
Geometric Spanners for Weighted Point Sets

Mohammad Ali Abam1,�, Mark de Berg2,��, Mohammad Farshi3,� � �,
Joachim Gudmundsson4, and Michiel Smid3,���

1 MADALGO Center, Aarhus University, Denmark
abam@madalgo.au.dk

2 Department of Computer Science, TU Eindhoven, The Netherlands
m.t.d.berg@tue.nl

3 School of Computer Science, Carleton University, Ottawa, ON, K1S 5B6, Canada
mfarshi@cg.scs.carleton.ca, michiel@scs.carleton.ca

4 NICTA, Sydney, Australia
joachim.gudmundsson@nicta.com.au

Abstract. Let (S,d) be a finite metric space, where each element p ∈
S has a non-negative weight w(p). We study spanners for the set S
with respect to weighted distance function dw, where dw(p, q) is w(p) +
d(p, q)+ w(q) if p �= q and 0 otherwise. We present a general method for
turning spanners with respect to the d-metric into spanners with respect
to the dw-metric. For any given ε > 0, we can apply our method to obtain
(5 + ε)-spanners with a linear number of edges for three cases: points in
Euclidean space R

d, points in spaces of bounded doubling dimension, and
points on the boundary of a convex body in R

d where d is the geodesic
distance function.

We also describe an alternative method that leads to (2+ ε)-spanners
for points in R

d and for points on the boundary of a convex body in
R

d. The number of edges in these spanners is O(n log n). This bound on
the stretch factor is nearly optimal: in any finite metric space and for
any ε > 0, it is possible to assign weights to the elements such that any
non-complete graph has stretch factor larger than 2 − ε.

1 Introduction

Motivation. Networks play a central role in numerous applications, and the
design of good networks is therefore an important topic of study. In general, a
good network has certain desirable properties while not being too expensive. In
many applications this means one wants a network providing short paths between
its nodes, while not containing too many edges. This leads to the concept of
spanners, as defined next in the geometric setting.

� MAA was supported by the MADALGO Center for Massive Data Algorithmics,
a Center of the Danish National Research Foundation.

�� MdB was supported by the Netherlands’ Organisation for Scientific Research
(NWO) under project no. 639.023.301.

� � � MF and MS were supported by NSERC of Canada.

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 190–202, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Geometric Spanners for Weighted Point Sets 191

Let G = (S, E) be a geometric graph on a set S of n points in R
d. That is,

G is an edge-weighted graph where the weight of an edge (p, q) ∈ E is equal to
|pq|, the Euclidean distance between p and q. The distance in G between two
points p and q, denoted by dG(p, q), is defined as the length of a shortest (that
is, minimum-weight) path from p to q in G. The graph G is called a (geometric)
t-spanner, for some t � 1, if for any two points p, q ∈ S we have dG(p, q) � t·|pq|.
The smallest t for which G is a t-spanner is called the stretch factor (or dilation,
or spanning ratio) of G. Geometric spanners have been studied extensively over
the past decade. It has been shown that for any set of n points in R

d and any
ε > 0, there is a (1 + ε)-spanner with only O(n/εd−1) edges—see the recent
book by Narasimhan and Smid [1] for this and many other results on spanners.
Instead of considering points in Euclidean space, one can also consider points
in some other metric space. As it turns out, results similar to the Euclidean
setting are possible when the so-called doubling dimension of the metric space—
see footnote 1 on p. 195 for a definition—is bounded by a constant d: in this
case there is a (1 + ε)-spanner with n/εO(d) edges [2,3].

Sometimes the cost of traversing a path in a network is not only determined
by the lengths of the edges on the path, but also by delays occurring at the
nodes on the path: in a (large-scale) road network a node may represent a town
and passing through the town will take time, in a computer network a node may
need some time to forward a packet to the next node on the path, and so on.
The goal of our paper is to study the concept of spanners in this setting.

Problem statement. Let S be a set of n elements—we will refer to the elements
as points from now on—and let d be a metric on S. Assume each point p ∈ S has
a non-negative weight, denoted by w(p). We now define a new distance function
on S, denoted by dw, as follows.

dw(p, q) =
{

0 if p = q,
w(p) + d(p, q) + w(q) if p �= q.

For a graph G = (S, E) and two points p and q in S, we denote by dG,w(p, q)
the length of a shortest path in G between p and q, where edge lengths are
measured using the distance function dw; if p = q, then we define dG,w(p, q) = 0.
For a real number t > 1, we say that G is an additively weighted t-spanner
of S, if for any two points p and q in S we have dG,w(p, q) � t · dw(p, q).
We want to compute an additively weighted t-spanner of S having few edges
and with a small stretch factor. Unfortunately our metric space (S,dw) does
not necessarily have bounded doubling dimension, even if the underlying metric
space (S,d) has bounded doubling dimension. (An easy example is a set S of
n points inside a unit disk in the plane, each having unit weight, and when d
is the Euclidean distance function. Then the doubling dimension of the metric
space (S,dw) will be Θ(log n).) This leads us to the main question we want
to answer: Is it possible to obtain additively weighted spanners with constant
stretch factor—that is, stretch factor independent of n, but also independent of
the weights of the points—and a near-linear number of edges?

