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Abstract. We show that for every set S of n points in the plane and a
designated point rt ∈ S , there exists a tree T that has small maximum
degree, depth and weight. Moreover, for every point v ∈ S , the distance
between rt and v in T is within a factor of (1+ε) close to their Euclidean
distance ‖rt, v‖. We call these trees narrow-shallow-low-light (NSLLTs).
We demonstrate that our construction achieves optimal (up to constant
factors) tradeoffs between all parameters of NSLLTs. Our construction
extends to point sets in R

d, for an arbitrarily large constant d. The
running time of our construction is O(n · log n).

We also study this problem in general metric spaces, and show that
NSLLTs with small maximum degree, depth and weight can always be
constructed if one is willing to compromise the root-distortion. On the
other hand, we show that the increased root-distortion is inevitable, even
if the point set S resides in a Euclidean space of dimension Θ(log n).

On the bright side, we show that if one is allowed to use Steiner points
then it is possible to achieve root-distortion (1 + ε) together with small
maximum degree, depth and weight for general metric spaces.

Finally, we establish some lower bounds on the power of Steiner points
in the context of Euclidean spanning trees and spanners.

1 Introduction

Euclidean Spaces. Given a set S of n points in the plane and a designated
root vertex rt, we want to construct a spanning tree T for S rooted at rt that
enjoys a number of useful properties. First, we want T to be light, that is, to
be not much heavier than the minimum spanning tree of S (denoted MST (S)).
Second, we want it to be low, i.e., to have a small depth1. Third, we want T to be
shallow, meaning that for every vertex v in T , the distance distT (rt, v) between
rt and v in T should not be much greater than the Euclidean distance ‖rt, v‖.
(The maximum ratio max

{
distT (rt,v)

‖rt,v‖ : v ∈ S
}

will be called the root-stretch or
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1 The depth of a rooted tree (T, rt), denoted h(T ), is the maximum number of hops
in a path connecting the root rt with a leaf z of T .
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root-distortion of T .) Fourth, the tree T should be narrow, that is, to have a
small maximum degree.

Each of these requirements has a natural network-design analogue. The weight
of T corresponds to the total cost of building and maintaining the network.
The depth and the root-stretch of the tree correspond to communication delays
experienced by network end-users. The maximum degree of T corresponds to
the load experienced by the relay stations or network routers. Finally, the tree
structure of the designed network may be necessary for some applications. In
other applications which can be executed in a network that contains cycles,
having a cycle-free network may still be very advantageous. Consequently, the
problem of designing trees that enjoy all these properties is a basic problem in
the area of geometric network design. Similar problems arise in the context of the
VLSI design [1,6,7], telecommunications and distributed computing [3,4], road
network design and medical imaging [9].

Clearly some of these requirements come at the expense of others, and there
are inherent tradeoffs between the different parameters. In a seminal STOC’95
paper on Euclidean spanners, Arya et al. [2] have shown that for every set S of
n points in the plane (or even in R

d) there exists a rooted spanning tree (T, rt)
with depth O(log n), constant maximum degree, and an arbitrarily small root-
stretch at most (1 + ε). However, their trees (called single-sink spanners) may
have a large weight of Ω(n) · w(MST (S)). Recently, Dinitz et al. [8] devised a
construction that enjoys a small weight (i.e., O(log n)·w(MST (S))), small depth
(i.e., O(log n)) and an arbitrarily small root-stretch at most (1+ε). However, the
resulting trees may have vertices of arbitrarily large degree. (The construction of
[8] applies to general metric spaces.) In this paper we fill in the gap and devise a
single construction that combines all the useful properties of the constructions of
[2] and [8]. Specifically, we show that for every n-point set S, a point rt ∈ S and
parameters � and ε, � = O(log n), ε > 0, there exists a rooted spanning tree (T, rt)
with weight O(�) · w(MST (S)) (“light”), depth O(� · n1/�) (“low”), constant
maximum degree (“narrow”) and root-stretch at most (1+ ε) (“shallow”). There
also exists a rooted spanning tree (T ′, rt) with weight O(� ·n1/�) ·w(MST (M)),
depth O(�), maximum degree O(n1/�) and root-stretch at most (1+ε). Moreover,
both these trees can be constructed in O(n · log n) time.

