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Abstract. We use randomness to exploit the potential sparsity of the Boolean
matrix product in order to speed up the computation of the product. Our new
fast output-sensitive algorithm for Boolean matrix product and its witnesses is
randomized and provides the Boolean product and its witnesses almost certainly.
Its worst-case time performance is expressed in terms of the input size and the
number of non-zero entries of the product matrix. It runs in time ˜O(n2sω/2−1),
where the input matrices have size n × n, the number of non-zero entries in the
product matrix is at most s, ω is the exponent of the fast matrix multiplication
and ˜O(f(n)) denotes O(f(n) logd n) for some constant d. By the currently best
bound on ω, its running time can be also expressed as ˜O(n2s0.188). Our algorithm
is substantially faster than the output-sensitive column-row method for Boolean
matrix product for s larger than n1.232 and it is never slower than the fast ˜O(nω)-
time algorithm for this problem.

We also present a partial derandomization of our algorithm as well as its gener-
alization to include the Boolean product of rectangular Boolean matrices. Finally,
we show several applications of our output-sensitive algorithms.

1 Introduction

Boolean matrix multiplication is a basic tool in the design of efficient algorithms, espe-
cially graph algorithms (see, e.g., [5,17,18]). Just squaring a Boolean matrix is equiv-
alent to the following fundamental problem: for n subsets of {1, 2, ..., n}, determine
all pairs of the subsets that have a non-empty intersection. This problem has numerous
applications, among other things, in databases and data mining [2].

By the standard definition of Boolean matrix multiplication, it is sufficient to use
O(n3) conjunctions and disjunctions to compute the Boolean product of two Boolean
n× n matrices. Slightly less known is another simple combinatorial way of computing
the Boolean product termed as a column-row method [21].

Consider two Boolean n × n matrices A and B, and their Boolean product C. If
C[i, j] = 1 then any index k such that A[i, k] = 1 and B[k, j] = 1 is called a witness
for C[i, j]. In the column-row approach, for each k, one considers the set of indices of
rows in A that have 1 in the k-th column of A as well as the set of indices of columns
in B that have 1 in the k-th row of B. Note that for any i in the former set and any j
in the latter one, k is a witness for C[i, j]. It follows that the column-row method can

� Research supported in part by the VR grant 621-2005-4085.

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 408–419, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



A Fast Output-Sensitive Algorithm for Boolean Matrix Multiplication 409

be implemented in time O(W + n2) where W is the total number of witnesses for all
non-zero entries of C [21].

The column-row approach is output sensitive in terms of the number s of non-zero
entries of the product matrix. Simply, each non-zero entry can have at most n witnesses
and therefore the total number of witnesses cannot exceed ns. In this way, we obtain
the output sensitive upper time-bound of O(ns + n2) for Boolean square matrix multi-
plication.

This upper bound is still attractive in comparison with the running time of the fastest
known combinatorial algorithms for Boolean matrix multiplication, which is
O(n3/ log2 n) (see [3,5,18]). However, it seems less attractive when compared with
the running time of the fastest known algorithm for Boolean matrix multiplication. The
latter is simply obtained by treating the Boolean 0 and 1 as arithmetic ones and us-
ing the fast arithmetic matrix multiplication. Thus, its running time is O(nω), where
ω is the smallest constant for which the product of two n × n arithmetic matrices can
be computed in time O(nω). The best currently known asymptotic upper bound on ω
is 2.376, due to Coppersmith and Winograd [9]. Thus, the fast algorithm for Boolean
matrix multiplication subsumes the output-sensitive column-row method whenever s is
substantially larger than n1.376.

In the mathematical programming literature, the assumption of no cancellation, i.e.,
that the inner product of two vectors with overlapping non-zero entries never cancels to
zero is very common [7]. The justification of the assumption comes from the unlikeness
of cancellations and the aggregation of rounding errors. For this reason, the important
problem of the structure prediction of the product of two arithmetic matrices reduces
to that of the Boolean product of the two corresponding Boolean matrices, where the
Boolean 1 entries correspond to the non-zero ones.

The prediction of the structure of the product of two matrices is important both in
efficient memory block allocation as well as in determining an optimal order of chains
of matrix products [7,12]. Cohen provided an efficient procedure for close estimation of
the size of rows and columns in the Boolean product [7]. The problem of more precise
efficient prediction of the structure of arithmetic matrix product has remained open.

