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Abstract. The interval graph for a set of intervals on a line consists
of one vertex for each interval, and an edge for each intersecting pair
of intervals. A probe interval graph is a variant that is motivated by
an application to genomics, where the intervals are partitioned into two
sets: probes and non-probes. The graph has an edge between two vertices
if they intersect and at least one of them is a probe. We give a linear-
time algorithm for determining whether a given graph and partition of
vertices into probes and non-probes is a probe interval graph. If it is, we
give a layout of intervals that proves that it is. In contrast to previous
algorithms for the problem, our algorithm can determine whether the
layout is uniquely constrained. As part of the algorithm we solve the
consecutive-ones probe matrix problem.

1 Introduction

An interval graph is the intersection graph of a set of intervals on a line. The
set of intervals constitutes an interval model of the graph. Interval graphs play
an important role in many problems, see [5,7,9]. The problem of recognizing
whether a graph is an interval graph played a key role in the 1950’s in proving
the linear topology of DNA [1]; the intervals were fragments of genetic material,
and it was shown empirically that their intersections form an interval graph.

This gave rise to interest in algorithms for determining whether a graph is an
interval graph [6]. Booth and Lueker gave the first linear-time algorithm for rec-
ognizing interval graphs and constructing interval models for the graphs in the
1970’s [2]. A consecutive-ones ordering of columns of a 0-1 matrix is one such that,
for every row, the 1’s in the row are consecutive. Booth and Lueker’s approach was
to reduce the problem to that of finding a consecutive-ones ordering of a 0-1 ma-
trix, and to give a linear time bound for finding such an ordering.

A related application for interval graphs is physical mapping, which can be
used for DNA sequencing. In this process, biologists create clones, which are
copies of fragments of DNA. The problem is reconstruction of the arrangement
of the clones in the genome. For some clones, called probes, the intersection data
between them and other clones can be collected. If all clones are probes, then

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 349–360, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



350 R.M. McConnell and Y. Nussbaum

we can construct an interval graph from the clones, and an interval model for
this graph gives the original sequence.

A probe interval graphs [14,17] (also called interval probe graph) is a graph
in which the vertex set is partitioned into probes and non-probes. It is a gener-
alization of intersection graph of an interval model, such that the graph has an
edge between two vertices if their intervals intersect and at least one of them is a
probe. Information about which pairs of non-probe intervals intersect is missing.

There has been recent work on topological and combinatorial properties of
these graphs; see [9] for a survey. The problem of recognizing whether a graph
is a probe interval graph, and finding a corresponding arrangement of intervals
if it is, was first shown to be polynomial by Johnson and Spinrad [10], who gave
an O(V 2) algorithm. Using a different approach, McConnell and Spinrad gave
an O(V +E log V ) algorithm [13]. The latter algorithm was a critical step in the
first linear-time algorithm for recognizing circular-arc graphs [12]. Motivated by
the biological application, where the partition into probes and non-probes is
known in advance, both algorithms get as an input a graph whose vertex set is
partitioned into probes and non-probes. Chang et al. [4] consider the problem
of recognizing this graph class when this partition is not given.

In this paper, we give the first linear-time algorithm for recognizing whether a
graph is a probe interval graph when the partition into probes and non-probes is
given, and for finding a corresponding set of intervals. In view of the complexity
of the previous work, it is surprising that we are able to reduce the problem to
that of finding consecutive-ones orderings of two easily-constructed consecutive-
ones matrices, which can then be solved by Booth and Lueker’s algorithm.

In the physical mapping problem, the arrangement of clones on the genome is
certain to be reconstructed accurately only if there is a unique linear arrangement
that is consistent with the probe interval graph. Previous algorithms for finding
probe interval arrangements have the defect that they cannot determine whether
the graph uniquely constrains the arrangement, and therefore cannot be said to
solve the physical mapping problem. Uehara [16] has addressed the issue and
gave a polynomial-time algorithm that determines whether a given probe interval
graph has a unique model. Our algorithm solves this problem as a by-product of
the recognition problem, and it is the first linear-time algorithm that solves it.

