
Breaking the O(m2n) Barrier for Minimum Cycle Bases

Edoardo Amaldi1, Claudio Iuliano1, Tomasz Jurkiewicz2, Kurt Mehlhorn2,
and Romeo Rizzi3

1 Dipartimento di Elettronica e Informazione, Politecnico di Milano, Milano, Italy
2 Max-Planck-Institut für Informatik, Saarbrücken, Germany

3 Dipartimento di Matematica ed Informatica, Universitá degli Studi di Udine, Udine, Italy

Abstract. We give improved algorithms for constructing minimum directed and
undirected cycle bases in graphs. For general graphs, the new algorithms are
Monte Carlo and have running time O(mω ), where ω is the exponent of ma-
trix multiplication. The previous best algorithm had running time Õ(m2n). For
planar graphs, the new algorithm is deterministic and has running time O(n2).
The previous best algorithm had running time O(n2 logn). A key ingredient to
our improved running times is the insight that the search for minimum bases can
be restricted to a set of candidate cycles of total length O(nm).

1 Introduction

Cycles in graphs play an important role in many applications, e.g., analysis of electrical
networks, analysis of chemical and biological pathways, periodic scheduling, and graph
drawing, see [KLM+09, Section 7]. Cycle bases are a compact description of the set of
all cycles of a graph and cycle bases consisting of short cycles or, in weighted graphs,
of small weight cycles are to be preferred. We give improved algorithms for computing
minimum weight cycle bases. The algorithms run in time O(mω ) for general graphs
and O(n2) for planar graphs; here n and m denote the number of nodes and edges,
respectively, and ω is the exponent of matrix multiplication. For planar graphs, this is
an improvement by a factor of O(logn); our result implies a similar improvement for
the all-pairs minimum cut problem in planar graphs. For general graphs, our algorithm
is the first to run faster than Õ(m2n). We mention that the previous best algorithms
already used fast matrix multiplication and our improvement is due to new structural
and algorithmic insights. A key ingredient to our improved running times is the insight
that the search for minimum bases can be restricted to a set of candidate cycles of total
length O(nm).

Let G = (V,E) be a connected undirected graph. We orient the edges of G arbitrarily
and obtain a directed graph (V,A) which we denote by either D or G. We use the notation
e = uv to denote both directed and undirected edges, i.e., the notation stands for the
directed edge (u,v) and the undirected edge {u,v}. We use δ (v) to denote the set of
edges incident to v and δ+(v) and δ−(v) for the directed edges leaving and entering v,
respectively.

Let κ be a field. A κ-cycle C in D is a vector in κE such that for any vertex v we
have ∑e∈δ+(v)Ce = ∑e∈δ−(v)Ce. In other contexts, cycles are sometimes referred to as
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Fig. 1. The figure shows a directed graph D and four circuits C1 to C4 in D. The edges of D
are e1 to e8. The circuit C1 uses the edges e1, e2, e3, and e5 in forward direction and the
edge e8 in backward direction. Thus C1 = (1,1,1,0,1,0,0,−1). The circuits C1 to C4 form
a directed cycle basis of G. The circuit C consisting of edges 1 to 4 is represented as C =
(1,1,1,1,0,0,0,0) = (C1 +C2 +C3 +C4)/3. Let G be the underlying undirected graph, let π(Ci)
be the undirected circuit corresponding to Ci, and let π(C) be the undirected circuit correspond-
ing to C. Then π(C1) = (1,1,1,0,1,0,0,1) and π(C) = π(C1)⊕π(C2)⊕π(C3)⊕π(C4), where
⊕ is addition modulo 2. The circuits π(C1) to π(C4) form an undirected cycle basis of G.
The set {C1,C2,C3,2C4 } is also a directed cycle basis of D. However, π(2C4) = 0 and hence
{π(C1),π(C2),π(C3),π(2C4)} is not an undirected cycle basis of G.

circulations and the constraint ∑e∈δ+(v)Ce = ∑e∈δ−(v)Ce is called flow conservation.
Observe that if C is a cycle, then −C is also a cycle, though a different one. The set

{C; C is a κ-cycle of G}

forms a vector space over κ , the κ-cycle space of G. The support of a cycle is the set
of edges e with Ce �= 0. A cycle is simple if Ce ∈ {−1,0,+1} for all e, and a simple
cycle is a circuit if its support is connected and for any v there are most two edges in
the support incident to v. A κ-cycle basis is a set of circuits forming a basis of the cycle
space. Any cycle basis consists of ν :=m−n + 1 circuits.

