
Output-Sensitive Algorithms for Enumerating

Minimal Transversals for Some Geometric
Hypergraphs

Khaled Elbassioni1, Kazuhisa Makino2, and Imran Rauf1

1 Max-Planck-Institut für Informatik, Saarbrücken, Germany
{elbassio,irauf}@mpi-inf.mpg.de

2 Graduate School of Information Science and Technology,
University of Tokyo, Tokyo, Japan
makino@mist.i.u-tokyo.ac.jp

Abstract. We give a general framework for the problem of finding all
minimal hitting sets of a family of objects in R

d by another. We apply
this framework to the following problems: (i) hitting hyper-rectangles by
points in R

d; (ii) stabbing connected objects by axis-parallel hyperplanes
in R

d; and (iii) hitting half-planes by points. For both the covering and
hitting set versions, we obtain incremental polynomial-time algorithms,
provided that the dimension d is fixed.

1 Introduction

Let V and F be two finite sets of geometric objects in R
d. A subset of objects

X ⊆ V is said to be a hitting set (or transversal or cover) for F if for every
O ∈ F , there exists an O′ ∈ X such that O ∩O′ �= ∅. A hitting set is minimal if
none of its proper subsets is also a hitting set.

In this paper, we are interested in finding all minimal hitting sets of one
family of objects by another. For such generation problems, we measure the
time complexity in terms of both input and output length. An algorithm is said
to run in incremental polynomial-time, if the time required to find k minimal
transversals is polynomial in |V|, |F|, and k.

When V is a finite set of points and each object in F is an arbitrary finite
subset of V , we obtain the well-known hypergraph transversal or dualization prob-
lem [2], which calls for finding all minimal hitting sets for a given hypergraph
G ⊆ 2V , defined on a finite set of vertices V. Denote by Tr(G) the set of all mini-
mal hitting sets of G, also known as the transversal hypergraph of G. The problem
of finding Tr(G) has received considerable attention in the literature (see, e.g.,
[3,12,13,19,29,31]), since it is known to be polynomially or quasi-polynomially
equivalent with many problems in various areas, such as artificial intelligence
(e.g., [12,24]), database theory (e.g., [30]), distributed systems (e.g., [23]), ma-
chine learning and data mining (e.g., [1,7,20]), mathematical programming (e.g.,
[5,25]), matroid theory (e.g., [26]), and reliability theory (e.g., [9]).

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 143–154, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



144 K. Elbassioni, K. Makino, and I. Rauf

The currently fastest known algorithm [17] for solving the hypergraph trans-
versal problem runs in quasi-polynomial time |V |No(log N), where N is the com-
bined input and output size N = |G| + |Tr(G)|. Several quasi-polynomial time
algorithms with some other desirable properties also exist [8,16,18,33]. While it
is still open whether the problem can be solved in polynomial time for arbi-
trary hypergraphs, polynomial time algorithms exist for several classes of hyper-
graphs, e.g. hypergraphs of bounded edge-size [4,12], of bounded-degree [11,13],
of bounded-edge intersections [4], of bounded conformality [4], of bounded
treewidth [13], and read-once (exact) hypergraphs [15].

Almost all previously known polynomial-time algorithms for the the hyper-
graph transversal problem assume that at least one of the hypergraphs G or
Tr(G) either (i) has bounded size min{|G|, |Tr(G)|} ≤ k, (ii) is k-conformal1, or
(iii) is k-degenerate2, for a constant k. One can verify that all the special classes
mentioned above belong to one of these categories.

In this paper, we shall extend these polynomially solvable classes to include
hypergraphs arising in geometry. More precisely, we consider the following prob-
lems Hit(V ,F):

– Hitting hyper-rectangles by points: Given a finite set of points V ⊆
R

d and a finite collection F of axis-parallel hyper-rectangles (also called
orthotopes or boxes) in R

d, find all minimal sets of points from V that hit
every hyper-rectangle in F ;

– Hitting (Stabbing) connected objects by axis-parallel hyperplanes:
Given a finite set of axis-parallel hyperplanes V ⊆ R

d and a finite collection
F of connected objects in R

d, find all minimal sets of hyperplanes from V
that stab every object in F ;

– Hitting half-spaces by points: Given a finite set of points V ⊆ R
d and a

finite collection F of half-spaces in R
d, find all minimal sets of points from

V that hit every half-space in F .

We show that the first two problems can be solved in incremental polynomial
time, if the dimension d of the underlying space is bounded, and that the last
problem can be solved in incremental polynomial time, if d = 2.