Of course one can simply compute the Boolean product of the corresponding
Boolean matrices. Unfortunately, the fast method for Boolean matrix multiplication
takes no fewer operations than the multiplication of the original arithmetic matrices
itself, i.e., O(nω). What about the situation when the Boolean matrix product is mod-
erately dense or sparse, i.e., it has a substantially sub-quadratic and substantially super-
linear in n number of non-zero entries?

Very recently, Amossen and Pagh [2], extending the input sensitive algorithm of
Yuster and Zwick [22], proposed an input- and output-sensitive algorithm for Boolean
matrix product running in time O(t0.86s0.41 + (ts)2/3), where t stands for the number
of non-zero entries in the input matrices and s for the number of non-zero entries in
the output matrix. While their upper time-bound is very interesting, it can easily exceed
nω, when the input matrices are quite dense and the ouput one is moderately dense.

Summarizing, a natural question arises if there is a fast output-sensitive algorithm
for Boolean matrix multiplication, whose running time is substantially better than that
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of the output-sensitive column-row method, and than O(nω) when the product matrix
is moderately dense/sparse?

We answer this question in the affirmative by providing a randomized algorithm for
Boolean matrix product and its witnesses running in time ˜O(n2sω/2−1).

Thus, using the upper bound of Coppersmith-Winograd on ω, our algorithm runs in
time ˜O(n2s0.188). Since n2sω/2−1 ≤ nω for all s ≤ n2, our algorithm is never slower
than that of Coppersmith-Winograd and it is faster than the column-row method for
s > n1/(2−w/2) ≈ n1.232.

It is not an easy task to compare our algorithm with the algorithm of Amossen and
Pagh which is also input sensitive. For instance, for moderately dense/sparse random
input Boolean matrices, the Boolean product might be expected to be already dense.
Then the input sensitive algorithms of Yuster and Zwick, and of Amossen and Pagh
will be superior. However, the sparsity of the product matrix does not imply the sparsity
of any of the input matrices generally. For instance, if only the first halves of rows in the
first input matrix are filled with ones and similarly only the second halves of columns
in the other input matrix are filled with ones, then we have t = n2 and s = 0. Assuming
a worst-case scenario for input sensitivity, i.e., t = Ω(n2), our algorithm is faster than
that of Amossen and Pagh for s > n1.244.

The use of randomness to exploit the potential sparsity of the Boolean product is
crucial in the design of our algorithm. However, if upper bounds on the number of non-
zero entries in the respective rows and columns of the product matrix summing to at
most 2s are given a priori then we can partially derandomize our algorithm so it uses
only O(log2 n) random bits and runs in the same asymptotic time. In both cases, our
algorithms provide the Boolean matrix products and their witnesses almost certainly.
We also present generalizations of our algorithms to include the Boolean product of
rectangular Boolean matrices.

Finally, we show applications of our algorithms and its generalizations to the deriva-
tion of output-sensitive upper time-bounds for the following problems: composition of
binary relations, maximum witnesses of Boolean matrix product, lowest common an-
cestors in directed acyclic graphs and prediction of the structure of arithmetic matrix
product.

1.1 Other Related Results

The column-row approach to (non-necessarily Boolean) matrix multiplication has been
known for a long time. In the arithmetic case, it can be expressed as the fact that the
matrix product of two n×n matrices A and B is equal to the sum of the outer products
of the i-th column of A with the i-th row of B, over i = 1, ..., n [7,13]. Thus, the
column-row approach takes O(

∑n
k=1 akbk) multiplications and additions, where ak is

the number of non-zero elements in the k-th column of A and bk is the number of
elements in the k-th row of B. Additionally, an O(n2) time is sufficient to compute the
list of non-zero elements for each column of A and each row of B. Hence, under the no
cancellation assumption the O(ns+n2) time-bound, where s is the number of non-zero
entries in the product, easily follows in the arithmetic case.

Sparse arithmetic matrices, and hence also, sparse Boolean matrices, are well known
to admit more efficient multiplication algorithms than those aforementioned for the
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general case, see [7,22]. Note that if A or B has at most m non-zero entries then by
∑n

k=1 akbk ≤ max{(∑n
k=1 ak)n, (

∑n
k=1 bk)n} ≤ mn, one obtains an O(mn + n2)

upper bound for sparse matrix multiplication by the column-row approach [22]. For the
case where both A and B have at most m non-zero entries, Yuster and Zwick provide
an algorithm using O(m0.7n1.2 + n2+o(1)) multiplications, additions and subtractions
over R [22]. Their algorithm consists in a nice and simple reduction to the sum of two
rectangular matrix multiplications, the first fast one corresponding to the indices that
are witnesses for relatively many entries and the other column-row one corresponding
to the indices that are witnesses for relatively few entries.

