

Lecture Notes in Computer Science 5757
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK

Josef Kittler, UK

Alfred Kobsa, USA

John C. Mitchell, USA

Oscar Nierstrasz, Switzerland

Bernhard Steffen, Germany

Demetri Terzopoulos, USA

Gerhard Weikum, Germany

Takeo Kanade, USA

Jon M. Kleinberg, USA

Friedemann Mattern, Switzerland

Moni Naor, Israel

C. Pandu Rangan, India

Madhu Sudan, USA

Doug Tygar, USA

Advanced Research in Computing and Software Science

Subline of Lectures Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, University of Freiburg, Germany

Benjamin C. Pierce, University of Pennsylvania, USA

Bernhard Steffen, University of Dortmund, Germany

Madhu Sudan, Massachusetts Institute of Technology, MA, USA

Deng Xiaotie, City University of Hong Kong

Jeannette M. Wing, Carnegie Mellon University, Pittsburgh, PA, USA

Amos Fiat Peter Sanders (Eds.)

Algorithms -
ESA 2009
17th Annual European Symposium
Copenhagen, Denmark, September 7-9, 2009
Proceedings

13

Volume Editors

Amos Fiat
Tel Aviv University, School of Computer Science
Tel Aviv, Israel
E-mail: fiat@tau.ac.il

Peter Sanders
Universität Karlsruhe (TH), Fakultät für Informatik
Am Fasanengarten 5, 76131 Karlsruhe, Germany
E-mail: sanders@ira.uka.de

Library of Congress Control Number: 2009933188

CR Subject Classification (1998): F.2, G.1, G.2, I.1, E.5, E.1

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-642-04127-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-04127-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12747795 06/3180 5 4 3 2 1 0

Preface

This volume contains the papers presented at ESA 2009: The 17th Annual Eu-
ropean Symposium on Algorithms, September 7–9, 2009. ESA has been held
annually since 1993, and seeks to cover both theoretical and engineering aspects
of algorithms. The authors were asked to classify their paper under one or more
categories as described in Fig. 1.

Since 2001, ESA has been the core of the larger ALGO conference, which
typically includes several satellite conferences. ALGO 2009 was held at the IT
University of Copenhagen, Denmark. The five members of the ALGO 2009 Or-
ganizing Committee were chaired by Thore Husfeldt.

The ESA submission deadline was April 12, Easter Sunday. This was clearly
an error and we offer profuse apologies for this mistake. Albeit no excuse, the
hard constraints we faced were (a) ICALP notification, April 6, and (b) ESA
in Copenhagen, September 7. Between these two endpoints we needed to design
a schedule that allowed modifying ICALP rejections for resubmission (1 week),
Program Committee deliberations (7 weeks), preparing final versions (4 weeks),
and, to prepare, publish, and transport the proceedings (9 weeks).

ESA 2009 had 272 submissions of which 14 were withdrawn over time. Of the
remaining 222 submissions to Track A (Design and Analysis), 56 were accepted.
Of the remaining 36 submissions to Track B (Engineering and Applications), 10
were accepted. This gives an acceptance rate of slightly under 25%.

Authors were affiliated with institutions in 41 countries, to wit: Algeria,
Argentina, Australia, Austria, Bangladesh, Belgium, Brazil, Bulgaria, Canada,
Chile, China, Czech Republic, Denmark, Finland, France, Germany, Greece,
Hong Kong, Hungary, Iceland, India, Ireland, Israel, Italy, Japan, Republic of
Korea, The Netherlands, Norway, Poland, Romania, the Russian Federation,
Singapore, Slovakia, Slovenia, Spain, Sweden, Switzerland, Taiwan – Province
of China, Turkey, the United Kingdom, and the United States. Most successful
were authors affiliated with institutions from Chile, Iceland, and Turkey (100 %
acceptance rate).

The program also included three invited talks, “Some Open Questions Re-
lated to Cuckoo Hashing” by Michael Mitzenmacher, “Algorithms Meet Art,
Puzzles, and Magic” by Eric D. Demaine, and “Google’s Auction for TV Ads”
by Noam Nisan.

Following the lead of Claire Mathieu at SODA 2009, ESA 2009 required that
full proofs be given in the appendix. This proved very useful for the review
process.

The Program Committee for Track A had 19 members, the Track B Program
Committee had 14 members. Every submission not withdrawn had at least 3
reviews by members of the Program Committee, aided by 344 external reviewers
(this may include duplicates), overall — 818 individual reviews.

VI Preface

Category Submitted Accepted % acc.

Machine learning 1 0 0 %
Parallel algorithms 1 1 100 %
Quantum computing 2 0 0 %
Hierarchical memories 3 0 0 %
Databases and information retrieval 4 0 0 %
Computational biology 6 1 17 %
Streaming algorithms 7 3 43 %
Distributed computing 8 2 25 %
Pattern matching 9 0 0 %
Data compression 9 3 33 %
Mathematical programming 10 3 30 %
Randomized algorithms 20 6 30 %
Algorithmic game theory 22 6 27 %
On-line algorithms 23 5 22 %
Algorithmic aspects of networks 27 9 33 %
Data structures 30 4 13 %
Parameterized complexity 31 9 29 %
Computational geometry 37 10 27 %
Approximation algorithms 57 17 30 %
Combinatorial optimization 73 16 22 %
Graph algorithms 89 27 30 %

Fig. 1. Self characterization of the 272 submissions, a single paper may belong to
multiple categories

We stand amazed at the great work and outstanding volunteer spirit of the
members of both the Program Committees and the many external reviewers.
Infinite thanks are due to them. Six weeks to review 40 papers seems impossible
yet the reviews clearly show that very well thought out reviews can be produced
in such circumstances (with the right Program Committee).

In striking contrast, the great difficulty of getting timely reviews for journal
publication may be strong evidence that a major paradigm shift is in order.
Given that many conference submissions now require full proofs, perhaps this
suggests new directions for scientific publication.

The European association for theoretical computer science, EATCS, sponsors
a best student paper award at ESA and a best paper award at ESA. A submission
was deemed eligible for the best student paper award if all authors were students;
there were 19 such submissions.

The best student paper award went to Heidi Gebauer for her submission
“Disproof of the Neighborhood Conjecture with Implications to SAT.”

The best paper award went to Christoph Dürr, Flavio Guiñez and Mart́ın
Matamala for their submission “Reconstructing 3-Colored Grids from Horizontal
and Vertical Projections Is NP-Hard.”

Preface VII

\documentstle{lncs}
\addtolength{\textwidth}{2cm}
\addtolength{\oddsidemargin}{-1cm}
\addtolength{\evensidemargin}{-1cm}
\addtolength{\textheight}{1.5cm}
\addtolength{\topmargin}{-0.5cm}

Fig. 2. Random samples of Latex source from camera-ready ESA 2009 papers

Many thanks to Thore and the Organizing Committee, who were extremely
helpful throughout.

The process of producing a program and the proceedings would have been
infinitely more difficult without the EasyChair system and we greatly appreciate
the very commendable efforts by the system developers and supporters.

We humbly suggest that future versions of EasyChair include antivirus de-
fenses. This feature may be useful to counteract the great ingenuity, persever-
ance, and skill of the authors in getting a 30-page paper to fit in 12 pages of
LNCS style (See Fig. 2).

June 2009 Amos Fiat
Peter Sanders

Conference Organization

Program Committee

Design and Analysis Track

Avrim Blum Carnegie Mellon University
Ioannis Caragiannis University of Patras
Debora Donato Yahoo! Research Barcelona
Uriel Feige The Weizmann Institute of Science
Michal Feldman The Hebrew University of Jerusalem
Amos Fiat (Chair) Tel Aviv University
Pierre Fraigniaud CNRS and University Paris Diderot
Klaus Jansen University of Kiel
Rohit Khandekar IBM T.J. Watson Research Center
Alberto Marchetti-Spaccamela Sapienza University of Rome
Adam Meyerson UCLA
Seffi Naor Technion
Ely Porat Bar Ilan University
Piotr Sankowski Sapienza University of Rome and University of

Warsaw
Jǐŕı Sgall Charles University, Prague
Martin Skutella TU Berlin
Angelika Steger ETH Zürich
Uli Wagner ETH Zürich
Gerhard Woeginger TU Eindhoven

Engineering and Applications Track

Tetsuo Asano JAIST, Kanazawa
David Bader Georgia Institute of Technology
Hannah Bast MPI for Informatics, Saarbrücken

and Google, Zürich
Siavash Daneshmand University of Mannheim
Paolo Ferragina University of Pisa
Giuseppe F. Italiano University of Rome, Tor Vergata
Jyrki Katajainen University of Copenhagen
Juha Kärkkäinen University of Helsinki
Rolf Möhring TU Berlin
Tomasz Radzik King’s College, London
Abhiram Ranade IIT Bombay
Knut Reinert FU Berlin
Kunihiko Sadakane National Institute of Informatics, Tokyo
Peter Sanders (Chair) University of Karlsruhe

X Organization

Local Organization

Philip Bille Technical University of Denmark, Copenhagen
Thore Husfeldt (Chair) IT University of Copenhagen and Lund

University
Bengt J. Nilsson Malmö University
Rasmus Pagh IT University of Copenhagen
Nhi Quyen Le IT University of Copenhagen

External Reviewers

Scott Aaronson
Eyal Ackerman
Peyman Afshani
Nir Ailon
Ali Akhavi
Susanne Albers
Noga Alon
Ernst Althaus
Amihood Amir
Fabrizio d’Amore
Aris Anagnostopoulos
Alexandr Andoni
Eric Angel
Itai Ashlagi
Konstantin Avrachenkov
Yossi Azar
Yoram Bachrach
Evripidis Bampis
Nikhil Bansal
Gill Barequet
Luca Becchetti
Wolfgang Bein
Pietro Belotti
Andre Berger
Nicla Bernasconi
Nadja Betzler
Vittorio Bilò
Henrik Björklund
Andreas Bley
Johannes Blömer
Paolo Boldi
Vincenzo Bonifaci
Ilaria Bordino
Endre Boros

Glencora Borradaile
René Brandenberg
Ulrik Brandes
Andreas Brandstädt
Gunnar Brinkmann
Yves Brise
Gerth Stølting Brodal
Hajo Broersma
Niv Buchbinder
Chris Calabro
Saverio Caminiti
Alberto Caprara
Hamish Carr
Marjan Celikik
Ho-Leung Chan
Jessica Chang
Shuchi Chawla
Frederic Chazal
Panagiotis Cheilaris
Steve Chien
Flavio Chierichetti
Markus Chimani
Janka Chlebikova
Tobias Christ
George Christodoulou
Marek Chrobak
Raphael Clifford
Hagai Cohen
Vincent Conitzer
Jacomo Corbo
Graham Cormode
Derek Corneil
Jose Correa
Aaron Cote

David Coudert
Bruno Courcelle
Maxime Crochemore
Marek Cygan
Peter Damaschke
Mayur Datar
Raghavan Dhandapani
Florian Diedrich
Martin Dietzfelbinger
Shahar Dobzinski
Frederic Dorn
Daniel Dressler
Anne-Katrin Emde
Yuval Emek
Matthias Englert
David Eppstein
Amir Epstein
Leah Epstein
Thomas Erlebach
Bruno Escoffier
Angelo Fanelli
Martin Farach-Colton
Dan Feldman
Michael Fellows
Henning Fernau
Jiri Fiala
Felix Fischer
Lisa Fleischer
Rudolf Fleischer
Fedor Fomin
Dimitris Fotakis
Paolo Franciosa
Satoru Fujishige
Stefan Funke

Organization XI

Bernd Gärtner
Iftah Gamzu
Jie Gao
Naveen Garg
Leszek Gasieniec
Michel Goemans
Shayan Oveis Gharan
Arpita Ghosh
Raffaele Giancarlo
Joachim Giesen
Aristides Gionis
Robert Görke
Paul Goldberg
Elazar Goldenberg
Daniel Golovin
Fabrizio Grandoni
Clemens Gröpl
Roberto Grossi
Luca Gugelmann
Antonio Gulĺı
Jiong Guo
Mohammad Taghi

Hajiaghayi
Magnus M. Halldorsson
Danny Halperin
Dan Halperin
Sariel Har-Peled
Tobias Harks
Avinatan Hassidim
Dan Hefetz
Danny Hermelin
Kirsten Hildrum
Wiebke Höhn
Michael Hoffmann
Andreas Holmsen
Stefan Hougardy
Benot Hudson
Falk Hüffner
Thore Husfeldt
Nicole Immorlica
Gabor Ivanyos
Satoru Iwata
Martin Jaggi
Vit Jelinek
Charanjit Jutla

P. Kanellopoulos
Haim Kaplan
Alexis Kaporis
George Karakostas
Nikos Karanikolas
Srinivas Kashyap
Gjergji Kasneci
Matthew J. Katz
Michael Kaufmann
Telikepalli Kavitha
Hans Kellerer
Iordanis Kerenidis
Samir Khuller
Christian Knauer
Sigrid Knust
Stephen Kobourov
Stavros Kolliopoulos
Petr Kolman
Jochen Könemann
Spyros Kontogiannis
Tsvi Kopelowitz
Guy Kortsarz
Ioannis Koutis
Miroslaw Kowaluk
Daniel Kral
Jan Kratochvil
Dieter Kratsch
Stefan Kratsch
Robert Krauthgamer
Sven Krumke
Ariel Kulik
Maria Kyropoulou
Stefan Langerman
Luigi Laura
Van Bang Le
Stefano Leonardi
Asaf Levin
Meital Levy
Moshe Lewenstein
Katrina Ligett
Andrzej Lingas
Nelly Litvak
Daniel Lokshtanov
Shachar Lovett
Hannes Luz

Marco Lübbecke
Veli Mäkinen
Yury Makarychev
Kazuhisa Makino
David F. Manlove
Martin Mares
Evangelos Markakis
Daniel Marx
Ajith Mascarenhas
Jǐŕı Matoušek
Ross McConnell
Andrew McGregor
Aranyak Mehta
Dimitrios Michail
Pauli Miettinen
Vahab Mirrokni
Gianpiero Monaco
Luca Moscardelli
Robin Moser
Hannes Moser
Ahuva Mu’alem
M. Müller-Hannemann
S. Muthukrishnan
Torsten Mütze
Uri Nadav
Viswanath Nagarajan
Moni Naor
Saketh Nath
Gonzalo Navarro
Guyslain Naves
Hani Neuvirth
Kobbi Nissim
Steve Noble
Igor Nor
Simeon Ntafos
Zeev Nutov
Yoshio Okamoto
Svetlana Olonetsky
Hirotaka Ono
Lorenzo Orecchia
Christina Otte
Steve Oudot
Sang-il Oum
Martin Pal
Alessandro Panconesi

XII Organization

Vinayaka Pandit
Ondrej Pangrac
Gyula Pap
Evi Papaioannou
Srinivasan Parthasarathy
Matthias Peinhardt
Eelko Penninkx
Ulrich Pferschy
Todd Phillips
Marcin Pilipczuk
Sylvain Pion
Benny Porat
Roberto Posenato
Lars Prädel
Ariel Procaccia
Kirk Pruhs
Mathieu Raffinot
Deepak Rajan
Christoforos

Raptopoulos
Pasi Rastas
Tobias Rausch
Andreas Razen
Igor Razgon
Oded Regev
Liam Roditty
Adi Rosen
Günter Rote
Amir Rothschild
Thomas Rothvoß
Alan Roytman
Natan Rubin
Srinivasa Rao Satti
Petr Savicky
Gabriel Scalosub

Guido Schäfer
Michael Schapira
Dominik Scheder
Dennis Schieferdecker
Christiane Schmidt
Warren Schudy
Roy Schwartz
Ulrich Schwarz
Ariel Shiftan
Gennady Shmonin
Anastasios Sidiropoulos
René Sitters
Shakhar Smorodinsky
Roberto Solis-Oba
Mauro Sozio
Bettina Speckmann
Frits Spieksma
Paul Spirakis
Reto Spöhel
Milind Sohoni
Anand Srivastav
Rob van Stee
Damien Stehle
Sebastian Stiller
Leen Stougie
Quentin F. Stout
Martin Strauss
S. Sudarshan
Marek Sulovsky
Jukka Suomela
Maxim Sviridenko
Zoya Svitkina
John Talbot
Xuehou Tan
Martin Tancer

Kanat Tangwongsan
Orestis Telelis
Evimaria Terzi
Jukka Teuhola
Torsten Tholey
Henning Thomas
Mikkel Thorup
Jarkko Toivonen
Patrick Traxler
Panayiotis Tsaparas
Dekel Tsur
Torsten Ueckerdt
Antti Ukkonen
Pavel Valtr
Suresh
Venkatasubramanian

Rossano Venturini
Éric Colin de Verdière
José Verschae
Stefan Vigerske
Jan Vondrak
Tjark Vredeveld
Niko Vuokko
David Weese
Matthias Weller
Matthias Westermann
Ryan Williams
Pawel Winter
Mingyu Xiao
Neal Young
Raphael Yuster
Aviv Zohar
Philipp Zumstein
Uri Zwick

Table of Contents

Invited Talk

Some Open Questions Related to Cuckoo Hashing . 1
Michael Mitzenmacher

Trees

Efficient Computation of the Characteristic Polynomial of a Tree and
Related Tasks . 11

Martin Fürer

Improved Approximation Algorithms for Label Cover Problems 23
Moses Charikar, MohammadTaghi Hajiaghayi, and Howard Karloff

A Linear Time Algorithm for L(2, 1)-Labeling of Trees 35
Toru Hasunuma, Toshimasa Ishii, Hirotaka Ono, and Yushi Uno

Geometry I

On Inducing Polygons and Related Problems . 47
Eyal Ackerman, Rom Pinchasi, Ludmila Scharf, and
Marc Scherfenberg

Computing 3D Periodic Triangulations . 59
Manuel Caroli and Monique Teillaud

Cauchy’s Theorem for Orthogonal Polyhedra of Genus 0 71
Therese Biedl and Burkay Genc

Mathematical Programming

Approximability of Sparse Integer Programs . 83
David Pritchard

Iterative Rounding for Multi-Objective Optimization Problems 95
Fabrizio Grandoni, R. Ravi, and Mohit Singh

A Global-Optimization Algorithm for Mixed-Integer Nonlinear
Programs Having Separable Non-convexity . 107

Claudia D’Ambrosio, Jon Lee, and Andreas Wächter

XIV Table of Contents

Geometry II

Constructing Delaunay Triangulations along Space-Filling Curves 119
Kevin Buchin

Piercing Translates and Homothets of a Convex Body 131
Adrian Dumitrescu and Minghui Jiang

Output-Sensitive Algorithms for Enumerating Minimal Transversals for
Some Geometric Hypergraphs . 143

Khaled Elbassioni, Kazuhisa Makino, and Imran Rauf

Algorithmic Game Theory I

On Revenue Maximization in Second-Price Ad Auctions 155
Yossi Azar, Benjamin Birnbaum, Anna R. Karlin, and
C. Thach Nguyen

Clustering-Based Bidding Languages for Sponsored Search 167
Mohammad Mahdian and Grant Wang

Altruism in Atomic Congestion Games . 179
Martin Hoefer and Alexander Skopalik

Geometry III

Geometric Spanners for Weighted Point Sets . 190
Mohammad Ali Abam, Mark de Berg, Mohammad Farshi,
Joachim Gudmundsson, and Michiel Smid

k-Outerplanar Graphs, Planar Duality, and Low Stretch Spanning
Trees (Extended Abstract) . 203

Yuval Emek

Narrow-Shallow-Low-Light Trees with and without Steiner Points 215
Michael Elkin and Shay Solomon

Algorithmic Game Theory II

Bounded Budget Betweenness Centrality Game for Strategic Network
Formations . 227

Xiaohui Bei, Wei Chen, Shang-Hua Teng, Jialin Zhang, and
Jiajie Zhu

Exact and Approximate Equilibria for Optimal Group Network
Formation . 239

Elliot Anshelevich and Bugra Caskurlu

Table of Contents XV

On the Performance of Approximate Equilibria in Congestion Games . . . 251
George Christodoulou, Elias Koutsoupias, and Paul G. Spirakis

Navigation and Routing

Optimality and Competitiveness of Exploring Polygons by Mobile
Robots . 263

Jurek Czyzowicz, Arnaud Labourel, and Andrzej Pelc

Tractable Cases of Facility Location on a Network with a Linear
Reliability Order of Links . 275

Refael Hassin, R. Ravi, and F. Sibel Salman

Dynamic vs. Oblivious Routing in Network Design 277
Navin Goyal, Neil Olver, and F. Bruce Shepherd

Invited Talk

Algorithms Meet Art, Puzzles, and Magic . 289
Erik D. Demaine

Graphs and Point Sets

Polynomial-Time Algorithm for the Leafage of Chordal Graphs 290
Michel Habib and Juraj Stacho

Breaking the O(m2n) Barrier for Minimum Cycle Bases 301
Edoardo Amaldi, Claudio Iuliano, Tomasz Jurkiewicz,
Kurt Mehlhorn, and Romeo Rizzi

Shape Fitting on Point Sets with Probability Distributions 313
Maarten Löffler and Jeff M. Phillips

Bioinformatics

An Efficient Algorithm for Haplotype Inference on Pedigrees with a
Small Number of Recombinants (Extended Abstract) 325

Jing Xiao, Tiancheng Lou, and Tao Jiang

Complete Parsimony Haplotype Inference Problem and Algorithms 337
Gerold Jäger, Sharlee Climer, and Weixiong Zhang

Linear-Time Recognition of Probe Interval Graphs 349
Ross M. McConnell and Yahav Nussbaum

XVI Table of Contents

Wireless Communications

Wireless Scheduling with Power Control . 361
Magnús M. Halldórsson

On the Power of Uniform Power: Capacity of Wireless Networks with
Bounded Resources . 373

Chen Avin, Zvi Lotker, and Yvonne-Anne Pignolet

Approximability of OFDMA Scheduling . 385
Marcel Ochel and Berthold Vöcking

Flows, Matrices, Compression

Maximum Flow in Directed Planar Graphs with Vertex Capacities 397
Haim Kaplan and Yahav Nussbaum

A Fast Output-Sensitive Algorithm for Boolean Matrix
Multiplication . 408

Andrzej Lingas

On Optimally Partitioning a Text to Improve Its Compression 420
Paolo Ferragina, Igor Nitto, and Rossano Venturini

Scheduling

An Average-Case Analysis for Rate-Monotonic Multiprocessor
Real-Time Scheduling . 432

Andreas Karrenbauer and Thomas Rothvoß

Minimizing Maximum Response Time and Delay Factor in Broadcast
Scheduling . 444

Chandra Chekuri, Sungjin Im, and Benjamin Moseley

Preemptive Online Scheduling with Reordering . 456
György Dósa and Leah Epstein

Streaming

d-Dimensional Knapsack in the Streaming Model . 468
Sumit Ganguly and Christian Sohler

Sparse Cut Projections in Graph Streams . 480
Atish Das Sarma, Sreenivas Gollapudi, and Rina Panigrahy

Bipartite Graph Matchings in the Semi-streaming Model
(Extended Abstract) . 492

Sebastian Eggert, Lasse Kliemann, and Anand Srivastav

Table of Contents XVII

Online Algorithms

The Oil Searching Problem . 504
Andrew McGregor, Krzysztof Onak, and Rina Panigrahy

Hyperbolic Dovetailing . 516
David Kirkpatrick

Bluetooth and Dial a Ride

On the Expansion and Diameter of Bluetooth-Like Topologies 528
Alberto Pettarin, Andrea Pietracaprina, and Geppino Pucci

Minimum Makespan Multi-vehicle Dial-a-Ride . 540
Inge Li Gørtz, Viswanath Nagarajan, and R. Ravi

Invited Talk

Google’s Auction for TV Ads . 553
Noam Nisan

Decomposition and Covering

Inclusion/Exclusion Meets Measure and Conquer: Exact Algorithms for
Counting Dominating Sets . 554

Johan M.M. van Rooij, Jesper Nederlof, and Thomas C. van Dijk

Dynamic Programming on Tree Decompositions Using Generalised Fast
Subset Convolution . 566

Johan M.M. van Rooij, Hans L. Bodlaender, and Peter Rossmanith

Counting Paths and Packings in Halves . 578
Andreas Björklund, Thore Husfeldt, Petteri Kaski, and
Mikko Koivisto

Algorithm Engineering

Accelerating Multi-modal Route Planning by Access-Nodes 587
Daniel Delling, Thomas Pajor, and Dorothea Wagner

Parallel Algorithms for Mean-Payoff Games: An Experimental
Evaluation . 599

Jakub Chaloupka

Experimental Study of FPT Algorithms for the Directed Feedback
Vertex Set Problem . 611

Rudolf Fleischer, Xi Wu, and Liwei Yuan

XVIII Table of Contents

Parameterized Algorithms I

Fast Evaluation of Interlace Polynomials on Graphs of Bounded
Treewidth . 623

Markus Bläser and Christian Hoffmann

Kernel Bounds for Disjoint Cycles and Disjoint Paths 635
Hans L. Bodlaender, Stéphan Thomassé, and Anders Yeo

Constant Ratio Fixed-Parameter Approximation of the Edge Multicut
Problem . 647

Dániel Marx and Igor Razgon

Data Structures

Rank-Pairing Heaps . 659
Bernhard Haeupler, Siddhartha Sen, and Robert E. Tarjan

3.5-Way Cuckoo Hashing for the Price of 2-and-a-Bit 671
Eric Lehman and Rina Panigrahy

Hash, Displace, and Compress . 682
Djamal Belazzougui, Fabiano C. Botelho, and Martin Dietzfelbinger

Parameterized Algorithms II

Solving Dominating Set in Larger Classes of Graphs: FPT Algorithms
and Polynomial Kernels . 694

Geevarghese Philip, Venkatesh Raman, and Somnath Sikdar

Contraction Bidimensionality: The Accurate Picture 706
Fedor V. Fomin, Petr Golovach, and Dimitrios M. Thilikos

Minimizing Movement: Fixed-Parameter Tractability 718
Erik D. Demaine, MohammadTaghi Hajiaghayi, and Dániel Marx

Hashing and Lowest Common Ancestor

Storing a Compressed Function with Constant Time Access 730
Jóhannes B. Hreinsson, Morten Krøyer, and Rasmus Pagh

Experimental Variations of a Theoretically Good Retrieval Data
Structure . 742

Martin Aumüller, Martin Dietzfelbinger, and Michael Rink

Short Labels for Lowest Common Ancestors in Trees 752
Johannes Fischer

Table of Contents XIX

Best Paper Awards

Disproof of the Neighborhood Conjecture with Implications to SAT 764
Heidi Gebauer

Reconstructing 3-Colored Grids from Horizontal and Vertical
Projections Is NP-hard . 776

Christoph Dürr, Flavio Guiñez, and Mart́ın Matamala

Author Index . 789

Some Open Questions Related to Cuckoo
Hashing

Michael Mitzenmacher�

School of Engineering and Applied Sciences
Harvard University, Cambridge, MA 02138

michaelm@eecs.harvard.edu

Abstract. The purpose of this brief note is to describe recent work in
the area of cuckoo hashing, including a clear description of several open
problems, with the hope of spurring further research.

1 Introduction

Hash-based data structures and algorithms are currently a booming industry in
the Internet, particularly for applications related to measurement, monitoring,
and security. Hash tables and related structures, such as Bloom filters, dictio-
naries, and their derivatives, are used billions of times a day, and new uses keep
proliferating. Indeed, one of the most remarkable trends of the last five years
has been the growing prevalence of hash-based algorithms and data structures
in networking and other areas. At the same time, the field of hashing, which
has enjoyed a long and rich history in computer science (see e.g., [28]), has also
enjoyed something of a theoretical renaissance. Arguably, this burst of activity
began with the demonstration of the power of multiple choices: by giving each
item multiple possible hash locations, and storing it in the least loaded, remark-
ably balanced loads can be obtained, yielding quite efficient lookup schemes
[4,7,23,30,38]. An extension of this idea, cuckoo hashing, further allows items
to be moved among its multiple choices to better avoid collisions, improving
memory utilization even further.

In this brief note I plan to describe some recent work in the area of cuckoo
hashing, providing some focus on several remaining open problems, with the
hope of spurring further research. The presentation may admittedly be some-
what biased, focusing on my own recent research in the area; this is hopefully
excused by the fact that this note is written in conjunction with an invited talk
for the 2009 ESA conference in Denmark. The topic seems apropos; the paper
introducing cuckoo hashing by Pagh and Rodler appeared in the 2001 ESA con-
ference, also held in Denmark! [34,35] Also for this reason, the focus here will
be primarily on theoretical results and problems. There is of course also recently
a great deal of interesting work in hashing combining theory and practice, as
detailed for example in the survey [27].
� Supported in part by NSF grants CNS-0721491 and research grants from the Cisco

University Research Program, Yahoo! University Research Program, and Google
University Research Program.

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 1–10, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

2 M. Mitzenmacher

2 Background : Multiple-Choice Hashing and Cuckoo
Hashing

The key result behind multiple choice hashing was presented in a seminal work
by Azar, Broder, Karlin, and Upfal [4], who showed the following: suppose that n
items1 are hashed sequentially into n buckets by hashing each item d times to ob-
tain d choices of a bucket for each item, and placing each item in the choice with
the smallest current number of items (or load). When d = 1, which is standard
hashing, then the maximum load grows like (1+ o(1))(log n/ log log n) with high
probability [22]; when d ≥ 2, the maximum load grows like log log n/ log d+O(1)
with high probability, which even for 2 choices gives a maximum load of 6 in
most practical scenarios. The upshot is that by giving items just a small amount
of choice in where they are placed, the maximum load can be greatly reduced;
the cost is that now d locations have to be checked when trying to look up the
item, which is usually a small price to pay in systems where the d locations can
be looked up in parallel. A variant later introduced by Vöcking [38], that we refer
to as d-left hashing, both gives slightly improved performance and is particularly
amenable to parallelization. The hash table is split into d equal-sized subtables;
when inserting an item, one bucket is chosen uniformly and independently from
each subtable as a possible location; the item is placed in the least loaded bucket,
breaking ties to the left. This combination of splitting and tie-breaking reduces
the maximum load to log log n/dφd + O(1), where φd is the asymptotic growth
rate of the dth order Fibonacci numbers [38].

In practice, the log log n terms are so small in the analysis above that one
can generally assume that a suitably sized bucket will never overflow. As noted
for example in [7], this effectively means that d-left hash tables can provide
an “almost perfect” hash table in many settings, which can then be used to
bootstrap further data structures. The hash table is only almost perfect in that
technically there is some probability of failure, and of course it is not minimal
in terms of size.

Cuckoo hashing [35] is a further variation on multiple choice hashing schemes.
In the original description, an item can be placed in one of two possible buckets.
But if on insertion there is no room for an item at any of its two choices, instead
of this causing an overflow, we consider moving the item in one of those buckets
to the other location consistent with its set of two choices. Such a move may
require the move of yet another element in another bucket to prevent overflow,
and so on until an empty spot for the current item is found (or until sufficiently
many attempts have been made to declare a failure). An excellent picture and
description is available on Wikipedia’s entry for cuckoo hashing, and I encourage
everyone who has not already read this entry to do so now. The name cuckoo
hashing comes from the cuckoo bird in nature, which kick other birds out of their
nest, much like the hashing scheme recursively kicks items out of their location
as needed. Successfully placing an element corresponds to finding an augmenting

1 We use the term item for the objects to be hashed, which are generally keys or
key-value pairs; we assume throughout that items are a fixed size.

Some Open Questions Related to Cuckoo Hashing 3

path in the underlying graph where buckets are nodes and elements correspond
to edges between nodes. When there are n items to be placed in 2(1+ε)n buckets,
that is when the load of the table is less than 1/2, all such augmenting paths
are O(log n) in length with high probability. A failure occurs if an item can’t be
placed after c log n steps for an appropriately chosen constant c.

Although cuckoo hashing was originally introduced with just two choices per
items and buckets of unit capacity, it was naturally generalized to situations with
more than two choices per bucket and more than one item per bucket [17,19].
These variations share the properties that they require checking only O(1) mem-
ory locations even in the worst case. Hence, in general, we refer to the entire
range of variations as cuckoo hashing, and clarify in context when necessary.
For cuckoo hashing the case of d = 2 choices with one item per bucket is now
well understood [29,35], the cases with more choices and more items per bucket
have left many remaining open questions [17,19]. The case of d = 2 is so well
understood because there is a direct correspondence to random graphs. We can
think of buckets as vertices, and items as edges, where the edge for an item con-
nects the two vertices corresponding to its two buckets. The choice of a bucket
by an item corresponds naturally to an orientation of a directed edge. For d > 2,
there is a correspondence to random hypergraphs, which are more technically
challenging, and for more than one item in a bucket, the edge orientation prob-
lems become more technically challenging. The questions that remain for these
variations are both theoretically interesting and potentially important practi-
cally, as these cuckoo hashing variants can allow very high memory utilizations,
significantly higher than previous multiple choice hashing schemes.

3 Insertion Times for Random Walk Cuckoo Hashing

Let us consider the online setting for cuckoo hashing, where new items may
arrive to be inserted and old items may be deleted. Note that this is in contrast
to the offline setting, where all items are initially present and one merely wants
to make a lookup table, without updates to the underlying set. When there are
d > 2 choices or more than one item per bucket, the question of what to do
when inserting a new item is more subtle than in the case with two choices.
One approach is to do a breadth first search to find an augmenting path in the
underlying graph structure, looking at all paths that require one move, then
two moves, and so on. For constant d in both settings it is known that an
insertion only takes constant expected time, although high probability bounds
on the insertion time are generally very weak [17,19]. Moreover, both because
of memory and time requirements, this approach does not suitable for many
practical implementations.

Let us describe an alternative approach generally much more amenable to
practical implementation, is to at each step kick out a random item. Specifically
let us consider the case of one item per bucket and d > 2 choices; in this case, we
randomly kick out of the d choices the first time, and of the d−1 “other choices”
after the first time. This avoids the storage required for the breadth first search

4 M. Mitzenmacher

and is usually much faster. This approach gives a random walk on items being
kicked out of their location, until an item that has an empty bucket to be placed
in is found. Intuition suggests that this approach should also find an augmenting
path in O(log n) steps with high probability, since at each step there seems to be
a constant probability of finding an open space. While simulations suggest good,
possibly logarithmic performance, the intuition is quite speculative, as it ignores
dependencies in the placement of items that are troublesome for analysis.

Until recently, there was no proof of even polylogarithmic performance for
the random walk cuckoo hashing approach. A current result of Frieze, Melsted,
and Mitzenmacher shows that in fact with high probability over the choices
of the cuckoo hashing algorithm any insertion will, with high probability, take
polylogarithmic time under suitable loads for large enough numbers of choices
d [21]. The argument breaks into a pair of steps: first, most buckets have an
augmenting path of length at most O(log log n) to an empty bucket; and second,
the graph representing the cuckoo hashing process expands sufficiently so that,
regardless of the starting point, the random walk cuckoo hashing process will
find itself at one of these buckets with an augmenting path of length at most
O(log log n) to an empty bucket after only O(log n) steps. While this represents
a significant step forward, the picture for random walk cucko hashing remains
incomplete.
Open Question 1: Find tight bounds on the performance of random-walk
cuckoo hashing in the online setting, for d > 3 choices and possibly more than
one item per bucket.

4 Threshold Loads for Cuckoo Hashing

Cuckoo hashing schemes appear to have natural load thresholds. As the number
of items approaches some constant c times the number of buckets (where c
depends on the variant of cuckoo hashing), the time to find an augmenting path
increases, and as one reaches the threshold collisions become unavoidable. Given
the connection to random graphs, this behavior in unsurprising. Indeed, when
d = 2 and there is just one item per bucket, it is known that cuckoo hash tables
with load less than 1/2 succeed with high probability, but fail when the load
is larger than 1/2. See [29] for more detailed analysis. There is a large jump in
moving to d = 3 choices, where the threshold appears to be around a 91% load
based on experiments.

When d = 2 and there is more than one choice per bucket, results are well
understood for the offline case. Again thinking of buckets as vertices and items as
edges, the problem in the offline case becomes how to orient each edge so that no
vertex has degree more than k. Hence the problem corresponds to the threshold
for k-orientability on random graphs, which provides a framework for finding the
threshold [8,18]. Because in the offline case there is no moving of items needed,
as items are simply placed, whether these loads can be achieved by a natural
cuckoo hashing variant in the online setting remains open. Specifically, it would
be intereseting to determine if the threshold is the same for random walk cuckoo

Some Open Questions Related to Cuckoo Hashing 5

hashing, or for a different scheme with constant average time and logarithmic
time with high probability per insertion and deletion.

When d > 2 choices (and one item per bucket), the threshold for the of-
fline case is also nearly settled. Upper bounds on the theshold can found by
again viewing the problem as an orientation problem on random hypergraphs,
and while some additional considerations are needed, an upper bound can be
calculated [5]. Lower bounds have been achieved, based on a new approach for
designing dictionary and retrieval structures, based on matrix techniques [15].
(See also [36].) These techniques are quite interesting and highly recommended
but a full description is beyond the scope of this short note; essentially, one
utilizes a full-rank matrix with at most d ones per column derived from a hash
function on the set of keys, and solves for a vector such that the multiplication
of the matrix times the vector yields the value associated with each key. Storing
the vector is then sufficient to generate the value associated with each key, and
further requires just d lookups into the vector. As a specific example, for the im-
portant case of d = 3, there is an upper bound of 0.9183 for the threshold load
[5], and a lower bound of 0.8894 [15]. Again, however, the question of bounds
for efficient algorithms in the online setting remains more open.
Open Question 2: Tighten the bounds on the thresholds on the load capacity
of cuckoo hashing schemes for d > 2 choices and 1 item per bucket for the offline
setting.
Open Question 3: Prove bounds on thresholds for other settings, such as for
cuckoo hashing with d > 2 choices and more than 1 item per bucket (offline or
online), or for specific or general online schemes.

5 Using Stashes and Queues with Cuckoo Hashing

The failure rate of cuckoo hashing is surprisingly high. With standard cuckoo
hashing using d = 2 choices, if n items are placed into 2(1 + ε) buckets, the
probability of a failure – that some item can’t be placed or takes too long to
place – is Θ(1/n), with the constant factor in the asymptotic notation depending
on ε [29]. In theoretical papers the standard suggested response is to rehash
everything in case of such a failure; this does not change the important fact that
the expected average insertion time per item is constant. Rehashing, however, is
unsuitable for many applications. The failure rate is smaller with more choices
of items [19] or more items per bucket [17], but the high failure probability still
remains a potential problem.

In [26] we show that one needs only a small, constant-sized stash to greatly
reduce the probability of a failure. A stash should be thought of as a small,
fully-associative memory, that allows an arbitrary lookup in a single time step.
In hardware, this can be implemented as a content-addressable memory (CAM),
as long as the size of the stash is small, since CAMs are expensive. In software,
this can be implemented with a small number of dedicated cache lines. We show
a stash of constant size s reduces the probability of any failure to fall from
Θ(1/n) to Θ(1/ns+1) for the case of d = 2 choices. Similar results hold for other

6 M. Mitzenmacher

variants, in that the failure probability provably falls linearly by a factor of the
stash size s in the exponent. Such a reduction is key for scaling to applications
with millions of users. The original motivation was for potential applications to
routers, and applications of this result to devices using history-independent hash
tables have also been suggested [33].

This idea of allowing a small amount of additional space to handle collisions
seems quite powerful, although it is not commonly studied in theoretical work.
(Interestingly, though, one can think of the seminal work on perfect hashing
of Fredman, Komlós, and Szemerédi [20] in this context.) The issue of the right
scale of the additional space seems to be an interesting question. For example, in
other work, we have alternatively suggested using a CAM as a queue for pending
move operations in a cuckoo hash table [24]. The advantage of this approach is it
gives an effective de-amortization of cuckoo hash inserts: by queueing operations,
we can arrange for inserts to have worst-case constant time (corresponding to the
average time for an insert in standard cuckoo hashing). This technique appears
potentially useful as an approach for deamortizing other algorithms or data
structures in hardware. We conjectured in this setting that the CAM size is
required to scale like O(log n), corresponding to a maximum size achieved by a
queue over O(n) steps. For the case of d = 2, this conjecture has recently been
proven in [3] (see also the similar [12]).

Finally, in other work, we have considered variants that allow only one move
of an item in a hash table on each insertion [25]. The motivation for this work
was to consider the benefits of making the minimum possible change to multiple-
choice hashing, which is already being used in some hardware solutions, in order
to convince builders of devices to consider trying systems that allow items to
move within the hash table. Besides showing significant gains, we were able to
analyze several schemes using a fluid limit/differential equations analysis. Here,
we require using a CAM that scales linearly in n. That is, we find such schemes
require a CAM of size εn for a very small ε chosen by the designer (e.g., 0.2%).
So now we have examples where the natural choice of a stash size is constant,
logarithmic, and linear, depending on our overall goal.

Open Question 4: Extend the de-amortization analysis for cuckoo hashing to
other variants, including the case of d > 2 choices. Can this de-amortization
technique be applied to other related problems as well?

Open Question 5: Develop a more general theory of the power of stashes and
appropriate scalings in the setting of hash tables.

6 Limited Randomness and Cuckoo Hashing

Even from the inception of cuckoo hashing, the question of how much random-
ness is required was considered a worthwhile question. While assuming perfectly
random hash functions is useful for analysis, it is both theoretically and practi-
cally unappealing, since perfectly random hash functions are not readily avail-
able. From the connection with random graphs in the case of d = 2 choices, it

Some Open Questions Related to Cuckoo Hashing 7

is apparent that if each hash function is independently chosen from a c log n-
wise independent family for an appropriate constant c, the analysis showing
expected constant time per operation continues to hold. Pagh and Rodler [35]
in fact showed that a hash function family derived from the work of Siegel [37]
with limited independence suffices for cuckoo hashing in the case where d = 2.
However, these hash functions still appear to be too complex to be utilized in
practice. They also experimented with weaker hash functions.

Recent advances in the area include the work of [3], where a result by Braver-
man [6] is used to show that the analysis of cuckoo hashing with a queue holds
even with only polylogarithmically-wise independent hash functions. Cohen and
Kane [11] demonstrate that 5-independence (which is slightly different than but
close to 5-wise independence) is insufficient for constant amortized cost per op-
eration for cuckoo hashing with d = 2 choices, but also show that only one of
the two hash functions needs to be c log n-wise independent to obtain constant
expected time per operation.

An alternative direction, taken by Mitzenmacher and Vadhan, started with
the question of why simple hash functions work so well in practice [32]. As men-
tioned, when analyzing hash-related data structures such as cuckoo hashing, one
commonly assumes that the underlying hash functions are completely random,
even though this is unrealistic. But in practice, such analysis generally turns out
to be accurate, even when weak hash functions, such as pairwise independent
(or universal) hash functions [9], are used.

The proposed resolutionwas to model the data as coming from a random source,
where the i’th item Xi has at least some k bits of entropy (specifically, Renyi en-
tropy) conditioned on the previous items X1, . . . , Xi−1. Then results from the the-
ory of randomness extraction imply that when a hash function H is chosen from
even a pairwise independent family, the sequence (H(X1), . . . , H(XT)) has small
statistical difference from the distribution obtained if H were a perfect hash func-
tion. That is, a weak hash function is good enough, as long as there is sufficient
randomness in the data. The implications of this model apply to cuckoo hashing
as well as other hashing-based algorithms and data structures. Improvements on
the bounds of [32] are developed in [10].

As shown by Dietzfelbinger and Schellbach, however, one cannot use this in-
sight blindly. They demonstrate that natural families of universal hash functions,
namely multiplicative hash functions and standard linear hash functions over a
prime field, fail even for fully random key sets, when the key set is sufficiently
dense over the universe of keys [16]. In such cases, there is not sufficient entropy
for the results of [32] to hold, so there is no contradiction. The implications
of these results to practical settings certainly appear to be a worthy of further
study.

Open Question 6: Determine better bounds on the amount of randomness
needed for cuckoo hashing to be effective, either in terms of the requirements of
the underlying family of hash functions, the amount of randomness in the data,
or both.

8 M. Mitzenmacher

7 Parallelized Variations of Cuckoo Hashing

As a final area for future work, there appears to be renewed interest in parallel
algorithms for constructing hash tables and related data structures, inspired by
the development of multi-core processors and other mainstream hardware that
allows parallelization, such as graphics processor units (GPUs). In [2], we design
a practical parallel scheme for constructing hash tables on GPUs motivated in
part by cuckoo hashing techniques. The setting is offline, with all items available.
Essentially, items perform the random walk cuckoo hashing approach in parallel:
each item tries to place itself in its first choice; each item that fails to capture
its first choice location tries to place itself it its second choice, and then it third
choice. (Three choices per item were used in this implementation.) Any unplaced
item then tries to kick out the item placed at its first choice, and then its second
choice, and so on. In order to ensure quick convergence, a two-level scheme is
used, where items are first partitioned using a separate hash function, in order
to give with high probability a bounded number of items (in this case 512) per
partition. The parallel cuckoo hashing approach is then run in parallel on each
partition. This random partitioning trades additional space for efficiency. For
details, see [2].

While there is a fair amount of historical work on parallel hashing and load
balancing schemes (see, for example, [1,13,14,23,31,30]), the significant advances
made in the last decade in terms of analysis and understanding of the power to
move items suggests that we can obtain both stronger results and tighter analyses
in theory for such parallel hashing schemes. Moreover, there may be significant
opportunities for the design of efficient parallel hash table construction schemes
for real hardware systems. Given the inherent potential for parallelization with
multiple-choice hash tables in general and cuckoo hashing in particular, this
appears to be an interesting area for future growth.
Open Question 7: Design and analyze efficient schemes for constructing and
maintaining hash tables in parallel architectures, particularly modern multicore
architectures.

8 Conclusion

This note provides a smattering of open questions related to the theme of cuckoo
hashing. There are certainly others, and more waiting to found. Indeed, at this
very conference, there are a number of papers specifically on the theme of cuckoo
hashing and on the more general themes of dictionary data structures and hash-
based data structures. There remains plenty of interesting work to do in this
area, which offers both rich theory and practical payoff.

Acknowledgments

I thank Martin Dietzfelbinger and Rasmus Pagh for helpful discussions, assis-
tance with references, and comments on an earlier draft of this work.

Some Open Questions Related to Cuckoo Hashing 9

References

1. Adler, M., Chakrabarti, S., Mitzenmacher, M., Rasmussen, L.: Parallel randomized
load balancing. In: Proceedings of the 27th Annual ACM Symposium on the Theory
of Computing, pp. 238–247 (1995)

2. Alcantara, D., Sharf, A., Abbasinejad, F., Amenta, N., Mitzenmacher, M., Owens,
J., Sengupta, S.: Real-time parallel hashing on the GPU (submitted)

3. Arbitman, Y., Naor, M., Segev, G.: De-amortized cuckoo hashing: provable worst-
case performance and experimental results. In: Albers, S., Marchetti-Spaccamela,
A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. Part I. LNCS,
vol. 5555, pp. 107–118. Springer, Heidelberg (2009)

4. Azar, Y., Broder, A., Karlin, A., Upfal, E.: Balanced allocations. SIAM Journal of
Computing 29(1), 180–200 (1999)

5. Batu, T., Berenbrink, P., Cooper, C.: Balanced allocations: Balls-into-bins revisited
and chains-into-bins. CDAM Research Report LSE-CDAM-2007-34

6. Braverman, M.: Poly-logarithmic independence fools AC0 circuits. To appear in Pro-
ceedings of the 24th Annual IEEE Conference on Computational Complexity (2009)

7. Broder, A., Mitzenmacher, M.: Using multiple hash functions to improve IP
Lookups. In: Proceedings of IEEE INFOCOM, pp. 1454–1463 (2001)

8. Cain, J., Sanders, P., Wormald, N.: The random graph threshold for k-orientability
and a fast algorithm for optimal multiple-choice allocation. In: Proceedings of the
Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 469–476
(2007)

9. Carter, J.L., Wegman, M.N.: Universal classes of hash functions. Journal of Com-
puter and System Sciences 18(2), 143–154 (1979)

10. Chung, K.M., Vadhan, S.: Tight bounds for hashing block sources. In: Goel, A.,
Jansen, K., Rolim, J.D.P., Rubinfeld, R. (eds.) APPROX and RANDOM 2008.
LNCS, vol. 5171, pp. 357–370. Springer, Heidelberg (2008)

11. Cohen, J., Kane, D.: Bounds on the independence required for cuckoo hashing
(preprint)

12. Dalal, K., Devroye, L., Malalla, E., McLeish, E.: Two-way chaining with reassign-
ment. SIAM Journal on Computing 35, 327–340 (2006)

13. Dietzfelbinger, M., Meyer auf der Heide, F.: An optimal parallel dictionary. Infor-
mation and Computation 102(2), 196–217 (1993)

14. Dietzfelbinger, M., Meyer auf der Heide, F.: Simple, efficient shared memory sim-
ulations. In: Proceedings of the Fifth Annual ACM Symposium on Parallel Algo-
rithms and Architectures, pp. 110–119 (1993)

15. Dietzfelbinger, M., Pagh, R.: Succinct data structures for retrieval and approxi-
mate membership (Extended abstract). In: Aceto, L., Damg̊ard, I., Goldberg, L.A.,
Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I.
LNCS, vol. 5125, pp. 385–396. Springer, Heidelberg (2008)

16. Dietzfelbinger, M., Schellbach, U.: On risks of using cuckoo hashing with simple
universal hash classes. In: Proceedings of the 20th Annual ACM-SIAM Symposium
on Discrete Algorithms, pp. 795–804 (2009)

17. Dietzfelbinger, M., Weidling, C.: Balanced allocation and dictionaries with tightly
packed constant size bins. Theoretical Computer Science 380(1-2), 47–68 (2007)

18. Fernholz, D., Ramachandran, V.: The k-orientability thresholds for Gn,p. In: Pro-
ceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 459–468 (2007)

19. Fotakis, D., Pagh, R., Sanders, P., Spirakis, P.: Space efficient hash tables with worst
case constant access time. Theory of Computing Systems 38(2), 229–248 (2005)

10 M. Mitzenmacher

20. Fredman, M., Komlós, J., Szemerédi, E.: Stoaring a sparse table with O(1) worst
case access time. Journal of the Association of Computing Machinery 31(3), 538–
544 (1984)

21. Frieze, A., Melsted, P., Mitzenmacher, M.: An analysis of random-walk cuckoo
hashing. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) APPROX 2009 and
RANDOM 2009. LNCS, vol. 5687, pp. 490–503. Springer, Heidelberg (2009)

22. Gonnet, G.: Expected length of the longest probe sequence in hash code searching.
Journal of the Association for Computing Machinery 28(2), 289–304 (1981)

23. Karp, R., Luby, M., Meyer, F., Meyer auf der Heide, F.: Efficient PRAM simulation
on a distributed memory machine. Algorithmica 16(4), 517–542 (1996)

24. Kirsch, A., Mitzenmacher, M.: Using a queue to de-amortize cuckoo hashing in
hardware. In: Proceedings of the Forty-Fifth Annual Allerton Conference on Com-
munication, Control, and Computing (2007)

25. Kirsch, A., Mitzenmacher, M.: The power of one move: hashing schemes for hard-
ware. In: Proceedings of the 27th IEEE International Conference on Computer
Communications (INFOCOM), pp. 106–110 (2008)

26. Kirsch, A., Mitzenmacher, M., Wieder, U.: More robust hashing: Cuckoo hashing
with a stash. In: Halperin, D., Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193,
pp. 611–622. Springer, Heidelberg (2008)

27. Kirsch, A., Mitzenmacher, M., Varghese, G.: Hash-based techniques for high-speed
packet processing. Preprint, to appear in Algorithms for Next Generation Net-
works. Springer, Heidelberg (2009)

28. Knuth, D.: The Art of Computer Programming, Sorting and Searching, vol. 3.
Addison-Wesley, Reading (1973)

29. Kutzelnigg, R.: Bipartite random graphs and cuckoo hashing. In: Proceedings of
the Fourth Colloquium on Mathematics and Computer Science (2006)

30. Mitzenmacher, M., Richa, A., Sitaraman, R.: The power of two choices: a survey of
techniques and results. In: Pardalos, P., Rajasekaran, S., Reif, J., Rolim, J. (eds.)
Handbook of Randomized Computing, pp. 255–312. Kluwer Academic Publishers,
Norwell (2001)

31. MacKenzie, P., Plaxton, C.G., Rajaraman, R.: On contention resolution protocols
and associated probabilistic phenomena. Journal of the ACM 45(2), 324–378 (1998)

32. Mitzenmacher, M., Vadhan, S.: Why simple hash functions work: exploiting the
entropy in a data stream. In: Proceedings of the Nineteenth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pp. 746–755 (2008)

33. Naor, M., Segev, G., Wieder, U.: History-Independent Cuckoo Hashing. In: Aceto,
L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz,
I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 631–642. Springer, Heidelberg
(2008)

34. Pagh, A., Rodler, F.: Cuckoo hashing. In: Meyer auf der Heide, F. (ed.) ESA 2001.
LNCS, vol. 2161, pp. 121–133. Springer, Heidelberg (2001)

35. Pagh, A., Rodler, F.: Cuckoo hashing. Journal of Algorithms 51(2), 122–144 (2004)
36. Porat, E.: An optimal Bloom filter replacement based on matrix solving. Technical

report, arxiv:0804.1845v1 [cs.DS] (April 2008)
37. Siegel, A.: On universal classes of fast high performance hash functions, their time-

space tradeoff, and their applications. In: Proceedings of the 30th Annual Sympo-
sium on Foundations of Computer Science, pp. 20–25 (1989)

38. Vöcking, B.: How asymmetry helps load balancing. Journal of the ACM 50(4),
568–589 (2003)

Efficient Computation of the Characteristic
Polynomial of a Tree and Related Tasks

Martin Fürer�

Department of Computer Science and Engineering
Pennsylvania State University

University Park, PA 16802, USA
Visiting: ALGO EPFL

1015 Lausanne
Switzerland

and
Institut für Mathemtik

Universität Zürich
CH-8057 Zrich
Switzerland

furer@cse.psu.edu
http://cse.psu.edu/~furer

Abstract. An O(n log2 n) algorithm is presented to compute the char-
acteristic polynomial of a tree on n vertices improving on the previously
best quadratic time. With the same running time, the algorithm can be
generalized in two directions. The algoritm is a counting algorithm, and
the same ideas can be used to count other objects. For example, one can
count the number of independent sets of all possible sizes simultaneously
with the same running time. These counting algorithms not only work
for trees, but can be extended to arbitrary graphs of bounded tree-width.

Keywords: characteristic polynomial, counting matchings, counting in-
dependent sets, bounded tree-width, efficient algorithms.

1 Introduction

It is easy to find a maximum independent set or a maximum matching in a tree
in linear time. The size of the latter determines the rank of the adjacency matrix
and therefore the number of trailing zero coefficients of the characteristic poly-
nomial. Still in linear time, one can also compute the number of the maximum
matchings in a tree, and therefore determine the lowest non-trivial coefficient of
the characteristic polynomial. But if the goal is to compute all coefficients of the
characteristic polynomial or count the number of independent sets of size r for
all possible values of r simultaneously, it has been believed that the necessary
time would increase by a factor of n. We show that an increase by a factor of
only O(log2 n) is sufficient for such tasks.
� Research supported in part by NSF Grant CCF-0728921.

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 11–22, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://cse.psu.edu/~furer

12 M. Fürer

For any graph with adjacency matrix A, elementary considerations of the
characteristic polynomial

χ(A; λ) = det(λI − A) =
n∑

i=0

ciλ
n−i

show the well known result that

cr =
∑

σ

sgn(σ)

where σ ranges over all directed cycle packings covering r vertices, i.e., permu-
tations with with exactly n − r fixed points and Aiσ(i) = 1 whenever i is not a
fixed point of σ.

We consider undirected graphs without self-loops. Every single edge {u, v}
represents one directed cycle (u, v), (v, u), while every undirected cycle represents
two directed cycles (one in each direction). Naturally, in a tree the only directed
cycles are those corresponding to single edges. Thus the number of cycle packings
covering 2r vertices in a tree is the number of matchings of size r. We call them
r-matchings.

For a tree or forest, the previous observation implies c2r+1 = 0 and

c2r = (−1)r#r-matchings

(see, e.g., [1, p. 49]).
An early algorithm [2] for the characteristic polynomial of a tree runs in

time O(n3). More complicated algorithms are needed for general graphs, but
the time can even be improved. Computing the characteristic polynomial of
an arbitrary real matrix has actually the same algebraic complexity as matrix
multiplications [3] (see [4, Chap. 16]). Thus, with the fastest known algorithm,
it can be computed in time O(n2.376) [5]. All running times are based on the
algebraic complexity measure where every arithmetic operation counts as one
step.

As adjacency matrices of trees are sparse and have special structural prop-
erties, one could hope for faster algorithms. Indeed, there are algorithms to
compute the determinant of the adjacency matrix of a tree in linear time [6] and
the characteristic polynomial in time O(n2) [7] (also later rediscovered [8]).

A main result of this paper is to improve the running time for the computation
of the characteristic polynomial of a tree to O(n log2 n) using a novel divide
and conquer approach. Computing the characteristic polynomial of a tree is
equivalent to counting the number r-matchings simultaneously for all r. Thus,
it is not astonishing that our new method can be applied to a wider class of
simultaneous counting problems.

Many computational approachesuse self-reduction.A problem is solvedby solv-
ing a set of smaller problems of the same type. Quite often these smaller problems
are not completely independent, but actually have a fair amount of common sub-
structures.Ournoveldivide and conquer approach aimsatusing this similarity and
solving the collection of smaller problems together with significant savings.

Efficient Computation of the Characteristic Polynomial of a Tree 13

Our simultaneous counting method is not restricted to trees, but extends in a
natural way to graphs of bounded tree-width k. For constant k, we obtain several
O(n log2 n) time simultaneous counting algorithms even for problems that are
NP hard without a bound on the tree-width. The time improvement is always a
factor of Ω(n/ log2 n) compared to algorithms based on traditional techniques.

The area of algorithms has a significant branch dealing with parameterized
complexity. The complexity of problems is not just studied depending on the
size n of an instance, but together with an additional parameter k. The idea is
that even for large n an instance of a difficult problem might still be easy if its
parameter k is small. A problem is fixed-parameter tractable if it can be solved
in time O(f(k)nc) for an arbitrary function f and a constant c. For example, the
NP-complete Independent Set problem is solvable in time O(2kn) for graphs of
tree-width k. Our result implies that with just a factor of O(log2 n) more time,
we can simultaneously count the number of independent sets of every size r in
graphs of tree-width k.

2 Computing the Characteristic Polynomial

When we count objects like r-matchings (i.e., matchings of size r) it is convenient
to encode them by a generating polynomial.

Definition 1. With ar being the number of r-matchings

fM (G; x) =
�n/2�∑
r=0

arx
r

is the matching generating polynomial (see e.g. [9]).

This greatly simplifies the description of the algorithms, as the polynomial mul-
tiplication is actually an important computational step.

Similarly, we could define the generating polynomials for independent sets,
vertex covers, dominating sets, and so on. These polynomials are defined for all
graphs, and some might well be worth studying for their structural properties.

Definition 2. With br being the number of independent sets of size r

fI(G; x) =
n∑

r=0

brx
r

is the independent set generating polynomial.

For trees (and forests), but not for general graphs, there is a well known strong
relationship between the matching generating polynomial

fM (G; x) =
�n/2�∑
r=0

arx
r

14 M. Fürer

Algorithm Characteristic-Polynomial:
Input: A tree T = (V, E) with |V | = n.
Output: The coefficients c0, c1, . . . , cn of the characteristic polynomial χ(A; λ) =

det(λI − A) =
∑n

i=1 ciλ
n−i, where A is the adjacency matrix of T .

Comment: Use the fact that for trees c2r+1 = 0 and c2r = (−1)r# r-matchings.

(a0, . . . , a�n/2�) = Matchings(T)
for r = 1 to �n/2� do

c2r−1 = 0
for r = 0 to �n/2� do

c2r = (−1)rar

Return (c0, . . . , cn)

Fig. 1. The algorithm Characteristic-Polynomial

Algorithm Matchings:
Input: A tree T = (V, E) with |V | = n.
Output: The vector (a0, a1, . . . , a�n/2�) where ar is the number of r-matchings in T .

(a0 + a1x + · · · + a�n/2�x
�n/2�) = Restricted-Matchings(T, ∅)

Return (a0, . . . , a�n/2�)

Fig. 2. The algorithm Matchings

and the characteristic polynomial χ(G; λ), namely

χ(G; λ) = λnfM (G;−λ−2)

This is a direct consequence of the characterization of the coefficients cr of the
characteristic polynomial for forests. c2r+1 = 0 and c2r = (−1)r#r-matchings
(see, e.g., [1, p. 49]).

Thus, we could actually have used the characteristic polynomial directly in
our algorithms. But besides the waste of half the coefficients (being 0), the use
of the matching generating polynomial is more natural. It also emphasizes that
no hidden algebraic properties of the characteristic polynomial are used, and
algorithms immediately generalize to counting other things like independent sets.

We describe the algorithm to compute the characteristic polynomial in detail
using pseudo-code. The algorithm Characteristic-Polynomial (Figure 1) inputs
a tree T and just outputs the coefficients of the characteristic polynomial after
receiving the coefficients of the matching generating polynomial fM (T, x) from
the algorithm Matching. The algorithm Matching itself (Figure 2) inputs the tree
T and outputs the coefficients of the matching generating polynomial fM (T, x),
after calling the recursive procedure Restricted-Matchings.

The actual work is done in the recursive procedure Restricted-Matchings (Fig-
ure 3). Besides the tree T , it receives a small subset U of the vertices as input.
Its task is not only to compute the matching generating polynomial for T , but
for the subgraphs of T = (V, E) induced by V \ W for all W ⊆ U . Naturally,
these subgraphs of T are forests.

Efficient Computation of the Characteristic Polynomial of a Tree 15

A minor feature of the procedure Restricted-Matchings (Figure 3) is the use
of approximate sizes of graphs. The approximate size of a graph with n vertices
is defined to be 2�lg n� where lg is the logarithm to the base 2. The procedure
Restricted-Matchings repeatedly selects a pair of approximately smallest trees,
i.e., trees of minimal approximate size. Approximately smallest trees are as good
a smallest trees, but there is no need to sort the trees by size. A bucket for each
approximate size is sufficient.

Procedure Restricted-Matchings:
Input: A tree T = (V, E) and a subset U ⊆ V .
Output: The function f from the powerset of U into the polynomials Z[x] where for

every subset W ⊆ U , f(W) = aW
0 +aW

1 x . . . , aW
�n/2�x

�n/2� with aW
r being the number

of r-matchings in T \ W (the subtree of T induced by V \ W).
Comment: This procedure is only called for some sets U whose size is bounded by a

constant.

n = |V |
if n = 1 then f(∅) = f(U) = 1 // In this case U is either ∅ or V .

Return f
else if n = 2 then f(∅) = 1 + x

for all non-empty sets W do f(W) = 1
Return f

v = Select-Root(T, U)
Consider v to be the root of T , and let d be the degree of v.
Let v1, . . . , vd be the neighbors of the root v.
For i = 1, . . . , d, let Ti = (Vi, Ei) be the subgraph of T induced by all the vertices

reachable from vi without going through v as an intermediate vertex.
// Thus the sets Ei form a partition of E, the sets Vi \ {v} form a partition
// of V \ {v}, and v ∈ Vi for all i.

U = U ∪ {v}
for i = 1 to d do

fi = Restricted-Matchings(Ti, Vi ∩ U)
S = {T1, . . . , Td}
while |S| > 1 do

Let Ti and Tj be two approximately smallest trees in S of sizes ni and nj

respectively.
// Replace Ti and Tj by their union. Call it Tk.
nk = ni + nj − 1
S = S \ {Ti, Tj} ∪ {Tk}
for all W ⊆ U do

if v ∈ W then
fk(W) = fi(W)fj(W)

else
fk(W) = fi(W)fj(W) − (fi(W) − fi(W ∪ {v}))(fj(W) − fj(W ∪ {v}))

Now S is a singleton {Tk} with Tk = T .
Return fk

Fig. 3. The procedure Restricted-Matchings

16 M. Fürer

The algorithms are natural, easy to understand and yet efficient. Their cor-
rectness immediately follows from the following principles.

– The well known relationship between numbers of matchings and the coeffi-
cients of the characteristic polynomial of a tree.

– The characteristic polynomial χ(G; λ) of a union G = (V1 ∪ V2, E1 ∪ E2)
of disjoint graphs G1 = (V1, E1) and G2 = (V2, E2) (with V1 ∩ V2 = ∅) is
the product of the characteristic polynomials χ(G1; λ) and χ(G2; λ). This is
seen immediately from the block structure of the adjacency matrix in the
definition of χ(G; λ) as a determinant.

– Under the same conditions the matching generating polynomials are multi-
plicative too. fM (G; x) = fM (G1; x) fM (G2; x). This follows from the fact
that each matching in G1 can be combined with each matching in G2.

– For every vertex v with the set of neighbors {v1, . . . , vk} in any graph G, the
number match(G, r) of r-matchings in G is decomposed as follows.

match(G, r) = match(G \ {v}, r) +
k∑

r=1

match(G \ {v, vr}, r − 1)

– In a tree, every internal vertex v is an articulation point, meaning that almost
all these graphs obtained by deleting vertices, decompose into connected
components for which the product rule holds.

All these simple properties could be used to design a straightforward algorithm
computing the matching generating polynomial by a simple tree traversal, com-
puting the polynomial for the tree rooted at v recursively from the polynomials
of the subtrees rooted at the children of v. The problem is that this natural
algorithm runs in quadratic time.

On the positive side, this design immediately results in a linear time algorithm
to count the number of maximal independent sets and maximum independent
sets.

When computing the whole matching generating polynomial, we overcome
the quadratic time problem by a cleverer selection of the articulation points v.
The simple idea of splitting as evenly as possible is not enough. We also have
to deal with the vertices of U . We don’t solve just one matching problem, but
one for each possible restriction on the vertices of U . We would also like to
split the set U evenly. The time analysis shows that we can just switch back
and forth as needed between the two objectives of splitting V and splitting U
nicely.

In both cases, we want to select a point v that according to the current
criterion is located in the center of the graph.

Definition 3. For T = (V, E), U ⊆ V , and |U | ≥ 2, let Center(T, U) be one of
the nodes v ∈ V such that every tree in T \ {v} (the subgraph of T induced by
V \ {v}) contains at most |U |/2 points of U .

For U = V , there are either one or two vertices v with this property. In the latter
case, the procedure Center(T, U) in Figure 4 picks an arbitrary one of them. For

Efficient Computation of the Characteristic Polynomial of a Tree 17

Procedure Select-Root:
Input: A tree T = (V, E) and a subset U ⊆ V .
Output: A vertex v of T which will be viewed as the root of T .
Comment: Let n0 ≥ 3 be an integer constant. n0 is an upper bound on the size of U .

The choice of n0 only affects the running time by a constant factor. n0 = 5 might be
the optimal choice.

if |U | ≥ n0 then
Return Center(T, U)

else
Return Center(T, V)

Fig. 4. The procedure Select-Root

|E| ≥ 2 and U a set of leaves, the set of vertices with this property consists
of the vertices of a path. If this path has positive length, then the procedure
Center(T, U) picks any vertex of this path. A simple traversal of the tree T
(with counting the number of vertices of U in the subtree of v on post-visiting
v) finds a center in linear time.

An alternative approach is to keep |U | ≤ 2. As before, for |U | ≤ 1 Center(T, V)
is called to pick a vertex minimizing the size of the largest tree in V \ {v}.
Otherwise for U = {u1, u2}, Center(T, U) picks a vertex v on the path from u1
to u2, still minimizing the size of the largest tree in V \{v}. This approach seems
somewhat more efficient (by a constant factor), but is not analyzed here.

3 Time Complexity

As the previously cited papers, this paper uses the customary algebraic compu-
tation model. All arithmetic operations, including multiplications are counted
as one step. This is not a serious problem, as all our numbers have at most a
linear length in binary.

Analysing the procedure Restricted-Matchings, we first note that the size of
U is under control as long as it is initially bounded by n0. In the recursive call
for Ti, the set Ui = Vi ∩ U ∪ {v} plays the role of U .

Lemma 1. Let n0 ≥ 3 be the constant used in the procedure Select-Root. If the
procedure Restricted-Matchings is called with |U | ≤ n0 then all the recursive calls
are with |Ui| ≤ n0. Furthermore, if |U | = n0, then all |Ui| < n0.

Proof. For |U | < n0 the set Ui satisfies |Ui| ≤ |U | + 1, while for |U | = n0
the algorithm is designed to split U evenly, resulting in the inequality |Ui| ≤
	|U |/2
+ 1 ≤ 	n0/2
 + 1 < n0 for n0 ≥ 3. ��

Therefore, as U = ∅ at the beginning, the size of the set U will stay bounded by
n0 ≥ 3, and U does not even reach the bound n0 twice in a row.

Let m = n− 1 be the number of edges in T . Assume m ≥ 1, as the one vertex
case is trivial and does not show up during recursive calls.

18 M. Fürer

Lemma 2. For m ≥ 1 and suitable constants c, c′, and c′′, the running time of
the procedure Restricted-Matchings is at most c m lg2 m + c′′m for |U | < n0 and
at most c m lg2 m + c′ m lg m + c′′m for |U | = n0.

Proof. The lemma trivially holds for m = 1. Let m ≥ 2 and assume the lemma
is true for all trees with less than m edges.

Recall that the procedure Restricted-Matchings partitions the tree T edge-
wise into trees T1, . . . , Td with Ti = (Vi, Ei), |Ei| = mi, and for |U | < n0, the
sizes mi are bounded by m/2 for all i. After the recursive calls for these trees Ti

with common root v, repeatedly pairs of approximately smallest trees are merged
into single trees until there is just one tree left, i.e., T has been reassembled.
Obviously, there is at most one tree T ′ among the trees Ti with |Ui| = n0. Let
m′ be the number of edges of T ′. Let mmin = mini mi.

Claim: If after some sequence of merges of pairs of trees, we have the trees
T1, . . . , Td′ , then the time spent for the recursive calls and the merges together
has been at most

t(d′) = c

d′∑
i=1

mi lg2 mi + c′ mmin lg mmin + b m′ lg m′ + c′′m (1)

where c, c′ and c′′ are from the lemma and b is defined by b = c′ if the tree T ′

(with |Ui| = n0) exists and b = 0 otherwise.
For the total time, until all merges have been done, i.e., for d′ = 1, we will

show a different bound t′ later.
The proof of the claim is by induction on the number of merges. The base

case (just before any merges) follows immediately from the inductive hypothesis
of the lemma, without any need for the second term c′ mmin lg mmin. For the
inductive step, we look at the difference t(d′) − t(d′ + 1) of the allowed time
after and before the merge of two trees Ti and Tj into Tk. We show in each case
that this time difference is enough to perform the merge, i.e., to compute the
polynomial for Tk from the polynomials for Ti and Tj .

First note that none of the four terms in t(d′) decreases during a merge (i.e.,
as d′ decreases by 1). The first term always increases by

c (mi + mj) lg2(mi + mj) − c mi lg2 mi − c mj lg2 mj > 0

The second term increases when mmin increases. The last two terms clearly don’t
decrease.

We consider two kind of merges depending on whether the merged trees are
of similar size or not. W.l.o.g., we assume mi ≤ mj.

Case “not similar”: Assume Ti and Tj are merged with 1 ≤ mmin = mi <
mj/4, and {Ti, Tj} are approximately minimal, i.e., m� > mj/2 for all 	
= i.
Here we do not assume mj ≤ m/2. For |U | = n0, it is possible to have a large
tree with mj very close to m. Now the second term in t(d′)− t(d′ + 1) increases
by at least

Efficient Computation of the Characteristic Polynomial of a Tree 19

c′
mj

2
lg

mj

2
− c′ mmin lg mmin

> c′
mj

2
lg

mj

2
− c′

mj

4
lg

mj

4
> c′

mj

4
lg

mj

2
> c′

mj

8
lg mj (as mj > 4)

> C′ mj lg mj

First C′ is chosen large enough to make it possible to do the last merge in time
C′ mj lg mj, i.e., to do the multiplications of O(1) pairs of polynomials of degree
mi and mj respectively using the fast Fourier transformation (FFT). Then we
make sure c′ is chosen sufficiently large that the last inequality holds.

Case “similar”: Assume Ti and Tj are merged with mi ≤ mj ≤ 4mi. Now the
first term in t(d′) − t(d′ + 1) increases by

c (mi + mj) lg2(mi + mj) − c mi lg2 mi − c mj lg2 mj

≥ c (mi + mj) lg2(5
4mj) − c mi lg2 mj − c mj lg2 mj

= c (mi + mj)((lg 5
4 + lg mj)2 − lg2 mj)

= c (mi + mj)(2 lg 5
4 lg mj + lg2 5

4)
> C mj lg mj

Again C is first chosen large enough to make it possible to do the last merge
in time C mj lg mj , i.e., to do the multiplications of O(1) pairs of polynomials
of degree mi and mj respectively using FFT. Then we make sure c is chosen
sufficiently large that the last inequality holds. This proves the claim.

At this point, we should notice that Claim (1) is not always strong enough to
show the inductive step in the induction proof of the lemma. Indeed we can do
better during the last merge. We claim a different bound t′ instead of just t(1)
to hold after the last merge, when we have just one tree Tk = T .

t′ = c m lg2 m + a m lg m + c′′m (2)

where a = c′ if |U | = n0 (where U is the set associated with the tree T), and
a = 0 otherwise.

The case with |U | = n0 and therefore |Ui| < n0 for all i causes no problem.
Then b = 0, mmin = m, and the first time bound (1) implies the second (2).

In the case |U | < n0, the last merge has to be handled separately. We show that
this merge is always balanced and therefore significantly cheaper. We are left with
two trees with mi and mj edges to be merged into a tree of m = mk = mi + mj

edges. We assume mi ≤ mj. We claim mj < 4
5m. Otherwise, the large tree with

more than 4
5m edges would have been produced by a merge involving a tree of

size at least 2
5m, omitting a tree of size at most 1

5m, contradicting the rule of
always merging approximately smallest trees.

20 M. Fürer

Now the difference of bounds is

t′ − t(2) = c m lg2 m − c(mi lg2 mi + mj lg2 mj) − c′ mmin lg mmin − b m′ lg m′

> c mi(lg2 m − lg2 mi) + c mj(lg2 m − lg2 mj) − 2c′m lg m

≥ c m(lg2 m − lg2 mj) − 2c′m lg m

> c m(lg m + lg mj)(lg m − lg mj) − 2c′m lg m

= c m lg(mmi) lg(m/mj) − 2c′m lg m

> c m lg m lg 5
4 − 2c′m lg m

> C m lg m

Once more, C has been chosen large enough to make it possible to do the last
merge in time C m lg m, i.e., to do the multiplications of O(1) pairs of polynomi-
als of degree mi and mj respectively. Then we make sure c is chosen sufficiently
large that the last inequality holds. ��

Lemma 2 immediately implies the desired complexity result for the procedure
Restricted-Matchings and therefore also for the algorithm Matchings.

Theorem 1. For |U | ≤ n0, the running time of the algorithm Matchings is
O(n log2 n).

4 Other Problems

The algorithms and their analysis easily transfer to many other counting prob-
lems, like computing the independent set generating polynomial, the vertex cover
generating polynomial and so on. Another example is computing the number of
3-colorings which color exactly r vertices being colored red, simultaneously for
every r. All these problems can be solved in time O(n log2 n) for trees with ba-
sically the same algorithm. All we need is that these are all local properties. If
a set is not independent, then you can put your finger on an edge where both
incident vertices are selected.

Indeed the algorithms for these problems are even slightly easier than com-
puting the matching generating polynomial, because the counted objects are sets
of vertices not sets of edges. Instead of f(W) whose r-th coefficient is the num-
ber of matchings not involving the vertices of W , we would use f(U, W) whose
r-th coefficient is the number of independent sets including all the vertices of
(U \W)∩V and excluding all the vertices of W ∩V , when counting independent
sets. This would change the “if” clause of the procedure Restricted-Matchings
near the end of the procedure to

fk(U, W) = fi(U, W) fj(U, W)

and the corresponding “else” clause to

fk(U, W) = fi(U, W) fj(U, W)/x

Efficient Computation of the Characteristic Polynomial of a Tree 21

Note that now in both cases, the number of independent sets is just the product
of the the number of independent sets in the two subtrees. In the second case,
the vertex v is double counted, as it is in the independent sets of both subtrees.
This is corrected by the division by x.

This change would be exactly the same, if we wanted to count other locally
testable sets of vertices, like the numbers of vertex covers. But there are ad-
ditional changes of the initialization. These changes are different for different
kinds of polynomials. It would be a bit tedious to describe the complete initial-
ization, because there are so many cases. For example, for n = 2 with one vertex
u ∈ U \ W (i.e., u is required in the set), and the other vertex v ∈ V \ U (i.e.,
v is allowed by not required in the set), f(U, W) = x + x2 for Vertex Cover,
but f(U, W) = x for Independent Set, as in both cases {u} is the only allowed
singleton set, while {u, v} is a vertex cover but not an independent set.

5 Graphs of Bounded Tree-Width

Things get much more tedious, but the method clearly carries through graphs
of bounded tree-width. Instead of the recursive calls having to deal with all
ways of handling one additional vertex v of the tree, now recursive calls have the
additional task of dealing with all possible ways of handling all the graph vertices
assigned to the same tree vertex v. Naturally, the running time is exponential in
the tree-width, but that is still just a constant. The dependence on n remains
O(n log2 n).

There is an extensive literature on graph polynomials for graphs of bounded
tree-width. A main focus is on parametrized complexity of counting and evalu-
ation problems on graphs definable in Monadic Second Order Logic [10,11,12].
For bounded tree-width these problems are solvable in polynomial time. The
resulting running time is O(f(k)n4) with the dependence on the parameter f(k)
double exponential. When our algorithm is applied to graph polynomials for
graphs of bounded tree width, then f(k) is singly exponential.

There is some confusion caused by a linear time algorithm for the interlace
polynomial for graphs of bounded tree-width [13]. This is a more complicated
multivariate polynomial. It is important to notice that these authors have a
different notion of computing a polynomial. While they compute one value of a
polynomial in linear time, we compute all the coefficients of our polynomials in
almost linear time.

6 Final Remark

We have presented a simple algorithmic paradigm with very wide applicability
for counting problems in graphs of bounded tree-width. It always saves a factor of
order n/ log2 n over previously known methods. A detailed description in general
terms will be quite tedious, even though, there is no principle hurdle.

We have decided to present the method with detailed descriptions and proofs
for the special, but interesting case of computing the characteristic polynomial

22 M. Fürer

of a tree. This problem has been investigated before, and it is not astonishing
that previous progress has stopped at the “natural” bound of O(n2).

Only a new multitasking divide and conquer method has allowed to obtain a
significantly more efficient algorithm. The method allows to divide according to
two different natural strategies, taking turns when needed, and basically reaching
both goals.

References

1. Biggs, N.: Algebraic graph theory, 2nd edn. Cambridge Mathematical Library.
Cambridge University Press, Cambridge (1993)

2. Tinhofer, G., Schreck, H.: Computing the characteristic polynomial of a tree. Com-
puting 35(2), 113–125 (1985)

3. Keller-Gehrig, W.: Fast algorithms for the characteristic polynomial. Theor. Com-
put. Sci. 36(2,3), 309–317 (1985)

4. Bürgisser, P., Clausen, M., Shokrollahi, M.A.: Algebraic complexity theory.
Grundlehren der Mathematischen Wissenschaften or Fundamental Principles of
Mathematical Sciences, vol. 315. Springer, Berlin (1997); With the collaboration
of Thomas Lickteig

5. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions.
Journal of Symbolic Computation 9(3), 251–280 (1990)

6. Fricke, G.H., Hedetniemi, S., Jacobs, D.P., Trevisan, V.: Reducing the adjacency
matrix of a tree. Electron. J. Linear Algebra 1, 34–43 (1996) (electronic)

7. Mohar, B.: Computing the characteristic polynomial of a tree. J. Math. Chem. 3(4),
403–406 (1989)

8. Jacobs, D.P., Machado, C.M.S., Trevison, V.: An O(n2) algorithm for the char-
acteristic polynomial of a tree. J. Combin. Math. Combin. Comput. 54, 213–221
(2005)

9. Ellis-Monaghan, J., Merino, C.: Graph polynomials and their applications ii: In-
terrelations and interpretations (2008)

10. Courcelle, B., Makowsky, J.A., Rotics, U.: On the fixed parameter complexity
of graph enumeration problems definable in monadic second-order logic. Discrete
Appl. Math. 108(1-2), 23–52 (2001)

11. Makowsky, J., Marino, J.: Farrell polynomials on graphs of bounded tree width.
Advances in Applied Mathematics 30, 160–176 (2003)

12. Makowsky, J.A.: From a zoo to a zoology: Descriptive complexity for graph poly-
nomials. In: Beckmann, A., Berger, U., Löwe, B., Tucker, J.V. (eds.) CiE 2006.
LNCS, vol. 3988, pp. 330–341. Springer, Heidelberg (2006)

13. Bläser, M., Hoffmann, C.: Fast computation of interlace polynomials on graphs of
bounded treewidth. CoRR abs/0902.1693 (2009); 35 pages informal publication

Improved Approximation Algorithms for Label
Cover Problems

Moses Charikar1,�, MohammadTaghi Hajiaghayi2, and Howard Karloff2

1 Department of Computer Science, Princeton University,
Princeton, NJ 08540, USA
moses@cs.princeton.edu

2 AT&T Labs — Research, 180 Park Ave.,
Florham Park, NJ 07932, USA

{hajiagha,howard}@research.att.com

Abstract. In this paper we consider both the maximization variant
Max Rep and the minimization variant Min Rep of the famous La-

bel Cover problem, for which, till now, the best approximation ratios
known were O(

√
n). In fact, several recent papers reduced Label Cover

to other problems, arguing that if better approximation algorithms for
their problems existed, then a o(

√
n)-approximation algorithm for Label

Cover would exist.
We show, in fact, that there are a O(n1/3)-approximation algorithm

for Max Rep and a O(n1/3 log2/3 n)-approximation algorithm for Min

Rep. In addition, we also exhibit a randomized reduction from Densest

k-Subgraph to Max Rep, showing that any approximation factor for
Max Rep implies the same factor (up to a constant) for Densest k-

Subgraph.

1 Introduction

Label Cover was first introduced in Arora et al. [2] and is a canonical problem
used to show strong hardness results for many NP-hard problems [12]. It is
known that for Label Cover, there is no approximation algorithm achieving
a ratio 2log1−ε n, for any 0 < ε < 1, unless NP ⊆ DTIME(npolylog(n)) [2,12].
Label Cover has both maximization and minimization variants for both of
which the above hardness holds. Kortsarz [14] introduced slight variants of these
two problems called Max Rep and Min Rep. (See the end of this section for
formal definitions of both problems.) Indeed Max Rep is equivalent to the
maximization version of Label Cover, but Min Rep is slightly different from
the minimization version of Label Cover. Kortsarz [14] showed that for both
Max Rep and Min Rep, there is the same hardness of 2log1−ε n, for 0 < ε < 1,
unless NP ⊆ DTIME(npolylog(n)). The simpler definitions of Max Rep and
Min Rep make them particularly attractive for use in hardness reductions.
� Supported by NSF ITR grant CCF-0426582, NSF CAREER award CCF-0237113,

MSPA-MCS award 0528414, and NSF expeditions award 0832797.

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 23–34, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

24 M. Charikar, M. Hajiaghayi, and H. Karloff

For the upper bound, it is known that both Max Rep and Min Rep admit
relatively simple O(

√
n) approximation algorithms [6,16]. Recently some authors

suggested the possibility that O(
√

n) is the best approximation factor for these
two problems. See, e.g., [8], in which the authors write, “This ratio [O(

√
n)]

seems hard to improve and better ratio algorithms for LABEL-COVERmax are
not known even for very simple versions of the problem (e.g., when the structure
of the graph obeys the rules of the Unique Game Conjecture. . .). If LABEL-
COVERmax is indeed Ω(

√
n) hard to approximate, then so is DSF [Directed

Steiner Forest]. Indeed several recent papers reduced Min Rep/Max Rep to
other problems in order to obtain hardness results; therefore studying the ap-
proximability of Min Rep/Max Rep is an important goal. See [8] for Di-

rected Steiner Forest, [16] for Red-Blue Set Cover, [4,11] for Set

Cover with Pairs, [3] for Sparsest k-Transitive-Closure-Spanner, [10]
for Min-Power k-Edge-Disjoint Paths, [1] for 	-Round Power Dominat-

ing Set, [5] for Target Set Selection, [15] for Vertex Connectivity

Survivable Network Design, and [9] for Stochastic Steiner Tree with

Non-uniform Inflation.
In this paper, we refute the possibility of Ω(

√
n) hardness for both Max Rep

and Min Rep by developing a O(n1/3)-approximation algorithm for Max Rep

and a O(n1/3 log2/3 n)-approximation algorithm for Min Rep. Our result for
Min Rep (see Section 2) uses a natural LP relaxation for the problem. We round
this LP based on an interesting generalization of the birthday paradox. Our result
for Max Rep (see Section 3) uses a direct combinatorial approach. Indeed, we
show that for Max Rep the integrality ratio for a natural LP relaxation is
Ω(

√
n

ln n) (in contrast to Min Rep for which the integrality ratio is Ω(n1/3−ε), for
all ε > 0.)

Our O(n1/3)- and O(n1/3 log2/3 n)-approximation algorithms for MaxRep and
MinRep might suggest a connection between these problems and the related
well-studied problem Densest k-Subgraph, for which the best approximation
factor so far is O(n1/3−δ) [7], for some small fixed δ > 0. The current best
inapproximability result only rules out a polynomial time approximation scheme
(PTAS) under the assumption that NP
⊆ BPTIME(2nε

) [13]. We show indeed
that there is a randomized reduction from Densest k-Subgraph to Max Rep,
which preserves the approximation factor up to a constant factor (see Section 4).

We end this section with exact definitions of Max Rep and Min Rep.

Definition 1. (Max Rep)
Instance: A bipartite graph G = (A, B, E), where |A| = |B| = n, and an equitable
partition A of A and B of B into k sets of same size q = n

k each (assuming that
n mod k = 0).
Objective: Choose A′ ⊆ A and B′ ⊆ B with |A′ ∩ Ai| = |B′ ∩ Bj | = 1 for
each i, j = 1, . . . , k such that the subgraph induced by A′ ∪ B′ has the maximum
number of edges.

In Definition 1 the bipartite graph and the partition of A and B induce a “su-
pergraph” H in the following way: The vertices of H are the sets Ai and Bj .

Improved Approximation Algorithms for Label Cover Problems 25

Two sets Ai and Bj are adjacent by a “superedge” in H if and only if there
exist ai ∈ Ai and bj ∈ Bj which are adjacent in G. In this case, we say pair
(ai, bj) covers the superedge (Ai, Bj). In the Max Rep problem the goal is to
select one element, called a representative, from each Ai and each Bj such that
the number of covered superedges in H is maximized. Another natural objective
function considered in the literature is as follows:

Definition 2. (Min Rep)
Instance: A bipartite graph G = (A, B, E), where |A| = |B| = n, and equitable
partitions A of A and B of B into k sets of same size q = n

k .
Objective: Choose A′ ⊆ A and B′ ⊆ B such that pairs (a, b), a ∈ A′ and b ∈ B′,
cover all the superedges of H, while minimizing |A′| + |B′|.

2 O(n1/3 log2/3 n)-Approximation Algorithm for Min Rep

There is a trivial k-approximation algorithm for Min Rep, namely, select both
vertices of one edge corresponding to each superedge. (The optimum selects at
least one vertex of each Ai (Bj) to which there is a superedge attached and
we choose at most k since there are at most k superedges attached to each Ai

(Bj).) In this section, we present a O(
√

q log k) approximation algorithm for
the Min Rep problem using a natural LP relaxation and a rounding scheme
whose analysis is based on a generalization of the birthday paradox. By using
the better of these two algorithms, and remembering that q = n/k, we obtain
an O(n1/3 log2/3 n)-approximation algorithm.

First, we start with an LP relaxation as follows:

OPT = minimize
∑
u∈A

pu +
∑
v∈B

pv (1)

subject to∑
u∈Ai,v∈Bj s.t. (u,v)∈E(G)

fuv = 1 ∀i, j : (Ai, Bj) is a superedge

∑
v∈Bj s.t. (u,v)∈E(G)

fuv ≤ pu ∀1 ≤ i, j ≤ k, ∀u ∈ Ai

∑
u∈Ai s.t. (u,v)∈E(G)

fuv ≤ pv ∀1 ≤ i, j ≤ k, ∀v ∈ Bj

fuv ≥ 0 ∀u ∈ A, v ∈ B s.t. (u, v) ∈ E(G).

In the IP corresponding to LP 1, px for x ∈ A ∪ B is a binary variable which
specifies whether vertex x has been chosen or not in our integral solution. (In
the LP, intuitively it specifies the fraction of vertex x that is chosen.) In the IP,
for all i, j such that (Ai, Bj) is a superedge, choose u ∈ Ai, v ∈ Bj such that u, v
are both chosen and set fuv = 1; set fu′v′ = 0 for all other u′ ∈ Ai, v

′ ∈ Bj . (In
the LP, f specifies the “flow” from u to v and satisfies capacity constraint px on
each vertex x ∈ A ∪ B.)

26 M. Charikar, M. Hajiaghayi, and H. Karloff

Our algorithm, called MinRepAlg, for rounding LP 1 is relatively simple,
though its proof is involved and is based on an interesting generalization of the
birthday paradox. The algorithm is as follows.

1. Find an optimal solution f∗, p∗ to LP 1.
2. For each x ∈ A ∪ B, let p1

x = min{1,
√

qpx}.
3. Let S1 = ∅ be the current set of selected elements.
4. Repeat the following O(log k) times: for each vertex x ∈ (A ∪ B) − S1, flip

an independent biased coin and put x into S1 with probability p1
x.

Since in MinRepAlg, we amplify each (probability) variable p by a factor
√

q,
the objective function would be at most

√
q times the optimum solution to LP 1.

Next, we show that, for each currently-uncovered superedge, the probability that
one iteration will cover that superedge is boundedly away from 0. Since there are
at most k2 such pairs, with high probability after O(log k) iterations of the while
loop, with total cost O(

√
q log k)z∗LP , we cover all superedges in supergraph H.

Theorem 1. If we choose each vertex x ∈ A∪B with probability p1
x, any single

superedge (Ai, Bj) is covered with constant probability.

The proof of the above theorem uses the following lemma.

Lemma 2. Consider a superedge (Ai, Bj) for which LP 1 routes one unit of
flow f from vertices u ∈ Ai to v ∈ Bj and satisfies capacity constraints with
respect to the p variables. Then there exists a flow f̂ from vertices u ∈ Ai to
vertices v ∈ Bj that

1. has value at least 1
3 and at most 1,

2. that satisfies the capacity constraint px on each vertex x ∈ Ai ∪ Bj, and
3. such that every nonzero f̂uv is at least 1/(6q).

Proof. We start with a flow f ′ = f initially and decrease it in iterations until its
flow from Ai to Bj becomes at most 1

3 . We also maintain node capacities p′ = p
initially and reduce them in each iteration maintaining the property that the
modified flow f ′ is a feasible flow for the modified node capacities p′. We build a
new flow f̂ = 0 initially and increase it iteratively such that in each iteration, we
increase flow f̂ by at least some α on one edge from Ai to Bj and simultaneously,
we decrease flow f ′ by at most 2α; we will ensure that α ≥ 1/(6q). We do this
increasing of f̂ and decreasing of f ′ in such a manner that flow f ′ + f̂ always
satisfies capacity constraints p. Thus when the flow f ′ becomes less than 1

3 , the
flow f̂ is at least 1

3 and we are done.
Now consider f ′ whose flow is at least 1

3 during the process. Let A′
i = {x ∈

Ai, p
′
x < 1

6q} and B′
j = {x ∈ Bj , p

′
x < 1

6q}. First, we show that there is an edge
(u, v) ∈ E(G) with u ∈ Ai −A′

i and v ∈ Bj −B′
j . If it is not the case, all flow of

f ′ should pass through either a vertex of A′
i or a vertex B′

j and thus its flow is
less than 2q 1

6q = 1
3 , a contradiction. Let α = min{p′u, p′v} ≥ 1

6q . We now add a

flow α from u to v in f̂ and reduce the flow f ′ as follows: Assume without loss of

Improved Approximation Algorithms for Label Cover Problems 27

generality that p′u ≤ p′v. Then we reduce the flow in f ′ along all edges incident
on u to zero. Note that the total flow reduction in this step is at most α. We
also reduce flow arbitrarily along edges incident to v other than (u, v) such that
the total flow on these edges is at most p′v − α. The total flow reduction in this
step is also bounded by α. Finally, we reduce p′u and p′v by α. This maintains
the property that flow f ′ is feasible for capacities p′, and that f ′ + f̂ is feasible
for the original capacities p. In this way, the flow of f ′ is decreased by at most
2α, and the flow of f̂ on any one edge has been increased by at least 1

6q . ��

We are now ready to prove Theorem 1.

Proof. [of Theorem 1] Fix i, j such that (Ai, Bj) is a superedge. First by
Lemma 2, we obtain a flow f̂ from the flow f in LP 1 and use the properties of f̂
instead of f in the statement of the lemma in the rest of the proof. Let p̂x ≤ px,
for each vertex x ∈ Ai ∪ Bj , be the total flow of f̂ passing through vertex x.

If p̂x ≥ 1√
q , for x ∈ Ai ∪ Bj , then since

√
qpx ≥ √

qp̂x ≥ 1, vertex x is chosen
in our random selection with probability 1. Without loss of generality, assume
that x ∈ Ai. Let Nx be the set of all vertices y ∈ Bj for which x has positive flow
f̂xy to y. If there is a y with p̂y ≥ 1√

q , then vertex y is also chosen in our random
selection with probability 1. Thus in this case we will satisfy the superedge
(Ai, Bj) with probability 1 and we are done. If it is not the case, then each vertex
y ∈ Nx will be selected in our random process with probability at least

√
qf̂xy.

This means that the probability that we do not select in our random process any
vertices in Nx is at most Πy∈Nx(1 − √

qf̂xy) ≤ e−
√

q
∑

y∈Nx
f̂xy ≤ e

−√
q 1√

q = 1
e

(since
∑

y∈Nx
f̂xy = p̂x ≥ 1√

q). Thus with probability at least 1 − 1
e , we select a

vertex in Nx and thus satisfy the superedge (Ai, Bj).
In the rest of the proof, we assume p̂x ≤ 1√

q , for x ∈ Ai ∪ Bj , and thus
√

qf̂uv ≤ 1 for u ∈ Ai and v ∈ Bj .
The outline of the rest of the proof is as follows. Instead of directly analyzing

the probability that the randomized rounding chooses both endpoints of some
edge in G[Ai ∪ Bj], for a general bipartite graph between Ai and Bj with q =
|Ai| = |Bj |, we first transform the bipartite graph, in a natural way, into a
perfect matching graph. We do this by replacing a vertex v of degree d(v) by
d(v) “clones,” associating a different edge incident to v with each clone, and
keeping the flow values on edges unchanged. We then choose each clone with
probability

√
q times the flow on the incident edge. (Note that the scaling factor

is the square root of q, not the square root of the number of boys or girls in
the perfect matching.) We argue that with at least positive constant probability,
there is an edge e of G[Ai ∪ Bj] with at least one clone of each endpoint of
e chosen. However, this is not what algorithm MinRepAlg does, in fact (it
doesn’t detour through a perfect matching graph), so we then argue that the
probability that algorithm MinRepAlg chooses both endpoints of some edge of
G[Ai ∪Bj] is at least as high as it is in the perfect matching, and hence at least
a positive constant.