To construct efficient algorithms for the above problems, we first propose a
general framework to solve the hypergraph transversal problem, which can be
regarded as a generalization of the algorithms given in [13,28], and apply it to the
above problems. We remark that when we apply the framework to the problem
of hitting half-planes by points, we need to run a backtracking algorithm at
the base level of the recursion in the framework. While such an algorithm is
inefficient in general, as it requires solving an NP-hard problem as a subroutine,
we exploit the geometry to show that it can be made to work in the case of
hitting half-planes by points.
1 A hypergraph is said to be k-conformal [2] if any set X ⊆ V is contained in a

hyperedge of G whenever each subset of X of cardinality at most k is contained in
a hyperedge of G.

2 A hypergraph G is said to be k-degenerate [13] if for every set X ⊆ V , the minimum
degree of a vertex in the induced hypergraph GX on X is at most k.



Output-Sensitive Algorithms for Enumerating Minimal Transversals 145

We also consider the covering versions Cover(V ,F) (= Hit(F ,V)) of the
above problems. For example, we consider the problem of finding all minimal
sets of hyper-rectangles from F that hit all points in V . We propose incremen-
tal polynomial-time algorithms for finding all minimal covers for the first two
problems, by exploiting the fact that the geometric hypergraphs arising in the
first two problems have the bounded Helly property [2], and show that minimal
covers for the last problem can be generated in incremental polynomial time, by
using geometric duality from the corresponding result for minimal hitting sets.

The enumeration of minimal geometric hitting sets, as the ones described
above, arises in various areas such as computational geometry, machine learn-
ing, and data mining [14]. Moreover, our efficient enumeration algorithm might
be useful in developing exact algorithms, fixed-parameter tractable algorithms,
and polynomial-time approximation schemes for the corresponding optimization
problems (see, e.g., [22]).

The rest of this paper is organized as follows. In the next section, we give a
general framework for finding all minimal hitting sets for a given hypergraph.
In Sections 3, 4 and 5, we apply this framework to hitting hyper-rectangles
by points, stabbing connected objects by axis-parallel hyperplanes, and hitting
half-planes by points.

2 A Framework for Computing Transversal Hypergraphs

Let G ⊆ 2V be a hypergraph, and σ be an ordering of vertices in V . For
i = 1, . . . , n, let Gi be the sub-hypergraphs of G defined as Gi = {G ∈ G :
G ⊆ {vσ(1), . . . , vσ(i)}}. Let us denote the set of hyperedges in Gi which are
not contained in Gi−1 as Δi, i. e., Δi = Gi \ Gi−1 and for a set X ⊆ V , let
Δi[X ] = {G ∈ Δi : G ∩ X = ∅}. Given a hypergraph G, Eiter et.al. [13]
describe an algorithm to generate Tr(G), the hypergraph consisting of all min-
imal transversals of G. The algorithm proceeds inductively, for i = 1, . . . , n, by
extending each minimal transversal X in Tr(Gi−1) to a set in Tr(Gi) by finding
Tr(Δi[X ]), each set of which is combined with X to obtain a minimal transversal
of Gi. In Figure 1, we present a generic algorithm which recursively reduces the
problem of finding Tr(Gi) into the smaller subproblems of computing Tr(Δi[X ])
for i ∈ [n] and X ∈ Tr(Gi−1).

The algorithm uses a sequence of permutations Σ = σ1 . . . σk as a part of an
input. When called initially as DUALIZE-INC(G, Σ, 1), it dualizes G by using
the above mentioned approach where σj is used for partitioning in the j-th level
of the recursion. The operator minimal(H) in Step 9 returns the hypergraph
obtained from a given hypergarph H by removing the non-minimal edges.

After k levels of recursion, procedure DUALIZE-SIMPLE() is used directly
to solve the problem. As we will see in the later sections, for several classes of
geometric hypergraphs, the subproblem after k levels can be solved easily, where
k depends only on the dimension of the geometric space under consideration.

As an illustration, consider the problem of dualizing an interval hypergraph:
Let v1, v2, . . . , vn be a set of points on the line ordered from left to right, and



146 K. Elbassioni, K. Makino, and I. Rauf

Procedure DUALIZE-INC(G, Σ, j):
Input: A hypergraph G over n = |V (G)| vertices, an index j (≤ k)

and a sequence Σ = (σ1, . . . , σk) of permutations of vertices in V (G).
Output: The hypergraph Gd.