Particularly interesting are the cases κ = GF(2), the field of two elements, and κ =
Q, the field of rationals. In these cases, the cycle space and cycle basis are referred to
as undirected or directed cycle space and basis, respectively. Let G be an undirected
graph and let D be an orientation of it. For any directed circuit C ∈ {−1,0,+1}E of D,
let π(C) :=(Ce mod 2)e∈E . Then π(C) is an undirected circuit in G, the projection of C.
Figure 1 illustrates these definitions. In addition, it provides an example showing that
directed cycle bases do not necessarily project onto undirected cycle bases. However, if
a set of ν directed circuits projects onto an undirected basis, it forms a directed basis.

A weighted graph is a graph together with a non-negative weight function w : E →
R≥0. The weight of a set of edges is the sum of the weights of its members. The weight
w(C) and length |C| of a simple cycle C are

w(C) :=∑
e
|Ce|w(e) |C| :=∑

e
|Ce| ,

and the weight of a cycle basis B is the sum of the weights of its circuits, i.e.,

w(B) = ∑
C∈B

w(C) .

A minimal κ-cycle basis of G is a κ-cycle basis with minimum weight.
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Horton [Hor87] gave the first polynomial time algorithm for minimum undirected cy-
cle bases. It had running time O(m3n). In a sequence of papers [DP95, GH02, BGdV04,
KMMP08, MM07], the running time was improved to Õ(m2n). Kavitha and Mehlhorn
[KM07] gave the first polynomial time algorithm for minimum directed cycle bases.
It had running time O(m4n). In a sequence of papers [LR05, Kav05, HKM08, MM07]
the running time was improved to O(m3n) deterministic time and Õ(m2n) Monte Carlo
time. We improve the running time to O(mω ) Monte Carlo time for undirected and di-
rected bases. For planar graphs, we improve the running time from O(n2 logn) [HM94]
to O(n2); the algorithm is deterministic.

This paper is structured as follows. In Section 2 we improve upon a result of Hor-
ton [Hor87] and show that the search for cycle bases can be restricted to a set of candi-
date circuits of total length O(nm); Horton had shown that the search can be restricted
to a set of O(nm) circuits. In Section 3, we exploit this structural insight to derive the
O(mω) Monte Carlo algorithm for minimum undirected and directed bases. In Sec-
tion 4, we exploit it to derive the O(n2) algorithm for minimum bases in planar graphs.

2 Structural Results

For any two nodes u and v, let puv be a minimum weight path from u to v in G with
respect to weight function w. We assume that the collection of minimum weight paths is
consistent, i.e., if x and z lie on puv then pxz is a subpath of puv. This can be guaranteed
for instance by lexicographic ordering. Given an arbitrary numbering of the nodes from
1 to n, a path p between two nodes is considered shorter than a path q of the same
total weight if the length of p is strictly smaller than the length of q. In case of ties,
the shortest path between p and q will be the one that contains the node with minimum
index in the non-common part. For a modified minimum weight path algorithm that
ensures lex-shortest paths in time O(mn + n2 logn), see [HM94].

For any node x, let Tx be the minimum weight path tree rooted at x, i.e., Tx is the
union of the paths pxv for all v. In [Hor87] Horton shows that a polynomial subset of
all cycles is guaranteed to contain a minimum cycle basis. The set of Horton candidate
cycles, denoted by H , contains all cycles of the form Cx,e := pxuepvx, for any possible
choice of a node x and an edge e = uv not in Tx, i.e., a co-tree edge. Among these
nν cycles, we have to consider only the circuits, discarding Cx,e if pxu and pxv have
more than node x in common (see Figure 2(a)). H is a multi-set because each circuit
C can have different representations Cx,e for some of its nodes x. Note that there is no
representation for a given node x if C contains more than one co-tree edge with respect
to Tx. This is equivalent to the existence of a shortcut between x and another node in C,
i.e., the shortest path joining them does not belong to the circuit itself.

A circuit C is called isometric if for any two nodes u and v on C, puv is contained in
C. See Figure 2 (b) and (c) for examples of non-isometric circuits. The set of isometric
circuits will be denoted by I . Clearly each isometric circuit is a Horton candidate
cycle, that is I ⊆H .

