

Communications
in Computer and Information Science 42

Rory V. O’Connor Nathan Baddoo
Juan Cuadrado Gallego
Ricardo Rejas Muslera Kari Smolander
Richard Messnarz (Eds.)

Software Process
Improvement

16th European Conference, EuroSPI 2009
Alcala (Madrid), Spain, September 2-4, 2009
Proceedings

13

Volume Editors

Rory V. O’Connor
Dublin City University, Dublin, Ireland
E-mail: roconnor@computing.dcu.ie

Nathan Baddoo
University of Hertfordshire
Hatfield, Hertfordshire, UK
E-mail: n.baddoo@herts.ac.uk

Juan Cuadrado Gallego
University of Alcala, Madrid, Spain
E-mail: jjcg@uah.es

Ricardo Rejas Muslera
University of Alcala, Madrid, Spain
E-mail: rrejas@uah.es

Kari Smolander
Lappeenranta University of Technology
Lappeenranta, Finland
E-mail: kari.smolander@lut.fi

Richard Messnarz
ISCN, Graz, Austria
and ISCN, Bray, Co. Wicklow, Ireland
E-mail: rmess@iscn.com

Library of Congress Control Number: 2009933499

CR Subject Classification (1998): D.2, D.1, D.3, D.2.1, D.2.8, D.2.9

ISSN 1865-0929
ISBN-10 3-642-04132-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-04132-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12748655 06/3180 5 4 3 2 1 0

Preface

This textbook is intended for SPI (software process improvement) managers and re-
searchers, quality managers, and experienced project and research managers. The
papers constitute the research proceedings of the 16th EuroSPI (European Software
Process Improvement, www.eurospi.net) conference held in Alcala (Madrid region),
September 2–4, 2009, Spain.

Conferences have been held since 1994 in Dublin, 1995 in Vienna (Austria), 1997
in Budapest (Hungary), 1998 in Gothenburg (Sweden), 1999 in Pori (Finland), 2000
in Copenhagen (Denmark), 2001 in Limerick (Ireland), 2002 in Nuremberg (Ger-
many), 2003 in Graz (Austria), 2004 in Trondheim (Norway), 2005 in Budapest
(Hungary), 2006 in Joensuu (Finland), 2007 in Potsdam (Germany), 2008 in Dublin
(Ireland), and 2009 in Alcala (Spain).

EuroSPI established an experience library (library.eurospi.net) which will be continu-
ously extended over the next few years and will be made available to all attendees. EuroSPI
also created an umbrella initiative for establishing a European Qualification Network in
which different SPINs and national initiatives join mutually beneficial collaborations
(ECQA – European Certification and Qualification Association, www.ecqa.org).

With a general assembly during October 15–16, 2007 through Euro-SPI partners
and networks, in collaboration with the European Union (supported by the EU Leo-
nardo da Vinci Programme) a European certification association has been created
(www.eu-certificates.org, www.ecqa.org) for the IT and services sector to offer SPI
knowledge and certificates to industry, establishing close knowledge transfer links
between research and industry.

An EU Certificates day of the ECQA (European Certification and Qualification
Agency) took place as an associated event of EuroSPI 2009 on September 2, 2009.

The biggest value of EuroSPI lies in its function as a European knowledge and experi-
ence exchange mechanism for SPI know-how between research institutions and industry.

Since its beginning in 1994 in Dublin, the EuroSPI initiative has outlined that there
is not a single silver bullet to solve SPI issues, but that an understanding of a combina-
tion of different SPI methods and approaches is needed to achieve concrete benefits.
Therefore each proceedings volume covers a variety of different topics, and at the
conference we discuss the potential synergy and the combined use of such methods
and approaches. These proceedings contain selected research papers on six topics
each comprising three papers:

Section I: SPI and the Testing Process
Section II: SPI Measurement and Assessment
Section III: Agile and Open Source Issues
Section IV: SPI and Management Issues
Section V: Process Life Cycle and Quality Issues
Section VI: Standards and Reference Models

VI Preface

Section I presents three studies on SPI and the Testing Process. Fernandex-Sanz et
al. remind us that software testing is the commonest practice for software quality as-
surance and by implication should be fundamental to software process improvement.
They argue that despite this importance and the effort expended on software testing,
there is still a lack of knowledge of the real practices of testing. In this paper, they
present the results of a survey conducted in two organizations in Spain, to highlight
the key practices of software testing and to highlight relationships between these prac-
tices and software development successes. Almog and Heart extend this theme by
concentrating on software test cases. They suggest that the process of software testing
can be greatly improved if the concept of test cases is formally defined. Such formal
definition will also enhance software testing assessment and make it easier for the
automation of the generation and management of test cases. The theme of automation
is extended by Connolly et al., who explore ways of supporting expert customers in
the design and execution of tests cases in acceptance test-driven development. They
identify a key challenge as the support needed by the expert in the reuse of existing
documentation. They outline plans for the development of an automated testing model
that improves adherence to practice through the provision of fully traceable artifacts.

Section II, SPI Measurement and Assessment, presents the results of three studies
in this area. Bhatti et al. propose an extension to the Goal Question Metric model.
They do this in response to their argument that measurements can be more successful
if finely tuned to the needs of the organization collecting those measures. Their exten-
sion to the GQM is vital because this model has been derived from adopting a heuris-
tic approach. Marín et al. address the notion of measurements in specific relation to
functional size measurement and model-driven development (MDD) environments.
They show how a functional size measurement procedure which has been developed
for measurement of conceptual models of a specific model-driven development envi-
ronment can help in the detection of defects in conceptual models. In a slight depar-
ture from measurements, Barafort and Rousseau present a sustainable service innova-
tion framework that is used as a generic framework for supporting innovation and
promoting multidisciplinary activities.

Section III emphasizes the need for incorporating innovative approaches and meth-
ods in approaches which may have become traditional or even conventional. Under
Agile and Open Source Issue three papers bear testimony to this dictum. Hossain et al.
explore how agile practices can be used to minimize the risk of coordinating global
software development. Diaz et al. investigate the viability of introducing agile soft-
ware development methods like SCRUM in compliance with the CMMi process
model. In this paper, they set out to improve the understanding between these two
development approaches by presenting empirical accounts that confirm the theoretical
comparison between agile software development and plan-driven process models like
CMMi. Soto and Ciolkowski touch on another innovative approach in terms of open
source software (OSS) development. They present work-in-progress that details the
development of process evaluation frameworks aimed specifically at OSS projects and
discuss some lessons learned when the framework was applied to certain OSS projects.

In Section IV three studies on SPI and Management Issues are presented. Through
an illustrative case study, Peisl et al. propose an approach to the management of inno-
vation integrating business, process and maturity dimensions. Šamalíková et al. report

 Preface VII

on the application of process mining techniques to (a) discover shortcomings in the
change control board process in an organization during the different lifecycle phases
and (b) determine improvement activities. Välimäki et al. present current best prac-
tices for global software development (GSD) in the form of process patterns for
project management––evaluated by using a scenario-based assessment method––to
help companies improve their own GSD processes by incorporating the patterns pre-
sented here in their processes.

Section V addresses Process Lifecycle and Quality Issues. In the first paper,
Kääriäinen and Välimäki present a study about the history of application lifecycle
management improvement in a company. O’Connor’s exploration of usability tech-
niques in the software development process of Irish SMEs that develop Web applica-
tions found that there are no process models available that meet the specific needs of
Web development, and that Web developers are confused about how to implement
usability. O’Connor’s study also found that definitions of usability are inconsistent
and that there is still a need for a definition of usability specifically for Web applica-
tions. He concludes that there is very little awareness of usability standards. In the last
paper in this section, Chiam et al. propose a framework for capturing quality attribute
techniques, such as safety and security, of software development. They suggest that
such a framework supports process tailoring by facilitating the selection of techniques
for inclusion into process models that target specific product qualities.

Finally, Section VI presents three studies on Standards and Reference Models. Bru
et al. present a case study of the activity of a team of six young software engineers that
depicts some aspects of the building and the filling of the course-of-action observa-
tory. They argue that observing and analyzing software engineers’ activity helps to
reveal their theory-in-use, i.e., what governs their behavior. Bru et al. suggest that
such a study may help establish links between a project process in use and a simpli-
fied process reference model, thereby helping to reduce the fit between a project-in-
action and espoused SE standards. Valdevit et al. present a guide to implementing an
information security management system (ISMS) in small settings. In this study they
narrate the experience of Public Research Centre Henri Tudor, Luxembourg, which
was charged with finding solutions to facilitate ISMS deployment in SMEs. Finally,
continuing the theme of small organizations, Pino et al. introduce an improvement
framework for very small organizations (VSEs). They describe their experience of
validating this framework in eight companies and provide results to support the use-
fulness of tailored improvement frameworks for VSEs.

Recommended Further Reading

In [1] we integrated the proceedings of three EuroSPI² conferences into one book
which was edited by 30 experts in Europe. In [2] you will find the EuroSPI² research
proceedings published by Springer and based on EuroSPI 2005. In [3] you will find
the EuroSPI research proceedings published by Springer and based on EuroSPI² 2006.
In [4] you will find the research proceedings for EuroSPI² 2007 published by Sprin-
ger. In [5] you will find last year’s research proceedings published by Springer.

VIII Preface

References

1. Messnarz, R., Tully, C. (eds.): Better Software Practice for Business Benefit – Principles
and Experience, 409 pages. IEEE Computer Society Press, Los Alamitos (1999)

2. Richardson, I., Abrahamsson, P., Messnarz, R. (eds.): Software Process Improvement.
LNCS, vol. 3792, p. 213. Springer, Heidelberg (2005)

3. Richardson, I., Runeson, P., Messnarz, R. (eds.): Software Process Improvement. LNCS,
vol. 4257, pp. 11–13. Springer, Heidelberg (2006)

4. Abrahamsson, P., Baddoo, N., Margaria, T., Messnarz, R. (eds.): Software Process Im-
provement. LNCS, vol. 4764, pp. 1–6. Springer, Heidelberg (2007)

5. O’Connor, R.V., Baddoo, N., Smolander, K., Messnarz, R. (eds): Software Process Im-
provement. CCIS, vol. 16, Springer, Heidelberg (2008).

July 2009

Rory V. O’Connor
 Nathan Badoo

 Juan Cuadrado Gallego
 Ricardo Rejas Muslera

 Kari Smolander
 Richard Messnarz

Organization

Board Members

EuroSPI Board Members represent centers or networks of SPI excellence having large
experience with SPI. The board members collaborate with different European SPINS
(Software Process Improvement Networks).

The following six organizations have been members of the conference board in the
last 9 years:

• ASQ, http://www.asq.org
• ASQF, http://www.asqf.de
• DELTA, http://www.delta.dk
• ISCN, http://www.iscn.com
• SINTEF, http://www.sintef.no
• STTF, http://www.sttf.fi

EuroSPI Scientific Program Committee

EuroSPI established an international committee of selected well-known experts in SPI
who are willing to be mentioned in the program and to review a set of papers each
year. The list below represents the Research Program Committee members. EuroSPI²
also has a separate Industrial Program Committee responsible for the
industry/experience contributions.

• Abran, Alain, Ets University of Quebec, Canada
• Ali Babar, Muhammad, Lero, the Irish Software Engineering Centre, Ireland
• Ambriola, Vincenzo, Universita Di Pisa, Italy
• Aurum, Aybüke, University of New South Wales, Australia
• Baddoo, Nathan, School of Computer Science, University of Hertfordshire, UK
• Biffl, Stefan, Technische Universität Wien, Austria
• Braungarten, Rene, Otto Von Guericke University Magdeburg, Germany
• Buglione, Luigi, Engineering Ingegneria Informatica S.P.A., Italy
• Casey, Val, University of Bournemouth, UK
• Chua, Bee Bee, University of Technology, Australia
• Ciolkowski, Marcus, Fraunhofer IESE, Germany
• Coleman, Gerry, Dundalk Institute of Technology, Ireland
• Cuadrado-Gallego, Juan J., University of Alcala De Henares, Spain
• Dalcher, Darren, Middlesex University, UK
• De Amescua, Seco Antonio, Universidad Carlos III De Madrid, Spain
• Diez, Teresa, University of Alcala, Spain
• Dingsoyr, Torgeir, Sintef ICT, Norway
• Dominguez-Alda, Mara J., University of Alcala De Henares, Spain

 Organization X

• Dumke, Reiner, Otto Von Guericke University of Magdeburg, Germany
• Fernandez Del Castillo, Jose Raul, University of Alcala, Spain
• Fernandez De Sevilla, Marian, University of Alcala De Henares, Spain
• Garcia, Felix, University of Castilla La Mancha, Spain
• Garcia Guzman, Javier, Universidad Carlos III De Madrid, Spain
• Gonzalez Soto, Leon A., University of Alcala, Spain
• Gorschek, Tony, Blekinge Institute of Technology, Sweden
• Gresse Von Wangenheim, Christiane, Universidade Do Vale Do Itajai –

 Univali, Brazil
• Haugset, Borge, SINTEF, Norway
• Hilera, Jose R., University of Alcala, Spain
• Keenan, Frank, Dundalk Institute of Technology, Ireland
• Kreiner, Christian, Graz University of Technology, Austria
• Landes, Dieter, University of Applied Sciences, Coburg, Germany
• Mäkinen, Timo, Tampere University of Technology, Finland
• Martinez, Jose J., University of Alcala, Spain
• Mas, Antonia, Universitat De Les IIIes Baleares, Spain
• McCaffery, Fergal, Dundalk Institute of Technology, Ireland
• McQuaid, Patricia, Orfalea College of Business Cal Poly, USA
• Muel, Enriqueta, University of Alcala De Henares, Spain
• Münch, Jürgen, Fraunhofer IESE, Germany
• O’Connor, Rory, Dublin City University, Ireland
• Pastor, Oscar, Technical University of Valencia, Spain
• Phalp, Keith, University of Bournemouth, UK
• Rejas, Ricardo, Universidad Francisco De Vitoria, Spain
• Richardson, Ita, Universtiy of Limerick, Ireland
• Selioukova, Yana, Helsinki University of Technology, Finland
• Siakas, Kerstin, Alexander Technological Educational Institute of Thessaloniki

 (A.T.E.I.), Greece
• Sillitti, Alberto, Free University of Bolzano-Bozen, Italy
• Stlhane, Tor, Norwegian University of Science and Technology, Norway
• Stapel, Kai, Leibniz Universität Hannover, Germany
• Vajde Horvat, Romana, proHUMAN, Slovenia
• Varkoi, Timo, Tampere University of Technology, Finland
• Ventura Martins, Paula, Fct-University of Algarve, Portugal
• Vondrak, Ivo, VSB - Technical University of Ostrava, Czech Republic

All six chairs, the general and the research chairs, have quite a complementary and

interesting profile. Dr. Messnarz works in close collaboration with Austrian research
institutions (universities of applied sciences) and large German automotive
companies. Dr. Nathan Baddoo is a professor at the University of Hertfordshire, UK,
and he has published scientific articles about the human factors in SPI and has
performed studies at major European organizations, applying motivation techniques
in SPI. Professor Juan Cuadrado Gallego is a profesor at the University of Alcala in

 Organization XI

Spain and is a member of experience networks concerning process and product
measurement. This includes experiences with and mathematical models to implement
international measurement standards. Dr. Ricardo Rejas Muslera is a researcher at the
University of Alcala in Spain and specialized in the field of improvement models. He
recently published potential extensions for risk management in the existing
assessment models. Dr. Rory O’Connor is is a senior lecturer in Dublin City
University and a senior research with Lero, the Irish Software Engineering Cente. His
main research interests center on software process and SPI in relation to small and
very small organizations. And finally, Dr. Kari Smolander has studied software
development organizations extensively and he is a professor of software engineering
at Lappeenranta University of Technology.

The experience portfolio of the chairs covers different market segments, different
sizes of organizations, and different SPI approaches. This strengthens the fundamental
principle of EuroSPI² to cover a variety of different markets, experiences, and
approaches.

Dr. Richard Messnarz
General Chair of EuroSPI
ISCN, Ireland and Austria
rmess@iscn.com

Dr. Nathan Baddoo
EuroSPI Scientific Program Committee Chair
University of Hertfordshire, UK
n.baddoo@herts.ac.uk

Professor Juan Cuadrado Gallego
EuroSPI Scientific Program Committee Chair
University of Alcala, Madrid, Spain
jjcg@uah.es

Dr. Ricardo Rejas Muslera
EuroSPI Scientific Program Committee Chair
University of Alcala, Madrid, Spain
rrejas@uah.es

Dr. Rory O’Connor
EuroSPI Scientific Program Committee Chair
Dublin City University, Ireland
roconnor@computing.dcu.ie

Dr. Kari Smolander
EuroSPI Scientific Program Committee Chair
Lappeenranta University of Technology, Finland
kari.smolander@lut.fi

Table of Contents

Organisational Issues

Factors with Negative Influence on Software Testing Practice in Spain:
A Survey . 1

Luis Fernández-Sanz, M. Teresa Villalba, José Ramón Hilera, and
Raquel Lacuesta

What Is a Test Case? Revisiting the Software Test Case Concept 13
Dani Almog and Tsipi Heart

Automating Expert-Defined Tests: A Suitable Approach for the
Medical Device Industry? . 32

David Connolly, Fergal Mc Caffery, and Frank Keenan

SPI Measurement and Assessment

A Model for Selecting an Optimum Set of Measures in Software
Organizations . 44

Ansar Malook Bhatti, Hafiz Muhammad Abdullah, and
Cigdem Gencel

Applying a Functional Size Measurement Procedure for Defect
Detection in MDD Environments . 57

Beatriz Maŕın, Giovanni Giachetti, and Oscar Pastor

Sustainable Service Innovation Model: A Standardized IT Service
Management Process Assessment Framework . 69

Béatrix Barafort and Anne Rousseau

Agile and Open Source Issues

How Can Agile Practices Minimize Global Software Development
Co-ordination Risks? . 81

Emam Hossain, Muhammad Ali Babar, and June Verner

Mapping CMMI Level 2 to Scrum Practices: An Experience Report 93
Jessica Diaz, Juan Garbajosa, and Jose A. Calvo-Manzano

The QualOSS Process Evaluation: Initial Experiences with Assessing
Open Source Processes . 105

Mart́ın Soto and Marcus Ciolkowski

XIV Table of Contents

SPI and Management Issues

Innovation Process Design: A Change Management and Innovation
Dimension Perspective . 117

Thomas Peisl, Veronika Reger, and Juergen Schmied

Discovering Changes of the Change Control Board Process during a
Software Development Project Using Process Mining 128

Jana Šamaĺıková, Jos J.M. Trienekens, Rob J. Kusters, and
A.J.M.M. (Ton) Weijters

Global Software Development Patterns for Project Management 137
Antti Välimäki, Jukka Kääriäinen, and Kai Koskimies

Process Lifecycle and Quality Issues

Applying Application Lifecycle Management for the Development of
Complex Systems: Experiences from the Automation Industry 149

Jukka Kääriäinen and Antti Välimäki

Exploring the Role of Usability in the Software Process: A Study of
Irish Software SMEs . 161

Rory V. O’Connor

Quality Attribute Techniques Framework . 173
Yin Kia Chiam, Liming Zhu, and Mark Staples

Standards and Reference Models

Building an Observatory of Course-of-Action in Software Engineering:
Towards a Link between ISO/IEC Software Engineering Standards and
a Reflective Practice . 185

François-Xavier Bru, Gaëlle Frappin, Ludovic Legrand,
Estéban Merrer, Sylvain Piteau, Guillaume Salou,
Philippe Saliou, and Vincent Ribaud

Tailoring ISO/IEC 27001 for SMEs: A Guide to Implement an
Information Security Management System in Small Settings 201

Thierry Valdevit, Nicolas Mayer, and Béatrix Barafort

An Integrated Framework to Guide Software Process Improvement in
Small Organizations . 213

Francisco J. Pino, Félix Garćıa, and Mario Piattini

Author Index . 225

R.V. O’Connor et al. (Eds.): EuroSPI 2009, CCIS 42, pp. 1–12, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Factors with Negative Influence on Software Testing
Practice in Spain: A Survey

Luis Fernández-Sanz1, M. Teresa Villalba2, José Ramón Hilera1,
and Raquel Lacuesta3

1 Depto. De C. de la Computación, Universidad de Alcalá, Ctra. Madrid-Barcelona Km 33,600,
Alcalá de Henares, 28871, Madrid, Spain

2 Depto. de Sistemas Informáticos, Universidad Europea de Madrid,
C/Tajo s/n, Villaviciosa de Odón, 28670, Madrid, Spain

3 Dept. of Comp. and Syst. Eng., Univ. de Zaragoza, C. Escolar s/n, 44003 Teruel, Spain
luis.fernandezs@uah.es, maite.villalba@uem.es,

jose.hilera@uah.es, lacuesta@unizar.es

Abstract. Software testing is the commonest technique for software quality as-
surance. It is present in every development project and concentrates a large per-
centage of effort, there are still not many studies which address the real practice
of individuals and organizations. Anyway, practitioners usually agree with the
idea that software testing efficiency and effectiveness in their organizations
might be improved. Two previous studies in Spain have revealed implemented
testing practices in organizations and individual performance of software pro-
fessionals when designing test cases should be improved. This paper presents
the results of a survey designed to know if 23 factors determined by a panel of
experts in 2007 may explain this situation of testing practice. Data collected re-
veal that none of the factors is clearly rejected as a negative influence for test-
ing although some of them are not generally accepted. Exploratory statistical
analysis reveals relations between certain pairs of items as well as a new group-
ing in factors.

Keywords: Software testing, survey, influence factors.

1 Introduction

Software testing is the commonest techniques for verification and validation in devel-
opment projects. Every project includes a specific phase for testing and debugging.
According to different statistical studies of effort distribution throughout the life cycle
[1][2][3], this phase usually requires around a large percentage, around one-third
(ranging from 30 to 35%), of the total effort of the project.

Different studies have tried to analyze real practice but in many cases empirical
works are focused on analyzing or demonstrating the benefits of specific methods or
approaches to testing. As stated in [4], there is a need of real practice empirically-based
data not vested by such purpose but aimed at providing more light on this area. This
type of studies is rare although, as can be seen in the following sections, there are inter-
esting contributions. In order to gain knowledge in this area, a series of studies centered

2 L. Fernández-Sanz et al.

on software testing practices in Spain were launched in 1999 by L. Fernandez-Sanz. It
began with a survey on testing practices in organizations (see Section 2) which finally
collected information from 210 software professionals. After analyzing results which
reveal a weak situation for organizations and as suggested by respondents, a specific
study on 72 individual practitioners’ performance in test case design (see Section 3) was
carried out to control if professionals might get good results despite poor organizational
environment. This study concluded that individual performance was also weak so as a
final step a survey was launched to discover the underlying causes. This paper is fo-
cused on this final stage presented in Section 4 although a brief presentation of the two
first studies is included in Sections 2 and 3. Finally, section 5 discusses results and con-
clusions as well as future works.

2 Analysis of Testing Practices in Organizations

In order to know something more about which the real testing practices of software
organizations in Spain are, a study was carried out by the Software Quality Group of
ATI (www.ati.es), the main computing professionals association in Spain, the national
body of CEPIS (www.cepis.org), the Council of European Professional Informatics
Societies. This study (partly published in [5]) collected, during the period 1999-2007
information, from 210 IT professionals engaged in software development projects in
Spain corresponding to almost all the activity sectors as well as many different posi-
tions (see table 1). Data were collected using anonymous questionnaires during spe-
cific events (like training courses, both in-company and open access, and QA events)
as well as exploiting direct relations with IT professionals in companies.

Table 1. Respondents in the study of testing practices in organizations

Sector % Position %
Finance 14.3% Tester 16.2%
Consultancy 12.8% Analyst 12.8%
Telco/IT 10.4% Project manager 11.1%
Energy/industry 5.2% Manager 9.4%
Transportation/Airlines 4.3% Software engineer 8.5%
Defense 4.3% QA specialist 5.9%
Government 3.8% Programmer 5.9%
Tourism 3.8% IT director 5.1%
Health 2.3% Others 25.1%
Others 38.8%

Although different process models (such as CMMi1 [6][7],TMM [8], TMMI

[9][10], TPI [11] y TMap [12][13].) are applicable to testing and include specific
practices, only recently [14] description for testing process improvement have been
analyzed in a rigorous way. Conclusions of this study reflect that there is not a com-
plete and well described set of practices in those models so a quick method to collect

1 As stated in the areas of Product Integration, Validation and Verification.

 Factors with Negative Influence on Software Testing Practice in Spain 3

information from a wide range of organizations is not available for a survey. Obvi-
ously, data from CMMI evaluation or similar activities would give information on
real testing practice. However, it is difficult to access to details of such evaluation
processes, only a small percentage of organizations have been evaluated according to
this model and SEI public information does not include details of each process area.

Knowing the limitation, we decided to use as reference the list of best practices for
software testing of Quality Assurance Institute (www.qaiusa.org): one of advantage is
that QAI carried out several surveys using this list from 1994 to 1999 in the USA so
this reference of 20 practices was refined with their results and experience. In fact,
published surveys do not focus their attention in specific process models but in cus-
tomized list of questions covering from detailed techniques to organizational topics.
In the case of [15][16] items covered from general testing approach (independent
testing, etc.), budget or standards to specific methods and possible barriers to adoption
of specific practices. Other studies [17] were more focused on detailed methods (e.g.
use of notations like UML, structured diagrams, etc. for documentation) and specific
data on percentage of effort devoted to testing even related to project size; in the case
of [18] (also based on contacts of a network of practitioners and researchers) it was
focused on extremely detailed aspects of software unit testing although some conclu-
sions might be common to general testing practices.

Table 2. Summary of results from survey on testing practices implemented in organizations

QAI practice Implem
1. Identified responsibility for testing processes in the organization? 28.57%
2. Is there and is used a standard for test plans? 23.33%
3. Is there and is used a standard for unit testing? 18.10%
4. Is there and is used a standard for test reports? 27.14%
5. Testing planning and execution process parallel to the whole development process? 28.57%
6. Check if software specifications are correct? 39.05%
7. Besides being correctly implemented. check if customer expectations are fulfilled? 48.57%
8. Testing staff check if development documents are complete and correct? 21.43%
9. Testing staff report defects to developers (and not to managers)? 41.43%
10. Testing staff identifies business risks before developing test plan? 11.43%
11. Are there measurable objectives for each tested system? 14.76%
12. Testing objectives are clearly linked to business risks? 14.29%
13. Are detected defects recorded, reported and used to improve development and
testing processes?

28.10%

14. Has testing staff defined defect expectations according to paste experience? 17.62%
15. Is there a testing processes improvement process? 18.10%
16. Defects are identified with a unique code? 20.95%
17. Does the organization record, report and used defect data to asses test effectiveness? 17.62%
18. Are metrics used for planning and evaluating testing processes? 9.05%
19. Are there specific training processes for the testing staff? 17.62%
20. Do testing tools represent a significant element of testing process? 12.50%

Organizations Implem
No. Practices from 0 to 4 10.95% No. Practices from13 to 16 19.05%
No. Practices from 5 to 8 31.90% No. Practices from17 to 20 13.33%
No. Practices from 9 to 12 24.29%

4 L. Fernández-Sanz et al.

Results updated to 2007 from the survey [5] are summarized in Table 2: each prac-
tice is described with a short description. Although QAI suggests that organizations
would be classified in a scale of five levels according to the number of practices im-
plemented, we think this is scheme is not rigorous enough although results are shown
below as an indicator of aggregated number of practices per respondent. The survey
also included information on two additional items:

• Specialized training in software testing: only 30.61% of respondents had attended
such training. Similar formal [16] and informal surveys referred to testing training
revealed slightly higher percentage of those with training).

• Relationship between training and answers to questions on testing foundations:
number of people with specific training who passed the questions is twice the
number of those with no training at all.

Looking at the result in table 2 with general low percentages in all items, it is clear
there is still a wide margin of improvement for software testing practices: poor testing
practices are not exclusive of Spain as can be seen in [14][15][16]. Trying to go fur-
ther, we wanted to investigate if individual performance of testers would be good
despite the weak organizational practices so we devised a specific study (Section 3).

3 Analysis of Individual Performance in Test Case Design

To check if software professionals were good at designing functional test cases, a
small size case study (4 use cases) was created to control such activity with selected
IT professionals contacted in seminars and events. The problem to be solved was the
design of test cases for a basic DVD list management application where several de-
fects were injected. A website with the following features was created:

• Access to the natural-language specification for the application
• Collection of anonymous data of the participants: position, sector, experience, etc.
• Interactive recording of test cases with options to create cases, to “execute” (by

simulation) showing the list of stored DVDs after it, to determine if a defect is de-
tected and to review the list of “executed” cases.

• Recording of time devoted by each participant.
• Presentation of a list of suggested correct test cases (to assure full coverage of the

application) and recording of priority of each test case suggested by each partici-
pant according to his/her vision of the program objectives.

Table 3. Participants in the study of individual test case design

Sector % Position %
Consultancy and IT 36.1% Researcher 28%
Education 12.4% Tester 27%
Internet 16.2% Project manager 17%
Energy/industry 9.8% Software engineer 13%
Finance 5.5% Programmer 9%
Government 5.5% Systems analyst 6%
Transportation/Airlines 1.5%
Others 29.2%

 Factors with Negative Influence on Software Testing Practice in Spain 5

This experience had also a secondary objective as a check of the acceptance of test
generation based on UML activity diagrams: “correct” solution presented at the end
of the experience was generated using this method. The sample of 71 IT professionals
(discarding unreliable tryouts and incomplete data) who participated in the first wave
is shown in Table 3. Average development experience of respondents is 5.6 years and
average time devoted to the experience was 27 minutes.

Results were presented at [18] and [19] and they can be summarized as follows:

• Only 1 participant covered more than 75% of the options of the program. 70.4% of
participants did not reach the 50% of coverage of functional options, 13% did not
detect any of the 4 injected defects and 40.8% detected at least 3. As an average,
50% of defects were detected and participants claim detection of 8 not real defects.

• As an average, around 50% of the cases designed by a tester were oriented to test
program options previously controlled in similar cases executed by him/her. This
was especially intense in test cases oriented to enter data in the program (e.g. insert
new DVD data) rather than when deleting or modifying records.

• On one hand, among the 10 most executed test cases, there was only one of the ten
most important ones according to participants’ own rank of priority. On the other
hand, among the 10 least executed cases, there were 3 of the most important ones.

• As additional information, it was also shown that practitioners considered a trade-
off to invest in detailed UML models like Activity Diagrams for software specifi-
cations in order to gain productivity and effectiveness in test case generation using
the AQUABUS method and its associated Eclipse plug-in [19].

These results reveal a weak situation and an opportunity for improving both effec-
tiveness and efficiency through a more systematic design of cases. Nor organizational
practices neither individual abilities of developers offer good results for productivity
and quality in software so our next logical step was the investigation of possible
causes of this situation: a detailed study was launched in 2007.

4 Survey on Factors Which Influence Testing Practice

Although some information on which is the state of practice in software testing is
available, it is really difficult to find analysis on which can be the causes of the situa-
tion. In general, it is possible to locate articles (e.g. [20] [21]) based on subjective
personal analysis of experts analyzing or explaining the contributing factors that im-
pede efficient and effective application of software testing best practices. However, it
is difficult to find works based on evidences, quantitative data or, at least, analysis of
experiences (e.g. [22] or [23]) although specific surveys (e.g. [15]) have included
questions on which are some of the barriers for better performance in software testing.
Another interesting approach is the use of ethnographic methods to capture and ana-
lyze the work of software developers in projects [4] as they allow realizing a distance
between theory and practice exists in real testing practices.

In our case, analyzing the results in organizations (Section 2) and the ones of indi-
vidual performance in test case design (Section 3), we decided to investigate the
possible causes of such situation. As part of the research network REPRIS (focused
on software testing in software engineering and funded by the Spanish Ministry of

6 L. Fernández-Sanz et al.

Science), we exploited the opportunity of promoting a debate with a panel of experts
from industry (9 specialists) and academia (16 researchers) during a workshop hold in
Zaragoza (Spain) in 2007. After an intensive session and refining and consolidating
conclusions (reviewed by participants), 23 factors arose as possible causes of prob-
lems in software testing real practice. Although it was an interesting result, we de-
cided to check if software professionals in Spain really confirm such factors were
applicable to their professional environment. A questionnaire was created (see Table
5) where respondents had to indicate if they consider each item an effective factor of
influence; they also ranked influence in a three-level scale: total/partial/ none.

Table 4. Factors of influence as items of questionnaire with ID for factorial analysis

Id Factor
Q1.1. When delays or finance problems appear, it is usual to shorten quality and testing effort.

Q1.2. It is not strange a QA position disappears transferring people to software development roles

Q2.1
Testing is not creative: it is something annoying and not attractive which you have to do. Even it is
negative (looks for defects) and destructive (goes against developers’ work)

Q2.2 It is an area without good opportunities of career development or promotion.

Q2.3
Career development in testing does not guarantee the same salary or conditions as in other
professional careers in software development (even you may expect worse conditions).

Q2.4
It is not usually recognized this work on testing, it is not usually accounted to be paid by customers,
it is usually an internal service with no direct relationships with customers, etc.

Q2.5
Low level testers do not require a university degree, maybe only a basic professional education so
this tend to project an image of not attractive professional career

Q3.1 Many IT university graduates have not attended specific training on testing

Q3.2 Many IT professionals have not also received specific training on testing

Q3.3
Courses on software testing are not usual in company training programs for software professionals
(more focus on technology, new versions of products or in software development methods)

Q3.4
Testing is not a hot topic in universities: many teachers mention it and encourage students to do but
few of them understand the correct philosophy and techniques of testing.

Q3.5
Specific testing training tend to focus on unit/detailed testing while functional/system testing is
addressed as a marginal topic

Q3.6 Low importance or absence of specific training/qualification in testing (materials, certifications, etc.)
Q4.1 Junior tend to focus on programming and code: reject to work in other activities like testing

Q4.2
Many managers did not attend good training on software testing so they do not appreciate its interest
or potential for efficiency and quality

Q5.1
People tend to execute testing in an uncontrolled manner until the total expenditure of resources in
the belief that if we test a lot, in the end, we will cover or control all the system

Q5.2
It is not usual to plan and design efficient cases with minimum cost or to link tests to priorities or
risks; there is not control on incurred risks depending on tests, no control of evidences, etc.

Q5.3
Test design usually means a rework of what analysts did not completed or documented because
testing is totally dependent on a good requirements specification

Q5.4
Software test phase is located at the end of the project suffering shortened schedule due to delays of
the previous development phases and the impossibility of postpone delivery to customer

Q5.5
Relationship between software models and testing is not exploited, specially for test design: "testing
is something we do at the end once we have code”

Q5.6
It is not usual to design tests once we have a specification (although it is possible to do it in parallel
with analysis): in fact, they document knowledge on functionality and requirements

Q6.1 Market is not mature enough so certain software quality problems are not sufficiently penalized

Q6.2
Best business is possible when customer pays maintenance of defects delivered with the developed
software (getting money for repairing defects one has created)

 Factors with Negative Influence on Software Testing Practice in Spain 7

Table 5. Respondents in the survey of factors of influence on software testing

Sector % Position %
Government 22.9% Project manager 21.8%
Telco/IT 21.8% Tester 14.6%
Consultancy 14.5% Manager 14.6%
Finance/insurance 9.8% Programmer 12.5%
Defense 5.2% QA specialist 9.4%
Tourism 5.2% Systems analyst 7.3%
Health 3.1% Others 20.6%
Transportation/Airlines 3.1%
Others 14.4%

Again, through direct contact with software professionals in events and training

courses, we got a varied sample of 127 practitioners to collect opinion on the pro-
posed list of factors of influence (see Table 4). The following sections will present
both the general descriptive results and the detailed statistical data analysis.

4.1 Descriptive Data

As a first step, a simple descriptive analysis of data is done. Percentages of respon-
dents who chose each option (i.e., confirmation of factor as a fact in professional
settings and each level of possible influence) are presented in Table 6.

Table 6. Results of survey on factor of influence on testing

 Rank of influence Rank of influence

Factor Confirm. Total Partial None Factor Confirm. Total Partial None

Q3.1 96,1% 40,94% 39,37% 19,69% Q5.2 74,0% 40,94% 33,07% 25,98%

Q3.2 93,7% 39,37% 40,16% 20,47% Q2.4 71,7% 23,62% 37,80% 38,58%

Q5.4 92,1% 61,42% 22,05% 16,54% Q6.1 70,1% 31,50% 40,94% 27,56%

Q1.1 90,6% 61,42% 25,98% 12,60% Q2.5 66,9% 25,98% 37,01% 37,01%

Q3.3 90,6% 37,01% 44,09% 18,90% Q3.5 63,8% 30,71% 33,86% 35,43%

Q3.4 85,8% 30,71% 44,09% 25,20% Q5.1 58,3% 29,13% 33,86% 37,01%

Q4.2 85,8% 48,03% 30,71% 21,26% Q6.2 57,5% 31,50% 28,35% 40,16%

Q5.5 85,0% 48,82% 26,77% 24,41% Q2.3 54,3% 14,96% 35,43% 49,61%

Q5.3 80,3% 40,16% 33,07% 26,77% Q1.2 48,0% 30,71% 25,98% 43,31%

Q3.6 78,0% 33,86% 44,09% 22,05% Q2.1 48,0% 25,20% 35,43% 39,37%

Q5.6 78,0% 30,71% 45,67% 23,62% Q2.2 41,7% 18,90% 35,43% 45,67%

Q4.1 77,2% 29,92% 41,73% 28,35%

As can be seen in Table 6, only three factors are not confirmed by at least 50% of

respondents: Q1.2 (unstability of QA positions), Q2.1 (testing is not attractive) and
Q2.2 (poor career development). However, in our opinion, they should not be rejected
because there are a significant percentage of respondents supporting the idea. Another

8 L. Fernández-Sanz et al.

group of factors (Q 53.6, Q 5.6, Q 4.1, Q 5.2, Q 2.4, Q 6.1, Q 2.5, Q 3.5, Q 5.1, Q 6.2,
Q 2.3) have a greater proportion of support although an important percentage of peo-
ple are not convinced of their presence in professional environments. And finally, a
group of factors (Q 3.1, Q 3.2, Q 5.4, Q 1.1, Q 3.3, Q 3.4, Q 4.2, Q 5.5, Q 5.3) have a
confirmation percentage above 80% so they can be considered as real facts in the
software development world. As an additional action, for some of the respondents
(33), we collected information about testing training. Combining with the first survey
(Section 2), a global 36% of professionals have attended specific testing training.

4.2 Detailed Analysis of Results

A first objective is the validation of the questionnaire used to collect data analyzing
correlations between pairs of questions. First of all, reliability of the scale should be
tested through the Cronbach´s alpha coefficient. This measure helps to verify if the
questions are related between them, i.e., all the questions measure the same concept.
Then factorial analysis will be applied to verify which concept measures each group
of questions. This allows determining the structure of the scale [24].

4.2.1 Previous Analysis
Exploratory analysis enables the detection of possible errors during data collection as
well as the checking of feasibility of factorial analysis. Subsequently we examine
descriptive statistics (means, standard deviation, median, minimum and maximum
and absolute and relative frequencies) of all the variables in the study. Moreover, box
plots can help to determine data entry errors and the coefficient of variation can be
used to check the homogeneity of data. The correlation matrix gives information
about factorial analysis applicability: correlations higher than 0.30, significance levels
and determinants close to 0 shows there are correlated variables [25].

SPSS 16.0.1 and LISREL 8.80 statistical programs have been used to analyze the
collected data. A first visual inspection of correlation matrix showed us that there was
an essential number of correlations higher than 0.30; consequently, we concluded that
there were interrelated variables [25]. Moreover, as almost all significance levels are
close to zero, we had to reject the null hypothesis and concluded there was linear
relationship between the variables. The determinant is near zero too (9,06E-005): it
confirms these variables are highly correlated so factorial analysis is applicable.

4.2.2 Reliability Analysis
The first validation is the reliability analysis of the used factors. The reliability is the
degree in which the observed variable measures the real value and is free of error. The
reliability analysis includes the examination of corrected item-to-total correlations to
find out if each factor measures the same issue than the rest of the factors. We elimi-
nate specific items to improve reliability alpha coefficient. In this case, questions 1.1
(Q1.1) and 3.5 (Q3.5) have been eliminated. The final Cronbach´s alpha coefficient
value after these eliminations is 0.908 demonstrating high consistency and reliability
of the model2.

2 The conventional minimum for Cronbach’s alpha coefficient is established in 0.7 [26].

 Factors with Negative Influence on Software Testing Practice in Spain 9

Q1.1 had provoked some comments during data collection because some people
were reluctant to recognize this practice. Comparing with descriptive analysis (section
4.1) Q1.1 was confirmed as a real fact (90.6%) and its influence on testing is high
enough (only the 12,60% rank influence as none). Although it is an important factor,
it is not related to the scale here presented: maybe this question should be better for-
mulated. Anyway more research is needed to verify the importance of this factor.

Q3.5 experienced problems due to people without specific testing training. 63.8%
of the respondents considered it as a real fact but the influence on testing is not clear
because the data are very similar for the three categories.

4.2.3 Exploratory Factorial Analysis (EFA)
EFA enables to identify the underlying structure of the relations obtaining a predictive
validation of the model. To investigate acceptability of factorial analysis results the

Table 7. EFA Results for the model

 EFA Loadings (after varimax rotation)a
 Factor C1 C2 C3 C4 C5

 Q1.1. ,673
 Q1.2. ,382 ,590
 Q2.1 ,812
 Q2.2 ,602 ,328
 Q2.3 ,367 ,302 ,572
 Q2.4 ,715
 Q2.5 ,850
 Q3.1 ,824
 Q3.2 ,728
 Q3.3 ,446 ,368 ,347
 Q3.4 ,487 ,471
 Q3.5 ,513 ,372
 Q3.6 ,562 ,325
 Q4.1 ,448 ,565

 Q4.2 ,430 ,576
 Q5.1 ,646
 Q5.2 ,701
 Q5.3 ,685
 Q5.4 ,376 ,408
 Q5.5 ,658 ,353
 Q5.6 ,820
 Q6.1 ,673
 Q6.2 ,382 ,590

Cronbach´ alpha 0.908
Kaiser-Meyer-Olkin (KMO) Measure of Sampling Adequacy 0.853
Bartlett's Test of Sphericity (Approx. Chi-Square) 1099,9(df = 210) b
Correlation Matrix Determinant 9,06E-005

Note: EFA=Exploratory Factor Analysis, loadings < 0.32 not shown;
a.Total variance extracted by the five factors = 60,995%, b. p<0.001

10 L. Fernández-Sanz et al.

Kaiser-Meyer-Oklin (KMO) index3 and the Bartlett’s Test of Sphericity are checked.
Then, principal components as extraction method with Varimax (with Kaiser normali-
zation) as rotation method and the breaks-in-eigenvalues criterion [25] is used to
decide the initial number of factors to keep. Factor loadings equal to or greater than
0.5 are considered strong [25]. Items with low loadings on all components (the cut-off
value for loadings was 0.32 [26]) are eliminated too. Table 7 shows the KMO and
Bartlett´s Test and the extracted components with their loadings. KMO was clear with
value greater than 0.80 and Bartlett´s Test indicates a meaningful relationship among
the variables. The extracted components have been labeled as follows:

Q3.4 Q3.6 Q4.1 Q4.2 Q6.1 Q6.2 = C1 (Market and attitude toward testing)
Q3.1 Q3.2 Q3.3 = C2 (Education and training)
Q5.3 Q5.4 Q5.5 Q5.6= C3 (Integration with development)
Q2.1 Q2.2 Q2.3 Q2.5 = C4 (Career)
Q1.2 Q2.4 Q5.1 Q5.2 = C5 (Attractiveness)

Note that EFA has extracted one factor less than the initial set of the questionnaire:
initial grouping was done by the expert in charge of coordination based on his own
experience and was not object of debate but it was confirmed by experts.

4.2.4 Confirmatory Factorial Analysis
The predictive validation obtained after applying EFA in previous section should be
confirmed to obtain the final model. Confirmatory Factor Analysis (CFA) through
Structural Equation Model (SEM) and Maximum Likelihood (ML) estimation method
is used in order to assess the validity of the model. Several indicators were used to
assess model fit in order to compare the alternative models such as the Root Square
Error of Approximation (RMSEA), Comparative Fit Index (CFI), the Normed Fit
Index (NFI), the Non-Normed Fit Index (NNFI) and the Relative Fit Index (RFI).

Table 8. Goodness of Fit indicators for the model

 Suggested cut-off Values Factor´s questionarie
χ2 (df) 189,036 (179)
S- χ2 >1, <2 1.05

RMSEA < 0.08 0.0021
CFI > 0.9 0.997
NFI > 0.9 0.954

NNFI > 0.9 0.997
RFI > 0.9 0.946

Table 8 shows minimum recommended values for good fit [28] as well as the cal-
culated values for the model. All the indicators exceed the minimum recommended
values for good fit providing evidence of discriminate validity.

5 Conclusions

One of the usual shortcomings of the area of software engineering is the lack of
trustable data about which is the state of practice in general and more specifically in

3 KMO: above 0.5, it should be accepted, 0.7-0.8, good value; above 0.8, meritorious [27].

 Factors with Negative Influence on Software Testing Practice in Spain 11

software testing. Data from industry tend to be collected and processed in an informal
and even slanted way so they are not trustable as an accurate view of reality; acade-
mia usually experience many problems to access software professionals and organiza-
tions to get information. The above presented studies are a contribution to overcome
the mentioned absence of information.

In general, besides the need of improvement of organizational and individual prac-
tices, many of the 23 explicative factors have been confirmed by a varied and signifi-
cant sample of 127 software professionals so there is now a guideline for improving
software testing conditions. One of the most evident barriers is the lack of training
and expertise, something consistent with other surveys [14] although market maturity
and career issues are also considered very important factors. It is remarkable the tradi-
tional divorce between the development deliverables and test case design methods,
something also detected in the data from individual practices (section 2).

We are now working to launch this survey across Europe with the help of CEPIS to
check if the factors are common or if local differences arise. To support this effort, we
intend to use results of the factorial analysis of the questionnaires for the grouping of
items as well as for establishing the final model of factors to be applied. Anyway the
model would be useful also for other researchers who may collect data in this area.

Acknowledgments

This study was supported by the projects TIN2007-67843-C06-01 and TIN2007-
30391-E partially funded by the Spanish Ministry of Science and Innovation.

References

1. Jones, C.: Estimating software costs. McGraw-Hill, New York (1998)
2. Grindal, M., Offutt, J., Mellin, J.: On the Testing Maturity of Software Producing Or-

ganiza-tions: Detailed Data. Technical Report ISE-TR-06-03, Department of Information
and Software Engineering, George Mason University (2006)

3. McGarry, F., Pajerski, R., Page G., Waligora, S., Basili V., Zelkowitz, M.: Software Proc-
ess Improvement in the NASA Software Engineering Laboratory, Technical Report,
CMU/SEI-94-TR-22, SEI Carnegie-Mellon University (1994)

4. Martin, D., Rooksby, J., Rouncefield, M., Sommerville, I.: ’Good’ Organisational Reasons
for ’Bad’ Software Testing: An Ethnographic Study of Testing in a Small Software Com-
pany. In: Proc. of 29th Int. Conf. on Soft. Engin., pp. 602–611 (2007)

5. Fernandez-Sanz, L.: Un sondeo sobre la práctica actual de pruebas de software en España.
REICIS 2, 43–54 (2005)

6. SEI: CMMi® for Development. SEI-Carnegie Mellon University (2006)
7. Paulk, M., Weber, C., Curtis, B., Chrisis, M.: The Capability Maturity Model. Addison-

Wesley, Reading (1995)
8. van Veenendaal, E.: Test Maturity Model Integration (TMMi) Versión 1.0. TMMI Foun-

dation (2008), http://www.tmmifoundation.org
9. Burnstein, I.: Practical Software Testing. Springer, Heidelberg (2002)

10. VanVeenendaal, E.: Guidelines for Testing Maturity. STEN IV, 1–10 (2006)

12 L. Fernández-Sanz et al.

11. Koomen, T.: Test process improvement: a practical step-by-step guide to structured test-
ing. Addison Wesley, Reading (1999)

12. Pol, M., Teunissen, R., van Veenendaal, E.: Software Testing. A guide to the TMap Ap-
proach. Addison-Wesley, Reading (2002)

13. Koomen, T., van der Aalst, L., Broekman, B., Vroon, M.: TMap Next for result-driven
testing. UTN Publishers (2006)

14. Sanz, A., Saldaña, J., García, J., Gaitero, D.: TestPAI: A proposal for a testing process area
integrated with CMMI. In: European Systems and Software Process Improvement and
Inno-vation (EUROSPI 2008), pp. 3–5 (2008)

15. Ng, S.P., Murnane, T., Reed, K., Grant, D., Chen, Y.: A Preliminary Survey on Software
Testing Practices in Australia. In: ASWEC, Proceedings of the 2004 Australian Software
Engineering Conference, pp. 116–125 (2004)

16. Geras, A.M., Smith, M.R., Miller, J.: A survey of software testing practices in Alberta.
Canadian J. of Electrical and Computer Engineering 29, 183–191 (2004)

17. Groves, L., Nickson, R., Reeves, G., Reeves, S., Utting, M.: A Survey of Software Prac-
tices in the New Zealand Software Industry. In: Proceedings of the 2000 Australian Soft-
ware Engi-neering Conference, pp. 189–101 (2000)

18. Runeson, P.: A Survey of Unit Testing Practices. IEEE Softw. 23, 22–29 (2006)
19. Lara, P., Fernández-Sanz, L.: Un experimento sobre hábitos de pruebas artesanales de soft-

ware: Resultados y Conclusiones. In: Taller sobre Pruebas en Ingeniería del Software PRIS
2007, pp. 23–30 (2007)

20. Lara, P., Fernández-Sanz, L.: Test Case Generation, UML and Eclipse. Dr.Dobbs Jour-
nal 33, 49–52 (2008)

21. Whittaker, J.A.: What Is Software Testing? And Why Is It So Hard? IEEE Software 17,
70–79 (2000)

22. Glass, R.L., Collard, R., Bertolino, A., Bach, J., Kaner, C.: Software Testing and Industry
Needs 23, 55–57 (2006)

23. García, A., de Amescua, M.V., Sanz, A.: Ten Factors that Impede Improvement of Verifi-
cation and Validation Processes in Software Intensive Organizations. Software Process
Improvement and Practice 13, 335–343 (2008)

24. Taipale, O., Karhu, K., Smolander, K.: Observing Software Testing Practice from the
Viewpoint of Organizations and Knowledge Management. In: First Intern. Symp. on Em-
pirical Software Engineering and Measurement, pp. 21–30 (2007)

25. Hair, J.F., Tatham, R.L., Anderson, R., Black, W.: Multivariate Data Analysis. Prentice
Hall, Englewood Cliffs (1998)

26. Tabachnick, B.G., Fidell, L.S.: Using Multivariate Statistics. Pearson, London (2006)
27. Nunnally, J., Bernstein, I.: Psychometric Theory. McGraw-Hill, New York (1994)
28. Hu, L., Bentler, P.M.: Cutoff: Criteria for Fit Indexes in Covariance Structure Analysis:

Conventional Criteria vs new alternatives. Structural Equation Modeling 6, 1–55 (1999)

R.V. O’Connor et al. (Eds.): EuroSPI 2009, CCIS 42, pp. 13–31, 2009.
© Springer-Verlag Berlin Heidelberg 2009

What Is a Test Case? Revisiting the Software
Test Case Concept

Dani Almog and Tsipi Heart

The Department of Industrial Engineering and Management
Ben Gurion University of the Negev

almog.dani@gmail.com, heart@bgu.ac.il

Abstract. Since the 1980s the term "Test Case" (TC) has been recognized as a
building block for describing testing items, widely used as a work unit, metric
and documentation entity. In light of the centrality of the TC concept in testing
processes, the questions this paper attempts to answer are: What are the uses of
TC in software testing? Is there a general, commonly agreed-upon definition of
a TC? If not, what are the implications of this situation?

This article reviews and explores the history, use and definitions of TCs, show-
ing that while extensively used in research and practice, there is no one formal
agreed upon definition of a TC. In this paper we point at undesirable implications
of this situation, suggest four criteria for a 'good' TC definition, and discuss the
benefits accrued from such a definition. We conclude by urging the academic and
professional community to formalize a TC definition for the benefits of the indus-
try and its customers, and strongly believe that this review paves the way to ar-
ticulating a formal TC definition. Such a definition, when widely accepted, will
clarify some of the ambiguity currently associated with TC interpretation, hence
with software testing assessment which relies on TCs as metrics. Furthermore, a
formal definition can advance automation of TC generation and management.

1 Introduction

A research initiated by the US Department of Commerce [1] estimated an annual
economic damage equivalent to $20 – $52 billion as a result of inadequate software
testing infrastructure and processes. The authors classified two primary categories of
damages: damages users incurred because of software malfunction, and damages
associated with software modification, fixing and re-testing. Although published some
six years ago, there is a sound indication that the situation has not significantly im-
proved. Hence, the alarming magnitude of damages caused by inappropriate software
testing merits closer investigation into plausible reasons and explanations to this un-
desirable situation in a quest for solutions and improvement.

Because software testing is a broad topic which cannot be grasped in a single work,
this study focuses on one specific aspect of the software testing domain – the test case
(TC), since TC is a cornerstone in software testing processes, and because, as shown
later on, it is posited that inconsistencies in TC definitions and use throughout the
testing process is perhaps a cause for fundamental flaws.

The questions this paper attempts to answer are: What is the role of TC in software
testing? Is there a general agreement about the definition of TC? If not, what are the
consequences of this situation?

14 D. Almog and T. Heart

We believe that answering these questions will clarify some of the ambiguity cur-
rently associated with TC interpretation, and pave the way to articulating a formal TC
definition. If and when widely accepted, it can relieve some of the ambiguity associ-
ated with software testing metrics that commonly relies on counting TCs. Further-
more, an appropriate formal definition can drive automation of TC generation and
management. Therefore, this work is clearly a contribution to software process im-
provement by dealing with an important aspect of testing – the test case.

The rest of the paper is organized as follows: common software testing processes and
practices are briefly described in the next chapter, showing the importance of testing
processes in software engineering, and the TC as the testing building block. We then
describe the literature survey methodology employed. Next, several definitions for TCs
are presented as a result of the literature survey, showing the conceptual variability of
these definitions. We then proceed to a review of the literature discussing the centrality
of TCs in testing processes, concluding with a suggestion of dimensions by which a TC
definition can be evaluated, as well as an evaluation of existing definitions based on
these dimensions. The paper concludes with a discussion of the implications of the lack
of a unified approach to TCs and whether there is a need to re-define this term.

2 Common Practices in Software Testing

In the following section the importance of testing in terms of its substantive role in
software development on the one hand, and of its complexity, on the other hand, is
briefly presented. This background clarifies the merit in further looking into TC use
and definitions, since TCs are building blocks of testing.

The testing effort undoubtedly comprises a significant portion of the programming
effort. For example, an early research conducted at NASA [2] found that testing ef-
forts comprise 30% of the time invested by programmers, and 37% of their actual
work days (Figure 1).

Fig. 1. Distribution of the effort among programmers' tasks (NASA) [2]

 What Is a Test Case? Revisiting the Software Test Case Concept 15

A more recent study conducted in Alberta, Canada [3] identified large variance
among projects regarding testing resources in terms of the ratio of developers to test-
ers, showing that about 50% of the studied projects allocated around two developers
to one tester (~50%), whereas 35% invested much less personnel resources in testing
(five developers to one tester, ~20%). Other studies generally support these findings,
substantiating the positive correlation between software development process matur-
ity and the degree of investment in software testing – around 35% of the overall in-
vestment [4, 5].

Testing tasks have been traditionally classified into three phases [6]: 1) Prepara-
tion: plan, design, construct, 2) Execution, and 3) Verification: verify results against
expected outcomes and report. These three stages were often performed sequentially
as in structured software development process models, demanding rather equal re-
source investment. Recently, however, there is a tendency to change this structured
model due to several reasons [7]. One reason is the growing popularity of new soft-
ware development models and techniques, such as agile methods, service oriented
architecture (SOA), and test driven development (TDD), all three indicating testing
processes that somewhat deviate from the structured process models. Along changes
in development models, testing automation has matured and is now more prevalent,
potentially easing the execution phase. Finally, verification and validation processes
become more complex due to the growing complexity of the developed applications
and the data units involved. For example, growing complexity can be attributed to
data representation simultaneously using various techniques as databases, XML files,
encryption, compression, coding, dynamic data location, etc. Consequently, a deeper
understanding of the data structure and characteristics is required during testing, as
well as more sophisticated tools and processes.

In light of the growing complexity of the testing process, Bach [8] advocated ex-
ploratory testing, defined as “any testing to the extent that the tester actively controls
the design of the tests as those tests are performed and uses information gained while
testing to design new and better tests” (p. 2). This methodology addresses the asser-
tion that complete testing preparation is unlikely at an initial phase of the testing
process. Thus, Kaner [9] explained the advantages of exploratory testing in allowing
testers to learn while they test, to get more sophisticated as they learn, interpret and
design their tests differently as they learn more about the product, the market, the
variety of uses of the product, the risks, and the mistakes that are likely to be made by
the humans who wrote the code. Under exploratory testing the test plan evolves dur-
ing the test development and execution, rather than pre-planned before the actual
complexity of the product is realized. This realm, however, might be practically prob-
lematic when having to pre-estimate testing efforts as part of the overall project esti-
mation. Evidently, there is a broad agreement that testing is a complex task, hence
difficult to estimate and quantify. In-depth examination of various testing processes
and techniques is beyond the scope of this work, instead, we focus on the common
building block of all software testing techniques – the TC. Thus, in order to better
understand the problem at hand, we next bring a review of the literature, elaborating
on the single concept common to all testing processes and techniques – the TC.

16 D. Almog and T. Heart

3 Methodology

The following methodology has been employed in order to identify the literature
relevant for this review. First, Google and Google Scholar were used as search en-
gines to find sources with the keywords: "software testing", "software reliability",
"testing methodology", "black box testing", and "test case". This first search effort
yielded about 150 papers and about 25 books dated 1982 onwards, which were
scanned for relevance by reading their abstracts. Looking at citations appearing in the
elicited papers implied that there is merit in further expanding the search by using the
following keywords: "TDD", "SOA", "agile", "software cost estimation", "software
project management", "testing projects", "test case generation", and "testing automa-
tion". This search yielded about 100 additional papers and about 10 books spanning
the years 1980 till 2008.

A similar search has been conducted on leading journals and conferences, for
example relevant IEEE and EMSE journals and ICST conferences that directly or
indirectly included topics represented by the above keywords. These three rounds of
literature search resulted in a database of about 300 papers, books, and conference
proceedings. Endnote 9.0 has been used as the reference management tool, where
research notes have been added for classification purposes.

This reference database has been then reviewed, and each reference has been clas-
sified to sub-topics as in Table 4 (a paper could be related to more than one sub-
topic), as well as whether or not it included a formal definition of a TC. Those papers
which contained such a definition were further categorized based on the nature of the
definition, as appears in Table 3.

While classifying the papers, additional references and topics were searched by
scanning their reference list, which resulted in about 40 additional papers, bringing
the total number of papers and books reviewed to about 340, of which 267 directly
referred to TCs.

4 Literature Review

4.1 Historical Overview of the TC Concept

The TC concept appeared as a central concept underlying testing processes since the
beginning of formal software testing, for example as part of the Systematic Test &
Evaluation Processes (STEP) model [10], which defined feedback loops between
software development and testing. Three sources for TC generation were identified:
directly from the requirements, stemming from performance requirements, and based
on system's design [10]. A formal definition of a TC, however, was not included. In a
study published in the same year, Ostrand & Balcer]11[suggested to build TCs as a
collection of test frames and test scripts, yet these two terms were not precisely de-
fined although TCs were perceived to be measureable by their size. Weyuker [12]
brought a quite different approach when she maintained that TCs are formed by deci-
sion statements, and recognized that the more the number of decision statements in
the tested code, the more complex is the TC, recommending to limit the average

 What Is a Test Case? Revisiting the Software Test Case Concept 17

number of decision statements tested by one TC to 3.6. Interestingly, in spite of fre-
quent use of the term TC in her paper (76 times) it was not formally defined.

The centrality of the TC is evident in the work of Harrold, Gupta & Soffa [13],
who used TCs as the basis of a methodology to minimize testing efforts, realizing that
the testing process could in fact become indefinite because of the lack of indicators
for absence of errors. They developed a structured methodology to identify redundant
TCs and merge them into TC suites or execute these TCs in pairs. In this work TCs
were identified as TC requirements assuming that TCs stem from requirements.
Adopting an analogous line of thinking, Rosenberg, Hammer & Huffman [14] main-
tained that TC content should reflect the requirements, and therefore should be
controlled by a TC coverage matrix, which maps requirements to TCs, aimed at opti-
mizing the testing effort. Clearly, TCs and the resulting coverage matrix tend to be-
come more complex relative to the number and complexity of the requirements. In an
effort to handle this growing complexity, Iberle [15] developed a TC hierarchy meth-
odology at HP labs, where the test plan was formed by test groups based on the sys-
tem's functionality as defined by the requirements, the system's design and other
sources, and each test group is then further detailed into tests composed of TCs in the
leaves (Figure 2). Here again, the TC was the fundamental building block of the test-
ing process, yet no formal definition was provided.

Fig. 2. Test plan hierarchy [15]

Aichernig [16] was among the few researchers who attempted a formal TC defini-
tion by developing a mathematical description of a TC, although he suggested that
TCs were in fact abstractions of the requirements, or "highly abstract contracts" (p. 6).
Aichernig's mathematical approach to TC definition (brought later on in section 4.4)
was aimed at advancing a formal language essential for automation of TC generation.

18 D. Almog and T. Heart

In the first chapter of his book "Software Testing: A Craftsman Approach" Jorgensen
[17] reviewed the TC concept, noting that the TC was the key to the success of the test-
ing process. He distinguished between TCs identified by the functional requirements
(functional testing) and TCs identified by the software structure (structural testing).

In an attempt at identifying "what is a good test case?" Kaner [18] maintained that
a good TC was one that gave the required information which was the objective of the
particular test. He counted several testing objectives each requiring a different type of
TCs, and acknowledged that TCs greatly vary and hence using them as metrics is
problematic: "Also, under this definition, the metrics that report the number of test
cases are meaningless. What do you do with a set of 20 single-variable tests that were
interesting a few weeks ago but now should be retired or merged into a combination?
Suppose you create a combination test that includes the 20 tests. Should the metric
report this one test, twenty tests, or twenty one?" (p. 2).

Later works by Grindal and Colleagues [19, 20] included a review of mechanisms
to render software testing more efficient and effective, heavily relying on TC selec-
tion and execution, since they maintained that testing is "loosely considered to be the
dynamic execution of test cases" [19, p. 2]. An interesting approach has been adopted
by the aerospace industry where the Conformance and Fault Injection (CoFI) method-
ology has been used [21, 22]. Under this methodology, TCs were differentiated be-
tween those that aim at confirming the appropriate behavior of the tested product and
those that are aimed at creating faulty situations. The authors suggested a structured
approach to the definition of the two types of testing, and as a result, a systematic
creation of the relevant TCs.

Because of the centrality of the TC in the testing process, and due to the significant
effort invested in designing and generating TCs especially in large or complex pro-
jects, several studies have elaborated on TC management processes and tools. For
example, Desai [23] from Bell Laboratories described a tool which managed the con-
figuration and inventory of TCs separately from the testing tasks, compatible with the
IEEE 829 standard. A later work described a TC management and tracking tool,
where the term 'test item' is used in a context similar to TC [24], making the TC con-
cept even more ambiguous in the absence of a formal definition. The need to auto-
mate the generation and management of TCs was demonstrated in Jorgensen's [25]
work, where he noted that it took 141,306 TCs to test version 5.0.1 of Acrobat
Reader. It is noteworthy that Jorgensen did not define a TC unit in this work as the
basis for the counting method although the term was extensively used in this com-
mentary.

The likely variability among TCs has been acknowledged by Nagappan [26] who
developed the Software Testing and Reliability Early Warning (STREW) metric suite
for software testing effort estimation, using TCs as one of the model metrics. He
warned, however, that using TCs as a metric might not be well defined since "….one
developer might write fewer test cases each with multiple asserts checking various
conditions. Another developer might test the same conditions by writing many more
test cases, each with only one assert" (p. 39). This variability among TCs should be
taken into account when defining effort estimation model parameters. Table 1 shows
that TCs can greatly vary, for example by complexity, size (whether containing many
asserts or one assert), or by origin (requirements or other), hence cannot be unified as
indicating a singular metric.

 What Is a Test Case? Revisiting the Software Test Case Concept 19

Table 1. Software rating – defect density, [27]

Rating Very Low Defect Density Very High Defect Density
Test Cases Few test cases Many test cases
Test case asserts Asserts that only exercise

"success" behavior of the
product or do not
adequately cover the
functionality of the product

Asserts that exercise
various behaviors of each
requirements

Requirements Test cases do not relate to
requirements

At least one test case per
requirement

Code coverage Minimal coverage of
important functions

100% coverage

A further warning in this regard has been advocated by Hoffman [28], who pointed

at the possibility that definitions of TCs, as well as their number and content, might
change during the course of the project, jeopardizing the validity of metrics based on
these TCs.

4.2 TC Use and Generation in Modern Software Development

Not only have TCs been important in traditional software development processes,
they also continue to play an important role in more modern software development
methodologies and techniques.

Similar to the more traditional software development environments, the TC is a
fundamental entity in testing software in the object oriented environment. For exam-
ple, Binder [29] first developed a methodology for TC generation in an object ori-
ented environment, by introducing the 'testing points' concept, a mechanism used to
define test requirements and the relevant TCs. Later in his book Binder suggested to
define the TC as a method thereby including the test itself as part of the design of the
objects.

Agile software development methods have quite revamped traditional testing con-
cepts, particularly the division between testers and developers [30], since on-going
testing is one of the principles guiding development of very small and frequent soft-
ware iterations common to the agile methodology. Nonetheless, the centrality of the
TC concept has not changed as a result of utilizing these methodologies, although the
test planning method has.

TDD or TDM are software development methods that advocate writing TCs prior
to the actual software development to assure developing software that is testable [31,
32]. Here, the role of the TC is even magnified, yet evidence about the effectiveness
of this method is still mixed [31, 33].

Service oriented architecture (SOA) has introduced new testing challenges [34]
demonstrated for example by the inclusion of a testing mechanism in the SOA infra-
structure delivered by IBM [35]. Especially challenging is testing composed and
complex services that require new testing methods [36], making estimation of testing
scope and effort more difficult. The recent move to SOA has raised the interest in

20 D. Almog and T. Heart

software componentization [37, 38] and component-based testing, adding additional
ambiguity to the TC concept.

Some research has focused on automatic TC generation, a process requiring TC
formalization [39-42]. As use cases largely reflect functional requirements in the
UML environment, Nebut, Fleurey, Le Traon & Jיzיquel [43] suggested TC
generation from use cases, after incorporating the contract element they claim is a
component essential for translating a use case into a TC. Likewise, test objectives and
sequence diagrams also serve as sources for TC generation. Generally, several works
have developed techniques to generate TCs from UML diagrams, termed Model
Based Testing (MBT), mostly based on transforming use cases and states into TCs
[44, 45]. Although the attempts to automate TC generation resulted in some level of
formalization, the difficulties pertaining to the TC concept were not solved by this
mechanism, since use cases and scripts all suffer from the same fuzziness of defini-
tion regarding size, complexity, number of states, etc.

4.3 TCs as Metrics

During the testing phase, there is a need to manage and control the process, by meas-
uring its size, complexity, and quality, as a minimum. This, however, is easier said
than done, due to reasons brought in the previous sections. Thus, for example when
using the Goal – Questions – Metrics (GQM) method 1developed by V. Basili and D.
Weis for measurement development, Management strives to find metrics to answer
questions such as 'how long would it take to complete testing?', or 'how much re-
sources should be allocated to testing?', aimed at achieving managerial goals such as
appropriate resource allocation and adhering to schedules. Measures developed to
answer these questions often rely on number of TCs, for example "total number of
planned white/black box test cases run to completion, number of planned integration
tests run to completion, or number of unplanned test cases required during the test
phase" [26, p. 15]. The Software Testing Reliability Early Warning Model for Java
(STREW-J) developed by Nagappan [26] to estimate expected problems as a means
to estimate testing efforts used at least two estimation parameters that are based on
number of TCs: 1) number of test cases divided by source lines of code (R1) as an
indication of whether there are too few test cases written to test the body of source
code; and 2) number of test case divided by number of requirements (R2) as an indica-
tion of the thoroughness of testing relative to the requirements. Other TC-based met-
rics recommended as reflecting the status of the testing project were number or
percent of TCs run since testing started, number or percent of TCs run since the last
status report, number of percent of TCs that passed since the beginning of the testing
project, number or percent of TCs passed since the last status report, number or per-
cent of failed TCs, total number of open issues or TCs not run [46].