1. G0 ← ∅, X0 ← {∅}, Xi ← ∅ ∀i = 1, . . . , n
2. for i = 1, . . . , n do
3. Let Gi ← {G ∈ G : G ⊆ {vσj (1), . . . , vσj(i)}}
4. for each X ∈ Xi−1 do
5. Let Δi[X] = {G ∈ Gi \ Gi−1 : G ∩X = ∅}
6. if j ≥ k or |Δi[X]| ≤ 1 then
7. A← DUALIZE-SIMPLE(Δi[X])
8. else A ← DUALIZE-INC(Δi[X], Σ, j + 1)
9. Xi ← minimal (Xi

⋃ {X ∪ Y : Y ∈ A})
10. return Xn

Fig. 1. A generic sequential method for finding minimal transversals

let G ⊆ 2V be a Sperner3 hypergraph, in which each edge G ∈ G consists of
consecutive points from V . Denote by σ the left-to-right ordering of the ver-
tices, and consider the execution of the algorithm when called as DUALIZE-
INC(G, Σ, 1) with Σ = σ. The algorithm incrementally dualizes the hypergraphs
Gi = {G ∈ G : G ⊆ {v1, . . . , vi}} for i = 1 . . . n. Note that the subproblem
Δi = Gi \ Gi−1 contains at most one edge because of our assumption that G is
Sperner and thus can be solved trivially.

The correctness of the procedure follows from the following statement.

Proposition 1 ([13]). For i = 1, . . . , n, Tr(Gi) = minimal({X ∪ Y : X ∈
Tr(Gi−1), Y ∈ Tr(Δi[X ])}).

It is shown in [13] that the intermediate hypergraphs obtained in the algorithm
never get too large, more specifically, |Tr(Δi[X ])| ≤ |Tr(Gi)| ≤ |Tr(G)|. Conse-
quently, we get the following bound on the worst-case running time.

Theorem 1. Let G ⊆ 2V be a hypergraph over vertex set V and Σ = (σ1, . . . , σk)
be a sequence of permutation functions of vertices of G. Then the procedure
DUALIZE-INC(G, Σ, 1) computes Tr(G) in O((nm′)k(mm′ + T )) time, where
n = |V |, m = |G|, m′ = |Tr(G)| and T is time required by DUALIZE-SIMPLE
in each k-th level recursion of the procedure.

3 Points and Hyper-rectangles in R
d

Let V be a set of points and F be a collection of axis-parallel hyper-rectangles
in R

d. In this section, we consider the problem of enumerating all minimal hit-
ting sets for F from V as well as the related problem of enumerating all minimal

3 A hypergraph H is said to be Sperner if no hyperedge of H contains another.



Output-Sensitive Algorithms for Enumerating Minimal Transversals 147

vi vi+1
v

i′
v

i′−1

vi vi+1
v

i′
v

i′−1

Fig. 2. An example of points and rectangles in R
2. Left: The set Δi consists of all

rectangles that contain vi and other points only from the subset {v1, . . . , vi}. Right:
The subproblem in the recursive call considers all rectangles which contain both vi and
vi′ and no points from the strict left of vi′ nor from the strict right of vi.

covers of V by F . Let G ⊆ 2V be the hypergraph defined by V = V and G =
G(V ,F) def= {{v ∈ V : v ∩ F �= ∅} : F ∈ F}. Then the transposed hypergraph
GT ⊆ 2F is defined as GT = G(F ,V). Clearly, a minimal set of points from
V hitting every hyper-rectangle in F corresponds to a minimal hitting set of
G, while a minimal set of hyper-rectangles from F covering every point in V
corresponds to a minimal hitting set for GT . For a hypergraph G, we will denote
by V (G) the vertex set of G.

3.1 Minimal Hitting Sets

To illustrate the idea, let us first consider the problem in R
2. The algorithm is

based on the framework presented in Figure 1. We order the points in V from left
to right and if their x-coordinates are equal, we sort them from bottom to top. Let
v1, v2, . . . , vn be the corresponding ordering of the vertices of the hypergraph G ⊆
2V , defined above. Note that because of our ordering of the vertices, no rectangle
in the hypergraphGi contains any point strictly to the right of vi and by definition,
every rectangle in Δi ⊆ Gi contains vi.

Consider the subproblem of dualizing Δi[X ] for each i ∈ [n] and X ∈ Tr(Gi−1)
and let the primed variables denote the corresponding variables in the recursive
call of the algorithm. We order the vertices of G′ = Δi[X ] in the reverse order
i. e., from right to left, breaking ties by sorting them from top to bottom.

Consider now a further recursive call of the procedure on a hypergraph G′′ =
Δ′

i′ [X
′], where i′ ∈ {1, . . . , |V (G′)|} and X ′ ∈ Tr(G′

i′−1). The crucial observation
is that each rectangle corresponding to an edge in the hypergraph Δ′

i′ [X
′] con-

tains both the points vi and vi′ , and because of our ordering, no rectangle in the
subproblem contains a point from the left of vi′ nor from the right of vi (see Fig-
ure 2). Hence, as can be easily seen, only the y-coordinates matter when deciding
whether a given point v ∈ {vi′ . . . vi} intersects a rectangle from Δ′

i′ [X
′]. So we

can project the subproblem Δ′
i′ [X

′] on the y-axis and reduce it to a problem
of dualizing an interval hypergraph, which can be solved in polynomial time, as
seen in Section 2.

