
Efficient Computation of the Characteristic

Polynomial of a Tree and Related Tasks

Martin Fürer�

Department of Computer Science and Engineering
Pennsylvania State University

University Park, PA 16802, USA
Visiting: ALGO EPFL

1015 Lausanne
Switzerland

and
Institut für Mathemtik

Universität Zürich
CH-8057 Zrich
Switzerland

furer@cse.psu.edu

http://cse.psu.edu/~furer

Abstract. An O(n log2 n) algorithm is presented to compute the char-
acteristic polynomial of a tree on n vertices improving on the previously
best quadratic time. With the same running time, the algorithm can be
generalized in two directions. The algoritm is a counting algorithm, and
the same ideas can be used to count other objects. For example, one can
count the number of independent sets of all possible sizes simultaneously
with the same running time. These counting algorithms not only work
for trees, but can be extended to arbitrary graphs of bounded tree-width.

Keywords: characteristic polynomial, counting matchings, counting in-
dependent sets, bounded tree-width, efficient algorithms.

1 Introduction

It is easy to find a maximum independent set or a maximum matching in a tree
in linear time. The size of the latter determines the rank of the adjacency matrix
and therefore the number of trailing zero coefficients of the characteristic poly-
nomial. Still in linear time, one can also compute the number of the maximum
matchings in a tree, and therefore determine the lowest non-trivial coefficient of
the characteristic polynomial. But if the goal is to compute all coefficients of the
characteristic polynomial or count the number of independent sets of size r for
all possible values of r simultaneously, it has been believed that the necessary
time would increase by a factor of n. We show that an increase by a factor of
only O(log2 n) is sufficient for such tasks.
� Research supported in part by NSF Grant CCF-0728921.

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 11–22, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://cse.psu.edu/~furer

12 M. Fürer

For any graph with adjacency matrix A, elementary considerations of the
characteristic polynomial

χ(A; λ) = det(λI − A) =
n∑

i=0

ciλ
n−i

show the well known result that

cr =
∑

σ

sgn(σ)

where σ ranges over all directed cycle packings covering r vertices, i.e., permu-
tations with with exactly n − r fixed points and Aiσ(i) = 1 whenever i is not a
fixed point of σ.

We consider undirected graphs without self-loops. Every single edge {u, v}
represents one directed cycle (u, v), (v, u), while every undirected cycle represents
two directed cycles (one in each direction). Naturally, in a tree the only directed
cycles are those corresponding to single edges. Thus the number of cycle packings
covering 2r vertices in a tree is the number of matchings of size r. We call them
r-matchings.

For a tree or forest, the previous observation implies c2r+1 = 0 and

c2r = (−1)r#r-matchings

(see, e.g., [1, p. 49]).
An early algorithm [2] for the characteristic polynomial of a tree runs in

time O(n3). More complicated algorithms are needed for general graphs, but
the time can even be improved. Computing the characteristic polynomial of
an arbitrary real matrix has actually the same algebraic complexity as matrix
multiplications [3] (see [4, Chap. 16]). Thus, with the fastest known algorithm,
it can be computed in time O(n2.376) [5]. All running times are based on the
algebraic complexity measure where every arithmetic operation counts as one
step.

As adjacency matrices of trees are sparse and have special structural prop-
erties, one could hope for faster algorithms. Indeed, there are algorithms to
compute the determinant of the adjacency matrix of a tree in linear time [6] and
the characteristic polynomial in time O(n2) [7] (also later rediscovered [8]).

A main result of this paper is to improve the running time for the computation
of the characteristic polynomial of a tree to O(n log2 n) using a novel divide
and conquer approach. Computing the characteristic polynomial of a tree is
equivalent to counting the number r-matchings simultaneously for all r. Thus,
it is not astonishing that our new method can be applied to a wider class of
simultaneous counting problems.

Many computational approachesuse self-reduction.A problem is solvedby solv-
ing a set of smaller problems of the same type. Quite often these smaller problems
are not completely independent, but actually have a fair amount of common sub-
structures.Our novel divide and conquer approach aims at using this similarity and
solving the collection of smaller problems together with significant savings.

