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Abstract. We consider a process called Group Network Formation
Game, which represents the scenario when strategic agents are build-
ing a network together. In our game, agents can have extremely varied
connectivity requirements, and attempt to satisfy those requirements by
purchasing links in the network. We show a variety of results about equi-
librium properties in such games, including the fact that the price of
stability is 1 when all nodes in the network are owned by players, and
that doubling the number of players creates an equilibrium as good as
the optimum centralized solution. For the most general case, we show
the existence of a 2-approximate Nash equilibrium that is as good as the
centralized optimum solution, as well as how to compute good approx-
imate equilibria in polynomial time. Our results essentially imply that
for a variety of connectivity requirements, giving agents more freedom
can paradoxically result in more efficient outcomes.

1 Introduction

Many modern computer networks, including the Internet itself, are constructed
and maintained by self-interested agents. This makes network design a funda-
mental problem for which it is important to understand the effects of strategic
behavior. Modeling and understanding of the evolution of nonphysical networks
created by many heterogonous agents (like social networks, viral networks, etc.)
as well as physical networks (like computer networks, transportation networks,
etc.) has been studied extensively in the last several years. In networks con-
structed by several self-interested agents, the global performance of the system
may not be as good as in the case where a central authority can simply dictate
a solution; rather, we need to understand the quality of solutions that are con-
sistent with self-interested behavior. Much research in the theoretical computer
science community has focused on this performance gap and specifically on the
notions of the price of anarchy and the price of stability — the ratios between
the costs of the worst and best Nash equilibrium1, respectively, and that of the
globally optimal solution.

1 Recall that a (pure-strategy) Nash equilibrium is a solution where no single player
can switch her strategy and become better off, given that the other players keep
their strategies fixed.
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In this paper, we study a network design game that we call the Group Net-
work Formation Game, which captures the essence of strategic agents building a
network together in many scenarios. In this game players correspond to nodes of
a graph (although not all nodes need to correspond to players), and the players
can have extremely varied connectivity requirements. For example, there might
be several different “types” of nodes in the graph, and a player desires to connect
to at least one of every type (so that this player’s connected component forms a
Group Steiner Tree [10]). Or instead, a player might want to connect to at least
k other player nodes. The first example above is useful for many applications
where a set of players attempt to form groups with “complementary” qualities.
The second example corresponds to a network of servers where each server want
to be connected to at least k other servers so that it can have a backup of its
data; or in the context of IP networks, a set of ISPs that want to increase the
reliability of the Internet connection for their customers, and so decide to form
multi-homing connections through k other ISPs [21]. Many other types of con-
nectivity requirements fit into our framework, and so the results we give in this
paper will be relevant to many different types of network problems.

We now formally define the Group Network Formation Game as follows. Let
an undirected graph G = (V, E) be given, with each edge e having a nonnegative
cost c(e). This graph represents the possible edges that can be built. Each player
i corresponds to a single node in this graph (that we call a player or terminal
node), which we will also denote by i. Similarly to [2], a strategy of a player
is a payment vector pi of size |E|, where pi(e) is how much player i is offering
to contribute to the cost of edge e. We say that an edge e is bought, i.e., it is
included in the network, if the sum of payments of all the players for e is at
least as much as the cost of e (

∑
i pi(e) ≥ c(e)). Let Gp denote the subgraph of

bought edges corresponding to the strategy vector p = (p1, . . . , pN). Gp is the
outcome of this game, since it is the network which is purchased by the players.