One of the drawbacks of the fast Boolean matrix multiplication is that it does not
yield explicitly witnesses for the non-zero entries of the product matrix in contrast with
the aforementioned combinatorial methods. However, at the beginning of the 90s, effi-
cient randomized and deterministic methods for Boolean product witnesses have been
developed [4,11,20]. They typically provide a single witness per non-zero entry and run
in time ˜O(nω).

1.2 Organization

In the next section, we present our fast output-sensitive randomized algorithm for the
Boolean product of two square Boolean matrices and its analysis. In Section 3, we
discuss its partial derandomization. In section 4, we outline a generalization of our
algorithm and its analysis to include rectangular input Boolean matrices. In section 5,
we show a number of applications of our output-sensitive algorithms for Boolean matrix
product.

2 The Output-Sensitive Algorithm for Boolean Product

The following definition and two lemmata lie behind the idea of our algorithm.

Definition 1. Let C be an n×n Boolean matrix. A row of C is r-sparse if the number of
non-zero entries in it is at most r, and otherwise, the row is r-dense. Similarly, a column
of C is r-sparse if the number of non-zero entries in it is at most r, and otherwise, the
column is r-dense. An entry of C is r-sparse if both its row and column are r-sparse,
otherwise the entry is r-dense.

Lemma 1. If an n × n Boolean matrix C has at most r2 non-zero entries then the
number of r-dense rows and r-dense columns in C is O(r).

Proof. Otherwise, there would be more than r2 non-zero entries in C. ��
Lemma 2. Let C be an n× n Boolean matrix with at most r2 non-zero entries. Let C′

be the matrix resulting from permuting uniformly at random the rows and the columns
of C. For a given constant c > 1, divide C′ into cr × cr sub-arrays of size n

cr × n
cr .

For any given r-sparse non-zero entry C[i, j] of C the probability that another non-zero
entry of C is in the same sub-array of C′ is O(1

c ).
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Proof. The probability that another non-zero entry C[i′, j′] of C, where i �= i′ and
j �= j′, is in the same sub-array of C′ is at most

(r2 − 1)
( n

cr − 1)
n − 1

( n
cr − 1)
n − 1

= O(
1
c2

)

The probability that another non-zero entry C[i′, j′] of C, where either i = i′ or j = j′,
is in the same sub-array of C′ is at most

2(r − 1)
( n

cr − 1)
n − 1

= O(
1
c
)

��
Before presenting our algorithm, we recall the concept of witnesses in Boolean matrix
multiplication.

Definition 2. If an entry C[i, j] of the Boolean product of two Boolean matrices A and
B is equal to 1 then any index l such that A[i, l] and B[l, j] are equal to 1 is a witness
for C[i, j]. The problem of computing witnesses for the product matrix C consists in
determining for each non-zero entry of C a single witness.

Our algorithm consists of two main stages. The first stage takes care of the r-sparse non-
zero entries. It consists of iterations of Algorithm 1 which is an efficient algorithmic
counterpart of Lemma 2, where the matrix C is the Boolean product of two Boolean
matrices A and B. In Algorithm 1, the sub-arrays of C′ in Lemma 2 correspond to
single entries of a smaller product matrix resulting from gluing batches of Ω(n

r ) rows
in the row-permuted matrix A and batches of Ω(n

r ) columns in the column-permuted
matrix B.

Algorithm 1
Input: Two n × n Boolean matrices A and B whose Boolean product has at most r2

non-zero entries.
Output: An n×n Boolean matrix C whose non-zero entries are a subset of the non-zero
entries of the Boolean product of A and B, and witnesses for the non-zero entries of C.