A 0-1 matrix is a consecutive-ones matrix if it has a consecutive-ones ordering.
The consecutive-ones sandwich problem is an extension of this problem where
the matrix has 0, 1 or ∗. A ∗ is a “don’t care”; it can stand for either a 0 or a
1. This problem is NP-Complete [8]. If we require that the ∗’s form a submatrix
then we get the consecutive-ones probe matrix problem (see also [3]). We solve
this problem in linear time, for any 0, 1, ∗ probe matrix.

2 Preliminaries

Except for some additional definitions, we use standard terminology and notation
from [5]. We will assume the standard adjacency-list representation of a graph.
This imposes a numbering from 1 to n on the vertices.
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A graph G = (V, E) is a probe graph if the vertex set is partitioned into P ,
the set of probes, and N the set of non-probes. In this case, every edge of E
is adjacent to at least one probe. We denote this by G = (P, N, E). If X is
a nonempty subset of V , let G[X ] denote the subgraph of G induced by X ,
together with the classification of members of X as probes or non-probes.

Let N(v) denote the open neighborhood of v, that is, the set of neighbors of v
in G, and let N [v] denote its closed neighborhood, that is, {v} ∪ N(v).

An interval model of an interval graph is a set of intervals, one for each vertex,
such that two vertices are adjacent if and only if their intervals intersect. With-
out loss of generality, we assume that no two endpoints of intervals coincide.
Similarly, an interval model of a probe interval graph is a set of intervals, one
for each vertex, such that two vertices are adjacent if and only if their intervals
intersect and at least one of the vertices is a probe. If R is an interval model of a
(probe) interval graph G and X is a nonempty subset of V , let R[X ] denote the
set of intervals of members of X . Note that R[X ] is an interval model of G[X ].

We define the cliques of a graph to be its maximal complete subgraphs. In an
interval model R of a graph G, each clique of G corresponds to the set of vertices
whose intervals intersect a unique clique segment in R. A clique segment occurs
where a right endpoint is immediately to the right of a left endpoint.

The clique matrix of a graph is a 0-1 matrix that has one column for each
clique, one row for each vertex, and a 1 in row i, column j if and only if vertex
i is a member of clique j. Interval graphs are exactly the set of graphs whose
clique matrices have consecutive-ones orderings [6].

An interval model consists of alternating blocks of consecutive left endpoints
and of consecutive right endpoints. The order of endpoints within a block does
not change the realized graph. Therefore, we represent an interval model combi-
natorially by giving an ordered list of blocks, listing for each block the endpoints
inside of it. In fact, a consecutive-ones ordering of the clique matrix of an interval
graph is such a model, where the set of left endpoints in a column and the set
of right endpoints in the column are each interpreted to be a block, where the
block of left endpoints is implicitly to the left of the block of right endpoints.

A chordal graph is a is a graph with no induced cycle of size greater than three.
Every interval graph is a chordal graph. A chordal graph has O(V ) cliques. It is
possible to find a sparse representation of the clique matrix of a chordal graph in
O(V ) time [15]. Booth and Lueker’s algorithm [2] for recognizing interval graphs
uses this to find the clique matrix or else determine that the graph is not chordal,
hence not an interval graph. If it is chordal, it reduces the problem to that of
finding a consecutive-ones ordering of this clique matrix.

The algorithm of [2] gives a compact representation of all consecutive-ones
orderings of a matrix, called a PQ-tree. The leaves of the PQ-tree are the columns
of the matrix. The PQ-tree gives all consecutive-ones orderings by constraining
the orderings of children of internal nodes as follows. Some of the internal nodes
are labeled P nodes. For such a node there is no constraint on the order of its
children. Others are labeled Q nodes. For such a node an ordering of its children
is given; the only permissible orderings of its children are the given ordering and
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its reverse. For a PQ-tree T , let Π(T ) denote the set of all possible orderings of
its leaves, given these constraints. The algorithm of [2] either finds the PQ-tree
for consecutive-ones orderings of columns of a matrix, or determines that the
matrix is not a consecutive-ones matrix. Given a sparse representation of a 0-1
matrix, this takes O(i + j + k) time, where i is the number of rows, j is the
number of columns, and k is the number of 1’s in the matrix.

