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Gerold Jäger1, Sharlee Climer2, and Weixiong Zhang3

1 Computer Science Institute, University of Halle-Wittenberg
D-06120 Halle (Saale), Germany

jaegerg@informatik.uni-halle.de
2 School of Medicine, Washington University
St. Louis, Missouri 63110-1093, United States

sharlee@climer.us
3 Department of Computer Science/Department of Genetics

Washington University
St. Louis, Missouri 63130-4899, United States

weixiong.zhang@wustl.edu

Abstract. Haplotype inference by pure parsimony (HIPP) is a well-
known paradigm for haplotype inference. In order to assess the biological
significance of this paradigm, we generalize the problem of HIPP to the
problem of finding all optimal solutions, which we call complete HIPP.
We study intrinsic haplotype features, such as backbone haplotypes and
fat genotypes as well as equal columns and decomposability. We explic-
itly exploit these features in three computational approaches which are
based on integer linear programming, depth-first branch-and-bound, and
a hybrid algorithm that draws on the diverse strengths of the first two
approaches. Our experimental analysis shows that our optimized algo-
rithms are significantly superior to the baseline algorithms, often with
orders of magnitude faster running time. Finally, our experiments provide
some useful insights to the intrinsic features of this interesting problem.

1 Introduction

In this age of rapid advances in biological and medical fields, a number of com-
pelling computational challenges have arisen and propelled the state-of-the-art.
Haplotype inference is one such challenge. A haplotype is a set of nucleotides that
are in physical proximity on a chromosome strand. Haplotypes do not contain
nucleotides that have a common state for all individuals within the given popula-
tion – only those nucleotides that exhibit variation. Diploid species have pairs of
chromosomes and, consequently, pairs of corresponding haplotypes. Current se-
quencers are capable of producing genotypes, which are conflations of haplotype
pairs. Thanks to recent advances, genotype data are highly accurate and com-
plete. For example, the International HapMap project has produced genotypes
that are 99.7% accurate and 99.3% complete [26]. However, identifying individ-
ual haplotypes directly in a laboratory setting is currently infeasible for all but
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small studies. For this reason, researchers commonly rely on mathematical mod-
els and computational algorithms for inferring haplotypes from genotypes. The
first widely used algorithm for inferring haplotypes was introduced by Clark in
1990 [4]. This algorithm is based on the assumption that the number of unique
haplotypes in a given population is relatively small. Gusfield and Hubbell inde-
pendently proposed a haplotype inference model using Pure Parsimony (HIPP),
in which the number of unique haplotypes is absolutely minimized [11]. Given
a set of genotypes, HIPP is to find a set of distinct haplotypes with minimum
cardinality such that each genotype can be resolved by two haplotypes. HIPP
was computationally studied using integer linear programming (IP) by Gus-
field [9,10]. Due to its simplicity in formulation and complexity in computation,
it has attracted much attention. Many approaches to the problem have been
developed, for example those based on IP [2,3,12], depth-first branch-and-bound
(DFBnB or BnB for short) [20], and Boolean satisfiability [14,15,16]. It is im-
portant to mention that there may exist multiple optimal solutions to a HIPP
problem and an algorithm simply returns an arbitrary optimal solution. It is
also critical to emphasize that not all optimal solutions in the formulation are
biologically equal. Furthermore, the true solution, which is the ground truth of
the haplotype structure of a given population, may not be a computationally
optimal solution, as shown in our previous study [5]. In other words, the math-
ematical formulation of HIPP captures only some of the biological aspects of
haplotype inference (HI). Similar to other computational biology problems, such
as RNA folding and multiple sequence alignment, the true solutions to HI are
often found within in the set of optimal or even near optimal solutions to the
HIPP formulation [5]. Therefore, it is desirable to find all optimal solutions [5],
which is the subject of this paper. For convenience, we call the problem of finding
all optimal solutions to a HIPP problem complete HIPP, or CHIPP. The CHIPP
formulation and our new algorithm for CHIPP have helped gaining some initial
biological insight into haplotype structures in human population [5]. Note that
since it requires to find all optimal solutions, CHIPP is computationally more
difficult than HIPP, which is NP-complete [13].