Our results generalize and improve both previous constructions of single-sink
spanners [2,8]. Specifically, substituting � = O(log n) in our results we obtain a
construction of trees that enjoy all properties of the construction of Arya et al.
[2], and, in addition, have small weight (specifically, O(log n)·w(MST (S)). Also,
our trees enjoy the same optimal combination between the weight and depth as
the trees of Dinitz et al. [8] do, and, in addition, enjoy optimal maximum degree2.
Similarly to the construction of Arya et al. [2], our construction extends to point
sets S ⊆ R

d, for any constant dimension d ≥ 2. The running time of the extended
construction remains O(n · log n).

2 The optimality of our tradeoff between weight and depth in the entire range of
parameters follows from lower bounds of [8]. The optimality of our tradeoff between
depth and maximum degree, again in the entire range of parameters, is obvious.
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General Metric Spaces. We also study the problem of constructing trees
that satisfy all the aforementioned four properties (henceforth, narrow-shallow-
low-light trees, or shortly, NSLLTs) in general metric spaces. We generalize the
results of Dinitz et al. [8], and demonstrate that one can trade maximum de-
gree for root-stretch. Specifically, we show that for every n-point metric space
M , a point rt ∈ M and an integer � = O(log n), there exists a rooted span-
ning tree (T, rt) with weight O(�) · w(MST (M)), depth O(� · n1/�), constant
maximum degree and root-stretch O(log n). There also exists a rooted spanning
tree (T ′, rt) with weight O(� · n1/�) · w(MST (M)), depth O(�), maximum de-
gree O(n1/�) and root-stretch O(�). In other words, these constructions achieve
the optimal tradeoff between the weight and depth, together with the optimal
maximum degree, at the expense of having root-stretch of O(log n) and O(�),
respectively. In addition, we show that this increase in root-stretch is inevitable
as long as one considers general (rather than low-dimensional Euclidean) metric
spaces. Specifically, we show that our tradeoff between the maximum degree D
and root-stretch O( log n

log D ) cannot be improved even if M is a set of n points in
Euclidean space of dimension d = Ω(log n). We also extend this lower bound and
show that in any dimension d = O(log n), the root-stretch is at least Ω( d

log D ).
On the bright side, we show that this inherent tradeoff between the maximum

degree and root-stretch is only valid when considering spanning trees. The situ-
ation changes drastically if one is allowed to add Steiner points, that is, points
that do not belong to the original point set of M . In this case the root-stretch
can be improved all the way down to (1+ ε), without increasing any of the other
three parameters! We also show that our lower bounds on the tradeoff between
the weight and depth apply to trees that may include Steiner points (henceforth,
Steiner trees). Consequently, similarly to the case of spanning trees, our trade-
offs between the four involved parameters are optimal with respect to Steiner
trees as well.

All our constructions for general metric spaces can be implemented in time
O(n2), which is linear in the size of the input. If an MST, or a constant approxi-
mation of an MST, is given as a part of the input, then our constructions can be
implemented in time O(SORT (n)) = O(n · log n), where SORT (n) is the time
required to sort n distances. Moreover, if our metric space M is the induced
metric of graph G with m edges, and G is given as a part of the input, then our
constructions can be implemented in O(m + n · log n) time.

Lower Bounds for Euclidean Spanners. We have proved two lower bounds
on the tradeoffs between different parameters of NSLLTs. These lower bounds
were mentioned above. Both these lower bounds have implications for Euclidean
spanners. Next, we discuss these implications.

Our lower bound on the tradeoff between the weight and depth parameters
of Steiner trees implies directly a lower bound on the tradeoff between these pa-
rameters for Euclidean Steiner spanners. Specifically, Dinitz et al. [8] considered
the 1-dimensional Euclidean space ϑn with n points 1, 2, . . . , n on the x-axis, and
showed that any spanning tree of ϑn with depth o(log n) has weight ω(n · log n),
and vice versa. This result implies that no construction of Euclidean spanners
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may guarantee hop-diameter3 O(log n) and lightness4 o(log n), and vice versa.
Consequently, the construction of Arya et al. [2] of Euclidean spanners with
weight and hop-diameter O(log n) is optimal. However, the lower bound of [8]
does not preclude the existence of Steiner spanners with hop-diameter O(log n)
and lightness o(log n), or vice versa. In the current paper we show that Steiner
points do not help in this context, and thus the construction of Arya et al. [2]
cannot be improved even if one allows the spanner to use (arbitrarily many)
Steiner points.

