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Abstract. This paper studies the effects of introducing altruistic agents
into atomic congestion games. Altruistic behavior is modeled by a trade-
off between selfish and social objectives. In particular, we assume agents
optimize a linear combination of personal delay of a strategy and the
resulting social cost. Stable states are the Nash equilibria of these games,
and we examine their existence and the convergence of sequential best-
response dynamics. For symmetric singleton games with arbitrary delay
functions we provide a polynomial time algorithm to decide existence for
symmetric singleton games. Our algorithm can be extended to compute
best and worst Nash equilibria if they exist. For more general congestion
games existence becomes NP-hard to decide, even for symmetric network
games with quadratic delay functions. Perhaps surprisingly, if all delay
functions are linear, there exists a Nash equilibrium and any better-
response dynamics converges. In addition, we consider a scenario in which
a central altruistic institution can motivate agents to act altruistically.
We provide constructive and hardness results for finding the minimum
number of altruists to stabilize an optimal congestion profile and more
general mechanisms to incentivize agents to adopt favorable behavior.

1 Introduction

Algorithmic game theory has been focused on game-theoretic models for a va-
riety of important applications in the Internet. A fundamental assumption in
these games, however, is that all agents are selfish. Their goals are restricted to
optimizing their direct personal benefit, e.g. their personal delay in a routing
game. The assumption of selfishness in the preferences of agents is found in the
vast majority of present work on economic aspects of the Internet. However, this
assumption has been repeatedly questioned by economists and psychologists. In
experiments it has been observed that participant behavior can be quite complex
and contradictive to selfishness [15,16]. Various explanations have been given for
this phenomenon, e.g. senses of fairness [7], reciprocity among agents [10], or spite
and altruism [16,5].

� Work was done while visiting the Computer Science Department, Stanford Univer-
sity, USA. Supported by a fellowship within the Postdoc-Program of the German
Academic Exchange Service (DAAD) and by UMIC Research Center at RWTH
Aachen University.

�� Supported in part by the German Israeli Foundation (GIF) under contract 877/05.

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 179–189, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



180 M. Hoefer and A. Skopalik

Prominent developments in the Internet like Wikipedia, open source software
development, or Web 2.0 applications involve or explicitly rely on voluntary
participation and contributions towards a joint project without direct personal
benefit. These examples display forms of altruism, in which agents accept cer-
tain personal burdens (e.g. by investing time, attention, and money) to improve
a common outcome. While malicious behavior has been considered recently for
instance in nonatomic routing [14,3,4], virus incoulation [18], or bayesian conges-
tion games [8], a deeper analysis of the effects of altruistic agents on competitive
dynamics in algorithmic game theory is still missing.

We consider and analyze a model of altruism inspired by Ledyard [15, p. 154],
and recently studied for non-atomic routing games by Chen and Kempe [4].
Each agent i is assumed to be partly selfish and partly altruistic. She optimizes
a linear combination of personal cost and social cost, given by the sum of cost
values of all agents. The strength of altruism of each agent i is captured by her
altruism level βi ∈ [0, 1], where βi = 0 results in a purely selfish and βi = 1 in a
purely altruistic agent.

Chen and Kempe [4] proved that in non-atomic routing games Nash equilib-
ria are always guaranteed to exist and analyzed the price of anarchy for parallel
link networks. In our paper, we conduct the first study of altruistic agents in
atomic congestion games, a well-studied model for resource sharing. Congestion
games received a lot of attention recently, mostly because of the intuitive for-
mulation and their appealing analytical properties. In particular, they always
possess a pure Nash equilibrium and every sequential better-response dynamics
converges. As one might expect, the presence of altruists can significantly alter
the convergence and existence of pure Nash equilibria. After a formal definition
of congestion games with altruists in Section 2, we concentrate on pure equilibria
and leave a study of mixed Nash equilibria for future work. Our results are as
follows.