1. Permute uniformly at random the rows of A and the columns of B.
2. Contract each block of n

r consecutive rows of row-permuted A into a single super-
row by taking the “or” along the n

r -long column fragments. Similarly, contract each
block of n

r consecutive columns of column permuted B into a single super-column
by taking the “or” along the n

r -long row fragments.
3. Form the r×n matrix A∗ composed of the super-rows, and similarly form the n×r

matrix B∗ composed of the super-columns.
4. Compute the witnesses of the Boolean product C∗ of A∗ with B∗ (one for each

non-zero entry of C∗).
5. For each witness k of an entry C∗[i∗, j∗] computed in the previous step, find the

first row i′ in the block of the row-permuted A corresponding to the i∗ (super)row
of A∗ satisfying A[i′, k] = 1, as well as the first column j′ in the block of column-
permuted B corresponding to the j∗ (super)column of B∗ satisfying B[k, j′] = 1.
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Let i be the row number of i′ in the original matrix A, and similarly, let j be the
column number of j′ in the original matrix B. Set C[i, j] to 1 and the witness of
C[i, j] to k.

Lemma 3. Algorithm 1 is partially correct, i.e., it sets to 1 only non-zero entries of the
product matrix and it provides true witnesses (one for each non-zero entry) for them.

Proof. It is sufficient to prove the correctness of the settings in Step 5. The i∗-th row of
A∗ is the result of column-wise “or” of the rows (i∗ − 1)n

r + 1 through i∗ n
r . Similarly,

the j∗-th column of B∗ is the result of row-wise “or” of the columns (j∗ − 1)n
r + 1

through j∗ n
r . Consequently, a witness k for the entry C∗[i∗, j∗] is an index k which

satisfies
∨i∗ n

r

i′′=(i∗−1) n
r +1 A[i′′, k] = 1 and

∨j∗ n
r

j′′=(j∗−1) n
r +1 B[k, j′′] = 1. Hence, the

indices i′ and j′ are well defined in Step 5 and k is also a witness of C[i, j]. ��
Throughout this section, we shall assume that there is an available method for square
(m × m) Boolean matrix product also producing a witness for each non-zero entry of
the product, running in time f(m). Clearly, we have f(m) ≥ m2, and we may assume
w.l.o.g that f(qm) ≤ q3f(m) for any positive integer q.

For instance, f(m) could be O(m3) in case of the straightforward Boolean product
method following from the definition, or ˜O(nω) in case of the method based on the fast
arithmetic matrix multiplication and the following fact due to Alon and Naor [4] (see
also [20] for an earlier randomized version of this fact).

Fact 1. For all non-zero entries of the Boolean product of two n × n Boolean matri-
ces representatives of their witnesses can be computed deterministically in total time
˜O(nω).

Lemma 4. Algorithm 1 can be implemented in time O(n
r f(r) + n2).

Proof. Steps 1,2,3 can be easily implemented in time linear in the input size, i.e.,
O(n2). To implement Step 4, we divide vertically A∗ into square r × r sub-arrays
A∗

p, p = 1, ..., n
r , as well as B∗ horizontally into r × r sub-arrays B∗

p , p = 1, ..., n
r .

In this way, we reduce the computation of the witnesses for the product C∗ of A∗ and
B∗ to the computation of witnesses for the products A∗

p × B∗
p , p = 1, ..., n

r , and taking
their union. This all takes time n

r × O(f(r) + r2) = O(n
r f(r) + nr). Finally, Step 5

takes time O(n
r r2) = O(nr). ��

Lemma 5. Suppose that the Boolean product C of A and B has at most r2 non-zero
entries. For sufficiently large constant c, after O(log n) iterations of Algorithm 1, the
non-zero r-sparse entries of the Boolean product C will be set to 1 and their witnesses
will be provided, almost certainly, i.e., with probability not less than 1 − 1

nα for some
α > 1.

Proof. Set c to the smallest positive integer such that the probability bound O(1
c ) in

Lemma 2 is at most 1
2 . It follows then from the specification of Algorithm 1 and Lemma

2 that for a given non-zero r-sparse entry of C the probability that it is not set to 1 (and
its witness is not provided) after d log n iterations is at most 2−d log n. Hence, for a
given α > 1, there is a sufficiently large constant d so the probability that at least one
non-zero r-sparse entry is not set to 1 after d log n iterations is at most n−α. ��
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The second stage of our algorithm takes care of, i.e., provides witnesses for, the non-
zero r-dense entries of the Boolean product of A and B. It relies on Lemma 1 and the
following fact due to Cohen (see pp. 312-315 in [7]).