Our lower bound on the tradeoff between the maximum degree D and root-
stretch Ω( d

log D ) of spanning trees for point sets in R
d, d = O(log n), implies

that if d = ω(1) is super-constant, then either the maximum degree or the root-
stretch is super-constant as well. Hence no construction of Euclidean spanners
for a super-constant dimension can possibly achieve simultaneously constant
maximum degree and stretch. On the other hand, for any constant dimension
d, Arya et al. [2] have built spanners with stretch at most (1 + ε) for arbitrarily
small ε > 0 and constant maximum degree D. Hence our lower bound implies
that this result of Arya et al. [2] cannot be extended to super-constant dimen-
sion.

Proof Overview. Both our Euclidean and general constructions of NSLLTs
are based on the following insight. To construct a tree that enjoys the optimal
combination of all four parameters, one can construct two different trees each of
which is good with respect to only three out of the four parameters, and combine
them into a single tree. Specifically, we start with constructing trees that achieve
small maximum degree, root-stretch and depth, henceforth narrow-shallow-low
trees (NSLoTs). Then we consider the shallow-low-light trees (SLLTs) of [8],
and observe that in these trees all vertices but the root rt necessarily have small
degree. To reduce the degree of the root we manipulate with the star subtree
Z rooted at the root of the SLLT T . The vertex set V (Z) of the subtree Z
contains the root and all its children c1, c2, . . . , cq, and the edge set of Z is the
set {(rt, c1), (rt, c2), . . . , (rt, cq)}. Then we construct an NSLoT T̃ for the point
set V (Z). Finally, we remove the star Z from the SLLT T , and replace it with
the NSLoT T̃ . We show that the resulting tree T̂ is an NSLLT, i.e., enjoys all
the four desired properties. (See Fig. 2 in Sect. 3 for an illustration.)

Our Euclidean construction of NSLoTs is based on the construction of Arya
et al. [2], which was, in turn, inspired by the work of Ruppert and Seidel [21].
However, it provides a general tradeoff between the maximum degree D and the
depth O(logD n), while in the construction of [2] the maximum degree is O(1)
and the depth is O(log n). (Moreover, for D = ω(1), the running time of our
construction is O(n · logD n), which is better than the running time O(n · log n)
in [2].) This extension is not difficult, and we provide it for completeness.

3 Hop-diameter or unweighted diameter of a possibly weighted graph G = (V, E, w) is
the maximum unweighted distance between a pair of vertices in G.

4 Lightness of a spanning subgraph G′ = (V, E, w) of the complete Euclidean graph
on the point set V is the ratio between w(G′) =

∑
e∈E w(e) and w(MST (V )).
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In Sect. 3 we show that the tradeoff of [8] between the hop-diameter and
lightness of Euclidean spanners cannot be improved by using Steiner points. To
this end we demonstrate that any Steiner tree can be “cleaned” from Steiner
points, while increasing the depth and lightness by only a small factor. This re-
sult is reminiscent of the work by Gupta [13] that shows that as far as maximum
stretch and lightness are concerned, one can do without Steiner points. However,
our argument is substantially different from that of [13], since, in particular, the
hop-diameter parameter exhibits a different behavior than the maximum stretch.

Related Work. Euclidean spanners are being subject of ongoing intensive re-
search since the mid-eighties. See the recent book by Narasimhan and Smid
[19] for an excellent survey on this subject. Euclidean single-sink spanners were
studied by Arya et al. [2]; see also [19], Chapter 4.2. Lukovszki [16,15] devised
fault-tolerant constructions of single-sink spanners. Single-sink spanners were
also used in maintenance algorithms for wireless networks [12,17]. Farshi and
Gudmundsson [10] conducted an experimental study of single-sink spanners.