Efficient Computation of the Characteristic Polynomial of a Tree 13

Our simultaneous counting method is not restricted to trees, but extends in a
natural way to graphs of bounded tree-width k. For constant k, we obtain several
O(n log2 n) time simultaneous counting algorithms even for problems that are
NP hard without a bound on the tree-width. The time improvement is always a
factor of Ω(n/ log2 n) compared to algorithms based on traditional techniques.

The area of algorithms has a significant branch dealing with parameterized
complexity. The complexity of problems is not just studied depending on the
size n of an instance, but together with an additional parameter k. The idea is
that even for large n an instance of a difficult problem might still be easy if its
parameter k is small. A problem is fixed-parameter tractable if it can be solved
in time O(f(k)nc) for an arbitrary function f and a constant c. For example, the
NP-complete Independent Set problem is solvable in time O(2kn) for graphs of
tree-width k. Our result implies that with just a factor of O(log2 n) more time,
we can simultaneously count the number of independent sets of every size r in
graphs of tree-width k.

2 Computing the Characteristic Polynomial

When we count objects like r-matchings (i.e., matchings of size r) it is convenient
to encode them by a generating polynomial.

Definition 1. With ar being the number of r-matchings

fM (G; x) =
�n/2�∑

r=0

arx
r

is the matching generating polynomial (see e.g. [9]).

This greatly simplifies the description of the algorithms, as the polynomial mul-
tiplication is actually an important computational step.

Similarly, we could define the generating polynomials for independent sets,
vertex covers, dominating sets, and so on. These polynomials are defined for all
graphs, and some might well be worth studying for their structural properties.

Definition 2. With br being the number of independent sets of size r

fI(G; x) =
n∑

r=0

brx
r

is the independent set generating polynomial.

For trees (and forests), but not for general graphs, there is a well known strong
relationship between the matching generating polynomial

fM (G; x) =
�n/2�∑

r=0

arx
r

14 M. Fürer

Algorithm Characteristic-Polynomial:
Input: A tree T = (V, E) with |V | = n.
Output: The coefficients c0, c1, . . . , cn of the characteristic polynomial χ(A; λ) =

det(λI − A) =
∑n

i=1 ciλ
n−i, where A is the adjacency matrix of T .

Comment: Use the fact that for trees c2r+1 = 0 and c2r = (−1)r# r-matchings.

(a0, . . . , a�n/2�) = Matchings(T)
for r = 1 to �n/2� do

c2r−1 = 0
for r = 0 to �n/2� do

c2r = (−1)rar

Return (c0, . . . , cn)

Fig. 1. The algorithm Characteristic-Polynomial

Algorithm Matchings:
Input: A tree T = (V, E) with |V | = n.
Output: The vector (a0, a1, . . . , a�n/2�) where ar is the number of r-matchings in T .

(a0 + a1x + · · · + a�n/2�x
�n/2�) = Restricted-Matchings(T, ∅)

Return (a0, . . . , a�n/2�)

Fig. 2. The algorithm Matchings

and the characteristic polynomial χ(G; λ), namely

χ(G; λ) = λnfM (G;−λ−2)

This is a direct consequence of the characterization of the coefficients cr of the
characteristic polynomial for forests. c2r+1 = 0 and c2r = (−1)r#r-matchings
(see, e.g., [1, p. 49]).

Thus, we could actually have used the characteristic polynomial directly in
our algorithms. But besides the waste of half the coefficients (being 0), the use
of the matching generating polynomial is more natural. It also emphasizes that
no hidden algebraic properties of the characteristic polynomial are used, and
algorithms immediately generalize to counting other things like independent sets.

We describe the algorithm to compute the characteristic polynomial in detail
using pseudo-code. The algorithm Characteristic-Polynomial (Figure 1) inputs
a tree T and just outputs the coefficients of the characteristic polynomial after
receiving the coefficients of the matching generating polynomial fM (T, x) from
the algorithm Matching. The algorithm Matching itself (Figure 2) inputs the tree
T and outputs the coefficients of the matching generating polynomial fM (T, x),
after calling the recursive procedure Restricted-Matchings.