Fact 2. Let A and B be two n × n Boolean matrices. For any fixed ε > 0, there is an
O(n2 log n)-time randomized algorithm that estimates the number of non-zero entries
in the columns and rows of the Boolean product of A and B with relative error < ε
almost certainly.

Lemma 6. The witnesses for a superset of the non-zero r-dense entries of the Boolean
product of A and B can be computed in time O((n

r )2f(r)+n2 log n), almost certainly.

Proof. We can detect a superset of the rows of the matrix A corresponding to the r-
dense rows of the product of A and B, as well as the columns of the matrix B corre-
sponding to the r-dense columns of the product matrix as follows. We run the algorithm
of Cohen [7] with ε set, say to 1

2 , to estimate the number of non-zero entries in each
row and each column of the product matrix in time O(n2 log n). If the estimation for a
row or a column of the product matrix exceeds r

2 then we mark the corresponding row
of A or the corresponding column of B.

Note that in particular all r-dense rows and columns of the product matrix are marked
in this way. On the other hand, each of the marked rows or columns is r

4 dense.
Let A∗ be the matrix composed of the marked rows of the matrix A. Similarly, let

B∗ be the matrix composed of the marked rows of B. Now, it is sufficient to determine
witnesses for the Boolean products of A∗ with B and A with B∗. The union of the
two resulting sets of witnesses has to include witnesses for all r-dense non-zero entries
of the product of A with B. Since the rows of A∗ correspond to some r

4 dense rows
of the product matrix, A∗ has at most O(r) rows by Lemma 1. Analogously, B∗ has
at most O(r) columns. Hence, by dividing A∗ vertically into O(n

r ) sub-arrays of size
O(r) × O(r) and B both horizontally and vertically into O((n

r )2) sub-arrays of size
O(r) × O(r), we can compute the witnesses of the product of A∗ with B by com-
puting the witnesses of O((n

r )2) products of O(r) × O(r) sub-arrays. This takes time
O((n

r )2f(r)). Symmetrically, we can compute the witnesses for the product of A with
B∗ in time O((n

r )2f(r)). ��

We can also use the application of Fact 2 in Lemma 6 to estimate the number r2 of non-
zero entries in the Boolean product matrix for the sake of the iterations of Algorithm
1. Note that if we set s = r2 then the upper bound O((n

r )2f(r) + n2 log n) given in

Lemma 6 can be rewritten as O(n2

s f(
√

s) + n2 log n) = ˜O(n2

s f(
√

s)). Similarly the

time taken by O(log n) iterations of Algorithm 1 can be expressed as ˜O( n√
s
f(
√

s)+n2)
by Lemma 4. Hence, by combining Lemmata 3, 4, 5, 6, we obtain our main theorem.

Theorem 1. Let A and B be two n × n Boolean matrices whose Boolean product has
at most s non-zero entries. The Boolean product of A and B, and the witnesses for
the product can be computed by a randomized algorithm in time ˜O(n2

s f(
√

s)), almost
certainly. In particular, if we apply the fastest algorithm for the Boolean product and
its witnesses, i.e., f(m) = ˜O(mω), the running time is ˜O(n2sω/2−1).
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Note that if we apply the straightforward cubic-time algorithm for the Boolean product
and its witnesses, i.e., f(m) = O(m3), we obtain another output-sensitive algorithm
for this problem running in time ˜O(n2

√
s).

3 Partial Derandomization

Let Sn be the set of all permutations of 0, ..., n − 1. A family of permutations F ⊆
Sn is pairwise independent (cf. [6]) if for any π chosen at random in F and any
{i1, i2, k1, k2} ⊆ {0, ..., n− 1} where i1 �= i2 and k1 �= k2,

P r(π(i1) = k1 & π(i2) = k2) =
1

n(n − 1)

Assuming that n is a prime number, the family of linear transformations of the form
π(i) = ai + b mod n, where a �= 0, is known to be pairwise independent (e.g., see
Exercise in [16]).