To define the utilities/costs of the players, we must consider their connectivity
requirements. Group Network Formation Game considers the class of problems
where the players’ connectivity requirements can be compactly represented with
a function F : 2U → {0, 1}, where U ⊆ V is the set of player nodes, similar to
[11]. This function F has the following meaning. If S is a set of terminals, then
F (S) = 1 iff the connectivity requirements of all players in S would be satisfied
if S formed a connected component in Gp. For the example above, where each
player wants to connect to at least one player from each “type”, the function
F (S) would evaluate to 1 exactly when S contains at least one player of each
type. Similarly, for the “data backup” example above, the function F (S) would
evaluate to 1 exactly when S contains at least k + 1 players. In general, we will
assume that the connectivity requirements of the players are represented by a
monotone “happiness” function F . The monotonicity of F means that if the
connectivity requirements of a player are satisfied in a graph Gp, then they are
still satisfied when a player is connected to strictly more nodes. We will call a
set of player nodes S a “happy” group if F (S) = 1. While not all connectivity
requirements can be represented as such a function, it is a reasonably general
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class that includes the examples given above. Therefore an instance of our game
consists of a graph G = (V, E), player nodes U ⊆ V , and a function F that
states the connectivity requirements of the players. We will say that player i’s
connectivity requirements are satisfied in Gp if and only if F (Si(Gp)) = 1 for
Si(Gp) being the terminals in i’s connected component of Gp. While required
to connect to a set of terminal nodes satisfying its connectivity requirements,
each player also tries to minimize her total payments,

∑
e∈E pi(e) (which we

will denote by |pi|). We conclude the definition of our game by defining the cost
function for each player i as:

– cost(i) = ∞ if F (Si(Gp)) = 0
– cost(i) =

∑
e∈E pi(e) otherwise.

In our game, all players want to be a part of a happy group which can correspond
to many connectivity requirements, some of which are mentioned above. The so-
cially optimal solution (which we denote by OPT) for this game is the cheapest
possible network where every connected component is a happy group, since this
is the solution maximizing social welfare2. For our first example above, OPT
corresponds to the cheapest forest where every component is a Group Steiner
Tree, for the second to the Terminal Backup problem [3], and in general it can
correspond to a variety of constrained forest problems [11]. Our goals include
understanding the quality of exact and approximate Nash equilibria by com-
paring them to OPT, and thereby understanding the efficiency gap that results
because of the players’ self-interest. By studying the price of stability, we also
seek to reduce this gap, as the best Nash equilibrium can be thought of as the
best outcome possible if we were able to suggest a solution to all the players
simultaneously.

In the Group Network Formation Game, we don’t assume the existence of
a central authority that designs and maintains the network, and decides on
appropriate cost-shares for each player. Instead we use a cost-sharing scheme
which is sometimes referred to as “arbitrary cost sharing” [2,8] that permits the
players to specify the actual amount of payment for each edge. This cost-sharing
mechanism is necessary in scenarios where very little control over the players is
available, and gives more freedom to players in specifying their strategies, i.e.,
has a much larger strategy space. The main advantage of such a model is that
the players have more freedom in their choices, and less control is required over
them. A disadvantage of such a system, however, is that it does not guarantee the
existence of Nash equilibria (unlike more constrained systems such as fair sharing
[1]). Studying the existence of Nash equilibria under arbitrary cost sharing has
been an interesting research problem and researchers have proven existence for
many important games [2,8,12,13]. Interestingly, in many of these problems it
has been shown that the equilibrium is indeed cheap, i.e., costs as much as the
socially optimal network. As we show in this paper, this tells us that in the
network design contexts we consider, arbitrary sharing produces more efficient
outcomes while giving the players more freedom.
2 The solution that maximizes the social welfare is the one that minimizes the total

cost of all the players.
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Related Work. Over the last few years, there have been several new papers
using arbitrary cost-sharing, e.g., [8,13,14]. Recently, Hoefer [12] proved some
interesting results for a generalization of the game in [2], and considered arbitrary
sharing in variants of Facility Location.

Unquestionably one of the most important decisions when modeling network
design involving strategic agents is to determine how the total cost of the solution
is going to be split among the players. Among various alternatives [6], the “fair
sharing” mechanism is the most relevant to ours [1,4,5,9]. In this cost sharing
mechanism, the cost of each edge of the network is shared equally by the players
using that edge. This model has received much attention, mostly because of the
following three reasons. Firstly, it nicely quantifies what people mean by ”fair”
and has an excellent economic motivation since it is strongly related to the con-
cept of Shapley value[1]. Secondly, fair sharing naturally models the congestion
effects of network routing games, and so network design games with fair shar-
ing fall into the well-studied class of “congestion games” [4,7,15,20]. Thirdly,
this model has many attractive mathematical properties including guarantees
on the existence of Nash equilibrium that can be obtained by natural game
playing [1].

