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Abstract. In this paper, two central techniques from the field of ex-
ponential time algorithms are combined for the first time: inclusion/ex-
clusion and branching with measure and conquer analysis.

In this way, we have obtained an algorithm that, for each κ, counts the
number of dominating sets of size κ in O(1.5048n) time. This algorithm
improves the previously fastest algorithm that counts the number of
minimum dominating sets. The algorithm is even slightly faster than the
previous fastest algorithm for minimum dominating set, thus improving
this result while computing much more information.

When restricted to c-dense graphs, circle graphs, 4-chordal graphs or
weakly chordal graphs, our combination of branching with inclusion/ex-
clusion leads to significantly faster counting and decision algorithms than
the previously fastest algorithms for dominating set.

All results can be extended to counting (minimum) weight dominating
sets when the size of the set of possible weight sums is polynomially
bounded.

1 Introduction

Recently, the field of exact exponential time algorithms has been an area of
growing interest. Maybe the most notable recent developments are measure
and conquer [10,11] and inclusion/exclusion [1,5,17]. Both techniques have been
demonstrated on Set Cover problems in early stages: measure and conquer
was introduced on a set cover formulation of Dominating Set, and in [5] in-
clusion/exclusion was used for counting sets coverings and set partitionings.

In this paper, we show that it is possible to use both techniques in one com-
bined approach. This allows for fast measure and conquer running times on
inclusion/exclusion based algorithms.
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The best known shape of inclusion/exclusion is the formula summing over
some powerset; see [3,5,17]. However, the fundamental branching perspective
from [1] is more direct and powerful. In this paper, we will apply this branching
perspective to set cover instances obtained from the set cover formulation of
dominating set that has been used to introduce measure and conquer [10,16].

In this setting, we use a traditional branching rule to branch on a set, or an ap-
plication of inclusion/exclusion to branch on an element. The sole application of
either one of these strategies gives a typical exhaustive search or the aforemen-
tioned shape of inclusion/exclusion sum, respectively. We use both branching
strategies in unity obtaining a mixed inclusion/exclusion branching algorithm
that can be analysed using measure and conquer.

Until 2004, no exact algorithm for Dominating Set beating the trivial
O(2nnO(1)) was known. In that year, three algorithms were published [13,16,20],
the fastest of which is Grandoni’s running in time O(1.8019n) [16]. One year
later, the algorithm of Grandoni was analysed using measure and conquer giv-
ing a bound of O(1.5137n) on the running time [10]. This was later improved by
Van Rooij and Bodlaender [21] to O(1.5063n).

When we want to count minimum dominating sets, there is an algorithm by
Fomin et al. running in time O(1.5535n) [9]. This algorithm combines branch-
ing with path decomposition techniques: something we will use for our own
algorithm as well. Also related is a result by Björklund and Husfeldt solving
this problem on cubic graphs in O(1.3161n) using path decompositions in com-
bination with inclusion/exclusion [3]. To our knowledge, there are no existing
algorithms combining measure and conquer with inclusion/exclusion.

Our algorithm is more general. It counts the number of dominating sets in an
n-vertex graph of each size 0 ≤ κ ≤ n, with an upper bound on the running time
of O(1.5048n). This is slightly faster than even the current fastest algorithm that
computes a minimum dominating set.

Gaspers et al. [14] show that algorithms for the set cover formulation of domi-
nating set can be combined with dynamic programming over tree decompositions
to obtain faster running times for the dominating set problem restricted to some
graph classes. These classes are c-dense graphs, chordal graphs, circle graphs,
4-chordal graphs and weakly chordal graphs. We show that our mixed branching
approach with inclusion/exclusion branches works even better on four of these
graph classes; we do not only improve these results because we have a faster
algorithm for the underlying set cover problem, but do so more significantly by
exploiting vertices of high degree twice by using both techniques. Moreover, we
can count the number of dominating sets of each size, in contrast to the previous
results that only compute a single minimum dominating set.