28 M. Charikar, M. Hajiaghayi, and H. Karloff

First, we construct a bipartite graph M = (A′, B′, E′), for the given i, j, in
which for each vertex a ∈ Ai (resp., b ∈ Bj), we put r vertices a1, a2, . . . , ar

(resp., b1, b2, . . . , br) in A′ (resp., B′) called clones of vertex a (resp., b), where r
is the number of edges incident to a (resp., b) in G[Ai ∪ Bj] that carry nonzero
flow (and thus a flow of at least 1

6q) in f̂ . We associate each clone ai of a (resp.,
bj of b) with a different edge of G incident to a (resp., b). We put edges between
vertices (clones) in E′ corresponding to edges in G[Ai ∪Bj] that carry a nonzero
flow in f̂ (and we put this flow as the flow of the new edge). Since each edge
carrying positive flow in the bipartite graph between Ai and Bj gives rise to one
edge in M whose endpoints have degree 1, M is a bipartite perfect matching,
with |A′| = |B′|, which is at most the number of edges in G[Ai ∪ Bj].

We now consider a random process in which we build a set S by selecting each
vertex (clone) c in M independently with probability

√
q times the f̂ flow of the

unique edge incident to c in M . Let the subset of Ai∪Bj chosen by MinRepAlg

be called S1. We will prove two things: (1) first, that the chance that, in the
perfect matching graph M , S contains an edge, is at least 1 − e−1/54 > 0, and
(2) second, the chance that S1 contains an edge in G is at least as large as the
chance that S contains an edge in the perfect matching graph M .

Now we prove (1), that both endpoints of some edge in M are chosen with
constant probability. Consider one fixed edge d = (cA, cB) carrying a flow f̂d. We
select both cA and cB with probability (

√
qf̂d)2 = qf̂2

d . Thus with probability
1 − qf̂2

d , edge d will be not selected. The probability that no edges are selected
then is at most Πd∈E′(1 − qf̂2

d). (We have independence because the graph is
a perfect matching.) Since each edge carries a flow of at least 1

6q and the total

flow is at most one (by Lemma 2), |E′| ≤ 6q. Hence, since flow of f̂ is at least 1
3

by Lemma 2, Πd∈E′(1− qf̂2
d) ≤ e−q

∑
d∈E′ f̂2

d ≤ e
−q

(
∑

d∈E′ f̂d)2

|E′| ≤ e−q
(1
3)2

6q = e−
1
54 .

Thus with constant probability 1−e−
1
54 > 0 we satisfy any one given superedge.

This completes the proof of (1).
Now we prove (2). Build a new probabilistic process as follows. Define p2

x,
for x ∈ Ai ∪ Bj , to be the probability that at least one of the clones of x is
chosen to be in S. This is, of course, at most the sum of the probabilities that
each individual clone is chosen to be in S, which is itself at most the probability
that x ∈ S1 (since the flow values add). Build a set S2 by choosing each node
x ∈ Ai ∪ Bj independently with probability p2

x. The algorithm, on the other
hand, builds S1 using probabilities p1

x ≥ p2
x. It is a fairly obvious fact that, since

p1
x ≥ p2

x, the chance that S1 contains an edge is no smaller than the chance that
S2 contains an edge, but we prove it anyway.

Lemma 3. Suppose we are given an r-node graph H and two probabilities p1
x ≥

p2
x for each vertex x. Consider experiment E�, for 	 = 1, 2, with probability mea-

sure P�, in which we build set S� by putting each vertex x into S� with probability
p�

x, independently. Then P1[S1 contains an edge] ≥ P2[S2 contains an edge].

Improved Approximation Algorithms for Label Cover Problems 29

Proof. We can pick one sequence of r independent random reals ξx in [0, 1] and
put x into S� if ξx ≤ p�

x. As S2 ⊆ S1 always, in every run in which S2 contains
an edge, so does S1. ��

But now we can view the construction of S2 as putting a node x into S2 if and
only if at least one of its clones is chosen for S. It is clear that S contains an
edge in M implies that S2 contains an edge in G (but not the converse), so that
the chance that S contains an edge is dominated by the chance that S2 contains
an edge, which itself is dominated by the chance that S1 contains an edge, and
we are done with the proof of Theorem 1. ��

2.1 The Integrality Ratio of Min Rep

Next, we show that the integrality ratio of LP 1 is indeed Ω(n
1
3−ε) for all ε > 0

and thus our algorithm in this section is essentially the best that we can hope
for using the LP.

Theorem 4. The integrality ratio of LP 1 for Min Rep is Ω(n1/3−ε) for any
ε > 0, for all large enough n.

Proof. Consider an instance of Min Rep with k = n/q groups of q boys each
and k = n/q groups of q girls each. Between the ith group Ai of boys and the
jth group Bj of girls there is a random perfect matching. It is clear that one
can assign fe = 1/q for any edge e and pu = 1/q for any vertex u. This implies
that z∗LP ≤ 2n/q. To study the integrality ratio, we look at the smallest feasible
set S (i.e., the smallest set of vertices such that for all i, j, there is at least
one edge between Ai and Bj both of whose endpoints are in S). Let S be a
feasible set, s = |S|. The size s of S is the sum of 2n/q terms, one for each
Ai and Bj . Let a = s/(2n/q) = sq/(2n), the average size of the intersection
of S with some Ai or Bj . Of the 2n/q terms, whose sum is s, fewer than 1/4
of them (i.e., (1/2)n/q) can exceed 4a = 2sq/n, and hence at least (3/2)n/q of
them are at most 4a. Since at most n/q of them can be intersections with the
n/q Ai’s, at least (1/2)n/q of them are intersections with n/q Bj ’s. Similarly, at
least (1/2)n/q of them are intersections with the n/q Ai’s. Hence there are sets
I ⊆ {1, 2, ..., n/q} and J ⊆ {1, 2, ..., n/q}, |I|, |J | = (1/2)n/q (provided that n/q
is even), such that |S∩Ai| ≤ 4a = 2sq/n for all i ∈ I and |S∩Bj | ≤ 4a = 2sq/n
for all j ∈ J , and such that there is an edge between S ∩ Ai and T ∩ Bj . Let
Si be any subset of Ai which contains S ∩ Ai and which has size exactly 4a.
Analogously, let Tj be any subset of Bj which contains T ∩ Bj and which has
size exactly 4a. Clearly there is an edge between Si and Tj .

Fix an s and let a = sq/(2n). As just shown, the existence of an S, of size s,
for graph G implies the existence of I, J ⊆ {1, 2, ..., n/q}, |I| = |J | = (1/2)n/q,
Si ⊆ Ai for all i ∈ I, and Tj ⊆ Bj for all j ∈ J , |Si| = |Tj| = 4a, such that for
all i ∈ I, j ∈ J , the perfect matching in G between Ai and Bj contains an edge
between Si and Tj . (Si, Tj have size exactly 4a.) Hence the probability that there
is an S is at most the probability that there exist I, J ⊆ {1, 2, ..., n/q}, both of
size (1/2)n/q, and Si ⊆ Ai, Tj ⊆ Bj for all i ∈ I, j ∈ J , with |Si| = |Tj| = 4a,

30 M. Charikar, M. Hajiaghayi, and H. Karloff

such that for all i ∈ I, j ∈ J , the perfect matching in G between Ai and Bj

contains an edge between Si and Tj .
Given fixed I, J, (Si), (Tj), what is the probability that the random graph

contains, for each i ∈ I, j ∈ J , an edge whose left endpoint is in Si and whose
right one is in Tj? The chance that the random graph does not contain both
endpoints of some edge in the random perfect matching between Ai and Bj is
the chance that all the edges in the (i, j) perfect matching (the one between Ai

and Bj) emanating from Si end outside Tj. There are exactly 4a such edges.
We will prove a lower bound on the probability that a random perfect matching
does not contain both endpoints of some edge whose left endpoint is in Si and
whose right one is in Tj . In order for the mate of each vertex in Si to lie outside
of Tj , the mate of the first one must be chosen to be one of q − 4a nodes not
in Tj among the q vertices in Bj , the mate of the second must be chosen to be
one of the remaining q − 4a− 1 nodes not in Tj among the remaining q − 1 ver-
tices in Bj , etc. Hence the probability is exactly q−4a

q
q−4a−1

q−1 · · · q−4a−(4a−1)
q−(4a−1) ≥(

q−8a
q

)4a

=
(
1 − 8a

q

)4a

. Hence the chance that the (i, j) perfect matching does
contain an edge whose left endpoint is in Si and whose right one is in Tj is at most
1 − (1 − 8a/q)4a. The chance that the random matching works for all (n/q)2/4
pairs (i, j) with i ∈ I, j ∈ J is at most [1 − (1 − 8a/q)4a](n/q)2/4. Let A =(

n/q
n/(2q)

)2(q
4a

)n/q
[
1 −

(
1 − 8a

q

)4a
](n/q)2/4

, the first binomial coefficient repre-

senting the choices of I and J , the second representing the subsets Si of Ai and Tj

of Bj . If A < 1, then there is a fixed graph for which no set S of size s is good. A ≤

22n/qq4an/q

[
1 −

(
1 − 8a

q

)4a
](n/q)2/4

. We choose a =
√

q/32 so that q/(8a) =

4a. Note that (1 − 8a/q)4a = (1 − 1/(q/(8a)))q/(8a) ≥ 1/4 for q/(8a) = 4a suffi-
ciently large. So [1−(1−8a/q)4a](n/q)2/4 ≤ [1−(1/4)](n/q)2/4. Letting q = nδ for a
fixed δ, we have A ≤ 22n1−δ

(nδ)4an/q(3/4)(n/q)2/4. Since 4an/q = 4n1−δ
√

q/32 =
(1/

√
2)n1−δ/2, we have A ≤ (3/4)(1/4)n2(1−δ)

22n1−δ

nδ(1/
√

2)n1−δ/2
. We have A ≤

2−0.01n2(1−δ)+2n1−δ+(lg n)(δ/
√

2)n1−δ/2
. Since obviously 2(1 − δ) > 1 − δ, we will

have A < 1, in fact, A → 0, if 2(1 − δ) > 1 − δ/2, i.e., 2 − 2δ > 1 − δ/2, i.e.,
1 > (3/2)δ, i.e., δ < 2/3. Hence if δ < 2/3, then for q = nδ and a =

√
q/32, as

specified above, there is an instance for which no set S of size a(2n/q) is feasible.
For this instance, z∗IP >

√
q/32(2n/q). Since z∗LP ≤ 2n/q, the integrality ratio

exceeds
√

q/32, which is Ω(nδ/2). Since δ < 2/3 is arbitrary, for all ε > 0 the
integrality ratio is Ω(n1/3−ε). ��

3 O(n
1
3)-Approximation Algorithm for Max Rep

In this section, we provide an O(n
1
3)-approximation algorithm for Max Rep.

However, in contrast to Section 2, in which we use a natural LP for the problem,
we can show that the integrality gap of a natural LP for Max Rep is Ω(

√
n). This

Improved Approximation Algorithms for Label Cover Problems 31

forces us to use a combinatorial approach to obtain a non-trivial approximation

factor O(n
1
3).

We consider the best of three algorithms:

1. Matching: Find a maximal matching in the supergraph H. For each edge
(Ai, Bj) in this matching, pick ai ∈ Ai and bj ∈ Bj such that (ai, bj) ∈ E(G).

2. Random-Choice: For each Bj , pick bj ∈ Bj at random. For each Ai, pick
ai ∈ Ai that has the maximum number of edges to the set of all selected bj

vertices. Repeat, flipping the roles of A and B.
3. Random-Neighbor: For each a ∈ A, construct a solution in the following

fashion and eventually pick the best such solution: For each Bj , pick bj ∈ Bj

at random from amongst those vertices that are neighbors of a (if there is
no neighbor of a in Bj , pick an arbitrary bj ∈ Bj). For each Ai, pick ai ∈ Ai

that has the maximum number of edges to the selected bj vertices over all
j. Repeat, flipping the roles of A and B.

Theorem 5. The best of these three algorithms is a 2(2n)1/3-approximation
algorithm.

Proof. Suppose that the maximal matching in H has size 	. Renumber the Ai’s
and Bj ’s such that the matching has edges (Ai, Bi), i = 1, . . . , 	. There are no
edges between Ai and Bj for i, j > 	. Let A′ = ∪�

i=1Ai, and B′ = ∪�
j=1Bj . The

edges in the optimal solution can be decomposed into two groups: those that go
between A′ and B and those that go between A and B′. (Edges between A′ and
B′ appear in both.) Hence the optimal solution restricted to one of these two
groups much contain at least half the number of edges in the optimal solution.
Without loss of generality, assume that the optimal solution restricted to edges
between A and B′ contains at least half the number of edges in the optimal
solution.

We introduce some notation to facilitate the analysis. Let Xij = 1 if there is
an edge in the optimal solution from Ai to Bj (and 0 otherwise). Let Nij be the
number of edges from the optimal vertex a∗

i in Ai to the remaining vertices in
Bj , called “nonoptimal” since they’re not in the optimal solution.

Define p and r as follows:

k∑
i=1

�∑
j=1

Xij = p(k) (2)

k∑
i=1

�∑
j=1

Nij = r(n). (3)

Thus OPT ≤ 2
∑k

i

∑�
j=1 Xij = 2pk	 and algorithm Matching gives a 2pk ap-

proximation.
Next, we analyze algorithm Random-Choice. The algorithm picks random

vertices in B and picks the best vertices in A for the chosen vertices in B.
In order to obtain a lower bound on the number of superedges covered, we

32 M. Charikar, M. Hajiaghayi, and H. Karloff

compute the expected number of superedges covered if we pick random vertices
in Bj , j = 1, . . . , 	, and instead of the best vertex in Ai, we use the vertex a∗

i ∈ Ai

which is in the optimal solution.
For a superedge (Ai, Bj), i = 1, . . . , k and j = 1, . . . , 	, the probability that

this edge is covered by Random-Choice is (Xij +Nij)/(n/k). Hence the expected
number of superedges covered is at least k

n

∑k
i=1

∑�
j=1(Xij + Nij) = k

n (pk	 +
r	n). Hence the approximation ratio of algorithm Random-Choice is at most

2pk�
k
n (pk�+r�n)

≤ min
{ 2n

k , 2p
r

}
.

Finally, we analyze algorithm Random-Neighbor. Suppose the vertex a chosen
by the algorithm in the first step is in, say, Ah, and also is in the optimal solution.
Consider set Bj and the vertex b∗j ∈ Bj in the optimal solution. The number of
edges from a to Bj is Xhj +Nhj. The algorithm picks a random neighbor of a in
Bj . Thus the probability that b∗j is chosen is Xhj

Xhj+Nhj
. As before, instead of pick-

ing the best choice of vertices in A for the chosen vertices in B, we lower bound
the expected number of superedges covered by replacing the vertex ai by the
vertex a∗

i ∈ Ai in the optimal solution. If b∗j ∈ B is chosen, the number of edges
from the set of a∗

i ’s is
∑k

i=1 Xij . Thus the expected number of superedges cov-
ered is at least

∑�
j=1

Xhj

Xhj+Nhj
(
∑k

i=1 Xij). In this calculation, we assumed that
a = a∗

h was chosen in the first step. We average over h = 1, . . . , k. Thus the ex-
pected number of covered edges is at least 1

k

∑k
h=1

∑�
j=1

Xhj

Xhj+Nhj
(
∑k

i=1 Xij).

Let Cj =
∑k

i=1 Xij and let Nj =
∑k

i=1 Nij . Then the previous expression

is 1
k

∑�
j=1 Cj

∑k
h=1

Xhj

Xhj+Nhj
.Note that

∑k
h=1

Xhj

Xhj+Nhj
≥ Cj

(
1

1+
Nj
Cj

)
by the

arithmetic-geometric-harmonic means inequality. In order to obtain a lower

bound for this expression, consider the minimum value of
∑

j

C3
j

Cj + Nj
over

all choices of Cj and Nj subject to the constraint that
∑

j Cj and
∑

j Nj are
fixed. Now let Cj , Nj be the respective values that minimize this expression.

Then for any indices f
= g, the function (of x)
Cf

3

Cf + (Nf − x)
+

Cg
3

Cg + (Ng + x)
must be minimized for x = 0. Thus, the derivative of this function at x = 0
must be zero. Hence Cf

3/(Cf + Nf)2 = Cg
3/(Cg + Ng)2. Hence there is a con-

stant α such that for all indices f , (Cf + Nf)2 = αCf
3. Hence α

∑
j C

3/2
j =∑

j Cj +
∑

j Nj = pk	 + r	n. Thus the expected number of superedges cov-

ered is at least 1
k

∑�
j=1

C3
j

αC
3/2
j

= 1
k

∑�
j=1

C
3/2
j

α ≥ 1
k

(
∑ �

j=1 C
3/2
j)2

(pk�+r�n) . Convexity of

f(x) = x3/2 shows that this expression is minimized when all Cj are equal.
Hence a lower bound on the expected number of superedges covered is given
by 1

k
(�(pk)3/2)2

(pk�+r�n) = �2p3k2

pk�+r�n . Thus the approximation ratio of this procedure is at

most 2pk�(pk�+r�n)
�2p3k2 =

2(1+(r
p) n

k)
p .

Improved Approximation Algorithms for Label Cover Problems 33

Thus we have the following upper bounds on the approximation ratio of the
algorithm: 2pk, 2n

k , 2 p
r , 2

1+(r
p) n

k

p . We consider two cases:

Case 1: (r
p)n

k ≥ 1. In this case, the fourth bound is at most
4(r

p) n
k

p . The product

of the first, third and fourth bounds is 16pk × p
r × (r

p) n
k

p = 16n. Hence at least
one upper bound is at most 2(2n)1/3.
Case 2: (r

p)n
k < 1. In this case, the fourth bound is at most 4

p . Now the product
of the first, second and fourth bound is 2pk × 2n

k × 4
p = 16n. Hence at least one

upper bound is at most 2(2n)1/3. ��

4 Reduction from Densest k-Subgraph to Max Rep

In this section, we consider the Densest k-Subgraph (DkS) problem, in which
the goal is to find an induced subgraph of order k of a given graph with the
maximum number of edges.

Theorem 6. An f(n)-approximation algorithm for Max Rep implies the exis-
tence of a randomized O(f(n))-approximation algorithm for DkS.

Proof. From an instance of DkS, we produce an instance of Max Rep by ran-
domly dividing vertices of the given graph for DkS into k groups of equal size
s = 	n

k
, e.g., by using a random permutation of all vertices, and disregard the
rest of vertices. Next we place 	k/2
 groups on one side (call this L) and the
other �k/2� groups on the other side (call this R) of the instance for Max Rep.
Any feasible solution to the Max Rep instance obtained directly gives a solution
to the original DkS instance of the same value. Both instances have the same
number n of vertices.

We claim that the expected value of the optimal solution to the Max Rep

instance obtained thus is at least a constant times the optimal value for DkS.
Consider the optimal solution S of size k to the DkS instance. We produce a
solution to the Max Rep instance as follows. For every group in the instance,
if the group contains a unique vertex of S, then this unique vertex is picked as
the group representative. If there are zero or at least 2 vertices from S then an
arbitrary vertex is picked as the group representative (and we don’t count edges
incident to that vertex). We show that the expected value of this solution is at
least a constant times the value of the DkS optimal solution. For any vertex
v ∈ S, with constant probability v is placed alone in its group. Furthermore, for
two distinct vertices u, v ∈ S, the probability that u and v are both alone in
their groups, u is in the L side and v is on the R side, is bounded below by a
constant greater than 0. Hence E[z∗MaxRep] ≥ cz∗DkS , for a positive constant c.

Now the reduction is apparent. Given an f(n)-approximation algorithm A for
Max Rep, take an n-node instance I of DkS, randomly convert it as above
into an n-node instance I ′ of Max Rep, use A to generate a solution A(I ′) of
value at least f(n)z∗MaxRep, and report A(I ′) as a feasible solution to the DkS

instance. That E[z∗MaxRep] ≥ cz∗DkS implies that the expected size of the DkS

solution returned is at least cf(n) · z∗DkS . ��

34 M. Charikar, M. Hajiaghayi, and H. Karloff

5 Conclusion

Obtaining improvements over the approximation guarantees in this paper would
be instructive. Given the reduction demonstrated in Section 4, possibly one
can use ideas from the Densest k-Subgraph algorithm to build an n1/3−δ-
approximation algorithms for some fixed δ > 0. However, the main remaining open
problem is whether, for Max Rep or Min Rep, there is a O(nε)-approximation
algorithm for each ε > 0.

References

1. Aazami, A., Stilp, M.D.: Approximation algorithms and hardness for domination
with propagation. In: Charikar, M., Jansen, K., Reingold, O., Rolim, J.D.P. (eds.)
RANDOM 2007 and APPROX 2007. LNCS, vol. 4627, pp. 1–15. Springer, Heidel-
berg (2007)

2. Arora, S., Babai, L., Stern, J., Sweedyk, Z.: The hardness of approximate optima
in lattices, codes, and systems of linear equations. J. Comput. System Sci. 54,
317–331 (1997)

3. Bhattacharyya, A., Grigorescu, E., Jung, K., Raskhodnikova, S., Woodruff, D.P.:
Transitive-Closure Spanners, ArXiv e-prints (2008)

4. Breslau, L., Diakonikolas, I., Duffield, N., Gu, Y., Hajiaghayi, M., Johnson, D.,
Karloff, H., Resende, M., Sen, S.: Optimal Node Placement For Path-Disjoint Net-
work Monitoring (manuscript) (2008)

5. Chen, N.: On the approximability of influence in social networks. In: SODA, pp.
1029–1037 (2008)

6. Elkin, M., Peleg, D.: The hardness of approximating spanner problems. Theory
Comput. Syst. 41, 691–729 (2007)

7. Feige, U., Kortsarz, G., Peleg, D.: The dense k-subgraph problem. Algorithmica 29,
410–421 (2001)

8. Feldman, M., Kortsarz, G., Nutov, Z.: Improved approximation for the directed
steiner forest problem. In: SODA 2009, pp. 922–931 (2009)

9. Gupta, A., Hajiaghayi, M.T., Kumar, A.: Stochastic steiner tree with non-
uniform inflation. In: Charikar, M., Jansen, K., Reingold, O., Rolim, J.D.P. (eds.)
RANDOM 2007 and APPROX 2007. LNCS, vol. 4627, pp. 134–148. Springer, Hei-
delberg (2007)

10. Hajiaghayi, M.T., Kortsarz, G., Mirrokni, V.S., Nutov, Z.: Power optimization for
connectivity problems. Math. Program. 110, 195–208 (2007)

11. Hassin, R., Segev, D.: The set cover with pairs problem. In: Sarukkai, S., Sen, S.
(eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 164–176. Springer, Heidelberg (2005)

12. Hochbaum, D.S. (ed.): Approximation algorithms for NP-hard problems. PWS
Publishing Co., Boston (1997); see the section written by Arora and Lund

13. Khot, S.: Ruling out PTAS for graph min-bisection, dense k-subgraph, and bipar-
tite clique. SIAM J. Comput. 36, 1025–1071 (2006)

14. Kortsarz, G.: On the hardness of approximating spanners. Algorithmica 30, 432–
450 (2001)

15. Kortsarz, G., Krauthgamer, R., Lee, J.R.: Hardness of approximation for vertex-
connectivity network design problems. SIAM Journal on Computing 33, 185–199
(2004)

16. Peleg, D.: Approximation algorithms for the Label-CoverMAX and Red-Blue Set
Cover problems. J. Discrete Algorithms 5, 55–64 (2007)

A Linear Time Algorithm for L(2, 1)-Labeling of Trees

Toru Hasunuma1, Toshimasa Ishii2, Hirotaka Ono3, and Yushi Uno4

1 Department of Mathematical and Natural Sciences,
The University of Tokushima, Tokushima 770-8502, Japan

hasunuma@ias.tokushima-u.ac.jp
2 Department of Information and Management Science,
Otaru University of Commerce, Otaru 047-8501, Japan

ishii@res.otaru-uc.ac.jp
3 Department of Computer Science and Communication Engineering,

Kyushu University, Fukuoka 812-8581, Japan
ono@csce.kyushu-u.ac.jp

4 Department of Mathematics and Information Sciences,
Graduate School of Science, Osaka Prefecture University,

Sakai 599-8531, Japan
uno@mi.s.osakafu-u.ac.jp

Abstract. An L(2, 1)-labeling of a graph G is an assignment f from the vertex
set V(G) to the set of nonnegative integers such that | f (x) − f (y)| ≥ 2 if x and y
are adjacent and | f (x) − f (y)| ≥ 1 if x and y are at distance 2, for all x and y in
V(G). A k-L(2, 1)-labeling is an L(2, 1)-labeling f : V(G) → {0, . . . , k}, and the
L(2, 1)-labeling problem asks the minimum k, which we denote by λ(G), among
all possible assignments. It is known that this problem is NP-hard even for graphs
of treewidth 2, and tree is one of very few classes for which the problem is poly-
nomially solvable. The running time of the best known algorithm for trees had
been O(Δ4.5n) for more than a decade, and an O(min{n1.75, Δ1.5n})-time algorithm
has appeared recently, where Δ is the maximum degree of T and n = |V(T)|, how-
ever, it has been open if it is solvable in linear time. In this paper, we finally settle
this problem for L(2, 1)-labeling of trees by establishing a linear time algorithm.

1 Introduction

Let G be an undirected graph. An L(2, 1)-labeling of a graph G is an assignment f from
the vertex set V(G) to the set of nonnegative integers such that | f (x)− f (y)| ≥ 2 if x and
y are adjacent and | f (x)− f (y)| ≥ 1 if x and y are at distance 2, for all x and y in V(G). A
k-L(2, 1)-labeling is an L(2, 1)-labeling f : V(G) → {0, . . . , k}, and the L(2, 1)-labeling
problem asks the minimum k among all possible assignments. We call this invariant,
the minimum value k, the L(2, 1)-labeling number and is denoted by λ(G). Notice that
we can use k + 1 different labels when λ(G) = k since we can use 0 as a label for
conventional reasons.

The original notion of L(2, 1)-labeling can be seen in the context of frequency as-
signment, where ‘close’ transmitters must receive different frequencies and ‘very close’
transmitters must receive frequencies that are at least two frequencies apart so that they
can avoid interference. Due to its practical importance, the L(2, 1)-labeling problem has

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 35–46, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

36 T. Hasunuma et al.

been widely studied. From the graph theoretical point of view, since this is a kind of
vertex coloring problem, it has attracted a lot of interest [4,10,13,16]. In this context,
L(2, 1)-labeling is generalized into L(p, q)-labeling for arbitrary nonnegative integers p
and q, and in fact, we can see that L(1, 0)-labeling (L(p, 0)-labeling, actually) is equiv-
alent to the classical vertex coloring. We can find a lot of related results on L(p, q)-
labelings in comprehensive surveys by Calamoneri [2] and by Yeh [17].

Related Work: There are also a number of studies on the L(2, 1)-labeling problem from
the algorithmic point of view [1,8,15]. It is known to be NP-hard for general graphs [10],
and it still remains NP-hard for some restricted classes of graphs, such as planar graphs,
bipartite graphs, chordal graphs [1], and it turned out to be NP-hard even for graphs of
treewidth 2 [5]. In contrast, only a few graph classes are known to have polynomial
time algorithms for this problem, e.g., we can determine the L(2, 1)-labeling number of
paths, cycles, wheels within polynomial time [10].

As for trees, Griggs and Yeh [10] showed that λ(T) is either Δ + 1 or Δ + 2 for any
tree T , and also conjectured that determining λ(T) is NP-hard, however, Chang and
Kuo [4] disproved this by presenting a polynomial time algorithm for computing λ(T).
Their algorithm exploits the fact that λ(T) is either Δ + 1 or Δ + 2 for any tree T . Its
running time is O(Δ4.5n), where Δ is the maximum degree of a tree T and n = |V(T)|.
This result has a great importance because it initiates to cultivate polynomially solvable
classes of graphs for the L(2, 1)-labeling problem and related problems. For example,
Fiala et al. showed that L(2, 1)-labeling of t-almost trees can be solved in O(λ2t+4.5n)
time for λ given as an input, where a t-almost tree is a graph that can be a tree by
eliminating t edges [8]. Also, it was shown that the L(p, 1)-labeling problem for trees
can be solved in O((p + Δ)5.5n) = O(λ5.5n) time [3]. Both results are based on Chang
and Kuo’s algorithm, which is called as a subroutine in the algorithms. Moreover, the
polynomially solvable result for trees holds for more general settings. The notion of
L(p, 1)-labeling is generalized as H(p, 1)-labeling, in which graph H defines the metric
space of distances between two labels, whereas labels in L(p, 1)-labeling (that is, in
L(p, q)-labeling) take nonnegative integers; i.e., it is a special case that H is a path graph.
In [6], it has been shown that the H(p, 1)-labeling problem of trees for arbitrary graph
H can be solved in polynomial time, which is also based on Chang and Kuo’s idea. In
passing, these results are unfortunately not applicable for L(p, q)-labeling problems for
general p and q. Recently, Fiala et al. [7] showed that the L(p, q)-labeling problem for
trees is NP-hard if q is not a divisor of p, which is contrasting to the positive results
mentioned above.

As for L(2, 1)-labeling of trees again, Chang and Kuo’s O(Δ4.5n) algorithm is the first
polynomial time one. It is based on dynamic programming (DP) approach, and it checks
whether (Δ + 1)-L(2, 1)-labeling is possible or not from leaf vertices to a root vertex in
the original tree structure. The principle of optimality requires to solve at each vertex of
the tree the assignments of labels to subtrees, and the assignments are formulated as the
maximum matching in a certain bipartite graph. Recently, an O(min{n1.75, Δ1.5n}) time
algorithm has been proposed [11]. It is based on the similar DP framework to Chang and
Kuo’s algorithm, but achieves its efficiency by reducing heavy computation of bipartite
matching in Chang and Kuo’s and by using an amortized analysis. We give a concise
review of these two algorithms in Subsection 2.2.

A Linear Time Algorithm for L(2, 1)-Labeling of Trees 37

Our Contributions: Although there have been a few polynomial time algorithms for
L(2, 1)-labeling of trees, it has been open if it can be improved to linear time [2]. In
this paper, we present a linear time algorithm for L(2, 1)-labeling of trees, which fi-
nally settles this problem. It is based on the similar DP approach to the preceding two
polynomial time algorithms [4,11]. In our new algorithm, besides using their ideas, we
introduce the notion of “label compatibility”, which indicates how we flexibly change
labels with preserving its (Δ + 1)-L(2, 1)-labeling. Interestingly, we can show that only
O(logΔ n) labels are essential for L(2, 1)-labeling in any input tree by using this notion.
By utilizing this fact, we can replace the bipartite matching of graphs with the maximum
flow of much smaller networks as an engine to find the assignments. Consequently, our
algorithm finally achieves its linear running time.

Organization of this Paper: The rest of this paper is organized as follows. Section
2 gives basic definitions and introduces as a warm-up the ideas of Chang and Kuo’s
O(Δ4.5n) time algorithm and its improvement into O(n1.75) time. Section 3 introduces
the crucial notion of label compatibility that can bundle a set of compatible vertices and
reduce the size of the graph constructed for computing bipartite matchings. Moreover,
this allows to use maximum-flow based computation for them. In Section 4, we give
precise analyses to achieve linear running time. Some parts of the detailed analyses are
omitted due to space limitation. Interested readers can find them in the technical report
version of this paper [12].

2 Preliminaries

2.1 Definitions and Notations

A graph G is an ordered pair of its vertex set V(G) and edge set E(G) and is denoted
by G = (V(G), E(G)). We assume throughout this paper that all graphs are undirected,
simple and connected, unless otherwise stated. Therefore, an edge e ∈ E(G) is an un-
ordered pair of vertices u and v, which are end vertices of e, and we often denote it by
e = (u, v). Two vertices u and v are adjacent if (u, v) ∈ E(G). A graph G = (V(G), E(G))
is called bipartite if the vertex set V(G) can be divided into two disjoint sets V1 and V2

such that every edge in E(G) connects a vertex in V1 and one in V2; such G is denoted
by (V1,V2, E).

For a graph G, the (open) neighborhood of a vertex v ∈ V(G) is the set NG(v) = {u ∈
V(G) | (u, v) ∈ E(G)}, and the closed neighborhood of v is the set NG[v] = NG(v) ∪ {v}.
The degree of a vertex v is |NG(v)|, and is denoted by dG(v). We use Δ(G) to denote
the maximum degree of a graph G. A vertex whose degree is Δ(G) is called major. We
often drop G in these notations if there are no confusions. A vertex whose degree is 1 is
called a leaf vertex, or simply a leaf.

When we describe algorithms, it is convenient to regard the input tree to be rooted
at a leaf vertex r. Then we can define the parent-child relationship on vertices in the
usual way. For a rooted tree, its height is the length of the longest path from the root to
a leaf. For any vertex v, the set of its children is denoted by C(v). For a vertex v, define
d′(v) = |C(v)|.

38 T. Hasunuma et al.

2.2 Chang and Kuo’s Algorithm and Its Improvement

Before explaining algorithms, we give some significant properties on L(2, 1)-labeling
of graphs or trees that have been used so far for designing L(2, 1)-labeling algorithms.
We can see that λ(G) ≥ Δ + 1 holds for any graph G. Griggs and Yeh [10] observed
that any major vertex in G must be labeled 0 or Δ + 1 when λ(G) = Δ + 1, and that
if λ(G) = Δ + 1, then NG[v] contains at most two major vertices for any v ∈ V(G).
Furthermore, they showed that λ(T) is either Δ + 1 or Δ + 2 for any tree T . By using
this fact, Chang and Kuo [4] presented an O(Δ4.5n) time algorithm for computing λ(T).

Chang and Kuo’s Algorithm. Now, we first review the idea of Chang and Kuo’s
dynamic programming algorithm (CK algorithm) for the L(2, 1)-labeling problem of
trees, since our linear time algorithm also depends on the same formula of the principle
of optimality. The algorithm determines if λ(T) = Δ + 1, and if so, we can easily
construct the labeling with λ(T) = Δ + 1.

To describe the idea, we introduce some notations. We assume for explanation that
T is rooted at some leaf vertex r. Given a vertex v, we denote the subtree of T rooted at
v by T (v). Let T (u, v) be a tree rooted at u that forms T (u, v) = ({u} ∪ V(T (v)), {(u, v)} ∪
E(T (v))). Note that this u is just a virtual vertex for explanation and T (u, v) is uniquely
determined by T (v). For T (u, v), we define

δ((u, v), (a, b)) =

{
1, if λ(T (u, v) | f (u) = a, f (v) = b) ≤ Δ + 1,
0, otherwise,

where λ(T (u, v) | f (u) = a, f (v) = b) denotes the L(2, 1)-labeling number on T (u, v)
under the condition that f (u) = a and f (v) = b, i.e., the minimum k of k-L(2, 1)-
labelings on T (u, v) satisfying f (u) = a and f (v) = b. This δ function satisfies the
following formula:

δ((u, v), (a, b))=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if there is an injective assignment g : C(v)→ {0, 1, . . . , Δ+1}−{a,

b − 1, b, b + 1} such that δ((v,w), (b, g(w)) = 1 for each w ∈ C(v),
0, otherwise.

The existence of such an injective assignment g is formalized as the maximum matching
problem: For a bipartite graph G(u, v, a, b) = (C(v), X, E(u, v, a, b)), where X = {0, 1,
. . . , Δ, Δ + 1} and E(u, v, a, b) = {(w, c) | δ((v,w), (b, c)) = 1, c ∈ X − {a},w ∈ C(v)}, we
can see that there is an injective assignment g: C(v)→ {0, 1, . . . , Δ+1}−{a, b−1, b, b+1}
if there exists a matching of size d′(v) in G(u, v, a, b). Namely, for T (u, v) and two labels
a and b, we can easily (i.e., in polynomial time) determine the value of δ((u, v), (a, b))
if the values of δ function for T (v,w),w ∈ C(v) and any two pairs of labels are given.
Now let t(v) be the time for calculating δ((u, v), (∗, ∗)) for vertex v. CK algorithm solves
the bipartite matching problems of O(Δ) vertices and O(Δ2) edges O(Δ2) times for each
v, in order to obtain δ-values for all combinations of labels a and b. This amounts
t(v) = O(Δ2.5) × O(Δ2) = O(Δ4.5), where the first O(Δ2.5) is the time complexity of the
bipartite matching problem [14]. Thus the total running time is

∑
v∈V t(v) = O(Δ4.5n).

An O(n1.75)-time Algorithm. Next, we review the O(n1.75)-time algorithm proposed
in [11]. The running time O(n1.75) is roughly achieved by two strategies. One is that the

A Linear Time Algorithm for L(2, 1)-Labeling of Trees 39

problem can be solved by a simple linear time algorithm if Δ = Ω(
√

n), and the other is
that it can be solved in O(Δ1.5n) time for any input tree.

The first idea of the speedup is that for computing δ((u, v), (∗, b)), the algorithm does
not solve the bipartite matching problems every time from scratch, but reuse the ob-
tained matching structure. More precisely, the bipartite matching problem is solved
for G(u, v,−, b) = (C(v), X, E(u, v,−, b)) instead of G(u, v, a, b) for a specific a, where
E(u, v,−, b) = {(w, c) | δ((v,w), (b, c)) = 1, c ∈ X,w ∈ C(v)}. A maximum matching of
G(u, v,−, b) is observed to satisfy the following properties:

Property 1. If G(u, v,−, b) has no matching of size d′(v), then δ((u, v), (i, b)) = 0 for
any label i. ��

Property 2. δ((u, v), (i, b)) = 1 if and only if vertex i can be reached by an M-alternating
path from some vertex in X unmatched by M in G(u, v,−, b), where M denotes a maxi-
mum matching of G(u, v,−, b) (of size d′(v)). ��

From these properties, δ((u, v), (∗, b)) can be computed by a single bipartite matching
and a single graph search, and its total running time is O(Δ1.5d′(v)) + O(Δd′(v)) =
O(Δ1.5d′(v)) (for solving the bipartite matching of G(u, v,−, b), which has O(Δ) vertices
and O(Δd′(v)) edges, and for a single graph search). Since this calculation is done for
all b, we have t(v) = O(Δ2.5d′(v)).

The other technique of the speedup introduced in [11] is based on preprocessing
operations for amortized analysis. By some preprocessing operations, the shape of input
trees can be restricted while preserving L(2, 1)-labeling number, and the input trees can
be assumed to satisfy the following two properties.

Property 3. All vertices connected to a leaf vertex are major vertices. ��

Property 4. The size of any path component of T is at most 3. ��

Here, a sequence of vertices v1, v2, . . . , v� is called a path component if (vi, vi+1) ∈ E for
all i = 1, 2, . . . , � − 1 and d(vi) = 2 for all i = 1, 2, . . . , �, and � is called the size of the
path component.

Furthermore, this preprocessing operations enable the following amortized analysis.
Let VL and VQ be the set of leaf vertices and the set of major vertices whose children
are all leaf vertices, respectively. Also, let d′′(v) = |C(v) − VL| for v ∈ V . (Note that
d′′(v) = 0 for v ∈ VL ∪ VQ.)

By Property 3, if we go down the resulting tree from a root, then we reach a major
vertex in VQ. Then, the following facts are observed: (i) for v ∈ VQ δ((u, v), (a, b)) = 1
if and only if b = 0 or Δ + 1 and |a − b| ≥ 2, (ii) |VQ| ≤ n/Δ. Note that (i) implies that it
is not required to solve the bipartite matching to obtain δ-values. Also (ii) and Property
4 imply that |V − VQ − VL| = O(n/Δ) (this can be obtained by pruning leaf vertices
and regarding VQ vertices as new leaves). Since it is not necessary to compute bipartite
matchings for v ∈ VL ∪ VQ, and this implies that the total time to obtain δ-values for all
v’s is

∑
v∈V t(v) = O(

∑
v∈V−VL−VQ

t(v)), which turned out to be O(Δ2.5∑
v∈V−VL−VQ

d′′(v)).
Since

∑
v∈V−VL−VQ

d′′(v) = |V−VL−VQ |+ |VQ|−1 = O(n/Δ), we obtain
∑

v∈V−VL−VQ
t(v) =

O(Δ1.5n). Since we have a linear time algorithm if Δ = Ω(
√

n) as mentioned above, we
can solve the problem in O(n1.75) time in total.

40 T. Hasunuma et al.

3 Label Compatibility and Flow-Based Computation of δ

As reviewed in Subsection 2.2, one of keys of an efficient computation of δ-values is
reusing the matching structures. In this section, for a further speedup of the computation
of δ-values, we introduce a new novel notion, which we call ‘label compatibility’, that
enables to treat several labels equivalently under the computation of δ-values. Then, the
faster computation of δ-values is achieved on a maximum flow algorithm instead of a
maximum matching algorithm. Seemingly, this sounds a bit strange, because the time
complexity of the maximum flow problem is larger than the one of the bipartite match-
ing problem. The trick is that the new flow-based computation uses a smaller network
(graph) by this notion than the graph G(u, v,−, b) used in the bipartite matching.

3.1 Label Compatibility and Neck/Head Levels

Let Lh = {h, h + 1, . . . , Δ − h, Δ − h + 1}. Let T be a tree rooted at v, and u � V(T). We
say that T is head-Lh-compatible if δ((u, v), (a, b)) = δ((u, v), (a′, b)) for all a, a′ ∈ Lh

and b ∈ L0 with |a − b| ≥ 2 and |a′ − b| ≥ 2. Analogously, we say that T is neck-
Lh-compatible if δ((u, v), (a, b)) = δ((u, v), (a, b′)) for all a ∈ L0 and b, b′ ∈ Lh with
|a − b| ≥ 2 and |a − b′| ≥ 2. The neck and head levels of T are defined as follows:

Definition 1. Let T be a tree rooted at v, and u � V(T).
(i) The neck level (resp., head level) of T is 0 if T is neck-L0-compatible (resp.,
head-L0-compatible). (ii) The neck level (resp., head level) of T is h (≥ 1) if T is
not neck-Lh−1-compatible (resp., head-Lh−1-compatible) but neck-Lh-compatible (resp.,
head-Lh-compatible).

An intuitive explanation of neck-Lh-compatibility (resp., head-Lh-compatibility) of T is
that if for T (u, v), a label in Lh is assigned to v (resp., u) under (Δ + 1)-L(2, 1)-labeling
of T (u, v), the label can be replaced with another label in Lh without violating a proper
(Δ + 1)-L(2, 1)-labeling; labels in Lh are compatible. The neck and head levels of T
represent the bounds of Lh-compatibility of T . Thus, a trivial bound on neck and head
levels is (Δ + 1)/2.

For the relationship between the neck/head levels and the tree size, we can show the
following lemma, whose proof can be found in the technical report version [12]:

Lemma 1. Let T ′ be a subtree of T . If |V(T ′)| ≤ (Δ − 3 − 2h)h/2 − 1 and Δ − 2h ≥ 10,
then the head level and neck level of T ′ are both at most h.

By this lemma, we obtain the following theorem:

Theorem 1. For a tree T , both the head and neck levels of T are O(log |V(T)|/ logΔ).

3.2 Flow-Based Computation of δ

We are ready to explain the faster computation of δ-values. Recall that δ((u, v), (a, b))
= 1 holds if there exists a matching of G(u, v, a, b) in which all C(v) vertices are just
matched; which vertex is matched to a vertex in X does not matter. From this fact, we
can treat vertices in X corresponding to Lh equally in computing δ, if T is neck- and
head-Lh-compatible. The idea of the fast computation of δ-values is that, by bundling

A Linear Time Algorithm for L(2, 1)-Labeling of Trees 41

compatible vertices in X of G, we reduce the size of a graph (or a network) to compute
the assignments of labels, which is no longer the maximum matching; the maximum flow.

The algorithm introduced in Subsection 2.2 computes δ-values not by solving the
maximum matchings of G(u, v, a, b) for all pairs of a and b but by finding a maximum
matching M of G(u, v,−, b) once and then searching M-alternating paths. In the new
flow-based computation, we adopt the same strategy; for a tree T (v) whose head and
neck levels are at most h(v), we do not prepare a network for a specific pair (a, b), say
N(u, v, a, b), but a general network N(u, v,−, b) = ({s, t} ∪ C(v) ∪ Xh(v), E(v) ∪ EX ∪
Eδ, cap), where Xh(v) = (L0 − Lh(v)) ∪ {h(v)}, E(v) = {(s,w) | w ∈ C(v)}, EX = {(c, t) |
c ∈ Xh(v)}, Eδ = {(w, c) | w ∈ C(v), c ∈ Xh(v)}, and cap(e) function is defined as follows:
∀e ∈ E(v), cap(e) = 1, for e = (w, c) ∈ Eδ, cap(e) = 1 if δ((v,w), (b, c)) = 1, cap(e) = 0
otherwise, and for e = (c, t) ∈ EX , cap(e) = 1 if c � h(v), cap(e) = |Lh(v)−{b, b+1, b−1}|
if c = h(v).

For a maximum flow ψ : e→ R+, we define X′ as {c ∈ Xh | cap((c, t))−ψ((c, t)) ≥ 1}.
By the flow integrality and arguments similarly to Properties 1 and 2, we can obtain the
following properties:

Lemma 2. If N(u, v,−, b) has no flow of size d′(v), then δ((u, v), (i, b)) = 0 for any
label i. ��

Lemma 3. δ((u, v), (i, b)) = 1 if and only if vertex i can be reached by a ψ-alternating
path from some vertex in X′ in N(u, v,−, b). ��

Here, a ψ-alternating path is defined as follows: Given a flow ψ, a path in Eδ is called
ψ-alternating if its edges alternately satisfy cap(e) − ψ(e) ≥ 1 and ψ(e) ≥ 1. By these
lemmas, we can obtain δ((u, v), (∗, b))-values for b by solving the maximum flow of
N(u, v,−, b) once and then applying a single graph search.

The current fastest maximum flow algorithm runs in O(min{m1/2, n2/3} m log(n2/m)
log U) = O(n2/3m log n log U) time, where U, n and m are the maximum capacity of
edges, the number of vertices and edges, respectively [9]. Thus the running time of
calculating δ((u, v), (a, b)) for a pair (a, b) is

O((h(v) + d′′(v))2/3(h(v)d′′(v)) log(h(v) + d′′(v)) logΔ) = O(Δ2/3(h(v)d′′(v)) log2 Δ),

since h(v) ≤ Δ and d′′(v) ≤ Δ (recall that d′′(v) = |C(v) − VL|). By using a similar tech-
nique of updating matching structures introduced in [11], we can obtain δ((u, v), (∗, b))
in O(Δ2/3(h(v)d′′(v)) log2 Δ)+O(h(v)d′′(v)) = O(Δ2/3(h(v)d′′(v)) log2 Δ) time. Since the
number of candidates for b is also bounded by h(v) from the neck/head level property,
we have the following lemma.

Lemma 4. δ((u, v), (∗, ∗)) can be computed in O(Δ2/3(h(v))2d′′(v) log2 Δ) time, that is,
t(v) = O(Δ2/3(h(v))2 d′′(v) log2 Δ). ��

Combining this with
∑

v∈V−VL−VQ
d′′(v)=O(n/Δ) shown in Subsection 2.2, we can show

the total running time for the L(2, 1)-labeling is O(n(max{h(v)})2(Δ−1/3 log2 Δ)). By ap-
plying Theorem 1, we have the following theorem:

Theorem 2. For trees, the L(2, 1)-labeling problem can be solved in O(min{n log2 n,
Δ1.5n}) time. Furthermore, if n = O(Δpoly(logΔ)), it can be solved in O(n) time. ��

42 T. Hasunuma et al.

Corollary 1. For a vertex v in a tree T , we have
∑

w∈V(T (v)) t(w) = O(|T (v)|) if |T (v)| =
O(Δpoly(logΔ)). ��

Only by directly applying Theorem 1 (actually Lemma 1), we obtain much faster run-
ning time than the previous one. In the following section, we present a linear time
algorithm, in which Lemma 1 is used in a different way.

4 Proof of Linear Running Time

As mentioned in Subsection 2.2, one of keys for achieving the running time O(Δ1.5n) =
O(n1.75) is equation

∑
v∈Vδ

d′′(v) = O(n/Δ), where Vδ is the set of vertices in which δ-
values should be computed via the matching-based algorithm; since the computation of
δ-values for each v is done in O(Δ2.5d′′(v)) time, it takes

∑
v∈Vδ

O(Δ2.5d′′(v)) = O(Δ1.5n)
time in total. This equation is derived from the fact that in leaf vertices we do not need
to solve the matching to compute δ-values, and any vertex with height 1 has Δ−1 leaves
as its children after the preprocessing operation.

In our new algorithm, we generalize this idea: By replacing leaf vertices with sub-
trees with size at least Δ4 in the above argument, we can obtain

∑
v∈Vδ

d′′(v) = O(n/Δ4),
and in total, the running time

∑
v∈Vδ

O(Δ2.5d′′(v)) = O(n) is roughly achieved. Actu-
ally, this argument contains a cheating, because a subtree with size at most Δ4 is not
always connected to a major vertex, whereas a leaf is, which is well utilized to obtain∑

v∈Vδ
d′′(v) = O(n/Δ). Also, whereas we can neglect leaves to compute δ-values, we

cannot neglect such subtrees. We resolve these problems by best utilizing the properties
of neck/head levels and the maximum flow techniques introduced in Section 3.

4.1 Efficient Assignment of Labels for Computing δ

In this section, by compiling observations and techniques for assigning labels in the
computation of δ((u, v), (∗, ∗)) for v ∈ V , given in Sections 2 and 3, we will design an
algorithm to run in linear time within the DP framework. Throughout this section, we
assume that an input tree T satisfies Properties 3 and 4. Below, we first partition the
vertex set V into five types of subsets defined later, and give a linear time algorithm for
computing the value of δ functions, specified for each type.

We here start with defining such five types of subsets Vi (i = 1, . . . , 5). Throughout
this section, for a tree T ′, we may denote |V(T ′)| simply by |T ′|. Let VM be the set of
vertices v ∈ V such that T (v) is a “maximal” subtree of T with |T (v)| ≤ Δ5; i.e., for the
parent u of v, |T (u)| > Δ5. Divide VM into two sets V (1)

M := {v ∈ VM | |T (v)| ≥ (Δ − 19)4}
and V (2)

M := {v ∈ VM | |T (v)| < (Δ − 19)4} (notice that VL ⊆ ∪v∈VM V(T (v))). Define
d̃(v) := |C(v) − V (2)

M | (= d′(v) − |C(v) ∩ V (2)
M |). Let

V1 := ∪v∈VM V(T (v)),
V2 := {v ∈ V − V1 | d̃(v) ≥ 2},
V3 := {v ∈ V − V1 | d̃(v) = 1,C(v) ∩ (V (2)

M − VL) = ∅},
V4 := {v ∈ V − (V1 ∪ V3) | d̃(v) = 1,

∑
w∈C(v)∩(V (2)

M −VL) |T (w)| ≤ Δ(Δ − 19)},
V5 := {v ∈ V − (V1 ∪ V3) | d̃(v) = 1,

∑
w∈C(v)∩(V (2)

M −VL) |T (w)| > Δ(Δ − 19)}.

A Linear Time Algorithm for L(2, 1)-Labeling of Trees 43

V2

V (2)
M V (1)

M V (1)
M }

V1

V3

V3

V2

V4

V5

V4

Δ

Δ

V4

Δ

Fig. 1. Partition of V into Vi’s (i = 1, . . . , 5). Bold circles are leaves (VL) or pseudo-leaves (V (2)
M −

VL) with their subtrees, while bold squares are vertices in V (1)
M with their subtrees.

Notice that V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5, and Vi ∩ V j = ∅ for each i, j with i � j (see
Figure 1).

Here we describe an outline of the algorithm for computing δ((u, v), (∗, ∗)), v ∈ V ,
named Compute-δ(v) (Algorithm 1), which can be regarded as a subroutine of the DP
framework. Below, we show that for each Vi, δ((u, v), (∗, ∗)), v ∈ Vi can be computed in
linear time in total; i.e., O(

∑
v∈Vi

t(v)) = O(n). Namely, we have the following theorem.

Theorem 3. For trees, the L(2, 1)-labeling problem can be solved in linear time.

Algorithm 1. Compute-δ(v)
1: /** Assume that the head and neck levels of T (v) are at most h. **/
2: If v ∈ V1 ∪ V2, then for each b ∈ (L0 − Lh) ∪ {h}, compute δ((u, v), (∗, b)) by the max-flow

computation in the network N(u, v,−, b) defined in Subsection 3.2.
3: If v ∈ V3, execute the following procedure for each b ∈ L0 in the case of C(v) ∩ VL = ∅, and

for each b ∈ {0, Δ + 1} in the case of C(v) ∩ VL � ∅.
/** Let w∗ denote the unique child of v not in V (2)

M .**/
3-1: If |{c | δ((v,w∗), (b, c)) = 1}| ≥ 2, then let δ((u, v), (∗, b)) := 1.
3-2: If {c | δ((v,w∗), (b, c)) = 1} = {c∗}, then let δ((u, v), (c∗, b)) := 0 and δ((u, v), (a, b)) := 1 for

all other labels a � {b − 1, b, b + 1}.
3-3: If |{c | δ((v,w∗), (b, c)) = 1}| = 0, then let δ((u, v), (∗, b)) := 0.
4: If v ∈ V4 ∪ V5, then similarly to the case of v ∈ V1 ∪ V2, compute δ((u, v), (∗, ∗)) by the

max-flow computation in a network such as N(u, v,−, b) specified for this case (details will
be described in Subsection 4.3).

We first show O(
∑

v∈V1
t(v)) = O(|V1|). For each v ∈ VM, we have O(

∑
w∈V(T (v)) t(w))

= O(|T (v)|), by Corollary 1 and |T (v)| = O(Δ5). Hence, we have O(
∑

v∈V1
t(v)) =

O(
∑

v∈VM

∑
w∈V(T (v)) t(w)) = O(

∑
v∈VM
|T (v)|) = O(|V1|).

The sketch of proofs for V2, V3, V4 and V5 are given in the subsequent subsections,
where some proofs of lemmas are omitted. See [12] for details.

44 T. Hasunuma et al.

4.2 Computation of δ-Value for V2

By Lemma 4, we can see that
∑

v∈V2
t(v) = O(

∑
v∈V2

Δ2/3d′(v)h2 log2 Δ) = O(Δ8/3 log2 Δ∑
v∈V2

d′(v)) (note that h ≤ Δ and d′′(v) ≤ d′(v)). Now, we have d′(v) ≤ d̃(v) + Δ
≤ Δd̃(v). It follows that

∑
v∈V2

t(v) = O(Δ11/3 log2 Δ
∑

v∈V2
d̃(v)). Below, in order to show

that
∑

v∈V2
t(v) = O(n), we prove that

∑
v∈V2

d̃(v) = O(n/Δ4).
By definition, there is no vertex whose all children are vertices in V (2)

M , since if there
is such a vertex v, then for each w ∈ C(v), we have |T (w)| < (Δ − 19)4 and hence
|T (v)| < Δ5, which contradicts the maximality of T (w). It follows that in the tree T ′

obtained from T by deleting all vertices in V1 − V (1)
M , each leaf vertex belongs to V (1)

M

(note that V(T ′) = V (1)
M ∪ V2 ∪ V3 ∪ V4 ∪ V5). Hence,

|V(T ′)| − 1 = |E(T ′)| = 1
2

∑
v∈V(T ′) dT ′(v)

= 1
2 (|V (1)

M | +
∑

v∈V2∪V3∪V4∪V5
(d̃(v) + 1) − 1)

= 1
2 (|V (1)

M | +
∑

v∈V2
(d̃(v) + 1) + 2|V3| + 2|V4| + 2|V5| − 1)

≥ 1
2 |V

(1)
M | +

3
2 |V2| + |V3| + |V4| + |V5| − 1

2

(the last inequality follows from d̃(v) ≥ 2 for all v ∈ V2). Thus, |V (1)
M | − 1 ≥ |V2|.

Therefore, we can observe that
∑

v∈V2
d̃(v) = |E(T ′)|− |V3|− |V4|− |V5| = |V (1)

M |+ |V2|−1 ≤
2|V (1)

M | − 2 (the first equality follows from |E(T ′)| =
∑

v∈V2∪V3∪V4∪V5
d̃(v) =

∑
v∈V2

d̃(v) +
|V3| + |V4| + |V5| and the second equality follows from |E(T ′)| = |V(T ′)| − 1 = |V (1)

M | +
|V2| + |V3| + |V4| + |V5| − 1). It follows by |V (1)

M | = O(n/Δ4) that
∑

v∈V2
d̃(v) = O(n/Δ4).

4.3 Computation of δ-Value for V3, V4, and V5

We sketch proofs for V3, V4, and V5. Since Property 3 indicates that |T (w)| ≥ Δ for each
w ∈ VM − VL (resp.,

∑
w∈C(v)∩(V (2)

M −VL) |T (w)| > Δ(Δ − 19)), we have |V4| = O(n/Δ) (resp.,

|V5| = O(n/Δ2)). By Property 4, we can observe that |V3| = O(n/Δ). Hence, it suffices
to show that for each v ∈ V3 ∪ V4 (resp., V5), δ((u, v), (∗, ∗)) can be computed in O(Δ)
(resp., O(Δ2)) time. Now,

the head and neck levels of T (w) are at most 8 for each w ∈ V (2)
M (1)

by Lemma 1 and |T (w)| < (Δ − 19)4 (note that we assume that Δ ≥ 26, since otherwise
the original CK algorithm is already a linear time algorithm). Let w∗ be the unique child
of v in C(v) − V (2)

M .
First consider the case where v ∈ V3 (i.e., Step 3 in algorithm Compute-δ(v)). Let b

be a label such that b ∈ L0 if v ∈ V (1)
3 := {v ∈ V3 | C(v) ∩ VL = ∅}, and b ∈ {0, Δ + 1} if

v ∈ V (2)
3 := V3−V (1)

3 . Notice that if v ∈ V (2)
3 (i.e., C(v)∩VL � ∅), then by Property 3, v is

major and hence δ((u, v), (a, b)) = 1, a ∈ L0 indicates that b = 0 or b = Δ + 1. Observe
that if there is a label c ∈ L0 − {b− 1, b, b+ 1} such that δ((v,w∗), (b, c)) = 1, then for all
a ∈ L0 − {b − 1, b, b+ 1, c}, we have δ((u, v), (a, b)) = 1. It is not difficult to see that this
shows the correctness of the procedure in this case. Obviously, for each v ∈ V3, we can
check which case of 3-1, 3-2, or 3-3 in algorithm Compute-δ(v) holds, and determine
the values of δ((u, v), (∗, b)), in O(1) time. Therefore, the values of δ((u, v), (∗, ∗)) can
be determined in O(Δ) time.

A Linear Time Algorithm for L(2, 1)-Labeling of Trees 45

Next consider the case where v ∈ V4. For a label b, we divide C(v) ∩ (V (2)
M − VL)

into two subsets C1(b) := {w ∈ C(v) ∩ (V (2)
M − VL) | δ((v,w), (b, c)) = 1 for all c ∈

L8 − {b − 1, b, b + 1}} and C2(b) := {w ∈ C(v) ∩ (V (2)
M − VL) | δ((v,w), (b, c)) = 0 for

all c ∈ L8 − {b − 1, b, b + 1}}. By the following property, we only have to consider the
assignments for {w∗} ∪ C2(b).

Lemma 5. Let v ∈ V4 and a and b be labels with |b − a| ≥ 2 such that b ∈ L0 if
C(v) ∩ VL = ∅ and b ∈ {0, Δ + 1} otherwise. Then, δ((u, v), (a, b)) = 1 if and only if
there exists an injective assignment g : {w∗} ∪C2(b)→ L0 − {a, b− 1, b, b+ 1} such that
δ((v,w), (b, g(w))) = 1 for each w ∈ {w∗} ∪ C2(b).

Below, we will show how to compute δ((u, v), (∗, b)) in O(1) time for a fixed b, where
b ∈ L0 if C(v) ∩ VL = ∅ and b ∈ {0, Δ + 1} otherwise. If |C2(b)| ≥ 17, then δ((u, v), (∗,
b)) = 0 because in this case, there exists some w ∈ C2(b) to which no label in L0 − L8

can be assigned since |L0 − L8| = 16. Assume that |C2(b)| ≤ 16. There are the following
three possible cases: (Case-1) δ((v,w∗), (b, ci)) = 1 for at least two labels c1, c2 ∈ L8,
(Case-2) δ((v,w∗), (b, c1)) = 1, for exactly one label c1 ∈ L8, and (Case-3) otherwise.

(Case-1) By assumption, for any a, δ((v,w∗), (b, c)) = 1 for some c ∈ L8 − {a}.
By Lemma 5, we only have to check whether there exists an injective assignment g :
C2(b) → L0 − L8 − {a, b − 1, b, b + 1} such that δ((v,w), (b, g(w))) = 1 for each w ∈
C2(b). According to Subsection 3.2, this can be done by utilizing the maximum flow
computation on the subgraph N′ of N(u, v,−, b) induced by {s, t} ∪ C2(b) ∪ X′ where
X′ = {0, 1, . . . , 7, Δ−6, Δ−5, . . . , Δ+1}. Obviously, the size ofN′ is O(1) and it follows
that its time complexity is O(1).

(Case-2) For all a � c1, the value of δ((u, v), (a, b)) can be computed similarly to
Case-1. Consider the case where a = c1. In this case, if δ((v,w∗), (b, c)) = 1 holds,
then it turns out that c ∈ L0 − L8. Hence, by Lemma 5, it suffices to check whether
there exists an injective assignment g : {w∗} ∪ C2(b) → L0 − L8 − {b − 1, b, b + 1}
such that δ((v,w), (b, g(w))) = 1 for each w ∈ {w∗} ∪ C2(b). Similarly to Case-1, this
can be done in O(1) time, by utilizing the subgraph N′′ of N(u, v,−, b) induced by
{s, t} ∪ (C2(b) ∪ {w∗}) ∪ X′.

(Case-3) By assumption, if δ((v,w∗), (b, c)) = 1 holds, then it turns out that c ∈
L0 − L8. Similarly to the case of a = c1 in Case-2, by using N′′, we can compute the
values of δ((u, v), (∗, b)) in O(1) time.

We analyze the time complexity for computing δ((u, v), (∗, ∗)). It is dominated by
that for computing C1(b), C2(b), and δ((u, v), (∗, b)) for each b ∈ L0. By (1), we have
Ci(b) = Ci(b′) for all b, b′ ∈ L8 and i = 1, 2. It follows that the computation of C1(b)
and C2(b), b ∈ L0 can be done in O(|C(v) ∩ (V (2)

M − VL)|) time. On the other hand, the
values of δ((u, v), (∗, b)) can be computed in constant time in each case of Cases-1, 2
and 3 for a fixed b. Thus, δ((u, v), (∗, ∗)) can be computed in O(Δ) time.

Finally, we consider the case where v ∈ V5. We will prove that the values of δ((u, v),
(∗, b)) can be computed in O(Δ) time for a fixed b. A key is that the children w ∈
C(v) ∩ V (2)

M of v can be classified into 217 (= O(1)) types, depending on its δ-values
(δ((v,w), (b, i)) | i ∈ (L0−L8)∪{c̃8}) where c̃8 is some label in L8−{b−1, b, b+1}, since
by (1), δ((v,w), (b, c)) = δ((v,w), (b, c̃8)) for any c ∈ L8 − {b− 1, b, b+ 1}. Then, we can
construct in O(d′(v)) time a network N′(u, v, a, b) with O(1) vertices, O(1) edges, and
O(Δ) units of capacity from N(u, v, a, b) by letting Xh := X8 and replacing C(v) with

46 T. Hasunuma et al.

a set of 217 vertices corresponding to types of vertices in C(v) ∩ V (2)
M , and compute in

O(logΔ) time the values of δ((u, v), (a, b)) by applying the maximum flow techniques to
N′(u, v, a, b) (see [12] for the details aboutN′(u, v, a, b)). Furthermore, by the following
lemma, we can see that δ((u, v), (∗, b)) can be obtained by checking δ((u, v), (a, b)) for
O(1) candidates of a; δ((u, v), (∗, b)) can be obtained in O(Δ) time.

Lemma 6. If δ((u, v), (a1, b)) � δ((u, v), (a2, b)) for some a1, a2 ∈ L8 − {b − 1, b, b + 1}
(say, δ((u, v), (a1, b)) = 1), then we have δ((v,w∗), (b, a2)) = 1 and δ((v,w∗), (b, a)) = 0
for all a ∈ L8 − {a2, b − 1, b, b + 1}, and moreover, δ((u, v), (a, b)) = 1 for all a ∈
L8 − {a2, b − 1, b, b + 1}.

References
1. Bodlaender, H.L., Kloks, T., Tan, R.B., van Leeuwen, J.: Approximations for λ-coloring of

graphs. The Computer Journal 47, 193–204 (2004)
2. Calamoneri, T.: The L(h,k)-labelling problem: A survey and annotated bibliography.

The Computer Journal 49, 585–608 (2006), http://www.dsi.uniroma1.it/˜calamo/
PDF-FILES/survey.pdf (January 13, 2009)

3. Chang, G.J., Ke, W.-T., Kuo, D., Liu, D.D.-F., Yeh, R.K.: On L(d, 1)-labeling of graphs.
Discr. Math. 220, 57–66 (2000)

4. Chang, G.J., Kuo, D.: The L(2,1)-labeling problem on graphs. SIAM J. Discr. Math. 9, 309–
316 (1996)

5. Fiala, J., Golovach, P.A., Kratochvı́l, J.: Distance constrained labelings of graphs of bounded
treewidth. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP
2005. LNCS, vol. 3580, pp. 360–372. Springer, Heidelberg (2005)

6. Fiala, J., Golovach, P.A., Kratochvı́l, J.: Distance constrained labelings of trees. In: Agrawal,
M., Du, D.-Z., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 125–135. Springer,
Heidelberg (2008)

7. Fiala, J., Golovach, P.A., Kratochvı́l, J.: Computational complexity of the distance con-
strained labeling problem for trees (Extended abstract). In: Aceto, L., Damgård, I., Gold-
berg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I.
LNCS, vol. 5125, pp. 294–305. Springer, Heidelberg (2008)

8. Fiala, J., Kloks, T., Kratochvı́l, J.: Fixed-parameter complexity of λ-labelings. Discr. Appl.
Math. 113, 59–72 (2001)

9. Goldberg, A.V., Rao, S.: Beyond the flow decomposition barrier. J. ACM 45, 783–797 (1998)
10. Griggs, J.R., Yeh, R.K.: Labelling graphs with a condition at distance 2. SIAM J. Disc.

Math. 5, 586–595 (1992)
11. Hasunuma, T., Ishii, T., Ono, H., Uno, Y.: An O(n1.75) algorithm for L(2, 1)-labeling of trees.

In: Gudmundsson, J. (ed.) SWAT 2008. LNCS, vol. 5124, pp. 185–197. Springer, Heidelberg
(2008); Journal version to appear in Theoretical Comp. Sci., doi:10.1016/j.tcs.2009.04.025

12. Hasunuma, T., Ishii, T., Ono, H., Uno, Y.: A linear time algorithm for L(2,1)-labeling of
trees. CoRR abs/0810.0906 (2008)

13. Havet, F., Reed, B., Sereni, J.-S.: L(2,1)-labelling of graphs. In: Proc. 19th SIAM-SODA, pp.
621–630 (2008)

14. Hopcroft, J.E., Karp, R.M.: An n5/2 algorithm for maximum matchings in bipartite graphs.
SIAM J. Comput. 2, 225–231 (1973)

15. Kratochvı́l, J., Kratsch, D., Liedloff, M.: Exact algorithms for L(2, 1)-labeling of graphs.
In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 513–524. Springer,
Heidelberg (2007)

16. Wang, W.-F.: The L(2,1)-labelling of trees. Discr. Appl. Math. 154, 598–603 (2006)
17. Yeh, R.K.: A survey on labeling graphs with a condition at distance two. Discr. Math. 306,

1217–1231 (2006)

http://www.dsi.uniroma1.it/~calamo/PDF-FILES/survey.pdf
http://www.dsi.uniroma1.it/~calamo/PDF-FILES/survey.pdf

On Inducing Polygons and Related Problems�

Eyal Ackerman1, Rom Pinchasi2, Ludmila Scharf1, and Marc Scherfenberg1

1 Institute of Computer Science, Freie Universität Berlin, Takustr. 9,
14195 Berlin, Germany

{eyal,scharf,scherfen}@mi.fu-berlin.de
2 Mathematics Department, Technion—Israel Institute of Technology,

Haifa 32000, Israel
room@math.technion.ac.il

Abstract. Bose et al. [1] asked whether for every simple arrangement A
of n lines in the plane there exists a simple n-gon P that induces A by ex-
tending every edge of P into a line. We prove that such a polygon always
exists and can be found in O(n log n) time. In fact, we show that every fi-
nite family of curves C such that every two curves intersect at least once
and finitely many times and no three curves intersect at a single point pos-
sesses the following Hamiltonian-type property: the union of the curves in
C contains a simple cycle that visits every curve in C exactly once.

1 Introduction

Arrangements of lines in the plane are among the most studied structures in Com-
binatorial and Computational Geometry (see, e.g., [4,5]). Every set of straight-line
segments S naturally induces an arrangement of lines, simply by extending every
segment in S into a line. Bose et al. [1] asked the following natural question.

Problem 1. Does every simple arrangement A of n lines contain a simple n-gon
that induces A?

An arrangement of lines is simple if every pair of lines intersects, and no three
lines intersect at a single point. A polygon (resp., curve) is simple if it is non-
self-intersecting. Fig. 1(a) shows a simple arrangement of six lines and a simple
hexagon that induces this arrangement.

Problem 1 remained open until now, though a few partial results were ob-
tained. In [1] it was shown that a simple arrangement A of n lines contains a
subarrangement of m ≥

√
n − 1 + 1 lines that has an inducing simple m-gon,

and that A always has an inducing simple n-path (a polygonal chain consist-
ing of n line segments), which can be constructed in O(n2) time. Recently, the
third and fourth authors [8] showed that an inducing n-path can be constructed
in O(n log n) time, and that there always exists an inducing simple O(n)-gon,
which can be found in O(n2) time.

Our main result is an affirmative answer to Problem 1.
� Research by Eyal Ackerman was supported by a fellowship from the Alexander

von Humboldt Foundation. Research by Rom Pinchasi was supported by the Israeli
Science Foundation (grant No. 938/06).

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 47–58, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

48 E. Ackerman et al.

(a)

	1

	2

	n

q1

q2

s2

qn−1

s1

(b)

Fig. 1. An inducing simple n-gon and n-path

Theorem 1. For every simple arrangement A of n > 2 lines in the plane there
is a simple n-gon that induces A. Given the set of n lines that form A, such a
polygon can be constructed in O(n log n) time.

We give two different constructive proofs for the existence of an inducing sim-
ple n-gon. The first proof is short and elegant and yields a non-optimal but
polynomial-time algorithm for finding such a polygon. The second proof yields
an O(n log n)-time algorithm. It is based on a simple idea, however, it involves
several case distinctions and is, thus, quite technical.

During our quest for a solution to Problem 1, we proved the following inter-
esting fact.

Theorem 2. For every simple arrangement A of n non-vertical lines in the
plane there is an x-monotone n-path that induces A.

Note that the first part of Theorem 1 can also be phrased as follows: Every
arrangement of lines contains a simple cycle (i.e., a closed curve) that visits
every line exactly once. To be more precise, we say that a curve x visits another
curve y if their intersection contains a point in which they neither cross nor
touch. A simple curve visits y exactly once if it visits y and their intersection is
connected. The first part of Theorem 1 is then equivalent to saying that every
simple line arrangement contains a simple (polygonal) cycle that visits every line
exactly once. We also have the following generalization of Theorem 1.

Theorem 3. Let C be a finite family of n > 2 simple curves in R3, such that
every pair of curves in C intersects at least once and at most finitely many times,
and no three curves intersect at the same point. Then ∪

C∈C
C contains a simple

cycle that visits every curve exactly once.

The rest of this paper is organized as follows. A first proof for the existence of
an inducing simple n-gon is given in Section 2. This proof is then extended in
Section 3 to a proof of Theorem 3. In Section 4 we describe a different and more
efficient way of finding an inducing simple n-gon. Due to space limitations, we

On Inducing Polygons and Related Problems 49

only sketch the idea of the proof and omit most of the details, which can be
found in the full version of this paper. Theorem 2 is proved in Section 5, while
Section 6 contains some concluding remarks.

2 First Proof of the Existence of an Inducing Simple
n-gon

Let A be a simple arrangement of n lines in the plane. We begin by constructing
a simple path that visits every line in A exactly once. This is done in a way
similar to the construction of an inducing path in [1]. Consider an arbitrary
intersection point of two lines, denote these lines by 	1 and 	2. Walk a short
distance on 	1 toward its intersection point with 	2. Remove 	1, and walk on 	2
in a direction that contains at least one intersection point, until reaching the
first intersection point. Let 	3 be the other line that determines this intersection
point. Remove 	2 and repeat the same process for 	3 and so on and so forth,
until reaching a line that has no additional intersection points. Finally, walk a
short distance on this line in some direction. See Fig. 1(b) for an example.

Since every pair of lines intersects, no line is missed and this process results
in a path that induces every line in A. Denote this path by Q. The lines in A are
denoted by 	1, 	2, . . . , 	n according to the order they are visited by Q. Denote
by sj the segment of 	j on Q. Assume to the contrary that Q is self-intersecting.
Then there are two intersecting segments, si and sj , such that i ≤ j − 2. But
this is a contradiction to the definition of 	i+1 as the first line, different from
	1, . . . , 	i, that we encounter while walking along 	i.

Observe that Q lies in one of the two half-planes determined by 	n. Indeed,
otherwise 	n would have crossed Q, contradicting the definition of 	n as the last
line in A we encounter while creating the path Q. We assume without loss of
generality that 	n coincides with the x-axis and that Q lies in the half-plane
above 	n. For convenience, denote the line 	n by 	.

We call a simple inducing n-path of A rooted above 	 if it lies in the closed half-
plane above 	 and 	 includes an extreme segment of the path. As we have just
seen, there is at least one simple inducing n-path rooted above 	, namely Q. For
such a path W we denote by q1(W), . . . , qn−1(W) the n − 1 internal vertices of
the path starting from q1(W) on 	. We denote by 	(W) the line through qn−1(W)
that includes the other extreme segment of W . Denote by 	−(W) the half-line of
	(W) that consists of all points with y-coordinates smaller than the y-coordinate
of qn−1(W). We denote by qn(W) the topmost (also first) intersection point of
	−(W) with 	∪ [q1(W)q2(W)]∪ . . .∪ [qn−2(W)qn−1(W)]. (Here, [ab] denotes the
line segment connecting point a to point b.)

Let z1, . . . , zm denote all the intersection points in A indexed in any way such
that i < j if the y-coordinate of zi is smaller than the y-coordinate of zj . We
then define for every j, Y (zj) = j.

For a simple inducing n-path W rooted above 	, let Y (W) =
∑n

i=1 Y (qi(W)).
Consider the simple inducing n-path W rooted above 	 such that Y (W) is mini-
mum. If qn(W) lies on 	, then observe that the vertices q1(W), . . . , qn(W) define

50 E. Ackerman et al.

	

qn−1

q1

q2

q3

qn

W

(a) qn lies on �

	

W

qn(W)

qi+1(W)

q1(W)

qn−1(W)
qi(W)

qi+2(W)

	(W)q2(W)

(b) qn lies on W

	

W ′

qn(W ′)
qi+1(W)

q1(W)

qn−1(W)
qi(W)

qi+2(W)

	(W ′)
q2(W)

(c) W ′

Fig. 2. The paths W and W ′

a simple inducing closed n-path of A (see Fig. 2(a)). Assume therefore that
qn(W) is the intersection point of 	(W) with the segment [qi(W)qi+1(W)] for
some 1 ≤ i ≤ n−2 (see Fig. 2(b)). Then we define W ′ as the path whose internal
vertices are

q1(W), . . . , qi(W), qn(W), qn−1(W) . . . , qi+2(W),

and hence 	(W ′) is the line through qi+1(W) and qi+2(W). Observe that W ′ is a
simple inducing n-path rooted above 	. We have Y (W ′) < Y (W) because qn(W ′)
has a smaller y-coordinate than the y-coordinate of qi+1(W) (see Fig. 2(c)). We
have thus reached a contradiction to the minimality of W . ��

Remark. The proof of Theorem 1, presented above, yields an algorithm with
running time polynomial in n. This is because Y (W) is always smaller than n3

and this gives a bound on the number of iterations going from W to W ′ required
to find a simple inducing closed n-path for A.

3 Proof of Theorem 3

Let C be a family of n simple curves in R3, such that every pair of curves in
C intersects at least once and at most finitely many times, and no three of the
curves meet at a point. We will show that ∪

C∈C
C contains a simple closed path

that visits every curve in C exactly once.
The proof is a modification of the argument in the proof of Theorem 1. We

first find a simple path Q that visits every curve in C exactly once, exactly in
the same way that was described in Section 2, applied this time to C. Let c be
a curve in C containing the last segment of Q thus constructed. As we observed
in the case of lines, c does not meet Q at any point outside the segment of Q
contained in c.

A simple (oriented) path W that visits every curve in C exactly once will be
called rooted in c if c is the first curve visited by W . Clearly, Q is an example
for such a path.

For a path W , as above, we denote by q1(W), . . . , qn−1(W) the n− 1 internal
vertices of the path starting from q1(W) on c. For i = 1, . . . , n − 2 we denote

On Inducing Polygons and Related Problems 51

by si(W) the segment of W whose vertices are qi(W) and qi+1(W), these will
be called the internal segments of W . We denote by c(W) the curve in C that
passes through qn−1(W) and contains the last segment of W .

Let s be a portion of a curve in C. We define |s| as the number of intersection
points of pairs of curves in C that lie on s. Finally, we define

Y (W) = f(|s1(W)|, . . . , |sn−2(W)|),
where f(x1, . . . , xn−2) is a strictly monotone increasing function of the lexico-
graphic order of (x1, . . . , xn−2).1

Consider the simple path W that is rooted in c and visits every curve in C
exactly once, such that Y (W) is minimum. Let p be an intersection point of
c(W) and c. Let qn(W) be the intersection point of c ∪ s1(W) ∪ . . . ∪ sn−2(W)
and the portion of c(W) between qn−1(W) and p that is closest to qn−1(W)
along the curve c(W).

If qn(W) lies on c, then observe that the vertices q1(W), . . . , qn(W) define a
simple closed path that visits every curve in C exactly once. Assume therefore
that qn(W) is an intersection point of c(W) with si(W) for some 1 ≤ i ≤ n− 2.
Let s′ denote the portion of si(W) delimited by qi(W) and qn(W). Let s′′ denote
the portion of c(W) delimited by qn(W) and qn−1(W). Then we define W ′ as
the path rooted in c whose internal segments are

s1(W), . . . , si−1(W), s′, s′′, sn−2(W), sn−3(W) . . . , si+2(W),

and c(W ′) is the curve containing the segment si+1(W).
Observe that W ′ is a simple path rooted on c that visits every curve in C

exactly once. It immediately follows that Y (W ′) < Y (W), because sj(W ′) =
sj(W) for j = 1, . . . , i − 1 while it is easy to see that |si(W ′)| < |si(W)| as
si(W ′) = s′ ⊂ si(W) and qi+1(W) is an intersection point in si(W) \ si(W ′).
We have thus reached a contradiction to the minimality of W . ��

Remarks. (1) Because Theorem 3 is stated in R3, geometry actually does not
play any role here. We may conclude the same result for “combinatorial curves”
that “intersect” finitely many times, as long as there is a total order on the set
of intersection points in each curve.
(2) The result in Theorem 3 is valid also if the curves in C are not simple and
have self-crossings. In this case we repeat the proof and ignore self-intersections
of curves. Finally, when obtaining the resulting closed path we observe that self-
intersections of the closed path result only from loops in the path. These loops
can easily be canceled.

4 Finding an Inducing Simple n-gon Efficiently

Let A be a simple arrangement of n lines in the plane. We incrementally construct
a polygon inducing A by starting with the boundary of a cell of A. In every
1 For example, f(11, 0, 6, . . .) > f(6, 9, 5, . . .) > f(6, 9, 4, . . .).

52 E. Ackerman et al.

p

g1 = b

g2

P0

H+

e0 e1

e2
e3

Fig. 3. Initialize P0 to be the boundary of the bounded face of A incident to a critical
point p

construction step the polygon is extended using a part of the boundary of the
cell containing it. We assume that n > 4, since, combinatorially, there is only
one arrangement of size three and one of size four and their inducing polygons
can be easily found.

We start with a so-called critical point p, i.e., p is the first intersection point
on both lines g1 and g2 containing it. The initial polygon P0 is then the boundary
of the only bounded face incident to p, see Fig. 3.

Let Pi denote the polygon constructed in step i, and |Pi| its number of edges.
Denote by Ai the arrangement of all the lines except the ones induced by Pi. We
maintain the following invariants throughout the construction of the polygons Pi.
Property 1.
1. Pi is a simple polygon;
2. Pi induces |Pi| lines of the arrangement A; and
3. Pi is contained in an unbounded face of the arrangement Ai.

The unbounded face of Ai containing Pi is denoted by C(i) and its by R(i). Define
the orientation of the two initial lines g1 and g2 in direction from p towards the
remaining intersection points. Without loss of generality we can assume that all
intersection points of g2 lie in the positive half-plane of g1, denoted by H+(g1),
as in Fig. 3.

For every construction step we maintain a so-called base line b(i). Intuitively,
the base line will be the line that determines the direction in which Pi is extended.
For P0 the base line is b(0) = g1. The edges of Pi are labeled in the following
way: the edge contained in the base line b(i) is the edge e

(i)
0 . In counter-clockwise

order we enumerate with negative indices the edges contained in the previous
base lines e

(i)
−1, . . . , e

(i)
−m, where e

(i)
−m is contained in the first base line b(0). These

edges are referred to as base edges. It can be shown that the base edges form a
connected concave chain in Pi. The remaining non-base edges are enumerated in
clockwise order with positive indices e

(i)
1 , . . . , e

(i)
k , where e

(i)
1 is incident to e

(i)
0

and e
(i)
k is incident to e

(i)
−m.

A line containing an edge e
(i)
j is denoted by l

(i)
j and the intersection point of

two lines l
(i)
j , l

(i)
m by x

(i)
j,m. We define the orientation of base edges in clockwise

direction and the orientation of non-base edges in counter clockwise direction

On Inducing Polygons and Related Problems 53

with respect to the polygon Pi. For each line l
(i)
j its orientation is defined by the

orientation of the edge e
(i)
j . The part of l

(i)
j \ e

(i)
j oriented in positive (negative)

direction of l
(i)
j is called positive (negative) half-line and is denoted by l

(i)+
j

(l(i)−j), respectively. For simplicity we will omit the index (i) if all identifiers
refer to the same step i, and will use the index in order to distinguish between
different steps.

We maintain the following properties for base lines, and non-base lines, re-
spectively.2

Property 2. All intersection points of a base line lj , j ≤ 0, with Ai lie in the
positive half-line, i.e., l−j ∩ Ai = ∅ for j ≤ 0. The base edges e0, e−1, . . . , e−m

form a concave chain in Pi, and every non-base edge is contained in the union
of the positive half-planes (i.e., half-planes to the right of the oriented line) of
the base lines l0, l−1, . . . , l−m.

Property 3. The intersection of a non-base line lj with a non-base edge ek is
empty, for k > j + 1.

For the line l1 it would be helpful to have an even stronger property:

Property 4. The intersection of l1 with Pi is exactly the edge e1. That is, l1
supports Pi.

The idea of the extension step is to extend the polygon Pi in direction of the
base line by modifying the edges e0 up to at most e3 and adding a part of the
boundary R(i) to the new polygon Pi+1. In every extension step we remove a
chain of edges from the polygon Pi, and attach a simple polygonal chain to the
open ends. Thus, if the added chain does not intersect the unchanged part of Pi,
the polygon Pi+1 is simple.

Depending on the combinatorial configuration of the lines l1, l2, l3, the chain
of base edges, and the boundary R, one of several extension construction steps
is taken, until all lines of A are induced by Pj , for some j. The inducing polygon
for A is then P = Pj .

The first case distinction is whether the negative half-line of l1 intersects the
boundary R. If it does, Case 1 applies.

Case 1 [l−1 ∩ R
= ∅]: The edge e1 is replaced by the part of l−1 from x1,2 to
its intersection with R. The edge e0 is extended until the intersection of b and
R. Finally, we add the segment of R between these two intersection points, see
Fig. 4(a). The base line for Pi+1 remains unchanged b(i+1) = b(i).

The next distinction is whether l+2 intersects R:

Case 2 [l−1 ∩ R = ∅ and l+2 ∩ R
= ∅]: In this case e1 is replaced by the part
of l+1 from x0,1 to its intersection with R. The edge e2 is extended following the

2 Property 3 can be violated in a special case that is considered in the full version of
the paper.

54 E. Ackerman et al.

b

l1

l2

Pi

e1

Pi+1

R(i)

x0,1

x1,2

(a) Case 1

b

Pi

e1
R

x0,1

x1,2

l2

Pi+1

b(i+1) = l
(i)
1

xj,2

(b) Case 2

Fig. 4. Case 1 and 2: The polygon Pi is the shaded area. The identifiers refer to Pi,
and the new polygon Pi+1 is outlined by the bold black line.

orientation of l2 until the intersection of l+2 and R. Finally, we add the segment
of R between these two intersection points, see Fig. 4(b). The new base line for
the polygon Pi+1 is now b(i+1) = l

(i)
1 .

It is easy to verify that all the above-mentioned properties are maintained
when applying Cases 1 or 2. Due to space limitations we do not include the
remaining and more complicated cases in this extended abstract, and refer the
reader to the full version of the paper for those missing details.

Running Time. In the initialization step we need to find an intersection point of
the arrangement that is the last point on both lines intersecting in it. Ching and
Lee [3] showed that such points are a subset of the intersection points between
two neighboring lines sorted by slope. Thus, the initialization can be performed
in O(n log n) time by sorting the lines by slope, computing the intersection points
of the neighboring lines and selecting the point with the maximum or minimum
x-coordinate.

For the extension steps we consider the dual points of the lines of the ar-
rangement, where the dual space π∗ is defined as in [2]: The dual of a point
p : (a, b) in the primal space is the line p∗ : f(x) = ax − b in π∗; the dual of a
line l : f(x) = ax + b in the primal space is the point l∗ : (a,−b) ∈ π∗.

Let A∗ denote the set of points in π∗ dual to the lines of the arrangement
A. We will utilize the following property of the dual points: the points of the
lower/upper convex hull of A∗ are the duals of the lines in A that form the
boundary of the upper/lower unbounded face of the arrangement.

For that purpose we can rotate the arrangement A such that the initial two
lines g1 and g2 have the maximal and the minimal slope, the initial point p =
g1 ∩ g2 is a vertex of the lower unbounded face, and no line of A is vertical.
Observe that p must be the only vertex of the lower unbounded face.

When the lines g1 and g2 are removed from A the point p is contained in the
new lower unbounded face. Similarly, after every extension step the constructed

On Inducing Polygons and Related Problems 55

polygon is contained in the lower unbounded face of the arrangement of the
remaining lines.

In every extension step we need to determine the intersection points of a
constant number of lines with the boundary of the lower unbounded face of the
arrangement of the remaining lines and to update the boundary of the lower
unbounded face after deleting some lines. Updating the boundary of the lower
unbounded face corresponds to updating the upper convex hull of the dual point
set. Using the dynamic convex hull data structure by Hershberger and Suri [6]
updates of the upper convex hull of the point set can be performed in O(log n)
time, that is O(n log n) time in total.

Intersection points of a line l with the boundary of the lower unbounded face
correspond in dual space to lines through l∗ that are tangent to the upper convex
hull of the remaining points. These tangent lines can be found in O(log n) time.

Thus the total time complexity of the construction algorithm is O(n log n).

5 x-Monotone Inducing n-Path: Proof of Theorem 2

In this section we show that every simple arrangement of n non-vertical lines,
contains an inducing x-monotone n-path. Since the path is x-monotone, it is
clearly simple. Suppose first that n is an even number. We sort the lines according
to their slopes, and denote by A the set of the first n/2 lines in this order, and
by B the rest of the lines. Initially, all the lines are unmarked. Pick the leftmost
intersection point of two unmarked lines, one from A and one from B, then mark
these lines. Continue to pick a total of n/2 points p1, p2, . . . , pn/2 this way. We
will construct an x-monotone n-path through p1, p2, . . . , pn/2.

Denote the lines that intersect at pi by ai ∈ A and bi ∈ B, i = 1, 2, . . . , n/2.
First, pick arbitrarily one of the lines that intersect at p1, say a1, walk a short
distance on a1 from a point left of p1 to p1, then walk a short distance on b1
rightwards. Assume that we have built an x-monotone 2i-path that goes a short
distance rightwards beyond pi and induces the lines a1, . . . , ai and b1, . . . , bi.
We will show how to extend it into an x-monotone 2(i + 1)-path that goes a
short distance rightwards beyond pi+1 and induces the lines a1, . . . , ai+1 and
b1, . . . , bi+1.

Observation 4 The intersection of ai+1 (resp., bi+1) and bi (resp., ai) is to
the right of pi.

Proof. Otherwise this intersection point would be picked instead of pi.

Consider the triangle with a vertex at pi, an edge on the vertical line through
pi+1, an edge ea on ai, and an edge eb on bi (see Fig. 5).

Observation 5 ea (resp., eb) is crossed by ai+1 or bi+1.

Proof. We consider two cases based on whether pi+1 is inside the wedge deter-
mined by ai and bi. Suppose that it is. Then ai+1 (resp., bi+1) must cross either

56 E. Ackerman et al.

ai

bi

pi

pi+1

ai+1

eb

ea

(a) pi+1 is inside the wedge deter-
mined by ai and bi.

ai

bi

pi

pi+1

ai+1

eb

ea

(b) pi+1 is outside the wedge deter-
mined by ai and bi.

Fig. 5. An illustration for the proof of Observation 5. ai+1 cannot be in the shaded
region.

ea and eb. Suppose, w.l.o.g., that they both cross ea (otherwise, we can reflect
everything with respect to the x-axis). See Fig. 5(a). Then ai+1 must have a
larger slope than bi, otherwise it will cross bi to the left of pi, contradicting
Observation 4. This is of course impossible.

Suppose that pi+1 is outside the wedge determined by ai and bi. We can as-
sume, w.l.o.g., that it is below the wedge, for otherwise we can reflect everything
with respect to the x-axis. If ai+1 does not cross both ea and eb, then it must
have a larger slope than bi, or cross bi to the left of pi, which is impossible. See
Fig. 5(b) for an illustration.

Now, suppose that the path built so far goes a short distance rightwards beyond
pi on ea (resp., eb). Then by Observation 5 there is a line 	 ∈ {ai+1, bi+1} that
crosses ea (resp., eb). Walk on ea (resp., eb) until the intersection point with 	,
then walk on 	 until pi+1, and finally walk a short distance rightwards on the
other line in {ai+1, bi+1}. The new path is an x-monotone 2(i + 1)-path that
goes a short distance rightwards beyond pi+1 and induces the lines a1, . . . , ai+1
and b1, . . . , bi+1.

It remains to consider the case that n is an odd number. Let 	 be the line with
the median slope. Create a new line 	′ that is a slightly rotated copy of 	 such
that its slope is slightly smaller than the slope of 	, and their intersection point
is the leftmost intersection point in the arrangement A ∪ {	′}. Now continue as
before, while choosing 	′ as the first induced line. Finally, remove the segment
of 	′ from the constructed path.

Time complexity. An inducing x-monotone n-path can be found in O(n2) time
as follows. First we construct the arrangement of lines. This can be done in
O(n2) time [2]. Then we find the sets A and B in O(n log n) time. For every line
in A we find its leftmost intersection point with a line from B. The first vertex

On Inducing Polygons and Related Problems 57

Fig. 6. n lines with exponentially many inducing simple n-gons. At every “step” of the
“stairs” one can “climb” either from left or from right.

of the path is the leftmost point among these points. The two lines defining this
minimum point are removed from the arrangement while updating the minimum
leftmost points for the other lines. This can be done in O(n) time. The process of
finding the next leftmost intersection point between a line from A and a line from
B (among the remaining lines), removing the corresponding lines, and making
appropriate updates is then repeated O(n) times.

6 Concluding Remarks

We proved in two different ways that every simple arrangement of n lines contains
an inducing simple n-gon. The proof given in Section 2 actually works also for
pseudoline arrangements. A pseudoline arrangement consists of a finite set of
x-monotone curves, unbounded in both directions, such that every two curves
intersect at exactly one point where they properly cross each other. It is enough
to show that there is a partial order of the intersection points that lie above
the pseudoline 	n. Such an order can be derived from orienting every pseudoline
toward its intersection point with 	n. The proof then shows that there is a
simple cycle that visits every pseudoline exactly once, and that such a cycle can
be found in polynomial time. In fact, the proof also works for pseudo-parabolas
(pseudo-parabolas are defined similarly to pseudolines, except that two curves
cross exactly twice). Here, a partial order of the intersection points can be defined
as in [7].

The second proof, given in Section 4, yields an O(n log n)-time algorithm for
finding an inducing simple polygon. We believe that this time complexity is the
best possible, but leave it as an open question.

An inducing simple polygon need not be unique. It would be interesting to
determine the maximum and minimum number of inducing simple n-gons of an
arrangement of n lines. Fig. 6 shows an arrangement with exponentially many
inducing simple n-gons.

58 E. Ackerman et al.

References

1. Bose, P., Everett, H., Wismath, S.: Properties of arrangement graphs. Int. J. Com-
put. Geom. Appl. 13, 447–462 (2003)

2. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry,
3rd edn. Springer, Berlin (2008)

3. Ching, Y.T., Lee, D.T.: Finding the diameter of a set of lines. Pattern Recogni-
tion 18(3–4), 249–255 (1985)

4. Felsner, S.: Geometric Graphs and Arrangements. Some Chapters from Combina-
torial Geometry. Advanced Lectures in Mathematics. Friedr. Vieweg & Sohn, Wies-
baden (2004)

5. Grünbaum, B.: Arrangements and spreads. In: Conference Board of the Mathemat-
ical Sciences Regional Conference Series in Mathematics, vol. 10. American Mathe-
matical Society, Providence (1972)

6. Hershberger, J., Suri, S.: Applications of a semi-dynamic convex hull algorithm.
BIT 32(2), 249–267 (1992)

7. Perlstein, A.: Problems in Combinatorial Geometry, Ph.D. Thesis, Mathematics
Department, Technion—Israel Institute of Technology (2008)

8. Scharf, L., Scherfenberg, M.: Inducing polygons of line arrangements. In: Hong, S.-
H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 507–519.
Springer, Heidelberg (2008)

Computing 3D Periodic Triangulations�

Manuel Caroli and Monique Teillaud

INRIA Sophia Antipolis – Méditerranée
{Manuel.Caroli,Monique.Teillaud}@sophia.inria.fr

Abstract. This work is motivated by the need for software computing
3D periodic triangulations in numerous domains including astronomy,
material engineering, biomedical computing, fluid dynamics etc. We de-
sign an algorithmic test to check whether a partition of the 3D flat torus
into tetrahedra forms a triangulation (which subsumes that it is a sim-
plicial complex). We propose an incremental algorithm that computes
the Delaunay triangulation of a set of points in the 3D flat torus without
duplicating any point, whenever possible; our algorithmic test detects
when such a duplication can be avoided, which is usually possible in
practical situations. Even in cases where point duplication is necessary,
our algorithm always computes a triangulation that is homeomorpic to
the flat torus. To the best of our knowledge, this is the first algorithm of
this kind whose output is provably correct. The implementation will be
released in Cgal [7].