The actual work is done in the recursive procedure Restricted-Matchings (Fig-
ure 3). Besides the tree T , it receives a small subset U of the vertices as input.
Its task is not only to compute the matching generating polynomial for T , but
for the subgraphs of T = (V, E) induced by V \ W for all W ⊆ U . Naturally,
these subgraphs of T are forests.

Efficient Computation of the Characteristic Polynomial of a Tree 15

A minor feature of the procedure Restricted-Matchings (Figure 3) is the use
of approximate sizes of graphs. The approximate size of a graph with n vertices
is defined to be 2�lg n� where lg is the logarithm to the base 2. The procedure
Restricted-Matchings repeatedly selects a pair of approximately smallest trees,
i.e., trees of minimal approximate size. Approximately smallest trees are as good
a smallest trees, but there is no need to sort the trees by size. A bucket for each
approximate size is sufficient.

Procedure Restricted-Matchings:
Input: A tree T = (V, E) and a subset U ⊆ V .
Output: The function f from the powerset of U into the polynomials Z[x] where for

every subset W ⊆ U , f(W) = aW
0 +aW

1 x . . . , aW
�n/2�x

�n/2� with aW
r being the number

of r-matchings in T \ W (the subtree of T induced by V \ W).
Comment: This procedure is only called for some sets U whose size is bounded by a

constant.

n = |V |
if n = 1 then f(∅) = f(U) = 1 // In this case U is either ∅ or V .

Return f
else if n = 2 then f(∅) = 1 + x

for all non-empty sets W do f(W) = 1
Return f

v = Select-Root(T, U)
Consider v to be the root of T , and let d be the degree of v.
Let v1, . . . , vd be the neighbors of the root v.
For i = 1, . . . , d, let Ti = (Vi, Ei) be the subgraph of T induced by all the vertices

reachable from vi without going through v as an intermediate vertex.
// Thus the sets Ei form a partition of E, the sets Vi \ {v} form a partition
// of V \ {v}, and v ∈ Vi for all i.

U = U ∪ {v}
for i = 1 to d do

fi = Restricted-Matchings(Ti, Vi ∩ U)
S = {T1, . . . , Td}
while |S| > 1 do

Let Ti and Tj be two approximately smallest trees in S of sizes ni and nj

respectively.
// Replace Ti and Tj by their union. Call it Tk.
nk = ni + nj − 1
S = S \ {Ti, Tj} ∪ {Tk}
for all W ⊆ U do

if v ∈ W then
fk(W) = fi(W)fj(W)

else
fk(W) = fi(W)fj(W) − (fi(W) − fi(W ∪ {v}))(fj(W) − fj(W ∪ {v}))

Now S is a singleton {Tk} with Tk = T .
Return fk

Fig. 3. The procedure Restricted-Matchings

16 M. Fürer

The algorithms are natural, easy to understand and yet efficient. Their cor-
rectness immediately follows from the following principles.

– The well known relationship between numbers of matchings and the coeffi-
cients of the characteristic polynomial of a tree.

– The characteristic polynomial χ(G; λ) of a union G = (V1 ∪ V2, E1 ∪ E2)
of disjoint graphs G1 = (V1, E1) and G2 = (V2, E2) (with V1 ∩ V2 = ∅) is
the product of the characteristic polynomials χ(G1; λ) and χ(G2; λ). This is
seen immediately from the block structure of the adjacency matrix in the
definition of χ(G; λ) as a determinant.

– Under the same conditions the matching generating polynomials are multi-
plicative too. fM (G; x) = fM (G1; x) fM (G2; x). This follows from the fact
that each matching in G1 can be combined with each matching in G2.

– For every vertex v with the set of neighbors {v1, . . . , vk} in any graph G, the
number match(G, r) of r-matchings in G is decomposed as follows.

match(G, r) = match(G \ {v}, r) +
k∑

r=1

match(G \ {v, vr}, r − 1)

– In a tree, every internal vertex v is an articulation point, meaning that almost
all these graphs obtained by deleting vertices, decompose into connected
components for which the product rule holds.

All these simple properties could be used to design a straightforward algorithm
computing the matching generating polynomial by a simple tree traversal, com-
puting the polynomial for the tree rooted at v recursively from the polynomials
of the subtrees rooted at the children of v. The problem is that this natural
algorithm runs in quadratic time.