Trees that have small weight and guarantee root-stretch at most (1 + ε),
but do not necessarily have small depth or small maximum degree, are called
shallow-light trees (henceforth SLTs). SLTs were studied by a number of authors,
including Awerbuch et al. [3,4], Khuller et al. [14], Alpert et al. [1] and Cong et
al. [6,7]. Salowe et al. [22] studied trees that combine small weight with small
“bottleneck” size; see [22] for further details. Papadimitriou and Vazirani [20],
Monma and Suri [18], Fekete et al. [11] and Chan [5] devised constructions of light
trees with small maximum degree for low-dimensional Euclidean point sets. See
also the survey of Eppstein [9] for other references to works that study geometric
spanning trees.

The Structure of the Paper. In Sect. 2 we describe our constructions of
NSLoTs, and prove lower bounds on the tradeoff between the maximum degree
and root-stretch. In Sect. 3 we employ our constructions of NSLoTs from Sect.
2 to devise constructions of NSLLTs, and derive our lower bounds for Euclidean
Steiner spanners. Due to space limitations, some proofs are omitted from this
extended abstract.

Preliminaries. An n-point metric space M = (V, dist) can be viewed as the
complete graph G(M) = (V,

(
V
2

)
, dist) in which for every pair of points x, y ∈ V ,

the weight of the edge e = (x, y) in G(M) is defined by w(x, y) = dist(x, y).
For a rooted tree (T, rt) and a vertex v in T , the level of v in T is the hop-

distance between the root rt of T and v in T . Denote by deg(T, v) the degree
of a vertex v in T and define Δ(T ) = max{deg(T, v) : v ∈ V }. For any two
vertices u, v ∈ V (T ), their weighted distance in T is denoted by distT (u, v). For
a positive integer D, a rooted tree in which every vertex has at most D children
is called a D-ary tree.

A tree T is called a Steiner tree of a metric space M = (V, dist) if it spans a
superset of V and if for any pair of points v, v ∈ V , distT (u, v) ≥ dist(u, v).
Let T be either a spanning or a Steiner tree of M rooted at an arbitrary
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designated vertex rt. We define the stretch between two vertices u and v in

V to be ζT (u, v) =
distT (u, v)
dist(u, v)

, and the root-stretch of (T, rt) to be 	(T, rt) =

max{ζT (rt, v) : v ∈ V }.
For a positive integer n, we denote the set {1, 2, . . . , n} by [n].

2 Narrow-Shallow-Low Trees (NSLoTs)

Upper Bounds. In this section we devise constructions of trees that have small
maximum degree, depth and root-stretch, but may be quite heavy. On the other
hand, we do require their weight to be bounded by O(

∑
v∈M dist(rt, v)), where

rt is the designated root vertex. We denote the quantity
∑

v∈M dist(rt, v)) by
W ∗(M, rt). The following statement summarizes the properties of our construc-
tion of NSLoTs for general metric spaces.

Proposition 1. For any n-point metric space M = (V, dist), an arbitrary des-
ignated point rt and a positive integer 2 ≤ D ≤ n − 1, there exists a D-ary
rooted spanning tree (T, rt) of M with depth at most �logD n�, root-stretch at
most 2 · �logD n� and weight at most 2 · W ∗(M, rt).

Proof. Let V = (rt = v0, v1, . . . , vn−1). Without loss of generality assume that
the n points rt = v0, v1, . . . , vn−1 are ordered by their distance from rt, i.e.,
0 = dist(rt, v0) ≤ dist(rt, v1) ≤ . . . ≤ dist(rt, vn−1). Next, we construct a rooted
tree (T, rt) that satisfies the required conditions. The D points v1, v2, . . . , vD

become the children of rt = v0 in T , the next D points vD+1, vD+2, . . . , v2·D
become the children of v1, the next D points v2·D+1, v2·D+2, . . . , v3·D become
the children of v2, and so on. Generally, the point vi becomes the child of point
v� i

D �−1 in T , for each i ∈ [n − 1]. (See Fig. 1.a for an illustration.)

