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Abstract. Low distortion probabilistic embedding of graphs into ap-
proximating trees is an extensively studied topic. Of particular interest
is the case where the approximating trees are required to be (subgraph)
spanning trees of the given graph (or multigraph), in which case, the
focus is usually on the equivalent problem of finding a (single) tree with
low average stretch. Among the classes of graphs that received special at-
tention in this context are k-outerplanar graphs (for a fixed k): Chekuri,
Gupta, Newman, Rabinovich, and Sinclair show that every k-outerplanar
graph can be probabilistically embedded into approximating trees with
constant distortion regardless of the size of the graph. The approximat-
ing trees in the technique of Chekuri et al. are not necessarily spanning
trees, though.

In this paper it is shown that every k-outerplanar multigraph admits a
spanning tree with constant average stretch. This immediately translates
to a constant bound on the distortion of probabilistically embedding k-
outerplanar graphs into their spanning trees. Moreover, a randomized
algorithm is presented for constructing such a low average stretch span-
ning tree in expected linear time. This algorithm relies on some new
insights regarding the connection between low average stretch spanning
trees and planar duality.

1 Introduction

The Problem. Consider an n-vertex connected graph G = (V (G),E (G)) and
let �(e) be a positive length associated with every edge e ∈ E (G). For any two
vertices u, v ∈ V (G), let δG(u, v) denote the distance between u and v in G,
namely, the length, taken with respect to �, of a shortest path connecting u and
v in G. Given a spanning tree T of G and some edge e ∈ E (G), the stretch of e
in T is defined as strT (e) = δT (e)/�(e). Spanning trees with low stretch for all
edges can be very useful in many applications. However, there exist some trivial
graphs for which every spanning tree admits an edge with stretch Ω(n) (e.g.,
the n-cycle). This motivates the construction of spanning trees with low average
stretch, denoted by av-strG(T ) = 1

|E(G)|
∑

e∈E(G) strT (e) [2].
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The following related notion was introduced in [4]. Given a probability distri-
bution D over a set T of spanning trees of G, we say that G is probabilistically
embedded into T (under D) with distortion α if E[δT (u, v)] ≤ α · δG(u, v) for ev-
ery two vertices u, v ∈ V (G), where the expectation is with respect to T ∈D T .
It is shown in [2] that a graph G can be probabilistically embedded into its span-
ning trees with distortion α if and only if every multigraph obtained from G by
replicating its edges has a spanning tree with average stretch α. Consequently,
in the context of constructing low average stretch spanning trees, one usually
considers multigraphs rather than simple graphs. (This can be viewed as taking
a weighted average of the edge stretch factors.)

A tree T is called a dominating tree of the graph G if V (T ) ⊇ V (G) and
δT (u, v) ≥ δG(u, v) for every two vertices u, v ∈ V (G). Clearly, every spanning
tree of G is also a dominating tree of G; the converse is not true as a dominating
tree may have vertices and edges that do not exist in the original graph G,
and hence it is not necessarily a subgraph of G. The notion of probabilistic
embedding can be redefined by allowing the support T to contain dominating
trees that are not subgraphs of G. For many applications and in particular,
for those applications mentioned in [4,5], this does not exhibit any obstacle.
However, there exist some applications for which it is impossible to use non-
subgraph dominating trees in the support of the probabilistic embedding, most
notably in the context of networking, where G represents an existing physical
graph (e.g., the minimum communication spanning tree problem [13]).

k-Outerplanar Graphs. An outerplanar graph (or a 1-outerplanar graph) is
a graph that can be drawn in the plane with all vertices lying on the unbounded
face. A planar graph is said to be k-outerplanar, k ≥ 2, if it can be drawn in
the plane such that by removing the vertices on the unbounded face we obtain a
(k− 1)-outerplanar graph. A canonical example for a k-outerplanar graph is the
2k × n grid (containing 2k rows of vertices with n vertices in each row) which
also serves as a canonical example for a graph with tree width proportional to
k. When referring to k-outerplanar graphs, we usually assume that k is fixed.
However, every planar graph is k-outerplanar for some k (typically, much smaller
than n) and this outerplanarity factor plays a key role in many polynomial time
approximation schemes for NP-hard optimization problems on planar graphs [3].