The above algorithm can be extended to higher dimensions in an obvious man-
ner. In dimension d, we use the orderings Σ = (σ1, . . . , σ2d−2), where σi is the lex-
icographical ordering of the points using their last d−	 i−1

2 
 coordinates. Moreover,
we define the ordering σi to be increasing when i is odd and decreasing



148 K. Elbassioni, K. Makino, and I. Rauf

otherwise. To generate all minimal transversals of G, we call DUALIZE-INC
(G, Σ, 1), and use the dualization procedure for interval hypergraphs in place of
DUALIZE-SIMPLE(). After the second recursive call the subproblems we obtain
contain all hyper-rectangles that intersect two given points, say vi′ and vi with vi′

being lexicographically smaller than vi, and have the property that they contain no
point that is lexicographically smaller then vi′ or lexicographically greater than vi.
Hence after two levels of recursion, the first coordinate of the points can be ignored
and thus the problem reduces to d − 1-dimensional subproblems.

3.2 Minimal Covers

As mentioned above, to generate all minimal covers of the given points V by
hyper-rectangles from F , we consider the transposed hypergraph GT (V ,F) and
compute its transversal hypergraph.

Halman [21] showed that any hypergraph G = G(V ,F) defined by a set of
hyper-rectangles F and a set of points V in R

d is 2d-Helly, that is, for any G′ ⊆ G,
the following holds: if every 2d edges in G′ have a non-empty intersection then all
edges in G′ have a non-empty intersection. Thus the transposed hypergraph GT is
2d-conformal (cf. [2]), and hence can be dualized by the algorithm of Khachiyan
et al. [27] in incremental polynomial time.

Theorem 2. Both problems Hit(V ,F) and Cover(V ,F) can be solved in time
O((|V||F|k)O(d)), when V and F are, respectively, a set of points and a set of
axis-parallel hyper-rectangles in R

d, and k is the size of the output.

4 Stabbing Connected Objects in R
d

4.1 Minimal Stabbing Sets

Given a collection of connected objects F and a set of axis-parallel hyperplanes
V , both in R

d, we are interested in the problem of finding all minimal sets of
hyperplanes from V such that every object in F is stabbed by at least one of the
hyperplanes in the set. Let G = G(V ,F) be the corresponding hypergraph with
vertex set V and each object F ∈ F defining an edge consisting of all hyperplanes
from V which intersect F .

We consider the simple case first, that is, when all hyperplanes in V are parallel
to each other. This turns out to be equivalent to the interval hypergraph case
since we can project the problem on any line L that is perpendicular to the
hyperplanes in V . The projection maps hyperplanes in V into points on L, and
because of the connectivity, the objects in F are mapped to intervals on L.

More generally, for d > 1, assuming there is at least one hyperplane per-
pendicular to every principal axis, there are exactly d groups of axis-parallel
hyperplanes in R

d such that every group contains hyperplanes that are parallel
to one principal axis. This assumption can be made without loss of generality,
since if there is no hyperplane along a particular principal axis, say z, then we



Output-Sensitive Algorithms for Enumerating Minimal Transversals 149

v4

v3
v2

v5

v6 v7 v9 v10v8

v1

vi−1 vi+1vi

Fig. 3. Left: An example of lines and objects in R
2 and a valid ordering of lines. Right:

The set Δi[X] consists of new objects that intersect vi and only lines from the subset
{v1, . . . , vi−1}.

can orthogonally project all other hyperplanes and objects on the hyperplane
z = 0 and reduce the dimension of the problem by one.

The dual of G can be found incrementally by following the algorithm of Fig-
ure 1. Fixing the order of principal axes, we order the hyperplanes sequentially:
starting with hyperplanes perpendicular to the first principal axis, sorted in in-
creasing order, we continue with the hyperplanes perpendicular to the second
principal axis and so on. For an example in R

2, the set of lines {x = 1, y =
−1, x = 0, y = 1} would be ordered as x = 0, x = 1, y = −1, y = 1 assuming
that x-axis comes before y-axis in our fixed ordering of principal axes. Let σ be
an ordering of hyperplanes in G as defined above and let jG0 < jG1 < . . . < jGd
be indices with jG0 = 0 and jGd = n, such that the hyperplanes in the group
σ(jGr−1 + 1), . . . , σ(jGr ) are parallel to each other and perpendicular to r-th prin-
cipal axis for r ∈ [d].

