Building an Observatory of Course-of-Action in
Software Engineering: Towards a Link between ISO/IEC
Software Engineering Standards and a
Reflective Practice

Frangois-Xavier Bru', Gaélle Frappin®, Ludovic Legrand', Estéban Merrer’,
Sylvain Piteau’, Guillaume Salou®, Philippe Saliou’, and Vincent Ribaud’

! Thales Airborne System, 29283 Brest Cedex 2
{Francois-Xavier.Bru, Ludovic.Legrand,
Esteban.Merrer}@thalesgroup.com
% Teamlog, Rue Fulgence Bienveniie, 22300 Lannion
Gaélle.Frappin@teamlog.com
3 Direction des Constructions Navales - DCNS, route de la corniche, 29200 Brest
Sylvain.Piteau@dcnsgroup.com
* Groupe Arkéa, 32 rue Mirabeau 29480 Le Relecq Kerhuon
Guillaume.Salou@arkea.com
5 University of Brest, CS 93837, 29238 Brest Cedex, France
Vincent.Ribaud@univ-brest.fr, Philippe.Saliou@univ-brest.fr

Abstract. As a help to compete in an evolving market, small software compa-
nies may use an observatory of their course-of-action. The course of action
considers the observable aspect of the actor’s activity. Its analysis provides a
description of actors’ activity and it can express recommendations concerning
both the individual situations and the collective situation. The observatory is an
articulated set of data collecting methods supported with semantic wikis and a
dedicated application. A case study, based on the activity of a team of 6 young
software engineers, depicts some aspects of the building and the filling of the
course-of-action observatory. As primary results of this work, we may think
that observing and analyzing software engineer’s activity help to reveal his/her
theory-in-use — what governs engineers’ behavior and tends to be tacit struc-
tures — That may help engineers to establish links between “Project Processes-
in-use” and a simplified Process Reference Model and contribute to reduce the
fit between a project-in-action and espoused SE standards.

Keywords: Course-of-action, theory-in-use, espoused theory, reflective practi-
tioner, software engineering processes.

1 Introduction

For many small software companies, software process improvement (SPI) is often out
of reach due to prohibitive costs and lack of SPI knowledge. However, to survive in
this competitive market, software developers must improve their productivity, time to

R.V. O’Connor et al. (Eds.): EuroSPI 2009, CCIS 42, pp. 1851200,[2000.
© Springer-Verlag Berlin Heidelberg 2009

186 F.-X. Bru et al.

market and customer satisfaction. A help could be provided through a reflective atti-
tude (D. Schon [1]). A question occurs: “How to bring this reflective (and learning)
attitude into organizations and everyday work?”

Theories of action study what an actor do, in a given situation, in order to achieve
consequence or objectives. A distinction can be made between two kinds of theories
of action. Espoused theories are those that an individual claims to follow. Theories-in-
use are those that can be inferred from action [2]. Espoused theory and theory-in-use
may be inconsistent, and the agent may or may not be aware of any inconsistency. By
definition, the agent is aware of espoused theory. Theories-in-use can be made ex-
plicit by reflecting on action [2]. In the software engineering field - and especially in
Very Small Enterprises — the horizon of standards or the corporate baseline of proc-
esses and practices constitute the espoused theory, since it is what engineers claim to
follow. Although an emerging standard “Software Engineering - Lifecycle Profiles for
Very Small Enterprises (VSE)” [2] may facilitate the use of SE standards in a VSE,
what engineers do (and this action is designed and do not “just happen”) may reveal a
different theory-in-use. We believe that making explicit theories-in-use may help
software engineers to learn more suitable theories-in-use, thus contributes to improve
productivity and performance.

In this perspective, after several years of informal methods to analyze and improve
software engineers’ activities, we are now using the course-of-action analysis in order
to understand the structural coupling of a software engineer with his/her environment
and especially lifecycle software processes. Let us cite a short definition of course-of-
action: “the activity of one (or several) specific actor(s), engaged in a specific situa-
tion, belonging to a specific culture, which is significant for the latter, in other words,
that can be related or commented by him (or them) at any moment [4].” The course-
of-action analysis is based on an observatory that we consider in this introduction as a
system of data collecting methods. The data necessary to study the course of action
includes continuous observations of the behavior of action and communication in a
work situation as well as different traces of other elements such as interpretations,
feelings, and judgments [4]. The analysis of this data produces a decomposition of the
global dynamic in terms of smaller units and the relations of sequencing and embed-
ding between these units. The results of this analysis may (i) help to design better
interactions or corrective situations; (ii) facilitate the reconstruction by the actor of
his/her own activity, i.e. going from “pre-reflective consciousness” towards a reflec-
tive attitude [1].

This paper is organized as follow. Section 2 presents the course-of-action frame-
work and its application to software engineering. Section 3 drafts some related work.
Section 4 discuss about the observatory of course-of-action of software engineers.
Section 5 present excerpts of a case study. We finish with perspectives.