Related Work. The problem of constructing spanning trees with low average
stretch was first studied in [2], where it is proved that every n-vertex multi-
graph G admits a spanning tree T which satisfies av-strG(T ) = eO(

√
ln n ln ln n).

They also show that there exist some graphs, the
√

n × √
n grid being one of

them, for which every spanning tree admits average stretch Ω(log n) and con-
jectured that this lower bound is tight. The upper bound of [2] was improved
drastically in [8] by introducing a construction of spanning trees with average
stretch O(log2 n log log n). Very recently, [1] presented a further improvement by
establishing an almost tight upper bound of O(log n log log n log3 log log n).

The notion of probabilistic embedding was explicitly introduced in [4] (al-
though, it was implicitly used in [2]), which initiated a series of papers that



k-Outerplanar Graphs, Planar Duality, and Low Stretch Spanning Trees 205

developed probabilistic embeddings of arbitrary graphs into non-subgraph dom-
inating trees: in [4] it is shown that every n-vertex graph can be probabilis-
tically embedded into dominating trees with distortion O(log2 n), while some
graphs must suffer a distortion of Ω(log n); the upper bound was improved to
O(log n log log n) in [5,6]; and a tight O(log n) upper bound is proved in [11].

Some papers study probabilistic embeddings of specific graph classes. In [16]
it is shown that every planar graph can be probabilistically embedded into its
(non-subgraph) dominating trees with distortion O(log n) using the decomposi-
tion technique of [15] for graphs excluding small minors. This is generalized in
[14] to graphs of bounded genus by showing that such graphs can be probabilis-
tically embedded with constant distortion into planar graphs. In [12] it is proved
that while series-parallel graphs can be embedded into �1 with constant distor-
tion, there exist some unweighted series-parallel graphs that cannot be proba-
bilistically embedded into dominating trees with distortion o(log n). This lower
bound is matched in [10] by showing that unweighted series-parallel graphs can
be probabilistically embedded into their spanning trees with distortion O(log n).

It is also proved in [12] that every outerplanar graph can be probabilistically
embedded into its spanning trees with constant distortion. The construction of
[12] for (1-)outerplanar graphs is (partially) generalized to k-outerplanar graphs
in [7], where a probabilistic embedding with distortion exponential in k (but
independent of n) is presented. Note however, that unlike the construction of
[12], the technique of [7] constructs (random) dominating trees which are not
necessarily spanning trees of the original graph.

Contribution. In this paper we show that every k-outerplanar multigraph
G admits a spanning tree T which satisfies av-strG(T ) ≤ ck, where c is an
absolute constant. This immediately implies that every k-outerplanar graph can
be probabilistically embedded into its spanning trees with distortion depending
solely on k, thus enhancing the result of [7]. Our proof is constructive: we present
a randomized algorithm that constructs such spanning trees in expected linear
time. Due to lack of space, some of the proofs are omitted from this extended
abstract and can be found in the full version [9].

Techniques. The backbone of our algorithm is a rather standard peeling-an-
onion decomposition (cf. [7]): on input k-outerplanar graph G, we first peel off
the vertices on the unbounded face to obtain a (k − 1)-outerplanar graph G′;
we then recursively construct a good spanning tree T ′ of G′; next, we insert
the missing vertices of G back into T ′ to obtain the graph H ; and finally, we
construct a good spanning tree T of H . This framework is formally presented in
Section 3. The secret ingredient of the algorithm lies in the last step: constructing
a good spanning tree T of H .

As observed in [7], the graph H is essentially a Halin graph, which can be
viewed as a planar embedding of a tree merged with a cycle. Indeed, our main
challenge is to construct low stretch spanning trees for (a generalization of)
Halin graphs, as opposed to the non-subgraph dominating trees constructed in
[7]. Our construction is completely different than the construction of [7] and it
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relies on reducing the task of constructing a low stretch spanning tree for a planar
graph to that of constructing a low stretch spanning tree for its planar dual (see
Theorem 3). This reduction is employed in two distinct occasions within a series
of graph manipulations presented in Section 4.

