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Abstract. In this paper we present an O(n log n) algorithm for finding a
maximum flow in a directed planar graph, where the vertices are subject
to capacity constraints, in addition to the arcs. If the source and the sink
are on the same face, then our algorithm can be implemented in O(n)
time.

For general (not planar) graphs, vertex capacities do not make the
maximum flow problem more difficult, as there is a simple reduction that
eliminates vertex capacities. However, this reduction does not preserve
the planarity of the graph. The essence of our algorithm is a different
reduction that does preserve the planarity, and can be implemented in
linear time. For the special case of undirected planar graph, an algorithm
with the same time complexity was recently claimed, but we show that
it has a flaw.

1 Introduction

The problem of finding a maximum flow in a graph, or in a network, is a well-
studied problem with applications in many fields, see the book of Ahuja, Mag-
nanti and Orlin [1] for a survey. The maximum flow problem is also interesting
if we restrict it to planar graphs, which are graphs that have an embedding in
the plane without crossing edges. The case of planar graphs appears in many
applications of the problem, for example road traffic or VLSI design. The special
structure of planar graphs allows us to get simpler and more efficient algorithms
for the maximum flow and related problems.

In the maximum flow problem, usually the arcs of the graph have capacities
which limit the amount of flow that may go through each arc. We study a version
of the problem in which the vertices of the graph also have capacities, which limit
the amount of flow that may enter each vertex. This version appears for example
when computing vertex disjoint paths in graphs, and in other problems where
the vertices model objects which have a capacity.

Ford and Fulkerson [3, Chapter I.11] studied this version of the problem.
They suggested the following simple reduction to eliminate vertex capacities.
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We replace every vertex v with a finite capacity c by two vertices v′ and v′′.
The arcs that were directed into v now enter v′, and the arcs that were directed
out of v now leave v′′. We also add a new arc with capacity c from v′ to v′′.
Unfortunately, this reduction does not preserve the planarity of the graph [7].
Consider for example the complete graph of four vertices, where one of the
vertices has finite capacity. This graph is planar. If we apply the construction
of Ford and Fulkerson we get a graph whose underlying undirected graph is
the compete graph with 5 vertices. This graph is not planar by Kuratowski’s
Theorem.

The most efficient algorithm for maximum flow in directed planar graphs with-
out vertex capacities, to date, was given by Borradaile and Klein [2] (Weihe [11]
gave an algorithm with the same time bound but assuming a certain connectivity
condition on the graph). Their paper also contains a survey of the history of the
maximum flow problem on planar graphs. The time bound of the algorithm of
[2] is O(n log n) where n is the number of vertices in the input graph. Borradaile
and Klein ask whether their algorithm can be generalized to the case where the
flow is subject to vertex capacities.

A planar graph is a st-planar graph if the source and the sink are on the same
face. Hassin [4] gave an algorithm for the maximum flow problem in directed st-
planar graphs without vertex capacities. The bottleneck of the algorithm is the
computation of single-source shortest-path distances, which takes O(n) time in
a planar graph, using the algorithm of Henzinger et al. [5].

Khuller and Naor [7] were the first to study the problem of maximum flow
with vertex capacities in planar graphs. They gave various results, including
an O(n

√
log n) time algorithm for finding the value of the maximum flow in

st-planar graphs (which can be improved to O(n) time using the algorithm of
[5]), an O(n log n) time algorithm for finding the maximum flow in st-planar
graphs, an O(n log n) time algorithm for finding the value of the maximum flow
in undirected planar graphs, and an O(n1.5 log n) time algorithm for the same
problem on directed planar graphs. If all vertices have unit capacities, then we
get the vertex-disjoint paths problem. Ripphausen-Lipa et al. [10] solved this
problem in O(n) time for undirected planar graphs.