Elsewhere, eight of thirteen reports recommended as tools for testing monitoring
and control were based on TCs count, completion status, results etc. [47]. Further,
these same authors suggested eighteen indicators to monitor the project status, eleven
of which are based on tests or TCs. Two real-world examples of using TCs as the unit
for testing progress monitoring are presented in Figures 4 and 5. Figure 4 illustrates

1 We thank the reviewer for suggesting using GQM as a metric-generation methodology.

 What Is a Test Case? Revisiting the Software Test Case Concept 21

NASA's recommendation for test execution monitoring, and Figure 5 was drawn from
a real-world project at a large telecom enterprise, where three different projects were
tracked based on the number of TCs not yet executed (test backlog). Evidently, not
only all TCs were equally counted, but also TCs from different projects were com-
pared under the same unit of analysis, regardless of potential variance among TCs
stemming from the dissimilarity of the projects.

0

20

40

60

80

100

120

140

T
e
s
t
s

System Test Phase

Tests
Executed

Tests
Passed

Tests
Planned

Fig. 3. Testing execution progress monitoring, [48]

Fig. 4. Testing execution progress monitoring

In the next example (Table 2), number of tests was recommended as a metric to

track and control testing execution. Since tests are composed of TCs it is reasonable
to assume that this metric implies actually counting TCs from different software fea-
tures ignoring their likely differences.

22 D. Almog and T. Heart

Table 2. Number of tests is used as a metric for testing monitoring and control [46]

Project online trade Date: 5/23/2007
Feature
tested

Total
Tested

Complete

%
Complete

Success

%
Success

Open Acct 46 46 100 41 89
Sell Order 36 25 69 25 69
Buy Order 19 17 89 12 63
……

Totals 395 320 81 311 79

Similarly, IBM published reporting metrics for testing the software developed by

various vendors under IBM's supervision for the Sydney Olympic Games, all based
on counting number of TCs [49]: 1) Number of test cases defined, 2) Number of test
cases executed, 3) Number of test cases with failures but no associated defect records
4) The percentage of test cases attempted, used as an indicator of progress relative to
the completeness of the planned test effort.

TCs has also been used for testing effort estimation in few works where overall
project effort has been estimated based on distinctive estimation of the various devel-
opment phases [50-52]. In an attempt to overcome the problem of counting TCs of
various size and complexity Nageswaran [53] suggested using function points where
the number of TCs can be determined by the function points estimate for the corre-
sponding effort. Following this approach Aranha & Borba [54] presented a scheme
for collecting execution points for calculating and estimating testing efforts. It should
be noted, however, that none of these works formally defined the TC term although.

Evidently, TCs have been used as metrics for testing effort estimation, as well as
for testing monitoring and control. Common to most of the techniques suggested in
these works is the reliance on counting TCs, with only minimal reference to the fact
that TCs lack a standard definition and tend to greatly differ.

4.4 Test Case Definitions

As stated earlier, a thorough literature survey has been conducted in order to study
where and how TCs are defined. Interestingly, in spite of a plethora of research about
software quality assurance, few works formally define a TC, although most use this
term quite intensively. Perhaps most notable is the fact that an explicit definition of a
TC could not be located in the 2004 version of SWEBOK. Rather, the TC appears as
an integral part of the general software testing definition:"ïSoftware testing consists of
the dynamic verification of the behavior of a program on a finite set of test cases,
suitably selected from the usually infinite executions domain, against the expected
behavior" [55, p. 5-1]. Nonetheless, several definitions have been retrieved, classified
into four dominant approaches: 1) input-process-output-objectives, 2) states and tran-
sitions, 3) contractual approach, and 4) other definitions.

The input-process-output-objectives perspective conceptualizes a TC as a set of in-
puts into a pre-defined process, aimed at yielding a desired output, based on the test

 What Is a Test Case? Revisiting the Software Test Case Concept 23

C
at

eg
or

y
D

ef
in

it
io

n
So

ur
ce

In
pu

t-P
ro

ce
ss

-
O

ut
pu

t-
O

bj
ec

tiv
es

"A
 s

et
 o

f c
on

di
tio

ns
 o

r v
ar

ia
bl

es
 u

nd
er

 w
hi

ch
 a

 te
st

er
 w

ill
 d

et
er

m
in

e
if

an
 a

pp
lic

at
io

n
or

 a

so
ftw

ar
e

sy
st

em
 m

ee
ts

 s
pe

ci
fic

at
io

ns
…

.
It

m
ay

 t
ak

e
m

an
y

te
st

 c
as

es
 t

o
de

te
rm

in
e

th
at

 a

so
ftw

ar
e

pr
og

ra
m

 o
r s

ys
te

m
 is

 fu
nc

tio
ni

ng
 c

or
re

ct
ly

"

w
w

w
.w

ik
ip

ed
ia

.o
rg

"A

 t
es

t c
as

e
is

 th
e

co
m

bi
na

tio
n

of
 te

st
 d

at
a

an
d

or
ac

le
 in

fo
rm

at
io

n
to

 d
et

er
m

in
e

th
e

va
lid

ity

of
 th

e
te

st
"

[5
6,

 p
. 9

]

"A

 s
et

 o
f

te
st

 in
pu

ts
, e

xe
cu

tio
n

co
nd

iti
on

s,
an

d
ex

pe
ct

ed
 r

es
ul

ts
 d

ev
el

op
ed

 f
or

 a
 p

ar
tic

ul
ar

ob

je
ct

iv
e,

 s
uc

h
as

 t
o

ex
er

ci
se

 a
 p

ar
tic

ul
ar

 p
ro

gr
am

 p
at

h
or

 t
o

ve
rif

y
co

m
pl

ia
nc

e
w

ith
 a

sp

ec
ifi

c
re

qu
ire

m
en

t"

[2
4,

 p
. 1

87
]

"T

es
t c

as
e

is
 a

 te
st

 v
ec

to
r c

on
si

st
in

g
of

 a
 se

t o
f t

es
t i

np
ut

s a
nd

 th
e

co
rr

es
po

nd
in

g
te

st
 o

ut
pu

ts

(p
re

 a
nd

 p
os

t c
on

di
tio

na
l a

ss
er

tio
ns

)"

[4
5,

 p
. 2

]

"T

es
t

C
as

e
is

 a
n

id
en

tif
ie

d
se

t
of

 i
nf

or
m

at
io

n
in

cl
ud

in
g

in
pu

ts
 a

nd
 e

xp
ec

te
d

ou
tp

ut
s

as
so

ci
at

ed
 w

ith
 a

 p
ar

tic
ul

ar
 p

ro
gr

am
 b

eh
av

io
r"

[1

7,
 p

. 7
]

"A

 t
es

t c
as

e
is

 a
 fi

ni
te

 s
tru

ct
ur

e
of

 in
pu

t a
nd

 e
xp

ec
te

d
ou

tp
ut

: a
 p

ai
r o

f i
np

ut
 a

nd
 o

ut
pu

t i
n

th
e

ca
se

 o
f d

et
er

m
in

is
tic

 tr
an

sf
or

m
at

iv
e

sy
st

em
s,

a
se

qu
en

ce
 o

f i
np

ut
 a

nd
 o

ut
pu

t i
n

th
e

ca
se

of

 d
et

er
m

in
is

tic
 r

ea
ct

iv
e

sy
st

em
s,

an
d

a
tre

e
or

 a
 g

ra
ph

 i
n

th
e

ca
se

 o
f

no
n-

de
te

rm
in

is
tic

re

ac
tiv

e
sy

st
em

s

[3
2,

 p
. 2

]

St
at

es
 a

nd

Tr
an

si
tio

ns

"A
 s

eq
ue

nc
e

of
 o

ne
 o

r
m

or
e

su
bt

es
ts

 e
xe

cu
te

d
as

 a
 s

eq
ue

nc
e

be
ca

us
e

th
e

ou
tc

om
e

an
d/

or

fin
al

 st
at

e
of

 o
ne

 su
bt

es
t i

s t
he

 in
pu

t a
nd

/o
r i

ni
tia

l s
ta

te
 o

f t
he

 n
ex

t.
Th

e
w

or
d

‘te
st

’ i
s u

se
d

to

in
cl

ud
e

su
bt

es
ts

, t
es

ts
 p

ro
pe

rti
es

, a
nd

 te
st

 su
ite

s"
.

[5
7,

 p
. 1

3]

"A

 t
es

t
ca

se
 s

pe
ci

fie
s

th
e

pr
et

es
t

st
at

e
of

 t
he

 i
m

pl
em

en
ta

tio
n

un
de

r
te

st
 (

IU
T)

 a
nd

 i
ts

en

vi
ro

nm
en

t,
th

e
te

st
 i

np
ut

s
or

 c
on

di
tio

ns
,

an
d

th
e

ex
pe

ct
ed

 r
es

ul
t.

Th
e

ex
pe

ct
ed

 r
es

ul
t

sp
ec

ifi
es

 w
ha

t
th

e
IU

T
sh

ou
ld

 p
ro

du
ce

 f
ro

m
 t

he
 t

es
t

in
pu

ts
.

Th
is

 s
pe

ci
fic

at
io

n
in

cl
ud

es

m
es

sa
ge

s
ge

ne
ra

te
d

by
 th

e
IU

T,
 e

xc
ep

tio
ns

, r
et

ur
ne

d
va

lu
es

, a
nd

 r
es

ul
ta

nt
 s

ta
te

 o
f

th
e

IU
T

an
d

its
 e

nv
iro

nm
en

t.
Te

st
 c

as
es

 m
ay

 a
ls

o
sp

ec
ify

 in
iti

al
 a

nd
 r

es
ul

tin
g

co
nd

iti
on

s
fo

r
ot

he
r

ob
je

ct
s t

ha
t c

on
st

itu
te

 th
e

IU
T

an
d

its
 e

nv
iro

nm
en

t.”

[2
9,

 p
. 4

7]

"T

es
t c

as
e

is
 c

om
po

se
d

of
 s

ev
er

al
 c

om
po

ne
nt

s:
 te

st
 c

as
e

va
lu

es
, p

re
fix

 v
al

ue
s,

ve
rif

y
va

lu
es

,
ex

it
co

m
m

an
ds

 a
nd

 e
xp

ec
te

d
ou

tp
ut

s"

[5
8,

 p
. 2

8]

"T

es
t C

as
e

is
 a

 v
er

ifi
ca

tio
n

of
 s

om
e

as
pe

ct
 o

f t
he

 S
ys

te
m

 U
nd

er
 T

es
t (

SU
T)

. T
es

t C
as

e
fo

r
an

y
fe

at
ur

e
of

 a
ny

 S
U

T
ca

n
be

 d
ef

in
ed

 a
s f

ol
lo

w
s:

Pe

rf
or

m
 v

er
ifi

ca
tio

n,
 V

v
W

hi
ch

 m
ay

 b
e

pr
ec

ed
ed

 b
y

a
se

qu
en

ce
 o

f a
ct

io
ns

, A
a

W
hi

ch
 m

ay
 re

qu
ire

 a
 se

t o
f d

at
a,

 D
d

[5
9,

 p
. 5

1]

T
ab

le
 3

. T
es

t C
as

e
D

ef
in

it
on

s
an

d
So

ur
ce

s

24 D. Almog and T. Heart

W
hi

ch
 m

ay
 re

qu
ire

 p
re

co
nd

iti
on

s,
Pp

A

ll
of

 w
hi

ch
 ru

ns
 in

 e
nv

iro
nm

en
t,

Ee

H
en

ce
, a

 T
es

t C
as

e,
 T

t =
 E

e
Pp

 D
d

A
a

V
v"

C

on
tra

ct

"T
es

t-c
as

es

co
m

m
on

in

so

ftw
ar

e
en

gi
ne

er
in

g
ar

e
in

fa

ct

co
nt

ra
ct

s
(h

ig
hl

y
ab

st
ra

ct

co
nt

ra
ct

s)
…

 H
ow

ev
er

, o
ur

 r
es

ul
t t

ha
t t

es
t-c

as
es

 a
re

 a
bs

tra
ct

io
ns

 h
ol

ds
 f

or
 g

en
er

al
 c

on
tra

ct

st
at

em
en

ts
 in

vo
lv

in
g

us
er

 in
te

r-
ac

tio
n"

.

[1
6,

 p
. 8

]

"a

 fo
rm

 o
f c

on
tra

ct
 b

et
w

ee
n

a
se

rv
ic

e
pr

ov
id

er
 a

nd
 a

 se
rv

ic
e

us
er

"
[6

0,
 p

. 2
]

O
th

er

"A
n

em
pi

ric
al

 fr
am

e
of

 re
fe

re
nc

e,
 ra

th
er

 th
an

 a
 th

eo
re

tic
al

 o
ne

"
[6

1,
 p

.3
59

]

"…
te

st
 c

as
e

is
 a

 q
ue

st
io

n
th

at
 y

ou
 a

sk
 o

f t
he

 p
ro

gr
am

. T
he

 p
oi

nt
 o

f r
un

ni
ng

 th
e

te
st

 is
 to

 g
ai

n
in

fo
rm

at
io

n,
 fo

r e
xa

m
pl

e,
 w

he
th

er
 th

e
pr

og
ra

m
 w

ill
 p

as
s o

r f
ai

l t
he

 te
st

"
[1

8,
 p

. 2
]

"A

 te
st

 id
ea

 is
 a

 b
rie

f
st

at
em

en
t o

f
so

m
et

hi
ng

 th
at

 s
ho

ul
d

be
 te

st
ed

. F
or

 e
xa

m
pl

e,
 if

 y
ou

're

te
st

in
g

a
sq

ua
re

 r
oo

t f
un

ct
io

n,
 o

ne
 id

ea
 f

or
 a

 te
st

 w
ou

ld
 b

e
‘te

st
 a

 n
um

be
r

le
ss

 th
an

 z
er

o’
.

Th
e

id
ea

 is
 to

 c
he

ck
 if

 th
e

co
de

 h
an

dl
es

 a
n

er
ro

r c
as

e"

[1
8,

 p
. 2

]

"a

 sp
ec

ifi
c

se
t o

f a
ttr

ib
ut

e
va

lu
es

 th
at

 te
st

s a
 g

iv
en

 lo
gi

ca
l s

itu
at

io
n"

[6

2,
 p

. 3
]

"a

 te
st

 c
as

e
ca

n
be

 c
on

si
de

re
d

as
 a

 p
re

da
to

r w
hi

le
 a

 m
ut

an
t p

ro
gr

am
 is

 a
na

lo
go

us
 to

 a
 p

re
y"

[6

3]

T
ab

le
 3

. (
co

nt
in

ue
d)

 What Is a Test Case? Revisiting the Software Test Case Concept 25

objective. The states and transitions approach considers a TC as a set of transition
patterns among states. The contractual approach defines TC as a contract since the
outcomes of pre-defined conditions are fully defined. Finally, there are several other
definitions stemming from various contexts. Table 3 lists examples of definitions in
each category. The implications of this variability are discussed next.

5 Discussion

The TC serves as the backbone of testing processes, and is a fundamental unit for test
planning, execution, monitoring and control. It is also used as a common metric in
quantifying testing effort, scope and status. Furthermore, there is a growing quest to
automate TC generation, execution and management. Nonetheless and quite interest-
ingly, there is no consensus regarding the formal definition of a TC.

From the papers reviewed for this work it is evident that the TC concept is fre-
quently used in various contexts, yet infrequently formally defined (Table 4). Please
note that numbers in Tables 4 and 5 do not add up because papers could be classified
to more than one sub-topic.

Table 4. TC-related papers, definitions and contexts used

Total
Automation/

GenerationMetrics
UML/MBT
OO/SOA

Manage-
ment

Cost/ROI
Estimations

Topic

267 4425 46 6986TCs Papers
Reviewed

38 (14%) 14 (32%) 4 (16%) 26 (57%) 19 (28%) 11 (13%) Formal TC
Definition

Table 4 shows that 267 reviewed papers referring to TCs covered five different
topics, yet only in 38 papers (14%) a formal definition of TC was attempted, particu-
larly in studies focusing on OO related issues and TC automation and Management. It
is thus valid to wonder why only 14% of authors bothered to formally define the cen-
tral concept of their work in spite of heavily using this term (some mention TC more
than a hundred). Thus, in the 38 papers where TC was defined, various definitions
were employed representing all four definition categories: input-process-output-
objective, states & transitions, contract, and other. It is thus interesting to examine
whether there is an association between the definition category used and the specific
context (Table 5). For example, it could be expected that works in the UML/MBT/OO
context would use states & transitions definitions that stem from the OO world. This,
however, could not be substantiated by the present literature review, as those few
authors who have used the TC definition in their OO-related work chose definitions
from all categories (Table 5). Moreover, no author has articulated the reasons for
choosing one definition or another. As seen in Table 5, authors using TCs in the con-
text of OO/MBT/UML more frequently used the input-process-output-objective
(termed hereinafter process-based for brevity sake) definitions rather than the more
naturally related states & transitions definitions, which turn out as the most popular
definition category. Evidently, no correlation could be deduced between the definition
category and the context, possibly attesting to the arbitrary choice of the former.

26 D. Almog and T. Heart

Table 5. TC definition distribution by research context

Context Definition category

 Process States Contract Other Defined
Cost/ROI 6 1 1 3 11
Management / Project 11 4 1 3 19
OO/ MBT/UML/SOA 12 6 2 6 26
Measurements/Metrics 1 1 1 1 4
Automation/Regression 10 1 1 2 14
Total 18 11 2 8 38

The lack of formal TC definition and the fact that most studies do not include any
definition raise several questions: Is such a definition required? Are there deficiencies in
the existing definitions? What are the implications of the lack of a formal definition?

We maintain that a formal definition is indeed required, encouraged by the fact that
in real-world testing of life-threatening projects a formal definition is an important
part of the testing guidelines. For example, based on the IEEE standard, chapter 6 of a
manual for testing safety applications in a nuclear reactor environment greatly elabo-
rates on TC types, definitions, content, and documentation [64]. Four types of TCs are
specified: 1) verification TC, 2) validation TC, 3) demonstration TC, 4) general suit-
ability TC. Each TC is defined by a general description including reference number,
geometry, flow features, experimental data, existing simulations, related experiments,
and rating of the challenge the test case poses. These details should be accompanied
by further documentation describing the test environment for each TC.

It is suggested that a formal TC definition could render several benefits if satisfy-
ing at least four requirements: 1) Unambiguousness: such TCs would be uniformly
understood by the various stakeholders participating in a testing endeavor, 2) Gener-
alizability: TCs would hold upon transforming from one platform to another, from
one testing domain to another, and so on, 3) Quantifiability: only quantifiable TCs
would be sensibly measured, and 4) Automatability: some might argue that this trait is
an outcome of the above three characteristics, yet we chose to explicitly indicate it as
a desirable feature because of its importance.

Unambiguousness ensures a unified view shared by all professionals involved in
software testing regardless of their prior experience, background, testing environ-
ments, methods and techniques. This trait is important because it will ease the current
'Tower of Babylon' dominating the testing world, and rive sharing expertise among
various testing schools and perceptions. Generalizability ensures maintaining testing
assets and investments along various testing efforts, namely, TC generation tools and
techniques would be valid in different testing environments. Quantifiability is clearly
beneficial because of the importance of the TC as a fundamental metric. Currently,
measurements involving counting TCs are clearly inconsistent. Finally, there is no
need to explain the benefits rendered by the ability to automate TC generation, execu-
tion and management. Several attributes are mandatory for TC automation, among
them is a formal definition of the TC structure.

Examining the existing definitions by the four categories illustrates the deficiencies
in each type. The input-process-output-objective definitions are generally unambiguous,

 What Is a Test Case? Revisiting the Software Test Case Concept 27

but not necessarily generalizable. For example, non-functional requirements, such as
testing a user experience, are difficult to define using this type of definition. Likewise,
the 'process' part of the TC can vary in size and complexity hence difficult to quantify
and measure. For instance, a process can be as simple as 'check for existence of a certain
value' or quite complex as 'create a customer order'. Consequently, this type of defini-
tion is problematic to automate. The state & transitions definitions may satisfy the un-
ambiguousness and quantifiability traits but are hardly generalizable since they stem
from the state-machine world, therefore not transferrable to other testing domains. For
example states and transitions that are a result of dynamic environmental conditions and
data would be rather impossible to define as a finite number of states and transitions.
TCs defined as States & Transitions, however, are quite convenient to quantify and
automate due to their origination in the state-machine domain. The contract group of
definitions is becoming popular, mainly in SOA platforms, yet these definitions clearly
violate the unambiguousness criterion. For example, Aichernig [16] defined a test as a
contract between the user and the software provider, Mikhailova et al. [65] defined
testing as a contract between the system under test and its environment, and Bruno et al.
[66] thought it was a contract ensuring service compliance between releases. Clearly,
only a formal definition of the contract, such as the one attempted by Aichernig [16] is
unambiguous. For similar reasons it cannot be generalized, quantifiable or automatable
unless formalized. Finally, it is quite obvious that the other definitions do not meet most
of the above requirements.

We maintain that the absence of a formal definition for TCs causes test planning,
execution, and monitoring malfunctioning. For example, reporting testing effort es-
timation or testing progress by number of executed TCs is clearly misleading, often
resulting in projects not meeting time and budget constraints, or in inadequate soft-
ware quality. Testing automation efforts are likewise contingent upon formal defini-
tion of TCs, hence its absence is possibly one of the barriers to a broader diffusion of
automation tools. These shortcomings are quite likely among the causes for the huge
annual economic damage as a result of inadequate software testing infrastructure and
processes reported by the US Department of Commerce [1]. Hence, further work
towards a formal TC definition that meets the above requirements is advocated.

6 Conclusions

TC is a cornerstone for planning, designing, and monitoring testing projects, as well as a
means for work, effort and cost estimation. This work demonstrated not only the cen-
trality of the TC but also the variance among TC definitions. Further, the official profes-
sional taxonomies, for example those presented in the joint ISO-IEEE Guide to the
Software Engineering Body of Knowledge – SWEBOK does not explicitly define TC.

This situation is possibly a barrier to improving the testing infrastructure leading to
higher software quality, therefore decreasing the enormous resulting damage. It is
suggested that establishing a formal, unambiguous, generic, quantifiable and struc-
tural definition for a TC would be a significant contribution to the world of software
testing, and software quality in general. Such a definition would pave the way to stan-
dard TC generation techniques, as well as to measurement and evaluation tools.

28 D. Almog and T. Heart

Referring to Kaner's [18] question "what is a good Test case?" and his assertion that
"good TC is one that gives the required information", we see benefits in formalizing a
unified, well defined and structured TC entity that satisfies all the above dimensions.
We suggest pursuing, determining and proposing an improved and comprehensive defi-
nition of a test Case.

References

[1] Tassey, G.: The Economic Impacts of Inadequate Infrastructure for Software Testing. Na-
tional Institute of Standards and Technology (2002)

[2] Basili, V., Caldiera, G., McGarry, F., Pajerski, R., Page, G., Waligora, S.: The software
engineering laboratory: an operational software experience factory. In: Proceedings of the
14th international conference on Software engineering. ACM, New York (1992)

[3] Geras, A.M., Smith, M.R., Miller, J.: A survey of software testing practices in alberta.
Canadian Journal of Electrical and Computer Engineering 29(3), 183–191 (2004)

[4] Grindal, M., Offutt, J., Mellin, J.: On the Testing Maturity of Software Producing Or-
ganizations. In: Proceedings of the Testing: Academic and Industrial Conference-Practice
and Research Techniques TAIC PART (2006)

[5] Ng, S.P., Murnane, T., Reed, K., Grant, D., Chen, T.Y.: A Preliminary Survey on Soft-
ware Testing Practices in Australia. In: Software Engineering Conference (2004)

[6] Illes, T., Herrmann, A., Paech, B., Rockert, J.: Criteria for Software Testing Tool Evalua-
tion. A Task Oriented View. In: Proceedings of the 3rd World Congress for Software
Quality (2005)

[7] Almog, D.: Verification Points for Better Testing Efficiency. In: StarEastSQE (2007)
[8] Bach, J.: Exploratory Testing Explained,

http://www.satisfice.com/articles/et-article.pdf
[9] Kaner, C.: The Ongoing Revolution in Software Testing. In: Software Test & Perform-

ance Conference (2004)
[10] Gelperin, D., Hetzel, B.: The Growth of Software Testing. Communications of the

ACM 31(6), 687–695 (1988)
[11] Ostrand, T.J., Balcer, M.J.: The Category-Partition Method for Specifying and Generat-

ing Functional Tests. Commun. ACM 31(6), 676–686 (1988)
[12] Weyuker, E.J.: The Cost of Data Flow Testing: An Empirical Study. IEEE Transactions

on Software Engineering 16(2), 121–128 (1990)
[13] Harrold, M.J., Rajiv, G., Mary Lou, S.: A Methodology for Controlling the Size of a Test

Suite. ACM Trans. Softw. Eng. Methodol. 2(3), 270–285 (1993)
[14] Rosenberg, L., Hammer, T.F., Huffman, L.L.: Requirements, Testing and Metrics. In:

15th Annual Pacific Northwest Software Quality Conference (1998)
[15] Iberle, K.: Divide and Conquer: Making Sense of Test Planning. In: The International

Conference on Software Testing, Analysis and Review, STARWEST (1999)
[16] Aichernig, B.K.: Test-Case Calculation through Abstraction. In: International Symposium

of Formal Methods. Springer, Heidelberg (2001)
[17] Jorgensen, P.: Software Testing: A Craftsman’s Approach. CRC Press, Boca Raton

(2002)
[18] Kaner, C.: What Is a Good Test Case? In: Star East (2003)
[19] Grindal, M., Offutt, J., Andler, S.F.: Combination Testing Strategies: a Survey. Software

Testing Verification and Reliability 15(3), 167 (2005)

 What Is a Test Case? Revisiting the Software Test Case Concept 29

[20] Grindal, M., Lindstrom, B., Offutt, J., Andler, S.F.: An Evaluation of Combination
Strategies for Test Case Selection. Empirical Software Engineering 11(4), 583–611
(2006)

[21] Ambrosio, A., Mattiello-Francisco, F., Santiago, V., Silva, W., Martins, E.: Designing
Fault Injection Experiments Using State-Based Model to Test a Space Software. In: Bon-
davalli, A., Brasileiro, F., Rajsbaum, S. (eds.) LADC 2007. LNCS, vol. 4746, pp. 170–
178. Springer, Heidelberg (2007)

[22] Ambrosio, A.M., Martins, E., Vijaykumar, N.L., de Carvalho, S.V.: Systematic Genera-
tion of Test and Fault Cases for Space Application Validation. In: DASIA: Data Systems
in Aerospace, European Space Agency (2005)

[23] Desai, H.D.: Test Case Management System (TCMS). In: IEEE Conference Global Tele-
communications GLOBECOM: ’Communications: The Global Bridge’ (1994)

[24] Craig, R.D., Jaskiel, S.P.: Systematic Software Testing. Artech House (2002)
[25] Jorgensen: Testing with Hostile Data Streams. ACM Sigsoft Software Engineering

Notes 28(2), 1 (2003)
[26] Nagappan, N.: A Software Testing and Reliability Early Warning (STREW) Metric Suite,

Thesis: Computer Science, North Carolina University (2005)
[27] Sherriff, M., Boehm, B.W., Williams, L., Nagappan, N.: An Empirical Process for Build-

ing and Validating Software Engineering Parametric Models. North Carolina State
Univeristy CSC-TR-2005-45, October, 19 (2005)

[28] Hoffman, D.: The Darker Side of Metrics. In: Conference of the Association of Software
Testing, CAST (2006)

[29] Binder, R.: Testing Object-Oriented Systems: Models, Patterns, and Tools. Addison-
Wesley Professional, Reading (2000)

[30] Talby, D., Hazzan, O., Dubinsky, Y., Keren, A.: Agile Software Testing in a Large-Scale
Project. IEEE Software, 30–37 (2006)

[31] Beck, K.: Test-driven Development: By Example. Addison-Wesley Professional, Reading
(2003)

[32] Utting, M., Legeard, B., Pretschner, A.: A Taxonomy of Model-based Testing. Dept. of
Computer Science, University of Waikato Hamilton, New Zealand (2006)

[33] Bohnet, R., Meszaros, G.: Test-Driven Porting. In: Proceedings of the Agile Develop-
ment Conference (2005)

[34] Lewis, G.A., Morris, E., Simanta, S., Wrage, L.: Common Misconceptions about Service-
Oriented Architecture. In: Proceedings of the Sixth International IEEE Conference on
Commercial-off-the-Shelf (COTS)-Based Software Systems (2007)

[35] Hiebert, D., Klaedtke, R.A., Lowery, E., Nartovich, A., Raut, N., Sandberg, M.J.: Build-
ing SOA-based Solutions for IBM System i Platform. IBM (2007)

[36] Karam, M., Safa, H., Artail, H.: An Abstract Workflow-Based Framework for Testing
Composed Web Services. In: IEEE/ACS International Conference on Computer Systems
and Applications, AICCSA (2007)

[37] Rehman, M.J., Jabeen, F., Bertolino, A., Polini, A.: Testing Software Components for In-
tegration: A Survey of Issues and Techniques. Software Testing, Verification & Reliabil-
ity 17(2), 95–133 (2007)

[38] Weyuker, E.J.: Testing Component-Based Software: A Cautionary Tale. IEEE Soft-
ware 15(5), 54–59 (1998)

[39] Cai, K.Y., Zhao, L., Hu, H., Jiang, C.H.: On the Test Case Definition for GUI Testing. In:
Fifth International Conference on Quality Software, QSIC (2005)

[40] Boujarwah, A.S., Saleh, K.: Compiler Test Case Generation Methods: A Survey and As-
sessment. Information and Software Technology 39(9), 617–625 (1997)

30 D. Almog and T. Heart

[41] Calam, J.R., Ioustinova, N., Pol, J.: Towards Automatic Generation of Parameterized Test
Cases from Abstractions. Technical Report SEN-E0602, Centrum voor Wiskunde en In-
formatica (2006)

[42] Byers, D., Engstrom, M., Kamkar, M.: The Design of a Test Case Definition Language.
Automated and Algorithmic Debugging, 69–78 (1997)

[43] Nebut, C., Fleurey, F., Le Traon, Y., Jezequel, J.M.: Automatic Test Generation: A Use
Case Driven Approach. IEEE Transactions on Software Engineering, 140–155 (2006)

[44] Prasanna, M., Sivanandam, S.N., Venkatesan, R., Sundarrajan, R.: A Survey on Auto-
matic Test Case Generation. Academic Open Internet Journal 15 (2005)

[45] Coulter, A.C.: Graybox Software Testing Methodology: Embedded Software Testing
Technique. In: Proceedings of the18th Digital Avionics Systems Conference (1999)

[46] Craig, R.: Measurement and Metrics for Test Managers. In: STAR East. SQE (2007)
[47] Kaner, C.: Measurement Issues and Software Testing (2001)
[48] Landis, L., Waligora, S., McGarry, F.: Recommended Approach to Software Develop-

ment. Software Engineering Laboratory Series, pp. 81–305. NASA (1992)
[49] Bassin, K., Biyani, S., Santhanam, P.: Metrics to Evaluate Vendor-Developed Software

Based on Test Case Execution Results. IBM Systems Journal 41(1), 13–30 (2002)
[50] Jorgensen, M., Shepperd, M.: A Systematic Review of Software Development Cost Esti-

mation Studies. IEEE Transactions on Software Engineering 33(1), 33–53 (2007)
[51] Binkley, D.: Semantics Guided Regression Test Cost Reduction. IEEE Transactions on

Software Engineering 23(8), 498–516 (1997)
[52] Leung, H.K.N., White, L.: Insights into Regression Testing [software testing]. In: Con-

ference on Software Maintenance (1989)
[53] Nageswaran, S.: Test Effort Estimation Using Use Case Points. In: 14th International

Internet & Software Quality Week (2001)
[54] Aranha, E., Borba, P.: An Estimation Model for Test Execution Effort. In: International

Symposium on Empirical Software Engineering and Measurement, ESEM 2007 (2007)
[55] Abran, A., Bourque, P., Dupuis, R., Moore, J.W.: Guide to the Software Engineering

Body of Knowledge - SWEBOK. In: Alain, A., et al. (eds.). IEEE Press, Los Alamitos
(2004)

[56] Stocks, P.A., Carrington, D.A.: Test Templates: A Specification-Based Testing Frame-
work. In: Proceedings of the 15th International Conference on Software Engineering.
IEEE Computer Society Press, Los Alamitos (1993)

[57] Beizer, B.: Black-Box Testing: Techniques for Functional Testing of Software and Sys-
tems. John Wiley & Sons, Inc., Chichester (1995)

[58] Offutt, J., Abdurazik, A.: Generating tests from UML specifications. In: Proc. Second In-
ternational Conference on the Unified Modeling Language (1999)

[59] Taylor, C.M.: EPDAV – A Model for Test Case Definition. In: Conference of the Asso-
ciation of Software Testing (2006)

[60] Bruno, M., Canfora, G., Di Penta, M., Esposito, G., Mazza, V.: Using Test Cases as Con-
tract to Ensure Service Compliance Across Releases. In: Benatallah, B., Casati, F.,
Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826, pp. 87–100. Springer, Heidelberg
(2005)

[61] Kaner, C., Falk, J.L., Nguyen, H.Q.: Testing Computer Software. John Wiley & Sons,
Inc., New York (1999)

[62] Maletic, J.I., Soliman, K.S., Moreno, M.A., Mercer, W.M.: Identification of Test Cases
from Business Requirements of Software Systems. In: American Conference on Informa-
tion Systems AMCIS (1999)

 What Is a Test Case? Revisiting the Software Test Case Concept 31

[63] Baudry, B., Fleurey, F., Jezequel, J.M., Le Traon, Y.: Genes and Bacteria for Automatic
Test Cases Optimization in the .NET Environment. In: Proceedings of the13th Interna-
tional Symposium on Software Reliability Engineering, ISSRE (2002)

[64] Menter, F.: CFD Best Practice Guidelines for CFD Code Validation for Reactor- Safety
Applications. CFX, Germany (2002)

[65] Mikhailova, A., Doche, M., Butler, M.: Contracts for Scenario-Based Testing of Object-
Oriented Programs (2002)

[66] Bruno, M., Canfora, G., Di Penta, M., Esposito, G., Mazza, V.: Using Test Cases as Con-
tract to Ensure Service Compliance Across Releases. In: Benatallah, B., Casati, F.,
Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826, pp. 87–100. Springer, Heidelberg
(2005)

Automating Expert-Defined Tests: A Suitable
Approach for the Medical Device Industry?

David Connolly1, Fergal Mc Caffery2, and Frank Keenan1

1 Software Technology Research Centre
2 Regulated Software Research Group,

Dundalk Institute of Technology, Dublin Road, Dundalk, Ireland
{david.connolly,fergal.mccaffery,frank.keenan}@dkit.ie

Abstract. Testing is frequently reported as a crucial stage in the soft-
ware development process. With traditional approaches acceptance test-
ing is the last stage of the process before release to customer. Acceptance
Test Driven Development (ATDD) promotes the role of an expert cus-
tomer in defining tests and uses tool support to automate and execute
these tests. Here the challenge is to support such an expert in the reuse
of existing documentation. This paper details an experiment in a generic
domain while outlining plans for development of an automated testing
model that could assist medical device companies to adhere to regulatory
guidelines by providing them with a fully traceable testing artifacts.

1 Introduction

A large part of software development expenditure is attributed to testing. Tradi-
tionally, with plan-driven development, acceptance testing, the process of testing
functional requirements with “data supplied by the customer” [1] occurs as the
final stage of the development process long after the initial investigation has
completed [2]. Many reports, however, highlight that costs can be reduced by
detecting errors earlier in development [3]. Also supporting this, in many do-
mains, such as the medical device industry, software is developed subject to a
regulatory environment with a tendency for extensive documentation. This reg-
ulatory environment features guidelines and standards such as [4] - [9]. Despite
many constraints already being specified, this is often ignored with tests written
from scratch after implementation is complete. In contrast, agile approaches re-
quire constant customer collaboration throughout development, with customer
provision of acceptance tests being an important part of this role. Often, it is
recommended that tests be identified before implementation commences. In eX-
treme Programming (XP) [10], for example, acceptance tests are defined as a
part of the User Stories practice and, as such, are written before coding of the
story begins. In this context, functional tests are synonymous with acceptance
tests [11]. Further, for accurate user stories, Cohn recommends customers them-
selves specify acceptance tests with developers and testers providing support as
required [12]. The XP practice of Continuous Integration, that is, building and
testing a system frequently, maximizes the use of the executable and automated

R.V. O’Connor et al. (Eds.): EuroSPI 2009, CCIS 42, pp. 32–43, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Automating Expert-Defined Tests 33

products of Test Driven Development (TDD) [13]. TDD visibly links executable
unit tests to the overall development process. TDD is widely practised and has
many reported benefits [14] but successful use does rely on tools such as JUnit
[15]. ATDD adds to this established test-first philosophy with acceptance testing
of an automated and executable nature. In keeping with agile principles, ideally
customers write acceptance tests guided by developers. Its practice “allows soft-
ware development to be driven by the requirements” [16]. A key advantage of
ATDD in its wider context is that it leverages existing agile infrastructure sup-
porting continuous integration. As with TDD, support from tools makes ATDD
feasible. However, Andrea [17] claims that existing tools exhibit several deficien-
cies and produce tests that are “hard to write and maintain”. To overcome this
Andrea also suggests that the next generation of functional testing tools need
to support writing (and reading) functional tests in multiple formats. Given the
widespread adoption of information and communication technology, in many
organisations business rules are documented in numerous formats, for example,
including Medical Devices . However, ATDD is currently not well supported with
tools that enable reusing such existing documents, without rewrites, to create
executable tests. A challenge, therefore, is to support a suitably informed ex-
pert to perform the agile customer role and in easily creating tests from existing
material. However, successful identification of accurate acceptance tests in this
manner is not necessarily straightforward.

2 Importance of “Well Tested” Medical Device Software

The risk of patient injury from software defects is a concern due to the man-
ufacture and deployment of increasing numbers of software-embedded medical
devices [18] - [20]. There have been a number of major medical device product
recalls over this past 25 years that were the result of software defects [21]. Highly
traceable testing and change control procedures within medical device software
development is important as such modifications can occur frequently and may
occur at different levels (e.g. design, interface or code), therefore increasing the
risk of software failure [21]. It is therefore important that a medical device com-
pany has an efficient software development process in place that include change
control practices. According to the Institute of Medicine report “To Err is Hu-
man” [22], between 44000 to 98000 people die in hospital from preventative
medical errors. The report also says that more people die every year as a re-
sult of medical errors than from motor vehicle accidents, breast cancer or AIDS.
Like most industries, the medical device industry depends on computer tech-
nology to perform many of the functions ranging from financial management
to patient treatment [23]. The use of software in medical devices has become
widespread in the last two decades. Medical devices with software include those
that are supplied and used entirely in hospitals and other health facilities, as
well as consumer items such as blood pressure monitors. Many medical devices,
and their software, operate in real time - monitoring, diagnosing, or controlling

34 D. Connolly, F. Mc Caffery, and F. Keenan

a physiological process as it changes. The complexity and risk profile of med-
ical devices varies widely and range from a consumer digital thermometer for
minor diagnosis, and an implanted artificial heart that is critical to preserving
a patient‘s life, to a therapeutic X-ray machine with a computer user interface,
programmable software controlled therapy and anatomical and biophysical mod-
elling in the software, which is operated under a high level of professional staff
supervision [24]. Analysis of medical device recalls highlights the diverse nature
of medical device software failures. The FDA found that during 1983 - 1987 ap-
proximately 44% of the quality problems that led to voluntary recalls of medical
devices were attributed to errors or deficiencies designed into particular medical
devices rather than having been inserted during the manufacturing phase. The
study also recognised software quality management practices as a means to pre-
vent failure [25]. In the medical device industry, the software used to control a
device takes on an additional role - it must help ensure the safety of the user.
There are many challenges to implementing safe software. Software design needs
to include deliberate engineering practices and rigorous approaches for software
testing such as an expert customer defining suitable tests before development
begins.

3 Related Work

Many approaches to conducting acceptance testing exist. Some concentrate on
acting as a “recording device” allowing user actions to be replayed against a
system, checking for deviations. However, this approach is mainly limited to
Graphical User Interface (GUI) testing of a specific version of a system, using a
tool such as the Selenium IDE [26]. Tools for writing acceptance tests in a cus-
tomer friendly format and appropriate for continuous integration exist. RSpec,
for example, is a “Behaviour Driven Development framework for Ruby” [27].
It promotes a workflow that involves writing stories in a somewhat prescrip-
tive natural language style and then manually translating these steps into Ruby.
While the authors consider this approach interesting for new stories, it has lim-
itations in dealing with pre-existing documents. Other open source tools aimed
at supporting ATDD exist including EasyAccept which supports both tabular
and sequential styles [28].

Generally, the Framework for Integrated Tests (FIT) is the most widely ac-
cepted tool for managing acceptance tests in agile development and therefore
practising ATDD [29]. In FIT‘s simplest workflow a user, places inputs and
some expected output into a tabular format, a ColumnFixture [30]. The devel-
oper then writes code (fixtures) that executes this data against the system‘s
production code. Other built-in fixture included in FIT include ActionFixtures
for testing a “sequence of commands” and RowFixtures for “comparing test
data to objects in the system” [30]. FitNesse is a Wiki framework developed to
support FIT [31]. It facilitates the editing of FIT tables in a browser allowing
non-programming experts to add content. While FIT tables can be written in
any tool that can export HTML, such as Microsoft Excel, these generic tools do

Automating Expert-Defined Tests 35

not have any authoring features directly supporting the task domain. Existing
tools that support either FIT or FitNesse include AutAT and FitClipse. Au-
tAT seeks to assist “business-side people” taking a visual approach to building
Acceptance Tests [32]. As FitClipse [33] builds on FitNesse tests are entered
using its wiki syntax. Mugridge introduces a process based around a library of
fixtures named FitLibrary, which improves FIT‘s “business-level expressiveness”
to emphasise a “domain-driven design approach” [34]. It supports a type of fix-
ture, DoFixtures, which approach natural language in readability. Commercial
software also supports such a workflow, with GreenPepper [35] supporting “ex-
ecutable specifications” while providing an expressive library of table types. For
clarity, it is important to note that GreenPepper uses code annotations (Java
and C#) that are unrelated to the annotations in this paper. However, none of
these tools is focused on reusing existing documentation, so unlike the proposed
approach these approaches require re-writes of content.

In the requirements authoring process, Melnik and Maurer found that the use
of FIT helped students to “learn how express requirements in a precise, unequiv-
ocal manner” [36]. In a number of experiments aimed at evaluating the impact
of FIT tables on the implementation of change requests Ricca et al. [37], found
improvement in the correctness of code produced. The addition of FIT Tables
to plain text descriptions had the most impact on more experienced students,
and they found no significant increase in time taken to implement the changes.
The use of annotations was proposed because it provides users with a simple
conceptual framework allowing them to add detail to text descriptions of tests.
Annotations are used here to allow for links to be made between descriptions and
corresponding FIT Tables. These annotations are based on elements of an ac-
ceptance test description recommended by Jain [29]. There are four basic types,
covering most elements of an individual acceptance test:

– Precondition: event that must occur before a test is run.
– Actor + Action: part of system and functionality.
– Observerable Result : a verifiable response generated by the system.
– Examples : represent the input data given to a test.

The passing or failure of a test rests with variance from specified Observable
Results. A visual representation of the annotations is contained in Figure 1.

Fig. 1. Annotations

36 D. Connolly, F. Mc Caffery, and F. Keenan

4 Annotations Experiment

This experiment was designed to evaluate the impact of annotations on the pro-
cess of authoring acceptance tests. The scenario used to write the question de-
scriptions given to respondents concerned the management of software packages
on a computer system, such as GNU/Linux [38]. There were six participants,
each experienced in computing as either a postgraduate or professional. How-
ever, none had prior experience of writing FIT tables. All were given a short,
two-hour training session on FIT Tables and ATDD. Participants were tasked
to create tests using either annotated descriptions or from non-annotated plain
text descriptions. The plain text descriptions serve as a reference for comparison
against annotations. The only difference between descriptions was the presence
or absence of annotations. Each participant was randomly assigned to Group A
and Group B, with each group assigned in total three participants and receiving
four questions. Group B started with annotated descriptions while Group A were
given a non-annotated version. For subsequent exercises the groups alternated
between annotated and non-annotated. Apart from a common assignment of
question, to their group, participants worked alone. In providing these descrip-
tions, the first author acted in the role of a customer on an agile project. The
experiment considered annotations in paper-based experiment in isolation aside
from usability considerations of prototypes.

4.1 Design

For comparison purposes, the first author wrote reference tests, providing an
“ideal” test description against which the participants‘ tests were compared.
Each was in the form of high-level descriptions of how a system should func-
tion, including handling of error conditions and intended to be of approximately
equal difficulty: Question 1 covered initial bootstrap of the package management
system; Question 2 covered installation of new packages; Question 3 covered re-
moval of packages; Question 4 covered upgrading of packages. The metrics used
to assess the experiment were gathered under the following headings:

– Errors: elements that should not appear in the test. From participants‘ an-
swers, all error occurrences counted towards the average.

– Correct Elements: From participants‘ answers an elements first occurrence.
Participants were free to reuse structural elements (for example the first
row in a FIT Table) as this only affects readability. However, repeated data
elements are counted as Errors. Presence of a data element irrespective of
corresponding structural element was enough for it to count as correct, so
two penalising respondents twice.

– Missing Elements: defined as elements that were omitted by the participants
compared to the reference test.

– Time: amount of time taken to complete FIT table.

Automating Expert-Defined Tests 37

4.2 Question and Responses

A reproduction of Question 2 with annotated text is presented in Figure 2. This
version was provided to Group A while Group B received it non-annotated.

Fig. 2. Sample Question

A simple FIT Table (ColumnFixture) has been transcribed in Figure 3, it rep-
resents the text of Figure 2. This acknowledges the flow of events encoded in the
text and unambiguously represents the specific package name of the “conflicting
package”.

Fig. 3. Sample ‘Ideal’ Answer

For illustration and comparison with the “ideal” response, two respondent
answers are transcribed in Figure 4 and Figure 5. Figure 4 the answer attempt
from respondent A2, who had been provided an annotated version of Question 1.

Fig. 4. Respondent answer (annotations)

Here, the respondent A2 correctly identifies the sequence of events, but fails
to include the name of the package, “fcron”, causing the failure. However, the
chosen label heading “success?” does not reflect the action name but this is

38 D. Connolly, F. Mc Caffery, and F. Keenan

Fig. 5. Respondent answer (non-annotated)

not considered an error because the respondent correctly labelled the table.
Respondent A2 achieved the fewest Errors and both the most Correct Elements
and fewest Missing Elements in Question 2.

The corresponding snippet from respondent B1, who had used a non-annotated
version, is transcribed in Figure 5. Here, the respondent B1 failed to identify from
the text that the “install()” action should fail due to the prior installation of a
conflicting package. Indeed respondent B1 didn‘t correctly identify “install()” as
an action at all, instead specifying the package name “vcron” combined with the
error detail as data to be verified. In comparing these answers with the reference
answer in Figure 4 one element was missed by respondent A2 while four elements
were missed by respondent B1 in Figure 5. Finally, it should also be noted that
respondent B1 performed better when using annotated texts and respondent A2
performed worse when using non-annotated texts. The next section summarises
the overall results for the experiment.

4.3 Results

The results gathered from the respondents answers, are summarised in Table 1.
For clarity, the row number is included in column 1. Columns 2, 3 and 4 introduce
the question number, which group is responding (A or B) and the type of descrip-
tion provided in the group‘s question. Columns 5, 6 and 7 contain the arithmetic
mean of the counts for each group‘s Errors, Correct Elements and Missing El-
ements, respectively. The presence of Errors indicates Over-Specification while
that of Missing Elements indicates Under-Specification. In all cases, Correct El-
ements plus Missing Elements equals Total Elements of the “ideal” answer.

We analysed both the data element and the structural element of the re-
sponses. An Error occurs whenever a response is matched against the “ideal”
answer and a mistake is identified. A mistake may be identified in either the data
element or the structural element. All mistakes that occur in the data element
are counted as errors, whereas only the first occurrence is counted as an error
in the structural element. For example, if we matched an individual‘s response
against the “ideal” response and discovered that a data element “fcron” had
been included by a respondent three times; the first two match the “ideal” re-
sponse counting as Correct but the third element would be incorrect and count
as one error.

Each row in Table 1 presents the results of one group for a particular question.
For example, Row 1 represents the arithmetic mean of responses from Group B
for Question 1 (annotated). The use of median would not reverse the overall
results.

Automating Expert-Defined Tests 39

Table 1. Results from annotations experiment

Row Q Group Type Errors Correct Missing
1 Q1 B Annotated 7.33 12 14
2 Q1 A Plain 13 14 12
3 Q1 - Difference 55.74% (15.38%) (15.38%)
4 Q2 A Annotated 4.67 14 7
5 Q2 B Plain 9.67 10.67 10.33
6 Q2 - Difference 69.77% 27.03% 38.46%
7 Q3 B Annotated 9.67 9.67 3.33
8 Q3 A Plain 11.67 9 4
9 Q3 - Difference 18.75% 7.14% 18.18%
10 Q4 A Annotated 11.5 14 6
11 Q4 B Plain 14 8.67 11.33
12 Q4 - Difference 19.61% 47.06% 61.54%
13 - - Average Difference 40.97% 16.46% 25.70%

Further, the percentage difference (55.74%) between Group A and Group B
is represented in row 3. This is obtained from as follows:

Row3 = ((|Row1 − Row2|)/(Row1 + Row2)/2) ∗ 100. (1)

For example, in the case of the obtaining the percentage difference of Errors:

55.74% = (|7.33 − 13|)/((7.33 + 13)/2) ∗ 100 (2)

In the case of a worse performance when given annotations, such a result has
been enclosed with parenthesis in Table 1. This pattern continues for each ques-
tion given to respondents. The final row, Row 13, contains the overall percent-
age difference; these results included the cases of decreased performance in Row
3 as negative numbers. In each case, the occurrence of Errors is reduced for
the annotated versions. This holds across both groups even with a pattern of
Group A taking less time on average compared to Group B. For example, the
figure of 55.74% in row 3 indicates that there were 55.74% less errors identi-
fied in the annotated version. This means responses with a lower incidence of
Over-Specification occurred when respondents were provided with annotations.
In Question 2 to Question 4, the average number of Correct Elements for the
annotated version is greater than that for the non-annotated version. A similar
reduction in the number of Missing Elements occurred. For example, 27.03%,
Correct in Row 6 means that there were 27.03% more elements identified by the
group given annotations. Similarly, 38.46%, Missing in Row 7 means that there
were 38.46% less missing elements identified by the group given annotations.
As with Error Rates, the number of Correct Elements achieved by respondents
appears unrelated to the amount of time spent. However, the effect of annota-
tions on Correct Elements and Missing Elements was smaller than on the Error
Rates, therefore annotations had less of an impact on Under-Specification.

40 D. Connolly, F. Mc Caffery, and F. Keenan

4.4 Selection of a Domain

The initial results are promising however the chosen domain used in the ex-
periment is one of largely unregulated innovation; therefore the large tracts of
documentation required for the approach do not exist. However, medical device
companies must produce a design history file detailing the software components
and processes undertaken in the development of their medical devices. Due to
the safety-critical nature of medical device software it is important that highly
efficient software development practices are in place within medical device com-
panies. Medical device companies who market within the USA must ensure that
they comply with medical device regulations as governed by the FDA (FDA -
Food and Drug Administration) [39] - [6]. The medical device companies must
be able to produce sufficient evidence to support compliance in this area. To this
end, the (CDRH - Center for Devices and Radiological Health) has published
guidance papers for industry and medical device staff which include risk -based
activities to be performed during software validation [4], pre-market submis-
sion [5] and when using off-the-shelf software in a medical device [6]. Although
the CDRH guidance documents provide information on which software activ-
ities should be performed, including risk based activities; they do not enforce
any specific method for performing these activities. The FDA have defined the
following eleven software development areas:

– Level of Concern
– Software Description
– Device Hazard and Risk Analysis
– Software Requirements Specification
– Architecture Design
– Design Specifications
– Requirements Traceability Analysis
– Development
– Validation, Verification and Testing
– Revision Level History
– Unresolved Anomalies

The research outlined in this paper with tool support could greatly assist medical
device software development companies to have traceability of all requirements
throughout the testing phase and to ensure that all requirements are thoroughly
tested. In particular, this would assist medical device companies to adhere to the
FDA demands in relation to “Requirements Traceability Analysis” and “Valida-
tion, Verification and Testing”.

4.5 Conclusions and Future Work

The annotations experiment in this paper was designed to evaluate the impact
of annotations on the process of authoring acceptance tests. Future work in the
form of case studies will be aimed at measuring the stages of error detection

Automating Expert-Defined Tests 41

encountered on projects applying digital annotations; this will asses if the ap-
proach helps to highlight deficient documents in-place, encouraging correction at
source rather than through creation of second generation artefacts (for example,
by writing new acceptance tests). While the size of groups in this study has lim-
ited the statistical conclusions, the results presented in this paper indicate that
using annotated documents helped to identify more elements that are Correct
with fewer Missing elements and Errors when creating acceptance tests.

Due to the applicability of this research to medical device software we would
now like to re-design this experiment so that it concerned medical device software
requirements. This work will specifically help medical device companies to ad-
dress two of the eleven areas defined by the FDA i.e. “Requirements Traceability
Analysis” and “Validation, Verification and Testing”.

Acknowledgments

This research is partially supported by Institutes of Technology, Technological
Sector Research Programme, Strand 1 Fund and Science Foundation Ireland
through the Stokes Lectureship Programme, grant number 07/SK/I1299.

References

1. Sommerville, I.: Software Engineering, 8th edn., pp. 80–81. Addison-Wesley, Read-
ing (2007)

2. Pressman, R.S.: Software Engineering: A Practitioner‘s Approach, European Adap-
tion, 5th edn. McGraw-Hill, New York (2000)

3. Tassey, G.: The economic impacts of inadequate infrastructure for software testing,
National Institute of Standards and Technology (NIST) (May 2002)

4. CDRH, General Principles of Software Validation; Final Guidance for Industry and
medical device Staff (January 11, 2002)

5. CDRH, Guidance for the Content of Premarket Submissions for Software Con-
tained in Medical Devices; Guidance for Industry and medical device Staff (May
11, 2005)

6. CDRH, Off-The-Shelf Software Use in Medical Devices; Guidance for Industry,
medical device Reviewers and Compliance (September 9, 1999)

7. ANSI/AAMI/ISO 14971, Medical devices - Application of risk management to
medical devices, 2nd edn. (2007)

8. ANSI/AAMI/IEC 62304, Medical device software - Software life cycle processes
(July 19, 2006)

9. ISPE, GAMP Guide for Validation of Automated Systems (December 2001)
10. Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change, 2nd

edn. Addison Wesley, Boston (2005)
11. Sauvé, J.P., Neto, O.L.A.: Teaching software development with ATDD and Easy-

Accept. In: SIGCSE 2008: Proceedings of the 39th SIGCSE technical symposium
on Computer Science Education, pp. 542–546 (2008)

12. Cohn, M.: User Stories Applied. Addison-Wesley, Boston (2005)
13. Beck, K.: Test Driven Development: By Example. Addison-Wesley Professional,

Reading (2002)

42 D. Connolly, F. Mc Caffery, and F. Keenan

14. Jeffries, R., Melnik, G.: Guest editors introduction: TDD- the art of fearless pro-
gramming. IEEE Software 24(3), 24–30 (2007)

15. Beck, K., Gamma, E., Saff, D.: JUnit 4, http://junit.sourceforge.net/ (last
accessed January 16, 2009)

16. Park, S.S., Maurer, F.: The benefits and challenges of executable acceptance test-
ing. In: APOS 2008: Proceedings of the 2008 international workshop on Scrutinizing
agile practices or shoot-out at the agile corral, pp. 19–22 (2008)

17. Andrea, J.: Envisioning the next generation of functional testing tools. IEEE Soft-
ware 24(03), 58–66 (2007)

18. Crumpler, E.S., Rudolph, H.: FDA software policy and regulation of medical device
software. Food Drug Law Journal 52, 511–516 (1997)

19. Munsey, R.R.: Trends and events in FDA regulation of medical devices over the
last fifty years. Food Drug Law Journal 50, 163–177 (1995)

20. Medical device reporting: Improvements needed in FDAs system for monitoring
problems with approved devices, US General Accounting Office, GAO/HEHS-97-
21 (1997)

21. Bovee, M.W., Paul, D.L., Nelson, K.M.: A Framework for Assessing the Use of
Third-Party Software Quality Assurance Standards to Meet FDA Medical Device
Software Process Control Guidelines. IEEE Transactions on Engineering Manage-
ment 48(4), 465–478 (2001)

22. Kohn, L., Corrigan, J., Donaldson, M.: To Err is Human: Building a Safer Health
System. National Academy Press (2000)

23. Wallace, D.R., Kuhn, D.R.: Failure Modes in Medical Device Software: An analysis
of 15 Years of Recall data. NIST,
http://csrc.nist.gov/staff/kuhn/final-rqse.pdf (last accessed, January
2007)

24. Jamieson, J.: Regulation of medical devices involving software in Australia - an
overview. In: 6th Australian Workshop on Safety Critical Systems and Software,
Brisbane (2001)

25. Leffingwell, D.A., Widrig, D.R., Morrissey, W.T.: Applying requirements manage-
ment to medical devices utilizing software, Rational Software Corporation (1997)

26. Kasatani, S.: Selenium IDE, http://seleniumhq.org/ (last accessed December 1,
2008)

27. RSpec Development Team, http://rspec.info (last accessed December 1, 2008)
28. Sauvé, J.P., Cirne, W., Osorinho, Coelho, R.: EasyAccept Sourceforge Project,

http://easyaccept.sourceforge.net (last accessed December 3, 2008)
29. Jain, N.: Acceptance Test Driven Development. Presentation,

http://www.slideshare.net/nashjain/

acceptance-test-driven-development-350264/

(last accessed November 30, 2008)
30. Cunningham, W.: Framework for Integrated Test, September 2002,

http://fit.c2.com (last accessed January 16, 2009)
31. FitNesse.org., http://fitnesse.org (last accessed February 7, 2008)
32. Schwarz, C., Skytteren, S.K., Øvstetun, T.M.: AutAT: an eclipse plugin for auto-

matic acceptance testing of web applications. In: OOPSLA 2005: Companion to
the 20th annual ACM SIGPLAN conference on OOPSLA, pp. 182–183 (2005)

33. Deng, C., Wilson, P., Maurer, F.: FitClipse: A FIT-based Eclipse plug-in for Exe-
cutable Acceptance Test Driven Development. In: Concas, G., Damiani, E., Scotto,
M., Succi, G. (eds.) XP 2007. LNCS, vol. 4536, pp. 93–100. Springer, Heidelberg
(2007)

http://junit.sourceforge.net/
http://csrc.nist.gov/staff/kuhn/final-rqse.pdf
http://seleniumhq.org/
http://rspec.info
http://easyaccept.sourceforge.net
http://www.slideshare.net/nashjain/acceptance-test-driven-development-350264/
http://www.slideshare.net/nashjain/acceptance-test-driven-development-350264/
http://fit.c2.com
http://fitnesse.org

Automating Expert-Defined Tests 43

34. Mugridge, R.: Managing agile project requirements with storytest-driven develop-
ment. IEEE Software 25, 68–75 (2008)

35. Pyxis Technologies inc., GreenPepper Sofware,
http://www.greenpeppersoftware.com/confluence (last accessed January 19,
2009)

36. Melnik, G., Maurer, F.: The practice of specifying requirements using executable
acceptance tests in computer science courses. In: OOPSLA 2005: Companion to
the 20th annual ACM SIGPLAN conference on OOPSLA, pp. 365–370 (2005)

37. Ricca, F., Penta, M.D., Torchiano, M., Tonella, P., Ceccato, M., Visaggio, C.A.:
Are fit tables really talking?: a series of experiments to understand whether fit
tables are useful during evolution tasks. In: ICSE 2008: Proceedings of the 30th
international conference on Software engineering, pp. 361–370 (2008)

38. Free Software Foundation, About the GNU Project,
http://www.gnu.org/gnu/the-gnu-project.html (last access January 16, 2009)

39. FDA‘s Mission Statement,
http://www.fda.gov/opacom/morechoices/mission.html (last access March 18,
2009)

http://www.greenpeppersoftware.com/confluence
http://www.gnu.org/gnu/the-gnu-project.html
http://www.fda.gov/opacom/morechoices/mission.html

R.V. O’Connor et al. (Eds.): EuroSPI 2009, CCIS 42, pp. 44–56, 2009.
© Springer-Verlag Berlin Heidelberg 2009

A Model for Selecting an Optimum Set of Measures in
Software Organizations

Ansar Malook Bhatti, Hafiz Muhammad Abdullah, and Cigdem Gencel

Blekinge Institute of Technology, School of Engineering,
372 25 Ronneby, Sweden

{ambh07,hmabh07}@student.bth.se, cigdem.gencel@bth.se

Abstract. Most of the software organizations face difficulties in choosing the
measures to collect since there is no universal set of measures for all types of
organizations and projects. Experience shows that measurement can be more
successful if the measures are collected based on the goals of the organization
or the project which it will serve. However, one of the major constraints for the
organizations is the associated cost for the resources needed when collecting the
measures. Therefore, based on their goals, the software organizations require
collecting not only as few measures from a large number of possible measures
as possible but an optimum set of measures as well. In this paper, we propose a
model, called ‘Optimum Measures Set Decision (OMSD) Model’, which is an
extension of the well-known Goal Question Metric (GQM) paradigm using a
heuristics approach. We performed a survey by distributing a structured ques-
tionnaire to a number of people from the industry in order evaluate and get
feedback on these factors. We evaluated the rules of the model by means of
some sample cases we created. In this paper, we discuss OMSD as well as the
empirical studies we conducted in order to develop it.

Keywords: Software Measurement Program, Software Measures, Software
Process Improvement, Goal Question Metric.

1 Introduction

Software measurement process has become an integral part for software process due to
its significance in project estimations, decision making and software process improve-
ment [1]. However, in spite of the fact that many organizations started measurement
programs to benefit from it; the failure rates for software measurement programs in
software organizations are still very high.

About 80% of the measurement programs were reported to fail to either helping in
decision making or delivering performance improvements for numerous reasons [2],
[3]. Some of the most significant reasons stated are as follows [2], [4], [5]:

− Focusing on collecting process rather than having clear action plans for improv-
ing the organizational processes and/or making decisions,

− Inappropriate measures selection; a misunderstanding of what is to be measured,
why and how it is to be measured,

 A Model for Selecting an Optimum Set of Measures in Software Organizations 45

− Inadequate data collection and wrong interpretations of data that leads to ineffec-
tive decision making,

− Lack of trained and expert resources required to dedicate to measurement,
− Lack of management support for the measurement program,
− The cost for measurement not planned according to the organization’s budget.

Various frameworks and models have been developed to overcome some of the above
mentioned difficulties software organizations are facing, such as Goal Question Met-
ric (GQM) paradigm [6], [7], Goal Question Indicator Model (GQIM) [8] and Meas-
urement Information Model [9]. GQM; developed by Basili and Weiss [6] and then
improved by Basili and Rombach [7], is one of the well-known frameworks used in
deriving measures from organization or business goals. Two reasons for the success
of GQM are stated in [10] as that it is adaptable to many different organizations and
environments and it aligns with the organizational directions and goals.

However, although these frameworks help the organizations to collect data on the
measures which are required to fulfill the goals of the organization, none of those
explicitly support the need to limit the number of measures to be collected [10]. In
fact, one of the major constraints for the organizations which are also one of the sig-
nificant reasons for measurement programs failure is the associated cost for the meas-
urement programs.

A well-known figure, Tom De Marco said [11]; “Metrics are good, more would be
better and most is best but the importance of cost and time factor cannot be denied.
Faced with a high number of measures to be collected for software process improve-
ment reasons, most organizations want to know whether all those measures are
equally important or some are more important than the others”. Two out of ten prob-
lems leading to failure in the implementation of software measurement programs are
reported by Howard Rubin to be: the intensive use of a single measure or, conversely,
the use of too many [12].

According to [13], software measurement programs usually fail as they require ex-
pert judgment for selecting appropriate number of measures in relation to the organ-
izational goals. The mapping of goals with appropriate measures requires experienced
resources in the field of software measurement. These goals are required to be priori-
tized. One important point to be considered is that this prioritization might also be
influenced by the cost associated to measures collection. Therefore, software organi-
zations require deciding on an optimum set of measures which are good enough and
at the same time less costly.

This paper suggests a model named ‘Optimum Measure Set Decision (OMSD)
Model’ which extends the GQM approach and aims to fill in the gap discussed above
by facilitating the managers in selecting an optimum set of measures from a large
number of possible measures. To develop the model, we identified the factors which
are significant when deciding on the measures to be collected as well as optimizing
the cost associated based on the findings of an extensive literature review and getting
feedback from the industry by conducting a survey. Then, we tested the model by
means of some sample cases we created.

The paper is divided into five main sections. Section 1 provides an introduction.
Section 2 explains the proposed OMSD model. Section 3 presents the empirical studies

46 A.M. Bhatti, H.M. Abdullah, and C. Gencel

we made in order to test the model and discusses the results we obtained. Finally, we
present the conclusions in Section 5.

2 Optimum Measures Set Decision (OMSD) Model

The Optimum Measures Set Decision (OMSD) Model [14], which is extending the
GQM approach, is based on a heuristics approach. Heuristics is defined as a technique
which seeks near optimal solution at a reasonable cost [15]. It is a rather flexible, easy
to understand and implement technique. Constraints [16] regarding the costs and
resources are defined early in the measurement process and it plays an important role
during the final decision making on an optimum measures set selection. These con-
straints act as thresholds which are utilized as process terminators in OMSD Model.

The constraints for the heuristics rules are collected after the first level of GQM is
implemented; i.e. when the goals are identified. After implementing levels in GQM,
all the measures decided are ensured to be collected for a purpose and hence also
reflect interesting and useful measurements for an organization. OMSD consists of
five main steps shown as follows (Fig. 1 below):

• Category Selection
• Attributes Identification
• Measures Selection
• Collecting Data on the Measures Based on Factors
• Decision Making

2.1 Category Selection

In order to perform any measurement activity we need to identify the entity to be
measured and the associated attributes [17]. This step involves mapping of the
questions identified in the questions level of GQM paradigm on their respective entity
categories. In [17], three main categories of entities are defined as: Process, Product
and Resource.

Process category includes different activities and these activities are associated
with a timescale. There is a particular order defined for these activities which means
activity B requires the completion of activity A. This timing could be implicit or
explicit. Resources and Product categories are associated with the process category.
Every process has certain resources and products that it utilizes. This step results in
the identification of measurement entities (questions) on their respective classes
which serves as input to the next phase of ‘Attribute Identification’.

2.2 Attribute Identification

Attributes associated with the entities are identified that can be divided into two main
categories as external and internal attributes [17]. Internal attributes are those which
could be measured only by observing the product. External attributes include proc-
esses, products, resources and its behavior which tells how these attributes relate to
the environment. Category selection and attributes identification provide deep under-
standing regarding behavior of the respective questions.

 A Model for Selecting an Optimum Set of Measures in Software Organizations 47

Fig. 1. Optimum Measures Set Decision (OMSD) Model

This step results in the following two outputs regarding the questions:

• Respective categories of questions
• Associated attributes depicting their behavior and relation with environment.

These identified attributes facilitate in Decision Making (Step 5) later on. At least one
attribute is identified for each question because these attributes represent its respective
questions in decision making. It is possible that one question can be related to more
than one attribute and one attribute can be associated with more than one question.
These dependencies are also identified and used later in the decision making process.

2.3 Measures Selection

The main aim of this step is the selection of all possible measures from a ‘Measures
Pool’ using identified categories attributes and measures selection criteria (explained
below). This step is conducted at the third level of GQM when the measures are
identified.

48 A.M. Bhatti, H.M. Abdullah, and C. Gencel

We define the ‘Measures Pool’ as the repository which contains a finite set of
measures defined for the attributes of software entities. Since this set might contain
hundreds of measures, as our first attempt in this study, we included the ones pro-
vided in ISO 9126 [18], [19], [20], [21], ISO 25000 [22], the ones suggested as the
minimum set of measures defined in CMMI [23] and the measures which are best
known by the organization itself in their experience factory. Every organization can
tailor the attributes and measures set in the Measures Pool based on their needs.