2 Preliminaries

Consider an n-vertex connected graph G. Let V (G) and E (G) denote the vertex
and edge sets of G, respectively. Each edge e ∈ E (G) is associated with some
length �(e) ∈ R>0. The length of a path P in the graph is the sum of lengths
of the edges in the path, denoted by �(P ) =

∑
e∈E(P ) �(e). Given two vertices

u, v ∈ V (G), let δG(u, v) denote the distance between them in G, namely, the
length of a shortest path from u to v. The degree of u, denoted deg(u), is defined
as the number of edges incident on u in G. It will be convenient for us to define
the reciprocal of the length of edge e as its width, denoted by w(e) = 1/�(e).

In what follows we do not distinguish between graphs and multigraphs
(namely, a graph may have edge multiplicities). We say that the graph G is
simple1 if G contains at most one edge with endpoints u and v for every two
vertices u, v ∈ V (G). Edges that share both endpoints are called replicas. Repli-
cas are usually assumed to have the same length (and width). Given two vertices
u, v ∈ V (G), the multiplicity of u and v in G, denoted by μG(u, v), is defined to
be the number of (u, v)-replicas, i.e., the number of edges connecting u and v.
The skeleton H of G is the graph obtained from G when all replicas e1, . . . , em of
the edge (u, v) ∈ E (G), m = μG(u, v), are identified to a single edge eu,v ∈ E (H)
with w(eu,v) =

∑m
i=1 w(ei). Clearly, the skeleton H is a simple graph. Given a

class C of graphs, and assuming that C is not closed under edge replication, the
class replicated-C consists of every graph whose skeleton is in C.

A path π = (v1, . . . , vk) in G is said to be isolated if deg(v1), deg(vk) �= 2 and
deg(vi) = 2 for every 1 < i < k. The graph H obtained from G by contracting
every isolated path π to a single edge eπ with �(eπ) = �(π) is referred to as the
core of G. It is easy to verify that distances between vertices of degree different
than 2 in H agree with those in G. Given a class C of graphs, and assuming that
C is not closed under edge subdivision, the class subdivided-C consists of every
graph whose core is in C.

A graph is called biconnected if the removal of any single vertex does not
separate it. A block is a maximal biconnected subgraph. Clearly, every spanning
tree of G can be edge-partitioned into spanning trees of the blocks of G.

Stretch and Load. Consider some spanning tree T of G and let e = (u, v) be
some edge in E (G). The stretch of e in T with respect to G is defined to be

strT,G(e) = δT (u, v)/�(e) .

(Observe that the stretch of e in the spanning tree T does not depend on the
graph G, but our notation mentions G to recall that this is the graph that
1 Self loops are ignored in this paper.
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“hosts” T .) The total stretch of T with respect to G is denoted by tot-strG(T ) =∑
e∈E(G) strT,G(e) and the average stretch of T with respect to G is simply

av-strG(T ) = tot-strG(T )/|E (G)|.
Let cutT (e) ⊆ V (T ) × V (T ) be the set of all (unordered) vertex pairs which

are connected in T via e (if e /∈ E (T ), then cutT (e) = ∅). The load of e in T
with respect to G is defined to be

loadT,G(e) =
∑

e′∈E(G)∩cutT (e)

w(e′)/w(e) .

The total load of T with respect to G is denoted by tot-loadG(T ) =∑
e∈E(G) loadT,G(e) and the average load of T with respect to G is simply

av-loadG(T ) = tot-loadG(T )/|E (G)|. Since loadT,G(e) = 0 for every edge
e ∈ E (G) − E (T ), we can rewrite tot-loadG(T ) =

∑
e∈E(T ) loadT,G(e). By a

simple change of summation, we obtain the following corollary which implies
that we may shift our focus from the construction of low average stretch span-
ning trees to that of low average load spanning trees.

Corollary 1. For every graph G and spanning tree T of G, we have
tot-strG(T ) = tot-loadG(T ).