Let Π = Π(T ). We may consider each π ∈ Π to be a bijective function that
maps elements of C, the set of columns, to elements of {1, 2, . . . , |C|}, where for
all c ∈ C, π(c) tells the position of c in a consecutive-ones ordering represented
by π. If X is a nonempty subset of C, let πX be the bijective function that maps
elements of X to {1, 2, . . . , |X |}, giving the relative order of elements of X in π.
Let Π [X ] denote {πX |π ∈ Π}, namely, the relative orderings of elements of X
given by orderings in Π . It is not hard to show that Π [X ] is the set of orderings
of a PQ-tree with leaf set X ; let us call this tree the restriction T [X ] of T to X .
If T1 and T2 are two PQ-trees whose leaf sets are both C, it is not hard to show
that Π(T1) ∩ Π(T2) is a set of permutations that can also be represented by a
PQ-tree. Let us call this tree the intersection T1 ∩ T2 of T1 and T2.

A probe matrix is a generalization of 0-1 matrix, which has the values 0, 1, ∗,
such that the ∗’s form a submatrix. The consecutive-ones probe matrix problem
is a generalization of the consecutive-ones problem. In this problem we look for
an ordering of the columns of the matrix such that there is an interpretation of
the values of the ∗’s such that the 1’s in every row are consecutive.

We represent a probe matrix in space proportional to the size of the matrix
and the number of 1’s in it, we do not represent the ∗’s explicitly. To do that,
we split a probe matrix M into two submatrices. Let MR be the submatrix of
M whose rows are the rows that do not have ∗’s, and whose columns are all
columns of M . Let MC be the submatrix of M whose columns are the columns
that do not have ∗’s, and whose rows are all rows of M . We represent M using
sparse representations of MR and MC .

The rest of the paper is organized as follows. In Sect. 3 we construct a probe
matrix for the input graph that generalizes the clique matrix. In Sect. 4 we
construct an interval model from a consecutive-ones ordering of this matrix. In
Sect. 5 we present a linear-time algorithm for the consecutive-ones probe matrix
problem. Last, in Sect. 6 we determine if the interval model is unique.

3 Extension of the Clique Matrix

In this section we show how to build a probe matrix M that has the consecutive-
ones property if G is a probe interval graph. The basis of this matrix is MP ,
the clique matrix of G[P ]. In addition, for every non-probe we define either new
columns or a new row. A new column has a value of 0 or 1 for every row of MP .
Similarly, a new row has a value of 0 or 1 for every column of MP . The submatrix
of M induced by the new rows and the new columns consists exclusively of ∗’s,
and so M is a probe matrix. We view each row of M as a constraint, since it
limits the possible consecutive-ones orderings of M .
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The graph G[P ] has no non-probes. Therefore, if G is a probe interval graph,
then G[P ] is an interval graph and MP has the consecutive-ones property. Let
x ∈ N , If G is a probe interval graph then G[P∪{x}] is an interval graph, because
a pair of non-probes is required to give rise to an interval intersection that is not
an edge. This last observation is the basis of our probe matrix construction.

Therefore, we begin by finding a consecutive-ones ordering of MP . Using [2]
we can either find such an ordering or determine that G is not a probe interval
graph, in O(V + E) time.

Let C denote the set of cliques of G[P ]. For each probe p, let Q(p) denote
the set of cliques of C that contain p. In an interval model of G, the interval
for p must intersect the clique segments of members of Q(p) and these clique
segments must be consecutive. In M we represent these constraints for all P by
the rows of MP . We call these constraints probe - clique constraints.