2 Course-of-Action Applied to Software Engineers’ Activity

2.1 The Course-of-Action in a Nutshell

Pinsky and Theureau, ergonomists, initiated the theoretical and methodological frame-
work of "course-of-action", summarized in one directing idea, that of the necessity of an

Building an Observatory of Course-of-Action in Software Engineering 187

analysis of the actual operators’ activities in real work situations for the design of new
work situations [5]. An important theoretical hypothesis that the course-of-action
framework states about human activity, is that human activity is dynamically situated,
i.e. always appeals to resources, individual as well as collectively shared to varied de-
grees, which stem from constantly changing material, social, and cultural circumstances.
The course-of-action analysis add to various theories of “situated activity” the consid-
eration of the domain of experience, i.e. that of the agent's course-of-experience, of the
constructing process of this experience at any moment, and takes an interest in the ar-
ticulation between the cognitive domain and the course-of-experience. Theureau in [6]
defines the theoretical object called "course of action" as follows: “what, in the observ-
able activity of an agent in a defined state, actively engaged in a physically and socially
defined environment and belonging to a defined culture, is pre-reflexive or again sig-
nificant to this agent, i.e. presentable, accountable and commentable by him/her at any
time during its happening to an observer-interlocutor in favourable conditions”.

2.2 The Observatory of Course-of-Action

This paragraph is reproduced from [7].

The course-of-action analysis is based on an observatory that allows to specify the
material conditions of situated recall (time, place, material elements of the situation),
the follow up and the guiding of presentations, accounts and commentaries by the
agents as well as the cultural, ethical, political and contractual conditions that are
favorable to observation, interlocution, and creation of a consensus between the agent
and the observer-interlocutor [6].

A methodology has been developed to collect data on the courses-of-action. It con-
nects continuous observations and recordings of the agents’ behavior, the provoked
verbalizations of these agents in activity (from the "thinking aloud" for the observer-
interlocutor to the interruptive verbalizations at privileged moments) and the agents'
comments in self confrontation with recordings of their behavior [6].

Continuous observations and recordings together with verbalizations and self-
confrontation let us access to a representation of dynamics of the structural coupling
between the actor and his/her situation (including other actors) [9]. A “semiological
framework™ [6] provide us with a theory of activity allowing to describe the activity
in abstract terms expressing hypothetical invariants. Explaining and using this theory
is out of the scope of this paper focused on the observatory of course-of-action. It is
sufficient to tell that this semiologic stems from the hypothesis that any period of
course-of-action may be described in smaller units. This description of the intrinsic
organisation of the course of action articulates two complementary descriptions: a
description of its global dynamics, characterising the units of the course of action and
the relations of sequencing and embedding between these units; a description of its
local dynamics, characterising the underlying structure of the elementary units [5].

2.3 An Observatory of Software Engineers’ Activity

The intervention of an ergonomist in an organization intended to produce software
concern the analysis of human-system interaction — of the software engineer with

188 F.-X. Bru et al.

his/her organization’s processes — and the design of the system in order to optimize
human well-being and overall system performance. In our case, we use the theoretical
and methodological framework of course-of-action in order to analyze the activity of
software engineers within Very Small Enterprises (VSEs, up to 15-25 employees).

Recall the definition of the course-of-action in §2.1: what, in the observable activity
of an agent [...] is pre-reflexive or again significant to this agent, i.e. (i) presentable, (ii)
accountable and (iii) commentable by him/her at any time during its happening [...].
Software workers do not achieve complex technical gestures or do not have to progress
along a detailed procedure. So (i) presentations to an observer are quite difficult to re-
produce and presentable artifacts that are most notable and representative of the job are
the outputs of software activities and tasks. (ii) Accounts are easier to collect and ob-
serve because a minimum of traceability and reporting is performed in any organization
and if it is not sufficient, accounting can be provoked without significantly modify the
course of the activities. (iii) Comments are not natural objects and have to be provoked:
reports, self competency assessment (§ 4.3).

The course-of-action framework proposes self confrontation as an indirect means to
document actor’s experience or pre-reflective consciousness or immediate understand-
ing of his/her activity at every instant t; the fact is highlighted that the experience at
instant t differs from what is called the reflective consciousness, which concerns par-
ticular and situated periods of the actor’s activity, when he/she considers his/her past
activity with a given purpose [8].

However, considering these two levels of consciousness, we may think that there
are two different levels of description of software processes. The first level — on
which this paper is focused — is concerned with the day-to-day course of a software
project and its associated activities while the second level — on which most Software
Engineering standards are focused — is concerned with a description of these activi-
ties. We believe that the first level is related with theories-in-use, those that can be
inferred from action [2]. And we think that the second level is related with espoused
theories, those that an individual claims to follow. The purpose of our work is to pro-
vide an observatory of existing processes and practices that could help to situate pro-
ject processes and practices in-use regarding to espoused standards.

