Revisiting the Software Test Case Concept 29

[20] Grindal, M., Lindstrom, B., Offutt, J., Andler, S.F.: An Evaluation of Combination
Strategies for Test Case Selection. Empirical Software Engineering 11(4), 583–611
(2006)

[21] Ambrosio, A., Mattiello-Francisco, F., Santiago, V., Silva, W., Martins, E.: Designing
Fault Injection Experiments Using State-Based Model to Test a Space Software. In: Bon-
davalli, A., Brasileiro, F., Rajsbaum, S. (eds.) LADC 2007. LNCS, vol. 4746, pp. 170–
178. Springer, Heidelberg (2007)

[22] Ambrosio, A.M., Martins, E., Vijaykumar, N.L., de Carvalho, S.V.: Systematic Genera-
tion of Test and Fault Cases for Space Application Validation. In: DASIA: Data Systems
in Aerospace, European Space Agency (2005)

[23] Desai, H.D.: Test Case Management System (TCMS). In: IEEE Conference Global Tele-
communications GLOBECOM: ’Communications: The Global Bridge’ (1994)

[24] Craig, R.D., Jaskiel, S.P.: Systematic Software Testing. Artech House (2002)
[25] Jorgensen: Testing with Hostile Data Streams. ACM Sigsoft Software Engineering

Notes 28(2), 1 (2003)
[26] Nagappan, N.: A Software Testing and Reliability Early Warning (STREW) Metric Suite,

Thesis: Computer Science, North Carolina University (2005)
[27] Sherriff, M., Boehm, B.W., Williams, L., Nagappan, N.: An Empirical Process for Build-

ing and Validating Software Engineering Parametric Models. North Carolina State
Univeristy CSC-TR-2005-45, October, 19 (2005)

[28] Hoffman, D.: The Darker Side of Metrics. In: Conference of the Association of Software
Testing, CAST (2006)

[29] Binder, R.: Testing Object-Oriented Systems: Models, Patterns, and Tools. Addison-
Wesley Professional, Reading (2000)

[30] Talby, D., Hazzan, O., Dubinsky, Y., Keren, A.: Agile Software Testing in a Large-Scale
Project. IEEE Software, 30–37 (2006)

[31] Beck, K.: Test-driven Development: By Example. Addison-Wesley Professional, Reading
(2003)

[32] Utting, M., Legeard, B., Pretschner, A.: A Taxonomy of Model-based Testing. Dept. of
Computer Science, University of Waikato Hamilton, New Zealand (2006)

[33] Bohnet, R., Meszaros, G.: Test-Driven Porting. In: Proceedings of the Agile Develop-
ment Conference (2005)

[34] Lewis, G.A., Morris, E., Simanta, S., Wrage, L.: Common Misconceptions about Service-
Oriented Architecture. In: Proceedings of the Sixth International IEEE Conference on
Commercial-off-the-Shelf (COTS)-Based Software Systems (2007)

[35] Hiebert, D., Klaedtke, R.A., Lowery, E., Nartovich, A., Raut, N., Sandberg, M.J.: Build-
ing SOA-based Solutions for IBM System i Platform. IBM (2007)

[36] Karam, M., Safa, H., Artail, H.: An Abstract Workflow-Based Framework for Testing
Composed Web Services. In: IEEE/ACS International Conference on Computer Systems
and Applications, AICCSA (2007)

[37] Rehman, M.J., Jabeen, F., Bertolino, A., Polini, A.: Testing Software Components for In-
tegration: A Survey of Issues and Techniques. Software Testing, Verification & Reliabil-
ity 17(2), 95–133 (2007)

[38] Weyuker, E.J.: Testing Component-Based Software: A Cautionary Tale. IEEE Soft-
ware 15(5), 54–59 (1998)

[39] Cai, K.Y., Zhao, L., Hu, H., Jiang, C.H.: On the Test Case Definition for GUI Testing. In:
Fifth International Conference on Quality Software, QSIC (2005)

[40] Boujarwah, A.S., Saleh, K.: Compiler Test Case Generation Methods: A Survey and As-
sessment. Information and Software Technology 39(9), 617–625 (1997)

30 D. Almog and T. Heart

[41] Calam, J.R., Ioustinova, N., Pol, J.: Towards Automatic Generation of Parameterized Test
Cases from Abstractions. Technical Report SEN-E0602, Centrum voor Wiskunde en In-
formatica (2006)

[42] Byers, D., Engstrom, M., Kamkar, M.: The Design of a Test Case Definition Language.
Automated and Algorithmic Debugging, 69–78 (1997)

[43] Nebut, C., Fleurey, F., Le Traon, Y., Jezequel, J.M.: Automatic Test Generation: A Use
Case Driven Approach. IEEE Transactions on Software Engineering, 140–155 (2006)