Recently Bose et al. [4] also studied spanners for weighted points. More pre-
cisely, they consider points in the plane with positive weights and then define

192 M. Ali Abam et al.

the distance between two points p, q as |pq| − w(p) − w(q). The difference be-
tween their setting and our setting is thus that they subtract the weights from
the Euclidean distance, whereas we add the weights (which in the applications
mentioned above is more natural). This is, in fact, a fundamental difference:
Bose et al. show (under the assumption that the distance between any pair of
points is non-negative) that in their setting there exists a (1 + ε)-spanner with
O(n/ε) edges, while our lower bounds (see below) imply that such a result is
impossible in our setting.

Our results. We present two methods for computing additively weighted span-
ners. The first method is described in Section 2. It essentially shows that whenever
there is a good spanner for the metric space (S,d), there is also a good spanner
for the metric space (S,dw). This is done by clustering the points in a suitable
way, computing a spanner in the d-metric on the cluster centers, and then con-
necting each point to its cluster center. We apply our method to obtain, for any
0 < ε < 1, additively weighted (5 + ε)-spanners in R

d and in spaces of doubling
dimension d, with O(n/εd) and n/εO(d) edges, respectively.

We also apply our method to points on the boundary of a convex body in R
d,

where distances are geodesic distances along the body’s boundary. We give a
simple and efficient algorithm for computing a well-separated pair decomposition
for this metric—we believe this result is interesting in its own right—which
proves the existence of a (1 + ε)-spanner with O(n/εd) edges. When the points
are weighted, we can then use our general method to get an additively weighted
(5 + ε)-spanner with O(n/εd) edges.

Our second method is described in Section 3. It applies to spaces of bounded
doubling dimension for which a semi-separated pair decomposition [5,6] can be
constructed. It leads to spanners with a better stretch factor than our first
method, but the size of the spanner is larger. In particular, it leads to
(2 + ε)-spanners with (n/εO(d)) log n edges, for points in R

d and for points on
the boundary of a convex body in R

d. We also show that the bound on the
stretch factor is nearly optimal: in any finite metric space and for any ε > 0, it
is possible to assign weights to the points such that any non-complete graph has
stretch factor larger than 2 − ε.

2 A Spanner Construction Based on Clustering

Let (S,d) be a finite metric space and let n denote the number of points in S.
We assume that each point p ∈ S has a real weight w(p) � 0. We will show that
if we can find a good spanner for S in the d-metric, we can also find a good
additively weighted spanner for S in the dw-metric.

The main idea is to partition S into clusters, where each cluster has a desig-
nated point as its cluster center. The clusters have the following two properties:
First, the d-distances and dw-distances between any two centers are approxi-
mately equal. Second, for each point p in the cluster with center c, the distance
d(p, c) is at most proportional to the weight w(p) of p. We then show that a
t-spanner of the cluster centers in the d-metric, while connecting the rest of

Geometric Spanners for Weighted Point Sets 193

the points to the center of their clusters, results in an O(t)-spanner of S in the
dw-metric.

Clusterings for additively weighted spanners. We start by stating more precisely
the properties we require from our clustering. Let k1 and k2 be two parameters,
with k1 > 0 and k2 � 1. Define a (k1, k2)-clustering of S to be a partitioning
of S into a collection {C1, ..., Cm} of clusters, each with a center denoted by
center(Ci), such that the following three conditions hold:

(I) for every 1 � i � m and for all p ∈ Ci we have: w(center(Ci)) � w(p);
(II) for every 1 � i � m and for all p ∈ Ci we have: d(center(Ci), p) � k1 ·w(p);

(III) for every 1 � i, j � m we have:

dw(center(Ci), center(Cj)) � k2 · d(center(Ci), center(Cj)).

Later we will show how to find such clusterings. But first we show how to use
such a clustering to obtain a spanner for S in the dw-metric.

Let {C1, C2, . . . , Cm} be a (k1, k2)-clustering of S, and let ci = center(Ci).
Let C = {c1, c2, . . . , cm} denote the set of cluster centers, and let G1 = (C, E1)
be a t-spanner of the set C in the d-metric. Finally, let E2 = {(ci, p) : 1 � i �
m and p ∈ Ci and p �= ci}. In other words, E2 contains the edges connecting the
points in each cluster to the center of that cluster. The next lemma states that
augmenting G1 with the edges in E2 gives a spanner in the dw-metric.