We defined these criteria for the measures selection from the Measures Pool based
on the guidelines defined by the standards such as ISO 15939 [9] and CMMI [23]. We
incorporated the following criteria in our model:

• Feasibility of collecting data in an organization
• Availability of human resources to collect and manage data
• Extent of intrusion and disruption of staff activities
• Availability of appropriate tools and equipment
• Personal preference
• Ease of interpretation by measurement users and measurement analysts
• Ease of presentation and relevancy to the audience

The criteria serve as a base for measures selection, but these do not tell which of
the available measures should be collected for a specific attribute. For example, if a
measure for software size is required to be collected, all size measures available in the
Measures Pool such as Function Points, SLOC, Bytes, are selected.

2.4 Collecting Data on the Measures with Respect to the Identified Factors

Once the measures are selected based on the basic criteria defined in the previous
section, the factors (Fig. 2) which we identified to be significant in deciding on the
optimum set are considered for further decision.

A number of factors have been suggested to be considered when selecting the
measures such as cost, time, resource requirements, tools, special trainings etc. [24],
[25], [11]. We have selected the most basic ones having significant impact on the
measurement process. These factors are general and can be applied to any process that
involves measurement irrespective of its domain i.e. software process, management
process, manufacturing process etc.

Factors proposed in the OMSD Model are the core of the model and play a key role
in getting important data for selected measures which is vital for deciding on the op-
timum measures set. By means of the survey1, we received industrial feedback on the
identified factors. Survey was conducted in 10 different software organizations from
different countries and which have different maturity levels. Respondents are selected
on the basis of their experience regarding software measurement activities in order to
create better understanding of our defined factors and having reliable feedback from
them.

In this step, for each measure, the relevant data for each factor are to be entered by
the measurement responsible and used in final decision making.

1 For the questionnaire design, see http://sites.google.com/site/omsd09/survey

 A Model for Selecting an Optimum Set of Measures in Software Organizations 49

Factor 1: Collection Time. The collection time for a measure is composed of two
sub-factors which are Duration and Frequency.

Duration describes the time required to collect a measure ‘A’. Frequency describes
how many times that specific measure ‘A’ is needed to be collected. Based on these
data, the cumulative collection time weight (CCTW) is calculated by the following
formula;

 (1)

Factor 2: Cost. The cost of a measure is determined based on the resources required
(both human and non-human). It is comprised of one sub-factor: Utilization. Utiliza-
tion factor is related to two sub-factors which are ‘Resources’ and ‘Expense’. Re-
sources contain the details regarding the number of resources required as well as their
cost as; No of Resources and Resource Cost. Expense involves any other additional
expenses such as the requirements for training, tools, hardware, etc.

Fig. 2. Significant Factors for Measures Selection

We defined three classes of resources with respect to their roles in an organization
as Upper Management Resource (UMR), Middle Management Resource (MMR) and
Resource [Developer, Tester, Analyst] (R). Individual resource cost (IRC) is calcu-
lated by the following formula;

 (2)

50 A.M. Bhatti, H.M. Abdullah, and C. Gencel

Resource cost is used with the cumulative time weight in calculating effort of a particu-
lar measure. It is calculated by adding the cost of different resources involved in it.

 (3)

In these calculations, we assumed that the working hours in a month depend on the
organizational work policy. Currently we assumed that resources work 8 hours daily
and 22 days per month means they work total 176 hours per month.

Factor 3: Value. Value is defined as a measure’s dependency to other measures (di-
rect and derived measures [26]) and its importance in a client organization’s view as
its Dependency and its Importance. This dependency identification is critical for ef-
fectiveness of final decision making. In OMSD, we used only direct measures in order
to make decision process easier. If a derived measure came up we adjust it by calcu-
lating the cost of each base measure and then add them together. For example, cost of
‘Development effort’ measure is calculated by adding cost of measuring ‘number of
persons’ and ‘number of hours’. By means of that, we avoided complexity of depend-
ency between measures. On the other hand, Importance of a measure (it is related to
the priority of the goals identified) depicts the significance of a particular measure in
the view of customer. We have defined four levels of importance which includes
Level 1: Minor, Level 2: Essential, Level 3: Major, Level 4: Critical.

Factor 4: Type. The type of a measure is collected for information purposes only.
The type is defined as associated attributes and Category.

Factor 5: Repetition. Data on this factor is also collected only for information
purposes. It facilitates in decision making later on by identifying the multiple us-
age/repetition of the same measure. In this way, it reduces the probability of redun-
dancy.

Decision Factors: Decision factors include the effort required to collect a particular
measure.

Effort is calculated in terms of person-hours through cumulative collection time
weight and resource cost as;

 (4)

Then, the effort is used to calculate the cumulative cost (CC) for collecting a particu-
lar measure. And it is calculated by the following formula; (see also Factor 2: Cost).

 (5)

2.5 Decision Making

Decision making is the final step in the OMSD model. Decision making is a process
that shows expertise of an individual in selecting one solution out of the possible
alternatives [27]. There are different categories given in the literature [27] that differ-
entiate different decision making problems.

Decision making in OMSD model includes controlled inputs in the form of con-
straints (time and cost limits) and variables as factors such as usage and importance.
This cost limit is used as Constraint cost (Ccost) while executing 7 steps of the
screening process (explained below). So, the problem addressed by OMSD model is

 A Model for Selecting an Optimum Set of Measures in Software Organizations 51

deterministic and decisions are made by constructing rules (7 steps explained below)
in order to solve the defined problem. The Decision Making step consists of Attribute
– Measure Matrix Creation and Screening Process. Main purpose of this step is to
decide on an optimum set of measures from the selected measures. It utilizes the iden-
tified attributes (Step 2 of OMSD) and selected measures (Step 3 of OMSD) for deci-
sion making. Some ground rules are defined which facilitate in the final decision
making.

Attribute – Measure Matrix Creation: This is first step for decision making and
identified attributes and the selected measures are its inputs. It is a two dimensional
matrix that depicts the relation of the measures with their respective attributes (see
Fig. 3 below).

Fig. 3. Attribute – Measure Matrix

First, the dependencies of the measures are identified. The reason for this is that
OMSD in this current form cannot handle dependencies between the base and the
derived measures. Therefore, the model might exclude a particular measure in the
screening process, on which many measures could be dependent. Therefore, first
consider only direct measures in this step and when any derived measure comes up,
instead of using its base measures, we use the derived measure itself.

Attribute – Measure Matrix creation consist of the following steps:

1. Sort measures on the basis of their importance. Highest importance (4-
Critical) measure comes first.

2. If Measure ’X’ is used to measure Attribute ‘Y’, then fill in the respective
cell with ‘1’ otherwise with‘0’ (see Fig. 3 above).

3. Calculate the number of usages of each measure by adding the values in that
column.

4. Add Importance weight and cumulative cost of each measure in the respec-
tive cells.

52 A.M. Bhatti, H.M. Abdullah, and C. Gencel

Screening Process: Screening process is the last step in OMSD Model. It utilizes
attribute – measure matrix and a set of pre-defined decision factors in order to decide
on the optimum set of measures. The defined screening rules are implemented during
the final screening process. These rules are based on a number of factors such as the
Number of usage, Importance and Cost. A heuristics approach is used to make a
tradeoff. After every selection, a comparison is made with the constraints (cost and
time) [16] in order to control the progress. Certain tradeoffs are also needed with
respect to the importance of the measure and the cost for the measure, but these trade-
offs are primarily dependent on the organizational business needs and priorities.

The model selects at least one measure for each attribute because each attribute
represents a particular question. Order of these rules could be changed based on the
organizational requirements. Steps include in screening process are given below:

Step 1: Select Attribute ‘Ai’ Where i = {1,2,3,4…..n}
Step 2: Select each measure ‘mi’ which satisfy attribute ‘Ai’

Ai= {m1, m2, m3…..mn}
Step 3: Calculate the usage Umi of each measure mi

Usage of mi (Umi)=How many time it is used in Attribute-Measure
Matrix.

Step 4: Perform Comparisons on the base of Decision factors.

• Compare the Use of each measure mi with all selected measures
• Compare the Importance of each measure with all selected measures

Importance = weight assigned to Measure mi (Step 4: Factor-Value)
• Compare the Cost of each measure with all selected measures

Cost = Calculated through Step 4 of the Model

Step 5: Measures are selected after step 4. Note that measure selection is
completely dependent on the organizational decision (means which decision
factor is of high importance for organization).
Step 6: Check the selected measure against the pre-defined constraints.
Primary aim of this step is to control the measurement process in order to
make sure that cost of the selected measures remains under the cost limits.
This step is repeated at the end of each iteration during the screening process.
Step 7: Check the following conditions:

• If Cost of selected measure (Cms) is less than Constraint Cost
(Ccost) then continue from step 1

Cms < Ccost (6)

• If Cms > Ccost terminate the process.

Step 6 and 7 are mutually exclusive. Once the selected measure is analyzed against
the defined constraints, decision about continuation or termination of measurement
process is made on the basis of condition in step 7. An optimum measure set is se-
lected after completion of these steps (either termination condition is met or all meas-
ures are gone through).

 A Model for Selecting an Optimum Set of Measures in Software Organizations 53

A Sample Case. In order to evaluate this model, we created a sample case2 and exe-
cuted it to obtain the optimum set of measures for a specified set of goals. Specifi-
cally, 5 goals were defined and 11 questions were identified which would provide the
information required. Each question can be answered by means of a number of meas-
ures associated with it. For this case, we identified 23 suitable measures from the
Measures Pool.

Then, we collected the data for each measure according to the factors defined in
OMSD. Among those measures, we observed that 3 of the measures are to be used for
answering more than one question. Therefore, we had 20 measures for the further
decision making process. After this step, we calculated the effort required to collect
each measure, checked the dependencies of the measures, and at the end calculated
the cumulative cost for each measure by adding any additional expenses if exist. We
performed the same calculations for the all 22 measures.

Next, we created the ‘Attribute-measure matrix’ and then made the decisions using
the screening rules in the OMSD model. In this matrix, cumulative costs for all of the
measures are obtained in the previous step along with the Importance value decided
by the managers according to the importance of each goal. For example, ‘Productiv-
ity’ measure had a cumulative cost 350$ and its importance value is 3. These meas-
ures are then mapped to the relevant attributes. For example, Development effort
measure as well as any product size measure is required to derive the measure for
answering the question related to the productivity attribute. Using the screening rules,
we saw that two size measures can be chosen to derive the measure for the productiv-
ity. Therefore, we first considered all three measures (Development Effort, SLOC,
FP). Then, we checked the ‘No. of usage’ attribute for each measure globally. FP is to
be used more than SLOC, which means that it can be used to satisfy other goals as
well. Here, SLOC and FP are equally important and the cost for measuring FP is
higher. Based on this information, the OMSD model decided to choose FP since it can
be used to answer a couple of questions which reduces the total cost.

After each execution for each measure, there checked the Constraint cost. After se-
lection of each measure, the remaining available budget is re-calculated by deducting
the cost for the selected measure from it. It is important to note that if two measures
have the same ‘No. of usage’ but different importance and cost, then a tradeoff between
importance and cost is made by the measurement responsible(s) and/or managers.

At the end of the whole process, OMSD model decided on 8 measures from suit-
able 23 measures. This is the optimal set of measures as it helps achieving the goals
under the defined constraints and identified factors.

Although we obtained a smaller measures set in this experiment, our main purpose
in this case study was not to show the model’s efficiency but rather to test the appli-
cability and the rules of the model. The model is dependent on the initial measures set
as well as the constraints set by the measurement responsible.

3 Conclusions

Measurement process is one of the critical processes, which leads organizations to-
wards process improvement. Since numbers of measures are available, it is needed to

2 The sample case can be found at: http://sites.google.com/site/omsd09/sample-case

54 A.M. Bhatti, H.M. Abdullah, and C. Gencel

have an approach guiding organizations for selecting an optimum set of measures.
This paper presented a model called “OMSD Model”, a systematic approach for deal-
ing with the challenge of ‘finding an optimum measures set’ out of the possibly large
set of measures.

In a nutshell, this model is developed to address one of the challenges organiza-
tions are facing; the risk for the failure of measurement programs due to improper
time and cost estimates, by minimizing the cost by supporting efficient and effective
measures selection process in organizations. There is little explicit discussion in the
literature about what constitutes a reasonable overhead for a measurement program.
In [6], it is stated that 90% of the practitioners reported to spend less than 3% of their
time on metrics-related work. OMSD model can also help the organizations to collect
such information so that they can also calculate the Return on Investment (ROI) for
initiating such programs.

Even though we evaluated the OMSD model by means of an industrial survey we
made to determine the factors considered in the model and by means of a thorough
experimentation of the rules of the model, in order to show evidences that the model
is valuable for the organizations, industrial case studies should be conducted.

One of the current constraints of the OMSD Model is that high levels of human
interaction are needed to enter the input required by the model such as measures
dependency, time and cost limits. Improvement and automation of this process can
reduce human effort resulting in less time and cost expense.

Other future works related to this study includes measures prioritization based on
the priority of the goals at Step 1 of GQM, developing a Measures pool that will make
initial measures selection easier (Step 3 of OMSD Model), incursion of new factors
based on more industrial surveys, industrial experimentation of the OMSD Model and
its integration with measurement frameworks other than GQM.

Acknowledgements. We would like to thank Johan Holmgren for his support in the
development of the heuristics approach. We also thank the survey respondents for
their feedback on the model.

References

1. Wang, Q., Li, M.: Measuring and improving software process in China. In: International
Symposium on Empirical Software Engineering, p. 10 (2005)

2. Bundschuh, M., Dekkers, C.: The Measurement Compendium: Estimating and Bench-
marking Success with Functional Size Measurement. Springer, Heidelberg (2008)

3. Goethert, W., Hayes, W.: Experiences in Implementing Measurement Programs. Technical
Note, Software Engineering Institute, Carnegie Mellon University, CMU/SEI-2001-TN-
026 (2001)

4. Gopal, A., Krishnan, M.S., Mukhopadhyay, T., Goldenson, D.R.: Measurement Programs
in Software Development: Determinants of Success. IEEE Transactions on Software Engi-
neering 28(9), 863–875 (2002)

5. Hall, T., Fenton, N.: Implementing Effective Software Metrics Programs. IEEE Soft-
ware 14(2), 55–65 (1997)

 A Model for Selecting an Optimum Set of Measures in Software Organizations 55

6. Basili, V.R., Weiss, D.M.: A Methodology for Collecting Valid Software Engineering
Data. IEEE Transactions on Software Engineering SE-10(6), 728–738 (1984)

7. Basili, V.R., Rombach, H.D.: The TAME Project: Towards Improvement-Oriented Soft-
ware Environments. IEEE Transactions on Software Engineering SE-14(6), 758–773
(1988)

8. Park, R.E., Goethert, W.B., Florac, W.A.: Goal-Driven Software Measurement - A Guide-
book. Handbook. Software Engineering Institute, Carnegie Mellon University, CMU/SEI-
96-HB-002 (1996)

9. ISO/IEC 15939 International Standard 1st Edition 2002: Software engineering — Software
measurement process. Reference Number ISO/IEC 15939:2002(E) (2002)

10. Berander, P., Jönsson, P.: A goal question metric based approach for efficient measure-
ment framework definition. In: Proceedings of the 2006 ACM/IEEE international Sympo-
sium on Empirical Software Engineering. ISESE 2006, Rio de Janeiro, Brazil, September
21 - 22, pp. 316–325. ACM, New York (2006)

11. DeMarco, T.: Why does software cost so much? Essay 2: Mad about Measurement, pp.
11–25. Dorset House Publishing, Co., Inc., New York (1995)

12. Rubin, H.A.: The Top 10 Mistakes in IT Measurement. IT Metrics Strategies II(11) (1996),
http://www.cutter.com/benchmark/1996toc.html

13. Lavazza, L., Barresi, G.: Automated support for process-aware definition and execution of
measurement plans. In: 27th international Conference on Software Engineering. ICSE
2005, St. Louis, MO, USA, May 15 - 21, pp. 234–243. ACM, New York (2005)

14. Abdullah, H.M., Bhatti, A.M.: Deciding on Optimum set of Measures in Software Organi-
zations. Master’s Thesis MSE-200901, Blekinge Institute of Technology, Ronneby, Swe-
den. pp. 1–66 (2009)

15. Principles of heuristics optimization,
http://www.mm.helsinki.fi/kurssi/Marv/MSUU14/Heuristic.pdf

16. Rina, D.: Constraint Processing. Morgan Kaufmann, San Francisco (2003)
17. Fenton, N.E., Pfleeger, S.L.: Software Metrics: A Rigorous and Practical Approach, 2nd

edn. Course Technology (1998)
18. ISO/IEC 9126-1 International Standard 1st Edition 2001: Software engineering — Product

quality — Part 1: Quality model. Reference Number ISO/IEC 9126-1:2001(E) (2001)
19. ISO/IEC 9126-2 International Standard 1st Edition 2003: Software engineering — Product

quality — Part 1: Quality model. Referenc Number ISO/IEC 9126-2:2003(E) (2003)
20. ISO/IEC 9126-3 International Standard 1st Edition 2003: Software engineering — Product

quality — Part 1: Quality model. Reference Number ISO/IEC 9126-3:2003(E) (2003)
21. ISO/IEC 9126-4 International Standard 1st Edition 2004: Software engineering — Product

quality — Part 1: Quality model. Reference Number ISO/IEC 9126-4:2004 (E) (2004)
22. ISO/IEC 25000 International Standard 1st Edition 2005: Software engineering — Software

product Quality Requirements and Evaluation (SQuaRE) — Guide to SQuaRE. Reference
Number ISO/IEC 25000:2005(E) (2005)

23. CMMI Product Team: CMMI for Development Version 1.2 (CMMI-Dev, V1.2): Improv-
ing processes for better products. CMU/SEI-2006-TR-008, ESC-TR-2006-008, Software
Engineering Institute, SEI (2000)

24. Lamouchi, O., Cherif, A.R., Lévy, N.: A framework based measurements for evaluating an
IS quality. In: Hinze, A., Kirchberg, M. (eds.) Proceedings of the Fifth on Asia-Pacific
Conference on Conceptual Modelling - Volume 79. Wollongong, NSW, Australia, January
01. Conferences in Research and Practice in Information Technology Series, vol. 325, pp.
39–47. Australian Computer Society, Darlinghurst (2008)

56 A.M. Bhatti, H.M. Abdullah, and C. Gencel

25. Thakkar, D., Hassan, A.E., Hamann, G., Flora, P.: A framework for measurement based
performance modeling. In: Proceedings of the 7th international Workshop on Software and
Performance. WOSP 2008, Princeton, NJ, USA, June 23 - 26, pp. 55–66. ACM, New York
(2008)

26. Kaner, C., Bond, W.P.: Software Engineering Metrics: What Do They Measure and How
Do We Know? In: 10th International Software Metrics Symposium, Metrics (2004),
http://www.kaner.com/pdfs/metrics2004.pdf

27. Murty, K.G.: Optimization Models For Decision Making, Dept. of Industrial & Operations
Engineering, vol. 1. University of Michigan, Ann Arbor (2003),

 http://www.ioe.engin.umich.edu/people/fac/books/murty/
 opti_model/junior-0.pdf

R.V. O’Connor et al. (Eds.): EuroSPI 2009, CCIS 42, pp. 57–68, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Applying a Functional Size Measurement Procedure for
Defect Detection in MDD Environments

Beatriz Marín, Giovanni Giachetti, and Oscar Pastor

Centro de Investigación en Métodos de Producción de Software,
Universidad Politécnica de Valencia,

Camino de Vera s/n, 46022 Valencia, Spain
{bmarin,ggiachetti,opastor}@pros.upv.es

Abstract. Nowadays, is widely accepted that functional size measurement is
essential to manage and control software projects. In order to obtain early indi-
cators for software projects, many functional size measurement procedures have
been developed to measure the functional size of conceptual models. To do this,
the measurement procedures assume that models do not present defects. How-
ever, this is an unreal assumption because, in practice, the conceptual models
can have defects that may affect the implementation of final applications. This
is especially important for software production processes based on MDD tech-
nology, where the conceptual models are key artifacts used as inputs in the
process of code generation. Therefore, this paper presents how a functional size
measurement procedure (which has been developed for the measurement of
conceptual models of a specific MDD environment) can help in the detection of
defects in conceptual models.

Keywords: Conceptual Model, Functional Size, Measurement Procedure,
COSMIC, Model-Driven Development, Defect Detection.

1 Introduction

During the last few years, software production processes have evolved from the solu-
tion space (software product) to the problem space (conceptual models). Models are
abstractions of the reality that help to understand complex problems and their poten-
tial solutions [34]. Thus, Model-Driven Development (MDD) methods have been
emerged to take advantage of the benefits of the use of models, such as a simplified
view of the problem (using concepts that are much less bound to the underlying im-
plementation technology and are much closer to the problem domain); and an easy
way to specify, understand, and maintain the systems.

In a software production process based on MDD technology, the conceptual mod-
els are key artifacts that are used as input in the process of code generation. These
conceptual models must provide a holistic view of all the components of the final
application (including the structure of the system, the behavior, the interaction be-
tween the users and the system, etc.) in order to be able to automatically generate the
final application. To do this, the models (conceptual models) must have enough se-
mantic formalization to specify all the functionality of the final application and also to

58 B. Marín, G. Giachetti, and O. Pastor

avoid different interpretations for the same model. Therefore, it is very important to
be able to evaluate and improve the quality of the conceptual models in order to im-
prove the quality of the software products generated by using MDD technologies.

One important quality issue to be evaluated is the amount of defects that the con-
ceptual models used in MDD environments can have. In many cases, the defect detec-
tion is performed by the MDD compilers, which presents disadvantages such as the
extra complexity included in the compiler, and also the identification of defects with
regard to specific technical platforms (i.e. Java, C#, etc.). To overcome the limitations
of the defect detection procedures embedded in MDD compilers, it is necessary a
defect detection procedure that can be applied directly in the conceptual models. Tak-
ing into account that in terms of the management of software projects: (1) it is widely
accepted that is essential to know the functional size of applications in order to suc-
cessfully apply estimation models, effort models, and budget models [26], and (2) the
measurement of the functional size in conceptual models allows the project leader to
generate indicators in early stages of the development cycle of a software product; we
advocate the use of a measurement procedure to detect defects in early stages of the
software product. Thus, the aim of this work is to present how a functional size meas-
urement procedure that allows the measurement of conceptual models can helps in the
detection of defects that can have the conceptual models used in MDD environments.

The rest of the paper is organized as follows: Section 2 presents a brief background
and a set of relevant related works. Section 3 presents the functional size measure-
ment procedure for the conceptual model of a specific MDD approach that is used to
apply the introduced ideas into practical settings. Section 4 presents how a measure-
ment procedure can be used to identify types of defects of the conceptual models.
Finally, Section 5 presents some conclusions and points out future work.

2 Background and Related Work

The ISO/IEC 14143-1 [11] standard defines functional size as the size of the software
derived by quantifying the functional user requirements. This standard also defines a
Functional Size Measurement (FSM) as the process of measuring the functional size.
In addition, this standard defines a FSM method as the implementation of a FSM that
is defined by a set of rules, which is defined in accordance with the mandatory fea-
tures defined in the ISO/IEC 14143-2 [12].

In order to measure the functional size of software applications, four measurement
methods have been recognized as standards: IFPUG FPA [18], MK II FPA [19],
NESMA FPA [20], and COSMIC FFP [17]. The first three methods are based on the
Function Point Analysis proposal [3]. These FPA-based methods have several limita-
tions for the correct measurement of systems: for instance, they only consider the
functionality of the system that the human user observes, they have units that are hard
to understand; they do not consider the functionality that allows communication be-
tween layers in systems with a layer-based architecture, etc. To overcome the limita-
tions of FPA-based measurement methods, the COSMIC measurement method was
defined as the second generation of functional size measurement methods. COSMIC
uses a mathematical function to aggregate the functional size of the functional proc-
esses specified in the conceptual models and is not limited by maximum values to

 Applying a Functional Size Measurement Procedure 59

measure the size of conceptual models: this helps to better distinguish the size of large
conceptual models.

Currently, there are some approaches that apply COSMIC in order to estimate the
functional size of future software applications from the requirement models, such as
[4]. However, these models do not have enough semantic expressiveness to specify all
the functionality of involved systems. There are other proposals designed to measure
the functional size of conceptual models, which have more functional expressiveness
than requirement models and are used to the automatic generation of final applica-
tions. This is the case of Diab’s proposal [7] and Poels’ proposal [33]. Diab’s pro-
posal presents a measurement procedure to measure real time applications modeled
with the ROOM language [35]. Poels’ proposal presents a measurement procedure to
object-oriented applications of the domain of Management Information Systems
(MIS) that are modeled with an event-based method called MERODE [6]. Other FSM
procedures (based on COSMIC) to measure the functional size of conceptual models
can be found in the survey presented in [25].

Summarizing, none of the proposals of measurement procedures based on COS-
MIC allows an accurately measurement of the functional size of MIS applications
from the related conceptual models. Moreover, none of them take into account the
improvements made to the COSMIC measurement method, for instance, the capabil-
ity to measure the functional size of a piece of software of the application depending
on the functionality that needs other piece of software. The main limitation of the
approaches presented above comes from the lack of expressiveness of the conceptual
models that are involved in the generation of the final application, for instance, the
conceptual models do not allow the specification of presentation aspects. For this
reason, we have selected the OO-Method approach as the reference MDD environ-
ment. The OO-Method approach is an object-oriented method that puts the MDA
technology in practice [31], separating the business logic from the platform technol-
ogy, allowing the automatic generation of final applications by means of well-defined
model transformations [32]. It provides the semantic formalization needed to define
complete and unambiguous conceptual models, allowing the specification of all the
functionality of the final application at conceptual level. This method has been im-
plemented in an industrial tool [4] that allows the automatic generation of fully work-
ing applications. The applications generated can be desktop or web MIS applications
and can be generated in several technologies (for instance, java, C#, visual basic,
etc.). In the next section we present a measurement procedure that is based on this
MDD approach.

3 A FSM Procedure for Conceptual Models of an MDD Approach

OOmCFP (OO-Method COSMIC Function Points) [23] is a measurement procedure
that was developed for measuring the functional size of the applications generated by
the OO-Method MDD environment. The OOmCFP procedure measures the functional
size focusing on the conceptual model of the OO-Method MDD approach, which is
comprised of an object model, a functional model, a dynamic model, and a presenta-
tion model.

60 B. Marín, G. Giachetti, and O. Pastor

The OOmCFP measurement procedure was defined in accordance with the COS-
MIC measurement manual version 3.0 [2]. Given that the OOmCFP procedure was
designed in accordance with COSMIC, a mapping between the concepts used in
COSMIC and the concepts used in the OO-Method conceptual model has been de-
fined [22]. The OOmCFP FSM procedure is structured in the three phases of the
COSMIC method: the strategy phase, the mapping phase, and the measuring phase.

With respect to the strategy phase, the scope of the measurement can be deter-
mined by the functional processes, the layers, or the whole application. Since the OO-
Method applications are generated with a three tier architecture (presentation, logic,
and database), each tier of the architecture is associated with the other tiers in a supe-
rior/subordinate hierarchical dependency. Therefore, the presentation tier can use the
services of the logic tier because the logic tier is beneath the presentation tier in the
hierarchy. In the same way, the logic tier can use the services of the database tier
because the database tier is beneath the logic tier in the hierarchy. Thus, the layers
correspond to the hierarchical tiers of the OO-Method applications: the presentation
tier, the logic tier, and the database tier.

In addition, the OO-Method applications have at least one software component in
each tier of the architecture: the client component, the server component, and the
database component. For this reason, the pieces of software correspond to the soft-
ware components: the client component, the server component, and the database
component. Finally, the users are the human users, the client component, and the
server component of the applications. The users are separated from the pieces of
software by a boundary.

With respect to the mapping phase, the functional processes are groups of func-
tionality that can be directly accessed by the users. These groups of functionality
correspond to the interaction units specified in the menu of the presentation model.
The data groups correspond to the classes of the object model that participate in the
functional processes. The data attributes correspond to the attributes of the classes
identified as data groups.

With regard to the measuring phase, the data movements correspond to the move-
ments of data groups between the users and the functional processes. Each functional
process has two or more data movements. Each data movement moves a single data
group. A data movement can be an Entry (E), an Exit (X), a Read (R), or a Write (W)
data movement. This proposal has 29 rules to identify the data movements that can
occur in the OO-Method applications. Each rule is structured with a concept of the
COSMIC measurement method, a concept of the OO-Method approach, and the car-
dinalities that associate these concepts. The rules for the data movements can be visu-
alized in [22]. These mapping rules detect the data movements (E, X, R, and W) of all
the functionality needed for the correct operation of the generated application, which
must be built by the developer of the application. Finally, this proposal has a set of
rules to obtain the functional size of each functional process of the application, of
each piece of software of the application, and of the whole application.

Therefore, the OOmCFP procedure has been designed to obtain accurate measures
of the applications that are generated from the OO-Method conceptual model. This is
feasible because we have selected a conceptual model that has enough semantic ex-
pressiveness to specify all the functionality of the final application (the conceptual
model of the OO-Method MDD approach). Thus, the measures obtained are accurate

 Applying a Functional Size Measurement Procedure 61

because all the data movements that occur in the final application could be traceable
to the conceptual model. This measurement procedure has been automated, providing
the measurement results in a few minutes and using minimal resources [24]. How-
ever, the OOmCFP measurement procedure assumes that the conceptual model has
high quality, that is, the OOmCFP procedure assumes that the conceptual model is
correct, complete, and without defects. Obviously, this is an unreal assumption be-
cause several times the conceptual models present defects. In the following section we
discuss this issue in order to use the measurement procedure to improve the quality of
the conceptual models.

4 Improving the Quality of Conceptual Models Using a FSM
Procedure

In the literature, there is no consensus for the definition of quality of conceptual mod-
els. There are several proposals that use different terminology to refer to the same
concepts. There are also many proposals that do not even define what they mean by
quality of conceptual models. In order to achieve consensus about the definition of
quality of conceptual models and then improve the quality of these kind of models,
we have adopted the definition proposed by Moody [29]. This definition is based on
the definition of quality of a product or service in the ISO 9000 standard [10]. There-
fore, we understand the quality of a conceptual model to be “The total of features and
characteristics of a conceptual model that bear on its ability to satisfy stated or im-
plied needs”.

To evaluate the quality of software products, the ISO 9126 standard [13] has been
defined. This standard defines a set of characteristics and sub-characteristics that are
oriented to evaluate the quality of software products from three perspectives: the
internal quality of software products [15], the external quality of software products
[14], and the quality in use of software products [16]. However, since the ISO 9126
standard has been illustrated in the evaluation of the quality of final applications, it is
necessary to select the characteristics, sub-characteristics and metrics that can be
applied to the conceptual models in order to evaluate their quality.

In the last few years, several proposals have emerged to evaluate the quality of
conceptual models based on the ISO 9126 standard: for instance, Genero et al., Li and
Henry, Lorenz and Kidd, Bansiya and Davis, Chidamber and Kemerer, etc. A detailed
description of these proposals can be found in [21]. These proposals focus on the
evaluation of the maintainability of conceptual models [21]. In addition, there are also
proposals that attempt to evaluate the usability of software products in the conceptual
models, for instance, Panach et al. [30], and Abrahao et al. [1]. Despite the great
number of proposals that present metrics to evaluate the internal quality of conceptual
models, none of the proposals has performed an analysis of the defect types that can
be identified in conceptual models, and the conceptual constructs that must be meas-
ured in order to achieve quality characteristics in the conceptual model.

Defect detection refers to found anomalies in software products in order to correct
them and, therefore, obtain software products of better quality. The IEEE 1044 stan-
dard classification for software anomalies [9] define an anomaly as any condition that
deviates from expectations based on requirements specifications, design documents,

62 B. Marín, G. Giachetti, and O. Pastor

user documents, standards, etc. or from someone’s perceptions or experiences. This
definition is very broad, so that different persons can found different anomalies in the
same software artifact, and even the anomalies that found one person could be don’t
perceived as anomalies for other person. This situation has caused that many re-
searchers redefine the concepts of error, defect, failure, fault, etc.; and that many
times these concepts have been used indistinctly [8]. In order to avoid the prolifera-
tion of concepts related to the software anomalies, in this paper we analyzes the pro-
posals of defect detection in conceptual models adapting the terminology defined by
Meyer in [27]:

• Error: It is a wrong decision made during the development of a conceptual
model.

• Defect: It is a property of a conceptual model that may cause the model to de-
part from its intended behavior.

• Fault: It is the event of a software system departing from its intended behavior
during one of its executions.

Taking into account that the costs of faults correction increase exponentially over the
development life cycle [29], it is of paramount importance to discover faults as early
as possible, which means detect errors or defects. The next section shows how a
measurement procedure can be used to identify defects in the conceptual models.

4.1 Using the OOmCFP Measurement Procedure to Detect Defects

Since the measurement of the functional size using the OOmCFP approach has defined
rules to perform the mapping between the concepts of COSMIC and OO-Method, and
rules to identify the data movements of the final application in the conceptual model; it
is possible to identify some defects that impede the compilation of the conceptual model
or that cause faults in the generated application.

The main concepts of the models that comprise the OO-Method conceptual model
are well-known because they are the same as those used in the UML diagrams [10].
However, for a better understanding of the defects that can be identified, the OO-
Method models and their conceptual constructs (which are used by OOmCFP) are
briefly described in the following paragraphs.

The object model of the OO-Method approach describes the static part of the sys-
tem. This model allows the specification of classes, attributes, derived attributes,
events, transactions, operations, preconditions, integrity constraints, agents, and rela-
tionships between classes. In this model, the agents are active classes that can access
specific attributes of the classes of the model and that can execute specific services of
the classes of the model.

The functional model of the OO-Method approach allows the specification of the
effects that the execution of an event has over the value of the attributes of the class
that owns the event by means of a valuation formula.

The presentation model allows the specification of the graphical user interface of
an application in an abstract way [28]. To do this, the presentation model has a set of

 Applying a Functional Size Measurement Procedure 63

abstract presentation patterns that are organized hierarchically in three levels: access
structure, interaction units, and auxiliary patterns. The first level allows the specifica-
tion of the system access structure. Based on the menu-like view provided by the first
level, the second level allows the specification of the interaction units of the system.
The interaction units are groups of functionality that allow the users of the application
to interact with the system. Thus, the interaction units of the interaction model repre-
sent entry-points for the application, and they can be:

• A Service Interaction Unit (SIU). This interaction unit represents the interac-
tion between a user of the application and the execution of a system service.

• A Population Interaction Unit (PIU). This interaction unit represents the inter-
action with the system that deals with the presentation of a set of instances of a
class.

• An Instance Interaction Unit (IIU). This interaction unit represents the interac-
tion with an object of the system.

• The three previous elementary interaction units can be composed to build a
Master Detail Interaction Unit (MDIU).

The third level of the presentation model allows the specification of the auxiliary
patterns that characterize lower level details about the behavior of the interaction
units. These auxiliary patterns are: entry, selection list, arguments grouping, masks,
filters, actions, navigations, order criteria, and display set. The display set pattern is
used to specify which attributes of a class or its related classes will be shown to the
user in a PIU or an IIU.

Table 1 lists a set of rules of the OOmCFP measurement procedure that are related
to the mapping between COSMIC and OO-Method, and how these rules help to find
defect in the conceptual models.

Table 1. Mapping Rules of OOmCFP

COSMIC OO-Method Defects
Functional
User

Rule 1: Identify 1 functional user for each agent
in the OO-Method object model.

Defect 1: An object model without a
specification of an agent class.

Functional
Process

Rule 5: Identify 1 functional process for each
interaction unit that can be directly accessed in
the menu of the OO-Method presentation model.

Defect 2: An OO-Method Conceptual
Model without a definition of the
presentation model.
Defect 3: A presentation model without
the specification of one or more
interaction units.

Data Group Rule 6: Identify 1 data group for each class
defined in the OO-Method object model, which
does not participate in an inheritance hierarchy.

Defect 4: An object model without the
specifications of one or more classes.
Defect 5: A class without a name.
Defect 6: Classes with a repeated
name.

Attributes

Rule 9: Identify the set attributes of the classes
defined in the OO-Method object model.

Defect 7: A class without the definition
of one or more attributes.
Defect 8: A class with attributes with
repeated names.

64 B. Marín, G. Giachetti, and O. Pastor

Based on the Conradi el al. proposal [5], we classify the defect types into: Omis-
sion (missing item), Extraneous information (information that should not be in the
model), Incorrect fact (misrepresentation of a fact), Ambiguity (unclear concept), or
Inconsistency (disagreement between representations of a concept). Thus, Defects 1,
2, 3, 4, and 7 correspond to omissions; Defect 5 corresponds to an incorrect fact; and
Defects 6 and 8 correspond to ambiguities.

Table 2 lists a set of rules of the OOmCFP measurement procedure that are related
to the identification of data movements. This table also indicates how the presented
rules help to find defect in the conceptual models.

Table 2. Rules to identify the data movements of OOmCFP

OO-Method
Conceptual
Element

OOmCFP Rules Defects

Rule 10: Identify 1X data movement for the
client piece of software for each display
pattern in the interaction units that
participate in a functional process.

Defect 9: An instance interaction unit
without display pattern.
Defect 10: A population interaction
unit without display pattern.

Rule 11: Identify 1E data movement for the
client piece of software, and 1X and 1R data
movements for the server piece of software
for each different class that contributes with
attributes to the display pattern.

Defect 11: A display pattern without
attributes.

Display Pattern

Rule 13: Identify 1R data movement for the
server piece of software for each different
class that is used in the effect of the
derivation formula of derivate attributes that
appear in the display pattern.

Defect 12: Derived attributes without a
derivation formula.

Filter Pattern Rule 16: Identify 1R data movement for the
server piece of software for each different
class that is used in the filter formula of the
filter patterns of the interaction units that
participate in a functional process.

Defect 13: A filer without a filter
formula.

Rule 20: Identify 1R data movement for the
server piece of software for each different class
that is used in the effect of the valuation
formula of events that participate in the
interaction units contained in a functional
process.

Defect 14: An event of a class of the
object diagram without valuations.

Rule 21: Identify 1W data movement for the
server piece of software for each create
event, destroy event, or event that has
valuations (represented by the class that
contains the service) that participate in the
interaction units contained in a functional
process.

Defect 15: A class without a creation
event.

Service

Rule 22: Identify 1R data movement for the
server piece of software for each different
class that is used in the service formula of
transactions, operations, or global services
that participate in the interaction units
contained in a functional process.

Defect 16: Transactions without a
specification of a sequence of services
(service formula).
Defect 17: Operations without a
specification of a sequence of services
(service formula).
Defect 18: Global services without a
specification of a sequence of services
(service formula).

 Applying a Functional Size Measurement Procedure 65

Table 2. (continued)

Rule 23: Identify 1E data movement and 1X
data movement for the client piece of
software, and 1E data movement for the
server piece of software for the set of
data-valued arguments of the services
(represented by the class that contains the
service) that participate in the interaction
units contained in a functional process.
Rule 24: Identify 1E data movement and 1X
data movement for the client piece of
software, and 1E data movement for the
server piece of software for each different
object-valued argument of the services that
participate in the interaction units contained
in a functional process.

Defect 19: A service without
arguments.
Defect 20: A service with arguments
with repeated names.

Rule 31: Identify 1R data movement for the
server piece of software for each different class
that is used in the precondition formulas of
the services that participate in the interaction
units contained in a functional process.

Defect 21: A precondition without the
specification of the precondition
formula.

Rule 32: Identify 1X data movement for the
client piece of software for all error messages
of the precondition formulas of the services
that participate in the interaction units
contained in a functional process.

Defect 22: A precondition without an
error message.

Rule 34: Identify 1R data movement for the
server piece of software for each different
class that is used in the integrity constraint
formulas of the class that contains each
service that participates in the interaction
units contained in a functional process.

Defect 23: An integrity constraint
without the specification of the integrity
formula.

Rule 35: Identify 1X data movement for the
client piece of software for all error messages
of the integrity constraint formula of the
class that contains each service that participates
in the interaction units contained in a functional
process.

Defect 24: An integrity constraint
without an error message.

The list of defect types presented in Table 2 also have been classified using the

Conradi et al. [5] classification. Thus, Defects 9, 10, 15, 19, 22, and 24 correspond to
omissions; Defects 11, 12, 13, 14, 16, 17, 18, 21, and 23 correspond to an incorrect
fact; and Defect 20 corresponds to an ambiguity. Therefore, we can state that the
OOmCFP measurement procedure helps in the identification of defects types of con-
ceptual models, which are related to omissions, incorrect facts, and ambiguities.

It is important to note that Defects 1, 2, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 16, 17, 18,
19, 21, and 23 allow the definition of measures that contribute to the evaluation of the
sub-characteristic of compliance of the conceptual models (in accordance with the
ISO 9126 standard), because it is possible to determine if the conceptual model is
adhered to the rules and conventions of the model compiler. In the same way, Defects
3, 11, 15, 20, 22, and 24 allow the definition of measures that contribute to the evalua-
tion of the sub-characteristic of analyzability of software products (in accordance with
the ISO 9126 standard), because it is possible to diagnostic the possible faults of the
final application in the conceptual models.

66 B. Marín, G. Giachetti, and O. Pastor

4.2 General Comments

For many years, software industry has applied different techniques for the require-
ment modeling and definition of conceptual models in order to identify and correct
software defects. Otherwise, these defects could propagate to later development
phases, which imply an extra cost to fix them. This situation is also present in the new
software production processes, such as MDD methods. Therefore, it is very important
to use different techniques in order to found defects in the conceptual models, avoid-
ing their propagation to the final application. The use of a unique technique to found
defects does not guarantee that all the defects be found. Thus, it is recommended that
organizations use several verification techniques [36].

Since in MDD approaches the quality of conceptual models has a direct impact in
the quality of generated applications, the use of the OOmCFP measurement procedure
for defects detection provides a new technique to improve the quality of conceptual
models, and hence, the quality of final applications.

The defect types presented in sub-section 4.1 where identified by applying the
OOmCFP FSM procedure to five different case studies of the OO-Method approach,
which correspond to a publishing system, a rent-a-car system, an invoice system, a
camping system, and a photography agency system. These five case studies have been
selected because they (all together) cover all the modeling possibilities of the OO-
Method approach. However, it is important to perform controlled experiments to
compare our results with the results obtained from other subjects in order to complete
the list of defects that can be identified using the OOmCFP measurement procedure.

In addition, the OOmCFP measurement procedure has a tool that automates its ap-
plication. Therefore, this tool can be adapted to automatically report the defects that
may have the conceptual models, and, once the model is free of defects, to obtain the
functional size of the final application. This helps to demonstrate that the OOmCFP
measurement procedure is not based on an unreal assumption, and that it could really
help in the quality improvement of conceptual models used in software projects.

With regard to the generalization of this approach, in spite of the OOmCFP meas-
urement procedure has been developed for a specific MDD environment (called OO-
Method), many of the conceptual constructs used in the conceptual model of this
environment can be found in other object-oriented MDD approaches, specially in
those oriented to the development of management information systems. Thus, the
OOmCFP procedure can be easily generalized to other MDD approaches.

5 Conclusion

In this paper, we have presented the applicability of the COSMIC standard method to
perform the detection of defects of object-oriented conceptual models used in MDD
environments. This identification is obtained through the application of a FSM proce-
dure (called OOmCFP), which allows the measurement of functional size from con-
ceptual models related to an MDD approach called OO-Method. This approach has
been selected because it allows the whole specification of the final application in a
conceptual level, and because it has been successfully applied to industrial software
development.

 Applying a Functional Size Measurement Procedure 67

The application of the OOmCFP measurement procedure to shows how the COS-
MIC specification can be applied in the defects detection is precisely the main contri-
bution of this paper, since this approach can be used for other MDD proposals as
reference to improve the quality of their generated applications.

As future work, we plan to complete the definition of a list of defect types that may
be introduced in object-oriented conceptual models, and the evaluation in use (by
means of empirical studies) of the application of the OOmCFP measurement proce-
dure for the detection of these defects. This also implies the reengineering of the tool
that automates the OOmCFP procedure in order to automate the detection of defects.

Acknowledgments. This work has been developed with the support of MEC under
the project SESAMO TIN2007-62894.

References

1. Abrahao, S., Insfrán, E.: Early Usability Evaluation in Model Driven Architecture Envi-
ronments. In: 6th Conference on Quality Software (QSIC), pp. 287–294 (2006)

2. Abran, A., Desharnais, J., Lesterhuis, A., Londeix, B., Meli, R., Morris, P., Oligny, S.,
O’Neil, M., Rollo, T., Rule, G., Santillo, L., Symons, C., Toivonen, H.: The COSMIC
Functional Size Measurement Method, version 3.0 (2007)

3. Albrecht, A.: Measuring Application Development Productivity. In: IBM Applications
Development Symposium, pp. 83–92 (1979)

4. Condori-Fernández, N.A., Abrah, S., Pastor, O.: Towards a Functional Size Measure for
Object-Oriented Systems from Requirements Specifications. In: 4th IEEE International
Conference on Quality Software (QSIC), pp. 94-101 (2004)

5. Conradi, R., Mohagheghi, P., Arif, T., Hegde, L.C., Bunde, G.A., Pedersen, A.: Object-
Oriented Reading Techniques for Inspection of UML Models – An Industrial Experiment. In:
Cardelli, L. (ed.) ECOOP 2003. LNCS, vol. 2743, pp. 483–501. Springer, Heidelberg (2003)

6. Dedene, G., Snoeck, M.: M.E.R.O.DE.: A Model-driven Entity-Relationship Object-oriented
Development Method. ACM SIGSOFT Software Engineering Notes 19(3), 51–61 (1994)

7. Diab, H., Frappier, M., St-Denis, R.: Formalizing COSMIC-FFP Using ROOM. In:
ACS/IEEE Int. Conf. on Computer Systems and Applications, AICCSA (2001)

8. Fenton, N.E., Neil, M.: A Critique of Software Defect Prediction Models. IEEE Transac-
tions on Software Engineering 25(5), 675–689 (1999)

9. IEEE: IEEE Std 1044-1993 Standard Classification for Software Anomalies (1993)
10. ISO: ISO Standard 9000-2000: Quality Management Systems: Fundamentals and Vocabu-

lary (2000)
11. ISO: ISO/IEC 14143-1 – Information Technology – Software Measurement – Functional

Size Measurement – Part 1: Definition of Concepts (1998)
12. ISO: ISO/IEC 14143-2 – Information Technology – Software Measurement – Functional

Size Measurement – Part 2: Conformity Evaluation of Software Size Measurement Meth-
ods to ISO/IEC 14143-1:1998 (2002)

13. ISO/IEC: ISO/IEC 9126-1, Software Eng. – Product Quality – Part 1: Quality model (2001)
14. ISO/IEC: ISO/IEC 9126-2, Soft. Eng. – Product Quality – Part 2: External metrics (2003)
15. ISO/IEC: ISO/IEC 9126-3, Soft. Eng. – Product Quality – Part 3: Internal metrics (2003)
16. ISO/IEC: ISO/IEC 9126-4, Soft. Eng. – Prod. Qual. – Part 4: Quality-in-Use metrics (2004)
17. ISO/IEC: ISO/IEC 19761, Software Engineering – COSMIC-FFP – A Functional Size

Measurement Method (2003)

68 B. Marín, G. Giachetti, and O. Pastor

18. ISO/IEC: ISO/IEC 20926, Software Engineering – IFPUG 4.1 Unadjusted Functional Size
Measurement Method – Counting Practices Manual (2003)

19. ISO/IEC: ISO/IEC 20968, Software Engineering – Mk II Function Point Analysis – Count-
ing Practices Manual (2002)

20. ISO/IEC: ISO/IEC 24570, Software Engineering – NESMA Functional Size Measurement
Method version 2.1 – Definitions and Counting Guidelines for the application of Function
Point Analysis (2005)

21. Marín, B., Condori-Fernández, N., Pastor, O.: Calidad en Modelos Conceptuales: Un Análisis
Multidimensional de Modelos Cuantitativos basados en la ISO 9126. In: Revista de Procesos y
Métricas de las Tecnologías de la Información. AEMES, vol. 4, pp. 153–167 (2007)

22. Marín, B., Condori-Fernández, N., Pastor, O.: Design of a Functional Size Measurement
Procedure for a Model-Driven Software Development Method. In: 3rd Workshop on Qual-
ity in Modeling (QiM) of MODELS, pp. 1–15 (2008)

23. Marín, B., Condori-Fernández, N., Pastor, O., Abran, A.: Measuring the Functional Size of
Conceptual Models in an MDA Environment. In: Forum at the CAiSE 2008 Conference,
pp. 33-36 (2008)

24. Marín, B., Giachetti, G., Pastor, O.: Automating the Measurement of Functional Size of
Conceptual Models in an MDA Environment. In: Jedlitschka, A., Salo, O. (eds.) PROFES
2008. LNCS, vol. 5089, pp. 215–229. Springer, Heidelberg (2008)

25. Marín, B., Giachetti, G., Pastor, O.: Measurement of Functional Size in Conceptual Mod-
els: A Survey of Measurement Procedures Based on COSMIC. In: Dumke, R.R., Braun-
garten, R., Büren, G., Abran, A., Cuadrado-Gallego, J.J. (eds.) IWSM 2008. LNCS,
vol. 5338, pp. 170–183. Springer, Heidelberg (2008)

26. Meli, R., Abran, A., Ho Vinh, T., Oligny, S.: On the Applicability of COSMIC-FFP for
Measuring Software Throughout its Life Cycle. In: 11th European Software Control and
Metrics Conference (2000)

27. Meyer, B.: Object Oriented Software Construction (2000)
28. Molina, P.: Especificación de interfaz de usuario: De los requisitos a la generación

automática. Universidad Politécnica de Valencia, Valencia, España (2003)
29. Moody, D.L.: Theoretical and practical issues in evaluating the quality of conceptual models:

current state and future directions. Data & Knowledge Engineering 55(3), 243–276 (2005)
30. Panach, I., Condori-Fernández, N., Valverde, F., Aquino, N., Pastor, O.: Towards an Early

Usability Evaluation for Web Applications. In: Cuadrado-Gallego, J.J., Braungarten, R.,
Dumke, R.R., Abran, A. (eds.) IWSM-Mensura 2007. LNCS, vol. 4895, pp. 32–45.
Springer, Heidelberg (2008)

31. Pastor, O., Gómez, J., Insfrán, E., Pelechano, V.: The OO-Method Approach for Informa-
tion Systems Modelling: From Object-Oriented Conceptual Modeling to Automated Pro-
gramming. Information Systems 26(7), 507–534 (2001)

32. Pastor, O., Molina, J.C.: Model-Driven Architecture in Practice: A Software Production
Environment Based on Conceptual Modeling. Springer, New York (2007)

33. Poels, G.: A Functional Size Measurement Method for Event-Based Object-oriented En-
terprise Models. In: Int. Conf. on Enterprise Inf. Systems (ICEIS), pp. 667–675 (2002)

34. Selic, B.: The Pragmatics of Model-Driven Development. IEEE Software 20(5), 19–25
(2003)

35. Selic, B., Gullekson, G., Ward, P.T.: Real-time Object Oriented Modelling. Wiley, Chich-
ester (1994)

36. Trudel, S., Abran, A.: Improving Quality of Functional Requirements by Measuring Their
Functional Size. In: Dumke, R.R., Braungarten, R., Büren, G., Abran, A., Cuadrado-Gallego,
J.J. (eds.) IWSM 2008. LNCS, vol. 5338, pp. 287–301. Springer, Heidelberg (2008)

R.V. O’Connor et al. (Eds.): EuroSPI 2009, CCIS 42, pp. 69–80, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Sustainable Service Innovation Model: A Standardized
IT Service Management Process Assessment Framework

Béatrix Barafort and Anne Rousseau

Centre de Recherche Public Henri Tudor
29, avenue John F. Kennedy

L-1855 Luxembourg
{beatrix.barafort,anne.rousseau}@tudor.lu

Abstract. This paper presents the Sustainable Service Innovation Framework
that is used in the Public Research Centre Henri Tudor in Luxembourg as a
generic framework supporting innovation, and promoting multi disciplinary
activities It is demonstrated with the Tudor's IT Service Management Process
Assessment (TIPA)'s case: the Tudor's IT Service Management Process As-
sessment, with the value, design, promotion, management and capitalization of
TIPA's services.

Keywords: Process assessment, service innovation, IT service management,
process models, standardization, sustainable service innovation process.

1 Introduction

As confirmed by leading institutions, services play a key role in economies. Repre-
senting more than 70 percent of gross value added in the European countries in
2006 [1], services also account for almost all employment growth in the OECD
(Organization for Economic Cooperation and Development) countries and are the
major contributor to productivity growth [2]. Recent figures for Luxembourg indi-
cate that the service sector accounts for above 85% percent of total value added in
2006, granting Luxembourg with the first place in the European landscape. Within
the service sector, the financial sector, with more than 150 banks populating the
country, is a major component of Gross Domestic Product (GDP) and GDP growth
and is an extensive user and provider of so-called knowledge intensive services.
With increased competition, accelerated changes in markets needs and technology
evolution, organizations have to continuously generate new services and to succeed
in their commercialization [3][4][5]. This innovative capability is also considered as
a vector of competitiveness.

In this service context of Luxembourg, and in the multi-disciplinary approach fea-
turing Services Science, the Public Research Centre Henri Tudor (CRPHT) has de-
veloped a Sustainable Service Innovation Process (S2IP), providing a framework for
services managed in a living lab, and then all facilities for several interacting disci-
plines. This paper firstly presents this service innovation design model called S2IP

70 B. Barafort and A. Rousseau

and secondly illustrates it by the case of a specific Assessment and Improvement
integrated Approach developed by CRPHT. A particular attention is paid on stan-
dardization aspects in Luxembourg and at an international level.

In fact, in 2003, a research project (AIDA, standing for Assessment and Improve-
ment integrated Approach) was defined in order to develop an IT Service Management
(ITSM) framework for assessing ITSM processes. The innovative ideas of the project
were born from many issues in companies where the need for improving ITSM proc-
esses appeared but there was a lack of an objective and repeatable approach for assess-
ing processes and a lack of a very structured improvement path. Moreover, similar
approaches combining the improvement of software development processes and ITSM
ones were missing. In CRPHT, the ISO/IEC 15504 standard has been studied and used
since the mid-nineties for assessing software processes (and using the assessment results
for improvement programmes). From the year 2003, the ISO/IEC 15504 [6] has been
revised as a generic process assessment standard [7]. It was then possible to assess any
kind of process, in any company whatever the activity sector. At the same time the IT
Infrasctructure Library (ITIL®) de facto standard was developing quickly and rising
more and more interest in the Grand Duchy of Luxembourg. Then the combined use of
both standards became a research objective. The AIDA research project aimed at devel-
oping a common approach for IT process assessment and improvement [8][9][10]. From
now on the AIDA research framework has been renamed as TIPA: Tudor's IT service
management Process Assessment. We will now describe our service innovation design
process before to illustrate it by this specific innovation.

2 A Service Innovation Management Model

Based on its practices (mainly action researches, further developed in [11]) the Centre
for IT Innovation (CITI) department of CRPHT has developed and is now using a
global sustainable service innovation process to support the management of innovation
processes: the “Sustainable Service Innovation Process” (S2IP). It is based on a partici-
patory and collaborative innovation approach in order to sustain deep involvement of
the network’s actors in the development of innovation services. Those services are dedi-
cated to businesses (i.e. process-oriented such as e.g. security management services), to
IT-oriented services (such as e.g. tourist information geo-localized mobile access ser-
vices) and to Human Resources IT-related skills (such as e.g. consultancy services in
SME). The overall structure of S2IP is depicted on the figure 1.

Although the figure may suggest that the S2IP is lifecycle oriented, the reality is
that each box corresponds to a process by itself that has to be performed and may be
pursued in parallel with other processes in a non strict sequence. In accordance with
Van de Ven & al (1999) [12], we apprehend innovation in a process perspective as a
non-linear dynamic system, which implies several sense-making activities. Our re-
search on the definition of actors, activities, skills and competences mobilized in the
S2IP is directly contributing to the body of knowledge developed in the new research
domain of Service Science [13].

 Sustainable Service Innovation Model 71

Fig. 1. Sustainable Service Innovation Process

Service value:
• This process covers the activities associated with the identification of an oppor-

tunity for a new service innovation. They cover a study of the technological fea-
sibility of the service (which can require the building of a prototype) as well as a
preliminary identification of the business model associated with the value (both
expressed in terms of tangible financial elements and of intangible assets).

Service design:
• This process is associated with the definition of the service not only in terms of

its business functional objectives but also in terms of all its required qualities.
These activities required to elicit the strategies of the different early-adopters
stakeholders involved in the final acceptance of the service as well as to under-
stand the constraints associated with the environment (like specific regulations
associated with the domain). From this initial elicitation, requirements have to be
formally expressed in terms of properties of the services that can be organized in
terms of a service contract (or a service level agreement).

Service promotion:
• Once early adopters have validated the service contract, we have seen that it is

important to promote the service to other potentially interested parties. This can be
done within an organization through some marketing regarding the socio-
economical sustainability of the service. In a network of organizations or for a sec-
tor, this promotion can also include initiatives regarding the branding of the new

72 B. Barafort and A. Rousseau

service through some label definition and associated certification scheme. Ulti-
mately standardization activities run for example at the national or international
levels (like e.g. ISO) definitively help in a successful promotion of the service.

Service management:
• This is out of the scope of CRPHT's mission to deploy by itself the service with

an organization or within a sector. This is where the market should play its role.
However we define and provide tools that can be used by those that will deploy
the service for checking and measuring the correctness of its implementation. In
particular for each new service we propose metrics associated with the measure-
ment of the quality of the implementation of the services contract.

Service capitalization:
• This is where we collect the feedbacks associated with the measures as well as

from evaluation performed with the services end-users. The analysis of this
feedback will indicate the possible evolution of the service in terms of new re-
quirements, new business model, etc. Thus this will be the beginning of new it-
erations associated with the different processes described above.

With regard to the overview of innovation models, the “Sustainable Service Innova-
tion Process “model can be qualified as a 5th generation model following the historical
perspective of innovation models proposed by Rothwell [14] (see Bernacconi & al.
2008 [15]). Indeed, it stresses the continuous, iterative and process aspects, which are
typical of this generation.

In addition, it highlights the influence of the intensive networking, including the
cross-functional collaboration within the organization and further emphasizes the
downstream alliances with key beneficiaries and end-users of the generated innova-
tions. In turn, these strong ties with users foster the sustainability of the innovation
and through the capitalization phase, it is the innovation process itself that may be
considered as sustainable, provided that all the capitalization mechanisms are actually
put in place. Finally, this model captures the knowledge-intensiveness characteristic,
which is also a common point with the 5th generation models.

We will now describe a S2IP instance regarding the definition of a service innova-
tion related to an Assessment and Improvement integrated Approach. This illustration
will highlight the strengths and weaknesses of the followed approach and can thus be
helpful to any service innovation definition process.

The applied methodology is based on participant observation in the context of an
action research project, coupled with an “external” view to increase the objectivity of
the interpretation.

3 TIPA's S2IP Instance

After having introduced the S2IP framework this section is presenting its in the
TIPA's context. We can consider here a first iteration where the S2IP framework has
been deployed.

 Sustainable Service Innovation Model 73

Identification of service

Definition of the service
In terms of required qualities

Support to service deployment
and operation

Promotion of the service
through standardization

Collection of best practices
and measures

Selection of IT
Service management

ITIL, ISO/IEC 15504
TIPA process models

Contribution to ISO/IEC 20000

Experimentation & Transfer

Collection of measures
and best practices

Service value

Service design

Service promotion

Service management

Service capitalization

Fig. 2. TIPA's S2IP instance

3.1 Service Value of the TIPAs Framework

In the S2IP framework, the identification of the service value for the potential stake-
holders consists in activities such as the development of a business model related to
the service innovation. The added value service built around our assessment method-
ology under the name TIPA (standing for Tudor's IT Service Management Process
Assessment), was designed as a solution to reduce the cost for assessing ITSM proc-
esses and for companies aiming at improving them. This solution was mainly based
on a methodological framework (process models; assessment methodology and asso-
ciated tools such as questionnaires, templates and case study examples; training
courses for assessors) enabling the assessment of ITSM processes. The ITIL de facto
standard was selected as the input for deriving process models [16] [17], according to
the ISO/IEC 15504 process assessment requirements [6].

At that time, there was no business plan developed for the future use of the TIPA's
framework in a commercial perspective, even if Intellectual Property Rights were
studied for CRPHT, and tackled for ITIL trademark and ISO standards use. Globally
speaking, the identification of the services to be provided by the TIPA's framework
was weak.

3.2 Service Design of the TIPAs Framework

Before the AIDA R&D Project, there were already existing process assessment
models such as ISO/IEC 15504-5 and CMM, and more recently CMMI [18]. But
there were not many initiatives linking assessment purposes and ITSM. So an ITSM

74 B. Barafort and A. Rousseau

Process Reference Model (PRM) and its associated Process Assessment Model
(PAM) [8][9][10] were developed.

ITSM focuses on delivering and supporting IT services that are appropriate to the
organisation’s business requirements, whatever its type or size. ITIL® provides a
comprehensive, consistent and coherent set of best practices for ITSM processes,
promoting a quality approach to achieving business effectiveness and efficiency in the
use of information systems. Developed in the late 1980s, ITIL® has become the
worldwide de facto standard in Service Management.

OGC, the British Office of Government Commerce, defined ten processes for
ITSM in the two well-known ITIL® books “Best Practices for Service Support” and
“Best Practices for Service Delivery” [16][17].

The TIPA® model was inspired by ITIL® best practices, with the goal to enable
objective ITSM capability assessments. The references used to create the PRM and
PAM were the Service Support and Service Delivery books published by OGC. These
inputs are considered as implementation best practices, and can be seen as a Process
Implementation Model (PIM) to start with. The purpose of the PRM was to define, at
a high level of abstraction (i.e. in term of Process purpose and Process outcomes), a
set of processes that can be used as the process dimension for a PAM in the IT Ser-
vice Management area. According to the maturity of the definition of these processes,
the process list of the PRM was directly derived from the Service Support and Service
Delivery ones. The ten processes from Service Support and Service Delivery were
then selected without adding or removing any of them.

Using ITIL® best practices, CRPHT developed a Process Reference Model and a
Process Assessment Model, by using Goal-oriented Requirement Engineering tech-
niques [19]. Several steps were followed to derive the models.

Service Support (SS) Service Support (SS) and and Service Service
Delivery Delivery (SD) (SD) processesprocesses

Process Model
Implementation

(PIM)

Process Reference Model
(PRM)

Process Assessment Model
(PAM)

ITIL'sITIL's best practices & best practices &
Management Management praticespratices

for SS & SDfor SS & SD

ProcessProcess abstraction to abstraction to define define
purpose purpose & & oucomesoucomes

ContinuousContinuous process process
assessmentassessment model : model : processprocess

performance performance and process and process
capability indicatorscapability indicators

Abstraction

Process
performance

indicators

ISO/IEC 15504-2
Capability
Dimension

Service Support (SS) Service Support (SS) and and Service Service
Delivery Delivery (SD) (SD) processesprocesses

Process Model
Implementation

(PIM)

Process Reference Model
(PRM)

Process Assessment Model
(PAM)

ITIL'sITIL's best practices & best practices &
Management Management praticespratices

for SS & SDfor SS & SD

ProcessProcess abstraction to abstraction to define define
purpose purpose & & oucomesoucomes

ContinuousContinuous process process
assessmentassessment model : model : processprocess

performance performance and process and process
capability indicatorscapability indicators

Abstraction

Process
performance

indicators

ISO/IEC 15504-2
Capability
Dimension

Fig. 3. Deriving the IT Service Management Process models

If we consider the TIPAs framework from the S2IP's perspective, the "Service De-
sign" Process has been tackled in this section on its particular functional features, with
a special attention paid on inputs standards. Non-functional ones were neglected. The
definition of the TIPA's services in terms of required qualities were just tackling the

 Sustainable Service Innovation Model 75

methodological aspects, without using ITIL® principles themselves for featuring the
TIPAS's services, in terms of Service Level Agreements for instance. Nevertheless,
there were early adopters of the models through experimentations that contributed to
validate the models.

3.3 Service Promotion of the TIPAs Framework

The main component of the TIPA's framework is the set composed of the TIPA's
Process Reference Model and Process Assessment Model. These models were build
in meeting ISO/IEC 15504 requirements, and were similar as exemplar ones in ISO
standards (i.e. the ISO/IEC 12207 PRM [20] and ISO/IEC 15504-5 [21] which is the
PAM based on the ISO/IEC 12207 PRM).

The British Standardization Institute drove in the International standardization Or-
ganization (ISO) the publication of the ISO/IEC 20000 IT Service Management stan-
dard [22][23]. It is aiming at certifying a service provider with a management system
for IT Service Management Processes. The ISO/IEC 20000-1 [22] standard, titled
“Specification” promotes the adoption of an integrated process approach to effec-
tively deliver managed services to meet the business and customer requirements. On
the other hand, ISO/IEC 20000-2 [23], named “Code of practice” provides guidance
and recommendations.

From 2005 up to now, Luxembourg played a critical part in ISO international
meetings by letting people know how advanced Luxembourg's works were. The In-
ternational standardization community recognized the benefits of using complemen-
tary approaches between audits and Process Assessment [24][25]. TIPAS's works
were presented in international meetings, but because ITIL trademark use was not
resolved between in 2006, TIPA's PRM and PAM were not ceased to ISO working
groups, but it was definitely a fundamental promotion of the TIPA's services.

3.4 Service Management of the TIPAs Framework

As mentioned in the generic description of the S2IP framework, it is out of the scope
of the CRPHT's mission to deploy a service. But CRPHT has the duty to transfer
R&D results to the market, and then services developed in research projects. So
CRPHT can assist companies to deploy services to be transferred of newly transferred
services.

In the case of TIPA, there were early adopters that experimented the process mod-
els and methods for assessing IT Service Management processes. The way the TIPA
services were transferred can be featured in two processes of the S2IP framework:
service design (first use of TIPA's framework in a company [26][27]) and service
management (TIPA's deployed service in a company, after its transfer). Actually
CPRHT engineers were leading first experimentations with a trained TIPA's assessor,
without experience. For a second experimentation, these TIPA's assessor was coached
by CRPHT experienced assessors but was gaining autonomy. Gradually, TIPA's team
also developed some methodological support tools for easing the assessment running,
such as questionnaires and templates for reporting assessment results. This contributes
to the professionalization of TIPA's services, for a better adoption by the market.

76 B. Barafort and A. Rousseau

3.5 Service Capitalization of the TIPAs Framework

Some feedbacks were collected from the early adopters of the TIPA's framework,
from people but also from our team in order to improve the service design on the
functional aspects.

In order to structure the methodology leading to the construction of a PRM-PAM
and to organize components, a process model has been drafted, aiming at engineering
process models [19]. The purpose of this model is to design and manage an ISO/IEC
15504 compliant process model (validation and traceability) fulfilling the stake-
holders’ requirements and needs, and to provide a knowledge base supporting uses of
the model. This draft Model provides the framework for the overall methodology. By
using a rigorous and systematic approach for developing PRMs and PAMs, it pro-
vides a very structured and trusted basis for process improvement. Then it can be
valuable inputs for combining process modeling and assessment with the help of a
support tool, within an improvement approach contextualized to an organization.

In the context of TIPA, the use of this systematic approach for developing process
models based on ITIL V2 in a first time, and later on ISO/IEC 20000-1 was very
useful and helped to gain structured feedback on the quality of the models. This theo-
retical feedback is completed by companies using the TIPA's framework, and by CRP
Henri Tudor engineers participating in ISO standardization works.

4 Luxembourg Standardization Part

The Luxembourg Institute for Standardization, Accreditation, Security and quality of
products and services [28] (ILNAS - Institut Luxembourgeois de la Normalisation, de
l’Accréditation, de la Sécurité et qualité des produits et services) is under the adminis-
trative supervision of the Minister of economy. The law from May 20th, 2008 was the
basis for the creation of ILNAS and its activities started in June 2008.

For complementarity reasons, efficiency, and transparency and in the context of
administrative simplification, ILNAS gathers several administrative and technical
missions. ILNAS is a network of competences serving competitiveness and consumer
protection.

Before it was encompassed within ILNAS, the Luxembourg National Body did not
play a very active part in Luxembourg's standardization efforts. It is now evolving
with the government strong will to develop digital trust, and determine clear Luxem-
bourg economic advantages in following up some IT standards. Then, in February
2009, Luxembourg became a Permanent member of the Joint Technical Committee 1
covering IT standards.