2 Preliminaries

We consider the #κ-Dominating Set problem: how many dominating sets of
size κ exist for G, i.e., how many subsets V ′ ⊆ V with |V ′| = κ such that for all
u ∈ V \V ′ there is a v ∈ V ′ for which (u, v) ∈ E?
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We formulate the problem as the set cover variant #κ-Set Cover [16]: given
a collection of subsets S of a finite universe U and a positive integer κ, how
many set covers for U of size κ does S contain? The transformation between this
problem and our original problem is straightforward: for every vertex in v ∈ V
we introduce both an element in U and a set in S corresponding to N [v]. We now
use the cardinality |S| of the set S and the frequency f(e) of the element e instead
of the degree of a vertex. The dimension of a set cover instance is defined as
dim(S,U) = |S|+|U|. Hence, an n-vertex dominating set instance is transformed
into a set cover instance of dimension d = 2n.

We also look at the problem as a #κ-Red/Blue Dominating Set problem
in the incidence graph of the set cover instance [9]. The incidence graph is the
bipartite graph with red vertices VRed = S and blue vertices VBlue = U . Vertices
S ∈ VRed and u ∈ VBlue are adjacent if and only if u ∈ S. In this problem, we
count the number of ways to take κ red vertices to dominate all the blue vertices.
It is easy to see that this perspective is equivalent to the set cover variant.

Finally, we assume the reader to be familiar with the concepts of a (nice) tree
decomposition and a (nice) path decompositions of a graph, and how to perform
dynamic programming over these structures. For a good overview see [6,7].

3 Inclusion/Exclusion Based Branching

We will begin by showing that one can look at Inclusion/Exclusion as a branching
rule [2]. In this way, we can Inclusion/Exclusion-branch on an element in a Set
Cover instance in the same way as one would normally branch on a set.

A set S is optional in an instance, if either S is in the solution, or S is not.
Branching on this choice is straightforward: the total number of set covers of
size κ equals the number of set covers of size κ − 1 after we take S (require),
plus the number of set covers of size κ after we discard S (forbid). I.e.:

optional = required + forbidden

We now consider branching on an element [2]. This may appear strange at first
as elements are not optional. Inspired by Inclusion/Exclusion techniques, we can,
however, rearrange the above formula to give:

required = optional − forbidden

That is, the number of solutions that cover an element e is equal to the number
of solutions in which covering e is optional (maybe cover e), minus the number
of solutions in which covering e is forbidden (that do not cover e). We call this
type of branching inclusion/exclusion based branching or simply IE-branching.

Notice that both branching rules are symmetric when applied to the incidence
graph representation of our problem: in one branch a (red or blue) vertex is
removed, and in the other, this vertex and its neighbours are removed.

An algorithm that branches on every set is called exhaustive search, while an
algorithm that solely use IE-branching is an inclusion/exclusion algorithm.
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To see the relation to the inclusion/exclusion formula [5], let cκ be the number
of set covers of cardinality κ, and let a(X) be the number of sets in S that do
not contain any element in X . Consider the branching tree after exhaustively
applying IE-branching and look at the contribution of a leaf to the total number
computed. In each leaf of the tree, each element is either optional or forbidden;
the 2|U| leaves represent the possible subsets X ⊆ U of forbidden elements. The
contribution of this leaf equals the number of set covers of cardinality κ where it
is optional to cover each element not in X and forbidden to cover an element in
X , i.e.

(
a(X)

κ

)
. A minus sign is added for each time we have entered a forbidden

branch, so the total contribution equals (−1)|X|(a(X)
κ

)
. This leads to the formula

given below on the left. Compare this to the inclusion/exclusion formula [5] on
the right: the difference comes from the fact that Björklund et al. allow a single
set to be picked multiple times while we do not.

cκ =
∑

X⊆U
(−1)|X|

(
a(X)

κ

)
c′κ =

∑

X⊆U
(−1)|X|a(X)κ

4 An Algorithm for Counting Dominating Sets

We start by applying our combined technique to the problem of counting dom-
inating sets. The previously fastest algorithm that counts the number of mini-
mum dominating sets is by Fomin et al. [9]. Their algorithm combines pathwidth
techniques with branching and measure and conquer analysis. We present a mod-
ification of this algorithm (Algorithm 1) that solves the #κ-Dominating Set
problem. This algorithm computes the number of dominating sets of each size
κ (0 ≤ κ ≤ n) in O(1.5048n) time improving both the results of [9] and the
previously fastest algorithm for minimum dominating set [21].

Algorithm 1 works on the #κ-Set Cover transformation of the problem and
returns a list containing the number of set covers nκ of size κ for each 0 ≤ κ ≤ n.
It is a branch and reduce algorithm, branching both on sets and elements as
discussed in Section 3. When an instance generated by the branching is sparse
enough, the algorithm will compute a path decomposition of the incidence graph
of the instance. The algorithm then solves this instance by dynamic programming
on this path decomposition.