Despite all of the advantages of congestion games mentioned above, there are
extremely important disadvantages as well. Firstly, although congestion games
are guaranteed to have Nash equilibria, these equilibria may be very expensive.
Anshelevich et al. [1] showed that the cheapest Nash equilibrium solution can
be Ω(log n) times more expensive than OPT, and that this bound is tight. As
we prove in this paper, arbitrary cost-sharing will often guarantee the existence
of Nash equilibria that are as cheap as the optimal solution. Secondly, fair shar-
ing inherently assumes the existence of a central authority that regulates the
agent interactions or determines the cost shares of the agents, which may not
be realistic in many network design scenarios. Arbitrary cost sharing allows the
agents to pick their own cost shares, without any requirements by the central
authority. Thirdly, although the players are trying to minimize their payments
in fair cost sharing, they are not permitted to adjust their payments freely, i.e.,
a player cannot directly specify her payments on each edge, but is rather asked
to specify which edges she wants to use. In the network design contexts that
we consider here, we prove that giving players more freedom can often result in
better outcomes.

The research on non-cooperative network design and formation games is too
much to survey here, see [16,18,20] and the references therein.

Our Results. Our main results are about the existence and computation of cheap
approximate equilibria. By an α-approximate Nash equilibrium, we mean that
no player in such a solution has a deviation that will improve their cost by a
factor of more than α. While our techniques are inspired by [2], our problem and
connectivity requirements are much more general, and so require the develop-
ment of much more general arguments and payment schemes.
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– In Section 3, we show that in the case where all nodes are player nodes, there
exists a Nash equilibrium as good as OPT, i.e., the price of stability is 1.

– In Section 4, we show that in the general case where some nodes may not
be player nodes, there exists a 2-approximate Nash equilibrium as good as
OPT.

– We show that if every player is replaced by two players (or if every player
node has at least two players associated with it), then the price of stability
is 1. This is in the spirit of similar results from selfish routing [1,20], where
increasing the total amount of players reduces the price of anarchy.

– Starting with a β-approximation to OPT, we provide poly-time algorithms
for computing an (1 + ε)-approximate equilibrium with cost no more than β
times OPT, for the case where all nodes are player nodes. The same holds
for the general case with the factor being (2 + ε) instead.

Since for monotone happiness functions F , OPT corresponds to a constrained
forest problem [11], then the last result gives us a poly-time algorithm with
β = 2. Notice that we assumed that the function F is monotone, i.e., that the
addition of more terminals to a component does not hurt. This assumption is
necessary, since as we prove in Section 5, if F is not monotone there may not
exist any approximate Nash equilibria. We also show that the results above are
only possible in our model with arbitrary cost-sharing, and not with fair sharing.

Because of its applications to multi-homing [3,21], we are especially interested
in the behavior of Terminal Backup connectivity requirements, i.e., when a player
node desires to connect to at least k other player nodes. For this special case, we
prove a variety of results, such as price of anarchy bounds and the extension of
fair sharing results from [1] to this new problem. The lower bounds for Terminal
Backup also hold for the general Group Network Formation Game, showing that
while the price of stability may be low, the price of anarchy can be as high as
the number of players.

2 Properties of the Socially Optimal Network

In this section, we will show some useful properties of the socially optimal net-
work for the Group Network Formation Game, which we refer to as OPT. For
notational convenience, we will extend the definition of the happiness function
to subgraphs and use F (S) to denote the value of the happiness function for the
set of terminal nodes in a subgraph S.

Observation 1. Since the satisfaction of the players only depends on the ter-
minal nodes they are connected to, OPT is acyclic and therefore, OPT is the
minimum cost forest that satisfies all the players.