1 Introduction

Computing Delaunay triangulations of point sets is a well-studied problem in
Computational Geometry. Several algorithms as well as implementations
[31,26,19,38,25,21] are available. However, these algorithms are mainly restricted
to triangulations in Rd. In this paper, we take interest in triangulations of a pe-
riodic space, represented as the so-called flat torus [35].

This research was originally motivated by the needs of astronomers who study
the evolution of the large scale mass distribution in our universe by running dy-
namical simulations on periodic 3D data. In fact there are numerous application
fields that need robust software for geometric problems in periodic spaces. A
small sample of these needs, in fields like astronomy, material engineering for
prostheses, mechanics of granular materials, was presented at the Cgal Prospec-
tive Workshop on Geometric Computing in Periodic Spaces.1 Many other diverse
application fields could be mentioned, for instance biomedical computing [36],
solid-state chemistry [29], physics of condensed matter [15], fluid dynamics [10],
this list being far from exhaustive.

� This work was partially supported by the ANR (Agence Nationale de la Recherche)
under the “Triangles” project of the Programme blanc (No BLAN07-2 194137)
http://www-sop.inria.fr/geometrica/collaborations/triangles/.

1 http://www.cgal.org/Events/PeriodicSpacesWorkshop/

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 59–70, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

60 M. Caroli and M. Teillaud

So far we are not aware of any robust and efficient algorithm for computing
Delaunay triangulations from a given point set S in a periodic space. In the
literature, proved algorithms usually need to compute with 9 copies of each input
point in the planar case [23,17], or with 27 copies in 3D [14], which obviously leads
to a huge slow-down. Additionally, their output is a triangulation in Rd, d = 2, 3,
of the copies of the points, whereas our approach always outputs triangulations
of the flat torus.

In the engineering community, an implementation for computing a periodic
Delaunay “tessellation” was proposed, avoiding duplications of points [34]. How-
ever, the tessellation is not necessarily a simplicial complex. Moreover, the algo-
rithm heavily relies on the assumption that input points are well distributed.

Fig. 1. The partition of the torus (left) and the flat torus
(right) is not a triangulation: All simplices have a unique
vertex

In fact, as shown
in Section 4, using
copies of the input
points may actually
be necessary: in some
cases, the flat torus
may be partitioned
into tetrahedra hav-
ing the points as ver-
tices and satisfying
the Delaunay prop-
erty, but such a parti-
tion does not always form a simplicial complex. Figure 1 shows a simple partition
of the 2D torus that is not a triangulation. However, in practice, input data sets
are likely to admit a Delaunay triangulation.

Let us insist here on the fact that computing a “true” triangulation, i.e. a
simplicial complex, is important for several reasons. First, a triangulation is
defined as a simplicial complex in the literature [2,9,16,20,22,33,39]. Moreover,
designing a data structure to efficiently store tetrahedral tessellations that are
non-simplicial complexes (e.g. Δ-complexes [18]) would be quite involved. The
Cgal 3D triangulation data structure, that we reuse in our implementation,
assumes the structure to be a simplicial complex [24]. Even more importantly,
algorithms using a triangulation as input are heavily relying on the fact that the
triangulation is a simplicial complex; this is the case for instance for meshing
algorithms [27,28], as well as algorithms to compute α-shapes, which are actually
needed in the periodic case by several applications mentioned at the beginning
of this introduction. We are planning to use the 3D periodic triangulation as the
fundamental ingredient for computing these structures in the future.

Contributions of the paper
We prove conditions ensuring that the Delaunay triangulation can be computed
without duplicating the input points. To this aim, we design an algorithmic test
for checking whether a set K of simplices in the flat torus forms a simplicial
complex.

Computing 3D Periodic Triangulations 61

We present an adaptation of the well-known incremental algorithm in R3 [3]
that allows to compute three-dimensional Delaunay triangulations in the flat
torus. We focus on the incremental algorithm for several reasons: Its practical
efficiency has been proved in particular by the fully dynamic implementation in
Cgal [25]; moreover, a dynamic algorithm, allowing to freely insert (and remove)
points, is a necessary ingredient for all meshing algorithms and software based
on Delaunay refinement methods (see for instance [32,27,8]).

For sets of points that cannot be triangulated in the flat torus, our algorithm
outputs a triangulation of an h-sheeted covering space, where h depends on
some parameters of the flat torus, i.e. a triangulation that is still homeomorphic
to the flat torus and containing h > 1 explicit copies of the input point set.
However, as soon as the above mentioned conditions are fulfilled, the algorithm
switches to a 1-sheeted covering and so does not duplicate points. In this way,
the algorithm always computes a triangulation and is provably correct. It has
optimal randomized worst case complexity.

Our implementation of the algorithm has been accepted for version 3.5 of the
Cgal library [7]. We presented a video demonstration of the software [5].

The paper is organized as follows. In Section 2 we review some general notions
about triangulations and simplicial complexes. In the next section, we adapt
the definition of simplicial complexes to the flat torus. In Section 4 we give a
criterion to decide whether a point set has a triangulation in the flat torus. We
give a second criterion that is based on the same idea but can be verified easily
by the algorithm that is presented in Section 5. We show the correctness of the
algorithm and finish with its complexity analysis and experimental observations.
Proofs are omitted in this paper due to lack of space. They can be found in [6].

2 Triangulations

Before talking about triangulations we need to recapitulate the well-known no-
tions of simplices and simplicial complexes. A k-simplex σ in R3 (k ≤ 3) is the
convex hull of k+1 affinely independent points Pσ = {p0, p1, . . . , pk}. A simplex
τ defined by Pτ ⊆ Pσ is a face of σ and has σ as a coface. This is denoted by
σ ≥ τ and τ ≤ σ. Note that σ ≥ σ and σ ≤ σ.

The following definitions are completely combinatorial. With an appropriate
definition of a simplex, they will remain valid in any topological space X.

There exist several definitions of simplicial complexes in the literature. Often
they restrict to a finite number of simplices [39,30]. In the sequel, we deal with
infinite simplicial complexes, so, we use the definition given in [22]:

Definition 1 (Simplicial complex). A simplicial complex is a set K of sim-
plices such that:

(i). σ ∈ K, τ ≤ σ ⇒ τ ∈ K
(ii). σ, σ′ ∈ K ⇒ σ ∩ σ′ ≤ σ, σ′

(iii). Every point in a simplex of K has a neighborhood that intersects at most
finitely many simplices in K (local finiteness).

62 M. Caroli and M. Teillaud

Note that if K is finite, then the third condition is always fulfilled.
A triangulation of a topological space X is a simplicial complex K such that

|K| =
⋃

σ∈K σ is homeomorphic to X. A triangulation of a point set S is a
triangulation such that the set of vertices of the triangulation is identical to S.

Some more definitions are needed for the following discussion: Let K be a
simplicial complex. If a subset of K is a simplicial complex as well, we call it
subcomplex of K. The star of a subcomplex L of K consists of the cofaces of
simplices in L: St(L) = {σ ∈ K|σ ≥ τ ∈ L}. In the following sections, we will be
interested in the union of simplices in the star of a set L of simplices, denoted
as |St(L)|.

3 The Flat Torus T3
c

At first we give a precise definition of the space of study T3
c. Then we review some

of its well-known properties and establish the notations used in the following
discussion. Finally, we give a definition of simplices in T3

c.

Definition 2 (T3). Let c := (cx, cy, cz) ∈ (R \ {0})3 and G be the group
(c ∗ Z3, +), where ∗ denotes coordinate-wise multiplication2. The quotient space
T3

c = R3/G is called flat torus [35]. We denote the quotient map by π : R3 → T3
c .

The elements of T3
c are the equivalence classes under the equivalence relation

p1 ∼ p2 ⇔ p1 − p2 ∈ c ∗ Z3, for p1, p2 ∈ R3. Hence, these equivalence classes
are isomorphic to Z3 and T3

c × Z3 is isomorphic to R3. We also call the points
of T3

c orbits and refer to their elements as representatives. T3
c is a metric space

with dT(π(p), π(q)) := min dR(p′, q′) for p′ ∼ p, q′ ∼ q. Note that π is
continuous.

The space T3
c is homeomorphic to the hypersurface of a 4-dimensional torus.

Consider the closed cuboid [u, u + cx] × [v, v + cy] × [w, w + cz]. Identifying the
pairs of opposite sides results in a space homeomorphic to T3

c. Such a cuboid is
usually called a fundamental domain or a fundamental region. A fundamental
domain contains at least one representative of each orbit. The half-open cuboid
Dc = [0, cx) × [0, cy) × [0, cz) contains exactly one representative for each ele-

ment of T3
c. We call it the original domain. The map

ϕc : Dc × Z3 → R3

(p, ζ) �→ p + c ∗ ζ

is bijective. The longest diagonal of Dc has length ‖c‖, which denotes the L2-
norm of c. We say that two points p1, p2 ∈ R3 are periodic copies of each other
if they both lie in the same orbit, or equivalently if there is a point p ∈ Dc such
that p1, p2 ∈ ϕc({p} × Z3).

2 Coordinate-wise multiplication: (ax, ay, az) ∗ (bx, by, bz) := (axbx, ayby, azbz).

Computing 3D Periodic Triangulations 63

Dc

(
p3,

(0
0

))

(
p1,

(0
0

)) (
p2,

(0
0

))

(
p2,

(0
−1

))

(
p3,

(0
1

))

(
p3,

(1
0

))

(
p1,

(0
−1

))

(
p2,

(−1
0

))

(
p3,

(−1
0

))

(
p1,

(1
0

))

(
p3,

(1
1

))

(
p1,

(1
−1

))(
p2,

(−1
−1

))

(
p3,

(−1
1

))

Fig. 2. (2D case) The three points p1, p2, and p3 do
not uniquely define a triangle. Intuitively, the off-
set allows to know which way the triangle “wraps
around” the torus.

Now we turn towards the
definition of simplices in T3

c.
There is no meaningful defini-
tion of a convex hull in T3

c and a
tetrahedron is not uniquely de-
fined by four points. We attach
with each vertex an integer vec-
tor, named offset, that specifies
one representative out of an or-
bit (see Figure 2). In the above
definition of ϕc, the offsets are
the numbers ζ ∈ Z3. We can
adapt the definition of a sim-
plex in R3 in the following way
to T3

c [37]:

Definition 3 (simplex). Let P be a set of k + 1 (k ≤ 3) point offset
pairs (pi, ζi) in Dc × Z3, 0 ≤ i ≤ k. Let Ch(P) denote the convex hull of
ϕc(P) = {pi + c ∗ ζi | 0 ≤ i ≤ k} in R3. If the restriction π|Ch(P) of π to the
convex hull of P is a homeomorphism, the image of Ch(P) by π is called a
k-simplex in T3

c.
A

B

(
p0,

(2
2

))(
p1,

(2
2

))
(
p2,

(2
2

))
(
p0,

(2
1

))(
p1,

(2
1

))
(
p2,

(2
1

))
(
p0,

(0
0

))(
p1,

(0
0

))
(
p2,

(0
0

))

(
p0,

(1
1

))(
p1,

(1
1

))
(
p2,

(1
1

))
(
p0,

(2
0

))(
p1,

(2
0

))
(
p2,

(2
0

))

(
p0,

(1
2

))(
p1,

(1
2

))
(
p2,

(1
2

))

(
p0,

(0
2

))
(
p1,

(0
2

))(
p2,

(0
2

))
(
p0,

(0
1

))(
p1,

(0
1

))
(
p2,

(0
1

))
(
p0,

(1
0

))(
p1,

(1
0

))
(
p2,

(1
0

))

Fig. 3. (2D case) π(A) is not a simplex;
however, π(B) is a simplex

In other words, the image under π of a
simplex in R3 is a simplex in T3

c only if it
does not self-intersect or touch. Figure 3
shows the convex hulls A and B of three
point-offset pairs in [0, 1)2 × Z2;

(
p1,

(0
2

))
is a representative of the equivalence class
of a vertex of A that lies inside A.

There are infinitely many sets of point-
offset pairs specifying the same sim-
plex. The definition of face and coface is
adapted accordingly: Let σ be a k-simplex
defined by a set Pσ ⊆ Dc × Z3. A simplex
τ defined by a set Pτ ⊆ Dc × Z3 is a
face of σ and has σ as a coface if and
only if there is some ζ ∈ Z3 such that
{(pi, ζi + ζ) | (pi, ζi) ∈ Pτ} ⊆ Pσ.

4 Delaunay Triangulation in T3
c

This section is organized as follows: At first we give a definition of the Delaunay
triangulation in T3

c. We observe that there are point sets in T3
c whose Delaunay

triangulation is in fact not defined. The second part elaborates on this question,
finally giving a criterion to decide whether or not a point set has a Delaunay

64 M. Caroli and M. Teillaud

triangulation in T3
c. In the last part we discuss how to deal with point sets that

do not have a Delaunay triangulation in T3
c.

Let us recall that a triangulation of a point set S in R3 is a Delaunay triangu-
lation iff each tetrahedron satisfies the Delaunay property, i.e. its circumscribing
ball does not contain any point of S in its interior. If the point set is not degen-
erate, i.e. if no five points of S are cospherical, then its Delaunay triangulation
is uniquely defined. Still, even for degenerate point sets, it is possible to spec-
ify a unique Delaunay triangulation, using a symbolic perturbation [13]. In the
sequel we always assume Delaunay triangulations in R3 to be uniquely defined
in that way (see Lemma 2). Let S now denote a finite point set in Dc. We want
to define the Delaunay triangulation of π(S) in T3

c. The idea is to use the pro-
jection under π of a Delaunay triangulation of the infinite periodic point set
Sc := ϕc(S × Z3) in R3.

Lemma 1. For any finite point set S ⊂ Dc, a set of simplices K in R3 that
fulfills (i) and (ii) in Definition 1 as well as the Delaunay property with respect
to Sc is a simplicial complex in R3.

Since Sc contains points on an infinite grid, any point p ∈ R3 is contained in
some simplex defined by points in Sc. Together with Lemma 1, this implies that
the set of all simplices with points of Sc as vertices and respecting the Delaunay
property is a Delaunay triangulation of R3 and we denote it by DTR(Sc). Since
|DTR(Sc)| is homeomorphic to R3 and π is surjective, then π(|DTR(Sc)|) is
homeomorphic to T3

c. So, if π(DTR(Sc)) is a simplicial complex, it is also a
triangulation of T3

c. We can now define a Delaunay triangulation in T3
c:

Definition 4. Let DTR(Sc) be the Delaunay triangulation of the point set Sc

in R3. If π(DTR(Sc)) is a simplicial complex in T3
c, then we call it the Delaunay

triangulation of S in T3
c and denote it by DTT(S).

pp

pp

Fig. 4. (2D case) The shaded region is
ϕc(St(p)× Z3)∩Dc . There are several cy-
cles of length two originating from p.

We show now that Definition 4 actu-
ally makes sense: Lemma 2 is used to
prove Theorem 1, which gives a suffi-
cient condition for π(DTR(Sc)) to be
a simplicial complex.

Lemma 2. If the restriction of π to
any simplex in DTR(Sc) is a homeo-
morphism, then conditions (i) and (iii)
in Definition 1 are fulfilled.

Theorem 1. If for all vertices v of
DTR(Sc) the restriction of the quo-
tient map π||St(v)| is a homeomor-
phism, then π(DTR(Sc)) forms a sim-
plicial complex.

Computing 3D Periodic Triangulations 65

In the following theorem we give another criterion that is algorithmically easier to
check. Let us recall that the 1-skeleton of a simplicial complex is the subcomplex
that consists of all edges and vertices.

Theorem 2. Assume the restriction of π to any simplex in DTR(Sc) is a home-
omorphism. If the 1-skeleton of π(DTR(Sc)) does not contain any cycle of length
less than or equal to two, then π(DTR(Sc)) forms a simplicial complex.

See Figure 4 for an illustration of Theorems 1 and 2.
In the remaining part of this section, we explain how we can give a finite

representation of the periodic triangulation DTR(Sc) that is a simplicial complex,
even if π(DTR(Sc)) is not a simplicial complex.

Definition 5. [2] Let X be a topological space. A map ρ : X̃ → X is called a
covering map and X̃ is said to be a covering space of X if the following condition
holds: For each point x ∈ X there is an open neighborhood V , and a decomposition
of ρ−1(V) as a family {Uα} of pairwise disjoint open subsets of X̃, in such a way
that ρ|Uα is a homeomorphism for each α. Let hx denote the cardinality of the
family {Uα} corresponding to some x ∈ X. If the maximum h := maxx∈X hx is
finite, then X̃ is called an h-sheeted covering space.

R3 with the quotient map π as covering map is a universal covering of T3
c, which

means that it is a covering space for all covering spaces of T3
c [2].

Let h = (hx, hy, hz) ∈ N3. T3
h∗c is a covering space of T3

c together with
the covering map ρh := π ◦ π−1

h , where πh : R3 → T3
h∗c denotes the quo-

tient map of T3
h∗c. As ρ−1

h (p) for any p ∈ T3
c consists of hx · hy · hz differ-

ent points, T3
h∗c is a hx ·hy ·hz-sheeted covering space. The original domain

is Dh∗c = [0, hxcx) × [0, hycy) × [0, hzcz). If hx = hy = hz we use the notation
πh := πh with h := hx ·hy ·hz, like for π27 in Theorem 3 below.

Dolbilin and Huson [14] showed that only the points of Sc contained in Dc and
the 26 copies that surround it can have an influence on the Delaunay property
for simplices that are completely contained in Dc. The ideas of their proof can
be used to show the following:

Theorem 3. π27(DTR(Sc)) is always a simplicial complex.

We prefer to use the framework of covering spaces, rather than just talk about
copies of the points as in [14], for several reasons: A major part of the code can
be reused for any finite covering space. Also, the simplicial complex we compute
is actually homeomorphic to T3

c. So we do not have any artificial boundaries in
the data structure and we get all adjacency relations between simplices.

The algorithm we use to compute triangulations of T3
c requires a slightly

stronger result, which we present in the next section.

5 Algorithm

As mentioned in the introduction, there is a strong motivation for reusing the stan-
dard incremental algorithm [3] to compute a periodic Delaunay triangulation.

66 M. Caroli and M. Teillaud

We propose the following algorithm:

– We start computing in some finitely-sheeted covering space T3
h∗c of T3

c, with
h chosen such that πh(DTR(Sc)) is guaranteed to be a triangulation.

– If the point set is large and reasonably well distributed, it is likely that
after having inserted all the points of a subset S′ ⊂ S, all the subsequent
π(DTR(S′′c)) for S′ ⊂ S′′ ⊂ S are simplicial complexes in T3

c. In this case,
we discard all periodic copies of simplices of πh(DTR(S′c)) and switch to
computing π(DTR(Sc)) in T3

c by adding all the points left in S \ S′.

Fig. 5. (2D case) Adding a point in a sim-
plicial complex can create a cycle of length
two

In this way, unlike [14], we avoid du-
plicating points as soon as this is pos-
sible. However, if S is a small and/or
badly distributed point set, the algo-
rithm never enters the second phase
and returns πh(DTR(Sc)). Note that,
before switching to computing in T3

c,
it is not sufficient to test whether
π(DTR(S′c)) is a simplicial complex.
Indeed, adding a point could create a
cycle of length two (see Figure 5). So,
a stronger condition is needed before
the switch.

See Algorithm 1 for a pseudo-code
listing of the algorithm.

Algorithm 1. Compute Delaunay triangulation of a point set in T3
c

Input: Set S of points in Dc , c such that Dc is a cube with edge length c ∈ R3 \ {0}.
Output: DTT(S) if possible, otherwise π27(DTR(Sc))
1: S ′ ⇐ S
2: Pop p from S ′

3: S ⇐ {p}
4: TR27 ⇐ π27(DTR(ϕc({p} × Z3))) // can be precomputed
5: while the longest edge in TR27 is longer than 1√

6
c do

6: Pop p from S ′; S ⇐ S ∪ {p}
7: for all p′ ∈ {p + c ∗ ζ | ζ ∈ {0, 1, 2}3} do
8: Insert p′ into TR27

9: end for // TR27 = π27(DTR(Sc))
10: if S ′ = ∅ then return TR27 = π27(DTR(Sc)) // non-triangulable point

set
11: end while
12: Compute DTT(S) from TR27 // switch to T3

c

13: Insert all points remaining in S ′ into DTT(S) one by one
14: return DTT(S)

Computing 3D Periodic Triangulations 67

Two central points must be established to show the correctness of the algorithm:

1. After each insertion, TR27 is a Delaunay triangulation in T3
3c. Let us em-

phasize on the fact that Theorem 3 cannot be used here because in the inner
loop (step 8), the set of points present in TR27 does not contain all the pe-
riodic copies of p. Let p be a point in Dc and Tp ⊆ ϕc({p} × Z3) ∩ D3c, i.e.
Tp is a subset of the grid of 27 copies of p that lie within D3c. Then TR27 is
always of the form π27(DTR(Sc ∪ T 3c

p)) with T 3c
p = ϕ3c(Tp ×Z3). Lemma 3

shows that this is a triangulation.
2. If all edges in π27(DTR(Sc)) are shorter than 1√

6
c, then we can switch to

computing in T3
c.

Lemma 3. Let S ⊂ Dc be a finite point set and p ∈ Dc a point. If Dc is a cube,
then π27(DTR(Sc ∪ T 3c

p)) is a triangulation.

Lemma 4 gives a criterion to decide whether π(DTR(Sc)) is a simplicial complex
and thus a triangulation in T3

c.

Lemma 4. If the 1-skeleton of DTR(Sc) contains only edges shorter than 1√
6

c,
where c is the edge length of Dc, then π(DTR(T c)) is a simplicial complex for
any finite T ⊂ Dc with S ⊆ T .

Note that the criterion in Lemma 4 is only sufficient: There are triangulations
without cycles of length two that have edges longer than 1√

6
c.

Lemmas 3 and 4 prove the correctness of Algorithm 1 in the case of a cubic
domain. The above discussion still remains valid if the original domain Dc is
a general cuboid, i.e. c = (cx, cy, cz). Only the constants, like the number of
sheets of the covering space to start with and the edge length threshold need to
be adapted. Analogously, the algorithm can be extended to weighted Delaunay
triangulations. For a more detailed discussion see [6].

6 Theoretical and Practical Analysis

Complexity analysis. Let us first discuss the following two points: (1) How to test
for the length of the longest edge and (2) how to switch from the triangulation
in T3

h∗c to the triangulation in T3
c.

(1) We maintain an unsorted data structure E that references all edges that
are longer than the threshold 1√

6
cmin. As soon as E is empty, we know that the

longest edge is smaller than the threshold. The total number of edges that are
inserted and removed in E is proportional to the total number of simplices that
are created and destroyed during the algorithm. We can have direct access from
the simplices to their edges in E . Hence, the maintenance of E does not change
the algorithm complexity.

(2) To convert the triangulation in T3
h∗c to DTT(S) when we switch to T3

c,
we need to iterate over all cells and all vertices to delete all periodic copies,
keeping only one; furthermore, we need to update the incidence relations of

68 M. Caroli and M. Teillaud

Table 1. Current running times in seconds on a 2.33 GHz Intel Core 2 Duo processor

No. of points T3 R3 factor
1000 0.032 0.012 2.65
10000 0.230 0.128 1.79

100000 2.24 1.36 1.65
1000000 23.0 14.2 1.62

those tetrahedra whose neighbors have been deleted. This is linear in the size of
the triangulation and thus dominated by the main loop.

The overall algorithm is incremental and using the Delaunay hierarchy [12]
the following result can be shown:

The randomized complexity of Algorithm 1 is the same as the complexity of
[12], and thus it has randomized worst-case optimal complexity O(n2).

Experimental observations. Algorithm 1 has been implemented in Cgal, so, it
benefits from some of the optimizations that are already available in the Cgal

Delaunay triangulations in R3 [25], such as the spatial sorting [11].
We tested the implementation on real data from research in cosmology. The

input sets consist of up to several hundreds of thousands of points, and they are
sufficiently well distributed to have triangulations in T3

c. This property holds for
most of the applications mentioned in the introduction. With these real data,
usually less than 400 points are needed for Algorithm 1 to reach the threshold
on the edge length and switch to computing in T3

c.
We compared the running time of our implementation for computing De-

launay triangulations in T3
c with the running time of computing the Delaunay

triangulation in R3 with the Cgal package [25]. Table 1 shows for large random
point sets a factor of about 1.6 between the running time of our current imple-
mentation, using the above optimization, and the Cgal implementation for R3.
The timings have been measured for the unit cube Dc = [0, 1)3 using specialized
predicates; if we allow Dc to be any cube, we currently lose about 12%. More
experiments can be found in [6].

7 Conclusion and Future Work

We proposed an algorithm to compute 3D periodic Delaunay triangulations.
The algorithm is guaranteed to produce a correct finite representation of the
periodic triangulation for any given point set. We avoid duplications of points
whenever possible, and if there is no triangulation for some point set in the flat
torus T3

c, we output a triangulation in a covering space that is homeomorphic
to T3

c. The algorithm has optimal randomized worst case complexity. Note that
the main parts of the discussion are not bound to three-dimensional space and
will still hold for higher dimensions. The constants in the geometric criteria
and the complexity of the underlying algorithm for computing the Delaunay
triangulation will have to be adapted.

Future work will mainly concentrate on two topics: (1) Extend in a similar
way some meshing and α-shape algorithms based on Delaunay triangulations

Computing 3D Periodic Triangulations 69

so that they can handle periodic data. (2) Extend this work to more general
orbifolds. There is ongoing work to unify our results with the results of [1].

Acknowledgments

We are very grateful to Nico Kruithof, who initiated this work and made impor-
tant contributions when he visited INRIA for a short post-doctoral stay in 2006
[4]. We thank Mridul Aanjaneya for fruitful discussions on Section 4 and Olivier
Devillers for discussions on his Delaunay hierarchy.

Also, we wish to thank Rien van de Weijgaert for providing us with data sets
from cosmology research projects to test our implementation.

References

1. Aanjaneya, M., Teillaud, M.: Triangulating the real projective plane. In: Mathe-
matical Aspects of Computer and Information Sciences (2007)

2. Armstrong, M.A.: Basic Topology. Springer, Heidelberg (1982)
3. Bowyer, A.: Computing Dirichlet tessellations. The Computer Journal 24, 162–166

(1981)
4. Caroli, M., Kruithof, N., Teillaud, M.: Decoupling the CGAL 3D triangulations

from the underlying space. In: Workshop on Algorithm Engineering and Experi-
ments, pp. 101–108 (2008)

5. Caroli, M., Teillaud, M.: Video: On the computation of 3D periodic triangula-
tions. In: Proceedings of the twenty-fourth Annual Symposium on Computational
Geometry, pp. 222–223 (2008)

6. Caroli, M., Teillaud, M.: Computing 3D periodic triangulations. Research Report
6823, INRIA (2009), http://hal.inria.fr/inria-00356871

7. Cgal, Computational Geometry Algorithms Library, http://www.cgal.org
8. Cheng, S.-W., Dey, T.K., Levine, J.A.: A practical Delaunay meshing algorithm

for a large class of domains. In: Proceedings of the sixteenth International Meshing
Roundtable, pp. 477–494 (2007)

9. Daverman, R.J., Sher, R.B. (eds.): Handbook of Geometric Topology. Elsevier,
Amsterdam (2002)

10. de Fabritiis, G., Coveney, P.V.: Dynamical geometry for multiscale dissipative par-
ticle dynamics (2003), http://xxx.lanl.gov/abs/cond-mat/0301378v1

11. Delage, C.: Spatial sorting. In: CGAL editorial Board (eds.) CGAL User and Ref-
erence Manual, 3.4 edn. (2008)

12. Devillers, O.: The Delaunay hierarchy. International Journal of Foundations of
Computer Science 13, 163–180 (2002)

13. Devillers, O., Teillaud, M.: Perturbations and vertex removal in a 3D Delaunay tri-
angulation. In: Proceedings of the fourteenth ACM-SIAM Symposium on Discrete
Algorithms, pp. 313–319 (2003)

14. Dolbilin, N.P., Huson, D.H.: Periodic Delone tilings. Periodica Mathematica Hun-
garica 34(1-2), 57–64 (1997)

15. Campayo, D.D.: Sklogwiki - Boundary conditions,
http://www.sklogwiki.org/SklogWiki/index.php/Boundary_conditions

16. Graham, R.L., Grötschel, M., Lovász, L. (eds.): Handbook of Combinatorics. El-
sevier, Amsterdam (1995)

http://hal.inria.fr/inria-00356871
http://www.cgal.org
http://xxx.lanl.gov/abs/cond-mat/0301378v1
http://www.sklogwiki.org/SklogWiki/index.php/Boundary_conditions

70 M. Caroli and M. Teillaud

17. Grima, C.I., Márquez, A.: Computational Geometry on Surfaces. Kluwer Academic
Publishers, Dordrecht (2001)

18. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)
19. Held, M.: Vroni: An engineering approach to the reliable and efficient computation

of Voronoi diagrams of points and line segments. Computational Geometry: Theory
and Applications 18, 95–123 (2001)

20. Henle, M.: A Combinatorial Introduction to Topology. Dover publication, New
York (1979)

21. Hert, S., Seel, M.: dD convex hulls and Delaunay triangulations. In: CGAL Edito-
rial Board (eds.) CGAL User and Reference Manual, 3.4 edn. (2008)

22. Lee, J.M.: Introduction to Topological Manifolds. Springer, New York (2000)
23. Mazón, M., Recio, T.: Voronoi diagrams on orbifolds. Computational Geometry:

Theory and Applications 8, 219–230 (1997)
24. Pion, S., Teillaud, M.: 3D triangulation data structure. In: CGAL Editorial Board

(eds.), CGAL User and Reference Manual. 3.4 edn. (2008)
25. Pion, S., Teillaud, M.: 3D triangulations. In: CGAL Editorial Board (eds.) CGAL

User and Reference Manual, 3.4 edn. (2008)
26. Qhull, http://www.qhull.org
27. Rineau, L., Yvinec, M.: Meshing 3D domains bounded by piecewise smooth sur-

faces. In: Proceedings of the sixteenth International Meshing Roundtable, pp. 443–
460 (2007)

28. Rineau, L., Yvinec, M.: 3D surface mesh generation. In: CGAL Editorial Board
(eds.) CGAL User and Reference Manual, 3.4 edn. (2008)

29. Robins, V.: Betti number signatures of homogeneous Poisson point processes. Phys-
ical Review E 74(061107) (2006)

30. Rote, G., Vegter, G.: Computational topology: An introduction. In: Boissonnat, J.-
D., Teillaud, M. (eds.) Effective Computational Geometry for Curves and Surfaces.
Mathematics and Visualization, pp. 277–312. Springer, Heidelberg (2006)

31. Shewchuk, J.R.: Triangle: Engineering a 2d quality mesh generator and Delaunay
triangulator. In: First Workshop on Applied Computational Geometry, May 1996.
Association for Computing Machinery (1996)

32. Shewchuk, J.R.: Tetrahedral mesh generation by Delaunay refinement. In: Pro-
ceedings of the fourteenth Annual Symposium on Computational Geometry, pp.
86–95. ACM Press, New York (1998)

33. Spanier, E.H.: Algebraic Topology. Springer, New York (1966)
34. Thompson, K.E.: Fast and robust Delaunay tessellation in periodic domains. In-

ternational Journal for Numerical Methods in Engineering 55, 1345–1366 (2002)
35. Thurston, W.P.: Three-Dimensional Geometry and Topology. Princeton University

Press, Princeton (1997)
36. Weiss, D.: How hydrophobic Buckminsterfullerene affects surrounding water struc-

ture. INRIA Geometrica Seminar (March 2008),
http://www-sop.inria.fr/geometrica

37. Wilson, P.M.H.: Curved Spaces. Cambridge University Press, Cambridge (2008)
38. Yvinec, M.: 2D triangulations. In: CGAL Editorial Board (eds), CGAL User and

Reference Manual. 3.4 edn. (2008)
39. Zomorodian, A.: Topology for Computing. Cambridge University Press, Cambridge

(2005)

http://www.qhull.org
http://www-sop.inria.fr/geometrica

Cauchy’s Theorem for Orthogonal Polyhedra
of Genus 0

Therese Biedl1,� and Burkay Genc2,��

1 David R. Cheriton School of Computer Science,
University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

biedl@uwaterloo.ca
2 Izmir University of Economics, Faculty of Computer Science,

Sakarya Cad. No:156, Balcova, Izmir, Turkey
burkaygenc@gmail.com

Abstract. A famous theorem by Cauchy states that the dihedral angles
of a convex polyhedron are determined by the incidence structure and
face-polygons alone. In this paper, we prove the same for orthogonal
polyhedra of genus 0 as long as no face has a hole. Our proof yields a
linear-time algorithm to find the dihedral angles.

1 Introduction

A famous theorem by Cauchy states that for a convex polyhedron, the incidence
structure and the face-polygons determine the polyhedron uniquely. Put differ-
ently, if we are given a graph with a fixed order of edges around each vertex, and
we are given the angles at every vertex-face incidence and edge lengths, then
there can be at most one set of dihedral angles such that graph, facial angles,
edge lengths and dihedral angles are those of a convex polyhedron. Many books
and monographs give this theorem, proofs, and related results [1,10].

Cauchy’s theorem does not hold for polyhedra that are not convex. An easy
example is a polyhedron where one face has a rectangular “hole” where a small
box can be popped to the “inside” or “outside”. But in fact, there are even so-
called flexible polyhedra where the dihedral angles change continuously (see e.g.
[10].)

We show in this paper that Cauchy’s theorem does hold for orthogonal poly-
hedra of genus 0, as long as we exclude holes in faces. (Rather than defining
holes, we will express this by saying that the graph of the polyhedron must be
connected; see Section 2 for precise definitions.) Thus, while a big cube with a
small cube attached on one face has two possible realizations, this is in essence
the only way in which multiple realizations are possible.

Our proof is algorithmic and yields a linear-time algorithm to find the only
possible set of dihedral angles of a realizing orthogonal polyhedron. This is in
� Supported by NSERC.

�� This work was done while the author was a student at University of Waterloo and
supported by NSERC.

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 71–82, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

72 T. Biedl and B. Genc

contrast to convex polyhedra, where determining whether a working set of di-
hedral angles exist is not even known to be in NP; see [4,9] and the references
therein for some recent progress on this tantalizing problem.

1.1 Roadmap

We first briefly outline the approach of this paper. Rather than proving unique-
ness and then deriving an algorithm from the proof, we provide an algorithm
that reconstructs an orthogonal polyhedron. There will never be any choice in
the assignment of dihedral angles, except at one moment when we can choose
one dihedral angle. Hence we obtain two sets of dihedral angles, and can argue
that only one of them could possibly do; this then proves uniqueness.

Our algorithm proceeds in three steps. In the first step in Section 3, we only
identify which dihedral angles must be flat, i.e., have value 180◦. We do this
by determining the orientation of each face; the algorithm to do so is simple,
but proving its correctness is not.1 Two adjacent faces with the same orientation
must have a flat dihedral angle between them, so this determines all flat dihedral
angles.

The problem hence reduces to reconstructing an orthogonal polyhedron where
all dihedral angles are non-flat. In Section 4, we show that there are only 7
possible configurations of vertices for such a polyhedron. Moreover, if we fix
one dihedral angle and know all facial angles, this determines all other dihedral
angles at a vertex, and hence with a simple propagation scheme, all dihedral
angles can be computed as long as the graph is connected.

Finally, we study in Section 5 which of the two resulting sets of dihedral angles
can possibly be the correct set of dihedral angles. This is the only part of the
algorithm that uses edge lengths. We conclude with remarks in Section 6.

2 Definitions

A polygonal curve is a simple closed curve in the plane that consists of a finite
number of line segments. A polygon is a set in a plane whose boundary is one
polygonal curve. A polygonal region is an interior connected set in a plane that is
a finite union of polygons. A polyhedral surface is a connected 2-manifold that is
a finite union of polygonal regions. A polyhedron is a set in 3D whose boundary
is a polyhedral surface. Its genus is the genus of the surface that bounds it.

A face of a polyhedron is a maximal polygonal region on the boundary of the
polyhedron. Note that a face need not be a polygon, because its boundary may
be disconnected and/or touch itself and hence not be simple. A vertex is a point
that belongs to at least three faces. An edge is a maximal line segment that
belongs to two faces and contains no vertex other than its endpoints. A facial
angle is the interior angle of a face at a vertex. A dihedral angle is the interior
angle at an edge between two adjacent faces.
1 A preliminary version of this algorithm appeared in 2004 [2], but its correctness was

shown only for orthogonally convex polyhedra for which all faces are rectangles.

Cauchy’s Theorem for Orthogonal Polyhedra of Genus 0 73

The incidences between vertices and edges of a polyhedron determine a graph
called the graph of the polyhedron. Looking at the polyhedron from the out-
side fixes a cyclic order of edges around each vertex; this is called the induced
embedding of the graph.

Every polyhedral surface S bounds a polyhedron P , but the polygonal regions
that define S need not be the same as the faces of the polyhedron P : the faces
of P may have been subdivided. For a polyhedral surface S, we can also define
a graph by using as faces of the graph the polygonal regions that defined S, and
then carry over all other definitions (vertex, edge, graph, facial angles, dihedral
angles). The main difference is that in a polyhedral surface, some dihedral angles
may be flat, i.e., have value 180◦.

We usually assume that we are given an embedded graph, i.e. a graph with a
fixed cyclic order of edges around each vertex. (Note that “embedded” does not
imply a mapping to coordinates; the embedding is given combinatorially only.)
From the order of edges around vertices we can determine the faces of the graph,
which are the cycles obtained by always taking the next edge in cyclic order.
We also assume that we are given facial angles of the graph, which are values at
each incidence between a vertex and a face of the graph.

Given an embedded graph and facial angles (and sometimes also the lengths
of the edges), we say that a polyhedral surface S realizes the input if its graph
(with the induced embedding) is the given embedded graph, and its facial angles
(and edge lengths, if given) are as prescribed in the input. For a connected graph,
the polyhedral surface has genus 0 if and only if its graph is planar, i.e. it can
be drawn in the plane without crossing.

We will almost only study orthogonal polyhedra of genus 0 in this paper. A
polyhedral surface is orthogonal if all its faces are perpendicular to a coordinate
axis. This implies that all facial angles and all dihedral angles are multiples of
90◦, and all edges are parallel to a coordinate axis.

We use the term orientation o ∈ {x, y, z} for any 1-dimensional object that
is parallel to a coordinate axis. Thus an edge of an orthogonal polyhedron is
an o-edge if it is parallel to the o-axis, and a face is said to be an o-face if the
normal of the plane that contains the face has orientation o (for o ∈ {x, y, z}.)

3 Flat Dihedral Angles

In this section, we present an algorithm that, given a connected embedded planar
graph and facial angles that are multiples of 90◦, determines which of the edges
of the graph must have a flat dihedral angle in any realization. Since the graph is
planar, any realization must have genus 0. Since the facial angles are multiples of
90◦, any face is the union of rectangles. As proved (independently of each other)
in [7] and [8], this implies that any realization must have all dihedral angles that
are multiples of 90◦, i.e., it is an orthogonal polyhedral surface after a suitable
rotation.

74 T. Biedl and B. Genc

3.1 Algorithm

For each face of the input graph, the facial angles determine relative orientations
of edges within the face. We write e ‖ e′ if e and e′ are edges on one face and
have the same orientation within that face. We can extend ‖ into an equivalence
relation ∼ by defining that e ∼ e′ if there exists a set of edges e = e1, . . . , ek = e′

with ei ‖ ei+1 for 1 ≤ i < k. We define an edge-bundle to be an equivalence
class under equivalence relation ∼. The edge-bundles can easily be computed in
linear time from the embedded graph and the facial angles. Directly from the
definition of ‖ and ∼, the following holds:

Observation 1. All edges in an edge-bundle must be parallel in any realization.

It hence makes sense to say that an edge-bundle has orientation o (for o ∈
{x, y, z}.) Two edge-bundles B1 �= B2 are said to cross if there exists a face
in the graph that contains edges from both. Since B1 and B2 were equivalence
classes, their edges are not parallel to each other, so if B1 had orientation o in
some realization then B2 cannot have orientation o.

This gives rise to a simple greedy-propagation algorithm to determine ori-
entations of edge-bundles. Initally pick two edge-bundles B1 and B2 that cross
and set T (B1) = {y} and T (B2) = {z}. Here, T (Bi) is a set of possible orien-
tations of edge-bundle Bi; we hence arbitrarily fix one rotation of a realization
(which must be orthogonal as discussed earlier.) For all other bundles, initialize
T (Bi) = {x, y, z}. Now propagate orientations by picking any edge-bundle B
with |T (B)| = 1 that has not been identified yet (initially they are all unidenti-
fied.) Mark B as identified and let o be the unique orientation left in T (B). For
all edge-bundles B′ that cross B, remove o from T (B′), because o cannot possibly
be the orientation of B′.

This algorithm, which we refer to as algorithm BundleOrientation, stops
if either all edge-bundles are identified, or if there are unidentified edge-bundles,
but none of them has |T (B)| = 1.

Algorithm BundleOrientation can be implemented in linear time if we pre-
compute an auxiliary graphH of edge-bundles, which has a vertex for every edge-
bundle and an edge between two edge-bundles if and only if the edge-bundles
cross. By storing edge-bundles in buckets by the size of |T (B)|, we can then in
O(1) time find the next edge-bundle B to be identified, and in O(degH(B)) time
update all the edge-bundles that B crosses; this is O(m + n) time overall since
H has size O(m+ n).

We will show the following result in the next subsection:

Lemma 1. If an embedded connected planar graph with facial angles has a re-
alization S, then algorithm BundleOrientation identifies all edge-bundles.
Moreover, after applying a suitable rotation of S, for all edge-bundles B the
unique value left in T (B) at termination is the orientation of B in S.

Thus algorithm BundleOrientation determines all edge orientations, which
in turn determines the face orientations. We cannot determine dihedral angles
directly from this (because there are still two possible directions for each face

Cauchy’s Theorem for Orthogonal Polyhedra of Genus 0 75

normal), but we can determine flat dihedral angles, since for any two adjacent
co-planar faces, the dihedral angles at the edges shared by them must be 180◦.

Theorem 1. Given an embedded connected planar graph with facial angles that
are multiples of 90◦, we can in O(m+ n) time

– report that no polyhedral surface can realize this graph and facial angles, OR
– report all edges of the graph for which the dihedral angle must be 180◦ in any

polyhedral surface that realizes this graph and facial angles.

3.2 Correctness

In this section, we prove correctness of algorithm BundleOrientation, i.e.,
we prove Lemma 1. We assume throughout this section that some orthogonal
polyhedral surface S exists that realizes the given graph and facial angles. We
furthermore assume that S has been rotated such that all edges in edge-bundle
B1 (the first edge-bundle picked by algorithm BundleOrientation) are parallel
to the y-axis, and all edges in edge-bundle B2 are parallel to the z-axis. Since
we only eliminate orientations that cannot possibly be used in an edge-bundle,
the following observation has a straightforward proof by induction:

Lemma 2. At any time during algorithm BundleOrientation, for any edge-
bundle B the orientation of B in S remains in T (B).

So no edge-bundle B will ever have |T (B)| = 0 during algorithm BundleOrien-

tation. So if not all edge-bundles are identified, then the algorithm must stop
when some edge-bundles have two or three possible orientations left. We claim
that this cannot happen if the realizing polyhedral surface S has genus 0.

To show that this is non-trivial, observe that it is not true for higher genus.
Fig. 1 shows a polyhedral surface of genus 1, where algorithm BundleOrien-

tation, for this embedded graph, facial angles and choice of initial edge-bundles
B1 and B2, does not identify any edge-bundles since none of them crosses both
B1 and B2.

From now on, assume that the input graph is planar and connected and has
a realization S. We will prove the following:

x, y, z

x, z

x, z

x, y, z x, z

x, y, z

x, y

x, y

B1

x

y
z

B2

Fig. 1. An example of genus 1 where algorithm BundleOrientation fails. We inidi-
cate at selected edges the possible orientations that remain.

76 T. Biedl and B. Genc

Lemma 3. Let B∗ be an edge-bundle that has been identified by algorithm
BundleOrientation. Then all edge-bundles that cross B∗ will also be iden-
tified by algorithm BundleOrientation.

We first argue why it suffices to prove this lemma. When algorithm Bundle-

Orientation stops, then there are three possible types of faces: those where 0,
1 or 2 of the two edge-bundles meeting the face have been identified. At least
one face has type 2 (the one where the two initial edge-bundles cross.) No face
has type 1 if Lemma 3 holds. If any face had type 0, then there would be two
adjacent faces where one has type 0 and the other type 2, since the surface is
connected. But then the edge common to the two faces is in an edge-bundle
that is both identified and unidentified, a contradiction. So all faces have type 2
and hence all edge-bundles are identified, which together with Lemma 2 implies
Lemma 1.

Proof. (of Lemma 3) We first give an outline of the proof, which is by contra-
diction. Assume there exists faces which are incident to some of the edges in B∗

where the crossing edge-bundle has not been identified. There also exists at least
one edge-bundle that crosses B∗ and whose orientation has been identified. This
holds if B∗ is one of the initial two edge-bundles, because they cross each other,
and also holds if B∗ was identified later, because then |T (B∗)| became 1 due to
some crossing identified edge-bundle.

We can argue that among these identified and unidentified edge-bundles that
cross B∗, there exists an identified one B and an unidentified one B′ that “in-
terleave” in the sense that the faces where they cross B∗ alternate. By genus 0,
interleaving edge-bundles must cross. So there are three edge-bundles B∗,B,B′

that pairwise cross and two have been identified. This means that algorithm
BundleOrientation will also identify the third, a contradiction.

The difficulty of the proof lies in clarifying what “interleave” means. This
is much easier if every face of the graph has 4 vertices (and hence the realiz-
ing surface S is quadrangulated and has rectangular faces.) Thus, we will prove
Lemma 3 first for quadrangulated surfaces, and discuss later why it holds in
general.

If S is quadrangulated, edge-bundles (which were defined as a set of edges)
naturally become a (cyclic) sequence of edges, since every face contains only two
parallel edges, and every edge belongs to two faces. See Fig. 2. It now also makes
sense to speak of a sequence of faces of an edge-bundle B; we call this sequence of
faces a band B (similarly as in [6]). Bands and edge-bundles of a quadrangulated
surface are in 1-to-1 correspondence, and so all terms defined for one (such as
“crossing” and “identified”) will also be applied to the other.

We need some definitions. For the edge-bundle B∗, let c(B∗) be the cycle
on surface S obtained by connecting the midpoints of consecutive edges of B∗.
Because S has genus 0, c(B∗) splits S into two connected regions; arbitrarily pick
one of them and call it the interior of c(B∗). Let B∗ be the band corresponding to
edge-bundle B∗. For any band B that crosses B∗, a chord of B is a subsequence
f1, . . . , fk of the faces of B where f1 and fk are on B∗ and f2, . . . , fk−1 are not
on B∗ and in the interior of c(B∗). See also Fig. 2. Faces f1 and fk of a chord

Cauchy’s Theorem for Orthogonal Polyhedra of Genus 0 77

fk
f1 B∗

c(B∗)

Fig. 2. Band B∗ (dark-gray) and one of its chords (light-gray). We do not show all
edges of the quadrangulated polyhedron.

are called the chord-anchors and belong to both B∗ and B. Since all faces of a
band span the same range in one of the coordinate axis, the two faces that are
chord-anchors span the same range in two of the coordinate axes.

Two chords are said to interleave if their chord-anchors appear alternatingly
in the cyclic sequence of faces B∗. By planarity, if two chords interleave, then
the bands that defined the chords must cross (i.e., have a face in common); see
also Fig. 3.

We now consider a restrictedversion of algorithmBundleOrientation, where
we only propagate orientations along interleaving chords; this alone is enough to
identify all bands and hence all edge-bundles. We argued earlier that there exists
an edge-bundle B0 that crosses B∗ and was identified. Pick one face common to
their bands B0 and B∗, and let C0 be the chord that is a subsequence of B0 start-
ing at this face. Mark all chords that have chord-anchors onB∗ and can be reached
from C0 via interleaving chords, i.e., mark all chords C1 that interleave C0, then
in turn mark all chords that interleave C1, and so on until no more chords can
be marked. One can easily see that for any marked chord, the edge-bundle that
defined it was identified by algorithm BundleOrientation, since interleaving

u2 v2

u1

v1

c2
c2

c1
c(B∗)

Fig. 3. Chord c1 with anchors {u1, v1} interleaves chord c2 with anchors {u2, v2}

78 T. Biedl and B. Genc

chords means that their edge-bundles cross, and all chords belong to edge-bundles
that cross B∗.

Every face f of B∗ is an anchor of a chord, since there is a band crossing B∗

at f , and the part of the band that enters the interior of c(B∗) forms a chord.
On the other hand, every face of B∗ belongs to only one chord, since it belongs
to band B∗ and only one other band. Call a face of B∗ marked if and only if
the unique chord that contains it is marked. If all faces of B∗ are marked, then
all edge-bundles that cross B∗ are identified and Lemma 3 holds as desired. So
assume not all faces of B∗ are marked, and let U be a maximal contiguous set
of faces of B∗ that is not marked.

Claim. There exists a chord with anchors {f, f ′} such that f ∈ U and f ′ �∈ U .

Proof. The intersection of U with c(B∗) forms an open curve in the plane that
contains c(B∗). By considering the region between the two endpoints of that
open curve, we can find a line � that is parallel to a coordinate axis, does not
intersect an edge, and intersects U an odd number of times. See Fig. 4.

Recall that for every face f on B∗, there is another face f ′ on B∗ such that
{f, f ′} are the anchords of a chord. If f is intersected by �, then so is f ′ since
f and f ′ span the same range in two coordinate directions. But � intersects U
an odd number of times, so for at least one face f in U ⊂ B∗, the face f ′ with
which it forms a chord-anchor cannot also be in U . �	

Going in order of faces along band B∗, we hence encounter: faces in U (including
f); a set of faces S1 which may be marked or not, but the first of them is marked
by definition of U ; face f ′; and another set of faces S2 which may be marked
or not, but the last of them is marked by definition of U . Recall that faces
were marked during propagation along interleaving chords, and consider the
first time when both S1 and S2 contained marked faces. The chord that caused
this to happen hence had one anchor in S1 and the other in S2. But then this
chord interleaves with the chord anchored at {f, f ′}, which means that f and f ′

should have been marked as well, a contradiction.

could be marked or unmarked

marked

marked

unmarked

�

U

B∗

Fig. 4. There must be a horizontal or vertical line � that intersects U an odd number
of times. The picture shows the cross-section with the plane that contains c(B∗).

Cauchy’s Theorem for Orthogonal Polyhedra of Genus 0 79

This finishes the proof of Lemma 3 for a quadrangulated surface. Now we
briefly discuss the case when the input is not quadrangulated. A simple, but
inefficient, approach would be to subdivide faces until all of them are rectangles.
This is undesirable for two reasons: it uses edge lengths and it increases the time
complexity to quadratic. A better approach is to only use the existence of such
a quadrangulation.

Thus, assume the input can be realized by some polyhedral surface S, let B∗

be the edge-bundle of Lemma 3, and B any other edge-bundle that crosses it,
say at face f . Let S′ be a quadrangulation of surface S. Let B∗ and B be bands
in S′ that contain edges (or parts of edges) of f . By the above proof for the
quadrangulated surface S′, if B∗ is identified by BundleOrientation, then so
is B. But this implies Lemma 3 for S as well: If B∗ is identified, then so is B∗,
and so are all other bands that are identified from B∗ in S′. So in particular, B
(and hence B) are identified.

Note that the quadrangulated surface S′ need not actually be computed; its
existence is used to show that B is reached from B∗, but the sequence of edge-
bundles to reach B will be found without knowing S′ by algorithm BundleOri-

entation. �	

4 Non-flat Dihedral Angles

If we know all flat dihedral angles, we can delete the corresponding edges in the
graph, and then delete the resulting isolated vertices and contract the resulting
vertices of degree 2 into their neighbours. Doing this merges co-planar faces of
a polyhedral surface S until they become faces of the polyhedron bounded by
S, and the resulting graph is the graph of the polyhedron. In this section, we
are interested in determining the remaining dihedral angles, and we can thus
assume that we are given the graph of the polyhedron.

Let v be a vertex of an orthogonal polyhedron. The incident 8 octants of v
may or may not be occupied by the polyhedron within a small neighbourhood of
v, yielding 28 possible configurations at vertex v. Of those, many cannot occur
in an orthogonal polyhedron, since the resulting surface is not a 2-manifold.
Some more have a flat dihedral angle. Eliminating all these cases and omitting
rotational symmetries, we are left with only 7 vertex configurations, which are
given in Fig. 5.

Each vertex of an orthogonal polyhedron can have three, four or six incident
edges (so it has degree 3, 4 or 6 in the graph.) In Fig. 5, we give the vertex
configurations together with the facial angles and dihedral angles in the graph.
The reader should at this point start to forget the geometry and view this as an
embedded graph with facial angles and labels on all edges.

We group the 7 configurations into four groups; configurations in different
groups have different degrees or different facial angles. Within each group, any
mapping from one configuration to the other that preserves order and facial
angles maps every dihedral angle α to its opposite 360◦ − α. Since α �= 180◦,
this implies the following:

80 T. Biedl and B. Genc

270

270

9090
270

90 270

270 90
9090

270
90

90

9090

270

270

270

90 90

90

90

90
90

9090 90 90
90

90

90

90270

270 270

270

180

180

180

180

90 90
90

90

90

90
90

90 90
270

270

Fig. 5. The vertex configurations with facial and dihedral angles

Observation 2. All dihedral angles at a vertex v are determined by the degree
of v, the facial angles at v, and one dihedral angle of an edge incident to v.

If the graph is connected, all dihedral angles can hence be computed if one
initial dihedral angle is fixed, by propagating the information along the edges of
the graph and updating dihedral angles at the other endpoint according to the
appropriate vertex configuration. The running time for this is O(m+ n) time.

5 Selecting among Two Sets

At this point, we have computed two possible sets of dihedral angles {d1(e)} and
{d2(e)} (depending on how we fixed the initial dihedral angle), and we now need
to determine which of them is the correct one.

These two sets are in fact opposite to each other, i.e., d1(e) = 360◦−d2(e) for
all edges e. This clearly holds for the initial edge, and by induction also for the
other edges, since the two configurations within a group in Fig. 5 have opposite
dihedral angles. So if the set {d1(.)} is realized by an orthogonal polyhedron P ,
then d2(e) is the outside angle between the faces adjacent to e in P ; we could
thus call {d2(.)} the outside dihedral angles.

To determine which of the two sets are the inside and which the outside dihe-
dral angles, we use edge lengths and reconstruct the coordinates of all vertices.
To be precise, pick some vertex of degree 3, assign it to be located at the origin,
and arbitrarily assign three orientations and directions to its three incident edges.
Using the facial angles, edge lengths, and the dihedral angles from {d1(e)}, we
can then easily compute all coordinates of all vertices in O(m+n) time. (If this
assigns two different coordinates to the same vertex, output an error message;
the edge lengths cannot have been correct.)

Cauchy’s Theorem for Orthogonal Polyhedra of Genus 0 81

Now find a vertex v with maximal x-coordinate (breaking ties arbitrarily),
and let f be a face adjacent to v and perpendicular to the x-axis. Since there
are no flat dihedral angles, the edges incident to f must have dihedral angle 90◦,
otherwise there would be a vertex with even larger x-coordinate. This decides
which of {d1(.)} and {d2(.)} was correct, and only one of them can be correct.

Putting all three algorithms together, we hence obtain the following:

Theorem 2. Given an embedded planar graph with facial angles and edge lengths,
we can in O(m+ n) time

– find the dihedral angles of any orthogonal polyhedral surface that has this
graph, facial angles and edge lengths, OR

– report that this graph and facial angles can only belong to an orthogonal
polyhedral surface for which the polyhedron bounded by it has a disconnected
graph, OR

– report that no orthogonal polyhedral surface can realize this graph, facial
angles and edge lengths.

Moreover, if a realizing orthogonal polyhedral surface exists, then it is unique.

6 Remarks

We assumed that we are given a graph, facial angles and edge lengths, and that
the reconstructed orthogonal polyhedron has a connected graph and genus 0.
We now briefly discuss these assumptions.

– Inspection of the proof of Cauchy’s theorem shows that it does not use edge
lengths, so for a convex polyhedron the graph and facial angles determine
the dihedral angles. Our proof also does not use edge lengths, except at the
very last step where we determine which of two possible sets of dihedral
angles is the correct one.
It seems exceedingly likely that this step could be done without using edge
lengths. In particular, in the corresponding 2D problem (given a set of angles,
can this be the set of angles of an orthogonal polygon?) there is a simple
solution: the set of n angles can be realized if and only if it adds up to
180◦(n + 2). If any edge-bundle happens to have only two parallel edges
on each face, then the cycle of the edge-bundle (as defined in Section 3)
lies within a plane, and studying the dihedral angles at this cycle tells us
which set is correct. But in general the incidence structure of faces used by
edge-bundles is more complicated. Can we use it somehow to determine the
correct set of dihedral angles without using edge lengths?

– We demanded that the graph of the polyhedron is connected, i.e., no face has
holes. If this condition is dropped, then testing whether a realizing polyhedral
surface exists becomes NP-hard. In fact, the problem is NP-hard in the
strong sense, and holds even for polyhedral surface where every face is a
unit rectangle [3].

82 T. Biedl and B. Genc

– We demanded that the orthogonal polyhedral surface has genus 0, which was
used frequently throughout the proof of correctness of algorithm Bundle-

Orientation. The example in Fig. 1 shows that this algorithm can fail for
higher genus. Is there some embedded graph of higher genus (with given
facial angles) where different edge-bundle orientations are in fact possible?
We suspect that this is not true, but this remains open.
The other algorithms work without modification for surfaces of higher genus,
so Cauchy’s theorem holds for higher genus orthogonal polyhedra (not poly-
hedral surfaces, i.e., no flat dihedral angles are allowed), as long as they have
a connected graph.

– Our algorithm computes the set of dihedral angles, and as a by-product also
vertex coordinates, but it does not check whether the resulting surface is
indeed a 2-manifold (i.e., that edges are incident to exactly two faces, etc.)
This can be done in polynomial time (see [5]).

References

1. Aigner, M., Ziegler, G.: Proofs from THE BOOK, 1st edn. Springer, Heidelberg
(1998); 3rd edn. (2004)

2. Biedl, T., Genc, B.: When can a graph form an orthogonal polyhedron. In: Cana-
dian Conference on Computational Geometry (CCCG 2004), August 2004, pp.
53–56 (2004)

3. Biedl, T., Genc, B.: Cauchy’s theorem for orthogonal polyhedra of genus 0. Techni-
cal Report CS-2008-26, University of Waterloo, School of Computer Science (2008)

4. Biedl, T.C., Lubiw, A., Spriggs, M.J.: Cauchy’s theorem and edge lengths of convex
polyhedra. In: Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS 2007. LNCS, vol. 4619,
pp. 398–409. Springer, Heidelberg (2007)

5. Biedl, T., Lubiw, A., Sun, J.: When can a net fold to a polyhedron? Computational
Geometry: Theory and Applications 31(3), 207–218 (2005)

6. Damian, M., Flatland, R., O’Rourke, J.: Unfolding Manhattan towers. Computa-
tional Geometry: Theory and Applications 40, 102–114 (2008)

7. Dolbilin, N.P., Shtan’ko, M.A., Shtogrin, M.T.: Rigidity of a quadrillage of a torus
by squares. Russian Math. Surveys 54(4), 839–840 (1999)

8. Donoso, M., O’Rourke, J.: Nonorthogonal polyhedra built from rectangles. In:
14th Canadian Conference on Computational Geometry (CCCG 2002), pp. 97–
100 (2002)

9. O’Rourke, J.: Computational geometry column 49. ACM SIGACT News 38(2)
(2007)

10. Pak, I.: Lectures on Discrete and Polyhedral Geometry. Cambridge Univer-
sity Press, Cambridge (in print, 2009), http://www.math.umn.edu/~pak/book.htm
(last accessed, April 2009)

http://www.math.umn.edu/~pak/book.htm

Approximability of Sparse Integer Programs

David Pritchard

Department of Combinatorics & Optimization, University of Waterloo
dagpritchard@math.uwaterloo.edu

Abstract. The main focus of this paper is a pair of new approxima-
tion algorithms for sparse integer programs. First, for covering inte-
ger programs {min cx : Ax ≥ b,0 ≤ x ≤ d} where A has at most k
nonzeroes per row, we give a k-approximation algorithm. (We assume
A, b, c, d are nonnegative.) For any k ≥ 2 and ε > 0, if P �= NP this
ratio cannot be improved to k − 1 − ε, and under the unique games
conjecture this ratio cannot be improved to k − ε. One key idea is
to replace individual constraints by others that have better rounding
properties but the same nonnegative integral solutions; another critical
ingredient is knapsack-cover inequalities. Second, for packing integer pro-
grams {max cx : Ax ≤ b, 0 ≤ x ≤ d} where A has at most k nonzeroes
per column, we give a 2kk2-approximation algorithm. This is the first
polynomial-time approximation algorithm for this problem with approx-
imation ratio depending only on k, for any k > 1. Our approach starts
from iterated LP relaxation, and then uses probabilistic and greedy meth-
ods to recover a feasible solution.

1 Introduction and Prior Work

In this paper we investigate the following problem: what is the best possible
approximation ratio for integer programs where the constraint matrix is sparse?
To put this in context we recall a famous result of Lenstra [1]: integer programs
with a constant number of variables or a constant number of constraints can be
solved in polynomial time. Our investigations analogously ask what is possible if
the constraints each involve at most k variables, or if the variables each appear
in at most k constraints.

Rather than consider the full class of all integer programs, we consider only
packing and covering problems. One sensible reason for this is that every integer
program can be rewritten (possibly with additional variables) in such a way
that each constraint contains at most 3 variables and each variable appears
in at most 3 constraints, if mixed positive and negative coefficients are allowed.
Aside from this, packing programs and covering programs represent a substantial
portion of the literature on integer programs; and sparse programs of this type
are interesting in their own right as “multiple-knapsack” problems where each
item affects a bounded number of knapsacks, or each knapsack is affected by a
bounded number of items.

We use CIP (resp. PIP) as short for covering (resp. packing) integer program,
which is any integer program of the form {min cx : Ax ≥ b,0 ≤ x ≤ d} (resp.

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 83–94, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

84 D. Pritchard

{max cx : Ax ≤ b,0 ≤ x ≤ d}) with A, b, c, d nonnegative and rational. Note that
CIPs are sometimes called multiset multicover when A and b are integral. We call
constraints x ≤ d multiplicity constraints (also known as capacity constraints).
We allow for entries of d to be infinite, and without loss of generality, all finite
entries of d are integral. An integer program with constraint matrix A is k-row-
sparse, or k-RS, if each row of A has at most k entries; we define k-column-sparse
(k-CS) similarly. As a rule of thumb we ignore the case k = 1, since such problems
trivially admit fully polynomial-time approximation schemes (FPTAS’s) or poly-
time algorithms. The symbol 0 denotes the all-zero vector, and similarly for 1.
For covering problems an α-approximation algorithm is one that always returns a
solution with objective value at most α times optimal; for packing, the objective
value is at least 1/α times optimal. We use n to denote the number of variables
and m the number of constraints (i.e. the number of rows of A).

1.1 k-Row-Sparse Covering IPs: Previous and New Results

The special case of 2-RS CIP where A, b, c, d are 0-1 is the same as Min Ver-
tex Cover, which is APX-hard. More generally, 0-1 k-RS CIP is the same as
k-Bounded Hypergraph Min Vertex Cover (a.k.a. Set Cover with maximum fre-
quency k) which is not approximable to k − 1 − ε for any fixed ε > 0 unless
P=NP [2] (k−ε under the unique games conjecture [3]). This special case is known
to admit a matching positive result: set cover with maximum frequency k can be
k-approximated by direct rounding of the naive LP [4] or local ratio/primal-dual
methods [5].

The following results are known for other special cases of k-RS CIP with
multiplicity constraints: Hochbaum [6] gave a k-approximation in the special
case that A is 0-1; Hochbaum et al. [7] and Bar-Yehuda & Rawitz [8] gave
pseudopolynomial 2-approximation algorithms for the case that k = 2 and d is
finite. For the special case d = 1, Carr et al. [9, §2.6] gave a k-approximation, and
Fujito & Yabuta [10] gave a primal-dual k-approximation. Moreover [9,10] claim
a k-approximation for general d, but there seems to have been some oversights
as the papers do not provide full proofs and their methods alone seem to be
insufficient for general d. Our first main result, given in Section 2, is a simple
and correct proof of the same claim.

Theorem 1. There is a polynomial time k-approximation algorithm for k-RS
CIPs with multiplicity constraints.

Our approach is to first consider the special case that there are no multiplicity
constraints (i.e. dj = +∞ for all j); we then extend to the case of finite d via
knapsack-cover inequalities, using linear programming (LP) techniques from Carr
et al. [9]. A (k + 1)-approximation algorithm is relatively easy to obtain using
LP rounding; in order get the tighter ratio k, we replace constraints by other
“Z+-equivalent” constraints (see Definition 5) with better rounding properties.
The algorithm requires a polynomial-time linear programming subroutine.

Independently of our work, a recent paper of Koufogiannakis & Young [11]
also gives a full and correct proof of Theorem 1. Their primal-iterative approach

Approximability of Sparse Integer Programs 85

works for a broad generalization of k-RS CIPs and runs in low-degree strongly
polynomial time. Our approach has the generic advantage of giving new ideas
that can be used in conjunction with other LP-based methods, and the specific
advantage of giving integrality gap bounds. See the full version [12] for details.

1.2 k-Column-Sparse Packing IPs: Previous and New Results

So far, no constant-factor approximation is known for k-CS PIPs, except in
special cases. If every entry of b is Ω(logm) then randomized rounding provides
a constant-factor approximation. Demand matching is the special case of 2-CS
PIP where (i) in each column of A all nonzero values in that column are equal
to one another and (ii) no two columns have their nonzeroes in the same two
rows. Shepherd & Vetta [13] showed demand matching is APX-hard but admits
a (11

2 −
√

5)-approximation algorithm when d = 1; their approach also gives a
7
2 -approximation for 2-CS PIP instances satisfying (i). Results of Chekuri et al.
[14] yield a 11.542k-approximation algorithm for k-CS PIP instances satisfying
(i) and such that the maximum entry of A is less than the minimum entry of b.

The special case of k-CS PIP where A, b are 0-1 is the same as min-weight k-
set packing, hypergraph matching with edges of size ≤ k, and strong independent
sets in hypergraphs with degree at most k. The best approximation ratio known
for this problem is (k + 1)/2 + ε [15] for general weights, and k/2 + ε when
c = 1 [16]. The best lower bound is due to Hazan et al. [17], who showed
Ω(k/ ln k)-inapproximability unless P=NP, even for c = 1.

Our second main result, given in Section 3, is the following result.

Theorem 2. There is a polynomial time 2k(k2 − 2k + 1) + 1-approximation
algorithm for k-CS PIPs with multiplicity constraints.

Our methodology begins by using iterated LP relaxation [18] to find an inte-
gral solution with super-optimal value, but violating some constraints in an
additively-bounded way. Then we use a combination of probabilistic and greedy
methods to recover a high-weight feasible solution. An extension of this method-
ology gives improved results in two special cases: we get a 4-approximation when
k = 2, and we get a (W + k)/(W − k)-approximation when the program’s width,
defined as W := mini,j:Aij �=0

bi

Aij
satisfies W > k. These results also require a

polynomial-time linear programming subroutine.
Subsequent to the initial release of this paper on the arXiv [12], C. Chekuri,

A. Ene and N. Korula (personal communication) have obtained results for k-CS
PIPs: a fairly simple O(k2k)-approximation algorithm without iterated round-
ing, and a O(k2)-approximation (and integrality gap bound) that builds on our
iterated rounding ideas.

1.3 Other Related Work

Srinivasan [19,20] showed that k-CS CIPs admit a O(log k)-approximation. Kol-
liopoulos and Young [21] extended this result to handle multiplicity constraints.
There is a matching hardness result: it is NP-hard to approximate k-Set Cover,

86 D. Pritchard

Table 1. The landscape of approximability of sparse integer programs. Our main
results are in boldface.

k-Column-Sparse k-Row-Sparse
lower bound upper bound lower bound upper bound

Packing Ω(k/ ln k) (k2 − 2k + 1)2k + 1 n1−o(1) εn
Covering ln k − O(ln ln k) O(ln k) k − ε k

which is the special case where A, b, c are 0-1, better than ln k − O(ln ln k) for
any k ≥ 3 [22]. Hence for k-CS CIP the best possible approximation ratio is
Θ(log k). A (k + ε)-approximation algorithm can be obtained by separately ap-
plying an approximation scheme to the knapsack problem corresponding to each
constraint. Hochbaum [23] showed 2-CS CIPs are NP-hard to optimize and gave
a bicriteria approximation algorithm. Although 0-1 2-CS CIP is Edge Cover
which lies in P, 2-CS CIP in general is NP-hard to (17/16− ε)-approximate, due
to methods from [24], even if A has 2 equal nonzeroes per column and d is 0-1
or d is all-+∞. See the full version [12] for details.

The special case of 2-RS PIP where A, b, c are 0-1 is the same as Max In-
dependent Set, which is not approximable within n/2log3/4+ε n unless NP ⊂
BPTIME(2logO(1) n) [25]. On the other hand, n-approximation of any packing
problem is easy to accomplish by looking at the best singleton-support solution.
A slightly better n/t-approximation, for any fixed t, can be accomplished by
exhaustively guessing the t most profitable variables in the optimal solution,
and then solving the resulting t-dimensional integer program to optimality via
Lenstra’s result [1].

We remark that integer CIPs and PIPs where A has at most k rows are known
as k-dimensional knapsack problems, and for any fixed k ≥ 2 they have a PTAS
and pseudopolynomial-time algorithm, but no FPTAS unless P=NP — see [26,
§9.4] for references. In particular, to clarify Lenstra’s result [1], it is NP-hard to
get an FPTAS for PIPs with 2 constraints plus a nonnegativity constraint for
each variable [27].

1.4 Summary

We summarize the existing and new results in Table 1. Note that in all four
cases, the strongest known lower bounds are obtained even in the special case
that A, b, c, d are 0-1.

2 k-Approximation for k-Row-Sparse CIPs

By scaling rows and clipping coefficients that are too high, there is no loss of
generality in the following definition.

Definition 1. A k-RS CIP is an integer program {min cx : Ax ≥ 1,0 ≤ x ≤ d}
where A is k-RS and all entries of A are at most 1.

Approximability of Sparse Integer Programs 87

To begin with, we focus on the case dj = +∞ for all j, which we will call un-
bounded k-RS CIP, since it already illustrates the essence of our new technique.
Motivated by LP rounding methods, we make the following definition, in which
x is a vector-valued variable and α is a vector of real coefficients. Throughout,
we assume coefficients are nonnegative. When we apply
·� to vectors we mean
the component-wise floor.

Definition 2. A constraint αx ≥ 1 is ρ-roundable for some ρ > 1 if for all
nonnegative real x, (αx ≥ 1) implies (α
ρx� ≥ 1).

Note that ρ-roundability implies ρ′-roundability for ρ′ > ρ. The relevance of this
property is explained by the following proposition.

Proposition 3. If every constraint in an unbounded covering integer program
is ρ-roundable, then there is a ρ-approximation algorithm for the program.

Proof. Let x∗ be an optimal solution to the program’s linear relaxation. Then
cx∗ is a lower bound on the cost of any optimal solution. Thus,
ρx∗� is a feasible
solution with cost at most ρ times optimal.

Another simple observation helps us get started.

Proposition 4. The constraint αx ≥ 1 is (1 +
∑

i αi)-roundable.

Proof. Let ρ = (1+
∑

i αi). Since
t� > t−1 for any t, if αx ≥ 1 for a nonnegative
x, then

α
ρx� ≥
∑

i

αi(ρxi − 1) = ρ
∑

i

αixi −
∑

i

αi ≥ ρ · 1 − (ρ− 1) = 1,

as needed.

Now consider an unbounded k-RS CIP. Since each constraint has at most k
coefficients, each less than 1, it follows from Proposition 4 that every constraint
in these programs is (k + 1)-roundable, and so such programs admit a (k + 1)-
approximation algorithm by Proposition 3. It is also clear that we can tighten
the approximation ratio to k for programs where the sum of the coefficients in
every constraint (row) is at most k − 1. What we will now do is show that rows
with sum in (k − 1, k] can be replaced by other rows which are k-roundable.

Definition 5. Two constraints αx ≥ 1 and α′x ≥ 1 are Z+-equivalent if for all
nonnegative integral x, (αx ≥ 1) ⇔ (α′x ≥ 1).

In other words, αx ≥ 1 and α′x ≥ 1 are Z+-equivalent if αx ≥ 1 is valid for
{x : x ≥ 0, α′x ≥ 1} and α′x ≥ 1 is valid for {x : x ≥ 0, αx ≥ 1}.

Proposition 6. Every constraint αx ≥ 1 with at most k nonzero coefficients is
Z+-equivalent to a k-roundable constraint.

Before proving Proposition 6, let us illustrate its use.

88 D. Pritchard

Theorem 3. There is a polynomial time k-approximation algorithm for un-
bounded k-RS CIPs.

Proof. Using Proposition 6 we replace each constraint with a Z+-equivalent k-
roundable one. The resulting IP has the same set of feasible solutions and the
same objective function. Therefore, Proposition 3 yields a k-approximately op-
timal solution.

With the framework set up, we begin the technical part: a lemma, then the proof
of Proposition 6.

Lemma 7. For any positive integers k and v, the constraint
∑k−1

i=1 xi + 1
vxk ≥ 1

is k-roundable.

Proof. Let αx ≥ 1 denote the constraint. If x satisfies the constraint, then the
maximum of x1, x2, . . . , xk−1 and 1

vxk must be at least 1/k. If xi ≥ 1/k for
some i �= k then
kxi� ≥ 1 and so α
kx� ≥ 1 as needed. Otherwise xk must be
at least v/k and so
kxk� ≥ v which implies α
kx� ≥ 1 as needed.

Proof of Proposition 6. If the sum of coefficients in the constraint is k − 1 or
less, we are done by Proposition 4, hence we assume the sum is at greater than
k − 1. Without loss of generality (by renaming) such a constraint is of the form

k∑
i=1

xiαi ≥ 1 (1)

where 0 < α ≤ 1, k − 1 <
∑

i αi ≤ k, and the αi’s are nonincreasing in i.
Define the support of x to be supp(x) := {i | xi > 0}. Now αk−1 + αk > 1

since k − 1 <
∑

i<k−1 αi + αk−1 + αk ≤ αk−1 + αk + (k − 2). Since the αi are
nonincreasing, αi + αj > 1 for any i < k, j ≤ k; more generally, any integral
x ≥ 0 with | supp(x)| ≥ 2 must satisfy αx ≥ 1. To express the set of all feasible
integral solutions, let t = max{0} ∪ {i | αi = 1}, let ei denote the ith unit basis
vector, and let v = �1/αk�. Then it is not hard to see that the nonnegative
integral solution set to constraint (1) is the disjoint union

{x | x ≥ 0, | supp(x)| ≥ 2} � {zei | 1 ≤ i ≤ t, z ≥ 1}
�{zei | t < i < k, z ≥ 2} � {zek | z ≥ v}.

(2)

The special case t = k (i.e. α1 = α2 = · · · = αk = 1) is already k-roundable by
Lemma 7, so assume t < k. Consider the constraint

t∑
i=1

xi +
k−1∑

i=t+1

v − 1
v

xi +
1
v
xk ≥ 1. (3)

Every integral x ≥ 0 with | supp(x)| ≥ 2 satisfies constraint (3). By also con-
sidering the cases | supp(x)| ∈ {0, 1}, it is easy to check that constraint (3) has
precisely Equation (2) as its set of feasible solutions, i.e. constraint (3) is Z+-
equivalent to αx ≥ 1. If t < k− 1, the sum of the coefficients of constraint (3) is
k − 1 or less, so it is k-roundable by Proposition 4. If t = k − 1, constraint (3)
is k-roundable by Lemma 7. Thus in either case we have what we wanted.

Approximability of Sparse Integer Programs 89

2.1 Multiplicity Constraints

We next obtain approximation guarantee k even with multiplicity constraints
x ≤ d. For this we use knapsack-cover inequalities. These inequalities repre-
sent residual covering problems when a set of variables is taken at maximum
multiplicity. Wolsey [28] studied inequalities like this for 0-1 problems to get a
primal-dual approximation algorithm for submodular set cover. The LP we use
is most like what appears in Carr et al. [9] and Kolliopoulos & Young [21], but
we first replace each row with a k-roundable one.

Specifically, given a CIP {min cx | Ax ≥ 1,0 ≤ x ≤ d} with A, d nonnegative,
we now define the knapsack cover LP. Note that we allow d to contain some
entries equal to +∞. For a subset F of supp(Ai) such that

∑
j∈F Aijdj < 1,

define A(F)
ij = min{Aij , 1−

∑
j∈F Aijdj}. Following [9,21] we define the knapsack

cover LP for our problem to be

KC-LP =
{
min cx : 0 ≤ x ≤ d;

∀i, ∀F ⊂ supp(Ai) s.t.
∑
j∈F

Aijdj < 1 :
∑
j �∈F

A
(F)
ij xj ≥ 1 −

∑
j∈F

Aijdj

}
.

Theorem 1. There is a polynomial time k-approximation algorithm for k-RS
CIPs.

Proof. Using Proposition 6, we assume all rows of A are k-roundable. Let x∗ be
the optimal solution to KC-LP. Define x̂ = min{d,
kx∗�}, where min denotes
the component-wise minimum. We claim that x̂ is a feasible solution to the CIP,
which will complete the proof. In other words, we want to show for each row i
that Aix̂ ≥ 1.

Fix any row i and define F = {j ∈ supp(Ai) | x∗j ≥ dj/k}, i.e. F is those
variables in the constraint that were rounded to their maximum multiplicity. If
F = ∅ then, by the k-roundability of Aix ≥ 1, we have that Aix̂ = Ai
kx∗� ≥ 1
as needed. So assume F �= ∅.

If
∑

j∈F Aijdj ≥ 1 then the constraint Aix̂ ≥ 1 is satisfied; consider otherwise.
Since
kx∗j� > kx∗j − 1 for j �∈ F , since x∗ satisfies the knapsack cover constraint

for i and F , and since A(F)
ij ≤ 1 −

∑
j∈F Aijdj for each j, we have∑

j �∈F

A
(F)
ij x̂j ≥ k

∑
j �∈F

A
(F)
ij x∗j −

∑
j �∈F

A
(F)
ij

≥ k
(
1 −

∑
j∈F

Aijdj

)
−
∣∣∣{j : j ∈ supp(Ai)\F}

∣∣∣(1 −
∑
j∈F

Aijdj

)
.

Since F �= ∅ and | supp(Ai)| ≤ k, this gives
∑

j �∈F A
(F)
ij x̂j ≥ 1 −

∑
j∈F Aijdj .

Rearranging, and using the facts (∀j : Aij ≥ A
(F)
ij) and (∀j ∈ F : dj = x̂j), we

deduce Aix̂ ≥ 1, as needed.
For fixed k, we may solve KC-LP explicitly, since it has polynomially many

constraints. For general k, we follow the ellipsoid algorithm-based approach of

90 D. Pritchard

[9,21]: rather than solve KC-LP in polynomial time, we obtain a solution x∗

which is optimal for a modified KC-LP having not all knapsack-cover constraints,
but at least all those for the the m specific (i, F) pairs (depending on x∗) used
in our proof; thus we still get a k-approximation in polynomial time.

3 Column-Sparse Packing Integer Programs

In this section we give an approximation algorithm for k-column-sparse packing
integer programs with approximation ratio 2k(k2−2k+1)+1, and better results
for k = 2. The results hold even in the presence of multiplicity constraints x ≤ d.
Broadly speaking, our approach is rooted in the demand matching algorithm
of Shepherd & Vetta [13]; their path-augmenting algorithm can be viewed as a
restricted form of iterated relaxation, which is the main tool in our new approach.
Iterated relaxation yields a superoptimal solution that violates some constraints,
and with probabilistic rounding and greedy ideas we are able to obtain a feasible
solution while retaining at least a constant fraction of the weight.

By scaling rows and eliminating variables whose coefficients are too high, there
is no loss of generality in the following definition.

Definition 8. A k-CS PIP is an integer program {max cx : Ax ≤ 1,0 ≤ x ≤ d}
where A is k-CS and all entries of A are at most 1.

We begin this section by explaining a simpler version of our new mechanism;
this simpler version gives a 2k(k2 − k + 1)-approximation algorithm for k-CS
PIP in the special case d = 1.

By analogy with the demand matching problem and hypergraphic matching,
it is natural to think of the rows of the constraint matrix A as indexed by a vertex
set V and the columns as indexed by a hyperedge set E. Specifically, define a
vertex for each row, let Ave denote the entry of A at row v and column e, and
for each column define its corresponding hyperedge e to be {v | Ave > 0}; the
resulting hypergraph may not be simple. We define the term endpoint to mean
a pair (v, e) such that Ave > 0.

The following intermediate result of iterated rounding is key for our approach.
For a k-CS PIP P let L(P) denote its linear relaxation {max cx | Ax ≤ 1,0 ≤
x ≤ d}. Our iterated rounding algorithm computes a set S of special endpoints;
for such a set we let AS→0 denote the matrix obtained from A by zeroing out
the entries corresponding to each special endpoint.

Lemma 9. Given a k-CS PIP P with d = 1, we can in polynomial time find
y ∈ {0, 1}E and S such that

(a) cy ≥ OPT(L(P))
(b) ∀v ∈ V , we have |{e : (v, e) ∈ S}| ≤ k
(c) AS→0y ≤ 1.

Proof of Lemma 9. First, we give a sketch. Since P is k-column sparse, every
hyperedge has size at most k. Let x∗ be an extreme optimal solution to L(P).

Approximability of Sparse Integer Programs 91

The crux of our approach deals with the case that x∗ has no integral values:
then x∗ is a basic feasible solution all of whose tight constraints correspond to
vertices, so the number of vertices is greater than or equal to the number of
hyperedges. Thus by double-counting the average vertex degree is at most k,
so some vertex has degree at most k. In other words there is some constraint
which contains at most k nonzero variables, which allows iterated rounding to
take place.

Since y is a 0-1 vector we can alternatively view it as a subset Y of E. With
this convention, we now give pseudocode for our iterated rounding algorithm,
IteratedSolver.

IteratedSolver(A, c)
1: Set S = Y = N = ∅, V ′ = V, E′ = E
2: loop
3: Let x∗ be an extreme optimum of

{max cx | x ∈ [0, 1]E ; AS→0x ≤ 1;∀e ∈ Y : xe = 1; ∀e ∈ N : xe = 0}

4: For each e ∈ E′ with x∗
e = 0, add e to N , delete e from E′

5: For each e ∈ E′ with x∗
e = 1, add e to Y , delete e from E′

6: If E′ = ∅, terminate and return S and y, the characteristic vector of Y
7: for each vertex v ∈ V ′ with degree less than or equal to k in (V ′, E′) do
8: Mark each endpoint {(v, e) | e ∈ E′} special, delete v from V ′

Now we explain the pseudocode. The sets Y,N are disjoint subsets of E,
and E′ = E\Y \N . When e leaves E′, the value of xe is fixed at 0 or 1. After
deleting a vertex v from V ′, it will not be possible to later violate the constraint
corresponding to v. Hence the linear program effectively only has variables for
E′ and constraints for V ′. As remarked previously, since x∗ is a basic feasible
solution the average vertex degree is at most k each time Step 7 is reached, so
|V ′| decreases in each iteration, and the algorithm has polynomial running time.
(In fact, it is not hard to show that there are at most O(k log |V |) iterations.)

The algorithm has the property that cx∗ does not decrease from one iteration
to the next; since x∗ = y at termination, property (a) holds. Properties (b) and
(c) can be seen immediately from the definition of the algorithm.

Next, we show the kind of rounding which takes the output of IteratedSolver

to a feasible solution.

Theorem 4. There is a polynomial time 2k(k2−k+1)-approximation algorithm
for k-CS PIPs with d = 1.

Proof. After running IteratedSolver, suppose we find a subset Z of Y with
the property that if any e, f ∈ Z intersect at a vertex v, neither (v, e) nor (v, f)
is special. Then from Lemma 9(c) and the fact that entries of A are at most 1,
it follows that Z is a feasible solution to P (the original k-CS PIP). In the rest
of the proof, we show there exists such a set with at least a constant fraction of
Y ’s profit.

92 D. Pritchard

To accomplish this we have each vertex v ∈ V independently declare “special”
or “non-special,” each with probability 1/2. We say that the eth column is
accepted if (1) for every endpoint (v, e) ∈ S the vertex v declares special and (2)
for every endpoint (v, e) �∈ S the vertex v declares non-special. It follows from
the k-column-sparseness of A that each column is accepted with probability at
least 1/2k.

Let Y a ⊂ Y denote the set of accepted columns, and V s ⊂ V denote the set
of vertices that declared special. So E[c(Y a)] ≥ c(Y)/2k. We need the following
claim, whose easy proof is in the full version [12].

Claim 10. If Z ⊂ Y a has the property that every two hyperedges e1, e2 in Z
satisfy e1 ∩ e2 ∩ Vs = ∅, then Z is a feasible solution to P.

Another way of stating Claim 10 is that whenever Z is a matching on the in-
duced subhypergraph (V, Y a)[V s], Z is a feasible solution to P . (Note, we do
not discard “empty” hyperedges in this view — hyperedges disjoint from Vs

can be freely added to any matching.) Consider the greedy algorithm for find-
ing such a matching: we iteratively select the maximum-weight hyperedge that
does not intersect any previously selected hyperedges on V s. Since the subhy-
pergraph has hyperedges of size at most k and degree at most k, it is easy to
see that each chosen hyperedge precludes at most k(k− 1) other hyperedges for
future selection. Thus the greedy algorithm outputs a set Z with cost at least
c(Y a)/(k(k− 1)+1), which is at least c(Y)/2k(k2 − k+1) in expectation. Using
the fact that c(Y) ≥ OPT(L(P)) ≥ OPT(P), we are done.

3.1 Strongest Results

Our strongest results are obtained by using a somewhat more refined iterated
rounding algorithm. The details appear are deferred to the full version [12] due
to lack of space; we simply state the results here.

Theorem 2. There is a polynomial time 2k(k2 − 2k + 1) + 1-approximation
algorithm for k-CS PIPs.

Theorem 5. There is a deterministic polynomial time 4-approximation algo-
rithm for 2-CS PIPs, and a randomized 6−

√
5 ≈ 3.764-approximation algorithm

when d = 1 and no two columns have the same support.

The width W of an integer program is 1/ (maxij Aij/bi). Note that without loss
of generality, W ≥ 1. If we normalize b = 1 by row scaling as in the rest of this
paper, then a program has width ≥ W iff every entry of A is at most 1/W .

In many settings better approximation can be obtained as W increases. For
example in k-RS CIPs with b = 1, the sum of the entries in each row is at most
k/W , so Propositions 3 and 4 give a (1 + k/W)-approximation algorithm. Srini-
vasan [19,20] gave a (1+ln(1+k)/W)-approximation algorithm for unbounded k-
CS CIPs. Using grouping and scaling techniques introduced by Kolliopoulos and
Stein [29], Chekuri et al. [14] showed that no-bottleneck demand multicommodity
flow in a tree admits a (1 +O(1/

√
W))-approximation algorithm, and gave gen-

eral sufficient conditions for a problem to admit a (1+O(1/
√
W))-approximation

Approximability of Sparse Integer Programs 93

algorithm. Along the same vein, using iterated rounding, Könemann et al. [30]
obtained a (1 + O(1/W))-approximation algorithm for ordinary multicommod-
ity flow in a tree, and general sufficient conditions for a problem to admit a
(1 +O(1/W))-approximation algorithm [30]. Using a new technique (iteratively
using an LP to reduce an additively-violating solution to a feasible solution), we
get the following — again see [12] for details.

Theorem 6. There is a polynomial time (1 + k/W)/(1 − k/W)-approximation
algorithm to solve k-column-sparse PIPs with k/W < 1.

Acknowledgement. We would like to thank Glencora Borradaile, Christina
Boucher, Deeparnab Chakrabarty, Stephane Durocher, Jochen Könemann and
Christos Koufogiannakis for helpful discussions, and the ESA referees for useful
feedback.

References

1. Lenstra, H.: Integer programming with a fixed number of variables. Math. Oper.
Res. 8, 538–548 (1983)

2. Dinur, I., Guruswami, V., Khot, S., Regev, O.: A new multilayered PCP and the
hardness of hypergraph vertex cover. SIAM J. Comput. 34(5), 1129–1146 (2005);
Preliminary version appeared in Proc. 35th STOC, pp. 595–601 (2003)

3. Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2− ε. J.
Comput. Syst. Sci. 74(3), 335–349 (2008); Preliminary version appeared in Proc.
18th CCC, pp. 379–386 (2003)

4. Hochbaum, D.S.: Approximation algorithms for set covering and vertex cover prob-
lems. SIAM J. Comput. 11, 555–556 (1982)

5. Bar-Yehuda, R., Even, S.: A linear time approximation algorithm for the weighted
vertex cover problem. J. Algorithms 2, 198–203 (1981)

6. Hall, N.G., Hochbaum, D.S.: A fast approximation algorithm for the multicovering
problem. Discrete Appl. Math. 15(1), 35–40 (1986)

7. Hochbaum, D.S., Megiddo, N., Naor, J.S., Tamir, A.: Tight bounds and 2-
approximation algorithms for integer programs with two variables per inequality.
Math. Program. 62(1), 69–83 (1993)

8. Bar-Yehuda, R., Rawitz, D.: Efficient algorithms for integer programs with two
variables per constraint. Algorithmica 29(4), 595–609 (2001)

9. Carr, R.D., Fleischer, L., Leung, V.J., Phillips, C.A.: Strengthening integrality
gaps for capacitated network design and covering problems. In: Proc. 11th SODA,
pp. 106–115 (2000)

10. Fujito, T., Yabuta, T.: Submodular integer cover and its application to production
planning. In: Persiano, G., Solis-Oba, R. (eds.) WAOA 2004. LNCS, vol. 3351, pp.
154–166. Springer, Heidelberg (2005)

11. Koufogiannakis, C., Young, N.E.: Greedy degree-approximation algorithm for cov-
ering with arbitrary constraints and submodular cost. In: Albers, S., Marchetti-
Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. Part
I. LNCS, vol. 5555, pp. 634–652. Springer, Heidelberg (2009) arXiv:0807.0644

12. Pritchard, D.: Approximability of sparse integer programs (2009) arXiv:0904.0859

94 D. Pritchard

13. Shepherd, F.B., Vetta, A.: The demand-matching problem. Mathematics of Oper-
ations Research 32(3), 563–578 (2007); Preliminary version appeared in Proc. 9th
IPCO, pp. 457–474, (2002)

14. Chekuri, C., Mydlarz, M., Shepherd, F.B.: Multicommodity demand flow in a tree
and packing integer programs. ACM Trans. Algorithms 3(3), 27 (2007); Preliminary
version appeared in Proc. 30th ICALP, pp. 410–425 (2003)

15. Berman, P.: A d/2 approximation for maximum weight independent set in d-claw
free graphs. Nordic J. of Computing 7(3), 178–184 (2000); Preliminary version
appeared in Proc. 7th SWAT, pp. 214–219 (2000)

16. Hurkens, C.A.J., Schrijver, A.: On the size of systems of sets every t of which
have an SDR, with an application to the worst-case ratio of heuristics for packing
problems. SIAM J. Discret. Math. 2(1), 68–72 (1989)

17. Hazan, E., Safra, S., Schwartz, O.: On the complexity of approximating k-set pack-
ing. Comput. Complex. 15(1), 20–39 (2006); Preliminary versions appeared in Proc.
6th APPROX, pp. 83–97 (2003); ECCC-TR03-020 (2003)

18. Singh, M.: Iterative Methods in Combinatorial Optimization. PhD thesis, Carnegie
Mellon University (2008)

19. Srinivasan, A.: Improved approximation guarantees for packing and covering in-
teger programs. SIAM J. Comput. 29(2), 648–670 (1999); Preliminary version ap-
peared in Proc. 27th STOC, pp. 268–276 (1995)

20. Srinivasan, A.: An extension of the Lovász Local Lemma, and its applications to
integer programming. SIAM J. Comput. 36(3), 609–634 (2006); Preliminary version
appeared in Proc. 7th SODA, pp. 6–15 (1996)

21. Kolliopoulos, S.G., Young, N.E.: Approximation algorithms for covering/packing
integer programs. J. Comput. Syst. Sci. 71(4), 495–505 (2005)

22. Trevisan, L.: Non-approximability results for optimization problems on bounded
degree instances. In: Proc. 33rd STOC, pp. 453–461 (2001)

23. Hochbaum, D.S.: Monotonizing linear programs with up to two nonzeroes per
column. Oper. Res. Lett. 32(1), 49–58 (2004)

24. Chakrabarty, D., Goel, G.: On the approximability of budgeted allocations and
improved lower bounds for submodular welfare maximization and GAP. In: Proc.
49th FOCS, pp. 687–696 (2008)

25. Khot, S., Ponnuswami, A.K.: Better inapproximability results for maxClique, chro-
matic number and min-3Lin-deletion. In: Bugliesi, M., Preneel, B., Sassone, V.,
Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 226–237. Springer, Heidel-
berg (2006)

26. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Heidelberg
(2004)

27. Magazine, M.J., Chern, M.S.: A note on approximation schemes for multidimen-
sional knapsack problems. Math. of Oper. Research 9(2), 244–247 (1984)

28. Wolsey, L.: An analysis of the greedy algorithm for the submodular set covering
problem. Combinatorica 2(4), 385–393 (1982)

29. Kolliopoulos, S.G., Stein, C.: Improved approximation algorithms for unsplittable
flow problems. In: Proc. 38th FOCS, pp. 426–436 (1997)

30. Könemann, J., Parekh, O., Pritchard, D.: Max-weight integral multicommodity
flow in spiders and high-capacity trees. In: Bampis, E., Skutella, M. (eds.) WAOA
2008. LNCS, vol. 5426, pp. 1–14. Springer, Heidelberg (2009)

Iterative Rounding for Multi-Objective
Optimization Problems

Fabrizio Grandoni1, R. Ravi2, and Mohit Singh3

1 Department of Computer Science, Systems and Production,
University of Rome Tor Vergata
grandoni@disp.uniroma2.it

2 Tepper School of Business, Carnegie Mellon University, Pittsburgh, USA
Supported in part by NSF grant CCF-0728841

ravi@cmu.edu
3 Microsoft Research, New England, Cambridge, USA

mohsingh@microsoft.com

Abstract. In this paper we show that iterative rounding is a powerful
and flexible tool in the design of approximation algorithms for multi-
objective optimization problems. We illustrate that by considering the
multi-objective versions of three basic optimization problems: spanning
tree, matroid basis and matching in bipartite graphs. Here, besides the
standard weight function, we are given k length functions with corre-
sponding budgets. The goal is finding a feasible solution of maximum
weight and such that, for all i, the ith length of the solution does not
exceed the ith budget. For these problems we present polynomial-time
approximation schemes that, for any constant ε > 0 and k ≥ 1, compute
a solution violating each budget constraint at most by a factor (1 + ε).
The weight of the solution is optimal for the first two problems, and
(1 − ε)-approximate for the last one.