Algorithm 1 takes as input a collection of sets S forming a #κ-Set Cover
instance, and a multiplicity function m. This function m exists because we want
to avoid identical sets to be created by the algorithm; the algorithm deals with
multiple identical sets by using the multiplicity counters in m. We will begin by
describing a series of polynomial time reduction rules that Algorithm 1 applies
before branching or applying pathwidth techniques.

Base Case
Some inputs can be completely reduced to a collection of m′ empty sets by the
reduction rules below. There are no elements left, and we only have empty sets
to choose from, therefore the algorithm returns nκ =

(
m′
k

)
for each 0 ≤ κ ≤ n.
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Algorithm 1. Count-SC(S,m)
Input: A collection of sets S over the universe U = ∪S and a multiplicity function m.
Output: A list n of length #(S) + 1 containing the number of set covers of (S ,U) of

each size 0 ≤ κ ≤ #(S).
1: //reduction rules
2: if S equals a collection of m′ = m(∅) empty sets then //base case

3: return (
(

m′
0

)
,
(

m′
1

)
, . . . ,

(
m′
m′

)
)

4: else if there exist identical sets in S then //identical sets
5: Remove the identical sets from S and update the multiplicity function m.
6: return Count-SC(S,m)

7: else if there exists an element e ∈ U of frequency one then //unique elements
8: Let S ′ be S after removing the set S with e ∈ S and let ntake = Count-SC(S,m)

9: return ntake after updating it using the multiplicity of S in formula 1
10: else if there exist two elements e, e′ ∈ U such that for all S ∈ S : if e ∈ S, then

e′ ∈ S then //subsumption
11: Let S ′ = {S\{e′} | S ∈ S}, and update m such that it now works on S ′

12: return Count-SC(S ′,m)

13: else if if S can be partitioned in two subcollections C, C̄ such that every element
of e ∈ U occurs either in C or in C̄ and not in both then //connected components

14: Let nC = Count-SC(C,m), and nC̄ = Count-SC(C̄,m)

15: return The solution to S by merging nC and nC̄ using formula 2
16: end if
17:
18: //branching or path decomposition
19: Let S ∈ S be of maximum cardinality and not an exceptional case1

20: Let e ∈ U be of maximum frequency, also not an exceptional case1

21: Preference order P: S4 < S5 < S6 < E5 < E6 < S7 < E7 < E≥8 = S≥8

22: if S|S| and Efreq(e) are too small to be in P then //path decomposition
23: Compute a path decomposition PI of the incidence graph of (S ,U)
24: return The solution to S obtained by dynamic programming over PI .
25: else if Efreq(e) is in the order P and Efreq(e) �< S|S| then //element branch
26: Let S ′ = {S\{e′} | S ∈ S}, and update m such that it now works on S ′

27: Let noptional = Count-SC(S ′,m)

28: Let nforbidden = Count-SC(S \ {S ∈ S | e ∈ S},m)

29: return noptional − nforbidden

30: else //S|S| is in the order P and S|S| �< Efreq(e) //set branch
31: Let S ′ = {S′\S | S′ ∈ (S \ {S})}, and update m such that it now works on S ′

32: Let ntake = Count-SC(S ′,m)

33: Update ntake using the multiplicity of S in formula 1
34: Let ndiscard = Count-SC(S \ {S},m)

35: return ntake + ndiscard

36: end if
1 There are some exceptional combinations of cardinalities of sets and frequencies of
elements on which the algorithm will not branch. These will be handled by the path
decomposition phase. For a complete list of these cases see Overview 1.
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Identical Sets
When S contains identical sets, we remove all but one copies of this set and keep
track of this using multiplicity counters in m. We can do this because taking at
least one copy in a solution will result in the same subproblem regardless of the
number of copies chosen. Whenever the set is explicitly taken in a solution later
on, we compute the required result from the values from the recursive call n′

κ

using the formula below.

nκ =
m∑

i=1

(
m

i

)
n′

κ−i (1)

To avoid confusion, we consider copies of sets to be removed when considering
the frequency of its elements or the number of sets in S.