Lemma 1. (1). For any pair of vertices v and w, such that v is an ancestor of
w in T , dist(rt, v) ≤ dist(rt, w). (2) (T, rt) is a D-ary rooted spanning tree of
M . (3) The depth h(T ) of the rooted tree (T, rt) is no greater than �logD n�.
The first assertion of Lemma 1 and triangle inequality imply that w(T ) ≤ 2 ·
W ∗(M, rt). The next lemma provides an upper bound on the root-stretch of the
constructed tree.

Lemma 2. For a vertex v of level i in T , distT (rt, v) ≤ (2 · i − 1) · dist(rt, v).

The third assertion of Lemma 1 and Lemma 2 imply that the root-stretch of
(T, rt) is at most 2 · �logD n�, which concludes the proof of Proposition 1. 	

Next, we describe a construction of Steiner NSLoTs for general metric spaces.

Proposition 2. For any n-point metric space M = (V, dist), an arbitrary desig-
nated point rt, a positive integer 2 ≤ D ≤ n−1 and a number 0 < ε′ < 1, there ex-
ists a D-ary rooted Steiner tree (T, rt) of M with O(n/D) Steiner points, depth at
most �logD n�, root-stretch at most (1+ε′) and weight at most (1+ε′)·W ∗(M, rt).
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Fig. 1. a) An NSLoT for a 12-point metric space. b) A Steiner NSLoT for a 9-point
metric space. The Steiner points are d1, d2 and d3, and the required points are rt =
v0, v1, . . . , v8. Edges of weight ε are depicted by thin lines. Edges of greater weight
(specifically, Edges (vi, π(vi)) of weight distM(rt, vi) are depicted by thick lines.

Proof. Suppose first that n − 1 is an integer power of D. We form the full D-
ary tree T rooted at rt, whose n − 1 leaves are the n − 1 points of V \ {rt}.
The remaining n−2

D−1 vertices of T (excluding rt) are Steiner points. The weight
assignment for edges of T is set as follows. For each point v ∈ V \{rt}, the weight
of the edge (v, π(v)) that connects it to its parent in T is set as distM (rt, v). All
other edge weights are set as 0. If one prefers to avoid using weights 0, one can use
an arbitrarily small number ε = ε′

2n ·wmin, where wmin is the minimum distance
between a pair of points in M . It is easy to see that the resulting tree is a D-ary
Steiner NSLoT with maximum degree D, depth logD(n−1), root-stretch at most
(1 + ε′), and weight at most (1 + ε′) · W ∗(M, rt). This construction generalizes
in the obvious way to the case where n − 1 is not an integer power of D, with
the tree depth becoming �logD(n − 1)�. (See Fig. 1.b for an illustration.) 	

Next, we show that for point sets in the plane one can construct NSLoTs with
significantly smaller root-stretch, without increasing any of the other parameters.
The extension of our construction to higher constant dimensions is omitted due
to space limitations.

Proposition 3. Let k ≥ 9 and θ = 2π/k. For any set V of n points in the
plane, an arbitrary designated point rt and and a positive integer 2 ≤ D ≤
n, there exists a (2D + k)-ary rooted Euclidean spanning tree (Tθ, rt) for V
with depth at most logD n, root-stretch at most 1

cos θ−sin θ and weight at most
1

cos θ−sin θ · W ∗(V, rt). Moreover, Tθ can be constructed in O(n · logD n) time.

Remark: For large k, 1
cos θ−sin θ = 1+O(θ). Hence we get a tree with maximum

degree O(D + θ−1), depth at most logD n, root-stretch 1 + O(θ) and weight
O(W ∗(V, rt)).

Proof. For any D ≥ n−10
2 , the star graph rooted at rt satisfies the conditions of

the proposition. We henceforth assume that D < n−10
2 .

If we rotate the positive x-axis by angles i · θ, 0 ≤ i < k, then we get k
rays. Each pair of successive rays defines a cone that spans an angle of θ and
whose apex is at the origin. Denote by C = {C1, C2, . . . , Ck} the collection
of the resulting k cones. For a cone Ci of C and a point p in the plane, let
Ci(p) = Ci + p = {x + p : x ∈ Ci} be the cone obtained from Ci by translating
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it such that its apex is at p, and define C(p) = {C1(p), C2(p), . . . , Ck(p)}. We
denote by Vi(p) = V ∩ Ci(p) the subset of V contained in a cone Ci(p) of C(p).
Note that the collection {V1(p), V2(p), . . . , Vk(p)} is a partition of V \ {p}. For
each i ∈ [k], we define ni = |Vi(p)|. Let P(p) be the collection obtained from
{V1(p), V2(p), . . . , Vk(p)} by partitioning each set Vi(p) in it (arbitrarily) into⌈

ni

	n/D

⌉

subsets of size at most �n/D each.