Recently, Zhang, Liang and Chen [13], used a construction similar to the
one of [7] to obtain a maximum flow for undirected planar graphs with vertex
capacities that runs in O(n log n) time. Their algorithm first constructs a planar
graph without vertex capacities, and then uses the algorithm of [2] to find a
maximum flow in it, which is modified in O(n log n) time to a flow in the original
graph with vertex capacities. They also gave a different O(n) time algorithm for
finding a maximum flow in undirected st-planar graphs. Zhang et al. also ask in
their paper if there is an algorithm that solves the problem for directed planar
graphs.

In this paper we answer [2] and [13], and show a linear time reduction of the
problem of finding maximum flow in directed planar graphs with arc and vertex
capacities, to the problem of finding maximum flow in directed graphs with only
arc capacities. This problem is more general than the one for undirected planar
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graphs, since an undirected planar graph can be viewed as a special case of a
directed planar graph, in which there are two opposite arcs between any pair of
adjacent vertices.

We show how to apply the constructions of [7] and [13] to directed planar
graphs. Given directed planar graph, we construct another directed planar graph
without vertex capacities, such that we can transform a maximum flow in the new
graph back to a maximum flow in the original graph. Since the new graph does
not have vertex capacities we can find a maximum flow in it using the algorithm
of [2] (or of [4] if it is an st-planar graph). The time bound of our reduction
is linear in the size of the graph, therefore we show that vertex capacities do
not increase the time complexity of the maximum flow problem also for planar
graphs.

In addition, we show that the algorithm of [13] unfortunately has a flaw.
We give an undirected graph in which this algorithm does not find a correct
maximum flow. Therefore, in fact our algorithm is also the first to solve the
problem for undirected graphs.

The outline of the paper is as follows: In the next section we give some back-
ground and terminology. In Sect. 3 we describe the construction of [7] that we
use, and in Sect. 4 we describe the one of [13]. In Sect. 5 we characterize when a
maximum flow in the constructed graph induces a maximum flow in the original
graph and show how to efficiently find such a flow in the constructed graph. Fi-
nally, in the last section we combine all the pieces together to get our algorithm.

2 Preliminaries

We consider a simple directed planar graph G = (V, E), where V is the set of
vertices and E is the set of arcs, with a given planar embedding. The planar
embedding of the graph G is represented combinatorially, see [9] for survey on
planar graphs. An arc e = (u, v) ∈ E is directed from u ∈ V to v ∈ V . We denote
the number of vertices by n, since the graph is planar we have |E| = O(n).

A path P = (e0, e1, . . . , ek−1) is a sequence of arcs ei = (ui, vi) such that
for 0 ≤ i < k − 1 we have vi = ui+1. If in addition vk−1 = u0 then P is a
cycle. We say that a path P contains a vertex v, if either (u, v) or (v, u) is in
P , for some vertex u. The path P = (e0, e1, . . . , ek−1) starts at u0 and ends at
vk−1. For v ∈ V , in(v) = {(u, v) | (u, v) ∈ E} is the set of incoming arcs and
out(v) = {(v, u) | (v, u) ∈ E} is the set of outgoing arcs.

The graph G has two distinguished vertices, s ∈ V is the source and t ∈ V
is the sink. The source s has no incoming arcs, and the sink t has no outgoing
arcs. Every arc e ∈ E, has a capacity c(e) ≥ 0, and in addition every vertex
v ∈ V \ {s, t} has a capacity c(v) ≥ 0. A capacity might be ∞. We assume that
the source and the sink have no capacities, if we wish to allow them to have
capacities, we can add a vertex s′ that will be the source instead of s, and an
arc (s′, s) with the desired capacity, and similarly add a new sink t′, and an arc
(t, t′) with the desired capacity. Note that this transformation keeps the graph
planar, and even st-planar if it was so. It is easy to extend the given embedding
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to accommodate s′, t′, and the arcs (s′, s) and (t, t′). A graph without vertex
capacities can be viewed as a special case in which c(v) = ∞ for every vertex.