1 Introduction

Most real-life optimization problems involve finding a feasible solution trading
off many mutually conflicting goals. This is a rich area of study in Operations
Research, Economics and Computer Science in the broad area of Multi-objective
Optimization [10,14,26]. A variety of approaches have been employed to formu-
late such problems including Goal Programming [4], Pareto-Optimality [9], and
Multi-objective Approximation Algorithms [26]. We adopt the latter approach
and cast one of the goals as the objective function, and the others as budget con-
straints. More precisely, we are given a (finite) set F of feasible solutions for the
problem; we are also given a weight function w : F → R+ and a set of k length
functions �i : F → R+, 1 ≤ i ≤ k, that assign a weight w(S) and k lengths �i(S),
1 ≤ i ≤ k, to every feasible solution S ∈ F . For each length function �i, we
are also given a non-negative budget Li ∈ R+. The multi-objective optimization
problem can then be formulated as follows1.
1 With a slight notation abuse, we will use OPT also to denote the actual optimal

solution (besides its weight).

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 95–106, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

96 F. Grandoni, R. Ravi, and M. Singh

OPT := maximize w(S) subject to S ∈ F , �i(S) ≤ Li, 1 ≤ i ≤ k. (1)

In this paper we study the multi-objective version of three fundamental max-
imization problems, namely spanning tree, matroid basis, and matching in bi-
partite graphs.
1. In the multi-objective spanning tree problem, we are given an n-node
undirected graph G = (V,E) with edge weights w : E → R+, k edge lengths
�i : E → R+, 1 ≤ i ≤ k, and positive budgets L1, . . . ,Lk. The set of all feasible
solutions F is given by the spanning trees of G. Define the weight of T ∈ F
as w(T) :=

∑
e∈T w(e), and its ith-length as �i(T) :=

∑
e∈T �

i(e). The goal is
finding T ∈ F of maximum weight w(T) such that �i(T) ≤ Li for each 1 ≤ i ≤ k.

2. The multi-objective bipartite matching problem is defined analogously.
Here the goal is finding a matching M in a bipartite graph of maximum-weight
w(M) such that �i(M) ≤ Li for all 1 ≤ i ≤ k.

3. In the multi-objective matroid basis problem, we are given a matroid
M = (E, E), E ⊆ 2E, on the ground set E, m = |E| (for basic definitions and
results on matroids, see e.g. [27]). Moreover, we are given element weights w :
E → R+, element lengths �i : E → R+ and budgets Li ∈ R+, 1 ≤ i ≤ k. The set
of all feasible solutions F is given by then bases of M. The weight of a basisB ∈ E
is defined as w(B) :=

∑
e∈B w(e), while its ith-length is �i(B) :=

∑
e∈B �i(e).

The goal is computing a basis X ∈ F of maximum weight satisfying all the
budget constraints. This naturally generalizes the multi-objective spanning tree
problem which results when we consider a graphic matroid.
All three problems are polynomial-time solvable in their unbudgeted version
(k = 0), but become NP-hard [1,6] even for a single budget constraint (k = 1).

Our Results. We give a PTAS for multi-objective spanning trees and generalize
it to multi-objective matroid basis and also give a PTAS for multi-objective
matchings in bipartite graphs. Our results however require that the number of
budget constraints k is fixed.

Theorem 1. For any ε > 0, there exists an algorithm for Multi-Objective

Spanning tree with k ≥ 1 budget constraints which returns a spanning tree T
of optimal weight and �i(M) ≤ (1 + ε)Li for each 1 ≤ i ≤ k. The running time
of the algorithm is O(nO(k2/ε)).

Theorem 1, proved in Section 2, generalizes the result of Ravi and Goemans [25]
who gave the same guarantees for the special case of a single budget constraint(k =
1), and improves on the (much more involved) algorithm of Papadimitriou and
Yannakakis [22] which returns a suboptimal ((1− ε)-approximate) solution with
a similar (i.e., 1 + ε) violation of the budget constraints. The latter result of [22]
also holds for our case of many different but fixed number of objectives, and
even in this case, we improve on the approximation factor in the main objective
(with the same violation in the budgets).

Iterative Rounding for Multi-Objective Optimization Problems 97

Theorem 2. For any ε > 0, there exists an algorithm for Multi-Objective

matroid basis with k ≥ 1 budget constraints which returns a basis B of optimal
weight and �i(B) ≤ (1 + ε)Li for each 1 ≤ i ≤ k. The running time of the
algorithm is O(mO(k2/ε)).

Theorem 2 is discussed in Section 2.1, and generalizes a similar result for the
k = 1 case as above in [25].

Theorem 3. . For any ε > 0, there exists a deterministic algorithm for Multi-

Objective Bipartite Matching with k ≥ 1 budget constraints which returns
a matching M of weight w(M) ≥ (1 − ε)OPT and length �i(M) ≤ (1 + ε)Li for
each 1 ≤ i ≤ k. The running time of the algorithm is O(nO(k2√k log k/ε2)).

Theorem 3 is proved in Section 3. A similar approximation guarantee was known
earlier via the work of [22]. However, their result implies a fully polynomial RNC
scheme rather than a PTAS, and thus Theorem 3 provides the first deterministic
approximation scheme for multi-objective bipartite matching. A PTAS,
based on a completely different approach, was known earlier only for the case of
one budget constraint, i.e. k = 1 [6].

Our Techniques. Perhaps even more importantly than our specific results,
our main contribution is to demonstrate that the general framework of iterative
techniques can be used to obtain approximation algorithms for various multi-
objective optimization problems. This technique was introduced by Jain [15] for
approximating survivable network design problems. The basic idea in iterative
rounding for covering problems is as follows: Consider the optimal (fractional)
vertex (or extreme point or basic feasible) solution to a linear programming re-
laxation to the problem, and show that there is a variable with high fractional
value (e.g. at least 0.5) which can be rounded up to an integer without losing too
much (e.g. 2) in the approximation. The method includes this rounded variable
in the integral solution and iterates. Since the basis iterative rounding loses a
constant factor in approximation, we refine the method by replacing the round-
ing step by the following: relax (remove) a constraint that can be ignored without
losing too much in the feasibility and iterate on the residual problem. The re-
sulting iterative relaxation method has been very successful for approximating
degree-constrained network design problems [16,17,29].

We now outline how the iterative technique is applied to our problems. The
algorithm for multi-objective spanning tree is rather simple; a vertex solu-
tion for the natural LP relaxation of the problem is already sparse: it has about
k edges more than a spanning tree in its support due to the well-known lami-
narity of an independent set of tight spanning tree constraints [27]. We remove
all edges corresponding to variables of value zero, relax (remove) all the bud-
get constraints, and solve optimally the residual problem (which is a standard
spanning tree problem). A preliminary guessing phase ensures that the k edges
not used in the tree do not add much to the approximation bound for any of
the budgets. This approach also gives a very simple proof of the earlier result

98 F. Grandoni, R. Ravi, and M. Singh

for the case k = 1 [25]. An identical approach works also for the more general
multi-objective matroid basis problem.

Our algorithm for multi-objective bipartite matching is more involved:
after an initial preprocessing phase, where the algorithm removes all edges with
large weight and large length, there is a decomposition phase. In that phase,
we run an iterative relaxation algorithm which uses the optimal solution of the
natural LP formulation to obtain a modified LP solution. The iterative algorithm
ensures that the support of the modified solution is a collection of h ≤ k vertex
disjoint paths. Moreover, each of these paths has small weight and length. In
the final combination phase, we combine the solutions on these paths to return
one feasible matching. Each path can be decomposed in two matchings. The
algorithm picks one matching from each of the paths. While the algorithm is
a brute force enumeration over all choices (which are 2h ≤ 2k in number), a
probabilistic argument is used to show that there exists a choice of a matching
from each path which provides a solution with the desired guarantee.

Related Work. Multi-objective optimization has been studied extensively in
Operations Research, Microeconomics and Computer Science. We refer the reader
to more general sources [4,9,10,14], and restrict our attention to work which
closely relates to our problems. There are many examples of single-budget
versions of polynomial-time solvable optimization problems addressed in the lit-
erature. In the constrained shortest path problem the goal is finding a minimum-
weight path in a directed graph between two nodes s and t such that the length
of the path does not exceed a budget L [5]. In the constrained minimum arbores-
cence problem we are given a directed graphs with edge weights and lengths. The
aim is computing an arborescence of minimum weight whose length is below the
input budget [13]. Previous work on budgeted optimization problems also in-
cludes results on budgeted scheduling [18,28] and bicriteria results for several
budgeted network design problems [19].

Jain [15] introduced the iterative rounding framework and applied it to ap-
proximating general network design problems. Subsequently, it was applied to
various other network design problems [8,12,20]. The iterative relaxation tech-
nique has recently been successfully applied to degree constrained network design
problems [2,16,17,29].

There are few general tools for designing approximation algorithms for bud-
geted problems. One is the Lagrangian relaxation method. The basic idea is
relaxing the budget constraint, and lifting it into the objective function weight-
ing it by a Lagrangian multiplier. Solving the relaxed problem, one obtains two
or more optimal solutions, which are then patched together to get a good solution
for the original problem. Demonstrating this method, Goemans and Ravi [25]
gave the first PTAS for multi-objective spanning tree with a single budget
constraint. Using the same approach, but a more involving patching step, Berger,
Bonifaci, Grandoni, and Schäfer [6] obtained a PTAS for the single-budget ver-
sion of the matching problem. This approach does not seem to generalize to the
case of multiple budget constraints.

Iterative Rounding for Multi-Objective Optimization Problems 99

A second general tool, due to Papadimitrou and Yannakakis [22], is based
on the construction of succinct approximation of Pareto curves. In order to ef-
ficiently construct such ε-approximate Pareto curves, a sufficient condition is
the existence of a pseudo-polynomial-time algorithm for the exact version of
the problem considered. The task in the exact version of the problem is to re-
turn a feasible solution of exactly some pre-specified value. The existence of
such pseudo-polynomial-time algorithm for the spanning tree problem [3] im-
plies a polynomial-time algorithm which returns a (1 − ε)-approximate solution
violating all the budget constraints by a factor of (1 + ε) for the correspond-
ing multi-objective version. Unfortunately, it is not known whether such an
algorithm exists for matchings in bipartite graphs, while the famous random-
ized algorithm of Mulmuley, Vazirani and Vazirani [21] can be used to obtain
a polynomial-time randomized approximation scheme for multi-objective bi-

partite matching
2. Their method, however, only approximates the objective

while our algorithm matches the value of the objective function with the optimal
for two out of the three problems addressed here, while for the third we obtain
a deterministic rather than an RNC algorithm.

A third approach is based on parametric search and is advocated in [19]; their
results imply that a ρ-approximation algorithm for the single objective problem
gives a (k · ρ)-approximation for each of the budget violations as well as for
the objective in the corresponding k-objective problem. This only gives a much
weaker k-approximation for each objective for the problems considered here.

Other general tools for multi-objective problems such as Matching-Based
Augmentation [24] advocates building the solution iteratively using one (path)
matching at a time controlling the various objectives, and Randomized Round-
ing of fraction LP solutions while bounding all objectives simultaneously [7,23].
While these techniques are useful in handling more than one type of objective,
their performance ratios tend to be in the higher logarithmic range.

In the context of these methods, our paper shows that iterative rounding
is a powerful and flexible tool for approximating multi-objective optimization
problems giving even better results than all of the above methods. This was
already the case for degree-constrained spanning trees and survivable network
design problems [16,29] and directed network design problems [2], and our results
extend these to some more multi-objective problems.

2 Multi-Objective Spanning Tree and Matroid Basis

We formulate the following linear programming relaxation for multi-objective

spanning tree which is a standard extension of the linear program for the
maximum spanning tree problem. There is a variable xe for each edge e ∈ E.
For a subset F ⊆ E of edges, we denote x(F) =

∑
e∈F xe and for a subset S ⊆ V ,

we denote E(S) = {e : |e ∩ S| = 2} to be the set of edges with both endpoints
in S.

2 The same algorithm works for general graphs also.

100 F. Grandoni, R. Ravi, and M. Singh

(LP-ST) maximize
∑
e∈E

w(e) xe

subject to x(E(V)) = |V | − 1,

x(E(S)) ≤ |S| − 1, ∀S ⊂ V∑
e∈E

�i(e)xe ≤ Li, ∀ 1 ≤ i ≤ k

xe ≥ 0, ∀ e ∈ E.

The following characterization of any vertex solution of (LP-ST) follows directly
from the uncrossing technique (see [27]).

Lemma 1. Let x be a vertex solution of the linear program (LP-ST) such that
xe > 0 for each edge e and let T = {S ⊆ V : x(E(S)) = |S| − 1} be the set of all
tight subset constraints. Then there exists a laminar family L ⊆ T and a subset
J ⊆ {1 ≤ i ≤ k :

∑
e∈E �i(e)xe = Li} of tight length constraints such that

1. The vectors {χ(E(S)) : S ∈ L} are linearly independent.
2. span(L)=span(T)
3. |L| + |J | = |E|

Algorithm for Multi-Objective Spanning Tree
1. Guess all edges in the optimal solution such that �i(e) ≥ ε

k
Li. Include these edges

in the solution and contract them. Delete all other edges with �i(e) ≥ ε
k
Li from G.

Update Li.
2. Find a vertex solution x of (LP-ST) for the residual problem and remove every
edge e with xe = 0.
3. Pick any maximum-weight spanning tree in the support.

The algorithm for multi-objective spanning tree above proceeds in two
phases. The first phase is the pruning step which we describe below. Observe
that no feasible solution can include an edge whose ith-length is more than Li.
We extend this step further and guess all edges in the solution whose ith-length is
at most ε

kLi. For any i there can be at most k
ε such edges in the optimal solution.

Hence, trying all such possibilities for inclusion in a partial initial solution takes
time O(mk/ε) where m is the number of edges in G. There are k length function
to try which amounts to the total number of choices being at most O(mk2/ε).
After guessing these edges correctly, we throw away all other edges which have
�i length more than εLi and contract the guessed edges in the optimal solution.
Clearly, the rest of the edges in the optimal solution form a spanning tree in the
contracted graph. Also, now we have an instance where �i(e) ≤ ε

k Li for each e
and i. We also update the bound Li by subtracting the lengths of the selected
edges. Let L′

i denote the residual bounds. We solve the linear program (LP-
ST) with updated bounds L′

i. Step (3) can be interpreted as removing all the k
constraints bounding the length under the length functions l1 . . . , lk. Removing
these constraints gives us the linear program for the spanning tree problem which
is integral and its optimal solution is a maximum weight spanning tree.

Iterative Rounding for Multi-Objective Optimization Problems 101

Proof. (Theorem 1) First observe that the support of (LP-ST) on a graph with n
vertices has at most n+k−1 edges. In fact, from Lemma 1, we have |E| = |L|+|J |.
But |L| ≤ n−1 since L is a laminar family without singletons and |J | ≤ k proving
the claim.

Observe that the weight of the tree returned by the algorithm is at most the
weight of the LP-solution and hence is optimal for the correct guess of heavy
edges. Now, we show that the ith-length is at most L′

i + εLi. Observe that any
tree must contain n− 1 edges out of the n+ k − 1 edges in the support. Hence,
the maximum ith-length tree has length no more than k · ε

k Li = εLi more than
the minimum ith-length tree. In turn, the tree of minimum ith-length has ith-
length no larger than the ith-length of the optimal fractional solution, which is
at most L′

i by feasibility. Altogether, the maximum ith-length of the solution
returned is no more than L′

i + εLi. Adding the length of edges guessed in the
first step we obtain that the tree returned by the algorithm has ith-length at
most L′

i + εLi + Li − L′
i = (1 + ε)Li.

2.1 Multi-Objective Matroid Basis

The results on Multi-objective spanning tree can be naturally generalized
to the case of Multi-objective matroid basis. Consider the following linear
programming relaxation (LP-MB) for the problem. There is a variable xe for
each element e ∈ E. For any subset S ⊆ E, we denote x(S) =

∑
e∈S xe. Here r

denotes the rank function of the matroid M.

(LP-MB) maximize
∑
e∈E

w(e)xe

subject to x(E) = r(E),

x(S) ≤ r(S), ∀S ⊆ E∑
e∈E

�i(e)xe ≤ Li, ∀ 1 ≤ i ≤ k

xe ≥ 0, ∀ e ∈ E.

The polynomial time solvability of the linear program (LP-MB) follows from
the polynomial time separation of the rank constraints [11]. Our algorithm for
Multi-objective matroid basis is described below. Its analysis follows along
the same line as in the case of Multi-objective spanning tree and is omitted
due to space restrictions.

Algorithm for Multi-Objective Matroid Basis
1. Guess all elements in the optimal solution such that �i(e) ≥ ε

k
Li. Include all such

elements in the solution and update the matroid by contracting these elements in
the matroid. Delete all other heavy elements e with �i(e) ≥ ε

k
Li for any i from M.

Update Li.
2. Find a vertex solution x of (LP-MB) for the residual problem and remove every
element e with xe = 0.
3. Pick any maximum weight basis in the support.

102 F. Grandoni, R. Ravi, and M. Singh

3 Multi-Objective Bipartite Matching

In this section we present a polynomial-time approximation scheme for Multi-

Objective Bipartite Matching and prove Theorem 3.
We formulate the following linear programming relaxation (LP-BM) for the

problem. We use δ(v) to denote the set of edges incident to v ∈ V .

(LP-BM) maximize
∑
e∈E

w(e)xe

subject to
∑

e∈δ(v)

xe ≤ 1, ∀ v ∈ V

∑
e∈E

�i(e)xe ≤ Li, ∀ 1 ≤ i ≤ k

xe ≥ 0, ∀ e ∈ E.

Algorithm for Multi-Objective Bipartite Matching
Preprocessing
(a) Let δ = ε2 / 36k

√
2k ln(k + 2). Guess all the edges e in OPT such that w(e) ≥

δ OPT or �i(e) ≥ δ Li for some i, and add them to the solution. Reduce the problem
consequently.
Decomposition
(b) Compute the optimal fractional vertex solution xb to LP-BM for the reduced
problem. As long as there is an integral variable, reduce the problem appropriately
and iterate.
(c) Remove all the nodes of degree zero and of degree at least 3, and all the edges
incident to the removed nodes. Compute an optimal fractional vertex solution xc

to the problem LP-BM in the remaining graph. As long as there is an integral
variable, reduce the problem appropriately and iterate. Finally, remove one edge
from each remaining cycle.
(d) Compute an optimal fractional vertex solution xd to the problem LP-BM in
the remaining graph. As long as there is an integral variable, reduce the problem
appropriately and iterate.
(e) Let γ = ε / 2

√
2k ln(k + 2). As long as there is a path P = (e1, e2, . . . , et)

induced by xd such that w(P) > γ w(xd) or �i(P) > γ �i(xd) for some i, find
a minimal subpath P ′ = (e1, e2, . . . , et′) of P satisfying the condition above and
remove et′ from the graph.
(f) Compute an optimal fractional vertex solution xf to the problem LP-BM in
the remaining graph. As long as there is an integral variable, reduce the problem
appropriately and iterate.
(g) Let P1, P2, . . . , Pq be the set of paths induced by xf . Return the subpaths
S1, S2, . . . , Sh formed after deleting the internal nodes whose matching constraints
are not tight with respect to xf . Return the solution xg which is xf induced on the
edges in Si for each 1 ≤ i ≤ h.
Combination
(h) Let Mj and M̄j be the two matchings partitioning Sj . Return the matching
M ′ satisfying the following properties: (i) For each Sj , M ′ ∩ Sj ∈ {Mj , M̄j}; (ii)
w(M ′) ≥ (1 − ε/2)w(xg) and �i(M ′) ≤ (1 + ε/2)�i(xg) for all i.

The algorithm for Multi-Objective Bipartite Matching above works in
three phases.

Iterative Rounding for Multi-Objective Optimization Problems 103

In the Preprocessing Phase, the algorithm guesses all the edges in OPT of
weight at least δ OPT or ith-length at least δLi for some i. Here δ is a proper
function of ε and k. This guessing can be performed in time polynomial in n
(but exponential in δ). The algorithm then includes all the guessed edges in
the solution, and deletes the remaining heavy edges. It also reduces the Li’s
accordingly. After this phase w(e) ≤ δ OPT and �i(e) ≤ δLi for each edge e.

In the Decomposition Phase our algorithm computes over a series of pruning
and iterative steps, a solution to the multi-objective matching problem on a
reduced graph that is eventually a collection of paths. In Step (c), we discard
nodes of degree 0 or of degree 3 or higher so as to leave only paths and cycles;
Finally, one edge from each cycle is removed in this step. In Step (e), we further
break each path into subpaths of bounded total weight and length. This pruning
is useful in the later Combination Phase when we choose one of the two matchings
in each path: the bounded difference ensures that one such combination is near
optimal. The use of vertex solutions in all the residual problems ensures that the
total number of edges thrown away in all the above stages is roughly of the order
of the extra budget constraints in the problem which is O(k/γ) for a parameter
γ � O(ε/

√
k). Finally, we output a feasible fractional vertex solution xg to the

LP with the following properties.

(1) The support of xg is a collection of vertex disjoint paths S1, . . . , Sh where
h ≤ k.
(2) xg is a (1 + ε/4)-approximate solution.
(3) For each Si, the degree constraints of the vertices of Si are tight except for
its endpoints.
(4) For each Si, w ·xg(Si) ≤ γOPT and �i ·xg(Sj) ≤ γLi for each 1 ≤ i ≤ k and
1 ≤ j ≤ h where γ = ε/2

√
2k ln(k + 2).

In the final Combination Phase, the paths S1, . . . , Sh are used to compute an
approximate feasible (integral) solution. The algorithm enumerates over all the
2h matchings which are obtained by taking, for each Si, one of the two matchings
which partition Si. This enumeration takes polynomial time since h ≤ k = O(1).
A probabilistic argument is used to show that one of these matchings satisfies
the claimed approximation guarantee of the algorithm.

Analysis. We now analyze the three phases of the algorithm, bounding the
corresponding approximation guarantee and running time. Consider first the
Preprocessing Phase. In order to implement Step (a), we have to consider all the
possible choices, and run the algorithm for each choice. Observe that there are at
most (k+ 1)/δ such heavy edges in the optimal solution, and hence the number
of possibilities is O(m(k+1)/δ) = O(mO(k2√k log k/ε2)). The algorithm generates
a different subproblem for each possible guess of the edges. In the following we
will focus on the run of the algorithm where the guessed edges correspond to an
optimal solution to the multi-objective problem.

Consider now the Decomposition Phase. We prove that the output of this
phase satisfies the four properties stated above. Observe that by construction
the algorithm returns a collection of edge disjoint paths whose interior vertices

104 F. Grandoni, R. Ravi, and M. Singh

have tight degree constraints. Properties (3) and (4) follow by construction. We
now argue that the number of paths is bounded by k, proving Property (1).

Lemma 2. The number h of subpaths in Step (g) is upper bounded by k.

Proof. Consider the solution xf . The number of variables |E| =
∑q

i=1 |Pi| is up-
per bounded by the number of tight constraints. Let q′ be the number of internal
nodes whose matching constraint is not tight in xf . Note that the matching con-
straints at the endpoints of each path are not tight. Hence the number of tight
constraints is at most

∑q
i=1(|Pi|−1)−q′+k = |E|−q−q′+k ≥ |E|, from which

q + q′ ≤ k. Observe that, by definition, the number h of subpaths is exactly
q + q′ (we start with q subpaths, and create a new subpath for each internal
node whose matching constraint is not tight). The claim follows.

Clearly, solution xg satisfies all the constraints. We next argue that the weight
of xg is nearly optimal. In Steps (c), (e) and (g) we remove a subset of edges
whose optimal fractional value is larger than zero in the step considered. In the
following lemma, whose proof is omitted for lack of space, we bound the number
of edges removed. Due to the Preprocessing Phase, the weight of these edges
is negligible, which implies that the consequent worsening of the approximation
factor is sufficiently small. This proves Property (2).

Lemma 3. The algorithm removes at most 7k, (k+1)/γ, and 2k edges in Steps
(c), (e), and (g), respectively.

Each of the steps (b) to (g) is run polynomially many times and takes polynomial
time. Hence the overall running time of the Decomposition Phase is polynomial.

Consider eventually the Combination Phase. As described earlier, the running
time of this phase is bounded by O(2knO(1)). The following lemma, which is the
heart of our analysis, shows that a subset M ′ satisfying Properties (i) and (ii)
always exists. Henceforth the algorithm always returns a solution. Although we
use a randomized argument to prove the lemma, the algorithm is completely
deterministic and enumerates over all solutions. Recall that Mj and M̄j are the
two matchings which partition subpath Sj .

Lemma 4. In Step (h) there is always a set of edges M ′ satisfying Properties
(i) and (ii).

Proof. Consider the following packing problem

(PACK) maximize
h∑

j=1

(yj w(Mj) + (1 − yj) w(M̄j))

subject to
h∑

j=1

(yj �i(Mj) + (1 − yj) �i(M̄j)) ≤ Li, ∀ 1 ≤ i ≤ k

yj ∈ {0, 1}, ∀ 1 ≤ j ≤ h.

Iterative Rounding for Multi-Objective Optimization Problems 105

We can interpret the variables yj in the following way: M ′ ∩ Sj = Mj if yj =
1, and M ′ ∩ Sj = M̄j otherwise. Given a (possibly fractional and infeasible)
solution y to PACK, we use w(y) and �i(y) as shortcuts for

∑h
j=1(yj w(Mj) +

(1 − yj)w(M̄j)) and
∑h

j=1(yj �
i(Mj) + (1 − yj) �i(M̄j)), respectively.

Observe that xg induces a feasible fractional solution yg to the linear relax-
ation of PACK. In fact, consider each subpath Sj . By definition, each matching
constraint at an internal node of Sj is tight. This implies that all the edges e
of Mj (resp., M̄j) have the same value xg

e =: yg (resp., xg
e =: 1 − yg). Thus,

we have w(yg) = w(xg). Now, we construct a (near) feasible integral solution y′

to PACK which satisfies (i) and (ii). Independently, for each path Si, select Mi

with probability yg
i and M̄i with probability 1− yg

i . Note that E[w(y′)] = w(yg)
and E[�i(y′)] = �i(yg) ≤ Li for all i.

By Step (e), switching one variable of y′ from 1 to 0 or vice versa can change
the cost and ith-length of y′ at most by γ w(xg) and γ �i(xg), respectively. The
proof of the lemma now follows directly from the following proposition, which
derives from Chernoff’s bounds.

Proposition 1. With positive probability, w(y′) ≥ (1 − ε/2)w(xg) and li(y′) ≤
(1 + ε/2)li(xg) for all i.

Proof. (Theorem 3) It is easy to see that the solution returned is a matching.
Moreover a solution is always returned by Lemma 4. The approximation guar-
antee of the algorithm follow from the properties of the Decomposition step and
Lemma 4. The running time of each step is polynomial (for fixed k and ε) thus
proving Theorem 3.

Acknowledgement. We thank an anonymous referee for suggesting improvements
in Section 3 in an earlier draft of the paper.

References

1. Aggarwal, V., Aneja, Y.P., Nair, K.P.K.: Minimal spanning tree subject to a side
constraint. Computers & Operations Research 9, 287–296 (1982)

2. Bansal, N., Khandekar, R., Nagarajan, V.: Additive Guarantees for Degree
Bounded Directed Network Design. In: STOC, pp. 769–778 (2008)

3. Barahona, F., Pulleyblank, W.R.: Exact arborescences, matchings and cycles. Dis-
crete Applied Mathematics 16(2), 91–99 (1987)

4. Barichard, V., Ehrgott, M., Gandibleux, X., T’Kindt, V. (eds.): Multiobjective
Programming and Goal Programming: Theoretical Results and Practical Applica-
tions. Lecture Notes in Economics and Mathematical Systems, vol. 618. Springer,
Heidelberg (2009)

5. Beasley, J.E., Christofides, N.: An algorithm for the resource constrained shortest
path problem. Networks 19, 379–394 (1989)

6. Berger, A., Bonifaci, V., Grandoni, F., Schäfer, G.: Budgeted matching and budgeted
matroid intersection via the gasoline puzzle. In: Lodi, A., Panconesi, A., Rinaldi, G.
(eds.) IPCO 2008. LNCS, vol. 5035, pp. 273–287. Springer, Heidelberg (2008)

7. Bilò, V., Goyal, V., Ravi, R., Singh, M.: On the Crossing Spanning Tree Problem.
In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D. (eds.) RANDOM 2004 and
APPROX 2004. LNCS, vol. 3122, pp. 51–64. Springer, Heidelberg (2004)

106 F. Grandoni, R. Ravi, and M. Singh

8. Cheriyan, J., Vempala, S., Vetta, A.: Network design via iterative rounding of
setpair relaxations. Combinatorica 26(3), 255–275 (2006)

9. Chinchuluun, A., Pardalos, P.M., Migdalas, A., Pitsoulis, L. (eds.): Pareto Opti-
mality, Game Theory and Equilibria. Optimization and Its Applications, vol. 17
(2008)

10. Climacao, J.: Multicriteria Analysis. Springer, Heidelberg (1997)
11. Cunningham, W.H.: Testing Membership in Matroid Polyhedra. Journal of Com-

binatorial Theory B 36(2), 161–188 (1984)
12. Fleischer, L., Jain, K., Williamson, D.P.: Iterative rounding 2-approximation algo-

rithms for minimum-cost vertex connectivity problems. Journal of Computer and
System Sciences 72(5), 838–867 (2006)

13. Guignard, M., Rosenwein, M.B.: An application of Lagrangean decomposition to
the resource-constrained minimum weighted arborescence problem. Networks 20,
345–359 (1990)

14. Hartley, R.: Survey of Algorithms for Vector Optimization Problems. In: French,
S., Hartley, R., Thomas, L.C., White, D.J. (eds.) Multiobjective Decision Making,
pp. 1–34. Academic Press, London (1983)

15. Jain, K.: A factor 2 approximation algorithm for the generalized steiner network
problem. Combinatorica 21, 39–60 (2001)

16. Lau, L.C., Naor, S., Salavatipour, M., Singh, M.: Survivable network design with
degree or order constraints. In: STOC, pp. 651–660 (2007)

17. Lau, L.C., Singh, M.: Additive approximation for bounded degree survivable net-
work design. In: STOC, pp. 759–768 (2008)

18. Levin, A., Woeginger, G.J.: The constrained minimum weight sum of job comple-
tion times. Mathematical Programming 108, 115–126 (2006)

19. Marathe, M.V., Ravi, R., Sundaram, R., Ravi, S.S., Rosenkrantz, D.J., Hunt III,
H.B.: Bicriteria network design problems. In: Fülöp, Z., Gecseg, F. (eds.) ICALP
1995. LNCS, vol. 944, pp. 487–498. Springer, Heidelberg (1995)

20. Melkonian, V., Tardos, E.: Algorithms for a Network Design Problem with Crossing
Supermodular Demands. Networks 43, 4 (2004)

21. Mulmuley, K., Vazirani, U., Vazirani, V.: Matching is as Easy as Matrix Inversion.
Combinatorica 7(1), 101–104 (1987)

22. Papadimitriou, C.H., Yannakakis, M.: On the approximability of trade-offs and
optimal access of Web sources. In: FOCS, pp. 86–92 (2000)

23. Ravi, R.: Rapid rumor ramification: Approximating the minimum broadcast time.
In: FOCS, pp. 202–213 (1994)

24. Ravi, R.: Matching Based Augmentations for Approximating Connectivity Prob-
lems. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887,
pp. 13–24. Springer, Heidelberg (2006)

25. Ravi, R., Goemans, M.X.: The constrained minimum spanning tree problem (ex-
tended abstract). In: Karlsson, R., Lingas, A. (eds.) SWAT 1996. LNCS, vol. 1097,
pp. 66–75. Springer, Heidelberg (1996)

26. Ravi, R., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J., Hunt, H.B.: Many Birds
with One Stone: Multi-objective Approximation Algorithms. In: STOC, pp. 438–
447 (1993)

27. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Algorithms
and Combinatorics, vol. 24. Springer, Berlin (2003)

28. Shmoys, D.B., Tardos, É.: Scheduling unrelated machines with costs. In: SODA,
pp. 448–454 (1993)

29. Singh, M., Lau, L.C.: Approximating minimum bounded degree spanning trees to
within one of optimal. In: STOC, pp. 661–670 (2007)

A Global-Optimization Algorithm for
Mixed-Integer Nonlinear Programs Having

Separable Non-convexity

Claudia D’Ambrosio1, Jon Lee2, and Andreas Wächter2

1 Dept. of ECSS, University of Bologna, Italy
c.dambrosio@unibo.it

2 IBM T.J. Watson Research Center, NY, U.S.A.
{jonlee,andreasw}@us.ibm.com

Abstract. We present a global optimization algorithm for MINLPs (mix-
ed-integer nonlinear programs) where any non-convexity is manifested as
sums of non-convex univariate functions. The algorithm is implemented
at the level of a modeling language, and we have had substantial success
in our preliminary computational experiments.

1 Introduction

The global solution of practical instances of Mixed-Integer NonLinear Program-
ming (MINLP) problems has been considered for some decades. Over a consid-
erable period of time, technology for the global optimization of convex MINLP
(i.e., the continuous relaxation of the problem is a convex program) had matured
(see, for example, [7,13,8,3]), and recently there has been considerable success
in the realm of global optimization of non-convex MINLP (see, for example,
[14,12,11,2]).

Global optimization algorithms, e.g., spatial branch-and-bound approaches
like those implemented in codes like BARON [14] and COUENNE [2], have had sub-
stantial success in tackling complicated, but generally small scale, non-convex
MINLPs (i.e., mixed-integer nonlinear programs having non-convex continuous
relaxations). Because they are aimed at a rather general class of problems, the
possibility remains that larger instances from a simpler class may be amenable
to a simpler approach.

We focus on MINLPs for which the non-convexity in the objective and con-
straint functions is manifested as the sum of non-convex univariate functions.
There are many problems that are already in such a form, or can be brought into
such a form via some simple substitutions. In fact, the first step in spatial branch-
and-bound is to bring problems into nearly such a form. For our purposes, we
shift that burden back to the modeler. We have developed a simple algorithm,
implemented at the level of a modeling language (in our case AMPL, see [9]), to
attack such separable problems. First, we identify subintervals of convexity and
concavity for the univariate functions using external calls to MATLAB. With such
an identification at hand, we develop a convex MINLP relaxation of the problem.

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 107–118, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

108 C. D’Ambrosio, J. Lee, and A. Wächter

Our convex MINLP relaxation differs from those typically employed in spatial
branch-and-bound; rather than relaxing the graph of a univariate function on
an interval to an enclosing polygon, we work on each subinterval of convexity
and concavity separately, using linear relaxation on only the “concave side” of
each function on the subintervals. The subintervals are glued together using bi-
nary variables. Next, we employ ideas of spatial branch-and-bound, but rather
than branching, we repeatedly refine our convex MINLP relaxation by modify-
ing it at the modeling level. We attack our convex MINLP relaxation, to get
lower bounds on the global minimum, using the code BONMIN [3,4] as a black-
box convex MINLP solver. Next, by fixing the integer variables in the original
non-convex MINLP, and then locally solving the associated non-convex NLP re-
striction, we get an upper bound on the global minimum, using the code IPOPT
[15]. We use the solutions found by BONMIN and IPOPT to guide our choice of
further refinements.

We implemented our framework using the modeling language AMPL. In order to
obtain all of the information necessary for the execution of the algorithm, exter-
nal software, specifically the tool for high-level computational analysis MATLAB, the
convex MINLP solver BONMIN, and the NLP solver IPOPT, are called directly from
the AMPL environment. A detailed description of the entire algorithmic framework,
together with a statement of its convergence properties, is provided in §2.

We present computational results in §3. Some of the instances arise from spe-
cific applications; in particular, Uncapacitated Facility Location problems, Hydro
Unit Commitment and Scheduling problems, and Nonlinear Continuous Knapsack
problems.Wemade further computational tests on selected instances ofGLOBAL-
Lib and MINLPLib and those results can be found in an extended version of this
paper. We have had significant success in our preliminary computational experi-
ments. In particular, we see very few major iterations occurring, with most of the
time being spent in the solution of a small number of convex MINLPs. As we had
hoped, our method does particularly well on problems for which the non-convexity
is naturally separable. An advantage of our approach is that it can be implemented
easily using existing software components and that further advances in technology
for convex MINLP will immediately give us a proportional benefit.

2 Our Algorithmic Framework

We focus now on MINLPs, where the non-convexity in the objective and con-
straint functions is manifested as the sum of non-convex univariate functions.
Without loss of generality, we take them to be of the form

min
∑

j∈N Cjxj

subject to
f(x) ≤ 0 ;
ri(x) +

∑
k∈H(i) gik(xk) ≤ 0 , ∀i ∈ M ;

Lj ≤ xj ≤ Uj , ∀j ∈ N ;
xj integer, ∀j ∈ I ,

(P)

A Global-Optimization Algorithm for MINLPs 109

where N := {1, 2, . . . , n} , f : Rn → Rp and ri : Rn → R ∀i ∈ M , are convex
functions, H(i) ⊆ N ∀i ∈ M , the gik : R → R are non-convex univariate function
∀i ∈ M , and I ⊆ N . Letting H := ∪i∈MH(i), we can take each Lj and Uj to be
finite or infinite for j ∈ N \ H , but for j ∈ H we assume that these are finite
bounds.

We assume that the problem functions are sufficiently smooth (e.g., twice
continuously differentiable) with the exception that we allow the univariate gik

to be continuous functions defined piecewise by sufficiently smooth functions
over a finite set of subintervals of [Lk, Uk]. Without loss of generality, we have
taken the objective function as linear and all of the constraints to be inequalities,
and further of the less-then-or-equal variety. Linear equality constraints could be
included directly in this formulation, while we assume that nonlinear equalities
have been split into two inequality constraints.

Our approach is an iterative technique based on three fundamental ingredi-
ents:

– A reformulation method with which we obtain a convex MINLP relaxation
Q of the original problem P . Solving the convex MINLP relaxation Q, we
obtain a lower bound of our original problem P ;

– A non-convex NLP restriction R of the original MINLP problem P obtained
by fixing the variables within the set {xj : j ∈ I}. Locally solving the non-
convex NLP restriction R, we obtain an upper bound of our original problem
P ;

– A refinement technique aimed at improving, at each iteration, the quality of
the lower bound obtained by solving the convex MINLP relaxation Q.

The main idea of our algorithmic framework is to iteratively solve a lower-
bounding relaxation Q and an upper-bounding restriction R so that, in case the
value of the upper and the lower bound are the same, the global optimality of the
solution found is proven; otherwise we make a refinement to the lower-bounding
relaxation Q. At each iteration, we seek to decrease the gap between the lower
and the upper bound, and hopefully, before too long, the gap will be within
a tolerance value, or the lower bounding solution is deemed to be sufficiently
feasible for the original problem. In this case, or in the case a time/iteration
limit is reached, the algorithm stops. If the gap is closed, we have found a global
optimum, otherwise we have a heuristic solution (provided that the upper bound
is not +∞). The lower-bounding relaxation Q is a convex relaxation of the orig-
inal non-convex MINLP problem, obtained by approximating the concave part
of the non-convex univariate functions using piecewise linear approximation.
The novelty in this part of the algorithmic framework is the new formulation
of the convex relaxation: The function is approximated only where it is con-
cave, while the convex parts of the functions are not approximated, but taken
as they are. The convex relaxation proposed is described in details in §2.1. The
upper-bounding restriction R, described in §2.2, is obtained simply by fixing
the variables with integrality constraints. The refinement technique consists of
adding one or more breakpoints where needed, i.e., where the approximation

110 C. D’Ambrosio, J. Lee, and A. Wächter

of the non-convex function is bad and the solution of the lower-bounding prob-
lem lies. Refinement strategies are described in §2.3, and once the ingredients
of the algorithmic framework are described in detail, we give a pseudo-code de-
scription of our algorithmic framework (see §2.4). Here, we also discuss some
considerations about the general framework and the similarities and differences
with popular global optimization methods. Theoretical convergence guarantees
are discussed in §2.5. In §3, computational experiments are presented, detailing
the performance of the algorithm and comparing the approach to other methods.

2.1 The Lower-Bounding Convex MINLP Relaxation Q
To obtain our convex MINLP relaxation Q of the MINLP problem P , we need
to locate the subintervals of the domain of each univariate function gi for which
the function is uniformly convex or concave. For simplicity of notation, rather
than refer to the constraint ri(x) +

∑
k∈H(i) gik(xk) ≤ 0, we consider a term of

the form g(xk) := gik(xk), where g : R → R is a univariate non-convex function
of xk , for some k (1 ≤ k ≤ n).

We want to explicitly view each such g as a piecewise-defined function, where
on each piece the function is either convex or concave. This feature also allows
us to handle functions that are already piecewise defined by the modeler. In
practice, for each non-convex function g , we compute the points at which the
convexity/concavity may change, i.e., the zeros of the second derivative of g , us-
ing MATLAB. In case a function g is naturally piecewise defined, we are essentially
refining the piecewise definition of it in such a way that the convexity/concavity
is uniform on each piece.

Now, on each concave piece we can use a secant approximation to give a
piecewise-convex lower approximation of g . We can obtain a better lower bound
by refining the piecewise-linear lower approximation on the concave pieces. We
let

Lk =: P0 < P1 < · · · < Pp := Uk

be the ordered breakpoints at which the convexity/concavity of g changes, in-
cluding, in the case of piecewise definition of g, the points at which the definition
g changes. We define:

[Pp−1, Pp] := the p-th subinterval of the domain of g (p ∈ {1 . . . p});
Ȟ := the set of indices of subintervals on which g is convex;
Ĥ := the set of indices of subintervals on which g is concave.

On the concave intervals, we will allow further breakpoints. We let Bp be the
ordered set of breakpoints for the concave interval indexed by p ∈ Ĥ . We denote
these breakpoints as

Pp−1 =: Xp,1 < Xp,2 < · · · < Xp,|Bp| := Pp ,

A Global-Optimization Algorithm for MINLPs 111

and in our relaxation we will view g as lower bounded by the piecewise-linear
function that has value g(Xp,j) at the breakpoints Xp,j , and is otherwise linear
between these breakpoints.

Next, we define further variables to manage our convexification of g on its
domain:

zp := a binary variable indicating if xk ≥ Pp (p = 1, . . . , p− 1);
δp := a continuous variable assuming a positive value iff xk ≥ Pp−1 (p = 1, . . . , p);
αp,b := weight of breakpoint b in the piecewise-linear approximation of the in-
terval indexed by p (p ∈ Ĥ , b ∈ Bp).
In the convex relaxation of the original MINLP P , we substitute each univariate
non-convex term g(xk) with∑

p∈Ȟ g(Pp−1 + δp) +
∑

p∈Ĥ

∑
b∈Bp

g(Xp,b) αp,b −
∑p−1

p=1 g(Pp) , (1)

and we include the following set of new constraints:

P0 +
∑p

p=1 δp − xk = 0 ; (2)

δp − (Pp − Pp−1)zp ≥ 0 , ∀p ∈ Ȟ ∪ Ĥ ; (3)

δp − (Pp − Pp−1)zp−1 ≤ 0 , ∀p ∈ Ȟ ∪ Ĥ ; (4)

Pp−1 + δp −
∑

b∈Bp
Xp,b αp,b = 0 , ∀p ∈ Ĥ ; (5)∑

b∈Bp
αp,b = 1 , ∀p ∈ Ĥ ; (6)

{αp,b : b ∈ Bp} := SOS2 , ∀p ∈ Ĥ ; (7)

with two dummy variables z0 := 1 and zp := 0.
Constraints (2–4) together with the integrality of the z variables ensure that,

given an xk value, say x∗k ∈ [Pp∗−1, Pp∗]:

δp =

⎧⎪⎨⎪⎩
Pp − Pp−1 , if 1 ≤ p ≤ p∗ − 1 ;
x∗k − Pp−1 , if p = p∗ ;
0 , otherwise.

Constraints (5–7) ensure that, for each concave interval, the convex combination
of the breakpoints is correctly computed. Finally, (1) approximates the original
non-convex univariate function g(xk) .

Constraints (7) define |Ĥ | Special Ordered Sets of Type 2 (SOS2), i.e., ordered
sets of positive variables among which at most 2 can assume a non-zero value,
and, in this case, they must be consecutive (Beale and Tomlin [1]). Unfortunately,
at the moment, convex MINLP solvers do not typically handle SOS2 like most
MILP solvers do (also defining special-purpose branching strategies). For this
reason, we substitute constraints (7), ∀p ∈ Ĥ, with new binary variables yp,b ,
with b ∈ {1, . . . , |Bp| − 1}, and constraints:

αp,b ≤ yp,b−1 + yp,b ∀b ∈ Bp ; (7.a)

112 C. D’Ambrosio, J. Lee, and A. Wächter

∑|Bp|−1
b=1 yp,b = 1 , (7.b)

with dummy values yp,0 = yp,|Bp| = 0. In the future, when convex MINLP solvers
will handle the definition of SOS2, variables y and constraints (7.a–b) would be
not necessary.

It is important to note that if we utilized a very large number of breakpoints
at the start, solving the resulting convex MINLP Q would mean essentially
solving globally the original MINLP P up to some pre-determined tolerance
related to the density of the breakpoints. But of course such a convex MINLP
Q would be too hard to be solved in practice. With our algorithmic framework,
we dynamically seek a significantly smaller convex MINLP Q , thus generally
more easily solvable, which we can use to guide the non-convex NLP restriction
R to a good local solution, eventually settling on and proving global optimality
of such a solution to the original MINLP P .

2.2 The Upper-Bounding Non-convex NLP Restriction R
Given a solution x of the convex MINLP relaxation Q , the upper-bounding
restriction R is defined as the non-convex NLP:

min
∑

j∈N Cjxj

subject to
f(x) ≤ 0 ;
ri(x) +

∑
k∈H(i) gik(xk) ≤ 0 , ∀i ∈ M ;

Lj ≤ xj ≤ Uj , ∀j ∈ N ;
xj = xj , ∀j ∈ I .

(R)

A solution of this non-convex NLP R is a heuristic solution of the non-convex
MINLP problem P for two reasons: (i) the integer variables xj , j ∈ I , might
not be fixed to globally optimal values; (ii) the NLP R is non-convex, and so
even if the integer variables xj , j ∈ I , are fixed to globally optimal values, the
NLP solver may only find a local optimum of the non-convex NLP R or even
fail to find a feasible point. This consideration emphasizes the importance of the
lower-bounding relaxation Q for the guarantee of global optimality. The upper-
bounding problem resolution could be seen as a “verification phase” in which
a solution of the convex MINLP relaxation Q is tested to be really feasible for
the non-convex MINLP P . To emphasis this, the NLP solver for R is given the
solution of the convex MINLP relaxation as starting point.

2.3 The Refinement Technique

At the end of each iteration, we have two solutions: x , the solution of the
lower-bounding convex MINLP relaxation Q , and x , the solution of the upper-
bounding non-convex NLP restriction R ; in case we cannot find a solution of R ,
e.g., if R is infeasible, then no x is available. If

∑
j∈N Cjxj =

∑
j∈N Cjxj within

a certain tolerance, or if x is sufficiently feasible for the original constraints,

A Global-Optimization Algorithm for MINLPs 113

we return to the user as solution the point x or x, respectively. Otherwise, in
order to continue, we want to refine the approximation of the lower-bounding
convex MINLP relaxation Q by adding further breakpoints. We employed two
strategies:

– Based on the lower-bounding problem solution x: For each i ∈ M and k ∈
H(i), if xk lies in a concave interval of gik , add xk as a breakpoint for the
relaxation of gik .
This procedure drives the convergence of the overall method since it makes
sure that the lower bounding problem becomes eventually a sufficiently ac-
curate approximation of the original problem in the neighborhood of the
global solution. Since adding a breakpoint increases the size of the convex
MINLP relaxation, in practice we do not add such a new breakpoint if it
would be within some small tolerance of an existing breakpoint for gik .

– Based on the upper-bounding problem solution x: For each i ∈ M and k ∈
H(i), if xk lies in a concave interval of gik , add xk as a breakpoint for the
relaxation of gik .
The motivation behind this option is to accelerate the convergence of the
method. If the solution found by the upper-bounding problem is indeed
the global solution, the relaxation should eventually be exact at this point
to prove its optimality. Again, to keep the size of the relaxation MINLP
manageable, breakpoints are only added if they are not too close to existing
ones.

We found that these strategies work well together. Hence, at each major iter-
ation, we add a breakpoint in each concave interval where x lies in order to
converge and one where x lies to speed up the convergence.

2.4 The Algorithmic Framework

Algorithm 1 details our SC-MINLP (Sequential Convex MINLP) Algorithm.
At each iteration, the lower-bounding MINLP relaxation Q and the upper-

bounding NLP restriction R are redefined: What changes in Q are the sets of
breakpoints that refine the piecewise-linear approximation of concave parts of
the non-convex functions. At each iteration, the number of breakpoints used
increases, and so does the accuracy of the approximation. What may change in
R are the values of the fixed integer variables xj , j ∈ I . Moreover, what changes
is the starting point given to the NLP solver, derived from an optimal solution
of the lower-bounding MINLP relaxation Q.

Our algorithmic framework bears comparison with spatial branch-and-bound,
a successful technique in global optimization. In particular:

– during the refining phase, the parts in which the approximation is bad are
discovered and the approximation is improved there, but we do it by adding
one or more breakpoints instead of branching on a continuous variable as in
spatial branch-and-bound;

– like spatial branch-and-bound, our approach is a rigorous global-optimization
algorithm rather than a heuristic;

114 C. D’Ambrosio, J. Lee, and A. Wächter

Algorithm 1. SC-MINLP (Sequential Convex MINLP) Algorithm
Choose tolerances ε, εfeas > 0; initialize LB := −∞; UB := +∞;
Find P i

p , Ĥi, Ȟi, Xi
pb (∀i ∈ M, p ∈ {1 . . . pi}, b ∈ Bi

p).
repeat

Solve the convex MINLP relaxation Q of the original problem P to obtain x;
if (val(Q) > LB) then

LB := val(Q);
if (x is feasible for the original problem P (within tolerance εfeas)) then

return x
end if

end if
Solve the non-convex NLP restriction R of the original problem P to obtain x;
if (solution x could be computed and val(R) < UB) then

UB := val(R); xUB := x
end if
if (UB − LB > ε) then

Update Bi
p , Xi

pb ;
end if

until ((UB − LB ≤ ε) or (time or iteration limited exceeded))
return the current best solution xUB

– unlike spatial branch-and-bound, our approach does not utilize an expression
tree; it works directly on the broad class of separable non-convex MINLPs
of the form P , and of course problems that can be put in such a form;

– unlike standard implementations of spatial branch-and-bound methods, we
can directly keep multivariate convex functions in our relaxation instead of
using linear approximations;

– unlike spatial branch-and-bound, our method can be effectively implemented
at the modeling-language level.

2.5 Convergence Analysis

For the theoretical convergence analysis of Algorithm 1, we make the following
assumptions, denoting by l the iteration counter for the repeat loop.

A1. The functions f(x) and ri(x) are continuous, and the univariate functions
gik in (P) are uniformly Lipschitz-continuous with a bounded Lipschitz
constant Lg.

A2. The problem P has a feasible point. Hence, for each l, the relaxation Ql is
feasible, and we assume its (globally) optimal solution xl is computed.

A3. The refinement technique described in Section 2.3 adds a breakpoint for
every lower-bounding problem solution xl, even if it is very close to an
existing breakpoint.

A4. The feasibility tolerance εfeas and the optimality gap tolerance ε are both
chosen to be zero, and no iteration limit is set.

We have the following result (the proof will appear in an extended version of
this paper).

A Global-Optimization Algorithm for MINLPs 115

Theorem 1. Under assumptions A1-A4, Algorithm 1 either terminates at a
global solution of the original problem P, or each limit point of the sequence
{xl}∞

l=1 is a global solution of P.

3 Computational Results

We implemented our algorithmic framework as an AMPL script, and we used
MATLAB as a tool for numerical convexity analysis, BONMIN as our convex MINLP
solver, and IPOPT as our NLP solver.

We used MATLAB to detect the subintervals of convexity and concavity for
the non-convex univariate functions in the model. In particular, MATLAB reads a
text file generated by the AMPL script, containing the constraints with univariate
non-convex functions, together with the names and bounds of the independent
variables. With this information, using the Symbolic Math Toolbox, MATLAB first
computes the formula for the second derivative of each univariate non-convex
function, and then computes its zeros to split the function into subintervals of
convexity and concavity. The zeros are computed in the following manner. On
points of a rather fine uniform discretization, we evaluate the second derivative.
Then, between pairs of adjacent points for which the second derivative changes
sign, we compute precisely the associated zero using the MATLAB function “fzero”.
For each univariate non-convex function, we use MATLAB to return the number of
subintervals, the breakpoints, and associated function values in a text file which
is read by the AMPL script.

In this section we present computational results for three problem categories.
Details of the problem categories and test instances are presented in the extended
version of this paper. The tests were executed on a single processor of an Intel
Core2 CPU 6600, 2.40 GHz with 1.94 GB of RAM, using a time limit of 2 hours
per instance. The relative optimality gap and feasibility tolerance used for all
the experiments is 10−4, and we do not add a breakpoint if it would be within
10−5 of an existing breakpoint.

Two tables with computational results exhibit the behavior of our algorithm
on some instances of each problem class. Table 1 presents the iterations of our
SC-MINLP Algorithm, with the columns labeled as follows:

– instance: the instance name;
– var/int/cons: the total number of variables, the number of integer variables,

and the number of constraints in the convex relaxation Q;
– iter #: the iteration count;
– LB: the value of the lower bound;
– UB: the value of the upper bound;
– int change: indicated whether the integer variables in the lower bounding

solution x are different compared to the previous iteration;
– time MINLP: the CPU time needed to solve the convex MINLP relaxation

Q to optimality (in seconds);
– # br added: the number of breakpoints added at the end of the previous

iteration.

116 C. D’Ambrosio, J. Lee, and A. Wächter

Table 2 presents comparisons of our SC-MINLP Algorithm with COUENNE and
BONMIN. COUENNE is an open-source Branch-and-Bound algorithm aimed at the
global solution of MINLP problems [2,6]. It is an exact method for the prob-
lems we address in this paper. BONMIN is an open-source code for solving general
MINLP problems [3,4], but it is an exact method only for convex MINLPs. Here,
BONMIN’s nonlinear branch-and-bound option was chosen. When used for solv-
ing non-convex MINLPs, the solution returned is not guaranteed to be a global
optimum. However, a few heuristic options are available in BONMIN, specifically
designed to treat non-convex MINLPs. Here, we use the option that allows solv-
ing the root node with a user-specified number of different randomly-chosen
starting points, continuing with the best solution found. This heuristic use of
BONMIN is in contrast to its use in SC-MINLP, where BONMIN is employed only for
the solution of the convex MINLP relaxation Q.

The columns in Table 2 have the following meaning:

– instance: the instance name;
– var/int/cons: the total number of variables, the number of integer variables,

and the number of constraints;
– for each approach, in particular SC-MINLP, COUENNE, BONMIN 1, BONMIN 50,

we report:
• time (LB): the CPU time (or the value of the lower bound (in parenthe-

ses) if the time limit is reached);
• UB: the value of the upper bound.

BONMIN 1 and BONMIN 50 both refer to the use of BONMIN, but they differ in the
number of multiple solutions of the root node; in the first case, the root node
is solved just once, while in the second case, 50 randomly-generated starting
points are given to the root-node NLP solver. If BONMIN reached the time limit,
we do not report the lower bound because BONMIN cannot determine a valid lower
bound for a non-convex problem.

The first category of problems are Uncapacitated Facility Location (UFL)
problems (see [10]). In the first section of Table 1 the performance of SC-MINLP
is shown. For the first instance, the global optimum is found at the first itera-
tion, but 4 more iteration are needed to prove global optimality. In the second
instance, only one iteration is needed. In the third instance, the first feasible solu-
tion found is not the global optimum which is found at the third (and last) itera-
tion. In the first section of Table 2 demonstrates good performance of SC-MINLP.
In particular, instance ufl 1 is solved in about 117 seconds compared to 530
seconds needed by COUENNE, instance ufl 2 in less than 18 seconds compared to
233 seconds. In instance ufl 3, COUENNE performs better than SC-MINLP, but this
instance is really quite easy for both algorithms. BONMIN 1 finds solutions to all
three instances very quickly, and these solutions turn out to be globally optimal
(but note that BONMIN 1 is a heuristic with no guarantee of global optimality).
BONMIN 50 also finds the global optima, but in non-negligible time.

The second set of test instances are Hydro Unit Commitment and Schedul-
ing problems (see [5]). Univariate non-convexity in the model arises due to the
dependence of the power produced by each turbine on the water flow passing

A Global-Optimization Algorithm for MINLPs 117

Table 1. Behavior of SC-MINLP

iter int time # br
instance var/int/cons # LB UB change MINLP added

ufl 1 153/39/228 1 4,122.000 4,330.400 - 1.35 -
. . . 2 4,324.780 4,330.400 no 11.84 11
. . . 3 4,327.724 4,330.400 no 19.17 5
. . . 4 4,328.993 4,330.400 no 30.75 5

205/65/254 5 4,330.070 4,330.400 no 45.42 5
ufl 2 189/57/264 1 27,516.600 27,516.569 - 4.47 -
ufl 3 79/21/101 1 1,947.883 2,756.890 - 2.25 -

. . . 2 2,064.267 2,756.890 no 2.75 2
87/25/105 3 2,292.743 2,292.777 no 3.06 2

hydro 1 324/142/445 1 -10,231.039 -10,140.763 - 18.02 -
332/146/449 2 -10,140.760 -10,140.763 no 23.62 4

hydro 2 324/142/445 1 -3,950.697 -3,891.224 - 21.73 -
. . . 2 -3,950.583 -3,891.224 no 21.34 2
. . . 3 -3,950.583 -3,891.224 no 27.86 2

336/148/451 4 -3,932.182 -3,932.182 no 38.20 2
hydro 3 324/142/445 1 -4,753.849 -4,634.409 - 59.33 -

. . . 2 -4,719.927 -4,660.189 no 96.93 4
336/148/451 3 -4,710.734 -4,710.734 yes 101.57 2

nck 20 100 144/32/205 1 -162.444 -159.444 - 0.49 -
146/33/206 2 -159.444 -159.444 - 0.94 1

nck 20 200 144/32/205 1 -244.015 -238.053 - 0.67 -
. . . 2 -241.805 -238.053 - 0.83 1
. . . 3 -241.348 -238.053 - 1.16 1
. . . 4 -240.518 -238.053 - 1.35 1
. . . 5 -239.865 -238.053 - 1.56 1
. . . 6 -239.744 -238.053 - 1.68 1

156/38/211 7 -239.125 -239.125 - 1.81 1
nck 20 450 144/32/205 1 -391.499 -391.337 - 0.79 -

146/32/206 2 -391.364 -391.337 - 0.87 1
nck 50 400 356/78/507 1 -518.121 -516.947 - 4.51 -

. . . 2 -518.057 -516.947 - 14.94 2

. . . 3 -517.837 -516.947 - 23.75 2

. . . 4 -517.054 -516.947 - 25.07 2
372/86/515 5 -516.947 -516.947 - 31.73 2

nck 100 35 734/167/1035 1 -83.580 -79.060 - 3.72 -
. . . 2 -82.126 -81.638 - 21.70 2
. . . 3 -82.077 -81.638 - 6.45 2

744/172/1040 4 -81.638 -81.638 - 11.19 1
nck 100 80 734/167/1035 1 -174.841 -171.024 - 6.25 -

. . . 2 -173.586 -172.631 - 24.71 2
742/171/1039 3 -172.632 -172.632 - 12.85 2

Table 2. Comparison of solvers

SC-MINLP COUENNE BONMIN 1 BONMIN 50
var/int/cons time time

instance original (LB) UB (LB) UB time UB time UB
ufl 1 45/3/48 116.47 4,330.400 529.49 4,330.400 0.32 4,330.400 369.85 4,330.39
ufl 2 45/3/48 17.83 27,516.569 232.85 27,516.569 0.97 27,516.569 144.06 27,516.569
ufl 3 32/2/36 8.44 2,292.777 0.73 2,292.775 3.08 2,292.777 3.13 2,292.775

hydro 1 124/62/165 107.77 -10,140.763 (-11,229.80) -10,140.763 5.03 -10,140.763 5.75 -7,620.435
hydro 2 124/62/165 211.79 -3,932.182 (-12,104.40) -2,910.910 4.63 -3,928.139 7.02 -3,201.780
hydro 3 124/62/165 337.77 -4,710.734 (-12,104.40) -3,703.070 5.12 -4,131.095 13.76 -3,951.199

nck 20 100 40/0/21 15.76 -159.444 3.29 -159.444 0.02 -159.444 1.10 -159.444
nck 20 200 40/0/21 23.76 -239.125 (-352.86) -238.053 0.03 -238.053 0.97 -239.125
nck 20 450 40/0/21 15.52 -391.337 (-474.606) -383.149 0.07 -348.460 0.84 -385.546
nck 50 400 100/0/51 134.25 -516.947 (-1020.73) -497.665 0.08 -438.664 2.49 -512.442
nck 100 35 200/0/101 110.25 -81.638 90.32 -81.638 0.04 -79.060 16.37 -79.060
nck 100 80 200/0/101 109.22 -172.632 (-450.779) -172.632 0.04 -159.462 15.97 -171.024

through the turbine. Our computational results are reported in the second sec-
tions of Tables 1 and 2 We observe good performance of SC-MINLP. It is able
to find the global optimum of the three instances within the time limit, but
COUENNE does not solve to global optimality any of the instances. Also, BONMIN
1 and BONMIN 50 show good performance. In particular, often a good solution
is found in few seconds, and BONMIN 1 finds the global optimum in one case.

Our third set of test instances are Nonlinear (purely) Continuous Knapsack
problems. Our computational results are reported in the third sections of Tables
1 and 2. SC-MINLP finds the global optimum for all the 6 instances in less than

118 C. D’Ambrosio, J. Lee, and A. Wächter

3 minutes. COUENNE is able to close the gap for only 2 instances within the time
limit. BONMIN 1 and BONMIN 50 terminate quickly, but the global optimum is
found only for 1 instance for BONMIN 1 and 2 instances for BONMIN 50.

Overall, we have had substantial success in our preliminary computational
experiments. In particular, we see very few major iterations occurring, so most
of the time is spent in the solution of a small number of convex MINLPs.

References

1. Beale, E., Tomlin, J.: Special facilities in a general mathematical programming
system for non-convex problems using ordered sets of variables. In: Lawrence, J.
(ed.) Proc. of the 5th Int. Conf. on Operations Research, pp. 447–454 (1970)

2. Belotti, P., Lee, J., Liberti, L., Margot, F., Wächter, A.: Branching and bounds
tightening techniques for non-convex MINLP, IBM Research Report RC24620
(2008); to appear in: Optimization Methods and Software

3. Bonami, P., Biegler, L., Conn, A., Cornuéjols, G., Grossmann, I., Laird, C., Lee,
J., Lodi, A., Margot, F., Sawaya, N., Wächter, A.: An algorithmic framework for
convex mixed integer nonlinear programs. Discrete Optimization 5, 186–204 (2008)

4. BONMIN. projects.coin-or.org/Bonmin (v. 1.0)
5. Borghetti, A., D’Ambrosio, C., Lodi, A., Martello, S.: An MILP approach for short-

term hydro scheduling and unit commitment with head-dependent reservoir. IEEE
Transactions on Power Systems 23(3), 1115–1124 (2008)

6. COUENNE. projects.coin-or.org/Couenne (v. 0.1)
7. Duran, M., Grossmann, I.: An outer-approximation algorithm for a class of mixed-

integer nonlinear programs. Mathematical Programming 36(3), 307–339 (1986)
8. Fletcher, R., Leyffer, S.: Solving mixed integer nonlinear programs by outer ap-

proximation. Mathematical Programming 66(1), 327–349 (1994)
9. Fourer, R., Gay, D., Kernighan, B.: AMPL: A Modeling Language for Mathematical

Programming. 2nd edn. Duxbury Press/Brooks/Cole Publishing Co. (2003)
10. Günlük, O., Lee, J., Weismantel, R.: MINLP strengthening for separable convex

quadratic transportation-cost UFL, IBM Research Report RC24213 (2007)
11. Liberti, L.: Writing global optimization software. In: Liberti, L., Maculan, N. (eds.)

Global Optimization: From Theory to Implementation, pp. 211–262. Springer, Hei-
delberg (2006)

12. Nowak, I., Alperin, H., Vigerske, S.: LaGO – an object oriented library for solving
MINLPs. In: Bliek, C., Jermann, C., Neumaier, A. (eds.) COCOS 2002. LNCS,
vol. 2861, pp. 32–42. Springer, Heidelberg (2003)

13. Quesada, I., Grossmann, I.: An LP/NLP based branch and bound algorithm for
convex MINLP optimization problems. Comp. & Chem. Eng. 16, 937–947 (1992)

14. Sahinidis, N.: BARON: A general purpose global optimization software package.
J. Global Opt. 8, 201–205 (1996)

15. Wächter, A., Biegler, L.T.: On the implementation of a primal-dual interior point
filter line search algorithm for large-scale nonlinear programming. Mathematical
Programming 106(1), 25–57 (2006)

Constructing Delaunay Triangulations along
Space-Filling Curves�

Kevin Buchin

Department of Mathematics and Computer Science, TU Eindhoven
k.a.buchin@tue.nl

Abstract. Incremental construction con BRIO using a space-filling curve
order for insertion is a popular algorithm for constructing Delaunay tri-
angulations. So far, it has only been analyzed for the case that a worst-
case optimal point location data structure is used which is often avoided
in implementations. In this paper, we analyze its running time for the
more typical case that points are located by walking. We show that in
the worst-case the algorithm needs quadratic time, but that this can
only happen in degenerate cases. We show that the algorithm runs in
O(n log n) time under realistic assumptions. Furthermore, we show that
it runs in expected linear time for many random point distributions.

1 Introduction

Delaunay triangulations (DTs) and their dual Voronoi diagrams are frequently
used in many application areas, such as surface reconstruction, molecular mod-
eling, and geographical information systems. They have been extensively stud-
ied in computational geometry and many different construction algorithms have
been devised. Since its introduction in 2003 Incremental Construction con BRIO
(biased randomized insertion order) [1] has been one of the favorite algorithms
for constructing DTs. Points are inserted in rounds of increasing size which
avoids full randomization. In a round the insertion order can be chosen, for
which mostly space-filling curve (SFC) orders are used (see Fig. 1(d) for such
an order). Already considered in the original article [1] (see also [20]), these or-
ders have been popularized by Liu and Snoeyink [15] who used them in their
program for constructing DTs of finite-precision input points. A variant of the
algorithm is available as package in the Computational Geometry Algorithms
Library1 (CGAL) [7].

In the incremental construction, to insert a point it first has to be located
in the current DT. When inserting points along a SFC order, this is typically
done without an additional point location data structure. Using the spatial co-
herence of the order, a new point is located by walking from the previous point
� This research was supported by the Deutsche Forschungsgemeinschaft within the Eu-

ropean graduate program ’Combinatorics, Geometry, and Computation’ (No. GRK
588/2) and by the Netherlands’ Organisation for Scientific Research (NWO) under
BRICKS/FOCUS grant number 642.065.503 and project no. 639.022.707.

1 http://www.cgal.org/

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 119–130, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

120 K. Buchin

in the order, i.e., by traversing the triangulation data structure starting at this
point. Incremental construction con BRIO with SFC orders have been tested
thoroughly, and their running time on surface, protein, terrain and random data
is linear or near-linear in experiments [1,4,15,20]. The algorithm can be made
asymptotically optimal by using a point location data structure like the conflict
graph, but this not only requires additional space but also does not make use
of the spatial coherence of the order. Without such a data structure non-trivial
bounds on the running time were not known so far.

Most commonly the running time of DT algorithms is analyzed with respect
to the worst-case point distribution. The drawback of such an analysis is that
worst-case point sets might be degenerate and that the worst-case bound might
not represent the running time on typical points well. On the other extreme,
some DT algorithms have been analyzed with respect to the average-case run-
ning time on points drawn independently and uniformly from a unit square, or
in higher dimensions from the unit d-cube [3,9,10,13,16,19]. This is an insightful
alternative to the worst-case analysis, although such an input might be rather
unlikely. Such an analysis can be strengthened by extending it to further ran-
dom point distributions. However, except for trivial extensions to nearly uniform
points, this has not been done for DT algorithms.

An alternative to the traditional worst- and average-case analysis are realistic
input models. A global parameter for point sets which can often be bounded (in
the size of the set) is its spread, i.e., the quotient between the largest and the
smallest point to point distance. Frequently bounds on the spread result from
minimum separation distances between the points and limited precision. In many
cases the spread can be assumed to be polynomially bounded in the number
of points. A further reason why the spread can be expected to be bounded,
in particular when the points come from measurements, is noise in the data.
Smoothed analysis [6,18] models this by allowing arbitrary input point sets, but
by performing an average-case analysis with the points perturbed by random
noise. In the case of surface reconstruction a realistic assumption is that the
surface is well-sampled, i.e., every surface point has one (but not too many)
sample point close to it. So far, realistic input models have to the best of our
knowledge not been used explicitly for analyzing DT algorithms. They have been
used to bound the complexity of DTs in R3. Although most three-dimensional
point sets occurring seem to have DTs of linear size, their worst-case complexity
is quadratic. Point sets in R3 with spread Φ may induce DTs with complexity
O(Φ3) [11], but for many suitably sampled surfaces the complexity is linear or
near-linear (see e.g. [2]).

Our results. Our aim is to give a theoretical explanation for the linear or near-
linear running time in experiments of incremental construction con BRIO with
SFC orders. As we will show, the worst-case running time is quadratic. We
therefore turn to realistic and probabilistic models. We prove that the running
time is O(N logΦ) for an N -point set in the plane with spread Φ. This bound is
tight for worst-case point sets as long as the spread is at least w(

√
N) (and at

most exponential). Thus, if the spread is polynomially bounded then the running

Constructing Delaunay Triangulations along Space-Filling Curves 121

time is in O(N logN). This directly implies a similar bound for the smoothed
complexity and can be easily extended to a bound for well-sampled surfaces.
The bound also holds for points drawn from any typical random distribution,
but for this case we even show a stronger bound. For independent identically
distributed points we provide a condition on the distribution function, under
which a variant of the algorithm runs in linear expected time after computing a
SFC order (which can be computed in linear expected time in a suitable model
of computation). We give the explicit analysis for uniformly and for normally
distributed points. Our results extend to higher dimensions, in which case the
running time depends on the structural change of the incremental construction.

This is the first analysis of a DT algorithm for realistic input models. It is
also the first probabilistic analysis of a DT algorithm that goes beyond uniformly
distributed points. Besides the analysis of incremental search [10] it is the only
probabilistic analysis for DT of points in higher dimensions. Proving linear ex-
pected running time for this algorithm also solves an open problem posed in
the original con BRIO paper [1]. It is especially surprising that the algorithm
achieves these running times without a point location data structure. So far, the
fastest incremental construction algorithm without point location data structure
was the jump & walk algorithm [9,16] which runs in O(n3/2) expected time for
uniformly distributed points in a square (and close to O(n4/3) expected time in
a 3-cube), with no worst-case guarantee except for the straightforward O(n2)
bound. In addition to analyzing incremental construction con BRIO with SFC
orders, we also present a generalized analysis of incremental constructions con
BRIO which also applies to settings other than DTs.

2 Algorithm

Consider the following construction of a map from the unit interval to the unit
square: Divide the unit interval into four intervals, divide the unit square into
four squares, and assign each interval to one of the squares (see Fig. 1(a)). This
process can be continued recursively and furthermore it can be done in such
a way that neighboring intervals are assigned to neighboring squares. The first
three steps of this construction are shown in Fig. 1(a-c). In the limit this yields
a surjective, continuous map from the unit interval to the unit square. By its
recursive construction the Hilbert curve maps an interval to a region with an area
equal to the length of the interval. This is a property shared by many space-filling
curves referred to as bi-measure-preserving property. Another property shared by
many space-filling curves including the Hilbert curve is that they are Hölder-1/d
continuous. This means for a space-filling curve ψ : [0, 1] → [0, 1]d that there is
a constant C such that ‖ψ(s) − ψ(t)‖ ≤ C|s− t|1/d for all s, t ∈ [0, 1].

The algorithm combines a biased randomized insertion order (BRIO) [1] and
space-filling curve (SFC) orders (see Algorithm 1). In a BRIO points are grouped
into rounds. Each point is independently assigned to the last round with prob-
ability 1/2. Points not assigned to the last round are assigned to the next to
last round with the probability of 1/2 and so on [1]. After a logarithmic number

122 K. Buchin

Algorithm 1. Incremental Construction along Space-Filling Curves
Input: Point set in Rd

Output: Delaunay triangulation of the point set

1 Compute BRIO with SFC in rounds:
1.1 Sample points to rounds (using coin flips with sampling ratio 1/2),
1.2 Order points in a round using a space-filling curve order,

for every other round use reversed order (see Remark 1).
2 Incrementally construct Delaunay triangulation using order from Step 1:

In each step do
2.1 Locate new point from the previously inserted point by walking,
2.2 Update Delaunay triangulation.

of rounds an expected constant number of points remain, and we can therefore
stop the sampling and assign the remaining points to the first round. If p ∈ Si

denotes that the point p is inserted in round i or before (i ≥ 1) then the assign-
ment can be described in terms of probabilities as P [p ∈ Si | p ∈ Si+1] = 1

2 for
1 ≤ i < �log2 N� + 1 and P

[
p ∈ S≤�log2 N�+1

]
= 1. In the analysis we will use

the fact that the expected structural change, i.e., the total number of simplices
created and deleted, using a BRIO is asymptotically bounded by the expected
structural change using a randomized order (see Sect. 3.1).

Within a round we sort points along a space-filling curve. A SFC maps a 1-
dimensional space onto a higher-dimensional space, e.g., the unit interval onto
the unit square. We will use SFCs in the form of the SFC heuristic for the
Euclidean traveling salesperson problem [17]. We demonstrate the SFC heuristic
for this task by the example of the two-dimensional Hilbert curve [12].

For our purposes it suffices to repeat the subdivision process until there is
only one point per square of the subdivision. In this example, for one of the
squares one more subdivision step is necessary. Fig. 1(d) shows the resulting
order. We call this order of the points a space-filling curve order. We will call
the graph obtained by connecting the points in this order space-filling curve
tour. To efficiently compute the SFC order of a point set in Rd, we do log2d N
subdivision steps at once. This results in Θ(N) cells in the subdivision. The
order of the cells and the orientation of the curve in a cell can be stored in a

1 2 3 4

1

2 3

4

1 2 3 4 . . .5

1 2

34

5

(a) (b) (c) (d)

Fig. 1. Hilbert curve and order

Constructing Delaunay Triangulations along Space-Filling Curves 123

look-up table and the sorting can then be done efficiently with radix sort. If the
spread of a point set is polynomially bounded, a constant number of such rounds
suffices.

Remark 1. Using a floor function restricted to logN bits, a SFC order of a point
set of size N with polynomially bounded spread can be computed in linear time.
In particular this yields a linear expected time for the random distributions we
consider. Restricting the floor function avoids issues about creating an unrea-
sonably powerful model of computation. Without the restricted floor function
we get an additional factor logN . Since we are interested in the point location
cost of the DT construction, we will assume in the rest of the paper that the
points are already given in a SFC order.

After computing the insertion order, we incrementally construct the Delaunay
triangulation (DT) using the order. A point is located by a straight line walk from
the previously inserted point, i.e, we trace the line segment from the previous
point to the new point in the DT data structure. In our experiments (see [4,
Section 4.5]) the computation of the SFC order made up about 10% of the
running time in two dimensions and less in three dimensions. The experiments
also confirm that a sampling ratio smaller than 1/2 (in two dimensions between
1/10 and 1/4) speeds up the algorithm as has been already observed in earlier
experiments [15,20]. Our analysis easily generalizes to other sampling ratios.

3 General Analysis

3.1 Incremental Construction con BRIO Revisited

Amenta, Choi, and Rote [1] introduced biased randomized insertion orders in the
context of Delaunay triangulations of points sampled from a surface in R3. They
consider point sets for which the expected complexity of the DT of a random
sample of the point set is linear in the size of the sample. They prove for this
case that the expected total update and point location cost with a history are for
BRIOs asymptotically the same as for random orders. For our analysis we need
to generalize their result to points in any dimension. We simplify their analysis
by directly linking the costs for a construction with biased randomized insertion
order to the costs for a randomized construction.

For a d-simplex with vertices in P and with s conflicting points in P let pB(s)
and pR(s) denote the probabilities that the simplex occurs in an incremental
construction with biased randomized insertion order and with randomized inser-
tion order, respectively. For simplicity we assume that the sampling to rounds is
not stopped after log(n) steps, but when no points remain (see [4, Proposition
3.7] for an analysis without this assumption). We bound pB(s) in terms of pR(s).
This directly yields bounds for the costs determining the expected run-time of
the construction, i.e., the expected structural change

∑n
k=0 kspB(s) and the ex-

pected conflict change
∑n

k=0 skspB(s), where ks denotes the total number of
d-simplices with s conflicts. Note that the following lemma directly generalizes
to arbitrary degree bounded configuration spaces and sampling ratios 1/α by
replacing (in the lemma and its proof) d+ 1 by the degree bound and 2 by α.

124 K. Buchin

Lemma 1. For d ≥ 1 it holds in Rd that pB(s) ≤ 2d+1pR(s). [4, Lemma 3.5]

3.2 Counting Intersections

In the following we develop a general scheme to count the number of intersections
of a space-filling curve tour with a possibly changing Delaunay triangulation.
Viewing this number as a double sum over the simplices of the DT and the
line segments of the tour, there are two natural ways to count the intersections.
In this section we will count for each simplex the number of line segments it
intersects. More specifically, we will bound for each vertex of the DT the number
of line segments of the SFC tour that might be intersected by a simplex with
this vertex as a corner. This analysis allows us to focus on the structure of the
tour. Alternatively, we could count for each line segment of the tour the number
of simplices it intersects, which shifts the focus of the analysis to the structure
of the DT. We will follow this alternative approach later (Theorem 5).

Setup. Let x1, . . . , xn and y1, . . . , ym be points in Rd. Assume that we want to
insert y1, . . . , ym into the Delaunay triangulation DT(x1, . . . , xn) of the points
x1, . . . , xn. We insert y1, . . . , ym along a space-filling curve tour denoted by
T(y1, . . . , ym) which is given by a permutation π : {1, . . . ,m} → {1, . . . ,m}.
Let f(x,DT) denote the number of d-dimensional faces incident to x in the De-
launay triangulation DT, e.g., in the plane the number of triangles incident to x.
Let F (DT) denote the total number of d-dimensional faces of DT and C(DT,T)
the structural change when inserting the points of the tour T into DT in the or-
der given by the tour. Let Byi,yj denote the ball with the line segment (yi, yj) as
a diameter. Furthermore, let b(x,T(y1, . . . , ym)) :=

∑m−1
i=1 1Byi,yi+1

(x), i.e., the
number of balls around tour segments in which x lies. In a probabilistic setting
we denote the random variables corresponding to x1, . . . , xn and y1, . . . , ym as
X1, . . . , Xn and Y1, . . . , Ym, respectively.

Counting Scheme. For points in general position the faces of the DT intersected
by tour segments are (d− 1)-dimensional or d-dimensional with these two cases
alternating along the tour segment. Of these, we will count the d-dimensional
faces.

Let I be the number of intersections between d-simplices of the current DT
and line segments of the SFC tour. We will consider two scenarios: In the first, we
directly insert a new point after we located it. This corresponds to the situation
in Algorithm 1. For the line segment yπ(i)yπ(i+1) we count the number of inter-
sections with DT(x1, . . . , xn, yπ(1), . . . yπ(i)) (1 ≤ i < m). In a second scenario,
we will simply count the number of intersections between DT(x1, . . . , xn) and
T(y1, . . . , ym). Most of the analysis will handle both scenarios simultaneously.

We split the number of intersections into I = I1 + I2 where

– I1 is the number of intersections where the d-simplex is in conflict with one
of the endpoints of the tour segment,

– I2 is the number of intersections where the d-simplex is not in conflict with
the endpoints of the tour segment.

Constructing Delaunay Triangulations along Space-Filling Curves 125

Bounding I1. A Delaunay face in conflict with a vertex of the tour needs to
be counted at most once for each tour segment adjacent to the vertex, i.e.,
at most twice for the vertex. In the first scenario it is actually only counted
once, since it is no longer in the DT after the insertion of the vertex. We
can bound the cost induced by these faces by the structural change, i.e., I1 ∈
O(C(DT(x1, . . . , xn),T(y1, . . . , ym))).

Bounding I2. Consider a fixed line segment (yπ(i), yπ(i+1)) on the SFC tour. By
the following lemma any d-face of the DT intersecting this segment and not in
conflict with one of the endpoints of the tour segment must have one vertex in
the ball with the tour segment as diameter.

Lemma 2. Let Δ be a d-simplex and s a line segment intersecting Δ. If the
endpoints of s lie outside of the circumsphere of Δ then the ball with s as diameter
contains a vertex of Δ. [4, Lemma 4.1]

Thus, for any intersection counted in I2 the corresponding Delaunay simplex
has a vertex in the ball with the corresponding tour segment as a diameter. We
bound I2 by counting for each vertex of the DT in a ball of a tour segment the
total number of d-simplices at this vertex. In the first scenario, i.e., if we insert
points while traversing the tour, we have

I2 ≤
m−1∑
i=1

n∑
j=1

1Byπ(i),yπ(i+1)
(xj)f(xj , DT (x1, . . . , xn, yπ(1), . . . , yπ(i)))

+
m−1∑
i=1

i−1∑
j=1

1Byπ(i),yπ(i+1)
(yπ(j))f(xj , DT (x1, . . . , xn, yπ(1), . . . , yπ(i))) .

In the second scenario this bound is simply

I2 ≤
m−1∑
i=1

n∑
j=1

1Byπ(i),yπ(i+1)
(xj)f(xj , DT (x1, . . . , xn)).

Proposition 1. If points are inserted directly (scenario 1) then

I2 ≤ bm(d+ 1)(F (DT (x1, . . . , xn)) + C(DT (x1, . . . , xn), T (y1, . . . , ym))) ,

where bm := maxz∈P b(z,T(y1, . . . , ym)).

Proof. Any vertex is covered by at most bm balls of the tour. Counting a simplex
bm times for each incident vertex counts it bm(d+1) times. Thus, we can bound
I2 by bm(d + 1) times the total number of simplices occurring. The number of
simplices is bounded by F (DT (x1, . . . , xn))+C(DT (x1, . . . , xn), T (y1, . . . , ym)).

�	

126 K. Buchin

Proposition 1 gives a worst-case bound on I2. The straightforward generalization
of the proposition to a probabilistic setting, would replace bm by the expected
maximum coverage. In the following we show that if we turn to the second
scenario, i.e., do not insert points directly, we can replace expected maximum
coverage by the typically smaller maximum expected coverage instead.

Proposition 2. Let X1, . . . , Xn, Y1, . . . , Ym ∈ D ⊆ Rd be independent random
variables. If points are located without directly inserting them (scenario 2) then
E [I2] ≤ (d + 1)b̂m Fn, where b̂m := supx∈D E [b(x, T (Y1, . . . , Ym))] and Fn :=
E [F (DT (X1, . . . , Xn))]. [4, Proposition 4.2]

4 Analysis for Bounded Spread

4.1 Lower Bound

In this section we will focus on DTs in the plane. In two dimensions the running
time of Algorithm 1 is trivially in O(n2), since the time needed to locate one
point is at most linear. Unfortunately, for worst-case point sets the algorithm
indeed needs quadratic time, as we show next. We construct a point set for the
Hilbert curve. Fig. 2(a) shows the point set for N = 9. The first point is placed
at (0, 0). All further points are placed on the line y = 2/3 − x. Note that by
adding a small offset to the points, they can be placed in strictly convex position
instead. The x-coordinates of these N − 1 = 2K points are 1/8, 1/4 + 1/(4 ·
8), . . . ,

∑K−1
i=1 1/4i +1/(4K−1 ·8) and 2/3−1/8, 2/3− (1/4+1/(4 ·8)), . . . , 2/3−

(
∑K−1

i=1 1/4i + 1/(4K−1 · 8)). The points are chosen such that the SFC tour
first traverses the points closest to the diagonal (0, 0), (1, 1), going outward from
there. This can be seen from the self-similar structure of the point set, i.e., the
situation in a sub-square is essentially the same as in the original square (with
two points less). Now we pair up the points on the line by their distance to the
diagonal. Any such pair has probability 1/4 to be inserted in the last round, and

(a) Points with Ω(n2) running
time

level 1

level 2

level 2

(b) Levels of tour segments

Fig. 2. Lower and upper bound constructions

Constructing Delaunay Triangulations along Space-Filling Curves 127

the ith pair intersects 2(i− 1) lines. Thus the expected number of intersections
is Ω(n2) which dominates the running time.

Our worst-case example is highly degenerate. Most notably it has exponential
spread. We therefore study how the running time parameterizes in terms of the
spread. Adapting the worst-case above yields the following bound.

Theorem 1. For Φ(N) ∈ ω(
√
N)∩2O(N) there are point sets of size N for which

the spread is at most Φ(N) and the running time of the incremental construction
along space-filling curves (Algorithm 1) is in Ω(N logΦ(N)).

Proof. We place instances of the construction above with k = log(Φ(N)
√
N)

points on a
√
N/k ×

√
N/k grid. The total number of intersections occuring in

the last round is in Ω(Nk) = Ω(N logΦ(N)), since Φ(N) ∈ ω(
√
N). �	

While Theorem 1 shows that Algorithm 1 needs super-linear time on certain
inputs, it does not show that the DT cannot be computed in linear time from
a SFC order. Indeed the DT can be computed in linear time from a quadtree
(which is closely related to SFCs) [5].

4.2 Upper Bound

In the following we show an upper bound matching the lower bound.

Theorem 2. The incremental construction along space-filling curves runs in
O(|P | logΦ(P)) time in the plane.

Proof. We assign a level to each edge of T(y1, . . . , ym) according to the highest
subdivision level (counting from coarse to fine) for which the edge is still con-
tained in a single cell (see Fig. 2(b) for an example). Any point can be in the
ball of at most a constant number of edges per level, for instance the point in the
upper right of Fig. 2(b) cannot be in a ball corresponding to a level-2-edge with
vertices in the lower left square. Further, the number of levels is in O(logΦ(N)),
which yields the claimed running time using Proposition 1. �	
Many point sets have polynomially bounded spread, in which case our bound
implies that the algorithm runs in O(N logN) time. In higher dimensions the
complexity of the DT is not necessarily linear, so we get as bound on the run-
ning time O(C(P) logΦ(P)), where C(P) denotes the structural change. In a
smoothed analysis the noise added (as long as it is not exponentially small) will
bound the expected smallest point-to-point distance and therefore the expected
spread, if the largest point-to-point distance is bounded. Thus, we again obtain
a O(N logN) running time. For well-sampled domains we can typically restrict
the number of levels we need to consider.

5 Average-Case Analysis

5.1 Structure of Random Space-Filling Curves

In the previous section we obtained a running time of O(N logN) for typical
inputs. To prove even stronger bounds we turn to an average-case analysis. For

128 K. Buchin

this we will use Proposition 2, which only holds if we do not insert points directly.
We therefore consider the following variant of Algorithm 1: The point location of
a round is done in two steps. First, points are located in the DT of the points of
the previous rounds by a walk along the SFC order. Second, points are located
from the location found by the walk using the history. Note that for this we only
need to maintain the history of the current round. We have the choice of inserting
the points in a random order or in the order given by the space-filling curve. In
the first case we directly obtain an expected constant point location cost [8], but
the same can be obtained in the second case [4, Theorem 3.9, Corollary 3.10].

Let BT be a ball chosen uniformly at random from the balls along the tour
with m vertices. To prove E [I2] ∈ O(n) it suffices to prove that for all x ∈ D it
holds that P [x ∈ BT] ∈ O(1/m), where D is the domain from which the Xi are
drawn (1 ≤ i ≤ n). Now, P [x ∈ BT] does not depend on properties of the DT,
thus we have reduced the problem to a problem on properties of the tour. To
bound P [x ∈ BT] we will now use the Hölder-continuity of space-filling curves.
First it is important to consider how the SFC was computed. If the points come
from a certain region we can simply compute the space-filling curve based on a
subdivision of this region. But for points from an unbounded region, like in the
case of the normal distribution, the bounding cube for the SFC depends on the
actual points. For simplicity we will assume that the bounding cube is chosen as
[−u, u]d where u is the largest occurring coordinate, i.e., the largest L∞-norm
of a point. For a space-filling curve ψ : [0, 1] → [0, 1]d we denote by ψ̂ : [0, 1] →
[−u, u]d the scaled space-filling curve. The mapping ψ̂ is Hölder continuous with
exponent 1/d and Hölder constant cψ̂ = 2u · cψ , i.e., for t1, t2 ∈ [0, 1] we have∥∥∥ψ̂(t1) − ψ̂(t2)

∥∥∥ ≤ cψ̂ ‖t1 − t2‖1/d
. We denote by ψ̂∗ : [−u, u]d → [0, 1] the

selection of preimages according to ψ∗. The following lemma provides a bound
on the length of a tour edge in this setting.

Lemma 3. Let Y1, . . . , Ym be independent identically distributed random vari-
ables in Rd with Lebesgue density function gY1 . Let ψ : [0, 1] → [0, 1]d be a Hölder
continuous and bi-measure preserving space-filling curve with Hölder constant cψ.
Let L be a random tour segment of a space-filling curve tour through Y1, . . . , Ym

based on ψ̂. Then for all � > 0, P [|L| > �] is at most∫
Rd

gY1(y)

(
1 − d

cdψ

∫
[0,�]

sd−1 min {gY1(y
′) | ‖y − y′‖ < s} ds

)m−1

dλd(y) .

[4, Lemma 4.3]

Using Lemma 3 we can bound P [x ∈ BT] by∫
Rd

gY1(y)

(
1 − d

cdψ

∫
[0,‖x−y‖]

sd−1 min {gY1(y
′) | ‖y − y′‖ < s} ds

)m−1

dλd(y) .

Two examples for distributions handled by Lemma 3 are uniformly distributed
points in [0, 1]d and normally distributed points in the plane. For normally dis-
tributed points we apply the lemma to all points except a few (an expected

Constructing Delaunay Triangulations along Space-Filling Curves 129

logarithmic number of points) far away from the center of the distribution. To
handle the remaining points we assume in the analysis that an additional point
location structure like Kirkpatrick’s point location hierarchy [14] is used.

Theorem 3. The incremental construction along space-filling curves (using the
history of a round) computes the Delaunay triangulation of points drawn inde-
pendently and uniformly from a d-cube in linear expected time. [4, Theorem 4.4]

Theorem 4. The incremental construction along space-filling curves (using the
history of a round and an O(log n) point location data structure) computes the
Delaunay triangulation of independent, identically normally distributed points in
the plane in linear expected time. [4, Theorem 4.5]

For points drawn independently and uniformly from a bounded convex region
in the plane, we next give an alternative analysis, which yields a linear bound
on the expected running time, even for the case that points are inserted directly
during the walk. It suffices to analyze the run-time of the last round. We assume
that at the beginning of the last round n points have already been inserted into
the DT, while the m points from the last round are to be inserted. The points
are located by traversing the DT along a SFC order. Therefore, the time for
locating the points is proportional to the number of intersections between the
order and the DT. Let L be a line segment that is not too close (no closer than
c
√

logn/n for a suitable constant c) to the boundary of the bounded convex
region and that is independent from the points of the DT. Then the expected
number of intersections between L and the DT is in O(1 +

√
n|L|) [9]. Now, the

SFC order of m points in a bounded region in the plane yields a walk through
the points of length O(

√
m) [17]. This yields an expected number of intersections

in O(m+
√
nm), but there are two pieces missing in this argument. First, points

close to the boundary are not handled. Second, points are inserted during the
walk. Therefore the DT changes and depends on the points to be inserted and
their insertion order. Both of these problems can be overcome [4, Sect. 3.4].

Theorem 5. The incremental construction along space-filling curves (with no
additional point location data structure) computes the Delaunay triangulation
independent, uniformly distributed points in a bounded convex region in linear
expected time. [4, Theorem 3.27]

Acknowledgments. The author would like to thank Günter Rote and Scot Drys-
dale and Maike Buchin for many helpful ideas.