Unique Elements
Whenever there exists an element e of frequency one in U , the set S containing e
must belong to every set cover. Therefore, the algorithm acts as if it takes this
set and goes in recursion on the instance with S and all its elements removed,
counting the number of set covers of size κ-1. Notice that it is not a problem if
the set taken has multiplicity greater than one: simply use the above formula.

Subsumption
If there exists an element e which occurs in every set (and possibly more) in which
another element e′ occurs, then every set cover that covers e also covers e′. Thus,
we can remove e′ from the instance and recursively apply our algorithm.

Connected Components
If the incidence graph of the instance contains multiple connected components,
then we can solve the problem on each component separately and merge the
results. In this case, there exist two disjoint sets C, C̄ with C ∪ C̄ = S and with
the property that every element of e ∈ U occurs either in C or in C̄ and not
in both. Let n(C)κ, n(C̄)κ be the number of solutions of size κ to these two
subproblems. In order to compute the total number of size covers nκ of size κ
in C ∪ C̄ we evaluate the following sum:

nκ =
κ∑

i=0

n(C)i × n(C̄)κ−i where: n(C)i = 0 if i > |C| (2)

Branching
When no reduction rules are applicable, the algorithm chooses a set or an element
to branch on. From the instance, it chooses a set of maximum cardinality and
an element of maximum frequency that are both not exceptional cases. We post-
pone the discussion of these exceptional cases for a moment. In order to choose
between branching on the chosen set and branching on the chosen element, the
algorithm uses the following preference order P:

P : S4 < S5 < S6 < E5 < E6 < S7 < E7 < E≥8 = S≥8
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There are exceptional cases of elements on which, despite the preference order, our
algorithm does not branch. These cases represent local neighbourhoods of sets or ele-
ments which would increase the running time of the algorithm when branched on, but
can be handled by dynamic programming on a path decomposition quite effectively.
The exceptional cases are:

1. Elements of frequency five that occur in many sets of small cardinality.
Let the 5-tuple (s1, s2, s3, s4, s5, s6) represent a frequency five element occurring si

times in a cardinality i set. In this way, our special cases can be denoted as:

(1, 4, 0, 0, 0, 0) - (0, 5, 0, 0, 0, 0) - (1, 3, 1, 0, 0, 0) - (0, 4, 1, 0, 0, 0) - (1, 2, 2, 0, 0, 0)
(0, 3, 2, 0, 0, 0) - (1, 1, 3, 0, 0, 0) - (0, 2, 3, 0, 0, 0) - (0, 1, 4, 0, 0, 0) - (1, 0, 4, 0, 0, 0)
(1, 3, 0, 1, 0, 0) - (0, 4, 0, 1, 0, 0) - (1, 2, 1, 1, 0, 0) - (0, 3, 1, 1, 0, 0) - (1, 1, 2, 1, 0, 0)
(1, 0, 3, 1, 0, 0) - (1, 2, 0, 2, 0, 0) - (1, 3, 0, 0, 1, 0) - (1, 2, 1, 0, 1, 0) - (1, 3, 0, 0, 0, 1)

2. Sets of cardinality four, five or six, containing one of the elements described above.

Overview 1. Exceptional cases for our algorithm

In this ordering, Si < Ej means that the algorithm prefers to branch on an
element of frequency j over branching on a set of cardinality i.

Sets of cardinality at most three and elements of frequency at most four do
not occur in the preference order P. These are considered too small for efficient
branching since branching on them would remove or reduce too few elements
and sets. The remaining instances are handled by dynamic programming over a
path decomposition of the incidence graph, similar to [9].

The exceptional cases are described in Overview 1. These exceptional cases
represent local neighbourhoods around a set or an element which, despite the
general rule imposed by the preference order, can be handled more efficiently by
the path decomposition phase of our algorithm than by branching. They exist
to properly balance the two parts of the algorithm.

Theorem 1. There is an algorithm that solves the #κ-Dominating Set for
all 0 ≤ κ ≤ n in an n-vertex graph G in O(1.5048n).

Proof (Sketch). The proof consists of a measure and conquer analysis of Algo-
rithm 1 and is an extension of the proof in [9]. Due to space restrictions, we will
only sketch it here. For the full proof, see [23].