A function f : E → R is a flow function if and only if it satisfies the following
three constraints:

0 ≤ f(e) ≤ c(e) ∀e ∈ E , (1)
∑

e∈in(v)

f(e) ≤ c(v) ∀v ∈ V \ {s, t} , (2)

∑

e∈in(v)

f(e) =
∑

e∈out(v)

f(e) ∀v ∈ V \ {s, t} . (3)

Constraints (1) are the arc capacity constraints, Constraints (2) are the vertex
capacity constraints and Constraints (3) are the flow conservation constraints.

We say that e ∈ in(v) carries flow into v if f(e) > 0, and that e′ ∈ out(v)
carries flow out of v if f(e′) > 0.

The value of a flow f is
∑

e∈in(t) f(e), the amount of flow which enters the
sink. If the value of f is 0 then f is a circulation. Our goal, in the maximum flow
problem, is to find a flow function of maximum value.

For a flow function f we define a cycle C to be a flow-cycle if f(e) > 0 for
every arc in C. We extend this definition to every function f : E → R, even if
it is not a flow. If a function f has no flow-cycles we say that f is acyclic. An
acyclic flow is a flow function which is acyclic.

Let e = (u, v) we denote rev(e) = (v, u). For a flow function f , we may assume
that f does not contain an arc e such that both f(e) > 0 and f(rev(e)) > 0,
because otherwise the flows in both directions can cancel each other. For a path
P = (e0, e1, . . . , ek−1) we let rev(P ) = (rev(ek−1), rev(ek−2), . . . , rev(e0)).

The planar embedding of G partitions the plane into connected regions called
faces. For a simpler description of our algorithm, we fix an embedding of G such
that t is on the boundary of the infinite face. It is easy to convert any given
embedding to such an embedding [9].

The dual graph G∗ of G has a vertex D(h) for every face h of G, and an arc
D(e) for every arc e of G. The arc D(e) connects the two vertices corresponding to
the faces incident to e. The arc D(e) is directed from the vertex that corresponds
to the face on the left side of e to the one of the face on the right side of
e. Intuitively, G∗ is obtained from G by turning the arcs clockwise. The dual
graph G∗ is planar, but it is may have loops or parallel arcs. Every face h of G∗

corresponds to a vertex v in G, such that the arcs that bound h are dual to the
arcs that are incident to v. See Fig. 1. The capacity of e ∈ E, c(e), is interpreted
in G∗ as the length of D(e).

In the construction we present below we add undirected edges to directed
graphs. Each such undirected edge uv can be represented by two antiparallel
directed arcs (u, v) and (v, u), with the same capacity. If e is an undirected edge,
then D(e) is also undirected.
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Fig. 1. A planar graph and its dual graph. The vertices of G are dots, and its arcs
are solid. The vertices of G∗ are circles, and its arcs are dashed. The bold arcs are an
arc-cut in G and a cut-cycle in G∗. Capacities are not shown in this figure.

2.1 Residual Cycles

Let f be a flow in G. The residual capacity of an arc e with respect to f is defined
as cr(e) = c(e) − f(e) + f(rev(e)). In other words, the residual capacity of e is
the amount of flow that we can add to e, or reduce from rev(e). The residual
graph of G with respect to f has the same vertex set and arc set as G, and the
capacity for each edge e is cr(e). A residual arc with respect to f is an arc e with
a positive residual capacity. A residual path is a path made of residual arcs. A
residual cycle is a cycle made of residual arcs.

Khuller, Naor and Klein [8] presented an algorithm that finds a circulation
such that there are no clockwise residual cycles with respect to this circulation, in
a directed planar graph. The bottleneck of the algorithm of [8] is the computation
of single-source shortest-path distances. Henzinger et al. [5] showed how to find
these distances in a planar graph in O(n) time, so the algorithm of [8] can be
implemented in the same time bound. The complete details of the algorithm
can be found also in [2]. We present an extension of this algorithm that changes
a given flow into another flow, with the same value, without clockwise residual
cycles with respect to it. We use this algorithm later to get the linear time bound
for our reduction. The algorithm of [8] is for directed planar graphs without
vertex capacities, so for the rest of this section assume that the graph G does
not have vertex capacities.