Lemma 1. The graph G = (S, E1 ∪E2) is a t′-spanner in the dw-metric, where
t′ = max(2 + k1 + k1k2t, k2t).

Proof. Let p, q be two distinct points in S. We must show that dG,w(p, q) �
t′ · dw(p, q). Let Ci and Cj be the clusters containing p and q, respectively, and
consider ci = center(Ci) and cj = center(Cj). (It can happen that i = j, but
this will not invalidate the coming argument.) Note that either p = ci or (p, ci)
is an edge in G; similarly q = cj or (q, cj) is an edge in G. Hence,

dG,w(p, q) = dG,w(p, ci) + dG,w(ci, cj) + dG,w(cj , q)
= dw(p, ci) + dG,w(ci, cj) + dw(cj , q)
= (w(p)+d(p, ci)+w(ci))+dG,w(ci, cj)+(w(cj)+d(cj, q)+w(q))
� (2 + k1) · w(p) + dG,w(ci, cj) + (2 + k1) · w(q),

where the last inequality follows from properties (I) and (II) of the clustering.
Now consider the shortest path in G1 from ci to cj in the d-metric. By prop-
erty (III) the length of every link on this path—and, hence, its total length—
increases by at most a factor k2 when we measure its length in the dw-metric.
Since G1 is a t-spanner for C in the d-metric, we thus have dG,w(ci, cj) �
k2 · dG1(ci, cj) � k2t · d(ci, cj). Finally, we observe that

d(ci, cj) � d(ci, p) + d(p, q) + d(q, cj) � k1 · w(p) + d(p, q) + k1 · w(q).

Combing this with our two earlier derivations, we get

194 M. Ali Abam et al.

dG,w(p, q)�(2 + k1) · w(p) + dG,w(ci, cj) + (2 + k1) · w(q)
�(2 + k1) · w(p) + k2t · d(ci, cj) + (2 + k1) · w(q)
�(2+k1) · w(p)+k2t · (k1 · w(p)+d(p, q)+k1 · w(q))+(2+k1) · w(q)
=(2 + k1 + k1k2t) · w(p) + k2t · d(p, q) + (2 + k1 + k1k2t) · w(q)
�max(2 + k1 + k1k2t, k2t) · (w(p) + d(p, q) + w(q))
=max(2 + k1 + k1k2t, k2t) · dw(p, q).

Computing good clusterings and spanners. The following algorithm takes as in-
put the weighted set S and two real numbers k and ε > 0, and computes a
clustering {C1, . . . , Cm} of S.

1. Sort the points of S in nondecreasing order of their weight, and let
p1, p2, . . . , pn be the sorted sequence (ties are broken arbitrarily).

2. Initialize the first cluster C1: set C1 = {p1} and c1 = center(C1) = p1. Ini-
tialize the set of cluster centers: C = {p1}. Set m = 1.

3. For i = 2 to n, do the following:
(a) Compute an index j with 1 � j � m such that cj is a (1+ε)-approximate

nearest-neighbor of pi in the set C, in the d-metric.
(b) If d(cj , pi) � k · w(pi), then set Cj = Cj ∪ {pi}. Otherwise, start a new

cluster: set m = m + 1, set Cm = {pi} and cm = center(Cm) = pi, and
set C = C ∪ {pi}.

4. Return the collection {C1, . . . , Cm} of clusters.

Lemma 2. The algorithm above computes a (k, 1 + 2(1+ε)
k)-clustering of S.

Proof. Since we treat the points in order of increasing weight and the first point
put into a cluster is its center, we have w(cj) � w(p) for every cluster Cj and
point p ∈ Cj . Moreover, by step 3 we only put a point p in a cluster Cj if
d(center(Cj), p) � k · w(p). Hence, conditions (I) and (II) are satisfied.

To prove condition (III), consider two distinct cluster centers c and c′. As-
sume without loss of generality that c was added to C before c′. Then it follows
from the algorithm that w(c) � w(c′). Consider the iteration of the for-loop
in which pi = c′, and consider the set C at the beginning of this iteration.
Observe that c ∈ C. Let cj be the (1 + ε)-approximate nearest-neighbor of
c′ in C that is computed by the algorithm. Since c′ is added to C, we have
d(cj , c

′) > k ·w(c′). Let c′′ be the exact nearest-neighbor of c′ in C. Then, since
c ∈ C, d(cj , c

′) � (1 + ε) · d(c′′, c′) � (1 + ε) · d(c, c′). It follows that

dw(c, c′) = w(c) + d(c, c′) + w(c′) � d(c, c′) + 2 · w(c′)

< d(c, c′) +
2
k
· d(cj , c

′) �
(

1 +
2(1 + ε)

k

)
· d(c, c′).

By combining Lemmas 1 and 2, we obtain the following result.