On the positive side, this design immediately results in a linear time algorithm
to count the number of maximal independent sets and maximum independent
sets.

When computing the whole matching generating polynomial, we overcome
the quadratic time problem by a cleverer selection of the articulation points v.
The simple idea of splitting as evenly as possible is not enough. We also have
to deal with the vertices of U . We don’t solve just one matching problem, but
one for each possible restriction on the vertices of U . We would also like to
split the set U evenly. The time analysis shows that we can just switch back
and forth as needed between the two objectives of splitting V and splitting U
nicely.

In both cases, we want to select a point v that according to the current
criterion is located in the center of the graph.

Definition 3. For T = (V, E), U ⊆ V , and |U | ≥ 2, let Center(T, U) be one of
the nodes v ∈ V such that every tree in T \ {v} (the subgraph of T induced by
V \ {v}) contains at most |U |/2 points of U .

For U = V , there are either one or two vertices v with this property. In the latter
case, the procedure Center(T, U) in Figure 4 picks an arbitrary one of them. For

Efficient Computation of the Characteristic Polynomial of a Tree 17

Procedure Select-Root:
Input: A tree T = (V, E) and a subset U ⊆ V .
Output: A vertex v of T which will be viewed as the root of T .
Comment: Let n0 ≥ 3 be an integer constant. n0 is an upper bound on the size of U .

The choice of n0 only affects the running time by a constant factor. n0 = 5 might be
the optimal choice.

if |U | ≥ n0 then
Return Center(T, U)

else
Return Center(T, V)

Fig. 4. The procedure Select-Root

|E| ≥ 2 and U a set of leaves, the set of vertices with this property consists
of the vertices of a path. If this path has positive length, then the procedure
Center(T, U) picks any vertex of this path. A simple traversal of the tree T
(with counting the number of vertices of U in the subtree of v on post-visiting
v) finds a center in linear time.

An alternative approach is to keep |U | ≤ 2. As before, for |U | ≤ 1 Center(T, V)
is called to pick a vertex minimizing the size of the largest tree in V \ {v}.
Otherwise for U = {u1, u2}, Center(T, U) picks a vertex v on the path from u1

to u2, still minimizing the size of the largest tree in V \{v}. This approach seems
somewhat more efficient (by a constant factor), but is not analyzed here.

3 Time Complexity

As the previously cited papers, this paper uses the customary algebraic compu-
tation model. All arithmetic operations, including multiplications are counted
as one step. This is not a serious problem, as all our numbers have at most a
linear length in binary.

Analysing the procedure Restricted-Matchings, we first note that the size of
U is under control as long as it is initially bounded by n0. In the recursive call
for Ti, the set Ui = Vi ∩ U ∪ {v} plays the role of U .

Lemma 1. Let n0 ≥ 3 be the constant used in the procedure Select-Root. If the
procedure Restricted-Matchings is called with |U | ≤ n0 then all the recursive calls
are with |Ui| ≤ n0. Furthermore, if |U | = n0, then all |Ui| < n0.

Proof. For |U | < n0 the set Ui satisfies |Ui| ≤ |U | + 1, while for |U | = n0

the algorithm is designed to split U evenly, resulting in the inequality |Ui| ≤
	|U |/2
+ 1 ≤ 	n0/2
 + 1 < n0 for n0 ≥ 3. ��
Therefore, as U = ∅ at the beginning, the size of the set U will stay bounded by
n0 ≥ 3, and U does not even reach the bound n0 twice in a row.

Let m = n− 1 be the number of edges in T . Assume m ≥ 1, as the one vertex
case is trivial and does not show up during recursive calls.

18 M. Fürer

Lemma 2. For m ≥ 1 and suitable constants c, c′, and c′′, the running time of
the procedure Restricted-Matchings is at most c m lg2 m + c′′m for |U | < n0 and
at most c m lg2 m + c′ m lg m + c′′m for |U | = n0.

Proof. The lemma trivially holds for m = 1. Let m ≥ 2 and assume the lemma
is true for all trees with less than m edges.