Consider the subproblem of dualizing Gi for i = 1, . . . , n as defined in the
algorithm, where Gi contains only those edges which form subsets of vertices from
vσ(1), . . . , vσ(i). As discussed above, the problem reduces to dualizing an interval
hypergraph when 1 ≤ i ≤ jG1 . Now consider the case when jGr−1 < i ≤ jGr for
r ∈ [d]. Consider the subproblem of dualizing G′ = Δi[X ] for X ∈ Tr(Gi−1), and
let the primed variables denote the corresponding variables in the recursive call
of the algorithm. Note that the subproblem for Δi[X ] contains all objects that
do not intersect any hyperplane “above” vσ(i). Let σ′ be an ordering of vertices of
G′ defined similarly as σ for the hyperplanes perpendicular to first r−1 principal
axes except the r-th group of hyperplanes which are sorted in decreasing order.
As before, let jG

′
0 < . . . < jG

′
r be indices with jG

′
0 = 0 and jG

′
r = n′, where

n′ = |V (G′)| and the hyperplanes in the group σ′(jG
′

r′−1 + 1), . . . , σ′(jG
′

r′ ) are
parallel to each other and perpendicular to r′-th principal axis for r′ ∈ [r].

In the recursive call, we use σ′ as our ordering and dualize G′ incrementally
by considering G′

i′ for 1 < i′ ≤ i. Note that for i′ ≤ jG
′

r−1, V (G′
i′ ) ⊆ V (Gi−1) and

hence the subproblem G′
i′ is already taken care of when Tr(Gi−1) is computed4.

Alternatively, when jG
′

r−1 < i′ ≤ i then similar to the case in Section 3.1, the
subproblems Δ′

i′ we get contain all objects that intersect both vi and vi′ with

4 Note that the set of all minimal transversals of the sub-hypergraph HS induced by
vertices in S is equivalent to the set Tr(HS) = minimal({H ∩ S : H ∈ Tr(H)}).



150 K. Elbassioni, K. Makino, and I. Rauf

the property that no hyperplane above vi or below vi′ stabs any of them. Note
that both {vi} and {vi′} as well as all hyperplanes between them are trivially
hitting sets for the subproblems for hypergraphs of the form Δ′

i′ [·]. The other
hitting sets can be found recursively by observing that they do not involve any of
the hyperplanes parallel to vi and vi′ . Thus we are able to reduce the dimension
of the problem by 1 after two levels of recursion.

In summary, to generate Tr(G), we call DUALIZE-INC(G, Σ, 1) with Σ =
(σ1, σ2, . . . , σ2d−1) and a trivial dualization procedure for DUALIZE-SIMPLE().
For odd r, 1 ≤ r < 2d, the ordering σr sorts each group of parallel hyperplanes in
increasing order (of the points of intersection with the common orthogonal line),
whereas for even r, 1 < r < 2d, σr is defined by sorting each group of parallel
hyperplanes in increasing order except the last group, which is sorted in decreas-
ing order (of the points of intersection with the common orthogonal line). As we
noted above, at every r-th level of recursion for even r, the dual hypergraphs
Tr(Gi) such that vσ(i) does not belong to the last group of hyperplanes, can be
easily computed from the corresponding dual hypergraph in the recursion level
r− 1. This observation can be used to avoid redundant computations by solving
those subproblems directly instead of following the algorithm of Figure 1.

4.2 Minimal Covers

We use again the algorithm of [27] for dualizing conformal hypergraphs.

Lemma 1. Let F be the set of connected objects and V be set of axis-parallel
hyperplanes in R

d. Then the corresponding hypergraph G(F ,V) is 2d-Helly.

Theorem 3. Both problems Hit(V ,F) and Cover(V ,F) can be solved in time
O((|V||F|k)O(d)), when V and F are, respectively, a set of axis-parallel hyper-
planes and a set of connected objects in R

d, and k is the size of the output.

5 Hitting and Covering with Half-Planes

In this section we consider the case when the hypergraph G = G(V ,F) is defined
by a finite set of points V ⊆ R

2 and a set of half-planes F . In the following, we
will refer to the elements of V as points or vertices interchangeably.

5.1 Minimal Hitting Sets

Let Σ = (σ′
1, σ

′′
1 , σ′

2, σ
′′
2 ), where for i ∈ {1, 2}, σ′

i and σ′′
i are respectively the

ascending and descending orderings of the points in V along the ith coordinate.
We call the procedure DUALIZE-INC(G, Σ, 1).