Under the assumption that n is a prime number, we can replace uniform at random
permutations in step 1 in Algorithm 1 with such randomly chosen linear transforma-
tions. Due to the property of pairwise independence, Lemma 5 can be proved analo-
gously after the replacement. Then, if additionally we use the deterministic version of
the algorithm due to Alon and Naor for witnesses of Boolean matrix product [4], one
iteration of the so modified Algorithm 1 will require only O(log n) random bits. Thus,
the total number of random bits used by our method, but for the application of Cohen’s
algorithm to estimate the number of non-zero entries in the rows and columns of the
product, can be decreased to O(log2 n) at the cost of increasing its time complexity by
a poly-logarithmic factor. The increase is caused by patching the input matrices to the
size n′×n′, where n′ is the smallest prime number not larger than n, and the use of the
deterministic algorithm for witnesses [4]. (To find such a prime number n′, one can use
the AKS primality testing or its improved versions running in time polynomial in the
length of bit representation [1].)

Hence, we obtain the following variant of Theorem 1.

Theorem 2. Let A and B be two n × n Boolean matrices. Suppose that there are
given a priori upper bounds on the number of non-zero entries in the respective rows
and columns of the Boolean product of A and B summing to at most 2s. The Boolean
product of A and B, and the witnesses for the product can be computed almost certainly
by a randomized algorithm, using O(log2 n) random bits and ˜O(n2sω/2−1) time.

4 Rectangular Boolean Matrix Multiplication

Analogous output sensitive algorithms can be derived for rectangular Boolean matrix
multiplication.

Denote by ω(p, q, t) the exponent of the fast multiplication of an np × nq matrix by
an nq × nt matrix.

We obtain the following partial generalization of Theorems 1, 2.
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Theorem 3. Let A and B be two Boolean matrices of size np × nq and nq × nt, re-
spectively, such that their product has at most np(1−δ1)+t(1−δ2) non-zero entries. The
Boolean product of A and B and its witnesses can be computed by a randomized algo-
rithm running in time ˜O(nω(|p−δ1|,q,t)+nω(p,q,|t−δ2|)+np+q +nq+t), almost certainly.
Furthermore, if upper bounds on the number of non-zero entries in the respective rows
and columns of the Boolean product of A and B summing to at most nq(1−δ1)+t(1−δ2)

are known a priori then the algorithm requires only O(log2 n) random bits.

Proof. sketch. Let C denote the np×nt Boolean product of A and B. Consider nt(1−δ2)-
sparse rows of C, i.e., the rows of C with at most nt(1−δ2) non-zero entries as well
as np(1−δ1)-sparse columns of C, i.e., the columns of C with at most np(1−δ1) non-
zero entries. Next, define (np(1−δ1), nt(1−δ2))-sparse non-zero entries as those non-zero
entries which lie within a nt(1−δ2)-sparse row and a np(1−δ1)-sparse column of C. The
remaining entries are (np(1−δ1), nt(1−δ2))-dense.

The consecutive steps of the proof are straightforward generalizations of those in the
proof of Theorems 1, 2, resulting from the use of the generalized concepts of sparse
(and, dense) rows, columns and entries of C. For instance, the generalization of Lemma
1 states that if C has at most np(1−δ1)+t(1−δ2) non-zero entries then the number of
nt(1−δ2)-dense rows is O(np(1−δ1)) while the number of np(1−δ1)-dense columns is
O(nt(1−δ2)). Next, in the generalization of Lemma 2, C′ is divided into cnp(1−δ1) ×
cnt(1−δ2) sub-arrays of size npδ1

c × ntδ2

c , and so on. The further analogous details in
the generalizations of consecutive lemmata as well as in Algorithm 1 are left to the full
version.

The terms nω(|p−δ1|,q,t) and nω(p,q,|t−δ2|) in the claimed upper time-bound come
from the final step (the generalization of Lemma 6), taking care of the non-zero
(np(1−δ1), nt(1−δ2))-dense entries. They overshadow the term nω(|p−δ1|,q,|t−δ2|) com-
ing from the iterations of a generalization of Algorithm 1. ��
Note that since the sizes of A and B are not necessarily symmetric, forcing δ1 = δ2

might weaken the upper time-bound in Theorem 3.

5 Applications

Theorems 1, 2 yield corresponding output-sensitive upper time-bounds for several ap-
plications of Boolean matrix product and its witnesses, e.g., composition of binary re-
lations, maximum witnesses of Boolean product, lowest common ancestors in directed
acyclic graphs, prediction of the structure of the arithmetic matrix product, etc.

A binary relation is a set of ordered pairs over some universe. The composition of
two binary relations R1 and R2 over a common universe U is a binary relation R3 over
U defined by R3 = {(v, w)|∃u∈U (v, u) ∈ R1 ∧ (u, w) ∈ R2}.
Corollary 1. If the composition of two binary relations over an n-element universe has
at most s elements then it can be computed from these two relations by a randomized
algorithm in time ˜O(n2sω/2−1), almost certainly.