Recall that the procedure Restricted-Matchings partitions the tree T edge-
wise into trees T1, . . . , Td with Ti = (Vi, Ei), |Ei| = mi, and for |U | < n0, the
sizes mi are bounded by m/2 for all i. After the recursive calls for these trees Ti

with common root v, repeatedly pairs of approximately smallest trees are merged
into single trees until there is just one tree left, i.e., T has been reassembled.
Obviously, there is at most one tree T ′ among the trees Ti with |Ui| = n0. Let
m′ be the number of edges of T ′. Let mmin = mini mi.

Claim: If after some sequence of merges of pairs of trees, we have the trees
T1, . . . , Td′ , then the time spent for the recursive calls and the merges together
has been at most

t(d′) = c

d′∑

i=1

mi lg2 mi + c′ mmin lg mmin + b m′ lg m′ + c′′m (1)

where c, c′ and c′′ are from the lemma and b is defined by b = c′ if the tree T ′

(with |Ui| = n0) exists and b = 0 otherwise.
For the total time, until all merges have been done, i.e., for d′ = 1, we will

show a different bound t′ later.
The proof of the claim is by induction on the number of merges. The base

case (just before any merges) follows immediately from the inductive hypothesis
of the lemma, without any need for the second term c′ mmin lg mmin. For the
inductive step, we look at the difference t(d′) − t(d′ + 1) of the allowed time
after and before the merge of two trees Ti and Tj into Tk. We show in each case
that this time difference is enough to perform the merge, i.e., to compute the
polynomial for Tk from the polynomials for Ti and Tj .

First note that none of the four terms in t(d′) decreases during a merge (i.e.,
as d′ decreases by 1). The first term always increases by

c (mi + mj) lg2(mi + mj) − c mi lg2 mi − c mj lg2 mj > 0

The second term increases when mmin increases. The last two terms clearly don’t
decrease.

We consider two kind of merges depending on whether the merged trees are
of similar size or not. W.l.o.g., we assume mi ≤ mj.

Case “not similar”: Assume Ti and Tj are merged with 1 ≤ mmin = mi <
mj/4, and {Ti, Tj} are approximately minimal, i.e., m� > mj/2 for all � = i.
Here we do not assume mj ≤ m/2. For |U | = n0, it is possible to have a large
tree with mj very close to m. Now the second term in t(d′)− t(d′ + 1) increases
by at least

Efficient Computation of the Characteristic Polynomial of a Tree 19

c′
mj

2
lg

mj

2
− c′ mmin lg mmin

> c′
mj

2
lg

mj

2
− c′

mj

4
lg

mj

4
> c′

mj

4
lg

mj

2
> c′

mj

8
lg mj (as mj > 4)

> C′ mj lg mj

First C′ is chosen large enough to make it possible to do the last merge in time
C′ mj lg mj, i.e., to do the multiplications of O(1) pairs of polynomials of degree
mi and mj respectively using the fast Fourier transformation (FFT). Then we
make sure c′ is chosen sufficiently large that the last inequality holds.

Case “similar”: Assume Ti and Tj are merged with mi ≤ mj ≤ 4mi. Now the
first term in t(d′) − t(d′ + 1) increases by

c (mi + mj) lg2(mi + mj) − c mi lg2 mi − c mj lg2 mj

≥ c (mi + mj) lg2(5
4mj) − c mi lg2 mj − c mj lg2 mj

= c (mi + mj)((lg 5
4 + lg mj)2 − lg2 mj)

= c (mi + mj)(2 lg 5
4 lg mj + lg2 5

4)
> C mj lg mj

Again C is first chosen large enough to make it possible to do the last merge
in time C mj lg mj , i.e., to do the multiplications of O(1) pairs of polynomials
of degree mi and mj respectively using FFT. Then we make sure c is chosen
sufficiently large that the last inequality holds. This proves the claim.

At this point, we should notice that Claim (1) is not always strong enough to
show the inductive step in the induction proof of the lemma. Indeed we can do
better during the last merge. We claim a different bound t′ instead of just t(1)
to hold after the last merge, when we have just one tree Tk = T .

t′ = c m lg2 m + a m lg m + c′′m (2)

where a = c′ if |U | = n0 (where U is the set associated with the tree T), and
a = 0 otherwise.