Claim. For any point set V and any point p in the plane, |P(p)| ≤ 2D + k.

The tree T = Tθ is constructed in the following way. First, a partition P(rt) =
{P1(rt), P2(rt), . . . , Pm(rt)} of V \{rt} is computed, where m = |P(rt)| ≤ 2D+k.
For each i ∈ [m], let rt(i) be the point in Pi(rt) whose orthogonal projection
onto the bisector of the cone in C(rt) that contains it is closest to rt. For each
i ∈ [m], rt(i) is set to be a child of rt, and a rooted tree (Ti, rt(i)) for the subset
Pi(rt) is constructed recursively. The recursion stops if a subset has size one.

Note that T is a (2D + k)-ary spanning tree of M rooted at rt, and its depth
is at most logD n. Using arguments from [2] and [19], we show that T can be
constructed in O(n · logD n) time, and that the root-stretch of T is at most

1
cos θ−sin θ . As a corollary, we get that w(T ) ≤ 1

cos θ−sin θ · W ∗(V, rt). 	


Lower Bounds. The next statement implies that the upper bound given in
Proposition 1 is tight up to constant factors. In particular, it shows that the
tradeoff D versus O( log n

log D ) between the maximum degree and root-stretch estab-
lished there cannot be improved even for Euclidean spaces of dimension Θ(log n).

Proposition 4. There exists a set V of n points in R
O(log n), such that for any

integer 2 ≤ D ≤ n − 1 and any point v ∈ V , every D-ary spanning tree T of V
rooted at rt = v has depth at least �logD n, weight at least Ω(W ∗(V, rt)), and
root-stretch at least Ω(logD n).

Proposition 4 should be compared with Proposition 3. Specifically, as long as
the dimension d is constant, one can obtain NSLoTs with root-stretch at most
(1 + ε), while for d = Ω(log n) it is no longer possible. The next statement
extends the lower bound on the tradeoff between the maximum degree D and
root-stretch Ω( log n

log D ) established in Proposition 4 to any dimension d = O(log n).
In particular, it shows that whenever d = ω(1) is super-constant, it is no longer
possible to achieve simultaneously constant maximum degree and root-stretch.

Proposition 5. For any parameter d ≤ log n, there exists a set Ṽ of n points
in R

O(d), such that for any integer 2 ≤ D ≤ n − 1 and any point v ∈ Ṽ , every
D-ary spanning tree T̃ of Ṽ rooted at rt = v has root-stretch at least Ω( d

log D ).

3 Narrow-Shallow-Low-Light Trees

In this section we present a general technique for constructing NSLLTs out
of NSLoTs. Then we employ this technique in conjunction with the NSLoTs
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Fig. 2. The root rt of the SLLT T may have a large degree. The star subtree Z is
replaced by the NSLoT T̃ to obtain the NSLLT T̂ .

construction from Sect. 2 to obtain our constructions of NSLLTs, which exhibit
optimal tradeoffs between all four parameters.

Consider an n-point metric space M , and let T be a spanning tree for M
rooted at some designated point rt ∈ M . Next, we argue that by using NSLoTs
one can significantly reduce the degree of rt, while only slightly increasing other
parameters of T . Let Z be the star subtree of T rooted at rt. In other words, the
vertex set of Z is V (Z) = {rt, c1, c2, . . . , cq}, where c1, c2, . . . , cq are the children
of rt in T . Also, the weights of edges (rt, ci) agree in T and Z, for all indices
i ∈ [q]. Let T̃ be some spanning tree rooted at rt for the metric space MZ induced
by the points in V (Z). (Observe that w(Z) = W ∗(MZ , rt) ≤ w(T ).) Finally, let
T̂ be the tree obtained from T by replacing the star Z with the tree T̃ . (See Fig.
2 for an illustration.) For a tree τ , let λ(τ) = max{deg(τ, v) : v ∈ V, v �= rt} be
the degree of a non-root vertex in τ .