Let e = (i, j) be an arbitrary edge of a tree T of OPT. Removal of e will divide
T into 2 subtrees, namely Ti and Tj (let Ti be the tree containing node i).
After removal of e, connection requirements of some of the players in T will be
dissatisfied, i.e., either F (Ti) = 0 or F (Tj) = 0, since otherwise OPT − e would
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be a network that is cheaper than OPT and satisfies all the players. Therefore,
once e is deleted from OPT, all the players in Ti or Tj or both will be dissatisfied.
The players that are dissatisfied upon removal of e are said to witness e. If e is
witnessed by only the players in Ti or only the players in Tj then e is said to be
an edge witnessed from 1-side. Analogously, we say e is witnessed from 2-sides
if it is witnessed by all the players in T .

In general, some of the edges of a tree T may be witnessed from 1-side whereas
some others are witnessed from 2-sides. In the full version of the paper, we show
that the edges of T witnessed from 2-sides form a connected component in T .
Due to limited space, all our proofs are omitted but the full version of the paper
is available online at www.cs.rpi.edu/∼eanshel.

3 When All Nodes Are Terminals

For the Group Network Formation Game, we don’t know whether there exists
an exact Nash equilibrium for all possible instances of the problem. However, for
the special case where each node of G is a terminal node, we prove that Nash
equilibrium is guaranteed to exist. Specifically, there exists a Nash equilibrium
whose cost is as much as OPT, and therefore price of stability is 1. In this section,
we will prove this result by explicitly forming the stable payments on the edges
of OPT by giving a payment algorithm. The payment algorithm, which will be
formally defined below, loops through all the players and decides the payments
of them for all their incident edges. The algorithm never asks a player i to pay
for the cost of an edge e that is not incident to i.

Since we are trying to form a Nash equilibrium, no player should have an in-
centive of unilateral deviation when the algorithm terminates. To have an easier
analysis we want our algorithm to have a stronger property: we not only want it to
ensure stability at termination but also at each intermediate step. To ensure this
stronger property, whenever a player i is assigned to make a payment for an edge
e during the execution of the algorithm, it should compute χi(pi), the cheapest
deviation of player i from pi in G − e that satisfies her (assuming the rest of the
payments to buy OPT are made by other players), and should ensure that the cost
of pi never exceeds the cost ofχi(pi) at each iteration.The payment for all the edges
of OPT will be decided when the algorithm terminates and we will conclude that
the resulting strategy profile is a Nash equilibrium since the cost of the strategy pi

of each player i will be at most her cheapest deviation χi(pi) with respect to pi.
Let p∗ be a strategy vector that buys all the edges of OPT − e, i.e., the entry of

p∗(f) = c(f) if f is in OPT−e and p∗(f) = 0 otherwise. The deviation χi(pi) is the
cheapest strategy of player i that satisfies her connectivity requirements assuming∑

j �=i pj = p∗ − pi. Observe that all edges of OPT such that i is not contributing
any payment to them can be used by i freely in χi(pi). Therefore, when computing
χi(pi), the algorithm should not use the actual cost of the edges in G − e, but
instead for each edge f it should use the cost i would face if she is to use f . We
call this the modified cost of f for i, and denote it by c′(f). Specifically, for f not
in OPT , c′i(f) = c(f), the actual cost of f . For the edges f of OPT − e that i has
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Input: The socially optimal network OPT

Output: The payment scheme for OPT

Initialize pi(e) = 0 for all players i and edges e;
Root each tree T of OPT by an arbitrary node incident to an edge

witnessed from 2-sides;
Loop through all trees T of OPT;

Loop through all nodes i of T in reverse BFS order;

Loop through all edges of Ti incident to i;
Let d(e) = c(e) − ∑

j �=i pj(e);
If χi(pi) − ∑

f pi(f) ≥ d(e)
Set pi(e) = d(e);

Else break;

Define g to be the parent edge of node i;
Set pi(g) = min{χi(pi) − ∑

f pi(f), c(g)};
Algorithm 1. Algorithm that generates payments on the edges of OPT

not contributed anything to (i.e., pi(f) = 0), we have that c′i(f) = 0, since from
i’s perspective, she can use these edges for free because other players have paid for
them. For all the other edges f that i is paying pi(f) for, c′i(f) = pi(f), since that
is how much it costs for i to use f in her deviation from the payment strategy pi.
We use the notation χi(pi) for both the deviation itself and also the cost of it; in
what follows the meaning will be clear from the context.