Theorem 1. Let t > 1 be a parameter, and let (S,d) be a metric space with n
weighted points such that the following holds:

Geometric Spanners for Weighted Point Sets 195

– For any subset S′ ⊆ S with m points, we can compute in Tsp(m) time a
t-spanner for S′ in the d-metric with Esp(m) edges, where Tsp and Esp are
non-decreasing functions.

– For any ε > 0 there is a semi-dynamic (insertions-only) data structure for
(1+ε)-approximate nearest-neighbor queries in the d-metric for S, such that
both insertions and queries can be done in Tnn(ε, n) time, where the function
Tnn is non-decreasing in n.

Then we can construct for any ε > 0 a t′-spanner for S in the dw-metric with
O(Esp(n)) edges and t′ = 3t + 2 + 2ε(t + 1). The construction can be done in
O(n log n + Tsp(n) + n · Tnn(ε, n)) time.

Due to space limitation, the proof of the theorem is removed in this version.

Applications: Euclidean spaces and spaces of bounded doubling dimension. The-
orem 1 can immediately be used to obtain additively weighted spanners in Eu-
clidean spaces and metric spaces of bounded doubling dimension.1

Corollary 1. (i) Given a set S of n points in R
d, each having a non-negative

weight, and given a real number 0 < ε < 1, we can construct an additively
weighted (5+ ε)-spanner of S having O(n/εd) edges in O((n/εd) log n) time.

(ii) Given a metric space (S,d) of constant doubling dimension d, where S is a
set of size n, and in which each point of S has a non-negative real weight,
and given a real number 0 < ε < 1, we can construct an additively weighted
(5 + ε)-spanner of S having n/εO(d) edges in O(n log n) + n/εO(d) time.

Proof. Callahan and Kosaraju [7] have shown that for any set of n points in R
d

and any 0 < ε < 1, one can compute a (1 + ε)-spanner with Esp(n) = O(n/εd)
edges in Tsp(n) = O(n log n + n/εd) time. Moreover, Arya et al. [8] presented a
data structure for (1 + ε)-approximate nearest-neighbor queries in R

d that has
O((1/εd) log n) query time, and in which insertions can be done in O(log n) time.
Part (i) of the theorem now follows by applying Theorem 1, replacing ε by ε/10
and setting t = 1 + ε/10.

Gottlieb and Roddity [9] have shown that for any metric space (S,d) with
n points and doubling dimension d and any 0 < ε < 1, one can compute a
(1 + ε)-spanner with Esp(n) = n/εO(d) edges in Tsp(n) = O(n log n) + n/εO(d)

time. Moreover, Cole and Gottlieb [10] presented a data structure for (1 + ε)-
approximate nearest-neighbor queries in (S,d) that has 2O(d) log n + 1/εO(d)

query time, and in which insertions can be done in 2O(d) log n time. Part (ii) now
follows by applying Theorem 1, replacing ε by ε/10 and setting t = 1 + ε/10.

1 The doubling dimension of a metric space (S,d) is defined as follows. If p is a point
of S and R > 0 is a real number, then the d-ball with center p and radius R is
the set {q ∈ S : d(p, q) � R}. The doubling dimension of (S,d) is the smallest real
number d such that the following is true: For every real number R > 0, every d-ball
of radius R can be covered by at most 2d d-balls of radius R/2.

196 M. Ali Abam et al.

More applications: the geodesic metric for a convex body. Let S be a set of n
points on the boundary ∂B of a convex body B in R

d. For any two points p, q ∈ S,
let dB(p, q) be the geodesic distance between p and q along ∂B, and let d(p, q)
denote their Euclidean distance. In order to apply Theorem 1 to the metric space
(S,dB), we need a sparse (1 + ε)-spanner for a set S′ ⊆ S based on the distance
function dB. We will obtain such a spanner using a so-called well-separated pair
decomposition (WSPD).

Well-separated pair decompositions were introduced by Callahan and
Kosaraju [7] for the Euclidean metric and by Talwar [3] for general metric
spaces. They are defined as follows. Let (S,d) be a finite metric space. The
diameter diamd(A) of any subset A of S is defined as diamd(A) = max{d(a, b) :
a, b ∈ A}, and the distance d(A, B) of any two subsets A, B ⊆ S is defined
as d(A, B) = min{d(a, b) : a ∈ A, b ∈ B}. For a real number s > 0, we
say that the subsets A and B of S are well-separated with respect to s, if
d(A, B) � s · max(diamd(A), diamd(B)).

Definition 1. Let (S,d) be a finite metric space and let s > 0 be a real number.
A well-separated pair decomposition (WSPD) for (S,d), with respect to s, is a
set {(A1, B1), . . . , (Am, Bm)} of pairs of non-empty subsets of S such that

1. for each i, Ai and Bi are well-separated with respect to s, and
2. for any two distinct points p, q ∈ S, there is exactly one index i with

1 � i � m such that (i) p ∈ Ai and q ∈ Bi or (ii) p ∈ Bi and q ∈ Ai.