When the procedure reaches the base level, we end-up with an instance on
a hypergraph G′ = G(V ′,F ′) in which all points V lie inside a rectangle R, the
boundary of which contains four (not necessarily distinct) points p1, p2, p3, p4 ∈
V , one on each side of R, and such that for each F ∈ F ′, F ⊇ {p1, p2, p3, p4}.
Consider the polygon connecting these four points: it partitions the rectangle R



Output-Sensitive Algorithms for Enumerating Minimal Transversals 151

p4

p1

p2

A4

A1 A2

A3

p3

B

i

k
j

F ′
F

Fig. 4. Left: All hyperplanes in the subproblem contain the points {p1, p2, p3, p4}.
Right: One of the subproblems consists of all points in the right-angle triangle and all
halfplanes containing the longest side of it.

into 5 regions (some possibly empty); see Figure 4, Left. Let B ⊆ V ′ be the set
of points inside the polygon and A1, A2, A3, A4 be the sets of points inside the
other four regions. Note that, without loss of generality, we can assume that any
line defining a half-plane in F ′ intersects exactly one of the 4 regions (otherwise,
there is only one hyperplane and Tr(G′) = {{v} : v ∈ V ′}). For i = 1, 2, 3, 4,
let Fi be the half-planes that hit the ith region, and Hi = G(Ai,Fi) be the
corresponding hypergraph.

Lemma 2. Tr(G′) = minimal (T ′∪T ′′∪
⋃4

i=1 Tr(Hi)) where T ′ = {{v} : v ∈ B}
and T ′′ = {{v, v′} : v ∈ Ai, v′ ∈ Aj , i �= j and {v, v′} is transversal to G′}.

5.2 Backtracking Method

Given a hypergraph H ⊆ 2V and a subset S ⊆ V of vertices, [6] gave a criterion
to decide if S is a sub-transversal of G, i. e., if there is a minimal transversal
T ∈ Tr(G) such that T ⊇ S. In general, this is an NP-hard problem even if G is
a graph (see [4]). However, if |S| is bounded by a constant, or if the hypergraph
is read-once [15], then such a check can be done in polynomial time (see [6]).
Here we give another instance in which such a check can also be performed in
polynomial time.

For a subset S ⊆ V , and a vertex v ∈ S, let Hv(S) = {H ∈ H | H ∩S = {v}}.
A selection of |S| hyperedges {Hv ∈ Hv(S) | v ∈ S} is called covering if there
exists a hyperedge H ∈ H0 = {H ∈ H : H ∩ S = ∅} such that H ⊆

⋃
v∈S Hv.

Proposition 2 ([6]). A non-empty subset S ⊆ V is a sub-transversal for H ⊆
2V if and only if there is a non-covering selection {Hv ∈ Hv(S) | v ∈ S} for S.

The algorithm is given in Figure 5, and is based on the standard backtracking
technique for enumeration (see e.g. [32,15]). The procedure is called initially with
S1 = S2 = ∅ and i = 1. It is easy to verify that the algorithm outputs all elements
of the transversal hypergraph Tr(H), without repetition (and in lexicographic
ordering according to the input permutation σ). Since the algorithm essentially
builds a backtracking tree whose leaves are the minimal transversals of G, the
time required to produce each new minimal transversal is bounded by the depth
of the tree (at most min{|V |, |H|}) times the maximum time required at each
node. The efficiency of such procedure depends on being able to perform the test
in Step 3, which is addressed in the next subsection.



152 K. Elbassioni, K. Makino, and I. Rauf

Procedure DUALIZE-BT(H, σ, i, S):
Input: A hypergraph H ⊆ 2V , an ordering σ on V ,

an integer i ∈ {1, . . . , |V |} and a subset S ⊆ σ([i− 1])
def
= {σ(j) : j ∈ [i− 1]}

Output: The set {T ∈ Tr(H) : T ⊇ S, T ∩ (σ([i− 1]) \ S) = ∅}
1. if S ∈ Tr(H) then
2. output S and return
3. if ∃T ∈ Tr(H) s.t. S ∪ {σ(i)} ⊆ T and (σ([i− 1]) \ S) ∩ T = ∅ then
4. DUALIZE-BT(H, σ, i + 1, S ∪ {σ(i)})
5. DUALIZE-BT(H, σ, i + 1, S)

Fig. 5. The backtracking method for finding minimal transversals

5.3 Solving the Special Instance

Without loss of generality we concentrate on finding Tr(H1), where H1 is the
hypergraph defined in Section 5.1. The other 3 sets of transversals can be found
similarly. In other words, we may assume that all points lie inside a right-angle
triangle of which the hyperplanes contain the longest side (see Figure 4, Right).

We use the backtracking method with σ being the following lexicographic
order of the points: if p = (p1, p2) and q = (q1, q2) then p ≺σ q if and only
if p1 < q1 or p1 = q1 and p2 < q2. Without loss of generality, we assume
V (H1) = {1, . . . , n} and reorder the points such that they are numbered from 1
to n according to σ, i. e., assume that σ is the identity permutation.