Similarly, for each non-probe x, let Q(x) denote the set of cliques of C that are
subsets of N(x), and Qx denote

⋃Q(x). A vertex v is simplicial if N(x) induces
a complete subgraph. We split the set of non-probes into three sets: N1 is the
set of non-probes x such that |Q(x)| ≥ 1; N2 is the set of non-simplicial vertices
with Q(x) = ∅; and N3 is the set of simplicial vertices. Note that, according to
this definition, a simplicial non-probe x such that |Q(x)| = 1 is contained both
in N1 and in N3; it does not matter into which of the two sets we put x.

The vertices of N1 and N2 add three kinds of rows (constraints) to M , while
the vertices of N3 add columns. We show the details below, but first we show
how to partition N into these three sets. We must find for every x ∈ N the set
Q(x) and determine whether x is simplicial or not.

Let the left endpoint of a row of a consecutive-ones ordering of MP be the
column of the leftmost 1 in the row, and the right endpoint be the rightmost.
Let x ∈ N , and assume that G[P ] is an interval graph. In the consecutive-ones
ordering of MP we find for every p ∈ N(x) the left endpoint and the right
endpoint of the row of p. We keep the column numbers of these two endpoints,
together with their side (left or right) in a list Lx. We sort Lx for all x in linear
time using a single radix sort, with x as the primary sort key, column number
as the secondary sort key, and left versus right endpoint as the tertiary key so
that if a left endpoint and right endpoint have the same primary and secondary
key, the left endpoint goes to the left of the right.

We sweep through Lx from left to right, keeping a running count of the number
of neighbors of x in the current column. Each time we encounter a left endpoint
in Lx we increment the counter, and each time we encounter a right endpoint
we decrement it. Each time we encounter a right endpoint e that follows a left
endpoint, we compare the counter with the size of the clique C represented by
the column of e, and include C in Q(x) if they are equal.

Every time we change the value of the counter, we compare it to |N(x)|, if
these values are equal at some column C, then N(x) ⊆ C and so x is simplicial.

The procedure for x takes time proportional to |N [x]| for every non-probe x.
Summing over all x, we have an O(N + E) bound for splitting N into N1, N2

and N3. We conclude with the following lemma:
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Lemma 1. In linear time we can either split N into N1, N2 and N3 and find
Q(x) for every x ∈ N , or else determine that G is not a probe interval graph.

3.1 Non-probe - Clique Constraints

Assume that G is indeed a probe interval graph and consider the interval of
x ∈ N1 in an interval model R. The interval of x must intersect the clique
segments that correspond to members of Q(x), and these clique segments must
be consecutive in the ordering of clique segments of G[P ] given by any interval
model of G.

The number of cliques containing a vertex v in an interval graph is bounded
by |N [v]|, since a neighbor of v ends at the clique segment for each clique that
contains v. Since G[P ∪{x}] is an interval graph, for any x ∈ N1, the number of
cliques in Q(x) is bounded by |N [x]|.

We therefore add to M a row for each x ∈ N1 that has 1’s in the columns
of Q(x). This adds O(|N [x]|) to the size of the matrix. We call these new rows
non-probe - clique constraints.

3.2 Non-probe - Probe Binding Constraints

The non-probe - clique constraints defined for members of N1 are not enough.
These constraints allow the interval of x ∈ N1 to intersect the clique segments
of Q(x) and thus intersect the intervals of Qx, but there may be some vertices
in N(x) \ Qx. For these we add more constraints to M .

Let x ∈ N1 and let p ∈ N(x) \ Qx. Since x and p are adjacent, we know that
their intervals must intersect in any model of G, and therefore Q(x)∪Q(p) must
be consecutive. Let us call this additional constraint a non-probe - probe binding
constraint imposed by x and p. Adding such a constraint for every such x and p
will make M too large. We show that a set of new rows with a linear number of
1’s is enough to enforce the non-probe - probe binding constraints.