In order to develop efficient algorithms for CHIPP, we consider several intrinsic
haplotype features in this paper. These include 1) backbone haplotypes, which are
haplotypes common to all optimal solutions, 2) decomposability of a problem into
sub-problems, 3) fat genotypes, which are genotypes that reduce the solution size
by 2, if they are omitted, and 4) equal columns [20], which are sites that appear
exactly the same for all haplotypes. We then propose and study three classes
of algorithms for CHIPP by exploiting these intrinsic haplotype features. The
first two classes of algorithms are based on and extend two existing algorithms
for HIPP: Gusfield’s IP [10] and Wang and Xu’s BnB [20]. We extend beyond
these existing algorithms by introducing effective optimization techniques that
take advantage of the intrinsic haplotype features. The third class of algorithms
strategically hybridizes the greatest strengths of the first two.

Note that exploiting these intrinsic haplotype features can also be viewed
in the concept of fixed parameter tractability (FPT). For an overview of FPT
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see [7,17]). The motivation of FPT is that even large instances of NP-hard
problems can be easy, because they might contain structure that can be ex-
ploited. One special idea is FPT kernelization which reduces a hard instance by
preprocessing to a smaller, equivalent problem kernel [8]. As the intrinsic fea-
tures backbone haplotypes, decomposability, fat genotypes and equal columns lead
to a reduction technique, which in a preprocessing step reduces the given CHIPP
instance to a smaller one, our approach is also a type of problem kernelization
technique.

2 Complete Haplotype Inference by Pure Parsimony

Let G represent a set of genotypes, where G = [g1, . . . , gn]T = (gij)1≤i≤n,1≤j≤m

with gij ∈ {0, 1, 2}, for n individuals with m single nucleotide polymorphism
(SNP) sites. Haplotype inference is to find a set of haplotypes, H =[h1, . . . , hp]T =
(hij)1≤i≤p,1≤j≤m with hij ∈ {0, 1}, such that the set of genotypes is explained,
or covered, by the haplotypes. If a site gij has a value of 0 or 1, it can only be
explained by two haplotype sites with values of 0 or 1, respectively. These geno-
types are referred to as homozygous. A heterozygous genotype site has a value
of 2, and can only be explained by a haplotype pair with values of 0 and 1. For
example, G = {g1 = (1, 2), g2 = (0, 0), g3 = (2, 1), g4 = (2, 2)}, will be explained
by the haplotype set H = {h1 = (0, 0), h2 = (1, 0), h3 = (0, 1), h4 = (1, 1)}. We
say that haplotypes h2 and h4 explain or cover genotype g1 and call h2 and h4 an
explaining haplotype pair for g1. We also say that both h2 and h4 partly explain
genotype g1. Note that genotype g4 can be explained by h1 and h4 or by h2 and
h3. Given a set of genotypes, HIPP is to find a minimum set of unique haplo-
types that explains the genotypes. For simplicity and without loss of generality,
we assume in this research that all individuals (genotypes) are unique. Notice
that a HIPP problem may have multiple optimal solutions [5]. This is evident
by a trivial example of one genotype g1 = (2, 2), which has two optimal solu-
tions, H1 = {(0, 0), (1, 1)} and H2 = {(0, 1), (1, 0)}. CHIPP is to find all optimal
solutions, i.e. all sets of minimal unique haplotypes covering all genotypes.

In principle, any algorithm for HIPP can lend to an algorithm for CHIPP. We
now consider two well-established computational paradigms for HIPP, IP and
BnB. In this research, we use these as the baseline algorithms for CHIPP. The
pseudo-codes of the algorithms are given as Supporting Information [27].

2.1 CHIPP Algorithm Based on Integer Linear Programming

In 2003, Gusfield [10] developed an exponential-size Integer Linear Program
(IP) formulation of HIPP. We now briefly describe this model and discuss how
to extend it for solving CHIPP.