Moreover, with the support of the Luxembourg government, ILNAS and CPRHT
have joined their forces in a collaborative research project in order to connect innova-
tion, research and standardization, with a twofold focus: IT standardization and finan-
cial sector potential national standard. So this project is aiming at:

− investigating and developing digital trust domains where standards are innova-
tion and competitive vectors at the national level;

− developing a normative knowledge economy;
− supporting and developing (IT) standardization activities in Luxembourg;

 Sustainable Service Innovation Model 77

− investigating the opportunity of creating national standards for the financial sec-
tor;

− federating all the stakeholders of the financial sector in order to develop a stan-
dardization strategy.

This project contributes in the support of standardization in Luxembourg, more par-
ticularly in IT, and the development of a two-way communication and exchanges
between market and National Body (representing economic interests of Luxembourg).
As previously mentioned, special attention is paid by ILNAS on national standard
opportunities.

In a more global perspective, a partnership programme is planned between CRP
Henri Tudor and ILNAS. It will gather several standardization-oriented collaborative
projects, targeting several sectors such as construction, finance, SMEs…

5 Discussion

Considering the TIPA's approach, the S2IP framework has been derived with two
iterations. The second one is currently active, and weaknesses that were issued during
the first one are on the track to be corrected. As an innovation framework, the 5 iden-
tified processes (service value, service design, service promotion, service manage-
ment and service capitalization) were not deployed with the same maturity, depending
on several factors such as the resources and priorities in the Centre.

The Service value of the TIPA's framework had not been identified and prospected
right from the beginning of the TIPA's initiative. Some work has still to be performed,
in order to finalize a business plan for the exploitation of the TIPA's services, and to
determine the exact scope of the proposed services. Some TIPA's focus groups were
organized a few months ago, in order to collect market needs, and align TIPA's ser-
vices to them. Even if this process of the S2IP framework is performed quite late in
the context of the TIPA's framework, it still demonstrates the value of the TIPA ser-
vices, their innovation role and benefits for the market [29]. A certification scheme is
also targeted.

The Service Design was partially performed, because most of the considered as-
pects were "only" functional, with methodological and standardization aspects. The
contracts aspects of the TIPA's framework have to be more investigated and devel-
oped further. TIPA's service level agreements could be derived. But according to the
high interest of IT departments in companies on service providers, new methodologi-
cal developments are considered (ITIL V3 based PRM and PAM development).

About the Service Promotion, if we consider globally the S2IP framework, stan-
dardization activities and roles played highly promoted TIPA's services at national as
well as international level. Thus there is an acknowledgement of CRP Henri Tudor
expertise in the standardization domain for the IT Service Management and Process
Assessment fields, and also for the corresponding innovation and scientific communi-
ties. Having said this, there is a gap still to cover, in order to develop the TIPA's ser-
vice promotion on the market. Then some new activities are already planned and
currently implemented in order to develop a branding, a valorization strategy, some

78 B. Barafort and A. Rousseau

professional partnership for certifications and selling of a TIPA's book describing the
TIPA's methodology and tools.

The Service Management for TIPA's has to be enhanced with an important de-
ployment in terms of number of uses of TIPA's, and a spreading worldwide. There are
also some more R&D works to perform in order to develop measures of the quality of
TIPA's services. As for the TIPA's assessment, a very structured approach could en-
able benchmarking and provide statistics on the TIPA's deployment and quality of
service.

About Service Capitalization, some more analysis is necessary for deriving real
trends from all TIPA's experimentations. An impact analysis is on its way, in order to
demonstrate quantitatively as well as qualitatively the added value and return on in-
vestment of the TIPA's approach.

6 Conclusion

This paper presents the Sustainable Service Innovation Process that is used in CRP
Henri Tudor as a generic framework supporting innovation, and promoting multi
disciplinary activities throughout our research teams. Moreover, the S2IP's framework
can be instantiated to any service line resulting from our research works. This deriva-
tion has been illustrated with the TIPA's framework aiming at proposing IT Service
Management Process Assessment services. There are several instances of the S2IP for
the TIPA's case. We saw that some improvements have to be made for the TIPA's
framework regarding S2IP, which is then used as a tool to see gaps in the innovation
process. In this context of research-action, CRP Henri Tudor gains maturity in the
Service Science with a multi-disciplinary approach, and targets to use the S2IP
framework as a process innovation management governance model. Other services
frameworks have been studied on the same way as the TIPA's one (i.e. in the con-
struction sector, in the financial one [30] and for SMEs). It demonstrates how the
model works, with strengths and weaknesses. This gives us perspectives for improv-
ing innovation approaches, capitalizing and refining the model.

References

[1] Website: http://epp.eurostat.ec.europa.eu/
[2] OCDE. Intellectual Assets and Value Creation – Implications for Corporate Reporting

(2006)
[3] de Brentani, U.: New industrial service development: Scenarios for success and failure.

Journal of Business Research 32(2), 93–103 (1995)
[4] Cooper, R.G., Easingwood, C.J., Edgett, S., Kleinschmidt, E.J., Storey, C.: What distin-

guishes the top performing new products in financial services? Journal of Product Innova-
tion Management 11(4), 281–299 (1994)

[5] Voss, C.A., Johnston, R., Silvestro, R., Fitzgerald, L., Brignall, T.J.: Measurement of in-
novation and design performance in services. Design Management Journal 3, 40–46
(Winter 1992)

[6] ISO, ISO/IEC 15504-2: Information technology - Process assessment - Part 2: Performing
an assessment (2003)

 Sustainable Service Innovation Model 79

[7] Rout, T.P., El Emam, K., Fusani, M., Goldenson, D., Jung, H.-W.: SPICE in retrospect:
Developing a standard for process assessment. Journal of Systems and Software 80(9),
1483–1493 (2007)

[8] Barafort, B., Di Renzo, B., Merlan, O.: Benefits resulting from the combined use of
ISO/IEC 15504 with the Information Technology Infrastructure Library (ITIL). In: Oivo,
M., Komi-Sirviö, S. (eds.) PROFES 2002. LNCS, vol. 2559, pp. 314–325. Springer, Hei-
delberg (2002)

[9] Barafort, B., Di Renzo, B.: Assessment and improvement integrated approach: combined
use of the ISO/IEC 15504 (SPICE) and the Information Technology Infrastructure Li-
brary (ITIL). In: Proceedings of the National Conference SPIRAL 2004, Luxembourg
(2004)

[10] Barafort, B., Di Renzo, B., Lejeune, V., Simon, J.-M.: ITIL Based Service Management
measurement and ISO/IEC 15504 process assessment: a win – win opportunity. In: Pro-
ceedings of the 5th International SPICE Conference on Process Assessment and Im-
provement, Klagenfurt, Austria (2005)

[11] Barlatier, P.-J., Dumont, V., Johannsen, L., Rousseau, A.: The co-conception process of
innovation network management tools:Evidence from the TINIS experience. In: Proceed-
ings of the 24th EGOS Colloquium (2008)

[12] Van de Ven, A.H., Polley, D.E., Garud, R., Venkataraman, S.: The Innovation Journey.
Oxford University Press, Oxford (1999)

[13] Chesbrough, H., Spohrer, J.: A research manifesto for service science. Communications
of the ACM 49(7), 35–40 (2006)

[14] Rothwell, R.: Industrial innovation: success, strategy, trends. In: Dogson, M., Rothwell,
R. (eds.) The Handbook of Industrial Innovation. Edward Elgar, United Kingdom (1994)

[15] Bernacconi, J.C., Mention, A.L., Rousseau, A.: Knowledge-based innovation in a service
economy: An innovation management process governance model in a RTO. In: 1st Sym-
posium ISPIM, Singapore (2008)

[16] IT Infrastructure Library – Service Delivery, The Stationery Office Edition (2001) ISBN
011 3308930

[17] IT Infrastructure Library – Service Support, The Stationery Office Edition (2000) ISBN
011 3308671

[18] CMMI product team “CMMI(for development, Version 1.2: Improving processes for
better products”, Carnegie Mellon, Software Engineering Institute (August 2006)

[19] Rifaut, A.: Goal-Driven Requirements Engineering for supporting the ISO 15504 As-
sessment Process. In: Richardson, I., Abrahamsson, P., Messnarz, R. (eds.) EuroSPI
2005. LNCS, vol. 3792, pp. 151–162. Springer, Heidelberg (2005)

[20] ISO, ISO/IEC 12207: Information technology - Software Life Cycle Processes (2008)
[21] ISO, ISO/IEC 15504-5: Information technology - Software Process Assessment - Part 5:

An exemplar process assessment model (2006)
[22] ISO, ISO/IEC 20000-1: Information technology – Service management – Part 1: Specifi-

cation (2005)
[23] ISO, ISO/IEC 20000-2: Information technology – Service management – Part 2: Code of

practice (2005)
[24] ISO, ISO/IEC JTC1/SC7 3797, NWI Proposal - Information Technology - Service Man-

agement Process Reference Model (2007)
[25] ISO, ISO/IEC JTC1/SC7 3798, NWI Proposal - Information Technology - Process as-

sessment - Part 8: An exemplar process assessment model for IT service management

80 B. Barafort and A. Rousseau

[26] Hilbert, R., Renault, A.: Assessing IT Service Management Processes with AIDA – Ex-
perience Feedback. In: Proceedings of the 14th European Conference for Software Proc-
ess Improvement EuroSPI, Potsdam, Germany (2007)

[27] Barafort, B., Jezek, D., Mäkinen, T., Stolfa, S., Varkoi, T., Vondrak, I.: Modeling and
Assessment in IT Service Process Improvement. In: Proceedings of the 15th European
Conference for Software Process Improvement EuroSPI, Dublin, Ireland (2008)

[28] Website: http://www.ilnas.public.lu/
[29] Marc, S.-J., Anne-Laure, M.: How to evaluate benefits of Tudor’s ITSM Process Assess-

ment. In: Proceedings of the SPICE 2009 Conference, Turku, Finland (2009)
[30] Mention, A.-L., Barafort, B.: An Open Innovation Framework for Services Process Im-

provement and Capability Determination in the Banking and Financial Sector Based on
ISO/IEC 15504. In: Proceedings of the International Conference SPICE 2008, Nurem-
berg, Germany (2008)

R.V. O’Connor et al. (Eds.): EuroSPI 2009, CCIS 42, pp. 81–92, 2009.
© Springer-Verlag Berlin Heidelberg 2009

How Can Agile Practices Minimize Global Software
Development Co-ordination Risks?

Emam Hossain1, Muhammad Ali Babar2, and June Verner3

1 UNSW- NICTA, Australian Technology Park
Sydney, Australia

Emam.Hossain@nicta.com.au
2 Lero, University of Limerick
Castletroy, Limerick, Ireland
malibaba@lero.ie
3 UNSW, Sydney, Australia

June.Verner@gmail.com

Abstract. The distribution of project stakeholders in Global Software Develop-
ment (GSD) projects provides significant risks related to project communication,
coordination and control processes. There is growing interest in applying agile
practices in GSD projects in order to leverage the advantages of both approaches.
In some cases, GSD project managers use agile practices to reduce project distri-
bution challenges. We use an existing coordination framework to identify GSD
coordination problems due to temporal, geographical and socio-cultural distances.
An industry-based case study is used to describe, explore and explain the use of
agile practices to reduce development coordination challenges.

Keywords: Agile, Global Software Development, Coordinating Mechanisms.

1 Introduction

Rapid advances in computer networks, telecommunications and internet technologies
have provided an infrastructure that supports Global Software Development (GSD) as
a new software development paradigm. GSD has gained significant popularity; it is
promoted as a means of reducing time to market, increasing productivity, improving
quality and gaining cost effectiveness and efficiency [1]. Despite the expected bene-
fits of GSD, there are a number of challenges in practice [2]. In particular GSD is
normally characterized by stakeholders with different national and organizational
cultures, located in separate geographic locations and time zones, using information
and communication technologies to collaborate. Such conditions usually result in
major risks in relation to team communication, coordination, control, infrastructure
incompatibility, conflicting expectations, and difficulty in building trust [3]. Thus, a
GSD project manager needs a number of risk mitigation strategies to assist in manag-
ing such a project.

Agile Software Development (ASD) has gained significant popularity because it
promises to handle requirements changes throughout the development life cycle,
promotes extensive collaboration between customers and developers, and supports

82 E. Hossain, M. Ali Babar, and J. Verner

early and frequent delivery of a product [4]. A major reason for the success of agile
methods is the physical collocation of development team members [4]. Some project
managers are however, using agile practices to minimize GSD challenges or risks [5,
9-11], even though researchers note that agile practices are difficult to scale up to
support distributed arrangements [6]. Although project stakeholder distribution cre-
ates challenges to using agile practices, we found some instances of success in the
literature when agile practices were used with distributed teams [7].

However, current research provides limited evidence of the effective use of agile
practices in minimizing risks of GSD processes. To address this research gap, our
research focuses on GSD coordination processes. To understand GSD coordination
difficulties, we use an existing widely known coordination framework called the
Mintzberg Work Coordination Framework [14]. In addition we conduct an industry-
based GSD case study in order to investigate the impact of using agile practices to
reduce coordination risks. The results of this case study are expected to contribute to
the body of knowledge regarding the usefulness of agile practices in minimizing co-
ordination difficulties in GSD projects.

We begin by providing the background to our research and our motivation. Section 3
briefly discusses coordination processes in software development. This section also
presents the Mintzberg framework [14] and provides a summary of GSD risks that may
impact on project coordination processes. We describe our research methodology in
section 4. In section 5 we present results from an industry case study. Section 6 dis-
cusses the limitations of the case study. We conclude with section 7, which discusses
future research.

2 Background and Motivation

In this section, we briefly discuss agile approaches in GSD and summarize the effec-
tiveness of agile practices in reducing GSD risks based on existing research.

2.1 Agile Approaches in GSD

Though both ASD and GSD appear to share several objectives such as reduced delivery
time and cost, and increased quality, there are certain differences that are expected to
pose serious problems in any effort to introduce agile practices in distributed teams. For
example, agile methods emphasize frequent interaction and communication within
collocated teams and pay less attention to upfront detailed design and heavy documenta-
tion [4]. Hence the agile community advocates the importance of close proximity and
relationships between development team members, continuously turning-out working
software, customer-developer collaboration, and quick response to requirements
changes [1]. Such agile method requirements are difficult to satisfy in a geographically
distributed project. Our Systematic Literature Review (SLR), which was concerned with
the use of Scrum in GSD projects, identified a number of risks when using agile prac-
tices [29]. Despite the risks, there is a growing interest in assessing the viability of using
agile practices for GSD projects [7]. Our SLR also identified that GSD project managers
are using several processes to reduce risk factors when using Scrum in GSD [29]. The

How Can Agile Practices Minimize Global Software Development Co-ordination Risks? 83

SLR also identified that the use of agile practices in GSD provides a number of benefits
including increased project communication, improved project management, improved
productivity, increased trust, increased team motivation, increased project visibility,
increased team morale, improved knowledge sharing, and improved customer focus etc
[29].

2.2 Research Context

Communication, coordination, and collaboration processes are at the heart of much
software development [10]. Temporal, geographical and socio-cultural distances can
however, make GSD communication, coordination and control processes difficult
[15] and research is needed to provide strategies to deal with these challenges [3].
Some project managers have attempted to use agile practices to reduce GSD risks that
impact on project communication, coordination and collaboration processes [23].
Xiaohu [5] mentions that the use of agile practices can minimize GSD communication
delays and increase communication quality. Holmstrom et al [3] claim that using agile
practices enhances GSD project communication and, as a consequence, reduces geo-
graphical, temporal and socio-cultural distances. Mak and Krutchen [10] claim that
agile practices improve the efficiency and quality of GSD task coordination by en-
couraging frequent, lightweight informal communication in addition to formal com-
munication. Holmstrom et al [3] note that the main challenge of a GSD project is to
maintain good communication, and that, the careful incorporation of some agile prac-
tices can enhance project communication and reduce GSD risks that impact commu-
nication, coordination and control processes. Despite some discussion of the benefits
of using agile methods in GSD, there is no clear description or understanding of how
the use of agile practices can reduce GSD risks and improve project communication,
coordination or collaboration processes. To address this research challenge, the broad
objective of our research is to explore how the effective use of agile practices can
reduce some GSD challenges and improve project coordination processes.

3 Coordination

Coordination is considered to be a key organizational activity in any software devel-
opment. A traditional co-located software development team usually builds up the
coordination of their different tasks in a number of ways. A highly idealized tradi-
tional co-located development team has a shared view of work processes and coordi-
nation is achieved either because of shared defined processes, or by acquiring a
common set of habits and vocabulary over time [12]. Herbsleb [12] suggests that
through frequent formal and informal interactions, co-located team members have a
clear idea of who has what sort of expertise, and how responsibilities are allocated
throughout the development team. The development team uses informal communication
along with formal instructions throughout the development process. But geographical,
temporal and socio-cultural distances make GSD communication, coordination and
control process difficult and they require more development time than their co-located
development counterpart [13, 15]. Herbsleb et al [13] comment that a distributed

84 E. Hossain, M. Ali Babar, and J. Verner

environment changes the communication context away from an ideal face-to-face
setting to a more complex technology-mediated environment. Therefore, a fundamen-
tal GSD problem is that many of the mechanisms that function to coordinate work in a
co-located setting are absent or disrupted [12].

3.1 Coordination Framework

In this section we discuss a work coordination framework considered to be stable and
flexible enough to describe coordination issues; this is the widely known Mintzberg
work coordination model. Although Mintzberg’s work coordination framework may
not be entirely suitable for investigating the use of agile methods in GSD, we use this
framework for a better understanding of the impact of GSD risks in project coordina-
tion process. Mintzberg [14] argues that there are three basic coordinating mecha-
nisms that describe the fundamental ways in which organizations coordinate their
work. These are:

Mutual adjustment: Mutual adjustment ensures that a software development project
can achieve a suitable degree of coordination by the simple process of informal com-
munication among project stakeholders. For example, work can be coordinated when
two software developers informally discuss a particular task.

Direct supervision: With direct supervision, coordination can be achieved through
one person issuing orders and instructions to several other people whose work is inter-
related. For example, when a team leader tells other team members what is to be
done, one step at a time.

Standardization: Standardization can be categorized as coordination by programme,
where coordination is effected through instructions and plans generated beforehand
[26]. Mintzberg [14] notes that there are four types of standardization: 1) work proc-
esses, 2) output, 3) skills (as well as knowledge) and 4) norms. Work process stan-
dards usually specify how development team members carry out their interrelated
tasks. Standardization of output usually specifies the expected results for various
development tasks. Standardization of skills ensures that the team has a set of skills
that are enough to carry out the development tasks. Standardization of norms, within a
software development project, ensures that everyone functions according to the same
set of organizational beliefs.

3.2 GSD Challenges and Coordinating Mechanisms

To investigate the impact of GSD challenges on different coordinating mechanisms,
we review, from the literature, a number of GSD projects. In Table 1 we summarize
the key risks due to the temporal, geographical and socio-cultural distances while
using the three different coordinating mechanisms, standardization, direct supervision
and mutual adjustment. In this table, for simplicity, we note the problem encountered,
even though project context, for example, size, number of distributed teams, complex-
ity, criticality, and project domain etc., can further exacerbate the problem. In a later
section, we discuss how the use of agile practices can reduce some of the major iden-
tified difficulties.

How Can Agile Practices Minimize Global Software Development Co-ordination Risks? 85

Table 1. Key Risks for using coordinating mechanisms in GSD

 Standardization Direct Supervision Mutual Adjustment
Temporal
Distance

• Management of project
artifacts may be subject
to delays [15]

• Misunderstanding of
different work processes
[16]

• Lack of standardization
of: definitions, common
tools, norms, work
process and practices
[17]

• Reduced synchronous
communication [3, 15]

• Coordination
complexity/breakdown
[11,15- 16]

• Lack of project visibility
[16]

• Reduced overlap
times [11,15]

• Miscommunication,
confusion and
delays [2-3,16,19-20]

• Lack of shared under-
standing, reduced trust
[16, 18]

Geographic
Distance

• Lack of standard
artefacts [17]

• Reduced trust because
of: disparity in work
practices, outputs, skills
and norms [20]

• Conflicts due to a lack
of common coding,
tools, work process and
norms, and development
practice standards [18]

• Difficulty in conveying
vision and strategy [15]

• Management
coordination overhead
[3,11,18]

• Management
dependency on
ICT/tools [15]

• Reduced informal
contact due to
diffculties of face to
face meeting [15]

• Lack of group
awareness [3, 17,19]

• Communication
dependency on ICT
tools [15]

Socio-
cultural
Distance

• Misinterpretations of
different project
standards [9, 12]

• Task conflicts [7]
• Lack of shared

understanding [9]

• Different expectations
regarding leadership
practices [11,20]

• Problems with
management due to
differing frames of
reference [11]

• Problems with project
managers in adapting to
distributed team norms
and work culture [9]

• Misunderstandings,
miscommunication,
confusion and silence
[15]

• Challenges in creating
mutual understanding
[21]

• Reduced trust [22,23]

4 Research Methodology

In this section, we report on the findings of an exploratory industry-based case study
that used agile practices in a globally distributed project. The case study is considered
a robust research method with a range of appropriate data collection approaches when
a holistic in-depth investigation of a social phenomenon in its real life context is re-
quired [24]. To carry out our case study we carefully followed the guidelines sug-
gested in [27]. In this research, we do not provide formal hypothesis testing or draw
any general conclusions as GSD has many forms depending on project contextual
factors (for example: size, collaboration modes, number of distributed sites etc.).
However, in our case study, we consider the research question, “how can the effective
use of agile practices reduce coordination risks in GSD?” Thus the finding of this
single case study is expected to provide some useful insights into the effectiveness of
agile practices to reduce GSD coordination risks.

86 E. Hossain, M. Ali Babar, and J. Verner

Our primary data collection approaches were interviews, detailed inspection and
analysis of project documentation, onsite demonstrations of software and informal
conversations face-to-face and email-based communication with key project staff and
some customers. Instead of interviewing several people for a shorter duration, we
decided to do in-depth interviews with one representative from each side (i.e., project
manager and an actively involved customer). We carried out semi-structured inter-
views; each interview lasted about two hours. We provided the interviewees with a
brief research outline before the interview session. We asked our respondents about
the facts of the matter, as well as gaining their opinions about the events that oc-
curred. We had already inspected the project artefacts, such as documentation, before
the interviews. The documents made available to the research team included system
specifications, project plans, testing scripts and the completed software. Documentary
information was also used to corroborate and augment evidence found from the inter-
views and discussions that focussed in the use of agile practices to reduce coordina-
tion risks. A qualitative content analysis technique was used to extract the agile
practices that reduced coordination risks from the interview data. Data analysis was
done by the key author who coded both interviews, and developed separate codes for
addressing each of the practices that reduce GSD coordination risks. Our data analysis
aim was to identify, describe and make sense of how agile practices were used to
reduce GSD risks that impact coordination processes. To improve the quality of our
interpretation, we reported our initial findings back to both the customer and project
manager. Both then provided feedback that identified any omissions and rectified
misunderstandings in our analysis.

4.1 Project Description

This section describes the case study project. The organization, individuals and prod-
uct developed are referred to by fictitious names in order to maintain the anonymity
of the organizations concerned. “Alpha” is an Australian-based software development
company that develops a range of software products using agile software development
methodologies. For some time the company has had developers in Australia and Ma-
laysia. The project we investigated is “Alpha-Global”. It is a service-based graphical
software engineering tool to be used commercially with external customers and it was
developed by a distributed team. The project was relatively stable as regards to re-
quirements changes although there were a several initial changes due to very complex
graphical requirements.

4.2 Team Description

The project had a team that was distributed to two countries, Australia and Malaysia.
The customer was based in Australia and was actively involved in the development.
The project manager was also based in Sydney. The Sydney part of the team consisted
of two full time developers and one part time test engineer. The Malaysian operation
involved around 25 developers with one local development lead. The number of in-
volved developers in the Malaysian site varied during the course of the project and
usually 3-5 developers were involved throughout the development life cycle. The
engagement of the Malaysian developers varied. They were mostly involved in back

How Can Agile Practices Minimize Global Software Development Co-ordination Risks? 87

end development work, while the Sydney developers implemented the user interfaces.
The Malaysian developers’ work was assigned based on skills and availability, as they
were also involved in several other projects at the same time. All the project team
members had previous distributed project development experience although this pro-
ject was their first experience of using agile approaches in a distributed setting. To
support the agile practices in to globally distributed sites the project manager ensured
a number of tools were available, including communication, collaboration, and project
management and testing tools. Email, Instant Messaging (IM), video conferencing,
phone, VOIP (for example: skype) were commonly used as communication tools.
Project team members also used a project wiki as a collaboration tool for project
members to post their various queries and comments. The project wiki also served as
a key project documentation repository. The project manager also used a tool named
“Jira” as an issue tracker, bug tracker and also as a project management tool.

As the project stakeholders were distributed in Australia and Malaysia, the project
involved geographical, temporal and socio-cultural distances. There is a two hours
time difference (three hours in summer) between Sydney and Malaysia. This ensured
a number of overlap hours between distributed sites. Hence we can argue that the
project had a low temporal distance. Again, Malaysia and Australia are relatively
closely located and there are convenient air links and regular flights between the two
countries. But the flight cost is relatively high and flight time is almost eight hours.
Thus considering ease and travel time, necessity for visas and permits, we can argue
that the project had a moderate geographical distance. To understand the socio-
cultural distances involved in the project we used Hofstede’s [28] definitions of cul-
tural dimensions for Australia and Malaysia to identify national cultural differences.
Hofstede’s study provides an index of power distance, individualism, masculinity, and
uncertainty avoidance. The index range varies from 1-120. Based on this index we
found the power distance and individualism are significantly different in the two
countries and there are also some differences in masculinity and uncertainty avoid-
ance. In addition, the project customer and project manager mentioned the differences
between the Malaysian and Sydney team members in their organizational-national
culture, language, politics, individual motivation, work ethics, religious values etc.
Thus considering Hofstede’s indexes and customer and project manager views, we
can claim that the project involved significant socio-cultural distances.

5 Result

Although the project faced several challenges mainly caused by the project team
member’s distribution, both customer and company considered the project was suc-
cessful. One of the main reasons for this was that the project was delivered on time
and within budget. The project manager used some agile practices in this globally
distributed project. The project manager did not use any agile methodology com-
pletely; rather he used some XP development practices and some Scrum practices for
project management. In the following sections, we will discuss how the use of these
agile practices appears to have helped reduce GSD risks and improved project coordi-
nation processes. We discuss our findings, based on Table 1 which identifies key risks
that impact on the three coordinating mechanisms standardization, direct supervision
and mutual adjustment.

88 E. Hossain, M. Ali Babar, and J. Verner

Standardization: The use of the coordinating mechanism “standardization” is seri-
ously affected by project temporal, geographical and socio-cultural distance. GSD
project temporal distance reduces overlapping work hours and synchronous commu-
nication between distributed teams. Thus, because of temporal distance, project stake-
holders may misunderstand distributed team work processes, norms, practices and
tools [15-17]. Geographical distance may also impact on the management of standard
project artefacts and may reduce trust and commitment. Geographical distance can
also create conflict if different teams have different standards for work processes,
norms, skills and outputs. Socio-cultural distance may also poses challenges by in-
troducing misunderstandings, misinterpretation of the project standards desired by the
project manager, and this may lead to task conflict and lack of shared understanding
among distributed project stakeholders [7, 9-12]. Hence from the literature we con-
clude that maintaining a common standard definition of work process, skills, norms
and outputs is difficult in a GSD project due to geographical, temporal and socio-
cultural distances. However, our case study reveals that some agile practices helped
distributed project stakeholders to maintain a common set of standards throughout the
development. These were:

• The “Sprint planning meeting” which provided close interaction among distrib-
uted project stakeholders that helped to minimize misunderstanding and misinter-
pretations about project standards. The communication tool, video conferencing,
was used in this meeting which lasted for up to two hours.

• “Retrospective meeting” scheduled to assess teamwork in the completed sprints,
helped to maintain a shared understanding of different project standards among
distributed project stakeholders. The customer was actively involved in the retro-
spective meeting sessions with the project management team including the Ma-
laysian based development lead.

• “Coding standards” provided coding rules which were followed at both sites;
this also helped to maintain common standards.

• “Test Driven Development (TDD)” also helped to maintain a shared standard
development view, facilitating a better understanding of what functionality was
required from the client perspective.

• “Refactoring” which restructures the system by removing duplication, improv-
ing communication, simplifying and adding flexibility, provided both teams with
a better understanding of project outputs.

Direct Supervision: The use of the coordinating mechanism “direct supervision” is
also affected by project temporal, geographical and socio-cultural distance. Temporal
distance reduces opportunities for synchronous communication and increases coordi-
nation overhead (for example: a project manager cannot provide urgent instructions)
[3, 11, 15-16]. Geographical distance may also limit frequency of visits to distributed
team sites by the project manager. Thus it may be difficult to convey project vision
and strategy to distributed sites [15]. Geographical distance also creates coordination
overhead and project managers are heavily reliant on different tools for project coor-
dination [3, 11, 15, 18]. Socio-cultural distances may also add some extra challenges
to the direct supervision coordinating mechanism. The differences in work culture

How Can Agile Practices Minimize Global Software Development Co-ordination Risks? 89

may introduce different expectations regarding leadership practices, frames of refer-
ence, different perceptions of authority/hierarchy, and norms etc [9, 11, 20]. Our case
study reveals that some agile practices can help to minimize GSD risks that impact on
the use of the coordinating mechanism “direct supervision”. These were:

• The agile practice “Daily stand up meetings” with participation by distributed
team members through Skype helped to minimize the possibility of coordination
breakdown caused by temporal and geographical distance. In these meetings the
project team members were informed what had been done thus far, and what
needed to be done; any existing problems were also covered in these meetings.
The meetings also helped to minimize some socio-cultural issues such as differ-
ent perceptions of authority/hierarchy, different frames of references etc., and
also conveyed vision and strategy to the project stakeholders as well as the de-
velopment teams.

• “Sprint review meeting” attended by the project stakeholders increased project
visibility and transparency and helped the project manager with more efficient
project supervision.

Mutual Adjustment: Reduced opportunities for synchronous communication due to
temporal distance may also impact on the use of the coordinating mechanism “mutual
adjustment” in GSD projects. Temporal distance may introduce response delay [15],
and as a result, distributed team members may misunderstand and become confused
[2-3, 16, 19-20]. Geographical distance may also limit face-to-face meetings; thus
distributed project stakeholder communication is dependent on tools, and team mem-
bers feel a lack of group awareness or “teamness” [3, 17, 19]. In addition, socio-
cultural distances may create difficulties in information exchange [21] which creates
barriers to building mutual understanding among distributed team members [23]. As a
result, project stakeholders suffer misunderstandings, miscommunication and confu-
sion [15] which ultimately reduces trust and commitment, and increases fear in dis-
tributed team members [23]. Our case study reveals that some agile practices helped
to reduce the challenges of using the coordinating mechanism “mutual adjustment” in
GSD projects. These were:

• The “Daily stand up meetings” with participation by both sites provided the op-
portunity to establish mutual adjustment and build trust and increase “teamness” be-
tween the Sydney and Malaysian team members.

• The “Sprint planning meeting” with participation by all team members reduced
misunderstandings and confusion among project stakeholders through collaboration
and helped to build mutual adjustment.

• The “Sprint review meeting” attended by project stakeholders also helped to in-
crease project communication and build relationships.

• “Retrospective meeting” scheduled to assess the teamwork in completed sprints
also helped to build mutual understanding among project stakeholders including the
business user.

• “Code Refactoring” restructured the system by removing duplication, and facili-
tated improved communication and better understanding among distributed team
members by providing communication through the coding environment.

90 E. Hossain, M. Ali Babar, and J. Verner

6 Case Study Limitations

The design of this case study is based upon the four criteria for judging the quality of
research design recommended by Yin [24]. Construct validity, which involves establish-
ing correct operational measures for the concepts being studied, was not a limitation in
our study. We developed a sufficient operational set of measures for data collection. As
our case study is exploratory in nature, not explanatory or causal, we need not consider
internal validity. Our study is also not concerned with external validity as our study
findings are not generalized to other GSD projects. Our single case study initiates an
exploration of the use of agile strategies in a GSD project. In this case study, we must
consider reliability; data was collected based on the risks identified in the literature that
impact the coordinating mechanisms, standardization, direct supervision and mutual
adjustment due to project stakeholder distribution. However we cannot exclude bias on
the part of our interviewees who reported what they thought happened. However, we
did use multiple sources of evidence (documentation, discussion, interaction etc) to help
us ensure sufficient reliability.

7 Conclusions and Future Research

Our initial case findings reveal that the use of some agile practices did help to reduce
some GSD risks and improve project coordination processes. In particular we found
that:

• The “Daily stand up meeting” with participation by both the Sydney and Malay-
sian team members helped to minimize some risks that impact on the use of the
coordinating mechanisms direct supervision and mutual adjustment. Project coordi-
nation overhead was minimized as the project manager could discuss with both
teams what had been done, and what needed to be done; existing problems were
also covered. Daily stand up meetings with the aid of various communication tools
ensures a synchronous communication environment and helps to build mutual un-
derstanding among distributed project stakeholders.

• Similarly, the “Sprint planning meetings” and “Retrospective meetings” with
participation by distributed project stakeholders helped to maintain project standards,
and better project coordination; communication among project stakeholders was also
facilitated.

• The practice “Sprint review meeting” attended by team members from both sites
also helped to increase project visibility and helped the project manager to minimize
the challenges impacting on the coordinating mechanisms “direct supervision” and
“mutual adjustment”.

• The practices “Test driven development”, “Coding standards”, and “Refactoring”
also helped to maintain project standards and increased project communication as
these practices usually support communication through the code.

Our research provides only a single case study and we do not expect these findings to
be generalizable to all GSD projects as GSD projects have many forms as noted ear-
lier. A series of case studies can, however, provide insight into the use of agile prac-
tices that can help to reduce GSD risks and improve project co-ordination processes.

How Can Agile Practices Minimize Global Software Development Co-ordination Risks? 91

We plan to carry out a set of case studies that will start to set up a body of knowledge
to help us identify effective agile practices able to assist in minimizing GSD work
coordination challenges. In addition to conducting the case studies, we also plan to
carry out a large scale survey among experienced GSD project managers and practi-
tioners to investigate the effectiveness of agile practices in reducing GSD risks to
project communication, coordination and collaboration processes. Our survey will
mainly focus on the effectiveness of using XP and Scrum practices in reducing GSD
risks. Some important project contextual factors will also be explored to help us un-
derstand the characteristics of GSD projects able to successfully use agile practices.
We expect that the findings from the new case studies and the survey will enable us to
empirically confirm the findings from the literature. While the case studies will pro-
vide more data about the potential impact of agile practices on coordination chal-
lenges in GSD projects.

Acknowledgments. M. Ali Babar’s research is partially supported by Science foun-
dation Ireland under grant number 03/CE2/I303-1. We also acknowledge the contri-
bution of Nils Brede Moe, SINTEF ICT, Norway and Darja Smite, Blekinge Institute
of Technology, Sweden in this paper.

References

1. Herbsleb, J., Moitra, D.: Global Software Development. IEEE Software, 16–20
(March/April 2001)

2. Conchuir, E.O., Holmstrom, H., Agerfalk, P.J., Fitzgerald, B.: Exploring the Assumed
Benefits of Global Software Development. In: 2nd IEEE International Conference on
Global Software Engineering, pp. 159–168. IEEE Press, New York (2006)

3. Holmstrom, H., Fitzgerald, B., Agerfalk, P.J., Conchuir, E.O.: Agile Practices Reduce Dis-
tance in Global Software Development. Information Systems Management, 7–26 (Summer
2006)

4. Abrahamsson, P., Salo, O., Ronkainen, J., Warsta, J.: Agile software development methods
- Review and analysis, VTT Electronics (ed.). VTT Publications (2002)

5. Xiaohu, Y., Bin, X., Zhijun, H., Maddineni, S.R.: Extreme Programming in Global Soft-
ware Development. In: Canadian Conference on Electrical and Computer Engineering, pp.
1845–1848 (2004)

6. Turk, D., France, R., Rumpe, B.: Limitations of Agile Software Processes. In: Extreme
Programming and Agile Methods- XP/Agile Universe, pp. 43–46 (2002)

7. Taylor, P.S., Greer, D., Sage, P., Coleman, G., McDaid, K., Keenan, F.: Do agile GSD ex-
perience reports help the practitioner? In: Global Software Development, pp. 87–93 (2006)

8. Williams, L., Kerbs, W., Layman, L., Anton, A.I., Abrahamsson, P.: Toward a Framework
for Evaluating Extreme Programming. In: 8th International Conference on Empirical As-
sessment in Software Engineering, pp. 11–20 (2004)

9. Agerfalk, P., Fitzgerald, B.: Flexible and Distributed software processes: Old Petunias in
new bowls? Communications of the ACM 49, 41–46 (2006)

10. Mak, D.K.M., Kruchten, P.B.: Task coordination in an agile distributed software develop-
ment environment. In: Canadian Conference on Electrical and Computer Engineering, pp.
1845–1848 (2006)

11. Carmel, E.: Global software teams: collaborating across borders and time zones. Prentice-
Hall, Englewood Cliffs (1999)

92 E. Hossain, M. Ali Babar, and J. Verner

12. Herbsleb, J.D.: Global Software Engineering: The Future of Socio- technical Coordination.
In: International Conference on Future of Software Engineering, pp. 188–298 (2007)

13. Herbsleb, J.D., Mockus, A., Finholt, T.A., Grinter, R.E.: Distance, dependencies, and De-
lay in a Global Collaboration. In: ACM Conference on Computer Supported Cooperative
Work, pp. 319–327 (2000)

14. Mintzberg, H.: Mintzberg on Management: Inside Our Strange World of Organizations.
Free Press, New York (1989)

15. Ågerfalk, P.J., Fitzgerald, B., Holmström, H., Lings, B., Lundell, B., O’Conchuir, E.: A
Framework for Considering Opportunities and Threats in Distributed Software Develop-
ment. In: International Workshop on Distributed Software Development 2005, pp. 47–61
(2005)

16. Šmite, D., Moe, N.B., Torkar, R.: Pitfalls in Remote Team Coordination: Lessons Learned
from a Case Study. In: 9th International Conference on Product Focused Software Process
Improvement, pp. 345–359 (2008)

17. Prikladnicki, R., Audy, J.L.N., Damian, D., Oliveria, T.C.: Distributed Software Develop-
ment: Practices and Challenges in different business strategies of Offshoring and Onsho-
ing. In: 2nd IEEE International Conference on Global Software Engineering, pp. 262–264
(2007)

18. Karolak, D.W.J.: Global software development. Wiley InterScience, Chichester (1998)
19. Damian, D., Zowghi, D.: Requirements Engineering Challenges in Multi-site Software

Development Organizations. Requirements Engineering Journal 8, 149–160 (2003)
20. Carmel, E., Agarwal, R.: Tactical Approaches for Alleviating Distance in Global Software

Development. IEEE Software, 22–29 (March/April 2001)
21. Prikladnicki, R., Audy, J., Evaristo, R.: Distributed Software Development: Toward an

Understanding of the relationship between project team, users and customers. In: 5th Inter-
national Conference on Enterprise Information Systems, pp. 417–423 (2003)

22. Kotlarsky, J., Oshri, I.: Social ties, knowledge sharing and Successful collaboration in
globally distributed system development projects. European Journal of Information Sys-
tems 14, 37–48 (2005)

23. Moe, N.B., Šmite, D.: Understanding a Lack of Trust in Global Software Teams: A Multi-
ple-Case Study. Software Process Improvement and Practice 13(3), 217–231 (2008)

24. Yin, R.K.: Case Study Research. Sage Publications, Thousand Oaks (1994)
25. Geert, H., Gert, H.: Cultures and organizations: software of the mind, Revised and ex-

panded 2nd edn. McGraw-Hill, New York (2005)
26. Groth, L.: Future Organizational Design: The Scope for the IT-based Enterprise. John

Wiley & Sons, New York (1999)
27. Verner, J., Sampson, J., Tosic, V., Bakar, N., Kitchenham, B.: Guidelines for Industrially-

based Multiple Case Studies in Software Engineering. In: 3rd IEEE International Confer-
ence on Research Challenges in Information Science, pp. 347–358 (2009)

28. Geert HofstedeTM Cultural Dimensions, http://www.geert-hofstede.com/
29. Hossain, E., Babar, M.A., Paik, H.: Using Agile Practices in Global Software Develop-

ment: A Systematic Review. UNSW CSE Technical Report, TR 904 (2009)

Mapping CMMI Level 2 to Scrum Practices:
An Experience Report

Jessica Diaz1, Juan Garbajosa1, and Jose A. Calvo-Manzano2

1 Systems & Software Technology Group (SYST), E.U. Informática
2 Dpto. LSIIS, Facultad de Informática,

Technical University of Madrid (UPM), Madrid, Spain
yesica.diaz@upm.es, jgs@eui.upm.es, jacalvo@fi.upm.es

Abstract. CMMI has been adopted advantageously in large companies
for improvements in software quality, budget fulfilling, and customer sat-
isfaction. However SPI strategies based on CMMI-DEV require heavy
software development processes and large investments in terms of cost
and time that medium/small companies do not deal with. The so-called
light software development processes, such as Agile Software Develop-
ment (ASD), deal with these challenges. ASD welcomes changing require-
ments and stresses the importance of adaptive planning, simplicity and
continuous delivery of valuable software by short time-framed iterations.
ASD is becoming convenient in a more and more global, and changing
software market. It would be greatly useful to be able to introduce agile
methods such as Scrum in compliance with CMMI process model. This
paper intends to increase the understanding of the relationship between
ASD and CMMI-DEV reporting empirical results that confirm theoreti-
cal comparisons between ASD practices and CMMI level2.

Keywords: CMMI, Agile Software Development, Scrum.

1 Introduction

A wide range of large organizations rely on the Capability Maturity Model In-
tegration (CMMI) as indicator for organizational maturity and they enforce
that all their processes are a certain capability level of compliance. The rea-
son is that improvements in software quality, budget and milestones fulfilling,
and customer satisfaction usually have been associated with higher levels of
CMMI compliance [1] [2]. These improvements have been reported for example
by Galin et al. [3] who analyzed more than 400 projects during the 1990s about
plan-driven software development methods where continuous CMMI-based SPI
(Software Process Improvement) strategies were applied. However, medium and
small organizations, usually featured by sparse resources, have a lot of difficul-
ties to apply CMMI [4] [5] [6]. Some reported data prove that over 77 percent
of process improvements have taken longer than expected, and over 68 percent
have cost more than expected too [7].

At the same time organizations look for the improvement of their processes
and they must respond continually to changing environments in a global market.

R.V. O’Connor et al. (Eds.): EuroSPI 2009, CCIS 42, pp. 93–104, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

94 J. Diaz, J. Garbajosa, and J.A. Calvo-Manzano

The rapid change increases frustration to the heavyweight plans, specifications,
and other documentation imposed by plan-driven software development with
maturity model compliance criteria [8]. Some authors assert even CMMI is not
applicable to turbulent and volatile business environments [9] concluding that
processes not only must respond to change but embrace it [10].

The competitiveness and evolution of the software market has led software
companies to avoid heavy software development methodologies and to follow
light software development methodologies, which are open for new changes. From
these needs, Agile Software Development (ASD) [11, 12] emerged with the def-
inition of the Agile Manifesto [13]. The Agile Manifesto is a statement of the
principles that underpin agile software development, some of them are continuous
delivery of valuable software, simplicity, on-site customer, and welcome changing
requirements. ASD is mainly based on the improvement of the software develop-
ment productivity, the human relationships of the development team, the tacit
knowledge processes with little ware, adaptive planning, and lightweight. These
values are preserved by introducing the customer as another member of the devel-
opment team and by doing short time-framed software development iterations.
These short iterations allow the checking of partial results of the work product
and the introduction of new changes in a simple way. As a result, software devel-
opment is more effective and adaptable; so agile methodologies have proved its
effectiveness in projects with very changing requirements [14] [15]. ASD is grow-
ing mature for large projects, and this is demonstrated by its increasing put into
practice at the industry [16, 17, 18], even for outsourcing projects [19]. In fact,
the data reported in [16] show that over 69 percent of analyzed organizations
are putting into practice agile practices on their projects.

But, what about CMMI compliant organizations that need to introduce light
software development methods for adapting to turbulent markets? And, what
about agile organizations whose clients require a certain CMMI level of compli-
ance? These issues lead to the challenge for embracing CMMI-based SPI strate-
gies and agile principles, as well as understanding the relationship between both
approaches. This challenge may be addressed through an effort to stretch agile to
fit CMMI analyzing the interrelations, constraints, and adjustments between ag-
ile and CMMI. Comparisons between CMMI and ASD have often been criticized
comparing them like oil and water [20]. However the literature has summarized
that CMMI and agile are compatible [20, 10] because agile methods are devel-
opment process descriptions and CMMI is a reference process model that it is
used for appraisals and improvements [21]. This means, CMMI tells us what to
do, while agile methods tells us how to do it.

The primary purpose of this paper is to increase the understanding of the
relationship between ASD and CMMI-DEV [22]. This paper reports empirical
results that confirm the theoretical comparisons [23, 24, 25, 26, 27] between agile
practices (in particular Scrum method) and three processes related to CMMI ca-
pability level 2. The paper is organized as follows. Section 2 analyzes background
and related work. A mapping between CMMI specific practices and agile prac-
tices is described in section 3. Section 4 presents an internal CMMI appraisal in

Mapping CMMI Level 2 to Scrum Practices 95

a software development process in which agile practices are used. Finally, some
conclusions and future work are presented in section 5.

2 Background

2.1 CMMI Overview: CMMI v1.2

CMMI for Development [22] is a reference model that consists of best practices
that address development and maintenance activities applied to products and
services. CMMI-DEV contains practices that cover project management, process
management, systems engineering, hardware engineering, software engineering,
and other supporting processes used in development and maintenance.

2.2 ASD Overview: Scrum

Agile methodologies provide the infrastructure (i) to evaluate the state of the
product, (ii) to identify new changes in the development process, and (iii) to
incorporate them in the final product by means of continuous integration. There
are different agile methodologies such as Scrum [28] or eXtreme Programming
(XP) [29]. Each one of them defines their own techniques for planning, estimat-
ing, or reviewing, but all of them are based on the same values defined by Agile
Manifesto. Even, some of them share some practices, for example requirements
in agile are captured as User Stories (US) [30]. The US objective is to reduce
the cost of the requirement elicitation and management by means of scenarios
written by customers without techno-syntax versus conventional methodologies
based on formal requirements specification documents. These previous guide-
lines have offered a general vision of agile methodologies but this work has been
focused on the Scrum methodology. Following Scrum is described in detail.

Fig. 1. Scrum Lifecycle

Scrum implements an iterative, incremental life cycle (see Figure 1) which
involves three stakeholders: the Product Owner, the Team, and the ScrumMas-
ter [28]; all together make up the Scrum Team. The Scrum life cycle defines
a pre-game phase at the project beginning; planning, review, and retrospective
meetings in an iterative way; and daily meetings during the whole iteration. The

96 J. Diaz, J. Garbajosa, and J.A. Calvo-Manzano

pre-game phase consists in a light planning process where representative cus-
tomers and members of the Scrum Team capture requirements as US; the result
is the product backlog, a list of known US. Then US are prioritized and divided
into short time-framed iterations called sprints. A sprint is a 2-4 weeks period
of development time. Each sprint has a sprint planning meeting at the sprint
beginning where the Product Owner and Team plan together about what to be
done for the next sprint; the result is the sprint backlog, a list of US and tasks
that must be performed to achieve the sprint goal, i.e., to deliver an increment
valuable functionality of the final product. During the execution of each sprint,
the team meets daily in 15-minute meetings to track the work progress answer-
ing three questions [28]: What have I done since the last Scrum meeting?, What
will I do before the next Scrum meeting?, What prevents me from performing
my work as efficiently as possible?

Anything that prevents a team member from performing his work as efficiently
as possible is an impediment. The ScrumMaster is in charge of ensuring imped-
iments get resolved; for it project adjustments could be necessary. At the end
of the sprint, in the sprint review meeting, the Team asks the Product Owner
whether the goals were met, the Product Owner could change US, add US, etc.
Finally a retrospective meeting is held between the Team and ScrumMaster to
discuss what was well and what could be improved for the next sprint; this is
an estimate and tracking activity to achieve continuous improvement; i.e., ret-
rospective meetings provide feedback to apply needed changes and adjustments
for the next sprint.

2.3 Related Work

Existing literature has summarized that CMMI and agile are compatible [10,20,
31,23,24,25,26,27,32,33,34,35], even that hybrid approaches that combine both
agile methods and methods based on the CMM1 are feasible and necessary [36].

Only few works show how to achieve CMMI levels with agile practices, some of
them are high level, theoretical and difficult to implement in a general full soft-
ware product life cycle, and often do not provide specific details and examples.
Theoretical comparisons between XP and CMM claim that XP does not fulfill
CMM requirements but it may be possible to construct a process that fulfills
CMM level 2 and 3 by adding sound practices to XP [34,23,33]. Vriens suggests
that it is possible to achieve CMM levels 2 process areas using a combination of
XP and Scrum as the base for the software development process [24]. Kähkönen
and Abrahamsson [35] have reported empirical evidences when CMMI is used
for assessing software development processes where XP practices are used. Af-
terward, some works haver assert that CMMI level 5 may be possible [32, 27].
Fritzsche and Keil [25], in turn, state that level 4 or 5 are not feasible under the
current specifications of CMMI and XP, and describe the limitations of CMMI in
an agile environment. Pikkarainen and Mäntyniemi [21] propose an approach for
agile software development assessment and improvement strategies using CMMI;

1 Some studies are related to the previous version of CMMI.

Mapping CMMI Level 2 to Scrum Practices 97

this approach is based on a mapping between CMMI specific goals and agile prac-
tices and supported by empirical evidences. However only two process areas are
supported (Project Planning and Requirements Management) and only from a
CMMI goal (not specific practice). Marcal et. al [26] describe a more detail map-
ping between CMMI Project Management Process Area to Scrum practices but
do not provide empirical evidences.

Unlike these researches, our work tries to increase the detail of previous map-
pings between Scrum and CMMI, and to illustrate this mapping with a case
study providing empirical evidences of the obtained results.

3 Mapping between CMMI Specific Practices and Scrum
Practices

Software requirements elicitation, budgeting, and scheduling are very relevant
process areas in software development. For it Project Planning (PP), Project
Monitoring and Control (PMC) and Requirements Management (REQM) CMMI
process areas were mapped with SCRUM practices.

3.1 Project Planning (PP)

According to CMMI-DEV, the aim of PP is to establish and maintain plans that
define project activities. PP has 3 specific goals (SG) that enclose 14 specific
practices (SP). A detailed description is carried out below:

– SP1.1 Estimate the Scope of the Project. Basically it consists in the identi-
fication of work packages in sufficient detail to specify estimates of project
tasks, roles, responsibilities, and schedule. It is covered by the Scrum pre-
game phase where the product backlog and the sprints are defined; both
items provide the resources for estimate the scope of the project.

– SP1.2 Establish Estimates of Work Product and Task Attributes. Estimate is
carried out in two levels: product level and sprint level. So, Scrum establishes
a first estimation in the pre-game phase and an iterative estimate in the
sprint beginning (planning meeting). Estimates usually are based on size or
complexity attributes. Some agile practices recommend the Planning Poker2

estimation technique; it is based on the consensus of the participants (similar
to Wideband Delphi) for estimating relative size of US. Some units might
include story points [37] or function points.

– SP1.3 Define Project Lifecycle. This specific practice is fully addressed by
Scrum because it defines the lifecycle shown in Figure 1.

– SP1.4 Determine Estimates of Effort and Cost. Again estimation is carried
out in two levels: product level and sprint level. Product estimates are high
level and less accurate and sprint estimates are low level and more accu-
rate than the first ones. Scrum practitioners estimate the US effort in ideal

2 http://www.planningpoker.com/

98 J. Diaz, J. Garbajosa, and J.A. Calvo-Manzano

engineering days based on previous sprints (historical base of sprint back-
logs), previous projects (historical base of product backlogs), capacity for
the forthcoming sprint and the relative US complexity required to deliver
the sprint goal. Burndown and Burnup models [37] facilitating the effort
estimate.

– SP2.1 Establish the Budget and Schedule. During pre-game phase initial
milestones (sprint goals), schedule (sprints), constraints and budget are setup
according to the initial product backlog. Additional milestones or budget
may be assigned to the project in each sprint during its planning. Correc-
tive action criteria are identified during retrospective meeting. The Product
Owner is an outstanding figure to implement these practices in a successful
way.

– SP2.2 Identify Project Risks. In Scrum risks are captured as impediments
(list of impediments). Their identification is not carried out in the initial
plan or in a systematic manner. But this practice is partially satisfied in
an iterative way, during daily meetings, and impediments are revised in
retrospective meeting. The ScrumMaster is the outstanding figure in this
identification process.

– SP2.3 Plan for Data Management. Any data generated by the project is
stored in public folders or white-boards available to everyone [28], but there
is no formal data management plan or procedure to collect this data [26].
Privacy and security are another weaknesses.

– SP2.4 Plan for Project Resources. During pre-game phase the staffing re-
quirements and equipment list are defined. As the result the Scrum Team is
established. During the sprints execution, the ScrumMaster is in charge of
providing new resources it should be necessary.

– SP2.5 Plan for Needed Knowledge and Skills. Knowledge and skills needs
are identified during pre-game phase, however the definition of mechanisms
to provide knowledge and skills not found in the organization are considered
as impediments and resolved during daily and retrospectives meetings.

– SP2.6 Plan Stakeholder Involvement. Scrum defines roles, responsibilities,
and involvement of the stakeholders at the beginning and end or each sprint.
This involvement is monitored by the ScrumMaster who is in charge of as-
suring the fulfilling of Scrum practices by all stakeholders.

– SP2.7 Establish the Project Plan. To start a Scrum project a vision and a
product backlog are the basis for the project plan [28].

– SP3.1 Review Plans That Affect the Project. Plans reviews are carried out
during planning and retrospectives meetings.

– SP3.2 Reconcile Work and Resource Levels. Work reconciliation occurs dur-
ing planning meetings because product backlog is dynamic, so new estima-
tions or schedules are possible.

– SP3.3 Obtain Plan Commitment. The commitment is obtained in an iterative
way during face to face planning meetings in which stakeholders are involved.

Mapping CMMI Level 2 to Scrum Practices 99

3.2 Project Monitoring and Control (PMC)

According to CMMI-DEV, the aim of PMC is to establish and maintain plans
that define project activities. PMC has 2 specific goals (SG) that enclose 10
specific practices (SP). The mapping described in Table 1 was carried out.

3.3 Requirements Management (REQM)

According to CMMI-DEV, the aim of REQM is to manage the requirements of
the projects products. REQM has 1 specific goal (SG) that encloses 5 specific
practices (SP). The mapping described in Table 2 was carried out.

Table 1. Mapping between PMC specific practices and Scrum practices

PMC specific practices Scrum practices
SP1.1 Monitor Project Planning Parameters
SP1.2 Monitor Commitments
SP1.3 Monitor Project Risks Daily and Retrospective meetings
SP1.4 Monitor Data Management Not supported
SP1.5 Monitor Stakeholder Involvement Retrospective meetings
SP1.6 Conduct Progress Reviews Review meetings. Burndown and Burnup graphs
SP1.7 Conduct Milestone Reviews Review meetings
SP2.1 Analyze Issues Daily and Retrospective meetings
SP2.2 Take Corrective Action Review meetings
SP2.3 Manage Corrective Action Retrospective meetings

Table 2. Mapping between REQM specific practices and Scrum practices

REQM specific practices Scrum practices
SP1.1 Obtain an Understanding of Requirements User Stories (US) in an iterative way (sprints)
SP1.2 Obtain Commitment to Requirements Planning meetings. Backlogs
SP1.3 Manage Requirements Changes Planning and Review meetings
SP1.4 Maintain Bidirectional Traceability of
Requirements User Stories (US)
SP1.5 Identify Inconsistencies Between
Project Work and Requirements Pre-game and Planning meetings

4 An Experience Report: An Internal CMMI Appraisal

Once theoretical comparisons between Scrum and CMMI (level 2 for PP, PMC
and REQM) were established, an internal assessment was carried out to con-
firm these hypotheses. An internal assessment against a CMMI reference model
provided evidences about good agile practices, strengths and weaknesses for
achieving a CMMI level 2 in agile contexts.

100 J. Diaz, J. Garbajosa, and J.A. Calvo-Manzano

4.1 Case Study Description

The assessed project consisted in a software evolution of a product called Test
and OPeration Environment (TOPEN) [38]. TOPEN is an acceptance testing
tool built in-house that provides mechanisms for the definition and execution
of operation and test cases through a domain specific language. The product
evolution consisted in adapting TOPEN to test a biogas plant. The product
evolution was developed following Scrum method in 6 sprints and 15 weeks. The
Scrum Team was composed of 8 engineers: a Product Owner, a ScrumMaster,
and a Team of six developers. An internal proxy customer was taken into account
too. The Scrum methodology was applied as it is described following.

During the pre-game phase, US were first captured, together with the proxy
customer, which formed a product backlog. The US were grouped in sprints of
two weeks approximately. A planning meeting was established for every sprint.
During the planning meeting, the sprint ending date is defined and the initial
US are further elaborated together with the Product Owner and the Team in
by means of a planning game. The planning game is technique that guides the
estimating of the US involving all the Scrum Team. However, the developers
found that the US estimations were too optimistic in the first planning games,
which made several deviations during the first sprints. Through sprints devel-
opers learned more about Scrum practices, the needs of the customer and the
product under development. As a consequence, the US estimations became more
precise. After the planning game, the sprint backlog is formed. Product backlog
and sprint backlogs were stored and managed through a tool named Rally3. Rally
is a web based tool for managing user stories, tasks, backlogs, plan, releases, test
cases, and defects.

During the sprint, daily meetings solved small problems in an agile way mak-
ing technical decisions by themselves (self organizing teams). At the end of the
sprint, a progress report was elaborated in the review meeting. The customer
representatives validated the work products (documents, releases, or other arte-
facts), and thus the inconsistencies between their needs, plans and project work
were continuously followed. Changes in the client needs were discussed, and the
product backlog was updated correspondingly. Finally a retrospective meeting
was established at the end of every sprint for analyzing strengths, weaknesses,
problems, and improvements of the methods, the team and the project. The
feedback obtained was applied to the following sprints.

4.2 A CMMI Appraisal Process Approach

Once the empirical case project has been described, the next step is the appraisal
process description. We are selected the appraisal process defined by [21]. It is
characterized by (i) appraisal teams of 3-4 members, (ii) appraisal time of 2-3
weeks, (iii) require considerable resources, (iv) medium intrusiveness, and (v)
medium reliability and validity of the appraisal results.

3 http://www.rallydev.com/

Mapping CMMI Level 2 to Scrum Practices 101

Three participants in the appraisal have scored each subpractice related to
CMMI on a questionnaire; this questionnaire is supported by interviews with
participants and reviews of the project documentation.

4.3 Results

Figure 2 and Figure 3 and Figure 4 show the results of the appraisal for some
PP, PMC and REQM specific goals. Figure 2 shows the results of the appraisal
for PP process area. Subpractices for SG1 are satisfied for this case study where
Scrum method was applied. This process area is a challenge for the team because
this case study was the first contact with Scrum method. However, since planning
is an iterative process repeated at the beginning of the sprints, the team had
the chance to improve the process practices in each sprint. So, the iterative
planning enabled development teams to estimate more accuracy and answer to

Fig. 2. PP - SG1 Establish Estimates

Fig. 3. PMC - SG1 Monitor Project Against Plan

102 J. Diaz, J. Garbajosa, and J.A. Calvo-Manzano

Fig. 4. REQM - SG1 Manage Requirements

changes quickly. As the project progressive, historical data of previous sprints
were collected and used in order to estimate effort and cost.

Figure 3 shows the results of the appraisal for PMC process area. Subpractices
for SG1 are largely satisfied because the Scrum lifecycle defines explicitly times
for monitoring and control through daily, review, and retrospective meetings.
Finally Figure 4 shows the results of the appraisal for REQM process area.
Subpractices for SG1 are largely satisfied. Customers must not specify most of
the requirement at the project beginning, so understanding of requirements is
easier through iterative sprints and requirements change processes are flexible
and largely supported by Scrum method.

5 Conclusions and Further Work

Agile methodologies are associated commonly to informal and lightweight doc-
umentation that do not emphasize process definition or measurement to the
degree that models such as the CMMI do. However the literature has proved
that CMMI model can be applied in a lightweight manner without incurring in
excessive documentation. In particular, this paper has proved that Scrum pro-
cesses can be considered valid under the CMMI paradigm. So, the appraisal has
provided evidences that those process areas related to CMMI-DEV level 2 were
largely covered. These results will be used for learning and selecting practices
for the following agile projects.

The conclusion is that agile methodologies provide many good engineering
practices, and together with CMMI, both approaches can achieve very positive
synergies. Since Scrum method provides criteria to identify a minimum set of
good practices to achieve CMMI capability level 2, small-medium organizations
can take advantage of more flexible and lightweight methods to achieve a certain
CMMI level compliance.

Mapping CMMI Level 2 to Scrum Practices 103

Acknowledgment

The work reported here has been partially sponsored by the OVAL/PM TIC2006-
14840 project, the FLEXI FIT-340005-2007-37 (ITEA2 6022) project and UPM
under their Researcher Training program.

References

1. Herbsleb, J., Carleton, A., Rozum, J., Siegel, J., Zubrow, D.: Benefits of cmm-based
software process improvement: Initial results. Technical report, CMU/SEI-94-TR-
013, Software Engineering Institute (1994)

2. Goldenson, D.R., Gibson, D.L.: Demonstrating the impact and benefits of cmmi:
An update and preliminary results. Technical report, CMU/SEI-2003-SR-009, Soft-
ware Engineering Institute (2003)

3. Galin, D., Avrahami, M.: Are cmm program investments beneficial? analyzing past
studies. IEEE Software 23(6), 81–87 (2006)

4. Paulk, M.: Using the software cmm in small organizations. In: Proc. Joint 16th
Pacific Northwest Software Quality Conf. and 8th Int’l Conf. Software Quality,
Washington, DC, USA, pp. 350–360. IEEE Computer Society, Los Alamitos (1998)

5. Staples, M., Niazi, M., Jeffery, R., Abrahams, A., Byatt, P., Murphy, R.: An ex-
ploratory study of why organizations do not adopt cmmi. Journal of Systems and
Software 80(6), 883–895 (2007)

6. Pino, F.J., Garćıa, F., Piattini, M.: Software process improvement in small and
medium software enterprises: a systematic review. Software Quality Control 16(2),
237–261 (2008)

7. Goldenson, D.R., Herbsleb, J.D.: After the appraisal: A systematic survey of pro-
cess improvement, its benefits, and factors that influence success. Technical report,
CMU/SEI-95-TR-009, Software Engineering Institute (1995)

8. Boehm, B.: A view of 20th and 21st century software engineering. In: ICSE 2006:
Proceedings of the 28th international conference on Software engineering, pp. 12–
29. ACM, New York (2006)

9. Lebsanft, K.: Process improvement in turbulent times – is cmm still an answer?
Product Focused Software Process Improvement, 78–85 (2001)

10. Cohen, D., Lindvall, M., Costa, P.: An introduction to agile methods. Advances in
Computers 62, 2–67 (2004)

11. Cockburn, A.: Agile Software Development: The Cooperative Game, 2nd edn.
Addison-Wesley Professional, Reading (2006)

12. Abrahamsson, P.: Agile software development methods review and analysis. Tech-
nical report, VTT Electronics, 112 (2002)

13. K. Beck et al.: The agile manifesto, www.agilemanifesto.org (accessed, February
2009)

14. Dingsoyr, T., Dyb̊a, T., Abrahamsson, P.: A preliminary roadmap for empirical
research on agile software development. In: AGILE 2008: Proceedings of the Agile
2008, Washington, DC, USA, pp. 83–94. IEEE Computer Society, Los Alamitos
(2008)

15. Dyb̊a, T., Dingsoyr, T.: Empirical studies of agile software development: A sys-
tematic review. Inf. Softw. Technol. 50(9-10), 833–859 (2008)

16. Ambysoft: Agile adoption rate survey (February 2008),
http://www.ambysoft.com/surveys/agileFebruary2008.html

www.agilemanifesto.org
http://www.ambysoft.com/surveys/agileFebruary2008.html

104 J. Diaz, J. Garbajosa, and J.A. Calvo-Manzano

17. Ambler, S.W.: Has agile peaked? let’s look at the numbers (May 2008),
http://www.ddj.com/architect/207600615?pgno=1

18. Flexi research project: Flexi newsletter (February 2008) ISBN 978-951-42-8586-8
19. Fowler, M.: Using an agile software process with offshore development (July 2006),

http://www.martinfowler.com/articles/agileOffshore.html
20. Turner, R., Jain, A.: Agile meets cmmi: Culture clash or common cause? In: Pro-

ceedings of the Second XP Universe and First Agile Universe Conference on Ex-
treme Programming and Agile Methods - XP/Agile Universe 2002, London, UK,
pp. 153–165. Springer, Heidelberg (2002)

21. Pikkarainen, M., Mäntyniemi, A.: An approach for using cmmi in agile software
development assessments: Experiences from three case studies. In: Proceedings of
SPICE 2006 (2006)

22. CMMI Product Team: Cmmi for development, version 1.2. Technical report,
CMU/SEI-2006-TR-008, ESC-TR-2006-008, Software Engineering Institute (2006)

23. Paulk, M.C.: Agile methodologies and process discipline. The Journal of Defence
Software Engineering (October 2002)

24. Vriens, C.: Certifying for cmm level 2 and is09001 with xp@scrum. In: Proceedings
of the Agile Development Conference. ADC 2003, June 2003, pp. 120–124 (2003)

25. Fritzsche, M., Keil, P.: Agile methods and cmmi: Compatibility or conflict? e-
Informatica Software Engineering Journal 1(1) (2007)

26. Marcal, A.S.C., Soares, F.S.F., Belchior, A.D.: Mapping cmmi project management
process areas to scrum practices. In: SEW 2007: Proceedings of the 31st IEEE Soft-
ware Engineering Workshop, Washington, DC, USA, pp. 13–22. IEEE Computer
Society, Los Alamitos (2007)

27. Sutherland, J., Jakobsen, C., Johnson, K.: Scrum and cmmi level 5: The magic
potion for code warriors. In: AGILE 2007, August 2007, pp. 272–278 (2007)

28. Schwaber, K., Beedle, M.: Agile Software Development with Scrum. Prentice-Hall,
Englewood Cliffs (2002)

29. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley,
Reading (1999)

30. Cohen, M.: User Stories Applied for Agile Software Development. The Addison-
Wesley Signature Series (2004)

31. Paulk, M.C.: Extreme programming from a cmm perspective. IEEE Software 18(6),
1–8 (2001)

32. Anderson, D.J.: Stretching agile to fit cmmi level 3 - the story of creating msf for
cmmi R©process improvement at microsoft corporation. In: ADC 2005: Proceedings
of the Agile Development Conference, pp. 193–201. IEEE Computer Society, Los
Alamitos (2005)

33. Glazer, H.: Dispelling the process myth: Having a process does not mean sacrificing
agility or creativity. The Journal of Defence Software Engineering (November 2001)

34. Martinsson, J.: Maturing xp through the cmm. In: Extreme Programming and
Agile Processes in Software Engineering (2003)

35. Kähkönen, T., Abrahamsson, P.: Achieving CMMI level 2 with enhanced extreme
programming approach. In: Bomarius, F., Iida, H. (eds.) PROFES 2004. LNCS,
vol. 3009, pp. 378–392. Springer, Heidelberg (2004)

36. Barry, B.: Get ready for agile methods, with care. Computer 35(1), 64–69 (2002)
37. Buglione, L., Abran, A.: Improving estimations in agile projects: issues and av-

enues. In: Proceedings of the 4th Software Measurement European Forum (SMEF
2007), May 9-11, pp. 265–274 (2007)

38. Magro, B., Garbajosa, J., Perez-Benedi, J.: A software product line definition for
validation environments. In: Software Product Lines Conference, SPLC (2008)

http://www.ddj.com/architect/207600615?pgno=1
http://www.martinfowler.com/articles/agileOffshore.html

R.V. O’Connor et al. (Eds.): EuroSPI 2009, CCIS 42, pp. 105–116, 2009.
© Springer-Verlag Berlin Heidelberg 2009

The QualOSS Process Evaluation:
Initial Experiences with Assessing Open Source Processes

Martín Soto and Marcus Ciolkowski

Fraunhofer Institute for Experimental Software Engineering
Fraunhofer-Platz 1

67663 Kaiserslautern, Germany
{soto,ciolkows}@iese.fraunhofer.de

Abstract. For traditional software development, process maturity models
(CMMI, SPICE) have long been used to assess expected product quality and
project predictability. For the case of OSS, however, these models are generally
perceived as inadequate. In practice, though, many OSS communities are well-
organized, and there is evidence of varying levels of process maturity in OSS
projects. This paper presents work in progress—performed as part of the EU
project QualOSS—on developing a process evaluation framework specifically
aimed at OSS projects. We present a first version of our evaluation procedures,
and discuss some lessons learned during its preliminary application to a small
number of OSS projects.