Consider some graph H and let T be a spanning tree of H . The load-replication
T̂ of T under H is the graph obtained from T if each edge e ∈ E (T ) is replicated

loadT,H(e)� times, namely, μ

T̂ (e) = 
loadT,H(e)�. Clearly, the cardinality of the
edge set of T̂ serves as an upper bound on (and a good estimation of) the total
load of T under H . Taking load-replications of spanning trees is a fundamental
step in our construction based on the following lemma.

Lemma 2. Consider some graph G, a vertex induced subgraph H of G, and a
spanning tree T of H. Let T̂ be the load-replication of T under H and let Ǧ
be the graph resulting from G if H is replaced by T̂ , that is, V (Ǧ) = V (G)
and E (Ǧ) = (E (G) − E (H)) ∪ E (T̂ ). Consider some spanning tree Ť of Ǧ (by
definition, Ť is also a spanning tree of G). Then loadŤ ,G(e) ≤ loadŤ ,Ǧ(e) for
every edge e ∈ E (Ť ).

Lemma 2 essentially states that if we can construct a spanning tree T of H with
low tot-loadH(T ), then for the sake of analysis, we can replace H in G by the
load-replication of T under H (a replicated-tree) and continue from there.

Planar Duality. Consider some planar graph G and fix some planar embedding
η of G. The planar dual G̃ of G under η is the graph which has a vertex vφ

corresponding to each face φ in η and an edge ẽ = (vφ, vφ′) corresponding to
each edge e ∈ E (G) on the boundary of the faces φ and φ′ in η. The planar
embedding η uniquely determines a dual planar embedding η̃ of G̃. It is well
known that G is the planar dual of G̃ under η̃. We refer to the vertex vφ ∈ V (G̃)
as the dual of the face φ and to the edge ẽ ∈ E (G̃) as the dual of the edge
e ∈ E (G) with respect to the planar duality 〈η, η̃〉. We associate lengths (and
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widths) with the dual edges by setting �(ẽ) = w(e) (and w(ẽ) = �(e)) for every
ẽ ∈ E (G̃). Clearly, this definition of dual edge lengths does not violate the bi-
directionality of the planar duality 〈η, η̃〉, i.e., it is still true that if G̃ is the dual
of G under η, then G is the dual of G̃ under η̃.

Consider some spanning tree T of G. The dual of T with respect to the
planar duality 〈η, η̃〉 is the subgraph T̃ of G̃ defined by setting V (T̃ ) = V (G̃)
and E (T̃ ) = {ẽ ∈ E (G̃) | e ∈ E (G) − E (T )}. It is proved in [17] that T̃ is a
spanning tree of G̃. Combined with the notion of load, we extend the technique
of [17] to establish the following lemma.

Lemma 3. The dual T̃ of T with respect to the planar duality 〈η, η̃〉 is a span-
ning tree of G̃. Moreover, |strT,G(e) − loadT̃ ,G̃(ẽ)| ≤ 1 for every edge e ∈ E (G),
and therefore av-loadG̃(T̃ ) ≤ av-loadG(T ) + 1.

Graph Classes. Given a planar embedding η of G, we say that η is outerplanar
(or 1-outerplanar) if all vertices of G are incident on the unbounded (outer) face
in η. Inductively, η is said to be k-outerplanar, k ≥ 2, if by removing the vertices
incident on the unbounded face (and the edges incident on these vertices), we
obtain a (k − 1)-outerplanar embedding of the remaining graph. The graph G
is called k-outerplanar if it admits a k-outerplanar embedding. (An outerplanar
graph is simply a 1-outerplanar graph.) Observe that outerplanar graphs are
closed under edge replication and not closed under edge subdivision.