References

1. Amenta, N., Choi, S., Rote, G.: Incremental constructions con BRIO. In: Proc.
19th Annu. ACM Sympos. Comput. Geom., pp. 211–219. ACM Press, New York
(2003)

2. Attali, D., Boissonnat, J.-D.: A linear bound on the complexity of the Delaunay
triangulation of points on polyhedral surfaces. Discrete Comput. Geom. 31(3),
369–384 (2004)

130 K. Buchin

3. Bentley, J.L., Weide, B.W., Yao, A.C.: Optimal expected-time algorithms for
closest-point problems. ACM Trans. Math. Softw. 6, 563–580 (1980)

4. Buchin, K.: Organizing Point Sets: Space-Filling Curves, Delaunay Tessellations
of Random Point Sets, and Flow Complexes. PhD thesis, Free University Berlin
(2007),
http://www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000003494

5. Buchin, K., Mulzer, W.: Delaunay triangulations in O(sort(n)) and other transdi-
chotomous and hereditary algorithms in computational geometry. In: Proc. 50th
Annu. IEEE Sympos. Found. Comput. Sci. (to appear, 2009)

6. Damerow, V., Meyer auf der Heide, F., Räcke, H., Scheideler, C., Sohler, C.:
Smoothed motion complexity. In: Di Battista, G., Zwick, U. (eds.) ESA 2003.
LNCS, vol. 2832, pp. 161–171. Springer, Heidelberg (2003)

7. Delage, C.: Spatial sorting. In: CGAL Editorial Board (eds), CGAL User and
Reference Manual (2007)

8. Devillers, O.: Randomization yields simple O(n log* n) algorithms for difficult
Omega(n) problems. Int. J. Comput. Geometry Appl. 2(1), 97–111 (1992)

9. Devroye, L., Mücke, E., Zhu, B.: A note on point location in Delaunay triangula-
tions of random points. Algorithmica 22, 477–482 (1998)

10. Dwyer, R.A.: Higher-dimensional Voronoi diagrams in linear expected time. Dis-
crete Comput. Geom. 6(4), 343–367 (1991)

11. Erickson, J.: Dense point sets have sparse Delaunay triangulations: or but not too
nasty. In: Proc. 13th Annu. ACM-SIAM Sympos. Discrete Algorithms, pp. 125–134
(2002)

12. Hilbert, D.: Ueber die stetige Abbildung einer Linie auf ein Flächenstück. Math.
Ann. 38, 459–460 (1891)

13. Katajainen, J., Koppinen, M.: Constructing Delaunay triangulations by merging
buckets in quadtree order. Fundam. Inform. 11, 275–288 (1988)

14. Kirkpatrick, D.G.: Optimal search in planar subdivisions. SIAM J. Comput. 12(1),
28–35 (1983)

15. Liu, Y., Snoeyink, J.: A comparison of five implementations of 3d Delaunay tesse-
lation. In: Goodman, J.E., Pach, J., Welzl, E. (eds.) Combinatorial and Computa-
tional Geometry. MSRI Publications, vol. 52, pp. 439–458. Cambridge University
Press, Cambridge (2005)

16. Mücke, E.P., Saias, I., Zhu, B.: Fast randomized point location without prepro-
cessing in two- and three-dimensional Delaunay triangulations. Comput. Geom.
Theory Appl. 12(1-2), 63–83 (1999)

17. Platzman, L.K., Bartholdi III, J.J.: Spacefilling curves and the planar travelling
salesman problem. J. ACM 36(4), 719–737 (1989)

18. Spielman, D.A., Teng, S.-H.: Smoothed analysis of algorithms: Why the simplex
algorithm usually takes polynomial time. J. ACM 51(3), 385–463 (2004)

19. Su, P., Drysdale, R.: A comparison of sequential Delaunay triangulation algorithms.
Comput. Geom. Theory Appl. 7, 361–386 (1997)

20. Zhou, S., Jones, C.B.: HCPO: an efficient insertion order for incremental Delaunay
triangulation. Inf. Process. Lett. 93(1), 37–42 (2005)

http://www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000003494

Piercing Translates and Homothets of a Convex Body

Adrian Dumitrescu1,� and Minghui Jiang2,��

1 Department of Computer Science, University of Wisconsin-Milwaukee, WI 53201-0784, USA
ad@cs.uwm.edu

2 Department of Computer Science, Utah State University, Logan, UT 84322-4205, USA
mjiang@cc.usu.edu

Abstract. According to a classical result of Grünbaum, the transversal number
τ (F) of any family F of pairwise-intersecting translates or homothets of a con-
vex body C in Rd is bounded by a function of d. Denote by α(C) (resp. β(C))
the supremum of the ratio of the transversal number τ (F) to the packing number
ν(F) over all families F of translates (resp. homothets) of a convex body C in
Rd. Kim et al. recently showed that α(C) is bounded by a function of d for any
convex body C in Rd, and gave the first bounds on α(C) for convex bodies C
in Rd and on β(C) for convex bodies C in the plane. In this paper, we show
that β(C) is also bounded by a function of d for any convex body C in Rd, and
present new or improved bounds on both α(C) and β(C) for various convex bod-
ies C in Rd for all dimensions d. Our techniques explore interesting inequalities
linking the covering and packing densities of a convex body. Our methods for
obtaining upper bounds are constructive and lead to efficient constant-factor ap-
proximation algorithms for finding a minimum-cardinality point set that pierces
a set of translates or homothets of a convex body.

1 Introduction

A convex body is a compact convex set in Rd with nonempty interior. Let F be a family
of convex bodies. The packing number ν(F) is the maximum cardinality of a set of
pairwise-disjoint convex bodies in F , and the transversal number τ(F) is the minimum
cardinality of a set of points that intersects every convex body in F .

Let G be the intersection graph of F with one vertex for each convex body in F
and with an edge between two vertices if and only if the two corresponding convex
bodies intersect. The independence number α(G) is the maximum cardinality of an
independent set in G. The clique partition number ϑ(G) is the minimum number of
classes in a partition of the vertices of G into cliques. Since a set of pairwise-disjoint
convex bodies in F corresponds to an independent set in G, we have ν(F) = α(G).
Also, since any subset of convex bodies in F that share a common point corresponds
to a clique in G, we have τ(F) ≥ ϑ(G). For the special case that F is a family of
axis-parallel boxes in Rd, we indeed have τ(F) = ϑ(G) since any subset of pairwise-
intersecting boxes share a common point. In general, we clearly have the inequality
ϑ(G) ≥ α(G), thus also τ(F) ≥ ν(F). But what else can be said about the relation
between τ(F) and ν(F)?
� Supported in part by NSF CAREER grant CCF-0444188.

�� Supported in part by NSF grant DBI-0743670.

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 131–142, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

132 A. Dumitrescu and M. Jiang

Fig. 1. Piercing a family F of axis-parallel unit squares. Left: all squares that intersect the highest
(shaded) square contain one of its two lower vertices. Right: five squares form a 5-cycle.

For example, let F be any family of axis-parallel unit squares in the plane, and refer
to Figure 1. One can obtain a subset of pairwise-disjoint squares by repeatedly selecting
the highest square that does not intersect the previously selected squares. Then F is
pierced by the set of points consisting of the two lower vertices of each square in the
subset. This implies that τ(F) ≤ 2 · ν(F). The factor of 2 cannot be improved below
3
2 since τ(F) = 3 and ν(F) = 2 for a family F of five squares arranged into a 5-
cycle [11].

For a convex body C in Rd, d ≥ 2, define

α(C) = sup
Ft

τ(Ft)
ν(Ft)

and β(C) = sup
Fh

τ(Fh)
ν(Fh)

,

where Ft ranges over all families of translates of C, and Fh ranges over all families of
(positive) homothets ofC. In the definitions of α and β, both the convexity ofC and the
homothety of Ft and Fh are necessary for the values α(C) and β(C) to be bounded.
Our previous discussion (Figure 1) yields the bounds 3

2 ≤ α(C) ≤ 2 for any square C.
Define α1(C) (resp. β1(C)) as the smallest number k such that for any family F of

pairwise-intersecting translates (resp. homothets) of a convex body C, there exists a set
of k points that intersects every member of F . Note that α and β generalize α1 and β1.
For any convex bodyC, the four numbers α(C), β(C), α1(C), and β1(C) are invariant
under any non-singular affine transformation of C, and we have the four inequalities
α1(C) ≤ α(C), β1(C) ≤ β(C), α1(C) ≤ β1(C), and α(C) ≤ β(C).

Grünbaum [10] showed that, for any convex body C in Rd, both α1(C) and β1(C)
are bounded by functions of d. Deriving bounds on α1(C) and β1(C) for various types
of convex bodiesC in Rd is typical of classic Gallai-type problems [7,17], and has been
extensively studied. For example, a result by Karasev [12] states that α1(C) ≤ 3 for any
convex body C in the plane, i.e., for any family of pairwise-intersecting translates of a
convex body in the plane, there always exists a set of three points that intersects every
member of the family. It is folklore that α1(C) = β1(C) = 1 for any parallelogram C;
see [10] and the references therein. Also, α1(C) = 2 for any affinely regular hexagon
C [10], α1(C) = β1(C) = 3 for any triangle C [4], α1(C) = 3 < 4 = β1(C) for any
(circular) disk C [10,6], and β1(C) ≤ 7 for any centrally symmetric convex body C in
the plane [10]. Perhaps the most celebrated recent result on point transversals of convex

Piercing Translates and Homothets of a Convex Body 133

sets is Alon and Kleitman’s solution to the Hadwiger-Debrunner (p, q)-problem [1]. We
refer to the two surveys [7, pp. 142–150] and [17, pp. 77–78] for more related results.

The two numbers α1(C) and β1(C) bound the values of τ(F) for special families
F of translates and homothets of a convex body C with ν(F) = 1. It is thus natural to
study the general case ν(F) ≥ 1, and to obtain estimates on α(C) and β(C). Despite
the many previous bounds on α1(C) and β1(C) [7,17], first estimates on α(C) and
β(C) have been only obtained recently by Kim et al. [14], who showed that α(C) is
bounded by a function of d for any convex body C in Rd, and gave the first bounds on
α(C) for convex bodies C in Rd and on β(C) for convex bodies C in the plane. In this
paper, we show that β(C) is also bounded by a function of d for any convex body C in
Rd, and present new or improved bounds on both α(C) and β(C) for various types of
convex bodies C in Rd for all dimensions d.

Definitions. For a convex body C in Rd, denote by |C| the Lebesgue measure of C,
i.e., the area in the plane, or the volume in d-space for d ≥ 3. For a family F of convex
bodies in Rd, denote by |F| the Lebesgue measure of the union of the convex bodies in
F , i.e., |

⋃
C∈F C|.

For two convex bodiesA andB in Rd, denote byA+B = {a+b | a ∈ A, b ∈ B} the
Minkowski sum ofA andB. For a convex bodyC in Rd, denote by λC = {λc | c ∈ C}
the scaled copy of C by a factor of λ ∈ R, denote by −C = {−c | c ∈ C} the reflexion
of C about the origin, and denote by C + a = {c + a | c ∈ C} the translate of C by
the vector from the origin to a. Write C − C for C + (−C).

For two parallelepipeds P and Q in Rd that are parallel to each other (but are not
necessarily axis-parallel), denote by λi(P,Q), 1 ≤ i ≤ d, the length ratios of the edges
of Q to the corresponding parallel edges of P . Then, for a convex body C in Rd, define

γ(C) = min
P,Q

(
�λd(P,Q)�

d−1∏
i=1

�λi(P,Q) + 1�
)
,

where P and Q range over all pairs of parallelepipeds in Rd that are parallel to each
other, such that P ⊆ C ⊆ Q. Note that in this case λi(P,Q) ≥ 1 for 1 ≤ i ≤ d.

For a convex body C in Rd, denote by δ(C), δT (C), and δL(C), respectively, the
packing density, the translative packing density, and the lattice packing density of C,
that is, the maximum densities of a packing in Rd with congruent copies of C, trans-
lates of C, and translates of C by vectors of a lattice, respectively. Similarly, denote
by θ(C), θT (C), and θL(C), respectively, the covering density, the translative cover-
ing density, and the lattice covering density of C. See [3, Chapter 1]. Note that the
four densities θT (C), θL(C), δT (C), and δL(C) are invariant under any non-singular
affine transformation of C. For any convex body C in Rd, we have the inequalities
δL(C) ≤ δT (C) ≤ δ(C) ≤ 1 ≤ θ(C) ≤ θT (C) ≤ θL(C).

For two convex bodies A and B in Rd, denote by κ(A,B) the smallest number κ
such that A can be covered by κ translates of B.

Main results. Kim et al. [14] proved that, for any family F of translates of a convex
body in Rd, τ(F) ≤ 2d−1dd · ν(F), in particular τ(F) ≤ 108 · ν(F) when d = 3,

134 A. Dumitrescu and M. Jiang

and moreover τ(F) ≤ 8 · ν(F) − 5 when d = 2. We improve these bounds for all
dimensions d in the following theorem:

Theorem 1. For any family F of translates of a convex body C in Rd,

τ(F) ≤ γ(C) · ν(F), where γ(C) ≤ d(d+ 1)d−1. (1)

In particular, τ(F) ≤ 48 · ν(F) when d = 3, and τ(F) ≤ 6 · ν(F) when d = 2.

For any parallelepiped C in Rd, we can choose two parallelepipeds P and Q such that
P = Q = C hence P ⊆ C ⊆ Q. Then λi(P,Q) = 1 for 1 ≤ i ≤ d, and γ(C) = 2d−1.
This implies the following corollary:

Corollary 1. For any family F of translates of a parallelepiped in Rd, τ(F) ≤ 2d−1 ·
ν(F).

In contrast, for a family F of (not necessarily congruent or similar) axis-parallel paral-
lelepipeds (boxes) in Rd, the current best upper bound [8] (see also [13]) is

τ(F) ≤ ν(F) logd−2 ν(F)(log ν(F) − 1/2) + d.

Kim et al. [14] also proved that, for any family F of translates of a centrally symmetric
convex body in the plane, τ(F) ≤ 6 · ν(F) − 3. The following theorem gives a general
bound for any centrally symmetric convex body in Rd and an improved bound for any
centrally symmetric convex body in the plane:

Theorem 2. For any family F of translates of a centrally symmetric convex body S in
Rd,

τ(F) ≤ 2d · θL(S)
δL(S)

· ν(F). (2)

Moreover, τ(F) ≤ 24 · ν(F) when d = 3, and τ(F) ≤ 16
3 · ν(F) when d = 2.

For special types of convex bodies in the plane, the following theorem gives sharper
bounds than the bounds implied by Theorem 1 and Theorem 2. Also, as we will show
later, (3) may give a better asymptotic bound than (1) and (2) for high dimensions.

Theorem 3. Let F be a family of translates of a convex body C in Rd. Then

τ(F) ≤ min
L

κ((C − C) ∩ L,C) · ν(F), (3)

where L ranges over all closed half spaces bounded by hyperplanes through the center
of C − C. In particular, τ(F) ≤ 5 · ν(F) if C is a centrally symmetric convex body
in the plane. Moreover, (i) if C is a square, then τ(F) ≤ 2 · ν(F) − 1, (ii) if C is a
triangle, then τ(F) ≤ 5 · ν(F) − 2, (iii) if C is a disk, then τ(F) ≤ 5 · ν(F) − 2.

Having presented our bounds for families of translates, we now turn to families of
homothets. Kim et al. [14] proved that, for any family F of homothets of a convex body
C in the plane, τ(F) ≤ 16 · ν(F) and, if C is centrally symmetric, τ(F) ≤ 9 · ν(F).
The following theorem gives a general bound for any convex body in Rd, an improved
bound for any centrally symmetric convex body in the plane, and additional bounds for
special types of convex bodies in the plane:

Piercing Translates and Homothets of a Convex Body 135

Theorem 4. Let F be a family of homothets of a convex body C in Rd. Then

τ(F) ≤ κ(C − C,C) · ν(F). (4)

In particular, τ(F) ≤ 7 · ν(F) if C is a centrally symmetric convex body in the plane.
Moreover, (i) if C is a square, then τ(F) ≤ 4 · ν(F) − 3, (ii) if C is a triangle, then
τ(F) ≤ 12 · ν(F) − 9, (iii) if C is a disk, then τ(F) ≤ 7 · ν(F) − 3.

For any parallelepiped C in Rd, C − C is a translate of 2C and can be covered by 2d

translates of C, thus κ(C − C,C) ≤ 2d. This implies the following corollary:

Corollary 2. For any family F of homothets of a parallelepiped in Rd, τ(F) ≤ 2d ·
ν(F).

Both Theorem 3 and Theorem 4 are obtained by a simple greedy method, used also
previously by Kim et al. [14]. Although we have improved their bounds using new
techniques in Theorem 1 and Theorem 2, we show that a refined analysis of the simple
greedy method yields even better asymptotic bounds for high dimensions in Theorem 3
and Theorem 4. We will use the following lemma by Chakerian and Stein [4] in our
analysis:

Lemma 1. (Chakerian and Stein [4]). For every convex body C in Rd there exist two
parallelepipeds P and Q such that P ⊆ C ⊆ Q, where P and Q are homothetic with
ratio at most d.

For any convex body C in Rd, let P and Q be the two parallelepipeds in Lemma 1.
Since C − C ⊆ Q − Q and P ⊆ C, it follows that κ(C − C,C) ≤ κ(Q − Q,P) =
κ(2Q,P) ≤ (2d)d; see also [14, Lemma 4]. The classic survey by Danzer, Grünbaum,
and Klee [7, pp. 146–147] lists several other upper bounds due to Rogers and Danzer:
(i) κ(C − C,C) ≤ 2d

d+13d+1θT (C) for any convex body C in Rd, (ii) κ(C − C,C) ≤
5d and κ(C − C,C) ≤ 3dθT (C) for any centrally symmetric convex body C in Rd.
Note that θT (C) < d ln d + d ln ln d + 5d = O(d log d) for any convex body C in
Rd, according to a result of Rogers [15]. The following lemma summarizes the upper
bounds on κ(C − C,C):

Lemma 2. For any convex body C in Rd,

κ(C − C,C) ≤ min
{
(2d)d, 2d

d+13d+1θT (C)
}

= O(6d log d).

Moreover, if C is centrally symmetric, then

κ(C − C,C) ≤ min
{
5d, 3dθT (C)

}
= O(3dd log d).

From Lemma 2 and Theorem 4, it follows that β(C) is bounded by a function of d,
namely byO(6d log d), for any convex bodyC in Rd. Since minL κ((C−C)∩L,C) ≤
κ(C − C,C), Lemma 2 also provides upper bounds on minL κ((C − C) ∩ L,C) in
Theorem 3. As a result, (3) implies an upper bound τ(F) ≤ O(6d log d) · ν(F) for
any family F of translates of a convex body in Rd, which is better than the upper bound

136 A. Dumitrescu and M. Jiang

Table 1. Upper bounds on α(C) and β(C) for a convex body C in Rd. †By Theorem 4 and
Lemma 2: for d = 3, (2d)d = 216 and 5d = 125.

Convex body C in Rd α(C) upper
arbitrary d = 2 6 T1
centr. symm. d = 2 5 T3
arbitrary d = 3 48 T1
centr. symm. d = 3 24 T2

arbitrary d > 3 min{d(d + 1)d−1, 2d

d+1
3d+1θT (C)} T1 T4-L2

centr. symm. d > 3 min{d(d + 1)d−1, 2d θL(C)
δL(C)

, 5d, 3dθT (C)} T1 T2 T4-L2
parallelepiped d ≥ 2 2d−1 C1
Convex body C in Rd β(C) upper
arbitrary d = 2 16 [14]
centr. symm. d = 2 7 T4
arbitrary d = 3 216 †T4-L2
centr. symm. d = 3 125 †T4-L2

arbitrary d > 3 min{(2d)d, 2d

d+1
3d+1θT (C)} T4-L2

centr. symm. d > 3 min{5d, 3dθT (C)} T4-L2
parallelepiped d ≥ 2 2d C2

τ(F) ≤ d(d+1)d−1 ·ν(F) in (1) when d is sufficiently large. Also, (3) implies an upper
bound τ(F) ≤ 3dθT (S) · ν(F) for any family F of translates of a centrally symmetric
convex body S in Rd. Schmidt [16] showed that, for any centrally symmetric convex
body S, δL(S) = Ω(d/2d); hence (2) implies the bound τ(F) ≤ O(4d/d)θL(S)·ν(F).
Note that θT (S) ≤ θL(S). So (3) may be also better than (2) for high dimensions.
Table 1 summarizes the current best upper bounds on α(C) and β(C) (obtained by us
and by others) for various types of convex bodies C in Rd:

A natural question is whether α(C) or β(C) need to be exponential in d. The fol-
lowing theorem gives a positive answer:

Theorem 5. For any convex body C in Rd, β(C) ≥ α(C) ≥ θT (C)
δT (C) . In particular, if C

is the unit ball Bd in Rd, then β(C) ≥ α(C) ≥ 2(0.599±o(1))d as d → ∞.

Kim et al. [14] asked whether the upper bound τ(F) ≤ 3 · ν(F) holds for any family
F of translates of a centrally symmetric convex body in the plane. This upper bound, if
true, is best possible because there exists a family F of congruent disks (i.e., translates
of a disk) such that τ(F) = 3 · ν(F) for any ν(F) ≥ 1 [10]; see also [14, Example 10].
On the other hand, Karasev [12] proved that τ(F) ≤ 3 · ν(F) = 3 for any family F of
pairwise-intersecting translates of a convex body in the plane. Also, for any family F of
congruent disks such that ν(F) = 2, Kim et al. [14] confirmed that τ(F) ≤ 3 · ν(F) =
6. Our Corollary 1 confirms that τ(F) ≤ 2 · ν(F) for any family F of translates of a
parallelogram. The following theorem confirms the upper bound τ(F) ≤ 3 · ν(F) for
another special case:

Theorem 6. For any family F of translates of a centrally symmetric convex hexagon,
τ(F) ≤ 3 · ν(F). Moreover, if ν(F) = 1, then τ(F) ≤ 2.

Piercing Translates and Homothets of a Convex Body 137

Table 2. Lower and upper bounds on α(C) and β(C) for special convex bodies C in the plane

Special convex body C in the plane α(C) lower α(C) upper β(C) lower β(C) upper
centrally symmetric convex hexagon 2 [10] 3 T6 2 [10] 7 T4
square 3

2
[11] 2 T3 3

2
[11] 4 T4

triangle 3 [4] 5 T3 3 [4] 12 T4
disk 3 [10] 5 T3 4 [10] 7 T4

Grünbaum [10] showed that α1(C) = 2 for any affinely regular hexagonC. Theorem 6
implies a stronger and more general result that 2 = α1(C) ≤ α(C) ≤ 3 for any
centrally symmetric convex hexagon C. The example in Figure 1 gives the bound 3

2 ≤
α(C) ≤ 2 for any square C. For any triangle or disk C, it follows by Theorem 3 (ii)
and (iii) that α(C) ≤ 5, and we have the lower bound α(C) ≥ α1(C) = 3 [4,10].
Theorem 4 (i), (ii), and (iii) imply that β(C) ≤ 4 for any square C, β(C) ≤ 12 for
any triangle C, and β(C) ≤ 7 for any disk C. We also have the lower bounds β(C) ≥
α(C) ≥ 3

2 for any square C, β(C) ≥ β1(C) = 3 for any triangle C [4], and β(C) ≥
β1(C) = 4 for any disk C [10]. Table 2 summarizes the current best bounds on α(C)
and β(C) for some special convex bodies C in the plane:

2 Upper Bound for Translates of an Arbitrary Convex Body in Rd

In this section we prove Theorem 1. Let F be a family of translates of a convex body
C in Rd. Let P and Q be any two parallelepipeds in Rd that are parallel to each other,
such that P ⊆ C ⊆ Q. Since the two values τ(F) and ν(F) are invariant under any
non-singular affine transformation of C, we can assume that P and Q are axis-parallel
and have edge lengths 1 and ei, respectively, along the axis xi, 1 ≤ i ≤ d.

We first show that τ(T) ≤ �ed� · ν(T) for any family T of C-translates whose
corresponding P -translates intersect a common line � parallel to the axis xd. Define
the xd-coordinate of a C-translate as the smallest xd-coordinate of a point in the cor-
responding P -translate. Set T1 = T , let C1 be the C-translate in T1 with the smallest
xd-coordinate, and let S1 be the subfamily of C-translates in T1 that intersect C1 (S1
includes C1 itself). Then, for increasing values of i, while Ti = T \

⋃i−1
j=1 Sj is not

empty, let Ci be the C-translate in Ti with the smallest xd-coordinate, and let Si be
the subfamily of C-translates in Ti that intersect Ci. The iterative process ends with a
partition T =

⋃m
i=1 Si, where m ≤ ν(T).

Denote by ci the xd-coordinate of Ci. Then each C-translate in the subfamily Si,
which is contained in a Q-translate of edge length ed along the axis xd, has an xd-
coordinate of at least ci and at most ci + ed, and the corresponding P -translate, whose
edge length along the axis xd is 1, contains at least one of the �ed� points on � with xd-
coordinates ci + 1, . . . , ci + �ed�. These �ed� points form a piercing set for Si, hence
τ(Si) ≤ �ed�. It follows that

τ(T) ≤
m∑

i=1

τ(Si) ≤ �ed� ·m ≤ �ed� · ν(T). (5)

138 A. Dumitrescu and M. Jiang

For (a1, . . . , ad−1) ∈ Rd−1, denote by �(a1, . . . , ad−1) the following line in Rd that is
parallel to the axis xd:

{ (x1, . . . , xd) | (x1, . . . , xd−1) = (a1, . . . , ad−1) }.

Now consider the following (infinite) set L of parallel lines:

{ �(j1 + b1, . . . , jd−1 + bd−1) | (j1, . . . , jd−1) ∈ Zd−1 },

where (b1, . . . , bd−1) ∈ Rd−1 is chosen such that no line in L is tangent to the P -
translate of any C-translate in F . Recall that P and Q are axis-parallel and have edge
lengths 1 and ei, respectively, along the axis xi, 1 ≤ i ≤ d. So we have the following
two properties:

1. For any C-translate in F , the corresponding P -translate intersects exactly one line
in L.

2. For any two C-translates in F , if the two corresponding P -translates intersect two
different lines in L of distance at least ei + 1 along some axis xi, 1 ≤ i ≤ d − 1,
then the two C-translates are disjoint.

Partition F into subfamilies F(j1, . . . , jd−1) of C-translates whose corresponding P -
translates intersect a common line �(j1 + b1, . . . , jd−1 + bd−1). Let F ′(k1, . . . , kd−1)
be the union of the families F(j1, . . . , jd−1) such that ji mod �ei + 1� = ki for
1 ≤ i ≤ d − 1. It follows from (5) that the transversal number of each subfamily
F ′(k1, . . . , kd−1) is at most �ed� times its packing number. Therefore we have

τ(F) ≤
∑

(k1,...,kd−1)

τ (F ′(k1, . . . , kd−1)) ≤ �ed�
∑

(k1,...,kd−1)

ν (F ′(k1, . . . , kd−1))

≤
(

�ed�
d−1∏
i=1

�ei + 1�
)

· ν(F). (6)

Since (6) holds for any pair of parallelepipeds P and Q in Rd that are parallel to each
other and satisfy P ⊆ C ⊆ Q, it follows by the definition of γ(C) that τ(F) ≤
γ(C) · ν(F). By Lemma 1, there indeed exist two such parallelepipeds P and Q with
length ratios λi(P,Q) = d for 1 ≤ i ≤ d. It then follows that γ(C) ≤ d(d+ 1)d−1 for
any convex body C in Rd. This completes the proof of Theorem 1.

3 Upper Bound for Translates of a Centrally Symmetric Convex
Body in Rd

In this section we prove Theorem 2. Recall that |C| is the Lebesgue measure of a convex
bodyC in Rd, and that |F| is the Lebesgue measure of the union of a family F of convex
bodies in Rd. To establish the desired bound on τ(F) in terms of ν(F) for any family
F of translates of a centrally symmetric convex body S in Rd, we link both τ(F) and
ν(F) to the ratio |F|/|S|. We first prove a lemma that links the transversal number
τ(F) to the ratio |F|/|S| via the lattice covering density of S:

Piercing Translates and Homothets of a Convex Body 139

Lemma 3. Let F be a family of translates of a centrally symmetric convex body S in
Rd. If there is a lattice covering of Rd with translates of S whose covering density is θ,
θ ≥ 1, then τ(F) ≤ θ · |F|/|S|.

Proof. Denote by Sp a translate of the convex body S centered at a point p. Since S is
centrally symmetric, for any two points p and q, p intersects Sq if and only if q intersects
Sp. Given a lattice covering of Rd with translates of S, every point p ∈ Rd is contained
in some translate Sq in the lattice covering, hence every translate Sp contains some
lattice point q.

Let Λ be a lattice such that the corresponding lattice covering with translates of S
has a covering density of θ. Divide the union of the convex bodies in F into pieces
by the cells of the lattice Λ, then translate all cells (and the pieces) to a particular cell,
say σ. By the pigeonhole principle, there exists a point in σ, say p, that is covered at
most
|F|/|σ|� times by the overlapping pieces of the union. Let k be the number of
times that p is covered by the pieces. Now fix F but translate the lattice Λ to Λ′ until
p becomes a lattice point of Λ′. Then exactly k lattice points of Λ′ are covered by the
S-translates in F . Since every S-translate in F contains some lattice point of Λ′, we
have obtained a transversal of F consisting of k ≤
|F|/|σ|� lattice points of Λ′. Note
that θ = |S|/|σ|, and the proof is complete. �	

The following lemma1 is a dual of the previous lemma, and links the packing number
ν(F) to the ratio |F|/|S| via the lattice packing density of S:

Lemma 4. Let F be a family of translates of a centrally symmetric convex body S in
Rd. If there is a lattice packing in Rd with translates of S whose packing density is δ,
δ ≤ 1, then ν(F) ≥ δ

2d · |F|/|S|.

Proof. Let S′ be a homothet of S scaled up by a factor of 2. Since S is centrally sym-
metric, an S-translate is contained by an S′-translate if and only if the S-translate con-
tains the center of the S′-translate. Given a lattice packing in Rd with translates of
S′, two S′-translates centered at two different lattice points are disjoint, hence two S-
translates containing two different lattice points are disjoint.

LetΛ be a lattice such that the corresponding lattice packing with translates of S′ has
a packing density of δ (such a lattice exists because S′ is homothetic to S). Divide the
union of the convex bodies in F into pieces by the cells of the lattice Λ, then translate
all cells (and the pieces) to a particular cell, say σ. By the pigeonhole principle, there
exists a point in σ, say p, that is covered at least �|F|/|σ|� times by the overlapping
pieces of the union. Let k be the number of times that p is covered by the pieces. Now
fix F but translate the lattice Λ to Λ′ until p becomes a lattice point of Λ′. Then exactly
k lattice points of Λ′ are covered by the S-translates in F . Choose k translates in F ,
each containing a distinct lattice point of Λ′. Since any two S-translates containing two
different lattice points of Λ′ are disjoint, we have obtained a subset of k ≥ �|F|/|σ|�
pairwise-disjoint S-translates in F . Note that δ = |S′|/|σ| = 2d|S|/|σ|, and the proof
is complete. �	

Lemma 3 and Lemma 4 are then connected by the following “sandwich” lemma:

1 The planar case of this lemma is implied by a recent result [2, Theorem 5].

140 A. Dumitrescu and M. Jiang

Lemma 5. Let F be a family of translates of a (not necessarily centrally symmetric)
convex body C in Rd. Let A and B be two centrally symmetric convex bodies in Rd

such that A ⊆ C ⊆ B. Then

τ(F) ≤ 2d · |B|
|A| · θL(A)

δL(B)
· ν(F).

Proof. Since A ⊆ C, it follows by Lemma 3 that

τ(F) ≤ θL(A) · |F|
|A| .

Since C ⊆ B, it follows by Lemma 4 that

ν(F) ≥ δL(B)
2d

· |F|
|B| .

Putting these together yields

τ(F) ≤ θL(A) · |F|
|A| = 2d · |B|

|A| · θL(A)
δL(B)

· δL(B)
2d

· |F|
|B| ≤ 2d · |B|

|A| · θL(A)
δL(B)

· ν(F).

�	

By setting A = B = C in Lemma 5, we obtain (2) in Theorem 2. For the planar case,
the following lemma is now folklore [3, Theorems 2.5 and 2.8]:

Lemma 6. For any centrally symmetric convex body S in the plane, there are two cen-
trally symmetric convex hexagons H and H ′ such that H ⊆ S ⊆ H ′ and |H |/|H ′| ≥
3/4.

Note that θL(H) = δL(H) = 1 for a centrally symmetric convex hexagon H . Set
A = H , B = H ′, and C = S in the previous two lemmas, and we have, for any family
F of translates of a centrally symmetric convex body in the plane,

τ(F) ≤ 22 · 4
3

· 1
1

· ν(F) =
16
3

· ν(F).

This completes the proof of Theorem 2.

4 Upper Bounds by Greedy Decomposition

In this section we sketch the proofs of Theorems 3 and 4 (the discussion of the spe-
cial cases is omitted). First let F be a family of translates of a convex body C in
Rd. Without loss of generality, assume that κ((C − C) ∩ L,C) is minimized when
L = {(x1, . . . , xd) | xd ≥ 0}. Perform a greedy decomposition as follows. For
i = 1, 2, . . ., while Ti = F \

⋃i−1
j=1 Sj is not empty, let Ci be the translate of C in Ti that

contains a point of the largest xd-coordinate, and let Si be the subfamily of translates
in Ti that intersect Ci (Si includes Ci itself). The iterative process ends with a partition
F =

⋃m
i=1 Si, where m ≤ ν(F). We next show that τ(Si) ≤ κ((C − C) ∩ L,C).

Piercing Translates and Homothets of a Convex Body 141

Choose any point in C as a reference point. We have the following lemma:

Lemma 7. Let A and B be two translates of C with reference points a and b, respec-
tively. (i) A contains b if and only if −(B− b)+ b contains a. (ii) If A intersects B, then
a is contained in a translate of C − C centered at b.

By Lemma 7 (ii), the reference point of each translate of C in Si is contained in a
translate of C − C centered at the reference point of Ci. Since the translate of C − C
is covered by κ(C − C,−C) translates of −C, it follows by Lemma 7 (i) that each
translate of C in Si contains one of the κ(C −C,−C) corresponding reference points.
Therefore,

τ(Si) ≤ κ(C − C,−C) = κ(C − C,C). (7)

The stronger bound τ(Si) ≤ κ((C −C) ∩L,C) follows by our choice of Ci. We have

τ(F) ≤
m∑

i=1

τ(Si) ≤ κ((C − C) ∩ L,C) ·m ≤ κ((C − C) ∩ L,C) · ν(F).

In the special case that C is a centrally symmetric convex body in the plane, C − C
is a translate of 2C. Assume without loss of generality that C is centered at the origin.
Then C−C = 2C. We have the following lemma on covering 2C with translates of C,
which is implicit in a result by Grünbaum [10, Theorem 4]:

Lemma 8. (Grünbaum [10]). Let C be a centrally symmetric convex body in the plane.
Then 2C can be covered by seven translates of C, including one translate concentric
with 2C and six others centered at the six vertices, respectively, of an affinely regular
hexagon HC concentric with 2C.

Choose the halfplane L through the center of 2C and any two opposite vertices of the
hexagonHC in Lemma 8. Then κ((C−C)∩L,C) ≤ 5. It follows that τ(F) ≤ 5·ν(F)
for any family F of translates of a centrally symmetric convex body in the plane.

Next let F be a family of homothets of a convex bodyC in Rd. We again use greedy
decomposition. The only difference in the algorithm is that Ci is now chosen as the
smallest homothet of C in Ti. By our choice of Ci, each homothet in Si contains a
translate of Ci that intersects Ci. Hence the bound τ(Si) ≤ κ(C − C,C) follows in a
similar way as the derivation of (7). It then follows that τ(F) ≤ κ(C − C,C) · ν(F).
By Lemma 8, κ(C −C,C) ≤ 7 if C is a centrally symmetric convex body in the plane.

5 Concluding Remarks

A computational problem related to the results in this paper is finding a minimum-
cardinality point set that pierces a given set of geometric objects. This problem is NP-
hard even for the special case of axis-parallel unit squares in the plane [9], and it admits
a polynomial-time approximation scheme for the general case of fat objects in Rd [5].
The approximation scheme has a very high time complexity of nO(1/εd), and hence is
impractical. Our methods for obtaining the upper bounds in Theorems 1, 2, 3, and 4 are
constructive and lead to efficient constant-factor approximation algorithms for piercing

142 A. Dumitrescu and M. Jiang

a set of translates or homothets of a convex body. The approximation factors, which
depend on the dimension d, are the multiplicative factors in the respective bounds on
τ(F) in terms of ν(F) in the theorems, see also Table 1 and Table 2. For instance,
Theorem 1 yields a factor-6 approximation algorithm for piercing translates of a con-
vex body in the plane, and Theorem 4 yields a factor-216 approximation algorithm for
piercing homothets of a convex body in 3-space.

References

1. Alon, N., Kleitman, D.J.: Piercing convex sets and the Hadwiger-Debrunner (p, q)-problem.
Advances in Mathematics 96, 103–112 (1992)

2. Bereg, S., Dumitrescu, A., Jiang, M.: On covering problems of Rado. Algorithmica,
doi:10.1007/s00453-009-9298-z (to appear); A preliminary version in: Proceedings of the
11th Scandinavian Workshop on Algorithm Theory, pp. 294–305 (2008)

3. Braß, P., Moser, W., Pach, J.: Research Problems in Discrete Geometry. Springer, New York
(2005)

4. Chakerian, G.D., Stein, S.K.: Some intersection properties of convex bodies. Proceedings of
the American Mathematical Society 18, 109–112 (1967)

5. Chan, T.: Polynomial-time approximation schemes for packing and piercing fat objects. Jour-
nal of Algorithms 46, 178–189 (2003)

6. Danzer, L.: Zur Lösung des Gallaischen Problems über Kreisscheiben in der Euklidischen
Ebene. Studia Scientiarum Mathematicarum Hungarica 21, 111–134 (1986)

7. Danzer, L., Grünbaum, B., Klee, V.: Helly’s theorem and its relatives. In: Proceedings of
Symposia in Pure Mathematics., vol. 7, pp. 101–181. American Mathematical Society (1963)

8. Fon-Der-Flaass, D.G., Kostochka, A.V.: Covering boxes by points. Discrete Mathemat-
ics 120, 269–275 (1993)

9. Fowler, R.J., Paterson, M.S., Tanimoto, S.L.: Optimal packing and covering in the plane are
NP-complete. Information Processing Letters 12, 133–137 (1981)

10. Grünbaum, B.: On intersections of similar sets. Portugaliae Mathematica 18, 155–164 (1959)
11. Gyárfás, A., Lehel, J.: Covering and coloring problems for relatives of intervals. Discrete

Mathematics 55, 167–180 (1985)
12. Karasev, R.N.: Transversals for families of translates of a two-dimensional convex compact

set. Discrete and Computational Geometry 24, 345–353 (2000)
13. Károlyi, G.: On point covers of parallel rectangles. Periodica Mathematica Hungarica 23,

105–107 (1991)
14. Kim, S.-J., Nakprasit, K., Pelsmajer, M.J., Skokan, J.: Transversal numbers of translates of a

convex body. Discrete Mathematics 306, 2166–2173 (2006)
15. Rogers, C.A.: A note on coverings. Mathematika 4, 1–6 (1957)
16. Schmidt, W.M.: On the Minkowski-Hlawka theorem. Illinois Journal of Mathematics 7, 18–

23 (1963)
17. Wenger, R.: Helly-type theorems and geometric transversals. In: Handbook of Discrete and

Computational Geometry, 2nd edn., pp. 73–96. CRC Press, Boca Raton (2004)

Output-Sensitive Algorithms for Enumerating
Minimal Transversals for Some Geometric

Hypergraphs

Khaled Elbassioni1, Kazuhisa Makino2, and Imran Rauf1

1 Max-Planck-Institut für Informatik, Saarbrücken, Germany
{elbassio,irauf}@mpi-inf.mpg.de

2 Graduate School of Information Science and Technology,
University of Tokyo, Tokyo, Japan
makino@mist.i.u-tokyo.ac.jp

Abstract. We give a general framework for the problem of finding all
minimal hitting sets of a family of objects in Rd by another. We apply
this framework to the following problems: (i) hitting hyper-rectangles by
points in Rd; (ii) stabbing connected objects by axis-parallel hyperplanes
in Rd; and (iii) hitting half-planes by points. For both the covering and
hitting set versions, we obtain incremental polynomial-time algorithms,
provided that the dimension d is fixed.

1 Introduction

Let V and F be two finite sets of geometric objects in Rd. A subset of objects
X ⊆ V is said to be a hitting set (or transversal or cover) for F if for every
O ∈ F , there exists an O′ ∈ X such that O ∩O′ �= ∅. A hitting set is minimal if
none of its proper subsets is also a hitting set.

In this paper, we are interested in finding all minimal hitting sets of one
family of objects by another. For such generation problems, we measure the
time complexity in terms of both input and output length. An algorithm is said
to run in incremental polynomial-time, if the time required to find k minimal
transversals is polynomial in |V|, |F|, and k.

When V is a finite set of points and each object in F is an arbitrary finite
subset of V , we obtain the well-known hypergraph transversal or dualization prob-
lem [2], which calls for finding all minimal hitting sets for a given hypergraph
G ⊆ 2V , defined on a finite set of vertices V. Denote by Tr(G) the set of all mini-
mal hitting sets of G, also known as the transversal hypergraph of G. The problem
of finding Tr(G) has received considerable attention in the literature (see, e.g.,
[3,12,13,19,29,31]), since it is known to be polynomially or quasi-polynomially
equivalent with many problems in various areas, such as artificial intelligence
(e.g., [12,24]), database theory (e.g., [30]), distributed systems (e.g., [23]), ma-
chine learning and data mining (e.g., [1,7,20]), mathematical programming (e.g.,
[5,25]), matroid theory (e.g., [26]), and reliability theory (e.g., [9]).

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 143–154, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

144 K. Elbassioni, K. Makino, and I. Rauf

The currently fastest known algorithm [17] for solving the hypergraph trans-
versal problem runs in quasi-polynomial time |V |No(log N), where N is the com-
bined input and output size N = |G| + |Tr(G)|. Several quasi-polynomial time
algorithms with some other desirable properties also exist [8,16,18,33]. While it
is still open whether the problem can be solved in polynomial time for arbi-
trary hypergraphs, polynomial time algorithms exist for several classes of hyper-
graphs, e.g. hypergraphs of bounded edge-size [4,12], of bounded-degree [11,13],
of bounded-edge intersections [4], of bounded conformality [4], of bounded
treewidth [13], and read-once (exact) hypergraphs [15].

Almost all previously known polynomial-time algorithms for the the hyper-
graph transversal problem assume that at least one of the hypergraphs G or
Tr(G) either (i) has bounded size min{|G|, |Tr(G)|} ≤ k, (ii) is k-conformal1, or
(iii) is k-degenerate2, for a constant k. One can verify that all the special classes
mentioned above belong to one of these categories.

In this paper, we shall extend these polynomially solvable classes to include
hypergraphs arising in geometry. More precisely, we consider the following prob-
lems Hit(V ,F):

– Hitting hyper-rectangles by points: Given a finite set of points V ⊆
Rd and a finite collection F of axis-parallel hyper-rectangles (also called
orthotopes or boxes) in Rd, find all minimal sets of points from V that hit
every hyper-rectangle in F ;

– Hitting (Stabbing) connected objects by axis-parallel hyperplanes:
Given a finite set of axis-parallel hyperplanes V ⊆ Rd and a finite collection
F of connected objects in Rd, find all minimal sets of hyperplanes from V
that stab every object in F ;

– Hitting half-spaces by points: Given a finite set of points V ⊆ Rd and a
finite collection F of half-spaces in Rd, find all minimal sets of points from
V that hit every half-space in F .

We show that the first two problems can be solved in incremental polynomial
time, if the dimension d of the underlying space is bounded, and that the last
problem can be solved in incremental polynomial time, if d = 2.

To construct efficient algorithms for the above problems, we first propose a
general framework to solve the hypergraph transversal problem, which can be
regarded as a generalization of the algorithms given in [13,28], and apply it to the
above problems. We remark that when we apply the framework to the problem
of hitting half-planes by points, we need to run a backtracking algorithm at
the base level of the recursion in the framework. While such an algorithm is
inefficient in general, as it requires solving an NP-hard problem as a subroutine,
we exploit the geometry to show that it can be made to work in the case of
hitting half-planes by points.
1 A hypergraph is said to be k-conformal [2] if any set X ⊆ V is contained in a

hyperedge of G whenever each subset of X of cardinality at most k is contained in
a hyperedge of G.

2 A hypergraph G is said to be k-degenerate [13] if for every set X ⊆ V , the minimum
degree of a vertex in the induced hypergraph GX on X is at most k.

Output-Sensitive Algorithms for Enumerating Minimal Transversals 145

We also consider the covering versions Cover(V ,F) (= Hit(F ,V)) of the
above problems. For example, we consider the problem of finding all minimal
sets of hyper-rectangles from F that hit all points in V . We propose incremen-
tal polynomial-time algorithms for finding all minimal covers for the first two
problems, by exploiting the fact that the geometric hypergraphs arising in the
first two problems have the bounded Helly property [2], and show that minimal
covers for the last problem can be generated in incremental polynomial time, by
using geometric duality from the corresponding result for minimal hitting sets.

The enumeration of minimal geometric hitting sets, as the ones described
above, arises in various areas such as computational geometry, machine learn-
ing, and data mining [14]. Moreover, our efficient enumeration algorithm might
be useful in developing exact algorithms, fixed-parameter tractable algorithms,
and polynomial-time approximation schemes for the corresponding optimization
problems (see, e.g., [22]).

The rest of this paper is organized as follows. In the next section, we give a
general framework for finding all minimal hitting sets for a given hypergraph.
In Sections 3, 4 and 5, we apply this framework to hitting hyper-rectangles
by points, stabbing connected objects by axis-parallel hyperplanes, and hitting
half-planes by points.

2 A Framework for Computing Transversal Hypergraphs

Let G ⊆ 2V be a hypergraph, and σ be an ordering of vertices in V . For
i = 1, . . . , n, let Gi be the sub-hypergraphs of G defined as Gi = {G ∈ G :
G ⊆ {vσ(1), . . . , vσ(i)}}. Let us denote the set of hyperedges in Gi which are
not contained in Gi−1 as Δi, i. e., Δi = Gi \ Gi−1 and for a set X ⊆ V , let
Δi[X] = {G ∈ Δi : G ∩ X = ∅}. Given a hypergraph G, Eiter et.al. [13]
describe an algorithm to generate Tr(G), the hypergraph consisting of all min-
imal transversals of G. The algorithm proceeds inductively, for i = 1, . . . , n, by
extending each minimal transversal X in Tr(Gi−1) to a set in Tr(Gi) by finding
Tr(Δi[X]), each set of which is combined with X to obtain a minimal transversal
of Gi. In Figure 1, we present a generic algorithm which recursively reduces the
problem of finding Tr(Gi) into the smaller subproblems of computing Tr(Δi[X])
for i ∈ [n] and X ∈ Tr(Gi−1).

The algorithm uses a sequence of permutations Σ = σ1 . . . σk as a part of an
input. When called initially as DUALIZE-INC(G, Σ, 1), it dualizes G by using
the above mentioned approach where σj is used for partitioning in the j-th level
of the recursion. The operator minimal(H) in Step 9 returns the hypergraph
obtained from a given hypergarph H by removing the non-minimal edges.

After k levels of recursion, procedure DUALIZE-SIMPLE() is used directly
to solve the problem. As we will see in the later sections, for several classes of
geometric hypergraphs, the subproblem after k levels can be solved easily, where
k depends only on the dimension of the geometric space under consideration.

As an illustration, consider the problem of dualizing an interval hypergraph:
Let v1, v2, . . . , vn be a set of points on the line ordered from left to right, and

146 K. Elbassioni, K. Makino, and I. Rauf

Procedure DUALIZE-INC(G, Σ, j):
Input: A hypergraph G over n = |V (G)| vertices, an index j (≤ k)

and a sequence Σ = (σ1, . . . , σk) of permutations of vertices in V (G).
Output: The hypergraph Gd.

1. G0 ← ∅, X0 ← {∅}, Xi ← ∅ ∀i = 1, . . . , n
2. for i = 1, . . . , n do
3. Let Gi ← {G ∈ G : G ⊆ {vσj (1), . . . , vσj(i)}}
4. for each X ∈ Xi−1 do
5. Let Δi[X] = {G ∈ Gi \ Gi−1 : G ∩ X = ∅}
6. if j ≥ k or |Δi[X]| ≤ 1 then
7. A ← DUALIZE-SIMPLE(Δi[X])
8. else A ← DUALIZE-INC(Δi[X], Σ, j + 1)
9. Xi ← minimal (Xi

⋃
{X ∪ Y : Y ∈ A})

10. return Xn

Fig. 1. A generic sequential method for finding minimal transversals

let G ⊆ 2V be a Sperner3 hypergraph, in which each edge G ∈ G consists of
consecutive points from V . Denote by σ the left-to-right ordering of the ver-
tices, and consider the execution of the algorithm when called as DUALIZE-
INC(G, Σ, 1) with Σ = σ. The algorithm incrementally dualizes the hypergraphs
Gi = {G ∈ G : G ⊆ {v1, . . . , vi}} for i = 1 . . . n. Note that the subproblem
Δi = Gi \ Gi−1 contains at most one edge because of our assumption that G is
Sperner and thus can be solved trivially.

The correctness of the procedure follows from the following statement.

Proposition 1 ([13]). For i = 1, . . . , n, Tr(Gi) = minimal({X ∪ Y : X ∈
Tr(Gi−1), Y ∈ Tr(Δi[X])}).

It is shown in [13] that the intermediate hypergraphs obtained in the algorithm
never get too large, more specifically, |Tr(Δi[X])| ≤ |Tr(Gi)| ≤ |Tr(G)|. Conse-
quently, we get the following bound on the worst-case running time.

Theorem 1. Let G ⊆ 2V be a hypergraph over vertex set V and Σ = (σ1, . . . , σk)
be a sequence of permutation functions of vertices of G. Then the procedure
DUALIZE-INC(G, Σ, 1) computes Tr(G) in O((nm′)k(mm′ + T)) time, where
n = |V |, m = |G|, m′ = |Tr(G)| and T is time required by DUALIZE-SIMPLE
in each k-th level recursion of the procedure.

3 Points and Hyper-rectangles in Rd

Let V be a set of points and F be a collection of axis-parallel hyper-rectangles
in Rd. In this section, we consider the problem of enumerating all minimal hit-
ting sets for F from V as well as the related problem of enumerating all minimal

3 A hypergraph H is said to be Sperner if no hyperedge of H contains another.

Output-Sensitive Algorithms for Enumerating Minimal Transversals 147

vi vi+1
v

i′
v

i′−1

vi vi+1
v

i′
v

i′−1

Fig. 2. An example of points and rectangles in R2. Left: The set Δi consists of all
rectangles that contain vi and other points only from the subset {v1, . . . , vi}. Right:
The subproblem in the recursive call considers all rectangles which contain both vi and
vi′ and no points from the strict left of vi′ nor from the strict right of vi.

covers of V by F . Let G ⊆ 2V be the hypergraph defined by V = V and G =
G(V ,F) def= {{v ∈ V : v ∩ F �= ∅} : F ∈ F}. Then the transposed hypergraph
GT ⊆ 2F is defined as GT = G(F ,V). Clearly, a minimal set of points from
V hitting every hyper-rectangle in F corresponds to a minimal hitting set of
G, while a minimal set of hyper-rectangles from F covering every point in V
corresponds to a minimal hitting set for GT . For a hypergraph G, we will denote
by V (G) the vertex set of G.

3.1 Minimal Hitting Sets

To illustrate the idea, let us first consider the problem in R2. The algorithm is
based on the framework presented in Figure 1. We order the points in V from left
to right and if their x-coordinates are equal, we sort them from bottom to top. Let
v1, v2, . . . , vn be the corresponding ordering of the vertices of the hypergraph G ⊆
2V , defined above. Note that because of our ordering of the vertices, no rectangle
in the hypergraphGi contains any point strictly to the right of vi and by definition,
every rectangle in Δi ⊆ Gi contains vi.

Consider the subproblem of dualizing Δi[X] for each i ∈ [n] and X ∈ Tr(Gi−1)
and let the primed variables denote the corresponding variables in the recursive
call of the algorithm. We order the vertices of G′ = Δi[X] in the reverse order
i. e., from right to left, breaking ties by sorting them from top to bottom.

Consider now a further recursive call of the procedure on a hypergraph G′′ =
Δ′

i′ [X
′], where i′ ∈ {1, . . . , |V (G′)|} and X ′ ∈ Tr(G′

i′−1). The crucial observation
is that each rectangle corresponding to an edge in the hypergraph Δ′

i′ [X
′] con-

tains both the points vi and vi′ , and because of our ordering, no rectangle in the
subproblem contains a point from the left of vi′ nor from the right of vi (see Fig-
ure 2). Hence, as can be easily seen, only the y-coordinates matter when deciding
whether a given point v ∈ {vi′ . . . vi} intersects a rectangle from Δ′

i′ [X
′]. So we

can project the subproblem Δ′
i′ [X

′] on the y-axis and reduce it to a problem
of dualizing an interval hypergraph, which can be solved in polynomial time, as
seen in Section 2.

The above algorithm can be extended to higher dimensions in an obvious man-
ner. In dimension d, we use the orderingsΣ = (σ1, . . . , σ2d−2), where σi is the lex-
icographical ordering of the points using their last d−
 i−1

2 � coordinates. Moreover,
we define the ordering σi to be increasing when i is odd and decreasing

148 K. Elbassioni, K. Makino, and I. Rauf

otherwise. To generate all minimal transversals of G, we call DUALIZE-INC
(G, Σ, 1), and use the dualization procedure for interval hypergraphs in place of
DUALIZE-SIMPLE(). After the second recursive call the subproblems we obtain
contain all hyper-rectangles that intersect two given points, say vi′ and vi with vi′

being lexicographically smaller than vi, and have the property that they contain no
point that is lexicographically smaller then vi′ or lexicographically greater than vi.
Hence after two levels of recursion, the first coordinate of the points can be ignored
and thus the problem reduces to d− 1-dimensional subproblems.

3.2 Minimal Covers

As mentioned above, to generate all minimal covers of the given points V by
hyper-rectangles from F , we consider the transposed hypergraph GT (V ,F) and
compute its transversal hypergraph.

Halman [21] showed that any hypergraph G = G(V ,F) defined by a set of
hyper-rectangles F and a set of points V in Rd is 2d-Helly, that is, for any G′ ⊆ G,
the following holds: if every 2d edges in G′ have a non-empty intersection then all
edges in G′ have a non-empty intersection. Thus the transposed hypergraph GT is
2d-conformal (cf. [2]), and hence can be dualized by the algorithm of Khachiyan
et al. [27] in incremental polynomial time.

Theorem 2. Both problems Hit(V ,F) and Cover(V ,F) can be solved in time
O((|V||F|k)O(d)), when V and F are, respectively, a set of points and a set of
axis-parallel hyper-rectangles in Rd, and k is the size of the output.

4 Stabbing Connected Objects in Rd

4.1 Minimal Stabbing Sets

Given a collection of connected objects F and a set of axis-parallel hyperplanes
V , both in Rd, we are interested in the problem of finding all minimal sets of
hyperplanes from V such that every object in F is stabbed by at least one of the
hyperplanes in the set. Let G = G(V ,F) be the corresponding hypergraph with
vertex set V and each object F ∈ F defining an edge consisting of all hyperplanes
from V which intersect F .

We consider the simple case first, that is, when all hyperplanes in V are parallel
to each other. This turns out to be equivalent to the interval hypergraph case
since we can project the problem on any line L that is perpendicular to the
hyperplanes in V . The projection maps hyperplanes in V into points on L, and
because of the connectivity, the objects in F are mapped to intervals on L.

More generally, for d > 1, assuming there is at least one hyperplane per-
pendicular to every principal axis, there are exactly d groups of axis-parallel
hyperplanes in Rd such that every group contains hyperplanes that are parallel
to one principal axis. This assumption can be made without loss of generality,
since if there is no hyperplane along a particular principal axis, say z, then we

Output-Sensitive Algorithms for Enumerating Minimal Transversals 149

v4

v3
v2

v5

v6 v7 v9 v10v8

v1

vi−1 vi+1vi

Fig. 3. Left: An example of lines and objects in R2 and a valid ordering of lines. Right:
The set Δi[X] consists of new objects that intersect vi and only lines from the subset
{v1, . . . , vi−1}.

can orthogonally project all other hyperplanes and objects on the hyperplane
z = 0 and reduce the dimension of the problem by one.

The dual of G can be found incrementally by following the algorithm of Fig-
ure 1. Fixing the order of principal axes, we order the hyperplanes sequentially:
starting with hyperplanes perpendicular to the first principal axis, sorted in in-
creasing order, we continue with the hyperplanes perpendicular to the second
principal axis and so on. For an example in R2, the set of lines {x = 1, y =
−1, x = 0, y = 1} would be ordered as x = 0, x = 1, y = −1, y = 1 assuming
that x-axis comes before y-axis in our fixed ordering of principal axes. Let σ be
an ordering of hyperplanes in G as defined above and let jG0 < jG1 < . . . < jGd
be indices with jG0 = 0 and jGd = n, such that the hyperplanes in the group
σ(jGr−1 + 1), . . . , σ(jGr) are parallel to each other and perpendicular to r-th prin-
cipal axis for r ∈ [d].

Consider the subproblem of dualizing Gi for i = 1, . . . , n as defined in the
algorithm, where Gi contains only those edges which form subsets of vertices from
vσ(1), . . . , vσ(i). As discussed above, the problem reduces to dualizing an interval
hypergraph when 1 ≤ i ≤ jG1 . Now consider the case when jGr−1 < i ≤ jGr for
r ∈ [d]. Consider the subproblem of dualizing G′ = Δi[X] for X ∈ Tr(Gi−1), and
let the primed variables denote the corresponding variables in the recursive call
of the algorithm. Note that the subproblem for Δi[X] contains all objects that
do not intersect any hyperplane “above” vσ(i). Let σ′ be an ordering of vertices of
G′ defined similarly as σ for the hyperplanes perpendicular to first r−1 principal
axes except the r-th group of hyperplanes which are sorted in decreasing order.
As before, let jG

′
0 < . . . < jG

′
r be indices with jG

′
0 = 0 and jG

′
r = n′, where

n′ = |V (G′)| and the hyperplanes in the group σ′(jG
′

r′−1 + 1), . . . , σ′(jG
′

r′) are
parallel to each other and perpendicular to r′-th principal axis for r′ ∈ [r].

In the recursive call, we use σ′ as our ordering and dualize G′ incrementally
by considering G′

i′ for 1 < i′ ≤ i. Note that for i′ ≤ jG
′

r−1, V (G′
i′) ⊆ V (Gi−1) and

hence the subproblem G′
i′ is already taken care of when Tr(Gi−1) is computed4.

Alternatively, when jG
′

r−1 < i′ ≤ i then similar to the case in Section 3.1, the
subproblems Δ′

i′ we get contain all objects that intersect both vi and vi′ with

4 Note that the set of all minimal transversals of the sub-hypergraph HS induced by
vertices in S is equivalent to the set Tr(HS) = minimal({H ∩ S : H ∈ Tr(H)}).

150 K. Elbassioni, K. Makino, and I. Rauf

the property that no hyperplane above vi or below vi′ stabs any of them. Note
that both {vi} and {vi′} as well as all hyperplanes between them are trivially
hitting sets for the subproblems for hypergraphs of the form Δ′

i′ [·]. The other
hitting sets can be found recursively by observing that they do not involve any of
the hyperplanes parallel to vi and vi′ . Thus we are able to reduce the dimension
of the problem by 1 after two levels of recursion.

In summary, to generate Tr(G), we call DUALIZE-INC(G, Σ, 1) with Σ =
(σ1, σ2, . . . , σ2d−1) and a trivial dualization procedure for DUALIZE-SIMPLE().
For odd r, 1 ≤ r < 2d, the ordering σr sorts each group of parallel hyperplanes in
increasing order (of the points of intersection with the common orthogonal line),
whereas for even r, 1 < r < 2d, σr is defined by sorting each group of parallel
hyperplanes in increasing order except the last group, which is sorted in decreas-
ing order (of the points of intersection with the common orthogonal line). As we
noted above, at every r-th level of recursion for even r, the dual hypergraphs
Tr(Gi) such that vσ(i) does not belong to the last group of hyperplanes, can be
easily computed from the corresponding dual hypergraph in the recursion level
r− 1. This observation can be used to avoid redundant computations by solving
those subproblems directly instead of following the algorithm of Figure 1.

4.2 Minimal Covers

We use again the algorithm of [27] for dualizing conformal hypergraphs.

Lemma 1. Let F be the set of connected objects and V be set of axis-parallel
hyperplanes in Rd. Then the corresponding hypergraph G(F ,V) is 2d-Helly.

Theorem 3. Both problems Hit(V ,F) and Cover(V ,F) can be solved in time
O((|V||F|k)O(d)), when V and F are, respectively, a set of axis-parallel hyper-
planes and a set of connected objects in Rd, and k is the size of the output.

5 Hitting and Covering with Half-Planes

In this section we consider the case when the hypergraph G = G(V ,F) is defined
by a finite set of points V ⊆ R2 and a set of half-planes F . In the following, we
will refer to the elements of V as points or vertices interchangeably.

5.1 Minimal Hitting Sets

Let Σ = (σ′
1, σ

′′
1 , σ

′
2, σ

′′
2), where for i ∈ {1, 2}, σ′

i and σ′′
i are respectively the

ascending and descending orderings of the points in V along the ith coordinate.
We call the procedure DUALIZE-INC(G, Σ, 1).

When the procedure reaches the base level, we end-up with an instance on
a hypergraph G′ = G(V ′,F ′) in which all points V lie inside a rectangle R, the
boundary of which contains four (not necessarily distinct) points p1, p2, p3, p4 ∈
V , one on each side of R, and such that for each F ∈ F ′, F ⊇ {p1, p2, p3, p4}.
Consider the polygon connecting these four points: it partitions the rectangle R

Output-Sensitive Algorithms for Enumerating Minimal Transversals 151

p4

p1

p2

A4

A1 A2

A3

p3

B

i

k
j

F ′
F

Fig. 4. Left: All hyperplanes in the subproblem contain the points {p1, p2, p3, p4}.
Right: One of the subproblems consists of all points in the right-angle triangle and all
halfplanes containing the longest side of it.

into 5 regions (some possibly empty); see Figure 4, Left. Let B ⊆ V ′ be the set
of points inside the polygon and A1, A2, A3, A4 be the sets of points inside the
other four regions. Note that, without loss of generality, we can assume that any
line defining a half-plane in F ′ intersects exactly one of the 4 regions (otherwise,
there is only one hyperplane and Tr(G′) = {{v} : v ∈ V ′}). For i = 1, 2, 3, 4,
let Fi be the half-planes that hit the ith region, and Hi = G(Ai,Fi) be the
corresponding hypergraph.

Lemma 2. Tr(G′) = minimal (T ′∪T ′′∪
⋃4

i=1 Tr(Hi)) where T ′ = {{v} : v ∈ B}
and T ′′ = {{v, v′} : v ∈ Ai, v

′ ∈ Aj , i �= j and {v, v′} is transversal to G′}.

5.2 Backtracking Method

Given a hypergraph H ⊆ 2V and a subset S ⊆ V of vertices, [6] gave a criterion
to decide if S is a sub-transversal of G, i. e., if there is a minimal transversal
T ∈ Tr(G) such that T ⊇ S. In general, this is an NP-hard problem even if G is
a graph (see [4]). However, if |S| is bounded by a constant, or if the hypergraph
is read-once [15], then such a check can be done in polynomial time (see [6]).
Here we give another instance in which such a check can also be performed in
polynomial time.

For a subset S ⊆ V , and a vertex v ∈ S, let Hv(S) = {H ∈ H | H ∩S = {v}}.
A selection of |S| hyperedges {Hv ∈ Hv(S) | v ∈ S} is called covering if there
exists a hyperedge H ∈ H0 = {H ∈ H : H ∩ S = ∅} such that H ⊆

⋃
v∈S Hv.

Proposition 2 ([6]). A non-empty subset S ⊆ V is a sub-transversal for H ⊆
2V if and only if there is a non-covering selection {Hv ∈ Hv(S) | v ∈ S} for S.

The algorithm is given in Figure 5, and is based on the standard backtracking
technique for enumeration (see e.g. [32,15]). The procedure is called initially with
S1 = S2 = ∅ and i = 1. It is easy to verify that the algorithm outputs all elements
of the transversal hypergraph Tr(H), without repetition (and in lexicographic
ordering according to the input permutation σ). Since the algorithm essentially
builds a backtracking tree whose leaves are the minimal transversals of G, the
time required to produce each new minimal transversal is bounded by the depth
of the tree (at most min{|V |, |H|}) times the maximum time required at each
node. The efficiency of such procedure depends on being able to perform the test
in Step 3, which is addressed in the next subsection.

152 K. Elbassioni, K. Makino, and I. Rauf

Procedure DUALIZE-BT(H, σ, i, S):
Input: A hypergraph H ⊆ 2V , an ordering σ on V ,

an integer i ∈ {1, . . . , |V |} and a subset S ⊆ σ([i − 1]) def= {σ(j) : j ∈ [i − 1]}
Output: The set {T ∈ Tr(H) : T ⊇ S, T ∩ (σ([i − 1]) \ S) = ∅}

1. if S ∈ Tr(H) then
2. output S and return
3. if ∃T ∈ Tr(H) s.t. S ∪ {σ(i)} ⊆ T and (σ([i − 1]) \ S) ∩ T = ∅ then
4. DUALIZE-BT(H, σ, i + 1, S ∪ {σ(i)})
5. DUALIZE-BT(H, σ, i + 1, S)

Fig. 5. The backtracking method for finding minimal transversals

5.3 Solving the Special Instance

Without loss of generality we concentrate on finding Tr(H1), where H1 is the
hypergraph defined in Section 5.1. The other 3 sets of transversals can be found
similarly. In other words, we may assume that all points lie inside a right-angle
triangle of which the hyperplanes contain the longest side (see Figure 4, Right).

We use the backtracking method with σ being the following lexicographic
order of the points: if p = (p1, p2) and q = (q1, q2) then p ≺σ q if and only
if p1 < q1 or p1 = q1 and p2 < q2. Without loss of generality, we assume
V (H1) = {1, . . . , n} and reorder the points such that they are numbered from 1
to n according to σ, i. e., assume that σ is the identity permutation.

Now we show that the sub-transversal test in Step 3 of the backtracking
procedure in Figure 5 can be performed in polynomial time. Given i ∈ [n] and
S ⊆ [i− 1], we would like to check if

∃T ∈ Tr(H1) such that S ∪ {i} ⊆ T and ([i− 1] \ S) ∩ T = ∅. (1)

Lemma 3. Fix i ∈ [n] and let S ⊆ [i − 1] be a sub-transversal of H1. Suppose
that F, F ′ ∈ H1 satisfy: F ∩ (S ∪ {i}) = {j} for j �= i and F ′ ∩ (S ∪ {i}) = {i}.
Then F \ [i− 1] ⊆ H ′.

Proof. If there is a point with index k ∈ F \ ([i− 1] ∪ F ′) then k comes before
i with respect to the first coordinate (see Figure 4, Right), in contradiction to
the fact that we process the points according to the order imposed by σ. �	
Now the sub-transversal criterion of Proposition 2 reduces to a simple check.

Lemma 4. Given i ∈ [n] and S ⊆ [i − 1]. Then (1) holds if and only if there
exists F ∈ H1 such that F ∩ (S ∪ {i}) = {i} and for all F ′ ∈ H1 for which
F ′ ∩ (S ∪ {i}) = ∅, we have (F ′ \ [i]) \ (F \ [i]) �= ∅.

Proof. We apply the sub-transversal criterion for S∪{i} in the restricted hyper-
graph H′

1 = {H \ ([i−1]\S) : H ∈ H1}. By Proposition 2, (1) holds if and only
if there exists F1, . . . , Fi ∈ H1 such that Fj ∩ (S ∪ {i}) = {j}, for j = 1, . . . , i,
and (F ′ \ [i−1]) �⊆

⋃i
j=1(Fj \ [i−1]) for all F ′ ∈ H1 such that F ′∩ (S∪{i}) = ∅.

By Lemma 3, the union
⋃i

j=1(Fj \ [i− 1]) is equal to Fi \ [i− 1]. �	

Output-Sensitive Algorithms for Enumerating Minimal Transversals 153

5.4 Minimal Covers

By geometric duality (see e.g. [10], Chapter 8), the problem of finding minimal
set covers reduces to finding all minimal hitting sets. Indeed, we may assume by
rotating the given instance if necessary that all points are in general position. If
we use the mapping (p1, p2) �→ y = p1x + p2 that maps the point p = (p1, p2)
in the original space to the line {(x, y) : y = p1x + p2}, then one can easily see
that minimal set covers in one space correspond to minimal hitting sets in the
other space and vice versa.

Theorem 4. Both problems Hit(V ,F) and Cover(V ,F) can be solved in time
O((|V||F|k)O(1)), when V and F are, respectively, a set of points and a set of
half-planes in R2, and k is the size of the output.

References

1. Anthony, M., Biggs, N.: Computational learning theory: an introduction. Cam-
bridge University Press, New York (1992)

2. Berge, C.: Hypergraphs. Elsevier, Amsterdam (1989)
3. Bioch, J.C., Ibaraki, T.: Complexity of identification and dualization of positive

boolean functions. Information and Computation 123(1), 50–63 (1995)
4. Boros, E., Elbassioni, K., Gurvich, V., Khachiyan, L.: Generating maximal inde-

pendent sets for hypergraphs with bounded edge-intersections. In: Farach-Colton,
M. (ed.) LATIN 2004. LNCS, vol. 2976, pp. 488–498. Springer, Heidelberg (2004)

5. Boros, E., Elbassioni, K., Gurvich, V., Khachiyan, L., Makino, K.: Dual-bounded
generating problems: All minimal integer solutions for a monotone system of linear
inequalities. SIAM J. Computing 31(5), 1624–1643 (2002)

6. Boros, E., Gurvich, V., Hammer, P.L.: Dual subimplicants of positive boolean
functions. Optim. Methods Softw. 10, 147–156 (1998)

7. Boros, E., Gurvich, V., Khachiyan, L., Makino, K.: On the complexity of generat-
ing maximal frequent and minimal infrequent sets. In: Alt, H., Ferreira, A. (eds.)
STACS 2002. LNCS, vol. 2285, pp. 133–141. Springer, Heidelberg (2002)

8. Boros, E., Makino, K.: A fast and simple parallel algorithm for the monotone
duality problem. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas,
S., Thomas, W. (eds.) ICALP 2009. Part I. LNCS, vol. 5555, pp. 183–194. Springer,
Heidelberg (2009)

9. Colbourn, C.J.: The Combinatorics of Network Reliability. Oxford University
Press, NY (1987)

10. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational
Geometry, Algorithms and Applications. Springer, Heidelberg (1997)

11. Domingo, C., Mishra, N., Pitt, L.: Efficient read-restricted monotone cnf/dnf du-
alization by learning with membership queries. Machine Learning 37(1), 89–110
(1999)

12. Eiter, T., Gottlob, G.: Identifying the minimal transversals of a hypergraph and
related problems. SIAM J. Computing 24(6), 1278–1304 (1995)

13. Eiter, T., Gottlob, G., Makino, K.: New results on monotone dualization and gen-
erating hypergraph transversals. SIAM J. Computing 32(2), 514–537 (2003)

14. Eiter, T., Makino, K., Gottlob, G.: Computational aspects of monotone dualiza-
tion: A brief survey. Discrete Applied Mathematics 156(11), 2035–2049 (2008)

154 K. Elbassioni, K. Makino, and I. Rauf

15. Eiter, T.: Exact transversal hypergraphs and application to Boolean μ-functions.
Journal of Symbolic Computation 17(3), 215–225 (1994)

16. Elbassioni, K.M.: On the complexity of the multiplication method for mono-
tone CNF/DNF dualization. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS,
vol. 4168, pp. 340–351. Springer, Heidelberg (2006)

17. Fredman, M.L., Khachiyan, L.: On the complexity of dualization of monotone
disjunctive normal forms. Journal of Algorithms 21, 618–628 (1996)

18. Gaur, D.R., Krishnamurti, R.: Average case self-duality of monotone boolean func-
tions. In: Canadian AI 2004, pp. 322–338 (2004)

19. Gottlob, G.: Hypergraph transversals. In: Seipel, D., Turull-Torres, J.M.a. (eds.)
FoIKS 2004. LNCS, vol. 2942, pp. 1–5. Springer, Heidelberg (2004)

20. Gunopulos, D., Mannila, H., Khardon, R., Toivonen, H.: Data mining, hypergraph
transversals, and machine learning (extended abstract). In: PODS 1997 (1997)

21. Halman, N.: On the power of discrete and of lexicographic Helly-type theorems.
In: FOCS 2004, pp. 463–472 (2004)

22. Hüffner, F., Niedermeier, R., Wernicke, S.: Techniques for practical fixed-parameter
algorithms. Comput. J. 51(1), 7–25 (2008)

23. Ibaraki, T., Kameda, T.: A theory of coteries: Mutual exclusion in distributed
systems. IEEE Trans. on Parallel and Distributed Systems 4(7), 779–794 (1993)

24. Kavvadias, D.J., Papadimitriou, C.H., Sideri, M.: On horn envelopes and hyper-
graph transversals. In: Ng, K.W., Balasubramanian, N.V., Raghavan, P., Chin,
F.Y.L. (eds.) ISAAC 1993. LNCS, vol. 762, pp. 399–405. Springer, Heidelberg
(1993)

25. Khachiyan, L.: Transversal hypergraphs and families of polyhedral cones. In: Ad-
vances in Convex Analysis and Global Optimization, honoring the memory of K.
Carathéodory, pp. 105–118. Kluwer, Dordrecht (2000)

26. Khachiyan, L., Boros, E., Borys, K., Elbassioni, K., Gurvich, V., Makino, K.: Enu-
merating spanning and connected subsets in graphs and matroids. In: Azar, Y.,
Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 444–455. Springer, Heidelberg
(2006)

27. Khachiyan, L., Boros, E., Elbassioni, K., Gurvich, V.: A global parallel algorithm
for the hypergraph transversal problem. Information Processing Letters 101(4),
148–155 (2007)

28. Lawler, E., Lenstra, J.K., Rinnooy Kan, A.H.G.: Generating all maximal indepen-
dent sets: NP-hardness and polynomial-time algorithms. SIAM J. Computing 9,
558–565 (1980)

29. Lovász, L.: Combinatorial optimization: some problems and trends. DIMACS Tech-
nical Report 92-53, Rutgers University (1992)

30. Mannila, H., Räihä, K.J.: Design by example: An application of armstrong rela-
tions. Journal of Computer and System Sciences 33(2), 126–141 (1986)

31. Papadimitriou, C.: NP-completeness: A retrospective. In: Degano, P., Gorrieri, R.,
Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256. Springer, Heidel-
berg (1997)

32. Read, R.C., Tarjan, R.E.: Bounds on backtrack algorithms for listing cycles, paths,
and spanning trees. Networks 5, 237–252 (1975)

33. Tamaki, H.: Space-efficient enumeration of minimal transversals of a hypergraph.
Technical Report IPSJ-AL 75 (2000)

On Revenue Maximization in
Second-Price Ad Auctions�

Yossi Azar1, Benjamin Birnbaum2, Anna R. Karlin2, and C. Thach Nguyen2

1 Microsoft Research and Tel-Aviv University
azar@tau.ac.il

2 University of Washington
{birnbaum,karlin,ncthach}@cs.washington.edu

Abstract. Most recent papers addressing the algorithmic problem of al-
locating advertisement space for keywords in sponsored search auctions
assume that pricing is done via a first-price auction, which does not re-
alistically model the Generalized Second Price (GSP) auction used in
practice. Towards the goal of more realistically modeling these auctions,
we introduce the Second-Price Ad Auctions problem, in which bidders’
payments are determined by the GSP mechanism. We show that the
complexity of the Second-Price Ad Auctions problem is quite different
than that of the more studied First-Price Ad Auctions problem. First,
unlike the first-price variant, for which small constant-factor approxi-
mations are known, it is NP-hard to approximate the Second-Price Ad
Auctions problem to any non-trivial factor. Second, this discrepancy ex-
tends even to the 0-1 special case that we call the Second-Price Matching
problem (2PM). In particular, offline 2PM is APX-hard, and for online
2PM there is no deterministic algorithm achieving a non-trivial compet-
itive ratio and no randomized algorithm achieving a competitive ratio
better than 2. This stands in contrast to the results for the analogous
special case in the first-price model, the standard bipartite matching
problem, which is solvable in polynomial time and which has determin-
istic and randomized online algorithms achieving better competitive ra-
tios. On the positive side, we provide a 2-approximation for offline 2PM
and a 5.083-competitive randomized algorithm for online 2PM. The lat-
ter result makes use of a new generalization of a classic result on the
performance of the “Ranking” algorithm for online bipartite matching.

1 Introduction

The rising economic importance of online sponsored search advertising has led
to a great deal of research focused on developing its theoretical underpinnings.
(See, e.g., [1] for a survey). Since search engines such as Google, Yahoo! and
MSN depend on sponsored search for a significant fraction of their revenue, a
key problem is how to optimally allocate ads to keywords (user searches) so as to
maximize search engine revenue [2,3,4,5,6,7,8,9,10,11,12]. Most of the research on
the dynamic version of this problem assumes that once the participants in each
� This research was supported by NSF Grant CCF-0635147, a grant from Yahoo!

Research, and an NSF Graduate Research Fellowship.

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 155–166, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

156 Y. Azar et al.

6

8

4

4

3

4

3

8

4

6

4

3

3

8

1

(a) (b) (c)

U V U V U V

Fig. 1. An example of the Second-Price Ad Auctions problem: the nodes in U are
keywords and the nodes in V are bidders. The number immediately to the right of each
bidder represents its remaining budget, and the number next to each edge connecting
a bidder to a keyword represents the bid of that bidder for that keyword. (a) shows the
situation when the first keyword arrives. For this keyword, the search engine selects
the first bidder, whose bid is 4, and the second bidder, whose bid is 3. The keyword is
allocated to the first bidder at a price of 3, thereby reducing that bidder’s budget by
3. (b) shows the situation when the second keyword arrives. The bid of the first bidder
for that keyword is adjusted to the minimum of its original bid, 6, and its remaining
budget, 3. Then the first and the third bidders are selected, and the keyword is allocated
to the third bidder at a price of 3.

keyword auction are determined, the pricing is done via a first-price auction; in
other words, bidders pay what they bid. This does not realistically model the
standard mechanism used by search engines, called the Generalized Second Price
mechanism (GSP) [13,14].

In an attempt to model reality more closely, we study the Second-Price Ad
Auctions problem, which is the analogue of the above allocation problem when
bidders’ payments are determined by the GSP mechanism. As in other work
[4,5,6,11,12], we make the simplifying assumption that there is only one slot for
each keyword. In this case, the GSP mechanism for a given keyword auction
reduces to a second-price auction – given the participants in the auction, it
allocates the advertisement slot to the highest bidder, charging that bidder the
bid of the second-highest bidder.1

In the Second-Price Ad Auctions problem, there is a set of keywords U and
a set of bidders V , where each bidder v ∈ V has a known daily budget Bv and
a non-negative bid bu,v for every keyword u ∈ U . The keywords are ordered by
their arrival time, and as each keyword u arrives, the algorithm (i.e., the search
engine) must choose a bidder to allocate it to. The search engine is not required to
choose the highest-bidding bidder; in order to optimize the allocation of bidders
to keywords, search engines typically use a “throttling” algorithm that chooses
which bidders to select to participate in an auction for a given keyword [8].2

In the previously-studied first-price version of the problem, allocating a key-
word to a bidder meant choosing a single bidder v and allocating u to v at a
price of bu,v. In the Second-Price Ad Auctions problem, two bidders are selected

1 This simplication, among others (see [1]), leaves room to improve the accuracy of
our model. However, the hardness results clearly hold for the multi-slot case as well.

2 In this paper, we assume the search engine is optimizing over revenue although it is
certainly conceivable that a search engine would consider other objectives.

On Revenue Maximization in Second-Price Ad Auctions 157

instead of one. Of these two bidders, the bidder with the higher bid (where bids
are always reduced to the minimum of the actual bid and bidders’ remaining
budgets) is allocated that keyword’s advertisement slot at the price of the other
bid. (In the GSP mechanism for k slots, k + 1 bidders are selected, and each of
the top k bidders pays the bid of the next-highest bidder.)

This process results in an allocation and pricing of the advertisement slots
associated with each of the keywords. The goal is to select the bidders partici-
pating in each auction to maximize the total profit extracted by the algorithm.
For an example instance of this problem, see Figure 1.

1.1 Our Results

We begin by considering the offline version of the Second-Price Ad Auctions
problem, in which the algorithm knows all of the original bids of the bidders
(Section 3). Our main result here is that it is NP-hard to approximate the
optimal solution to this problem to within a factor better than Ω(m), where m
is the number of keywords, even when the bids are small compared to budgets.
This strong inapproximability result is matched by the trivial algorithm that
selects the single keyword with the highest second-best bidder and allocates only
that keyword to its top two bidders. It stands in sharp contrast to the standard
First-Price Ad Auctions problem, for which there is a 4/3-approximation to
the offline problem [6,12] and an e/(e − 1)-competitive algorithm to the online
problem when bids are small compared to budgets [5,11].

We then turn our attention to a theoretically appealing special case that we
call Second-Price Matching. In this version of the problem, all bids are either 0
or 1 and all budgets are 1. This can be thought of as a variant on maximum
bipartite matching in which the input is a bipartite graph G = (U ∪ V,E), and
the vertices in U must be matched, in order, to the vertices in V such that
the profit of matching u ∈ U to v ∈ V is 1 if and only if there is at least one
additional vertex v′ ∈ V that is a neighbor of u and is unmatched at that time.
One can justify the second-price version of the problem by observing that when
we sell an item, we can only charge the full value of the item when there is more
than one interested buyer.3

Recall that the first-price analogue to the Second-Price Matching problem, the
maximum bipartite matching problem, can be solved optimally in polynomial
time. The online version has a trivial 2-competitive deterministic greedy algo-
rithm and an e/(e−1)-competitive randomized algorithm due to Karp, Vazirani
and Vazirani [15], both of which are best possible.

In contrast, we show that the Second-Price Matching problem is APX-hard
(Section 4.1). We also give a 2-approximation algorithm for the offline problem
(Section 4.2). We then turn to the online version of the problem. Here, we show
that no deterministic online algorithm can get a competitive ratio better than
m, where m is the number of keywords in the instance, and that no randomized
online algorithm can get a competitive ratio better than 2 (Section 5.1). On the

3 A slightly more amusing motivation is to imagine that the two sets of nodes represent
boys and girls respectively and the edges represent mutual interest, but a girl is only
interested in a boy if another girl is also actively interested in that boy.

158 Y. Azar et al.

Table 1. A summary of the results in this paper, compared to known results for the
first-price case. The upper bound of e/(e− 1) for Online 1PAA only holds when when
the bids are very small compared to the budgets.

Offline Online
Upper bound Lower bound Upper bound Lower bound

1PAA 4/3 [6,12] 16/15 [6] e(e− 1)∗ [5,11] or 2 [16] e/(e− 1) [11,15]
2PAA m Ω(m) - -

Matching poly-time alg. e/(e− 1) [15,9] e/(e− 1) [15]
2PM 2 364/363 2

√
e/(

√
e− 1) ≈ 5.1 2

other hand, we present a randomized online algorithm that achieves a competi-
tive ratio of 2

√
e/(

√
e−1) ≈ 5.08 (Section 5.2). To obtain this competitive ratio,

we prove a generalization of the result due to Karp, Vazirani, and Vazirani [15]
and Goel and Mehta [9] that the Ranking algorithm for online bipartite matching
achieves a competitive ratio of e/(e− 1).

Due to space limitations, some proofs are omitted from this version of the
paper. Proofs of all results can be found in the full version.

1.2 Related Work

As discussed above, the related First-Price Ad Auctions problem4 has received
a fair amount of attention. Mehta et al. [11] present an algorithm for the online
version that achieves an optimal competitive ratio of e/(e−1) for the case when
the bids are much smaller than the budgets, a result also proved by Buchbinder
et al. [5]. Under similar assumptions, Devanur and Hayes show that when the
keywords arrive according to a random permutation, a (1 − ε)-approximation is
possible [7]. When there is no restriction on the values of the bids relative to
the budgets, the best known competitive ratio is 2 [16]. For the offline version
of the problem, a sequence of papers [16,3,17,4,12,6] culminating in a paper by
Chakrabarty and Goel, and independently, a paper by Srinivasan, show that the
offline problem can be approximated to within a factor of 4/3 and that there is
no polynomial time approximation algorithm that achieves a ratio better than
16/15 unless P = NP [6].

The most closely related work to ours is the paper of Goel, Mahdian, Naz-
erzadeh and Saberi [8], which builds on the work of Abrams, Medelvitch, and
Tomlin [2]. Goel et al. look at the online allocation problem when the search
engine is committed to charging under the GSP scheme, with multiple slots per
keyword. They study two models, the “strict” and “non-strict” models, both of
which differ from our model even for the one slot case by allowing bidders to
keep bidding their orginal bid, even when their budget falls below this amount.
Thus, in these models, although bidders are not charged more than their re-
maining budget when allocated a keyword, a bidder with a negligible amount of
remaining budget can keep his bids high indefinitely, and as long as this bidder is
4 This problem has also been called the Adwords problem [7,11] and the Maximum

Budgeted Allocation problem [4,6,12].

On Revenue Maximization in Second-Price Ad Auctions 159

never allocated another slot, this high bid can determine the prices other bidders
pay on many keywords. Under the assumption that bids are small compared to
budgets, Goel et al. build on the linear programming formulation of Abrams et
al. to present an e/(e− 1)-competitive algorithm for the non-strict model and a
3-competitive algorithm for the strict model.

The significant, qualitative difference between these positive results and the
strong hardness we prove for our model suggests that these aspects of the prob-
lem formulation are important. We feel that our model, in which bidders are
not allowed to bid more than their remaining budget, is more natural because
it seems inherently unfair that a bidder with negligible or no budget should be
able to indefinitely set high prices for other bidders.

2 Model and Notation

We define the Second-Price Ad Auctions (2PAA) problem formally as follows.
The input is a set of ordered keywords U and bidders V . Each bidder v ∈ V has
a budget Bv and a nonnegative bid bu,v for every keyword u ∈ U . We assume
that all of bidder v’s bids bu,v are less than or equal to Bv.

Let Bv(t) be the remaining budget of bidder v immediately after the t-th
keyword is processed (so Bv(0) = Bv for all v), and let bu,v(t) = min(bu,v, Bv(t)).
(Both quantities are defined inductively.) A solution (or second-price matching)
to 2PAA chooses for the t-th keyword u a pair of bidders v1 and v2 such that
bu,v1(t − 1) ≥ bu,v2(t − 1), allocates the slot for keyword u to bidder v1 and
charges bidder v1 a price of p(t) = bu,v2(t − 1), the bid of v2. (We say that v1
acts as the first-price bidder for u and v2 acts as the second-price bidder for u.)
The budget of v1 is then reduced by p(t), so Bv1(t) = Bv1(t − 1) − p(t). For
all other bidders v �= v1, Bv(t) = Bv(t − 1). The final value of the solution is∑

t p(t), and the goal is to find a solution of maximum value.
In the offline version of the problem, all of the bids are known to the algorithm

beforehand, whereas in the online version of the problem, keyword u and the bids
bu,v for each v ∈ V are revealed only when keyword u arrives, at which point
the algorithm must irrevocably map u to a pair of bidders without knowing the
bids for the keywords that will arrive later.

The special case referred to as Second-Price Matching (2PM) is where bu,v is
either 0 or 1 for all (u, v) pairs and Bv = 1 for all v. We will think of this as the
variant on maximum bipartite matching (with input G = (U ∪ V,E)) described
in Section 1.1. Note that in 2PM, a keyword can only be allocated for profit if
its degree is at least two. Therefore, we assume without loss of generality that
for all inputs of 2PM, the degree of every keyword is at least two.

For an input to 2PAA, let Rmin = minu,v Bv/bu,v, and let m = |U | be the
number of keywords.

3 Hardness of Approximation of 2PAA

In this section, we present our main hardness result for the Second-Price Ad
Auctions problem. For a constant c ≥ 1, let 2PAA(c) be the version of 2PAA in
which we are promised that Rmin ≥ c.

160 Y. Azar et al.

Theorem 1. Let c ≥ 1 be a constant integer. For any constant c′ > c, it is
NP-hard to approximate 2PAA(c) to a factor of m/c′.

Hence, even when the bids are guaranteed to be smaller than the budget by a
large constant factor, it is NP-hard to approximate 2PAA to a factor better than
Ω(m). As noted in the introduction and shown in the full version of this paper,
this hardness is matched by a trivial algorithm.

Proof. Here we provide the reduction. Some of the details of the proof are left
for the full version of this paper.

Fix a constant c′ > c, and let n0 be the smallest integer such that for all
n ≥ n0,

c′ · c(n
5 + n+ 2)

cn2 + n+ 2
≥ c(n3 + cn2 + n+ 2) (1)

and
n/2 + 1

2
≥ c . (2)

Note that since n0 depends only on c′, it is a constant.
We reduce from PARTITION, in which the input is a set of n ≥ n0 items, and

the weight of the i-th item is given by wi. If W =
∑n

i=1 wi, then the question is
whether there is a partition of the items into two subsets of size n/2 such that
the sum of the wi’s in each subset is W/2. It is known that this problem (even
when the subsets must both have size n/2) is NP-hard [18].

Given an instance of PARTITION, we create an instance of 2PAA(c) as fol-
lows. (This reduction is illustrated in Figure 2.)

– First, create n + 2 keywords c1, . . . , cn, e1, e2. Second, create an additional
set

G =
{
gi,k : 1 ≤ i ≤ n2 and 1 ≤ k ≤ c

}
of cn2 keywords. The keywords arrive in the order

. . .

a

c(w1+W)

c(w2+W)

c(wn+W)

c(w1+W)

c(w2+W)

c(wn+W)

c1

c2

cn

d1

d2

cW(1+n/2)

cW

cW

e1

e2

cW/2

cW/2

cW(n3+1)

f

Wn3g1,1

g1,2

g1,c

gn2,1

gn2,2

. . .
. . .

h1

cWn3

cWn3

W(n3+1)

Wn3

gn2,c

. . .

hn2

cW(1+n/2)

cW(1+n/2)

Fig. 2. The 2PAA(c) instance of the reduction. Each bidder’s budget is shown above
its node, and the bids of bidders for keywords is shown near the corresponding edge.

On Revenue Maximization in Second-Price Ad Auctions 161

c1, . . . , cn, e1, e2, g1,1, . . . , g1,c, , gn2,1, . . . , gn2,c .

– Create n2 + 4 bidders a, d1, d2, f, h1, . . . , hn2 . Set the budgets of a, d1, and
d2 to cW (1 + n/2). Set the budget of f to cW (n3 + 1). For 1 ≤ i ≤ n2, set
the budget of hi to cWn3.

– For 1 ≤ i ≤ n, bidders a, d1, and d2 bid c(wi +W) on keyword ci.
– For j ∈ {1, 2}, bidder dj bids cW on keyword ej . Bidder f bids cW/2 on

both e1 and e2.
– For 1 ≤ i ≤ n2 and 1 ≤ k ≤ c, keyword gi,k receives a bid of W (n3 +1) from

bidder f and a bid of Wn3 from bidder hi.

This reduction can clearly be performed in polynomial time. Furthermore, it
can easily be checked that (2) implies that no bidder bids more than 1/c of its
budget on any keyword.

We claim (and prove in the full version of the paper) that if the PARTITION
instance is a “yes” instance, then there exists a feasible solution to the 2PAA(c)
instance of value at least cW (n5 + n+ 2), and if the PARTITION instance is a
“no” instance, then every feasible solution to the 2PAA(c) instance must have
value less than cW (n3 + cn2 +n+2). Since there are cn2 +n+2 keywords in the
2PAA(c) instance, equation (1) implies that an m/c′-approximation algorithm
can distinguish between the two cases, and hence such an algorithm cannot exist
unless P = NP . �	

4 Offline Second-Price Matching

In this section, we turn our attention to the offline version of the special case of
Second-Price Matching (2PM).

4.1 Hardness of Approximation

To prove that 2PM is APX-hard, we reduce from vertex cover, using the following
result.

Theorem 2 (Chleb́ık and Chleb́ıková [19]). It is NP-hard to approximate
Vertex Cover on 4-regular graphs to within 53/52.

The precise statement of our hardness result is the following theorem

Theorem 3. It is NP-hard to approximate 2PM to within a factor of 364/363.

4.2 A 2-Approximation Algorithm

Consider an instance G = (U ∪ V,E) of the 2PM problem. We provide an
algorithm that first finds a maximum matching f : U → V and then uses f
to return a second-price matching that contains at least half of the keywords
matched by f .5 Given a matching f , call an edge (u, v) ∈ E such that f(u) �= v
an up-edge if v is matched by f and f−1(v) arrives before u, and a down-edge
5 Note that f is a partial function.

162 Y. Azar et al.

otherwise. Recall that we have assumed without loss of generality that the degree
of every keyword in U is at least two. Therefore, every keyword u ∈ U that is
matched by f must have at least one up-edge or down-edge. Theorem 4 shows
that the following algorithm, called ReverseMatch, is a 2-approximation for 2PM.

ReverseMatch Algorithm:
Initialization:
Find an arbitrary maximum matching f : U → V on G.
Constructing a 2nd-price matching:
Consider the matched keywords in reverse order of their arrival.
For each keyword u:

If keyword u is adjacent to a down-edge (u, v):
Assign keyword u to bidder f(u) (with v acting as the second-price bidder).

Else:
Choose an arbitrary bidder v that is adjacent to keyword u.
Remove the edge (f−1(v), v) from f .
Assign keyword u to bidder f(u) (with v acting as the second-price bidder).

Theorem 4. The ReverseMatch algorithm is a 2-approximation.

5 Online Second-Price Matching

In this section, we consider the online 2PM problem, in which the keywords
arrive one-by-one and must be matched by the algorithm as they arrive. We
start, in Section 5.1, by giving a simple lower bound showing that no deter-
ministic algorithm can achieve a competitive ratio better than m, the number of
keywords. Then we move to randomized online algorithms and show that no ran-
domized algorithm can achieve a competitive ratio better than 2. In Section 5.2,
we provide a randomized online algorithm that achieves a competitive ratio of
2
√
e/(

√
e− 1) ≈ 5.083.

5.1 Lower Bounds

The following theorem establishes our lower bound on deterministic algorithms,
which matches the trivial algorithm of arbitrarily allocating the first keyword to
arrive, and refusing to allocate any of the remaining keywords. The adversary
for this lower bound offers the first keyword two bidders; whichever bidder the
algorithm chooses for this first keyword will be needed as a second-price bidder
for the rest of the keywords.

Theorem 5. For any m, there is an adversary that creates a graph with m
keywords that forces any deterministic algorithm to get a competitive ratio no
better than 1/m.

We next show that no online (randomized) online algorithm for 2PM can achieve
a competitive ratio better than 2. To do this we invoke Yao’s Principle [20] and
construct a distribution of inputs for which the best deterministic algorithm
achieves an expected performance of (asymptotically) 1/2 the value of the opti-
mal solution.

On Revenue Maximization in Second-Price Ad Auctions 163

Our distribution is constructed as follows. The first keyword arrives, and it is
adjacent to two bidders. Then the second keyword arrives, and it is adjacent to
one of the two bidders adjacent to the first keyword, chosen uniformly at random,
as well as a new bidder; then the third keyword arrives, and it is adjacent to one
of the bidders adjacent to the second keyword, chosen uniformly at random, as
well as a new bidder; and so on, until the m-th keyword arrives.

We claim (and prove in the full version) that no deterministic algorithm can
achieve an expected performance better than 1/2 on this distribution. This yields
the following theorem.

Theorem 6. The competitive ratio of any randomized algorithm for 2PM must
be at least 2.

5.2 A Randomized Competitive Algorithm

In this section, we provide an algorithm that achieves a competitive ratio of
2
√
e/(

√
e − 1) ≈ 5.083. The result builds on a new generalization of the result

that the Ranking algorithm for online bipartite matching achieves a competitive
ratio of e/(e − 1) ≈ 1.582. This was originally shown by Karp, Vazirani, and
Vazirani [15], though a mistake was recently found in their proof by Krohn and
Varadarajan and corrected by Goel and Mehta [9].