2.4 Application for Software Engineers in VSEs

The semiological framework of course-of-action makes it possible to describe the
courses of action in general structural terms, expressing underlying regularities. It
allows on the one hand, such a description of the global dynamics of the courses of
action, and on the other hand, such a description of their local dynamics. It also links
these two descriptions. As we discuss in §5.3, the smaller units, based on individual
courses-of-action, describe the carrying out of all or part of software engineering base
practices. Hence, the global dynamic, which is related to the composition of these
performed practices, is a description of what we may call process-in-action.

The course-of-action analysis operates on what, in the observable activity of an
agent, is presentable, accountable and commentable by him/her. A sound analysis

Building an Observatory of Course-of-Action in Software Engineering 189

may work only with sound collected data and, because most accurate data are col-
lected by the team itself, it requires the team commitment to this self-observation.
This team commitment can only be effective if the team is the main beneficiary of this
overwork, collectively - with a valuable result on team processes-in-action - and indi-
vidually - with an added-value on competency development -.

Thus, as presented in figure 1, this analysis shall lead to (i) help to specify the mo-
dalities of engineers’ interaction with project processes leading to the design of better
interactions or of corrective situations; (ii) contradict or support the reconstruction by
the engineer of his/her own activity, i.e. going from “pre-reflective consciousness” of
the actor towards a reflective practitioner attitude [1]. Both results have a valued im-

pact on the project processes.
VSE'’s Process
Reference Model

is reléted to

Project
Processes-in-
action

is recorded in
and examined by

acts facilitates

Observatory and
analysis of the
course-of-action
leads to leads to

Design corrective
situations

eam competency
development

motivates

Fig. 1. The project’s observable activities are self-recorded by team members. The analysis of
the project-in-action provides a decomposition of the global dynamic in terms of smaller units
and the relations of sequencing and embedding between these units. Two benefits are expected:
(i) a reflective consciousness of competency maturity level; (ii) a support to design corrective
actions. Both consequences may improve and facilitate the project processes.

3 Related Work

The “course-of-action” research framework [6] consists in several empirical and tech-
nological research programs in various domains (work analysis [4], traffic control [5],
sport [8], and music composition [21]). The work described in this paper uses plenti-
fully results of these research programs.

190 F.-X. Bru et al.

It would be impossible to reference all the research work that has been inseminated
by Argyris and Schon’s theories [10]. In the software engineering field, Halloran [11]
investigates the relationship between a software process assessment and improvement
model and organizational learning. This work points out the difference between “en-
gineer’s espoused theory” and his/her “theory in use” but it does not develop this
matter as we did and rather focuses on the use of organizational learning to promote a
proactive approach culturally to continuous improvement and learning procedures.

Many propositions have been made for Process Improvement or Process Assess-
ment in small software companies ([12], [13], [14]). Many small organizations are
unaware of existing SPI& SPA standards and assumes that assessments conformant to
these standards can be expensive and time consuming, difficult to perform in small
companies. We think that while building the observatory of course-of-action, founda-
tions are set-up that will facilitate further SPI & SPA programs. There are similitude
with the SPA process proposed in [13] based on an initial self-evaluation and follow-
ing structured interviews and the observatory as we use it.

4 Observing Software Activities

4.1 Software Engineering Standards

A very concise definition of the objects of software engineering is “a project uses
resources in performing processes to produce products for a customer [15].” It gives a
model in figure 2, centered on the software engineering project as the focal point for
applying software engineering standards. This suggests a categorization of standards
in four major areas: customer, process, product, and resource.

g Process ————————transforms——

A

performs

Customer «—Interacts with—— Project

produces——» Product

uses

aids
v
Resource ——appliesto

Fig. 2. The objects of software engineering, suggesting a categorization of standards in the
subject areas of customer, process, product, and resource [15]

Building an Observatory of Course-of-Action in Software Engineering 191

For VSEs, each category contains a number of standards that put them out of reach.
There is a need for an umbrella standard within each category. The IEEE/IEC 12207,
Software Life Cycle Processes [16], provides this umbrella for all of the customer and
process standards. An on-going initiative of ISO should provide lifecycle profiles for
Very Small Enterprises (VSEs) [7].

4.2 VSEs Faced to the 12207

Confronted to the 12207, a software engineer in a VSE is at a loss (‘“like a goose
finding a knife” as French people say). First, this standard has received major changes
since 1995: Amendment 1 in 2002, Amendment 2 in 2004, and a complete revision in
2008. Secondly, there are currently 43 processes in the 12207:2008 [16], organized in
7 process groups. As an example of the gap with the VSEs needs, the emerging stan-
dard “Software Engineering - Lifecycle Profiles for Very Small Enterprises (VSE)”
[7] contains 2 processes: Project Management (PM.1) and Software Implementation
(SD.1). PM.1 is subdivided in 4 sub-processes (Project Planning, Project Plan Execu-
tion, Project Assessment and Control, Project Closure) and SD.1 is subdivided in 6
sub-processes (Software Implementation Initiation, Software Requirements Analysis,
Software Architecture and Detailed Design, Software Construction, Software Integra-
tion and Tests Product Delivery).