We study singleton games in Section 3, in which every strategy consists of a
single resource. In symmetric games with a constant number of different altru-
ism levels, we can decide in polynomial time if a Nash equilibrium exists. Our
algorithm can be adapted to compute the Nash equilibrium with best and worst
social cost if it exists, for any agent population with a constant number of differ-
ent altruism levels. For asymmetric singleton games, in which strategy spaces of
agents differ, deciding the existence of Nash equilibria becomes NP-hard. For the
important subclass of convex delay functions, i.e., linear and superlinear func-
tions, previous results imply that for any agent population a Nash equilibrium
exists and can be computed in polynomial time. In contrast, we show in Sec-
tion 4 that convexity of delay functions is not sufficient for more general games.
Even for symmetric network games, in which strategies represent paths through
a network, quadratic delay functions and pure altruists, Nash equilibria can be
absent and deciding their existence is NP-hard. Perhaps surprisingly, if all delay
functions are linear, the game is a potential game.

In Section 5 we consider a slightly more coordinated scenario, in which there is
a central institution that can convince agents to act altruistically. In this context
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a natural question is how many altruists are required to stabilize a social opti-
mum. This has been considered under the name “price of optimum” in [13] for
Stackelberg routing in nonatomic congestion games. We consider two measures
- an optimal stability threshold, which is the minimum number of altruists such
that there is any optimal Nash equilibrium, and an optimal anarchy threshold,
which asks for the minimum number of altruists such that every Nash equi-
librium is optimal. For symmetric singleton games, we adapt our algorithm for
computing Nash equilibria to determine both thresholds in polynomial time. The
optimal anarchy threshold might not be well-defined even for singleton games,
because there are suboptimal Nash equilibria even if all agents are pure altru-
ists. In contrast, we adapt the idea of the optimal stability threshold to a very
general scenario, in which each agent has a personalized stability cost for accept-
ing a strategy under the given congestions. We provide a truthful mechanism
to determine an allocation of agents to strategies with minimum total stability
cost. Unfortunately, such a general result is restricted to the case of singleton
games. Even for symmetric network games on series-parallel graphs, we show
that the problem of determining the optimal stability threshold is NP-hard. Our
reduction also yields inapproximability within any finite factor. This resolves
an open problem raised in [12] on computing the “price of optimum” in atomic
congestion games.

Some proofs have been omitted due to spacial constraints, they will be given
in a full version of this paper.

2 Model and Initial Results

We consider congestion games with altruists. A congestion game with altruists
G is given by a set N of n agents and a set E of m resources. Each agent
i has a set Si ⊆ 2E of strategies. In a singleton congestion game each agent
has only singleton strategies Si ⊆ E. A vector of strategies S = (S1, . . . , Sn)
is called a state. For a state we denote by ne the congestion, i.e. the number
of agents using a resource e in their strategy. Each resource e has a latency
or delay function de(ne), and the delay for an agent i playing Si in state S is
di(S) =

∑
e∈Si

de(ne). The social cost of a state is the total delay of all agents
c(S) =

∑
i∈N

∑
e∈Si

de(ne) =
∑

e∈E nede(ne). Each agent i has an altruism level
of βi ∈ [0, 1], and her individual cost is ci(S) = βic(S) + (1 − βi)di(S). We call
an agent i an egoist if βi = 0 and a βi-altruist otherwise. A (pure) altruist has
βi = 1, a (pure) egoist has βi = 0. A game G with only pure altruists and egoists
is a game, in which βi ∈ {0, 1} for all i ∈ N . A game G is said to have β-uniform
altruists if βi = β ∈ [0, 1] for every agent i ∈ N . A (pure) Nash equilibrium is
a state S, in which no agent i can unilaterally decrease her individual cost by
unilaterally changing her strategy. We exclusively consider pure equilibria in this
paper.

If all agents are egoists, the game is a regular congestion game, which has an
exact potential function Φ(S) =

∑
e∈E

∑ne

x=1 de(x) [20]. Thus, existence of Nash
equilibria and convergence of iterative better-response dynamics are guaranteed.
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Obviously, if all agents are altruists, Nash equilibria correspond to local optima of
the social cost function c with respect to a local neighborhood consisting of single
player strategy changes. Hence, existence and convergence are also guaranteed.
This directly implies the same properties for β-uniform games, in which an exact
potential function is Φβ(S) = (1 − β)Φ(S) + βc(S). In general, however, Nash
equilibria might not exist.