Consider n genotypes g1, . . . , gn, and haplotypes h1, . . . , hr that cover all
n genotypes. Let ki be the number of possible explaining haplotype pairs for
genotype gi for i = 1, . . . , n. It is easy to see that ki = max{2l−1, 1} if gi

contains l 2’s. Let x = (x1, . . . , xr) be a vector defined as
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xi =
{

1 if haplotype hi appears in the HIPP solution,
0 else

for i = 1, . . . , r. Further, let ω = (ωij)1≤i≤n,1≤j≤ki be a matrix representing
haplotype pairs, defined as

ωij =

⎧⎨
⎩

1 if the j-th explaining haplotype pair for
genotype gi is selected in the HIPP solution,

0 else

for i = 1, . . . , n and j = 1, . . . , ki. In addition, let f1(i, j) and f2(i, j) be, re-
spectively, the indices of the first and second haplotype of the j-th explaining
haplotype pair for the i-th genotype for i = 1, . . . , n and j = 1, . . . , ki. Then
HIPP can be represented by the following integer linear program (IP):

min
r∑

s=1

xi subject to (1)

⎧⎪⎪⎨
⎪⎪⎩

∑ki

j=1 ωij = 1 for i = 1, . . . , n

xf1(i,j) ≥ ωi,j for i = 1, . . . , n, j = 1, . . . , ki

xf2(i,j) ≥ ωi,j for i = 1, . . . , n, j = 1, . . . , ki

xs, ωi,j ∈ {0, 1} for s = 1, . . . , r, i = 1, . . . , n, j = 1, . . . , ki

In the worst case, this IP needs an exponential number of variables and con-
straints. In order to solve CHIPP using the IP representation in (1), we implicitly
enumerate all optimal solutions to the IP. The key lies in the idea of avoiding
the optimal solutions that have been found earlier in the process. In our method,
we first solve HIPP using the IP in (1), obtaining one optimal solution. Let p
represent the value of the objective function for this solution. In other words, p
unique haplotypes are the minimum number of haplotypes that can resolve this
set of genotypes. This means that for this solution, there are exactly p entries
of the haplotype index vector x having value 1; let i1, . . . , ip be the indices of
these haplotypes. In order to avoid the optimal solution that we just found, we
introduce to the IP in (1) the following inequality

p∑
s=1

xis ≤ p − 1. (2)

We then solve the newly expanded IP to find the next optimal solution, if any.
Notice that (2) can lead to two possibilities. Either the new IP has an objective
value larger than p, which means that no new optimal solution exists; or the
new IP has an objective value equal to p, which gives rise to another optimal
solution. We repeat this process of adding new inequalities in the form of (2)
and solving the incrementally expanded and more constrained new IPs to find
all optimal solutions.
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2.2 CHIPP Algorithm Based on Branch-and-Bound

Wang and Xu [20] introduced an algorithm for HIPP based on BnB. The algo-
rithm starts with a heuristic solution, where for each genotype the explaining
haplotype pair is chosen, from which the corresponding haplotypes can partly ex-
plain the most genotypes. This provides the initial incumbent (or upper bound)
for the BnB search. Now the search implicitly considers all possible explaining
haplotype pairs for each genotype, and the best solution found is the optimal
solution to be returned. If during the search the node cost is equal to or exceeds
the incumbent, the current explaining haplotype pair is discarded and the algo-
rithm continues to the next explaining haplotype pair, if it exists, thus moving
on to the next branch of the current search node.

In our implementation of the above BnB algorithm, we first sorted the geno-
types in an increasing order of the numbers of 2’s that the genotypes have. In
other words, we prefer genotypes with less heterozygous sites over ones with
more heterozygous sites at nodes near the top of the search tree. For each geno-
type, we further order the explaining haplotype pairs, in a decreasing order of
the number of genotypes that haplotypes can cover. As in Section 2.1, ki is the
number of possible haplotype pairs for genotype gi for i = 1, . . . , n.

We can directly extend the BnB algorithm for HIPP to an algorithm for
CHIPP. In order to find all optimal solutions, pruning is applied only when the
node cost strictly exceeds the incumbent. This allows the algorithm to explore
a branch that may lead to another optimal solution. Further, if we have found
a better solution, all previous “optimal solutions” are discarded.

3 Features of CHIPP and Optimization Techniques

We now consider some important features of CHIPP, and describe how they can
be exploited to develop effective methods for solving this challenging problem.

3.1 Backbones

The backbone of a combinatorial optimization problem refers to the set of vari-
ables that have common values across all optimal solutions for the problem.
Backbones are intrinsic features of combinatorial optimization problems, and
have been used to characterize many difficult optimization problems [19,21,23],
such as the traveling salesman problem and maximum satisfiability, and have
been exploited in algorithms for solving these well-studied problems [6,22,24].