Keywords: Software process, Open Source Software, OSS, process assessment,
process evaluation, QualOSS, software quality.

1 Introduction

Since the introduction of the Capability Maturity Model (CMM) in the early 1980s,
maturity-oriented process assessment models have become a fundamental tool for
determining the extent to which an organization can deliver software on time and with
an acceptable level of quality. Currently, the most prominent examples of such proc-
ess assessment models are CMMI-DEV (Capability Maturity Model® Integration for
Development [10]) and SPICE (Software Process Improvement and Capability
dEtermination [4]).

The growing popularity of Open Source Software (OSS) constitutes a big chal-
lenge to software process assessment, since, at first sight, maturity-oriented models
appear very difficult to apply to OSS development. On the one hand, they seem to
expect an organizational structure that is not present in most OSS communities, and,
on the other hand, it is a widespread belief that OSS communities operate in an essen-
tially chaotic way, and that, for this reason, no systematic development processes can
be taking place during OSS development. Consequently, most casual observers would
regard traditional maturity models as completely inappropriate for OSS software.

We disagree with this vision. The main assumption underlying process assessment
approaches is that mature processes consistently lead to higher-quality products,

106 M. Soto and M. Ciolkowski

whereas for an organization with immature processes, the capacity to deliver high-
quality products is unreliable and cannot be predicted. There is no reason to believe
that this assumption is not valid for OSS. Concretely, we expect that a higher level of
process maturity will lead to better products and more sustainable communities, and
that successful OSS communities often owe a good portion of their success to the
introduction of sound software processes.

Indeed, many OSS communities have been able to consistently produce software of
adequate quality, making regular releases over the years. There is evidence that this
consistency does not stem from some mysterious property of OSS development that
makes it work against all odds, or from the sheer talent of individual developers, but
that it could be the result of good software development practices being applied and
enforced by OSS communities in a disciplined fashion [7]. For this reason, the EU
project QualOSS—which is generally concerned with the overall quality of OSS
products, as well as with the sustainability of the communities around them—decided
to add a process evaluation framework to its quality model, which is aimed at deter-
mining the ability of an OSS community to consistently deliver adequate products
over time.

In this paper, we describe the first version of this process evaluation framework,
and discuss our preliminary experience with applying it to a small number of OSS
projects. In order to provide some background to the reader, Section 2 briefly de-
scribes the overall quality model defined by the QualOSS project. After a short
discussion of related work in Section 3, Section 4 presents the QualOSS process
evaluation in detail. Our initial experience with the process evaluation is discussed in
Section 5. We close with some general conclusions and a brief discussion of future
work in Section 6.

2 The QualOSS Quality Model

The process evaluation framework we describe in this paper is one component of the
comprehensive quality model developed for the Quality of Open Source Software
(QualOSS) project. Since the process evaluation framework was designed from the
ground up to contribute to the overall QualOSS model, we start by describing it
briefly.

The QualOSS quality model (or, simply, “QualOSS model” for short) is intended
to support the quality evaluation of OSS projects, with a focus on evolvability and
robustness. One central, underlying assumption while defining the model has been
that the quality of a software product is not only related to the product itself (code,
documentation, etc.), but also to the way the product is developed and distributed. For
this reason, and since the development of OSS products is the responsibility of an
open community, the QualOSS model takes both product- and community-related
issues into account on an equal basis, and as comprehensively as possible.

The QualOSS model is composed of three types of interrelated elements: quality
characteristics, metrics, and indicators. Quality characteristics correspond to the con-
crete attributes of a product or community that we consider relevant for evaluation (see
below for an explanation of how these characteristics were chosen). Metrics corre-
spond to concrete aspects we can measure on a product or on its associated community
assets that we expect to be correlated with our targeted quality characteristics. Finally,

 The QualOSS Process Evaluation 107

indicators define how to aggregate and evaluate the measurement values resulting from
applying metrics to a product or community in order to obtain a consolidated value that
can be readily used by decision makers when performing an evaluation.

The quality characteristics in the model are organized in a hierarchy of two levels
that we call characteristics and subcharacteristics for reasons of simplicity. The sub-
characteristics are considered to contribute in one way or another to the main charac-
teristic they belong to. For defining our hierarchy of quality characteristics, we relied
mainly on three sources: (1) related work on OSS quality models, (2) general stan-
dards for software quality, such as ISO 9126 [6], and (3) expert opinion. For the third
source, we conducted interviews among industry stakeholders to derive relevant crite-
ria for the QualOSS model.

Given our emphasis on covering not only OSS products but also the communities
behind them, we have grouped the quality characteristics into two groups: those that
relate to the product, and those that relate to the community. On the product side, the
QualOSS model covers the following top-level quality characteristics:

− Maintainability: The degree to which the software product can be modified. Modi-
fications may include corrections, improvements, or adaptation of the software to
changes in the environment, and in requirements and functional specifications.

− Reliability: The degree to which the software product can maintain a specified
level of performance when used under specified conditions.

− Transferability (Portability): The degree to which the software product can be
transferred from one environment to another.

− Operability: The degree to which the software product can be understood, learned,
used and is attractive to the user, when used under specified conditions.

− Performance: The degree to which the software product provides appropriate per-
formance, relative to the amount of resources used, under stated conditions.

− Functional Suitability: The degree to which the software product provides func-
tions that meet stated and implied needs when the software is used under specified
conditions.

− Security: The ability of system items to protect themselves from accidental or ma-
licious access, use, modification, destruction, or disclosure.

− Compatibility: The ability of two or more systems or components to exchange in-
formation and/or to perform their required functions while sharing the same hard-
ware or software environment.

The community side of the model, in turn, covers the following characteristics:

− Maintenance capacity: The ability of a community to provide the resources neces-
sary for maintaining its product(s) (e.g., implement changes, remove defects, pro-
vide support) over a certain period of time.

− Sustainability: The likelihood that an OSS community remains capable of main-
taining the product or products it develops over an extended period of time.

− Process Maturity: The ability of a developer community to consistently achieve
development-related goals (e.g., quality goals) by following established processes.
Additionally, the level to which the processes followed by a development commu-
nity are able to guarantee that certain desired product characteristics will be present
in the product.

108 M. Soto and M. Ciolkowski

The QualOSS process evaluation framework is aimed at covering the last characteris-
tic mentioned, namely, process maturity. In what follows, we describe this framework
in more detail.

3 Related Work: OSS Assessment

In recent years, Open Source Software has often been used as the target of quantita-
tive analyses of code quality, mostly due to the fact that large code repositories are
available for analysis. Many publications exist on (semi-)automatic analysis of code,
mailing lists, bug tracking, and versioning systems. Contrary to what happens with
code and repository analysis, few publications have addressed OSS processes so far.
A paper by Michlmayr [7] is one notable exception, providing evidence of disciplined
processes in OSS projects and relating it with project success.

As a reaction to the insight that software quality is not restricted to code aspects,
assessment models for OSS projects have emerged whose aim is to support potential
OSS users in making decisions regarding the selection of OSS products. The most
prominent examples are the Qualification and Selection of Open Source Software
(QSOS) model [9], two different models called Open Source Maturity Model
(OSMM)—one from CapGemini [2] and one from Navica [8]—and the Open Busi-
ness Readiness Rating (OpenBRR) model [1]. Although these models take the OSS
product into account (i.e., code, documentation), as well as the community that pro-
duces it, they only have a rudimentary process perspective, if any. For example,
QSOS considers two process criteria: quality assurance processes (with levels none,
informal, supported by tools), and bug/feature request tools (none, standard tools,
active use of tools), which, in our opinion, are far from covering the wide variety of
quality-relevant processes typically observed in OSS development. This lack of cov-
erage for the process perspective constitutes one of our main motivations for propos-
ing the more comprehensive approach discussed here.

4 Towards a Process Maturity Model for OSS

As discussed in the introduction, the idea of assessing an OSS community in order to
determine which good practices it follows, as well as how established these practices are,
is perfectly reasonable. Still, it is true that existing process assessment models cannot
generally be applied directly to OSS, as they include too many elements that are specific
to companies and other conventional development organizations. In this section, we de-
scribe our process evaluation framework, which is directly aimed at OSS development.
This model reuses a number of the ideas present in existing maturity models, but adapts
them in order to make them more directly applicable in an OSS context.

4.1 Maturity Models as a Basis for Open Source Process Assessment

In order to create an assessment model for OSS process maturity, we started by review-
ing existing maturity models with the purpose of extracting, and, where necessary,
adapting some of their elements to the specifics of OSS. Concretely, we used the Capa-
bility Maturity Model for Software Development (CMMI-DEV) as a starting point. Re-
leased in 2006, the current CMMI-DEV model is the latest version in a series of

 The QualOSS Process Evaluation 109

maturity models started in the 1980s by Humphrey's Capability Maturity Model
(CMM). CMMI-DEV covers 22 process areas, ranging from process improvement prac-
tices to specific development practices. Each process area is subdivided into a number
of goals, which, in turn, are structured as sets of practices. Goals and practices are asso-
ciated to process maturity levels (also called capability levels when they are related to a
single process area). In order to be classified at a particular maturity level, an organiza-
tion must have implemented all practices required by that level.

Given how comprehensive CMMI-DEV is, reaching its highest capability levels
represents a serious challenge for any software development organization. Clearly,
OSS communities are not an exception in this respect, and, in addition, the vast ma-
jority of them are not involved in any explicit process improvement efforts. Conse-
quently, most, if not all, OSS communities are still quite far from reaching the levels
of process discipline required by the higher levels of CMMI-DEV.

This last fact notwithstanding, there is evidence of good practices being applied in
an established and disciplined fashion by a variety of OSS communities and with re-
gard to different areas of the software development process. We think that many of
these practices correspond to the spirit, if not directly to the letter, of the practices and
goals specified by CMMI-DEV.

Some examples of such disciplined good practices, observed in prominent OSS
communities, are:

− Version/Configuration Management: Many OSS projects rely on advanced ver-
sioning tools for managing their source code. In most cases, access to such systems
will be carefully regulated, and the processes for creating new versions are well es-
tablished and enforced.

− Release Management: The GNOME Desktop project, as well as the popular
GNU/Linux distribution Ubuntu, both have strict 6-month release cycles that have
been successfully operating for years. The complex coordination process required
for each such cycle is well documented and carefully supervised and enforced by
an established release board.

− Requirements Management: The community behind the Python programming lan-
guage has a well-documented requirements elicitation and management process as
represented by the so-called Python Improvement Proposals (PIPs). Proposals for
language enhancements are presented by community members and thoroughly re-
fined through feedback from the community until they are considered ready for
implementation. The process is conducted in the open and actively enforced by the
community.

Many other similar examples can be found by directly observing the dynamics of OSS
communities. This led us to believe that, despite the inviability of applying a full-
fledged process maturity model to OSS, a process evaluation model for OSS is not
only viable, but potentially very useful in order to gauge the ability of OSS communi-
ties to consistently deliver software of appropriate quality. This belief constitutes the
main motivation for the QualOSS process evaluation framework described here.

4.2 The Generic QualOSS Process Evaluation

In its current form, our Open Source process evaluation framework covers a number
of basic software development tasks (described in more detail in the next subsection).

110 M. Soto and M. Ciolkowski

Each of these tasks is evaluated with respect to five main questions, which constitute
a simplified form of the sort of assessment a standard maturity model would require:

1. Is there a documented process for the task?
2. Is there an established process for the task?
3. If there is an established process, is it executed consistently?
4. If both an established, consistent process, and a documented process could be

found, do they match?
5. Is the process adequate for its intended purpose?

In order to produce assessment results that allow for comparison of a project's per-
formance in different areas, the answers to these questions are encoded in a prede-
fined, normalized form. These basic results, in turn, are used to compute indicators
that are integrated into the QualOSS model, and that, similar to other QualOSS met-
rics, are intended to contribute to an overall view of an OSS project's quality.

In order to address these questions for each of our selected tasks, we have already
defined simple evaluation procedures. In the following, we outline these procedures.

Question 1 is concerned with process documentation. Although process documen-
tation is seldom found under that name for Open Source projects, many projects have
indeed documented procedures for a variety of development tasks. The reasons for
providing documentation are often related with making it easier for external contribu-
tors to perform certain tasks (e.g., submit a problem report or a so-called patch file
with a correction), as well as with making certain tasks more reliable (release proc-
esses are a typical case). Our procedure for finding documentation for a task is based
on searching through the Internet resources made available by a given project for the
relevant information as follows:

1. Check project resources for documentation regarding the task. Perform an Internet
search if necessary. Acceptable documentation are explicit documents (Web/Wiki
pages, archived mail/forum messages) that contain direct instructions about per-
forming the task. In some cases, these are presented as templates, or as a set of ex-
amples.

2. If no explicit documentation was found, check if a tool is being used to support the
task. If this is the case, check if the tool can be used in a self-explanatory manner.
If this is the case, this can be accepted as documentation.

3. If 30 minutes of search do not yield any positive results, stop searching.

The final step confines the evaluation to a time box. This is important because, in fact,
we can never be sure that there is no documentation about a task, only that it could
not be found with reasonable search effort.

The second question is concerned with how established a process is. Notice that
this question is, to a large extent, independent from the first one, because undocu-
mented processes can nonetheless be well established, and documented processes may
not be followed as prescribed. In order to check for established processes, standard
maturity models use the fact that such processes leave a paper trail behind them that
can be used to observe them in a very reliable manner. If such a trail cannot be found,
the odds are very high that the process is not established, e.g., not followed at all, or
not followed in a consistent manner. Strictly speaking, of course, a paper trail cannot
be found for OSS processes, but a data trail is often seen when looking at the diverse
data repositories that belong to a project, such as:

 The QualOSS Process Evaluation 111

− Internetbased tools, if the process is supported by a tool. For example, such proc-
esses as defect reporting and issue management can be analyzed by looking at the
discussions stored in a project's bug/issue tracking system.

− Mailing lists, forums, Wikis, etc, used by community members to collaborate while
performing the process. These repositories are useful, for instance, to track deci-
sion-related processes such as release planning, or to follow the interaction be-
tween developers and testers in preparation for a release.

− Internet-based repositories used to publish the results of a process, such as version-
ing repositories or download servers.

The procedure used to evaluate how established a process is consists of identifying
specific instances of process execution in the potential process trail:

1. Determine the period of time the process has been/was active, by looking at the
dates for the identified instances.

2. Identify instances where the process was successfully completed.
3. Identify instances where the process was not successfully completed/was left un-

finished.
4. Identify currently running instances.
5. Use the identified instances to classify the process (see below).
6. If the number of instances available is large, the analysis can be performed by ran-

domly sampling a smaller number of them.

The outcome of this evaluation should be one of the following four possible results:

1. No established process: no data trail found, or too few instances to be representa-
tive.

2. Dead process: tried at some point, but no evidence of continued use, no instances
currently active.

3. Young/immature process: introduced recently, few actual instances, but instances
appear active.

4. Established process: many successful completed instances, significant number of
active instances.

The third question, which is subordinated to the previous one, refers to the consis-
tency with which a process is executed over time. Clearly, this question can also be
answered by looking at the process trail in order to sample instances of the established
process for consistency. The purpose of this inspection is to look for potential signifi-
cant variations in the way individual instances are executed. The evaluation should
result in one of the following values:

1. Not applicable: no established process.
2. Low consistency: instances vary strongly in the way they are executed.
3. High consistency: relatively few variations between instances.

The fourth question has to do with the degree of coincidence between the documented
process and the process that is actually executed. It is the last question of those con-
cerned with the process maturity in itself, and depends on the previous ones being
answered in a positive way. The evaluation procedure, of course, consists of compar-
ing a representative number of instances of the process with the identified process
documentation. Possible results for this evaluation are:

112 M. Soto and M. Ciolkowski

1. Not applicable: no documented process, no consistent process.
2. Low agreement: low agreement between documentation and established practice.
3. High agreement: high agreement between documentation and established practice.

The fifth and final question is concerned with how adequate the process is for the task it
is intended for. This is, of course, a difficult question, not only because it is specific to
each particular task, but because experts often disagree regarding the practices that are
appropriate for a certain task. Our approach to handling this problem is to provide a list
of additional questions that address the specificities of every task. These questions are
normally not comprehensive, but provide a minimum checklist that helps to make sure
that essential aspects of the corresponding process are being taken into account. We see
these questions only as complementary to the first four assessment questions, because,
clearly, if a process is established in the sense defined above, it is probably adequate to a
certain measure, given how pragmatic OSS communities usually are.

4.3 Process Areas Currently Covered by QualOSS

As already mentioned, the QualOSS process evaluation covers a number of software
development related tasks that are usually important for the success of an OSS pro-
ject. The following table lists the tasks that are currently covered (left column) and
provides a brief description for each of them, together with some information about
where their process data trail could be found (right column). This is just an initial se-
lection of tasks, which we are likely to extend as we gain experience with the process
evaluation.

Task Description and Evidence Sources

Change submission Submit changes (e.g., defect corrections, enhancements),
typically in the form of so-called patch files, to the pro-
ject for potential inclusion. This task is restricted to
changes proposed by community members who do not
have commit rights to the main project versioning reposi-
tory, and thus cannot change the project's code directly.

Common methods used to submit changes include
sending them to a mailing list, putting them in an issue
tracking system, or, more recently, publishing modified
code using a distributed version control system. After
identifying the method used by a project, individual
change submission instances can be studied using the
generic evaluation procedure.

Review changes
submitted by the
community

This task is complementary to the previous task, namely,
changes submitted by community members must be re-
viewed and either rejected with an appropriate justifica-
tion, or accepted and integrated into the project's main
code repository.

This task can be analyzed in a way similar to the pre-
vious task.

 The QualOSS Process Evaluation 113

Task Description and Evidence Sources

Promote actively
contributing members
of the community to
committers

Community members who provide valuable contributions
to the project over a period of time often receive rights to
contribute directly to a project's code repository.

Instances of this process can sometimes be seen on a
project's development mailing lists.

Review changes by
committers

In some projects, changes proposed by developers with
direct commit rights are also subject to review by other
community members. This type of peer reviews can sig-
nificantly contribute to code quality.

This process can be evaluated by looking at the
project's change log files or at the log messages written
when committing changes to the code repository.

Propose significant
enhancements

Some projects have disciplined processes that allow
community members to formally propose enhancements
for discussion by the community.

Enhancement proposals may take many forms, includ-
ing web pages, Wiki pages, and messages submitted to a
mailing list or forum.

Report and handle
issues with the
product

For obvious reasons, this process is present in almost
all Open Source projects in some form or another.

Except for very small projects, this task is normally
supported by an issue tracking system, in which case
process instances correspond to the reports in the system,
as well as their accompanying discussions. Small projects
may handle this through a mailing list, in which case in-
stances are the messages reporting the problem and the
discussions following it.

Test the program or
programs produced
by the project

Most projects doing repeatable testing do it by defining
an automated test suite. If no test suite is available, there
may be explicitly defined manual test cases, but this is
much less likely to happen. Test suites and defined test
cases are normally part of the source code and can be
found in the code repository. Instances of this process are
test reports, either created automatically by running the
test suite or manually.

Decide at which point
in time a release will
be made.

Either releases are done on a time-based fashion or based
on a feature “road map”. Instances of any of these two
documents can often be found as part of a project's web
or Wiki pages, or, occasionally, as messages to a certain
mailing list or forum.

114 M. Soto and M. Ciolkowski

Task Description and Evidence Sources

Release new versions
of the product

Release processes in Open Source often include the crea-
tion of a number of alpha, beta and release-candidate
versions that are delivered by the developers in order to
obtain feedback from the community (active users of an
OSS system are often willing to test these versions and
report about problems they may find). Release processes
also often include running a test suite or performing other
forms of formal testing.

This process can be followed by looking at release an-
nouncements for preliminary versions in a project's mail-
ing lists or forums. Actual releases can be easily found in
software download repositories.

Backport corrections
in the current release
to previous stable
releases

When a stable and an unstable (development) branch of a
project are maintained simultaneously, so-called back-
ports are often necessary that move corrections or se-
lected improvements made to the development branch
into the stable branch.

Backports are often announced in project mailing lists
or forums.

5 Initial Experience with the QualOSS Process Evaluation

To this date, our experience with the QualOSS process evaluation is still quite limited,
since we have applied it to only a handful of projects so far. A larger number of full
QualOSS OSS assessments—which include the process assessment—is planned for
the final, evaluation phase of the QualOSS project. We expect this effort to result in
significant adjustments to the process assessment framework, as we better understand
its limitations and improve it accordingly.

Nonetheless, our current experience has already taught us some valuable lessons:

− In its current form, the QualOSS process evaluation can be applied to small to me-
dium OSS projects in about six hours of work. This makes its costs reasonable for
a number of purposes, including comparison when selecting between OSS alterna-
tives. A caveat here is that, so far, evaluations have been conducted exclusively by
an OSS and process expert. We still have to evaluate our approach when applied
by other assessors who may lack this expertise. This includes, among other aspects,
studying inter-rater reliability in this context.

− The time box limitation of 30 minutes of searching may lead to important informa-
tion being missed. One alternative for handling the collection of information about
a task would be to ask the community directly, for example, by writing to an ap-
propriate mailing list. This would not only make this aspect of the process evalua-
tion fairer, but would potentially create opportunities for the community to learn
from the evaluation and improve based upon it.

 The QualOSS Process Evaluation 115

− In some cases, the number of instances of a particular task is too high for manual
inspection. For example, some projects have databases of reported issues that have
been operating for years and contain thousands of reports. So far, we have ana-
lyzed such data repositories by manually choosing a small number of instances “at
random”, but this method is clearly unsatisfactory due to the high risk of introduc-
ing biases. Ideally, we should be able to guarantee that we did a fair, random sam-
ple, and that the number of instances observed is representative. We still have to do
more research in appropriate methods for this purpose, and, potentially, provide
software tools to assist this procedure.

− The importance of some of the tasks listed in the previous section may vary
depending on the size of the evaluated project. For instance, many small OSS
projects have a single maintainer who is the only person with access to the main
versioning repository. Such projects will rarely, if ever, accept new permanent con-
tributors, and thus having a defined process for this purpose would be simply un-
necessary. On the other hand, large projects with tens or even hundreds of official
developers definitely require an explicit process for accepting new members. For
this reason, we are considering the idea of giving variable importance to different
tasks depending on such characteristics of a project as its number of active con-
tributors or its code size.

Future versions of the QualOSS process evaluation framework are likely to incorpo-
rate enhancements based on the previous observations.

6 Conclusions and Future Work

The purpose of the QualOSS project is to produce a comprehensive quality model for
assessing OSS projects. In this paper, we have presented a small portion of this work,
namely, a process evaluation framework aimed at OSS. We expect OSS process
evaluation to provide a better foundation for judging a community's ability to deliver
high-quality software, as well as its long-term sustainability (“will this project exist in
10 years?”). Indeed, sustainability of suppliers is critical to many stakeholders, and is
also a problem with commercial software. For example, the European defense consor-
tium EADS decided to turn a critical piece of software into OSS in order to become
independent of specific suppliers [11].

Moreover, highly regulated industries, such as the automotive, medical, or pharma-
ceutical industries, have established standards for evaluating software, which include
assessment of the supplier [3] [5]. These industries often find it problematic to use
OSS, because there is little support for the assessments required by their quality stan-
dards. Consequently, we believe that OSS assessment models that include a process
assessment may help to increase the adoption of OSS in these industries.

As mentioned in Section 5, our experience with applying the QualOSS process as-
sessment is still very limited. The final, evaluation phase of the QualOSS project will
provide us with a valuable opportunity to introduce some initial improvements—such
as those suggested in Section 5—as well as to collect more experience with using the
process evaluation framework. We expect this experience to allow us to produce a
much more robust and reliable framework during the next few months.

116 M. Soto and M. Ciolkowski

Acknowledgments

This work was supported in part by the EU QualOSS project (grant number: 033547,
IST-2005-2.5.5). We would like to thank Sonnhild Namingha, from Fraunhofer IESE,
for proofreading this paper.

References

[1] Business Readiness Rating, http://www.openbrr.org/ (last check March 9, 2009)
[2] Cap Gemini: OSS Partner Portal. Internet address,

http://www.osspartner.com/ (last check March 9, 2009)
[3] International Society for Pharmaceutical Engineering (ISPE): Good Automated Manu-

facturing Practice (GAMP-4) Supplier Guide for Validation of Automated Systems in
Pharmaceutical Manufacture (1995)

[4] ISO/IEC 15504-5:2006, Software Process Improvement and Capability Determination,
Part 5

[5] ISO/IEC 61508:1998, Functional safety of electrical/electronic/programmable electronic
safety-related systems

[6] ISO/IEC 9126 International Standard, Software engineering – Product quality, Part 1:
Quality model (2001)

[7] Michlmayr, M.: Software Process Maturity and the Success of Free Software Projects.
In: Zieliński, K., Szmuc, T. (eds.) Software Engineering: Evolution and Emerging Tech-
nologies

[8] Navica Software Web Site, http://www.navicasoft.com/ (last check March 9,
2009)

[9] Qualification and Selection of Open Source software (QSOS) Web Site,
http://www.qsos.org/ (last check March 9, 2009)

[10] Software Engineering Institute (SEI): Capability Maturity Model Integration (CMMI)
for Development, Version 1.2 (2006)

[11] TOPCASED: Toolkit in Open Source for Critical Applications & Systems Development,
http://www.topcased.org/ (last check March 13, 2009)

R.V. O’Connor et al. (Eds.): EuroSPI 2009, CCIS 42, pp. 117–127, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Innovation Process Design: A Change Management and
Innovation Dimension Perspective

Thomas Peisl1, Veronika Reger1, and Juergen Schmied2

1 University of Applied Sciences Muenchen, Department of Business Administration,
Am Stadtpark 20, 81243 Munich, Germany
tpeisl@hm.edu, vreger@hm.edu

2 Anywhere.24 GmbH, Lindberghstr. 11, 82178 Puchheim, Germany
j.schmied@anywhere24.com

Abstract. The authors propose an innovative approach to the management of
innovation integrating business, process, and maturity dimensions. Core ele-
ment of the concept is the adaptation of ISO/IEC 15504 to the innovation proc-
ess including 14 innovation drivers. Two managerial models are applied to
conceptualize and visualize the respective innovation strategies, the Balanced
Scorecard and a Barriers in Change Processes Model. An illustrative case study
shows a practical implementation process.

Keywords: Innovation management, Innovation Processes, Change Manage-
ment, Maturity Models, Organizational Maturity, CMMI, ICE, ISO/IEC 15504.

1 Introduction

Most organizations face an inherent structural conflict between holistic strategy and
functional organizational design. A successfully linked strategic planning and budget-
ing process depends not only on integrating all the entities of an enterprise, but also
on reconciling long-term goals with short-term realities. A potential solution is using
strategic themes to identify a portfolio of strategic innovation initiatives and, based on
a dynamic quantitative and qualitative process analysis, creating a separate new class
of innovation centred initiatives. Immelt (2006) launched a GE corporate initiative
to drive growth through innovation called ‘imagination breakthroughs’. Davenport
(2007) argues that “the frontier for using data to make decisions has shifted dramati-
cally”. High-performing organizations are starting to build their competitive strategies
around data-driven insights that will in turn generate impressive business results.
They identified analytics as key for superior performance through sophisticated quan-
titative and statistical analysis as well as predictive modelling. Sawhney, Wolcott &
Arroniz (2006, p.76) propose a holistic definition of business innovation as “the crea-
tion of substantial new value for customers and the firm [and, implicitly, the stake-
holders] by creatively changing one or more dimensions of the business system”. The
quest for new value is confirmed by Kim & Mauborgne (2005, p. 17): “Value innova-
tion requires companies to orient the whole system toward achieving a leap in value
for both buyers and themselves.” In this context, value innovation is about driving
costs down while creating surplus on value for customers and stakeholders.

118 T. Peisl, V. Reger, and J. Schmied

The concept of connecting innovation and process capability combines both, the
challenge of developing competitive strategies by introducing innovative value propo-
sitions as well as innovation process measurements by visualizing innovation capabil-
ity. The objective of this research is to illuminate how to leverage the power of
analytics in measuring capability in innovation processes.

In general, improvements in innovation processes have been sought through either
increasing the budget for R&D or the implementation of best practices. Dooley, Subra
& Anderson (2001, p. 25) define a “best practice as a tactic or method [chosen to
perform a particular task, and/or to meet a particular objective] that has been shown
through real life implementation to be successful”. Booz Allen Hamilton confirmed in
their 2006 study on Global Innovation 1000 that “higher investments in R&D do not
automatically lead to an increase in corporate performance, and a high number of
patents do not necessarily lead to higher profits”. Research studies and management
thinkers have developed a large number of best practices, either via description or
prescription that could be used in organizations to improve the innovation process.
The recognized challenge in importing best practices for any organization is the fact
that in order to successfully implement an innovation strategy it is not only the prac-
tice but also the issues of capability and diffusion. The authors hypothesize that well
performed practices and processes that are widely and continuously applied in the
organization lead to a higher rate of successful innovations.

It is the objective of this research paper to propose a holistic Innovation Capability
dEtermination Model based on the ISO/IEC 15504 that integrates the change man-
agement dimension.

This paper includes:

• Extension of ISO/IEC 15504 to innovation
• Application of a model of barriers in change management processes
• Design of an integrated design of a process reference model to determine the

innovation capability of organization.
• Introduction to and an overview of the Innovation Capability dEtermination

(ICE) model for improvements in innovation.
• Adaptation of the Balanced Scorecard Approach of Connected Innovation

Driver Processes.
• Proposal of an Applied Research Framework.

2 Concept

2.1 Idea to Extend ISO/IEC 15504 to Innovation

The ISO/IEC 15504 capability construct has proven to have good validity in predict-
ing process performance in various industries, like Automotive Spice, Coso Spice,
etc. The authors argue that it is reasonable to use the capability dimension and pro-
pose a new process reference model for innovation. The application of a new refer-
ence model to the existing capability construct can be used to facilitate the latent
conflict of interest between technical innovation and controlling by proposing a joint
communication platform. The ISO framework is a widely used and accepted method
in the software engineering domain (one of the drivers for technological innovation),
whereas the methods and tools of strategic management (the base practices to assess

 Innovation Process Design 119

process capability) are usually the domain of business strategists. The result of our
research about applying the concept of ISO/IEC 15504 to innovation management
was first published in Peisl, Schmied (2007 and 2008) and is further detailed in this
paper (see figure 1).

Idea to Innovation Process Group (IIP)
IIP.1 Idea Generation Process
IIP.2 Concept Evaluation Process
IIP.3 Concept Implementation Process
IIP.4 Innovation Piloting Process
IIP.5 Innovation Diffusion Process

Connected Innovation Driver Process
Group (CID)

Customer Innovation Drivers
CID.1 Product or Service Innovation

Process
CID.2 Solution Innovation Process
CID.3 Customer and Market Innovation

Process
CID.4 Brand and Marketing Innovation

Process
CID.5 Value Capture Innovation Process
CID.6 Customer Experience Innovation

Process

Financial Innovation Drivers
CID.7 Balance Sheet Innovation Process

Business Innovation Drivers
CID.8 Value Chain Innovation Process
CID.9 Process Innovation Process
CID.10 Distribution Innovation Process
CID.11 Business Design Innovation

Process

Learning and growth Innovation Drivers
CID.12 Platform Innovation Process
CID.13 Networking Innovation Process
CID.14 Human Resource Innovation

Process

PRIMARY Life Cycle Processes

Innovation Objective Analysis and
Decision Process Group (IAD)
IAD.1 Innovation System Objectives

Analysis Process
IAD.2 Innovation System Improvement

Process
IAD.3 Innovation System Controlling

Process

Innovation Management Process Group
(IMA)
IMA.1 New Venture Management

Process
IMA.2 Management of Innovation

projects Process
IMA.3 Conflict Management Process
IMA.4 Market research Process
IMA.5 Customer Relationship Process

Human Resource Process Group (HRP)
HRP.1 Knowledge Management Process
HRP.2 Skills Management Process
HRP.3 Motivation Management Process
HRP.4 Distributed Team Management

Process
HRP.5 Team communication Process
HRP.6 Learning culture Management

Process

ORGANIZATIONAL Life Cycle
Processes

BUSIENSS RESOURCE Processes
(BRP)

BRP.1 Analytical Tools
BRP.2 Implementation Tools

Fig. 1. ICE Process Reference Model

2.2 Application of a Model of Barriers in Change Management Processes

Any change process creates barriers because of the human behavior to resist change. Any
innovation process results in organizational change and, therefore, creates barriers. The
understanding of successful innovation process design requires a holistic approach to
change management, i.e. the proposed model of barriers in transformation processes, as
well as an integrated view on innovation dimensions. More than ever before, organiza-
tions need to innovate to sustain growth. Despite a long history of extensive discussions
in academia and business innovation is all too often accidental rather than intentional.
Research shows that organizations do not lack ideas to drive new product or service
introductions but structured ways to allocate resources on the right innovation initiative.

The authors build their concept on a model defining three dimensions of barriers,
i.e. structural, performance, and value perspectives explaining why change processes

120 T. Peisl, V. Reger, and J. Schmied

within organizations may fail (Peisl, 1995; Hopfenbeck, Peisl, Müller, 2001). Key
findings of this model include (see also figure 2):

• Structured processes and well defined metrics are essential to create an inno-
vative organizational culture.

• Successful implementation of innovation processes requires two perspec-
tives: An organizational and an individual perspective.

• The individual dimension includes human resource capability and motivation
leading to creativity.

• The organizational dimension includes processes, metrics and value systems
leading to an open innovation organizational culture.

Operational
Structure

Infrastructure

Management
methods

Controlling

Corporate
Culture

Policies &
Power

Individual
Value system

Organizational
Structure

S
tructure

dim
ension

V
al

ue
di

m
en

si
on

Incentives

Performance
dimension

Structural
barriers

Value
barriers

Performance barriers

Structure

Objectives

Vi
si

on

Change Management
Dimension

(Project dimension)

Fig. 2. Three dimensions of barriers in change processes

The purpose of this paper is to link the change management (i.e. business) chal-

lenge to reduce or eliminate barriers in transformation processes with the innovation
capability perspective to create an effective innovation process design. In order to
achieve the objectives the authors generalize the concept of capability in SPICE be-
yond the software and systems engineering domain and propose a process reference
model for evaluating the innovation capability of organizations. The authors define
the concept of capability as the degree to which a process is performed, managed,
established, predicted, and continuously optimized (ISO/IEC 15504-2). In a second
stage the Innovation Capability dEtermination (ICE) model provides an organiza-
tional innovation maturity concept based on ISO/IEC 15504-7. It provides a frame-
work to identify, prioritize, and describe the status quo as well as necessary changes
to develop an organization’s innovation capabilities and to develop better products
and services and so to achieve the best market position and business success.

 Innovation Process Design 121

The generic innovation process from idea generation to innovation diffusion (IIP),
i.e. the successful – and profitable – positioning of new products and services in the
market, includes five steps:

1. idea generation,
2. concept evaluation,
3. concept implementation,
4. innovation piloting, and
5. innovation diffusion

The Analysis of organizational objectives generates the initial input for IIP, combined
with a consequent process improvement across all steps and a system controlling
(IAD). The authors integrate a filter, including 14 innovation dimensions (CIDs),
previous to the idea generation process, to match the organizational objectives with
the innovation dimensions and therefore to focus the idea generation process on se-
lected areas (for a complete overview of the process reference model see figure 1).

The CIDs are based on the dimensions of the model of barriers in transformation
processes and further literature research, and are structured according to the perspec-
tives of the balanced scorecard (see figure 4):

• financial,
• customer,
• business process, and
• learning and growth perspective.

Vision
Strategy

Objectives

CID.1 Product or Service
Innovation Process

CID.2 Solution Innovation
Process

CID.3 Customer and Market
Innovation Process

CID.4 Brand and Marketing
Innovation Process

CID.5 Value Capture
Innovation Process

CID.6 Customer Experience
Innovation Process

CID.8 Value Chain
Innovation Process

CID.9 Process Innovation
Process

CID.10 Distribution
Innovation Process

CID.11 Business Design
Innovation Process

Customer Perspective
Business Process

Perspective

CID.7 Balance Sheet
Innovation Process

Financial Perspective

CID.12 Platform Innovation
Process

CID.13 Networking
Innovation Process

CID.14 Human Resource
Innovation Process

Learning and Growth
Perspective

Fig. 3. Balanced Scorecard Approach for Connected Innovation Driver Processes

122 T. Peisl, V. Reger, and J. Schmied

In conjunction with innovation management, human resource processes, and analyti-
cal and implementation tools from the business area a holistic innovation process
design is established.

The ICE Model can support organizations to prioritize innovation possibilities by
the use of an Innovation opportunity matrix which illustrates the strategic attractive-
ness of the innovation and the ROCE (return on capital employed). Thus an ideal
allocation of scarce resources to the most promising innovation opportunities can be
facilitated (see figure 4).

Return on capital employed (ROCE)

Focus

OK Hold/Divest

S
tr

at
eg

ic
 A

ttr
ac

tiv
en

es
s

Immediate
Action

Required
CIDs

Fig. 4. Innovation Opportunity Matrix

In the following chapter we will demonstrate the benefit of the ICE model exem-

plified with the virtual organization FindYourWay AG taken from Schmied, Wentzel,
Gerdom, Hehn, 2008.

In further research projects the ICE model will be implemented in various indus-
tries with representative small and medium-sized enterprises.

3 Applied Research Framework

3.1 The FindYourWay AG

The FindYourWay AG is a medium-sized organization founded in the 50s. At the
beginning the organization was focused on electronic developments, the most impor-
tant products were radios and televisions. Today the software development became an
important part of the product development portfolio. The organization is focused on
radios and navigation systems in the automotive industry and therefore generates the
main turnover with these products. Worldwide FindYourWay AG employs more than
1000 people at various locations globally.

Core product development takes place in Germany. However, manufacturing loca-
tions exist in Portugal and China. In the main target markets like the USA, France,
and Japan Sales and Service locations have been established.

Recently FindYourWay AG relocated parts of the applied research and development
to Eastern Europe and set-up a location in Estonia. This new unit is focusing on the
development of software tools and tests. Furthermore the relocation of development of

 Innovation Process Design 123

reusable software libraries is planed for the near future. For the development additional
services of external employees and partners are needed.

In the past FindYourWay AG had some major difficulties with the accurate im-
plementation of projects. For example, an important customer, the Alemannischer
Lastwagen Verbund (ALV), canceled an order for the development of a new genera-
tion of navigation systems. The key reasons were among others:

• customer requirements were partly not or partly too late considered
• the effort to realize important functions was underestimated
• the performance of the system was insufficient
• the stability of the navigation was insufficient.

The cancelation of this project caused a financial loss for FindYourWay AG and es-
pecially a massive loss of confidence on the part of ALV. In order to sustain the col-
laboration with FindYourWay AG ALV requires a process improvement project and
medium-term a companywide CMMI Capability Level 2 for all process areas with
CMMI Maturity Level 2 and some selected processes on CMMI Maturity Level 3. In
particular ALV challenged FindYourWay management with the concept of Open
Innovation and demanded a clear innovation concept.

The following organizations, projects, persons, and tools are involved in the project
improvement project:

Organizations:
• Alemannischer Lastwagen Verbund (ALV)

(Key customer of FindYourWay AG)
• FindYourWay AG

(In the organization the process improvement project is conducted)
• process!park (external consulting organization)

Tools:
• Capability Maturity Model Integration for Development (CMMI-Dev)
• Innovation Capability dEtermination model
• Balanced Scorecard

In the meanwhile the initial assessment, the CMMI based improvement project and
the final CMMI Scampi Appraisal was conducted by the external consulting company
process!park (for further information please see: Schmied et. al. 2008).

Faced with the prospects of slow growth, commoditization and global competition,
FindYourWay AG has now emphasized innovation as critical to their future success.
Therefore the ICE model is applied in addition to CMMI for Development for innova-
tion process improvement. In the following chapters the authors describe the imple-
mentation of the Idea to Innovation processes (IIP) (see figure 3).

3.2 Innovation Capability dEtermination

3.2.1 Vision, Mission and Objectives
First of all FindYourWay AG needs to define their organizational vision, mission and
objectives. A clear and consequent definition of the objectives is the prerequisite of
any innovation process.

124 T. Peisl, V. Reger, and J. Schmied

Vision of FindYourWay AG:
• Advantage through integrated intelligent communication

Mission of the FindYourWay AG:
• Providing essential solutions for mobility

Objectives of the FindYourWay AG:
• The organizational objectives are allocated to the four dimensions of the bal-

anced scorecard; financial, customer, process, and leaning and growth dimen-
sion (Figure 5 shows an excerpt of the organizational objectives).

Based on the organization objectives (see figure 6) FindYourWay AG has to derive
innovation objectives. The Connected Innovation Driver Process Group includes 14
drivers of innovation and can be used for prioritization of innovation objectives (Re-
mark: The prioritization of the innovation objectives will be done in the Concept
Evaluation process).

Vision
Strategy

Objectives

Increase Customer
Satisfaction and Locality
Extended product and
service portfolio

Decrease of error rate
Reduce development effort
and timeline

Customer Perspective Business Process
Perspective

Increase of ROI
Increase of total revenue

Financial Perspective

Establish a platform for idea
generation
Educational training in
innovation management

Learning and Growth
Perspective

Fig. 5. Excerpt of the organizational objectives

Within a brainstorming session of the strategic business team (CEO, Head of prod-
uct management, head of product development, head of sales management) the fol-
lowing four Connected Innovation Driver Processes were identified:

1. CID.1 Product and Service Innovation Process (Extended product and
service portfolio)

2. CID.3 Customer and Market Innovation Process (Extended product and
service portfolio)

3. CID.9 Process Innovation Process (Decrease of error rate, Reduce de-
velopment effort and timeline)

4. CID.14 Human Resource Innovation Process (Educational training in in-
novation management)

 Innovation Process Design 125

3.2.2 Idea Generation
The Idea Generation process (see figure 6) can only be efficient if you use the CID
processes as a strategic filter to focus the idea generation process on selected areas.

FindYourWay AG: A brainstorming session together with the CEO, Head of prod-
uct management, Head of product development, Head of sales management and rep-
resentatives of the main customer ALV is carried out to generate ideas within the
defined innovation dimensions (CID.1, CID.3, CID.9, CID.14).

Fig. 6. Innovation Process (FindYourWay AG)

As an example the main results for CID.1 Product and Service Innovation Process
are:

• Next generation of navigation system:
o Geo Business Intelligence: Connection between meta data about

geographical objects (e.g. sights) and the navigation system
• Enhancement of navigation system to a holistic logistic solution:

o E.g. localization of commercial vehicles, optimization of routing
(e.g. distance) and capacity and availability management

If ideas don’t fit into the current innovation objectives the organization should con-
sider about a new venture (see IMA.1 New Venture Management).

3.2.3 Concept Evaluation
The main focus of Concept Evaluation (see figure 6) is a prioritization of the ideas.
Criteria for prioritization could be e.g.

126 T. Peisl, V. Reger, and J. Schmied

• a detailed analysis of the Return-On-Capital-Employed
• technical feasibility
• risk analysis in legal and administrative aspects

According to the Concept Evaluation FindYourWay AG will currently focus their
innovation processes on the development of a holistic logistic solution.

3.2.4 Concept Implementation
FindYourWay AG realizes the holistic logistic solution according to the system life-
cycle model (requirements analysis, design, implementation, verification activities),
which was defined formerly within the CMMI for Development based improvement
project.

3.2.5 Innovation Piloting
Within the Innovation Piloting Process e.g. a prototype of the idea is evaluated to-
gether with the piloting customer. It is important to ensure the profitability of the
innovation at an early stage to avoid investments in ideas that are not needed by any
customer.

An intensive cooperation between FindYourWay AG and the pilot customer ALV
is the basis for an early piloting and objective oriented investments.

3.2.6 Innovation Diffusion
For the Innovation Diffusion a detailed market introduction plan including marketing
and sales strategy has to be formulated.

Therefore FindYourWay AG needs to allocate resources (e.g. financial and human
resources) to launch the holistic logistic solution.

4 Summary

In this research paper the authors propose an integrated view on innovation based on
business tools, change management, and process maturity and capability. The brief
case study provides an initial understanding on how to implement and visualize inno-
vation initiatives in an open innovation context. The need to innovation and continu-
ously create value to customers and stakeholders is based on the understanding that
processes and process measurements shape culture and innovative behavior in all
organizational dimensions. In applying change management models, the balanced
scorecard, and ISO/IEC 15504 the authors integrate well-known instruments and
design a new concept that still needs verification across industries. This paper is a
work in process documentation and we would like to invite interested organizations to
join in our applied research project.

References

Booz Allen Hamilton: The Customer Connection: The Global Innovation 1,000 (2007),
http://www.boozallen.com/news/2007Innovation1000

Davenport, Harris: Competing on Analytics: The New Science of Winning. HBS Press Book
(2007)

 Innovation Process Design 127

Dooley, Subra, Anderson: Maturity and its impact on new product development project per-
formance. Research in Engineering Design 13(1) (August 2001)

Hopfenbeck, Peisl, Müller: Wissensbasiertes Management, Managementkonzepte in der Inter-
net Ökonomie. MI Verlag (2001)

Immelt: Growth as a Process. Harvard Business Review, 69 (June 2006)
ISO/IEC 15504-2:2003: “Information technology – Process assessment – Part 2: Performing an

Assessment”
ISO/IEC TR 15504-7:2008: “Information technology – Process assessment – Part 7: Assess-

ment of Organizational Maturity”
Kim, Mauborgne: Blue Ocean Strategy. How to create uncontested market space and make the

competition irrelevant. Harvard Business School Publishing Corporation, Boston (2005)
Kaplan, Norton: The balanced Scorecard. Translating Strategy into Action. HBS (1996)
Peisl: Barrieren in Veränderungsprozessen. In: Ein Erklärungsmodell für das Scheitern von

Veränderungsprozessen in Mittel- und Großunternehmen. Dissertationsschrift (1995)
Peisl, Schmied: Connected Innovation: Innovation Capability dEtermination (ICE). In: Interna-

tional SPICE Days, Frankfurt/Main (2007)
Peisl, Schmied: Improvement through Innovation. In: International SPICE Days, Prag (2008)
Sawhney, Wolcott, Arroniz: The 12 Different Ways for Companies to Innovate. MIT Sloan

Management Review 47(3), 75–81 (2006)
Schmied, Wentzel, Gerdom, Hehn: Mit CMMI Prozesse verbessern, dpunkt (2008)

R.V. O’Connor et al. (Eds.): EuroSPI 2009, CCIS 42, pp. 128–136, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Discovering Changes of the Change Control Board
Process during a Software Development Project Using

Process Mining

Jana Šamalíková, Jos J.M. Trienekens, Rob J. Kusters, and A.J.M.M. (Ton) Weijters

University of Technology Eindhoven
Department of Industrial Engineering & Innovation Sciences

P.O. Box 513, 5600 MB Eindhoven, NL
{J.Samalikova,J.J.M.Trienekens,R.J.Kusters,

A.J.M.M.Weijters}@tue.nl

Abstract. During a software process improvement program, the current state of
software development processes is being assessed and improvement actions are
being determined. However, these improvement actions are based on process
models obtained during interviews and document studies, e.g. quality manuals.
Such improvements are scarcely based on the practical way of working in an
organization; they do not take into account shortcuts made due to e.g. time pres-
sure. Becoming conscious about the presence of such deviations and under-
standing their causes and impacts, consequences for particular software process
improvement activities in a particular organization could be proposed. This
paper reports on the application of process mining techniques to discover short-
comings in the Change Control Board process in an organization during the dif-
ferent lifecycle phases and to determine improvement activities.

Keywords: Process mining, performance analysis, software process
improvement.

1 Introduction

The quality of software can currently be accomplished through various approaches and
techniques. One of the main quality improvement approaches focuses on the assess-
ment and subsequent improvement of the software development process (e.g. CMMI).
The assumption is that a structured way of developing software products prevents in-
jecting errors and defects into software. Software process improvement models focus
on improving development processes which are obtained e.g. during interviews and the
study of document, such as quality manuals. However, such processes descriptions are
often different from the real practice within an organization, for example due to the
lack of discipline or time pressure. Analyzing information stored in a software project
database or repository could reveal the "real" processes that developers are following,
their deviations from a documented process model and also the causes and impacts of
such deviations. Becoming conscious about the presence of the deviations and under-
standing their causes and impacts, consequences for particular software process im-
provement activities in a particular organization could be proposed.

 Discovering Changes of the Change Control Board Process 129

The aim of this paper is to use process mining techniques to analyze the Change
Control Board (CCB) process based on real data. We attempt to find whether the real
executions of a CCB process in a particular organization deviate from the documented
process as the project progresses. Knowing the "real" process and its differences from
the documented process, we investigate what the possible implications are, and what
type of advices can be given on the basis of the results, with respect to software
process improvement.

2 Previous Research

During software development various kinds of data are recorded. Developers and
managers are making use of these data in order to estimate and predict the results of
the software development, to plan software development activities [8] and to steer the
development process. In this project, we try to use this data as input for process min-
ing techniques to get a better understanding what is really happening during software
development.

Process mining is strongly related to the more general field data mining. The main
difference between the two areas is the strong focus of process mining on processes.
Process mining has already been applied in several case studies in different profes-
sional domains, e.g. in energy supply companies[5]. Regarding the software industry
Cook et al. started to analyze the behavior of processes in software engineering from a
theoretical point of view[2]. In [3] process mining approaches and techniques are pre-
sented in a framework for software development processes. A complete overview of
recent research in the process mining area is beyond the scope of this paper, therefore
we refer to [6] and http://www.processmining.org for additional information on the
subject.

In a previous paper [4] we showed the possibility of applying process mining to a
software development process. The process models were derived from data on actual
'real-practice' activities that are taking place. The case study revealed that although
people tend to believe that specified and well-documented processes are followed, the
real practice is different. The main finding was that a particular process, as specified
in a Quality Manual, was not followed in 70% of the cases. In the case study in this
paper, we analyze the process further in order to understand common patterns or cir-
cumstances, under which the development team makes shortcuts in the CCB process.
More in particular we investigate the way the CCB process changes, i.e. deviates from
the 'standard', during the subsequent phases in the software development life cycle.

3 Case Study

Projects under study are middleware embedded-software projects of a company X in
the Netherlands. The company develops software components for consumer elec-
tronic devices. Over the past years the company reached level 3 of the Capability
Maturity Model Integration (CMMI)[1]. This means that the organization is capable
to define their software development processes and interrelated activities. As such, the
environment offers opportunities for the application of process mining techniques.

130 J. Šamalíková et al.

The software development in company X follows a modified V-model (Figure 1).
The V-model is a sequential software development model with emphasis on testing
activities. Company X modified the model such that it is possible to the phases might
start simultaneously or in the middle of progress of the previous phase. A permanent
link between the phases is provided by Architectural support, which interrelates
phases in order to provide information and support of one phase to the others.

Fig. 1. Software development lifecycle in the company X

In this case study we analyzed the Change Control Board process of company X.
The Change Control Board (CCB) process coordinates changes made to deliverables.
The CCB tracks and records the status of each change request from its entry until its
exit of the CCB process. The change requests are further referred to as defects.

The structure of the CCB process is sequential with possible rework in case of fail-
ing a task. The tasks are not executed in parallel, and each task is completed before
the next task starts.

The flow of tasks of the CCB process is as follows:

Task 1. The CI’ defect is detected and submitted. The tester assigns attrib-
utes to the defect (e.g. priority, severity). Based on the importance, the defect is
either:

A. further evaluated by the CCB board (Task 2),
B. or the defect will directly start with the Analysis task (Task 3).

Task 2. The CCB board analyzes the defect and sends it to the required task
depending on the need (Analysis, Resolution, Evaluation, or Concluded task),
with the following possibilities:

C. The CI’ defect is redirected to the Concluded task in case the defect
is found duplicated, expected to be fixed in next release or out of
the scope of the functionality required;

D. The defect is redirected to tasks Analysis, Resolution, or Evaluation
depending on the need.

Task 3. The task, i.e. either Analysis, Resolution, or Evaluation, starts to
handle the CI’s. When the task is completed, one of the four possibilities is
chosen:

 Discovering Changes of the Change Control Board Process 131

E. If the task’s execution is successful then an important defect is
directed to the CCB, and it waits to be redirected again to the next
task, (it returns to Task 2)

F. If the task’s execution is successful then a less important defect
continues with the next logical task, for instance after Analysis it
can be Resolution.

G. If the task was not successfully executed then an important defect is
returned to the CCB for a re-evaluation (Task 2).

H. If the task was not successfully executed then a less important
defect is handled again by the same task (Task 3)

Task 4. Once all the tasks of the CCB process have been successfully
carried out, the case of the defect is closed.

Fig. 2. CCB process model as described in the Quality Manual

Although the analysis is based on four projects, we selected one, project P, to illus-
trate the analysis process. In order to be able to control the development process of
project P and to predict its outcome, the development team collects data about soft-
ware defects. A consultant makes a copy of such database each week. Using this data,
we attempted to retrieve non-trivial information that provides a useful insight into the
CCB process. Having the insight that is based on the real behavior within the process,
the organization could improve its CCB process.

132 J. Šamalíková et al.

4 Process Mining

Process mining has proven to be a valuable approach that provides new and objective
insights into the way processes are actually carried out within organizations [7]. Tak-
ing a set of real executions (a so-called "event-log") as a starting point, these tech-
niques attempt to extract non-trivial and useful information about the "real" process.
The central object in process mining is a particular operational process, such as a re-
view or change control process in a software development organization. Control over
these processes is often supported by information systems that help to coordinate the
steps that need to be performed in the course of the process. Examples of these infor-
mation systems are Document and/or Version Management Systems.

The process mining of the CCB process as a whole (i.e. 6870 cases) revealed that in
most of the cases (70%) Analysis task is skipped and the cases are being directly re-
solved [4]. We assumed that people tend to make such shortcuts in order to save time.
As the project progresses, people feel time pressure because of the approaching deadline
Our hypothesis is then that they decide to skip the Analysis task in order to save some
time. We expected that the number of the cases skipping the Analysis increases towards
the end of the project. In order to prove this hypothesis, we analyzed each lifecycle
phase separately. Table 1 shows the number of cases per each lifecycle phase.

Table 1. Number of cases per lifecycle phase

 Number of
cases

Number of cases
skipping the Analysis

Specification 543 408 75.14 %
Design 477 368 77.15 %
Implementation 1282 998 77.85 %
Component testing 470 371 78.94 %
Integration testing 862 531 61.60 %
System testing 1759 861 48.95 %
Customer testing 81 48 59.26 %
Consumer use 33 20 60.61 %
Not Applicable 1363 1173 86.06 %

Although, we expected the number of cases that are not handled according to the

documented process increases towards the end of the project, the results of our analy-
sis do not prove that. The number of such cases is similar from the Specification
phase till the Component testing. A significant decrease is observed during the System
testing. Customer testing and Consumer use contain both too little cases for any con-
clusions to be made.

5 Task Duration

In our case study, we focused on the time aspect of the CCB process. Namely, we
analyzed the throughput time of the process and the duration of tasks per lifecycle
phase. We compared the duration of the three tasks Analysis, Resolution and Evalua-
tion. These tasks are described in detail by their Start and End events directly in the

 Discovering Changes of the Change Control Board Process 133

project database. We calculated the average duration of the tasks as the time elapsed
between these two events. First, we considered all cases in the event-log. Figure 3
shows a graphical overview of the task duration for each of the lifecycle phases.

0

10

20

30

40

50

60

70

sp
ec

ifi
ca

tio
n

de
si

gn

im
pl

em
en

ta
tio

n

co
m

po
ne

nt
 te

st

in
te

gr
at

io
n

te
st

sy
st

em
 te

st

cu
st

om
er

 te
st

co
ns

um
er

 u
se

ta
sk

 d
u

ra
ti

o
n

 in
 d

ay
s

resolution evaluation cummulative

Fig. 3. Duration of tasks per lifecycle phase (all cases)

As we discovered in previous case study [4], majority of the cases does not con-
form to the specified process model by skipping the Analysis task. We were interested
in the impact this deviation made on performance characteristics of the process, hence
we examined such cases (as not analyzed cases) separately. Figure 4 shows a graphi-
cal overview of the results. The duration of the tasks Resolution and Evaluation is
slightly longer than the average duration when considering all cases.

5.1 Different Durations of Tasks

Figure 3 shows that during the Specification and Design phase, the Resolution tasks
take a large amount of time. A possible explanation to this could be that the product is
not clearly defined and structured in the beginning of the project. Therefore, the
Analysis could be more difficult and, as a result, not much executed.

134 J. Šamalíková et al.

0,00

2,00

4,00

6,00

8,00

10,00

12,00

14,00

16,00

18,00

20,00

sp
ec

ifi
ca

tio
n

de
si

gn

im
pl

em
en

ta
tio

n

co
m

po
ne

nt
 te

st

in
te

gr
at

io
n

te
st

sy
st

em
 te

st

cu
st

om
er

 te
st

co
ns

um
er

 u
se

ta
sk

 d
u

ra
ti

o
n

 in
 d

ay
s

resolution evaluation cummulative

Fig. 4. Duration of tasks per lifecycle phase (not analyzed cases)

5.2 Drop in Duration of Tasks

On the other hand, the duration of the Resolution task significantly drops in the Im-
plementation and Component and Integration testing phases, while the duration of the
Analysis and Evaluation task increases. The decrease of the Resolution could be ex-
plained by the fact that the project had a fixed deadline. It was not possible to spend
more time on the Resolution activity because of the fact that more time was simply
not available. This hypothesis was also given by the organization that provided us
with information prior to our analysis. However, this hypothesis does not explain the
increase of the duration of the Evaluation task

5.3 Total Throughput Time

Considering the total throughput time of a case, the throughput time is the highest
during the Specification, Design, System testing, Customer testing and Consumer use

 Discovering Changes of the Change Control Board Process 135

phases. During these phases, validation activities are being handled by involving ex-
ternal stakeholders. The participation of the external stakeholders requires synchro-
nizing agendas of all involved parties. The external stakeholders' participation is
mainly required during the Analysis and Resolution tasks. The duration of a task is
calculated based on the start and end events in the database, hence it also includes the
waiting time. The waiting time is then reflected in the increased duration of the tasks.
The throughput time drops during the Implementation, Component testing and Inte-
gration testing during which the developers perform verification activities without
contribution of the external stakeholders.

5.4 Duration in Other Projects

Besides the project P, we analyzed three other projects: P1 – P3. Each of them had
more than 1000 cases. All of the projects P1 – P3 showed similar trend in task dura-
tion and the throughput time with respect to the verification and validation activities
as observed in the project P.

6 Conclusions

In our case study, we showed that it is possible to use process mining techniques to
get more insight into a selected software development process. We compared the du-
ration of tasks and the total throughput time during different lifecycle phases. The
results showed that the duration of the validation tasks involving external stakeholders
are longer than the verification tasks performed without the external involvement.
Possible implications for the software process improvement might be that meetings
with the external partners are plan ahead, maybe on the regular basis. The problems
with synchronizing different agendas are minimized and the project progresses more
smoothly. Project issues are then solved more promptly without any extensive wait-
ing times.

Although, we expected the number of cases that are not handled according to the
documented process increases towards the end of the project, the results of our analy-
sis do not prove that. The number of cases that do not comply with the documented
model is overall high. This indicates that skipping the Analysis task is a structural
problem. A decrease is observed during the System testing, possibly due to the fact
that more attention to the handling of defects is given during this phase.

In the future projects, we have the intention to use process mining techniques to
analyze other important aspects of software development processes.

References

1. CMMI Product Team. CMMI for Development, Version 1.2. CMU/SEI-2006-TR-008
(2006)

2. Cook, J.E., Wolf, A.L.: Discovering Models of Software Processes from Event-Based Data.
ACM Transactions on Software Engineering and Methodology 7(3), 215–249 (1998)

136 J. Šamalíková et al.

3. Rubin, V., Günther, C.W., van der Aalst, W.M.P., Kindler, E., van Dongen, B.F., Schäfer,
W.: Process Mining Framework for Software Processes. In: Wang, Q., Pfahl, D., Raffo,
D.M. (eds.) ICSP 2007. LNCS, vol. 4470, pp. 169–181. Springer, Heidelberg (2007)

4. Šamalíková, J., Kusters, R., Trienekens, J., Weijters, T., Siemons, P.: Discovering the
Change Control Process in a Software Development Environment using Process Mining.
Submitted Information and Software technology journal (2008)

5. van Beest, N.R.T., Maruster, L.: A Process Mining Approach to Redesign Business Proc-
esses - A Case Study in Gas Industry. In: Proceedings of Proceedings of the Ninth Interna-
tional Symposium on Symbolic and Numeric Algorithms for Scientific Computing, SY-
NACS, pp. 541–548 (2007)

6. van der Aalst, W.M.P., van Dongen, B.F., Herbst, J., Maruster, L., Schimm, G.: Workflow
mining: A survey of issues and approaches. Data & Knowledge Engineering 47(2), 237–267
(2003)

7. Weijters, A.J.M.M., van der Aalst, W.M.P., Alves de Medeiros, A.K.: Process Mining with
the Heuristics Miner Algorithm 1. BETA Working Paper Series, WP 166. Eindhoven Uni-
versity of Technology, Eindhoven (2006)

8. Weiss, C., Premraj, R., Zimmermann, T., Zeller, A.: How Long Will It Take to Fix This
Bug? In: Proceedings of MSR 2007: Proceedings of the Fourth International Workshop on
Mining Software Repositories (2007)

R.V. O’Connor et al. (Eds.): EuroSPI 2009, CCIS 42, pp. 137–148, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Global Software Development Patterns for
Project Management

Antti Välimäki1, Jukka Kääriäinen2, and Kai Koskimies3

1 Metso Automation Inc, Tampere, Finland
Antti.Valimaki@metso.com

2 VTT, Oulu, Finland
Jukka.Kaariainen@vtt.fi

3 Tampere University of Technology, Tampere, Finland
Kai.Koskimies@tut.fi

Abstract. Global software development with the agile or waterfall development
process has been taken into use in many companies. GSD offers benefits but
also new challenges without known, documented solutions. The goal of this re-
search is to present current best practices for GSD in the form of process pat-
terns for project management, evaluated by using a scenario-based assessment
method. The best practices have been collected from a large company operating
in process automation. It is expected that the resulting pattern language helps
other companies to improve their GSD processes by incorporating the patterns
in the processes.

Keywords: Global Software Development, Agile, Organizational patterns,
Process patterns, Assessment.

1 Introduction

Global software development (GSD) is reality in many companies. There are many
benefits and motivations for using GSD such as access to the world-wide talent pool,
cost savings, advances in infrastructure and software development tools, mergers and
acquisitions and the need to be close to a local market [1]. However, there are also
different challenges with communication, coordination and co-operation which make
GSD more difficult than centralized development [1]. GSD has been widely used with
the waterfall development process and, recently, it has been applied to agile develop-
ment methods as well [2]. The experiences show that agile methods can be applied to
GSD [3, 4].

Whether a traditional or an agile process model is used, the problems related to the
nature of GSD have to be dealt with. Rather than developing a totally new GSD proc-
ess that addresses these problems, a more appropriate approach is to try to come up
with solutions to specific problems, and present these solutions in such a way that
they can be easily integrated with existing processes. An obvious advantage of this
approach is that a company need not adopt a new process model, but merely tune the
existing process for GSD.

138 A. Välimäki, J. Kääriäinen, and K. Koskimies

An attractive way to document proven solutions to specific development process
problems is to use organizational patterns [5] (or process patterns [6]). A collection of
such solutions can be further organized into process pattern languages [7]. A process
pattern language need not cover the entire process, but it can concentrate on a certain
viewpoint of the software development process. In this work the viewpoint is GSD:
we derive a pattern language for project management in GSD (GSD Patterns). The
solutions in these patterns have been mined from the practices that have been found to
work well in a large company operating in the field of process automation.

In general, patterns represent knowledge that is validated by previous experience.
However, if patterns are mined from a limited environment, as in our case, this argu-
ment does not hold. In this work we have evaluated the resulting patterns by using a
scenario-based technique introduced in [8].

This paper is organised as follows: The next section describes our research ap-
proach, and the methods used. Section 3 presents the GSD pattern language. Section 4
discusses the evaluation results of the GSD pattern language. Finally, we discuss
related work in Section 5 and conclude the paper in Section 6.

2 Research Approach

This section introduces the research approach which includes both the collection of
process patterns and an assessment method for the pattern language.

2.1 Collecting Process Patterns

GSD patterns presented in this paper have been collected from industry and literature
during studies [9, 10, and 11] and the pattern evaluation meetings in a large company
operating in the sector of the process automation industry. The pattern evaluation
meetings have also been organised with other companies. The total number of re-
spondents in these studies has been 32 in questionnaires and 25 in interviews.

Each separate study has been started by choosing a certain software process area in
which problems and best practices have been collected from the viewpoint of global
software development. The best practices have been presented in the form of GSD
patterns. In each study, the collection of case data has been done by using question-
naires and interviews. The framework for data collection is organised based on the
concepts, practices or phases of the development process (referred to as framework
items in the sequel) depending on the study area. For each framework item there have
been three open-formed questions: what is good, what needs improvement and how to
improve if there were no restrictions in the implementation. After the questionnaire,
key persons were interviewed to get more detailed information about the case. The
persons selected for the interviews represented project managers, product managers
and project members. The interviewees worked in the company or in its partner com-
panies. The framework was used as a checklist for the interviewer, leaving room for
open discussion. Questionnaires and interviews produced raw data for analysis. The
raw data has been processed and analysed by organising it based on the framework
items. After that, proposed process patterns were created based on processed case

 Global Software Development Patterns for Project Management 139

data, related literature and workshops in the organization. To ensure that the patterns
were feasible the proposed process patterns have been tentatively validated by dis-
cussing the patterns with key persons.

2.2 Evaluating Process Patterns

The evaluation technique used here for the pattern language is called Q-PAM [8]. The
basic idea of Q-PAM is to use scenarios as test cases which are analyzed against the
patterns, in the same way as scenarios have been used in ATAM [12] for assessing the
quality attributes of software architecture.

The first step in Q-PAM is to create a quality profile for the process (here, a proc-
ess pattern language). The quality profile is a set of quality factors considered essen-
tial in the assessment of the process. The quality profile thus depends not only on the
quality requirements of the process, but also on the purpose of the assessment: the
same process may be assessed with different profiles. Quality profiles are assumed to
be obtained by extracting them from quality attribute lists available in standards e.g.
ISO 9126 [13].

When the quality profile has been constructed, each quality attribute is associated
with scenarios that serve as test cases for the quality attribute. A scenario is a concrete
desired situation in an imaginary instance of the process where the existence or non-
existence of the required quality property can be verified. Scenarios can also be pri-
oritized for more focused processing, if needed.

The next step is the actual quality analysis. Each (possibly prioritized) scenario is
analyzed against the process patterns: which patterns (if any) support the realization
of the scenario, and which patterns counteract the scenario (if any). A tag is attached
to the scenario, characterizing the extent to which the pattern language is considered
to pass the scenario test, on the basis of the analysis.

3 GSD Pattern Language

In this section we introduce the GSD pattern language and present the organisation of
the GSD patterns based on PRINCE2 which is a project management method [14].

3.1 GSD Patterns

The purpose of the Global Software Development for Project Management Pattern
Language is to enhance performance of project management work through improved
global software project management practices. The GSD Pattern Language includes
18 process patterns which have been found to be important in the area of project man-
agement in GSD. The current version of GSD Pattern Language includes process
patterns supporting both traditional waterfall and agile project management.

GSD patterns are presented in Table 1. The first column contains the name of the
pattern, the second describes the problem the pattern is supposed to solve, and the last
column gives the solution outline of the pattern. An example of a more detailed pat-
tern is in Table 2.

140 A. Välimäki, J. Kääriäinen, and K. Koskimies

Table 1. GSD Patterns for project management

ID-
Name

Problem(s) Solution outline

01-GSD
Strategy

A lack of a company
level GSD strategy.

List the reasons and motivation to start GSD based development
in a company. Make a short and long term plan about GSD. Find
out the competence of different sites and make a SWOT and risk
analysis for GSD strategy. Also measure the real costs of GSD.

02-Fuzzy
Front End

Unclear how to
gather product needs
globally from
external and internal
customers and how
to form plans and
change requests
from these needs.