The case with |U | = n0 and therefore |Ui| < n0 for all i causes no problem.
Then b = 0, mmin = m, and the first time bound (1) implies the second (2).

In the case |U | < n0, the last merge has to be handled separately. We show that
this merge is always balanced and therefore significantly cheaper. We are left with
two trees with mi and mj edges to be merged into a tree of m = mk = mi + mj

edges. We assume mi ≤ mj. We claim mj < 4
5m. Otherwise, the large tree with

more than 4
5m edges would have been produced by a merge involving a tree of

size at least 2
5m, omitting a tree of size at most 1

5m, contradicting the rule of
always merging approximately smallest trees.

20 M. Fürer

Now the difference of bounds is

t′ − t(2) = c m lg2 m − c(mi lg2 mi + mj lg2 mj) − c′ mmin lg mmin − b m′ lg m′

> c mi(lg2 m − lg2 mi) + c mj(lg2 m − lg2 mj) − 2c′m lg m

≥ c m(lg2 m − lg2 mj) − 2c′m lg m

> c m(lg m + lg mj)(lg m − lg mj) − 2c′m lg m

= c m lg(mmi) lg(m/mj) − 2c′m lg m

> c m lg m lg 5
4 − 2c′m lg m

> C m lg m

Once more, C has been chosen large enough to make it possible to do the last
merge in time C m lg m, i.e., to do the multiplications of O(1) pairs of polynomi-
als of degree mi and mj respectively. Then we make sure c is chosen sufficiently
large that the last inequality holds. ��
Lemma 2 immediately implies the desired complexity result for the procedure
Restricted-Matchings and therefore also for the algorithm Matchings.

Theorem 1. For |U | ≤ n0, the running time of the algorithm Matchings is
O(n log2 n).

4 Other Problems

The algorithms and their analysis easily transfer to many other counting prob-
lems, like computing the independent set generating polynomial, the vertex cover
generating polynomial and so on. Another example is computing the number of
3-colorings which color exactly r vertices being colored red, simultaneously for
every r. All these problems can be solved in time O(n log2 n) for trees with ba-
sically the same algorithm. All we need is that these are all local properties. If
a set is not independent, then you can put your finger on an edge where both
incident vertices are selected.

Indeed the algorithms for these problems are even slightly easier than com-
puting the matching generating polynomial, because the counted objects are sets
of vertices not sets of edges. Instead of f(W) whose r-th coefficient is the num-
ber of matchings not involving the vertices of W , we would use f(U, W) whose
r-th coefficient is the number of independent sets including all the vertices of
(U \W)∩V and excluding all the vertices of W ∩V , when counting independent
sets. This would change the “if” clause of the procedure Restricted-Matchings
near the end of the procedure to

fk(U, W) = fi(U, W) fj(U, W)

and the corresponding “else” clause to

fk(U, W) = fi(U, W) fj(U, W)/x

Efficient Computation of the Characteristic Polynomial of a Tree 21

Note that now in both cases, the number of independent sets is just the product
of the the number of independent sets in the two subtrees. In the second case,
the vertex v is double counted, as it is in the independent sets of both subtrees.
This is corrected by the division by x.

This change would be exactly the same, if we wanted to count other locally
testable sets of vertices, like the numbers of vertex covers. But there are ad-
ditional changes of the initialization. These changes are different for different
kinds of polynomials. It would be a bit tedious to describe the complete initial-
ization, because there are so many cases. For example, for n = 2 with one vertex
u ∈ U \ W (i.e., u is required in the set), and the other vertex v ∈ V \ U (i.e.,
v is allowed by not required in the set), f(U, W) = x + x2 for Vertex Cover,
but f(U, W) = x for Independent Set, as in both cases {u} is the only allowed
singleton set, while {u, v} is a vertex cover but not an independent set.

5 Graphs of Bounded Tree-Width

Things get much more tedious, but the method clearly carries through graphs
of bounded tree-width. Instead of the recursive calls having to deal with all
ways of handling one additional vertex v of the tree, now recursive calls have the
additional task of dealing with all possible ways of handling all the graph vertices
assigned to the same tree vertex v. Naturally, the running time is exponential in
the tree-width, but that is still just a constant. The dependence on n remains
O(n log2 n).