In fact, we just need to consider isometric circuits.

Proposition 2.1 ([Hor87]). I contains a minimum undirected (directed) basis.
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Fig. 2. Examples of non-isometric cycles. (a) C1,{3,4} is not a circuit, because p13 and p14 have
also node 2 in common. The contained circuit is obtained as C2,{3,4}. (b) The minimum weight
path connecting 1 and 3 consists of edges {1,2} and {2,3}. C1,{3,4} is a non-isometric circuit
because of the shortcut, depicted in dashed. The only other representation is C3,{1,4}. (c) C1,{4,5}
is a non-isometric circuit with two shortcuts and no representations for any other node.

Moreover, isometric circuits can be characterized in terms of number of representations,
namely every isometric circuit C has exactly |C| representations in H .

Property 2.2 (Isometric circuits [Hor87]). Let C be any isometric circuit and let x
be an arbitrary node of C. Then there is an edge e = uv on C such that C = pxuepvx.
Conversely, if for every x ∈C there is such an edge, then C is isometric.

Proof: Let C = (x = v0, v1, . . . , vk = x). Since the empty path is the minimum weight
path from x to x and C is not the minimum weight path from x to x, there must be
an i such that pxvi = (v0,v1, . . . ,vi) but pxvi+1 �= (v0,v1, . . . ,vi,vi+1). Then pxvi+1 =
(vk,vk−1, . . . ,vi+1) and hence e = (vi,vi+1) is the desired edge.

For the converse, consider any two nodes x and z on C and let e = uv be such that
C = pxuepvx; z lies on one of the paths and hence the minimum weight path from x to z
is contained in C.

By considering the set of isometric circuits I instead of H we have the following
simple but fundamental property.

Property 2.3. The total length of the isometric circuits is at most nν .

Proof: An isometric circuit C occurs |C| times in the Horton multi-set and hence
∑C∈I |C| can be no larger than the size of the Horton multi-set.

Note that we sum only over the isometric circuits, as we have no control over the number
of appearances of non-isometric cycles.

The upper bound of Property 2.3 is tight for instance for the complete graph Kn with
n vertices and equal weight on the edges. For any node x, the cycle obtained by adding
to Tx any co-tree edge is a triangle. H consists of nν triangles that are clearly isometric.
Since there are three representations of each possible triangle, obtained by taking as x
each one of its 3 nodes, I consists of nν/3 triangles. Therefore, the total length of the
isometric circuits is exactly nν .

The total length of the isometric circuits may be much smaller than nν . Consider
an s× s grid with equal weights on the edges. Since n = s2 and m = 2s(s− 1), we
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have ν = (s− 1)2, and m and ν are O(n). The isometric circuits are exactly the grid
squares and hence their total length is 4(s−1)2, that is O(n), whereas the upper bound
of Property 2.3 is nν = s2(s−1)2, that is O(n2).

We will now show that we can extract I from the Horton multi-set in time O(nm).
For every node v �= x, let sx(v) be the child of x in Tx containing v in its subtree.

In other words, sx(v) is the first node on the minimum weight path from x to v. The
vectors sx for all x ∈V can be the computed in time O(n2). Note that a candidate cycle
C = Cx,e, for e = uv, is a circuit only when pxu and pxv have only node x in common,
i.e., sx(u) �= sx(v) (see Figure 2(a)). The next Lemma shows how to identify different
representations of the same isometric circuit and how to discover non-isometric circuits.
Given a circuit Cx,uv, the idea is to check for two specific nodes x′ and x′′ of C whether
the minimum weight path px′x′′ between them belongs to C. The nodes x′ and x′′ are
chosen so that a negative answer obviously implies that the circuit is non-isometric
whereas a positive answer gives a different representation of C for one of x′ and x′′.
This is achieved by taking x′ = sx(u) and x′′ = v. In fact, if px′v belongs to C there are
only two possibilities: px′v = x′xpxv and the other representation for C is for the node x′
and is given by Cx′,uv; px′v = vupux′ and the other representation for C is for the node
v and is given by Cv,xx′ . When node x′ does not exist because node x coincides with
node u, the other representation is for node v and is given by Cv,uv. Lemma 2.4 explains
how to check (in constant time) the conditions that allow to identify the different cases,
which are illustrated in Figure 3.