Observation 1. There are symmetric singleton congestion games with only
pure altruists and egoists without a Nash equilibrium.

Example 2. Consider a game with two resources e and f , three egoists and one
(pure) altruist. The delay functions are de(x) = df (x) with de(1) = 4, de(2) = 8,
de(3) = 9, and de(4) = 11. One can easily check that this game does not posses
a Nash equilibrium.

Our interest is thus to characterize the games that have Nash equilibria. Towards
this end we observe that an altruistic congestion game can be cast as a congestion
game with player-specific latency functions [17]. In such a game the delay of
resource e to player i depends on the congestion and on the player, i.e., ci(S) =∑

e∈Si
de(ne, i). To embed our games within this framework, we consider a game

with only pure altruists and egoists for simplicity. An altruist moves from Si to
S′

i if the decrease in total delay nede(ne) on the resources e ∈ Si − S′
i she is

leaving exceeds the increase on resources e ∈ S′
i − Si she is migrating to. Hence,

altruists can be seen as myopic selfish agents with ci(S) = d′i(S) =
∑

e∈Si
d′e(ne)

with d′e(ne) = nede(ne) − (ne − 1)de(ne − 1), for ne > 0. We set d′e(0) = 0.
Naturally, a βi-altruist corresponds to a selfish agent with player-specific function
ci(S) = (1−βi)di(S)+βid

′
i(S). Thus, our games can be embedded into the class

of player-specific congestion games. For some classes of such games it is known
that Nash equilibria always exist. In particular, non-existence in Example 2 is
due to the fact that the individual delay function for the altruist is not monotone.
Monotonicity holds, in particular, if delay functions are convex. In this case, it
is known that for matroid games, in which the strategy space of each agent is a
matroid, existence of a Nash equilibrium is guaranteed [2].

Corollary 3. [17,2] For any matroid congestion game with altruists and convex
delay functions a Nash equilibrium exists and can be computed in polynomial
time.

3 Singleton Congestion Games

In the previous section we have seen that there are symmetric singleton conges-
tion games with only pure altruists and egoists with and without Nash equilibria.
For this class of games we can decide the existence of Nash equilibria in polyno-
mial time. In addition, we can compute a Nash equilibrium with minimum and
maximum social cost if they exist.
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Theorem 4. For symmetric singleton games with only pure altruists and egoists
there is a polynomial time algorithm to decide if a Nash equilibrium exists and
to compute the best and the worst Nash equilibrium.

The proof relies on the fact that the game is symmetric and the number of re-
sources is polynomial. This allows us to characterize a Nash equilibrium using
certain maximum and minimum values for the delays of each resource. Similar
to [11] we can implicitly enumerate all states that can be a Nash equilibrium us-
ing dynamic programming. The approach can be extended to a constant number
k of different altruism levels. In this more general scenario we choose the delay
parameters for each level of altruists.

Corollary 5. For symmetric singleton games with altruists and a constant num-
ber of different altruism levels, there is a polynomial time algorithm to decide if a
Nash equilibrium exists and to compute the best and the worst Nash equilibrium.

As a byproduct, our approach also allows us to compute a social optimum state in
polynomial time. We simply assume all agents to be pure altruists and compute
the best Nash equilibrium.

Corollary 6. For symmetric singleton congestion games a social optimum state
can be obtained in polynomial time.

In case of asymmetric games, however, deciding the existence of Nash equilibria
becomes significantly harder.

Theorem 7. It is NP-hard to decide if a singleton congestion game with only
pure altruists and egoists has a Nash equilibrium if G is asymmetric and has
concave delay functions.