There is an extensive literature on graph polynomials for graphs of bounded
tree-width. A main focus is on parametrized complexity of counting and evalu-
ation problems on graphs definable in Monadic Second Order Logic [10,11,12].
For bounded tree-width these problems are solvable in polynomial time. The
resulting running time is O(f(k)n4) with the dependence on the parameter f(k)
double exponential. When our algorithm is applied to graph polynomials for
graphs of bounded tree width, then f(k) is singly exponential.

There is some confusion caused by a linear time algorithm for the interlace
polynomial for graphs of bounded tree-width [13]. This is a more complicated
multivariate polynomial. It is important to notice that these authors have a
different notion of computing a polynomial. While they compute one value of a
polynomial in linear time, we compute all the coefficients of our polynomials in
almost linear time.

6 Final Remark

We have presented a simple algorithmic paradigm with very wide applicability
for counting problems in graphs of bounded tree-width. It always saves a factor of
order n/ log2 n over previously known methods. A detailed description in general
terms will be quite tedious, even though, there is no principle hurdle.

We have decided to present the method with detailed descriptions and proofs
for the special, but interesting case of computing the characteristic polynomial

22 M. Fürer

of a tree. This problem has been investigated before, and it is not astonishing
that previous progress has stopped at the “natural” bound of O(n2).

Only a new multitasking divide and conquer method has allowed to obtain a
significantly more efficient algorithm. The method allows to divide according to
two different natural strategies, taking turns when needed, and basically reaching
both goals.

References

1. Biggs, N.: Algebraic graph theory, 2nd edn. Cambridge Mathematical Library.
Cambridge University Press, Cambridge (1993)

2. Tinhofer, G., Schreck, H.: Computing the characteristic polynomial of a tree. Com-
puting 35(2), 113–125 (1985)

3. Keller-Gehrig, W.: Fast algorithms for the characteristic polynomial. Theor. Com-
put. Sci. 36(2,3), 309–317 (1985)

4. Bürgisser, P., Clausen, M., Shokrollahi, M.A.: Algebraic complexity theory.
Grundlehren der Mathematischen Wissenschaften or Fundamental Principles of
Mathematical Sciences, vol. 315. Springer, Berlin (1997); With the collaboration
of Thomas Lickteig

5. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions.
Journal of Symbolic Computation 9(3), 251–280 (1990)

6. Fricke, G.H., Hedetniemi, S., Jacobs, D.P., Trevisan, V.: Reducing the adjacency
matrix of a tree. Electron. J. Linear Algebra 1, 34–43 (1996) (electronic)

7. Mohar, B.: Computing the characteristic polynomial of a tree. J. Math. Chem. 3(4),
403–406 (1989)

8. Jacobs, D.P., Machado, C.M.S., Trevison, V.: An O(n2) algorithm for the char-
acteristic polynomial of a tree. J. Combin. Math. Combin. Comput. 54, 213–221
(2005)

9. Ellis-Monaghan, J., Merino, C.: Graph polynomials and their applications ii: In-
terrelations and interpretations (2008)

10. Courcelle, B., Makowsky, J.A., Rotics, U.: On the fixed parameter complexity
of graph enumeration problems definable in monadic second-order logic. Discrete
Appl. Math. 108(1-2), 23–52 (2001)

11. Makowsky, J., Marino, J.: Farrell polynomials on graphs of bounded tree width.
Advances in Applied Mathematics 30, 160–176 (2003)

12. Makowsky, J.A.: From a zoo to a zoology: Descriptive complexity for graph poly-
nomials. In: Beckmann, A., Berger, U., Löwe, B., Tucker, J.V. (eds.) CiE 2006.
LNCS, vol. 3988, pp. 330–341. Springer, Heidelberg (2006)

13. Bläser, M., Hoffmann, C.: Fast computation of interlace polynomials on graphs of
bounded treewidth. CoRR abs/0902.1693 (2009); 35 pages informal publication

	Efficient Computation of the Characteristic Polynomial of a Tree and Related Tasks
	Introduction
	Computing the Characteristic Polynomial
	Time Complexity
	Other Problems
	Graphs of Bounded Tree-Width
	Final Remark

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