[44] Prasanna, M., Sivanandam, S.N., Venkatesan, R., Sundarrajan, R.: A Survey on Auto-
matic Test Case Generation. Academic Open Internet Journal 15 (2005)

[45] Coulter, A.C.: Graybox Software Testing Methodology: Embedded Software Testing
Technique. In: Proceedings of the18th Digital Avionics Systems Conference (1999)

[46] Craig, R.: Measurement and Metrics for Test Managers. In: STAR East. SQE (2007)
[47] Kaner, C.: Measurement Issues and Software Testing (2001)
[48] Landis, L., Waligora, S., McGarry, F.: Recommended Approach to Software Develop-

ment. Software Engineering Laboratory Series, pp. 81–305. NASA (1992)
[49] Bassin, K., Biyani, S., Santhanam, P.: Metrics to Evaluate Vendor-Developed Software

Based on Test Case Execution Results. IBM Systems Journal 41(1), 13–30 (2002)
[50] Jorgensen, M., Shepperd, M.: A Systematic Review of Software Development Cost Esti-

mation Studies. IEEE Transactions on Software Engineering 33(1), 33–53 (2007)
[51] Binkley, D.: Semantics Guided Regression Test Cost Reduction. IEEE Transactions on

Software Engineering 23(8), 498–516 (1997)
[52] Leung, H.K.N., White, L.: Insights into Regression Testing [software testing]. In: Con-

ference on Software Maintenance (1989)
[53] Nageswaran, S.: Test Effort Estimation Using Use Case Points. In: 14th International

Internet & Software Quality Week (2001)
[54] Aranha, E., Borba, P.: An Estimation Model for Test Execution Effort. In: International

Symposium on Empirical Software Engineering and Measurement, ESEM 2007 (2007)
[55] Abran, A., Bourque, P., Dupuis, R., Moore, J.W.: Guide to the Software Engineering

Body of Knowledge - SWEBOK. In: Alain, A., et al. (eds.). IEEE Press, Los Alamitos
(2004)

[56] Stocks, P.A., Carrington, D.A.: Test Templates: A Specification-Based Testing Frame-
work. In: Proceedings of the 15th International Conference on Software Engineering.
IEEE Computer Society Press, Los Alamitos (1993)

[57] Beizer, B.: Black-Box Testing: Techniques for Functional Testing of Software and Sys-
tems. John Wiley & Sons, Inc., Chichester (1995)

[58] Offutt, J., Abdurazik, A.: Generating tests from UML specifications. In: Proc. Second In-
ternational Conference on the Unified Modeling Language (1999)

[59] Taylor, C.M.: EPDAV – A Model for Test Case Definition. In: Conference of the Asso-
ciation of Software Testing (2006)

[60] Bruno, M., Canfora, G., Di Penta, M., Esposito, G., Mazza, V.: Using Test Cases as Con-
tract to Ensure Service Compliance Across Releases. In: Benatallah, B., Casati, F.,
Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826, pp. 87–100. Springer, Heidelberg
(2005)

[61] Kaner, C., Falk, J.L., Nguyen, H.Q.: Testing Computer Software. John Wiley & Sons,
Inc., New York (1999)

[62] Maletic, J.I., Soliman, K.S., Moreno, M.A., Mercer, W.M.: Identification of Test Cases
from Business Requirements of Software Systems. In: American Conference on Informa-
tion Systems AMCIS (1999)

 What Is a Test Case? Revisiting the Software Test Case Concept 31

[63] Baudry, B., Fleurey, F., Jezequel, J.M., Le Traon, Y.: Genes and Bacteria for Automatic
Test Cases Optimization in the .NET Environment. In: Proceedings of the13th Interna-
tional Symposium on Software Reliability Engineering, ISSRE (2002)

[64] Menter, F.: CFD Best Practice Guidelines for CFD Code Validation for Reactor- Safety
Applications. CFX, Germany (2002)

[65] Mikhailova, A., Doche, M., Butler, M.: Contracts for Scenario-Based Testing of Object-
Oriented Programs (2002)

[66] Bruno, M., Canfora, G., Di Penta, M., Esposito, G., Mazza, V.: Using Test Cases as Con-
tract to Ensure Service Compliance Across Releases. In: Benatallah, B., Casati, F.,
Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826, pp. 87–100. Springer, Heidelberg
(2005)

	What Is a Test Case? Revisiting the Software Test Case Concept
	Introduction
	Common Practices in Software Testing
	Methodology
	Literature Review
	Historical Overview of the TC Concept
	TC Use and Generation in Modern Software Development
	TCs as Metrics
	Test Case Definitions

	Discussion
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