The needs of different customers will be gathered to a global
database. It is also important to have the possibility for global
access regardless of time and place as well as have the possibility
to use a discussion forum inside the tool. Product managers will
go through gathered needs and make decisions about them with
e.g. architects. A new feature or requirement will be made if it is
accepted in a decision meeting. Product managers will make a
Road Map and a Business plan for a product including many
features. These features will be realized in development projects.

03-
Communi-
cate Early

What is the goal of a
GSD project and
who are the members
of a project?
Lack of trust.

Arrange kick-off meeting for all relevant members. Present
common goal and motivation of this project and present release
plan made by Divide and Conquer with Iterations. Also present
responsibilities made by Work Allocation. Present used
Common Processes and Common Repositories and Tools.
Organize leisure activities for teams to improve team spirit.

04-Divide and Conquer with
Iterations

See an example below (Table 2).

05-Key
Roles in
Sites

Difficult to know
who to contact in
different sites with
your questions.

A project manager will have negotiations with site managers or
other supervisors about team members before final decisions.
Also needed roles will be formed in every site (e.g. Site project
Manager, Architect, IT Support, Quality assurance etc.) The main
site person is in a leading position and the persons from other
sites will help to take care of the issues, tasks and responsibilities
in their sites. Publish the whole project organization with roles for
every site to improve communication. One person can have many
roles in a project.

06-
Communi-
cation
Tools

Lack of
communication,
communication
tools can also vary
between sites.

Have reliable and common communication methods and tools
in every site. Use different tools at the same time as net meeting
to show information and project data, conference phones to
have good sound and chat tool to discuss in written form if
there are problems to understand e.g. English language used in
other sites. Also train and motivate project members to use
these tools.

07-
Common
Repos-
itories and
Tools

Separate Excel files
are difficult to
manage and project
data is difficult to
find, manage and
synchronize
between many sites.

Provide a common Application Lifecycle Management (ALM)
tools for all project artefacts (documents, source code, bugs,
guidelines etc.). ALM provides almost real-time traceability,
reporting, visualization and access to needed information etc. for
all users in different sites. It can be implemented as a single tool
or it can be a group of different tools which has been integrated
with each other. ALM tools can include means to support
operation according to the organisation’s processes and
development methods (state models, process templates,
workflows). Use different levels (team, project, and program)
reports to improve visibility of status of projects.

 Global Software Development Patterns for Project Management 141

Table 1. (continued)

08-Work
Allocation

Work needs to be
shared between sites
with some criteria.

Find out what the GSD Strategy is in your company and check
Competence information of persons in each site with help of
site managers. Make Architectural Work Allocation and/or
make Phase- Based Work Allocation and/or make Feature
Based Work Allocation and/or other allocation according to
some other criteria. Make a decision about division of work
between sites according to a company’s GSD Strategy and the
above analysis.

09-
Architect-
ural Work
Allocation

Work needs to be
shared between sites
with architectural
criteria.

Check architectural analysis of your product and plan which
site will be responsible for maintaining and increasing
knowledge in some architectural area. Architectural area can
also be a whole subsystem or part of a subsystem.

10-Phase-
Based
Work
Allocation

Work needs to be
shared between sites
with phased-based
criteria.

Check how phase- based work allocation will be made. Also
check which site is possibly responsible for maintaining and
increasing knowledge in some phase-based area e.g. testing or
requirements engineering in a certain product area.

11-Feature-
Based
Work
Allocation

Work needs to be
shared between sites
with feature- based
criteria.

Check the GSD Strategy how feature- based work allocation
strategy has been described. Form a group of members from
different sites to realize the features, if needed.

12-Use
Common
Processes

Different processes
and templates at
different sites make
communication
inefficient.

Choose common upper level processes and allow local
processes if they do not cause problems with upper level
processes.

13-
Iteration
Planning

Persons do not
know what kinds of
features are needed
for a GSD project
and what the current
goal is.

Project manager will present prioritized features and other
tasks. Project members will participate in a planning meeting
either personally or by Communication Tools. The project
members will estimate amount of work for features and tasks. If
needed, more detailed discussion can be arranged in sites with
participants’ mother language. In the end of planning, meeting
the list of selected features and tasks is created and is visible by
Common Repositories and Tools.

14-Multi-
Level
Daily
Meetings

Problems to have a
daily common
meeting with all
members with
different time zones.
Lack of trust and
long feedback loops.

Organize many daily meetings and organize another daily or
weekly meeting between project managers from different sites
to exchange information about the results of daily meetings.
With foreigners, written logs can be one solution to ensure that
communication messages are understood correctly in every site.
Choose the same working time for meetings in different sites.

15-
Iteration
Review

It’s difficult to know
what the status of a
project is and the
feedback loop is
long.

Check the project status by a demo and present results to all
relevant members and stakeholders from different sites. Gather
comments and exchange requests for further measures for both
product and process. Make frequent deliveries to improve
visibility of the status of the product.

16-
Organize
Knowledge
Transfer

It’s difficult to
transfer a huge
amount of knowl-
edge to new or
experienced
developers of
different sites.

Make sure that there is a product knowledge repository available
for project members. Train the product and get members also to
use. Specification with use cases will be presented in the
Iteration Planning meeting or separate meetings. Also earlier
customer documentation and demo will be presented in some
cases. Key Roles in Sites network will be utilized by trying to
find solutions for problems. Use frequent or longer visits to
enhance knowledge transfer and be sure that there are good
communication channels between project members.

142 A. Välimäki, J. Kääriäinen, and K. Koskimies

Table 1. (continued)

17-Manage
Compe-
tence

It’s difficult to know
what the
competence of each
project member is.

Create a competence database for gathering information of
members’ competence levels at different sites. Otherwise at
least site manager and/or project manager knows the
competence of team members. Define competence levels and
criteria for them. Define the areas of competence you want to
monitor. Ask site managers and /or project managers to gather
information about their team members.

18-Notice
Cultural
Differences

Certain methods are
appropriate in one
nation’s culture and
might not be
appropriate in
another.

Raise the awareness of your team nations’ culture for team
members. Use site visits, ambassadors and liaisons, if possible.
Notice cultural differences when you are applying GSD Strategy
and Work Allocation. Use Common Processes. Use
Communication Tools and Common Repositories and Tools.
Allow local approaches in processes, tools, meeting methods etc.
to decrease problems with cultural differences, if they do not
disturb common processes etc.

Table 2. An example of GSD pattern

Name: GSD 04 Divide and Conquer with Iterations
Problem: One big project plan is a risk in distributed development and long feedback loops.
Solution: Implement the following actions:

• Plan many iterations to describe the project plan
• Develop new application architecture and module structure during first iterations,

if needed
• Explore the biggest risks (e.g. new technologies) in the beginning of a project
• The length of iteration can be e.g. 2-4 weeks to improve control and visibility.
• Main site can have 4 weeks iteration and other sites 2 weeks to improve

visibility.
Resulting
Context:

• Iterations improve the visibility of a project and motivation of project members
• Iterations make it easier to control a project when you split the whole project into

many manageable parts
• Administration work is increased with many iterations

3.2 Pattern Language Organization with PRINCE2

In this section the pattern language organization is described based on the PRINCE2
project management method [14]. The PRINCE2 (PRojects IN Controlled Environ-
ments2) process overview is presented in Figure 1.

PRINCE2 is comprised of eight major processes which are collections of sub-
processes. We organize the pattern language by attaching the patterns to the main
processes of PRINCE2. In this way, PRINCE2 acts as a structuring device for the
pattern language: a project manager can easily identify the patterns applicable for a
particular main process in PRINCE2. In Table 3 the eight PRINCE2 major processes
are rows and the (numbers of the) GSD patterns are columns. An x-mark in the matrix
means that the column pattern is related to the row process.

 Global Software Development Patterns for Project Management 143

Fig. 1. Process overview of PRINCE2

Table 3. Relations between GSD Patterns and PRINCE2 major processes

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
DP x x x x x x x x x x
SU x x x x x x x x x x
IP x x x x x x x x x
CS x x x x x x
MP x x x x
SB x x x x x x x
PL x x x x x x x x x x
CP x x

From Table 3 we can see that GSD06 (Communication Tools), GSD07 (Common

Repositories and Tools), GSD12 (Use Common Processes), GSD16 (Organize
Knowledge Transfer), GSD17 (Manage Competence) and GSD18 (Notice Cul-
tural Differences) have a strong relationship with PRINCE2 processes. GSD06,
GSD07 and GSD12 are key issues when implementing an efficient global software
environment. GSD16 is also important because often employees in other sites do not
possess domain knowledge at all, especially if they are starting the co-operation with
the main site. GSD17 is needed in order to know what the competence of each em-
ployee is, especially for the planning phase of a project. GSD18 is also a fundamental
practice to achieve efficient co-operation with employees from different countries.

4 Assessing a Pattern Language for GSD

In this section we describe how Q-PAM was applied in the evaluation of the GSD
Pattern Language and discuss the evaluation results.

144 A. Välimäki, J. Kääriäinen, and K. Koskimies

4.1 Applying Q-PAM

Three faculty members from Tampere University of Technology and four GSD pro-
ject mangers from two industrial companies participated in the assessment workshop
along with the main author. The author of the pattern language introduced a candidate
quality profile in the first evaluation session based on ISO 9126. It was accepted with
some changes after discussion. The main part of the first workshop session was used
for constructing the scenarios and finally 57 scenarios were defined. Those were
prioritized and ten of the most important scenarios were assessed in the second work-
shop session. As an example, the analysis of one of the resulting scenarios is intro-
duced in Table 4.

Table 4. Example analysis of a scenario

Scenario S12 An offshore designer decides to decrease the contents of a feature by 50%. In
this way, he/she can get the feature to suit one iteration but the problem is
that he/she doesn't talk with the product manager. This problem should be
visible in two weeks.

Response A problem need to be solved in GSD as fast as in centralized development.

Quality Main Factor Accuracy (Functionality), Time Behaviour (Efficiency)
Pattern Analysis of Pattern Application R N
Iteration Review The pattern ensures that the change can be found at the latest in the next

Iteration Review.
N

Multi-Level Daily
Meetings

As a result of using this pattern, a project manager might also notice the
change during daily meetings

N

Common
Repositories
and Tools

Common repositories and reports will improve visibility of a project between
different sites and from repositories it is possible to find task lists and reports
e.g about remaining work, in which it is possible to notice the change by this
pattern.

N

Communication
Tools

Communication tools make it easier to clarify change when it has been found. N

Common
Processes

With Common processes, there can be a risk if there isn't specific process
guidelines to make a decision about making changes and/or all project
members have not been trained well.

R

Result
Some Support: The implementation of the scenario S12 is supported through four patterns in
the language and one pattern can have a risk.

We illustrate the results of the analysis with a scenario-pattern matrix (Table 5)
where for each scenario the involved patterns are marked with an N (non-risk) or R
(risk).

4.2 Evaluation Indicators

We have computed certain indicator values suggesting problematic scenarios or pat-
terns. These indicators are intended only as hints; the actual conclusions can be made
only after studying the seriousness of each risk separately. We have used the follow-
ing indicators: IR (involvement ratio) = (N+R)/S indicating the potential applicability
scope of the pattern with respect to this set of scenarios, RR (risk ratio) = R/(N+R)
indicating the total degree of risk of the pattern with respect to the scenario set, and SI
(support index) = (N-R)/P indicating the level of support the pattern language pro-
vides for a scenario. Here N and R denote the number of N’s and R’s in a row/

 Global Software Development Patterns for Project Management 145

column, respectively, S denotes the number of scenarios and P the number of patterns.
If IR is low, the pattern seems to be less relevant for the scenario set, if RR is close to
1, the pattern may cause more problems than benefits, and if SI is negative the pattern
language may counteract the scenario.

Table 5. Summary of the analysis of scenarios for GSD patterns

S12 S3 S22 S16 S25 S31 S17 S19 S24 S28 IR RR

GSD01

GSD02 R 0,1 1,0

GSD03 R N N R N N 0,6 0,3

GSD04 N 0,1 0,0

GSD05 R R R R 0,4 1,0

GSD06 N N N N N N 0,6 0,0

GSD07 N N N R N N N 0,7 0,1

GSD08 R N N N 0,4 0,3

GSD09 N 0,1 0,0

GSD10

GSD11

GSD12 R N N N 0,4 0,3

GSD13 N N 0,2 0,0

GSD14 N N N N N N R 0,7 0,1

GSD15 N N N N 0,4 0,0

GSD16 R 0,1 1,0

GSD17 N N R N 0,4 0,3

GSD18 N N N N N N 0,6 0,0

SI 0,2 0,1 0,3 0,1 0,3 0,3 0 0,3 0,1 0,1

From Table 5 we can see that IR (involvement ratio) was at least 0.6 with the fol-

lowing patterns: GSD03 (Communicate Early), GSD06 (Communication Tools),
GSD07 (Common Repositories and Tools), GSD14 (Multi-Level Daily Meetings)
and GSD18 (Notice Cultural Differences). These patterns seem to be the most im-
portant ones for GSD and they give some involvement with the set of scenarios used
in this assessment.

Suspicious patterns were GSD02, GSD05 and GSD16 in which RR (risk ratio) was
1.0. GSD 02 (Fuzzy Front End) has a risk because the pattern did not include a
proper change management process. GSD05 (Key Roles in Sites) was interesting
because it has only risks, but one main problem with this pattern was that deputy
persons were not mentioned to ensure communication if the main responsible person
is not available and it was required in three scenarios. GSD16 (Organize Knowledge
Transfer) has a risk because it did not include process knowledge which is also a key
area to train, although training of common processes was mentioned in GSD03
(Communicate Early).

It can also be noticed that GSD01, GSD10, GSD11 do not have any marks. GSD01
is a GSD strategy pattern which is mainly used before the start of a project. GSD10
and GSD11 as well as GSD09 are patterns for different types of work allocation and
the main work allocation pattern was GSD08 which was mainly used instead of
GSD09, GSD10 and GSD11 in the assessment.

146 A. Välimäki, J. Kääriäinen, and K. Koskimies

The third index was SI (support index) and it was from 0 to 0.3 and for five scenar-
ios from ten this index was at least 0.2.

In this case we can conclude that although there are some suspicious patterns
(GSD02, GSD05 and GSD16), as a whole the pattern language provides good support
for the scenarios. For instance, patterns that relate to the application lifecycle manage-
ment, especially GSD06 and GSD07, indicate strong support for the selected scenarios.

During the workshop, several improvement possibilities for GSD patterns were
found and the analysis resulted in a better understanding of the limits of the GSD
Pattern Language. For example, the analysis resulted in the finding that GSD patterns
do not include all needed practices in critical fault management or knowledge transfer
areas. GSD patterns also assume that the development environment is in very good
shape and that the communication network is working at a reasonable level. Some
patterns originally intended for the beginning of a project were also found useful
during a project.

5 Discussion

Various process or organizational pattern languages have been presented in the litera-
ture, concentrating mainly on local development [5,6,15,17]. Social patterns have
been presented in [18].

The results obtained from the evaluation of GSD patterns indicate important issues
for global software development. One of the issues is secure shared Common Reposi-
tories and Tools as an ALM (application lifecycle management) solution: electronic
connections (e-meetings, teleconferencing, web cameras, chat, wiki) were seen as
essential solutions to support a collaborative mode of work. This has also been indi-
cated in other case studies related to global product development, for instance, in [19]
and [20] (e.g. intranet data sharing, teleconferencing). The authors have also studied
the applicability of ALM to support the management of distributed software devel-
opment projects [21]. The results showed that ALM supported the operation in a
global development environment. The results of Q-PAM analysis presented in this
paper support this claim, too. From all GSD process patterns presented in this paper,
especially GSD06 (Communication Tools) and GSD07 (Common Repositories and
Tools) are related to ALM. Analysis results indicate that ALM related patterns sup-
port the selected scenarios.

The results from earlier work [9,10,11] show that the most successful global soft-
ware development issues have been improvements in visibility, management of fea-
tures, communication, and commitment to the goals of the project. The importance of
these issues for global software development has also been discussed in [22].

Communication problems have been resolved by utilizing Multi-Level Daily
Meetings, Iteration planning, Iteration review. These issues have also been dis-
cussed both in [23] and [24].

6 Conclusions

An efficient global software development process is very important for companies.
Project management is a key process to improve efficiency in distributed development

 Global Software Development Patterns for Project Management 147

projects. This paper presents GSD patterns for project management, aiming to solve
identified problems of distributed project management. The results show that the
pattern language provides support for the GSD scenarios derived during the Q-PAM
evaluation. In particular, patterns that relate to the Application Lifecycle Management
(GSD06 and GSD07) indicate good support for the prioritized scenarios. It also turned
out that Q-PAM helps to find improvement ideas and risks for current patterns.

The distributed development of complex products involves several teams and pro-
jects, often with hierarchically organized work. The results of this study indicate that
information visibility and consistency is needed in this context to support the overall
administration of complex product development.

Future research directions include the analysis of experiences with the current pat-
terns in actual development projects, the improvement of the patterns and the creation
of new patterns according to the feedback gained from different projects.

Acknowledgements. This work is being supported by the Academy of Finland under
grant 130685 and this research is also part of the ITEA project called TWINS
(Optimizing HW-SW Co-design flow for software intensive system development).
The work is funded by Tekes, Metso Automation and VTT. The authors would like to
thank all respondents and interviewees for their assistance and cooperation.

References

1. Carmel, E., Tjia, P.: Offshoring information technology. In: Sourcing and Outsourcing to a
Global Workforce. Cambridge University Press, Cambridge (2005)

2. Abrahamsson, P., Salo, O., Ronkainen, J., Warsta, J.: Agile software development meth-
ods: Review and Analysis. Espoo, Finland: Technical Research Centre of Finland. VTT
Publications 478 (2002)

3. Sutherland, J., Viktorov, A., Blount, J., Puntikov, J.: Distributed Scrum: Agile Project
Management with Outsourced Development Teams. In: Proceedings of the 40th Annual
Hawaii International Conference on System Sciences, HICSS (2007)

4. Moore, R., Reff, K., Graham, J., Hackerson, B.: Scrum at a Fortune 500 Manufacturing
Company. In: AGILE 2007 (2007)

5. Coplien, J.O., Harrison, N.B.: Organizational Patterns of Agile Software Development.
Pearson Prentice Hall, London (2005)

6. Ambler, S.: Process Patterns – Building Large-Scale Systems Using Object Technology.
Cambridge University Press/SIGS Books (1998)

7. Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I., Angel, S.: A
Pattern Language: Towns, Buildings, Construction. Oxford University Press, New York
(1977)

8. Välimäki, A., Vesiluoma, S., Koskimies, K.: Scenario-Based Assessment of Process Pat-
tern Languages. In: 10th International PROFES conference, Oulu, June 15-17 (2009)

9. Välimäki A., Koskimies K.: Mining best practices of project management as patterns in
distributed software development. In: EuroSPI 2006 Industrial Proceedings, EuroSPI 2006,
Finland, Joensuu, October 2006, pp. 6.27–6.35 (2006)

10. Välimäki, A., Kääriäinen, J.: Product Managers’ Requirement Management Practices As
Patterns in Distributed Development. In: 8th International PROFES conference, Latvia,
July 2-4 (2007)

148 A. Välimäki, J. Kääriäinen, and K. Koskimies

11. Välimäki, A., Kääriäinen, J.: Patterns for Distributed Scrum – a Case Study. In: Mertins,
K., Ruggaber, R., Popplewell, K., Xu, X. (eds.) International Conference on Interoperabil-
ity of Enterprise, Software and Applications, Enterprise Interoperability III - New Chal-
lenges and Industrial Approaches, March 25– 28. Springer, Heidelberg (2008)

12. Clements, P., Kazman, R., Klein, M.: Evaluating Software Architectures: Methods and
Case Studies. SEI Series in Software Engineering. Addison-Wesley, Reading (2002)

13. International Organization for Standardization. Software engineering - Product quality -
Part 1: Quality model. ISO/IEC 9126-1:2001 (2001)

14. Bentley, C.: The Essence of the Prince2 Project Management Method (2005 Revision),
Protec (2005)

15. Coplien, J.: A Generative Development-Process Pattern Language. In: Coplien, J.,
Schmidt, D. (eds.) Pattern Language of Program Design, pp. 183–237. Addison-Wesley,
Reading (1995)

16. Bozheva, T., Gallo, M.E.: Framework of agile patterns. In: Richardson, I., Abrahamsson,
P., Messnarz, R. (eds.) EuroSPI 2005. LNCS, vol. 3792, pp. 4–15. Springer, Heidelberg
(2005)

17. Elssamadisy, A.: Agile Adoption Patterns. Addison-Wesley, Reading (2009)
18. Biro, M., Messnarz, R., Ivanyos, J.: Managing Multi-Cultural and Multi-Social Projects in

SPI. In: Proceeding of EuroSPI 2006, Joensuu, Finland (2006)
19. Battin, R.D., Crocker, R., Kreidler, J., Subramanian, K.: Leveraging resources in global

software development. IEEE Software 18(2), 70–77 (2001)
20. Ramesh, B., Cao, L., Mohan, K., Xu, P.: Can distributed software development be agile?

Communications of the ACM 49(10) (2006)
21. Kääriäinen, J., Välimäki, A.: Get a Grip on your Distributed Software Development with

Application Lifecycle Management. Accepted to be published in International Journal of
Computer Applications in Technology, IJCAT (To be publish, 2009)

22. Leffingwell, D.: Scaling Software Agility. Addison-Wesley, Reading (2007)
23. Schwaber, K.: Agile Project Management with Scrum. Microsoft Press, Redmond (2004)
24. Schwaber, K.: Agile The Enterprise and Scrum. Microsoft Press, Redmond (2004)

R.V. O’Connor et al. (Eds.): EuroSPI 2009, CCIS 42, pp. 149–160, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Applying Application Lifecycle Management for the
Development of Complex Systems:

Experiences from the Automation Industry

Jukka Kääriäinen1 and Antti Välimäki2

1 VTT, Oulu, Finland
jukka.kaariainen@vtt.fi

2 Metso Automation Inc, Tampere, Finland
antti.valimaki@metso.com

Abstract. In this paper we present an industrial study about the history of Ap-
plication Lifecycle Management (ALM) improvement in a case company. The
study is part of broader research with the aim to improve global development in
a company. The improvement of ALM started three years ago when the com-
pany decided to acquire a commercial ALM solution. Two SW teams develop-
ing different kinds of SW products started to pilot the solution and after various
steps ended up with fairly different ALM solutions. This paper concludes the
history and experiences of ALM improvement and discusses the reasons why
two teams ended up with different solutions. The improvement of ALM solu-
tions has been facilitated with the use of an ALM framework.

Keywords: Application Lifecycle Management, Product Lifecycle Manage-
ment, Configuration Management, Agile, Scrum.

1 Introduction

The ability to produce quality products on time and at competitive costs is important
for any industrial organization. Globalisation forces companies to operate in a distrib-
uted development environment. Nowadays, companies are seeking systematic and
more efficient ways to meet these challenges. One response to these challenges is the
rise of so called agile methods, such as XP (Extreme Programming), SCRUM, etc [1].
Originally these methods were intended for local development teams. Recently, the
usage of agile methods in a distributed development environment has been under
active research, e.g. in [2, 3, 4]. In the literature and among tool vendors, the term
Product Lifecycle Management (PLM) has been discussed widely, for instance, in [5,
6]. In Stark’s [6] definition, “PLM is the activity of managing a company’s products
all the way across their lifecycles in the most effective way”. A PLM solution can
comprise various systems that are used to create and manage product related data,
such as requirements management (RM), configuration management (CM), enterprise
resource planning (ERP), computer aided software engineering (CASE), etc. Inter-
faces and application integration may be needed to enable these systems to work to-
gether [6]. Abramovici [7] estimates that in the future, PLM should better support the

150 J. Kääriäinen and A. Välimäki

integration of multi-disciplinary products, not just mechanical or electrical products.
The concept “Application Lifecycle Management” (ALM) has emerged to indicate
the coordination of activities and the management of artefacts (e.g. requirements,
source code, test cases) during the software product’s lifecycle. There is a belief that
comprehensive well-integrated ALM solutions are targeted for traditional plan-based
product development. However, Goth [8] states that recently, the market for ALM
tools for agile development is booming. The roots of ALM solutions are in the history
of configuration management (CM). CM solutions are usually the foundations of
ALM infrastructures providing storage, versioning and traceability between all lifecy-
cle artefacts [9]. In the development of complex multi-disciplinary products, ALM
has to fit into a wider frame of PLM. In these products, ALM focuses on the man-
agement of the SW portion of the multi-disciplinary product.

This paper presents the results from a study that has been carried out in an automa-
tion company. The study is part of broader research with the aim to improve distributed
development solutions in a target organization and study the concept of application
lifecycle management (ALM). The research has had two focus areas: product manage-
ment (PM) [10] and application lifecycle management (ALM) [11, 12, 13]. The contri-
bution of this paper is two-fold. Firstly, the aim is to present the history, current state
and experiences from the ALM improvement work. Secondly, ALM improvement has
been supported with an ALM framework that has been used for documenting and ana-
lyzing the ALM solutions of a company. The paper further specifies the ALM frame-
work by introducing the relations of the framework elements.

This paper is organised as follows: the next section discusses the development
lifecycle of complex products. Section three presents the industrial context and re-
search process. Then the history and current state of the solutions are presented and
lastly, the results are discussed and conclusions are drawn up.

2 Activities of Development Lifecycle

To understand the interfaces and the role of different information management sys-
tems during product development, the development lifecycle needs to be studied. The
following Figure 1 describes the simplified development processes of a complex sys-
tem and their related lifecycles [14]. From a product development point of view, PLM
should support this whole chain from product ideas to system release. On the other
hand, ALM is focused on supporting the management of the SW development portion
of this chain.

According to Crnkovic et al. [14], the process is divided into three main activity
types. First, the process contains common activities which relate to the system level.
These activities produce information that will be used at a subsystem level, such as
requirements, change requests and overall system design. Kotonya & Sommerville
[15] and Stevens et al. [16] state that after system level requirements specification,
architectural design divides and assigns system level requirements into sub-system
level entities which are further specified and divided into smaller entities. Sufficient
coordination and requirements traceability between these levels is needed to ensure
that all requirements flow from the top, through all requirements levels [17]. Second,
there are independent activities which relate to the different disciplines (e.g. HW and

 Applying ALM for the Development of Complex Systems 151

SW development). However, there is the need for coordination during these activities.
Third, there are integrated activities where information from all processes must be
accessible and integrated into common information. Information assets that will be
flowed from a sub-system level to system level are final deliverables and refined
requirements/design.

Requirements
definition

Define
system arch

System
integration

System
verification

System
release

Define
functionality

HW dev

SW dev

Started
Concept
defined

Component
design

prel. app.

Tooling
design

allowed

Component
approved

Started
Concept
defined

SW design
prel. app.

Software
integrated

Software
approved

Started Defined
System
design

System
integrated

System
tested

System
released

Common

Independent

Integrated

HW lifecycle

SW lifecycle

System
lifecycle

Fig. 1. System development process and lifecycles (adapted based on [14])

The development of multidisciplinary products is supported with various product in-
formation management systems, such as Requirements Management tools, ALM tools,
PDM (Product Data Management) tools, Document Management tools, etc. The need for
integration of various product information management systems has been discussed, e.g.
in [14, 18]. One challenge with these tool domains is that often their functionality and
managed information overlaps [14, 18]. The same data is duplicated in various applica-
tions that complicate the traceability and maintenance of data. Keeping the data consis-
tent would require integrations between existing systems. The technical integration of
these tools in itself is not sufficient but also adequate understanding of the development
processes and their interrelations in the particular case is required [19]. Therefore, the
management of product related data requires a holistic viewpoint, i.e. lifecycle manage-
ment that contributes to better consistency of product data.

3 Research Approach

This section introduces the industrial context and research process.

3.1 Industrial Context

The case company operates in the field of the automation industry. The company
operates in a multi-site environment. Therefore, the challenges of the global develop-

152 J. Kääriäinen and A. Välimäki

ment environment need to be resolved. Product development is organized according
to product lines. As it is no longer competitive to develop multiple products one at a
time, the case company has adopted a product platform approach. Therefore, the
product is based on a product platform where the customer-specific features are con-
figured. The company produces complex automation systems where SW is a part of
the whole system. The improvement of ALM is focused on two SW teams (referred to
as “SW Team 1” and “SW Team 2”) each having several SW projects running in
parallel. Each team has about 10 members. The projects are currently geographically
distributed over several sites (two countries). Each project has typically less than 10
project members as reported the appropriate size for agile projects. Previously, pro-
jects have followed a partly iterative development process. SW Team 1 produces a
SW product that is one part of the common automation product platform, whereas SW
Team 2 produces SW products for specific industry segments. Projects have adopted
the agile development method, Scrum.

3.2 Research Process

To support ALM improvement work, the authors have defined the ALM framework
that has been used for documenting the company’s ALM solutions as well as to find
improvement ideas for ALM solutions in company. The development of the frame-
work has been presented in [11, 12]. The principal elements of the Application
Lifecycle Management framework are the following: Creation and management of
lifecycle artefacts, Traceability of lifecycle artefacts, Reporting of lifecycle artefacts,
Communication, Process support and Tool integration. Figure 2 and 3 present the
history of ALM framework development and the history of the case company’s ALM
improvement.

=> ALM solution v3.0 current state analysis in a
case company using ALM framework 2nd version,
defining relations between ALM elements

Literature studyLiterature study

Phase 1Phase 1

Time

=> Current status of ALM, 1st version of ALM framework

Phase 2Phase 2

=> Applying 1st version of ALM framework,
Collecting industrial ALM experiences from ALM solution v1.0,

Construction of 2nd version of ALM framework

=> Applying ALM framework 2nd version,
ALM solution v2.0 current state analysis in a case company

Increasing
understanding
& Creating
ALM framework

Phase 3Phase 3

Fig. 2. Phases of ALM framework development and validation

The improvement work in SW teams has been a continuous activity and thus
ALM versions indicate the ALM solutions at a certain moment. The notable problem
with version 1 & 2 solutions related to the requirements management. The decisions
for improvements were made in project meetings or in retrospective meetings. Meth-
ods used for data collection during the first and second research phase have covered a
questionnaire for SW team members (two teams) and two interview rounds for the
project managers of SW teams. In this paper we present the results of the third

 Applying ALM for the Development of Complex Systems 153

research phase that produced the current state analysis of ALM solution version 3.0 in
a company and further elaborated the ALM framework by defining relations between
framework elements. The data for this study has been collected by updating the com-
pany’s previous ALM description based on information received from the comple-
mentary interviews of the project managers (i.e. what has changed and why teams
ended up with different solutions). The ALM description, analysis results and conclu-
sions drawn have been reviewed by the project managers.

2007 2008 2009

ALM
improvement

ALM
solution V1.0

Kääriäinen &
Välimäki [11]

ALM
solution V3.0

ALM
solution V2.0

Kääriäinen &
Välimäki [12]

2006

Fig. 3. History of ALM improvement in a company

4 History of ALM Improvement and Current Solution

Previously, the company’s ALM solution for distributed development was comprised
of several somewhat isolated databases to manage project related data, such as local
version control and distributed document management and fault management sys-
tems. This caused challenges especially in a global development environment where
the consistency and real-time visibility of the information is important. Therefore, the
company started to seek more integrated solutions to coordinate distinct project
phases and to provide a centralised project database for all project related data. In
practice, this meant that the SW teams deployed a commercial ALM tool with the
Scrum method.

The documentation and the history of version 1.0 and 2.0 ALM solutions have
been reported in [11, 12] (see Figure 3). The teams started from somewhat similar
solutions for ALM. The backbone of this solution was a commercial ALM solution
called Microsoft’s Team Foundation Server (TFS). This solution was configured with
a 3rd party Scrum process template. Both teams wanted to keep the changes to the
process template to a minimum. After two years, teams ended up with fairly different
solutions. The ALM solution of SW team 1 was comprised of several interconnected
product information databases, whereas the backbone of the ALM solution of SW
Team 2 was a single central global ALM tool, TFS.

Different solutions were due to the different kinds of SW products produced in
these teams and organisations’ management constraints related to these SW products.
SW Team 1 produces a SW product that is one part of an evolving “product plat-
form”, whereas SW Team 2 develops industry-specific SW products. Therefore, SW
Team 1 had a need to integrate with, for instance, the test document and fault man-
agement databases that are also used by other platform projects to maintain consis-
tency with other projects, provide a single channel for accessing information and
allow, for instance, test staff to use a single interface for reporting faults that relate to
a certain product platform.

154 J. Kääriäinen and A. Välimäki

Current ALM solutions (referred to as version 3.0 solutions) for two SW teams
have been differentiated even more. The biggest difference compared to the version
2.0 ALM solution is that SW Team 1 has started to use a Notes –database for manag-
ing Product Backlog Items (PBI) and Sprint Backlog Items (SBI) instead of TFS.
Currently, TFS has a strong role in SW Team 2 as a central global project information
repository. SW Team 1 uses TFS just for source code control (SCC). If comparing the
history of the ALM solutions of both teams it can be noted that SW Team 1 has
moved towards a Notes –dominant ALM solution with several interconnected data-
bases, whereas SW Team 2 has moved towards a TFS –dominant central ALM solu-
tion. Table 1 summarises SW Team 1 and SW Team 2 ALM solutions.

Table 1. Summary of SW Team 1 and SW Team 2 version 3.0 ALM solutions

SW Team 1

Developing SW for a platform product
SW Team 2

Developing industry- specific SW

Creation and
management of
lifecycle
artefacts

Various databases are used to manage
project related data:
- TFS (SCC).
- Feature management DB, System
fault management DB, Test document
DB and System configuration DB.

MS TFS and SharePoint as a central
point for SW product information
management. Team uses also System
configuration DB to associate SW
version with other sub-system versions.

Traceability of
lifecycle
artefacts

Traceability of lifecycle artefacts that
reside in same or different databases
(links between Notes documents or
databases). SCC traceability in TFS
(e.g. SC items, ChangeSets and labels).
Label ID is manually copied from TFS
to System configuration database
(Notes) to ensure traceability from SW
baseline to system configuration.

Traceability of lifecycle artefacts (PBIs,
SBIs, SCC, SharePoint documents) that
reside in TFS and Project Portal
(SharePoint). Label ID is manually
copied from TFS to System
configuration database (Notes) to
ensure traceability from SW baseline to
system configuration.

Reporting of
lifecycle
artefacts

Views and reports from Notes
databases are used to produce needed
information for project reporting.

TFS Scrum predefined and tailored
reports are used to produce project
reports. Reports are distributed in
Visual Studio 2005 user interface or
Project Portal. Some reports are
exported to Excel.

Communication
Synchronous: Chat, Remote connection
(screen sharing) with voice and/or
video, Phone.
Asynchronous: E-mail, databases (TFS,
Notes).
Scrum communication practices.

Synchronous: Chat, Remote connection
(screen sharing) with voice and/or
video, Phone.
Asynchronous: E-mail, databases (TFS,
Project portal, Notes).
Scrum communication practices.

Process support
Notes process guidance is used. TFS
SCC policies set for a project. Notes
items have state models that support the
operation according to defined
procedures.

TFS Scrum process template is used to
configure project specific features for a
project (e.g. TFS items’ state models,
Scrum reports, etc.). TFS SCC policies
set for a project.

Tool integration
TFS is integrated into Visual Studio
(SW development and SCC).
Point-to-point integrations between
Feature management, System fault
management, Test document and
System configuration databases.

MS TFS and Project Portal provide
integrated project environment. MS
tools, such as Office (Excel, Project)
and Visual Studio, integrate well to this
environment.

 Applying ALM for the Development of Complex Systems 155

In SW Team 1, the use of TFS for managing SW requirements and tasks, i.e. PBIs
and SBIs, was seen as a solution that creates a gap between system level definitions
(product ideas, features/requirements) and SW project level definitions (PBIs/SBIs).
In parallel with ALM improvement, the case company has started to pilot a proprie-
tary Notes database for feature management. This solution is comprised of the man-
agement of system level product ideas, features and requirements. Now this solution
has been extended to also cover the management of SW PBIs and SBIs. The current
feature management solution starts from gathering ideas or needs from various
sources e.g. from marketing, support, development, customers, etc. The solution pro-
ceeds with the feature and requirement definition, analysis and prioritization. Features
are related to Sprints and Product Backlog Items and, furthermore, Sprint Backlog
Items are defined to assign SW project tasks to realize features and track the imple-
mentation of features. The solution establishes a common way to share, combine and
analyze the information and therefore provides a common global database for plat-
form projects including product level definitions and SW requirements and tasks. This
solution provides a link between system and SW level definitions for SW Team 1 that
produces SW for a platform product. However, SW Team 2 uses MS SharePoint to
collect features and to store the results of analysis, estimation and prioritization. PBIs
are linked to features but in the TFS the link is only a free text comment.

The project managers of both SW Teams stated that it was beneficial to use TFS
for managing PBI and SBI when starting to deploy the new working method, Scrum.
TFS had the 3rd party process template ready for handling Scrum work items and,
therefore, worked as a ready-to-use platform for experimenting with Scrum in a SW
project. This facilitated the deployment of the Scrum method. However, in the long
run it was more feasible for SW team 1 to work with technology (i.e. Notes) that is
also used by other platform projects. It was also stated that the use of existing familiar
technology is cost-effective since the infrastructure is in place and the users are famil-
iar with the terminology and basic functions of the technology. On the other hand, for
SW Team 2 the single central ALM tool has worked well. In both teams, the solutions
support the project management with the management of PBI and SBI and project
reporting even though the solutions are based on different technology. Both teams are
using TFS for source code control and they reported that it has many advantages
compared to their old source code control solution. All databases in both teams (TFS
and Notes) are accessible globally that was an essential prerequisite for the databases
when the company started to improve the solutions of global development.

5 Discussion

This section discusses issues related to ALM improvement in a case company and the
further elaboration of ALM framework.

5.1 ALM Improvement in a Case Company

The improvement history shows that two SW teams ended up with a fairly different
solution because of their different characteristics. This adaptation of information man-
agement solutions for a development context has been treated in several publications.

156 J. Kääriäinen and A. Välimäki

E.g. from a configuration management point of view in [20, 21, 22] as well as from a
requirements management point of view in [15, 23]. In our case, SW Team 1 produces
SW that is part of an evolving platform product whereas SW Team 2 produces industry-
specific SW products. This study showed that one ALM solution does not necessarily fit
all teams in an organisation. The study showed that SW Team 1 needed a common way
to share and access the same type of information with the other platform projects.
Therefore, the organization can view and access consistent product platform related
information, for instance, faults or test reports, through a single channel based on prod-
uct structure. In SW Team 1, this meant that it was reasonable for the team to use the
same global product information management systems as other platform projects, i.e. a
feature management DB, fault management DB and test document management DB.
The lack of integration between the commercial ALM tool (TFS) and company’s Notes
databases caused that TFS could not be used for managing all lifecycle artefacts. The
use of consistent practices and tools over related development projects has also been
stressed in the telecommunication industry [19]. On the other hand, for SW Team 2 the
single central ALM solution has worked well since they do not have strong relations to
the platform level. One challenge with several databases is that often their functionality
and managed information overlaps [14, 18]. The same data is duplicated in various
applications that complicate the traceability and maintenance of data. In this case, this
has forced the organisation to build point-to-point integrations between different Notes
databases, for instance, between the fault management DB and test document manage-
ment DB. However, since these databases share the basic technology and the company
is very familiar with the Notes technology, the integration has been fairly easy to
implement.

The agile methods have been under active research for a decade. There are a num-
ber of commercial and open source tools that support the methods. In our case, the
company had the challenges of increasing globalisation and efficiency demands.
Therefore, the company started to seek more integrated solutions and methods to
coordinate distinct project phases and to provide visibility into development projects.
In practice, this meant that the SW teams deployed a commercial ALM tool, Team
Foundation Server (TFS), with the Scrum process. The successful use of TFS to sup-
port Scrum methodology has been reported in [4]. However, Moore et al. [4] stated
that they needed to considerably tailor the TFS process template for their purposes.
The same problem was also noticed in our case [11, 12]. A challenge with the com-
mercial ALM solution was to find a suitable template for the projects. Since each
organisation has its own characteristics and needs, the challenge is to find efficient
implementations of lifecycle management for complicated, real-life situations. If the
ALM suite’s process template library does not include a suitable process template for
an organisation, the modifications to a standard template or creation of a new template
from scratch might need significant effort. Therefore, teams wanted to keep the
changes in a standard template minor even though the basic template was not optimal.
This was the opposite approach if compared to Moore et al. [4] since in their study the
company made considerable modifications. One interesting study related to the adap-
tation of TFS process templates is presented in [24]. Medina-Domínguez et al. pro-
pose the project pattern concept and a model to support process improvement based
on patterns in a TFS environment.

 Applying ALM for the Development of Complex Systems 157

Recently SW Team 1 moved the management of Scrum items (i.e. PBI and SBI)
from TFS into the proprietary Notes database. However, our study shows that it was
beneficial to use a commercial ALM tool (TFS) in both teams a few years ago when
starting to deploy the new working method, Scrum. TFS had a ready process template
for handling Scrum work items and, therefore, it worked as a ready-to-use platform
for experimenting with Scrum in a SW project even though the solution was not op-
timal. This facilitated the deployment of the Scrum method. After successful deploy-
ment it was feasible to start to optimise the solution for the organisation. Now SW
Team 2 uses TFS with the Scrum template for managing Scrum work items, whereas,
SW Team 1 has moved the management of Scrum items into the proprietary Notes
database (feature management DB) that is also used by other platform projects. In
both solutions Scrum items are managed as separate configuration items and can be
associated with each other and, therefore, can be used for automated reporting, etc.
This fine-grained management of configuration items has advantages compared to
file-based management of product information (see e.g. [25, 26]).

5.2 Elaboration of ALM Framework

The documentation of the ALM solution and the collection of improvement ideas
have been facilitated by using an ALM framework that supported the improvement
activities in a company. When comparing the practical implementations of ALM
solutions in a case company and ALM elements in the framework, it was possible to
find relations between the elements (Figure 4). “Creation and management of lifecy-
cle artefacts” is the foundation for ALM. The product information collected and man-
aged by this element is needed, for instance, for traceability and reporting activities.
“Traceability of lifecycle artefacts” provides a means to identify and maintain rela-
tionships between managed lifecycle artefacts and, therefore, facilitates reporting,
change impact analysis and information visibility through the development lifecycle.
“Reporting of lifecycle artefacts” utilises managed lifecycle artefacts and traceability
information to generate needed reports from the lifecycle product information to sup-
port SW development and management. “Communication” provides communication
tools (e.g. chat) as well as channels for distributing information about product lifecy-
cle artefacts, links and reports and thus facilitates product information visibility for
the whole SW project. “Process support” and “Tool integration” are the elements that
are used to configure the ALM solution to support SW development procedures and
to facilitate a productive development environment by enabling the user to easily
launch tools and transfer information between different tools and databases. An ex-
ample in the TFS environment that reflects these relations is the generation of a
“Product backlog composition” -report for Project Portal. The TFS Scrum process
template contains a “Product backlog composition” –report. The report collects man-
aged Scrum items (PBIs, SBIs) as well as their relations to generate a report that pre-
sents PBIs and their related SBIs as well as their realization related information
(hours). This report can then be made visible through a Project Portal that facilitates
the real-time information visibility via a web browser for the whole SW project.

158 J. Kääriäinen and A. Välimäki

Fig. 4. Principal elements of Application Lifecycle Management

6 Conclusions

This paper presents the experiences of ALM improvement in an automation company.
The improvement of Application Lifecycle Management in a case company has been
iterative. The paper reports the history, current state and experiences from the im-
provement effort. The common feature that characterises product development in a
company is the global development environment. Globalisation has been the main
reason that has forced a company to seek more effective solutions to support product
development. For two SW teams, the case company started to pilot the ALM solution
to support global SW development with the agile development method, Scrum. The
teams ended up with quite different ALM solutions based on their special needs for
product development and management. One team ended up with a Notes-dominant
ALM solution, whereas the other with a TFS-dominant solution.

The following list presents the summary of experiences about ALM improvement
from a company producing complex multi-discipline products:

• Interfaces with system level product information management tools affect
SW project’s ALM solution (company/organisation constraints for SW
project). In this case, lead to the use of several databases. Inter-project
product information management practices and solutions need to be col-
lectively agreed and compatible between development projects.

• A single central ALM tool was found feasible when there were not many
relations to organization’s other information management systems. Cen-
tral database allowed the whole SW team to have a consistent view of pro-
ject data.

• The integration of different technologies is still difficult. Therefore, it is
more feasible to focus on certain technology and build the solution around
it (e.g. TFS or Notes).

• Teams had specific needs for ALM that lead to different solutions. Itera-
tive improvement of ALM practices and solutions produced feasible solu-
tions for each team.

• In practice, ALM solution can be a central database or the collection of
databases. In the case of several databases, the interoperability of data-
bases is essential to maintain the consistency of product information (e.g.
tight integration or loosely coupled integration with proper process).

 Applying ALM for the Development of Complex Systems 159

• Commercial ALM solution with a process template that can be used to
configure the whole system to support the selected development method
facilitated the deployment of new development method (Scrum).

• ALM framework facilitated the documentation, understanding and analy-
sis of ALM solution during the iterative improvement effort.

• During the research ALM was found to be an important topical concept to
support global software development with the visibility and consistency of
project information.

Future research will focus on further elaboration of the ALM framework and its usage
in future ALM cases.

Acknowledgements. This work is funded by Tekes, Metso Automation and VTT.
This work is being supported by the Academy of Finland under grant 130685. The
authors would like to thank all the contributors for their assistance and cooperation.

References

1. Abrahamsson, P., Salo, O., Ronkainen, J., Warsta, J.: Agile software development meth-
ods: Review and Analysis. Espoo, Finland: Technical Research Centre of Finland, VTT
Publications 478 (2002)

2. Ramesh, B., Cao, L., Mohan, K., Xu, P.: Can distributed software development be agile?
Communications of the ACM 49(10) (2006)

3. Sutherland, J., Viktorov, A., Blount, J., Puntikov, J.: Distributed Scrum: Agile Project
Management with Outsourced Development Teams. In: Proceedings of the 40th Annual
Hawaii International Conference on System Sciences, HICSS (2007)

4. Moore, R., Reff, K., Graham, J., Hackerson, B.: Scrum at a Fortune 500 Manufacturing
Company. In: AGILE 2007, pp. 175–180 (2007)

5. Sääksvuori, A., Immonen, A.: Product Lifecycle Management. Springer, Berlin (2004)
6. Stark, J.: Product Lifecycle Management – 21st Century Paradigm for Product Realisation.

Springer, London (2005)
7. Abramovici, M.: Future Trends in Product Lifecycle Management (PLM). In: The Future

of Product Development: Proceedings of the 17th CIRP Design Conference, Berlin, Ger-
many, March 26-28 (2007)

8. Goth, G.: Agile Tool Market Growing with the Philosophy. IEEE Software 26(2), 88–91
(2009)

9. Schwaber, C.: The Expanding Purview Of Software Configuration Management. Forrester
Research Inc., White paper, July 22 (2005)

10. Välimäki, A., Kääriäinen, J.: Product Managers’ Requirement Management Practices As
Patterns in Distributed Development. In: 8th International PROFES (Product Focused
Software Development and Process Improvement) conference, Riga, Latvia, July 2-4
(2007)

11. Kääriäinen, J., Välimäki, A.: Impact of Application Lifecycle Management – a Case Study.
In: International Conference on Interoperability of Enterprise, Software and Applications
(I-ESA), Berlin, Germany, March 25-28, pp. 55–67 (2008)

12. Kääriäinen, J., Välimäki, A.: Get a Grip on your Distributed Software Development with
Application Lifecycle Management. Accepted to be published in International Journal of
Computer Applications in Technology, IJCAT (To be published, 2009)

160 J. Kääriäinen and A. Välimäki

13. Välimäki, A., Kääriäinen, J.: Patterns for Distributed Scrum – a Case Study. In: Interna-
tional Conference on Interoperability of Enterprise, Software and Applications (I-ESA),
March 25-28, pp. 85–97 (2008)

14. Crnkovic, I., Asklund, U., Dahlqvist, A.: Implementing and Integrating Product Data Man-
agement and Software Configuration Management. Artech House, London (2003)

15. Kotonya, G., Sommerville, I.: Requirements Engineering: Process and Techniques. John
Wiley & Sons, Chichester (1998)

16. Stevens, R., Brook, P., Jackson, K., Arnold, S.: Systems Engineering: Coping with Com-
plexity. Pearson Education, London (1998)

17. Hooks, I., Farry, K.: Customer-centered products: creating successful products through
smart requirements management. American Management Association, New York (2001)

18. Svensson, D.: Towards Product Structure Management in Heterogeneous Environments.
In: Product and Production Development. Engineering and Industrial Design, Chalmers
University of Technology, Göteborg, Sweden (2003)

19. Kääriäinen, J., Taramaa, J., Alenius, J.: Configuration management support for the devel-
opment of an embedded system: experiences in the telecommunication industry. In: The
Fifth International Symposium on Tools and Methods of Competitive Engineering (TMCE
2004), Lausanne, CH, April 13-17 (2004)

20. Lyon, D.: Practical CM – Best Configuration Management Practices for the 21st Century,
2nd edn. RAVEN Publishing Company (1999)

21. Leon, A.: A Guide to software configuration management. Artech House, Boston (2000)
22. Whitgift, D.: Methods and Tools for Software Configuration Management. John Wiley &

Sons, England (1991)
23. Sommerville, I., Sawyer, P.: Requirements Engineering: A Good Practice Guide. John

Wiley & Sons, Chichester (1997)
24. Medina-Domínguez, F., Sanchez-Segura, M., Amescua, A., García, J.: Extending Micro-

soft Team Foundation Server Architecture to Support Collaborative Product Patterns. In:
Wang, Q., Pfahl, D., Raffo, D.M. (eds.) ICSP 2007. LNCS, vol. 4470, pp. 1–11. Springer,
Heidelberg (2007)

25. Macfarlane, I.A., Reilly, I.: Requirements traceability in an integrated development envi-
ronment. In: Proceedings of the Second IEEE International Symposium on Requirements
Engineering, pp. 116–123 (1995)

26. Crnkovic, I., Funk, P., Larsson, M.: Processing requirements by software configuration
management. In: Proceedings of the 25th EUROMICRO Conference, vol. 2, pp. 260–265
(1999)

R.V. O’Connor et al. (Eds.): EuroSPI 2009, CCIS 42, pp. 161–172, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Exploring the Role of Usability in the Software Process:
A Study of Irish Software SMEs

Rory V. O’Connor

School of Computing, Dublin City University, Dublin, Ireland
and Lero, The Irish Software Engineering Research Centre

roconnor@computing.dcu.ie

Abstract. This paper explores the software processes and usability techniques
used by Small and Medium Enterprises (SMEs) that develop web applications.
The significance of this research is that it looks at development processes used
by SMEs in order to assess to what degree usability is integrated into the proc-
ess. This study seeks to gain an understanding into the level of awareness of
usability within SMEs today and their commitment to usability in practice. The
motivation for this research is to explore the current development processes
used by SMEs in developing web applications and to understand how usability
is represented in those processes. The background for this research is provided
by the growth of the web application industry beyond informational web sites to
more sophisticated applications delivering a broad range of functionality. This
paper presents an analysis of the practices of several Irish SMEs that develop
web applications through a series of case studies. With the focus on SMEs that
develop web applications as Management Information Systems and not E-
Commerce sites, informational sites, online communities or web portals. This
study gathered data about the usability techniques practiced by these companies
and their awareness of usability in the context of the software process in those
SMEs. The contribution of this study is to further the understanding of the cur-
rent role of usability within the software development processes of SMEs that
develop web applications.

Keywords: Software process improvement, Software process, Usability, SME.

1 Introduction

Since the introduction of the Internet, web applications have moved beyond information
sharing to a point where most traditional standalone applications have a web-enabled
version [1]. Today the term web applications represent anything from information por-
tals to online communities. This study focuses on web applications as Management
Information Systems (MIS) accessed via a web browser with a central database
backend. It focuses on the following definition of a web application proposed by [2]:
“These new web applications blend navigation and browsing capabilities, common to
hypermedia, with ‘classical’ operations (or transactions), common to traditional infor-
mation systems”. This study does not consider in its scope E-Commerce sites, informa-
tional sites, online communities or web portals.

162 R.V. O’Connor

With the growth of the software industry, many development process models have
emerged, such as the waterfall, iterative and agile models. Companies are also placing
an increasing emphasis on the importance of compliance with standards such as ISO
9001 or the use of best practice models such as the Capability Maturity Model Inte-
gration (CMMI). But despite the number and variety of models and frameworks, there
is evidence that SMEs find it difficult to adhere fully to any one model or set of stan-
dards [3].

Recently there has been a call for new development process models that address
the unique requirements of web application development [4]. Such requirements in-
clude a short development lifecycle and a shorter shelf life of new functionality. They
must also keep pace with the rapidly changing technology on which they rely. There
are general guidelines available on what a web application process should incorpo-
rate. Suggestions include combining the activities of traditional models with those of
hypermedia design models [5]. Alternatively, an incremental process is recom-
mended, incorporating activities that address the needs of web application develop-
ment [6]. Despite these guidelines, there is evidence that most web development is
still largely ad-hoc and researchers liken it to the early days of traditional software
development [7, 8].

ISO 9241-11, a guidance on usability, defines usability in terms of measurable ob-
jectives, stating: “the extent to which a product can be used by specified users to
achieve specified goals with effectiveness, efficiency, and satisfaction in a specified
context of use”. Guidelines for web usability include: the degree of visual quality,
degree of customization, tracking user activity, and degree of proactivity [5]. How-
ever, usability guidelines for the web focus almost exclusively on web sites and fail to
identify usability issues unique to web applications. Even web application developers
are confused about usability standards and whether they should conform to web site
standards or Windows standards [19].

User-Centred Design (UCD) is an effort to involve the user in all stages of a soft-
ware development process. There are many UCD models, such as ISO 13407 or
industry models such as IBM’s. Much research to date on the practice of UCD in
companies assumes that a reasonably defined development process exists in the first
place. For this reason, the significance of this study is that it investigates whether a
well-defined development process indeed exists and if so, whether usability practices
are incorporated into that process.

1.1 Research Aims

This study examines SMEs understanding of usability, what usability techniques they
currently practice and how well they believe usability is represented in their develop-
ment process. It analyses the software development process SMEs claim to use and
looks at whether the process is actually followed in a typical project. By comparing
results across several case study companies, this study investigates whether common
issues and attitudes exist and how their practices compare to software development
models and usability standards. By investigating the typical development process and
what usability techniques are being used, the aim of this study is to set the ground-
work for further investigation into whether SMEs find it difficult to follow software

 Exploring the Role of Usability in the Software Process 163

development process models and UCD models when developing web applications.
Accordingly, the objectives of this study are to:

1. Explore the software development processes in practice by SMEs that develop web
applications.

2. Investigate the SMEs understanding of usability and assess their level of commit-
ment to it within the development process.

3. Investigate the gap between the development processes practiced by SMEs devel-
oping web applications and the proposed software development process models,
standards and best practices.

4. Investigate the gap between usability awareness and practices among SMEs and
usability standards and UCD guidelines.

5. Gain an understanding of why SMEs do, or do not, integrate usability into their
web development process.

2 Usability and Web Development Processes

Although usability is gaining widespread recognition, confusion exists as to what is
meant by the term usability [9]. For some it focuses on the User Interface, dealing with
issues such as user of color, pleasing layout and consistent terminology. For others it
deals with the software’s overall structure, how productively it allows the user to com-
plete their tasks and how easy it is to learn [10]. This study adopts the definitions put
forward by the ISO (ISO 9241-11) which defines usability as: “the extent to which a
product can be used by specified users to achieve specified goals with effectiveness,
efficiency, and satisfaction in a specified context of use”.

The process by which one achieves good usability in a product is known as User-
Centred Design (UCD). This is also referred to as usability engineering or human-
centred design. Many UCD design models put forward and all contain the key element
of involving the user in all stages of the development process [11]. This is in contrast to
a traditional software development process, which only involves the user in specific
stages of the lifecycle, such as requirements analysis and acceptance testing.

Studies have shown that user-centred design techniques are still underused among
development teams [12] and most usability issues are only detected during testing and
after deployment [13, 14]. Of those practicing UCD, one investigation revealed that
the majority of methods in practice were informal, low-cost user-centered design
methods. The most commonly used methods were iterative design, usability evalua-
tion, task analysis, informal expert review, and field studies [15]. Obstacles given for
not implementing UCD techniques include a lack of awareness of usability across the
company, lack of usability experience, poor management support and marketing pres-
sures [16]. Another reason given is the fact that UCD techniques are developed in
isolation from the software engineering community and real company environments
and thus do not take into account how well they will work in terms of team buy-in,
and resources [17].

2.1 Web Development Processes

Many current software development models have been criticized as not meeting the
unique requirements of web application development [7, 4] and accordingly there is a

164 R.V. O’Connor

need to develop new models that address the needs of web application development
[4]. The absence of a well-defined model for web applications has been explained by
two causes. Firstly, the scope of how a web application is defined varies greatly. Sec-
ondly, the web’s legacy is as an information platform rather than an application plat-
form [8].

There are some general guidelines available on creating a development process for
web applications. [5] suggests combining the activities of traditional lifecycles with
those suggested for hypermedia. [6] suggests an evolutionary, or incremental, process
which addresses the needs of web application development through the following
activities: formulation, planning, analysis, modelling, page generation, testing and
customer evaluation. Finally, many agree that regardless of the type of application
being developed, the basic principles of software engineering should always apply.
Good design, solid testing and change control should all be used as they are histori-
cally proven to work [18, 6].

2.2 Role of Usability in Web Development Process

Web application usability goes beyond interface design and interaction issues specific
to web pages. This study has found that research on usability standards for the web
focuses almost exclusively on web sites and there is a lack of usability standards for
web applications and developers admit to defining standards as they go. They also
express confusion as to what standards they should conform to, those for web sites or
traditional applications [19]. In the absence of clear recommendations, this study
looks at how web applications share characteristics of both traditional applications
and web sites.

Web application front ends are accessed via a browser, just as web sites are. As far
as usability for the user interface is concerned, web applications can borrow from
guidelines common to web sites. Web applications share other usability issues with
web sites, such as: download times, browser preferences and access via different
devices, such as PDAs [11]. On the other hand, web applications may differ from web
sites when it comes to the importance of learnability. Learnability may be less critical
in web applications compared to web sites as they are likely to be accessed on a more
frequent basis. There is also a greater chance that some degree of training or docu-
mentation is available for web applications compared to informational web sites [20].

There is little evidence available on the level of usability being delivered in real
web applications today and how today’s end users feel about usability standards. This
may be put down to the reluctance of companies to allow such information to become
public. But usability concerns for web sites focus on the UI and interaction issues
dealing with information, such as searching.

3 Case Studies

The case studies were restricted to companies that develop web applications. The
definition of web applications presented in section 1 has formed the basis for selecting
suitable companies. It was not limited to any genre of web application or to a geo-
graphical area. It was also considered immaterial if a company also developed tradi-
tional applications as long as a significant portion of development efforts focused on

 Exploring the Role of Usability in the Software Process 165

web application development. The primary source for identifying case studies was
through the researchers contacts, with possible companies being assessed. Through
this process, five companies were identified, who ranged in size from 15 to 2 softare
development staff. The job titles of those interviewed included Web Development
Manager, Product Manager and Software Development Manager among others.

An interview guide was prepared for use in the semi-structured interviews which
comprised both factual questions and open-ended questions designed to explore the
interviewee’s attitudes and opinions. It was designed to be semi-structured based on
the assumption that additional questions would be asked depending on the direction in
which the answers went. The guide was deigned so that each interview would be
completed within an hour, in order to ensure that interviewees would not lose focus.
The five main topic area covered by the interview guide were:

1. General background information about the company and its business sector.
2. The organization’s software development process and its practice.
3. The organization’s understanding and awareness of usability.
4. Usability Practices: Usability activities within the development process.
5. The interviewee’s opinion of usability in relation to the company’s products.

Detailed notes were taken during each interview and any additional questions that
were asked were also noted. Each interview was also recorded on tape. After each
interview, the tape recordings were transcribed and the interview notes were reviewed
and documented. This material was then used as the basis for within-case analysis.
The researchers looked for interesting findings or contradictory answers and wrote a
summary of observations for each case. All five interviews took place over a two
month period. After all of the interviews had been completed, the researchers began
within-case analysis. After the within-case analysis was complete, cross-case analysis
was carried out.

4 Analysis

This section presents the cross-case analysis of the data collected during the case
study interviews. It examines the findings of the interviews under the areas of Soft-
ware Process, Usability Awareness, Usability Practices and Product Usability. Firstly,
it looks at the software practices followed by the case study companies and compares
them to recommended practices as discussed in the literature and whether they have
adopted suggested practices for web application development. It then discusses the
awareness of usability and investigate usability practices of the case study companies
and examines the gap between their practices and suggested usability design tech-
niques. Lastly, it discusses the opinions of the interviewees about the usability of their
products and examines the lack of evidence available on the level of usability of to-
day’s web applications.

4.1 Software Process

Of the five case studies, two companies use RUP as their development method, one
uses an Agile approach and the other two use an internally developed process based

166 R.V. O’Connor

on a waterfall style model. Only the two companies using RUP had a fully docu-
mented process. The company using an Agile approach had a partially documented
process and the two companies using an internally developed process had not docu-
mented it at all. Analysis of the development process revealed that all five companies
were knowledgeable and clear in describing the steps that they follow, regardless of
whether it was documented or not. All but one of the companies believed the process
was being followed in all projects. However, four out of five companies also cited
deviations from the process.

An interesting finding was that three of the companies had recently undergone sig-
nificant improvements to their processes. One company had hired a project manager
with the responsibility of establishing a more structured, repeatable development
process. Another set up a new test team and formalized the build process. It was evi-
dent that these companies were moving in the right direction while still being aware
that they had more improvements to make.

None of the companies were following any of the available development models
without having customized it to their needs. When describing their development proc-
ess, all five companies reported having a Requirements Analysis phase at the begin-
ning of the lifecycle. Much of the literature cites poor requirements as the cause of
many subsequent problems in the software. But [21] believe that in web projects,
clients do not have a clear enough understanding of their requirements at the begin-
ning of a project for existing software processes to be effective. They believe that web
development companies should adopt an iterative approach that incorporates client
developer interaction and that assesses partial designs in order to clarify the client’s
requirements. Although only one company cited poor Requirements Analysis as a
problem in their process, there appears to be a lack of awareness that a key advantage
of the iterative design process is its ability to involve the end user early in the product
lifecycle. Of the three companies following an iterative process, only two delivered
interim software builds to the client. But both of these companies described the client
as a distinct entity to the end user of the system. Delivery of the builds appeared to be
more to meet the contract deliverable rather than a design tool.

The literature suggested that web application development can be likened to the
early days of traditional software development, when applications were mostly being
developed in an ad-hoc manner. But this study has revealed that all five case studies
have a defined development process. Although the process may not have been docu-
mented in two cases, all of the companies were able to clearly describe the steps in-
volved in their process and believed it to be a clearly defined, repeatable process.
They were also able to acknowledge deviations from the defined process. These find-
ings suggest that although there appears to be a need for a process suitable to small
companies developing web applications, practices are more formal than anecdotal
evidence suggests.

4.2 Usability Awareness

All of the companies had very little awareness of usability standards, with only one
company having a good knowledge of usability. Most of the companies believed
usability was well represented in their development process and that usability aware-
ness was good throughout the company. It emerged that two companies had a limited

 Exploring the Role of Usability in the Software Process 167

understanding of usability awareness, citing look and feel as the primary element. The
other three companies had a deeper understanding, describing usability as the need to
support the user tasks. An interesting finding was that those companies that showed a
deeper understanding of usability were also the ones doing business on a tender basis.
It is possible that in order to win tenders, companies must ensure that they respond to
the client’s needs. It is also possible that during the development process, the client
has much deeper involvement compared to those companies who are selling their
application on an off the shelf basis.

Analysis of users needs showed that the most commonly reported need was intui-
tive use. Two companies remarked that having to do as few clicks as possible was
important for their users, while another phrased this as fast use. Other needs cited
were easy navigation, quality of information and responsiveness. One company ob-
served that their users simply like what they are used to. This is an interesting chal-
lenge when developing web applications because it is possible that users are used to
desktop applications but have less experience with web applications. This is reflected
in the fact that one company said that their biggest challenge was delivering more and
more complex functionality via the web and still trying to maintain a high level of
usability. The challenge is to develop a web application that delivers a high level of
ease of use and learnability so that it becomes irrelevant to users that they achieve
their goal in a slightly different way to before. The researchers also believes that nov-
ice users may benefit greatly from education from the development company on the
advantages the web brings before assuming that the client wants a mirror image of the
desktop application functionality.

Only one company reported that awareness of the user needs and their IT skills was
poor. They acknowledged that this was reflected in the fact that they were still deliv-
ering new functionality with poor usability. Most of the companies felt that awareness
among staff of the client needs grows with the experience of working on a project and
through good requirement specifications.

Analysis of how the interviewees defined usability supports the evidence that con-
fusion still exists as to what is meant by usability. For some usability refers to the UI
and for others it means how productively the system allows users to complete their
task. Two companies defined usability in terms of the UI and the other three defined it
in terms of supporting the user’s task. It is encouraging that three companies defined
usability as the extent to which it supported the user tasks. But only one company
mentioned efficiency as an element of usability. This is particularly interesting in
terms of web applications because efficiency has been cited as one of the most impor-
tant aspects of usability for the web. Also, none of the companies remarked on effec-
tiveness or satisfaction as key elements of usability. Most of the companies have
reached an understanding that a system should enable a user to reach his goal but they
lack the awareness of the fact that it should enable them to do so in as productive and
pleasing a manner possible.

Rather than dismissing those who defined usability primarily in terms of look and
feel as having a poor understanding of usability, it is worth looking at the fact that
most of the companies did not mention look and feel at all. Although industry defini-
tions make it clear that usability is much more about the look of a product, [5] cites
the ‘degree of visual quality’ as a key element of usability for web applications. This
finding supports the observations by [19] who noted that developers are confused

168 R.V. O’Connor

about whether they should conform to web site or traditional application standards. It
is encouraging that three of the companies described usability in terms of reaching
user goals but the importance of look and feel for web applications cannot be dis-
missed. This raises the need for a clearer definition of usability for web applications,
one that embraces the need to support the user goals yet recognizes the visual ele-
ments web applications share with web sites.

Analysis of how the companies described the usability needs of their user shows a
contradiction with their definitions of usability. For example, when describing their
understanding of usability, no companies mentioned efficiency or productive use. But
when discussing the needs of their user, two cited the most important element as effi-
cient use of the product. Another example is that although two companies defined
usability in terms of look and feel, none regarded it as a usability need for their users.
Yet most companies recognized it as a key element in attracting new customers. The
most common usability needs cited centered around ease of use, although it was de-
scribed in different ways. One company described it as learnability, another as ease of
use and two as intuitiveness. This is interesting when compared to claims by [20] who
suggested that learnability is not as important in web applications compared to web
sites because the user would be more likely to have undergone training or have docu-
mentation available.

4.3 Usability Practices

Only two of the five companies had internal staff dedicated to usability design practices
and one of these was a part-time employee working from home. A third company used
external consultants to conduct usability evaluations of their product during its initial
development. Three of the five companies gathered usability requirements as part of
requirements analysis. In two of these companies, they do not explicitly refer to them as
usability requirements, rather they were gathered as part of the general task require-
ments for the user. These were the same companies that defined usability in terms of
supporting the user’s tasks. It is difficult to see how the user can explicitly provide all of
their usability requirements without ever referring to them as such.

In terms of the overall product design, three of the companies had a formally estab-
lished software design team in place and the other two had lead architects responsible
for product design. They were responsible for the overall vision and direction of the
product. It is of concern that there was no mention of usability being represented at
this level of design. It appears that usability tasks are being practiced at grassroots
level and are of less concern during the high level design of products. This suggests
that usability is not a concern at the upper management level yet management support
is critical for it to grow in importance. Although all five companies considered them-
selves to be offering a good level of usability, only one of the four companies had a
management driven approach to practicing usability techniques.

Two of the five companies claimed to do usability testing, with one reporting that
that this was done as part of Acceptance Testing. The researchers believes that there is
a lack of understanding as to what usability testing is and it is confused with User
Acceptance Testing. Two companies required that the client must sign off on the
product based on acceptance testing. This is a positive step although not an efficient
means in catching usability issues at the end of the project lifecycle.

 Exploring the Role of Usability in the Software Process 169

When asked who was responsible for usability in the end product, two companies
cited the client. This is interesting considering the fact that these companies never ex-
plicitly discuss usability with the client, so it is difficult to see to what degree they are
responsible. Although all companies demonstrated a degree of collaboration with the
client during Requirements Analysis, only one company sought approval from the client
on the final set of requirements. The most interesting observation was that none of the
companies openly discussed usability requirements with their clients but incorporated it
into the task requirements. This suggests that companies expect their clients to be able
to represent their usability needs without having explicitly referred to usability.