The following lemma, due to Callahan and Kosaraju [11], shows how a spanner
can be obtained from a WSPD. They prove the lemma for Euclidean spaces, but
exactly the same proof applies to any metric space.

Lemma 3. [11] Let (S,d) be a finite metric space and let t > 1 be a real number.
Furthermore, let {(A1, B1), . . . , (Am, Bm)} be a WSPD for (S,d), with respect
to s = 2(t+1)

t−1 and, for each i with 1 � i � m, let ai be an arbitrary point
of Ai and bi be an arbitrary point of Bi. Then the graph G = (S, E) where
E = {(ai, bi) : 1 � i � m} is a t-spanner for S with m edges.

Lemma 3 tells us that if we have a WSPD for S in the dB-metric, we can get
a spanner for S in the dB-metric. Using Theorem 1 we can then also get a
spanner for a weighted point set S. As we show in Lemma 10, the metric space
(S,dB) has bounded doubling dimension. Using the algorithm of Har-Peled and
Mendel [2] we can thus construct a WSPD for this metric space. Unfortunately,
their algorithm needs an oracle that returns, for any two points p and q, the
geodesic distance dB(p, q) in O(1) time, and computing geodesic distances on
a convex body is not so easy. We therefore describe a more direct method for
computing a WSPD for points on a convex body. The basic idea behind our
method is to compute a WSPD for the Euclidean space (S,d), and then refine
this WSPD in a suitable way to obtain a WSPD for (S,dB). For the refinement,
we only need to know the normal vectors of all points p ∈ S; we do not need any
distance computations in the dB-metric. An additional advantage of our method
over Har-Peled and Mendel’s method is that the dependency on ε will be better.

Geometric Spanners for Weighted Point Sets 197

For any point p on ∂B, we denote by NB(p) the (outer) normal vector of B
at p. If the tangent plane of p at B is not unique, then we choose for NB(p)
the normal vector of an arbitrary tangent plane. We fix a real number σ such
that 0 < σ < π/2. The following lemma states that dB(p, q) and d(p, q) are
approximately equal, provided the angle between the normals of p and q is at
most σ. Similar observations have been made in papers on approximate shortest
paths on polytopes; see e.g. [12].

Lemma 4. Let p and q be two points on ∂B such that ∠(NB(p),NB(q)) � σ.
Then d(p, q) � dB(p, q) � d(p,q)

cos σ .

The normal vector of each point of ∂B at B can be considered to be a point on
the sphere of directions, denoted S

d−1, in R
d. We partition S

d−1 into O(1/σd−1)
parts such that the angle between any two vectors in the same part is at most σ.
Based on this, we partition ∂B into patches : A σ-patch is the set of all points of
∂B whose normals fall in the same part of the partition of S

d−1.
Let s > 0 be a real number, and let {(A1, B1), . . . , (Am, Bm)} be a WSPD

for the Euclidean metric space (S,d), with respect to s, where m = O(sdn). We
refine the WSPD by partitioning each Ai and Bi into subsets A1

i , . . . , A
�
i and

B1
i , . . . , B�

i , respectively, where � = O(1/σd−1). The partitioning is done such
that the points in each subset belong to the same σ-patch. Define
Ψ = {(Aj

i , B
k
i) : 1 � j � � and 1 � k � �}.

Lemma 5. The set of pairs in Ψ forms a WSPD with respect to s cosσ for the
metric space (S,dB). The number of pairs in this WSPD is O((sd/σ2d−2)n).

Proof. It is clear that Ψ contains O((sd/σ2d−2)n) elements. It is also clear that
condition 2. in Definition 1 is satisfied. It remains to show that condition 1. is
satisfied. Consider a pair (Aj

i , B
k
i) ∈ Ψ . We have to show that

dB(Aj
i , B

k
i) � s cosσ · max(diamdB(Aj

i), diamdB(Bk
i)). (1)

We first show that
diamd(Aj

i) � diamdB(Aj
i) cosσ. (2)

To show this, let a and a′ be two arbitrary points in Aj
i . Using Lemma 4, we

obtain dB(a, a′) � d(a,a′)
cos σ � diamd(Aj

i)

cos σ , from which (2) follows. By a symmetric
argument, we obtain

diamd(Bk
i) � diamdB(Bk

i) cosσ. (3)

Let a be an arbitrary point of Aj
i and let b be an arbitrary point of Bk

i . Since Aj
i ⊆

Ai and Bk
i ⊆ Bi, and since Ai and Bi are well-separated with respect to s (in the

Euclidean metric d), we have dB(a, b)�d(a, b)�s·max(diamd(Ai), diamd(Bi))�
s·max(diamd(Aj

i), diamd(Bk
i)). Combining this with (2) and (3), it follows that

dB(a, b) � s cosσ ·max(diamdB(Aj
i), diamdB(Bk

i)). This proves that (1) holds.