Lemma 2.4. Let C = Cx,e, let u be an endpoint of e, and let v be the other endpoint.

1. If sx(u) �= sx(v) and x = u then x �= v and C = epvu = Cv,e.
2. If sx(u) �= sx(v), x �= u, and x′ = sx(u) is the first node on the minimum weight path

from x to u then:
(a) if x = sx′(v), then C = Cx′ ,e,
(b) if x �= sx′(v) and u = sv(x′) then C = Cv,xx′ , and
(c) if x �= sx′(v) and u �= sv(x′) then C is not isometric.

Proof:
If x = u, C = uvpvu = pvuuv = Cv,e. This proves the first statement.
If x �= u and x′ is the first vertex on the minimum weight path from x to u, we have

pxu = xx′px′u.
If x is the first vertex on the minimum weight path from x′ to v, then pux′ px′v = pux pxv.

Thus C = Cx′ ,e. This establishes 2a.
If x is not the first vertex on the minimum weight path from x′ to v and u is the

first node on the minimum weight path from v to x′ then C = pvxxx′px′v = Cv,xx′ . This
establishes 2b.

If x is not the first vertex on the minimum weight path from x′ to v and C is isometric,
the minimum weight path from x′ to v must be px′u followed by e. Then u is the first
vertex on the minimum weight path from v to x′. This establishes 2c.

Lemma 2.4 allows us to identify different representations of the same isometric circuit.
It also allows to exclude some circuits as non-isometric.
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Fig. 3. Examples for the different cases of Lemma 2.4. (1) C1,{1,4} where x = u = 1. (2a), (2b) and
(2c) are three different representations of the same circuit. (2a) C1,{4,5} where s2(5) = 1 and we
obtain C2,{4,5}. (2b) C2,{4,5} where s3(5) �= 2 but s5(3) = 4 and we obtain C5,{2,3}. (2c) C5,{2,3}
where s6(3) �= 5 and s3(6) �= 2, because the minimum weight path connecting 3 and 6 consists of
edges {3,4} and {4,6}. This implies that the circuit is not isometric. The shortcut is in dashed line.
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Fig. 4. In the graph on the left all edges have cost one; we select e1e2 as the minimum weight
path connecting 1 and 3. The circuits C1,e3 and C3,e4 are bad by condition 2c. For the former
circuit let x = 1, u = 3, v = 4; then s1(3) = 2 and s2(4) �= 1 and s4(2) �= 3. The other circuits
are connected as shown below the graph. The figure on the right shows an isometric circuit C
embedded on a circle. The edges correspond to the circular arcs between the vertices and the
length of an arc is proportional to the weight of the corresponding edge. For any vertex x, we
have C = Cx,e where e contains the mirror image of x with respect to the center of the circle. We
have the following connections: C1,e4 and C2,e4 are connected by condition 2a, C2,e4 and C5,e2 are
connected by condition 2b, and so on.

We next show that all representations of an isometric circuit will be identified and all
non-isometric circuits will be discovered. We set up a graph whose vertices are the pairs
(x,e), x ∈V , e ∈ E , if (x,e) is a circuit. We label (x,e) as bad if condition 2c holds. We
connect two pairs if they satisfy condition 1 or 2a or 2b, see Figure 4.

Lemma 2.5. All representations of an isometric circuit belong to the same connected
component.

Proof: Let C = (v0,v1, . . . ,vk = v0) be an isometric circuit, let ei = vivi+1, and for any
i, 0≤ i < k, let j(i) be such that C = Cvi ,e j(i) . Figure 4 shows how the different represen-
tations of C are linked together. In this Figure, a representation Cvi,e j(i) is indicated as a
dashed arrow from vi to e j(i). In cases 1 and 2a, vi and vi+1 point to the same edge, i.e.,
the tail of the arrow advances by one position. In case 2b, we replace the arrow from vi

to e j(i) = v j(i)v j(i)+1 by the arrow from v j(i)+1 to vivi+1, i.e., we reverse the direction of
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the arrow and it now points from the tail of e j(i) to the edge out of vi. In this way, the
arrow sweeps around the circuit once and links all representations of the same circuit.

Lemma 2.6. If Cx,e is non-isometric then the component of (x,e) contains a bad com-
ponent.