Proof. We reduce from 3Sat. Given a formula ϕ, we construct a congestion game
Gϕ that has a Nash equilibrium if and only if ϕ is satisfiable. Let x1, . . . , xn

denote the variables and c1, . . . , cm the clauses of a formula ϕ. Without loss of
generality [21], we assume each variable appears at most twice positively and at
most twice negatively.

For each variable xi there is a selfish agent Xi that chooses one of the resources
e1

xi
, e0

xi
, or e0. The resources e1

xi
and e0

xi
have the delay function 9x and resource

e0 has the delay function 7x + 3. For each clause cj , there is a selfish agent Cj

who can choose one of the following three resources. For every positive literal
xi in cj he may choose e0

xi
. For every negated literal x̄i in cj he may choose

e1
xi

. Note that there is a stable configuration with no variable agent on e0 if
and only if there is a satisfiable assignment for ϕ. Additionally, there are three
selfish agents u1, u2, and u3 who can choose e1 or e2. Each of the resources e1

and e2 has delay 4 if used by one agent, delay 8 if used by two agents and delay
9 otherwise. The only pure altruist u0 chooses between e1, e2, and e0. Note that
the altruist chooses e1, e2 if one of the variable agents is on e0.

If ϕ is satisfiable by a bitvector (x∗
1, . . . , x

∗
n), a stable solution for Gϕ can be

obtained by placing each variable agent xi on e
x∗

i
xi . Since (x∗

1, . . . , x
∗
n) satisfies ϕ
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there is one resource for each clause agent that is not used by a variable agent.
Thus, we can place each clause agent on this resource, which he then shares with
at most one other clause agent. Let the altruist u0 use e0 and u1 and u2 choose
e1 and u3 choose e2. It is easy to check that this is a Nash equilibrium.

If ϕ is unsatisfiable, there is no stable solution. To prove this it suffices to show
that one of the variable agents prefers e0. In that case the altruist never chooses
e0 and the agent u0, . . . , u3 play the sub game of Example 2. For the purpose
of contradiction assume that ϕ is not satisfiable but there is a stable solution in
which no variable wants to choose e0. This implies that there is no other agent,
i.e. a clause agent, on a resource that is used by a variable agent. However, if
all clause agents are on a resource without a variable agent we can derive a
corresponding bit assignment which, by construction, satisfies ϕ. Therefore, Gϕ

has a stable solution if and only if ϕ is satisfiable. ��

4 General Games

For any singleton game G with altruists and convex delay functions a Nash
equilibrium always exists. For more general network structures, we show that
convexity of delay functions is not sufficient. In particular, this holds even for
games with only pure altruists and egoists in the case in which almost all delay
functions are linear of the form de(x) = aex, except for two edges, which have
quadratic delay functions de(x) = aex

2. For simplicity, we use some edges with
non-convex constant delay be. We can replace these edges by sufficiently many
parallel edges with delay bex. This transformation is of polynomial size and yields
an equivalent game with only convex delays.

Theorem 8. It is NP-hard to decide if a symmetric network congestion game
with only pure altruists and egoists and quadratic delay functions has a Nash
equilibrium.

Proof. We first reduce from 3Sat to asymmetric congestion games. Again, we
assume each variable appears at most twice positively and at most twice neg-
atively. In a second step, we show that the resulting congestion games can be
turned into symmetric games while preserving all necessary properties.

Our reduction is similar to the construction that we used in the proof of Theo-
rem 7. The structure of the resulting network congestion game GΦ is depicted in
Figure 1. Table 1 lists the delay functions of the edges. Edges that are not listed
there have delay of 0. Due to space limitations we only outline the structure of
our construction. The complete proof will appear in the full version.