It is not sure that a software engineer in a VSE share the same meaning of these 10
names of sub-processes (from Project Planning to Software Integration and Tests
Product Delivery) with a client or a colleague of a major company engaged in any SPI
program such as ISO/IEC 15504 or CMMI. However, they will try to communicate
and may sign a contract, but they don’t speak about the same things. This lack of
understanding illustrates the existence of two theories of action — for a software engi-
neer as for any practitioner -, as defined by Argyris and Schon. They have established
a distinction between those theories that are implicit in what we do as practitioners
and managers (theories-in-use), and those on which we call to speak of our actions to
others (espoused theory). “When someone is asked how he would behave under cer-
tain circumstances, the answer he usually gives is his espoused theory of action for
that situation. This is the theory of action to which he gives allegiance, and which,
upon request, he communicates to others. However, the theory that actually governs
his actions is this theory-in-use [10].” We may ask question about the extent to which
theory-in-use fits espoused theory. Reflection may be a help to discover the theory-in-
use and to reveal the nature of the ‘fit’. We believe that the observatory of course-of-
action — adapted to the software engineering field — may support this process.

4.3 What Can Be Observed?

This significant activity for the actors includes action and communication, but also
other elements: interpretations, feelings, judgments, ...The data necessary to study the
course of action must include continuous observations of the behavior of action and
communication in a work situation as well as different kinds of instigated verbaliza-
tions from the actors which would provide access to other elements [4].

192 F.-X. Bru et al.

Software development never uses a repeated scheme and it may be difficult to in-
terrupt a software engineer at work and to provoke a verbalization of what he/she is
doing and why. In §2.3 we gave an overview of what, in the observable activity is (i)
presentable, (ii) accountable and (iii) commentable by the actor.

Products and documentary resources are main objects of (i) presentation as they
describe the inputs and outputs of the activity. The “historical” context of resources’
use and products’ production has to be recorded too. This can be described in terms of
events and processes, involving occurrences of agents (people) and artifacts (products
and resources) meeting in space (in case of distributed cooperation) and time. As a
first stage, we may consider individual courses of action of the various participants.
At a second level, a collective action involves parts of several individual courses of
action which take place synchronically or sequentially. We need to divide individual
course-of-action in smaller units, that we call course-of-action unit. Each event of
interest has to be (ii) accounted in an instance of Course-of-action Unit in relation
with people and artifacts involved. It provides a kind of project journal. A journal
may be seen as a kind of reflective practice that is a device for working with events
and experiences in order to write (iii) comments and extract meaning from them.

5 A Case Study

5.1 Introduction

In spring 2007, local employers in Brest decided to implement a recent French law on
professional training. This law requires that 3% of employees be under ‘sandwich’ (or
work placement) conditions. A lot of companies choose to use a system called “Con-
trat de professionnalisation” (professionalization contract) over a period of 12 months.
During these 12 months, the full-paid employee is attending university for certain
periods. For contracts involving our computing department, we dedicated an innova-
tive program called “Software Engineering by Immersion” (‘Ingénierie du Logiciel
par Immersion’). The main feature of this last year of the Masters programme is to
learn software engineering by doing, without any computing course but with a long-
term project as the foundation of all apprenticeships. Alternating employees are at-
tending university in 9 periods of 2 consecutive weeks and work in team of 6 in order
to build a complete information system.

The program’s rhythm is based on the lifecycle of a project organized into stages.
Each stage was arbitrary sized to 2 weeks due to the constraints of alternation. The
cycle is: Stage 0: Warm-up; Stage 1: Project set-up; Stage 2: Requirement capture;
Stage 3: Requirement analysis; Stage 4: Design; Stage 5: Software construction; Stage
6: Software construction; Stage 7: Integration and Verification; Stage 8: Qualification
and Deployment.

This case study is based on the activity of a team of 6 young software engineers
(the six former authors) accompanied with the two latter authors acting as partici-
pants-to-observe: one having a direct contact of the team members, sharing their envi-
ronment and taking part in the activities of the team, the other one conducting reviews

Building an Observatory of Course-of-Action in Software Engineering 193

and formal assessments as they happen. This case study depicts some aspects of the
building and the filling of the course-of-action observatory.

The whole observatory is supported with several electronic tools such as semantic
wikis, content management system and dedicated applications. Semantic wikis offers
a lightweight authoring plate-form and will be used to record most events of the day-
to-day life in the project journal.

5.2 The Horizon of Software Engineering Standard

As told in section 4.1, the 12207:2008 standard acts as a standard umbrella and was
used during the introductory stage to define the framework of a software engineer’s
activity. The 12207:2008 was preferred to CMMI because the former (used jointly
with the 15504 standard [17]) separates processes and capability levels in two dimen-
sions while CMMI handles them in one dimension. This separation was preferred
because it defines processes “(set of interrelated or interacting activities which trans-
forms inputs into outputs” [16]) independently from base practices (“an activity that,
when consistently performed, contributes to achieving a specific process purpose
[1717).