A maximum witness for a non-zero entry C[i, j] of the Boolean product of two n × n
Boolean matrices A, B is the largest witness for C[i, j], i.e., the largest index k such
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that A[i, k] = 1 and B[k, j] = 1. The next corollary is concerned with computing
maximum witnesses (one per each non-zero entry) in a sparse Boolean matrix product.

Corollary 2. Let A and B be two n × n Boolean matrices whose product has at most
n2−2δ non-zero entries, and let λ(δ) be such that ω(1, λ(δ), |1 − δ|) = 1 + λ(δ).
The maximum witnesses of the product of A and B can be computed by a randomized
algorithm running in time ˜O(n2+λ(δ)), almost certainly. By augmenting this upper time
bound with the additive term O(nω), we can decrease the number of required random
bits to O(log2 n).

Proof. The proof requires solely a slight modification of the proof of Theorem 16 in
[10]. The key observation is that in the aforementioned proof the matrices Cp, p =
1, ..., n/l, have also at most n2−2δ non-zero entries like the Boolean product C of A
and B. Hence, since such a matrix Cp is the Boolean product of an n × nr Boolean
matrix with an nr ×n Boolean matrix (see [10]), where r = logn l, it can be computed
in time ˜O(nω(1,r,|1−δ|) + nω(|1−δ|,r,1) + n1+r) by Theorem 3. Therefore, by the proof
of Theorem 16 in [10] and the equality ω(1, r, |1 − δ|) = ω(|1 − δ|, r, 1), the total
cost of computing the maximum witnesses is ˜O(n1−r+ω(1,r,|1−δ|) + n3−r + n2+r).
Analogously as in [10], we get rid of the additive term n3−r assuming r ≥ 1

2 , and
solve the equation 1 − λ(δ) + ω(1, λ(δ), |1 − δ|) = 2 + λ(δ), implying λ(δ) ≥ 1

2 by
ω(1, λ(δ), |1 − δ|) ≥ 2, in order to balance the two remaining exponent terms. This
yields the first claimed upper time-bound. To estimate the number of non-zero entries
in the rows and columns of the product matrix we can simply compute the product in
time O(nω) instead of using the algorithm of Cohen [7]. ��
By [8,14], the best known upper bound on λ(0) is 0.575 (see, e.g., [10]). Hence, the
partially derandomized version of Corollary 2 should be interesting at least for small δ.

In turn, the problem of maximum witnesses has many applications [19]. Here, we
just consider its original application to computing lowest common ancestors in directed
acyclic graphs [10,15]. By combining Corollary 2 with Theorem 11 in [10], we obtain
the corollary

Corollary 3. Let G be a directed acyclic graph on n vertices such that at most n2−2δ

pairs of vertices in G have a common ancestor. Next, let λ(δ) be such that ω(1, λ, |1 −
δ|) = 1 + λ(δ). There is a randomized algorithm almost certainly reporting for all
pairs of vertices in G with a common ancestor their lowest common ancestor, running
in total time ˜O(n2+λ(δ)). By augmenting this upper time bound with the additive term
O(nω), we can decrease the number of required random bits to O(log2 n).

The methods of Theorems 1 and 2 applied to Boolean counterparts of two n × n arith-
metic matrices yield the complete information on the location of non-zero entries in the
product of these two arithmetic matrices under the assumption of no cancellation.

Corollary 4. Let A and B be two n × n arithmetic matrices whose product has at
most s non-zero entries. Under the assumption of no cancellation, the exact non-zero
structure of the product of A and B can be determined by a randomized algorithm
running in time ˜O(n2sω/2−1), almost certainly. Furthermore, if the upper bounds on
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the number of non-zero entries in the respective rows and columns of the product matrix
summing to at most 2s are known a priori then the algorithm requires only O(log2 n)
random bits.

6 Conclusions and Extensions

Our main new idea is the use of randomness to compute sparse Boolean product. We
have applied the idea to the fast algorithms for Boolean product and its witnesses, treat-
ing them as black boxes.

The next natural step would be to derive general upper time bounds sensitive both to
the sparsity of the input matrices as well as to that of the product matrix by combining
the ideas from this paper with those from [2,22].
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