Each agent Xi chooses one of three paths from his source node sxi to his
target node t′. Each clause agent Cj uses a path from scj to t′ and uses one of
the three edges as described in the proof of Theorem 7. That is, for each positive
literal xi in cj he may choose a path that includes the edge e0

xi
. For every negated

literal x̄i in cj he may choose a path that contains the edge e1
xi

. There is a selfish
agent u1 that chooses a path from s1 to t′ and two selfish agents u2 and u3 that
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Fig. 1. The structure of the network of GΦ

(solid edges only) and G′
Φ

Table 1. The delay functions on
the edges of GΦ and G′

Φ

Edge delay function

e0 7x + 3
e1 2
e2 17
e4 2.4x2

e6 x2

e10 18.5
e1

xi
,e1

xi
9x

(s, sxi) ∀1 ≤ i ≤ n Mx
(s, scj ) ∀1 ≤ j ≤ m Mx
(s, s1), (s, s2), (s, s′) Mx
(s, s0) (n + m + 5)M
(t0, t) (n + m + 5)M
(t′, t) Mx

allocate the path from s2 to t′. Finally, one altruistic agent u0 chooses a path
from s0 to t0.

The asymmetric network congestion game GΦ can be turned into a symmetric
congestion game G′

Φ. We add a new source node s, a new target node t and a
node s′ to the network and connect them to GΦ as depicted by the dashed edges
in Figure 1. Note that M is an integer that is larger than the sum of possible
delay values in GΦ. ��
Perhaps surprisingly, if every delay function is linear de(x) = aex + be, then
an elegant combination of the Rosenthal potential and the social cost function
yields a potential for arbitrary βi-altruists. Hence, existence of Nash equilibria
and convergence of sequential better-response dynamics is always guaranteed.
The proof is carefully constructed for altruists, as for congestion games with
general player-specific linear latency functions a potential does not exist [9]. We
only consider delays de(x) = aex without offset be, but as noted earlier, this is
not a restriction.

Theorem 9. For any congestion game with altruists and linear delay functions
there is always a Nash equilibrium and sequential better-response dynamics con-
verges.

Proof. The theorem follows from the existence of a weighted potential Φ that
decreases during every improvement step of any agent i with altruism level βi.

Φ(S) =
∑

e∈E

ne∑

j=1

aej +
∑

e∈E

aen
2
e −

n∑

i=1

∑

e∈Si

2βi − 1
βi + 1

ae

Consider a state S and an improving strategy change of an agent i from Si to
S′

i resulting in a strategy profile S′. We show that Φ decreases. For the sake
of clarity and brevity we set ΔN =

∑
e∈Si\S′

i
aene − ∑

e∈S′
i\Si

ae(ne + 1) and
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ΔC =
∑

e∈Si\S′
i
(2aene − ae) −

∑
e∈S′

i\Si
(2aene + ae). Note that an improving

strategy change requires (1 − β) ΔN + βΔC > 0.

Φ(S) − Φ(S′) = ΔN + ΔC −
∑

e∈Si\S′
i

2βi − 1
βi + 1

ae +
∑

e∈S′
i\Si

2βi − 1
βi + 1

ae

=
(

1 − 2(2βi − 1)
1 + βi

)

ΔN + ΔC +
(2βi − 1)
1 + βi

ΔC

=
3 − 3βi

1 + βi
ΔN +

3βi

1 + βi
ΔC =

3
1 + βi

((1 − βi) ΔN + βiΔC) > 0

��
Unfortunately, it follows directly from previous work [6] that the number of
iterations to reach a Nash equilibrium can be exponential, and the problem of
computing a Nash equilibrium is PLS-hard. For regular congestion games with
matriod strategy spaces [1] Nash dynamics converge in polynomial time. It is an
interesting open problem if a similar result holds here.

5 Stabilization Methods

This section treats a model in which an institution can convince selfish agents
to act as altruists. For simplicity of presentation we first restrict to games with
only pure altruists and egoists. A natural question for such an institution to
consider is how many altruists are required to guarantee that there is a Nash
equilibrium with a certain cost, e.g. a Nash equilibrium as cheap as a social
optimum state. We term this number the optimal stability threshold. In a more
pessimistic direction it is of interest to determine the minimum number of al-
truists needed to guarantee that the worst-case Nash equilibrium is optimal. We
term this number the optimal anarchy threshold. Let us denote by n+

1 and n−
1

the optimal stability and anarchy threshold, respectively. As a consequence from
Theorem 4 we can compute both numbers for symmetric singleton congestion
games in polynomial time. For each number of altruists we check if the best
and/or worst Nash equilibrium is as cheap as the social optimum.