Recall that the algorithm asks the players to pay for their incident edges only.
Therefore, each edge is considered for payment twice. For each edge e = (u, v)
where u is the parent of v, first v is asked to pay for e at the maximum amount
that will not create an incentive for unilateral deviation for her. At the later
iterations of the algorithm, when u is processed, the algorithm asks u to pay
for the remaining cost of e. Recall that whenever the algorithm asks a player
to contribute to the cost of an edge it also computes her cheapest deviation
and ensures that no player makes a payment that will create an incentive of
unilateral deviation. Therefore, if the payment algorithm does not break at any
of the intermediate stages, then it finds a Nash equilibrium whose cost is as
much as OPT. To prove our result all we need to do is prove that the algorithm
never breaks at an intermediate stage. We prove this by constructing a network
cheaper than OPT which satisfies all the players whenever the algorithm breaks,
thus forming a contradiction in the full version of the paper.

4 Good Equilibria in the General Game

In Section 3, we saw that a good equilibrium always exists when all nodes are
terminals. In this section, we consider the general Group Network Formation
Game, and show that there always exists a 2-approximate Nash equilibrium that
is as cheap as the centralized optimum. By a 2-approximate Nash equilibrium,
we mean a strategy profile p = (p1, p2, . . . , pn) such that no player i can reduce
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her cost by more than a factor of 2 by unilaterally deviating from pi to p′i,
i.e., |p′i| > |pi/2| for any unilateral deviation p′i of i. To prove this, we first
look at an important special case that we call the Group Network Formation of
Couples Game or GNFCG. This game is exactly the same as the Group Network
Formation Game, except that every terminal node is guaranteed to have at least
two players located at that node (although not all nodes need to be player nodes).

Theorem 1. If the price of stability for the GNFCG is 1 then there exists a
2-approximate Nash Equilibrium for the Group Network Formation Game that
costs as much as OPT.

Because of Theorem 1, we will focus on the GNFCG in the rest of the section
and prove the existence of a Nash equilibrium as cheap as OPT. This result is
interesting in its own right, since it states that to form an equilibrium that is
as good as the optimum solution, it is enough to double the number of players.
Such results are already known for many variants of congestion games and selfish
routing [1,20], but as Theorem 2 shows, we can also prove such results for games
with arbitrary sharing.

Given a set of bought edges T ; a strategy profile p such that for all players
i, pi is the cheapest strategy satisfying i, assuming rest of the payments to buy
all the edges of T are made by other players, is a Nash equilibrium. To prove
that price of stability is 1 for GNFCG, we give an algorithm that forms such a
strategy profile on the edges of OPT.

Recall that the payment strategies of all the players have to be stable when the
algorithm terminates. As in Section 3, to have an easier analysis we not only want
our algorithm to ensure stability at termination but also at each intermediate
step. To ensure this stronger property, whenever a player i is assigned to make a
payment for an edge e during the execution of the algorithm, it should compute
χi(pi), the cheapest deviation of player i from pi that satisfies her, and should
ensure that the cost of pi never exceeds the cost of χi(pi) at each iteration by
using the modified costs of the edges as in Section 3. In the rest of the section
we prove our main theorem for the GNFCG.

Theorem 2. For GNFCG, there exists a Nash equilibrium as cheap as the so-
cially optimal network, i.e., the price of stability is 1.