For our purpose, the backbone is a set of haplotypes that appear in every
optimal solution of HIPP. We call these haplotypes backbone haplotypes. One
important consequence of using backbone haplotypes is that those genotypes
that can be explained by two backbone haplotypes can be omitted in a haplotype
inference procedure, as these genotypes can be explained by any solution that
the procedure will return. This holds for HIPP and for CHIPP. We call such
genotypes backbone genotypes. Therefore, solving CHIPP can be accelerated, if
we can identify all backbone haplotypes or backbone genotypes.
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A special case of backbone haplotypes is when some genotypes have zero or
one SNP site, which can be easily identified. A genotype with no 2’s gives rise
to one backbone haplotype, which is the same as the genotype. A genotype with
only one 2 leads to two backbone haplotypes, which are equal to the genotype
except for the site with the 2, where one backbone haplotype has entry 0 and the
other has entry 1. We call such backbone haplotypes trivial backbone haplotypes.
In their BnB program, Wang and Xu [20] implicitly considered trivial backbone
haplotypes.

A more difficult problem is to identify all backbone haplotypes. At first sight,
the problem seems to be as difficult as finding all optimal solutions, but it turns
out that all backbone haplotypes can be identified without finding all optimal
solutions. Our idea for the problem is based on the fact that when a backbone
haplotype is omitted, no optimal solution to a HIPP or CHIPP problem can be
found. Therefore, we first find an optimal solution, and then iteratively remove,
one and one at a time, the haplotypes in the solution, and repeatedly solve each
of the resulting problems to determine if a new optimal solution can be found.
If this is the case, the considered haplotype is no backbone haplotype, otherwise
it is a backbone haplotype. In the worst case, the complexity of our algorithm is
p times the complexity of finding an optimal solution, where p is the cardinality
of the set of an optimal solution haplotypes.

3.2 Equal Column Technique

One important technique used in Wang and Xu’s BnB program for HIPP is the
so called equal column technique. The idea of this technique is as follows. Assume
we have found an optimal solution for the genotype matrix G1 = [g1, . . . , gk],
where for l = 1, . . . , k, gl is the l-th column of G1, and we want to find an optimal
solution for the genotype matrix G2 = [g1, . . . , gk, gk+1], where gk+1 = gl for
some l ∈ {1, . . . , k}. We can simply obtain an optimal solution to G2 by copying
the l-th column of all haplotypes in the optimal solution to the (k + 1)-th column,
because the (k + 1)-th column of all genotypes can be explained in the same
way as the l-th column of all genotypes. It is worthwhile to point out that this
technique is also applicable in the same spirit to Gusfield’s IP algorithm for
HIPP.

However, the equal column technique cannot be directly used to find all op-
timal solutions, since some optimal solutions might be lost by this technique.
This can be seen from the simple example of one genotype g1 = (2, 2). It has
two optimal solutions, H1 = {(0, 0), (1, 1)} and H2 = {(0, 1), (1, 0)}. However,
the equal column technique will only result in the first optimal solution, be-
cause only in this case the first and the second column of the optimal solution
are equal. This example also shows that the equal column technique cannot be
used to find all backbone haplotypes, as g0 = (2) has two backbone haplotypes
(0), (1) and g1 = (2, 2) has no backbone haplotype. Therefore, special care must
be taken when extending the equal column technique to finding all optimal so-
lutions. Again, let G1 = [g1, . . . , gk] be a genotype matrix with solution value
p and G2 = [g1, . . . , gk, gk+1] another genotype matrix, where gk+1 = gl for
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some l ∈ {1, . . . , k}. The solution value of G2 is p as well, and each optimal
solution for G2 can be written as an optimal solution for G1 plus an additional
last column. Therefore, given an optimal solution H1 to G1, we have to find all
optimal solutions H2 to G2 which are equal to H1 in the first k columns. Using
the equal column technique for HIPP, we can obtain one optimal solution of
G2, if we use the l-th column of H1 as (k + 1)-th column of H2. However, there
may exist additional optimal solutions of G2. Each such optimal solution has p
haplotypes and trivially, each entry of the last column can be 0 or 1. Thus there
are a total of 2p possible optimal solutions for G2 from which at least one must
be in fact optimal. Let H0 be such a possible optimal solution. Then H0 is an
optimal solution, if and only if all genotypes can be explained by the haplotypes
of H0. So we can make use of this characteristic. Furthermore, we can reduce
the number of all possible optimal solutions to be tested, which is 2p, by the
following idea. Each haplotype of an optimal solution must be used to partly
explain at least one genotype. We test this characteristic for all 2p haplotypes
which can possibly appear in an optimal solution. If this characteristic is not
fulfilled for a particular haplotype, we do not have to consider this haplotype
and all possible optimal solutions which contain this haplotype. The extended
equal column technique for CHIPP may still require up to 2p steps for each
equal column in the worst case. Nevertheless, as we will observe in Section 4, it
is rather efficient in practice.