Now we show that the sub-transversal test in Step 3 of the backtracking
procedure in Figure 5 can be performed in polynomial time. Given i ∈ [n] and
S ⊆ [i − 1], we would like to check if

∃T ∈ Tr(H1) such that S ∪ {i} ⊆ T and ([i − 1] \ S) ∩ T = ∅. (1)

Lemma 3. Fix i ∈ [n] and let S ⊆ [i − 1] be a sub-transversal of H1. Suppose
that F, F ′ ∈ H1 satisfy: F ∩ (S ∪ {i}) = {j} for j �= i and F ′ ∩ (S ∪ {i}) = {i}.
Then F \ [i − 1] ⊆ H ′.

Proof. If there is a point with index k ∈ F \ ([i − 1] ∪ F ′) then k comes before
i with respect to the first coordinate (see Figure 4, Right), in contradiction to
the fact that we process the points according to the order imposed by σ. ��
Now the sub-transversal criterion of Proposition 2 reduces to a simple check.

Lemma 4. Given i ∈ [n] and S ⊆ [i − 1]. Then (1) holds if and only if there
exists F ∈ H1 such that F ∩ (S ∪ {i}) = {i} and for all F ′ ∈ H1 for which
F ′ ∩ (S ∪ {i}) = ∅, we have (F ′ \ [i]) \ (F \ [i]) �= ∅.

Proof. We apply the sub-transversal criterion for S∪{i} in the restricted hyper-
graph H′

1 = {H \ ([i−1]\S) : H ∈ H1}. By Proposition 2, (1) holds if and only
if there exists F1, . . . , Fi ∈ H1 such that Fj ∩ (S ∪ {i}) = {j}, for j = 1, . . . , i,
and (F ′ \ [i−1]) �⊆

⋃i
j=1(Fj \ [i−1]) for all F ′ ∈ H1 such that F ′∩ (S∪{i}) = ∅.

By Lemma 3, the union
⋃i

j=1(Fj \ [i − 1]) is equal to Fi \ [i − 1]. ��



Output-Sensitive Algorithms for Enumerating Minimal Transversals 153

5.4 Minimal Covers

By geometric duality (see e.g. [10], Chapter 8), the problem of finding minimal
set covers reduces to finding all minimal hitting sets. Indeed, we may assume by
rotating the given instance if necessary that all points are in general position. If
we use the mapping (p1, p2) �→ y = p1x + p2 that maps the point p = (p1, p2)
in the original space to the line {(x, y) : y = p1x + p2}, then one can easily see
that minimal set covers in one space correspond to minimal hitting sets in the
other space and vice versa.

Theorem 4. Both problems Hit(V ,F) and Cover(V ,F) can be solved in time
O((|V||F|k)O(1)), when V and F are, respectively, a set of points and a set of
half-planes in R

2, and k is the size of the output.

References

1. Anthony, M., Biggs, N.: Computational learning theory: an introduction. Cam-
bridge University Press, New York (1992)

2. Berge, C.: Hypergraphs. Elsevier, Amsterdam (1989)
3. Bioch, J.C., Ibaraki, T.: Complexity of identification and dualization of positive

boolean functions. Information and Computation 123(1), 50–63 (1995)
4. Boros, E., Elbassioni, K., Gurvich, V., Khachiyan, L.: Generating maximal inde-

pendent sets for hypergraphs with bounded edge-intersections. In: Farach-Colton,
M. (ed.) LATIN 2004. LNCS, vol. 2976, pp. 488–498. Springer, Heidelberg (2004)

5. Boros, E., Elbassioni, K., Gurvich, V., Khachiyan, L., Makino, K.: Dual-bounded
generating problems: All minimal integer solutions for a monotone system of linear
inequalities. SIAM J. Computing 31(5), 1624–1643 (2002)

6. Boros, E., Gurvich, V., Hammer, P.L.: Dual subimplicants of positive boolean
functions. Optim. Methods Softw. 10, 147–156 (1998)

7. Boros, E., Gurvich, V., Khachiyan, L., Makino, K.: On the complexity of generat-
ing maximal frequent and minimal infrequent sets. In: Alt, H., Ferreira, A. (eds.)
STACS 2002. LNCS, vol. 2285, pp. 133–141. Springer, Heidelberg (2002)

8. Boros, E., Makino, K.: A fast and simple parallel algorithm for the monotone
duality problem. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas,
S., Thomas, W. (eds.) ICALP 2009. Part I. LNCS, vol. 5555, pp. 183–194. Springer,
Heidelberg (2009)

9. Colbourn, C.J.: The Combinatorics of Network Reliability. Oxford University
Press, NY (1987)

10. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational
Geometry, Algorithms and Applications. Springer, Heidelberg (1997)

11. Domingo, C., Mishra, N., Pitt, L.: Efficient read-restricted monotone cnf/dnf du-
alization by learning with membership queries. Machine Learning 37(1), 89–110
(1999)

12. Eiter, T., Gottlob, G.: Identifying the minimal transversals of a hypergraph and
related problems. SIAM J. Computing 24(6), 1278–1304 (1995)