Corollary 10. For symmetric singleton congestion games with only pure altru-
ists and egoists there is a polynomial time algorithm to compute n+

1 and n−
1 .

Note that the optimal anarchy threshold is not well-defined, because the worst
Nash equilibrium might always be suboptimal, even for a population of altruists
only. In case of symmetric singleton games and convex delay functions, an easy
exchange argument serves to show that in this case any local optimum is also a
global optimum. However, for concave delay functions or asymmetric singleton
games, a local optimum might still be globally suboptimal. Note that for sym-
metric games, our algorithm is able to detect the cases in which suboptimal local
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optima exist. In the asymmetric case, however, a similar approach fails, because
of the NP-hardness of determining existence of a Nash equilibrium. Thus, in the
following we concentrate on the optimal stability threshold.

In asymmetric games, it is also required to determine the identity of agents,
so here we strive to find a set (denoted N+

e ) of minimum cardinality. For an
optimal set of congestion values n∗

E = (n∗
e)e∈E we can determine N+

1 (n∗
E) such

that there is a Nash equilibrium of the game with congestion values n∗
e for all

e ∈ E.

Theorem 11. For singleton games with only pure altruists and egoists and a
social optimal congestion vector n∗

E there is a polynomial time algorithm to com-
pute N+

1 (n∗
E).

The theorem can be shown by constructing a complete bipartite graph. The
nodes in one partition correspond to agents, in the other partition there are n∗

e

nodes for each resource e. By appropriately assigning costs in {0, 1} to the edges
we can minimize the number of required altruists with a minimum cost perfect
matching. The complete details are deferred to the full version.

This approach can be extended to an even more general natural scenario.
Suppose each agent i has a stability cost cie for each strategy e ∈ Si. This cost
yields the disutility for being forced to play a certain strategy given a congestion
vector nE . Here we redefine N∗

1 (nE) to be the set agents of minimal stability
cost. We can compute this set by a minimum weight perfect matching if we set
the weights to cie for all edges connecting i to vertices of e. The stability cost
allows for general preferences exceeding categories like altruists and egoists.

Corollary 12. For singleton games and a congestion vector nE there is a poly-
nomial time algorithm to compute N+

1 (nE) with minimal stability cost.

The underlying problem is a matching problem, which is solved optimally. Hence,
it is possible to turn our approach into a truthful mechanism using VCG pay-
ments (see e.g. [19, chapter 9]). Our final mechanism (1) learns the stability
costs from each agent, (2) determines the allocation, and (3) pays appropriate
amounts to agents for truthful revelation of cost values and adaptation of al-
located strategies. In addition, it can be verified that all computations needed
require only polynomial time.

Corollary 13. For singleton games and a congestion vector nE there is a truth-
ful VCG-mechanism to compute N+

1 (nE) in polynomial time.

These general results are restricted to the case of singleton games. For more
general games we show that it is NP-hard to decide if there is a Nash equilibrium
as cheap as the social optimum. Our next theorem establishes this even for
symmetric network congestion games with linear delays, in which an arbitrary
Nash equilibrium and a social optimum state can be computed in polynomial
time [6]. Furthermore, the result requires only a series-parallel network. Thus,
even in this restricted case it is NP-hard to decide if the number n+

1 of pure
altruists required is 0 or 1, or equivalently if N+

1 (n∗
E) is empty or not. This

directly yields hardness of approximation within any finite factor.
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Theorem 14. For symmetric network congestion games with 3 agents, linear
delay functions on series-parallel graphs and optimal congestions n∗

E it is NP-
hard to decide if there is a Nash equilibrium with congestions n∗

E.

We remark that the previous theorem contrasts the continuous non-atomic case,
in which a minimal fraction of altruistic demand stabilizing an optimum solution
can be computed in any symmetric network congestion game [13].
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