We analyse our algorithm using measure and conquer [10,11]; see also [15,21].
Let v, w : N → [0, 1] be weight functions giving weight v(i) to an element of
frequency i and weight w(i) to a set of cardinality i, respectively. With these
functions we define the following complexity measure (identical to [10,21]):

k(S,U) =
∑

S∈S
w(|S|) +

∑

e∈U
v(f(e)) notice: k(S,U) ≤ dim(S,U)

We derive recurrence relations for the number of subproblems generated by the
branching of the algorithm expressed in this complexity measure k. Given fuc-
tions v, w, we can solve these recurrences and obtain an upper bound on the
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number of subproblems generated. The proof the comes down to computing the
functions v, w that minimise the running time. This is a quasiconvex program
[8] that we solve by computer. In this way, we prove:

Let Nh(k) be the number of subproblem of complexity h generated by our
algorithm on an input of complexity k. Then, Nh(k) < 1.22670k−h.

Next, we use that by standard dynamic programming techniques we can solve
the problem on a path decomposition of width p in O∗(2p). We compute an upper
bound on the maximum width p any path decomposition that is computed by
our algorithm can have. Using upper bound on the pathwidth of sparse graphs
[9,12], we formulate a linear program that computes the maximum pathwidth
that any instance of complexity k. As a result we find that p < 0.28991k, and
thus this part of the algorithm runs in O(20.28991k) ⊂ O(1.2226k).

By combining the time bound on both parts of the algorithm and using
that initially k ≤ 2n, we conclude that Algorithm 1 runs in O(1.226702n) ⊂
O(1.5048n). �	

5 Dominating Set Restricted to Some Graph Classes

The algorithm from the previous section, not only gives the currently fastest
algorithm to compute the number of dominating sets of given sizes, but also
is the currently fastest algorithm for the minimum dominating set problem.
However, the improvement over the previous fastest minimum dominating set
algorithm [21] is small. When we consider the dominating set problem on specific
graph classes, we get a larger improvement with our approach. This also extends
the results on these graph classes to the counting variant of Dominating Set.

Gaspers et al. [14] consider exact algorithms for the dominating set problem
on c-dense graphs, circle graphs, chordal graphs, 4-chordal graphs, and weakly
chordal graphs. On these graph classes the problem is still NP-complete. They
show that if we restrict ourselves to such a graph class, then there are either many
vertices of high degree allowing more efficient branching, or the graph has low
treewidth allowing the problem to be efficiently solved by dynamic programming
over a tree decomposition. Using our approach, we will show that less vertices
of high degree are required to obtain the same effect by branching on them with
both branching rules. This leads to faster algorithms.

If we combine the results of the previous section with a result from Gaspers
el al. [14], then we have the following proposition:

Proposition 1 ([14], Theorem 1). Let t > 0 be a fixed integer, and let Gt be
a class of graphs with for all G ∈ Gt: |{v ∈ V (G) : d(v) ≥ t − 2} ≥ t. Then,
there is a O(1.226702n−t) time algorithm to solve the minimum dominating set
problem on graphs in Gt.

Using our two branching rules, we prove a stronger variant of this proposition.

Lemma 1. Let t > 0 be a fixed integer, and let Gt be a class of graphs with for
all G ∈ Gt: |{v ∈ V (G) : d(v) ≥ t − 2}| ≥ 1

2 t. Then, there is a O(1.226702n−t)
time algorithm to solve the minimum dominating set problem on graphs in Gt.
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Table 1. Effect of two branching rules on the running times on some graph classes

Graph class [14] (+[21]+[22]) [14] (+[22]) + Lemma 1

c-dense graphs O
(
1.2273(1+

√
1−2c)n

)
O

(
1.2267( 1

2+ 1
2
√

9−16c)n
)

circle graphs O(1.4843n) O(1.4806n)
chordal graphs O(1.3720n) O(1.3712n) ∗

4-chordal graphs O(1.4791n) O(1.4741n)
weakly chordal graphs O(1.4706n) O(1.4629n)

∗ This result does not use Lemma 1; the improvement comes only from Theorem 1.

Proof. Let H be the set of vertices of degree at least t− 2 from the statement of
the lemma, and consider the set cover formulation of the dominating set problem.

Let S be a set corresponding to a vertex in H . We branch on this set and
consider the branch in which we take this set in the set cover: the set is removed
and all its elements are covered and hence removed also. These are at least t− 1
elements, and therefore this branch results in a problem of dimension at most
2n− t. Only a single set is removed in the other branch, in which case we repeat
this process and branch on the next set represented by another vertex in H .
This gives us 1

2 t problem instances of dimension at most 2n− t and one problem
instance of dimension 2n − 1

2 t because here 1
2 t sets are removed.