Furthermore, columns of a genotype matrix which contain only 0’s (1’s) can
also be omitted for solving HIPP and CHIPP because of the following reason. If
a column gl of the genotype matrix contains only 0 or 1, then the l-th column
of the haplotype matrix of each optimal solution also contains only 0’s or 1’s,
respectively.

3.3 Decomposability

Two genotypes g1 and g2 may not share any common explaining haplotypes; in
this case we say that g1 does not overlap with g2. This happens when g1 has
an entry 0 while g2 has an entry 1, or vice versa, at one site. The concept of
non-overlapping of two genotypes can be generalized to two sets of genotypes
E = {e1, . . . , es} and F = {f1, . . . , ft}. If each genotype e ∈ E does not overlap
with any genotype f ∈ F , E does not overlap with F as well.

A HIPP problem instance can be decomposed, if it contains non-overlapping
sets of genotypes, where a sub-problem contains one of these sets. It is evident
that it is sufficient to solve each of the sub-problems in order to solve the original
problem; a solution of the original problem is a union of the solutions to the sub-
problems.

This method can be simply extended to CHIPP. Here a problem instance is
decomposable if it contains l > 1 non-overlapping sets of genotypes, each of
which forms a sub-problem. Assume that each sub-problem has qi solutions for
i = 1, . . . , l. The original problem will have

∏l
i=1 qi solutions, corresponding to

all combinations of the solutions to the sub-problems. A decomposable HIPP or
CHIPP problem can be solved with a significantly reduced complexity due to
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the potential exponential growth in computation time as a function of the size
of the instance.

3.4 Omitting Explaining Haplotype Pairs

RTIP: In order to improve his IP approach, Gusfield [10] used a reduction for-
mulation, called RTIP. RTIP removes from the problem all explaining haplotype
pairs in which the two corresponding haplotypes partly explain only one geno-
type. The genotypes that can only be explained by such haplotype pairs can be
explained in the HIPP solution in an arbitrary way. Wang and Xu [20] used a
very similar idea in their BnB program. In order to extend this idea to CHIPP,
we first introduce the notion of fat genotypes.

Fat genotypes: Let G be a set of input genotypes with solution value p, and g
a genotype in G such that removing g from G results in a solution to the new
instance with solution value p − 2. We call such a genotype fat genotype.

A special case of a fat genotype is a genotype that does not overlap with
any other genotype (see Section 3.3) and has at least one entry 2. For exam-
ple, consider g1 = (0, 2, 0), g2 = (2, 1, 0), g3 = (1, 2, 1), where g3 does not over-
lap with g1 and g2. Then for G = {(g1, g2)} the (only) optimal solution is
{(0, 0, 0), (0, 1, 0), (1, 1, 0)} with solution value 3, whereas for G′ = (g1, g2, g3)
the (only) optimal solution is {(0, 0, 0), (0, 1, 0), (1, 1, 0), (1, 0, 1), (1, 1, 1)} with
solution value 5. Thus g3 is a fat genotype. Note that there are cases of fat geno-
types which do overlap with other genotypes. For example, let g1 = (1, 2, 2), g2 =
(2, 1, 1), g3 = (2, 0, 1), where g3 overlaps with g1. Then for G = (g1, g2) the (only)
optimal solution is {(1, 0, 0), (0, 1, 1), (1, 1, 1)} with solution value 3, whereas
for G′ = (g1, g2, g3) one optimal solution is {(1, 0, 0), (0, 1, 1), (1, 1, 1), (0, 0, 1),
(1, 0, 1)} with solution value 5. Thus g3 is a fat genotype. It is easy to see that fat
genotypes are the only genotypes for which omitting a corresponding explain-
ing haplotype pair by RTIP could cause some optimal solutions to be lost. The
fatness of all genotypes can be easily tested.