Lemmas 3 and 5 now imply the following result (take for instance σ = π/3, so
that cosσ = 1/2).

198 M. Ali Abam et al.

Theorem 2. Let S be a set of n points on the boundary of a convex body B in
R

d, and let 0 < ε < 1 be a real number. If we can determine for any p ∈ S an
outward normal of B at p in O(1) time then we can compute in O(n log n+n/εd)
time a (1 + ε)-spanner of S in the dB-metric, with O(n/εd) edges.

Corollary 2. Let S be a set of n points on the boundary of a convex body B in
R

d, each with a non-negative weight. For any 0 < ε < 1, there is an additively
weighted (5 + ε)-spanner of S having O(n/εd) edges.

3 An Additively Weighted (2 + ε)-Spanner

In each of the applications considered in the previous section, our method gen-
erated an additively weighted (5 + ε)-spanner. The goal of this section is to see
if we can obtain additively weighted spanners with a smaller stretch factor. We
start with a lower bound.

Lemma 6. For any finite metric space (S,d) and any real number ε > 0, there
exists a set of weights for the points of S, such that every non-complete graph
with vertex set S has additively weighted stretch factor larger than 2 − ε.

Proof. Let D = diamd(S). Assign each point in S a weight D/ε. Consider a
non-complete graph G with vertex set S, and let p and q be two points in S that
are not connected by an edge in G. We have dw(p, q) � (1 + 2/ε)D, whereas
dG,w(p, q) � 4D/ε. Thus dG,w(p,q)

dw(p,q) � 4D/ε
(1+2/ε)D > 2 − ε.

In the remainder of this section we will describe a general strategy for computing
additively weighted (2 + ε)-spanners for spaces of bounded doubling dimension.
Given the lower bound, the stretch factor is almost optimal in the worst case.
Our method is based on the so-called semi-separated pair decomposition, as in-
troduced by Varadarajan [6]. We use the strategy to obtain additively weighted
(2 + ε)-spanners for two cases: points in R

d, and points on the boundary of a
convex body in R

d.

The semi-separated pair decomposition. Let (S,d) be a metric space, where S
is a set of n points, and let d be its doubling dimension. We assume that each
point of S has a real weight w(p) � 0. Our spanner construction will be based
on a decomposition {(A1, B1), . . . , (Am, Bm)} having properties similar to those
of the WSPD. As we will see, the number of edges in the additively weighted
spanner is proportional to

∑m
i=1(|Ai| + |Bi|). Thus, we need a decomposition

for which this summation is small. Callahan and Kosaraju [7] have shown that,
for the WSPD, this summation can be as large as Θ(n2); in other words, we
cannot use the WSPD to obtain a non-trivial result. By using a decomposi-
tion satisfying a weaker condition, it is possible to make sure the summation is
only O(n log n). This decomposition is the semi-separated pair decomposition,
as introduced in [6].

For a real number s > 0, two subsets A, B ⊆ S are called semi-separated with
respect to s, if d(A, B) � s · min(diamd(A), diamd(B)). A semi-separated pair

Geometric Spanners for Weighted Point Sets 199

decomposition (SSPD) for the metric space (S,d), with respect to s, is defined
to be a set Ψ = {(A1, B1), . . . , (Am, Bm)} of pairs of non-empty subsets of S,
having the same properties as in Definition 1, except that in condition 1., the sets
Ai and Bi are semi-separated with respect to s. The quantity

∑m
i=1(|Ai|+ |Bi|)

is called the size of the SSPD.
The SSPD was introduced by Varadarajan [6]. For the Euclidean distance

function in R
2, Abam et al. [5] showed that an SSPD with O(n) pairs and size

O(n log n) can be computed in O(n log n) time. It is known that for any set of n
points, any SSPD has size Ω(n log n); see [13,14].

From SSPDs to spanners. Let Ψ be an SSPD for S with respect to some s > 0.
For each pair (A, B) ∈ Ψ we will add a set E(A, B) of edges to our spanner such
that any two points a ∈ A and b ∈ B are connected by a path of length at most
(2 + 3

s) · dw(a, b).
The main idea is quite simple. Assume without loss of generality that

diamd(A) � diamd(B). Thus, we have d(A, B) � s ·diamd(A). Define center(A)
to be a point from A of minimum weight (among the points in A), and let
E1(A, B) = {(x, center(A)) : x ∈ A∪B and x �= center(A)}. This provides short
connections between the points in A and those in B by going via center(A):
since d(A, B) � s ·diamd(A), going via center(A) does not create a large detour
in the d-metric, and since w(center(A)) � w(a) the extra path length caused
by w(center(A)) is also limited. In fact, for some pairs of points a, b, the set
E1(A, B) already gives us a path of the required length. The next lemma gives
the condition under which this is the case.