A bush H is a planar graph obtained by taking a planar embedding of a
simple cycle C, embedding a forest T in the region enclosed by C (C and T
are disjoint), and introducing some new edges, each one of them has at least
one endpoint in C. In other words, the (planar) bush H is defined by taking
V (H) = V (T )∪V (C), V (C)∩V (T ) = ∅, and E (H) = E (C)∪E (T )∪D, where
D ⊆ V (C)× (V (C)∪V (T )). If each vertex of C has degree at most 3 in H (i.e.,
it is adjacent to at most one vertex other than its two neighbors in the cycle),
then we say that the bush H is a Halin graph. Observe that bushes (and Halin
graphs) are closed under edge subdivision and not closed under edge replication.

Consider some planar graph G. A vertex u ∈ V (G) is said to be a dominating
vertex if it is adjacent to all other vertices of G, that is, if (u, v) ∈ E (G) for
every vertex v ∈ V (G) − {u}. The graph is called a dominated graph if it has
a dominating vertex. A vertex u ∈ V (G) is said to be a pivot vertex if all
simple cycles in G go via u. The graph is called a pivot graph if it has a pivot
vertex. Observe that dominated graphs are closed under edge replication and
not closed under edge subdivision. In contrast, pivot graphs are closed under
edge subdivision and not closed under edge replication.

Suppose that G is a subdivided-dominated graph and let H be its core. H is
a dominated graph, thus it admits a dominating vertex v. Clearly, v is also a
vertex of G. Moreover, v is connected by an isolated path (in G) to every vertex
of degree different than 2 in V (G) − {v}. We refer to v as a weak dominating
vertex of G.

Useful Assumptions. Recall that the graph G may have arbitrary edge multi-
plicities. In particular, we cannot bound the number of edges |E (G)| as a function
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of the number of vertices n = |V (G)|. Let m be the number of edges in the skele-
ton of G, that is, the number of (unordered) vertex pairs (u, v) ∈ V (G)×V (G)
with μG(u, v) > 0. The following lemma, which is essentially derived from com-
bining Lemma 5.2 in [2] and Corollary 1, shows that it is sufficient to consider
graphs that do not have “too many” edges.

Lemma 4. For every graph G, there exists some subgraph G′ of G on the same
vertex set such that (1) |E (G′)| ≤ 2m; and (2) av-loadG(T ) ≤ 2 · av-loadG′(T )
for every spanning tree T of G′. Moreover, G′ can be obtained from G in linear
time.

As G is planar, we know that m ≤ 3n−6. Therefore by employing Lemma 4, we
can subsequently assume that |E (G)| = O(n) at the price of losing a factor of 2
in the performance guarantee. Another assumption we will have to make is that
each vertex in G is adjacent to at most three other vertices (although it may be
incident on more than three edges due to edge multiplicities). In that case we
say that G is tri-adjacent. For the purpose of making such an assumption, we
introduce a linear time transformation (based on standard techniques), referred
to as the spreading transformation. The spreading transformation depends on a
real parameter τ > 0 and its properties are stated in the following lemma.

Lemma 5. Let G′ be the outcome of the spreading transformation when applied
to G with parameter τ . Then G′ satisfies the following properties: (1) G′ is tri-
adjacent; (2) if G is k-outerplanar, then so is G′; and (3) every spanning tree
T ′ of G′ that satisfies av-loadG′(T ′) ≤ τ can be translated in linear time back
into a spanning tree T of G such that av-loadG(T ) ≤ 3τ .

Assuming that the input graph G is tri-adjacent, we will construct in the re-
mainder of the paper a spanning tree T of G that satisfies av-loadG(T ) ≤ ck.
Therefore by employing Lemma 5 with parameter τ = ck, we may subsequently
make this assumption at the price of losing a factor of 3 in the performance
guarantee.

3 The Algorithm — Peeling an Onion

Our goal in this section (and in the whole paper) is to prove the following
theorem.

Theorem 6. For every k-outerplanar graph G, there exists a spanning tree T
such that av-loadG(T ) ≤ ck, where c is a universal constant (independent of k
and G).