In this latter instance, we use our new inclusion/exclusion based branching
rule on the elements corresponding to the vertices in H . These elements still
have frequency at least 1

2 t− 1, since only 1
2 t sets have been discarded until now.

When branching on an element and forbidding it, a subproblem of dimension at
most 2n − t is created because at least an additional element and 1

2 t − 1 sets
are removed in this branch. What remains is one subproblem generated in the
branch after discarding 1

2 t sets and making 1
2 t elements optional. Since all these

sets and elements are removed in these branches, this also gives us a problem of
dimension 2n − t.

The above procedure generates t+1 problems of dimension 2n− t, which can
all be solved by Algorithm 1 in O(1.226702n−t) time. These are only a linear
number of instances giving us a total running time of O(1.226702n−t). �	
Using Lemma 1 and following the computations in [14] we have obtained the
following result. Due to space restrictions we refer to [23] for the full proof.

Theorem 2. There exist algorithms that count the number of dominating sets
of each size in a c-dense graph in O

(
1.2267(1

2+ 1
2

√
9−16c)n

)
time, in a circle graph

in O(1.4806n) time, in a 4-chordal graph in O(1.4741n) time, and in a weakly
chordal graph in O(1.4629n) time.

See Figure 1 and Table 1 for a comparison of our results with [14].

6 Further Applications

In principle, we could take any inclusion/exclusion algorithm and reformulate it
into a branching algorithm. Then, we can look for reduction rules transforming
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The solid line represents the upper bound on the running time of our algorithm, and the dashed line

represents the upper bound obtained from [14] after plugging in our faster algorithm for dominating

set.

Fig. 1. Comparison of bounds on the running time on c-dense graphs

it into a branch and reduce algorithm. Finding these reduction rules is often not
very hard. However, finding any reduction rules for which you can prove that it
improves the worst case behaviour of the algorithm is often very hard.

For example, consider the problem of counting the number of perfect match-
ings in a graph. This is easily modified into a #(n/2)-Set Cover instance with
n elements and possibly O(n2) sets to which we can apply a branching algorithm
using the reduction rules of Algorithm 1. However, for such an algorithm, it is of
no use to branch on a set since their cardinalities are too small, and we obtain
an O∗(2n) algorithm using polynomial space as in [3].

What this approach does accomplish, is that a branch and reduce inclu-
sion/exclusion algorithm no longer has the property that its worst and best case
behaviour conincide. When using the inclusion/exclusion formula one always
evaluates every term of the sum, while if we are branching, then the number of
leaves of the search tree can very well be a lot smaller due to the reduction rules.

To apply our combined approach, branching both on sets and elements, we
need to consider problems that can be transformed into variations of set cover
instances having a linear number of sets and elements. In search of such prob-
lems, we, very recently, obtained several results when considering the problem
of whether there exists a locally subjective homomorphism form a fixed graph
H into the input graph G (also known as role-assignment problems) [19].

7 Conclusion

While the improvements of the running times for the studied problems are inter-
esting, we believe that the most important contribution of our paper is the novel
combination of inclusion/exclusion and branching with a measure and conquer
analysis. This gives a nice way to create inclusion/exclusion algorithms without
the usual O(2nnO(1)) running time.
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Many counting and decision variants of dominating set can be translated
to set cover problems and solved by our algorithms in the same time. For ex-
ample: directed dominating set, total dominating set2, k-distance dominating
set2, weak/strong dominating, and combinations of these. We can also solve the
weighted versions of all these problems as long as the size of the set of possi-
ble weight sums Σ is polynomially bounded: modify the algorithm such that it
computes the number of set covers of each possible weight w ∈ Σ at each step.

Our running times are highly dependent on the current best known upper
bounds on the pathwidth of bounded degree graphs [9,12]. Any result that would
improve these bounds would also improve our algorithm.

We use path decompositions while tree decompositions are more general and
allow the same running times when using fast subset convolutions [4] to perform
join operations [22]. We consider it to be an important open problem to give
stronger (or even tight) bounds on the treewidth [18] or pathwidth of bounded
degree graphs for which decompositions can be computed efficiently.
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