For ease of explanation, we will first consider the case where all the edges of
OPT are witnessed from two sides and later illustrate how our algorithm can
be modified for the case where some of the edges are witnessed from one side
only. We start by rooting each connected component of OPT arbitrarily by a
high degree non-player node. Throughout the paper, the term high degree node
refers to the nodes with degree 3 or more. On each connected component T of
OPT, we run a 2-phase algorithm. In the first phase of the algorithm, we assign
players to make payments to the edges of T in a bottom-up manner, i.e., we start
from a lowest level edge e of T and pick a player i to make some payment for e
and continue with the next edge in the reverse BFS order. In the first phase of
the algorithm, we ask a player i to contribute only for the cost of edges on the
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(A) (B)

Fig. 1. (A) Illustrates the assignment of the player to pay for the cost of e. (B) Shows
how to construct a cheap network that satisfies all the players in Te by using the
deviations of a subset S of them.

unique path between her and the root and furthermore, the payment for each
edge is made by only one player.

Algorithm (Phase 1). For an arbitrary edge e = (u, v) where u is the lower level
incident node of e, the assignment of the player to pay for e is as follows. If
u is a terminal node, we ask a player i located at node u to make maximum
amount of payment on e that will not make pi unstable, i.e., we set pi(e) =
min{χi(pi) − |pi|, c(e)}. If u is a degree 2 nonterminal node then we ask the
player who has completely bought the other incident edge of u, i.e., made a
payment equal to c(e), to make maximum amount of payment on e that will not
make her strategy unstable as shown on the left of Figure 1(A). Note that it may
be the case that no player has bought the other incident edge of u in which case
we don’t ask any player to pay for e and the payment for e will be postponed
to the second phase of the algorithm. If u is a high degree nonterminal then the
selection of the player to pay for e is based on the number of lower level incident
edges of u that are bought in the previous iterations of the algorithm. If none of
the lower level incident edges of u are bought then we postpone the payment on
e to the second phase of the algorithm. If exactly one of the lower level incident
edges of u, namely f , is bought then we ask the player who bought f to make
maximum amount of payment on e that will not make her strategy unstable as
shown in the middle of Figure 1(A). If 2 or more of the lower level incident edges
of u are already bought, namely f1, f2, . . . , fl, then we fix the strategies of the
players i1, i2, . . . , il that bought those edges, i.e., the players i1, i2, . . . , il are not
going to pay any more and therefore the strategies of those players that will be
returned at the end of the algorithm are already determined. Since there are two
players located at every terminal, pick an arbitrary player located at the same
terminal as one of i1, i2, . . . , il that has not made any payments yet, and assign
her to make maximum amount of payment for e that will not make her strategy
unstable as shown on the right of Figure 1(A). We prove in the full version that
such a player always exists, i.e., not all of i1, i2, . . . , il are the last players to
make payment at their respective terminal nodes.

We here present an outline of our analysis of this algorithm. When we are
talking about a player i, let T denote the connected component of OPT con-
taining i and let T ′ denote the set of other connected components of OPT. For
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an arbitrary edge e of T , we use Te in order to refer to the subtree of T below
e and Tu to refer to the subtree below a node u. To prove the existence of a
Nash equilibrium as cheap as OPT, we show that whenever our algorithm can-
not form stable payments on the edges of OPT we can find a subgraph of G that
is cheaper than OPT and satisfies all the players. Since OPT is the cheapest
network satisfying all the players, we will end up with a contradiction.

We give a series of lemmas in the full version that successively proves the
following. For every edge e that could not be bought in the first phase of the
algorithm by the assigned player to make payment for it, we can connect all the
terminal nodes in Te to the connected components of T ′ without using any of
the edges of T − Te by simply setting pi = χi(pi) for a subset S of players in Te.
The deviations of the subset S of the players are depicted in Figure 1(B). The
condition that no edges of T − Te are used by the deviations is crucial, since
that is what allows us to have a set of players all deviate at once and still be
satisfied afterwards. The fact that such a “re-wiring” exists allows us to argue in
our proofs that at least one of the incident edges of the root of T will be bought
during the first phase of the algorithm.