The proof of Theorem 6 is constructive: we present a randomized algorithm,
referred to as the onion peeling algorithm, that given a k-outerplanar graph G
with a realizing planar embedding η, constructs the desired spanning tree T
of G in expected linear time. Recall our previous assumptions that |E (G)| =
O(n), where n = |V (G)| (due to Lemma 4) and that G is tri-adjacent (due to
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Lemma 5). The onion peeling algorithm is based on a recursive process similar
to that presented in [7] (and essentially, to many other recursive processes on
k-outerplanar graphs, cf. [3]). However, the main building block of the onion
peeling algorithm, namely, the construction of low stretch spanning trees for
(replicated) Halin graphs, is entirely different (see Section 4). This also leads to
a different type of analysis.

The onion peeling algorithm works as follows (a formal pseudo-code descrip-
tion is deferred to [9]): (i) remove the vertices on the unbounded face of G (and
the edges incident on these vertices) to obtain a (k−1)-outerplanar graph G′; (ii)
recursively construct a “good” spanning tree T ′ for G′; (iii) insert the vertices
(and edges) that were removed in step (i) back into the planar embedding of T ′

to compose the graph H ; and (iv) construct a “good” spanning tree T of H .
Our algorithm relies on two fundamental constructions. First (implicit in the

above description), when the recursion reaches its halting condition on a 1-
outerplanar graph G, we have to construct a “good” spanning tree T of G. This
is done via the randomized construction of [12] that probabilistically embeds a
given outerplanar graph G into its spanning trees with constant distortion. As
we will see later on, this randomized construction of [12] is employed by our algo-
rithm in several occasions, and it is subsequently referred to as Procedure GNRS.
Actually, we shall use a variant of Procedure GNRS (the procedure’s name is kept,
though) whose input may be a subdivided-outerplanar graph2. The performance
guarantee of Procedure GNRS is stated in the following theorem.

Theorem 7. Procedure GNRS, when invoked on a subdivided-outerplanar graph
G with a realizing planar embedding η, runs in expected linear time and returns
a spanning tree T of G that satisfies av-loadG(T ) ≤ c1, where c1 is a universal
constant (independent of G).

The existential claim of Theorem 7 is essentially established in [12]. It is trivial
to design an expected polynomial time implementation of Procedure GNRS and
the linear bound on the expected running time is due to a slightly more involved
implementation that we omit from this version of the paper.

The second fundamental construction on which the onion peeling algorithm
relies is the construction of a “good” spanning tree T of H (step (iv)). A crucial
observation in this context is that H is a replicated-Halin graph (actually, if
G is simple, then H is strictly a Halin graph). This is due to the assumption
that G is tri-adjacent (without which, H would have been a replicated-bush).
The technique of [7] probabilistically embeds a Halin graph H into a collec-
tion of dominating trees with constant distortion, but these dominating trees
are not necessarily spanning trees of H . By contrast, we present a procedure,
called Procedure RH, which guarantees that T is a spanning tree of H . The in-
put of Procedure RH is not assumed to be a (simple) Halin graph, but rather a
replicated-Halin graph (hence the name). The performance guarantee of Proce-
dure RH is stated in the following theorem, proved in Section 4.
2 By employing a simple technique presented in [12], one can contract isolated paths

at the price of increasing the distortion of the probabilistic embedding by at most 2.
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Theorem 8. Procedure RH, when invoked on a replicated-Halin graph G with a
realizing planar embedding η, runs in expected linear time and returns a spanning
tree T of G that satisfies av-loadG(T ) ≤ c2, where c2 is a universal constant
(independent of G).

This leads to the question: what do we mean by a “good” spanning tree? In most
of the previous works which considered graph composition based on replacing a
subgraph H by a tree T (including [7]), the tree was chosen randomly according
to some probability distribution (that may be supported on many trees) and the
goal was to guarantee low distortion. In this work we use a different approach:
we shall construct a single tree T and our goal is to guarantee low total load.
(Corollary 1 stating that the total load is equal to the total stretch, implies that
our approach can be viewed as a relaxation of the previous approach.)

Recall that Lemma 2 essentially implies that for the sake of analysis, we may
replace the graph G′ (the outcome of step (i)) with the load replication of T ′

(the outcome of step (ii)) under G′ before inserting back the vertices and edges
that were removed in step (i) and continue with the construction from there.
The onion peeling process revolves around this phenomenon.