The online bipartite matching problem is merely the first-price version of 2PM,
i.e., the problem in which there is no requirement for there to exist a second-
price bidder to get a profit of 1 for a match. The Ranking algorithm chooses a
random permutation on the bidders V and uses that to choose matches for the
keywords U as they arrive. This is described more precisely below.

Ranking Algorithm:
Initialization:
Choose a random permutation (ranking) σ of the bidders V .
Online Matching :
Upon arrival of keyword u ∈ U :

Let N(u) be the set of neighbors of u that have not been matched yet.
If N(u) �= ∅, match u to the bidder v ∈ N(u) that minimizes σ(v).

Karp, Vazirani, and Vazirani, and Goel and Mehta prove the following result.

Theorem 7 (Karp, Vazirani, and Vazirani [15] and Goel and Mehta
[9]). The Ranking algorithm for online bipartite matching achieves a competitive
ratio of e/(e− 1) + o(1).

In order to state our generalization of this result, we define the notion of a
left k-copy of a bipartite graph G = (U ∪ V,E). Intuitively, a left k-copy of G
makes k copies of each keyword u ∈ U such that the neighborhood of a copy of
u is the same as the neighborhood of u. More precisely, we have the following
definition.

Definition 8. Given a bipartite graph G = (UG ∪ V,EG), a left k-copy of G
is a graph H = (UH ∪ V,EH) for which |UH | = k|UG| and for which there exists
a map ζ : UH → UG such that

164 Y. Azar et al.

– for each uG ∈ UG there are exactly k vertices uH ∈ UH such that ζ(uH) =
uG, and

– for all uH ∈ UH and v ∈ V , (uH , v) ∈ EH if and only if (ζ(uH), v) ∈ EG.

Our generalization of Theorem 7 describes the competitive ratio of Ranking
on a graphH that is a left k-copy of G. Its proof builds on the proof of Theorem 7
presented by Birnbaum and Mathieu [21].

Theorem 9. Let G = (UG ∪ V,EG) be a bipartite graph that has a maximum
matching of size OPT1P , and let H = (UH ∪ V,EH) be a left k-copy of G. Then
the expected size of the matching returned by Ranking on H is at least

kOPT1P

(
1 − 1

e1/k
+ o(1)

)
.

Using this result, we are able to prove that the following algorithm, called Rank-
ingSimulate, achieves a competitive ratio of 2

√
e/(

√
e− 1).

RankingSimulate Algorithm:
Initialization:
Set M , the set of matched bidders, to ∅.
Set R, the set of reserved bidders, to ∅.
Choose a random permutation (ranking) σ of the bidders V .
Online Matching:
Upon arrival of keyword u ∈ U :

Let N(u) be the set of neighbors of u that are not in M or R.
If N(u) = ∅, do nothing.
If |N(u)| = 1, let v be the single bidder in N(u).

With probability 1/2, match u to v and add v to M , and
With probability 1/2, add v to R.

If |N(u)| ≥ 2, let v1 and v2 be the two distinct bidders in N(u) that minimize σ(v).
With probability 1/2, match u to v1, add v1 to M , and add v2 to R, and
With probability 1/2, match u to v2, add v1 to R, and add v2 to M .

Let G = (UG ∪ V,EG) be the bipartite input graph to 2PM, and let H =
(UH ∪ V,EH) be a left 2-copy of H . In the arrival order for H , the two copies
of each keyword uG ∈ U arrive in sequential order. The proof of the following
lemma is straightforward.

Lemma 10. Fix a ranking σ on V . For each bidder v ∈ V , let Xv be the in-
dicator variable for the event that v is matched by Ranking on H, when the
ranking is σ.6 Let X ′

v be the indicator variable for the event that v is matched
by RankingSimulate on G, when the ranking is σ. Then E(X ′

v) = Xv/2.

With Theorem 9 and Lemma 10, we can now prove the main result of this
section.

Theorem 11. The competitive ratio of RankingSimulate is 2
√
e/(

√
e − 1) ≈

5.083.

6 Note that once σ is fixed, Xv is deterministic.

On Revenue Maximization in Second-Price Ad Auctions 165

Proof. For a permutation σ on V , let RankingSimulate(σ) be the matching of G
returned by RankingSimulate, and let Ranking(σ) be the matching ofH returned
by Ranking. Lemma 10 implies that, conditioned on σ, E(|RankingSimulate(σ)|) =
|Ranking(σ)|/2. By Theorem 9,

E(|RankingSimulate(σ)|) =
1
2

E(|Ranking(σ)|) ≥ OPT1P

(
1 − 1/e1/2 + o(1)

)
.

Fix a bidder v ∈ V . Let Pv be the profit from v obtained by RankingSimulate.
Suppose that v is matched by RankingSimulate to keyword u ∈ UG. Recall that
we have assumed without loss of generality that the degree of u is at least 2. Let
v′ �= v be another bidder adjacent to u. Then, given that v is matched to u, the
probability that v′ is matched to any keyword is no greater than 1/2. Therefore,
E(Pv|v matched) ≥ 1/2. Hence, the expected value of the second-price matching
returned by RankingSimulate is∑

v∈V

E(Pv) =
∑
v∈V

E(Pv|v matched) Pr(v matched)

≥ 1
2

∑
v∈V

Pr(v matched)

=
1
2

E(|RankingSimulate(σ)|)

≥ 1
2
OPT1P

(
1 − 1/e1/2 + o(1)

)
≥ 1

2
OPT2P

(
1 − 1/e1/2 + o(1)

)
,

where OPT2P is the size of the optimal second-price matching on G. �	

References

1. Lahaie, S., Pennock, D.M., Saberi, A., Vohra, R.V.: Sponsored search auctions. In:
Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.V. (eds.) Algorithmic Game
Theory, pp. 699–716. Cambridge University Press, Cambridge (2007)

2. Abrams, Z., Mendelevitch, O., Tomlin, J.: Optimal delivery of sponsored search
advertisements subject to budget constraints. In: EC 2007 (2007)

3. Andelman, N., Mansour, Y.: Auctions with budget constraints. In: Hagerup, T.,
Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 26–38. Springer, Heidelberg
(2004)

4. Azar, Y., Birnbaum, B., Karlin, A.R., Mathieu, C., Nguyen, C.T.: Improved ap-
proximation algorithms for budgeted allocations. In: Aceto, L., Damg̊ard, I., Gold-
berg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP
2008, Part I. LNCS, vol. 5125, pp. 186–197. Springer, Heidelberg (2008)

5. Buchbinder, N., Jain, K., Naor, J.S.: Online primal-dual algorithms for maximizing
ad-auctions revenue. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS,
vol. 4698, pp. 253–264. Springer, Heidelberg (2007)

6. Chakrabarty, D., Goel, G.: On the approximability of budgeted allocations and
improved lower bounds for submodular welfare maximization and gap. In: FOCS
2008, pp. 687–696 (2008)

166 Y. Azar et al.

7. Devanur, N.R., Hayes, T.P.: The adwords problem: Online keyword matching with
budgeted bidders under random permutations. In: EC 2009 (2009)

8. Goel, A., Mahdian, M., Nazerzadeh, H., Saberi, A.: Advertisement allocation for
generalized second pricing schemes. In: Workshop on Sponsored Search Auctions
(2008)

9. Goel, G., Mehta, A.: Online budgeted matching in random input models with
applications to adwords. In: SODA 2008, pp. 982–991 (2008)

10. Mahdian, M., Nazerzadeh, H., Saberi, A.: Allocating online advertisement space
with unreliable estimates. In: EC 2007, pp. 288–294 (2007)

11. Mehta, A., Saberi, A., Vazirani, U., Vazirani, V.: Adwords and generalized online
matching. J. ACM 54(5), 22 (2007)

12. Srinivasan, A.: Budgeted allocations in the full-information setting. In: Goel, A.,
Jansen, K., Rolim, J.D.P., Rubinfeld, R. (eds.) APPROX 2008 and RANDOM
2008. LNCS, vol. 5171, pp. 247–253. Springer, Heidelberg (2008)

13. Edelman, B., Ostrovsky, M., Schwarz, M.: Internet advertising and generalized
second-price auction: Selling billions of dollars worth of keywords. American Eco-
nomic Review 97, 242–259 (2007)

14. Varian, H.R.: Position auctions. International Journal of Industrial Organiza-
tion 25, 1163–1178 (2007)

15. Karp, R.M., Vazirani, U.V., Vazirani, V.V.: An optimal algorithm for on-line bi-
partite matching. In: STOC 1990, pp. 352–358 (1990)

16. Lehmann, B., Lehmann, D., Nisan, N.: Combinatorial auctions with decreasing
marginal utilities. Games and Economic Behavior 55(2), 270–296 (2006)

17. Feige, U., Vondrak, J.: Approximation algorithms for allocation problems: Improv-
ing the factor of 1 - 1/e. In: FOCS 2006, pp. 667–676 (2006)

18. Garey, M.R., Johnson, D.S.: Computers and Intractability. W. H. Freeman and
Company, New York (1979)

19. Chleb́ık, M., Chleb́ıková, J.: Complexity of approximating bounded variants of
optimization problems. Theoretical Computer Science 354(3), 320–338 (2006)

20. Yao, A.: Probabilistic computations: Toward a unified measure of complexity. In:
FOCS 1977, pp. 222–227 (1977)

21. Birnbaum, B., Mathieu, C.: On-line bipartite matching made simple. SIGACT
News 39(1), 80–87 (2008)

Clustering-Based Bidding Languages for
Sponsored Search

Mohammad Mahdian and Grant Wang

Yahoo! Inc., Santa Clara, CA, USA
{mahdian,gjw}yahoo-inc.com

Abstract. Sponsored search auctions provide a marketplace where ad-
vertisers can bid for millions of advertising opportunities to promote
their products. The main difficulty facing the advertisers in this market
is the complexity of picking and evaluating keywords and phrases to bid
on. This is due to the sheer number of possible keywords that the adver-
tisers can bid on, and leads to inefficiencies in the market such as lack of
coverage for “rare” keywords. Approaches such as broad matching have
been proposed to alleviate this problem. However, as we will observe in
this paper, broad matching has undesirable economic properties (such as
the non-existence of equilibria) that can make it hard for an advertiser
to determine how much to bid for a broad-matched keyword.

The main contribution of this paper is to introduce a bidding lan-
guage for sponsored search auctions based on broad-matching keywords
to non-overlapping clusters that greatly simplifies the bidding problem
for the advertisers. We investigate the algorithmic problem of comput-
ing the optimal clustering given a set of estimated values and give an
approximation algorithm for this problem. Furthermore, we present ex-
perimental results using real advertisers’ data that show that it is pos-
sible to extract close to the optimal social welfare with a number of
clusters considerably smaller than the number of keywords. This demon-
strates the applicability of the clustering scheme and our algorithm in
practice.

1 Introduction

Search engine companies such as Google, Yahoo!, and Microsoft run today’s
largest auction houses, selling millions of advertising opportunities to hundreds
of thousands of advertisers every day. Apart from simple budget or capacity
constraints, the valuations of bidders in these auctions (known as sponsored
search auctions) tend to be additive. Therefore, ignoring such constraints, from
a classical auction-theory perspective of maximizing social welfare, the optimal
design is to conduct an independent auction for each item, and let the advertisers
submit a separate bid for each auction they are interested in. This is, in fact,
very close to the mechanisms that are employed in practice.

A major problem with this design is that it ignores the complexity of bidding
for the advertisers. The main source of complexity in sponsored search auctions

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 167–178, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

168 M. Mahdian and G. Wang

is the sheer size of the market: the number of different types of items that are
up for sale in this market is huge (or practically infinite), as each keyword or
phrase that a search engine user might potentially search for corresponds to an
item that can be sold in the market. This is in contrast to traditional auction
houses, where the number of different types of items that are offered for sale is
usually not too large, and the main factor that gives rise to complexity is that
bidders can have valuations for specific combinations of items.

Ignoring the complexity has lead to inefficiencies such as lack of coverage
for rare yet potentially valuable phrases in the sponsored search markets. Ap-
proaches such as broad matching keywords that an advertiser is interested in
to search queries have been applied to alleviate this problem. This means that
when an advertiser bids on a keyword a using the broad match option, the search
engine applies this bid to a broader set Sa of keywords that are deemed seman-
tically related to a. Broad matching helps the advertisers to expand their bid
to other potentially valuable keywords, and the search engine to increase their
keyword coverage and thicken the market, thereby increasing the revenue.

However, as we will observe in Section 3, when the sets Sa of broad-matched
keywords are allowed to overlap, the mechanism has undesirable economic prop-
erties that make it hard for the advertisers to determine their bid, even if we
assume only one slot per keyword and a second-price pricing scheme. Intuitively,
this is due to the fact that an advertiser bidding on the set Sa using broad-match
on keyword a might have different valuation for different keywords in Sa, and
hence if a second advertiser overbids them on some (but not all) keywords in Sa,
this can change their valuation for the bundle of keywords they receive. Using
this intuition, we show examples that demonstrate that in such a broad-match
mechanism (with second price auctions for individual keywords), once advertis-
ers fix the set of keywords they are bidding on, the bidding game might not have
any Nash equilibrium.1

To resolve this issue, we restrict the bidding language to only allow broad-
match sets Sa that are non-overlaping. In other words, the broad match is
performed through a proper clustering of the set of all keywords into disjoint
subsets, and advertisers are only allowed to bid for a cluster (and not for in-
dividual keywords). This clearly resolves the problem with the non-existence of
equilibria, since an advertiser can compute his expected value for keywords in
a cluster independent of other advertisers’ bids (since other advertisers either
take the whole cluster or none of it), and then bid this value if the underlying
payment scheme is truthful (e.g., second price in the case of a single slot or more
generally VCG payments), or more generally, according to the equilibria of the
mechanism in the case of a single keyword (e.g., as described in [7,16] in the case
of the generalized second price auction). Furthermore, to describe a cluster to

1 Note that the choice of the set of keywords to bid on is not included in this game.
If we include this as part of the game, the game always has an equilibrium where
no advertiser uses broad match. However, our purpose is to show that assuming the
advertisers have chosen to use the broad-match feature, determining the bid values
might reduce to a game with no equilibrium.

Clustering-Based Bidding Languages for Sponsored Search 169

the advertiser, the search engine only needs to give a random sample of a small
number of keywords in the cluster (with sampling probabilities proportional to
the historical query volumes) to the advertiser. The advertisers can get an ac-
curate estimate of their value for the (potentially infinite) cluster by evaluating
the random sample. Therefore, this scheme greatly simplifies keyword discovery
and bidding for the advertiser.

The only drawback of restricting the advertisers to bid for clusters of key-
words instead of individual keywords is that this restriction can cause a loss in
social welfare. Furthermore, it is not clear how the clustering should be com-
puted. In this paper we study these questions, both from a theoretical and an
empirical perspective. First, we give approximation algorithms for the clustering
problem (in two models, one deterministic and one stochastic) that given a set
of estimated values and a limit k on the number of clusters, compute a clustering
with social welfare within a constant factor of the optimal k-clusterings. Next,
we give empirical results using real advertisers’ bidding data that demonstrate
that in practice, with a value of k that is significantly smaller than the total
number of keywords, we can achieve a social welfare quite close to the optimal
social welfare.2

Related work. While there has been extensive research into various aspects of the
sponsored search market during the past few years (see, for example,
[7,16,10,1,11,3,17,9,14,12]), the topic of broad matching has remained largely
unexplored. The only papers we are aware of that study broad match from
an economic and optimization perspective are [8,15]. Even-Dar et al. [8] study
broad match from an advertiser’s point of view, and present algorithms that
optimize the advertiser’s bids in a broad-match system taking prices as given.
Singh and Roychowdhury [15] study the revenue and efficiency impacts of broad
match. There are also a number of papers that study the problem of computing
relevant queries for broad match or for query expansion from an information
retrieval perspective; see, for example, [5]. Our observation on the lack of ex-
istence of equilibria in general broad-match bidding languages is related to the
concept of cherry picking that has been studied in the economic literature [2],
in particular in the context of the insurance industry.

Organization. The rest of this paper is organized as follows: in Section 2 we
give a formal definition of the model. In Section 3 we give several examples that
demonstrate that the bidding game in general broad-matched auctions might
not have a full-information Nash equilibrium. In Section 4 we state the cluster-
ing problem in a deterministic and a stochastic model, and give approximation
algorithms for solving this problem. Section 5 contains a presentation of our
experimental results. We conclude in Section 6.

2 Note that here the loss in social welfare due to the restriction to k-clusterings is
compounded with the loss due to the fact that our algorithm is only an approximation
algorithm. Therefore, our empirical results show that neither of these losses is large.

170 M. Mahdian and G. Wang

2 The Model

We study a setting where m advertisers in a set A bid for a number of impres-
sions.3 Each impression is indexed by a keyword that comes from a distribution
D over the (potentially infinite) collection K of all potential keywords. We assume
that advertisers have additive valuations, i.e., their value for a set of impressions
is the sum of their value for individual impressions in the set.4 Given this as-
sumption and linearity of expectations, we can focus on the auctioning of a single
impression (indexed by a keyword picked from D). The value that an advertiser
i ∈ A has for an impression indexed by a keyword j ∈ K is a fixed number de-
noted by v(i, j). We assume that given the keyword j ∈ K, the advertiser i is able
to evaluate v(i, j). However, since the number |K| of potential keywords is huge,
or even infinite, we cannot expect the bidders to list all these values. Instead,
the bidding language allows for a broad match option: for each keyword a ∈ K,
the search engine has a pre-computed set Sa ⊂ K of broad-matched keywords,
and if an advertiser places a bid on keyword a using the broad-match option,
this bid will be applied to all keywords in Sa. This way, the advertiser can bid
only on a small set of keywords and the search engine expands his bid to a larger
(potentially infinite) set. We assume that the search engine can communicate
the sets Sa to the bidder. In practice, this can be done by giving the advertisers
a random sample of keywords in Sa.

After the bidders place their bids, the search engine conducts a separate auc-
tion for each impression that arrives. That is, as a new query arrives, the search
engine runs an auction between the set of bidders that have bid (either directly
or through broad match) on this keyword. Throughout this paper, we assume for
simplicity that there is only one ad slot on the page, and therefore only a single
bidder with the highest bid will win the auction (we will discuss in Section 6
how this assumption can be relaxed). This bidder will be charged an amount
equal to the second highest bid on this keyword. The utility of a bidder is the
expectation of the value he receives minus the price paid, where the expectation
is over the random draw of the keyword from D.

3 In practice, the commodities sold in sponsored search auctions are often clicks and
not impressions. However, one can transform a pay-per-click system to a pay-per-
impression one by multiplying each bidder’s valuation on a keyword (or set of key-
words) by her corresponding click-through rate. Therefore, we choose to simplify the
model by assuming a pay-per-impression system. Of course, estimating the click-
through rate of bidders is a non-trivial problem, and it is worth noting that our
proposed clustering-based bidding language can in fact help with this problem by
pooling together a number of rare keywords. We leave a formal study of this subject
to the future work.

4 This assumption is not entirely without loss of generality, since some advertisers in
sponsored search auctions are budget-constrained. However, given the small fraction
of such advertisers, the fact that in practice budget constraints are often flexible,
and that incorporating budgets makes even the simplest auctions hard to analyze
theoretically [4,6], we feel that it is justified to abstract away such constraints and
focus on the complexity problem.

Clustering-Based Bidding Languages for Sponsored Search 171

The focus of this paper is mainly on a restriction of the broad-match bidding
language, which we call a clustering-based bidding language. In this restriction,
the advertisers are only allowed to place broad-matched bids (i.e., no exact
match), and sets Sa are selected such that for two keywords a and b, the sets
Sa and Sb are either disjoint or identical. In other words, the search engine
computes a clustering of the set K of keywords, and each bidder is only allowed
to place a bid for all or none of the keywords in a cluster.5 It is easy to see that
the resulting mechanism is dominant-strategy incentive compatible in the sense
that for each advertiser, it is a dominant strategy to place a bid for each cluster
equal to the expected value of a keyword in that cluster (where the keyword is
drawn according to the distribution D restricted to the cluster).

Clearly, restricting the advertisers to a clustering-based bidding language
comes at a loss to the social welfare. To quantify this loss and measure its tradeoff
against the complexity of the bidding language, we compare the social welfare of
the truthful equilibrium with an idealized situation where each keyword is given
to the advertiser with the highest valuation for that keyword.

3 Non-existence of Broad-Match Equilibria

In this section we present examples that show that non-clustering-based broad
match languages can have undesirable economic properties; most importantly
that the induced bidding game might not have an equilibrium. Before stating
the examples, we need to clarify what we mean by the bidding game. We assume
that each bidder i has already fixed the set Ti of keywords she is bidding on, and
her move in the game consists of picking a single bid for this set. In other words,
we do not include the picking of the keywords to bid on as part of the game,
and focus on the case that i has fixed a single keyword to bid on, which maps to
the set Ti through broad-match. Excluding the keyword selection from the game
is essential, as without it the game always has an equilibrium where no bidder
uses the broad match option. Our purpose is to show that the bidding problem
might not have an equilibrium if the advertisers have already committed to use
the broad-match option.

We study full-information Nash equilibria of the bidding game. We start by
a very simple example that (even though contains an equilibrium) explains the
essence of the problem.

Example 1. (Non-truthfulness) Assume there are two bidders 1 and 2, and two
keywords a and b occuring with the same frequency. Bidder 1 bids on T1 = {a, b}
and bidder 2 bids on T2 = {a}. Bidder 1 has a value of 10 for a and 2 for b,
while bidder 2 has a value of 7 for a. If each bidder bids truthfully according to

5 Although not allowing advertisers to place exact match bids might sound like a
harsh constraint, it can help the advertisers at the end by simplifying the bidding
process and assuring them that other advertisers can not cherry pick. In fact, this is
quite similar to the constraints that states often impose on the insurance industry
to disallow cherry picking.

172 M. Mahdian and G. Wang

her expected value for the bundle, bidder 1’s bid would be (10 + 2)/2 = 6, and
hence she loses in the auction for a, receiving only the keyword b which has a
value of 2.

The above example still has an equilibrium (in fact even an envy-free one) where
bidder 1 overbids and wins both keywords. We now show that there are examples
with no equilibrium. We start with a simpler example with no envy-free equilib-
rium (as defined by Edelman et al. [7]), and then add gadgets to this example
to show that sometimes no equilibrium exists.

Example 2. (Non-existence of envy-free equilibria) Assume there are 3 bidders
1, 2, and 3, and three keywords a, b, and c with equal frequencies. The bidders
bid on the sets T1 = {a, b}, T2 = {b, c}, and T3 = {c, a}, and have values
v(1, a) = v(2, b) = v(3, c) = 20 and v(1, b) = v(2, c) = v(3, a) = 10. Assume,
without loss of generality, that the bids satisfy b1 ≥ b2 ≥ b3 and 1 wins against 2
and 3 and 2 wins against 3.6 Then bidder 1 wins a and b at prices b3 and b2, and
bidder 2 wins c at price b3. For bidder 2 not to envy the set {b, c}, we must have
(20 + 10) − (b2 + b3) ≤ 10 − b3 and hence b2 ≥ 20. Also, for 3 not to envy {c},
we must have b3 ≥ 20. This means that bidder 1 ends up with negative utility.

Note that the above example still has non-envy-free equilibria, for example one
where 1 bids infinity and wins {a, b}, 2 bids 0 and wins nothing, and 3 bids 11
and wins {c}. However, it is possible to construct a more complicated example
where not even a non-envy-free equilibrium exists. This example is omitted due
to lack of space.

4 The Clustering Problem

In this section, we define the search engine’s problem of computing the clustering
of the keywords as an optimization problem. To do this, we need to specify what
kind of information the clustering algorirthm gets about the valuations of the
bidders. We start with a deterministic formulation of the problem which assumes
that the algorithm is given an estimated set of valuations and needs to build a
clustering which maximizes social welfare with respect to this set. In practice,
such estimates might be obtained by a combination of looking at historical bids
on the keywords and using natural language processing or information retrieval
techniques (as in [5]) to deduce other valuations. We will use historical bid data
in the experiments presented in Section 5.

The clustering problem:

Given a set A of advertisers, a set K of keywords, the distribution D over
K, the values v(i, j) for each advertiser i ∈ A and each keyword j ∈ K,

6 For simplicity we state our argument in the case of a consistent deterministic tie-
breaking rule. It is not hard to see that the same reasoning works for a randomized
tie breaking rule.

Clustering-Based Bidding Languages for Sponsored Search 173

and a number k, compute a clustering of K into k clusters S1, . . . , Sk to
maximize the social welfare:

k∑
r=1

max
i∈A

v(i, Sr).

where v(i, Sr) =
∑

a∈Sr
v(i, a).

Since the set K can be very large or infinite, we would like an algorithm whose
running time does not depend on |K|. The algorithm is given access to an oracle
that outputs samples according to D and another oracle that given i and j,
outputs v(i, j). The output of the algorithm also needs to be in the form of an
oracle that given a keyword, decides which cluster the keyword belongs to.

It is not hard to show that the above problem is NP-hard, and therefore we
cannot hope for an exact efficient solution.

Stochastic formulation. The deterministic formulation of the problem makes
the assumption that the algorithm has access to a set of estimated values. This
assumption, while makes the clustering problem easy to state and more useful in
practice, is somewhat unsatisfactory from a theoretical perspective. Therefore,
we also study another formulation of the problem, where the algroithm only
knows distributional information about the values, and needs to compute a clus-
tering that optimizes the expected social welfare. We assume the distribution of
the values is explicitly given to the algorithm, i.e., there is a fixed number � of
different types of advertisers, with each type t is associated with a probability
pt and a set of valuations v(t, j) for an advertiser of this type (given using an
oracle as described above). There are m advertisers, each having a type picked
according to the probabilities pt. The type of the advertiser determines his val-
uation. We will discuss this formulation of the problem in Section 4.2, and give
an approximation algorithm in cases where probabilities pt are not too small.

4.1 A (1 − 1/e)-Approximation Algorithm for Deterministic
Clustering

In this section, we give an approximation algorithm for the deterministic for-
mulation of the clustering problem by reducing it to submodular function max-
imization. The main component of the solution is the definition of the function.

We define a function f from the domain A to the set of non-negative reals.
The value of the function on a set R ⊂ A is defined as follows:

f(R) = Expj←D [max
a∈R

v(a, j)].

Corresponding to the set R ⊂ A, we define a |R|-clustering CR of K as follows:
each cluster Sa in CR corresponds to an advertiser a in R, and each keyword j ∈
K is assigned to the cluster corresponding to an advertiser a ∈ argmaxa∈Rv(a, j).

174 M. Mahdian and G. Wang

Note that with this definition and the definition of f , the value of f(R) is pre-
cisely the expected value of a keyword in a cluster to the advertiser in R that
this cluster is assigned to, i.e.,

f(R) =
∑
a∈R

Pr
j←D

[j ∈ Sa] · Expj←D|Sa
[v(a, j)].

This implies the following Lemma. The proof is omitted here.

Lemma 1. For every set R ⊆ A, the social welfare of the clustering CR is at
least f(R).

Note that the inequality in the above lemma can sometimes be strict, i.e., the
correspondence between the set R of advertisers and the clustering CR is not one-
to-one. However, we can show that at the social optimum, this correspondence
is one-to-one.

Lemma 2. Let OPT denote a partitioning of K into at most k clusters that
maximizes the social welfare among all such clusterings. Let R∗ denote the set
of advertisers that win (i.e., have the maximum value for) at least one cluster
in OPT . Then the social welfare of the clustering OPT is precisely f(R∗).

We omid the proof of this lemma. By the above two lemmas, it is clear that a c-
approximation algorithm for finding the maximum value of f(R) subject to |R| ≤
k gives a c-approximation algorithm for the clustering problem: the clustering
would simply be CR∗ , where R∗ is the set that approximately maximizes f .
Furthermore, the resulting clustering can be given compactly as a membership
oracle: for each given keyword j ∈ K, the oracle simply evaluates v(a, j) for
a ∈ R∗ and assigns j to the cluster with the maximum value.

The only thing that remains is to give an algorithm that maximizes f . Fortu-
nately, this is easy as the function f is submodular.

Lemma 3. The function f is submodular and non-decreasing.

The proof of the above lemma is easy and is omitted here. Given the submod-
ularity of f , the maximization problem can be solved using the classical greedy
algorithm of Nemhauser et al. [13] with an approximation factor of 1−1/e. This
algorithm consists of iteratively picking an element (in this case an advertiser
a ∈ A) with the maximum marginal value. In the case of our problem where
the input is given using oracles, instead of computing the marginal value of each
a ∈ A exactly in each iteration, we can use sampling, with a sample size of
O(log k) to estimate this marginal value to within a small error. It is not hard to
bound the total error using the union bound and show that the greedy algorithm
with an approximate evaluation of the marginal values can achieve an approx-
imation factor arbitrarily close to 1 − 1/e with high probability. The details of
the argument are straightforward and are omitted.

Theorem 1. For every constant ε > 0, there is an algorithm that approximates
the deterministic formulation of the clustering problem to within a factor of
1 − 1

e − ε. The running time of this algorithm is polynomial in |A| and k and
does not depend on |K|.

Clustering-Based Bidding Languages for Sponsored Search 175

4.2 An Approximation Algorithm for Stochastic Clustering

In this section, we give an algorithm for the stochastic formulation of the clus-
tering problem, in cases where the probability of different types of advertisers is
not too small. Our main result is the following.

Theorem 2. Assume an instance of the stochastic clustering problem satisfies
mint pt ≥ 1

cm for a constant c. Then there is a polynomial time algorithm that
approximately solves this problem on such instance with an approximation ratio
of 1

2 (1 − 1
e).

The proof of this theorem is omitted due to lack of space.

5 Experimental Results

In this section, we describe the results of experiments with the greedy algorithm
for computing a k-clustering of a set of keywords in the single-slot model. The
results of the experiment show that the social welfare of the k-clustering com-
puted by the algorithm is a significant fraction of the total social welfare, even
for values of k that are orders of magnitude smaller than the total number of
keywords. The resulting k-clusterings are natural and partition the keywords
into subsets of roughly the same meaning. Lastly, we show that the k-clusterings
obtained by the algorithm are stable over time; the partition of keywords com-
puted from a data set at time t1 still obtains a large fraction of the social welfare
at time t2 > t1.

5.1 Dataset

The dataset we used in the experiments was a matrix M where the rows are
keywords and the advertisers are columns, with Mij being equal to the monthly
spend of advertiser j on keyword i. The number of keywords in the dataset was
roughly 50,000. We interpreted the spend of advertiser j on keyword i to be the
value of the keyword i to advertiser j. Because we are working with the single-
slot model, we consider the total social welfare to be the total value obtained
when each keyword is assigned to the advertiser with maximum value, i.e.

total social welfare =
∑

i

max
j

Mij

5.2 Experiments

We ran the greedy algorithm for computing a k-clustering on our dataset for
k = 1 to 5, 000. For each value of k, we computed the percentage of total social
welfare that is obtained by the k-clustering. The plot of percentage of total social
welfare vs. k is the solid line in Figure 1. When k = 1, 000, we obtain nearly 80%
of the total social welfare, while reducing the complexity of the bidding language
(the number of items an advertiser can bid on) by a factor of 50. We also ran

176 M. Mahdian and G. Wang

Fig. 1. Percentage of total social welfare vs. k

the greedy algorithm with the row-sums of the matrix M normalized to 1. By
normalizing the value of each keyword to 1, we ensure that the values of the
keywords are not the primary reason that a k-clustering obtains a large fraction
of the total social welfare. The plot of percentage of total social welfare vs. k
for the normalized case is the dotted line. While the dotted line is dominated
by the solid line, we still see a significant reduction in the complexity of the
bidding language while obtaining a significant fraction of social welfare (e.g. at
k = 2, 500, the k-clustering obtains roughly 80% of the total social welfare).

We also compared the social welfare v at time t2 of the k-clustering C1 com-
puted on a dataset from time t1 to the social welfare w at time t2 of the k-
clustering C2 computed from t2 for various values of k. The plot of v/w can
be found in Figure 2. For small values of k, v/w is quite volatile, but for large
enough k, C1 obtains more than 80% of the social welfare of C2.

A sample of keywords from the clusters for k = 1, 000 can be seen in Table 1.

Fig. 2. Time stability of k-clustering

Clustering-Based Bidding Languages for Sponsored Search 177

Table 1. Sample keywords and clusters from a 1, 000-clustering

Cluster 1 Cluter 2 Cluster 3 Cluster 4
computer fax septic system alcohol addiction brooch pin
download free fax software septic tank alcohol addiction treatment gem stone ring
electronic fax storm shelter drug addiction gem stone
email by fax timberline shingles substance abuse indian jewelry
free computer fax software tree service substance abuse treatment tanzanite jewelry

6 Discussion

We have introduced the idea of a clustering-based bidding language for sponsored
search. Clustering-based bidding languages reduce the complexity of bidding for
the advertiser. In addition, they avoid the undesirable economic properties of
broad matching, where advertisers can bid on overlapping sets of keywords. We
gave approximation algorithms for computing a k-clustering that maximizes so-
cial welfare to within a constant factor in both a deterministic and stochastic
formulation of the problem. Experimental results show that a k-clustering ob-
tains a large fraction of the total social welfare when k is several orders of
magnitude smaller than the total number of keywords.

It is worth noting that the greedy algorithm we give for the deterministic
formulation of the problem with single slots can be extended to the case of
multiple slots. The algorithm remains largely the same – instead of greedily
choosing the advertiser that obtains the largest incremental gain in social welfare,
we choose the slate of advertisers that obtain the largest incremental gain. This
algorithm gives a (1 − 1/e) approximation, since the underlying function we are
maximizing is still submodular. When the number of slots is a constant, this
gives us a polynomial-time approximation algorithm. However, if the number of
slots is not a constant, we do not know how to implement the greedy step in
polynomial time.

While we showed experimentally that the k-clustering is relatively stable over
time, eventually the bidding language would need to change. The problem of
evolving a clustering-based bidding language, both in theory and in practice, is
an interesting one.

In theory, increasing the power (and complexity) of a bidding language can
only increase social welfare. In practice, there is a tradeoff – as bidding languages
become more expressive, social welfare can actually decrease. It would be inter-
esting to both study this experimentally and come up with suitable models.

References

1. Aggarwal, G., Goel, A., Motwani, R.: Truthful auctions for pricing search keywords.
In: EC 2006: Proceedings of the 7th ACM conference on Electronic commerce, pp.
1–7. ACM Press, New York (2006)

2. Barzel, Y.: Measurement cost and the organization of markets. Journal of Law and
Economics (1982)

178 M. Mahdian and G. Wang

3. Christian, B., Jennifer, C., Nicole, I., Kamal, J., Omid, E., Mohammad, M.: Dy-
namics of bid optimization in online advertisement auctions. In: WWW 2007: Pro-
ceedings of the 16th international conference on World Wide Web, pp. 531–540.
ACM, New York (2007)

4. Borgs, C., Chayes, J., Immorlica, N., Mahdian, M., Saberi, A.: Multi-unit auc-
tions with budget-constrained bidders. In: EC 2005: Proceedings of the 6th ACM
conference on Electronic commerce, pp. 44–51 (2005)

5. Broder, A.Z., Fontoura, M., Gabrilovich, E., Joshi, A., Josifovski, V., Zhang, T.:
Robust classification of rare queries using web knowledge. In: SIGIR 2007: Pro-
ceedings of the 30th annual international ACM SIGIR conference on Research and
development in information retrieval, pp. 231–238. ACM Press, New York (2007)

6. Dobzinski, S., Lavi, R., Nisan, N.: Multi-unit auctions with budget limits. In: An-
nual IEEE Symposium on Foundations of Computer Science, pp. 260–269 (2008)

7. Edelman, B., Ostrovsky, M., Schwarz, M.: Internet advertising and the general-
ized second price auction: Selling billions of dollars worth of keywords. American
Economic Review (2007)

8. Even-dar, E., Mansour, Y., Mirrokni, V., Muthukrishnan, S., Nadav, U.: Bid
optimization for broad match ad auctions. To appear in WWW 2009 (2009),
http://arxiv.org/abs/0901.3754

9. Feldman, J., Muthukrishnan, S., Pal, M., Stein, C.: Budget optimization in search-
based advertising auctions. In: EC 2007: Proceedings of the 8th ACM conference
on Electronic commerce, pp. 40–49. ACM, New York (2007)

10. Martin, D., Gehrke, J., Halpern, J.: Toward expressive and scalable sponsored
search auctions. In: ICDE Conference (2008)

11. Mehta, A., Saberi, A., Vazirani, U., Vazirani, V.: Adwords and generalized online
matching. J. ACM 54(5), 22 (2007)

12. Muthukrishnan, S.M., Pál, M., Svitkina, Z.: Stochastic models for budget opti-
mization in search-based advertising. In: Deng, X., Graham, F.C. (eds.) WINE
2007. LNCS, vol. 4858, pp. 131–142. Springer, Heidelberg (2007)

13. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for
maximizing submodular set functions - i. Math. Prog. 14, 265–294 (1978)

14. Rusmevichientong, P., Williamson, D.P.: An adaptive algorithm for selecting prof-
itable keywords for search-based advertising services. In: EC 2006: Proceedings of
the 7th ACM conference on Electronic commerce, pp. 260–269. ACM Press, New
York (2006)

15. Singh, S.K., Roychowdhury, V.P.: To broad-match or not to broad-match: An auc-
tioneer’s dilemma. In: Workshop on Ad Auctions (2008)

16. Varian, H.: Position auctions. To appear in International Journal of Industrial
Organization (2006)

17. Zhou, Y., Chakrabarty, D., Lukose, R.: Budget constrained bidding in keyword
auctions and online knapsack problems. In: WWW 2008: Proceeding of the 17th
international conference on World Wide Web, pp. 1243–1244. ACM Press, New
York (2008)

http://arxiv.org/abs/0901.3754

Altruism in Atomic Congestion Games

Martin Hoefer� and Alexander Skopalik��

Dept. of Computer Science, RWTH Aachen University, Germany
{mhoefer,skopalik}@cs.rwth-aachen.de

Abstract. This paper studies the effects of introducing altruistic agents
into atomic congestion games. Altruistic behavior is modeled by a trade-
off between selfish and social objectives. In particular, we assume agents
optimize a linear combination of personal delay of a strategy and the
resulting social cost. Stable states are the Nash equilibria of these games,
and we examine their existence and the convergence of sequential best-
response dynamics. For symmetric singleton games with arbitrary delay
functions we provide a polynomial time algorithm to decide existence for
symmetric singleton games. Our algorithm can be extended to compute
best and worst Nash equilibria if they exist. For more general congestion
games existence becomes NP-hard to decide, even for symmetric network
games with quadratic delay functions. Perhaps surprisingly, if all delay
functions are linear, there exists a Nash equilibrium and any better-
response dynamics converges. In addition, we consider a scenario in which
a central altruistic institution can motivate agents to act altruistically.
We provide constructive and hardness results for finding the minimum
number of altruists to stabilize an optimal congestion profile and more
general mechanisms to incentivize agents to adopt favorable behavior.

1 Introduction

Algorithmic game theory has been focused on game-theoretic models for a va-
riety of important applications in the Internet. A fundamental assumption in
these games, however, is that all agents are selfish. Their goals are restricted to
optimizing their direct personal benefit, e.g. their personal delay in a routing
game. The assumption of selfishness in the preferences of agents is found in the
vast majority of present work on economic aspects of the Internet. However, this
assumption has been repeatedly questioned by economists and psychologists. In
experiments it has been observed that participant behavior can be quite complex
and contradictive to selfishness [15,16]. Various explanations have been given for
this phenomenon, e.g. senses of fairness [7], reciprocity among agents [10], or spite
and altruism [16, 5].

� Work was done while visiting the Computer Science Department, Stanford Univer-
sity, USA. Supported by a fellowship within the Postdoc-Program of the German
Academic Exchange Service (DAAD) and by UMIC Research Center at RWTH
Aachen University.

�� Supported in part by the German Israeli Foundation (GIF) under contract 877/05.

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 179–189, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

180 M. Hoefer and A. Skopalik

Prominent developments in the Internet like Wikipedia, open source software
development, or Web 2.0 applications involve or explicitly rely on voluntary
participation and contributions towards a joint project without direct personal
benefit. These examples display forms of altruism, in which agents accept cer-
tain personal burdens (e.g. by investing time, attention, and money) to improve
a common outcome. While malicious behavior has been considered recently for
instance in nonatomic routing [14,3,4], virus incoulation [18], or bayesian conges-
tion games [8], a deeper analysis of the effects of altruistic agents on competitive
dynamics in algorithmic game theory is still missing.

We consider and analyze a model of altruism inspired by Ledyard [15, p. 154],
and recently studied for non-atomic routing games by Chen and Kempe [4].
Each agent i is assumed to be partly selfish and partly altruistic. She optimizes
a linear combination of personal cost and social cost, given by the sum of cost
values of all agents. The strength of altruism of each agent i is captured by her
altruism level βi ∈ [0, 1], where βi = 0 results in a purely selfish and βi = 1 in a
purely altruistic agent.

Chen and Kempe [4] proved that in non-atomic routing games Nash equilib-
ria are always guaranteed to exist and analyzed the price of anarchy for parallel
link networks. In our paper, we conduct the first study of altruistic agents in
atomic congestion games, a well-studied model for resource sharing. Congestion
games received a lot of attention recently, mostly because of the intuitive for-
mulation and their appealing analytical properties. In particular, they always
possess a pure Nash equilibrium and every sequential better-response dynamics
converges. As one might expect, the presence of altruists can significantly alter
the convergence and existence of pure Nash equilibria. After a formal definition
of congestion games with altruists in Section 2, we concentrate on pure equilibria
and leave a study of mixed Nash equilibria for future work. Our results are as
follows.

We study singleton games in Section 3, in which every strategy consists of a
single resource. In symmetric games with a constant number of different altru-
ism levels, we can decide in polynomial time if a Nash equilibrium exists. Our
algorithm can be adapted to compute the Nash equilibrium with best and worst
social cost if it exists, for any agent population with a constant number of differ-
ent altruism levels. For asymmetric singleton games, in which strategy spaces of
agents differ, deciding the existence of Nash equilibria becomes NP-hard. For the
important subclass of convex delay functions, i.e., linear and superlinear func-
tions, previous results imply that for any agent population a Nash equilibrium
exists and can be computed in polynomial time. In contrast, we show in Sec-
tion 4 that convexity of delay functions is not sufficient for more general games.
Even for symmetric network games, in which strategies represent paths through
a network, quadratic delay functions and pure altruists, Nash equilibria can be
absent and deciding their existence is NP-hard. Perhaps surprisingly, if all delay
functions are linear, the game is a potential game.

In Section 5 we consider a slightly more coordinated scenario, in which there is
a central institution that can convince agents to act altruistically. In this context

Altruism in Atomic Congestion Games 181

a natural question is how many altruists are required to stabilize a social opti-
mum. This has been considered under the name “price of optimum” in [13] for
Stackelberg routing in nonatomic congestion games. We consider two measures
- an optimal stability threshold, which is the minimum number of altruists such
that there is any optimal Nash equilibrium, and an optimal anarchy threshold,
which asks for the minimum number of altruists such that every Nash equi-
librium is optimal. For symmetric singleton games, we adapt our algorithm for
computing Nash equilibria to determine both thresholds in polynomial time. The
optimal anarchy threshold might not be well-defined even for singleton games,
because there are suboptimal Nash equilibria even if all agents are pure altru-
ists. In contrast, we adapt the idea of the optimal stability threshold to a very
general scenario, in which each agent has a personalized stability cost for accept-
ing a strategy under the given congestions. We provide a truthful mechanism
to determine an allocation of agents to strategies with minimum total stability
cost. Unfortunately, such a general result is restricted to the case of singleton
games. Even for symmetric network games on series-parallel graphs, we show
that the problem of determining the optimal stability threshold is NP-hard. Our
reduction also yields inapproximability within any finite factor. This resolves
an open problem raised in [12] on computing the “price of optimum” in atomic
congestion games.

Some proofs have been omitted due to spacial constraints, they will be given
in a full version of this paper.

2 Model and Initial Results

We consider congestion games with altruists. A congestion game with altruists
G is given by a set N of n agents and a set E of m resources. Each agent
i has a set Si ⊆ 2E of strategies. In a singleton congestion game each agent
has only singleton strategies Si ⊆ E. A vector of strategies S = (S1, . . . , Sn)
is called a state. For a state we denote by ne the congestion, i.e. the number
of agents using a resource e in their strategy. Each resource e has a latency
or delay function de(ne), and the delay for an agent i playing Si in state S is
di(S) =

∑
e∈Si

de(ne). The social cost of a state is the total delay of all agents
c(S) =

∑
i∈N

∑
e∈Si

de(ne) =
∑

e∈E nede(ne). Each agent i has an altruism level
of βi ∈ [0, 1], and her individual cost is ci(S) = βic(S) + (1 − βi)di(S). We call
an agent i an egoist if βi = 0 and a βi-altruist otherwise. A (pure) altruist has
βi = 1, a (pure) egoist has βi = 0. A game G with only pure altruists and egoists
is a game, in which βi ∈ {0, 1} for all i ∈ N . A game G is said to have β-uniform
altruists if βi = β ∈ [0, 1] for every agent i ∈ N . A (pure) Nash equilibrium is
a state S, in which no agent i can unilaterally decrease her individual cost by
unilaterally changing her strategy. We exclusively consider pure equilibria in this
paper.

If all agents are egoists, the game is a regular congestion game, which has an
exact potential function Φ(S) =

∑
e∈E

∑ne

x=1 de(x) [20]. Thus, existence of Nash
equilibria and convergence of iterative better-response dynamics are guaranteed.

182 M. Hoefer and A. Skopalik

Obviously, if all agents are altruists, Nash equilibria correspond to local optima of
the social cost function c with respect to a local neighborhood consisting of single
player strategy changes. Hence, existence and convergence are also guaranteed.
This directly implies the same properties for β-uniform games, in which an exact
potential function is Φβ(S) = (1 − β)Φ(S) + βc(S). In general, however, Nash
equilibria might not exist.

Observation 1. There are symmetric singleton congestion games with only
pure altruists and egoists without a Nash equilibrium.

Example 2. Consider a game with two resources e and f , three egoists and one
(pure) altruist. The delay functions are de(x) = df (x) with de(1) = 4, de(2) = 8,
de(3) = 9, and de(4) = 11. One can easily check that this game does not posses
a Nash equilibrium.

Our interest is thus to characterize the games that have Nash equilibria. Towards
this end we observe that an altruistic congestion game can be cast as a congestion
game with player-specific latency functions [17]. In such a game the delay of
resource e to player i depends on the congestion and on the player, i.e., ci(S) =∑

e∈Si
de(ne, i). To embed our games within this framework, we consider a game

with only pure altruists and egoists for simplicity. An altruist moves from Si to
S′

i if the decrease in total delay nede(ne) on the resources e ∈ Si − S′
i she is

leaving exceeds the increase on resources e ∈ S′
i − Si she is migrating to. Hence,

altruists can be seen as myopic selfish agents with ci(S) = d′i(S) =
∑

e∈Si
d′e(ne)

with d′e(ne) = nede(ne) − (ne − 1)de(ne − 1), for ne > 0. We set d′e(0) = 0.
Naturally, a βi-altruist corresponds to a selfish agent with player-specific function
ci(S) = (1−βi)di(S)+βid

′
i(S). Thus, our games can be embedded into the class

of player-specific congestion games. For some classes of such games it is known
that Nash equilibria always exist. In particular, non-existence in Example 2 is
due to the fact that the individual delay function for the altruist is not monotone.
Monotonicity holds, in particular, if delay functions are convex. In this case, it
is known that for matroid games, in which the strategy space of each agent is a
matroid, existence of a Nash equilibrium is guaranteed [2].

Corollary 3. [17,2] For any matroid congestion game with altruists and convex
delay functions a Nash equilibrium exists and can be computed in polynomial
time.

3 Singleton Congestion Games

In the previous section we have seen that there are symmetric singleton conges-
tion games with only pure altruists and egoists with and without Nash equilibria.
For this class of games we can decide the existence of Nash equilibria in polyno-
mial time. In addition, we can compute a Nash equilibrium with minimum and
maximum social cost if they exist.

Altruism in Atomic Congestion Games 183

Theorem 4. For symmetric singleton games with only pure altruists and egoists
there is a polynomial time algorithm to decide if a Nash equilibrium exists and
to compute the best and the worst Nash equilibrium.

The proof relies on the fact that the game is symmetric and the number of re-
sources is polynomial. This allows us to characterize a Nash equilibrium using
certain maximum and minimum values for the delays of each resource. Similar
to [11] we can implicitly enumerate all states that can be a Nash equilibrium us-
ing dynamic programming. The approach can be extended to a constant number
k of different altruism levels. In this more general scenario we choose the delay
parameters for each level of altruists.

Corollary 5. For symmetric singleton games with altruists and a constant num-
ber of different altruism levels, there is a polynomial time algorithm to decide if a
Nash equilibrium exists and to compute the best and the worst Nash equilibrium.

As a byproduct, our approach also allows us to compute a social optimum state in
polynomial time. We simply assume all agents to be pure altruists and compute
the best Nash equilibrium.

Corollary 6. For symmetric singleton congestion games a social optimum state
can be obtained in polynomial time.

In case of asymmetric games, however, deciding the existence of Nash equilibria
becomes significantly harder.

Theorem 7. It is NP-hard to decide if a singleton congestion game with only
pure altruists and egoists has a Nash equilibrium if G is asymmetric and has
concave delay functions.

Proof. We reduce from 3Sat. Given a formula ϕ, we construct a congestion game
Gϕ that has a Nash equilibrium if and only if ϕ is satisfiable. Let x1, . . . , xn

denote the variables and c1, . . . , cm the clauses of a formula ϕ. Without loss of
generality [21], we assume each variable appears at most twice positively and at
most twice negatively.

For each variable xi there is a selfish agentXi that chooses one of the resources
e1xi

, e0xi
, or e0. The resources e1xi

and e0xi
have the delay function 9x and resource

e0 has the delay function 7x + 3. For each clause cj , there is a selfish agent Cj

who can choose one of the following three resources. For every positive literal
xi in cj he may choose e0xi

. For every negated literal x̄i in cj he may choose
e1xi

. Note that there is a stable configuration with no variable agent on e0 if
and only if there is a satisfiable assignment for ϕ. Additionally, there are three
selfish agents u1, u2, and u3 who can choose e1 or e2. Each of the resources e1
and e2 has delay 4 if used by one agent, delay 8 if used by two agents and delay
9 otherwise. The only pure altruist u0 chooses between e1, e2, and e0. Note that
the altruist chooses e1, e2 if one of the variable agents is on e0.

If ϕ is satisfiable by a bitvector (x∗1, . . . , x∗n), a stable solution for Gϕ can be
obtained by placing each variable agent xi on e

x∗
i

xi . Since (x∗1, . . . , x
∗
n) satisfies ϕ

184 M. Hoefer and A. Skopalik

there is one resource for each clause agent that is not used by a variable agent.
Thus, we can place each clause agent on this resource, which he then shares with
at most one other clause agent. Let the altruist u0 use e0 and u1 and u2 choose
e1 and u3 choose e2. It is easy to check that this is a Nash equilibrium.

If ϕ is unsatisfiable, there is no stable solution. To prove this it suffices to show
that one of the variable agents prefers e0. In that case the altruist never chooses
e0 and the agent u0, . . . , u3 play the sub game of Example 2. For the purpose
of contradiction assume that ϕ is not satisfiable but there is a stable solution in
which no variable wants to choose e0. This implies that there is no other agent,
i.e. a clause agent, on a resource that is used by a variable agent. However, if
all clause agents are on a resource without a variable agent we can derive a
corresponding bit assignment which, by construction, satisfies ϕ. Therefore, Gϕ

has a stable solution if and only if ϕ is satisfiable. �	

4 General Games

For any singleton game G with altruists and convex delay functions a Nash
equilibrium always exists. For more general network structures, we show that
convexity of delay functions is not sufficient. In particular, this holds even for
games with only pure altruists and egoists in the case in which almost all delay
functions are linear of the form de(x) = aex, except for two edges, which have
quadratic delay functions de(x) = aex

2. For simplicity, we use some edges with
non-convex constant delay be. We can replace these edges by sufficiently many
parallel edges with delay bex. This transformation is of polynomial size and yields
an equivalent game with only convex delays.

Theorem 8. It is NP-hard to decide if a symmetric network congestion game
with only pure altruists and egoists and quadratic delay functions has a Nash
equilibrium.

Proof. We first reduce from 3Sat to asymmetric congestion games. Again, we
assume each variable appears at most twice positively and at most twice neg-
atively. In a second step, we show that the resulting congestion games can be
turned into symmetric games while preserving all necessary properties.

Our reduction is similar to the construction that we used in the proof of Theo-
rem 7. The structure of the resulting network congestion game GΦ is depicted in
Figure 1. Table 1 lists the delay functions of the edges. Edges that are not listed
there have delay of 0. Due to space limitations we only outline the structure of
our construction. The complete proof will appear in the full version.

Each agent Xi chooses one of three paths from his source node sxi to his
target node t′. Each clause agent Cj uses a path from scj to t′ and uses one of
the three edges as described in the proof of Theorem 7. That is, for each positive
literal xi in cj he may choose a path that includes the edge e0xi

. For every negated
literal x̄i in cj he may choose a path that contains the edge e1xi

. There is a selfish
agent u1 that chooses a path from s1 to t′ and two selfish agents u2 and u3 that

Altruism in Atomic Congestion Games 185

t

t′

sx1

e0

s0

s2

e7

e5 e6

e2 e3

e1

s1 e4

e10

e8

e1
xn

e0
xnsxn

e9

e0
x1

e1
x1

..
.

t0

s′

..
.

scj

e7

s

Fig. 1. The structure of the network of GΦ

(solid edges only) and G′
Φ

Table 1. The delay functions on
the edges of GΦ and G′

Φ

Edge delay function
e0 7x + 3
e1 2
e2 17
e4 2.4x2

e6 x2

e10 18.5
e1

xi
,e1

xi
9x

(s, sxi) ∀1 ≤ i ≤ n Mx
(s, scj) ∀1 ≤ j ≤ m Mx
(s, s1), (s, s2), (s, s′) Mx
(s, s0) (n + m + 5)M
(t0, t) (n + m + 5)M
(t′, t) Mx

allocate the path from s2 to t′. Finally, one altruistic agent u0 chooses a path
from s0 to t0.

The asymmetric network congestion game GΦ can be turned into a symmetric
congestion game G′

Φ. We add a new source node s, a new target node t and a
node s′ to the network and connect them to GΦ as depicted by the dashed edges
in Figure 1. Note that M is an integer that is larger than the sum of possible
delay values in GΦ. �	

Perhaps surprisingly, if every delay function is linear de(x) = aex + be, then
an elegant combination of the Rosenthal potential and the social cost function
yields a potential for arbitrary βi-altruists. Hence, existence of Nash equilibria
and convergence of sequential better-response dynamics is always guaranteed.
The proof is carefully constructed for altruists, as for congestion games with
general player-specific linear latency functions a potential does not exist [9]. We
only consider delays de(x) = aex without offset be, but as noted earlier, this is
not a restriction.

Theorem 9. For any congestion game with altruists and linear delay functions
there is always a Nash equilibrium and sequential better-response dynamics con-
verges.

Proof. The theorem follows from the existence of a weighted potential Φ that
decreases during every improvement step of any agent i with altruism level βi.

Φ(S) =
∑
e∈E

ne∑
j=1

aej +
∑
e∈E

aen
2
e −

n∑
i=1

∑
e∈Si

2βi − 1
βi + 1

ae

Consider a state S and an improving strategy change of an agent i from Si to
S′

i resulting in a strategy profile S′. We show that Φ decreases. For the sake
of clarity and brevity we set ΔN =

∑
e∈Si\S′

i
aene −

∑
e∈S′

i\Si
ae(ne + 1) and

186 M. Hoefer and A. Skopalik

ΔC =
∑

e∈Si\S′
i
(2aene − ae) −

∑
e∈S′

i\Si
(2aene + ae). Note that an improving

strategy change requires (1 − β)ΔN + βΔC > 0.

Φ(S) − Φ(S′) = ΔN +ΔC −
∑

e∈Si\S′
i

2βi − 1
βi + 1

ae +
∑

e∈S′
i\Si

2βi − 1
βi + 1

ae

=
(

1 − 2(2βi − 1)
1 + βi

)
ΔN +ΔC +

(2βi − 1)
1 + βi

ΔC

=
3 − 3βi

1 + βi
ΔN +

3βi

1 + βi
ΔC =

3
1 + βi

((1 − βi)ΔN + βiΔC) > 0

�	

Unfortunately, it follows directly from previous work [6] that the number of
iterations to reach a Nash equilibrium can be exponential, and the problem of
computing a Nash equilibrium is PLS-hard. For regular congestion games with
matriod strategy spaces [1] Nash dynamics converge in polynomial time. It is an
interesting open problem if a similar result holds here.

5 Stabilization Methods

This section treats a model in which an institution can convince selfish agents
to act as altruists. For simplicity of presentation we first restrict to games with
only pure altruists and egoists. A natural question for such an institution to
consider is how many altruists are required to guarantee that there is a Nash
equilibrium with a certain cost, e.g. a Nash equilibrium as cheap as a social
optimum state. We term this number the optimal stability threshold. In a more
pessimistic direction it is of interest to determine the minimum number of al-
truists needed to guarantee that the worst-case Nash equilibrium is optimal. We
term this number the optimal anarchy threshold. Let us denote by n+

1 and n−
1

the optimal stability and anarchy threshold, respectively. As a consequence from
Theorem 4 we can compute both numbers for symmetric singleton congestion
games in polynomial time. For each number of altruists we check if the best
and/or worst Nash equilibrium is as cheap as the social optimum.

Corollary 10. For symmetric singleton congestion games with only pure altru-
ists and egoists there is a polynomial time algorithm to compute n+

1 and n−
1 .

Note that the optimal anarchy threshold is not well-defined, because the worst
Nash equilibrium might always be suboptimal, even for a population of altruists
only. In case of symmetric singleton games and convex delay functions, an easy
exchange argument serves to show that in this case any local optimum is also a
global optimum. However, for concave delay functions or asymmetric singleton
games, a local optimum might still be globally suboptimal. Note that for sym-
metric games, our algorithm is able to detect the cases in which suboptimal local

Altruism in Atomic Congestion Games 187

optima exist. In the asymmetric case, however, a similar approach fails, because
of the NP-hardness of determining existence of a Nash equilibrium. Thus, in the
following we concentrate on the optimal stability threshold.

In asymmetric games, it is also required to determine the identity of agents,
so here we strive to find a set (denoted N+

e) of minimum cardinality. For an
optimal set of congestion values n∗

E = (n∗
e)e∈E we can determine N+

1 (n∗
E) such

that there is a Nash equilibrium of the game with congestion values n∗
e for all

e ∈ E.

Theorem 11. For singleton games with only pure altruists and egoists and a
social optimal congestion vector n∗

E there is a polynomial time algorithm to com-
pute N+

1 (n∗
E).

The theorem can be shown by constructing a complete bipartite graph. The
nodes in one partition correspond to agents, in the other partition there are n∗

e

nodes for each resource e. By appropriately assigning costs in {0, 1} to the edges
we can minimize the number of required altruists with a minimum cost perfect
matching. The complete details are deferred to the full version.

This approach can be extended to an even more general natural scenario.
Suppose each agent i has a stability cost cie for each strategy e ∈ Si. This cost
yields the disutility for being forced to play a certain strategy given a congestion
vector nE . Here we redefine N∗

1 (nE) to be the set agents of minimal stability
cost. We can compute this set by a minimum weight perfect matching if we set
the weights to cie for all edges connecting i to vertices of e. The stability cost
allows for general preferences exceeding categories like altruists and egoists.

Corollary 12. For singleton games and a congestion vector nE there is a poly-
nomial time algorithm to compute N+

1 (nE) with minimal stability cost.

The underlying problem is a matching problem, which is solved optimally. Hence,
it is possible to turn our approach into a truthful mechanism using VCG pay-
ments (see e.g. [19, chapter 9]). Our final mechanism (1) learns the stability
costs from each agent, (2) determines the allocation, and (3) pays appropriate
amounts to agents for truthful revelation of cost values and adaptation of al-
located strategies. In addition, it can be verified that all computations needed
require only polynomial time.

Corollary 13. For singleton games and a congestion vector nE there is a truth-
ful VCG-mechanism to compute N+

1 (nE) in polynomial time.

These general results are restricted to the case of singleton games. For more
general games we show that it is NP-hard to decide if there is a Nash equilibrium
as cheap as the social optimum. Our next theorem establishes this even for
symmetric network congestion games with linear delays, in which an arbitrary
Nash equilibrium and a social optimum state can be computed in polynomial
time [6]. Furthermore, the result requires only a series-parallel network. Thus,
even in this restricted case it is NP-hard to decide if the number n+

1 of pure
altruists required is 0 or 1, or equivalently if N+

1 (n∗
E) is empty or not. This

directly yields hardness of approximation within any finite factor.

188 M. Hoefer and A. Skopalik

Theorem 14. For symmetric network congestion games with 3 agents, linear
delay functions on series-parallel graphs and optimal congestions n∗

E it is NP-
hard to decide if there is a Nash equilibrium with congestions n∗

E.

We remark that the previous theorem contrasts the continuous non-atomic case,
in which a minimal fraction of altruistic demand stabilizing an optimum solution
can be computed in any symmetric network congestion game [13].

References

1. Ackermann, H., Röglin, H., Vöcking, B.: On the impact of combinatorial structure
on congestion games. J. ACM, 55(6) (2008)

2. Ackermann, H., Skopalik, A.: On the Complexity of Pure Nash Equilibria in Player-
Specific Network Congestion Games. In: Deng, X., Graham, F.C. (eds.) WINE
2007. LNCS, vol. 4858, pp. 419–430. Springer, Heidelberg (2007)

3. Babaioff, M., Kleinberg, R., Papadimitriou, C.: Congestion games with malicious
players. In: Proc 8th Conference on Electronic Commerce (EC 2007), pp. 103–112
(2007)

4. Chen, P.-A., Kempe, D.: Altruism, selfishness, and spite in traffic routing. In: Proc.
9th Conference on Electronic Commerce (EC 2008), pp. 140–149 (2008)

5. Eshel, I., Samuelson, L., Shaked, A.: Altruists, egoists and hooligans in a local
interaction model. American Economic Review 88(1), 157–179 (1998)

6. Fabrikant, A., Papadimitriou, C., Talwar, K.: The complexity of pure Nash equilib-
ria. In: Proc 36th Symposium on Theory of Computing (STOC 2004), pp. 604–612
(2004)

7. Fehr, E., Schmidt, K.: A theory of fairness, competition, and cooperation. The
Quarterly Journal of Economics 114, 817–868 (1999)

8. Gairing, M.: Malicious bayesian congestion games. In: Bampis, E., Skutella, M.
(eds.) WAOA 2008. LNCS, vol. 5426, pp. 119–132. Springer, Heidelberg (2009)

9. Gairing, M., Monien, B., Tiemann, K.: Routing (Un-) splittable flow in games with
player-specific linear latency functions. In: Bugliesi, M., Preneel, B., Sassone, V.,
Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 501–512. Springer, Heidelberg
(2006)

10. Gintis, H., Bowles, S., Boyd, R., Fehr, E.: Moral Sentiments and Material Interests:
The Foundations of Cooperation in Economic Life. MIT Press, Cambridge (2005)

11. Ieong, S., McGrew, R., Nudelman, E., Shoham, Y., Sun, Q.: Fast and compact: A
simple class of congestion games. In: Proc 20th Conf Artificial Intelligence (AAAI
2005), pp. 489–494 (2005)

12. Kaporis, A., Spirakis, P.: Stackelberg games: The price of optimum. In: Encyclo-
pedia of Algorithms. Springer, Heidelberg (2008)

13. Kaporis, A., Spirakis, P.: The price of optimum in Stackelberg games on arbi-
trary single commodity networks and latency functions. Theoretical Computer
Science 410(8–10), 745–755 (2009)

14. Karakostas, G., Viglas, A.: Equilibria for networks with malicious users. Mathe-
matical Programming 110(3), 591–613 (2007)

15. Ledyard, J.: Public goods: A survey of experimental resesarch. In: Kagel, J., Roth,
A. (eds.) Handbook of Experimental Economics, pp. 111–194. Princeton University
Press, Princeton (1997)

Altruism in Atomic Congestion Games 189

16. Levine, D.: Modeling altruism and spitefulness in experiments. Review of Economic
Dynamics 1, 593–622 (1998)

17. Milchtaich, I.: Congestion games with player-specific payoff functions. Games and
Economic Behavior 13(1), 111–124 (1996)

18. Moscibroda, T., Schmid, S., Wattenhofer, R.: When selfish meets evil: Byzantine
players in a virus inoculation game. In: Proc. 25th Symposium on Principles of
Distributed Computing (PODC 2006), pp. 35–44 (2006)

19. Nisan, N., Tardos, É., Roughgarden, T., Vazirani, V. (eds.): Algorithmic Game
Theory. Cambridge University Press, Cambridge (2007)

20. Rosenthal, R.W.: A class of games possessing pure-strategy Nash equilibria. Intl.
J. Game Theory 2, 65–67 (1973)

21. Tovey, C.: A simplified NP-complete satisfiability problem. Discrete Applied Math-
ematics 8, 85–89 (1984)

Geometric Spanners for Weighted Point Sets

Mohammad Ali Abam1,�, Mark de Berg2,��, Mohammad Farshi3,� � �,
Joachim Gudmundsson4, and Michiel Smid3,���

1 MADALGO Center, Aarhus University, Denmark
abam@madalgo.au.dk

2 Department of Computer Science, TU Eindhoven, The Netherlands
m.t.d.berg@tue.nl

3 School of Computer Science, Carleton University, Ottawa, ON, K1S 5B6, Canada
mfarshi@cg.scs.carleton.ca, michiel@scs.carleton.ca

4 NICTA, Sydney, Australia
joachim.gudmundsson@nicta.com.au

Abstract. Let (S,d) be a finite metric space, where each element p ∈
S has a non-negative weight w(p). We study spanners for the set S
with respect to weighted distance function dw, where dw(p, q) is w(p) +
d(p, q)+ w(q) if p �= q and 0 otherwise. We present a general method for
turning spanners with respect to the d-metric into spanners with respect
to the dw-metric. For any given ε > 0, we can apply our method to obtain
(5 + ε)-spanners with a linear number of edges for three cases: points in
Euclidean space Rd, points in spaces of bounded doubling dimension, and
points on the boundary of a convex body in Rd where d is the geodesic
distance function.

We also describe an alternative method that leads to (2+ ε)-spanners
for points in Rd and for points on the boundary of a convex body in
Rd. The number of edges in these spanners is O(n log n). This bound on
the stretch factor is nearly optimal: in any finite metric space and for
any ε > 0, it is possible to assign weights to the elements such that any
non-complete graph has stretch factor larger than 2 − ε.

1 Introduction

Motivation. Networks play a central role in numerous applications, and the
design of good networks is therefore an important topic of study. In general, a
good network has certain desirable properties while not being too expensive. In
many applications this means one wants a network providing short paths between
its nodes, while not containing too many edges. This leads to the concept of
spanners, as defined next in the geometric setting.

� MAA was supported by the MADALGO Center for Massive Data Algorithmics,
a Center of the Danish National Research Foundation.

�� MdB was supported by the Netherlands’ Organisation for Scientific Research
(NWO) under project no. 639.023.301.

� � � MF and MS were supported by NSERC of Canada.

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 190–202, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Geometric Spanners for Weighted Point Sets 191

Let G = (S,E) be a geometric graph on a set S of n points in Rd. That is,
G is an edge-weighted graph where the weight of an edge (p, q) ∈ E is equal to
|pq|, the Euclidean distance between p and q. The distance in G between two
points p and q, denoted by dG(p, q), is defined as the length of a shortest (that
is, minimum-weight) path from p to q in G. The graph G is called a (geometric)
t-spanner, for some t � 1, if for any two points p, q ∈ S we have dG(p, q) � t·|pq|.
The smallest t for which G is a t-spanner is called the stretch factor (or dilation,
or spanning ratio) of G. Geometric spanners have been studied extensively over
the past decade. It has been shown that for any set of n points in Rd and any
ε > 0, there is a (1 + ε)-spanner with only O(n/εd−1) edges—see the recent
book by Narasimhan and Smid [1] for this and many other results on spanners.
Instead of considering points in Euclidean space, one can also consider points
in some other metric space. As it turns out, results similar to the Euclidean
setting are possible when the so-called doubling dimension of the metric space—
see footnote 1 on p. 195 for a definition—is bounded by a constant d: in this
case there is a (1 + ε)-spanner with n/εO(d) edges [2,3].

Sometimes the cost of traversing a path in a network is not only determined
by the lengths of the edges on the path, but also by delays occurring at the
nodes on the path: in a (large-scale) road network a node may represent a town
and passing through the town will take time, in a computer network a node may
need some time to forward a packet to the next node on the path, and so on.
The goal of our paper is to study the concept of spanners in this setting.

Problem statement. Let S be a set of n elements—we will refer to the elements
as points from now on—and let d be a metric on S. Assume each point p ∈ S has
a non-negative weight, denoted by w(p). We now define a new distance function
on S, denoted by dw, as follows.

dw(p, q) =
{

0 if p = q,
w(p) + d(p, q) + w(q) if p �= q.

For a graph G = (S,E) and two points p and q in S, we denote by dG,w(p, q)
the length of a shortest path in G between p and q, where edge lengths are
measured using the distance function dw; if p = q, then we define dG,w(p, q) = 0.
For a real number t > 1, we say that G is an additively weighted t-spanner
of S, if for any two points p and q in S we have dG,w(p, q) � t · dw(p, q).
We want to compute an additively weighted t-spanner of S having few edges
and with a small stretch factor. Unfortunately our metric space (S,dw) does
not necessarily have bounded doubling dimension, even if the underlying metric
space (S,d) has bounded doubling dimension. (An easy example is a set S of
n points inside a unit disk in the plane, each having unit weight, and when d
is the Euclidean distance function. Then the doubling dimension of the metric
space (S,dw) will be Θ(log n).) This leads us to the main question we want
to answer: Is it possible to obtain additively weighted spanners with constant
stretch factor—that is, stretch factor independent of n, but also independent of
the weights of the points—and a near-linear number of edges?

Recently Bose et al. [4] also studied spanners for weighted points. More pre-
cisely, they consider points in the plane with positive weights and then define

192 M. Ali Abam et al.

the distance between two points p, q as |pq| − w(p) − w(q). The difference be-
tween their setting and our setting is thus that they subtract the weights from
the Euclidean distance, whereas we add the weights (which in the applications
mentioned above is more natural). This is, in fact, a fundamental difference:
Bose et al. show (under the assumption that the distance between any pair of
points is non-negative) that in their setting there exists a (1 + ε)-spanner with
O(n/ε) edges, while our lower bounds (see below) imply that such a result is
impossible in our setting.

Our results. We present two methods for computing additively weighted span-
ners. The first method is described in Section 2. It essentially shows that whenever
there is a good spanner for the metric space (S,d), there is also a good spanner
for the metric space (S,dw). This is done by clustering the points in a suitable
way, computing a spanner in the d-metric on the cluster centers, and then con-
necting each point to its cluster center. We apply our method to obtain, for any
0 < ε < 1, additively weighted (5 + ε)-spanners in Rd and in spaces of doubling
dimension d, with O(n/εd) and n/εO(d) edges, respectively.

We also apply our method to points on the boundary of a convex body in Rd,
where distances are geodesic distances along the body’s boundary. We give a
simple and efficient algorithm for computing a well-separated pair decomposition
for this metric—we believe this result is interesting in its own right—which
proves the existence of a (1 + ε)-spanner with O(n/εd) edges. When the points
are weighted, we can then use our general method to get an additively weighted
(5 + ε)-spanner with O(n/εd) edges.

Our second method is described in Section 3. It applies to spaces of bounded
doubling dimension for which a semi-separated pair decomposition [5,6] can be
constructed. It leads to spanners with a better stretch factor than our first
method, but the size of the spanner is larger. In particular, it leads to
(2 + ε)-spanners with (n/εO(d)) logn edges, for points in Rd and for points on
the boundary of a convex body in Rd. We also show that the bound on the
stretch factor is nearly optimal: in any finite metric space and for any ε > 0, it
is possible to assign weights to the points such that any non-complete graph has
stretch factor larger than 2 − ε.

2 A Spanner Construction Based on Clustering

Let (S,d) be a finite metric space and let n denote the number of points in S.
We assume that each point p ∈ S has a real weight w(p) � 0. We will show that
if we can find a good spanner for S in the d-metric, we can also find a good
additively weighted spanner for S in the dw-metric.

The main idea is to partition S into clusters, where each cluster has a desig-
nated point as its cluster center. The clusters have the following two properties:
First, the d-distances and dw-distances between any two centers are approxi-
mately equal. Second, for each point p in the cluster with center c, the distance
d(p, c) is at most proportional to the weight w(p) of p. We then show that a
t-spanner of the cluster centers in the d-metric, while connecting the rest of

Geometric Spanners for Weighted Point Sets 193

the points to the center of their clusters, results in an O(t)-spanner of S in the
dw-metric.

Clusterings for additively weighted spanners. We start by stating more precisely
the properties we require from our clustering. Let k1 and k2 be two parameters,
with k1 > 0 and k2 � 1. Define a (k1, k2)-clustering of S to be a partitioning
of S into a collection {C1, ..., Cm} of clusters, each with a center denoted by
center(Ci), such that the following three conditions hold:

(I) for every 1 � i � m and for all p ∈ Ci we have: w(center(Ci)) � w(p);
(II) for every 1 � i � m and for all p ∈ Ci we have: d(center(Ci), p) � k1 ·w(p);

(III) for every 1 � i, j � m we have:

dw(center(Ci), center(Cj)) � k2 · d(center(Ci), center(Cj)).

Later we will show how to find such clusterings. But first we show how to use
such a clustering to obtain a spanner for S in the dw-metric.

Let {C1, C2, . . . , Cm} be a (k1, k2)-clustering of S, and let ci = center(Ci).
Let C = {c1, c2, . . . , cm} denote the set of cluster centers, and let G1 = (C, E1)
be a t-spanner of the set C in the d-metric. Finally, let E2 = {(ci, p) : 1 � i �
m and p ∈ Ci and p �= ci}. In other words, E2 contains the edges connecting the
points in each cluster to the center of that cluster. The next lemma states that
augmenting G1 with the edges in E2 gives a spanner in the dw-metric.

Lemma 1. The graph G = (S,E1 ∪E2) is a t′-spanner in the dw-metric, where
t′ = max(2 + k1 + k1k2t, k2t).

Proof. Let p, q be two distinct points in S. We must show that dG,w(p, q) �
t′ · dw(p, q). Let Ci and Cj be the clusters containing p and q, respectively, and
consider ci = center(Ci) and cj = center(Cj). (It can happen that i = j, but
this will not invalidate the coming argument.) Note that either p = ci or (p, ci)
is an edge in G; similarly q = cj or (q, cj) is an edge in G. Hence,

dG,w(p, q) = dG,w(p, ci) + dG,w(ci, cj) + dG,w(cj , q)
= dw(p, ci) + dG,w(ci, cj) + dw(cj , q)
= (w(p)+d(p, ci)+w(ci))+dG,w(ci, cj)+(w(cj)+d(cj, q)+w(q))
� (2 + k1) · w(p) + dG,w(ci, cj) + (2 + k1) · w(q),

where the last inequality follows from properties (I) and (II) of the clustering.
Now consider the shortest path in G1 from ci to cj in the d-metric. By prop-
erty (III) the length of every link on this path—and, hence, its total length—
increases by at most a factor k2 when we measure its length in the dw-metric.
Since G1 is a t-spanner for C in the d-metric, we thus have dG,w(ci, cj) �
k2 · dG1(ci, cj) � k2t · d(ci, cj). Finally, we observe that

d(ci, cj) � d(ci, p) + d(p, q) + d(q, cj) � k1 · w(p) + d(p, q) + k1 · w(q).

Combing this with our two earlier derivations, we get

194 M. Ali Abam et al.

dG,w(p, q)�(2 + k1) · w(p) + dG,w(ci, cj) + (2 + k1) · w(q)
�(2 + k1) · w(p) + k2t · d(ci, cj) + (2 + k1) · w(q)
�(2+k1) · w(p)+k2t · (k1 · w(p)+d(p, q)+k1 · w(q))+(2+k1) · w(q)
=(2 + k1 + k1k2t) · w(p) + k2t · d(p, q) + (2 + k1 + k1k2t) · w(q)
�max(2 + k1 + k1k2t, k2t) · (w(p) + d(p, q) + w(q))
=max(2 + k1 + k1k2t, k2t) · dw(p, q).

Computing good clusterings and spanners. The following algorithm takes as in-
put the weighted set S and two real numbers k and ε > 0, and computes a
clustering {C1, . . . , Cm} of S.

1. Sort the points of S in nondecreasing order of their weight, and let
p1, p2, . . . , pn be the sorted sequence (ties are broken arbitrarily).

2. Initialize the first cluster C1: set C1 = {p1} and c1 = center(C1) = p1. Ini-
tialize the set of cluster centers: C = {p1}. Set m = 1.

3. For i = 2 to n, do the following:
(a) Compute an index j with 1 � j � m such that cj is a (1+ε)-approximate

nearest-neighbor of pi in the set C, in the d-metric.
(b) If d(cj , pi) � k · w(pi), then set Cj = Cj ∪ {pi}. Otherwise, start a new

cluster: set m = m + 1, set Cm = {pi} and cm = center(Cm) = pi, and
set C = C ∪ {pi}.

4. Return the collection {C1, . . . , Cm} of clusters.

Lemma 2. The algorithm above computes a (k, 1 + 2(1+ε)
k)-clustering of S.

Proof. Since we treat the points in order of increasing weight and the first point
put into a cluster is its center, we have w(cj) � w(p) for every cluster Cj and
point p ∈ Cj . Moreover, by step 3 we only put a point p in a cluster Cj if
d(center(Cj), p) � k · w(p). Hence, conditions (I) and (II) are satisfied.

To prove condition (III), consider two distinct cluster centers c and c′. As-
sume without loss of generality that c was added to C before c′. Then it follows
from the algorithm that w(c) � w(c′). Consider the iteration of the for-loop
in which pi = c′, and consider the set C at the beginning of this iteration.
Observe that c ∈ C. Let cj be the (1 + ε)-approximate nearest-neighbor of
c′ in C that is computed by the algorithm. Since c′ is added to C, we have
d(cj , c′) > k · w(c′). Let c′′ be the exact nearest-neighbor of c′ in C. Then, since
c ∈ C, d(cj , c′) � (1 + ε) · d(c′′, c′) � (1 + ε) · d(c, c′). It follows that

dw(c, c′) = w(c) + d(c, c′) + w(c′) � d(c, c′) + 2 · w(c′)

< d(c, c′) +
2
k

· d(cj , c′) �
(

1 +
2(1 + ε)

k

)
· d(c, c′).

By combining Lemmas 1 and 2, we obtain the following result.

Theorem 1. Let t > 1 be a parameter, and let (S,d) be a metric space with n
weighted points such that the following holds:

Geometric Spanners for Weighted Point Sets 195

– For any subset S′ ⊆ S with m points, we can compute in Tsp(m) time a
t-spanner for S′ in the d-metric with Esp(m) edges, where Tsp and Esp are
non-decreasing functions.

– For any ε > 0 there is a semi-dynamic (insertions-only) data structure for
(1+ε)-approximate nearest-neighbor queries in the d-metric for S, such that
both insertions and queries can be done in Tnn(ε, n) time, where the function
Tnn is non-decreasing in n.

Then we can construct for any ε > 0 a t′-spanner for S in the dw-metric with
O(Esp(n)) edges and t′ = 3t + 2 + 2ε(t + 1). The construction can be done in
O(n log n+ Tsp(n) + n · Tnn(ε, n)) time.

Due to space limitation, the proof of the theorem is removed in this version.

Applications: Euclidean spaces and spaces of bounded doubling dimension. The-
orem 1 can immediately be used to obtain additively weighted spanners in Eu-
clidean spaces and metric spaces of bounded doubling dimension.1

Corollary 1. (i) Given a set S of n points in Rd, each having a non-negative
weight, and given a real number 0 < ε < 1, we can construct an additively
weighted (5+ ε)-spanner of S having O(n/εd) edges in O((n/εd) logn) time.

(ii) Given a metric space (S,d) of constant doubling dimension d, where S is a
set of size n, and in which each point of S has a non-negative real weight,
and given a real number 0 < ε < 1, we can construct an additively weighted
(5 + ε)-spanner of S having n/εO(d) edges in O(n logn) + n/εO(d) time.

Proof. Callahan and Kosaraju [7] have shown that for any set of n points in Rd

and any 0 < ε < 1, one can compute a (1 + ε)-spanner with Esp(n) = O(n/εd)
edges in Tsp(n) = O(n log n+ n/εd) time. Moreover, Arya et al. [8] presented a
data structure for (1 + ε)-approximate nearest-neighbor queries in Rd that has
O((1/εd) logn) query time, and in which insertions can be done in O(log n) time.
Part (i) of the theorem now follows by applying Theorem 1, replacing ε by ε/10
and setting t = 1 + ε/10.

Gottlieb and Roddity [9] have shown that for any metric space (S,d) with
n points and doubling dimension d and any 0 < ε < 1, one can compute a
(1 + ε)-spanner with Esp(n) = n/εO(d) edges in Tsp(n) = O(n log n) + n/εO(d)

time. Moreover, Cole and Gottlieb [10] presented a data structure for (1 + ε)-
approximate nearest-neighbor queries in (S,d) that has 2O(d) logn + 1/εO(d)

query time, and in which insertions can be done in 2O(d) logn time. Part (ii) now
follows by applying Theorem 1, replacing ε by ε/10 and setting t = 1 + ε/10.

1 The doubling dimension of a metric space (S,d) is defined as follows. If p is a point
of S and R > 0 is a real number, then the d-ball with center p and radius R is
the set {q ∈ S : d(p, q) � R}. The doubling dimension of (S,d) is the smallest real
number d such that the following is true: For every real number R > 0, every d-ball
of radius R can be covered by at most 2d d-balls of radius R/2.

196 M. Ali Abam et al.

More applications: the geodesic metric for a convex body. Let S be a set of n
points on the boundary ∂B of a convex body B in Rd. For any two points p, q ∈ S,
let dB(p, q) be the geodesic distance between p and q along ∂B, and let d(p, q)
denote their Euclidean distance. In order to apply Theorem 1 to the metric space
(S,dB), we need a sparse (1 + ε)-spanner for a set S′ ⊆ S based on the distance
function dB. We will obtain such a spanner using a so-called well-separated pair
decomposition (WSPD).

Well-separated pair decompositions were introduced by Callahan and
Kosaraju [7] for the Euclidean metric and by Talwar [3] for general metric
spaces. They are defined as follows. Let (S,d) be a finite metric space. The
diameter diamd(A) of any subset A of S is defined as diamd(A) = max{d(a, b) :
a, b ∈ A}, and the distance d(A,B) of any two subsets A,B ⊆ S is defined
as d(A,B) = min{d(a, b) : a ∈ A, b ∈ B}. For a real number s > 0, we
say that the subsets A and B of S are well-separated with respect to s, if
d(A,B) � s · max(diamd(A), diamd(B)).

Definition 1. Let (S,d) be a finite metric space and let s > 0 be a real number.
A well-separated pair decomposition (WSPD) for (S,d), with respect to s, is a
set {(A1, B1), . . . , (Am, Bm)} of pairs of non-empty subsets of S such that

1. for each i, Ai and Bi are well-separated with respect to s, and
2. for any two distinct points p, q ∈ S, there is exactly one index i with

1 � i � m such that (i) p ∈ Ai and q ∈ Bi or (ii) p ∈ Bi and q ∈ Ai.

The following lemma, due to Callahan and Kosaraju [11], shows how a spanner
can be obtained from a WSPD. They prove the lemma for Euclidean spaces, but
exactly the same proof applies to any metric space.

Lemma 3. [11] Let (S,d) be a finite metric space and let t > 1 be a real number.
Furthermore, let {(A1, B1), . . . , (Am, Bm)} be a WSPD for (S,d), with respect
to s = 2(t+1)

t−1 and, for each i with 1 � i � m, let ai be an arbitrary point
of Ai and bi be an arbitrary point of Bi. Then the graph G = (S,E) where
E = {(ai, bi) : 1 � i � m} is a t-spanner for S with m edges.

Lemma 3 tells us that if we have a WSPD for S in the dB-metric, we can get
a spanner for S in the dB-metric. Using Theorem 1 we can then also get a
spanner for a weighted point set S. As we show in Lemma 10, the metric space
(S,dB) has bounded doubling dimension. Using the algorithm of Har-Peled and
Mendel [2] we can thus construct a WSPD for this metric space. Unfortunately,
their algorithm needs an oracle that returns, for any two points p and q, the
geodesic distance dB(p, q) in O(1) time, and computing geodesic distances on
a convex body is not so easy. We therefore describe a more direct method for
computing a WSPD for points on a convex body. The basic idea behind our
method is to compute a WSPD for the Euclidean space (S,d), and then refine
this WSPD in a suitable way to obtain a WSPD for (S,dB). For the refinement,
we only need to know the normal vectors of all points p ∈ S; we do not need any
distance computations in the dB-metric. An additional advantage of our method
over Har-Peled and Mendel’s method is that the dependency on ε will be better.

Geometric Spanners for Weighted Point Sets 197

For any point p on ∂B, we denote by NB(p) the (outer) normal vector of B
at p. If the tangent plane of p at B is not unique, then we choose for NB(p)
the normal vector of an arbitrary tangent plane. We fix a real number σ such
that 0 < σ < π/2. The following lemma states that dB(p, q) and d(p, q) are
approximately equal, provided the angle between the normals of p and q is at
most σ. Similar observations have been made in papers on approximate shortest
paths on polytopes; see e.g. [12].

Lemma 4. Let p and q be two points on ∂B such that ∠(NB(p),NB(q)) � σ.
Then d(p, q) � dB(p, q) � d(p,q)

cos σ .

The normal vector of each point of ∂B at B can be considered to be a point on
the sphere of directions, denoted Sd−1, in Rd. We partition Sd−1 into O(1/σd−1)
parts such that the angle between any two vectors in the same part is at most σ.
Based on this, we partition ∂B into patches : A σ-patch is the set of all points of
∂B whose normals fall in the same part of the partition of Sd−1.

Let s > 0 be a real number, and let {(A1, B1), . . . , (Am, Bm)} be a WSPD
for the Euclidean metric space (S,d), with respect to s, where m = O(sdn). We
refine the WSPD by partitioning each Ai and Bi into subsets A1

i , . . . , A
�
i and

B1
i , . . . , B

�
i , respectively, where � = O(1/σd−1). The partitioning is done such

that the points in each subset belong to the same σ-patch. Define
Ψ = {(Aj

i , B
k
i) : 1 � j � � and 1 � k � �}.

Lemma 5. The set of pairs in Ψ forms a WSPD with respect to s cosσ for the
metric space (S,dB). The number of pairs in this WSPD is O((sd/σ2d−2)n).

Proof. It is clear that Ψ contains O((sd/σ2d−2)n) elements. It is also clear that
condition 2. in Definition 1 is satisfied. It remains to show that condition 1. is
satisfied. Consider a pair (Aj

i , B
k
i) ∈ Ψ . We have to show that

dB(Aj
i , B

k
i) � s cosσ · max(diamdB(Aj

i), diamdB(Bk
i)). (1)

We first show that
diamd(Aj

i) � diamdB(Aj
i) cosσ. (2)

To show this, let a and a′ be two arbitrary points in Aj
i . Using Lemma 4, we

obtain dB(a, a′) � d(a,a′)
cos σ � diamd(Aj

i)
cos σ , from which (2) follows. By a symmetric

argument, we obtain

diamd(Bk
i) � diamdB(Bk

i) cosσ. (3)

Let a be an arbitrary point ofAj
i and let b be an arbitrary point ofBk

i . Since Aj
i ⊆

Ai and Bk
i ⊆ Bi, and since Ai and Bi are well-separated with respect to s (in the

Euclidean metric d), we have dB(a, b)�d(a, b)�s·max(diamd(Ai), diamd(Bi))�
s·max(diamd(Aj

i), diamd(Bk
i)). Combining this with (2) and (3), it follows that

dB(a, b) � s cosσ ·max(diamdB(Aj
i), diamdB(Bk

i)). This proves that (1) holds.

Lemmas 3 and 5 now imply the following result (take for instance σ = π/3, so
that cosσ = 1/2).

198 M. Ali Abam et al.

Theorem 2. Let S be a set of n points on the boundary of a convex body B in
Rd, and let 0 < ε < 1 be a real number. If we can determine for any p ∈ S an
outward normal of B at p in O(1) time then we can compute in O(n log n+n/εd)
time a (1 + ε)-spanner of S in the dB-metric, with O(n/εd) edges.

Corollary 2. Let S be a set of n points on the boundary of a convex body B in
Rd, each with a non-negative weight. For any 0 < ε < 1, there is an additively
weighted (5 + ε)-spanner of S having O(n/εd) edges.

3 An Additively Weighted (2 + ε)-Spanner

In each of the applications considered in the previous section, our method gen-
erated an additively weighted (5 + ε)-spanner. The goal of this section is to see
if we can obtain additively weighted spanners with a smaller stretch factor. We
start with a lower bound.

Lemma 6. For any finite metric space (S,d) and any real number ε > 0, there
exists a set of weights for the points of S, such that every non-complete graph
with vertex set S has additively weighted stretch factor larger than 2 − ε.

Proof. Let D = diamd(S). Assign each point in S a weight D/ε. Consider a
non-complete graph G with vertex set S, and let p and q be two points in S that
are not connected by an edge in G. We have dw(p, q) � (1 + 2/ε)D, whereas
dG,w(p, q) � 4D/ε. Thus dG,w(p,q)

dw(p,q) � 4D/ε
(1+2/ε)D > 2 − ε.

In the remainder of this section we will describe a general strategy for computing
additively weighted (2 + ε)-spanners for spaces of bounded doubling dimension.
Given the lower bound, the stretch factor is almost optimal in the worst case.
Our method is based on the so-called semi-separated pair decomposition, as in-
troduced by Varadarajan [6]. We use the strategy to obtain additively weighted
(2 + ε)-spanners for two cases: points in Rd, and points on the boundary of a
convex body in Rd.

The semi-separated pair decomposition. Let (S,d) be a metric space, where S
is a set of n points, and let d be its doubling dimension. We assume that each
point of S has a real weight w(p) � 0. Our spanner construction will be based
on a decomposition {(A1, B1), . . . , (Am, Bm)} having properties similar to those
of the WSPD. As we will see, the number of edges in the additively weighted
spanner is proportional to

∑m
i=1(|Ai| + |Bi|). Thus, we need a decomposition

for which this summation is small. Callahan and Kosaraju [7] have shown that,
for the WSPD, this summation can be as large as Θ(n2); in other words, we
cannot use the WSPD to obtain a non-trivial result. By using a decomposi-
tion satisfying a weaker condition, it is possible to make sure the summation is
only O(n logn). This decomposition is the semi-separated pair decomposition,
as introduced in [6].

For a real number s > 0, two subsets A,B ⊆ S are called semi-separated with
respect to s, if d(A,B) � s · min(diamd(A), diamd(B)). A semi-separated pair

Geometric Spanners for Weighted Point Sets 199

decomposition (SSPD) for the metric space (S,d), with respect to s, is defined
to be a set Ψ = {(A1, B1), . . . , (Am, Bm)} of pairs of non-empty subsets of S,
having the same properties as in Definition 1, except that in condition 1., the sets
Ai and Bi are semi-separated with respect to s. The quantity

∑m
i=1(|Ai| + |Bi|)

is called the size of the SSPD.
The SSPD was introduced by Varadarajan [6]. For the Euclidean distance

function in R2, Abam et al. [5] showed that an SSPD with O(n) pairs and size
O(n log n) can be computed in O(n logn) time. It is known that for any set of n
points, any SSPD has size Ω(n log n); see [13,14].

From SSPDs to spanners. Let Ψ be an SSPD for S with respect to some s > 0.
For each pair (A,B) ∈ Ψ we will add a set E(A,B) of edges to our spanner such
that any two points a ∈ A and b ∈ B are connected by a path of length at most
(2 + 3

s) · dw(a, b).
The main idea is quite simple. Assume without loss of generality that

diamd(A) � diamd(B). Thus, we have d(A,B) � s ·diamd(A). Define center(A)
to be a point from A of minimum weight (among the points in A), and let
E1(A,B) = {(x, center(A)) : x ∈ A∪B and x �= center(A)}. This provides short
connections between the points in A and those in B by going via center(A):
since d(A,B) � s ·diamd(A), going via center(A) does not create a large detour
in the d-metric, and since w(center(A)) � w(a) the extra path length caused
by w(center(A)) is also limited. In fact, for some pairs of points a, b, the set
E1(A,B) already gives us a path of the required length. The next lemma gives
the condition under which this is the case.

Lemma 7. Let c = center(A). Let b ∈ B be an points such that w(c) � w(b) +
d(c, b). Then, for any a ∈ A, we have dw(a, c) + dw(c, b) �

(
2 + 3

s

)
· dw(a, b).

Proof. We have
dw(a, c) + dw(c, b) = (w(a) + d(a, c) + w(c)) + (w(c) + d(c, b) + w(b))

� (2 · w(a) + diamd(A)) + 2 · (d(c, b) + w(b))
� (2 · w(a) + diamd(A)) + 2 · (d(c, a) + d(a, b) + w(b))
� 2 · (w(a) + d(a, b) + w(b)) + 3 · diamd(A)
� 2 · (dw(a, b)) + 3 · (d(a, b)/s)
� (2 + 3

s) · dw(a, b).

It remains to establish short paths between the points in A and the points b ∈ B,
where B = {b ∈ B : w(c) > w(b) + d(c, b)} with c = center(A). We cannot use
any point from A as an intermediate destination on such paths, because the
weights of the points from A are too large compared to those in B. Hence,
we need to go via a point from B. However, the diameter of B can be large.
Therefore we first decompose the set B into subsets of small diameter.

The points b in B have d(c, b) < w(c), so they are contained in a d-ball C
of radius w(c). Recall that d is the doubling dimension of (S,d). Thus we can
cover C by sO(d) balls of radius w(c)/(2s). Let C1, . . . , C� be such a collection
of balls, where � = sO(d). We partition B into subsets B1, . . . , B� in such a way
that Bi ⊆ Ci for all 1 � i � �. For each Bi, let center(Bi) be a point of minimum

200 M. Ali Abam et al.

weight (among the points in Bi). The next lemma shows that going from any
point in A to any point in Bi via center(Bi) gives us a path of the required
length.

Lemma 8. Let ci = center(Bi). Then, for two points a ∈ A and b ∈ Bi we have
dw(a, ci) + dw(ci, b) <

(
2 + 2

s

)
· dw(a, b).

The proof of the lemma is similar to the proof of Lemma 7 and is removed
because of the space limitation.