In this section we also assume that if e ∈ E then also rev(e) ∈ E. This
assumption can be satisfied, without changing the problem, by adding the arc
rev(e) with capacity 0 for every arc e such that rev(e) is not in E.

Given a flow f in G, we wish to find a flow f ′ with the same value, such that
there are no clockwise residual cycles with respect to f ′.

Let G′ be the residual graph of G with respect to f . We find a circulation
fr in G′, such that G′ does not have clockwise residual cycles with respect to
fr, using the algorithm of [8]. Define f ′ to be the sum of f and fr, that is
f ′(e) = max{0, f(e) + fr(e) − [f(rev(e)) + fr(rev(e))]}. In other words, we add
f(e) and fr(e), and let the flows on e and rev(e) cancel each other.
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The function f ′ satisfies the two constraints of a flow without vertex capacities.
The capacity of an arc e in G′ is c(e) − f(e) + f(rev(e)) and therefore fr(e) is
smaller than this capacity, therefore f(e) + fr(e) − [f(rev(e)) + fr(rev(e))] ≤
c(e), so f ′(e) ≤ c(e) and the arc capacity constraints are satisfied in f ′. The
conservation constraints are satisfied, because these constraints are satisfied for
f and for fr, and f ′ is the sum of these two flows.

The value of the flow f ′ is the sum of the values of f and fr. Since fr is a
circulation, its value is 0, and so the value of f ′ is the same as the value of f .

The flow f ′ has the desired property that G has no clockwise residual cycles with
respect to f ′. To show that, we show that if C is a clockwise residual cycle in G
with respect to f ′, then C is also a residual cycle in G′ with respect to fr, contrary
to the way we find fr. Let e be an arc of C, and assume for contradiction that e
is not residual in G′ with respect to fr. From our assumption fr(e) = cr(e) =
c(e) − f(e) + f(rev(e)) and fr(rev(e)) = 0. Therefore, f ′(e) = c(e) and e is not
residual in G with respect to f ′, contradicting the fact that e is a member of C.

Lemma 1. Let G be a directed planar graph without vertex capacities, and let
f be a flow in G. We can find a flow f ′ in G, with the same value as f , such
that there are no clockwise residual cycles with respect to f ′, in O(n) time.

3 Minimum Cut

In a graph without vertex capacities, a cut S is a minimal subset of E such that
every path from s to t contains an arc in S. To avoid ambiguity later, when we
introduce cuts that may contain vertices, we call such a cut an arc-cut. See Fig. 1.
The value of an arc-cut S is

∑
e∈S c(e). The minimum cut problem asks to find

an arc-cut of minimum value. The fundamental connection between maximum
flow and the minimum cut problems was given by Ford and Fulkerson [3] in the
Max-Flow Min-Cut Theorem:

Theorem 2. [3] The value of the maximum flow (in a graph without vertex
capacities) is equal to the value of the minimum arc-cut in the same graph.

Let C be a cycle in G∗. We say that C is a cut-cycle if it separates the faces
corresponding to s and t, and goes counterclockwise around s (or equivalently,
clockwise around t). See Fig. 1. The length of C is the sum of the lengths of its
arcs. Johnson [6] showed the following relation between the value of minimum
arc-cut and the value of shortest cut-cycle:

Lemma 3. [6] Let G be a directed planar graph without vertex capacities. Then
the value of the minimum arc-cut of G, is the same as the length of the shortest
cut-cycle in G∗.