We know that Q(x) ∩ Q(p) = ∅, because p /∈ Qx. Therefore, in any interval
model of G, the interval of p covers exactly one endpoint of the interval of x.
Moreover, in the order of the clique segments either the rightmost member of
Q(p) must be consecutive with the leftmost member of Q(x) or vice versa.

The set of probes that x is bound to is N(x) \Qx. In an interval model of G,
we can divide this set into the set Y1 that covers the left endpoint of x and the
set Y2 that covers the right endpoint of x. Note that although we used a specific
model of G, the same Y1 and Y2 arise in every model (up to interchange).

Recall that the vertices are numbered arbitrarily from 1 through n. For two
vertices v and u, let v ≺ u denote that either Q(v) ⊂ Q(u) or that Q(v) = Q(u)
and v has a smaller vertex number than u does.

Since the members of Y1 all end at the clique segment to the left of x’s left
endpoint and they all occupy consecutive cliques, it follows that for any two
y, y′ ∈ Y1, either Q(y) ⊆ Q(y′) or Q(y′) ⊆ Q(y). It follows that Y1 induces a
linear order in the ≺ relation, so it has a unique a minimal member y1 in this
relation. Similarly, Y2 has a unique minimal member y2 in the ≺ relation.
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By similar reasoning, each for each probe p, the ≺ relation on non-probes that
p is bound to has at most two nonadjacent minimal members x1 and x2. Let us
say that x and p are a representative bound pair if p is a minimal bound neighbor
of x and x is a minimal bound neighbor of p in the ≺ relation.

Consider the current status of the matrix M . The matrix includes the probe
- clique constraints and the non-probe - clique constraints. In O(V + E) time
we can either find a consecutive-ones ordering of M or determine that G is not
a probe interval graph, since we cannot satisfy all the constraints. Using this
ordering of M , we can determine in O(1) time for two vertices v, u ∈ P ∪ N1

whether Q(v) ⊆ Q(u) by examining the position of leftmost and rightmost 1’s
in the rows of u and v. Thus, the relation ≺ for two vertices can be determined
in O(1) time as well. We get that we can find the minimal bound neighbors of
every vertex, and thus all the representative bound pairs, in O(V + E) time.

We add to M a row for any representative pair {x, p} that has 1’s in the
columns of Q(x) ∪Q(p). This adds O(|N [x]| + |N [p]|) to the size of the matrix.
Since every vertex adds at most two new rows to M , the size of M remains linear
in the size of G.

A consecutive-ones ordering of M satisfies the binding constraint not just
for representative bound pairs, but for all such bound pairs of vertices. This is
true since M already has a row with the characteristic vector of Q(v) for each
probe or non-probe vertex v because of the probe - clique constraints and the
non-probe - clique constraints.

3.3 Probe - Probe Binding Constraints

Consider x ∈ N2. In this case, Q(x) = ∅ and N(x) is not a complete subgraph.
If G is a probe interval graph, then in an interval model R of G, the interval of
x lies between two consecutive clique segments of R[P ]. Let C1 and C2 be the
corresponding cliques of G[P ], such that C1’s segment lies to the left of C2’s.
Let Y1 = N(x) \C2 and let Y2 = N(x) \C1. The sets Y1 and Y2 satisfy Y1 ⊆ C1,
Y2 ⊆ C2 and Y1 ∩ Y2 = ∅. Also, since x is not simplicial, neither Y1 nor Y2 is
empty. Note that although we used a specific model to define Y1 and Y2 for x,
these sets are unique for every x ∈ N2, up to interchange between the two.

Let y ∈ Y1 and y′ ∈ Y2. Since x is adjacent to both y and y′, and does not
intersect any clique segment, we know that Q(y) ∪ Q(y′) must be consecutive
in any interval model of G. We call this additional constraint a probe - probe
binding constraint imposed by y and y′. As with the non-probe - probe binding
constraints, we can use the same relation ≺ and add to M such a constraint only
for a pair of minimal bound neighbors. To find these in O(V + E) time, we find
for each x ∈ N2, the sets Y1 and Y2. All elements of Y1 are bound to elements of
Y2, but it is enough to bind only the minimal members of the two sets to each
other. This gives O(|N2|) candidate pairs for bindings. We proceed on these as
in the case of probe - non-probe bindings to find representative pairs.