We are now ready to define the set of edges for the pair (A,B) in the SSPD Ψ .
Namely, we define E(A,B) = E1(A,B)∪

(⋃�
i=1 E2(A,Bi)

)
, where E2(A,Bi) =

{(x, center(Bi)) : x ∈ A ∪ Bi and x �= center(Bi)}. For any two points a ∈ A
and b ∈ B, there exists a path in the graph with edge set E(A,B) of length
at most (2 + ε) · dw(a, b). This follows by using Lemmas 7 and 8, and setting
s = ε/3. Using that � = sO(d) = 1/εO(d), we get that the total number of edges
in E(A,B) is |E1(A,B)| +

∑�
i=1 |E2(A,Bi)| = |A| + |B| +

∑�
i=1(|A| + |Bi|) =

(1/ε)O(d) · (|A| + |B|). By combining the sets E(A,B) for all pairs (A,B) ∈ Ψ
we get our final spanner. Since, by definition of the SSPD, for any two points
a, b ∈ S there is a pair (A,B) ∈ Ψ such that a ∈ A and b ∈ B (or vice versa),
we get the following result.

Lemma 9. The graph G = (S,E) with E =
⋃

(A,B)∈Ψ E(A,B) is an additively
weighted (2 + ε)-spanner for S with (1/ε)O(d) ·

∑
(A,B)∈Ψ (|A| + |B|) edges.

Applications. Let S be a set of n points in Rd and let d(p, q) be the Euclidean
distance between p and q. Observe that the metric space (S,d) has doubling
dimension Θ(d). Abam et al. [5] have shown that in the plane an SSPD of size
O(s2n logn) can be computed in O(n logn + s2n) time, for any s > 1. Their
algorithm in fact also works in higher dimensions; its analysis also goes through,
with appropriate changes to the constant factors in certain packing lemmas. This
leads to an SSPD of size O(sdn logn) that can be computed in O(n logn+ sdn)
time, giving the following result.

Theorem 3. Given a set S of n points in Rd, each one having a non-negative
weight, and given a real number 0 < ε < 1, we can construct an additively
weighted (2+ε)-spanner of S having (n/εO(d)) log n edges in (n/εO(d)) logn time.

We now turn our attention to a set S of points on the boundary of a convex
body B. For any two points p and q of S, let dB(p, q) be the geodesic distance
between p and q along ∂B. The proof of the following lemma is based on the
concept of σ-patches introduced earlier, and removed due to space limitation.

Lemma 10. The metric space (S,dB) has doubling dimension Θ(d).

Let d denote the Euclidean distance function in Rd, let s > 1 be a real num-
ber, and consider an SSPD {(A1, B1) . . . , (Am, Bm)} for the metric space (S,d),
with respect to s, whose size is O(sdn logn). We fix a real number σ such that
0 < σ < π/2. Let i be an index with 1 � i � m. As before, we partition

Geometric Spanners for Weighted Point Sets 201

both Ai and Bi into subsets A1
i , . . . , A

�
i and B1

i , . . . , B
�
i , respectively, where

� = O(1/σd−1), such that the points in each subset belong to the same σ-patch
of ∂B. Now define Ψ = {(Aj

i , B
k
i) : 1 � j � �, 1 � k � �}. The proof of the

following lemma is similar to that of Lemma 5.

Lemma 11. The set Ψ forms an SSPD, with respect to s cosσ, for the metric
space (S,dB). The size of this SSPD is O((sd/σ2d−2)n logn).

We choose σ = π/3, so that cosσ = 1/2. We obtain the following result.

Theorem 4. Given a convex body B in Rd and a set S of n points on the
boundary of B. Assume that each point of S has a non-negative real weight. Let
0 < ε < 1 be a real number. We can construct an additively weighted (2 + ε)-
spanner of S having (n/εO(d)) logn edges in (n/εO(d)) logn time.

Remark 1. It follows from the proofs of Lemmas 7 and 8 that the graph G has
spanner diameter 2. That is, for any two points p and q of S, the graph G
contains a path between p and q that contains at most two edges and whose
dw-length is at most (2 + ε) · dw(p, q). If we want to keep this property, then
the number of edges in our spanner is worst-case optimal: For any real number
t > 1, there exists a metric space (S,d) such that every t-spanner for S having
spanner diameter 2 has Ω(n log n) edges—see Exercise 12.10 in Narasimhan and
Smid [1]. Of course, this then also holds for additively weighted spanners. Note
that if all weights are equal and very large compared to the d-diameter of the
set, then any additively weighted 2-spanner must have spanner diameter 2. (This
does not imply, however, that Ω(n logn) is a lower bound on the worst-case size
of additively weighted 2-spanners.)

References

1. Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cambridge University
Press, Cambridge (2007)

2. Har-Peled, S., Mendel, M.: Fast construction of nets in low-dimensional metrics
and their applications. SIAM J. on Computing 35, 1148–1184 (2006)

3. Talwar, K.: Bypassing the embedding: algorithms for low dimensional metrics. In:
STOC 2004, pp. 281–290 (2004)

4. Bose, P., Carmi, P., Couture, M.: Spanners of additively weighted point sets. In:
Gudmundsson, J. (ed.) SWAT 2008. LNCS, vol. 5124, pp. 367–377. Springer, Hei-
delberg (2008)

5. Abam, M.A., de Berg, M., Farshi, M., Gudmundsson, J.: Region-fault tolerant
geometric spanners. In: SODA 2007, pp. 1–10 (2007)

6. Varadarajan, K.R.: A divide-and-conquer algorithm for min-cost perfect matching
in the plane. In: FOCS 1998, pp. 320–331 (1998)

7. Callahan, P.B., Kosaraju, S.R.: A decomposition of multidimensional point sets
with applications to k-nearest-neighbors and n-body potential fields. J. of the
ACM 42, 67–90 (1995)

8. Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., Wu, A.: An optimal al-
gorithm for approximate nearest neighbor searching in fixed dimensions. J. of the
ACM 45, 891–923 (1998)

202 M. Ali Abam et al.

9. Gottlieb, L.A., Roditty, L.: An optimal dynamic spanner for doubling metric
spaces. In: Halperin, D., Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp.
478–489. Springer, Heidelberg (2008)

10. Cole, R., Gottlieb, L.A.: Searching dynamic point sets in spaces with bounded
doubling dimension. In: STOC 2006, pp. 574–583 (2006)

11. Callahan, P.B., Kosaraju, S.R.: Faster algorithms for some geometric graph prob-
lems in higher dimensions. In: SODA 1993, pp. 291–300 (1993)

12. Agarwal, P.K., Har-Peled, S., Sharir, M., Varadarajan, K.R.: Approximate shortest
paths on a convex polytope in three dimensions. J. of the ACM 44, 567–584 (1997)

13. Hansel, G.: Nombre minimal de contacts de fermeture nécessaires pour réaliser une
fonction booléenne symétrique de n variables. Comptes Rendus de l’Académie des
Sciences 258, 6037–6040 (1964)

14. Bollobás, B., Scott, A.D.: On separating systems. European J. of Combinatorics 28,
1068–1071 (2007)

k-Outerplanar Graphs, Planar Duality, and Low
Stretch Spanning Trees

(Extended Abstract)

Yuval Emek�

School of Electrical Engineering, Tel Aviv University, Tel Aviv 69978, Israel
yuvale@eng.tau.ac.il

Abstract. Low distortion probabilistic embedding of graphs into ap-
proximating trees is an extensively studied topic. Of particular interest
is the case where the approximating trees are required to be (subgraph)
spanning trees of the given graph (or multigraph), in which case, the
focus is usually on the equivalent problem of finding a (single) tree with
low average stretch. Among the classes of graphs that received special at-
tention in this context are k-outerplanar graphs (for a fixed k): Chekuri,
Gupta, Newman, Rabinovich, and Sinclair show that every k-outerplanar
graph can be probabilistically embedded into approximating trees with
constant distortion regardless of the size of the graph. The approximat-
ing trees in the technique of Chekuri et al. are not necessarily spanning
trees, though.

In this paper it is shown that every k-outerplanar multigraph admits a
spanning tree with constant average stretch. This immediately translates
to a constant bound on the distortion of probabilistically embedding k-
outerplanar graphs into their spanning trees. Moreover, a randomized
algorithm is presented for constructing such a low average stretch span-
ning tree in expected linear time. This algorithm relies on some new
insights regarding the connection between low average stretch spanning
trees and planar duality.

1 Introduction

The Problem. Consider an n-vertex connected graph G = (V (G),E (G)) and
let �(e) be a positive length associated with every edge e ∈ E (G). For any two
vertices u, v ∈ V (G), let δG(u, v) denote the distance between u and v in G,
namely, the length, taken with respect to �, of a shortest path connecting u and
v in G. Given a spanning tree T of G and some edge e ∈ E (G), the stretch of e
in T is defined as strT (e) = δT (e)/�(e). Spanning trees with low stretch for all
edges can be very useful in many applications. However, there exist some trivial
graphs for which every spanning tree admits an edge with stretch Ω(n) (e.g.,
the n-cycle). This motivates the construction of spanning trees with low average
stretch, denoted by av-strG(T) = 1

|E(G)|
∑

e∈E(G) strT (e) [2].

� Supported in part by the Israel Science Foundation, grants 221/07 and 664/05.

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 203–214, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

204 Y. Emek

The following related notion was introduced in [4]. Given a probability distri-
bution D over a set T of spanning trees of G, we say that G is probabilistically
embedded into T (under D) with distortion α if E[δT (u, v)] ≤ α · δG(u, v) for ev-
ery two vertices u, v ∈ V (G), where the expectation is with respect to T ∈D T .
It is shown in [2] that a graph G can be probabilistically embedded into its span-
ning trees with distortion α if and only if every multigraph obtained from G by
replicating its edges has a spanning tree with average stretch α. Consequently,
in the context of constructing low average stretch spanning trees, one usually
considers multigraphs rather than simple graphs. (This can be viewed as taking
a weighted average of the edge stretch factors.)

A tree T is called a dominating tree of the graph G if V (T) ⊇ V (G) and
δT (u, v) ≥ δG(u, v) for every two vertices u, v ∈ V (G). Clearly, every spanning
tree of G is also a dominating tree of G; the converse is not true as a dominating
tree may have vertices and edges that do not exist in the original graph G,
and hence it is not necessarily a subgraph of G. The notion of probabilistic
embedding can be redefined by allowing the support T to contain dominating
trees that are not subgraphs of G. For many applications and in particular,
for those applications mentioned in [4,5], this does not exhibit any obstacle.
However, there exist some applications for which it is impossible to use non-
subgraph dominating trees in the support of the probabilistic embedding, most
notably in the context of networking, where G represents an existing physical
graph (e.g., the minimum communication spanning tree problem [13]).

k-Outerplanar Graphs. An outerplanar graph (or a 1-outerplanar graph) is
a graph that can be drawn in the plane with all vertices lying on the unbounded
face. A planar graph is said to be k-outerplanar, k ≥ 2, if it can be drawn in
the plane such that by removing the vertices on the unbounded face we obtain a
(k− 1)-outerplanar graph. A canonical example for a k-outerplanar graph is the
2k × n grid (containing 2k rows of vertices with n vertices in each row) which
also serves as a canonical example for a graph with tree width proportional to
k. When referring to k-outerplanar graphs, we usually assume that k is fixed.
However, every planar graph is k-outerplanar for some k (typically, much smaller
than n) and this outerplanarity factor plays a key role in many polynomial time
approximation schemes for NP-hard optimization problems on planar graphs [3].

Related Work. The problem of constructing spanning trees with low average
stretch was first studied in [2], where it is proved that every n-vertex multi-
graph G admits a spanning tree T which satisfies av-strG(T) = eO(

√
ln n ln ln n).

They also show that there exist some graphs, the
√
n × √

n grid being one of
them, for which every spanning tree admits average stretch Ω(logn) and con-
jectured that this lower bound is tight. The upper bound of [2] was improved
drastically in [8] by introducing a construction of spanning trees with average
stretch O(log2 n log logn). Very recently, [1] presented a further improvement by
establishing an almost tight upper bound of O(log n log logn log3 log logn).

The notion of probabilistic embedding was explicitly introduced in [4] (al-
though, it was implicitly used in [2]), which initiated a series of papers that

k-Outerplanar Graphs, Planar Duality, and Low Stretch Spanning Trees 205

developed probabilistic embeddings of arbitrary graphs into non-subgraph dom-
inating trees: in [4] it is shown that every n-vertex graph can be probabilis-
tically embedded into dominating trees with distortion O(log2 n), while some
graphs must suffer a distortion of Ω(logn); the upper bound was improved to
O(log n log logn) in [5,6]; and a tight O(log n) upper bound is proved in [11].

Some papers study probabilistic embeddings of specific graph classes. In [16]
it is shown that every planar graph can be probabilistically embedded into its
(non-subgraph) dominating trees with distortion O(log n) using the decomposi-
tion technique of [15] for graphs excluding small minors. This is generalized in
[14] to graphs of bounded genus by showing that such graphs can be probabilis-
tically embedded with constant distortion into planar graphs. In [12] it is proved
that while series-parallel graphs can be embedded into �1 with constant distor-
tion, there exist some unweighted series-parallel graphs that cannot be proba-
bilistically embedded into dominating trees with distortion o(logn). This lower
bound is matched in [10] by showing that unweighted series-parallel graphs can
be probabilistically embedded into their spanning trees with distortion O(log n).

It is also proved in [12] that every outerplanar graph can be probabilistically
embedded into its spanning trees with constant distortion. The construction of
[12] for (1-)outerplanar graphs is (partially) generalized to k-outerplanar graphs
in [7], where a probabilistic embedding with distortion exponential in k (but
independent of n) is presented. Note however, that unlike the construction of
[12], the technique of [7] constructs (random) dominating trees which are not
necessarily spanning trees of the original graph.

Contribution. In this paper we show that every k-outerplanar multigraph
G admits a spanning tree T which satisfies av-strG(T) ≤ ck, where c is an
absolute constant. This immediately implies that every k-outerplanar graph can
be probabilistically embedded into its spanning trees with distortion depending
solely on k, thus enhancing the result of [7]. Our proof is constructive: we present
a randomized algorithm that constructs such spanning trees in expected linear
time. Due to lack of space, some of the proofs are omitted from this extended
abstract and can be found in the full version [9].

Techniques. The backbone of our algorithm is a rather standard peeling-an-
onion decomposition (cf. [7]): on input k-outerplanar graph G, we first peel off
the vertices on the unbounded face to obtain a (k − 1)-outerplanar graph G′;
we then recursively construct a good spanning tree T ′ of G′; next, we insert
the missing vertices of G back into T ′ to obtain the graph H ; and finally, we
construct a good spanning tree T of H . This framework is formally presented in
Section 3. The secret ingredient of the algorithm lies in the last step: constructing
a good spanning tree T of H .

As observed in [7], the graph H is essentially a Halin graph, which can be
viewed as a planar embedding of a tree merged with a cycle. Indeed, our main
challenge is to construct low stretch spanning trees for (a generalization of)
Halin graphs, as opposed to the non-subgraph dominating trees constructed in
[7]. Our construction is completely different than the construction of [7] and it

206 Y. Emek

relies on reducing the task of constructing a low stretch spanning tree for a planar
graph to that of constructing a low stretch spanning tree for its planar dual (see
Theorem 3). This reduction is employed in two distinct occasions within a series
of graph manipulations presented in Section 4.

2 Preliminaries

Consider an n-vertex connected graph G. Let V (G) and E (G) denote the vertex
and edge sets of G, respectively. Each edge e ∈ E (G) is associated with some
length �(e) ∈ R>0. The length of a path P in the graph is the sum of lengths
of the edges in the path, denoted by �(P) =

∑
e∈E(P) �(e). Given two vertices

u, v ∈ V (G), let δG(u, v) denote the distance between them in G, namely, the
length of a shortest path from u to v. The degree of u, denoted deg(u), is defined
as the number of edges incident on u in G. It will be convenient for us to define
the reciprocal of the length of edge e as its width, denoted by w(e) = 1/�(e).

In what follows we do not distinguish between graphs and multigraphs
(namely, a graph may have edge multiplicities). We say that the graph G is
simple1 if G contains at most one edge with endpoints u and v for every two
vertices u, v ∈ V (G). Edges that share both endpoints are called replicas. Repli-
cas are usually assumed to have the same length (and width). Given two vertices
u, v ∈ V (G), the multiplicity of u and v in G, denoted by μG(u, v), is defined to
be the number of (u, v)-replicas, i.e., the number of edges connecting u and v.
The skeleton H of G is the graph obtained from G when all replicas e1, . . . , em of
the edge (u, v) ∈ E (G), m = μG(u, v), are identified to a single edge eu,v ∈ E (H)
with w(eu,v) =

∑m
i=1 w(ei). Clearly, the skeleton H is a simple graph. Given a

class C of graphs, and assuming that C is not closed under edge replication, the
class replicated-C consists of every graph whose skeleton is in C.

A path π = (v1, . . . , vk) in G is said to be isolated if deg(v1), deg(vk) �= 2 and
deg(vi) = 2 for every 1 < i < k. The graph H obtained from G by contracting
every isolated path π to a single edge eπ with �(eπ) = �(π) is referred to as the
core of G. It is easy to verify that distances between vertices of degree different
than 2 in H agree with those in G. Given a class C of graphs, and assuming that
C is not closed under edge subdivision, the class subdivided-C consists of every
graph whose core is in C.

A graph is called biconnected if the removal of any single vertex does not
separate it. A block is a maximal biconnected subgraph. Clearly, every spanning
tree of G can be edge-partitioned into spanning trees of the blocks of G.

Stretch and Load. Consider some spanning tree T of G and let e = (u, v) be
some edge in E (G). The stretch of e in T with respect to G is defined to be

strT,G(e) = δT (u, v)/�(e) .

(Observe that the stretch of e in the spanning tree T does not depend on the
graph G, but our notation mentions G to recall that this is the graph that
1 Self loops are ignored in this paper.

k-Outerplanar Graphs, Planar Duality, and Low Stretch Spanning Trees 207

“hosts” T .) The total stretch of T with respect to G is denoted by tot-strG(T) =∑
e∈E(G) strT,G(e) and the average stretch of T with respect to G is simply

av-strG(T) = tot-strG(T)/|E (G)|.
Let cutT (e) ⊆ V (T) × V (T) be the set of all (unordered) vertex pairs which

are connected in T via e (if e /∈ E (T), then cutT (e) = ∅). The load of e in T
with respect to G is defined to be

loadT,G(e) =
∑

e′∈E(G)∩cutT (e)

w(e′)/w(e) .

The total load of T with respect to G is denoted by tot-loadG(T) =∑
e∈E(G) loadT,G(e) and the average load of T with respect to G is simply

av-loadG(T) = tot-loadG(T)/|E (G)|. Since loadT,G(e) = 0 for every edge
e ∈ E (G) − E (T), we can rewrite tot-loadG(T) =

∑
e∈E(T) loadT,G(e). By a

simple change of summation, we obtain the following corollary which implies
that we may shift our focus from the construction of low average stretch span-
ning trees to that of low average load spanning trees.

Corollary 1. For every graph G and spanning tree T of G, we have
tot-strG(T) = tot-loadG(T).

Consider some graph H and let T be a spanning tree of H . The load-replication
T̂ of T under H is the graph obtained from T if each edge e ∈ E (T) is replicated
�loadT,H(e)� times, namely, μT̂ (e) = �loadT,H(e)�. Clearly, the cardinality of the
edge set of T̂ serves as an upper bound on (and a good estimation of) the total
load of T under H . Taking load-replications of spanning trees is a fundamental
step in our construction based on the following lemma.

Lemma 2. Consider some graph G, a vertex induced subgraph H of G, and a
spanning tree T of H. Let T̂ be the load-replication of T under H and let Ǧ
be the graph resulting from G if H is replaced by T̂ , that is, V (Ǧ) = V (G)
and E (Ǧ) = (E (G) − E (H)) ∪ E (T̂). Consider some spanning tree Ť of Ǧ (by
definition, Ť is also a spanning tree of G). Then loadŤ ,G(e) ≤ loadŤ ,Ǧ(e) for
every edge e ∈ E (Ť).

Lemma 2 essentially states that if we can construct a spanning tree T of H with
low tot-loadH(T), then for the sake of analysis, we can replace H in G by the
load-replication of T under H (a replicated-tree) and continue from there.

Planar Duality. Consider some planar graphG and fix some planar embedding
η of G. The planar dual G̃ of G under η is the graph which has a vertex vφ

corresponding to each face φ in η and an edge ẽ = (vφ, vφ′) corresponding to
each edge e ∈ E (G) on the boundary of the faces φ and φ′ in η. The planar
embedding η uniquely determines a dual planar embedding η̃ of G̃. It is well
known that G is the planar dual of G̃ under η̃. We refer to the vertex vφ ∈ V (G̃)
as the dual of the face φ and to the edge ẽ ∈ E (G̃) as the dual of the edge
e ∈ E (G) with respect to the planar duality 〈η, η̃〉. We associate lengths (and

208 Y. Emek

widths) with the dual edges by setting �(ẽ) = w(e) (and w(ẽ) = �(e)) for every
ẽ ∈ E (G̃). Clearly, this definition of dual edge lengths does not violate the bi-
directionality of the planar duality 〈η, η̃〉, i.e., it is still true that if G̃ is the dual
of G under η, then G is the dual of G̃ under η̃.

Consider some spanning tree T of G. The dual of T with respect to the
planar duality 〈η, η̃〉 is the subgraph T̃ of G̃ defined by setting V (T̃) = V (G̃)
and E (T̃) = {ẽ ∈ E (G̃) | e ∈ E (G) − E (T)}. It is proved in [17] that T̃ is a
spanning tree of G̃. Combined with the notion of load, we extend the technique
of [17] to establish the following lemma.

Lemma 3. The dual T̃ of T with respect to the planar duality 〈η, η̃〉 is a span-
ning tree of G̃. Moreover, |strT,G(e) − loadT̃ ,G̃(ẽ)| ≤ 1 for every edge e ∈ E (G),
and therefore av-loadG̃(T̃) ≤ av-loadG(T) + 1.

Graph Classes. Given a planar embedding η of G, we say that η is outerplanar
(or 1-outerplanar) if all vertices of G are incident on the unbounded (outer) face
in η. Inductively, η is said to be k-outerplanar, k ≥ 2, if by removing the vertices
incident on the unbounded face (and the edges incident on these vertices), we
obtain a (k − 1)-outerplanar embedding of the remaining graph. The graph G
is called k-outerplanar if it admits a k-outerplanar embedding. (An outerplanar
graph is simply a 1-outerplanar graph.) Observe that outerplanar graphs are
closed under edge replication and not closed under edge subdivision.

A bush H is a planar graph obtained by taking a planar embedding of a
simple cycle C, embedding a forest T in the region enclosed by C (C and T
are disjoint), and introducing some new edges, each one of them has at least
one endpoint in C. In other words, the (planar) bush H is defined by taking
V (H) = V (T)∪V (C), V (C)∩V (T) = ∅, and E (H) = E (C)∪E (T)∪D, where
D ⊆ V (C)× (V (C)∪V (T)). If each vertex of C has degree at most 3 in H (i.e.,
it is adjacent to at most one vertex other than its two neighbors in the cycle),
then we say that the bush H is a Halin graph. Observe that bushes (and Halin
graphs) are closed under edge subdivision and not closed under edge replication.

Consider some planar graph G. A vertex u ∈ V (G) is said to be a dominating
vertex if it is adjacent to all other vertices of G, that is, if (u, v) ∈ E (G) for
every vertex v ∈ V (G) − {u}. The graph is called a dominated graph if it has
a dominating vertex. A vertex u ∈ V (G) is said to be a pivot vertex if all
simple cycles in G go via u. The graph is called a pivot graph if it has a pivot
vertex. Observe that dominated graphs are closed under edge replication and
not closed under edge subdivision. In contrast, pivot graphs are closed under
edge subdivision and not closed under edge replication.

Suppose that G is a subdivided-dominated graph and let H be its core. H is
a dominated graph, thus it admits a dominating vertex v. Clearly, v is also a
vertex of G. Moreover, v is connected by an isolated path (in G) to every vertex
of degree different than 2 in V (G) − {v}. We refer to v as a weak dominating
vertex of G.

Useful Assumptions. Recall that the graph G may have arbitrary edge multi-
plicities. In particular, we cannot bound the number of edges |E (G)| as a function

k-Outerplanar Graphs, Planar Duality, and Low Stretch Spanning Trees 209

of the number of vertices n = |V (G)|. Let m be the number of edges in the skele-
ton of G, that is, the number of (unordered) vertex pairs (u, v) ∈ V (G) ×V (G)
with μG(u, v) > 0. The following lemma, which is essentially derived from com-
bining Lemma 5.2 in [2] and Corollary 1, shows that it is sufficient to consider
graphs that do not have “too many” edges.

Lemma 4. For every graph G, there exists some subgraph G′ of G on the same
vertex set such that (1) |E (G′)| ≤ 2m; and (2) av-loadG(T) ≤ 2 · av-loadG′(T)
for every spanning tree T of G′. Moreover, G′ can be obtained from G in linear
time.

As G is planar, we know that m ≤ 3n−6. Therefore by employing Lemma 4, we
can subsequently assume that |E (G)| = O(n) at the price of losing a factor of 2
in the performance guarantee. Another assumption we will have to make is that
each vertex in G is adjacent to at most three other vertices (although it may be
incident on more than three edges due to edge multiplicities). In that case we
say that G is tri-adjacent. For the purpose of making such an assumption, we
introduce a linear time transformation (based on standard techniques), referred
to as the spreading transformation. The spreading transformation depends on a
real parameter τ > 0 and its properties are stated in the following lemma.

Lemma 5. Let G′ be the outcome of the spreading transformation when applied
to G with parameter τ . Then G′ satisfies the following properties: (1) G′ is tri-
adjacent; (2) if G is k-outerplanar, then so is G′; and (3) every spanning tree
T ′ of G′ that satisfies av-loadG′(T ′) ≤ τ can be translated in linear time back
into a spanning tree T of G such that av-loadG(T) ≤ 3τ .

Assuming that the input graph G is tri-adjacent, we will construct in the re-
mainder of the paper a spanning tree T of G that satisfies av-loadG(T) ≤ ck.
Therefore by employing Lemma 5 with parameter τ = ck, we may subsequently
make this assumption at the price of losing a factor of 3 in the performance
guarantee.

3 The Algorithm — Peeling an Onion

Our goal in this section (and in the whole paper) is to prove the following
theorem.

Theorem 6. For every k-outerplanar graph G, there exists a spanning tree T
such that av-loadG(T) ≤ ck, where c is a universal constant (independent of k
and G).

The proof of Theorem 6 is constructive: we present a randomized algorithm,
referred to as the onion peeling algorithm, that given a k-outerplanar graph G
with a realizing planar embedding η, constructs the desired spanning tree T
of G in expected linear time. Recall our previous assumptions that |E (G)| =
O(n), where n = |V (G)| (due to Lemma 4) and that G is tri-adjacent (due to

210 Y. Emek

Lemma 5). The onion peeling algorithm is based on a recursive process similar
to that presented in [7] (and essentially, to many other recursive processes on
k-outerplanar graphs, cf. [3]). However, the main building block of the onion
peeling algorithm, namely, the construction of low stretch spanning trees for
(replicated) Halin graphs, is entirely different (see Section 4). This also leads to
a different type of analysis.

The onion peeling algorithm works as follows (a formal pseudo-code descrip-
tion is deferred to [9]): (i) remove the vertices on the unbounded face of G (and
the edges incident on these vertices) to obtain a (k−1)-outerplanar graph G′; (ii)
recursively construct a “good” spanning tree T ′ for G′; (iii) insert the vertices
(and edges) that were removed in step (i) back into the planar embedding of T ′

to compose the graph H ; and (iv) construct a “good” spanning tree T of H .
Our algorithm relies on two fundamental constructions. First (implicit in the

above description), when the recursion reaches its halting condition on a 1-
outerplanar graph G, we have to construct a “good” spanning tree T of G. This
is done via the randomized construction of [12] that probabilistically embeds a
given outerplanar graph G into its spanning trees with constant distortion. As
we will see later on, this randomized construction of [12] is employed by our algo-
rithm in several occasions, and it is subsequently referred to as Procedure GNRS.
Actually, we shall use a variant of Procedure GNRS (the procedure’s name is kept,
though) whose input may be a subdivided-outerplanar graph2. The performance
guarantee of Procedure GNRS is stated in the following theorem.

Theorem 7. Procedure GNRS, when invoked on a subdivided-outerplanar graph
G with a realizing planar embedding η, runs in expected linear time and returns
a spanning tree T of G that satisfies av-loadG(T) ≤ c1, where c1 is a universal
constant (independent of G).

The existential claim of Theorem 7 is essentially established in [12]. It is trivial
to design an expected polynomial time implementation of Procedure GNRS and
the linear bound on the expected running time is due to a slightly more involved
implementation that we omit from this version of the paper.

The second fundamental construction on which the onion peeling algorithm
relies is the construction of a “good” spanning tree T of H (step (iv)). A crucial
observation in this context is that H is a replicated-Halin graph (actually, if
G is simple, then H is strictly a Halin graph). This is due to the assumption
that G is tri-adjacent (without which, H would have been a replicated-bush).
The technique of [7] probabilistically embeds a Halin graph H into a collec-
tion of dominating trees with constant distortion, but these dominating trees
are not necessarily spanning trees of H . By contrast, we present a procedure,
called Procedure RH, which guarantees that T is a spanning tree of H . The in-
put of Procedure RH is not assumed to be a (simple) Halin graph, but rather a
replicated-Halin graph (hence the name). The performance guarantee of Proce-
dure RH is stated in the following theorem, proved in Section 4.
2 By employing a simple technique presented in [12], one can contract isolated paths

at the price of increasing the distortion of the probabilistic embedding by at most 2.

k-Outerplanar Graphs, Planar Duality, and Low Stretch Spanning Trees 211

Theorem 8. Procedure RH, when invoked on a replicated-Halin graph G with a
realizing planar embedding η, runs in expected linear time and returns a spanning
tree T of G that satisfies av-loadG(T) ≤ c2, where c2 is a universal constant
(independent of G).

This leads to the question: what do we mean by a “good” spanning tree? In most
of the previous works which considered graph composition based on replacing a
subgraph H by a tree T (including [7]), the tree was chosen randomly according
to some probability distribution (that may be supported on many trees) and the
goal was to guarantee low distortion. In this work we use a different approach:
we shall construct a single tree T and our goal is to guarantee low total load.
(Corollary 1 stating that the total load is equal to the total stretch, implies that
our approach can be viewed as a relaxation of the previous approach.)

Recall that Lemma 2 essentially implies that for the sake of analysis, we may
replace the graph G′ (the outcome of step (i)) with the load replication of T ′

(the outcome of step (ii)) under G′ before inserting back the vertices and edges
that were removed in step (i) and continue with the construction from there.
The onion peeling process revolves around this phenomenon.

Analysis (Sketch). Theorem 6 is proved by induction on k. We first employ
Theorems 7 (induction’s base) and 8 (induction’s step) to show that |E (H)| ≤
ck−1 · |E (G)|, where c = c(c1, c2) is a universal constant. Next, we use Lemma 2
to argue that tot-loadG(T) ≤ tot-loadH(T). Finally, Theorem 8 guarantees that
tot-loadH(T) ≤ c · |E (H)|, which completes the analysis as it implies that
tot-loadG(T) ≤ ck · |E (G)|. A full detail of this analysis is deferred to [9].

4 Replicated-Halin Graphs

In this section we present Procedure RH and prove Theorem 8. Recall that the
input of Procedure RH is a replicated-Halin graph G with a realizing planar
embedding η. The procedure returns a spanning tree T of G which satisfies
av-loadG(T) ≤ c2, where c2 is a universal constant. By Lemma 4, we may assume
that |E (G)| = O(n). (This assumption is essentially reflected in the constant c2,
being twice as large as what we obtain in the remainder of this section.)

Taking Planar Duals. Taking planar duals of some special classes of graphs is
the main ingredient of our construction. Due to the sensitivity of the definition
of load to edge multiplicities, we first want to understand how the operation of
identifying two replicas in a planar graph affects its planar dual. To this end,
suppose that some two replicas e and e′ in the planar primal are identified to
form a single edge of width w(e)+w(e′). In the planar dual this translates to the
contraction of the simple path consisting of ẽ and ẽ′ into a single edge of length
�(ẽ) + �(ẽ′) = w(e) + w(e′). The following observation is a direct consequence of
this phenomenon.

Observation 9. Let G and G̃ be two planar graphs with planar embeddings η
and η̃, respectively. Let η′ (respectively η̃′) be the planar embedding of the skeleton

212 Y. Emek

of G (resp., the core of G̃), naturally derived from η (resp. η̃). If η and η̃ are
duals, then so are η′ and η̃′.

We study planar dualities between some specific classes of (planar) graphs. Our
insights are cast in the following lemma, whose proof is deferred to [9].

Lemma 10. Consider a biconnected planar graph G with a planar embedding η
and let G̃ be the planar dual of G under η.

1. If G is outerplanar with η being a realizing planar embedding, then G̃ is a
pivot graph.

2. If G is a pivot graph, then G̃ is an outerplanar graph.
3. If G is a Halin graph with η being a realizing planar embedding, then G̃ is a

dominated graph.
4. If G is a dominated graph, then G̃ is a bush.
5. Each block of the graph obtained by removing a weak dominating vertex from

a subdivided-dominated graph is a subdivided-outerplanar graph.

Low Load Spanning Trees for Replicated-Halin Graphs. We now turn
to describe the operation of Procedure RH on a replicated-Halin graph G with
a realizing planar embedding η. As usual, we assume that G is biconnected
(otherwise, we can break it and construct a separate spanning tree for each
block). The procedure works in 8 steps. The outcome of step i is denoted by T i

if it is (surely) a tree; and by Gi if it is a graph that may contain cycles. (The
superscript notation should not be confused with graph powers.) In this spirit,
we denote the replicated-Halin graph G by G0. The 8 steps of Procedure RH are
as follows (refer to Figure 1 for a schematic illustration).

replicated−Halin graph

subdivided−dominated graph

subdivided−outerplanar graph

spanning tree

replicated−pivot graph

subdivided−outerplanar graph

spanning tree

take planar dual (1)

remove weak dominating vertex (2)

Procedure GNRS (3)

put back removed vertex (4)

take planar dual (5)

Procedure GNRS (6)

take dual tree (7)

take dual tree (8)

Fig. 1. A schematic illustration of Procedure RH. The step numbers appear in paren-
theses.

k-Outerplanar Graphs, Planar Duality, and Low Stretch Spanning Trees 213

Step 1: Take the planar dual G1 of G0 under η. By definition, the skeleton
of G0 is a Halin graph, thus Observation 9 and Lemma 10 imply that G1 is a
subdivided-dominated graph. Let v ∈ V (G1) be a weak dominating vertex of
G1.
Step 2: Remove the vertex v and the edges incident on it from G1 and let G2

be the remaining graph. Let G2
1, . . . , G

2
m be the blocks of G2. By Lemma 10, G2

i

is a subdivided-outerplanar graph for every 1 ≤ i ≤ m.
Step 3: For i = 1, . . . ,m, invoke Procedure GNRS on G2

i to generate a spanning
tree T 3

i . By Theorem 7, we have tot-loadG2
i
(T 3

i) ≤ c1 · |E (G2
i)|.

Step 4: For i = 1, . . . ,m, construct the load-replication T̂ 3
i of T 3

i under G2
i .

Insert the vertex and edges that were removed in step 2 back into the planar
embedding of the replicated-trees T̂ 3

1 , . . . , T̂
3
m to compose the graph G4. Note

that |E (G4)| ≤ (c1 + 1) · |E (G1)|. Since every simple cycle in the skeleton of G4

must go via v, we conclude that G4 is a replicated-pivot graph. Let G4
1, . . . , G

4
m′

be the blocks of G4 (by definition, each of these blocks is also a replicated pivot
graph).
Step 5: For i = 1, . . . ,m′, fix some arbitrary planar embedding η′i of G4

i and let
G5

i be the planar dual of G4
i under η′i. By Observation 9 and Lemma 10, G5

i is
a subdivided-outerplanar graph for every 1 ≤ i ≤ m′.
Step 6: For i = 1, . . . ,m′, invoke Procedure GNRS on G5

i to generate a spanning
treeT 6

i . By Theorem 7, we have tot-loadG5
i
(T 6

i) ≤ c1 ·|E (G5
i)| for every 1 ≤ i ≤ m′.

Step 7: For i = 1, . . . ,m′, construct the dual T 7
i of the spanning tree T 6

i with
respect to the planar duality 〈η̃′i, η′i〉, where η̃′i is the dual planar embedding of η′i.
Lemma 3 guarantees that T 7

i is a spanning tree of G4
i and by Lemma 3, we have

tot-loadG4
i
(T 7

i) ≤ tot-loadG5
i
(T 6

i)+|E (G5
i)| ≤ (c1+1)·|E (G5

i)| = (c1+1)·|E (G4
i)|

for every 1 ≤ i ≤ m′. Let T 7 be the union of the trees T 7
1 , . . . , T

7
m. Note that T 7

is a spanning tree of G4 and tot-loadG4(T 7) ≤ (c1 +1) · |E (G4)|. Since T 7 is also
a spanning tree of G1, we can apply Lemma 2 to deduce that tot-loadG1(T 7) ≤
tot-loadG4(T 7) ≤ (c1 + 1) · |E (G4)| ≤ (c1 + 1)2 · |E (G1)|.
Step 8: Construct the dual T 8 of the spanning tree T 7 with respect to the planar
duality 〈η̃, η〉, where η̃ is the dual planar embedding of η. Lemma 3 guarantees
that T 8 is a spanning tree of G0 and by Lemma 3, we have tot-loadG0(T 8) ≤
tot-loadG1(T 7) + |E (G1)| ≤ ((c1 + 1)2 + 1) · |E (G1)| = ((c1 + 1)2 + 1) · |E (G0)|.

It follows that upon completion of step 8, we obtain a spanning tree T = T 8

which satisfies av-loadG(T) ≤ c2, where c2 = (c1+1)2+1 is a universal constant.
Theorem 8 follows.

5 Conclusions

We prove that every k-outerplanar graph G admits a spanning tree T such
that av-loadG(T) ≤ ck, where c is an absolute constant. The same bound holds
for the average stretch of T with respect to G based on the duality of load
and stretch. We find it more convenient to bound the (total) load of the trees
we construct, mainly due to the (fairly natural) load-replication representation
which enables some sort of an iterative graph decomposition. (In previous works,

214 Y. Emek

similar approaches were based on probabilistic embeddings.) Planar duality plays
a major role in our construction. We hope that some of the tools we develop here
will prove useful in other types of embeddings of planar graphs (e.g., into L1).

Acknowledgments

I would like to thank Robert Krauthgamer, Manor Mendel, and David Peleg for
helpful discussions.

References

1. Abraham, I., Bartal, Y., Neiman, O.: Nearly tight low stretch spanning trees. In:
49th IEEE Symp. on Foundations of Computer Science (FOCS), pp. 781–790 (2008)

2. Alon, N., Karp, R.M., Peleg, D., West, D.: A graph-theoretic game and its appli-
cation to the k-server problem. SIAM J. Comput. 24, 78–100 (1995)

3. Baker, B.S.: Approximation algorithms for NP-complete problems on planar
graphs. J. ACM 41(1), 153–180 (1994)

4. Bartal, Y.: Probabilistic approximations of metric spaces and its algorithmic ap-
plications. In: 37th IEEE Symp. on Foundations of Computer Science (FOCS), pp.
184–193 (1996)

5. Bartal, Y.: On approximating arbitrary metrics by tree metrics. In: 30th ACM
Symp. on the Theory of Computing (STOC), pp. 161–168 (1998)

6. Charikar, M., Chekuri, C., Goel, A., Guha, S., Plotkin, S.A.: Approximating a
finite metric by a small number of tree metrics. In: 39th Symp. on Foundations of
Computer Science (FOCS), pp. 379–388 (1998)

7. Chekuri, C., Gupta, A., Newman, I., Rabinovich, Y., Sinclair, A.: Embedding k-
outerplanar graphs into �1. SIAM J. Discrete Math. 20(1), 119–136 (2006)

8. Elkin, M., Emek, Y., Spielman, D.A., Teng, S.-H.: Lower-stretch spanning trees.
SIAM J. Comput. 38(2), 608–628 (2008)

9. Emek, Y.: k-Outerplanar graphs, planar duality, and low stretch spanning trees,
http://www.eng.tau.ac.il/~yuvale/Publications/k-outerplanar.pdf

10. Emek, Y., Peleg, D.: A tight upper bound on the probabilistic embedding of series-
parallel graphs. In: 17th ACM-SIAM Symp. on Discrete algorithm (SODA), pp.
1045–1053 (2006)

11. Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on approximating arbitrary
metrics by tree metrics. J. Comput. Syst. Sci. 69(3), 485–497 (2004)

12. Gupta, A., Newman, I., Rabinovich, Y., Sinclair, A.: Cuts, trees and �1-embeddings
of graphs. Combinatorica 24(2), 233–269 (2004)

13. Hu, T.C.: Optimum communication spanning trees. SIAM J. Comput. 3, 188–195
(1974)

14. Indyk, P., Sidiropoulos, A.: Probabilistic embeddings of bounded genus graphs
into planar graphs. In: 23rd ACM Symp. on Computational Geometry (SoCG),
pp. 204–209 (2007)

15. Klein, P.N., Plotkin, S.A., Rao, S.: Excluded minors, network decomposition, and
multicommodity flow. In: 25th ACM Symp. on Theory of Computing (STOC), pp.
682–690 (1993)

16. Konjevod, G., Ravi, R., Salman, F.S.: On approximating planar metrics by tree
metrics. Inf. Process. Lett. 80(4), 213–219 (2001)

17. Whitney, H.: On the abstract properties of linear dependence. Amer. J. Math. 57,
509–533 (1935)

http://www.eng.tau.ac.il/~yuvale/Publications/k-outerplanar.pdf

Narrow-Shallow-Low-Light Trees
with and without Steiner Points

Michael Elkin and Shay Solomon�

Department of Computer Science, Ben-Gurion University of the Negev,
POB 653, Beer-Sheva 84105, Israel
{elkinm,shayso}@cs.bgu.ac.il

Abstract. We show that for every set S of n points in the plane and a
designated point rt ∈ S , there exists a tree T that has small maximum
degree, depth and weight. Moreover, for every point v ∈ S , the distance
between rt and v in T is within a factor of (1+ε) close to their Euclidean
distance ‖rt, v‖. We call these trees narrow-shallow-low-light (NSLLTs).
We demonstrate that our construction achieves optimal (up to constant
factors) tradeoffs between all parameters of NSLLTs. Our construction
extends to point sets in Rd, for an arbitrarily large constant d. The
running time of our construction is O(n · log n).

We also study this problem in general metric spaces, and show that
NSLLTs with small maximum degree, depth and weight can always be
constructed if one is willing to compromise the root-distortion. On the
other hand, we show that the increased root-distortion is inevitable, even
if the point set S resides in a Euclidean space of dimension Θ(log n).

On the bright side, we show that if one is allowed to use Steiner points
then it is possible to achieve root-distortion (1 + ε) together with small
maximum degree, depth and weight for general metric spaces.

Finally, we establish some lower bounds on the power of Steiner points
in the context of Euclidean spanning trees and spanners.

1 Introduction

Euclidean Spaces. Given a set S of n points in the plane and a designated
root vertex rt, we want to construct a spanning tree T for S rooted at rt that
enjoys a number of useful properties. First, we want T to be light, that is, to
be not much heavier than the minimum spanning tree of S (denoted MST (S)).
Second, we want it to be low, i.e., to have a small depth1. Third, we want T to be
shallow, meaning that for every vertex v in T , the distance distT (rt, v) between
rt and v in T should not be much greater than the Euclidean distance ‖rt, v‖.
(The maximum ratio max

{
distT (rt,v)

‖rt,v‖ : v ∈ S
}

will be called the root-stretch or

� Both authors are supported by the Israeli Academy of Science, grant 483/06, and
by the Lynn and William Frankel Center for Computer Science.

1 The depth of a rooted tree (T, rt), denoted h(T), is the maximum number of hops
in a path connecting the root rt with a leaf z of T .

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 215–226, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

216 M. Elkin and S. Solomon

root-distortion of T .) Fourth, the tree T should be narrow, that is, to have a
small maximum degree.

Each of these requirements has a natural network-design analogue. The weight
of T corresponds to the total cost of building and maintaining the network.
The depth and the root-stretch of the tree correspond to communication delays
experienced by network end-users. The maximum degree of T corresponds to
the load experienced by the relay stations or network routers. Finally, the tree
structure of the designed network may be necessary for some applications. In
other applications which can be executed in a network that contains cycles,
having a cycle-free network may still be very advantageous. Consequently, the
problem of designing trees that enjoy all these properties is a basic problem in
the area of geometric network design. Similar problems arise in the context of the
VLSI design [1,6,7], telecommunications and distributed computing [3,4], road
network design and medical imaging [9].

Clearly some of these requirements come at the expense of others, and there
are inherent tradeoffs between the different parameters. In a seminal STOC’95
paper on Euclidean spanners, Arya et al. [2] have shown that for every set S of
n points in the plane (or even in Rd) there exists a rooted spanning tree (T, rt)
with depth O(log n), constant maximum degree, and an arbitrarily small root-
stretch at most (1 + ε). However, their trees (called single-sink spanners) may
have a large weight of Ω(n) · w(MST (S)). Recently, Dinitz et al. [8] devised a
construction that enjoys a small weight (i.e., O(log n)·w(MST (S))), small depth
(i.e., O(log n)) and an arbitrarily small root-stretch at most (1+ε). However, the
resulting trees may have vertices of arbitrarily large degree. (The construction of
[8] applies to general metric spaces.) In this paper we fill in the gap and devise a
single construction that combines all the useful properties of the constructions of
[2] and [8]. Specifically, we show that for every n-point set S, a point rt ∈ S and
parameters � and ε, � = O(log n), ε > 0, there exists a rooted spanning tree (T, rt)
with weight O(�) · w(MST (S)) (“light”), depth O(� · n1/�) (“low”), constant
maximum degree (“narrow”) and root-stretch at most (1+ ε) (“shallow”). There
also exists a rooted spanning tree (T ′, rt) with weight O(� ·n1/�) ·w(MST (M)),
depth O(�), maximum degree O(n1/�) and root-stretch at most (1+ε). Moreover,
both these trees can be constructed in O(n · logn) time.

Our results generalize and improve both previous constructions of single-sink
spanners [2,8]. Specifically, substituting � = O(log n) in our results we obtain a
construction of trees that enjoy all properties of the construction of Arya et al.
[2], and, in addition, have small weight (specifically, O(log n)·w(MST (S)). Also,
our trees enjoy the same optimal combination between the weight and depth as
the trees of Dinitz et al. [8] do, and, in addition, enjoy optimal maximum degree2.
Similarly to the construction of Arya et al. [2], our construction extends to point
sets S ⊆ Rd, for any constant dimension d ≥ 2. The running time of the extended
construction remains O(n · logn).

2 The optimality of our tradeoff between weight and depth in the entire range of
parameters follows from lower bounds of [8]. The optimality of our tradeoff between
depth and maximum degree, again in the entire range of parameters, is obvious.

Narrow-Shallow-Low-Light Trees with and without Steiner Points 217

General Metric Spaces. We also study the problem of constructing trees
that satisfy all the aforementioned four properties (henceforth, narrow-shallow-
low-light trees, or shortly, NSLLTs) in general metric spaces. We generalize the
results of Dinitz et al. [8], and demonstrate that one can trade maximum de-
gree for root-stretch. Specifically, we show that for every n-point metric space
M , a point rt ∈ M and an integer � = O(log n), there exists a rooted span-
ning tree (T, rt) with weight O(�) · w(MST (M)), depth O(� · n1/�), constant
maximum degree and root-stretch O(log n). There also exists a rooted spanning
tree (T ′, rt) with weight O(� · n1/�) · w(MST (M)), depth O(�), maximum de-
gree O(n1/�) and root-stretch O(�). In other words, these constructions achieve
the optimal tradeoff between the weight and depth, together with the optimal
maximum degree, at the expense of having root-stretch of O(log n) and O(�),
respectively. In addition, we show that this increase in root-stretch is inevitable
as long as one considers general (rather than low-dimensional Euclidean) metric
spaces. Specifically, we show that our tradeoff between the maximum degree D
and root-stretch O(log n

log D) cannot be improved even if M is a set of n points in
Euclidean space of dimension d = Ω(log n). We also extend this lower bound and
show that in any dimension d = O(log n), the root-stretch is at least Ω(d

log D).
On the bright side, we show that this inherent tradeoff between the maximum

degree and root-stretch is only valid when considering spanning trees. The situ-
ation changes drastically if one is allowed to add Steiner points, that is, points
that do not belong to the original point set of M . In this case the root-stretch
can be improved all the way down to (1+ ε), without increasing any of the other
three parameters! We also show that our lower bounds on the tradeoff between
the weight and depth apply to trees that may include Steiner points (henceforth,
Steiner trees). Consequently, similarly to the case of spanning trees, our trade-
offs between the four involved parameters are optimal with respect to Steiner
trees as well.

All our constructions for general metric spaces can be implemented in time
O(n2), which is linear in the size of the input. If an MST, or a constant approxi-
mation of an MST, is given as a part of the input, then our constructions can be
implemented in time O(SORT (n)) = O(n · logn), where SORT (n) is the time
required to sort n distances. Moreover, if our metric space M is the induced
metric of graph G with m edges, and G is given as a part of the input, then our
constructions can be implemented in O(m+ n · logn) time.

Lower Bounds for Euclidean Spanners. We have proved two lower bounds
on the tradeoffs between different parameters of NSLLTs. These lower bounds
were mentioned above. Both these lower bounds have implications for Euclidean
spanners. Next, we discuss these implications.

Our lower bound on the tradeoff between the weight and depth parameters
of Steiner trees implies directly a lower bound on the tradeoff between these pa-
rameters for Euclidean Steiner spanners. Specifically, Dinitz et al. [8] considered
the 1-dimensional Euclidean space ϑn with n points 1, 2, . . . , n on the x-axis, and
showed that any spanning tree of ϑn with depth o(log n) has weight ω(n · logn),
and vice versa. This result implies that no construction of Euclidean spanners

218 M. Elkin and S. Solomon

may guarantee hop-diameter3 O(log n) and lightness4 o(log n), and vice versa.
Consequently, the construction of Arya et al. [2] of Euclidean spanners with
weight and hop-diameter O(log n) is optimal. However, the lower bound of [8]
does not preclude the existence of Steiner spanners with hop-diameter O(log n)
and lightness o(log n), or vice versa. In the current paper we show that Steiner
points do not help in this context, and thus the construction of Arya et al. [2]
cannot be improved even if one allows the spanner to use (arbitrarily many)
Steiner points.

Our lower bound on the tradeoff between the maximum degree D and root-
stretch Ω(d

log D) of spanning trees for point sets in Rd, d = O(log n), implies
that if d = ω(1) is super-constant, then either the maximum degree or the root-
stretch is super-constant as well. Hence no construction of Euclidean spanners
for a super-constant dimension can possibly achieve simultaneously constant
maximum degree and stretch. On the other hand, for any constant dimension
d, Arya et al. [2] have built spanners with stretch at most (1 + ε) for arbitrarily
small ε > 0 and constant maximum degree D. Hence our lower bound implies
that this result of Arya et al. [2] cannot be extended to super-constant dimen-
sion.

Proof Overview. Both our Euclidean and general constructions of NSLLTs
are based on the following insight. To construct a tree that enjoys the optimal
combination of all four parameters, one can construct two different trees each of
which is good with respect to only three out of the four parameters, and combine
them into a single tree. Specifically, we start with constructing trees that achieve
small maximum degree, root-stretch and depth, henceforth narrow-shallow-low
trees (NSLoTs). Then we consider the shallow-low-light trees (SLLTs) of [8],
and observe that in these trees all vertices but the root rt necessarily have small
degree. To reduce the degree of the root we manipulate with the star subtree
Z rooted at the root of the SLLT T . The vertex set V (Z) of the subtree Z
contains the root and all its children c1, c2, . . . , cq, and the edge set of Z is the
set {(rt, c1), (rt, c2), . . . , (rt, cq)}. Then we construct an NSLoT T̃ for the point
set V (Z). Finally, we remove the star Z from the SLLT T , and replace it with
the NSLoT T̃ . We show that the resulting tree T̂ is an NSLLT, i.e., enjoys all
the four desired properties. (See Fig. 2 in Sect. 3 for an illustration.)

Our Euclidean construction of NSLoTs is based on the construction of Arya
et al. [2], which was, in turn, inspired by the work of Ruppert and Seidel [21].
However, it provides a general tradeoff between the maximum degree D and the
depth O(logD n), while in the construction of [2] the maximum degree is O(1)
and the depth is O(log n). (Moreover, for D = ω(1), the running time of our
construction is O(n · logD n), which is better than the running time O(n · logn)
in [2].) This extension is not difficult, and we provide it for completeness.

3 Hop-diameter or unweighted diameter of a possibly weighted graph G = (V, E, w) is
the maximum unweighted distance between a pair of vertices in G.

4 Lightness of a spanning subgraph G′ = (V, E, w) of the complete Euclidean graph
on the point set V is the ratio between w(G′) =

∑
e∈E w(e) and w(MST (V)).

Narrow-Shallow-Low-Light Trees with and without Steiner Points 219

In Sect. 3 we show that the tradeoff of [8] between the hop-diameter and
lightness of Euclidean spanners cannot be improved by using Steiner points. To
this end we demonstrate that any Steiner tree can be “cleaned” from Steiner
points, while increasing the depth and lightness by only a small factor. This re-
sult is reminiscent of the work by Gupta [13] that shows that as far as maximum
stretch and lightness are concerned, one can do without Steiner points. However,
our argument is substantially different from that of [13], since, in particular, the
hop-diameter parameter exhibits a different behavior than the maximum stretch.

Related Work. Euclidean spanners are being subject of ongoing intensive re-
search since the mid-eighties. See the recent book by Narasimhan and Smid
[19] for an excellent survey on this subject. Euclidean single-sink spanners were
studied by Arya et al. [2]; see also [19], Chapter 4.2. Lukovszki [16,15] devised
fault-tolerant constructions of single-sink spanners. Single-sink spanners were
also used in maintenance algorithms for wireless networks [12,17]. Farshi and
Gudmundsson [10] conducted an experimental study of single-sink spanners.

Trees that have small weight and guarantee root-stretch at most (1 + ε),
but do not necessarily have small depth or small maximum degree, are called
shallow-light trees (henceforth SLTs). SLTs were studied by a number of authors,
including Awerbuch et al. [3,4], Khuller et al. [14], Alpert et al. [1] and Cong et
al. [6,7]. Salowe et al. [22] studied trees that combine small weight with small
“bottleneck” size; see [22] for further details. Papadimitriou and Vazirani [20],
Monma and Suri [18], Fekete et al. [11] and Chan [5] devised constructions of light
trees with small maximum degree for low-dimensional Euclidean point sets. See
also the survey of Eppstein [9] for other references to works that study geometric
spanning trees.

The Structure of the Paper. In Sect. 2 we describe our constructions of
NSLoTs, and prove lower bounds on the tradeoff between the maximum degree
and root-stretch. In Sect. 3 we employ our constructions of NSLoTs from Sect.
2 to devise constructions of NSLLTs, and derive our lower bounds for Euclidean
Steiner spanners. Due to space limitations, some proofs are omitted from this
extended abstract.

Preliminaries. An n-point metric space M = (V, dist) can be viewed as the
complete graph G(M) = (V,

(
V
2

)
, dist) in which for every pair of points x, y ∈ V ,

the weight of the edge e = (x, y) in G(M) is defined by w(x, y) = dist(x, y).
For a rooted tree (T, rt) and a vertex v in T , the level of v in T is the hop-

distance between the root rt of T and v in T . Denote by deg(T, v) the degree
of a vertex v in T and define Δ(T) = max{deg(T, v) : v ∈ V }. For any two
vertices u, v ∈ V (T), their weighted distance in T is denoted by distT (u, v). For
a positive integer D, a rooted tree in which every vertex has at most D children
is called a D-ary tree.

A tree T is called a Steiner tree of a metric space M = (V, dist) if it spans a
superset of V and if for any pair of points v, v ∈ V , distT (u, v) ≥ dist(u, v).
Let T be either a spanning or a Steiner tree of M rooted at an arbitrary

220 M. Elkin and S. Solomon

designated vertex rt. We define the stretch between two vertices u and v in

V to be ζT (u, v) =
distT (u, v)
dist(u, v)

, and the root-stretch of (T, rt) to be !(T, rt) =

max{ζT (rt, v) : v ∈ V }.
For a positive integer n, we denote the set {1, 2, . . . , n} by [n].

2 Narrow-Shallow-Low Trees (NSLoTs)

Upper Bounds. In this section we devise constructions of trees that have small
maximum degree, depth and root-stretch, but may be quite heavy. On the other
hand, we do require their weight to be bounded by O(

∑
v∈M dist(rt, v)), where

rt is the designated root vertex. We denote the quantity
∑

v∈M dist(rt, v)) by
W ∗(M, rt). The following statement summarizes the properties of our construc-
tion of NSLoTs for general metric spaces.

Proposition 1. For any n-point metric space M = (V, dist), an arbitrary des-
ignated point rt and a positive integer 2 ≤ D ≤ n − 1, there exists a D-ary
rooted spanning tree (T, rt) of M with depth at most �logD n�, root-stretch at
most 2 · �logD n� and weight at most 2 ·W ∗(M, rt).

Proof. Let V = (rt = v0, v1, . . . , vn−1). Without loss of generality assume that
the n points rt = v0, v1, . . . , vn−1 are ordered by their distance from rt, i.e.,
0 = dist(rt, v0) ≤ dist(rt, v1) ≤ . . . ≤ dist(rt, vn−1). Next, we construct a rooted
tree (T, rt) that satisfies the required conditions. The D points v1, v2, . . . , vD

become the children of rt = v0 in T , the next D points vD+1, vD+2, . . . , v2·D
become the children of v1, the next D points v2·D+1, v2·D+2, . . . , v3·D become
the children of v2, and so on. Generally, the point vi becomes the child of point
v� i

D �−1 in T , for each i ∈ [n− 1]. (See Fig. 1.a for an illustration.)

Lemma 1. (1). For any pair of vertices v and w, such that v is an ancestor of
w in T , dist(rt, v) ≤ dist(rt, w). (2) (T, rt) is a D-ary rooted spanning tree of
M . (3) The depth h(T) of the rooted tree (T, rt) is no greater than �logD n�.

The first assertion of Lemma 1 and triangle inequality imply that w(T) ≤ 2 ·
W ∗(M, rt). The next lemma provides an upper bound on the root-stretch of the
constructed tree.

Lemma 2. For a vertex v of level i in T , distT (rt, v) ≤ (2 · i− 1) · dist(rt, v).

The third assertion of Lemma 1 and Lemma 2 imply that the root-stretch of
(T, rt) is at most 2 · �logD n�, which concludes the proof of Proposition 1. �	

Next, we describe a construction of Steiner NSLoTs for general metric spaces.

Proposition 2. For any n-point metric space M = (V, dist), an arbitrary desig-
nated point rt, a positive integer 2 ≤ D ≤ n−1 and a number 0 < ε′ < 1, there ex-
ists a D-ary rooted Steiner tree (T, rt) of M with O(n/D) Steiner points, depth at
most �logD n�, root-stretch at most (1+ε′) and weight at most (1+ε′)·W ∗(M, rt).

Narrow-Shallow-Low-Light Trees with and without Steiner Points 221

a) rt = v

vv1 2

T

v v v v v v4 6 7 8 9

3

5 v10 v11

v

0 b) rt = v

dd1 2

T

v v v v v v1 3 4 5 6

3

2 v7 v8

d

0

Fig. 1. a) An NSLoT for a 12-point metric space. b) A Steiner NSLoT for a 9-point
metric space. The Steiner points are d1, d2 and d3, and the required points are rt =
v0, v1, . . . , v8. Edges of weight ε are depicted by thin lines. Edges of greater weight
(specifically, Edges (vi, π(vi)) of weight distM(rt, vi) are depicted by thick lines.

Proof. Suppose first that n − 1 is an integer power of D. We form the full D-
ary tree T rooted at rt, whose n − 1 leaves are the n − 1 points of V \ {rt}.
The remaining n−2

D−1 vertices of T (excluding rt) are Steiner points. The weight
assignment for edges of T is set as follows. For each point v ∈ V \{rt}, the weight
of the edge (v, π(v)) that connects it to its parent in T is set as distM (rt, v). All
other edge weights are set as 0. If one prefers to avoid using weights 0, one can use
an arbitrarily small number ε = ε′

2n ·wmin, where wmin is the minimum distance
between a pair of points in M . It is easy to see that the resulting tree is a D-ary
Steiner NSLoT with maximum degree D, depth logD(n−1), root-stretch at most
(1 + ε′), and weight at most (1 + ε′) ·W ∗(M, rt). This construction generalizes
in the obvious way to the case where n − 1 is not an integer power of D, with
the tree depth becoming �logD(n− 1)�. (See Fig. 1.b for an illustration.) �	
Next, we show that for point sets in the plane one can construct NSLoTs with
significantly smaller root-stretch, without increasing any of the other parameters.
The extension of our construction to higher constant dimensions is omitted due
to space limitations.

Proposition 3. Let k ≥ 9 and θ = 2π/k. For any set V of n points in the
plane, an arbitrary designated point rt and and a positive integer 2 ≤ D ≤
n, there exists a (2D + k)-ary rooted Euclidean spanning tree (Tθ, rt) for V
with depth at most logD n, root-stretch at most 1

cos θ−sin θ and weight at most
1

cos θ−sin θ ·W ∗(V, rt). Moreover, Tθ can be constructed in O(n · logD n) time.

Remark: For large k, 1
cos θ−sin θ = 1+O(θ). Hence we get a tree with maximum

degree O(D + θ−1), depth at most logD n, root-stretch 1 + O(θ) and weight
O(W ∗(V, rt)).

Proof. For any D ≥ n−10
2 , the star graph rooted at rt satisfies the conditions of

the proposition. We henceforth assume that D < n−10
2 .

If we rotate the positive x-axis by angles i · θ, 0 ≤ i < k, then we get k
rays. Each pair of successive rays defines a cone that spans an angle of θ and
whose apex is at the origin. Denote by C = {C1, C2, . . . , Ck} the collection
of the resulting k cones. For a cone Ci of C and a point p in the plane, let
Ci(p) = Ci + p = {x + p : x ∈ Ci} be the cone obtained from Ci by translating

222 M. Elkin and S. Solomon

it such that its apex is at p, and define C(p) = {C1(p), C2(p), . . . , Ck(p)}. We
denote by Vi(p) = V ∩ Ci(p) the subset of V contained in a cone Ci(p) of C(p).
Note that the collection {V1(p), V2(p), . . . , Vk(p)} is a partition of V \ {p}. For
each i ∈ [k], we define ni = |Vi(p)|. Let P(p) be the collection obtained from
{V1(p), V2(p), . . . , Vk(p)} by partitioning each set Vi(p) in it (arbitrarily) into⌈

ni

�n/D�
⌉

subsets of size at most
n/D� each.

Claim. For any point set V and any point p in the plane, |P(p)| ≤ 2D + k.

The tree T = Tθ is constructed in the following way. First, a partition P(rt) =
{P1(rt), P2(rt), . . . , Pm(rt)} of V \{rt} is computed, wherem = |P(rt)| ≤ 2D+k.
For each i ∈ [m], let rt(i) be the point in Pi(rt) whose orthogonal projection
onto the bisector of the cone in C(rt) that contains it is closest to rt. For each
i ∈ [m], rt(i) is set to be a child of rt, and a rooted tree (Ti, rt(i)) for the subset
Pi(rt) is constructed recursively. The recursion stops if a subset has size one.

Note that T is a (2D+ k)-ary spanning tree of M rooted at rt, and its depth
is at most logD n. Using arguments from [2] and [19], we show that T can be
constructed in O(n · logD n) time, and that the root-stretch of T is at most

1
cos θ−sin θ . As a corollary, we get that w(T) ≤ 1

cos θ−sin θ ·W ∗(V, rt). �	

Lower Bounds. The next statement implies that the upper bound given in
Proposition 1 is tight up to constant factors. In particular, it shows that the
tradeoff D versus O(log n

log D) between the maximum degree and root-stretch estab-
lished there cannot be improved even for Euclidean spaces of dimension Θ(log n).

Proposition 4. There exists a set V of n points in RO(log n), such that for any
integer 2 ≤ D ≤ n− 1 and any point v ∈ V , every D-ary spanning tree T of V
rooted at rt = v has depth at least
logD n�, weight at least Ω(W ∗(V, rt)), and
root-stretch at least Ω(logD n).

Proposition 4 should be compared with Proposition 3. Specifically, as long as
the dimension d is constant, one can obtain NSLoTs with root-stretch at most
(1 + ε), while for d = Ω(log n) it is no longer possible. The next statement
extends the lower bound on the tradeoff between the maximum degree D and
root-stretchΩ(log n

log D) established in Proposition 4 to any dimension d = O(log n).
In particular, it shows that whenever d = ω(1) is super-constant, it is no longer
possible to achieve simultaneously constant maximum degree and root-stretch.

Proposition 5. For any parameter d ≤ logn, there exists a set Ṽ of n points
in RO(d), such that for any integer 2 ≤ D ≤ n − 1 and any point v ∈ Ṽ , every
D-ary spanning tree T̃ of Ṽ rooted at rt = v has root-stretch at least Ω(d

log D).

3 Narrow-Shallow-Low-Light Trees

In this section we present a general technique for constructing NSLLTs out
of NSLoTs. Then we employ this technique in conjunction with the NSLoTs

Narrow-Shallow-Low-Light Trees with and without Steiner Points 223

T
T

2T

3T

4T

5T

5T3T

4T

2T

1T

rt

c 5

c 1

c 4c 3

c 2
T

T

5

rt

c 1 c 2

c 3 c 4 c

1

c c c

rt

32 c 4 5
c 1

S

Fig. 2. The root rt of the SLLT T may have a large degree. The star subtree Z is
replaced by the NSLoT T̃ to obtain the NSLLT T̂ .

construction from Sect. 2 to obtain our constructions of NSLLTs, which exhibit
optimal tradeoffs between all four parameters.

Consider an n-point metric space M , and let T be a spanning tree for M
rooted at some designated point rt ∈ M . Next, we argue that by using NSLoTs
one can significantly reduce the degree of rt, while only slightly increasing other
parameters of T . Let Z be the star subtree of T rooted at rt. In other words, the
vertex set of Z is V (Z) = {rt, c1, c2, . . . , cq}, where c1, c2, . . . , cq are the children
of rt in T . Also, the weights of edges (rt, ci) agree in T and Z, for all indices
i ∈ [q]. Let T̃ be some spanning tree rooted at rt for the metric spaceMZ induced
by the points in V (Z). (Observe that w(Z) = W ∗(MZ , rt) ≤ w(T).) Finally, let
T̂ be the tree obtained from T by replacing the star Z with the tree T̃ . (See Fig.
2 for an illustration.) For a tree τ , let λ(τ) = max{deg(τ, v) : v ∈ V, v �= rt} be
the degree of a non-root vertex in τ .

The properties of the resulting tree are summarized in the following statement.

Proposition 6. (1) h(T̂) ≤ h(T) − 1 + h(T̃), (2) w(T̂) = w(T) − w(Z) + w(T̃),
(3) λ(T̂) ≤ λ(T) + λ(T̃), (4) deg(T̂ , rt) = deg(T̃ , rt), (5) �(T̂ , rt) ≤ �(T̃ , rt) · �(T, rt).

Remark: This statement remains valid if T̃ is a Steiner NSLoT of MZ .
Dinitz et al. [8] devised two constructions of SLLTs for general metric spaces.
For a metric space M , a point rt ∈ M and an integer � = O(log n), the first
construction provides a rooted SLLT (T, rt) with depth h(T) = O(�), weight
w(T) = O(� · n1/�) · w(MST (M)) and root-stretch !(T, rt) ≤ 1 + ε. Moreover,
all vertices of T except its root rt have optimal degree O(n1/�). The degree of
the root may, however, be arbitrarily large. The second construction provides an
SLLT T ′ with depth h(T ′) = O(�·n1/�), weight w(T ′) = O(�)·w(MST (M)), and
root-stretch !(T ′, rt) ≤ 1 + ε. Similarly to the first construction, all vertices of
T ′ but the root rt have optimal degree O(1), and the root may have arbitrarily
large degree.

Next, we reduce the root-degree in the first construction. Reducing the root-
degree of the second construction is done similarly. Let Z be the star subtree of

224 M. Elkin and S. Solomon

T rooted at rt, and let T̃ be an NSLoT for the (q + 1)-point metric space MZ .
To construct an NSLLT T̂ out of T and T̃ , we replace the star Z by T̃ .

Specifically, if M is a set of n points in the plane, then our construction of
NSLoTs (Proposition 3) provides a rooted NSLoT (T̃ , rt) for MZ with depth
h(T̃) = O(�), Δ(T̃) = O((q + 1)1/�) = O(n1/�), weight w(T̃) = O(W ∗(MZ , rt)),
and root-stretch !(T̃ , rt) ≤ (1 + ε). By Proposition 6, replacing the star Z of T
with T̃ produces a rooted NSLLT (T̂ , rt) for M with depth h(T̂) ≤ h(T) − 1 +
h(T̃) = O(�), weight w(T̂) = w(T)−w(Z)+w(T̃) = w(T)+O(W ∗(MZ , rt)) =
O(w(T)) = O(� · n1/�) · w(MST (M)), Δ(T̂) = O(n1/�), and root-stretch
!(T̂ , rt) ≤ (1 + ε)2 = 1 + O(ε). The SLLTs of [8] for Euclidean spaces can
be constructed in O(n · logn) time. By Proposition 3, T̃ can be constructed in
O(n · logn) time. Hence the overall time required to construct T̂ is O(n · logn).
This tradeoff extends to the complementary range of depth h(T̂) = Ω(log n).
This argument easily generalizes to point sets in Rd, for any constant d ≥ 2.

Theorem 1. Let d ≥ 2 be an integer constant. For a set M of n points in Rd,
an integer � = O(log n), and ε > 0, there exists a spanning tree with depth O(�),
lightness O(� · n1/�), maximum degree O(n1/�), and root-stretch at most (1 + ε).
In addition, there exists a spanning tree with depth O(� · n1/�), lightness O(�),
constant maximum degree, and root-stretch at most (1 + ε). Both trees can be
constructed in O(n · logn) time.

Our construction of NSLoTs for general metric spaces (Proposition 1) provides a
rooted NSLoT (T̃ , rt) for MZ with depth h(T̃) = O(�), Δ(T̃) = O((q + 1)1/�) =
O(n1/�), weight w(T̃) = O(W ∗(MZ , rt)) and root-stretch !(T̃ , rt) = O(�). By
Proposition 6, replacing the star Z of T with T̃ produces a rooted NSLLT (T̂ , rt)
for M with depth h(T̂) ≤ h(T) − 1 + h(T̃) = O(�), weight w(T̂) = w(T) −
w(Z)+w(T̃) = w(T)+O(W ∗(MZ , rt)) = O(w(T)) = O(�·n1/�)·w(MST (M)),
Δ(T̂) = O(n1/�) and root-stretch !(T̂ , rt) ≤ O(�) · (1 + ε) = O(�). The SLLTs
of [8] for general metric spaces can be constructed in O(n2) time. Clearly T̃ can
be constructed in O(n2) time, and so the overall time required to construct T̂
is O(n2). This tradeoff extends to the complementary range of depth h(T̂) =
Ω(log n).

Theorem 2. For a general n-point metric space M , and an integer � = O(log n),
there exists a spanning tree with depth O(�), lightness O(� · n1/�), maximum
degree O(n1/�), and root-stretch O(�). In addition, there exists a spanning tree
with depth O(� ·n1/�), lightness O(�), constant maximum degree, and root-stretch
O(log n). Both trees can be constructed in O(n2) time.

Similarly, using our construction of Steiner NSLoTs for general metric spaces
(Proposition 2), we construct in O(n2) time a Steiner rooted NSLLT (T̂ , rt)
for M with depth h(T̂) = O(�), weight w(T̂) = O(� · n1/�) · w(MST (M)),
Δ(T̂) = O(n1/�) and root-stretch !(T̂ , rt) = 1 + O(ε). This tradeoff extends to
the complementary range of depth h(T̂) = Ω(log n).

Narrow-Shallow-Low-Light Trees with and without Steiner Points 225

Theorem 3. For a general n-point metric space M , an integer � = O(log n),
and ε > 0, there exists a Steiner tree with depth O(�), lightness O(� · n1/�),
maximum degree O(n1/�), and root-stretch at most (1 + ε). In addition, there
exists a Steiner tree with depth O(� · n1/�), lightness O(�), constant maximum
degree, and root-stretch at most (1 + ε).

Finally, we extend the lower bounds of Dinitz et al. [8] to Steiner trees.

Theorem 4. For any metric space M and any Steiner rooted tree (T ′, rt′) of
M , there exists a rooted tree (T, rt) spanning only V (M), with depth no greater
than that of T ′ (i.e., h(T) ≤ h(T ′)), weight at most twice the weight of T ′ (i.e.,
w(T) ≤ 2 · w(T ′)), and which also dominates T ′ in the following sense: for
any two points u, v in V (M), distT (u, v) ≥ distT ′(u, v). Moreover, T can be
constructed in O(n) time.

Dinitz et al. [8] analyzed the 1-dimensional metric space ϑn with n points
1, 2, . . . , n on the x-axis and have shown that for any parameter � = O(log n), any
spanning tree for ϑn that has depth h(T) = O(�) has weight w(T) = Ω(�·n1+1/�),
and vice versa, i.e., if w(T) = O(�·n), then h(T) = Ω(�·n1/�). Theorem 4 enables
us to extend this lower bound to Steiner trees.

Corollary 1. For a positive integer � = O(log n), any Steiner tree T for ϑn that
has depth O(�) satisfies w(T) = Ω(� · n1+1/�) = Ω(� ·n1/�) ·w(MST (ϑn)). Also,
any Steiner tree T for ϑn that has weight O(� ·n) = O(�) ·w(MST (ϑn)) satisfies
h(T) = Ω(� · n1/�).

In particular, Corollary 1 implies that any Steiner tree T for ϑn has either depth
Ω(log n) or weight Ω(n · logn) = Ω(logn) · w(MST (ϑn)). On the other hand,
Arya et al. [2] devised a construction of Euclidean (1 + ε)-spanners with both
hop-diameter and lightness (the ratio between the weight and the weight of the
MST) at most O(log n). Corollary 1 implies that the result of [2] cannot be
improved even if one allows the spanner to use Steiner points.

Corollary 2. Any Euclidean (possibly Steiner) spanner for ϑn that guarantees
hop-diameter o(logn) has lightness ω(logn), and vice versa.

References

1. Alpert, C.J., Hu, T.C., Huang, J.H., Kahng, A.B., Karger, D.: Prim-Dijkstra trade-
offs for improved performance-driven routing tree design. IEEE Trans. on CAD of
Integrated Circuits and Systems 14(7), 890–896 (1995)

2. Arya, S., Das, G., Mount, D.M., Salowe, J.S., Smid, M.H.M.: Euclidean spanners:
short, thin, and lanky. In: 27th ACM Symposium on Theory of Computing, pp.
489–498. ACM Press, New York (1995)

3. Awerbuch, B., Baratz, A., Peleg, D.: Cost-sensitive analysis of communication pro-
tocols. In: 9th ACM Symposium on Principles of Distributed Computing, pp. 177–
187. ACM Press, New York (1990)

4. Awerbuch, B., Baratz, A., Peleg, D.: Efficient Broadcast and Light-Weight Span-
ners (manuscript) (1991)

226 M. Elkin and S. Solomon

5. Chan, T.M.: Euclidean Bounded-Degree Spanning Tree Ratios. Discrete & Com-
putational Geometry 32(2), 177–194 (2004)

6. Cong, J., Kahng, A.B., Robins, G., Sarrafzadeh, M., Wong, C.K.: Performance-
Driven Global Routing for Cell Based ICs. In: 9th IEEE International Conference
on Computer Design: VLSI in Computer & Processors, pp. 170–173. IEEE press,
New York (1991)

7. Cong, J., Kahng, A.B., Robins, G., Sarrafzadeh, M., Wong, C.K.: Provably good
performance-driven global routing. IEEE Trans. on CAD of Integrated Circuits
and Sys. 11(6), 739–752 (1992)

8. Dinitz, Y., Elkin, M., Solomon, S.: Shallow-Low-Light Trees, and Tight Lower
Bounds for Euclidean Spanners. In: 49th IEEE Symposium on Foundations of
Computer Science, pp. 519–528. EEE Press, New York (2008)

9. Eppstein, D.: Spanning trees and spanners. Technical report 96–16, Dept. of Infor-
mation and Computer-Science, University of California, Irvine (1996)

10. Farshi, M., Gudmundsson, J.: Experimental Study of Geometric t-Spanners: A
Running Time Comparison. In: Demetrescu, C. (ed.) WEA 2007. LNCS, vol. 4525,
pp. 270–284. Springer, Heidelberg (2007)

11. Fekete, S.P., Khuller, S., Klemmstein, M., Raghavachari, B., Young, N.E.: A
Network-Flow Technique for Finding Low-Weight Bounded-Degree Spanning
Trees. J. Algorithms 24(2), 310–324 (1997)

12. Grünewald, M., Lukovszki, T., Schindelhauer, C., Volbert, K.: Distributed Main-
tenance of Resource Efficient Wireless Network Topologies. In: Monien, B., Feld-
mann, R.L. (eds.) Euro-Par 2002. LNCS, vol. 2400, pp. 935–946. Springer, Heidel-
berg (2002)

13. Gupta, A.: Steiner points in tree metrics don’t (really) help. In: 12th ACM-SIAM
Symposium on Discrete Algorithms, pp. 220–227. SIAM Press, Philadelphia (2001)

14. Khuller, S., Raghavachari, B., Young, N.E.: Balancing Minimum Spanning and
Shortest Path Trees. In: 4th ACM-SIAM Symposium on Discrete Algorithms, pp.
243–250. ACM Press, New York (1993)

15. Lukovszki, T.: New Results on Fault Tolerant Geometric Spanners. In: Dehne, F.,
Gupta, A., Sack, J.-R., Tamassia, R. (eds.) WADS 1999. LNCS, vol. 1663, pp.
193–204. Springer, Heidelberg (1999)

16. Lukovszki, T.: New Results on Geometric Spanners and Their Applications. Ph.D
thesis, Dept. of Computer-Science, University of Paderborn, Paderborn, Germany
(1999)

17. Lukovszki, T., Schindelhauer, C., Volbert, K.: Resource Efficient Maintenance of
Wireless Network Topologies. J. UCS 12(9), 1292–1311 (2006)

18. Monma, C.L., Suri, S.: Transitions in Geometric Minimum Spanning Trees. Dis-
crete & Computational Geometry 8, 265–293 (1992)

19. Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cambridge University
Press, Cambridge (2007)

20. Papadimitriou, C.H., Vazirani, U.V.: On Two Geometric Problems Related to the
Traveling Salesman Problem. J. Algorithms 5(2), 231–246 (1984)

21. Ruppert, J., Seidel, R.: Approximating the d-dimensional complete Euclidean
graph. In: 3rd Canadian Conference on Computational Geometry, pp. 207–210
(1991)

22. Salowe, J.S., Richards, D.S., Wrege, D.E.: Mixed spanning trees: a technique for
performance-driven routing. In: 3rd ACM Great Lakes symposium on VLSI, pp.
62–66. ACM Press, New York (1993)

Bounded Budget Betweenness Centrality Game for
Strategic Network Formations

Xiaohui Bei1, Wei Chen2, Shang-Hua Teng3,�, Jialin Zhang1, and Jiajie Zhu4

1 Institute for Theoretical Computer Science, Tsinghua University
{bxh08,zhanggl02}@mails.tsinghua.edu.cn

2 Microsoft Research Asia
weic@microsoft.com

3 University of Southern California
shanghua@usc.edu

4 University of California at Los Angeles
jiajie@cs.ucla.edu

Abstract. In this paper, we introduce the bounded budget betweenness centrality
game, a strategic network formation game in which nodes build connections
subject to a budget constraint in order to maximize their betweenness centrality,
a metric introduced in the social network analysis to measure the information
flow through a node. To reflect real world scenarios where short paths are more
important in information exchange, we generalize the betweenness definition
to only consider shortest paths of length at most �. We present both complexity
and constructive existence results about Nash equilibria of the game. For the
nonuniform version of the game where node budgets, link costs, and pairwise
communication weights may vary, we show that Nash equilibria may not exist
and it is NP-hard to decide whether Nash equilibria exist in a game instance. For
the uniform version of the game where link costs and pairwise communication
weights are one and each node can build k links, we construct two families of
Nash equilibria based on shift graphs, and study the properties of Nash equilibria.
Moreover, we study the complexity of computing best responses and show that
the task is polynomial for uniform 2-B3C games and NP-hard for other games.

Keywords: algorithmic game theory, network formation game, Nash equilib-
rium, betweenness centrality.

1 Introduction

Many network structures in real life are not designed by central authorities. Instead, they
are formed by autonomous agents who often have selfish motives [17]. Typical exam-
ples of such networks include the Internet where autonomous systems linked together
to achieve global connection, peer-to-peer networks where peers connect to one another
for online file sharing (e.g. [7,19]), and social networks where individuals connect to
one another for information exchange and other social functions [18]. Since these au-
tonomous agents have their selfish motives and are not under any centralized control,

� The work is done when the author is visiting Microsoft Research Asia and Microsoft Research
New England.

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 227–238, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

228 X. Bei et al.

they often act strategically in deciding whom to connect to in order to improve their
own benefits. This gives rise to the field of network formation games, which studies the
game-theoretic properties of the networks formed by these selfish agents as well as the
process in which all agents dynamically adjust their strategies [1,9,13,14,15].

A key measure of importance of a node is its betweenness centrality (or betweenness
for short), which is introduced originally in social network analysis [10,16]. If we view
a network as a graph G = (V,E) (directed or undirected), the betweenness of a node
(or vertex) i in G is

btwi(G) =
∑

u�=v �=i∈V, m(u,v)>0

w(u, v)
mi(u, v)
m(u, v)

(1)

where m(u, v) is the number of shortest paths from u to v in G, mi(u, v) is the number
of shortest paths from u to v that pass i in G, and w(u, v) is the weight on pair (u, v).
Intuitively, if the amount of information from u to v is w(u, v), and the information
is passed along all shortest paths from u to v equally, then the betweenness of node i
measures the amount of information passing through i among all pair-wise exchanges.

In this paper, we generalize the betweenness definition with a parameter � such that
only shortest paths with length at most � are considered in betweenness calculation.
Formally, we define

btwi(G, �) =
∑

u�=v �=i∈V, m(u,v,�)>0

w(u, v)
mi(u, v, �)
m(u, v, �)

, (2)

where m(u, v, �) is the number of shortest paths from u to v in G with length at most
�, and mi(u, v, �) is the number of shortest paths from u to v that passes i in G with
length at most �. It is easy to see that btwi(G) = btwi(G,n−1), where n is the number
of vertices in G.

Betweenness with path length constraint is reasonable in real-world scenarios. In
peer-to-peer networks such as Gnetella [19], query requests are searched only on nodes
with a short graph distance away from the query initiator. In social networks, researches
(e.g. [4,5]) show that short connections are much more important than long-range con-
nections.

In a decentralized network with autonomous agents, each agent may have incentive
to maximize its betweenness in the network. For example, in computer networks and
peer-to-peer networks, a node in the network may be able to charge the traffic that it
helps relaying, in which case the revenue of the node is proportional to its betweenness
in the network. So the maximization of revenue is consistent with the maximization of
the betweenness. In a social network, an individual may want to gain or control the most
amount of information travelling in the network by maximizing her betweenness.

In this paper, we introduce a network formation game in which every node in a
network is a selfish agent who decides which other nodes to connected to in order
to maximize its own betweenness. Building connections with other nodes incur costs.
Each node has a budget such that the cost of building its connections cannot exceed
its budget. We call this game the bounded budget betweenness centrality game or the
B3C game. When distinction is necessary, we use �-B3C to denote the games using
generalized betweenness definition btwi(G, �).

Bounded Budget Betweenness Centrality Game for Strategic Network Formations 229

Bounded budget assumption, first incorporated into a network formation game
in [14], reflects real world scenarios where there are physical limits to the number of
connections one can make. In computer and peer-to-peer networks, each node usually
has a connection limit. In social networks, each individual only has a limited time and
energy to create and maintain relationships with other individuals. An alternative treat-
ment to connection costs appearing in more studies [1,9,13,15] is to subtract connection
costs from the main objectives to be maximized. This treatment, however, restricts the
variety of Nash equilibria exhibited by the game, e.g. only allowing dense graphs to
be Nash equilibria [13]. Therefore, in this paper we choose to incorporate the bounded
budget assumption, even though it makes the game model more complicated.

In this paper, we consider the directed graph variant of the game, in which nodes
can only establish outgoing links to other nodes. Since incoming links help increasing
nodes’ betweenness, nodes should be happy to accept incoming links created by other
nodes. This mitigates the concern on many network formation games in which connec-
tion creation is one-sided decision. Since the game allows some trivial Nash equilibria
(such as a network with no links at all), we study a stronger form called maximal Nash
equilibria, in which no node can add more outgoing links without exceeding its bud-
get constraint. Adding outgoing links of a node can only help its betweenness, so it is
reasonable to study maximal Nash equilibria in the B3C games.

We present both complexity and existence results about B3C games. First, we study
the existence of maximal Nash equilibria in nonuniform �-B3C game, which is specified
by several parameters concerning the node budgets, link costs, and pairwise communi-
cation weights (Section 3). We show that a nonuniform �-B3C game may not have any
maximal Nash equilibria for any � ≥ 2. Moreover, given these parameters as input, it
is NP-hard to determine whether the game has a maximal Nash equilibrium. The result
indicates that finding Nash equilibria in general �-B3C games is a difficult task.

Second, we address the complexity of computing best responses in �-B3C games
(Section 4). For uniform �-B3C games where all pair weights are one, all link costs
are one, and all node budgets are given as an integer k, we show that with � = 2,
computing a best response takes O(n3) time. For all other cases (uniform games with
� ≥ 3 or nonuniform games with � ≥ 2), the task is NP-hard.

Finally, we turn our attention to the construction and the properties of Nash equi-
libria in the uniform �-B3C game with n nodes and k outgoing edges from each node
(Section 5). We introduce a type of multi-partite graphs that we call shift graphs, which
are variants of better known De Bruijn graphs and Kautz graphs. Based on these shift
graphs, we construct two different families of Nash equilibria for uniform �-B3C games.
One family gives a stronger form of Nash equilibria called strict Nash equilibria, while
the other family belongs to what we call �-path-unique graphs (�-PUGs), which we
show are always Nash equilibria for uniform �-B3C games. We then use �-PUGs to
study several properties of Nash equilibria. In particular, we show that (a) for any �, k
and large enough n (n ≥ (k + �)!/k!), a maximal Nash equilibrium exists; (b) Nash
equilibria may exhibit rich structures, e.g. they may be disconnected or have unbalanced
in-degrees and betweenness among nodes; and (c) for 2-B3C games, all maximal Nash
equilibria must be 2-PUGs if the maximum in-degree is o(n) (with k being a constant).
The proofs for all results in this paper are available in our full technical report [2].

230 X. Bei et al.

Related work. There are a number of studies on network formation games with Nash
equilibrium as the solution concept [1,3,9,13,14,15]. Most of the above work belong to
a class of games in which nodes try to minimize their average shortest distances to other
nodes in the network [1,9,14,15], which is called closeness centrality in social network
analysis [10].

Our research is partly motivated by the work of [13], in which Kleinberg et al. study
a different type of network formation games related to the concept of structural holes
in organizational social network research. In this game, each node tries to bridge other
pairs of nodes that are not directly connected. In a sense, this is a restricted type of be-
tweenness where only length-2 shortest paths are considered. Besides some difference
in the game setup, there are two major differences between our work and theirs. First,
we consider betweenness with a general path length constraint of � as well as no path
length constraints, while they only consider the bridging effect between two immediate
neighbors of a node. Second, we incorporate budget constraints to restrict the number
of links one node can build, while their work subtracts link costs in the payoff function
of each node. As the result of their treatment to link costs, they show that all Nash equi-
libria are limited to dense graphs with Ω(n2) edges where n is the number of vertices.
This is what we want to avoid in our study. A couple of other studies [6,11] also address
strategic network formations with structural holes, but they do not address the compu-
tation issue, and their game formats have their own limitations (e.g. star networks as the
only type of equilibria [11] or limited to length-2 paths [6]).

Our game is also inspired by the Bounded Budget Connection game of Laoutaris
et al. [14]. This game considers directed links and bounded budgets on nodes, using
minimization of average shortest distances to others as the objective for each node. It
shows hardness results in determining the existence of Nash equilibria in general games,
and provides tree-like structures as Nash equilibria for the uniform version of the game.
It also shows that Abelian Cayley graphs cannot be Nash equilibria in large networks.

Solution concepts other than Nash equilibrium are also used in the study of network
formation games. Authors in [8,12] consider games in which two end points of a link
have to jointly agree on adding the link, and they use pairwise stability as an alternative
to Nash equilibrium.

2 Problem Definition

A (nonuniform) bounded-budget betweenness centrality (B3C) game with parameters
(n, b, c, w) is a network formation game defined as follows. We consider a set of n
players V = {1, 2, . . . , n}, which are also nodes in a network. Function b : V → N
specifies the budget b(i) for each node i ∈ V (N is the set of natural numbers). Function
c : V × V → N specifies the cost c(i, j) for the node i to establish a link to node j,
for i, j ∈ V . Function w : V × V → N specifies the weight w(i, j) from node i to
node j for i, j ∈ V , which can be interpreted as the amount of traffic i sends to j, or the
importance of the communication from i to j.

The strategy space of player i in B3C game is Si = {si ⊆ V \ {i} |
∑

j∈si
c(i, j) ≤

b(i)}, i.e., all possible subsets of outgoing links of node i within i’s budget. A strategy
profile s = (s1, s2, . . . , sn) ∈ S1 × S2 × . . . × Sn is referred to as a configuration

Bounded Budget Betweenness Centrality Game for Strategic Network Formations 231

in this paper. The graph induced by configuration s is denoted as Gs = (V,E), where
E = {(i, j) | i ∈ V, j ∈ si}. For convenience, we will also refer Gs as a configuration.

In the game without path length constraint, the utility of a node i in configurationG is
defined by the betweenness centrality of i as given in equation (1). When we generalize
betweenness centrality and consider only shortest paths of length at most �, the utility
of node i is given as in equation (2). We use �-B3C to denote the generalized version of
game with parameter �.

In a configuration s, if no node can increase its own utility by changing its own
strategy unilaterally, we say that s is a (pure) Nash equilibrium, and we also say that
s is stable. Moreover, if in configuration s any strategy change of any node strictly
decreases the utility of the node, we say that s is a strict Nash equilibrium.

The following Lemma shows the monotonicity of node betweenness when adding
new edges to a node, which motivates our definition of maximal Nash equilibrium.

Lemma 1. For any graph G = (V,E), let G′ = (V,E ∪ {(i, j)}) where i, j ∈ V and
(i, j) �∈ E. Then btwi(G) ≤ btwi(G′), and btwi(G, �) ≤ btwi(G′, �) for all � ≥ 2.

Given a nonuniform B3C game with parameters (n, b, c, w), a maximal strategy of a
node v is a strategy with which v cannot add any outgoing edges without exceeding
its budget. We say that a graph (configuration) is maximal if all nodes use maximal
strategies in the configuration. A configuration is a maximal Nash equilibrium if it is
a maximal graph and it is a Nash equilibrium. By Lemma 1, it makes sense to study
maximal Nash equilibria where no node can add more edges within its budget limit.
Moreover, trivial non-maximal Nash equilibria exist (e.g. graphs with no edges), mak-
ing it less interesting to study all Nash equilibria. Therefore, for the rest of the paper,
we focus on maximal Nash equilibria in B3C games. The following lemma states the
relationship between maximal Nash equilibria and strict Nash equilibria, a direct con-
sequence of the monotonicity of betweenness centrality.

Lemma 2. Given a B3C game with parameters (n, b, c, w), any strict Nash equilibrium
in the game is a maximal Nash equilibrium.

Based on the above lemma, for positive existence of Nash equilibria, we sometimes
study the existence of strict Nash equilibria to make our results stronger.

A special case of B3C game is the uniform game, which has parameters n, k ∈ N
such that b(i) = k for all i ∈ V , and c(i, j) = w(i, j) = 1 for all i, j ∈ V .

3 Determining Nash Equilibria in Nonuniform Games

In this section we show that a nonuniform B3C game may not have any maximal (or
strict) Nash equilibrium, and determining whether a game has a maximal (or strict)
Nash equilibrium is NP-hard. For simplicity, we address the B3C game without path
length constraint first, and then present the results on the �-B3C game.

3.1 Nonexistence of Maximal Nash Equilibria

We fist show that some B3C game with nonuniform edge cost has no maximal (or strict)
Nash equilibrium. We construct a family of graphs, which we refer to as the gadget, and

232 X. Bei et al.

Fig. 1. Main structure of the gadget that has no maximal (or strict) Nash Equilibrium

show that B3C games based on the gadget do not have any maximal Nash equilibrium.
The gadget is shown in Figure 1. There are 5 + 3t+ r nodes in the gadget, where t ∈ N
and r = 1, 2, 3. The values of t and r allow us to construct a graph of any size great than
5. There are r nodes, denoted as A,A′, A′′ in the figure, which establish edges to B and
C. Both B and C can establish at most one edge to a node in {D,E, F} respectively.
Each node in {D,E, F} connects to a cluster of size t each (not shown in the figure).
The only requirement for these three clusters is that they are identical to each other
and are all strongly connected, so D,E, F can reach all nodes in their corresponding
clusters. Nodes in the three clusters do not establish edges to the other clusters or to
A,A′, A′′, B, C,D,E, F .

We classify nodes and edges as follows. NodesB andC are flexible nodes since they
can choose to connect one node in {D,E, F}. NodesD,E, F are triangle nodes, nodes
in the clusters are cluster nodes, and nodesA,A′, A′′, are additional nodes. Edges (i, j)
with i ∈ {B,C} and j ∈ {D,E, F} are flexible edges. Other edges shown in the
figure plus the edges in the clusters are fixed edges. The remaining pairs with no edge
connected (e.g. (A,D), (A,E), etc.) are referred to as forbidden edges.

We use the parameters (n, b, c, w) of a B3C game to realize the gadget. In particular,
(a) n = 5 + 3t+ r; (b) b(i) = 1 for all i ∈ V ; (c) c(i, j) = 0 if (i, j) is a fixed edge,
c(i, j) = 1 if (i, j) is a flexible edge, c(i, j) = M > 1 if (i, j) is a forbidden edge;
and (d) w(i, j) = 1 for all i, j ∈ V . Note that in the game only the edge costs are
nonuniform. With the above construction, we can show the following theorem.