Ford and Fulkerson [3, Chapter I.11] extended the definition of cuts to graphs
with vertex capacities. In such a graph, a cut S is a minimal subset of E ∪ V
such that every path from s to t contains an arc or a vertex in S. The value of
a cut S is similarly defined as

∑
x∈S c(x). Ford and Fulkerson also presented a



Maximum Flow in Directed Planar Graphs with Vertex Capacities 403

s t

Fig. 2. Construction of GC and GE for the graph in Fig. 1. The graph GC is presented
as the dual graph of GE . The newly added (undirected) edges are without arrowheads.
Capacities are not shown in this figure.

version of the Max-Flow Min-Cut Theorem for graphs with vertex capacities, in
this case the value of maximal flow (subject to both arc and vertex capacities) is
equal to the value of the minimum cut (which contains both arcs and vertices).

Khuller and Naor [7] extended Lemma 3 using a supergraph GC of G∗ which
they construct as follows. Let h be a face of G∗ that corresponds to a vertex v
of G with finite capacity. We add a new vertex vh inside h and connect it by
an (undirected) edge of length c(v)/2 to every vertex on the boundary of h. See
Fig. 2.

Lemma 4. [7] The values of the maximum flow and minimum cut in G are
equal to the length of the shortest cut-cycle in GC .

4 The Extended Graph

Zhang, Liang and Jiang [12] and Zhang, Liang and Chen [13] construct the
extended graph for an undirected graph with vertex capacities, based on the
construction of Khuller and Naor [7]. We use the same construction for di-
rected planar graphs with vertex capacities. The extended graph is defined as
follows. We replace every vertex v ∈ V which has a finite capacity with d vertices
v0, · · · , vd−1, where d = |in(v)| + |out(v)| is the degree of v. We connect every
vi to v(i+1)modd with an (undirected) edge of capacity of c(v)/2. We make every
arc that was adjacent to v, adjacent to some vertex vi instead, such that each
arc is connected to a different vertex vi, and the clockwise order of the arcs is
preserved. We identify the new arc (u, vi) or (vi, u) with the original arc (u, v) or
(v, u). We denote the resulting graph by GE , and the cycle that replaces v ∈ V
in GE by Cv. The graph GE is a simple directed planar graph without vertex
capacities. The arc set of GE contains the arc set of G. See Fig. 2.
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From the construction of GE and GC follows that GC is the dual of GE . Let
v be a vertex with finite capacity and let h be the corresponding face in G∗.
Then, in GE we replaced v with Cv, and in GC we placed vh inside h. The edges
which connects vh to the boundary of h are dual to the edges of Cv.

From Theorem 2 we get that the value of the maximum flow in GE is the
same as the value of minimum arc-cut in GE . By Lemma 3 this value is the
same as the value of the shortest cut-cycle in GC . Lemma 4 implies that this
value equals to the value of the maximum flow in G, so the next lemma follows.

Lemma 5. The value of the maximum flow of G is equal to the value of the
maximum flow of GE.

5 Reduction from the Extended Graph to the Original
Graph

We denote by fE a flow function in GE , and by f the restriction of fE to the
arcs of G, that is for every arc e of G, f(e) = fE(e). The value of f is the same
as the value of fE . The next lemma generalizes the result of Zhang et al. [13,
Theorem 3], and its proof is similar.

Lemma 6. Let fE be a flow function in GE . If f is acyclic then f is a flow
function in G.

In order to use Lemma 6 we must find a maximum flow fE in GE such that f
is acyclic. In this section we show how to do that.

The algorithm of Zhang et al. [13, Section 3] for undirected planar graphs
finds a flow fE in GE and than cancels flow-cycles in f in an arbitrary order.
They call the resulting flow fa and claim that this flow satisfies vertex capacities
constraints. This approach is flawed. Fig. 3 shows an example on which the
algorithm of [13] fails. After we cancel flow-cycles in f in an arbitrary order it
is possible that there is no flow f ′

E in GE such that the restriction f ′ of f ′
E to

G is fa, and therefore Lemma 6 does not apply.
As the example in Fig. 3 shows, it is not enough to cancel arbitrary flow-

cycles in f . We can cancel a flow-cycle in f only if there is a cycle C in GE

that contains it, such that we can reduce flow along the cycle C. In this case the
cycle rev(C) in GE is a residual cycle with respect to fE . Therefore, in order to
cancel a flow-cycle in G with respect to f we must cancel a residual cycle in GE

with respect to fE . Canceling a arbitrary residual cycle is not enough, since we
always want to reduce the flow that f assigns to arcs, and never increase it.