We add to M a row for each representative pair p, p′ that has 1’s in the
columns of Q(p)∪Q(p′). This adds O(|N [p]|+ |N [p′]|) to the size of the matrix.
Again, the size of M remains linear in the size of G.
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3.4 Additional Segments

Last, we consider N3. For this set of probes we do not define further constraints,
but refine the probe - clique constraints. This is done by adding columns to M .
As mentioned earlier, the new columns have 0 or 1 in rows of MP and ∗ in rows
that we added for N1 and N2.

Let x ∈ N3, and assume that G is a probe interval graph. Let R be an interval
model of G. The set N [x] is a clique in G. Therefore there is a clique segment
in R that is intersected by the intervals of N [x].

Let C′ = {N [x] | x ∈ N3}. The members of C′ are the cliques of G that are not
in C. For each vertex v, let Q′(v) denote the set of members of C′ that contain
v. In an interval model of G, the interval for a probe p must intersect the clique
segments that correspond to members of Q(p)∪Q′(p), and the clique segments of
Q(p)∪Q′(p) must be consecutive in the left-to-right ordering of clique segments.
This gives us a refinement of the probe - clique constraints.

To represent the cliques of C′, we add a new column for every x ∈ N3, that
has a 1 in the row of a probe p if p ∈ N(x), and 0 otherwise. Using a sparse
representation of the matrix, this adds O(|N [x]|) to the size of the matrix.

This concludes the construction of M . If G is a probe interval graph, then
there must be a consecutive-ones ordering of the columns of M that obeys all
constraints. We summarize the section in the following lemma:

Lemma 2. It takes O(V + E) time to construct the probe matrix M or else
decide that G is not a probe interval graph. Moreover, if G is a probe interval
graph then M is a consecutive-ones probe matrix.

We use the algorithm of Sect. 5 to find a consecutive-ones ordering of M . If such
an ordering does not exist then G is not a probe interval graph.

4 Constructing an Interval Model

In this section we use the consecutive-ones ordering of M that we found in the
previous section to find an interval model of G, if one exists. The construction is
similar to the construction of [2] of an interval model from the clique matrix of
an interval graph. Each interval must intersect the clique segments it belongs to.
In addition, realizing bindings requires some differential stretching of endpoints
inside the zone between two consecutive clique segments.

Recall that we represent an interval model combinatorially by a list of al-
ternating blocks of left and right endpoints. We begin by defining two sets of
endpoints for every column C of M : C� and Cr . We show below how we populate
these sets. We order the sets according to the consecutive-ones ordering of the
columns of M , such that C� is to the left of Cr.

Let v ∈ V \ N2. In this case, Q(v) ∪ Q′(v) is not empty. If v ∈ P ∪ N1, then
Q(v) ∪ Q′(v) has a row in M . Let C be the leftmost column with 1 in this row
and D be the rightmost column with 1 in this row. If v ∈ N3, we let C and D
both be the column of the clique N [v]. We put the left endpoint of v in C� and
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the right endpoint of v in Dr. Because M has a consecutive-ones ordering, this
takes linear time. Let us denote the resulting interval model by R1.

In R1, for every column C, the segment on the line between C� and Cr is the
clique segment of C. If the intervals of v and u intersect in R1, and at least one
of the two vertices is a probe, then v and u are adjacent.

However, there still might be some edges in E that are not realized by R1.
These edges are between x ∈ N1∪N2 and p ∈ N(x)\Qx. In order to realize these
adjacencies we place the endpoints of vertices of N2 and stretch the intervals of
N1, N2 and N(x) \ Qx for x ∈ N1 ∪ N2 between the clique segments of C ∪ C′.