Proof: Let C = (v0,v1, . . . ,vk = v0) be a non-isometric circuit and let ei = vivi+1. For
some, but not all, i, 0≤ i < k, there will be a j(i) such that C = Cvi,e j(i) . Observe, that if
C = Cvi ,e j(i) , the minimum weight paths from vi to the vertices of C are initial segments
of either pviv j(i) or pviv j(i)+1

. Also, if the minimum weight path from vi+1 to v j(i)+1 is
contained in C, then either C = Cvi+1,e j(i) or C = Cvj(i)+1,ei .

Thus if C is non-isometric, there must be i such that the minimum weight path from
vi+1 to v j(i)+1 is not contained in C. For any such i, Cvi,e j(i) will be declared bad. Any
non-bad representation of C will be linked to a bad one as described in the preceding
Lemma.

Note that checking the conditions of Lemma 2.4 is needed once for each circuit in H .
We summarize the discussion.

Theorem 2.7. In time O(nm) we can extract for each isometric circuit one pair (x,e)
with C = Cx,e.

3 Improved Algorithms for General Graphs

We refine de Pina’s approach [DP95, KLM+09] for computing minimum cycle bases,
see Figure 5. It operates in phases. In each phase, one circuit is added to the basis.
The algorithm also maintains a basis of the orthogonal space; more precisely, at the
beginning of the i-th iteration is has a set {Si, . . . ,Sν } of linearly independent vectors
S j ∈ κE with 〈Cj,S j〉= 0, where 〈_,_〉 is the inner product of vectors over κ . Through-
out this section, κ = GF(p) for a prime p with p = O(m logm). In particular, arithmetic
in GF(p) takes constant time. At the start of the computation S j is initialized to the j-th
unit vector for 1≤ j ≤ ν , where the numbering of the edges is such that edges eν+1 to
em form a spanning tree of G.

1: Initialize S j to the j-th unit vector for 1≤ j ≤ ν .
2: for i← 1, . . . ,ν do
3: Compute a minimum weight isometric circuit Ci with 〈Ci,Si〉 �= 0.
4: for j← i+1, . . . ,ν do

5: S j = S j− 〈Ci,Sj〉
〈Ci,Si〉 Si

6: end for
7: end for
8: Output {C1, . . . ,Cν }.

Fig. 5. De Pina’s algorithm for computing a minimum cycle basis.
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Steps (4) and (5) of the algorithm make the S j, j > i, orthogonal to Ci and maintain
orthogonality of C1 to Ci−1. Updating the vectors S j as shown takes time O(m2) per
phase and hence total time O(m3). In [KMMP08], this was improved to time O(mω ).
The best known realization of step (3) takes time Õ(mn) per phase and hence total time
Õ(m2n). We describe a Monte Carlo algorithm that improves the total time for step (3)
to o(mω). The improved algorithm exploits the new structural result presented in the
preceding section.

We start with a simple technical lemma.

Lemma 3.1. Let C be a collection of circuits. For each circuit C ∈ C , let λC ∈ GF(p)
be chosen randomly and let D = ∑C∈C λCC. Let S be a nonzero vector in GF(p)E. If all
circuits in C are orthogonal to S, D is orthogonal to S. If C contains a circuit that is
non-orthogonal to S, D is orthogonal to S with probability at most 1/p.

Proof: Clearly, if every circuit in C is orthogonal to S, then D is.
So assume that C′ ∈ C is non-orthogonal to S and consider a fixed choice of coeffi-

cients λC for the circuits C ∈ C , C �= C′. Also assume that there are two distinct choices
α and β for λC′ such that ∑C∈C λCC are orthogonal to S. Then αC′+ ∑C∈C ,C �=C′ λCC
and βC′+ ∑C∈C ,C �=C′ λCC are orthogonal to S. Thus (β −α)C′ is orthogonal to S, a
contradiction. Thus the probability that 〈D,S〉= 0 is at most 1/p.