The properties of the resulting tree are summarized in the following statement.

Proposition 6. (1) h(T̂ ) ≤ h(T ) − 1 + h(T̃ ), (2) w(T̂ ) = w(T ) − w(Z) + w(T̃ ),

(3) λ(T̂ ) ≤ λ(T ) + λ(T̃ ), (4) deg(T̂ , rt) = deg(T̃ , rt), (5) �(T̂ , rt) ≤ �(T̃ , rt) · �(T, rt).

Remark: This statement remains valid if T̃ is a Steiner NSLoT of MZ .
Dinitz et al. [8] devised two constructions of SLLTs for general metric spaces.
For a metric space M , a point rt ∈ M and an integer � = O(log n), the first
construction provides a rooted SLLT (T, rt) with depth h(T ) = O(�), weight
w(T ) = O(� · n1/�) · w(MST (M)) and root-stretch 	(T, rt) ≤ 1 + ε. Moreover,
all vertices of T except its root rt have optimal degree O(n1/�). The degree of
the root may, however, be arbitrarily large. The second construction provides an
SLLT T ′ with depth h(T ′) = O(�·n1/�), weight w(T ′) = O(�)·w(MST (M)), and
root-stretch 	(T ′, rt) ≤ 1 + ε. Similarly to the first construction, all vertices of
T ′ but the root rt have optimal degree O(1), and the root may have arbitrarily
large degree.

Next, we reduce the root-degree in the first construction. Reducing the root-
degree of the second construction is done similarly. Let Z be the star subtree of
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T rooted at rt, and let T̃ be an NSLoT for the (q + 1)-point metric space MZ .
To construct an NSLLT T̂ out of T and T̃ , we replace the star Z by T̃ .

Specifically, if M is a set of n points in the plane, then our construction of
NSLoTs (Proposition 3) provides a rooted NSLoT (T̃ , rt) for MZ with depth
h(T̃ ) = O(�), Δ(T̃ ) = O((q + 1)1/�) = O(n1/�), weight w(T̃ ) = O(W ∗(MZ , rt)),
and root-stretch 	(T̃ , rt) ≤ (1 + ε). By Proposition 6, replacing the star Z of T

with T̃ produces a rooted NSLLT (T̂ , rt) for M with depth h(T̂ ) ≤ h(T ) − 1 +
h(T̃ ) = O(�), weight w(T̂ ) = w(T )−w(Z)+w(T̃ ) = w(T )+O(W ∗(MZ , rt)) =
O(w(T )) = O(� · n1/�) · w(MST (M)), Δ(T̂ ) = O(n1/�), and root-stretch
	(T̂ , rt) ≤ (1 + ε)2 = 1 + O(ε). The SLLTs of [8] for Euclidean spaces can
be constructed in O(n · log n) time. By Proposition 3, T̃ can be constructed in
O(n · log n) time. Hence the overall time required to construct T̂ is O(n · log n).
This tradeoff extends to the complementary range of depth h(T̂ ) = Ω(log n).
This argument easily generalizes to point sets in R

d, for any constant d ≥ 2.

Theorem 1. Let d ≥ 2 be an integer constant. For a set M of n points in R
d,

an integer � = O(log n), and ε > 0, there exists a spanning tree with depth O(�),
lightness O(� · n1/�), maximum degree O(n1/�), and root-stretch at most (1 + ε).
In addition, there exists a spanning tree with depth O(� · n1/�), lightness O(�),
constant maximum degree, and root-stretch at most (1 + ε). Both trees can be
constructed in O(n · log n) time.