Analysis (Sketch). Theorem 6 is proved by induction on k. We first employ
Theorems 7 (induction’s base) and 8 (induction’s step) to show that |E (H)| ≤
ck−1 · |E (G)|, where c = c(c1, c2) is a universal constant. Next, we use Lemma 2
to argue that tot-loadG(T ) ≤ tot-loadH(T ). Finally, Theorem 8 guarantees that
tot-loadH(T ) ≤ c · |E (H)|, which completes the analysis as it implies that
tot-loadG(T ) ≤ ck · |E (G)|. A full detail of this analysis is deferred to [9].

4 Replicated-Halin Graphs

In this section we present Procedure RH and prove Theorem 8. Recall that the
input of Procedure RH is a replicated-Halin graph G with a realizing planar
embedding η. The procedure returns a spanning tree T of G which satisfies
av-loadG(T ) ≤ c2, where c2 is a universal constant. By Lemma 4, we may assume
that |E (G)| = O(n). (This assumption is essentially reflected in the constant c2,
being twice as large as what we obtain in the remainder of this section.)

Taking Planar Duals. Taking planar duals of some special classes of graphs is
the main ingredient of our construction. Due to the sensitivity of the definition
of load to edge multiplicities, we first want to understand how the operation of
identifying two replicas in a planar graph affects its planar dual. To this end,
suppose that some two replicas e and e′ in the planar primal are identified to
form a single edge of width w(e)+w(e′). In the planar dual this translates to the
contraction of the simple path consisting of ẽ and ẽ′ into a single edge of length
�(ẽ) + �(ẽ′) = w(e) + w(e′). The following observation is a direct consequence of
this phenomenon.

Observation 9. Let G and G̃ be two planar graphs with planar embeddings η
and η̃, respectively. Let η′ (respectively η̃′) be the planar embedding of the skeleton
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of G (resp., the core of G̃), naturally derived from η (resp. η̃). If η and η̃ are
duals, then so are η′ and η̃′.

We study planar dualities between some specific classes of (planar) graphs. Our
insights are cast in the following lemma, whose proof is deferred to [9].

Lemma 10. Consider a biconnected planar graph G with a planar embedding η
and let G̃ be the planar dual of G under η.

1. If G is outerplanar with η being a realizing planar embedding, then G̃ is a
pivot graph.

2. If G is a pivot graph, then G̃ is an outerplanar graph.
3. If G is a Halin graph with η being a realizing planar embedding, then G̃ is a

dominated graph.
4. If G is a dominated graph, then G̃ is a bush.
5. Each block of the graph obtained by removing a weak dominating vertex from

a subdivided-dominated graph is a subdivided-outerplanar graph.

Low Load Spanning Trees for Replicated-Halin Graphs. We now turn
to describe the operation of Procedure RH on a replicated-Halin graph G with
a realizing planar embedding η. As usual, we assume that G is biconnected
(otherwise, we can break it and construct a separate spanning tree for each
block). The procedure works in 8 steps. The outcome of step i is denoted by T i

if it is (surely) a tree; and by Gi if it is a graph that may contain cycles. (The
superscript notation should not be confused with graph powers.) In this spirit,
we denote the replicated-Halin graph G by G0. The 8 steps of Procedure RH are
as follows (refer to Figure 1 for a schematic illustration).

replicated−Halin graph

subdivided−dominated graph

subdivided−outerplanar graph

spanning tree

replicated−pivot graph

subdivided−outerplanar graph

spanning tree

take planar dual (1)

remove weak dominating vertex (2)

Procedure GNRS (3)

put back removed vertex (4)

take planar dual (5)

Procedure GNRS (6)

take dual tree (7)

take dual tree (8)

Fig. 1. A schematic illustration of Procedure RH. The step numbers appear in paren-
theses.
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Step 1: Take the planar dual G1 of G0 under η. By definition, the skeleton
of G0 is a Halin graph, thus Observation 9 and Lemma 10 imply that G1 is a
subdivided-dominated graph. Let v ∈ V (G1) be a weak dominating vertex of
G1.
Step 2: Remove the vertex v and the edges incident on it from G1 and let G2

be the remaining graph. Let G2
1, . . . , G

2
m be the blocks of G2. By Lemma 10, G2

i

is a subdivided-outerplanar graph for every 1 ≤ i ≤ m.
Step 3: For i = 1, . . . , m, invoke Procedure GNRS on G2

i to generate a spanning
tree T 3

i . By Theorem 7, we have tot-loadG2
i
(T 3

i ) ≤ c1 · |E (G2
i )|.