Our task is to find all optimal solutions that might be lost by RTIP. For
this purpose, assume the explaining haplotype pair (h1, h2) is omitted by RTIP,
but nevertheless is contained in at least one optimal solution. Furthermore, let
H0 be an optimal solution found by RTIP. By the definition of RTIP, h1 and h2

partly explain only one genotype g. The only possibility to recover a lost optimal
solution which includes h1 and h2 is to replace an explaining haplotype pair for
g, (h3, h4) ∈ H0, by (h1, h2). Let Hnew

0 be H0 after the replacement. Then
Hnew

0 is a new optimal solution, if and only if all genotypes can be explained by
haplotype pairs in Hnew

0 . This idea leads to an algorithm which finds all optimal
solutions after using RTIP.

If we need to save the (possibly expensive) identification of all fat genotypes, we
can try all possible replacements not only for the fat genotypes, but for all geno-
types. As mentioned, for all non-fat genotypes no further optimal solutions will be
found. On the other hand, the time saved by omitting the identification of all fat
genotypes can be lost by many more tests for possible new optimal solutions.
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Further case. Wang and Xu [20] considered a case of two genotypes g1 and g2,
where g1 only has explaining haplotype pairs (h1, h2) and (h4, h5), and g2 only
has explaining haplotype pairs (h2, h3) and (h5, h6). In the considered case, all
haplotypes h1, h2, h3, h4, h5, h6 do not partly explain any other genotype. For
this case when solving HIPP, we can use (h1, h2) as explaining haplotype for
genotype g1 and (h2, h3) as explaining haplotype for genotype g2, and omit the
pairs (h4, h5) and (h5, h6).

When extending this case to CHIPP, we only have to replace in each optimal
solution the haplotypes h1, h2, h3 by the haplotypes h4, h5, h6 to find a new
optimal solution.

4 Experimental Analysis

We have implemented in C++ all the different combinations of HIPP and CHIPP
algorithms. All our experiments were carried out on a PC with an Athlon
1900MP dual CPU and 2GB shared memory, while our programs ran on a single
processor of the machine. As IP solver we used Cplex [25]. An individual exper-
iment was terminated after 6 hours of CPU time. The test data come from two
types of human biological data: genotype data from the International HapMap
Project [26], and known haplotype pairs [1,18]. Overall, we use 73 test instances:
66 random instances and 7 known instances. Details about these data and the
experimental results can be found in the Supporting Information [27] and in [5].