13. Eiter, T., Gottlob, G., Makino, K.: New results on monotone dualization and gen-
erating hypergraph transversals. SIAM J. Computing 32(2), 514–537 (2003)

14. Eiter, T., Makino, K., Gottlob, G.: Computational aspects of monotone dualiza-
tion: A brief survey. Discrete Applied Mathematics 156(11), 2035–2049 (2008)



154 K. Elbassioni, K. Makino, and I. Rauf

15. Eiter, T.: Exact transversal hypergraphs and application to Boolean μ-functions.
Journal of Symbolic Computation 17(3), 215–225 (1994)

16. Elbassioni, K.M.: On the complexity of the multiplication method for mono-
tone CNF/DNF dualization. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS,
vol. 4168, pp. 340–351. Springer, Heidelberg (2006)

17. Fredman, M.L., Khachiyan, L.: On the complexity of dualization of monotone
disjunctive normal forms. Journal of Algorithms 21, 618–628 (1996)

18. Gaur, D.R., Krishnamurti, R.: Average case self-duality of monotone boolean func-
tions. In: Canadian AI 2004, pp. 322–338 (2004)

19. Gottlob, G.: Hypergraph transversals. In: Seipel, D., Turull-Torres, J.M.a. (eds.)
FoIKS 2004. LNCS, vol. 2942, pp. 1–5. Springer, Heidelberg (2004)

20. Gunopulos, D., Mannila, H., Khardon, R., Toivonen, H.: Data mining, hypergraph
transversals, and machine learning (extended abstract). In: PODS 1997 (1997)

21. Halman, N.: On the power of discrete and of lexicographic Helly-type theorems.
In: FOCS 2004, pp. 463–472 (2004)

22. Hüffner, F., Niedermeier, R., Wernicke, S.: Techniques for practical fixed-parameter
algorithms. Comput. J. 51(1), 7–25 (2008)

23. Ibaraki, T., Kameda, T.: A theory of coteries: Mutual exclusion in distributed
systems. IEEE Trans. on Parallel and Distributed Systems 4(7), 779–794 (1993)

24. Kavvadias, D.J., Papadimitriou, C.H., Sideri, M.: On horn envelopes and hyper-
graph transversals. In: Ng, K.W., Balasubramanian, N.V., Raghavan, P., Chin,
F.Y.L. (eds.) ISAAC 1993. LNCS, vol. 762, pp. 399–405. Springer, Heidelberg
(1993)

25. Khachiyan, L.: Transversal hypergraphs and families of polyhedral cones. In: Ad-
vances in Convex Analysis and Global Optimization, honoring the memory of K.
Carathéodory, pp. 105–118. Kluwer, Dordrecht (2000)

26. Khachiyan, L., Boros, E., Borys, K., Elbassioni, K., Gurvich, V., Makino, K.: Enu-
merating spanning and connected subsets in graphs and matroids. In: Azar, Y.,
Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 444–455. Springer, Heidelberg
(2006)

27. Khachiyan, L., Boros, E., Elbassioni, K., Gurvich, V.: A global parallel algorithm
for the hypergraph transversal problem. Information Processing Letters 101(4),
148–155 (2007)

28. Lawler, E., Lenstra, J.K., Rinnooy Kan, A.H.G.: Generating all maximal indepen-
dent sets: NP-hardness and polynomial-time algorithms. SIAM J. Computing 9,
558–565 (1980)

29. Lovász, L.: Combinatorial optimization: some problems and trends. DIMACS Tech-
nical Report 92-53, Rutgers University (1992)

30. Mannila, H., Räihä, K.J.: Design by example: An application of armstrong rela-
tions. Journal of Computer and System Sciences 33(2), 126–141 (1986)

31. Papadimitriou, C.: NP-completeness: A retrospective. In: Degano, P., Gorrieri, R.,
Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256. Springer, Heidel-
berg (1997)

32. Read, R.C., Tarjan, R.E.: Bounds on backtrack algorithms for listing cycles, paths,
and spanning trees. Networks 5, 237–252 (1975)

33. Tamaki, H.: Space-efficient enumeration of minimal transversals of a hypergraph.
Technical Report IPSJ-AL 75 (2000)


	Output-Sensitive Algorithms for Enumerating Minimal Transversals for Some Geometric Hypergraphs
	Introduction
	A Framework for Computing Transversal Hypergraphs
	Points and Hyper-rectangles in $\RR^d$
	Minimal Hitting Sets
	Minimal Covers

	Stabbing Connected Objects in $\RR^d$
	Minimal Stabbing Sets
	Minimal Covers

	Hitting and Covering with Half-Planes
	Minimal Hitting Sets
	Backtracking Method
	Solving the Special Instance
	Minimal Covers




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