Let x ∈ N2 and let Y1 and Y2 be as defined in Sect. 3.3, that is, the two sets
for which x defines probe - probe constraints, such that the intervals of Y1 are to
the left of the intervals of Y2. Let C be the rightmost column in which all rows
of members of Y1 have a 1. Let D be the leftmost column in which all rows of
members of Y2 have a 1. The columns C and D exist and are consecutive because
of the probe - probe constraints. We place the left endpoint of x in D� and the
right endpoint of x in Cr. Denote the construction so far by R2. Note that R2

is not an interval model, since we place the left endpoint of x to the right of its
right endpoint. We will resolve this problem when we stretch the intervals.

The last step of the construction is to stretch intervals of vertices of N1, N2

and N(x) \Qx for x ∈ N1 ∪N2. Consider two vertices v and u that are adjacent
in G, but whose adjacency is not realized in R2. Assume that v is to the left
of u. (If one of them is in N2, then it does not have a real interval, but it is
still clear which one is to the left.) Because of the non-probe - probe constraints
and the probe - probe constraint, we know that the set Cr, which contains the
right endpoint of v, is immediately to the left of D�, which contains the left
endpoint of u. We must stretch the endpoints of intervals that have unrealized
intersections, between the clique segments.

For every Cr and the set to its right, D�, we split the two sets and order
them as follows. We split Cr into subsets A0, A1, . . . , A|D�| and A′ such that an
endpoint f ∈ Cr is in Ai if it is an endpoint of an interval of a probe p with
|N(p) ∩ D�| = i, and in A′ if it is an endpoint of an interval of a non-probe.
Similarly we split D� into subsets B0, B1, . . . , B|Cr| and B′. Note that some
of the subsets might be empty. We replace Cr with the Ai’s, where A0 is the
leftmost. We replace D� with Bi’s where B0 is the rightmost. For every endpoint
f ∈ B′, we place f in a set to the right of Aj where j is the largest index such
that the vertex of f is non-adjacent to all vertices of A0, A1, . . . , Aj and adjacent
to all vertices of Aj+1, Aj+2, . . . , A|D�|. Similarly we place every endpoint f ∈ A′

in a set on the left of the appropriate Bj . Note that the set between A|D�| and
B|Cr| contains both right and left endpoints. We split this set F into a set F�

of left endpoints and a set Fr of right endpoints. Let us denote the resulting
construction by R. See Fig. 1.

If G is a probe interval graph, then we can place every member of A′ and B′,
and therefore we can construct R. This is because if we cannot place f ∈ B′ on
the right side of any Ai or f ∈ A′ on the left side of any Bi, then any interval
model of G must contain an induced chordless cycle, which is impossible.
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A0

A1

A3

B1

B2

B3
FrC

A’

B’

D�

Fig. 1. Reordering the endpoints of Cr and D�. The endpoints of Cr are right end-
points and the endpoints of D� are left endpoints. Endpoints of non-probes are empty,
endpoints of probes are full.

Since every interval has two endpoints, and the splitting of Cr and D� takes
time proportional to the number of edges between vertices that have endpoints
in these sets, in O(V + E) time we can either construct R or decide that R
cannot be constructed, and thus that G is not a probe interval graph.

If we manage to construct R, then it is an interval model of G. First, note
that the endpoints of every vertex of N2 are now ordered properly, that is, the
left endpoint is to the left of the right endpoint. To show that R realizes G,
we consider the following cases for a probe p and a vertex v, and show that
their intervals in R intersect if and only if they are adjacent. If v ∈ P then
the claim is true because R[P ] is a model of G[P ]. If v ∈ N1 and p ∈ Qv or
if v ∈ N3 then the claim is true because the intervals intersect if and only if
(Q(v)∪Q′(v))∩ (Q(p)∪Q′(p)) �= ∅. Otherwise, the claim follows by the way we
stretch intervals into the region between the clique segments.

We conclude with the main theorem:

Theorem 3. Let G be a probe graph. In O(V + E) time we can construct an
interval model for G, or decide that G is not a probe interval graph.