In Section 2 we introduced two baseline CHIPP algorithms, one based on
IP (CHIPP-IP) and the other based on BnB (CHIPP-BnB). Furthermore we
consider a hybrid algorithm, in which the heuristic for computing the initial up-
per bound for a BnB algorithm is replaced by a HIPP algorithm (CHIPP-HY).
In other words, the initial upper bound for CHIPP-HY is the cost of the op-
timal solution, which can significantly reduce the search space to be explored
and computation time needed. The optimization techniques that we discussed in
Section 3 can be combined in different ways with these three algorithms. These
possible combinations give rise to many different algorithms. These optimization
techniques or algorithmic components include: equal column technique (E) or
not; trivial backbones (T), all backbones (A) or no backbones; RTIP with com-
putation of fat genotypes (F), RTIP with no computation of fat genotypes (R)
or no RTIP. In summary, we have a total of 54 = 3 × 2 × 3 × 3 algorithms
for CHIPP to analyze, where each algorithm is written in the following way: W-
XYZ, where W = IP or W = BnB or W = HY (hybrid); X = E or X = ∅; Y
= T or Y = A or Y = ∅; Z = F or Z = R or Z = ∅. For example, IP-EAF is
used to indicate an algorithm based on IP using the equal column technique, all
backbones and RTIP with fat genotypes. Note that for all algorithms with the
option A, i.e. algorithms that exploit all backbones, a HIPP algorithm is needed.
For these algorithms that are based on BnB, the heuristic for the initial upper
bound can be replaced by a HIPP algorithm. In this regard, the BnB algorithm
and the HY algorithm using option A are in fact the same. Finally note that
with the purpose to simplify the experiments, we decided to use the technique of
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decomposability (Section 3.3) and the further case of Section 3.4 in all versions
except the baseline versions. As the CHIPP-HY algorithm contains a HIPP al-
gorithm and finding a single optimal solution is required by the identification of
all backbone haplotypes and by the identification of fat genotypes, an efficient
HIPP algorithm is an important component of a CHIPP algorithm. Experiments
(not described here due to space limit) show that for both HIPP versions, all of
the three features equal column technique, RTIP, and trivial backbones lead to
a larger efficiency of the HIPP algorithm, where the most important feature is
the equal column technique. This is not surprising, as each of these features can
substantially reduce the problem sizes. The equal column technique can help re-
move some sites that carry redundant information, and the techniques of trivial
backbones and RTIP can be used to omit some highly constrained explaining
haplotype pairs from the core computation of haplotype inference. Furthermore
the mentioned experiments show that the HIPP algorithm based on IP is more
efficient than that based on BnB. As a consequence of this comparison, we used
this HIPP-IP algorithm as a sub-routine in all CHIPP algorithms, where a HIPP
algorithm is needed, except one special case. The exception is the algorithm for
finding all backbone haplotypes, where we have to omit the equal column tech-
nique. As mentioned in Section 3.2, this technique cannot be used for finding
all backbone haplotypes. To reduce the overall computation for testing all 54
algorithms and all 73 instances (the 66 random and the 7 known instances),
we first tested 8 small- to medium-difficulty typical instances in the first-stage
analysis. We found that except for a few cases, most top performers use the all
backbone technique without RTIP, or with RTIP with the computation of fat
genotypes, i.e. the algorithms with options A, AF, EA, EAF. As mentioned,
these four algorithms are the same for BnB and HY. Therefore, we have identi-
fied eight top contenders for the champion for solving CHIPP. In order to find
the overall champion, we further tested these top contenders on all 73 instances.
The results clearly show that the optimized algorithms are superior to the base-
line algorithms. On many difficult problem instances, the former run orders of
magnitude faster than the latter. The results also show that for the baseline
algorithms, IP outperforms BnB, which suggests that replacing the heuristic for
computing the upper bound by a HIPP algorithm is important. However, the
result comparing the optimized IP-based and HY-based algorithms is mixed. On
some instances the optimized HY algorithms were able to solve CHIPP, while the
IP algorithms failed within the given 6 hours of running time. On the other hand,
there are other instances for which the IP algorithms were faster. One IP-based
CHIPP algorithm, algorithm EA, which uses the techniques of all backbones
and equal columns, is the champion for 19 of the 73 instances tested. This algo-
rithm is also the overall champion. In addition, among the hybrid versions, the
algorithm EA is also the best one.

5 Summary

In summary, we made three major contributions in this paper. First, we intro-
duced the problem CHIPP to expand the capability of haplotype inference by
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pure parsimony for finding all optimal solutions. In [5] extensive experiments
showed that CHIPP problem instances can have a large number of optimal solu-
tions and the first optimal solution returned by an algorithm may not necessarily
be the true solution. Our results on seven known problem instances also showed
that the true solutions to four of these problems are indeed among the optimal
solutions. All these results support to find all optimal solutions.

Second, we studied many intrinsic haplotype features, some of which were
studied in earlier research on HIPP, particularly by Gusfield [10] and Wang and
Xu [20]. However, strategies to exploit these features cannot be directly ap-
plied to CHIPP and we formulated methods to recapture solutions lost by these
strategies. Furthermore, we introduced the concepts of backbone haplotypes,
decomposability and fat genotypes, and formulated and discussed in more de-
tail the concept of equal columns. All these concepts can be viewed as FPT
kernelization techniques.

Third, we systematically studied three approaches to CHIPP, one based on
integer linear programming [10], another based on depth-first branch-and-bound
[20] and one integrating these two. In our algorithms, we explicitly exploited the
intrinsic haplotype features that we studied. In our experiments, we analyzed the
possible interactions of different problem features and optimization techniques.
These studies revealed the best algorithms under these two general problem solv-
ing paradigms, as well as the best hybrid algorithms that combines the favorable
features of integer linear programming and depth-first branch-and-bound.
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