The 43 processes are too many and complex to be used as the reference model and
we concentrate on 16, those related to the software development cycle, that is: 6.2.2
Infrastructure Management, 6.3.1 Project Planning, 6.3.2 Project Assessment and
Control, 6.4.1 Stakeholder Requirements Definition, 6.4.4 Implementation Process
replaced by 7.1.1 Software (SW) Implementation Process and its 6 sub-processes,
7.2.1 SW Documentation Management, 7.2.2 SW Configuration Management, 7.2.3
SW Quality Assurance, 7.2.4 and 7.2.5 SW Verification & Validation, 6.4.7 SW In-
stallation. Processes are grouped into process groups (five 12207 group processes are
concerned that we regrouped in three).

The 6 young engineers chosen for this case study have a Bachelor in Information
Technology (4-year studies in the field) and they work in large companies with a
structured corporate baseline. However, there is a need for a common reference of the
terms used, either because they have different significations in the different compa-
nies, or because their signification is unknown or fuzzy. We choose to use the
ISO/IEC FCD 24765, “Systems and software engineering — Vocabulary [18]”.

We dispose of a PDF version of the 12207:2008, licensed by ISO and of a electronic
version of the 24765, copyrighted by ISO but free of use as long as the copyright is
cited. As the project goes along and its events are recorded in the project journal, and in
order to facilitate links between the project journal and Software Engineering standards
used at the horizon, the whole team filled two semantic wikis with a subset of the two
standards used:

e the 12207 wiki (http://oysterz.univ-brest.fr/12207) is an hypertext reference
of the ISO/IEC 12207:2008 for the process level : title, purpose, list of out-
comes and process decomposition in activities and tasks;

e the 24765 wiki (http://oysterz.univ-brest.fr/24765) is a subset of the ISO/IEC
24765 vocabulary, it is actually under reengineering but on-line SEVOCAB
is provided by ISO (http://pascal.computer.org/sev_display).

194 F.-X. Bru et al.

The structure of these two semantic wikis is given in figure 3.

* Narrower
Procelss Group Concept Scheme InScheme
!?itiesmsrt]gn Title : string Concept
- g Description : string . . PrefLabel : string
Creator : string AltLabel : string
* -HasPart Definition : string *
Notes : string
Process
Id : string
Title : string rHasPart Activity |"HasPart Task
Purpose : string | @ Id : string @ —————id: string
Outcomes : string * Title : string * Form : string

Fig. 3. A model of 12207 and 24765 semantic wikis

5.3 The Project in Action

The two latter authors both worked for nearly ten years at Thales Information System
(formerly Syseca Inc), a software services company. They led projects and developed
several management information systems under the control of Thales Information
System corporate baseline.

The authors have defined an apprenticeship/production framework called ILI (In-
génierie du Logiciel par Immersion, Software Engineering by Immersion), based on a
reference model, a development cycle and a typical WBS (Working Breakdown
Structure: a deliverable-oriented hierarchical decomposition of the work to be exe-
cuted by the project team to accomplish the project objectives and create the required
deliverables. It organizes and defines the total scope of the project [18]).

The Process Reference Model (PRM) is adapted and simplified from ISO/IEC
12207; we are using 3 process groups organizing 13 processes: Software Develop-
ment Engineering (Requirements capture, Software Requirements Analysis, Software
Architectural Design, Software Detailed Design, Software Construction, Software
integration; Software qualification testing); Software Project Management (Project
Management, Quality Assurance, Configuration Management); and Software Devel-
opment Support (Infrastructure Management, Life Cycle Model Management, Docu-
mentation Management, Installation-Operation).

We use a Y-shaped life cycle that separates resolution of technical issues from
resolution of feature issues [19]. First, the cycle is divided into two branches (tracks):
a functional track and a technical track. Then these two tracks amalgamate for the
realization of the system.

The WBS has a structural and a temporal decomposition. Each process is structur-
ally decomposed in Software Engineering activities (to distinguish it from the activi-
ties in the 12207 sense) that may have slightly variation from a project to another.
Each Software Engineering activity is further decomposed in sub-activities that can be
fully specified or just named, depending of the scope and goals of the project. The
WBS is temporally organized in stages (in our case, 9 of 2 week each). The planning

Building an Observatory of Course-of-Action in Software Engineering 195

of each stage is divided in several work scenes that carry on SE activities. Scenes will
be performed by team members and ought to produce artifacts.

The course-of-action forms a whole that is concerned with all aspects described in
previous paragraphs but we need to divide the continuous development of the course
of action into significant units (cf. §2.3). We decide to divide the whole course-of-
action by replying to the question: "What is this about, from the point of view of the
engineer?" This division is recorded through the central event Course-of-action Unit.
Complex or collective interactions require an intermediate level, called Step-of-action
sequencing and embedding Course-of-action units. Links with PRM are provided.