Lemma 7. Let c = center(A). Let b ∈ B be an points such that w(c) � w(b) +
d(c, b). Then, for any a ∈ A, we have dw(a, c) + dw(c, b) �

(
2 + 3

s

) · dw(a, b).

Proof. We have
dw(a, c) + dw(c, b) = (w(a) + d(a, c) + w(c)) + (w(c) + d(c, b) + w(b))

� (2 · w(a) + diamd(A)) + 2 · (d(c, b) + w(b))
� (2 · w(a) + diamd(A)) + 2 · (d(c, a) + d(a, b) + w(b))
� 2 · (w(a) + d(a, b) + w(b)) + 3 · diamd(A)
� 2 · (dw(a, b)) + 3 · (d(a, b)/s)
� (2 + 3

s) · dw(a, b).

It remains to establish short paths between the points in A and the points b ∈ B,
where B = {b ∈ B : w(c) > w(b) + d(c, b)} with c = center(A). We cannot use
any point from A as an intermediate destination on such paths, because the
weights of the points from A are too large compared to those in B. Hence,
we need to go via a point from B. However, the diameter of B can be large.
Therefore we first decompose the set B into subsets of small diameter.

The points b in B have d(c, b) < w(c), so they are contained in a d-ball C
of radius w(c). Recall that d is the doubling dimension of (S,d). Thus we can
cover C by sO(d) balls of radius w(c)/(2s). Let C1, . . . , C� be such a collection
of balls, where � = sO(d). We partition B into subsets B1, . . . , B� in such a way
that Bi ⊆ Ci for all 1 � i � �. For each Bi, let center(Bi) be a point of minimum

200 M. Ali Abam et al.

weight (among the points in Bi). The next lemma shows that going from any
point in A to any point in Bi via center(Bi) gives us a path of the required
length.

Lemma 8. Let ci = center(Bi). Then, for two points a ∈ A and b ∈ Bi we have
dw(a, ci) + dw(ci, b) <

(
2 + 2

s

) · dw(a, b).

The proof of the lemma is similar to the proof of Lemma 7 and is removed
because of the space limitation.

We are now ready to define the set of edges for the pair (A, B) in the SSPD Ψ .
Namely, we define E(A, B) = E1(A, B)∪

(⋃�
i=1 E2(A, Bi)

)
, where E2(A, Bi) =

{(x, center(Bi)) : x ∈ A ∪ Bi and x �= center(Bi)}. For any two points a ∈ A
and b ∈ B, there exists a path in the graph with edge set E(A, B) of length
at most (2 + ε) · dw(a, b). This follows by using Lemmas 7 and 8, and setting
s = ε/3. Using that � = sO(d) = 1/εO(d), we get that the total number of edges
in E(A, B) is |E1(A, B)| +

∑�
i=1 |E2(A, Bi)| = |A| + |B| +

∑�
i=1(|A| + |Bi|) =

(1/ε)O(d) · (|A| + |B|). By combining the sets E(A, B) for all pairs (A, B) ∈ Ψ
we get our final spanner. Since, by definition of the SSPD, for any two points
a, b ∈ S there is a pair (A, B) ∈ Ψ such that a ∈ A and b ∈ B (or vice versa),
we get the following result.

Lemma 9. The graph G = (S, E) with E =
⋃

(A,B)∈Ψ E(A, B) is an additively
weighted (2 + ε)-spanner for S with (1/ε)O(d) · ∑(A,B)∈Ψ (|A| + |B|) edges.

Applications. Let S be a set of n points in R
d and let d(p, q) be the Euclidean

distance between p and q. Observe that the metric space (S,d) has doubling
dimension Θ(d). Abam et al. [5] have shown that in the plane an SSPD of size
O(s2n log n) can be computed in O(n log n + s2n) time, for any s > 1. Their
algorithm in fact also works in higher dimensions; its analysis also goes through,
with appropriate changes to the constant factors in certain packing lemmas. This
leads to an SSPD of size O(sdn log n) that can be computed in O(n log n + sdn)
time, giving the following result.

Theorem 3. Given a set S of n points in R
d, each one having a non-negative

weight, and given a real number 0 < ε < 1, we can construct an additively
weighted (2+ε)-spanner of S having (n/εO(d)) log n edges in (n/εO(d)) log n time.

We now turn our attention to a set S of points on the boundary of a convex
body B. For any two points p and q of S, let dB(p, q) be the geodesic distance
between p and q along ∂B. The proof of the following lemma is based on the
concept of σ-patches introduced earlier, and removed due to space limitation.

Lemma 10. The metric space (S,dB) has doubling dimension Θ(d).