Step 4: For i = 1, . . . , m, construct the load-replication T̂ 3
i of T 3

i under G2
i .

Insert the vertex and edges that were removed in step 2 back into the planar
embedding of the replicated-trees T̂ 3

1 , . . . , T̂ 3
m to compose the graph G4. Note

that |E (G4)| ≤ (c1 + 1) · |E (G1)|. Since every simple cycle in the skeleton of G4

must go via v, we conclude that G4 is a replicated-pivot graph. Let G4
1, . . . , G

4
m′

be the blocks of G4 (by definition, each of these blocks is also a replicated pivot
graph).
Step 5: For i = 1, . . . , m′, fix some arbitrary planar embedding η′

i of G4
i and let

G5
i be the planar dual of G4

i under η′
i. By Observation 9 and Lemma 10, G5

i is
a subdivided-outerplanar graph for every 1 ≤ i ≤ m′.
Step 6: For i = 1, . . . , m′, invoke Procedure GNRS on G5

i to generate a spanning
tree T 6

i . By Theorem 7, we have tot-loadG5
i
(T 6

i ) ≤ c1 ·|E (G5
i )| for every 1 ≤ i ≤ m′.

Step 7: For i = 1, . . . , m′, construct the dual T 7
i of the spanning tree T 6

i with
respect to the planar duality 〈η̃′

i, η
′
i〉, where η̃′

i is the dual planar embedding of η′
i.

Lemma 3 guarantees that T 7
i is a spanning tree of G4

i and by Lemma 3, we have
tot-loadG4

i
(T 7

i ) ≤ tot-loadG5
i
(T 6

i )+|E (G5
i )| ≤ (c1+1)·|E (G5

i )| = (c1+1)·|E (G4
i )|

for every 1 ≤ i ≤ m′. Let T 7 be the union of the trees T 7
1 , . . . , T 7

m. Note that T 7

is a spanning tree of G4 and tot-loadG4(T 7) ≤ (c1 +1) · |E (G4)|. Since T 7 is also
a spanning tree of G1, we can apply Lemma 2 to deduce that tot-loadG1(T 7) ≤
tot-loadG4(T 7) ≤ (c1 + 1) · |E (G4)| ≤ (c1 + 1)2 · |E (G1)|.
Step 8: Construct the dual T 8 of the spanning tree T 7 with respect to the planar
duality 〈η̃, η〉, where η̃ is the dual planar embedding of η. Lemma 3 guarantees
that T 8 is a spanning tree of G0 and by Lemma 3, we have tot-loadG0(T 8) ≤
tot-loadG1(T 7) + |E (G1)| ≤ ((c1 + 1)2 + 1) · |E (G1)| = ((c1 + 1)2 + 1) · |E (G0)|.

It follows that upon completion of step 8, we obtain a spanning tree T = T 8

which satisfies av-loadG(T ) ≤ c2, where c2 = (c1+1)2+1 is a universal constant.
Theorem 8 follows.

5 Conclusions

We prove that every k-outerplanar graph G admits a spanning tree T such
that av-loadG(T ) ≤ ck, where c is an absolute constant. The same bound holds
for the average stretch of T with respect to G based on the duality of load
and stretch. We find it more convenient to bound the (total) load of the trees
we construct, mainly due to the (fairly natural) load-replication representation
which enables some sort of an iterative graph decomposition. (In previous works,
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similar approaches were based on probabilistic embeddings.) Planar duality plays
a major role in our construction. We hope that some of the tools we develop here
will prove useful in other types of embeddings of planar graphs (e.g., into L1).
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