Let fE be a flow in GE . We define a new capacity function c′ on the arcs of
GE which guarantees that the flow in an arc e of G never increases beyond the
value of f(e). For e ∈ E we let c′(e) = f(e). The arcs of GE which are not in
G are arcs of Cv for some vertex v, for these arcs we do not have to limit the
flow to the amount in fE, so we set c′(e) = c(e) = c(v)/2. The flow function fE

is also a flow function in GE with the new capacity function c′, by the way we
defined c′. Since c′(e) ≤ c(e) for every arc e, every flow in GE with the capacity
function c′ is also a flow in GE with the original capacity function c.



Maximum Flow in Directed Planar Graphs with Vertex Capacities 405

s t

Cv

Fig. 3. A counterexample to the algorithm of [13]. The edges of the original undirected
graph G are solid. The vertex v has capacity 1, the edges of Cv are dotted. The flow
in every solid edge is 1, the flow in every dotted edges is 1/2, in the specified direction
(the edges are undirected). The bold edges form a flow-cycle in G, after we cancel it
we remain with an acyclic flow in G, but the amount of flow that enters v is 2. The
correct solution is to cancel the flow in the two internal flow-cycles.

Instead of canceling the residual cycles one by one, we apply to GE and c′ the
algorithm in Sect. 2.1 and find a new flow f ′

E with the same value as fE , such
that there are no clockwise residual cycles in GE with respect to f ′

E and c′. The
following lemma shows the crucial property of f ′

E .

Lemma 7. The restriction f ′ of f ′
E to G does not contain counterclockwise

flow-cycles.

Proof. Assume, for a contradiction, that there is a counterclockwise flow-cycle
C with respect to f ′ in G. We choose C such that C does not contain any other
counterclockwise flow-cycle inside its embedding in the plane. We show that we
can extend rev(C) to a clockwise residual cycle with respect to f ′

E in the graph
GE with capacity function c′, in contradiction to the way we constructed f ′

E .
For every arc e ofC, f ′

E(e) > 0, and therefore rev(e) is a residual arc with respect
to f ′

E and c′. If C does not contain a vertex v ∈ V with c(v) 
= ∞ then rev(C) is a
clockwise residual cycle with respect to f ′

E and c′, and we obtain a contradiction.
Let v be a vertex in C with c(v) 
= ∞. Let (u, v) and (v, u′) be the arcs of

C which are incident to v. These arcs correspond to arcs (u, vi) and (vj , u
′) in

GE , where vi and vj are in Cv. Let P be the path from vj to vi which goes
counterclockwise around Cv (recall that Cv is undirected in GE). To show a
complete residual cycle in GE , we argue that P is a residual path in GE with
respect to f ′

E and c′, so we can use it to fill the gap between vj and vi in rev(C).
An arc e of P is not residual if and only if f ′

E(e) = c′(e) = c(v)/2. Without loss
of generality we assume that the vertex vk in the path P is followed by vk+1.

Let ei = (vi−1, vi) be the last arc in the path P from vj to vi. Assume for con-
tradiction that the arc ei is not residual with respect to f ′

E and c′. Then f ′
E(ei) =

c(v)/2 and so the total flow into vi in f ′
E is

∑
e∈in(vi)

f ′
E(vi) ≥ f ′

E((u, vi)) +
f ′

E(ei) > c(v)/2. The only remaining arc that can carry flow out of vi is ei+1 =
(vi, vi+1). Because f ′

E satisfies flow conservation constraints f ′
E(ei+1) > c(v)/2.