Consider the |I | ≤ nm isometric circuits. We sort them by nondecreasing weight and
put a binary tree (of depth at most lognm, that is O(logn)) on top of the sorted list. For
each node of the tree, we prepare k random linear combinations of the circuits below
the node. We find the cheapest circuit that has nonzero inner product with Si as follows.
Assume the search has arrived in some node of the tree. We compute the inner product
of Si with the k linear combinations associated with the left child. If one inner product
is nonzero, we proceed to the left child. If all k inner products are zero, we proceed to
the right child. The move to the left child is always correct. However, the move to the
right child may be incorrect. The probability that any specific decision is incorrect is
at most p−k. In any search, we make log |I | decisions, and we need to find ν circuits.
Thus the total number of decisions is ν log |I | and hence the total probability of error
is bounded by νlog |I |p−k.

Each step of the binary search is a scalar product and hence selecting one circuit
takes time O(km logn). Selecting all circuits takes time O(km2 logn).

How much time does it take to prepare the random linear combinations? We main-
tain them as sparse vectors, i.e., as the ordered list of their nonzero entries. In order to
prepare one linear combination for each node of the search tree, we choose a random
multiplier λC ∈ k for each isometric circuit C. We then sum the sparse vectors as indi-
cated by the tree. Each nonzero entry of a circuit contributes cost O(1) for each level
of the tree and hence the total time to prepare one random linear combination for each
node of the search tree is O(nm logn) by Property 2.3. We want k linear combinations
for each node and hence require time O(knm logn) to prepare all of them.

Theorem 3.2. There is a Monte Carlo algorithm for finding a minimum GF(p)-basis
that works in time O(nm+ n2 logn + mω + km2 logn) and errs with probability at most
νlog(nm)p−k. For k = m0.1, this is exponentially small, and the running time is O(mω ).
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Undirected bases are GF(2)-bases and hence we are done. For directed cycle bases we
use an observation in [KLM+09, Section 3.5], namely that a minimum GF(p)-basis for
a random p with p = Θ(m logm) is a minimum directed basis with probability at least
1/2.

Theorem 3.3. There is a Monte Carlo algorithm for finding a minimum directed cycle
basis that works in time O(mω ) and errs with probability at most 1/2.

4 Planar Graphs

Hartvigsen and Mardon [HM94] have shown that minimum undirected cycle bases in
planar graphs can be computed in time O(n2 logn). In this section, we summarize their
result, improve the running time to O(n2), and also show that for planar graphs, the no-
tions of minimum directed, undirected, integral, weakly fundamental, and totally uni-
modular bases coincide, see [KLM+09, Section 3] and the proof of Theorem 4.2 for a
definition of the latter terms.

Let G be a plane graph, a planar graph embedded into the plane. A plane graph
divides the plane into maximal open connected sets of points that we call faces. Any
circuit C divides the plane into two maximal open connected sets of points, one bounded
and one unbounded. We use interior(C) to denote the bounded set. If interior(C) agrees
with one of the faces of G, we call C a face circuit. Note that the number of edges and
the number of face circuits are both O(n). A collection of circuits is called nested if for
any two circuits in the collection, the interiors are either disjoint or the interior of one
is contained in the interior of the other.

For a collection B of circuits, let FB be the face circuits that do not belong to B. We
define the directed inclusion graph DB with vertex set B∪FB as follows. Let C and C′
be circuits in B∪FB. We have an edge from C to C′ if interior(C) ⊃ interior(C′) and
there is no circuit C′′ ∈ B∪FB such that interior(C)⊃ interior(C′′)⊃ interior(C′). The
inclusion graph is acyclic; the nodes of DB with no outgoing edges are precisely the
face circuits of G. The inclusion graph is a forest if and only if B is nested.

In [HM94] Hartvigsen and Mardon show that the number of isometric circuits is at
most twice the number of face circuits of any planar graph G and there is at least a min-
imum cycle basis (directed or undirected) that is nested. Moreover, a nested collection
of cycles B is a minimum cycle basis iff B is a minimum weight collection of circuits
satisfying three properties: (1) every non-leaf in DB has exactly one child in FB, (2) the
circuits in FB have parents in DB, (3) the inclusion graph DB is a forest.

Our algorithm for finding a minimum weight basis differs from that of [HM94] in
two points. First, we use the all-pairs minimum weight paths method for planar graph
in O(n2) proposed in [Fre87]. Then, the main improvement is to exploit the procedure
implied by Theorem 2.7 to obtain the set of isometric circuits in O(n2). This way, the
bottleneck of O(n2 logn) decreases to O(n2). The rest of the algorithm proceeds as
in [HM94] and we summarize it below for completeness. Recall that the number of
isometric circuits is O(n) and that sorting by nondecreasing weight is O(n logn).