The lack of UCD practices was apparent across all of the case studies, regardless of
whether they developed bespoke applications or software for sale to multiple custom-
ers. The findings revealed that the three companies developing bespoke software were
the only ones who claimed to gather usability requirements. However, the evidence
on overall usability practices in this sample size did not suggest that the nature of
applications being developed had any bearing on the level of UCD techniques being
practiced.

Analysis of the development process has shown that three of the companies are fol-
lowing an iterative process, which is encouraged by UCD experts as a critical factor
in ensuring good usability in the end product. But during their iterative design phase,
only two companies provide early prototypes to the clients for analysis. Evidence
shows that finding usability issues at the end of a project life cycle is the most ineffi-
cient way to resolve them. For this reason, it is worrying that most of the companies
are not involving their users from the early stages of the design process. It appears
that between Requirements Analysis and Acceptance Testing, there is very little inter-
action between the client and the development team.

It should also be noted that there was almost no distinction in any company be-
tween client and end user. One company noted that the client might review the re-
quirements despite the fact that they are not necessarily knowledgeable about the end
user’s needs. It was clear that these companies recognised the fact that they had to
please the client first and foremost. But this assumes that the client will represent the
end users needs and if the end user is not happy with the end product, it is unlikely
that the client will take responsibility.

The evidence suggests that meeting usability needs is considered by companies to
be a part of good functional and U.I design, rather than a set of independent tasks.
These companies have not adopted specific usability techniques in their development
process. This supports the evidence that UCD techniques as criticized as unsuitable
due to the fact that they were developed outside the field of software development.
Despite not using usability techniques, most of these companies demonstrated a belief
that they are supporting the usability needs of the user through good task analysis.
[21] believe that web-based applications place increased emphasis on user interac-
tions. It suggests that the nature of web applications means that there is already more
focus on the user experience compared to developing traditional applications.

4.4 Product Usability

All of the companies believed that usability was very important for attracting new
customers. They unanimously claimed that the usability of their product was very

170 R.V. O’Connor

good. However, it was outside the scope of this study to examine the usability of the
products developed by the case study companies. For this reason, it was not possible
to verify the claims made by the interviewees about the usability of their products. All
five companies claimed that the usability of their product was better than the competi-
tion, another claim which could not be verified without assessing the usability of their
products and their competitor’s products.

This study found no evidence on the level of usability being delivered in web ap-
plications today. This has been justified by the fact that companies would naturally be
reluctant to reveal negative feedback about their web applications. Accordingly, it
was not possible to compare the opinions about the usability other companies prod-
ucts with those of the case study companies. As previously stated, this study also did
not review the usability of the products developed by the case study companies as it
was considered outside its scope. For this reason, it was not possible to compare the
usability of the case studies products against those of other companies.

5 Discussion

The cross-case analysis has revealed differences between current practices among
SMEs and industry standards for software development processes and usability prac-
tices. The key gaps between these standards and current practices are outlined below:

• SMEs are not using a development process designed to meet the specific needs of
web application development.

• There is little use of UCD techniques in the development process: Usability re-
quirements are not gathered independently; No formal usability testing; No in-
volvement of end user in design process; and little practice of usability evaluations.

• The SMEs definition of usability is limited and inconsistent.
• There is a need for a definition of usability specifically for web applications.
• Uptake of, and interest in, best practice frameworks is poor.
• There is a need for open discussion with clients and end users on usability re-

quirements.
• There is little awareness of usability standards and they are considered too vague to

implement in real projects.
• Few staff members with UCD experience.

Other findings of less critical importance were:

• The definitions of usability made no provision for ‘quality in use’, such as satisfac-
tion or efficiency.

• No usability representation during high level design of products.
• Descriptions of usability contradicted their awareness of the end user’s usability

needs.
• Regardless of the process model, interviewees demonstrated a good understanding

of their process and acknowledged deviations.
• SMEs were positive in the direction they were taking through recent efforts to

improve their process.

 Exploring the Role of Usability in the Software Process 171

5.1 Conclusions

The findings show interesting similarities with our background literature review,
which revealed that there were no proven process models available that met the spe-
cific needs of web development. This study showed that none of the companies were
using a development process designed specifically for web application development.
It also supported evidence that the use of best practice frameworks has been particu-
larly slow among SMEs.

The literature also suggested that the practice of UCD techniques was slow, which
was corroborated with the evidence from these case studies. The findings also uphold
suggestions that web developers are confused about how to implement usability.
Analysis of the interviews showed that the definitions of usability were inconsistent
and that there is still is a need for a definition of usability specifically for web applica-
tions. There was also very little awareness of usability standards. Also of concern is
the lack of involvement of end users in the development process.

There were positive findings in that the companies were demonstrating recent im-
provements in their process and an acknowledgement of process shortcomings. Inter-
viewees demonstrated a good understanding of their process, regardless of whether it
was documented or not. There was also a unanimously high level of pride in the end
product.

5.2 Limitations

The primary limitation of this research is the small number of companies it analysed.
It is difficult to draw firm conclusions from such a small set of case studies. How-
ever, it is still possible to draw tentative conclusions and a higher sample size of case
study companies could be used to strengthen the validity of the findings. Further
study would also benefit from a larger sample size of interviewees from each case
study company. This would enable the researcher to investigate whether the practices
and opinions differ according to different perspectives within the same company.

This study did not look at the products developed by any of the case study compa-
nies in order to assess their level of usability. When investigating usability awareness
and practices in a company, it would be of merit to also measure the usability in the
end product in order to see if the level of awareness has any bearing on the usability
on the end product.

5.3 Future Research

As the number and complexity of web applications grow, and user interactions with
these systems grow, the need for research in web application usability increases. The
background research revealed a need for further research in software process models
and UCD models that cater specifically to web application development. But before a
suitable model can be established, there is a need to understand the current practices
among web development companies and the difficulties they encounter. The scope of
the research into usability practices among web application development companies
could be widened to a larger number of case studies, based on an increased time-
frame. This would increase the validity of the findings and set the groundwork for
developing a suitable process model and UCD model for web application develop-
ment by SMEs.

172 R.V. O’Connor

References

1. Ginige, A., Murugesan, S.: Web Engineering: An Introduction. IEEE Multimedia (Janu-
ary- March 2001)

2. Baresi, L., Garzotto, F., Paolini, P.: From Web Sites to Web Applications: New Issues for
Conceptual Modeling. In: Mayr, H.C., Liddle, S.W., Thalheim, B. (eds.) ER Workshops
2000. LNCS, vol. 1921, p. 89. Springer, Heidelberg (2000)

3. Coleman, G., O’Connor, R.: Software Process in Practice: A Grounded Theory of the Irish
Software Industry. In: Richardson, I., Runeson, P., Messnarz, R. (eds.) EuroSPI 2006.
LNCS, vol. 4257, pp. 28–39. Springer, Heidelberg (2006)

4. Ginige, A., Murugesan, S.: The Essence of Web Engineering. IEEE Multimedia (April-
June 2001)

5. Fraternali, P.: Tools and Approaches for Developing Data-Intensive Web Applications: A
Survey. ACM Computer Surveys 31(3) (1999)

6. Pressman, R.: What a Tangled Web We Weave. IEEE Software (January-February 2000)
7. Avison, D., Fitzgerald, G.: Where now for Development Methodologies. Communications

of the ACM 46(1) (2003)
8. Gellersen, H., Gaedke, M.: Object-Oriented Web Application Development. IEEE Internet

Computing (Januaruy-February 1999)
9. Frokjar, E., Hertzum, M., Hornbak, K.: Measuring Usability: Are Effectiveness, Effi-

ciency, and Satisfaction Really Correlated? In: Proceedings of the SIGCHI conference on
Human factors in computing systems. ACM Press, New York (2000)

10. Juristo, N., Windl, H., Constantine, L.: Introducing Usability. IEEE Software (January-
February 2001)

11. Mayhew, D.: The Usability Engineering Lifecycle. Morgan Kaufmann, San Francisco
(1999)

12. Seffah, A., Metzker, E.: The Obstacles and Myths of Usability and Software Engineering.
Communications of the ACM 47(12) (2004)

13. Folmer, E., van Gurp, J., Bosch, J.: A Framework for Capturing the Relationship between
Usability and Software Architecture. Software Process Improvement and Practice 8(2)
(2003)

14. Anderson, J., Fleek, F., Garrity, K., Drake, F.: Integrating Usability Techniques into Soft-
ware Development. IEEE Software (January-February 2001)

15. Mao, J., Vredenburg, K., Smith, P., Carey, T.: The State of User-Centered Design Practice.
Communications of the ACM 48(3) (2005)

16. Radle, K., Young, S.: Partnering Usability with Development: How Three Organizations
Succeeded. IEEE Software (January-February 2001)

17. Wixon, D.: Evaluation Usability Methods: Why the Current Literature Fails the Practitio-
ner. Interactions (July-August 2003)

18. Constantine, L., Lockwood, L.: Usage-Centered Engineering for Web Applications. IEEE
Software (March-April 2002)

19. Cloyd, M.: Designing User-Centered Web Applications in Web Time. IEEE Software
(January-February 2001)

20. Lazar, J.: User-Centred Web Development. Jones and Bartlett Computer Science (2000)
21. Lowe, D., Eklund, J.: Client Needs and the Design Process in Web Projects. Journal of

Mobile Multimedia 1(1) (2005)

Quality Attribute Techniques Framework

Yin Kia Chiam1,2,3, Liming Zhu1,2, and Mark Staples1,2

1 NICTA, Locked Bag 9013, Alexandria NSW 1435, Australia
{yinkia.chiam,liming.zhu,mark.staples}@nicta.com.au

2 School of Computer Science and Engineering, K17, University of New South Wales,
Sydney, NSW 2052, Australia

3 School of Computer Science, University of Malaya, 50603 Kuala Lumpur, Malaysia

Abstract. The quality of software is achieved during its development.
Development teams use various techniques to investigate, evaluate and
control potential quality problems in their systems. These “Quality At-
tribute Techniques” target specific product qualities such as safety or
security. This paper proposes a framework to capture important charac-
teristics of these techniques. The framework is intended to support pro-
cess tailoring, by facilitating the selection of techniques for inclusion into
process models that target specific product qualities. We use risk manage-
ment as a theory to accommodate techniques for many product qualities
and lifecycle phases. Safety techniques have motivated the framework, and
safety and performance techniques have been used to evaluate the frame-
work. The evaluation demonstrates the ability of quality risk management
to cover the development lifecycle and to accommodate two different prod-
uct qualities. We identify advantages and limitations of the framework,
and discuss future research on the framework.

Keywords: Quality Attribute Techniques, Product Quality, Software
Process Improvement, Process Tailoring.

1 Introduction

The process research framework presented by SEI’s IPRC states that “In an
ideal future state, the use of processes is part of accepted practice to ensure
that acceptable levels of product qualities are in place during all stages of the
software and system development life cycle” [1, p.24]. It is during software de-
velopment that product qualities such as safety, performance, reliability and
security are determined. It is costly and time consuming to fix quality problems
at later development stages if a system fails to meet specified levels of product
quality. Research questions identified by the IPRC [1, p.27] in this area high-
light the importance of understanding how software processes can be created
to target product quality goals: “How do we select processes to meet specific
product quality requirements?” and “What process steps significantly influence
the achievement of a specified level of product quality?”.

Software engineers use a variety of specific techniques to investigate, evaluate,
and control potential quality problems throughout the development of a system.

R.V. O’Connor et al. (Eds.): EuroSPI 2009, CCIS 42, pp. 173–184, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

174 Y.K. Chiam, L. Zhu, and M. Staples

In this paper, we call these “Quality Attribute Techniques” (QAT). These QATs
are usually technical engineering techniques [2] that are specific to individual
product quality issues. Examples of QATs for safety include hazard analysis
techniques such as Failure Mode and Effect Analysis (FMEA) and Fault Tree
Analysis (FTA). QATs may be specific to a single phase of the development
lifecycle, or span multiple phases. However, QATs are usually not explicitly
detailed in software process models, and the relationship between QATs and
other process elements are not usually clearly shown. In order to create software
process models that target specific quality attributes, it is important to first
understand the important characteristics of QATs and how they relate to the
development process. If quality procedures are left implicit in software process
models, then tasks related to quality problems can be forgotten when individuals
leave development teams [3, p.2].

Most software process tailoring methodologies are designed to address varia-
tions in project context such as customer characteristics or the size of the product
or development team [4,5,6]. The research literature has not normally regarded
product quality as an important characteristic for software process tailoring. So,
although QATs are used in practice by software engineers, they are not currently
represented in detail or incorporated well in software development process mod-
els [2,7]. In practice, such information is usually informally described in process
documentation. The existence of a repository of codified knowledge about QATs
could help development teams to better understand the potential effect of using
various QATs to target key product qualities across all phases of the software
development process.

This paper proposes and evaluates a Quality Attribute Technique Framework
(QATF) for capturing important information about QATs. The QATF is in-
tended to provide a basis for creating a catalogue of QATs to support software
process tailoring to target a specific product quality attribute. Elements of the
QATF focus on information required for decision making during QAT selection
and integration with development processes. We have used safety techniques to
motivate the framework, and evaluate the framework using safety and perfor-
mance techniques. We use risk management as a general theory to encompass a
variety of product qualities. The following two research questions are the focus
of this paper:

1. What characteristics of QATs are useful to select QATs for inclusion in a
tailored software process that targets a specific product quality attribute?

2. What characteristics of QATs are useful to integrate QATs into software
development process models?

The outline of this report is as follows. Section 2 discusses work related to this
research. Section 3 describes the QATF. Section 4 presents an evaluation of the
QATF using safety and performance techniques. Section 5 discusses limitations
and advantages of the QATF arising from the evaluation. Section 6 presents
conclusions and discusses future research.

Quality Attribute Techniques Framework 175

2 Related Work

Most earlier research on helping development teams to achieve specific product
qualities has focused on techniques and guidelines for specific quality attributes
(e.g. [8,9,10,11,12]) or specific lifecycle phases (e.g. [13]). It is important to ad-
dress quality throughout the entire development process. Process engineers select
appropriate techniques and incorporate them into development processes created
or tailored for new projects. The selection and integration of techniques into de-
fined process models requires relevant information about those techniques to be
available and presented to process engineers.

There are some efforts in the safety area to describe information about safety
techniques. The EWICS TC7 Software Sub-group [14] and Leveson [15, p.313-
358] provide general descriptions of safety techniques and highlight advantages
and disadvantages of using each technique. Characteristics related to process in-
formation have been discussed by Alberico et al. [11]) and Stephans [16]. Zurich
Risk Engineering [17] has compared hazard analysis techniques from the resource
perspective (team approach, documentation, time required and team leader ex-
pertise) and the scope perspective (result, analysis approach, depth of analysis,
emphasize single or multiple failures). These (especially the resource perspective)
are closely related to project characteristics. Some approaches in software per-
formance engineering (SPE) such as [18,19] discuss integration of performance
activities into the software development process. Vegas [20] has proposed a char-
acterisation schema to identify the relevant information for testing techniques.

Previous approaches do not attempt to systematically capture and document
the important information about QATs and their relationship with other pro-
cess elements. Most of the safety guidelines and approaches still lack information
which is important for QAT integration and process tailoring. Some attributes
identified in [20] and [14] are only suitable for testing techniques and are not
relevant to other types of QATs. Development teams need appropriate informa-
tion to understand the characteristics of QATs, how they are incorporated into
process models, and how they function to identify, analyse or control potential
quality problems.

QATs for safety-critical system have been selected to motivate this initial
framework because the area of system safety is well-established. There are many
existing procedures, handbooks, standards, books and other references. In safety-
critical systems, techniques are available to perform hazard evaluation, hazard
control and hazard analysis. This does not affect the validity of the whole frame-
work as all extracted characteristics are non-safety specific.

3 QATF

The ultimate goal of this research is to improve product quality by better in-
tegrating appropriate QATs into software process models. Information about
QATs can support decision making during QAT selection and integration with
development processes. The QAT framework (QATF) captures and presents in-
formation about QATs in a format intended to be suitable for process engineers

176 Y.K. Chiam, L. Zhu, and M. Staples

to understand QATs and to highlight the relationship between QATs and other
process elements. This is to support development teams select appropriate QATs
and incorporate them into process models and related process guides. The frame-
work is intended to encompass QATs from many quality domains.

3.1 QAT Overview

QATs are used to identify, analyze, and control potential quality problems in the
development of critical systems. For examples, safety critical systems are con-
cerned with hazards to life, property or the environment, security-critical systems
focus on resistance to external threats and malicious actions against integrity
[15], and performance-critical systems emphasize response time or throughput
[18]. However, despite their importance in practice, QATs are not usually rep-
resented in detail in software development process models. They are not well
integrated with other process elements such as tasks, roles and work products
across the different phases of process models.

3.2 Identifying Important Characteristics of QATs

The QATF was constructed using the following approach. An initial review of
the software safety literature identified the QATs in the safety area. The re-
view also provided information about characteristics of these QATs, such as
aims, description, benefits, limitations and expertise required [15,21,16,22,17].
By referring to the software process modeling literature and simulation litera-
ture [23,24][23] and the safety literature [11,16], process characteristics such as
input, output and performer have been identified and populated.

We analysed the differences and similarities between various types of safety
techniques. Based on the purpose of selecting QATs and integrating them into
process models, characteristics which are generic for all the QATs have been se-
lected. These characteristics have been grouped into three perspectives: General
Information, Process Tailoring and QAT selection. Metamodels such as SPEM
[23] can be used to define software processes and their components. The Process
Tailoring characteristics in our framework have been selected based on the basic
process entities defined in SPEM: roles, activities, work products and guidance.
According to SPEM, a software development process is a collaboration between
multiple roles that execute operations called activities and have work products
as inputs and outputs [23]. Guidance elements such as tools, guidelines and ex-
amples can be used to support or automate the execution of an activity. The
QATF and the three perspectives are as follows.

General Information. The General Information perspective provides an
overview of the functionality of a QAT.

– Technique Name: Short and full name of the QAT.
– Aims: What the QAT helps or enables us to do.
– Description: A brief overview of the QAT.

Quality Attribute Techniques Framework 177

Process Tailoring Characteristics. The Process Tailoring perspective high-
lights the relationship of a QAT with elements in software process models.

– Main performer(s): The roles of people who typically perform the QAT.
– Optional Performer(s): Other roles which can optionally perform or assist

the QAT.
– Phase(s): The development process phase(s) in which the QAT is applied.
– Input: The work products (information or artefacts) needed to apply the

QAT.
– Output: The temporary, intermediate or final products created or modified

during the performance of the QAT.
– Guidance Documents: Additional documents (e.g. guidelines, templates or

examples) that can be used to assist the performer to execute the QAT.
– As Source Data for (optional): Other techniques or process activities that

rely on the outputs from the QAT.

QAT Selection Characteristics. The QAT Selection perspective provides
a more detailed and structured view of a QAT, including costs, benefits, and
quality impact in terms of our risk-based theory of quality management.

– Category: The quality risk to which the QAT belongs (refer to Section 3.3).
– Benefits: Principal benefits claimed for the QAT.
– Limitations: Specific difficulties or limitations associated with the QAT.
– Cost of Application: The level of effort and resources needed to perform the

QAT.
– Expertise: The level of expertise or training required to perform this QAT.
– Team/Individual approach: Whether the QAT is a team approach or is per-

formed by an individual.
– Single/Multiple Failures Analysis: Whether the QAT emphasizes single fail-

ures in isolation or is geared toward multiple failures in combination.
– Tool(s): Tool(s) that can be used to support this QAT.

3.3 QAT Categorisation Based on Risk Management Process

Most prior research has focused on techniques for individual quality attributes or
specific lifecycle phases. We are attempting to provide a more general framework
for QATs, using risk management as a general theory for managing quality during
development. We have found risk management to be useful in understanding
how QATs function to affect quality by identifying, analyzing, and controlling
potential quality problems. In the QATF, categories classify QATs according
to the method by which they address quality risks. We believe this will help
process engineers to incorporate appropriate QATs to better manage quality
throughout the development process. For example, FMEA is useful for hazard
analysis (safety risk analysis). Process engineers may include FMEA into process
activities which require hazard analysis during the design phase.

According to [25, p.7], the risk management process is “a continuous pro-
cess for systematically addressing risk throughout the life cycle of a product or

178 Y.K. Chiam, L. Zhu, and M. Staples

service”. The risk-driven quality management process is inter-related with the
normal software development processes. After defining quality objectives, po-
tential quality risks can be identified. The impact of each potential risk can be
analysed and ranked according to its probability of occurrence and severity of
damage. The amount of effort to monitor, eliminate or prevent specific risks can
be determined by the level of risks.

Based on the studies that discusses software risk management processes
[26,25,15], QATs have been grouped into two main categories: Quality Assess-
ment and Quality Control (see Fig. 1). Below, safety techniques are used as case
examples in the description of these categories.

Fig. 1. Categorisation of QATs: Quality Assessment and Quality Control

Quality Assessment Techniques

1. Risk Identification - Involve QATs which produce lists of the project-specific
quality risk items may compromise a project’s satisfactory outcome. Typical
QATs for safety include hazard identification techniques such as Hazard and
Operability Study (HAZOP), “What if” Checklist.

2. Risk Analysis - Involve QATs which produce assessments of the probability
and magnitude of losses associated with each of the identified quality risk
items, and assessments of compound risks involved in risk-item interactions.
Typical QATs for safety include hazard analysis techniques such as Failure
Mode and Effect Analysis (FMEA), Fault Tree Analysis (FTA).

3. Risk Prioritisation - Involve QATs which produce a prioritised ordering of the
quality risk items identified and analysed. Typical QATs for safety include
techniques used to rank the impact of identified hazards such as Consequence
Analysis, Criticality Analysis.

Quality Control Techniques

1. Risk Treatment - Involve QATs which resolve, reduce or eliminate risk items
and take corrective action when appropriate. Typical QATs for safety include
hazard reduction design such as simplification and decoupling or corrective
actions such as improve error recovery (e.g. feedback, checking procedures,
treating system failures and supervision).

Quality Attribute Techniques Framework 179

2. Risk Conformance - Involve process of determining (verification) and con-
firming (validation) the quality specification of either a phase or that the
complete system is fulfilled and is consistent with the quality requirements.
Typical QATs for safety include verification and validation techniques such
as Sneak Circuit Analysis, Control Flow Analysis and Boundary Value Anal-
ysis to ensure that the software product meet precise safety objectives.

4 Evaluation of QATF

This section provides an initial evaluation of the QATF in assessing its support
for the integration of QATs into software development process models. Various
types of QATs are available to identify, analyze, and control potential quality
problems during software development. In this evaluation, the QATF has been
used to capture information for some safety and performance techniques.

Table 1. Organising Safety QATs into Different Software Development Phases

Development
Phase

Safety Activities Safety Techniques

Requirements Preliminary Hazard Identification
(PHI)

ETBA, HAZOP, Checklist

Preliminary Hazard Analysis
(PHA)

ETBA, HAZOP

Architecture
Hazard Analysis (SSHA, SHA) FMEA, FMECA, FTA, ETA
Design Pattern Homogeneous Redundancy Pat-

tern, Diverse Redundancy Pattern,
Monitor-Actuator Pattern

Design
Hazard Analysis (SSHA, SHA) FMEA, FMECA, FTA, ETA
Hazard Analysis (O&SHA) PET, Procedural audits
Safety Design Design for controllability, Barri-

ers (Lockouts, Lockins, Interlocks),
fail-safe design

Safety Design Review Walkthroughs, Checklists, Fagan
inspection, State transition dia-
grams, Time Petri nets

Coding Safety Code Design Error prevention (e.g. interlock);
Error deduction (e.g. stepladder);
Error recovery (e.g. warning)

Safety Code Review Emulation Analysis, Symbolic ex-
ecution

Design Patterns Homogeneous Redundancy,
Diverse Redundancy, Monitor-
Actuator

Testing Safety Testing Sneak circuit analysis, Software
common work analysis

Hazard Analysis FMEA, FMECA, FTA, ETA
Independent Safety Audit Safety Management Organisation

Review Technique (SMORT)

180 Y.K. Chiam, L. Zhu, and M. Staples

4.1 Methodology

The first part of the evaluation organises these QATs into different development
phases. The process tailoring information (e.g. phase, artifacts) captured by
QATF is used to incorporate QATs into relevant development process phases.
Safety and performance activities are used to describe the common purpose of
using these QATs. The second part of evaluation organises QATs into different
risk categories in Section 3.3 according to their aims in risk management. Safety
and performance techniques are again used as examples for this evaluation.

4.2 Results of Evaluation

Table 1 shows some examples of the safety QATs and their fit into development
process phases. For example, FMEA is suitable for subsystem hazard analysis
(SSHA) and system hazard analysis (SHA) during the architecture and design
phases. This QAT is not appropriate for hazard identification or preliminary
hazard analysis (PHA) in earlier phases because it is intended to help to analyse
potential failure causes and their effects. Corrective actions will be recommended
to the potential hazards based on an assessment of their criticality. Detailed sys-
tem information and descriptions are needed in order to perform this QAT.

Table 2. Organising Performance QATs into Different Software Development Phases

Development
Phase

Performance Activities Performance Techniques

Requirements Define and Analyse Performance
Requirements

Execution graphs (EG), Use Case
Maps (UCM), Layered Queueing
Network (LQN)

Architecture
Performance Prediction Performance Assessment for Soft-

ware Architecture (PASA), LQN,
Performance Evaluation Process
Algebra (PEPA), Stochastic Petri
Nets (SPN)

Performance-oriented design Prin-
ciples and Patterns

Principles (e.g. Centering Princi-
ples, Shared Resource Principle),
Patterns (e.g. Fast Path, Batch-
ing)

Identify Performance Antipatterns Antipatterns (e.g. Excessive Dy-
namic Allocation)

Design
Performance Prediction LQN, Markov Chain
Performance Principles Principles (e.g. Locality Principle,

Parallel Processing Principles)
Identify Performance Antipatterns Antipatterns (e.g. Circuitous Trea-

sure Hunt)
Coding Performance Solutions Performance Patterns (e.g. Fast

Path, Batching)

Testing
Performance Testing and Measure-
ment

Load Test, Instrumentation (e.g.
ARM, Paradyn), Benchmark

Performance Enhancement Performance Tuning

Quality Attribute Techniques Framework 181

Table 3. Organising QATs into Different Risk Management Categories

Risk Category Safety Techniques Performance Techniques

Risk Identification HAZOP, Checklist, ETBA EG, UCM, Interactive Tree
Algorithm, Performance An-
tipatterns

Risk Analysis FMEA, FMECA, FTA, ETA Software Architecture Analy-
sis Method (SAAM), PASA;
Layered queuing network
(LQN), Stochastic Petri Nets,
Markov Chains

Risk Prioritisation FMEA, FMECA, Criticality
Analysis, Consequence Analy-
sis

Layered queueing network
(LQN), Markov Chains

Risk Treatment
- Risk Reduction
Design

Hazard Reduction Design (e.g.
Simplification and decoupling)

Principles (e.g. Locality, Par-
allel Processing)

Risk Treatment -
Corrective Actions

Error Recovery (e.g. feedback,
checking procedures)

Performance Tuning, Perfor-
mance Patterns (e.g. Fast
Path Speed-Up)

Risk Conformance -
Verification

Sneak Circuit Analysis, Con-
trol Flow Analysis and Bound-
ary Value Analysis

Load Testing, Stress Testing,
Instrumentation

Risk Conformance -
Validation

SMORT, Safety Review, Fa-
gan Inspection

Benchmark, Profilers

Development teams can use the QATF to help them compare FMEA with other
safety QATs such as FTA and ETA, to determine a sequence of using QATs by
referring to the process information captured by the QATF. The most appropri-
ate QATs can be selected to execute specific safety tasks. For example, FTA and
ETA can be used when the design is completed. FTA begins with all hazards
identified from other QATs such as FMEA and HAZOP and works backwards
to determine their possible causes until reaching a base event. ETA uses inputs
from QATs such as FTA to analyse all possible consequences and determine the
percentage of consequences which lead to the desired result.

As with safety, there are various performance techniques available to iden-
tify and address performance problems throught development processes. These
QATs include performance estimation techniques, performance modelling tech-
niques, performance evaluation techniques to ensure that the implementation
meets performance objectives and also some principles and patterns for perfor-
mance design. Table 2 organises some performance QATs into different devel-
opment phases. For example, there are a set of performance-oriented principles
to identify design alternatives that help to meet specific performance objectives.
Design engineers can use the QATF to help choose the most suitable principle
by referring to the definition and examples of applying these principles.

Table 3 organises some of the safety and performance QATs into different qual-
ity risk management types (refer to Section 3.3). QATs are categorised based on

182 Y.K. Chiam, L. Zhu, and M. Staples

their aims and description captured by QATF. Development teams can choose
QATs based on their action in quality risk management process, and then inte-
grate them into their software processes.

5 Discussion

The section discusses some of the benefits and limitations of using QATF that we
have observed to date. The QATF provides a systematic way to capture impor-
tant information about QATs. The template provides some information about
how QATs impact quality during development, and how QATs can be related to
software development processes. The first part of our evaluation suggests that
QATs can be integrated into process models by referring to the process tailoring
characteristics in the QATF. Although the QATF was initially motivated and
developed using safety techniques, our evaluation has shown that the framework
is also relevant for other quality attributes (performance).

The risk management categories provide a way for development team to choose
QATs based on the means by which they impact quality risks. Table 3 shows
some examples of QATs which are been organised into different risk management
categories. We expect that process improvements to identify, analyse, and control
quality risks could be undertaken by integrating corresponding QATs into the
appropriate development phases or activities. These tables also indicate that
quality management processes are iterative and ongoing. For example, FMEA
and FTA not only can be used for hazard analysis in the early development
phases but also can been applied later during testing. New hazards will have
been identified during the testing phase. These hazards can be analysed to decide
on suitable risk treatments to control the identified hazards according to their
severity and frequency of occurrence. However, the selection of QATs can be
determined in practice by other considerations. For example, available expertise
may be a limiting condition in adopting a new QAT. The framework contains
elements to describe the resources and expertise required to use each QAT.

In the development of the QATF, we have catalogued some QATs for safety
and performance, but the catalogue is incomplete. Joint efforts will be required
between between researchers, process engineers, and quality experts in develop-
ment teams to obtain a more complete catalogue of QATs across a wider range
of product qualities. We intend that QAT selection strategies and process tai-
loring methods will be supported by this framework, but they are outside of the
scope of the framework itself. Some selection strategies (e.g. [20,13]) and tai-
loring methods may be able to be extended to select and integrate QATs more
effectively into development processes. Process modelling tools such as EPF or
WAGNER may be able to be used to represent QAT information and tailor
development process models using selected QATs.

6 Conclusions and Future Work

Quality Attribute Techniques (QATs) are used by development teams to create
software with specific qualities. Potential quality problems can be identified,

Quality Attribute Techniques Framework 183

analyzed and controlled by using appropriate QATs throughout the development
process. Development teams need appropriate information about QATs to better
understand their impact on quality and to better integrate QATs into process
models. Previous process tailoring approaches do not attempt to systematically
capture and document how QATs can be incorporated into process models. This
study has investigated important characteristics of QATs and has proposed a
framework to capture and present significant QAT information to support QAT
selection and process tailoring.

On the basis of this characterisation, development teams can use the QATF to
help identify important information about QATs and to place QATs into devel-
opment phases. We have used risk management theory as a basis to characterise
QATs according to the means by which they impact potential quality risks. This
has let us develop a framework that addresses a variety product qualities. Al-
though the QATF was motivated and developed using safety techniques, our
initial evaluation has showed that the framework can be used for performance,
and we expect that other product qualities will also be able to be treated within
the framework. This framework has been generated according to our own view,
further theoretical and empirical evaluation is required for this initial framework.

Our future work will develop process tailoring methods to select appropriate
QATs according to the product quality goals in a development project, and to
incorporate those QATs into software development process models. The SPEM
metamodel and EPF Composer will be investigated in terms of their ability to
support the representation of QAT information captured by QATF and also
integration of QATs.

Acknowledgements. NICTA is funded by the Australian Government as rep-
resented by the Department of Broadband, Communications and the Digital
Economy and the Australian Research Council through the ICT Centre of Ex-
cellence program.

References

1. Forrester, E.: A Process Research Framework. The International Process Research
Consortium (IPRC) (2006)

2. Zhu, L., Jeffery, D.R., Staples, M., Huo, M., Tran, T.T.: Effects of Architecture and
Technical Development Process on Micro-process. In: Wang, Q., Pfahl, D., Raffo,
D.M. (eds.) ICSP 2007. LNCS, vol. 4470, pp. 49–60. Springer, Heidelberg (2007)

3. Smith, C.U., Williams, L.G.: Best Practices for Software Performance Engineer-
ing. Technical report, Performance Engineering Services and Software Engineering
Research (2003)

4. Basili, V.R., Rombach, H.D.: Tailoring the Software Process to Project Goals and
Environments. In: International Conference on Software Engineering (ICSP), pp.
345–357 (1987)

5. Bowers, J., May, J., Melander, E., Baarman, M., Ayoob, A.: Tailoring XP for Large
System Mission Critical Software Development. In: Wells, D., Williams, L. (eds.)
XP 2002. LNCS, vol. 2418, pp. 100–111. Springer, Heidelberg (2002)

184 Y.K. Chiam, L. Zhu, and M. Staples

6. Pedreira, O., Piattini, M., Luaces, M.R., Brisaboa, N.R.: A Systematic Review
of Software Process Tailoring. SIGSOFT Software Engineering Notes 32(3), 1–6
(2007)

7. Zhu, L., Tran, T.T., Staples, M., Jeffery, D.R.: Technical Development Process in
the XML Domain. In: International Conference of Software Process, ICSP (2009)

8. Juristo, N., Ferre, X.: How to Integrate Usability into The Software Development
Process. In: International Conference on Software engineering (ICSE 2006), pp.
1079–1080. ACM, New York (2006)

9. Lutz, R.R.: Targeting Safety-related Errors During Software Requirements Analy-
sis. SIGSOFT Softw. Eng. Notes 18(5), 99–106 (1993)

10. Lawrence, J. D.: Software Safety Hazard Analysis Version 2.0. Technical report,
Lawrence Livermore National Laboratory (1995)

11. Alberico, D., Bozarth, J., Brown, M., Gill, J., Mattern, S., McKinlay VI, A.: Soft-
ware System Safety Handbook. A Technical and Managerial Team Approach (1999)

12. Borcsok, J., Schaefer, S.: Software Development for Safety-related Systems. In:
International Conference on Systems (ICONS 2007), pp. 38–42 (2007)

13. Wojcicki, M.A., Strooper, P.: An Iterative Empirical Strategy for the Systematic
Selection of a Combination of Verification and Validation Technologies. In: Inter-
national Workshop on Software Quality (WoSQ 2007), p. 9 (2007)

14. EWICS TC7 Software Sub-group: Techniques for Verification and Validation of
Safety-related Software. Computers and Standards 4(2), 101–112 (1985)

15. Leveson, N.: Safeware: System Safety and Computers. Addison-Wesley, Reading
(1995)

16. Stephans, R.A.: System Safety for the 21st Century. Wiley, Chichester (2004)
17. Zurich Risk Engineering: Which Hazard Analysis? - A Selection Guide (1998)
18. Smith, C., Williams, L.: Performance Solutions: A Practical Guide to Creating

Responsive, Scalable Software. Addison-Wesley, Reading (2002)
19. Fox, G.: Performance Engineering as A Part of The Development Life Cycle for

Large-Scale Software Systems. In: International Conference on Software Engineer-
ing (ICSP), pp. 85–94. ACM Press, New York (1989)

20. Vegas, S.: Identifying The Relevant Information for Software Testing Technique
Selection. In: International Symposium on Empirical Software Engineering (2004)

21. Storey, N.: Safety Critical Computer Systems. Addison Wesley, Reading (1996)
22. Vincoli, J.W.: Basic Guide to System Safety. Wiley, Chichester (2006)
23. OMG: Software Process Engineering Metamodel (SPEM) Version 2.0 (2008)
24. Pfahl, D., Ruhe, G., Lebsanft, K., Stupperich, M.: Software Process Simulation

with System Dynamics - A Tool for Learning and Decision Support. New Trends
in Software Process Modelling. World Scientific 18, 57–90 (2006)

25. AS/NZS ISO/IEC 16085:2007: Risk Management (2007)
26. Boehm, B.W.: Software Risk Management. IEEE Computer Society, Los Alamitos

(1989)

R.V. O’Connor et al. (Eds.): EuroSPI 2009, CCIS 42, pp. 185–200, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Building an Observatory of Course-of-Action in
Software Engineering: Towards a Link between ISO/IEC

Software Engineering Standards and a
Reflective Practice

François-Xavier Bru1, Gaëlle Frappin2, Ludovic Legrand1, Estéban Merrer1,
Sylvain Piteau3, Guillaume Salou4, Philippe Saliou5, and Vincent Ribaud5

1 Thales Airborne System, 29283 Brest Cedex 2
{François-Xavier.Bru,Ludovic.Legrand,

Esteban.Merrer}@thalesgroup.com
2 Teamlog, Rue Fulgence Bienvenüe, 22300 Lannion

Gaëlle.Frappin@teamlog.com
3 Direction des Constructions Navales - DCNS, route de la corniche, 29200 Brest

Sylvain.Piteau@dcnsgroup.com
4 Groupe Arkéa, 32 rue Mirabeau 29480 Le Relecq Kerhuon

Guillaume.Salou@arkea.com
5 University of Brest, CS 93837, 29238 Brest Cedex, France

Vincent.Ribaud@univ-brest.fr, Philippe.Saliou@univ-brest.fr

Abstract. As a help to compete in an evolving market, small software compa-
nies may use an observatory of their course-of-action. The course of action
considers the observable aspect of the actor’s activity. Its analysis provides a
description of actors’ activity and it can express recommendations concerning
both the individual situations and the collective situation. The observatory is an
articulated set of data collecting methods supported with semantic wikis and a
dedicated application. A case study, based on the activity of a team of 6 young
software engineers, depicts some aspects of the building and the filling of the
course-of-action observatory. As primary results of this work, we may think
that observing and analyzing software engineer’s activity help to reveal his/her
theory-in-use – what governs engineers’ behavior and tends to be tacit struc-
tures – That may help engineers to establish links between “Project Processes-
in-use” and a simplified Process Reference Model and contribute to reduce the
fit between a project-in-action and espoused SE standards.

Keywords: Course-of-action, theory-in-use, espoused theory, reflective practi-
tioner, software engineering processes.

1 Introduction

For many small software companies, software process improvement (SPI) is often out
of reach due to prohibitive costs and lack of SPI knowledge. However, to survive in
this competitive market, software developers must improve their productivity, time to

186 F.-X. Bru et al.

market and customer satisfaction. A help could be provided through a reflective atti-
tude (D. Schön [1]). A question occurs: “How to bring this reflective (and learning)
attitude into organizations and everyday work?”

Theories of action study what an actor do, in a given situation, in order to achieve
consequence or objectives. A distinction can be made between two kinds of theories
of action. Espoused theories are those that an individual claims to follow. Theories-in-
use are those that can be inferred from action [2]. Espoused theory and theory-in-use
may be inconsistent, and the agent may or may not be aware of any inconsistency. By
definition, the agent is aware of espoused theory. Theories-in-use can be made ex-
plicit by reflecting on action [2]. In the software engineering field - and especially in
Very Small Enterprises – the horizon of standards or the corporate baseline of proc-
esses and practices constitute the espoused theory, since it is what engineers claim to
follow. Although an emerging standard “Software Engineering - Lifecycle Profiles for
Very Small Enterprises (VSE)” [2] may facilitate the use of SE standards in a VSE,
what engineers do (and this action is designed and do not “just happen”) may reveal a
different theory-in-use. We believe that making explicit theories-in-use may help
software engineers to learn more suitable theories-in-use, thus contributes to improve
productivity and performance.

In this perspective, after several years of informal methods to analyze and improve
software engineers’ activities, we are now using the course-of-action analysis in order
to understand the structural coupling of a software engineer with his/her environment
and especially lifecycle software processes. Let us cite a short definition of course-of-
action: “the activity of one (or several) specific actor(s), engaged in a specific situa-
tion, belonging to a specific culture, which is significant for the latter, in other words,
that can be related or commented by him (or them) at any moment [4].” The course-
of-action analysis is based on an observatory that we consider in this introduction as a
system of data collecting methods. The data necessary to study the course of action
includes continuous observations of the behavior of action and communication in a
work situation as well as different traces of other elements such as interpretations,
feelings, and judgments [4]. The analysis of this data produces a decomposition of the
global dynamic in terms of smaller units and the relations of sequencing and embed-
ding between these units. The results of this analysis may (i) help to design better
interactions or corrective situations; (ii) facilitate the reconstruction by the actor of
his/her own activity, i.e. going from “pre-reflective consciousness” towards a reflec-
tive attitude [1].

This paper is organized as follow. Section 2 presents the course-of-action frame-
work and its application to software engineering. Section 3 drafts some related work.
Section 4 discuss about the observatory of course-of-action of software engineers.
Section 5 present excerpts of a case study. We finish with perspectives.

2 Course-of-Action Applied to Software Engineers’ Activity

2.1 The Course-of-Action in a Nutshell

Pinsky and Theureau, ergonomists, initiated the theoretical and methodological frame-
work of "course-of-action", summarized in one directing idea, that of the necessity of an

 Building an Observatory of Course-of-Action in Software Engineering 187

analysis of the actual operators’ activities in real work situations for the design of new
work situations [5]. An important theoretical hypothesis that the course-of-action
framework states about human activity, is that human activity is dynamically situated,
i.e. always appeals to resources, individual as well as collectively shared to varied de-
grees, which stem from constantly changing material, social, and cultural circumstances.
The course-of-action analysis add to various theories of “situated activity” the consid-
eration of the domain of experience, i.e. that of the agent's course-of-experience, of the
constructing process of this experience at any moment, and takes an interest in the ar-
ticulation between the cognitive domain and the course-of-experience. Theureau in [6]
defines the theoretical object called "course of action" as follows: “what, in the observ-
able activity of an agent in a defined state, actively engaged in a physically and socially
defined environment and belonging to a defined culture, is pre-reflexive or again sig-
nificant to this agent, i.e. presentable, accountable and commentable by him/her at any
time during its happening to an observer-interlocutor in favourable conditions”.

2.2 The Observatory of Course-of-Action

This paragraph is reproduced from [7].
The course-of-action analysis is based on an observatory that allows to specify the

material conditions of situated recall (time, place, material elements of the situation),
the follow up and the guiding of presentations, accounts and commentaries by the
agents as well as the cultural, ethical, political and contractual conditions that are
favorable to observation, interlocution, and creation of a consensus between the agent
and the observer-interlocutor [6].

A methodology has been developed to collect data on the courses-of-action. It con-
nects continuous observations and recordings of the agents’ behavior, the provoked
verbalizations of these agents in activity (from the "thinking aloud" for the observer-
interlocutor to the interruptive verbalizations at privileged moments) and the agents'
comments in self confrontation with recordings of their behavior [6].

Continuous observations and recordings together with verbalizations and self-
confrontation let us access to a representation of dynamics of the structural coupling
between the actor and his/her situation (including other actors) [9]. A “semiological
framework” [6] provide us with a theory of activity allowing to describe the activity
in abstract terms expressing hypothetical invariants. Explaining and using this theory
is out of the scope of this paper focused on the observatory of course-of-action. It is
sufficient to tell that this semiologic stems from the hypothesis that any period of
course-of-action may be described in smaller units. This description of the intrinsic
organisation of the course of action articulates two complementary descriptions: a
description of its global dynamics, characterising the units of the course of action and
the relations of sequencing and embedding between these units; a description of its
local dynamics, characterising the underlying structure of the elementary units [5].

2.3 An Observatory of Software Engineers’ Activity

The intervention of an ergonomist in an organization intended to produce software
concern the analysis of human-system interaction – of the software engineer with

188 F.-X. Bru et al.

his/her organization’s processes – and the design of the system in order to optimize
human well-being and overall system performance. In our case, we use the theoretical
and methodological framework of course-of-action in order to analyze the activity of
software engineers within Very Small Enterprises (VSEs, up to 15-25 employees).

Recall the definition of the course-of-action in §2.1: what, in the observable activity
of an agent […] is pre-reflexive or again significant to this agent, i.e. (i) presentable, (ii)
accountable and (iii) commentable by him/her at any time during its happening […].
Software workers do not achieve complex technical gestures or do not have to progress
along a detailed procedure. So (i) presentations to an observer are quite difficult to re-
produce and presentable artifacts that are most notable and representative of the job are
the outputs of software activities and tasks. (ii) Accounts are easier to collect and ob-
serve because a minimum of traceability and reporting is performed in any organization
and if it is not sufficient, accounting can be provoked without significantly modify the
course of the activities. (iii) Comments are not natural objects and have to be provoked:
reports, self competency assessment (§ 4.3).

The course-of-action framework proposes self confrontation as an indirect means to
document actor’s experience or pre-reflective consciousness or immediate understand-
ing of his/her activity at every instant t; the fact is highlighted that the experience at
instant t differs from what is called the reflective consciousness, which concerns par-
ticular and situated periods of the actor’s activity, when he/she considers his/her past
activity with a given purpose [8].

However, considering these two levels of consciousness, we may think that there
are two different levels of description of software processes. The first level – on
which this paper is focused – is concerned with the day-to-day course of a software
project and its associated activities while the second level – on which most Software
Engineering standards are focused – is concerned with a description of these activi-
ties. We believe that the first level is related with theories-in-use, those that can be
inferred from action [2]. And we think that the second level is related with espoused
theories, those that an individual claims to follow. The purpose of our work is to pro-
vide an observatory of existing processes and practices that could help to situate pro-
ject processes and practices in-use regarding to espoused standards.

2.4 Application for Software Engineers in VSEs

The semiological framework of course-of-action makes it possible to describe the
courses of action in general structural terms, expressing underlying regularities. It
allows on the one hand, such a description of the global dynamics of the courses of
action, and on the other hand, such a description of their local dynamics. It also links
these two descriptions. As we discuss in §5.3, the smaller units, based on individual
courses-of-action, describe the carrying out of all or part of software engineering base
practices. Hence, the global dynamic, which is related to the composition of these
performed practices, is a description of what we may call process-in-action.

The course-of-action analysis operates on what, in the observable activity of an
agent, is presentable, accountable and commentable by him/her. A sound analysis

 Building an Observatory of Course-of-Action in Software Engineering 189

may work only with sound collected data and, because most accurate data are col-
lected by the team itself, it requires the team commitment to this self-observation.
This team commitment can only be effective if the team is the main beneficiary of this
overwork, collectively - with a valuable result on team processes-in-action - and indi-
vidually - with an added-value on competency development -.

Thus, as presented in figure 1, this analysis shall lead to (i) help to specify the mo-
dalities of engineers’ interaction with project processes leading to the design of better
interactions or of corrective situations; (ii) contradict or support the reconstruction by
the engineer of his/her own activity, i.e. going from “pre-reflective consciousness” of
the actor towards a reflective practitioner attitude [1]. Both results have a valued im-
pact on the project processes.

VSE’s Process

Reference Model

Project
Processes-in-

action

is related to

Observatory and
analysis of the

course-of-action

is recorded in
and examined by

Design corrective
situations

leads to

Team competency
development

leads to

motivates

acts facilitates

Fig. 1. The project’s observable activities are self-recorded by team members. The analysis of
the project-in-action provides a decomposition of the global dynamic in terms of smaller units
and the relations of sequencing and embedding between these units. Two benefits are expected:
(i) a reflective consciousness of competency maturity level; (ii) a support to design corrective
actions. Both consequences may improve and facilitate the project processes.

3 Related Work

The “course-of-action” research framework [6] consists in several empirical and tech-
nological research programs in various domains (work analysis [4], traffic control [5],
sport [8], and music composition [21]). The work described in this paper uses plenti-
fully results of these research programs.

190 F.-X. Bru et al.

It would be impossible to reference all the research work that has been inseminated
by Argyris and Schön’s theories [10]. In the software engineering field, Halloran [11]
investigates the relationship between a software process assessment and improvement
model and organizational learning. This work points out the difference between “en-
gineer’s espoused theory” and his/her “theory in use” but it does not develop this
matter as we did and rather focuses on the use of organizational learning to promote a
proactive approach culturally to continuous improvement and learning procedures.

Many propositions have been made for Process Improvement or Process Assess-
ment in small software companies ([12], [13], [14]). Many small organizations are
unaware of existing SPI& SPA standards and assumes that assessments conformant to
these standards can be expensive and time consuming, difficult to perform in small
companies. We think that while building the observatory of course-of-action, founda-
tions are set-up that will facilitate further SPI & SPA programs. There are similitude
with the SPA process proposed in [13] based on an initial self-evaluation and follow-
ing structured interviews and the observatory as we use it.

4 Observing Software Activities

4.1 Software Engineering Standards

A very concise definition of the objects of software engineering is “a project uses
resources in performing processes to produce products for a customer [15].” It gives a
model in figure 2, centered on the software engineering project as the focal point for
applying software engineering standards. This suggests a categorization of standards
in four major areas: customer, process, product, and resource.

Fig. 2. The objects of software engineering, suggesting a categorization of standards in the
subject areas of customer, process, product, and resource [15]

 Building an Observatory of Course-of-Action in Software Engineering 191

For VSEs, each category contains a number of standards that put them out of reach.
There is a need for an umbrella standard within each category. The IEEE/IEC 12207,
Software Life Cycle Processes [16], provides this umbrella for all of the customer and
process standards. An on-going initiative of ISO should provide lifecycle profiles for
Very Small Enterprises (VSEs) [7].

4.2 VSEs Faced to the 12207

Confronted to the 12207, a software engineer in a VSE is at a loss (1“like a goose
finding a knife” as French people say). First, this standard has received major changes
since 1995: Amendment 1 in 2002, Amendment 2 in 2004, and a complete revision in
2008. Secondly, there are currently 43 processes in the 12207:2008 [16], organized in
7 process groups. As an example of the gap with the VSEs needs, the emerging stan-
dard “Software Engineering - Lifecycle Profiles for Very Small Enterprises (VSE)”
[7] contains 2 processes: Project Management (PM.1) and Software Implementation
(SD.1). PM.1 is subdivided in 4 sub-processes (Project Planning, Project Plan Execu-
tion, Project Assessment and Control, Project Closure) and SD.1 is subdivided in 6
sub-processes (Software Implementation Initiation, Software Requirements Analysis,
Software Architecture and Detailed Design, Software Construction, Software Integra-
tion and Tests Product Delivery).

It is not sure that a software engineer in a VSE share the same meaning of these 10
names of sub-processes (from Project Planning to Software Integration and Tests
Product Delivery) with a client or a colleague of a major company engaged in any SPI
program such as ISO/IEC 15504 or CMMI. However, they will try to communicate
and may sign a contract, but they don’t speak about the same things. This lack of
understanding illustrates the existence of two theories of action – for a software engi-
neer as for any practitioner -, as defined by Argyris and Schön. They have established
a distinction between those theories that are implicit in what we do as practitioners
and managers (theories-in-use), and those on which we call to speak of our actions to
others (espoused theory). “When someone is asked how he would behave under cer-
tain circumstances, the answer he usually gives is his espoused theory of action for
that situation. This is the theory of action to which he gives allegiance, and which,
upon request, he communicates to others. However, the theory that actually governs
his actions is this theory-in-use [10].” We may ask question about the extent to which
theory-in-use fits espoused theory. Reflection may be a help to discover the theory-in-
use and to reveal the nature of the ‘fit’. We believe that the observatory of course-of-
action – adapted to the software engineering field – may support this process.

4.3 What Can Be Observed?

This significant activity for the actors includes action and communication, but also
other elements: interpretations, feelings, judgments, …The data necessary to study the
course of action must include continuous observations of the behavior of action and
communication in a work situation as well as different kinds of instigated verbaliza-
tions from the actors which would provide access to other elements [4].

192 F.-X. Bru et al.

Software development never uses a repeated scheme and it may be difficult to in-
terrupt a software engineer at work and to provoke a verbalization of what he/she is
doing and why. In §2.3 we gave an overview of what, in the observable activity is (i)
presentable, (ii) accountable and (iii) commentable by the actor.

Products and documentary resources are main objects of (i) presentation as they
describe the inputs and outputs of the activity. The “historical” context of resources’
use and products’ production has to be recorded too. This can be described in terms of
events and processes, involving occurrences of agents (people) and artifacts (products
and resources) meeting in space (in case of distributed cooperation) and time. As a
first stage, we may consider individual courses of action of the various participants.
At a second level, a collective action involves parts of several individual courses of
action which take place synchronically or sequentially. We need to divide individual
course-of-action in smaller units, that we call course-of-action unit. Each event of
interest has to be (ii) accounted in an instance of Course-of-action Unit in relation
with people and artifacts involved. It provides a kind of project journal. A journal
may be seen as a kind of reflective practice that is a device for working with events
and experiences in order to write (iii) comments and extract meaning from them.

5 A Case Study

5.1 Introduction

In spring 2007, local employers in Brest decided to implement a recent French law on
professional training. This law requires that 3% of employees be under ‘sandwich’ (or
work placement) conditions. A lot of companies choose to use a system called “Con-
trat de professionnalisation” (professionalization contract) over a period of 12 months.
During these 12 months, the full-paid employee is attending university for certain
periods. For contracts involving our computing department, we dedicated an innova-
tive program called “Software Engineering by Immersion” (‘Ingénierie du Logiciel
par Immersion’). The main feature of this last year of the Masters programme is to
learn software engineering by doing, without any computing course but with a long-
term project as the foundation of all apprenticeships. Alternating employees are at-
tending university in 9 periods of 2 consecutive weeks and work in team of 6 in order
to build a complete information system.

The program’s rhythm is based on the lifecycle of a project organized into stages.
Each stage was arbitrary sized to 2 weeks due to the constraints of alternation. The
cycle is: Stage 0: Warm-up; Stage 1: Project set-up; Stage 2: Requirement capture;
Stage 3: Requirement analysis; Stage 4: Design; Stage 5: Software construction; Stage
6: Software construction; Stage 7: Integration and Verification; Stage 8: Qualification
and Deployment.

This case study is based on the activity of a team of 6 young software engineers
(the six former authors) accompanied with the two latter authors acting as partici-
pants-to-observe: one having a direct contact of the team members, sharing their envi-
ronment and taking part in the activities of the team, the other one conducting reviews

 Building an Observatory of Course-of-Action in Software Engineering 193

and formal assessments as they happen. This case study depicts some aspects of the
building and the filling of the course-of-action observatory.

The whole observatory is supported with several electronic tools such as semantic
wikis, content management system and dedicated applications. Semantic wikis offers
a lightweight authoring plate-form and will be used to record most events of the day-
to-day life in the project journal.

5.2 The Horizon of Software Engineering Standard

As told in section 4.1, the 12207:2008 standard acts as a standard umbrella and was
used during the introductory stage to define the framework of a software engineer’s
activity. The 12207:2008 was preferred to CMMI because the former (used jointly
with the 15504 standard [17]) separates processes and capability levels in two dimen-
sions while CMMI handles them in one dimension. This separation was preferred
because it defines processes “(set of interrelated or interacting activities which trans-
forms inputs into outputs” [16]) independently from base practices (“an activity that,
when consistently performed, contributes to achieving a specific process purpose
[17]”).

The 43 processes are too many and complex to be used as the reference model and
we concentrate on 16, those related to the software development cycle, that is: 6.2.2
Infrastructure Management, 6.3.1 Project Planning, 6.3.2 Project Assessment and
Control, 6.4.1 Stakeholder Requirements Definition, 6.4.4 Implementation Process
replaced by 7.1.1 Software (SW) Implementation Process and its 6 sub-processes,
7.2.1 SW Documentation Management, 7.2.2 SW Configuration Management, 7.2.3
SW Quality Assurance, 7.2.4 and 7.2.5 SW Verification & Validation, 6.4.7 SW In-
stallation. Processes are grouped into process groups (five 12207 group processes are
concerned that we regrouped in three).

The 6 young engineers chosen for this case study have a Bachelor in Information
Technology (4-year studies in the field) and they work in large companies with a
structured corporate baseline. However, there is a need for a common reference of the
terms used, either because they have different significations in the different compa-
nies, or because their signification is unknown or fuzzy. We choose to use the
ISO/IEC FCD 24765, “Systems and software engineering – Vocabulary [18]”.

We dispose of a PDF version of the 12207:2008, licensed by ISO and of a electronic
version of the 24765, copyrighted by ISO but free of use as long as the copyright is
cited. As the project goes along and its events are recorded in the project journal, and in
order to facilitate links between the project journal and Software Engineering standards
used at the horizon, the whole team filled two semantic wikis with a subset of the two
standards used:

• the 12207 wiki (http://oysterz.univ-brest.fr/12207) is an hypertext reference
of the ISO/IEC 12207:2008 for the process level : title, purpose, list of out-
comes and process decomposition in activities and tasks;

• the 24765 wiki (http://oysterz.univ-brest.fr/24765) is a subset of the ISO/IEC
24765 vocabulary, it is actually under reengineering but on-line SEVOCAB
is provided by ISO (http://pascal.computer.org/sev_display).

194 F.-X. Bru et al.

The structure of these two semantic wikis is given in figure 3.

Fig. 3. A model of 12207 and 24765 semantic wikis

5.3 The Project in Action

The two latter authors both worked for nearly ten years at Thales Information System
(formerly Syseca Inc), a software services company. They led projects and developed
several management information systems under the control of Thales Information
System corporate baseline.

The authors have defined an apprenticeship/production framework called ILI (In-
génierie du Logiciel par Immersion, Software Engineering by Immersion), based on a
reference model, a development cycle and a typical WBS (Working Breakdown
Structure: a deliverable-oriented hierarchical decomposition of the work to be exe-
cuted by the project team to accomplish the project objectives and create the required
deliverables. It organizes and defines the total scope of the project [18]).

The Process Reference Model (PRM) is adapted and simplified from ISO/IEC
12207; we are using 3 process groups organizing 13 processes: Software Develop-
ment Engineering (Requirements capture, Software Requirements Analysis, Software
Architectural Design, Software Detailed Design, Software Construction, Software
integration; Software qualification testing); Software Project Management (Project
Management, Quality Assurance, Configuration Management); and Software Devel-
opment Support (Infrastructure Management, Life Cycle Model Management, Docu-
mentation Management, Installation-Operation).

We use a Y-shaped life cycle that separates resolution of technical issues from
resolution of feature issues [19]. First, the cycle is divided into two branches (tracks):
a functional track and a technical track. Then these two tracks amalgamate for the
realization of the system.

The WBS has a structural and a temporal decomposition. Each process is structur-
ally decomposed in Software Engineering activities (to distinguish it from the activi-
ties in the 12207 sense) that may have slightly variation from a project to another.
Each Software Engineering activity is further decomposed in sub-activities that can be
fully specified or just named, depending of the scope and goals of the project. The
WBS is temporally organized in stages (in our case, 9 of 2 week each). The planning

 Building an Observatory of Course-of-Action in Software Engineering 195

of each stage is divided in several work scenes that carry on SE activities. Scenes will
be performed by team members and ought to produce artifacts.

The course-of-action forms a whole that is concerned with all aspects described in
previous paragraphs but we need to divide the continuous development of the course
of action into significant units (cf. §2.3). We decide to divide the whole course-of-
action by replying to the question: "What is this about, from the point of view of the
engineer?" This division is recorded through the central event Course-of-action Unit.
Complex or collective interactions require an intermediate level, called Step-of-action
sequencing and embedding Course-of-action units. Links with PRM are provided.

A picture of all these interlinked concerns is given in figure 4.

Fig. 4. A model of Process Reference Model -PRM- (on the left) and WBS (on the right). Arti-
facts are shared between PRM and WBS. The Course-of-action Unit is used as central link.
Steps-in-action characterize the relations of sequencing and embedding between these units.

The project journal uses a semantic wiki in order to record the progress of the
project. The project manager initially fills and updates the WBS of his/her project.
Team members can record events as they happen but have to systematically fill the
wiki at the end of each phase. Semantic wiki is the most flexible tool in order to re-
cord and shape a structured content. Properties (modifying the underlying data model)
can be added, updated or deleted as the project goes along. Information (data) can be
recorded in a bulk mode and the typesetting performed later. Things to do or to report
are created in one Wiki word to indicate that they have to be filled. Information can
be temporary missing or incomplete.

5.4 Recording Assessments

Several kinds of assessment occur in the life of a project. Assessment may be focused
on products or services, on processes or on persons. Assessment itself provides in-
formation on action performed but many other elements significant for the actors and

196 F.-X. Bru et al.

the course-of-action analysis: interpretations, feelings, judgments, actors’ commit-
ment to the situation and their use of past experience in the course-of- action.

Recording project assessment. The project has to record artifacts produced by pro-
ject progress: lecture notes, progress meeting report, peer review reports which consti-
tute valuable inputs for further analysis.

Recording competency assessment. We argue that personal capability determination
(rather than process capability determination) is more suitable to VSEs because em-
ployees may perceive it as a valuable benefit. Using the 2-level structure of our Proc-
ess Reference Model (on the left part of figure 4), we analyze carefully SE activities
in order to define abilities mobilized (or competencies: “the ability of a person to act
in a pertinent way in a given situation in order to achieve specific purposes [20]”). For
each process, we defined a family of competencies constituted with a list of knowl-
edge topics and a set of abilities or skills required to perform the process (see an ex-
ample in table 1).

Table 1. An example of a competency family: “Software detailed design’

Knowledge topics Abilities or skills
Software Design Fundamentals : concepts
and principles, design role in a
development cycle, top-level and detailed
design

To use design methods and tools (in
relation with requirements) to produce
design documents: system and software
architecture and detailed design

Software decomposition configuration
item, software component, software unit

To implement methods and modeling tools
of various aspects of a system (architecture
and decomposition software, data structure)

Software architecture through different
views: conceptual, dynamic, physical,
data.

To implement J2EE development and
technology of associated framework

UML diagrams to describe static and
dynamic views

To implement DBMS concepts, techniques
and tools

Object-oriented design

We believe that a first step in competency development should be made by the engi-

neer him/herself through a self-assessment of abilities at a maturity level. The assess-
ment scale grows from 1 to 5: - 1: Smog - 2: Notion - 3: User - 4: Autonomous - 5:
Expert. Each young engineer is required to periodically fill the 13 competency families
while auto-analyzing the tasks performed and him/her achievement level with the abili-
ties defined in the family. This periodic inventory is supported by eCompas, a tool in-
tended to manage development, assessment and value-added of competencies over the
course of a curriculum or a professional career.

The eCompas tool is intended to store artifacts that may be interesting to illustrate
the ability determination. Each time a software engineer self-assesses a process’s
ability level, he/she has to write an entry associated with the process and may link this
entry with artifacts stored. It constitutes a rudimentary portfolio, but sufficient for our
purposes. This tool needs to be reengineered to work with the wikis’ architecture.

 Building an Observatory of Course-of-Action in Software Engineering 197

5.5 Focus on a Process: The Design Process

Recording the project in action. According to ISO/IEC 12207, outcomes of the
7.1.3 Architectural Design and 7.1.4 Software Detailed Design Processes are: a) a
software architectural design is developed and baselined that describes the software
items that will implement the software requirements; b) internal and external inter-
faces of each software item are defined; c) consistency and traceability are established
between software requirements and software design and d) a detailed design of each
software component, describing the software units to be built, is developed.

For the Design Process, 12207 recommended tasks and 15504 base practices are
roughly the same:

1) transformation of the requirements for the software item into an architecture that
describes its top-level structure and identifies the software components.
2) development and documentation of a top-level design for the interfaces external to
the software item and between the software components of the software item.
3) development and documentation of a top-level design for the database.
4) development and documentation of preliminary versions of user documentation.
5) definition and documentation of preliminary test requirements and the schedule for
Software Integration.

Our ILI framework, considered as representative of VSEs processes, decompose the
Design Process in 3 SE Activities: Adjusting the Design, Exemplary Software Design,
and Software Design (including Database Design as a sub-activity).

If we have a look at the information recorded in the observatory by team members,
they performed two kinds of self-confrontations. The structure of self-confrontations
of the former kind, performed at the end of the task, reflects the structure of recom-
mended tasks as they may be found in the SE Activity description. For instance, for
the Exemplary Software Design Activity, the description stresses the identification of
Computer Software Components, the requirements allocation to the components and
the components specification. So, each participant to this activity recorded its own
participation in a Course-of-action unit kept to the Activity description. The latter
kind of self-confrontation was performed as team members prepared the Software
Design Process Review, a formal review. They have to create a synthetic description
of the Design Process and to record it in its associated Work Scenes (see figure 4).
Participants created Steps-in-action embedding individual Course-of-action units and
established inter-wikis links with the corresponding 12207 Processes. It is not sure
that the 12207 outcomes and tasks were confronted to the performed actions, but it
indicates an attempt to link the course-of-action at the horizon of SE standards.

Recording team competency development. Periodic inventories of team members
are recorded within the eCompas tool. A copy (in a Word format) is stored into the
observatory. Focusing on the Design Process, we may note that a team member has
participated to the 3 SE Activities defined for the Design Process (see above). As the
year started, he assesses himself at the maturity level - 1 - (or - none) for the process
as a whole and for each associated abilities. Inside his company, he acts as a software
developer and has very little opportunity to improve design skills. After the Software

198 F.-X. Bru et al.

Design Process Review (6th stage), he assesses himself to a maturity level of 4 -
Autonomous - (level 2 - Notions - was reached at the end of the 3rd stage, and level 3 -
User – after the Exemplary Design Activity). The availability of accurate competency
level provides valuable information for the project manager in order to assign tasks to
team members.

Recording other assessments. The most valuable information is provided with the
meeting report. They are recorded using a semantic wiki through a semantic form.
Links to other resources (person, artifact, process ...) are very easy to establish and to
update. It provides an ordering scheme and new navigation features.

6 Conclusion and Perspectives

We proposed to adapt the course-of-action framework to software engineers’ activity
in Very Small Enterprises (VSEs). An observatory collects the data necessary to study
the course of action therefore including continuous observations of the behavior of
action and communication in a work situation as well as different kinds of instigated
verbalizations (transcript in a written form) from the actors which would provide
access to other elements such as interpretations, feelings, judgments. As a case study,
the activity of a team of 6 young software engineers accompanied with two partici-
pants-to-observe is currently recorded in the observatory. As units of courses of ac-
tion are significant units for the actor, we choose to breakdown the whole course-of-
action in units based on individual performed activities.

A further study will use these data to proceed with the analysis of course-of-action,
using a theoretical framework, described as semio-logical. This framework will make
possible to explain the global dynamics - or composition - of the courses of action units,
their local dynamics - or generation - and the linkage between these two dynamics.

The current state of this work – the building and the filling of an observatory of the
part of the agent's observable activity that is pre-reflexive (i.e. presentable, account-
able and commentable) – let suggest that analysis will lead (1) to specify the modali-
ties of engineers’ interaction with life cycle processes leading to the design of better
interaction or of corrective situations and (2) to contradict or support the reconstruc-
tion by the engineer of his/her own activity, i.e. going from “pre-reflective conscious-
ness” of the actor towards a reflective attitude.

Thus, we may think that observing and analyzing software engineer’s activity help
to reveal his/her theory-in-use [10] - what governs engineers’ behavior and tends to be
tacit structures - that we may call Project Processes-in-use in a VSE. The unit break-
down of course-of-action is based on performed activities related to a simple Process
Reference Model issued from the ISO/IEC 12207:2008 standard. We made the hy-
pothesis that this standard constitutes the “espoused theory” of software engineers.
So, the course-of-action framework may help engineers to establish a link between
his/her “Project Processes-in-use” and “espoused Process Reference Model” and
contribute to reduce the fit between a project-in-action and SE standards. When the
upcoming standard “Software Engineering - Lifecycle Profiles for Very Small Enter-
prises (VSE)” [7] will be available, we will consider how this standard fits in this
proposition.

 Building an Observatory of Course-of-Action in Software Engineering 199

Argyris and Schön explored the nature of organizational learning and defined two
kind of learning: simple-loop learning and double-loop learning [22]. Then they set up
two models (Model I and Model II) that describe features of theories-in-use that either
inhibit or enhance double-loop learning. Further work is required to consider how
course-of-action analysis is related with these organizational learning models and
hence, on the VSE’s ability to cope with innovations and changes.