But this is impossible since the capacity of the arc ei+1 is c(v)/2. Therefore,
f ′

E(ei) < c(v)/2 and ei is residual with respect to f ′
E and c′.

We now proceed by induction. Assume by induction that we already know
that the arc ek+1 = (vk, vk+1) on the path P from vj to vi is residual with
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respect to f ′
E and c′. If k = j then we are done. Otherwise, we prove that

ek = (vk−1, vk) ∈ P is also residual with respect to f ′
E and c′. Since ek+1 is

residual it follows that f ′
E(ek+1) < c(v)/2 . Let e′ be the single arc of E incident

to vk. If e′ is directed out of vk and f ′
E(e′) > 0 then since C is a cycle and e′ is

inside C in the embedding of G, there must be a path carrying flow that starts
with e′ and continues to another vertex on C. (Recall that t is on the boundary
of the outer face.) This implies that there is a counterclockwise flow-cycle with
respect to f ′ and G inside the embedding of C, in contradiction to the choice of
C. Therefore e′ does not carry flow of f ′

E out of vk in GE . This implies, by the
conservation constraint on vk, that f ′

E(ek) ≤ f ′
E(ek+1) < c(v)/2, so ek is indeed

residual with respect to f ′
E and c′.

We showed that there is a residual path from vj to vi. Since v was an arbitrary
vertex with c(v) > 0 on C it follows that we can extend rev(C) to a residual cycle
in GE with respect to f ′

E and c′. Since C is a counterclockwise cycle, the residual
cycle we get from rev(C) is a clockwise cycle. This contradicts the definition of
f ′

E , and therefore a counterclockwise flow-cycle C with respect to f ′ and G does
not exist. ��
We repeat the previous procedure symmetrically, by defining a new capacity c′′

which restricts the flow in G to the flow in f ′, and applying a symmetric version
of the algorithm of Sect. 2.1. This way we get from f ′

E a flow f ′′
E of the same

value, such that f ′′ does not contain clockwise flow-cycles in G. For every e ∈ E
we changed the flow such that f ′′(e) ≤ f ′(e) ≤ f(e), so we did not create any
new flow-cycles. Therefore we have the following lemma.

Lemma 8. The flow function f ′′
E has the same value as the flow function fE.

The restriction f ′′ of f ′′
E to G is acyclic.

6 The Algorithm

Combining together the results of the previous sections we get an algorithm for
finding maximum flow in a directed planar graph with vertex capacities.

First, we construct GE from G by replacing each vertex that has a finite
capacity with Cv as defined in Sect. 4. Next, we find a maximum flow fE in GE ,
which is a directed planar graph without vertex capacities. Last, we change fE

to another flow f ′′
E as in Sect. 5.

According to Lemma 8, the flow f ′′
E is a maximum flow in GE , and its restriction

f ′′ is acyclic. By Lemma 6, the function f ′′ is a flow in G. Since the value of f ′′ is
the same as the value of fE , Lemma 5 implies that f ′′ is a maximum flow.

The construction of GE from G takes O(n) time. The computation of f ′′
E

from fE also takes O(n) time by Lemma 1. Therefore, the only bottleneck of
our algorithm is finding fE, a maximum flow in a directed planar graph without
vertex capacities.

Theorem 9. The maximum flow in a directed planar graph with both arc ca-
pacities and vertex capacities can be computed within the same time bound as
the maximum flow in a directed planar graph with arc capacities only.
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The algorithm of Borradaile and Klein [2] finds a maximum flow in directed
planar graph with arcs capacities in O(n log n) time. If G is a st-planar graph,
then GE preserves this property. In this case the algorithm of Hassin [4], using
the algorithm of [5] for single-source shortest-path distances, finds a maximum
flow in O(n) time.
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