We construct the incidence matrix A between isometric circuits and the faces of G.
The entry corresponding to a circuit C and a face R is one if R⊆ interior(C). This matrix
can clearly be computed in time O(n2).
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We initialize the basis B to the empty set and set up the corresponding inclusion
graph DB. The vertices of DB are the face circuits and there are no edges. As long as B
does not have the right number of circuits and hence DB does not satisfy properties (1)
and (2), we do the following.

If there is a non-leaf node C that has more than one child in FB (case 1), let R1 and R2

be two faces of G limited by two face circuits in FB having C as their common parent. If
there is no such non-leaf node, there must be a face circuit in FB without a parent (case
2). Let R1 be the face limited by this face circuit and let R2 be the unbounded face. In
either case, we find the least weight circuit D containing exactly one of R1 or R2 in its
interior. We can find D in time O(n) by scanning the columns of A.

We add D to B and update DB. If D is a face circuit, we only have to remove D from
FB. The inclusion graph stays the same. So assume that D is not a face circuit. Starting
from the face circuits in interior(D) (we can find them in matrix A), we determine the
maximal subtrees of DB that are contained in interior(D). They become children of D.
D either becomes a root (in case 2) or a child of C (in case 1). Updating DB takes time
O(n).

We conclude that we spend time O(n) per base circuit for a total of O(n2).

Theorem 4.1. A minimum (directed or undirected) circuit basis of a planar graph can
be found in time O(n2).

[HM94] observed that the minimum cycle basis problem is dual to the all-pairs mini-
mum cut problem. Hence the all-pairs minimum cut problem in planar graphs can also
be solved in time O(n2).

Theorem 4.2. Every planar graph has a minimum directed cycle basis that is weakly
fundamental, totally unimodular, and integral.

Proof: Every planar graph has a minimum directed cycle basis that is nested. Let B be
such a basis. We first show that B is totally unimodular. We need to show that any circuit
is a linear combination of the circuits in B with coefficients in {−1,0,+1}. Let C be
any circuit. Then, C can be obtained as the sum of the face circuits that limit faces in
interior(C). A face circuit either belongs to B or is equal to the difference of its parent
p(F) in DB and the sum of the other children of p(F) in DB. Thus

C = ∑
F∈B

F + ∑
F∈FB

(
p(F)− ∑

D ∈ B and D is a child of p(F) in DB

D

)
.

If a circuit D occurs twice in the representation of C, it occurs once as a parent and
once as a child. As a parent, its coefficient is +1, and as a child, its coefficient is −1
and hence the two occurrences cancel. Thus every circuit is a linear combination of the
circuits in B with coefficients in {−1,0,+1}.

We next show that B is weakly fundamental. We need to exhibit an ordering C1, . . . ,
Cν of the circuits in B such that Ci \ (C1 ∪ . . .∪Ci−1) �= /0 for all i. Let DB be the in-
clusion graph corresponding to B. If FB is empty, every face circuit belongs to B. We
determine a reverse ordering of the circuits Cν , . . . , C1 as described in [LR07]. Starting
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from the circuit C that limits the unbounded face, we add the face circuits with an edge
in common with C. After removing the edges of C from G, we proceed in the same way.
We now extend the previous result to the general case when FB is not empty. Since every
face circuit in FB has a parent, we have a non-leaf node D in DB whose children are all
face circuits. One of these face circuits, say F , belongs to FB and all the others belong to
B. The same idea for constructing a reverse ordering is then applied to the circuits in B
corresponding to the children of D starting from F . The face circuits among these with
an edge in common with F are added and the edges of F that are not in D are removed.
Then we proceed in the same way considering the circuit that limits the new face. After
that all children of D are added, we delete them from DB. We repeat this until all nodes
in DB are isolated. By applying the procedure in the remaining graph for the case where
there are only face circuits, we find a reverse ordering of the circuits. Thus, the same
result holds for general cycle bases.

The proof is completed by the fact that any weakly fundamental basis is integral.

5 Conclusion

We have shown that minimum cycle bases can be computed in time O(mω) by a Monte
Carlo algorithm. A further improvement would have to do away with the maintenance
of a basis of the orthogonal subspace.
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