A picture of all these interlinked concerns is given in figure 4.

HasPart
ILI Process Group aska ILI Process o Stage
G Id : strin Project HasPart
Id : string \g . 9 FTp—— Title : string
itle - stri + |Title : string Title : string
Title : string . intion © stri DtStart : Date
Purpose : string Description : string . DtEnd '.Date
[Outcomes : string . ICMSWorkSpace : string
ReferencesProcess ¥ IsMemberOf
ReferencesActivity
* HasPart
Person
PrefName : string
JAltName : string
HasPart Mbox : string 1
SE Activity (Organization : string > Performed
Id : string
Title : string , ContributedTo Course-of-action Unit
Description : string Title - string > HasPart References
Q «* |USedCMSWorkSpace : string
Inout Outout Scene
nput Outpu . -
Artifact v Id : string
— BelongsTo Title : string
Concours . [d:string DiStart : Date
Input Output -I;igsec:riS‘tT:r?' strin, i DiEnd :.Date
Step-of-action "MSV\?orkS. ace 'gstrin HesDelivered IiiainRole string
T sng p pace:sting] . WorkCard : Object
Title - string 1 ICMSResourceSpace : string
Description : string

Embedded

Fig. 4. A model of Process Reference Model -PRM- (on the left) and WBS (on the right). Arti-
facts are shared between PRM and WBS. The Course-of-action Unit is used as central link.
Steps-in-action characterize the relations of sequencing and embedding between these units.

The project journal uses a semantic wiki in order to record the progress of the
project. The project manager initially fills and updates the WBS of his/her project.
Team members can record events as they happen but have to systematically fill the
wiki at the end of each phase. Semantic wiki is the most flexible tool in order to re-
cord and shape a structured content. Properties (modifying the underlying data model)
can be added, updated or deleted as the project goes along. Information (data) can be
recorded in a bulk mode and the typesetting performed later. Things to do or to report
are created in one Wiki word to indicate that they have to be filled. Information can
be temporary missing or incomplete.

5.4 Recording Assessments

Several kinds of assessment occur in the life of a project. Assessment may be focused
on products or services, on processes or on persons. Assessment itself provides in-
formation on action performed but many other elements significant for the actors and

196 F.-X. Bru et al.

the course-of-action analysis: interpretations, feelings, judgments, actors’ commit-
ment to the situation and their use of past experience in the course-of- action.

Recording project assessment. The project has to record artifacts produced by pro-
ject progress: lecture notes, progress meeting report, peer review reports which consti-
tute valuable inputs for further analysis.

Recording competency assessment. We argue that personal capability determination
(rather than process capability determination) is more suitable to VSEs because em-
ployees may perceive it as a valuable benefit. Using the 2-level structure of our Proc-
ess Reference Model (on the left part of figure 4), we analyze carefully SE activities
in order to define abilities mobilized (or competencies: “the ability of a person to act
in a pertinent way in a given situation in order to achieve specific purposes [20]”). For
each process, we defined a family of competencies constituted with a list of knowl-
edge topics and a set of abilities or skills required to perform the process (see an ex-
ample in table 1).

Table 1. An example of a competency family: “Software detailed design’

Knowledge topics Abilities or skills

Software Design Fundamentals : concepts To use design methods and tools (in

and principles, design role in a relation with requirements) to produce
development cycle, top-level and detailed design documents: system and software
design architecture and detailed design

Software decomposition configuration To implement methods and modeling tools

item, software component, software unit of various aspects of a system (architecture
and decomposition software, data structure)

Software architecture through different To implement J2EE development and
views: conceptual, dynamic, physical, technology of associated framework

data.

UML diagrams to describe static and To implement DBMS concepts, techniques
dynamic views and tools

Object-oriented design

We believe that a first step in competency development should be made by the engi-
neer him/herself through a self-assessment of abilities at a maturity level. The assess-
ment scale grows from 1 to 5: - 1: Smog - 2: Notion - 3: User - 4: Autonomous - 5:
Expert. Each young engineer is required to periodically fill the 13 competency families
while auto-analyzing the tasks performed and him/her achievement level with the abili-
ties defined in the family. This periodic inventory is supported by eCompas, a tool in-
tended to manage development, assessment and value-added of competencies over the
course of a curriculum or a professional career.

The eCompas tool is intended to store artifacts that may be interesting to illustrate
the ability determination. Each time a software engineer self-assesses a process’s
ability level, he/she has to write an entry associated with the process and may link this
entry with artifacts stored. It constitutes a rudimentary portfolio, but sufficient for our
purposes. This tool needs to be reengineered to work with the wikis’ architecture.

Building an Observatory of Course-of-Action in Software Engineering 197

5.5 Focus on a Process: The Design Process

Recording the project in action. According to ISO/IEC 12207, outcomes of the
7.1.3 Architectural Design and 7.1.4 Software Detailed Design Processes are: a) a
software architectural design is developed and baselined that describes the software
items that will implement the software requirements; b) internal and external inter-
faces of each software item are defined; c) consistency and traceability are established
between software requirements and software design and d) a detailed design of each
software component, describing the software units to be built, is developed.