5 Consecutive-Ones Probe Matrices

In this section we present a linear-time algorithm for the consecutive-ones probe
matrix problem. Let M be a probe matrix with i rows, j columns and k 1’s. We
determine if M is a consecutive-ones probe matrix in O(i + j + k) time. We do
so by finding the PQ-tree of two 0-1 submatrices of M using [2], and combining
the trees using tools of [11]. If M is a consecutive-ones probe matrix then we
find a consecutive-ones ordering of it. With a modification of [11] we can find a
PQ-tree that represents all consecutive-ones orderings of M . We do not present
it here, because a single consecutive-ones ordering is enough, and we want to
keep the description simple.

Let MR be the submatrix of M whose rows are the rows that do not have ∗’s,
and whose columns are all columns of M . Let MC be the submatrix of M whose
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columns are the columns that do not have ∗’s, and whose rows are all rows of
M . Let X be the set of columns of MC .

Let TR be the PQ-tree of MR and let TC be the PQ-tree of MC . Let T ′ =
TR[X ] ∩ TC . Each permutation σ ∈ Π(T ′) is a permutation in both Π(TR[X ])
and in Π(TC). This means that σ = πX where π ∈ Π(TR). Assume that such
a permutation σ ∈ Π(T ′) exists. We can order TR so that the relative order of
leaves that are members of X is σ, because it is a restriction of some π ∈ Π(TR).
At a P node, we order the set of children that contain leaf descendants in X
according to the order of those members in σ. At a Q node, if two children
contain leaf descendants in X , from the two allowed linear orders of children,
we choose the one that is consistent with σ. The result is π, a consecutive-ones
ordering of columns of MR, such that σ = πX is a consecutive-ones ordering of
MC . Therefore, π is a consecutive-ones ordering of M .

On the other hand, if Π(T ′) = ∅, then there is no ordering of X that imposes
a consecutive-ones ordering both for TR[X ] and for TC , and therefore M is not
a probe interval matrix.

Using [2] we can find TR and TC in O(i + j + k) time, and using [11] we can
find TR[X ] and from it T ′ in the same time bound. Choosing σ and π takes O(j)
time.

Theorem 4. Let M be a probe matrix. In time linear in the size of the matrix
and the number of 1’s in it we can either find a consecutive-ones ordering of M ,
or else decide that M is not a consecutive-ones probe matrix.

6 Determining Whether a Model Is Uniquely Constrained

Recall that we represent an interval model combinatorially by a list of alternating
blocks of left and right endpoints, as the order of endpoints within a block is
inconsequential. Let R and R′ be two interval models. We say that R and R′

are equivalent if they are identical, or if we can get R′ from R by reversing the
order of its blocks and exchanging the blocks between the two endpoints of each
interval. If every model of G is equivalent to R, then R is a unique model of G.

Let T ′ be as in Sect. 5, for the matrix M , found in Sect. 3, and let R be the
model found in Sect. 4.

The model R is unique only if M has a unique consecutive-ones ordering up
to reversal. A consecutive-ones ordering of a matrix is unique up to reversal if
and only if the PQ-tree has a single internal node that is a Q node, if this is not
the case for T ′, then R is not a unique model. The same happens also if there is
more one way to produce π from σ. Specifically, this happens if there is a P node
with a child that does not contain an element of X or if there is a Q node for
which less than two children contain elements of X . This can be checked in time
linear in the size of T ′. Otherwise, the order for the columns of M is unique.

Even if M does have a unique consecutive-ones ordering, different models are
possible. The matrix M defines a unique order for the cliques of G, and therefore
a unique order of the clique segments in any interval model of G. Thus, for every
two vertices of V such that at least one is a probe, there is a unique order defined
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among their endpoints. However, if there are two non-probes x and x′ such that
the set that contains the left endpoint of x in the model R is next to the set that
contains the right endpoint of x′, then we can change the order between the two
endpoints. In this case as well, R is not a unique model of G. This last case can
also be detected in time linear in the size of G.
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