Algorithm (Phase 2). In the second phase of the algorithm, we ask the players that
have not made any payments yet to make stable payments for the remaining edges
and buy them. Let Γ be the set composed of connected components of Gp−T ′ that
include at least one terminal node. In other words, Γ consists of connected compo-
nents of the edges in T purchased so far by the algorithm (a single terminal node
with no adjacent bought edges would also be a connected component in Γ ). We call
a connected component C1 ∈ Γ immediately below a connected component C ∈ Γ
if after contracting the components in Γ , C is above C1 in the resulting tree and
there are no other components of Γ between them. In the second phase of the algo-
rithm, we form payments on the edges in a top-down manner as we explain next.
We start from the connected component C ∈ Γ that includes the root of T and
assign a player i in C that has not made any payments yet to buy all the edges be-
tween C and the connected components that are immediately below C. We prove
that such a player i always exists in the full version of the paper. Observe that once
i buys all the edges between C and the connected components C1, C2, . . . , Ck that
are immediately below C, all these k+1 connected components form a single con-
nected component C that contains the root. We repeat this procedure, i.e., pick
a player i in the top-most connected component C that has not made a payment
yet to buy all the edges between C and the connected components that are imme-
diately below C , until all the players in T are in the same connected component
and all of T is paid for.

To show that our algorithm forms an equilibrium payment, we need to prove
that no player has a deviation from the payment assigned to her. This is true
for players making payments during the first phase by construction. To finish
the proof, we need to show that a strategy pi that buys all the edges between a
connected component C and the connected components C1, C2, . . . , Ck that are
immediately below C is a stable strategy for any player in C, which we show in
the full version of the paper.



Exact and Approximate Equilibria for Optimal Group Network Formation 249

This concludes the proof of Theorem 2. Recall that for ease of explanation,
we only considered the case where all edges of OPT are witnessed from two sides
until now. In the full version of the paper, we modify this algorithm to return
a Nash equilibrium that purchases OPT even if some of the edges of OPT are
witnessed from one side.

The proof of our 2-approximate Nash equilibrium result suggests an algorithm
which forms a cheaper network whenever a 2-approximate Nash equilibrium
cannot be found. Using techniques similar to [2], this allows us to form efficient
algorithms to compute approximate equilibria:

Theorem 3. Suppose we have an α-approximate socially optimal graph Gα for
an instance of the Group Network Formation Game. Then for any ε > 0, there
is a polynomial time algorithm which returns a 2(1 + ε)-approximate Nash equi-
librium on a feasible graph G′, where cost (G′) ≤ cost (Gα). Furthermore, if all
the terminal nodes have an associated player or each terminal node is associated
with at least 2 players, there is a polynomial time algorithm which returns a
(1 + ε)-approximate Nash equilibrium on a feasible graph G′.

Since for all monotone functions F , finding OPT is a constrained forest problem
[11], then Theorem 3 gives us a poly-time algorithm for α = 2.

5 Inapproximability Results and Terminal Backup

Recall that in this paper, we consider games where the happiness functions are
monotone. Theorem 4 shows that this property of happiness functions is critical
for even approximate stability.

Theorem 4. For the Group Network Formation Game where the happiness
functions may not be monotone, there is no α-approximate Nash equilibrium
for any α.

Recall that congestion games, including our game with fair sharing, are guar-
anteed to have Nash equilibria, although they may be expensive. The following
theorem studies the quality (cost) of approximate Nash equilibrium and shows
that there may not be any approximately stable solution that is as cheap as the
socially optimal network.

Theorem 5. For the Group Network Formation Game, there may not be any
approximate Nash equilibrium whose cost is as much as OPT if the fair cost-
sharing mechanism is used.

Because of its applications to multi-homing [3,21], we are especially interested in
the behavior of Terminal Backup connectivity requirements, i.e., when a player
node desires to connect to at least k − 1 other player nodes.

Theorem 6. For the Group Network Formation Game and the Terminal Backup
problem, the Price of Anarchy is n and 2k − 2 respectively. Furthermore, these
bounds are tight. For the Terminal Backup problem, in the Shapley cost-sharing
model, the price of stability is at most H(2k − 2).
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