References

1. Schön, D.: The Reflective Practitioner. Basic Books, New York (1983)
2. Argyris, C., Putnam, R., McLain Smith, D.: Action Science, Concepts, methods, and skills

for research and intervention. Jossey-Bass, San Francisco (1985)
3. Software Engineering - Lifecycle Profiles for Very Small Enterprises (VSE) – Part 1,

http://www.iso.org/iso/iso_catalogue/catalogue_tc/
catalogue_detail.htm?csnumber=51150

4. Theureau, J., Filippi, G., Gaillard, I.: From semio-logical analysis to design: the case of
traffic control, communication. In: Colloquium Work activity in the perspective of organi-
zation and design, M.S.H., Paris (1992)

5. Theureau, J., Filippi, G.: Analysing cooperative work in an urban traffic control room for
the design of a coordination support system. In: Luff, P., Hindmarsh, J., Heath, C. (eds.)
Workplace studies, ch. 4, pp. 68–91. Cambridge Univ. Press, Cambridge (2000)

6. Theureau, J.: Course-of-action analysis & course-of-action centered design. In: Hollnagel,
E. (ed.) Handbook of Cognitive Task Design. Lawrence Erlbaum Ass., New Haven (2003)

7. Ribaud, V., Saliou, P.: Revealing Software Engineering Theory-in-Use through the Obser-
vation of Software Engineering Apprentices’ Course-of-action. In: 4th International Multi-
Conference on Computing in the Global Information Technology. IEEE Press, New York
(2009)

8. Theureau, J.: Selfconfrontation interview as a component of an empirical and technologi-
cal research programme. In: II° Journées internationales des sciences du sport, Paris (2002)

9. Varela, F.: Principles of biological autonomy. Elsevier, New York (1980)
10. Argyris, C., Schön, D.: Theory in practice: Increasing professional effectiveness. Jossey-

Bass, San Fransisco (1974)
11. Halloran, P.: Organisational Learning from the Perspective of a Software Process Assess-

ment & Improvement Program. In: 32nd Hawaii International Conference on System Sci-
ences. IEEE Press, New York (1999)

12. Cater-Steel, A.P.: Process improvement in four small software companies. In: Software
Engineering Conference, pp. 262–272. IEEE Press, New York (1999)

13. Grunbacher, P.: A software assessment process for small software enterprises. In: Euromi-
cro 1997. New Frontiers of Information Technology, pp. 123–128. IEEE Press, New York
(1997)

14. von Wangenheim, C.G., Anacleto, A., Salviano, C.F.: Helping small companies assess
software processes. IEEE Software 23, 91–98 (2006)

15. Moore, J.W.: An integrated collection of software engineering standards. IEEE Soft-
ware 16(6), 51–57 (1999)

16. ISO/IEC 12207:2008, Information technology – Software life cycle processes. Interna-
tional Organization for Standardization (ISO), Geneva (2008)

17. ISO/IEC 15504:2004, Information technology – Process assessment. International Organi-
zation for Standardization (ISO), Geneva (2004)

200 F.-X. Bru et al.

18. ISO/IEC FCD 24765, Systems and software engineering – Vocabulary. International Or-
ganization for Standardization (ISO), Geneva (2009)

19. Roques, P., Vallée, F.: UML en action. Eyrolles, Paris (2002)
20. Meirieu, P.: Si la compétence n’existait pas, il faudrait l’inventer In IUFM de Paris

Collège des CPE (2005),
 http://cpe.paris.iufm.fr/spip.php?article1150 (2007)

21. Donin, N., Theureau, J.: Music composition in the wild: from the horizon of creative cog-
nition to the time & situation of inquiry. In: EACE 2005, Crète, pp. 57–64 (2005)

22. Argyris, C., Schön, D.: Organizational learning: A theory of action perspective. Addison
Wesley, Reading (1978)

R.V. O’Connor et al. (Eds.): EuroSPI 2009, CCIS 42, pp. 201–212, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Tailoring ISO/IEC 27001 for SMEs:
A Guide to Implement an Information Security

Management System in Small Settings

Thierry Valdevit, Nicolas Mayer, and Béatrix Barafort

CRP Henri Tudor, 29 avenue John F. Kennedy, L-1855 Luxembourg, Luxembourg
{thierry.valdevit,nicolas.mayer,beatrix.barafort}@tudor.lu

Abstract. While Information Security Management Systems (ISMS) are being
adopted by the biggest IT companies, it remains quite difficult for smaller enti-
ties to implement and maintain all the requirements of ISO/IEC 27001. In order
to increase information security in Luxembourg, the Public Research Centre
Henri Tudor has been charged by the Luxembourg Ministry of Economy and
Foreign Trade to find solutions to facilitate ISMS deployment for SMEs. After
an initial experiment aiming at assisting a SME in getting the first national
ISO/IEC 27001 certification for a private company, an implementation guide
for deploying an ISMS, validated by local experts and experimented in SMEs,
has been released and is presented in this paper.

Keywords: Information security, ISO/IEC 27001, SME, implementation guide.

1 Introduction

In 2008, financial frauds were displayed at the top of security incidents charts [1].
Nowadays viruses are becoming less alarming than notebook thefts. However, organisa-
tions tend to buy additional security products when security incidents occur. There is
currently a strong need for a reliable and managed information security that does not
focus only on technical solutions. Since 1995, the interest in risk management standards
never ceased to grow. The British standards BS 7799 [2][3], which gave birth to both
ISO/IEC 27001 [4] and ISO/IEC 27002 [5] ten years later, became more and more suc-
cessful among organisations concerned by information security management.

Since their international development through ISO/IEC 27001, Information Secu-
rity Management Systems (ISMS) [4] are known to be the systematic organisational
answer to information security problems. They set the requirements for a global and
self-improving environment to manage information security. In 2009, over 5000 or-
ganisations worldwide have already certified their ISMS [6].

To enhance the promotion of innovation and improve the overall maturity of or-
ganisations [7], Luxembourg's Ministry of Economy and Foreign Trade has charged
the Public Research Centre Henri Tudor to establish a strong link between standardi-
sation and end-users by spreading ISMS to SMEs (companies with less than 250
employees) in Luxembourg. As they represent 90% of the country’s organisations, it

202 T. Valdevit, N. Mayer, and B. Barafort

is legitimate to evaluate how easily could ISO/IEC 27001 be deployed across SMEs.
This research work lies on the expertise that has been developed for several years in
CRP Henri Tudor in Information Security [8], assessment and improvement of proc-
esses using the ISO/IEC 15504 standard (Process assessment) in several sectors and
disciplines [9][10][11], downsizing standards for SMEs and transferring competences
to the market via the development of labels and/or certifications [12].

The particular underlying research project developing the ISMS implementation
guide for SMEs aims at helping them to go towards the implementation of a simpler
ISMS. The focus of this paper is thus based on the following research questions:

1. What are the specific needs of SMEs regarding ISMS?
2. How can we adapt ISO/IEC 27001 to best suit SMEs?

The paper is structured as follows: Section 2 presents the ISO/IEC 27001 standard.
Then, Section 3 presents our research method. Section 4 discusses the initial experi-
ment that triggered the definition of our particular objectives for an ISMS implemen-
tation guide adapted to SMEs. Section 5 reports the various steps of the elaboration of
the guide. Section 6 presents the future work required by the project. Finally, Section
7 concludes this paper and opens discussions regarding the research method and the
strengths and weaknesses of the results.

2 The ISO/IEC 27001 Standard

The outcome of an ISO/IEC 27001 certification is the effective establishment and
management of an ISMS. Relying upon quality management and ISO 9001 [13] prin-
ciples, it is built around a PDCA (Plan-Do-Check-Act) cycle, which objective is a
continual improvement of information security.

For an organisation to be certified, it is necessary to be compliant with the set of
normative requirements defined in the ISO/IEC 27001 standard. Those requirements
are expressed from Section 4 to Section 8 of the standard [4]. The other sections are
considered to be informative, and thus are not mandatory for the certification. The set
of normative requirements can be summarised as represented in Figure 1. This figure
presents the different parts of the standard, structured by sections.

First of all, it is necessary to establish and manage the ISMS by following the
PDCA cycle, composed of four iterative steps (described from Section 4.2.1 to Sec-
tion 4.2.4). These steps are supported by a specific documentation, whose require-
ments are explained in Section 4.3. Along with the documentation, they represent the
core requirements that one should satisfy to be certified. Additionally, some require-
ments are especially developed in a dedicated section, because of their importance or
complexity. The first one in this case is the management responsibility, describing
where it is necessary for the management to be specifically involved (Section 5). A
part is dedicated to the way to perform the internal ISMS audits, which are mandatory
(Section 6). Regular management reviews are also necessary in the cycle (Section 7).
Finally, the normative requirements sections end with requirements on how to per-
form the ISMS improvement (Section 8).

 Tailoring ISO/IEC 27001 for SMEs 203

Fig. 1. The ISO/IEC 27001 group of requirements

3 Research Method

In order to answer our research questions in a structured way, we propose a research
method following an action research approach [14]. It can be defined as “an iterative
process involving researchers and practitioners acting together on a particular cycle of
activities, including problem diagnosis, action intervention and reflective learning”
[15]. The research method, presented in Figure 2, consists of three steps.

Step 1 – Initial experiment: An initial experiment is performed in a Luxembourger
SME. In order to identify the issues related to the implementation of an ISMS in such
an entity, many feedbacks are gathered from this experiment. Then, they are summa-
rised to put emphasis on the major issues encountered. Hence, our research objectives
are defined so as to address those issues. This step answers our first research question.

Step 2 – Building the guide: The guide is written in order to achieve the objectives
identified during the first step of the research method. To ensure the relevance and the
viability of the document, it is validated through experts’ reviews. To do so, Luxem-
bourger experts in information security are mandated to theoretically evaluate the
guide. This process, closely tied with field experiments (Step 3), gives feedbacks in
order to improve the guide.

Step 3 – Experimenting the guide: As theoretical validation cannot bring an insurance
of effectiveness and adaptability of the guide, experiments are required within the
research method. They take place in several SMEs with different security back-
grounds and from different activity sectors. These experiments are not only conducted
by our team, but also by external individuals, in order to assess the usability of the
guide by people not involved in its development process. Each experiment leads to
several feedbacks and initiates upgrades to the guide.

204 T. Valdevit, N. Mayer, and B. Barafort

Fig. 2. Research method

Step 2 and 3 are performed iteratively, with consecutive updates of the guide. After
each reviewing process, a concrete experiment is planned bringing feedbacks and
updates to the guide. These modifications are then validated or modified through
another expert review and a new experiment can be started. After several iterations,
the guide should be freely available to SMEs.

4 Initial Experiment

The initial experiment was conducted in a SME in Luxembourg called Codasystem
[16]. This company offers innovative security services based on new information tech-
nologies. The value proposition associated to their services is based on the management
of the authenticity of digital documents. The Codasystem product addresses the need for
a reliable, secure and easy to use system capable of circumventing falsification risks
both on electronic documents and exchanges. Currently, solutions available on the mar-
ket are focused on securing exchanges (authentication, email signatures, cryptography).
No solution exists that could provide indisputable proof in court for both the electronic
document and its exchange. Codasystem offers the first integrated solution for the crea-
tion of digital proofs and their secure distribution (see Figure 3). The solution of Coda-
system has been examined by a law firm expert in digitalisation and legal property, and
has received approval regarding its legal value. The technology of Codasystem is
patented in France and extended worldwide.

 Tailoring ISO/IEC 27001 for SMEs 205

Fig. 3. Proposed product of Codasystem

Although the product proposed by Codasystem has been approved by experts, the
security of their processes is also at the heart of their concern. That is why the im-
provements in terms of security and the trust granted by the ISO/IEC 27001 certifica-
tion were raising strong interests.

4.1 Implementation of Codasystem’s ISMS

The initial experiment (Figure 2) at Codasystem started in June 2006 and ended in May
2008. The collaboration between our team and Codasystem is evaluated at about 100
CRP Henri Tudor man-days. The total documentation produced was over 300 pages.

The complete process was very long and time-consuming. This is actually due to
several issues. First, the set of ISO/IEC 27001 requirements to satisfy is very impor-
tant, especially for a SME like Codasystem with few human resources to allocate on
this project. Moreover, the gap between the current state of an SME and the state to
reach for the certification is generally more important in SMEs. For example, a re-
source management process is typically in place in large organisations, as opposed to
SMEs where it is usual to develop it “from scratch”. Very few formalised policies or
procedures were already available in Codasystem.

The average knowledge of people involved in the setting up of the ISMS is also
generally lower in a SME than in a large company. Where large companies are able to
hire experienced and skilled human resources with regards to management systems,
SMEs generally choose internal employees who include their effort on the ISMS in
their day-to-day work. That was the case within Codasystem, where people had not
much knowledge in quality and process management. Many training sessions were
performed during the early meetings of the experiment, in order to familiarise the
team with the standard.

The time needed to develop the documentation and to satisfy all the requirements
was also very important. Hopefully, our knowledge was an added value to the Coda-
system’s team, because they had very few experiences on what to implement in order
to satisfy the requirements.

206 T. Valdevit, N. Mayer, and B. Barafort

After nearly two years of experimentation, Codasystem became the first private
company ISO/IEC 27001 certified in Luxembourg, thus successfully concluding the
first step of our project. Moreover, all the lessons learnt during this experiment have
provided significant inputs for Step 2 of the project. They are summarised in the next
section.

4.2 Identification of the Objectives of the Guide

As seen in the previous section of the paper, this first experiment with Codasystem
brought us interesting feedback regarding the implementation of an ISMS in a SME.
Those inputs have been analysed in order to highlight some key issues and thus have
shown the challenges of such a research project. As a result, a methodological guid-
ance is indeed necessary, in order to achieve the following objectives:

• Objective 1: Downsize the requirements in order to reduce the cost and the com-
plexity of an ISMS. The set of ISO/IEC 27001 requirements has to be scaled down,
in order to fit with the limited resources of most SMEs.

• Objective 2: Smooth the approach to the users. Implementing an ISMS should not
be perceived as a constraint imposed by business strategy. Therefore, a smooth ap-
proach has to be developed introducing processes, PDCA paradigm and manage-
ment systems benefits to users.

• Objective 3: Give the major recommendations and generic tasks to ensure the
proper operation of the ISMS. Part of the work is transversal, like documentation
management and management responsibility: it takes place all along the successive
PDCA tasks. Therefore, the guide should start by presenting these specific actions,
detailing how they affect the whole system.

• Objective 4: Provide implementation guidance for each process of the PDCA cy-
cle. ISO/IEC 27001 presents all those requirements in a rough listing while the
presentation of these items should require a simple, standard and clear pattern. All
the inputs needed to ease fulfilment should also be provided.

• Objective 5: Ensure coherence and reliability of this tailored handbook. The goal
is to allow the possibility of having a smooth transition towards ISO/IEC 27001
certification. Therefore, the guide has to remain strictly aligned with the original
requirements, in order to necessitate only simple improvements if a SME wants to
achieve a certification.

• Objective 6: Provide tool support. A framework of documentation tools and tem-
plates should be proposed as a support for the implementation. The aim is to accel-
erate the process of implementation and decrease the cost involved (particularly for
documentation). It should also serve as a basis for packaged market-oriented solu-
tions and services (next transfer part of the research project).

5 Building the Guide

In order to achieve the objectives set in Section 4.2 of this paper, the guide has been
built with these specific aspects in mind. The following paragraphs explain how we
tackle the issues highlighted in the preceding ones.

 Tailoring ISO/IEC 27001 for SMEs 207

5.1 Selective Coverage

As an answer to the first objective, we propose in the guide a tailored version of the
ISO/IEC 27001 requirements. The complete set of standard requirements was first
modelled as a list of 32 major activities. Each of them was annotated, if applicable,
with its key outputs in term of document production. This list was then split over a 5-
column matrix representing various progressive configurations, giving five coherent
set of activities. Those five choices have been established through multiple experts’
opinions in order to find a consensus that would maintain coherence for each column
and keep the smoothest progression from implementing level 1 to 5.

Fig. 4. ISMS completion matrix

The criteria used to define these configurations were essentially in connection with
resources consumption, importance of the activity within the ISMS and therefore
return on security investment. However, the impact of each choice was taken into
account for its relevance with regards to the whole ISMS’s efficiency. Indeed, numer-
ous activities are strongly tied together and cannot be removed nor added without
others. For instance, the risk assessment requires half a dozen of activities, which
have no meaning by themselves.

Finally, a given level was chosen: implementation level 4. It basically consists of a
complete ISMS, without audits requirements, nor technical surveys. On one hand,
level 3 was rejected as it lacked most “check/act” activities. On the other hand, level 5
was too close to the original standard to bring any added value to the guide. Further-
more, as audits were probably one of the most expensive and time-consuming part in
Codasystem's experiment, it made sense to remove them.

Decisions made with this matrix conducted to the definition of the ISO/IEC 27001
coverage of the guide. This modelling of the standard also served as guidelines re-
garding how the guide should be organised, as explained in Section 5.4.

5.2 Raising Awareness and Maturity to Lower Apprehension

As stated in Objective 2, initial apprehension can be critical regarding ISMS imple-
mentation. That is to say, if the management perceives an ISMS as a long, costly or

208 T. Valdevit, N. Mayer, and B. Barafort

useless approach, it will not fund its implementation. Therefore, the guide starts with
some introduction chapters, which aim at answering most common doubts and mis-
conceptions, and motivate the use of the guide.

First, 10 key concepts are explained such as “asset” or “residual risk”. This intro-
duction page covers the most important concepts used all along the document into a
convenient condensed form. It gives the prerequisites to understand the guide and
keep it self-sufficient. Then, the reader is introduced to ISMS, by providing more
information on their goals and reducing common misconceptions regarding informa-
tion security. In order to highlight the scope of the guide, the gap with the actual
ISO/IEC 27001 is detailed and explained. Subsequently, quality management and
process approaches are presented by giving the necessary knowledge to understand
the PDCA paradigm.

In the end, raising awareness is tackled with some advices about the state of mind
and maturity required before implementing an ISMS. A whole chapter dedicated to
the estimated implementation period supports this last part. A generic distribution of
each stage is given as an example of how PDCA iterations should be conducted.

5.3 Transversal Guidelines

ISMS deployment does not only rely on the successive tasks recurring within the
PDCA cycle. Indeed, the standard contains requirements supporting the whole PDCA
chapters, as mentioned in Objective 3. Four chapters focus on those specific concerns
and serve as the very first steps of the implementation, prior to the beginning of the
“Plan” stage.

First, the guide insists on the importance of obtaining a written management com-
mitment regarding the requirements and consequences of ISMS. Indeed, the manage-
ment often takes lightly all the implications of such a project in the company. By asking
for this document, the guide ensures that management has considered those aspects.

Second, it gives all the required information on how to manage documentation
within the system. Focus is made on the importance of having a proper documentation
policy and generic guidelines are given to classify each document regarding its origin,
access restriction, storage and disposal.

Third, users are invited to build a document referencing and assigning human re-
sources. The guide proposes four generic categories of actors involved in the various
tasks of an ISMS. Assigning people on those roles eases the implementation because
each step is linked to those categories.

As a conclusion to transversal guidelines, the guide insists on deontological ethics
all along the life cycle of the management system.

5.4 Key Steps Presentation

The standard is not user-friendly enough to be handled by most SMEs (Objective 4).
Consequently, in order to facilitate the readability and comprehension of the guide,
each process is presented using a simple pattern inspired by Process Reference Mod-
els (PRM) [17].

 Tailoring ISO/IEC 27001 for SMEs 209

Fig. 5. Process description example

For each process selected in the guide (see Section 5.1), the guide presents:

• Its name
Most processes are named like their ISO/IEC 27001 equivalent, but little adjustments
were made to obtain more generic and global terms, which represents more clearly
their content.

• Its description
In order to facilitate comprehension and enhance efficiency, the guide includes
awareness-raising elements all along its content. It explains for each process its moti-
vations, utility and consequences.

• The detailed tasks
Processes are split across a simple set of tasks containing the sub-actions that should
be completed. They are first aggregated according to Codasystem's feedbacks for
readability and understanding, and will be improved after the next experiments.

• Input/output documents and records
Linking the various steps to each other is complex. Thus, to facilitate organisation of
documents and “out of the box” deployment, each process directly refers to its inputs
and lists its own outputs. In this way, it is easier to mesh all the processes together and
facilitate templates production and use.

• The people involved
As stated previously (Section 5.3), four categories of actors are defined. Those key
roles are assigned to each process when needed, giving immediate information re-
garding who should be involved and what are the hierarchical implications.

5.5 Experts Validation

ANSIL is the Luxembourg Information Society Standardisation Association. This
national association contributes to IT standardisation activities in Luxembourg, from

210 T. Valdevit, N. Mayer, and B. Barafort

the creation of experts committees to the promotion of standardisation. Within this
association lies the CNLSI (Information Security Standardisation Committee: mirror
group of ISO/IEC JTC1 SC27 in Luxembourg) which is composed of a dozen of
experts in information security. They were mandated to review and comment the
guide (theoretical review) twice, thus ensuring the achievement of Objective 5.

On the first validation cycle, in November 2008, they conducted 3 iterative reviews
in the same way as ISO standards are reviewed. Overall, they issued 156 comments
requiring various modifications of the guide. Prior to the first experimentation stages,
this initial validation ensured the document's reliability, coherence and alignment with
ISO/IEC 27001.

The second reviewing process is planned to take place after the first SME experi-
ment (see Figure 2). It will expectantly give new feedbacks, thus ensuring the quality
of the final version of the guide.

5.6 Tool Support

In agreement with Objective 6, a methodological guidance does not help enough the
users in order to implement an ISMS. To cope with this issue, we have developed
numerous templates and documentation tools mostly based on Codasystem’s experi-
ment. They ease and speed up the implementation of the ISMS, enabling users to
focus on more complex tasks, thus reducing the amount of human resources required.

Regarding documentation, we created numerous generic procedures to be com-
pleted and tailored by end-users. Our templates (i.e. management commitment, ISMS
policy, anomaly management procedure, etc.) only require to fill a few blanks, and
sometimes to be slightly adapted to the context of the organisation, before being used.

For the most complex part of the ‘Plan’ phase, that is to say risk assessment, a spe-
cific tool has been developed following an innovative model for risk management
[18]. It assists the user all along the risk assessment steps and is compliant with
ISO/IEC 27005 [19].

6 Further Experiments and Upgrades

Experimental results in Codasystem showed numerous opportunities to improve and
scale down an ISMS to fit to SMEs' needs. That is why the project's method integrates
two experimentation stages.

After 6 months of development and reviews, the guide is currently assessed in a
public (SME-sized) administration. Later on, a complete experimentation panel will
take place by supervising the deployment of the guide among three candidate SMEs
from various sizes and businesses. This second experimentation stage will be con-
ducted in a mutualised and interactive manner. Indeed, the ISMS implementation of
the three SME’s will be synchronised. Collective training sessions will be performed
and completed with individual on-site coaching. During combined courses, the three
SMEs will discuss their progress together, bringing new ideas and more feedbacks to
improve the guide even further.

 Tailoring ISO/IEC 27001 for SMEs 211

7 Discussion and Conclusion

In this paper, we have first analysed what are the specific needs of SMEs regarding
ISMS. Then, we have proposed a research method in order to tailor the ISO/IEC
27001 standard to an adapted way for SMEs. The two first steps of this research
method have been already performed and the third step is currently in progress. Fur-
thermore, the theoretical validation, that is part of the second step, will be performed
again, in order to improve the guide iteratively after experiments. The outcome of this
research work is a guide providing a more affordable, easier and faster way to imple-
ment an ISMS that is still covering a vast majority of ISO/IEC 27001 requirements.
This way, this research project brings combined benefits for the Luxembourger mar-
ket: it promotes information security to SMEs through the guide, and it provides local
IT consultants with a wider range of methodological support.

Regarding strengths of our approach, the systematic research method proposed in
Section 3 blends theoretical reviews and experiments. Furthermore, the experiments
are not only conducted by our teams, but also by individuals apprehending the guide
for the first time. We thus ensure objective feedbacks about our research work.

Moreover, this guide looks convenient on many aspects. Indeed, by approaching
management systems from the very beginning and dispensing the required knowledge
to understand why and how ISMS should be deployed, the guide gets a strong head
start when compared to the raw ISO/IEC 27001 document. The presentation pattern
listing both human and documentary resources eases the understanding and speeds up
the deployment of an ISMS. Combined with the limited coverage of the standard, the
guide grants the possibility to easily focus on the core elements of an ISMS imple-
mentation and therefore increases overall efficiency.

However, each action to make the guide simpler is one step away from the initial
standard. Certainly, the reduced scope causes potential troubles. Audits are definitely
a good mean of detecting problems within one's organisation and helps setting mile-
stones regarding ISMS status.

Finally, individuals could wonder why they should implement such a guide instead
of targeting a direct ISO/IEC 27001 certificate. Given this statement, the guide should
be part of a complete labelling framework for SMEs, supported by the Ministry of
Economy and Foreign Trade, and potentially a national certification dedicated to
SMEs. The development of this framework is part of our future work.

References

1. CSI, 2008 CSI Computer Crime and Security Survey (2009)
2. BSI, BS7799-1: Information Security Management Systems – Code of Practice for Infor-

mation Security Management Systems (1995)
3. BSI, BS7799-2: Information Security Management Systems – Specification with guidance

for use (1999)
4. ISO, ISO/IEC 27001: Information technology – Security techniques – Information security

management systems – Requirements (2005)
5. ISO, ISO/IEC 27002: Information technology – Security techniques – Code of practice for

information security management (2005)

212 T. Valdevit, N. Mayer, and B. Barafort

6. ISO, Information security management systems for small and medium-sized enterprises.
ISO Management Systems 9(1) (2009)

7. Information Security Portal in Luxembourg (2009), http://www.cases.public.lu
8. Barafort, B., Humbert, J-P., Poggi, S.: Information Security Management and ISO/IEC

15504: the link opportunity between Security and Quality. In: SPICE 2006, Luxembourg
(2006)

9. Hilbert, R., Renault, A.: Assessing IT Service Management Processes with AIDA – Ex-
perience Feedback. In: EuroSPI 2007, Potsdam, Germany (2007)

10. Di Renzo, B., Valoggia, P.: Assessment and Improvement of Firm’s Knowledge Manage-
ment Capabilities by using a KM Process Assessment compliant to ISO/IEC 15504. A
Case Study. In: SPICE 2007, Seoul, South Korea (2007)

11. Di Renzo, B., Hillairet, M., Picard, M., Rifaut, A., Bernard, C., Hagen, D., Maar, P., Re-
inard, D.: Operational Risk Management in Financial Institutions: Process Assessment in
Concordance with Basel II. In: SPICE 2005, Klagenfurt, Austria (2005)

12. Renault, S., Dubois, E., Barafort, B., Krystkowiak, M.: Improving SME trust into IT con-
sultancy: a network of certified consultants case study. In: EuroSPI 2007, Postdam, Ger-
many (2007)

13. ISO, ISO 9001: Quality Management Systems – Requirements (2000)
14. Susman, G., Evered, R.: An Assessment of the Scientific Merits of Action Research. Ad-

ministrative Science Quarterly 23(4) (1978)
15. Avison, D., Lau, F., Myers, M., Nielsen, P.A.: Action Research. Communications of the

ACM 42(1) (1999)
16. Codasystem (2009), http://www.codasystem.com
17. ISO, ISO/IEC 15504-2: Information technology – Process assessment – Part 2: Performing

an assessment (2003)
18. Mayer, N.: Model-based Management of Information System Security Risk. PhD thesis,

University of Namur, Belgium (2009)
19. ISO, ISO/IEC 27005: Information technology – Security techniques – Information security

risk management (2008)

R.V. O’Connor et al. (Eds.): EuroSPI 2009, CCIS 42, pp. 213–224, 2009.
© Springer-Verlag Berlin Heidelberg 2009

An Integrated Framework to Guide Software Process
Improvement in Small Organizations

Francisco J. Pino1,2, Félix García2, and Mario Piattini2

1 IDIS Research Group – Electronic and Telecommunications Engineering Faculty
University of Cauca, Street 5 # 4 – 70 Popayán, Colombia

fjpino@unicauca.edu.co
2 Alarcos Research Group – Institute of Information Technologies & Systems

University of Castilla-La Mancha, Paseo de la Universidad, 4, 13071, Ciudad Real, Spain
{Felix.Garcia,Mario.Piattini}@uclm.es

Abstract. When a small organization (VSE) tackles a software process im-
provement (SPI) initiative, the model that is used least is the one that would
guide the process improvement. We believe that this is a great failing, because
it is precisely a model of this type that is the guide which is needed to articulate
all the activities related to that improvement. In this vein, to support VSEs, as
well as to guide them in detail when they wish to carry out SPI initiatives, we
have developed an integrated improvement framework. We have done this by
taking into account widely recognized frameworks and the special characteris-
tics of VSEs. This paper introduces that improvement framework, its compo-
nents and its relationship with the COMPETISOFT project. Furthermore,
through case studies, it describes our experience of the application of the pro-
posed framework in eight firms. The initial results show that it is useful, practi-
cal and suitable for addressing SPI initiatives in VSEs.

Keywords: Improvement framework, Software process improvement, Small
companies, SPI, SMEs, COMPETISOFT.

1 Introduction

Although process reference models (e.g. ISO/IEC 12207, CMMI and ISO/IEC 15504-
5), process assessment methods (such as ISO/IEC 15504-2 and SCAMPI) and im-
provement models (like ISO/IEC 15504-4 and IDEAL) used for Software Process
Improvement -SPI- are available to all enterprises, studies such as [1-4] show that
these proposals from SEI or ISO are difficult for the vast majority of the very small
software enterprises -VSEs (i.e. firms with fewer than 25 employees, according to
[5]), to apply. This difficulty comes about because of the complexity of the recom-
mendations of the models and the consequent large investment in terms of time and
resources. In addition, many organizations remain unaware of these proposals [6].

Regarding the model that guides process improvement (improvement model), we
have found in [7] that this type of model is the one used least by small companies.
This type of model was used by 23 (of 122) companies involved in some SPI initia-
tive, that is in only 19% of the companies. This is a low percentage and we believe

214 F.J. Pino, F. García, and M. Piattini

that this is something to be regretted and dealt with. An improvement model is pre-
cisely the guide which is needed to articulate all the activities related to the improve-
ment, as well as all the other models involved, of course.

In this sense, and aiming to support the SPI initiatives within a VSE, we have de-
veloped the COMPETISOFT project [8]. In this project great importance was given to
the model for guiding SPI activities, the goal being to carry out SPI initiatives follow-
ing a systematic and coherent approach. COMPETISOFT maintains that if we are to
help small companies set up and pursue process improvement, then a guideline which
will address the improvement activities is needed. We should also point out that one
success factor for SPI initiatives in VSEs is for the improvement effort to be guided
by means of specific procedures and the combination of different approaches [7].
Given all this, one of the components of the Methodological Framework developed by
COMPETISOFT is a specific framework for guiding SPI activities (improvement
framework). The other two components are a Process Reference Model (based on
MoProSoft [12]) and a Process Evaluation Model (this conforms with the ISO/IEC
15504 standard [9]). The aim of this paper is simply to show the different components
of the improvement framework (proposed by COMPETISOFT’s Methodological
Framework) and its application in eight VSEs.

The paper is structured as follows. The next section presents related works. The
Methodological Framework of COMPETISOFT is then described. Section 4 explains
the improvement framework and its different components, and section 5 gives a de-
scription of its application in eight case studies. Lastly, an analysis is given and our
conclusions are set out.

2 Related Work

There are several proposals that present a set of processes which small companies
could use to reach significant benefit from process improvement. Among others, these
include: MoProSoft [9], MPS.BR [10], Adept [11] and Rapid [12]. All of these pro-
posals are related to assessment methods or process reference models and all of them
define a group of processes that should be taken into account by small companies in
their improvement efforts. Nevertheless, only in some of these proposals is a process
related to the activities to guide process improvement described. We could mention,
for instance, MoProSoft, which describes Process Management and MPS.BR, which
describes Process Assessment and Improvement.

With regard to research on models that direct improvement implementation for
small companies, several proposals have emerged in recent years. These include,
amongst others: IMPACT [13], MESOPyME [14], PROCESSUS [15], and the appli-
cation of the IDEAL model to small and medium enterprises [16, 17].

However, these proposals do not describe in detail a framework that integrates dif-
ferent components (such as strategies, methodologies, processes and tools) in guiding
the execution of SPI initiatives on small companies. The main contribution to the
subject of SPI in VSEs that this work intends to make is to guide the implementation
of process improvement in detail, by means of an integrated improvement framework
which VSEs would be able to take on.

 An Integrated Framework to Guide SPI in Small Organizations 215

The improvement framework describes five components which have been defined
by taking into account: (i) widely recognized frameworks, such as ISO/IEC 15504-4
[18], IDEAL and SCRUM; and (ii) special characteristics of the VSEs, such as that:
they are generally extremely reactive and flexible; they typically have a flat structure
and a free-flowing management style that encourages entrepreneurship and innova-
tion; they have limited economic movement and lightweight processes; and they do
not usually have enough staff to be able to develop specialized functions that would
enable them to perform complex tasks and to develop secondary products [6].

These components describe tailored and integrated improvement practices, strate-
gies and tools aiming to offer the VSEs a framework which is useful and practical for
addressing SPI initiatives. Furthermore, according to [7], the proposals that have been
used to SPI on VSEs are diverse and include: adaptation and use of SPI models, es-
tablishment of software processes to guide the SPI efforts, prioritization of the SPI
efforts and evaluation of a SPI programme. Only the improvement framework ad-
dresses (by means of its components) these improvement proposals in an integrated
and explicit manner.

3 Methodological Framework of COMPETISOFT

COMPETISOFT seeks to provide a strategy for increasing the level of competitive-
ness of Latin-American small software organizations by means of the creation and
dissemination of a common Methodological Framework for the improvement and
certification of the software processes of the small enterprises. An overview of the
components of this Methodological Framework is shown in Fig. 1.

Im
p

ro
ve

m
en

t
fr

am
ew

o
rk

Strategy for processes selection and prioritization

Improvement process - PmCOMPETISOFT

Assessment methodology - METvalCOMPETISOFT

Agile process for improvement introduction

Tool to support the improvement process – GENESIS

Process Reference Model

Process Evaluation Model

Im
p

ro
ve

m
en

t
fr

am
ew

o
rk

Strategy for processes selection and prioritization

Improvement process - PmCOMPETISOFT

Assessment methodology - METvalCOMPETISOFT

Agile process for improvement introduction

Tool to support the improvement process – GENESIS

Process Reference ModelProcess Reference Model

Process Evaluation ModelProcess Evaluation Model

Fig. 1. Methodological Framework of COMPETISOFT

The process reference model is based on MoProSoft. In fact, we can view this
process reference model as an evolution of MoProSoft, coming from the experience
of researchers and practitioners in software process development and improvement. It
is important to highlight that this evolution of MoProSoft has been used as a basis for

216 F.J. Pino, F. García, and M. Piattini

the subsequent publication of what has been called ISO/IEC 29110 Software Engi-
neering - Lifecycle Profiles for VSE [5], by the WG 24 / SC7 of ISO.

To allow mutual recognition of formal evaluations of COMPETISOFT across
Latin American countries, we suggest that each country should define its own As-
sessment Model, which must be in accordance with ISO/IEC 15504. In this sense, and
bearing in mind the new ISO/IEC 15504-7 standard [19], AENOR (Spanish Associa-
tion for Standardisation and Certification) from Spain and IRAM (Argentine Institute
for Standardisation and Certification) from Argentina are currently establishing an
organizational maturity model and a process assessment model to give the small soft-
ware companies a new strategy for certification by maturity levels.

For the definition, refinement and application of these components of the Methodo-
logical Framework of COMPETISOFT the A-R (Action-Research) and case study
research methods have been used. For the application of the A-R research method we
divided the project participants into two groups: a first one, made up of researchers
from different universities, and a second one, called the critical reference group,
which included the information technology professionals from VSEs. Through the
application of A-R we obtained continual feedback between the researchers and the
VSEs involved, aiming to develop and refine the Methodological Framework.

4 Improvement Framework

The aim of the improvement framework is to provide improvement practices, strate-
gies and tools to support improvement initiatives in small companies. This framework
is influenced by the ISO/IEC 15504 (Part 2, Part 4 and Part 5), IDEAL and SCRUM
models. From these proposals we have analyzed, integrated and tailored several im-
provement practices, in order to offer a specialized and suitable framework which
meets the needs of the VSEs when leading SPI initiatives. This improvement frame-
work defines five components: (i) a process called PmCOMPETISOFT, (ii) a meth-
odology for software process assessment called METvalCOMPETISOFT, (iii) an
agile process for improvement introduction, (iv) a strategy for process selection and
prioritization and (v) tools to support the improvement process (see Fig. 1). All the
process of this framework are described in terms of purpose, objectives, roles, activity
diagram, activities, work products, and tools support, according to the process pattern
established by COMPETISOFT. In the following section we give a summarised de-
scription of these elements, its brevity due to restrictions on space.

4.1 Improvement Process – PmCOMPETISOFT

This process has been defined to provide the VSEs with a guide with which to man-
age and lead the SPI initiatives step-by-step. The purpose of this process is to improve
an organization’s processes according to its business objectives, along with assisting
it to carry out its SPI initiatives. This process is the backbone as well as the compo-
nent integrator of the improvement framework. Fig. 2 shows the PmCOMPETISOFT
activity diagram, which includes roles, activities and work products. A complete de-
scription of this process is presented in [20].

 An Integrated Framework to Guide SPI in Small Organizations 217

<<Improvement
requirement>>

<<Output>>

<<Input>>

Initiating
the cycle
Initiating
the cycle

Diagnosing
the process
Diagnosing
the process

Formulating
improvements
Formulating
improvements

Executing
improvements
Executing
improvements

Revising
the cycle
Revising
the cycle

General
improvement
plan

General
improvement
plan

<<Input>>

<<Output>>

Strategic planStrategic plan

Assessment reportAssessment report

Preliminary improvement planPreliminary improvement plan

<<Input>>

Improvement
implementation
plan

Improvement
implementation
plan

<<Output>>

<<Input>>

Improvement
iteration
report

Improvement
iteration
report

<<Output>>

Improvement
report
Improvement
report<<Output>>

[Another iteration]

[No more iterations]

Supported by a Agile process
for improvement introduction

RPIRPI PIGPIG

RPRP

EVEV

MIGMIG RPIRPI

RPRP

RPIRPI

MIGMIG

Improvement
proposal
Improvement
proposal

Supported by
METvalCOMPETISOFT

[No more cycles]

[One more cycle]

Fig. 2. PmCOMPETISOFT Activity Diagram

4.2 Assessment Methodological – METvalCOMPETISOFT

METvalCOMPETISOFT has been defined to give support to the activity of diagnos-
ing processes from PmCOMPETISOFT, so as to help VSEs in the execution of an
internal, non-formal process assessment. This methodology allows us to obtain reli-
able information about the strengths and weaknesses of software processes, along
with information on opportunities for improvement. The purpose is for that informa-
tion to serve as a basis for decision making about process improvement within the
organization. This methodology defines:

• A process for software process assessment, called PvalCOMPETISOFT, which
offers a step-by-step guide to the execution of the activity of processes diagnosis.
This process breaks down into detail the activity of diagnosing processes. In Fig. 3,
the activities, roles and work products are shown.

• A light assessment method to determine the capability of software processes and
the maturity of a small organization [21]. The assessment method defines a meas-
urement framework (conformance with ISO 15504 Part 2), which in the capability
dimension has got only three levels of capability, making the model lighter, so that
it can be easily applied to small organizations.

• A tool to support the execution of the assessment process and method [22].

4.3 Agile Process for Improvement Introduction

This process has been defined in such a way as to give a detailed guideline for support-
ing the management and performance of the activities of the cycle made up by the for-
mulating and executing improvement activities of PmCOMPETISOFT. We developed

218 F.J. Pino, F. García, and M. Piattini

this process because in the early applications we observed that it is the iteration, com-
posed of the formulation and execution of improvements, which requires the greatest
amount of effort in the SPI initiative. What is more, this load falls mainly upon the or-
ganization. For the definition of this process we have used the SCRUM agile method
because it provides support for project management and it focused on small teams [23].
The purpose of this process is to offer all those who are involved in the improvement
cycle of small organizations an agile sub-process which allows them to take part in
carrying out the improvement opportunities found and with which they have some rela-
tionship within the VSE. Fig. 4 shows a break-down of the activities for formulating and
executing improvements which follow the SCRUM philosophy.

4.4 Strategy for Process Selection and Prioritization

A complete description of this strategy is presented in [24]. In this strategy we have
defined a set of processes which we consider to be of high-priority when initiating the
implementation of SPI initiative in VSEs. The fundamental principle of the proposal
is that process improvement must be connected to the other responsibilities of soft-
ware process management. The prioritization of these processes is established so as to
deploy a basic process management infrastructure (as the process improvement is not
an isolated activity, but is closely related to other activities of the software process
management). The processes selected and their priorities are:

• First of all, the process improvement process group (PIM.1 Process establishment,
PIM.2 Process assessment, and PIM.3 Process improvement)

• Secondly, the management process group (MAN.1 Organizational alignment,
MAN.3 Project management and MAN.6 Measurement)

• Thirdly, the support process group (SUP.10 Change request management, SUP.8
Configuration management, SUP.7 Documentation, and SUP.1 Quality assurance).

• Finally, the engineering process group (ENG.1 Requirements elicitation, ENG.2
System requirements analysis, ENG.3 System architectural design, ENG.4 Soft-
ware requirements analysis, ENG.5 Software design, ENG.6 Software construc-
tion, ENG.7 Software integration, ENG.8 Software testing, ENG.11 Software
maintenance)

Base practices of the process groups of engineering and support are described in the
process reference model of COMPETISOFT. The main practices of the process
groups of improvement and management are likewise described in the three compo-
nents of the improvement framework described above.

4.5 Tools to Support the Improvement Process

We have also developed a tool called GENESIS [25], which is used to support the
person Responsible for process improvement (RPI) in the management and imple-
mentation of an SPI initiative and in the administration of generated knowledge.

We might add that this framework has been described with the standard SPEM 2.0
and edited with the EPF Composer, thereby generating documentation in a standard
format which is updated and available to organizations through the Web.

 An Integrated Framework to Guide SPI in Small Organizations 219

Initiating
the cycle

Diagnosing the process Formulating
and executing
improvements

General
improvement

plan

Improvement
proposal

<<use>>

Assessment report Preliminary
improvement

plan

EV RPI RP

PvalCOMPETISOFT

Assessment
planning

Assessment
execution

Results
generation and
socialization

Processes
prioritization

Preliminary
planning of

improvements
<<Input>>

<<Output>> <<Output>>

<<Input>>

[Improvement
requirement]

<<Output>>

Initiating
the cycle
Initiating
the cycle

Diagnosing the processDiagnosing the process Formulating
and executing
improvements

General
improvement

plan

General
improvement

plan

Improvement
proposal

Improvement
proposal

<<use>>

Assessment reportAssessment report Preliminary
improvement

plan

Preliminary
improvement

plan

EVEV RPIRPI RPRP

PvalCOMPETISOFT

Assessment
planning

Assessment
planning

Assessment
execution

Assessment
execution

Results
generation and
socialization

Results
generation and
socialization

Processes
prioritization
Processes
prioritization

Preliminary
planning of

improvements

Preliminary
planning of

improvements
<<Input>>

<<Output>> <<Output>>

<<Input>>

[Improvement
requirement]

<<Output>>

Fig. 3. PvalCOMPETISOFT Activity Diagram and its relationship with PmCOMPETISOFT

Formulating improvementsFormulating improvements

Improvement
implementation
plan

Improvement
implementation
plan

Improvement
iteration
report

Improvement
iteration
report

[No more
iterations]

MIGMIG RPRPRPIRPI

Prioritized
improvement
opportunities
(from
General
improvement
plan)

Prioritized
improvement
opportunities
(from
General
improvement
plan)

Plan iterationPlan iteration Design
improvement

case

Design
improvement

case

<<Output>>

<<Input>>

Improvement
iteration

Improvement
iteration

Presentation
improved
process

Presentation
improved
process

Executing improvementsExecuting improvements

[Another iteration]

Presentation
next iteration
Presentation
next iteration

<<Output>>

MIGMIG PIGPIG

<<Input>>

Improved
process

Improved
process

PRE-GAME PHASE GAME PHASE POST-GAME PHASE

PHASES OF THE SCRUM PROCESS

<<Output>>

Plan execution
of iteration

Plan execution
of iteration

Update improvement
opportunities

Update improvement
opportunities

Daily worksDaily works Manage problemsManage problems

Conduct iteration
meeting

Conduct iteration
meeting

Review
iteration
Review
iteration

Conduct
retrospective

Conduct
retrospective

<<Output>>

[Days remaining
in current iteration]

[Iteration end]

From SCRUM’s Sprint

Fig. 4. Activity Diagram of the Agile process for improvement introduction

220 F.J. Pino, F. García, and M. Piattini

5 Case Studies

In COMPETISOFT the researchers carried out the intervention with the new propos-
als in the critical reference group, using the empirical variant for the execution of the
action activity of A-R. That is, the improvement framework developed was applied by
the researchers in the small companies (critical reference group) by means of the use
of the case study research method. To apply the proposed framework, we have con-
ducted eight case studies by following the protocol template for case studies presented
in [26]. Lack of space means that we will then give just an overview of the case stud-
ies in terms of design, subjects, analysis unit, field procedures, data collection and
limitations.

5.1 Design, Subjects and Analysis Unit

Taking into account the focus presented by [27], the design type of the case study in
this work is multiple cases – holistic, since the strategy has been applied in the con-
text of eight small companies. The object of study is a new integrated improvement
framework through which to guide SPI in VSEs.

The main research question addressed by this study is: Is the improvement frame-
work suitable (useful and practical) for leading Software Process Improvement efforts
in small software enterprises? We identified an additional research question and
various sub-questions (derived from each research question) for each component of
the improvement framework. By means of these questions we seek to know whether
these components have a useful function, if they are of practical use and whether they
conform to the reality of small companies. For each component we asked about: (i)
the effort of carrying out the activities associated with the improvement framework’s
processes (related to the use practice and the reality of companies), and (ii) the capa-
bility level of the processes under analysis (the ones which need to be improved) of
each company (related to useful function). In this vein, the measures used to investi-
gate the research question are: (i) the effort and (ii) the process capability level. Fur-
thermore, we also took into account the benefits described by the VSEs.

Several Latin American small software organizations have applied the Methodologi-
cal Framework of COMPETISOFT for the implementation of an SPI initiative. The
participating companies in the case studies are from Argentina, Chile, Spain and Co-
lombia (see Table 1). The analysis units are the improvement framework’s components
and the processes to be improved within each company. All of these organizations
started their SPI initiative with the support of an adviser in improvement processes (who
is part of the researchers group). In this SPI initiative we suggested to the companies
that they should incorporate the processes related to Profile 1 (Software development -
SD, Software maintenance – MS, and Specific project administration - SPA) from the
Process Reference Model of COMPETISOFT.

5.2 Field Procedure, Data Collection and Limitations

The improvement framework was used to perform the improvement activities in each
organization. That is, the procedure governing field procedure and the data collection
of the case studies is closely related to the strategies, activities, roles and work prod-
ucts described in each of the processes defined by the improvement framework of

 An Integrated Framework to Guide SPI in Small Organizations 221

COMPETISOFT (see Fig. 2, 3 and 4 from Section 4). At the beginning and at the end
of the SPI initiative in each company, an internal assessment was performed and the
amount of effort used to carry out the improvement cycle (see Table 2) was also
established. The information related to the process capability was obtained after ana-
lyzing and synthesizing the data of the processes chosen (those to be improved by the
companies) with respect to the three process attributes and the process capability level
ratings defined by the light assessment method of METvalCOMPETISOFT. The
COMPETISOFT adviser played the role of evaluator (EV) and he evaluated the proc-
esses by applying interview and survey techniques.

Table 1. VSEs from the critical reference group involved in the case studies

Com. Country Emplo. Path Main areas of professional activity
E1 Argentina 8 (7) 16 years /

N&I
Development of new tailored information systems with ongo-
ing integration of new technology

E2 Chile 18 (12) 10 years /
N&I

Computer Engineering projects for the agricultural (wine and
food) industry.

E3 Spain 7 (6) 5 years / N Software development on WEB.
E4 Spain 21 (15) 13 years / N Software development through contracts and agreements with

public organizations.
E5 Colombia 4 (4) 3 years. N Software to manage and control the ISO 9001-2000 quality

management system.
E6 Colombia 6 (6) 3 years. N Web application development-oriented agricultural services.
E7 Colombia 4 (4) 3 years. N Software to mobile telephony and devices.
E8 Argentina 12 (5) 4 years. N&I Custom software development.
Emplo.: Number of employees in the enterprise (People in software development and maintenance)
Path: Number of years of existence of the company / scope of the market for its products (National–N / International–I)

Table 2. Initial and final capability of the organization’s process and cycle effort

Capability of Processes Effort (hours)

C
om

p.

A
ss

es
s-

m
en

t

SD

SP
A

SM

B
M

PM

Pj
M

 H
R

M

K
M

IM

Cycle
length

(weeks)
Adviser

(A)
Comp.

(C)
Total

E1 Initial - 2 - - - - - - -
 Final 1 2 * 1 1 1 1 1 1

24 40 264 304

E2 Initial 0 1 0 - - - - - -
 Final 1 2 * * - - - - -

20 89 255 344

E3 Initial 0 0 - - - - - - -
 Final 1 * - - - - - - -

12 15 39 54

E4 Initial 0 0 - - - - - - -
 Final 1 * - - - - - - -

12 41 47 88

E5 Initial 1 0 - - - - - - -
 Final 1* 1 - - - - - - -

10 42 27 69

E6 Initial 1 1 - - - - - - -
 Final 1 1* - - - - - - -

10 38 11 49

E7 Initial 0 0 - - - - - - -
 Final 1 1 - - - - - - -

10 65 23 88

E8 Initial 0 0 - - - - - - -
 Final 0* 1 - - - - - - -

16 71 16 87

Processes: SD (Software Development), SPA (Specific Project Administration), SM (Software Maintenance), BM
(Business Management), PM (Process Management), PjM (Project Management), HRM (Human Resources Man-
agement), IM (Goods, Services and Infrastructure Management) and KM (Knowledge Management).
* Base practices of this process have been put into operation; - Process not assessed.

222 F.J. Pino, F. García, and M. Piattini

The case studies carried out to use the improvement framework of COMPETISOFT
in VSEs presented in this paper have some limits:

• The observations and conclusions presented are based on eight case studies, which
can limit the power of generalization. Although these companies are representative
of the software industry in Latin America, the number of companies taking part in
the case studies is a low percentage of the overall population.

• The bias of the case studies, because the development of daily activities by em-
ployees may proceed differently precisely because they are being observed or due
to some particular kind of handling of events and data by the advisers.

6 Analysis and Conclusions

Table 2 shows that the eight VSEs have increased the capability level of their SD and
SPA processes, among others. It is important to highlight that enterprises E1 and E2
have also increased the capability of processes SM and BM. It can also be observed
that E1 was the company which increased its level of capability in the greatest num-
ber of processes. This increase can be observed in the established base practices,
which have been reported in the Improvement Reports of each company. Through the
application of the improvement framework, the small companies have introduced new
base practices to their processes, thus allowing them to increase their capability.
Based on the collected data, there is evidence that the improvement framework has
enabled these small companies to increase the capability of their processes.

From Table 2 we can also draw the conclusion that the effort spent on improving
processes per week for each organization is: E1 12.7 h, E2 17.2 h, E3 4.5 h, E4 7.3 h,
E5 6.9 h, E6 4.9 h, E7 8.8 h and E8 5.4 h (including the adviser’s time). We consider
that the effort of applying the proposed improvement framework has been suitable for
the characteristics of each one of the organizations involved in the improvement ini-
tiative, since employees involved in the processes improvement of each enterprise
were able to take on this effort without any negative effect on their daily activities.

Some benefits which the firms have reported are:

• The companies had moved from a chaotic and unpredictable software process
to a tangible one, which is currently being used on development projects.

• The companies begin to generate a knowledge base which means historic data
are available when decisions are being taken.

• The companies have a more specific vision of the organization itself which has
helped and motivated them to set out on the road to quality certification. For
instance, E1 is currently conducting an ISO 9001:2000 certification, and E3
has started to work towards a formal assessment at CMMI level 2.

Based on the case studies carried out, the increase of the capability of the processes to
be improved, the effort of applying the proposed process and the benefits described
by VSEs, we consider that the improvement framework is suitable for leading SPI
initiatives in VSEs. The results, in terms of effort, increase of capability and benefits,
are an indicator that the proposed framework can be a practical and useful strategy
when facing the difficulty of carrying out SPI in VSEs. Furthermore, from the case
studies we have been able to confirm that the proposed improvement framework was
executed properly by the VSEs involved in the improvement initiatives.

 An Integrated Framework to Guide SPI in Small Organizations 223

On the basis of the application of the improvement framework in the VSEs, we
have obtained some lessons which are described below:

• When performing the activity of Initiating the cycle we had difficulty in aligning the
Improvement Proposal with the strategic planning of the firm (see Fig. 2), because
there was no Strategic Plan. However, this fact should not be viewed as a problem
but rather as an improvement opportunity, since it highlights the company’s ‘raison
d’être’, goals and its strategies for attaining them, i.e., Business Management.

• Obtaining the expected results in relatively short periods was an important aspect
for the motivation and involvement of the participants in a project like this. Seeing
such rapid results and taking part directly of these, allowed the employees to real-
ize the possibilities of process improvement in general, and COMPETISOFT in
particular, despite the initial reticence that these projects may have caused.

• Applying the improvements in pilot projects significantly reduced the resources
needed, as well as the risk associated with the implementation of improvements in
the companies’ key processes.

• A-R is strengthened by the Case Study because it allows more control in the execu-
tion of the proposals developed. This means an increase in the reliability of the re-
sults. By means of the integration of these two methods, a well defined structure
has been obtained for the development and application of the framework in VSEs.

Given that the results of the case studies are encouraging, new SPI initiatives are
planned for the eight organizations. We shall conduct a follow-up in the companies, to
attempt to determine whether this strategy has made an impact on the companies’
success in terms of market attributes.

Acknowledgements. This work has been funded by the projects: INGENIO (PAC08-
0154-9262 of JCCM of Spain) and ARMONIAS (PII2109-0223-7948 of JCCM of
Spain). By the first author to the research fellowships granted by JCCM and funded
by European Regional Development Fund (ERDF).

References

[1] Saiedian, H., Carr, N.: Characterizing a software process maturity model for small or-
ganizations. ACM SIGICE Bulletin 23(1), 2–11 (1997)

[2] Johnson, D.L., Brodman, J.G.: Tailoring the CMM for Small Businesses, Small Organiza-
tions, and Small Projects. In: El Emam, K., Madhavji, N.H. (eds.) Elements of Software
Process Assessment and Improvement, pp. 239–259. IEEE CS Press, Los Alamitos (1999)

[3] Hareton, L., Terence, Y.: A process framework for small projects. Software Process: Im-
provement and Practice 6(2), 67–83 (2001)

[4] Staples, M., Niazi, M., Jeffery, R., Abrahams, A., Byatt, P., Murphy, R.: An exploratory
study of why organizations do not adopt CMMI. Journal of Systems and Software 80(6),
883–895 (2007)

[5] Laporte, C., Alexandre, S., Renault, A.: Developing International Standards for Very
Small Enterprises. IEEE Computer 41(3), 98–101 (2008)

[6] Richardson, I., Wangenheim, C.G.v.: Why are Small Software Organizations Different?
IEEE Software 24(1), 18–22 (2007)

[7] Pino, F., Garcia, F., Piattini, M.: Software Process Improvement in Small and Medium
Software Enterprises: A Systematic Review. Soft. Quality Journal 16(2), 237–261 (2008)

224 F.J. Pino, F. García, and M. Piattini

[8] Oktaba, H., Garcia, F., Piattini, M., Pino, F., Alquicira, C., Ruiz, F.: Software Process
Improvement: The COMPETISOFT Project. IEEE Computer 40(10), 21–28 (2007)

[9] Oktaba, H.: MoProSoft®: A Software Process Model for Small Enterprises. In: Proceed-
ings of the First International Research Workshop for Process Improvement in Small Set-
tings, pp. 93–101. Carnegie Mellon University, Pittsburgh (2006)

[10] Weber, K., Araújo, E., Rocha, A., Machado, C., Scalet, D., Salviano, C.: Brazilian Software
Process Reference Model and Assessment Method. In: Yolum, p., Güngör, T., Gürgen, F.,
Özturan, C. (eds.) ISCIS 2005. LNCS, vol. 3733, pp. 402–411. Springer, Heidelberg (2005)

[11] McCaffery, F., Taylor, P., Coleman, G.: Adept: A Unified Assessment Method for Small
Software Companies. IEEE Software 24(1), 24–31 (2007)

[12] Cater-Steel, A.P., Toleman, M., Rout, T.: Process improvement for small firms: An
evaluation of the RAPID assessment-based method. Information and Software Technol-
ogy, 1–12 (2005) (in press)

[13] Scott, L., Jeffery, R., Carvalho, L., D’Ambra, J., Rutherford, P.: Practical Software Proc-
ess Improvement -The IMPACT Project. In: Proceedings of the Australian Software En-
gineering Conference, pp. 182–189 (2001)

[14] Calvo-Manzano, J.A., Cuevas, G., San Feliu, T., De Amescua, A., Pérez, M.: Experiences
in the Application of Software Process Improvement in SMES. Software Quality Jour-
nal 10(3), 261–273 (2002)

[15] Horvat, R.V., Rozman, I., Györkös, J.: Managing the complexity of SPI in small compa-
nies. Software Process: Improvement and Practice 5(1), 45–54 (2000)

[16] Casey, V., Richardson, I.: A practical application of the IDEAL model. Software Process:
Improvement and Practice 9(3), 123–132 (2004)

[17] Kautz, K., Hansen, H.W., Thaysen, K.: Applying and adjusting a software process im-
provement model in practice: the use of the IDEAL model in a small software enterprise.
In: Proceedings ICSE 2000, Limerick, Ireland, pp. 626–633 (2000)

[18] ISO, ISO/IEC 15504-4 - Information technology - Process assessment - Part 4: Guidance
on use for process improvement and process capability determination, Geneva (2004)

[19] ISO, ISO/IEC TR 15504-7 - Information Technology - Process Assessment - Part 7: As-
sessment of Organizational Maturity, Montreal (2008)

[20] Pino, F., Hurtado, J., Vidal, J., García, F., Piattini, M.: A process for driving process improve-
ment in VSEs. In: ICSP 2009. LNCS, vol. 5543, pp. 342–353. Springer, Heidelberg (2009)

[21] Pino, F., Garcia, F., Ruiz, F., Piattini, M.: A Lightweight Model for the Assessment of
Software Processes. In: EuroSPI 2006, Joensuu, Finland. pp. 7.1–7.12 (2006)

[22] Martinez, T., Pino, F., León, E., Garcia, F., Piattini, M.: EVALTOOL: A flexible envi-
ronment for the capability assessment of software processes. In: 3rd International Confer-
ence on Soft. and Data Tech (ICSOFT 2008), Oporto, Portugal, pp. 73–80 (2008)

[23] Abrahamsson, P., Salo, O., Rankainen, J., Warsta, J.: Agil software development meth-
ods: review and analysis. VTT Publications 478, Finland (2002)

[24] Pino, F., Garcia, F., Piattini, M.: Key processes to start software process improvement in
small companies. In: SAC 2009, Honolulu, Hawaii, U.S.A, pp. 509–516 (2009)

[25] Hernández, M., Florez, A., Pino, F., Garcia, F., Piattini, M., Ibargüengoitia, G., Oktaba,
H.: Supporting the Improvement Process for Small Software Enterprises through a soft-
ware tool. In: IEEE Proceed., SES during ENC 2008, Mexicali, México (2008) (in press)

[26] Brereton, P., Kitchenham, B., Budgen, D., Li, Z.: Using a protocol template for case study
planning. In: Evaluation and assessment in Soft. Engineering, Bari, Italia, pp. 1–8 (2008)

[27] Yin, R.K.: Case Study Research: Design and Methods. Sage Publications, Thousand Oaks
(2003)

Author Index

Abdullah, Hafiz Muhammad 44
Almog, Dani 13

Babar, Muhammad Ali 81
Barafort, Béatrix 69, 201
Bhatti, Ansar Malook 44
Bru, François-Xavier 185

Calvo-Manzano, Jose A. 93
Chiam, Yin Kia 173
Ciolkowski, Marcus 105
Connolly, David 32

Diaz, Jessica 93

Fernández-Sanz, Luis 1
Frappin, Gaëlle 185

Garbajosa, Juan 93
Garćıa, Félix 213
Gencel, Cigdem 44
Giachetti, Giovanni 57

Heart, Tsipi 13
Hilera, José Ramón 1
Hossain, Emam 81

Kääriäinen, Jukka 137, 149
Keenan, Frank 32
Koskimies, Kai 137
Kusters, Rob J. 128

Lacuesta, Raquel 1
Legrand, Ludovic 185

Maŕın, Beatriz 57
Mayer, Nicolas 201
Mc Caffery, Fergal 32
Merrer, Estéban 185

O’Connor, Rory V. 161

Pastor, Oscar 57
Peisl, Thomas 117
Piattini, Mario 213
Pino, Francisco J. 213
Piteau, Sylvain 185

Reger, Veronika 117
Ribaud, Vincent 185
Rousseau, Anne 69

Saliou, Philippe 185
Salou, Guillaume 185
Šamaĺıková, Jana 128
Schmied, Juergen 117
Soto, Mart́ın 105
Staples, Mark 173

Trienekens, Jos J.M. 128

Valdevit, Thierry 201
Välimäki, Antti 137, 149
Verner, June 81
Villalba, M. Teresa 1

Weijters, A.J.M.M. (Ton) 128

Zhu, Liming 173

	Title Page
	Preface
	Organization
	Table of Contents
	Organisational Issues
	Factors with Negative Influence on Software Testing Practice in Spain: A Survey
	Introduction
	Analysis of Testing Practices in Organizations
	Analysis of Individual Performance in Test Case Design
	Survey on Factors Which Influence Testing Practice
	Descriptive Data
	Detailed Analysis of Results

	Conclusions
	References

	What Is a Test Case? Revisiting the Software Test Case Concept
	Introduction
	Common Practices in Software Testing
	Methodology
	Literature Review
	Historical Overview of the TC Concept
	TC Use and Generation in Modern Software Development
	TCs as Metrics
	Test Case Definitions

	Discussion
	Conclusions
	References

	Automating Expert-Defined Tests: A Suitable Approach for the Medical Device Industry?
	Introduction
	Importance of “Well Tested” Medical Device Software
	Related Work
	Annotations Experiment
	Design
	Question and Responses
	Results
	Selection of a Domain
	Conclusions and Future Work

	References

	SPI Measurement and Assessment
	A Model for Selecting an Optimum Set of Measures in Software Organizations
	Introduction
	Optimum Measures Set Decision (OMSD) Model
	Category Selection
	Attribute Identification
	Measures Selection
	Collecting Data on the Measures with Respect to the Identified Factors
	Decision Making

	Conclusions
	References

	Applying a Functional Size Measurement Procedure for Defect Detection in MDD Environments
	Introduction
	Background and Related Work
	A FSM Procedure for Conceptual Models of an MDD Approach
	Improving the Quality of Conceptual Models Using a FSM Procedure
	Using the OOmCFP Measurement Procedure to Detect Defects
	General Comments

	Conclusion
	References

	Sustainable Service Innovation Model: A Standardized IT Service Management Process Assessment Framework
	Introduction
	A Service Innovation Management Model
	TIPA's S2IP Instance
	Service Value of the TIPAs Framework
	Service Design of the TIPAs Framework
	Service Promotion of the TIPAs Framework
	Service Management of the TIPAs Framework
	Service Capitalization of the TIPAs Framework

	Luxembourg Standardization Part
	Discussion
	Conclusion
	References

	Agile and Open Source Issues
	How Can Agile Practices Minimize Global Software Development Co-ordination Risks?
	Introduction
	Background and Motivation
	Agile Approaches in GSD
	Research Context

	Coordination
	Coordination Framework
	GSD Challenges and Coordinating Mechanisms

	Research Methodology
	Project Description
	Team Description

	Result
	Case Study Limitations
	Conclusions and Future Research
	References

	Mapping CMMI Level 2 to Scrum Practices: An Experience Report
	Introduction
	Background
	CMMI Overview: CMMI v1.2
	ASD Overview: Scrum
	Related Work

	Mapping between CMMI Specific Practices and Scrum Practices
	Project Planning (PP)
	Project Monitoring and Control (PMC)
	Requirements Management (REQM)

	An Experience Report: An Internal CMMI Appraisal
	Case Study Description
	A CMMI Appraisal Process Approach
	Results

	Conclusions and Further Work
	References

	The QualOSS Process Evaluation: Initial Experiences with Assessing Open Source Processes
	Introduction
	The QualOSS Quality Model
	Related Work: OSS Assessment
	Towards a Process Maturity Model for OSS
	Maturity Models as a Basis for Open Source Process Assessment
	The Generic QualOSS Process Evaluation
	Process Areas Currently Covered by QualOSS

	Initial Experience with the QualOSS Process Evaluation
	Conclusions and Future Work
	References

	SPI and Management Issues
	Innovation Process Design: A Change Management and Innovation Dimension Perspective
	Introduction
	Concept
	Idea to Extend ISO/IEC 15504 to Innovation
	Application of a Model of Barriers in Change Management Processes

	Applied Research Framework
	The FindYourWay AG
	Innovation Capability dEtermination

	Summary
	References

	Discovering Changes of the Change Control Board Process during a Software Development Project Using Process Mining
	Introduction
	Previous Research
	Case Study
	Process Mining
	Task Duration
	Different Durations of Tasks
	Drop in Duration of Tasks
	Total Throughput Time
	Duration in Other Projects

	Conclusions
	References

	Global Software Development Patterns for Project Management
	Introduction
	Research Approach
	Collecting Process Patterns
	Evaluating Process Patterns

	GSD Pattern Language
	GSD Patterns
	Pattern Language Organization with PRINCE2

	Assessing a Pattern Language for GSD
	Applying Q-PAM
	Evaluation Indicators

	Discussion
	Conclusions
	References

	Process Lifecycle and Quality Issues
	Applying Application Lifecycle Management for the Development of Complex Systems: Experiences from the Automation Industry
	Introduction
	Activities of Development Lifecycle
	Research Approach
	Industrial Context
	Research Process

	History of ALM Improvement and Current Solution
	Discussion
	ALM Improvement in a Case Company
	Elaboration of ALM Framework

	Conclusions
	References

	Exploring the Role of Usability in the Software Process: A Study of Irish Software SMEs
	Introduction
	Research Aims

	Usability and Web Development Processes
	Web Development Processes
	Role of Usability in Web Development Process

	Case Studies
	Analysis
	Software Process
	Usability Awareness
	Usability Practices
	Product Usability

	Discussion
	Conclusions
	Limitations
	Future Research

	References

	Quality Attribute Techniques Framework
	Introduction
	Related Work
	QATF
	QAT Overview
	Identifying Important Characteristics of QATs
	QAT Categorisation Based on Risk Management Process

	Evaluation of QATF
	Methodology
	Results of Evaluation

	Discussion
	Conclusions and Future Work
	References

	Standards and Reference Models
	Building an Observatory of Course-of-Action in Software Engineering: Towards a Link between ISO/IEC Software Engineering Standards and a Reflective Practice
	Introduction
	Course-of-Action Applied to Software Engineers’ Activity
	The Course-of-Action in a Nutshell
	The Observatory of Course-of-Action
	An Observatory of Software Engineers’ Activity
	Application for Software Engineers in VSEs

	Related Work
	Observing Software Activities
	Software Engineering Standards
	VSEs Faced to the 12207
	What Can Be Observed?

	A Case Study
	Introduction
	The Horizon of Software Engineering Standard
	The Project in Action
	Recording Assessments
	Focus on a Process: The Design Process

	Conclusion and Perspectives
	References

	Tailoring ISO/IEC 27001 for SMEs: A Guide to Implement an Information Security Management System in Small Settings
	Introduction
	The ISO/IEC 27001 Standard
	Research Method
	Initial Experiment
	Implementation of Codasystem’s ISMS
	Identification of the Objectives of the Guide

	Building the Guide
	Selective Coverage
	Raising Awareness and Maturity to Lower Apprehension
	Transversal Guidelines
	Key Steps Presentation
	Experts Validation
	Tool Support

	Further Experiments and Upgrades
	Discussion and Conclusion
	References

	An Integrated Framework to Guide Software Process Improvement in Small Organizations
	Introduction
	Related Work
	Methodological Framework of COMPETISOFT
	Improvement Framework
	Improvement Process – PmCOMPETISOFT
	Assessment Methodological – METvalCOMPETISOFT
	Agile Process for Improvement Introduction
	Strategy for Process Selection and Prioritization
	Tools to Support the Improvement Process

	Case Studies
	Design, Subjects and Analysis Unit
	Field Procedure, Data Collection and Limitations

	Analysis and Conclusions
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