For the Design Process, 12207 recommended tasks and 15504 base practices are
roughly the same:

1) transformation of the requirements for the software item into an architecture that
describes its top-level structure and identifies the software components.

2) development and documentation of a top-level design for the interfaces external to
the software item and between the software components of the software item.

3) development and documentation of a top-level design for the database.

4) development and documentation of preliminary versions of user documentation.

5) definition and documentation of preliminary test requirements and the schedule for
Software Integration.

Our ILI framework, considered as representative of VSEs processes, decompose the
Design Process in 3 SE Activities: Adjusting the Design, Exemplary Software Design,
and Software Design (including Database Design as a sub-activity).

If we have a look at the information recorded in the observatory by team members,
they performed two kinds of self-confrontations. The structure of self-confrontations
of the former kind, performed at the end of the task, reflects the structure of recom-
mended tasks as they may be found in the SE Activity description. For instance, for
the Exemplary Software Design Activity, the description stresses the identification of
Computer Software Components, the requirements allocation to the components and
the components specification. So, each participant to this activity recorded its own
participation in a Course-of-action unit kept to the Activity description. The latter
kind of self-confrontation was performed as team members prepared the Software
Design Process Review, a formal review. They have to create a synthetic description
of the Design Process and to record it in its associated Work Scenes (see figure 4).
Participants created Steps-in-action embedding individual Course-of-action units and
established inter-wikis links with the corresponding 12207 Processes. It is not sure
that the 12207 outcomes and tasks were confronted to the performed actions, but it
indicates an attempt to link the course-of-action at the horizon of SE standards.

Recording team competency development. Periodic inventories of team members
are recorded within the eCompas tool. A copy (in a Word format) is stored into the
observatory. Focusing on the Design Process, we may note that a team member has
participated to the 3 SE Activities defined for the Design Process (see above). As the
year started, he assesses himself at the maturity level - 1 - (or - none) for the process
as a whole and for each associated abilities. Inside his company, he acts as a software
developer and has very little opportunity to improve design skills. After the Software

198 F.-X. Bru et al.

Design Process Review (6™ stage), he assesses himself to a maturity level of 4 -
Autonomous - (level 2 - Notions - was reached at the end of the 3™ stage, and level 3 -
User — after the Exemplary Design Activity). The availability of accurate competency
level provides valuable information for the project manager in order to assign tasks to
team members.

Recording other assessments. The most valuable information is provided with the
meeting report. They are recorded using a semantic wiki through a semantic form.
Links to other resources (person, artifact, process ...) are very easy to establish and to
update. It provides an ordering scheme and new navigation features.

6 Conclusion and Perspectives

We proposed to adapt the course-of-action framework to software engineers’ activity
in Very Small Enterprises (VSEs). An observatory collects the data necessary to study
the course of action therefore including continuous observations of the behavior of
action and communication in a work situation as well as different kinds of instigated
verbalizations (transcript in a written form) from the actors which would provide
access to other elements such as interpretations, feelings, judgments. As a case study,
the activity of a team of 6 young software engineers accompanied with two partici-
pants-to-observe is currently recorded in the observatory. As units of courses of ac-
tion are significant units for the actor, we choose to breakdown the whole course-of-
action in units based on individual performed activities.

A further study will use these data to proceed with the analysis of course-of-action,
using a theoretical framework, described as semio-logical. This framework will make
possible to explain the global dynamics - or composition - of the courses of action units,
their local dynamics - or generation - and the linkage between these two dynamics.

The current state of this work — the building and the filling of an observatory of the
part of the agent's observable activity that is pre-reflexive (i.e. presentable, account-
able and commentable) — let suggest that analysis will lead (1) to specify the modali-
ties of engineers’ interaction with life cycle processes leading to the design of better
interaction or of corrective situations and (2) to contradict or support the reconstruc-
tion by the engineer of his/her own activity, i.e. going from “pre-reflective conscious-
ness” of the actor towards a reflective attitude.

Thus, we may think that observing and analyzing software engineer’s activity help
to reveal his/her theory-in-use [10] - what governs engineers’ behavior and tends to be
tacit structures - that we may call Project Processes-in-use in a VSE. The unit break-
down of course-of-action is based on performed activities related to a simple Process
Reference Model issued from the ISO/IEC 12207:2008 standard. We made the hy-
pothesis that this standard constitutes the “espoused theory” of software engineers.
So, the course-of-action framework may help engineers to establish a link between
his/her “Project Processes-in-use” and “espoused Process Reference Model” and
contribute to reduce the fit between a project-in-action and SE standards. When the
upcoming standard “Software Engineering - Lifecycle Profiles for Very Small Enter-
prises (VSE)” [7] will be available, we will consider how this standard fits in this
proposition.