Our construction of NSLoTs for general metric spaces (Proposition 1) provides a
rooted NSLoT (T̃ , rt) for MZ with depth h(T̃ ) = O(�), Δ(T̃ ) = O((q + 1)1/�) =
O(n1/�), weight w(T̃ ) = O(W ∗(MZ , rt)) and root-stretch 	(T̃ , rt) = O(�). By
Proposition 6, replacing the star Z of T with T̃ produces a rooted NSLLT (T̂ , rt)
for M with depth h(T̂ ) ≤ h(T ) − 1 + h(T̃ ) = O(�), weight w(T̂ ) = w(T ) −
w(Z)+w(T̃ ) = w(T )+O(W ∗(MZ , rt)) = O(w(T )) = O(�·n1/�)·w(MST (M)),
Δ(T̂ ) = O(n1/�) and root-stretch 	(T̂ , rt) ≤ O(�) · (1 + ε) = O(�). The SLLTs
of [8] for general metric spaces can be constructed in O(n2) time. Clearly T̃ can
be constructed in O(n2) time, and so the overall time required to construct T̂

is O(n2). This tradeoff extends to the complementary range of depth h(T̂ ) =
Ω(log n).

Theorem 2. For a general n-point metric space M , and an integer � = O(log n),
there exists a spanning tree with depth O(�), lightness O(� · n1/�), maximum
degree O(n1/�), and root-stretch O(�). In addition, there exists a spanning tree
with depth O(� ·n1/�), lightness O(�), constant maximum degree, and root-stretch
O(log n). Both trees can be constructed in O(n2) time.

Similarly, using our construction of Steiner NSLoTs for general metric spaces
(Proposition 2), we construct in O(n2) time a Steiner rooted NSLLT (T̂ , rt)
for M with depth h(T̂ ) = O(�), weight w(T̂ ) = O(� · n1/�) · w(MST (M)),
Δ(T̂ ) = O(n1/�) and root-stretch 	(T̂ , rt) = 1 + O(ε). This tradeoff extends to
the complementary range of depth h(T̂ ) = Ω(log n).
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Theorem 3. For a general n-point metric space M , an integer � = O(log n),
and ε > 0, there exists a Steiner tree with depth O(�), lightness O(� · n1/�),
maximum degree O(n1/�), and root-stretch at most (1 + ε). In addition, there
exists a Steiner tree with depth O(� · n1/�), lightness O(�), constant maximum
degree, and root-stretch at most (1 + ε).

Finally, we extend the lower bounds of Dinitz et al. [8] to Steiner trees.

Theorem 4. For any metric space M and any Steiner rooted tree (T ′, rt′) of
M , there exists a rooted tree (T, rt) spanning only V (M), with depth no greater
than that of T ′ (i.e., h(T ) ≤ h(T ′)), weight at most twice the weight of T ′ (i.e.,
w(T ) ≤ 2 · w(T ′)), and which also dominates T ′ in the following sense: for
any two points u, v in V (M), distT (u, v) ≥ distT ′(u, v). Moreover, T can be
constructed in O(n) time.

Dinitz et al. [8] analyzed the 1-dimensional metric space ϑn with n points
1, 2, . . . , n on the x-axis and have shown that for any parameter � = O(log n), any
spanning tree for ϑn that has depth h(T ) = O(�) has weight w(T ) = Ω(�·n1+1/�),
and vice versa, i.e., if w(T ) = O(�·n), then h(T ) = Ω(�·n1/�). Theorem 4 enables
us to extend this lower bound to Steiner trees.

Corollary 1. For a positive integer � = O(log n), any Steiner tree T for ϑn that
has depth O(�) satisfies w(T ) = Ω(� · n1+1/�) = Ω(� ·n1/�) ·w(MST (ϑn)). Also,
any Steiner tree T for ϑn that has weight O(� ·n) = O(�) ·w(MST (ϑn)) satisfies
h(T ) = Ω(� · n1/�).

In particular, Corollary 1 implies that any Steiner tree T for ϑn has either depth
Ω(log n) or weight Ω(n · log n) = Ω(log n) · w(MST (ϑn)). On the other hand,
Arya et al. [2] devised a construction of Euclidean (1 + ε)-spanners with both
hop-diameter and lightness (the ratio between the weight and the weight of the
MST) at most O(log n). Corollary 1 implies that the result of [2] cannot be
improved even if one allows the spanner to use Steiner points.

Corollary 2. Any Euclidean (possibly Steiner) spanner for ϑn that guarantees
hop-diameter o(log n) has lightness ω(log n), and vice versa.
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