Let d denote the Euclidean distance function in R
d, let s > 1 be a real num-

ber, and consider an SSPD {(A1, B1) . . . , (Am, Bm)} for the metric space (S,d),
with respect to s, whose size is O(sdn log n). We fix a real number σ such that
0 < σ < π/2. Let i be an index with 1 � i � m. As before, we partition

Geometric Spanners for Weighted Point Sets 201

both Ai and Bi into subsets A1
i , . . . , A

�
i and B1

i , . . . , B�
i , respectively, where

� = O(1/σd−1), such that the points in each subset belong to the same σ-patch
of ∂B. Now define Ψ = {(Aj

i , B
k
i) : 1 � j � �, 1 � k � �}. The proof of the

following lemma is similar to that of Lemma 5.

Lemma 11. The set Ψ forms an SSPD, with respect to s cosσ, for the metric
space (S,dB). The size of this SSPD is O((sd/σ2d−2)n log n).

We choose σ = π/3, so that cosσ = 1/2. We obtain the following result.

Theorem 4. Given a convex body B in R
d and a set S of n points on the

boundary of B. Assume that each point of S has a non-negative real weight. Let
0 < ε < 1 be a real number. We can construct an additively weighted (2 + ε)-
spanner of S having (n/εO(d)) log n edges in (n/εO(d)) log n time.

Remark 1. It follows from the proofs of Lemmas 7 and 8 that the graph G has
spanner diameter 2. That is, for any two points p and q of S, the graph G
contains a path between p and q that contains at most two edges and whose
dw-length is at most (2 + ε) · dw(p, q). If we want to keep this property, then
the number of edges in our spanner is worst-case optimal: For any real number
t > 1, there exists a metric space (S,d) such that every t-spanner for S having
spanner diameter 2 has Ω(n log n) edges—see Exercise 12.10 in Narasimhan and
Smid [1]. Of course, this then also holds for additively weighted spanners. Note
that if all weights are equal and very large compared to the d-diameter of the
set, then any additively weighted 2-spanner must have spanner diameter 2. (This
does not imply, however, that Ω(n log n) is a lower bound on the worst-case size
of additively weighted 2-spanners.)

References

1. Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cambridge University
Press, Cambridge (2007)

2. Har-Peled, S., Mendel, M.: Fast construction of nets in low-dimensional metrics
and their applications. SIAM J. on Computing 35, 1148–1184 (2006)

3. Talwar, K.: Bypassing the embedding: algorithms for low dimensional metrics. In:
STOC 2004, pp. 281–290 (2004)

4. Bose, P., Carmi, P., Couture, M.: Spanners of additively weighted point sets. In:
Gudmundsson, J. (ed.) SWAT 2008. LNCS, vol. 5124, pp. 367–377. Springer, Hei-
delberg (2008)

5. Abam, M.A., de Berg, M., Farshi, M., Gudmundsson, J.: Region-fault tolerant
geometric spanners. In: SODA 2007, pp. 1–10 (2007)

6. Varadarajan, K.R.: A divide-and-conquer algorithm for min-cost perfect matching
in the plane. In: FOCS 1998, pp. 320–331 (1998)

7. Callahan, P.B., Kosaraju, S.R.: A decomposition of multidimensional point sets
with applications to k-nearest-neighbors and n-body potential fields. J. of the
ACM 42, 67–90 (1995)

8. Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., Wu, A.: An optimal al-
gorithm for approximate nearest neighbor searching in fixed dimensions. J. of the
ACM 45, 891–923 (1998)

202 M. Ali Abam et al.

9. Gottlieb, L.A., Roditty, L.: An optimal dynamic spanner for doubling metric
spaces. In: Halperin, D., Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp.
478–489. Springer, Heidelberg (2008)

10. Cole, R., Gottlieb, L.A.: Searching dynamic point sets in spaces with bounded
doubling dimension. In: STOC 2006, pp. 574–583 (2006)

11. Callahan, P.B., Kosaraju, S.R.: Faster algorithms for some geometric graph prob-
lems in higher dimensions. In: SODA 1993, pp. 291–300 (1993)

12. Agarwal, P.K., Har-Peled, S., Sharir, M., Varadarajan, K.R.: Approximate shortest
paths on a convex polytope in three dimensions. J. of the ACM 44, 567–584 (1997)

13. Hansel, G.: Nombre minimal de contacts de fermeture nécessaires pour réaliser une
fonction booléenne symétrique de n variables. Comptes Rendus de l’Académie des
Sciences 258, 6037–6040 (1964)

14. Bollobás, B., Scott, A.D.: On separating systems. European J. of Combinatorics 28,
1068–1071 (2007)

	Geometric Spanners for Weighted Point Sets
	Introduction
	A Spanner Construction Based on Clustering
	An Additively Weighted (2+ϵ)-Spanner

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