Building an Observatory of Course-of-Action in Software Engineering 199

Argyris and Schon explored the nature of organizational learning and defined two

kind of learning: simple-loop learning and double-loop learning [22]. Then they set up
two models (Model I and Model II) that describe features of theories-in-use that either
inhibit or enhance double-loop learning. Further work is required to consider how
course-of-action analysis is related with these organizational learning models and
hence, on the VSE’s ability to cope with innovations and changes.

References

11.

12.

13.

14.

15.

16.

17.

Schon, D.: The Reflective Practitioner. Basic Books, New York (1983)
Argyris, C., Putnam, R., McLain Smith, D.: Action Science, Concepts, methods, and skills
for research and intervention. Jossey-Bass, San Francisco (1985)

. Software Engineering - Lifecycle Profiles for Very Small Enterprises (VSE) — Part 1,

http://www.iso.org/iso/iso_catalogue/catalogue_tc/
catalogue_detail.htm?csnumber=51150

Theureau, J., Filippi, G., Gaillard, I.: From semio-logical analysis to design: the case of
traffic control, communication. In: Colloquium Work activity in the perspective of organi-
zation and design, M.S.H., Paris (1992)

Theureau, J., Filippi, G.: Analysing cooperative work in an urban traffic control room for
the design of a coordination support system. In: Luff, P., Hindmarsh, J., Heath, C. (eds.)
Workplace studies, ch. 4, pp. 68-91. Cambridge Univ. Press, Cambridge (2000)

Theureau, J.: Course-of-action analysis & course-of-action centered design. In: Hollnagel,
E. (ed.) Handbook of Cognitive Task Design. Lawrence Erlbaum Ass., New Haven (2003)
Ribaud, V., Saliou, P.: Revealing Software Engineering Theory-in-Use through the Obser-
vation of Software Engineering Apprentices’ Course-of-action. In: 4™ International Multi-
Conference on Computing in the Global Information Technology. IEEE Press, New York
(2009)

Theureau, J.: Selfconfrontation interview as a component of an empirical and technologi-
cal research programme. In: II° Journées internationales des sciences du sport, Paris (2002)
Varela, F.: Principles of biological autonomy. Elsevier, New York (1980)

Argyris, C., Schon, D.: Theory in practice: Increasing professional effectiveness. Jossey-
Bass, San Fransisco (1974)

Halloran, P.: Organisational Learning from the Perspective of a Software Process Assess-
ment & Improvement Program. In: 32nd Hawaii International Conference on System Sci-
ences. IEEE Press, New York (1999)

Cater-Steel, A.P.: Process improvement in four small software companies. In: Software
Engineering Conference, pp. 262-272. IEEE Press, New York (1999)

Grunbacher, P.: A software assessment process for small software enterprises. In: Euromi-
cro 1997. New Frontiers of Information Technology, pp. 123-128. IEEE Press, New York
(1997)

von Wangenheim, C.G., Anacleto, A., Salviano, C.F.: Helping small companies assess
software processes. IEEE Software 23, 91-98 (2006)

Moore, J.W.: An integrated collection of software engineering standards. IEEE Soft-
ware 16(6), 51-57 (1999)

ISO/IEC 12207:2008, Information technology — Software life cycle processes. Interna-
tional Organization for Standardization (ISO), Geneva (2008)

ISO/IEC 15504:2004, Information technology — Process assessment. International Organi-
zation for Standardization (ISO), Geneva (2004)

200 F.-X. Bru et al.

18. ISO/IEC FCD 24765, Systems and software engineering — Vocabulary. International Or-
ganization for Standardization (ISO), Geneva (2009)

19. Roques, P., Vallée, F.: UML en action. Eyrolles, Paris (2002)

20. Meirieu, P.: Si la compétence n’existait pas, il faudrait I'inventer In IUFM de Paris
College des CPE (2005),
http://cpe.paris.iufm.fr/spip.php?articlel150 (2007)

21. Donin, N., Theureau, J.: Music composition in the wild: from the horizon of creative cog-
nition to the time & situation of inquiry. In: EACE 2005, Crete, pp. 57-64 (2005)

22. Argyris, C., Schon, D.: Organizational learning: A theory of action perspective. Addison
Wesley, Reading (1978)

	Building an Observatory of Course-of-Action in Software Engineering: Towards a Link between ISO/IEC Software Engineering Standards and a Reflective Practice
	Introduction
	Course-of-Action Applied to Software Engineers’ Activity
	The Course-of-Action in a Nutshell
	The Observatory of Course-of-Action
	An Observatory of Software Engineers’ Activity
	Application for Software Engineers in VSEs

	Related Work
	Observing Software Activities
	Software Engineering Standards
	VSEs Faced to the 12207
	What Can Be Observed?

	A Case Study
	Introduction
	The Horizon of Software Engineering Standard
	The Project in Action
	Recording Assessments
	Focus on a Process: The Design Process

	Conclusion and Perspectives
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