Theorem 1. The B3C game based on the gadget of Figure 1 does not have any maximal
(or strict) Nash equilibrium. This implies that for any n ≥ 6, there is an instance of
B3C game with n players that does not have any maximal (or strict) Nash equilibrium.

proof (sketch). In any maximal graph, each of the flexible nodes B and C must have
exactly one flexible edges pointing to one of the triangle nodes {D,E, F}. It is me-
chanical to verify that if one flexible node points to a traingle node X ∈ {D,E, F},
the best response of the other flexible node is to point to Y ∈ {D,E, F} that is “down-
stream” from X , i.e. (X,Y) is a fixed edge. Then the best responses of B and C will

Bounded Budget Betweenness Centrality Game for Strategic Network Formations 233

cycle through the triangle nodes forever. Therefore, there is no Nash equilibrium for
this game. By Lemma 2, there is no strict Nash equilibrium either. �
It is easy to verify that in the proof of Theorem 1 the critical paths that matter for the
argument are from A, A′ and A′′ to nodes D,E, F , and the lengths of these critical
paths are at most three. Therefore, with the same argument, we directly know that for
all � ≥ 3, the �-B3C game based on Figure 1 does not have maximal Nash equilibrium
either. We develop a different gadget in [2] and show that for � = 2, 3 that �-B3C game
based on that gadget has no maximal (or strict) Nash equilibrium. Therefore, we have

Theorem 2. For any � ≥ 2 and n ≥ 6, there is an instance of �-B3C game with n
players that does not have any maximal (or strict) Nash equilibrium.

3.2 Hardness of Determining the Existence of Maximal Nash Equilibria

In this section we use the gadget given in Figure 1 as a building block to show that
determining the existence of maximal Nash equilibria given a nonuniform B3C game is
NP-hard. In fact, we use strict Nash equilibria to obtain a stronger result.

We define a problem TWOEXTREME as follows. The input of the problem is
(n, b, c, w) as the parameter of a B3C game. The output of the problem is Yes or No,
such that (a) if the game has a strict Nash equilibrium, the output is Yes; (b) if the game
has no maximal Nash equilibrium, the output is No; and (c) for other cases, the output
could be either Yes or No. Both deciding the existence of maximal Nash equilibria and
deciding the existence of strict Nash equilibria are stronger problems than TWOEX-
TREME, because their outputs are valid for the TWOEXTREME problem by Lemma 2.
We show the following result by a reduction from the 3-SAT problem.

Theorem 3. The problem of TWOEXTREME is NP-hard.

Corollary 1. Both deciding the existence of maximal Nash equilibria and deciding the
existence of strict Nash equilibria of a B3C game are NP-hard.1

We obtain the same result for the �-B3C game.

Theorem 4. For any � ≥ 2, both deciding the existence of maximal Nash equilibria
and deciding the existence of strict Nash equilibria in an �-B3C game are NP-hard.

4 Complexity of Computing Best Responses

The best response of a node in a configuration is its strategy that gives the node the best
utility (i.e. best betweenness). In this section, we show the complexity of computing
best responses for uniform games first, and then extend it for nonuniform games.

1 In fact, the decision problem for any intermediate concept between maximal Nash equilibrium
and strict Nash equilibrium is also NP-hard. For example, deciding the existence of nontran-
sient Nash equilibria [9] is also NP-hard because any strict Nash equilibrium is a nontransient
Nash equilibrium while the existence of a nontransient Nash equilibrium implies the existence
of a maximal Nash equilibrium in B3C games.

234 X. Bei et al.

In a uniform game with parameters (n, k), one can exhaustively search all
(
n−1

k

)
strategies and find the one with the largest betweenness. Computing the betweenness
of nodes given a fixed graph can be done by all-pair shortest paths algorithms in poly-
nomial time. Therefore, the entire brute-force computation takes polynomial time if k
is a constant. However, if k is not a constant, the result depends on �, the parameter
bounding the shortest path length in the �-B3C game.

Consider first the case of a uniform 2-B3C game. Let G = (V,E) be a directed
graph. For a node v in G, let Gv,S be the graph where v has outgoing edges to nodes in
S ⊆ V \ {v} and all other nodes have the same outgoing edges as in G. Then we have

Lemma 3. For all S ⊆ V \ {v}, btwv(Gv,S , 2) =
∑

u∈S btwv(Gv,{u}, 2).

The lemma shows that for a uniform 2-B3C game, the betweenness of a node can be
computed by the sum of its betweenness when adding each of its outgoing edges alone.

Theorem 5. Computing the best response in a uniform 2-B3C game with parameters
(n, k) can be done in O(n3) time.

proof (sketch). For each u ∈ V \ {v}, node v computes btwv(Gv,{u}, 2) in O(n2) time.
Then v selects the top k nodes u with the largest btwv(Gv,{u}, 2) as its strategy, which
is guaranteed to be v’s best response by Lemma 3. �
For cases other than the uniform 2-B3C game, we show that best response computation
is NP-hard, via a reduction from either the knapsack problem (for nonuniform the 2-
B3C game) or the set cover problem (the other cases).

Theorem 6. It is NP-hard to compute the best response in either a nonuniform 2-B3C
game, or an �-B3C game with � ≥ 3 (uniform or not), or a B3C game without path
length constraint (uniform or not).

5 Nash Equilibria in Uniform Games

In this section we focus on uniform �-B3C games. we first define a family of graph
structures called shift graphs and show that they are able to produce Nash equilibria for
B3C games. We then study some properties of Nash equilibria in uniform games.

5.1 Construction of Nash Equilibria via Shift Graphs

We first define shift graphs and non-rotational shift graphs. Then we show that for any
�, k and any �′ ≥ �, the non-rotational shift graphs with n = (�′ + k)!/k! nodes are all
Nash equilibria in the uniform �-B3C game with parameter n and k. Moreover, we use
shift graphs to construct strict Nash equilibria for both �-B3C games and B3C games
without path length constraint, for certain combinations of n and k where k = Θ(

√
n).

Definition 1. A shift graph G = (V,E) with parameters m, t ∈ N+ and t ≥ m,
denoted as SG(m, t), is defined as follows. Each vertex of G is labeled by an m-
dimensional vector such that each dimension has t symbols and no two dimensions
have the same symbol appeared in the label. That is, V = {(x1, x2, . . . , xm) | xi ∈ [t]

Bounded Budget Betweenness Centrality Game for Strategic Network Formations 235

Fig. 2. Non-rotational shift graph SGnr(2, 4)

for all i ∈ [m], and xi �= xj for all i, j ∈ [m], i �= j}. A vertex u has a directed edge
pointing to a vertex v if we can obtain v’s label by shifting u’s label to the left by one
digit and appending the last digit on the right. That is, E = {(u, v) | u, v ∈ V, u[2 :
m] = v[1 : (m − 1)]}, where u[i : j] denote the sub-vector (xi, xi+1, . . . , xj) with
u = (x1, x2, . . . , xm).

In the shift graph SG(m, t), we know that the number of vertices is n = t · (t −
1) · · · (t − m + 1) = t!/(t − m)!, and each vertex has out-degree t − m + 1. Notice
that the definition requires that m dimensions have all different symbols. If they are
allowed to be the same, then the graphs are the well-known De Bruijn graphs, whereas
if we require only that the two adjacent dimensions have different symbols, the graphs
are Kautz graphs, which are iterative line graphs of complete graphs.

Definition 2. A non-rotational shift graph with parameter m, t ∈ N+ and t ≥ m+ 1,
denoted as SGnr(m, t), is a shift graph with the further constraint that if (u, v) is
an edge, then v’s label is not a rotation of u’s label to the left by one digit. That is,
E = {(u, v) | u, v ∈ V, u[2 : m] = v[1 : (m − 1)] and u[1] �= v[m]}, where u[i]
denotes the i-th element of u.

Graph SGnr(m, t) also has t!/(t−m)! vertices but the out-degree of every vertex is t−
m. A simple non-rotational shift graph SGnr(2, 4) is given in Figure 2 as an example.
Non-rotational shift graphs is a class of vertex-transitive graphs that are Eulerian and
strongly connected. More importantly, they have one property that makes them Nash
equilibria of �-B3C games, as we now explain.

We say that a vertex v in a graphG is �-path-unique if any path that passes through v
(neither starting nor ending at v) with length no more than � is the unique shortest path
from its starting vertex to its ending vertex. A graph is k-out-regular if every vertex in
the graph has out-degree k. A k-out-regular graph is an �-path-unique graph (or �-PUG
for short) if every vertex in the graph is �-path-unique.

Lemma 4. Non-rotational shift graph SGnr(�, k + �) is an �-PUG.

Lemma 5. If a directed graph G has n nodes and is k-out-regular and �-path-unique,
then G is a maximal Nash equilibrium for the uniform �-B3C game with parameter n
and k.

236 X. Bei et al.

With the above results, we immediately have

Theorem 7. For any � ≥ 2, �′ ≥ �, k ∈ N+, graph SGnr(�′, k+ �′) is a maximal Nash
equilibrium of the uniform �-B3C game with parameters n = (k + �′)!/k! and k.

The above construction of maximal Nash equilibria is based on path-unique graphs.
Next we show that shift graphs also lead to another family of Nash equilibria not based
on path uniqueness. In fact, we show that they are strict Nash equilibria for uniform
�-B3C games for every � ≥ 2 as well as B3C games without path length constraint.

Definition 3. Given a graph G = (V,E), a vertex-duplicated graph G′ = (V ′, E′) of
G with parameter d ∈ N+, denoted as D(G, d), is a new graph such that each vertex of
G is duplicated to d copies, and each duplicate inherits all edges incident to the original
vertex. That is, V ′ = {(v, i) | v ∈ V, i ∈ [d]}, and E′ = {((u, i), (v, j)) | u, v ∈
V, (u, v) ∈ E, i, j ∈ [d]}.

Theorem 8. For any t ≥ 2, d ≥ 2, graph D(SG(2, t), d) is a strict Nash equilibrium
of the uniform �-B3C game with parameters n = dt(t− 1) and k = d(t− 1). It is also
a strict Nash equilibrium of the uniform B3C game without the path length constraint.

In the simple case of t = 2, graph D(SG(2, 2), d) is the complete bipartite graph
with d nodes on each side. For larger t, D(SG(2, t), d) is a t-partite graph with more
complicated structure. When d = 2, we have n = 2t(t − 1) and k = 2(t − 1). Thus,
we have found a family of strict Nash equilibria with k = Θ(

√
n).

An important remark is that when d ≥ 2, each node is split into at least two nodes
inheriting all incoming and outgoing edges, and thus graphs D(SG(2, t), d) for all t ≥
2 and d ≥ 2 are not �-PUGs for any � ≥ 2. Therefore, the construction by splitting
nodes in shift graphs SG(2, t) are a new family of construction not based on path-
unique graphs.

5.2 Properties of Nash Equilibria

From Lemma 5, we learn that �-PUGs are good sources for maximal Nash equilibria
for uniform �-B3C games. Thus we start by looking into the properties of �-PUGs to
obtain more ways of constructing Nash equilibria. The following lemma provides a few
ways to construct new �-PUGs given one or more existing �-PUGs.

Lemma 6. Suppose that G is a k-out-regular �-PUG. The following statements are all
true:

(1) If G′ is a k′-out-regular subgraph of G for some k′ ≤ k, then G′ is an �-PUG.
(2) Let v be a node of G and {v1, v2, . . . , vk} be v’s k outgoing neighbors. We add

a new node u to G to obtain a new graph G′. All edges in G remains in G′, and u has
k edges connecting to v1, v2, . . . , vk. Then G′ is also an �-PUG.

(3) If G′ is another k-out-regular �-PUG and G′ does not shared any node with G,
then the new graph G′′ simply by putting G together with G′ is also an �-PUG.

Lemma 6 has several important implications. First, by repeatedly applying Lemma 6 (2)
on an existing �-PUG, we can obtain an �-PUG with an arbitrary size. Combining it with
Theorem 7, it immediately implies the following theorem.

Bounded Budget Betweenness Centrality Game for Strategic Network Formations 237

Theorem 9. For any � ≥ 2, k ∈ N+, and n ≥ (k + �)!/k!, there is a maximal Nash
equilibrium in the uniform �-B3C game with parameters n and k.

Next, Lemma 6 implies that Nash equilibria of uniform �-B3C games could be
disconnected, or weakly connected, or have very unbalanced in-degrees or be-
tweenness among nodes, which implies that there exist rich structures among Nash
equilibria.

Finally, we investigate non-PUG maximal Nash equilibria in the uniform 2-B3C
game with parameters (n, k), which by Theorem 5 is the most interesting case since its
best response computation is polynomial. We want to see that when we fix k, whether
we can find non-PUG maximal Nash equilibria for arbitarily large n. Let maxInd(G)
denotes the maximum in-degree in graphG. The following result provides the condition
under which all maximal Nash equilibria are PUGs.

Theorem 10. Let G be a k-out-regular graph with n nodes. IfmaxInd(G) ≤ n−k
k2+k+1 ,

then G is a maximal Nash equilibrium for the uniform 2-B3C game with parameter n
and k if and only if G is a 2-PUG.

The above theorem implies that non-PUG equilibria is only possible if maxInd(G) =
Θ(n) when k is a constant, which means that non-PUG equilibria must have very un-
balanced in-degrees when n is large. In [2], we show an example of how to construct
such a non-PUG equilibria for arbitrarily large n when k = 2.

Theorem 10 can also be used to eliminate some families of graphs with balanced
in-degrees as maximal Nash equilibria. For example, in [2], we show that when n ≥
k3 + k2 + 2k, a family of symmetrical graphs called Abelian Cayley graphs cannot be
maximal Nash equilibria for uniform 2-B3C games.

6 Future Work

There are a number of directions to continue the study of B3C games. First, besides the
Nash equilibria we found in the paper, there are other Nash equilibria in the uniform
games, some of which have been found by our experiments. We plan to further search
for other Nash equilibrium structures and more properties of Nash equilibria. Second,
we may also look into other variants of the game and solution concept, such as undi-
rected connections or approximate Nash equilibria. Another direction is to study beyond
betweenness definitions based on shortest paths, e.g. betweenness definitions based on
network flows or random walks. This can be coupled with enriching the strategy set of
the nodes to include fractional weighted edges.

Acknowledgment. We would like to thank Heiko Röglin for his helpful discussions
on this research topic.

This work was supported in part by the National Natural Science Foundation of
China Grant 60553001, and the National Basic Research Program of China Grants
2007CB807900,2007CB807901.

238 X. Bei et al.

References

1. Albers, S., Eilts, S., Even-Dar, E., Mansour, Y., Roditty, L.: On nash equilibria for a network
creation game. In: Proceedings of the 17th ACM-SIAM Symposium on Discrete Algorithms,
pp. 89–98 (2006)

2. Bei, X., Chen, W., Teng, S.-H., Zhang, J., Zhu, J.: Bounded budget betweenness centrality
game for strategic network formations, Tech. Report MSR-TR-2009-78, Microsoft Research
(June 2009)

3. Berno, B.: Network formation with closeness incentives. In: Naimzada, A.K., Stefani, S.,
Torriero, A. (eds.) Networks, Topology and Dynamics. Springer, Heidelberg (2008)

4. Burt, R.S.: Structural holes: The social structure of competition, Harvard University Press
(1992)

5. Burt, R.S.: Secondhand brokerage: Evidence on the importance of local structure for man-
agers, bankers, and analysts. The Academy of Management Journal 50, 119–148 (2007)

6. Buskens, V., van de Rijt, A.: Dynamics of networks if everyone strives for structural holes.
American Journal of Sociology 114(2), 371–407 (2008)

7. Cohen, B.: Incentives build robustness in BitTorrent. In: 1st Workshop on Economics of
Peer-to-Peer Systems (2003)

8. Corbo, J., Parkes, D.C.: The price of selfish behavior in bilateral network formation. In:
Proceedings of the 24th ACM Symposium on Principles of Distributed Computing, pp. 99–
107 (2005)

9. Fabrikant, A., Luthra, A., Maneva, E., Papadimitriou, C.H., Shenker, S.: On a network cre-
ation game. In: Proceedings of the 22nd ACM Symposium on Principles of Distributed Com-
puting, pp. 347–351 (2003)

10. Freeman, L.: Centrality in social networks: conceptual clarification. Social Networks 1, 215–
239 (1979)

11. Goyal, S., Vega-Redondo, F.: Structural holes in social networks. Journal of Economic The-
ory 137(1), 460–492 (2007)

12. Jackson, M., Wolinsky, A.: A strategic model of social and economic networks. Journal of
Economic Theory 71(1), 44–74 (1996)

13. Kleinberg, J., Suri, S., Tardos, É., Wexler, T.: Strategic newtwork formation with structural
holes. In: Proceedings of the 9th ACM Conference on Electronic Commerce (2008)

14. Laoutaris, N., Poplawski, L., Rajaraman, R., Sundaram, R., Teng, S.-H.: Bounded budget
connection (bbc) games or how to make friends and influence people, on a budget. In: Pro-
ceedings of the 27th ACM Symposium on Principles of Distributed Computing (2008)

15. Moscibroda, T., Schmid, S., Wattenhofer, R.: On the topologies formed by selfish peers. In:
Proceedings of the 25th ACM Symposium on Principles of Distributed Computing, pp. 133–
142 (2006)

16. Newman, M.E.J., Park, J.: Why social networks are different from other types of networks.
Physical Review E 68, 36122 (2003)

17. Papadimitriou, C.H.: Algorithms, games, and the internet. In: Proceedings of the 33rd ACM
Symposium on Theory of Computing, 2001, Invited talk, pp. 749–753 (2001)

18. Scott, J.: Social network analysis. Sage, Thousand Oaks (1991)
19. Stutzbach, D., Sen, S.: Characterizing unstructured overlay topologies in modern p2p file-

sharing systems. In: ACM/USENIX Internet Measurement Conference (2005)

Exact and Approximate Equilibria for Optimal
Group Network Formation

Elliot Anshelevich and Bugra Caskurlu

Computer Science Department, RPI, 110 8th Street, Troy, NY 12180
{eanshel,caskub}@cs.rpi.edu

Abstract. We consider a process called Group Network Formation
Game, which represents the scenario when strategic agents are build-
ing a network together. In our game, agents can have extremely varied
connectivity requirements, and attempt to satisfy those requirements by
purchasing links in the network. We show a variety of results about equi-
librium properties in such games, including the fact that the price of
stability is 1 when all nodes in the network are owned by players, and
that doubling the number of players creates an equilibrium as good as
the optimum centralized solution. For the most general case, we show
the existence of a 2-approximate Nash equilibrium that is as good as the
centralized optimum solution, as well as how to compute good approx-
imate equilibria in polynomial time. Our results essentially imply that
for a variety of connectivity requirements, giving agents more freedom
can paradoxically result in more efficient outcomes.

1 Introduction

Many modern computer networks, including the Internet itself, are constructed
and maintained by self-interested agents. This makes network design a funda-
mental problem for which it is important to understand the effects of strategic
behavior. Modeling and understanding of the evolution of nonphysical networks
created by many heterogonous agents (like social networks, viral networks, etc.)
as well as physical networks (like computer networks, transportation networks,
etc.) has been studied extensively in the last several years. In networks con-
structed by several self-interested agents, the global performance of the system
may not be as good as in the case where a central authority can simply dictate
a solution; rather, we need to understand the quality of solutions that are con-
sistent with self-interested behavior. Much research in the theoretical computer
science community has focused on this performance gap and specifically on the
notions of the price of anarchy and the price of stability — the ratios between
the costs of the worst and best Nash equilibrium1, respectively, and that of the
globally optimal solution.

1 Recall that a (pure-strategy) Nash equilibrium is a solution where no single player
can switch her strategy and become better off, given that the other players keep
their strategies fixed.

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 239–250, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

240 E. Anshelevich and B. Caskurlu

In this paper, we study a network design game that we call the Group Net-
work Formation Game, which captures the essence of strategic agents building a
network together in many scenarios. In this game players correspond to nodes of
a graph (although not all nodes need to correspond to players), and the players
can have extremely varied connectivity requirements. For example, there might
be several different “types” of nodes in the graph, and a player desires to connect
to at least one of every type (so that this player’s connected component forms a
Group Steiner Tree [10]). Or instead, a player might want to connect to at least
k other player nodes. The first example above is useful for many applications
where a set of players attempt to form groups with “complementary” qualities.
The second example corresponds to a network of servers where each server want
to be connected to at least k other servers so that it can have a backup of its
data; or in the context of IP networks, a set of ISPs that want to increase the
reliability of the Internet connection for their customers, and so decide to form
multi-homing connections through k other ISPs [21]. Many other types of con-
nectivity requirements fit into our framework, and so the results we give in this
paper will be relevant to many different types of network problems.

We now formally define the Group Network Formation Game as follows. Let
an undirected graph G = (V,E) be given, with each edge e having a nonnegative
cost c(e). This graph represents the possible edges that can be built. Each player
i corresponds to a single node in this graph (that we call a player or terminal
node), which we will also denote by i. Similarly to [2], a strategy of a player
is a payment vector pi of size |E|, where pi(e) is how much player i is offering
to contribute to the cost of edge e. We say that an edge e is bought, i.e., it is
included in the network, if the sum of payments of all the players for e is at
least as much as the cost of e (

∑
i pi(e) ≥ c(e)). Let Gp denote the subgraph of

bought edges corresponding to the strategy vector p = (p1, . . . , pN). Gp is the
outcome of this game, since it is the network which is purchased by the players.

To define the utilities/costs of the players, we must consider their connectivity
requirements. Group Network Formation Game considers the class of problems
where the players’ connectivity requirements can be compactly represented with
a function F : 2U → {0, 1}, where U ⊆ V is the set of player nodes, similar to
[11]. This function F has the following meaning. If S is a set of terminals, then
F (S) = 1 iff the connectivity requirements of all players in S would be satisfied
if S formed a connected component in Gp. For the example above, where each
player wants to connect to at least one player from each “type”, the function
F (S) would evaluate to 1 exactly when S contains at least one player of each
type. Similarly, for the “data backup” example above, the function F (S) would
evaluate to 1 exactly when S contains at least k + 1 players. In general, we will
assume that the connectivity requirements of the players are represented by a
monotone “happiness” function F . The monotonicity of F means that if the
connectivity requirements of a player are satisfied in a graph Gp, then they are
still satisfied when a player is connected to strictly more nodes. We will call a
set of player nodes S a “happy” group if F (S) = 1. While not all connectivity
requirements can be represented as such a function, it is a reasonably general

Exact and Approximate Equilibria for Optimal Group Network Formation 241

class that includes the examples given above. Therefore an instance of our game
consists of a graph G = (V,E), player nodes U ⊆ V , and a function F that
states the connectivity requirements of the players. We will say that player i’s
connectivity requirements are satisfied in Gp if and only if F (Si(Gp)) = 1 for
Si(Gp) being the terminals in i’s connected component of Gp. While required
to connect to a set of terminal nodes satisfying its connectivity requirements,
each player also tries to minimize her total payments,

∑
e∈E pi(e) (which we

will denote by |pi|). We conclude the definition of our game by defining the cost
function for each player i as:

– cost(i) = ∞ if F (Si(Gp)) = 0
– cost(i) =

∑
e∈E pi(e) otherwise.

In our game, all players want to be a part of a happy group which can correspond
to many connectivity requirements, some of which are mentioned above. The so-
cially optimal solution (which we denote by OPT) for this game is the cheapest
possible network where every connected component is a happy group, since this
is the solution maximizing social welfare2. For our first example above, OPT
corresponds to the cheapest forest where every component is a Group Steiner
Tree, for the second to the Terminal Backup problem [3], and in general it can
correspond to a variety of constrained forest problems [11]. Our goals include
understanding the quality of exact and approximate Nash equilibria by com-
paring them to OPT, and thereby understanding the efficiency gap that results
because of the players’ self-interest. By studying the price of stability, we also
seek to reduce this gap, as the best Nash equilibrium can be thought of as the
best outcome possible if we were able to suggest a solution to all the players
simultaneously.

In the Group Network Formation Game, we don’t assume the existence of
a central authority that designs and maintains the network, and decides on
appropriate cost-shares for each player. Instead we use a cost-sharing scheme
which is sometimes referred to as “arbitrary cost sharing” [2,8] that permits the
players to specify the actual amount of payment for each edge. This cost-sharing
mechanism is necessary in scenarios where very little control over the players is
available, and gives more freedom to players in specifying their strategies, i.e.,
has a much larger strategy space. The main advantage of such a model is that
the players have more freedom in their choices, and less control is required over
them. A disadvantage of such a system, however, is that it does not guarantee the
existence of Nash equilibria (unlike more constrained systems such as fair sharing
[1]). Studying the existence of Nash equilibria under arbitrary cost sharing has
been an interesting research problem and researchers have proven existence for
many important games [2,8,12,13]. Interestingly, in many of these problems it
has been shown that the equilibrium is indeed cheap, i.e., costs as much as the
socially optimal network. As we show in this paper, this tells us that in the
network design contexts we consider, arbitrary sharing produces more efficient
outcomes while giving the players more freedom.
2 The solution that maximizes the social welfare is the one that minimizes the total

cost of all the players.

242 E. Anshelevich and B. Caskurlu

Related Work. Over the last few years, there have been several new papers
using arbitrary cost-sharing, e.g., [8,13,14]. Recently, Hoefer [12] proved some
interesting results for a generalization of the game in [2], and considered arbitrary
sharing in variants of Facility Location.

Unquestionably one of the most important decisions when modeling network
design involving strategic agents is to determine how the total cost of the solution
is going to be split among the players. Among various alternatives [6], the “fair
sharing” mechanism is the most relevant to ours [1,4,5,9]. In this cost sharing
mechanism, the cost of each edge of the network is shared equally by the players
using that edge. This model has received much attention, mostly because of the
following three reasons. Firstly, it nicely quantifies what people mean by ”fair”
and has an excellent economic motivation since it is strongly related to the con-
cept of Shapley value[1]. Secondly, fair sharing naturally models the congestion
effects of network routing games, and so network design games with fair shar-
ing fall into the well-studied class of “congestion games” [4,7,15,20]. Thirdly,
this model has many attractive mathematical properties including guarantees
on the existence of Nash equilibrium that can be obtained by natural game
playing [1].

Despite all of the advantages of congestion games mentioned above, there are
extremely important disadvantages as well. Firstly, although congestion games
are guaranteed to have Nash equilibria, these equilibria may be very expensive.
Anshelevich et al. [1] showed that the cheapest Nash equilibrium solution can
be Ω(log n) times more expensive than OPT, and that this bound is tight. As
we prove in this paper, arbitrary cost-sharing will often guarantee the existence
of Nash equilibria that are as cheap as the optimal solution. Secondly, fair shar-
ing inherently assumes the existence of a central authority that regulates the
agent interactions or determines the cost shares of the agents, which may not
be realistic in many network design scenarios. Arbitrary cost sharing allows the
agents to pick their own cost shares, without any requirements by the central
authority. Thirdly, although the players are trying to minimize their payments
in fair cost sharing, they are not permitted to adjust their payments freely, i.e.,
a player cannot directly specify her payments on each edge, but is rather asked
to specify which edges she wants to use. In the network design contexts that
we consider here, we prove that giving players more freedom can often result in
better outcomes.

The research on non-cooperative network design and formation games is too
much to survey here, see [16,18,20] and the references therein.

Our Results. Our main results are about the existence and computation of cheap
approximate equilibria. By an α-approximate Nash equilibrium, we mean that
no player in such a solution has a deviation that will improve their cost by a
factor of more than α. While our techniques are inspired by [2], our problem and
connectivity requirements are much more general, and so require the develop-
ment of much more general arguments and payment schemes.

Exact and Approximate Equilibria for Optimal Group Network Formation 243

– In Section 3, we show that in the case where all nodes are player nodes, there
exists a Nash equilibrium as good as OPT, i.e., the price of stability is 1.

– In Section 4, we show that in the general case where some nodes may not
be player nodes, there exists a 2-approximate Nash equilibrium as good as
OPT.

– We show that if every player is replaced by two players (or if every player
node has at least two players associated with it), then the price of stability
is 1. This is in the spirit of similar results from selfish routing [1,20], where
increasing the total amount of players reduces the price of anarchy.

– Starting with a β-approximation to OPT, we provide poly-time algorithms
for computing an (1 + ε)-approximate equilibrium with cost no more than β
times OPT, for the case where all nodes are player nodes. The same holds
for the general case with the factor being (2 + ε) instead.

Since for monotone happiness functions F , OPT corresponds to a constrained
forest problem [11], then the last result gives us a poly-time algorithm with
β = 2. Notice that we assumed that the function F is monotone, i.e., that the
addition of more terminals to a component does not hurt. This assumption is
necessary, since as we prove in Section 5, if F is not monotone there may not
exist any approximate Nash equilibria. We also show that the results above are
only possible in our model with arbitrary cost-sharing, and not with fair sharing.

Because of its applications to multi-homing [3,21], we are especially interested
in the behavior of Terminal Backup connectivity requirements, i.e., when a player
node desires to connect to at least k other player nodes. For this special case, we
prove a variety of results, such as price of anarchy bounds and the extension of
fair sharing results from [1] to this new problem. The lower bounds for Terminal
Backup also hold for the general Group Network Formation Game, showing that
while the price of stability may be low, the price of anarchy can be as high as
the number of players.

2 Properties of the Socially Optimal Network

In this section, we will show some useful properties of the socially optimal net-
work for the Group Network Formation Game, which we refer to as OPT. For
notational convenience, we will extend the definition of the happiness function
to subgraphs and use F (S) to denote the value of the happiness function for the
set of terminal nodes in a subgraph S.

Observation 1. Since the satisfaction of the players only depends on the ter-
minal nodes they are connected to, OPT is acyclic and therefore, OPT is the
minimum cost forest that satisfies all the players.

Let e = (i, j) be an arbitrary edge of a tree T of OPT. Removal of e will divide
T into 2 subtrees, namely Ti and Tj (let Ti be the tree containing node i).
After removal of e, connection requirements of some of the players in T will be
dissatisfied, i.e., either F (Ti) = 0 or F (Tj) = 0, since otherwise OPT − e would

244 E. Anshelevich and B. Caskurlu

be a network that is cheaper than OPT and satisfies all the players. Therefore,
once e is deleted from OPT, all the players in Ti or Tj or both will be dissatisfied.
The players that are dissatisfied upon removal of e are said to witness e. If e is
witnessed by only the players in Ti or only the players in Tj then e is said to be
an edge witnessed from 1-side. Analogously, we say e is witnessed from 2-sides
if it is witnessed by all the players in T .

In general, some of the edges of a tree T may be witnessed from 1-side whereas
some others are witnessed from 2-sides. In the full version of the paper, we show
that the edges of T witnessed from 2-sides form a connected component in T .
Due to limited space, all our proofs are omitted but the full version of the paper
is available online at www.cs.rpi.edu/∼eanshel.

3 When All Nodes Are Terminals

For the Group Network Formation Game, we don’t know whether there exists
an exact Nash equilibrium for all possible instances of the problem. However, for
the special case where each node of G is a terminal node, we prove that Nash
equilibrium is guaranteed to exist. Specifically, there exists a Nash equilibrium
whose cost is as much as OPT, and therefore price of stability is 1. In this section,
we will prove this result by explicitly forming the stable payments on the edges
of OPT by giving a payment algorithm. The payment algorithm, which will be
formally defined below, loops through all the players and decides the payments
of them for all their incident edges. The algorithm never asks a player i to pay
for the cost of an edge e that is not incident to i.

Since we are trying to form a Nash equilibrium, no player should have an in-
centive of unilateral deviation when the algorithm terminates. To have an easier
analysis we want our algorithm to have a stronger property: we not only want it to
ensure stability at termination but also at each intermediate step. To ensure this
stronger property, whenever a player i is assigned to make a payment for an edge
e during the execution of the algorithm, it should compute χi(pi), the cheapest
deviation of player i from pi in G − e that satisfies her (assuming the rest of the
payments to buy OPT are made by other players), and should ensure that the cost
of pi never exceeds the cost ofχi(pi) at each iteration.The payment for all the edges
of OPT will be decided when the algorithm terminates and we will conclude that
the resulting strategy profile is a Nash equilibrium since the cost of the strategy pi

of each player i will be at most her cheapest deviation χi(pi) with respect to pi.
Let p∗ be a strategy vector that buys all the edges of OPT − e, i.e., the entry of

p∗(f) = c(f) if f is inOPT−e and p∗(f) = 0 otherwise. The deviationχi(pi) is the
cheapest strategy of player i that satisfies her connectivity requirements assuming∑

j �=i pj = p∗ − pi. Observe that all edges of OPT such that i is not contributing
any payment to them can be used by i freely in χi(pi). Therefore, when computing
χi(pi), the algorithm should not use the actual cost of the edges in G − e, but
instead for each edge f it should use the cost i would face if she is to use f . We
call this the modified cost of f for i, and denote it by c′(f). Specifically, for f not
in OPT , c′i(f) = c(f), the actual cost of f . For the edges f of OPT − e that i has

Exact and Approximate Equilibria for Optimal Group Network Formation 245

Input: The socially optimal network OPT
Output: The payment scheme for OPT
Initialize pi(e) = 0 for all players i and edges e;
Root each tree T of OPT by an arbitrary node incident to an edge
witnessed from 2-sides;
Loop through all trees T of OPT;

Loop through all nodes i of T in reverse BFS order;
Loop through all edges of Ti incident to i;

Let d(e) = c(e) −
∑

j 	=i pj(e);
If χi(pi) −

∑
f pi(f) ≥ d(e)

Set pi(e) = d(e);
Else break;

Define g to be the parent edge of node i;
Set pi(g) = min{χi(pi) −

∑
f pi(f), c(g)};

Algorithm 1. Algorithm that generates payments on the edges of OPT

not contributed anything to (i.e., pi(f) = 0), we have that c′i(f) = 0, since from
i’s perspective, she can use these edges for free because other players have paid for
them. For all the other edges f that i is paying pi(f) for, c′i(f) = pi(f), since that
is how much it costs for i to use f in her deviation from the payment strategy pi.
We use the notation χi(pi) for both the deviation itself and also the cost of it; in
what follows the meaning will be clear from the context.

Recall that the algorithm asks the players to pay for their incident edges only.
Therefore, each edge is considered for payment twice. For each edge e = (u, v)
where u is the parent of v, first v is asked to pay for e at the maximum amount
that will not create an incentive for unilateral deviation for her. At the later
iterations of the algorithm, when u is processed, the algorithm asks u to pay
for the remaining cost of e. Recall that whenever the algorithm asks a player
to contribute to the cost of an edge it also computes her cheapest deviation
and ensures that no player makes a payment that will create an incentive of
unilateral deviation. Therefore, if the payment algorithm does not break at any
of the intermediate stages, then it finds a Nash equilibrium whose cost is as
much as OPT. To prove our result all we need to do is prove that the algorithm
never breaks at an intermediate stage. We prove this by constructing a network
cheaper than OPT which satisfies all the players whenever the algorithm breaks,
thus forming a contradiction in the full version of the paper.

4 Good Equilibria in the General Game

In Section 3, we saw that a good equilibrium always exists when all nodes are
terminals. In this section, we consider the general Group Network Formation
Game, and show that there always exists a 2-approximate Nash equilibrium that
is as cheap as the centralized optimum. By a 2-approximate Nash equilibrium,
we mean a strategy profile p = (p1, p2, . . . , pn) such that no player i can reduce

246 E. Anshelevich and B. Caskurlu

her cost by more than a factor of 2 by unilaterally deviating from pi to p′i,
i.e., |p′i| > |pi/2| for any unilateral deviation p′i of i. To prove this, we first
look at an important special case that we call the Group Network Formation of
Couples Game or GNFCG. This game is exactly the same as the Group Network
Formation Game, except that every terminal node is guaranteed to have at least
two players located at that node (although not all nodes need to be player nodes).

Theorem 1. If the price of stability for the GNFCG is 1 then there exists a
2-approximate Nash Equilibrium for the Group Network Formation Game that
costs as much as OPT.

Because of Theorem 1, we will focus on the GNFCG in the rest of the section
and prove the existence of a Nash equilibrium as cheap as OPT. This result is
interesting in its own right, since it states that to form an equilibrium that is
as good as the optimum solution, it is enough to double the number of players.
Such results are already known for many variants of congestion games and selfish
routing [1,20], but as Theorem 2 shows, we can also prove such results for games
with arbitrary sharing.

Given a set of bought edges T ; a strategy profile p such that for all players
i, pi is the cheapest strategy satisfying i, assuming rest of the payments to buy
all the edges of T are made by other players, is a Nash equilibrium. To prove
that price of stability is 1 for GNFCG, we give an algorithm that forms such a
strategy profile on the edges of OPT.

Recall that the payment strategies of all the players have to be stable when the
algorithm terminates. As in Section 3, to have an easier analysis we not only want
our algorithm to ensure stability at termination but also at each intermediate
step. To ensure this stronger property, whenever a player i is assigned to make a
payment for an edge e during the execution of the algorithm, it should compute
χi(pi), the cheapest deviation of player i from pi that satisfies her, and should
ensure that the cost of pi never exceeds the cost of χi(pi) at each iteration by
using the modified costs of the edges as in Section 3. In the rest of the section
we prove our main theorem for the GNFCG.

Theorem 2. For GNFCG, there exists a Nash equilibrium as cheap as the so-
cially optimal network, i.e., the price of stability is 1.

For ease of explanation, we will first consider the case where all the edges of
OPT are witnessed from two sides and later illustrate how our algorithm can
be modified for the case where some of the edges are witnessed from one side
only. We start by rooting each connected component of OPT arbitrarily by a
high degree non-player node. Throughout the paper, the term high degree node
refers to the nodes with degree 3 or more. On each connected component T of
OPT, we run a 2-phase algorithm. In the first phase of the algorithm, we assign
players to make payments to the edges of T in a bottom-up manner, i.e., we start
from a lowest level edge e of T and pick a player i to make some payment for e
and continue with the next edge in the reverse BFS order. In the first phase of
the algorithm, we ask a player i to contribute only for the cost of edges on the

Exact and Approximate Equilibria for Optimal Group Network Formation 247

(A) (B)

Fig. 1. (A) Illustrates the assignment of the player to pay for the cost of e. (B) Shows
how to construct a cheap network that satisfies all the players in Te by using the
deviations of a subset S of them.

unique path between her and the root and furthermore, the payment for each
edge is made by only one player.

Algorithm (Phase 1). For an arbitrary edge e = (u, v) where u is the lower level
incident node of e, the assignment of the player to pay for e is as follows. If
u is a terminal node, we ask a player i located at node u to make maximum
amount of payment on e that will not make pi unstable, i.e., we set pi(e) =
min{χi(pi) − |pi|, c(e)}. If u is a degree 2 nonterminal node then we ask the
player who has completely bought the other incident edge of u, i.e., made a
payment equal to c(e), to make maximum amount of payment on e that will not
make her strategy unstable as shown on the left of Figure 1(A). Note that it may
be the case that no player has bought the other incident edge of u in which case
we don’t ask any player to pay for e and the payment for e will be postponed
to the second phase of the algorithm. If u is a high degree nonterminal then the
selection of the player to pay for e is based on the number of lower level incident
edges of u that are bought in the previous iterations of the algorithm. If none of
the lower level incident edges of u are bought then we postpone the payment on
e to the second phase of the algorithm. If exactly one of the lower level incident
edges of u, namely f , is bought then we ask the player who bought f to make
maximum amount of payment on e that will not make her strategy unstable as
shown in the middle of Figure 1(A). If 2 or more of the lower level incident edges
of u are already bought, namely f1, f2, . . . , fl, then we fix the strategies of the
players i1, i2, . . . , il that bought those edges, i.e., the players i1, i2, . . . , il are not
going to pay any more and therefore the strategies of those players that will be
returned at the end of the algorithm are already determined. Since there are two
players located at every terminal, pick an arbitrary player located at the same
terminal as one of i1, i2, . . . , il that has not made any payments yet, and assign
her to make maximum amount of payment for e that will not make her strategy
unstable as shown on the right of Figure 1(A). We prove in the full version that
such a player always exists, i.e., not all of i1, i2, . . . , il are the last players to
make payment at their respective terminal nodes.

We here present an outline of our analysis of this algorithm. When we are
talking about a player i, let T denote the connected component of OPT con-
taining i and let T ′ denote the set of other connected components of OPT. For

248 E. Anshelevich and B. Caskurlu

an arbitrary edge e of T , we use Te in order to refer to the subtree of T below
e and Tu to refer to the subtree below a node u. To prove the existence of a
Nash equilibrium as cheap as OPT, we show that whenever our algorithm can-
not form stable payments on the edges of OPT we can find a subgraph of G that
is cheaper than OPT and satisfies all the players. Since OPT is the cheapest
network satisfying all the players, we will end up with a contradiction.

We give a series of lemmas in the full version that successively proves the
following. For every edge e that could not be bought in the first phase of the
algorithm by the assigned player to make payment for it, we can connect all the
terminal nodes in Te to the connected components of T ′ without using any of
the edges of T − Te by simply setting pi = χi(pi) for a subset S of players in Te.
The deviations of the subset S of the players are depicted in Figure 1(B). The
condition that no edges of T − Te are used by the deviations is crucial, since
that is what allows us to have a set of players all deviate at once and still be
satisfied afterwards. The fact that such a “re-wiring” exists allows us to argue in
our proofs that at least one of the incident edges of the root of T will be bought
during the first phase of the algorithm.

Algorithm (Phase 2). In the second phase of the algorithm, we ask the players that
have not made any payments yet to make stable payments for the remaining edges
and buy them. Let Γ be the set composed of connected components ofGp−T ′ that
include at least one terminal node. In other words, Γ consists of connected compo-
nents of the edges in T purchased so far by the algorithm (a single terminal node
with no adjacent bought edges would also be a connected component in Γ). We call
a connected componentC1 ∈ Γ immediately below a connected componentC ∈ Γ
if after contracting the components in Γ , C is above C1 in the resulting tree and
there are no other components of Γ between them. In the second phase of the algo-
rithm, we form payments on the edges in a top-down manner as we explain next.
We start from the connected component C ∈ Γ that includes the root of T and
assign a player i in C that has not made any payments yet to buy all the edges be-
tween C and the connected components that are immediately below C. We prove
that such a player i always exists in the full version of the paper. Observe that once
i buys all the edges between C and the connected components C1, C2, . . . , Ck that
are immediately below C, all these k+1 connected components form a single con-
nected component C that contains the root. We repeat this procedure, i.e., pick
a player i in the top-most connected component C that has not made a payment
yet to buy all the edges between C and the connected components that are imme-
diately below C , until all the players in T are in the same connected component
and all of T is paid for.

To show that our algorithm forms an equilibrium payment, we need to prove
that no player has a deviation from the payment assigned to her. This is true
for players making payments during the first phase by construction. To finish
the proof, we need to show that a strategy pi that buys all the edges between a
connected component C and the connected components C1, C2, . . . , Ck that are
immediately below C is a stable strategy for any player in C, which we show in
the full version of the paper.

Exact and Approximate Equilibria for Optimal Group Network Formation 249

This concludes the proof of Theorem 2. Recall that for ease of explanation,
we only considered the case where all edges of OPT are witnessed from two sides
until now. In the full version of the paper, we modify this algorithm to return
a Nash equilibrium that purchases OPT even if some of the edges of OPT are
witnessed from one side.

The proof of our 2-approximate Nash equilibrium result suggests an algorithm
which forms a cheaper network whenever a 2-approximate Nash equilibrium
cannot be found. Using techniques similar to [2], this allows us to form efficient
algorithms to compute approximate equilibria:

Theorem 3. Suppose we have an α-approximate socially optimal graph Gα for
an instance of the Group Network Formation Game. Then for any ε > 0, there
is a polynomial time algorithm which returns a 2(1 + ε)-approximate Nash equi-
librium on a feasible graph G′, where cost (G′) ≤ cost (Gα). Furthermore, if all
the terminal nodes have an associated player or each terminal node is associated
with at least 2 players, there is a polynomial time algorithm which returns a
(1 + ε)-approximate Nash equilibrium on a feasible graph G′.

Since for all monotone functions F , finding OPT is a constrained forest problem
[11], then Theorem 3 gives us a poly-time algorithm for α = 2.

5 Inapproximability Results and Terminal Backup

Recall that in this paper, we consider games where the happiness functions are
monotone. Theorem 4 shows that this property of happiness functions is critical
for even approximate stability.

Theorem 4. For the Group Network Formation Game where the happiness
functions may not be monotone, there is no α-approximate Nash equilibrium
for any α.

Recall that congestion games, including our game with fair sharing, are guar-
anteed to have Nash equilibria, although they may be expensive. The following
theorem studies the quality (cost) of approximate Nash equilibrium and shows
that there may not be any approximately stable solution that is as cheap as the
socially optimal network.

Theorem 5. For the Group Network Formation Game, there may not be any
approximate Nash equilibrium whose cost is as much as OPT if the fair cost-
sharing mechanism is used.

Because of its applications to multi-homing [3,21], we are especially interested in
the behavior of Terminal Backup connectivity requirements, i.e., when a player
node desires to connect to at least k − 1 other player nodes.

Theorem 6. For the Group Network Formation Game and the Terminal Backup
problem, the Price of Anarchy is n and 2k − 2 respectively. Furthermore, these
bounds are tight. For the Terminal Backup problem, in the Shapley cost-sharing
model, the price of stability is at most H(2k − 2).

250 E. Anshelevich and B. Caskurlu

References

1. Anshelevich, E., Dasgupta, A., Kleinberg, J., Tardos, É., Wexler, T., Roughgarden,
T.: The Price of Stability for Network Design with Fair Cost Allocation. SIAM
Journal on Computing 38(4), 1602–1623 (2008)

2. Anshelevich, E., Dasgupta, A., Tardos, É., Wexler, T.: Near-Optimal Network De-
sign with Selfish Agents. Theory of Computing 4, 77–109 (2008)

3. Anshelevich, E., Karagiozova, A.: Terminal Backup, 3D Matching, and Covering
Cubic Graphs. In: Proc. 39th ACM Symposium on Theory of Computing (2007)

4. Chekuri, C., Chuzhoy, J., Lewin-Eytan, L., Naor, J., Orda, A.: Non-cooperative
multicast and facility location games. In: Proceedings of the 7th ACM Conference
on Electronic Commerce (EC), Ann Arbor, Michigan, pp. 72–81 (2006)

5. Chen, H., Roughgarden, T.: Network Design with Weighted Players. In: SPAA
2006 (2006)

6. Chen, H., Roughgarden, T., Valiant, G.: Designing Networks with Good Equilibria.
In: SODA 2008 (2008)

7. Christodoulou, G., Koutsoupias, E.: On the price of anarchy and stability of cor-
related equilibria of linear congestion games. In: Brodal, G.S., Leonardi, S. (eds.)
ESA 2005. LNCS, vol. 3669, pp. 59–70. Springer, Heidelberg (2005)

8. Epstein, A., Feldman, M., Mansour, Y.: Strong Equilibrium in Cost-Sharing Con-
nection Games. In: EC 2007 (2007)

9. Fiat, A., Kaplan, H., Levy, M., Olonetsky, S., Shabo, R.: On the Price of Stability
for Designing Undirected Networks with Fair Cost Allocations. In: Bugliesi, M.,
Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp.
608–618. Springer, Heidelberg (2006)

10. Garg, N., Konjevod, G., Ravi, R.: A polylogarithmic approximation algorithm for
the group Steiner tree problem. In: SODA 2000 (2000)

11. Goemans, M., Williamson, D.: A General Approximation Technique for Con-
strained Forest Problems. SIAM Journal on Computing 24, 296–317 (1995)

12. Hoefer, M.: Non-cooperative Facility Location and Covering Games. In: Asano, T.
(ed.) ISAAC 2006. LNCS, vol. 4288, pp. 369–378. Springer, Heidelberg (2006)

13. Hoefer, M.: Non-cooperative Tree Creation. In: Královič, R., Urzyczyn, P. (eds.)
MFCS 2006. LNCS, vol. 4162, pp. 517–527. Springer, Heidelberg (2006)

14. Hoefer, M., Krysta, P.: Geometric Network Design with Selfish Agents. In: Wang,
L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 167–178. Springer, Heidelberg (2005)

15. Holzman, R., Law-Yone, N.: Strong Equilibrium in congestion games. Games and
Economic Behavior 21 (1997)

16. Jackson, M.: A survey of models of network formation: stability and efficiency.
In: Demange, G., Wooders, M. (eds.) Group Formation in Economics: Networks,
Clubs and Coalitions. Cambridge Univ. Press, Cambridge

17. Monderer, D., Shapley, L.: Potential Games. Games and Economic Behavior 14,
124–143 (1996)

18. Nisan, N., Roughgarden, T., Tardos, É., Vazirani, V.V. (eds.): Algorithmic Game
Theory. Cambridge University Press, Cambridge

19. Rosenthal, R.W.: The network equilibrium problem in integers. Networks 3, 53–59
(1973)

20. Roughgarden, T.: Selfish Routing and the Price of Anarchy. MIT Press, Cambridge
21. Xu, D., Anshelevich, E., Chiang, M.: On Survivable Access Network Design: Com-

plexity and Algorithms. In: INFOCOM 2008 (2008)

On the Performance of Approximate Equilibria
in Congestion Games�

George Christodoulou1, Elias Koutsoupias2, and Paul G. Spirakis3

1 Max-Planck-Institut für Informatik, Saarbrücken, Germany
gchristo@mpi-inf.mpg.de

2 Department of Informatics, University of Athens, Greece
elias@di.uoa.gr

3 Computer Engineering and Informatics Department, Patras University, Greece
spirakis@cti.gr

Abstract. We study the performance of approximate Nash equilibria for
congestion games with polynomial latency functions. We consider how
much the price of anarchy worsens and how much the price of stability
improves as a function of the approximation factor ε. We give almost
tight upper and lower bounds for both the price of anarchy and the price
of stability for atomic and non-atomic congestion games. Our results not
only encompass and generalize the existing results of exact equilibria to
ε-Nash equilibria, but they also provide a unified approach which reveals
the common threads of the atomic and non-atomic price of anarchy re-
sults. By expanding the spectrum, we also cast the existing results in a
new light.

1 Introduction

Algorithmic Game Theory has studied extensively and with remarkable suc-
cess the computational issues of Nash equilibria. As a result, we understand
almost completely the computational complexity of exact Nash equilibria (they
are PPAD-complete for games described explicitly [16,7] and PLS-complete for
games described succinctly [19]). The results indicate a long-suspected drawback
of Nash equilibria, namely that they cannot be computed effectively. Despite sub-
stantial recent progress [21,19,17,33], it is still open whether approximate Nash
equilibria share the same drawback. But in any case, they seem to provide a
more reasonable equilibrium concept: It usually makes sense to assume that an
agent is willing to accept a situation that is almost optimal to him.

In another direction, a large body of research in Algorithmic Game Theory con-
cerns the degree of performance degradation of systems due to the selfish behavior
of the users. Central to this area is the notion of price of anarchy (PoA) [20,25]
and the price of stability (PoS) [3]. The first notion compares the social cost of the
worst-case equilibrium to the social optimum, which could be obtained if every
agent followed obediently a central authority. The second notion is very similar
but it considers the best Nash equilibrium instead of the worst one.
� Supported in part by IST-15964 (AEOLUS) and IST-2008-215270 (FRONTS).

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 251–262, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

252 G. Christodoulou, E. Koutsoupias, and P.G. Spirakis

s t

l(f) = 1 + ε

l(f) = f

Fig. 1. The Pigou network

A natural question then is how the performance of a system is affected when
its users are approximately selfish: What is the approximate price of anarchy and
the approximate price of stability? Clearly, by allowing the players to be almost
rational (within an ε factor), we expand the equilibrium concept and we expect
the PoA to get worse. On the other hand, the PoS should improve. The question
is how they change as functions of the parameter ε. This is exactly the question
that we address in this work.

We study two fundamental classes of games: the class of atomic congestion
games [26,23] and the class of non-atomic congestion (or selfish routing) games
[5,15,22]. Both classes of games played central role in the development of the
area of the PoA [20,27,28]. Although the PoA and PoS of these games for exact
equilibria was established long ago [27,11,10,4]—and actually some work [29,32,8]
addressed partially the question for the PoA of approximate equilibria—our
results add an unexpected understanding of the issues involved.

While the classes of atomic and non-atomic games are conceptually very sim-
ilar, dissimilar techniques were employed in the past to answer the questions
concerning the PoA and PoS. Moreover, the qualitative aspects of the answers
were quite different. For instance, the maximum PoA for the non-atomic case is
attained by the Pigou network (Figure 1), while for the atomic case it is attained
[4,11] by a completely different network (with the structure of Figure 2).

There are two main differences between the atomic and non-atomic games.
The first difference is the “uniqueness” of equilibria: Non-atomic congestion
games have a unique exact Nash (or Wardrop as it is called in these games)
equilibrium, and therefore the PoS is not different than the PoA. On the other
hand, atomic congestion games may have multiple exact equilibria. Perhaps,
because of this, the problem of determining the PoS proved more challeng-
ing [10,6] for this case. New techniques needed for upper bounding the PoS
for linear latencies which exploited the potential of these games; for polyno-
mial latencies, the problem is still open. Furthermore, the lower bound for lin-
ear latencies is quite complicated and, unlike the selfish routing case, it has a
dependency on the number of players (it attains the maximum value at the
limit).

The second main difference between the two classes of games is “integrality”:
In the case of atomic games, when a player considers switching to another strat-
egy, he has to take into account the extra cost that he will add to the edges (or
facilities) of the new strategy. The number of players on the new edges increases
by one and this changes the cost. On the other hand, in the selfish routing games
the change of strategies has no additional cost. A simple—although not entirely
rigorous—way to think about it, is to consider the effects of a tiny amount of

On the Performance of Approximate Equilibria in Congestion Games 253

1 1’

2 2’

3 3’

f γ

f γ

f γ

Fig. 2. Lower bound for the PoA for selfish routing. There are n distinct edge latency
functions: l(f) = f , l(f) = γ (a constant which depends on ε), l(f) = 0 (omitted in
the picture). There are n commodities of rate 1 with source i and destination i′ and
2 paths that connect them. The two paths for the first commodity are shown in bold
lines. A similar construction works for atomic games as well.

flow that ponders whether to change path: it will not really affect the flow on
the new edges (at least for continuous cost functions).

When we consider approximate equilibria, the uniqueness difference dissolves
and only the integrality difference remains. But still, determining the PoS seems
to be a harder problem than determining the PoA.

1.1 Our Contribution and Related Work

Our work encompasses and generalizes some fundamental results in the area of the
PoA [27,11,10,4] (see also the recently published book [24] for background infor-
mation). Our techniques not only provide a unifying approach but they cast the
existing results in a new light. For instance, the Pigou network (Figure 1) is still
the tight example for the PoS, but not for the PoA. For the latter, the network of
Figure 2 is tight for ε ≤ 1 and the network of Figure 3 is tight for larger ε.

We use the multiplicative definition of approximate equilibria: In atomic games,
a player does not switch to a new strategy as long as his current cost is less than
1 + ε times the new cost. In the selfish routing games, we use exactly the same
definition [27]: the flow is at an equilibrium when the cost on its paths is less than
1 + ε times the cost of every alternate path. There have been other definitions
for approximate Nash equilibria in the literature. For example, for algorithmic
issues of Nash equilibria, the most-studied one is the additive case [21,16]. How-
ever, since the PoA is a ratio, the natural definition is the multiplicative one.
A slightly different multiplicative approximate Nash equilibrium definition was
used in [9], where they study convergence issues for congestion games.

There is a large body of work on the PoA in various models [24]. More relevant
to our work are the following publications: For atomic congestion games, it was
shown in [4,11] that the pure PoA of linear latencies is 5/2. Later in [10], it was
shown that the ratio 5/2 is tight even for mixed and correlated equilibria. For
weighted congestion games, the PoA is 1+φ ≈ 2.618 [4]. For polynomial latencies
of degree p, [11] showed that the PoA of pure equilibria is pΘ(p), and [4] showed
pΘ(p) bounds for mixed equilibria and for weighted congestion games. Aland et

254 G. Christodoulou, E. Koutsoupias, and P.G. Spirakis

al. [1] gave exact bounds for weighted and unweighted congestion games. For the
PoS of the atomic case, it was shown in [10,6] that for linear congestion games it
is 1 +

√
3/3. Also for the linear selfish routing games, [29,32] give tight bounds

for the PoA of ε-Nash equilibria when ε ≤ 1.
For the selfish routing paradigm and exact Nash equilibria, [27] gave the PoA

(and consequently the PoS) for polynomial latencies of degree p with nonnegative
coefficients and more general functions (see [13] or [24] for a simplified version
of the proof); the results are extended to non-atomic games in [28].

In this work, we give almost tight upper and lower bounds for the PoA and
PoS of atomic and non-atomic congestion games with polynomial latencies of
degree p. We assume throughout that the coefficients of the polynomials are
nonnegative. We give tight upper and lower bounds for the PoS and the PoA
(as functions of the degree p and the approximation factor ε) for both atomic
and non-atomic games. The only exception is the PoS for atomic games, where
we have weaker bounds; Our results reveal qualitative differences between exact
and approximate Nash equilibria for non-atomic congestion games. These games
have unique exact Nash equilibria, which makes the PoS to be equal to the PoA.
When we consider the larger class of approximate equilibria the uniqueness of
equilibria vanishes and the PoS and PoA diverge. Another interesting finding of
our work is that for ε = p, the PoS drops to 1 in both the atomic and non-atomic
case (this was known in the non-atomic case [30,14]).

For all caseswe give appropriate characterizations of the ε-Nash equilibria, which
are of independent interest and generalize known characterizations of exact equi-
libria. These characterizations apply to every nondecreasing and continuous la-
tency functions, not just polynomials. Especially for the PoS, our characterization
involves a notion which generalizes the potential function of Rosenthal [26,24].

All upper bounds proofs have the following outline: Using an appropriate
characterization for the ε-Nash equilibria and suitable algebraic inequalities—
which for non-atomic games involve real numbers and for atomic games involve
nonnegative integers—we bound the cost of the ε-Nash equilibria. The cases
of PoS however are more complicated. In these cases, the characterization of ε-
Nash equilibria involves potential-like quantities. For exact Nash equilibria there
is essentially a unique potential; but for approximate equilibria, there are many
choices for the potential and we have to figure out which potential gives the best
results. This together with the technical challenges of the algebraic inequalities
makes the proofs for the PoS harder.

All the games that we consider in this work possess pure equilibria and our
upper bound proofs are tuned to these, for simplicity. However, all our proofs can
be directly extended to mixed and correlated equilibria—the difference will be an
extra outer sum which corresponds to the expectation. The upper bounds of our
theorems apply unmodified to the more general classes of mixed and correlated
equilibria.

An unpublished preliminary version of this work [12], studied the same ques-
tions for linear latencies. Here we generalize the results to polynomial latencies
which are technically much more challenging. Due to space limitations, we refer

On the Performance of Approximate Equilibria in Congestion Games 255

the reader to the full version of this paper for the missing proofs, as well as for
the sections about atomic games.

2 Definitions

A congestion game [26], also called an exact potential game [23], is a tuple
(N,E, (Si)i∈N , (fe)e∈E), where N = {1, . . . , n} is a set of n players, E is a set
of facilities, Si ⊆ 2E is a set of pure strategies for player i: a pure strategy
Ai ∈ Si is simply a subset of facilities and le is a cost (or latency) function,
one for each facility e ∈ E. The cost of player i for the pure strategy profile
A = (A1, . . . , An) is ci(A) =

∑
e∈Ai

le(ne(A)), where ne(A) is the number of
players who use facility e in the strategy profile A.

Definition 1. A pure strategy profile A is an ε equilibrium iff for every player
i ∈ N

ci(A) ≤ (1 + ε)ci(Ai, A−i), ∀Ai ∈ Si (1)

We believe that the multiplicative definition of approximate equilibria makes
more sense in the framework that we consider: Given that the PoA is a ratio,
we need a definition that is insensitive to scaling.

The social cost of a pure strategy profile A is the sum of the players cost

C(A) =
∑
i∈N

ci(A).

The approximate PoA and PoS, is the social cost of the worst-case and best-case
ε-equilibrium over the optimal social cost

PoA = max
A is an ε-Nash

C(A)
opt

, PoS = min
A is an ε-Nash

C(A)
opt

.

Instead of defining formally the class of non-atomic congestion games, we prefer
to focus on the more illustrative–more restrictive though–class of selfish routing
games. The difference in the two models is that in a non-atomic game, there
does not exist any network and the strategies of the players are just subsets of
facilities (as in the case of atomic congestion games) and they do not necessarily
form a path in a network.

Let G = (V,E) be a directed graph, where V is a set of vertices and E is a set
of edges. In this network we consider k commodities: source-node pairs (si, ti)
with i = 1 . . . k, that define the sources and destinations. The set of simple paths
in every pair (si, ti) is denoted by Pi, while with P = ∪k

i=1Pi we denote their
union. A flow f , is a mapping from the set of paths to the set of nonnegative reals
f : P → R+. For a given flow f , the flow on an edge is defined as the sum of the
flows of all the paths that use this edge fe =

∑
P∈P,e∈P fP . We relate with every

commodity (si, ti) a traffic rate ri, as the total traffic that needs to move from si

to ti. A flow f is feasible, if for every commodity {si, ti}, the traffic rate equals
the flow of every path in Pi, ri =

∑
P∈Pi

fP . Every edge introduces a delay in
the network. This delay depends on the load of the edge and is determined by

256 G. Christodoulou, E. Koutsoupias, and P.G. Spirakis

a delay function, le(·). An instance of a routing game is denoted by the triple
(G, r, l). The latency of a path P , for a given flow f , is defined as the sum of
all the latencies of the edges that belong to P , lP (f) =

∑
e∈P le(fe). The social

cost that evaluates a given flow f , is the total delay due to f

C(f) =
∑
P∈P

lP (f)fP .

The total delay can also be expressed via edge flows C(f) =
∑

e∈E le(fe)fe.
From now on, when we refer to flows, we mean feasible flows. We define (as

in [27]) the ε-Nash or ε-Wardrop equilibrium flows:

Definition 2. A feasible flow f , is an ε-Nash (or ε-Wardrop) equilibrium, if
and only if for every commodity i ∈ {1, . . . , k} and P1, P2 ∈ Pi with fP1 > 0,
lP1(f) ≤ (1 + ε)lP2(f).

3 Non-atomic PoA

In this section we give tight bounds for the approximate PoA for non-atomic
congestion games. We present them for the special case of selfish routing (or
network non-atomic congestion games), but they apply unchanged to the more
general class of non-atomic congestion games. One of the technical difficulties
here is that a different approach is required for small and large values of ε.

We start with a condition which relates the cost of ε-Nash equilibria to any
other flow (and in particular the optimal flow). This is the generalization to
approximate equilibria of the inequality established by Beckmann, McGuire,
and Winston [5] for exact Wardrop equilibria.

Theorem 1. If f is an ε-Nash flow and f∗ is any feasible flow of a non-atomic
congestion game: ∑

e∈E

le(fe)fe ≤ (1 + ε)
∑
e∈E

le(fe)f∗
e .

Proof. Let f be an ε-approximate Nash flow, and f∗ be the optimum flow (or
any other feasible flow). Given a flow f and for a particular commodity i, we
denote by f i

p and f i
e the corresponding amount flow that i routes through the

path p and through edge e respectively. From the definition of approximate Nash
equilibria (Inequality (1)), we get that for every commodity i and for every path
p with non-zero flow in f and any other path p′:∑

e∈p

le(fe) ≤ (1 + ε)
∑
e∈p′

le(fe).

For every commodity i, we sum up these inequalities for all pairs of paths p and
p′ weighted with the amount of flow of f and f∗ on these paths.∑

p,p′
f i

pf
∗
p′

i
∑
e∈p

le(fe) ≤ (1 + ε)
∑
p,p′

f i
pf

∗
p′

i
∑
e∈p′

le(fe)

On the Performance of Approximate Equilibria in Congestion Games 257∑
p′

f∗
p′

i
∑
e∈E

le(fe)f i
e ≤ (1 + ε)

∑
p

f i
p

∑
e∈E

le(fe)f∗
e

i

(
∑
p′

f∗
p′

i)
∑
e∈E

le(fe)f i
e ≤ (1 + ε)(

∑
p

f i
p)

∑
e∈E

le(fe)f∗
e

i

But
∑

p f
i
p =

∑
p′ f∗

p′
i is equal to the total rate ri for the feasible flows f and

f∗. Simplifying and summing up for all commodities i, we get∑
e∈E

le(fe)fe ≤ (1 + ε)
∑
e∈E

le(fe)f∗
e .

�	
To bound the PoA, we will need the following lemma:

Lemma 1. Let g(x) be a polynomial with nonnegative coefficients of degree p.
The inequality

g(x) y ≤ αg(x)x + β g(y) y

holds for the following set of parameters:

α =
p

(p+ 1)(1 + ε)
β =

(1 + ε)p

p + 1
for every ε ≥ (1 + p)1/p − 1

α = p/(p+ 1)1+1/p β = 1 for every ε ≥ 0

We have now what we need to establish the upper bound of the main theorem of
this section. The matching lower bounds are shown in the following two lemmas.
Since the lower bounds are based on network non-atomic games, we get that
the theorem applies also to the special class of network non-atomic congestion
games1.

Theorem 2. The PoA of non-atomic congestion games with latency functions
polynomials of degree p with nonnegative coefficients is (1 + ε)p+1, for every
ε ≥ (p+1)1/p−1, and (1/(1+ε)−p/(p+1)1+1/p)−1, for every ε ≤ (p+1)1/p−1.

Proof. The proof is based entirely on the inequality of Theorem 1:∑
e∈E

le(fe)fe ≤ (1 + ε)
∑
e∈E

le(fe)f∗
e .

We can bound the right hand side using Lemma 1, as follows∑
e∈E

le(fe)f∗
e ≤

∑
e∈E

αle(fe)fe + βle(f∗
e)f∗

e .

It follows that for large ε (i.e. ε ≥ (p + 1)1/p − 1), the PoA is at most

(1 + ε)β
1 − (1 + ε)α

= (1 + ε)p+1,

and for small ε (i.e. ε ≤ (p + 1)1/p − 1), it is at most
1 This means that one cannot use the special structure of network non-atomic conges-

tion games to show an upper bound of a lower value.

258 G. Christodoulou, E. Koutsoupias, and P.G. Spirakis

(1 + ε)β
1 − (1 + ε)α

= (1/(1 + ε) − p/(p+ 1)1+1/p)−1.

The following two lemmas establish that these upper bounds are tight. �	

Lemma 2 (Non-Atomic-PoA-Lower-Bound for ε ≤ (p+ 1)1/p − 1). There
are instances of non-atomic congestion games with polynomial latencies of degree
p, with approximate PoA of at least (1/(1 + ε) − p/(p + 1)1+1/p)−1, for every
ε ≤ (p + 1)1/p − 1.

Lemma 3 (Non-Atomic-PoA-Lower-Bound for ε ≥ (p+ 1)1/p − 1). There
are instances of non-atomic congestion games with polynomial latencies of degree
p, with approximate PoA of at least (1 + ε)p+1, for every ε ≥ (p + 1)1/p − 1.

1
2m + k

isi

i + m + 1
ti

Fig. 3. The lower bound for non-atomic linear latencies and large ε

Proof. Consider an undirected cycle of m+ k vertices C = (v1, . . . , vm+k) with
edge latency le(fe) = fp

e on every edge e (Figure 3). We choose m, k so that
m/k gives an arbitrarily good approximation of 1 + ε. There are m + k unit-
demand commodities each one with source si = vi and destination ti = vi+m+1
(again indices are taken cyclically). Clearly, for each commodity i there are
exactly two simple paths that connect si to ti; i.e. the clockwise path using m
edges and the counterclockwise path using k edges. If every commodity routes
the traffic via the clockwise path, then the load on every edge is m. The latency
experienced by players of each commodity is mp+1–each commodity uses m edges
each incurring cost mp. The alternative path has length k and so the latency on
that path is kmp+1, so this is an m/k-approximate flow. The optimal flow routes
all the traffic counterclockwise having latency kp+1 per commodity; every edge
has load k and every commodity uses k edges. This gives an approximate PoA
of (m/k)p+1 ≈ (1 + ε)p+1. �	

4 Non-atomic PoS

In this section we give tight upper and lower bounds for the non-atomic con-
gestion games with polynomial latencies. We start with a theorem which char-
acterizes the ε-Nash (or ε-Wardrop) equilibria for every non-atomic congestion

On the Performance of Approximate Equilibria in Congestion Games 259

game with arbitrary (not necessarily polynomial) latency function. It involves
a potential-like function and generalizes a well-known characterization of exact
Nash (Wardrop) equilibria [27].

Theorem 3. In an non-atomic congestion game with latency functions le(fe),
let φe(fe) be any integrable functions which satisfy

le(fe)
(1 + ε)

≤ φe(fe) ≤ le(fe), (2)

for every fe ≥ 0 and define Φe(fe) =
∫ fe

0 φe(t) dt. For a flow f , define Φ(f) =∑
e∈E Φe(fe). If a flow f minimizes the potential function Φ(f), it is an ε-Nash

equilibrium.
Furthermore, when the latency functions are nondecreasing, for any other flow

f ′: ∑
e∈E

φe(fe)fe ≤
∑
e∈E

φe(fe)f ′
e

We now study the PoS of polynomial latency functions of the form �e(f) =∑p
k=0 ae,kf

k
e . For these latency functions we define the potential function which

has derivatives φe(fe) =
∑p

k=0 ζkae,kf
k
e , for some ζk to be determined later and

which satisfy:
1

1 + ε
≤ ζk ≤ 1 (3)

Theorem 4. The PoS for non-atomic congestion games with polynomial laten-
cies of degree p is exactly(

(1 + ε)

(
1 − p

p + 1

(
1 + ε

p+ 1

)1/p
))−1

,

for ε < p, and it drops to 1 for ε ≥ p.

Proof. Our starting point is the second part of Theorem 3. Let f be a flow which
minimizes the potential and let f̂ be an optimal flow. We have that∑

e∈E

p∑
k=0

ζkae,kf
k+1
e ≤

∑
e∈E

p∑
k=0

ζkae,kf
k
e f̂e.

We can bound from above the monomials fk
e f̂e as follows:

fk
e f̂e ≤ αkf

k+1
e + βkf̂

k+1
e ,

where2

αk
kβk = kk/(k + 1)k+1 (4)

(and in particular α0 = 0 and β0 = 1). We rearrange the terms to get:
2 We use the following fact: for every nonnegative x, y, k, and for every positive

αk, βk which satisfy αk
kβk = kk/(k + 1)k+1: xky ≤ αkxk+1 + βkyk+1. Proof: Let

z = x/y. We need to have αkzk+1 − zk + βk ≥ 0. Taking the derivative, we see
that the expression is minimized when z = k/((k + 1)αk) and the minimum value is
βk − kk/((k + 1)k+1 αk

k), which is 0 for our choice of αk and βk.

260 G. Christodoulou, E. Koutsoupias, and P.G. Spirakis

∑
e∈E

p∑
k=0

ζk(1 − αk)ae,kf
k+1
e ≤

∑
e∈E

p∑
k=0

ζkβkae,kf̂
k+1
e .

The problem now is to select the parameters αk, βk, ζk to bound all the coeffi-
cients on the left side from below and all the coefficients on the right side from
above:

ζk (1 − αk) ≥ 1 − αp ζk βk ≤ βp (5)

With these, the above inequality becomes

(1 − αp)
∑
e∈E

p∑
k=0

ae,kf
k+1
e ≤ βp

∑
e∈E

p∑
k=0

ae,kf̂
k+1
e ,

which will immediately bound the PoS from above by βp/(1 − αp).
There is a complication in selecting the parameters αk, βk, ζk as functions of

ε, in that we need to have different choices for small and large values of ε:

For k ≤ ε: ζk = (k + 1)/(1 + ε) βk = 1/(k + 1)
For k > ε: ζk = 1 βk = 1/(1 + ε)

The value of αk is determined by Equation (4)3. We need to show that these
values satisfy properties (3) and (5). We see immediately that property (3) is
satisfied. For property (5), we need to do more work. We first observe that the
second part of property (5) is satisfied always with equality. For the first part
we get:

Case ε < k: We first establish that αk ≤ k/(k+1). Indeed, from αk
kβk = kk/(k+

1)k+1, we get αk
k = (1 + ε) kk/(k+ 1)k+1 ≤ (1 + k) kk/(k+ 1)k+1 = kk/(k+ 1)k.

We will also use the fact that the function xp/(x+1)p+1 is increasing in x when
x ≤ p. We then have αp

p = (1 + ε) pp/(p + 1)p+1 ≥ (1 + ε)kp/(k + 1)p+1 =
(1 + ε)kk/(k+ 1)k+1kp−k/(k+ 1)p−k ≥ αk

kα
p−k
k = αp

k. Therefore, αp ≥ αk, from
which the first part of property (5) follows immediately.

Case ε ≥ k: In this case αk = k/(k+ 1) and we need to show that ζk(1 − αk) ≥
1−αp which is equivalent to αp ≥ ε/(1+ ε). Since αp

p = (1+ ε) pp/(p+1)p+1, we
use again the fact that the function xp/(x+ 1)p+1 is increasing in x when x ≤ p
to get that αp

p ≥ (1 + ε) εp/(1 + ε)1+p ≥ εp/(1 + ε)p. The claim follows. Notice
also that this analysis holds also for the special case k = 0.

Therefore, the PoS is at most βp/(1 − αp), where βp = 1/(1 + ε) and αp
p β =

pp/(p+ 1)p+1. This establishes the upper bound of the theorem.

3 We can unify the above definitions by letting q = min{k, ε} and

ζk = (q + 1)/(1 + ε) βk = 1/(q + 1),

but this is not very useful in the following analysis.

On the Performance of Approximate Equilibria in Congestion Games 261

To establish the lower bound, we use the Pigou network with latencies 1 + ε
and fp

e and flow rate equal to 1. There is a unique ε-Nash equilibrium which uses
the second edge with total latency 1. On the other hand, the optimal solution is
to send flow x to the second edge and 1 − x in the first edge and optimize for x.
The social cost is xp+1 + (1 + ε)(1 − x). If we minimize this function, we match
the upper bound. �	

The fact that the PoS drops to 1 when ε = p was first shown in [30] and [14].

5 Conclusions

We considered the PoA and the PoS of approximate Nash equilibria for conges-
tion games (atomic, selfish routing, and non-atomic) with polynomial latencies.
We have used a unifying approach and obtained tight upper and lower bounds
for all cases except for the PoS for atomic congestion games. This remains a
challenging open problem even for the case of exact equilibria (ε = 0).

Acknowledgments. The authors would like to thank Ioannis Caragiannis for
many helpful discussions and Tim Roughgarden for useful pointers to literature.

References

1. Aland, S., Dumrauf, D., Gairing, M., Monien, B., Schoppmann, F.: Exact price
of anarchy for polynomial congestion games. In: Durand, B., Thomas, W. (eds.)
STACS 2006. LNCS, vol. 3884, pp. 218–229. Springer, Heidelberg (2006)

2. Albers, S.: On the value of coordination in network design. In: SODA, pp. 294–303
(2008)

3. Anshelevich, E., Dasgupta, A., Kleinberg, J.M., Tardos, É., Wexler, T., Rough-
garden, T.: The price of stability for network design with fair cost allocation. In:
FOCS, pp. 295–304 (2004)

4. Awerbuch, B., Azar, Y., Epstein, A.: The price of routing unsplittable flow. In:
STOC, pp. 57–66 (2005)

5. Beckmann, M., McGuire, C.B., Winston, C.B.: Studies in the Economics of Trans-
portation. Yale University Press (1956)

6. Caragiannis, I., Flammini, M., Kaklamanis, C., Kanellopoulos, P., Moscardelli,
L.: Tight bounds for selfish and greedy load balancing. In: Bugliesi, M., Preneel,
B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 311–322.
Springer, Heidelberg (2006)

7. Chen, X., Deng, X.: Settling the complexity of two-player nash equilibrium. In:
FOCS, pp. 261–272 (2006)

8. Chen, H.-L., Roughgarden, T.: Network design with weighted players. In: SPAA,
pp. 29–38 (2006)

9. Chien, S., Sinclair, A.: Convergence to approximate nash equilibria in congestion
games. In: SODA, pp. 169–178 (2007)

10. Christodoulou, G., Koutsoupias, E.: On the price of anarchy and stability of cor-
related equilibria of linear congestion games. In: Brodal, G.S., Leonardi, S. (eds.)
ESA 2005. LNCS, vol. 3669, pp. 59–70. Springer, Heidelberg (2005)

262 G. Christodoulou, E. Koutsoupias, and P.G. Spirakis

11. Christodoulou, G., Koutsoupias, E.: The price of anarchy of finite congestion
games. In: STOC, pp. 67–73 (2005)

12. Christodoulou, G., Koutsoupias, E., Spirakis, P.G.: On the performance of approx-
imate equilibria in congestion games. CoRR, abs/0804.3160 (2008)

13. Correa, J.R., Schulz, A.S., Stier Moses, N.E.: Selfish routing in capacitated net-
works. Math. Oper. Res. 29(4), 961–976 (2004)

14. Correa, J.R., Schulz, A.S., Moses, N.E.S.: Fast, fair, and efficient flows in networks.
Operations Research 55, 215–225 (2007)

15. Dafermos, S.C., Sparrow, F.T.: The traffic assignment problem for a general net-
work. Journal of Research of the National Bureau of Standards, Series B 73B(2),
91–118 (1969)

16. Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of computing
a nash equilibrium. In: STOC, pp. 71–78 (2006)

17. Daskalakis, C., Mehta, A., Papadimitriou, C.: A note on approximate nash equi-
libria. In: Spirakis, P.G., Mavronicolas, M., Kontogiannis, S.C. (eds.) WINE 2006.
LNCS, vol. 4286, pp. 297–306. Springer, Heidelberg (2006)

18. Fiat, A., Kaplan, H., Levy, M., Olonetsky, S., Shabo, R.: On the price of stability for
designing undirected networks with fair cost allocations. In: Bugliesi, M., Preneel,
B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 608–618.
Springer, Heidelberg (2006)

19. Fabrikant, A., Papadimitriou, C., Talwar, K.: On the complexity of pure equilibria.
In: STOC (2004)

20. Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Meinel, C., Tison,
S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)

21. Lipton, R.J., Markakis, E., Mehta, A.: Playing large games using simple strategies.
In: EC, pp. 36–41 (2003)

22. Milchtaich, I.: Congestion games with player-specific payoff functions. Games and
Economic Behavior 13, 111–124 (1996)

23. Monderer, D., Shapley, L.: Potential games. Games and Economics Behavior 14,
124–143 (1996)

24. Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.V.: Algorithmic Game Theory.
Cambridge University Press, Cambridge (2007)

25. Papadimitriou, C.H.: Algorithms, games, and the internet. In: STOC, pp. 749–753
(2001)

26. Rosenthal, R.W.: A class of games possessing pure-strategy Nash equilibria. Inter-
national Journal of Game Theory 2, 65–67 (1973)

27. Roughgarden, T., Tardos, E.: How bad is selfish routing? J. ACM 49(2), 236–259
(2002)

28. Roughgarden, T., Tardos, E.: Bounding the inefficiency of equilibria in nonatomic
congestion games. Games and Economic Behavior 47(2), 389–403 (2004)

29. Roughgarden, T.: Selfish Routing. PhD. Thesis, Cornell University (May 2002)
30. Roughgarden, T.: How unfair is optimal routing? In: SODA, pp. 203–204 (2002)
31. Roughgarden, T.: The price of anarchy is independent of the network topology. J.

Comput. Syst. Sci. 67(2), 341–364 (2003)
32. Roughgarden, T.: Selfish Routing and the Price of Anarchy. MIT Press, Cambridge

(2005)
33. Tsaknakis, H., Spirakis, P.G.: An optimization approach for approximate nash

equilibria. In: Deng, X., Graham, F.C. (eds.) WINE 2007. LNCS, vol. 4858, pp.
42–56. Springer, Heidelberg (2007)

34. Wardrop, J.G.: Some theoretical aspects of road traffic research. In: Proceedings
of the Institute of Civil Engineers, Part II, vol. 1, pp. 325–378 (1952)

Optimality and Competitiveness of Exploring
Polygons by Mobile Robots

Jurek Czyzowicz�, Arnaud Labourel��, and Andrzej Pelc� � �

Département d’informatique, Université du Québec en Outaouais,
Gatineau, Québec J8X 3X7, Canada

jurek@uqo.ca, labourel.arnaud@gmail.com, pelc@uqo.ca

Abstract. A mobile robot, represented by a point moving along a polyg-
onal line in the plane, has to explore an unknown polygon and return to
the starting point. The robot has a sensing area which can be a circle or
a square centered at the robot. This area shifts while the robot moves
inside the polygon, and at each point of its trajectory the robot “sees”
(explores) all points for which the segment between the robot and the
point is contained in the polygon and in the sensing area. We focus on
two tasks: exploring the entire polygon and exploring only its boundary.
We consider several scenarios: both shapes of the sensing area and the
Manhattan and the Euclidean metrics.

We focus on two quality benchmarks for exploration performance: op-
timality (the length of the trajectory of the robot is equal to that of the
optimal robot knowing the polygon) and competitiveness (the length of
the trajectory of the robot is at most a constant multiple of that of the
optimal robot knowing the polygon). Most of our results concern recti-
linear polygons. We show that optimal exploration is possible in only one
scenario, that of exploring the boundary by a robot with square sensing
area, starting at the boundary and using the Manhattan metric. For this
case we give an optimal exploration algorithm, and in all other scenarios
we prove impossibility of optimal exploration. For competitiveness the
situation is more optimistic: we show a competitive exploration algo-
rithm for rectilinear polygons whenever the sensing area is a square, for
both tasks, regardless of the metric and of the starting point. Finally, we
show a competitive exploration algorithm for arbitrary convex polygons,
for both shapes of the sensing area, regardless of the metric and of the
starting point.

1 Introduction

The model and the problem. A mobile robot, represented by a point moving
along a polygonal line in the plane, has to explore an unknown polygon and

� Partially supported by NSERC discovery grant.
�� This work was done during this author’s stay at the Université du Québec en

Outaouais as a postdoctoral fellow.
� � � Partially supported by NSERC discovery grant and by the Research Chair in

Distributed Computing at the Université du Québec en Outaouais.

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 263–274, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

264 J. Czyzowicz, A Labourel, and A. Pelc

return to the starting point. We assume that the boundary is included in the
polygon. The robot has a sensing area (abbreviated by SA in the sequel) which
can be a circle or a square centered at the robot. During the exploration the robot
must remain within the polygon, but its SA can partially exceed the boundaries
of the polygon. At each point of its trajectory the robot “sees” (explores) all
points for which the segment between the robot and the point is contained in
the polygon to be explored and in the sensing area. For any explored point the
robot is aware of whether this point is on the boundary of the polygon or not.
We consider two tasks: exploring the entire polygon and exploring its boundary,
for both shapes of the SA and for the Manhattan and the Euclidean metrics.
The Manhattan metric will be called L1 and the Euclidean metric will be called
L2 (Recall that in the L1-metric the distance between two points is the sum of
the differences of their coordinates). We also differentiate the situation when the
starting point of the robot is at the boundary and when it is an arbitrary point
of the polygon. We assume that the robot remembers what it has explored, i.e.,
it keeps a partial map of the explored part of the polygon with its trajectory in
it, at all times.

The quality measure of an exploration algorithm not knowing the polygon (an
on-line algorithm) is the length of the trajectory of the robot, and we seek to
minimize this length. We compare it to the smallest length of the trajectory of a
robot knowing the polygon (an off-line algorithm), executing the same task (ex-
ploring the boundary or exploring the entire polygon) and starting at the same
point. The ratio between these two lengths, maximized over all pairs (polygon,
starting point), is the competitive ratio of the on-line exploration algorithm. We
focus on two quality benchmarks for exploration performance: optimality (com-
petitive ratio equal 1) and competitiveness (constant competitive ratio).

Our results. Our first set of results concerns the possibility of optimal on-line
exploration. Here we consider only rectilinear polygons (those whose angles are
either π/2 or 3π/2). It turns out that optimal exploration is possible only in one
scenario, that of exploring the boundary by a robot with square sensing area
aligned with the sides of the polygon, starting at the boundary and using the
L1-metric. For this case we give an optimal exploration algorithm. In all other
scenarios (when either the entire polygon has to be explored, or the sensing area
is a circle, or the metric is L2, or the starting point may be strictly inside the
polygon) we prove impossibility of optimal on-line exploration.

For competitiveness, the situation is more optimistic: our optimal boundary
exploration algorithm yields a competitive exploration algorithm for rectilinear
polygons whenever the sensing area is a square aligned with the sides of the
polygon, for both tasks (exploring the boundary or the entire polygon) regardless
of the metric and of the starting point. Finally, we show a competitive exploration
algorithm for arbitrary convex polygons, for both shapes of the sensing area,
regardless of the metric and of the starting point.

To the best of our knowledge we propose the first competitive on-line algo-
rithm to explore arbitrary rectilinear polygons with some limited sensing area.

Optimality and Competitiveness of Exploring Polygons by Mobile Robots 265

Related work. Exploration of unknown environments by mobile robots was
extensively studied in the literature under many different models. One of the
most important works in this domain is [5] where the sensing area is unlimited.
The authors gave a 2-competitive algorithm for rectilinear polygon exploration.
The competitive ratio was later improved to 5/3 in [8]. It was shown in [13] that
there is no deterministic algorithm for this problem better than 5/4-competitive
and that there exists a 5/4-competitive randomized algorithm solving it. All
these results hold for the L1-metric. Upper bounds for the L2-metric can be
obtained from the fact that any α-competitive algorithm for the L1-metric is
α
√

2-competitive for the L2-metric [5]. The case of non-rectilinear polygons was
also studied in [4,10] and a competitive algorithm was given in this case.

For polygonal environments with an arbitrary number of polygonal obstacles,
it was shown in [5] that no competitive strategy exists, even if all obstacles are
parallelograms. Later, this result was improved in [1] by giving a lower bound
in Ω(

√
k) for the competitive ratio of any on-line algorithm exploring a poly-

gon with k obstacles. This bound remains true even for rectangular obstacles.
Nevertheless, if the number of obstacles is bounded by a constant m, then there
exists a competitive algorithm with competitive ratio in O(m) [4].

Exploration by a robot with a limited sensing area has been studied, e.g., in
[6,7,11,12,15]. This model is interesting to study, since it is justified by real world
constraints. Indeed, computer vision algorithms based on information obtained
by sensors, such as stereo or structured-light finder, can reliably compute visi-
bility scenes only up to a limited range [7]. To the best of our knowledge, there
were no previous results concerning competitive on-line exploration for arbitrary
rectilinear polygons with limited visibility.

The off-line exploration problem with limited SA is related to older problems
such as lawn mowing, pocket milling and ice rink problems. All these three
problems are concerned with finding an optimal path of a tool moving on a
surface (grass area to mow, pocket to mill or ice rink to sweep), such that all
points of the surface are covered by the tool (a mower, cutter or ice rink machine)
at least once during its travel. The only difference between exploration and the
lawn mowing problem is that the robot is not allowed to leave the environment,
while the mower can exit the surface. The ice rink problem is the same as the lawn
mowing problem, except for the notion of the optimal path. In lawn mowing,
only the length of the path is considered, while in the ice rink problem we also
need to take into account the number of turns done by the robot, since those
turns are costly [14]. In the pocket milling problem, not only the robot cannot
leave the surface but also the cutter must not leave it. Here, the goal is to find a
shortest path that covers the maximum area possible. The first two problems are
NP-hard and the complexity of the third one is unknown [9]. All three problems
admit polynomial time approximation algorithms [2,14].

On-line exploration with limited SA has been studied, e.g., in [6,11,12]. Unlike
in our model, the robot in [6] can see slightly farther than its tool (six times the
tool range). The authors describe an on-line algorithm with competitive ratio
1+3(ΠD/A), where Π is a quantity depending on the perimeter of P , D the size

266 J. Czyzowicz, A Labourel, and A. Pelc

of the tool and A the area of P . Since the ratio ΠD/A can be arbitrarily large,
their algorithm is not competitive in the general case. Moreover, the exploration
in [6] fails on a certain type of polygons, such as those with narrow corridors.

In [11,12], the authors consider the exploration of a particular class of poly-
gons: those composed of complete identical squares, called cells of size a priori
known to the robot. In this model, the robot explores all points in a cell when it
enters the cell for the first time, and can move in one step to any adjacent cell.
The cost of the exploration is measured by the number of steps. There exists
a 2-competitive algorithm for exploration of such polygons with obstacles [11].
For polygons without obstacles, there exists a 4/3-competitive algorithm for ex-
ploration and no algorithm can achieve a competitive ratio better than 7/6 [12].

There are only a few papers on how to explore the boundary of a terrain with
limited sensing area. This problem was first considered in [15] (in its off-line
version) using a reduction to the safari route problem. The safari route problem
consists in finding a shortest trajectory, starting at the point s of the boundary
of a polygon P and going back to s, that visits a specified set of polygons P
contained in P . It is assumed in [15] that the polygons in P are attached to
the boundary of P (share at least one point with the boundary of P), since
otherwise the problem is NP-hard [15]. The author gives a O(mn2) algorithm
solving this problem, where m is the cardinality of P and n is the total number
of vertices of P and polygons in P . It is shown that an optimal safari route
visiting all the circular sectors of vertices corresponding to the angles of P , (i.e.,
the region inside P from which the vertex is visible), is an optimal boundary
exploration trajectory [15]. To solve the safari route problem, circular sectors
are approximated with polygons and the obtained solution is within 0.3% of
optimal. It is computed in cubic time.

2 Definitions and Preliminary Results

In this section and in the part of the paper concerning optimality of exploration,
we only consider rectilinear polygons. Let P be such a polygon. For convenience,
without loss of generality, we assume that all sides of the polygon P are either
parallel to the x-axis (east-west sides) or to the y-axis (north-south sides).

A rectilinear trajectory path has all its segments parallel to either the x-axis
or the y-axis. Since in the L1-metric there is always a rectilinear path among
the shortest paths between two points, we consider only rectilinear paths and
we drop the word ”rectilinear” in all considerations regarding the L1-metric. In
particular, we use this convention in this section and in Section 3.1.

A segment T contained in a polygon P is separating, if it divides P into two
simple polygons called the subpolygons defined by T . The foreign polygon defined
by T according to a point u, denoted by FPu(T), is the subpolygon not contain-
ing u. Note that the foreign polygon is undefined if u ∈ T . A separating segment
T dominates a separating segment T ′ according to the point u, if FPu(T) is
strictly contained in FPu(T ′).

The robot at position r explores a point x, if the segment rx is included both
in the polygon and in the SA centered in r. We consider two types of SA: a

Optimality and Competitiveness of Exploring Polygons by Mobile Robots 267

round SA which is a disc of diameter 2 and a square SA which is a 2× 2 square.
For exploration of rectilinear polygons, we assume that the sides of a square SA
are aligned with the sides of the polygons. An exploration trajectory of polygon
P is a path contained in P such that each point of P is explored by the robot
at some point of this path. A boundary exploration trajectory is a trajectory of
a robot inside the polygon P , exploring the boundary of P . In both cases, the
start and the end of the trajectory are equal and are denoted by r0.

For each side S of a polygon P , we extend S inside P , possibly from both
ends, until it first hits the boundary of P . Each contiguous section of the result-
ing segment, if any, excluding S itself, is called an extension segment (cf. [5])
associated with S. For each side S of a polygon P , we draw the line L parallel to
S at distance one from it, on the side of the interior of P . If this line intersects
P , we define the vicinity segment associated with S, as the part of L between
the closest point of P ∩L from S in clockwise order along the boundary and the
closest one in anti-clockwise order.

Lemma 1. Any boundary exploration trajectory is not shorter than GE.

Each extension or vicinity segment M of side S is a separating segment. In the
rest of the paper, any domination relation or foreign polygon FP (M) is defined
according to point r0, if no other point of reference is specified. If r0 ∈ M , we
set FP (M) to be the subpolygon defined by M that contains S. Starting at r0,
if side S ∈ FP (M), where M is an extension or vicinity segment of S, then S
can become explored only if M is visited (i.e., either crossed or touched). If this
is the case, we call M a necessary segment of S. For two necessary (extension or
vicinity) segments M1 and M2, if M1 dominates M2 then there is no way to visit
M1 without crossing M2 from r0. So, we can ignore M2, since it is automatically
visited, if we visit M1. A non-dominated necessary segment is called essential.
To see all sides of a polygon, starting at r0, the robot has to visit every essential
segment.

If the starting point r0 is on the boundary of P , then it induces a natural
order of essential segments, clockwise along the boundary of the polygon P :
E1, E2, . . . , Em, where E1 is the first essential segment encountered when moving
clockwise along the boundary from r0, and so on. For i ∈ 1, . . . ,m, we denote by
xi the point on Ei at the minimum distance from point xi−1, with the starting
point r0 = x0. As shown in [5], these points are uniquely defined by r0. This
trajectory from x0 to xm, and back directly from xm to x0, is called GE for
’Greedy Essential’.

3 Optimality

3.1 The Optimal Boundary Exploration Algorithm

In this section, we assume that the SA is a 2 × 2 square aligned with sides of a
rectilinear polygon. Our aim is to construct a boundary exploration algorithm
starting at a boundary point r0 and following GE as closely as possible. Unfortu-
nately, in the case of a robot with bounded SA (unlike the robot from [5] which

268 J. Czyzowicz, A Labourel, and A. Pelc

had unbounded visibility) it is impossible for an on-line algorithm to visit essen-
tial extensions greedily, using shortest paths. The following proposition shows
this significant difference between our scenario and that from [5].

Proposition 1. There is no on-line algorithm that greedily visits the essential
segments of every polygon, i.e., that visits the essential segments by following
shortest paths between them, even starting at the boundary.

Since, as shown above, our bounded visibility scenario is more difficult than that
from [5], our optimal boundary exploration algorithm must also be more subtle.
Its idea is as follows.

The robot tries to increase the contiguous part of the boundary seen to date.
The rest of the boundary is not yet explored by the robot for three possible
reasons: an obstructing angle limiting the view of the currently explored side,
a 3π/2-angle terminating the currently explored side and obstructing the view
of the next side, or finally the end of the SA limiting the view of the currently
explored side. The strategy of the robot is to move towards the extension corre-
sponding to the obstructing angle (in the first two cases) and to move parallel to
the currently explored side (in the third case). Due to limited visibility, no nec-
essary segment is seen by the robot in the third case, which is a crucial difference
between our scenario and that from [5]. While it is impossible to move between
consecutive essential segments using shortest paths, we prove that for every es-
sential segment there is some essential segment following it (not necessarily the
next one) which the robot reaches by a shortest of all paths visiting the inter-
mediate essential segments. Proving this property is the crucial and technically
most difficult part of the algorithm analysis.

Algorithm. BOUNDARY-ON-LINE-EXPLORATION (BOE, for short)
INPUT: A starting point r0 on the boundary of the polygon to be explored.
OUTPUT: A shortest boundary exploration trajectory, starting and ending at r0.

We denote by C the contiguous part of the boundary, starting clockwise from
r0, that has been explored so far by the robot, and we call frontier, denoted by
f , the end of C. The current position of the robot is denoted by r.

Repeat the following strategy until C becomes the boundary of a simple
polygon, updating r, f and C whenever any change occurs.

Case 1: There is an obstructing angle b, i.e., r, b and f are aligned and b is a
3π/2 angle not in C (see Fig. 1(a))
Move towards the extension E(b) of the side U(b) incident to b and not explored
from r. The strategy used to reach E(b) is to move parallel to the other side
S(b) incident to b whenever possible, and move towards S(b), parallel to E(b),
until it becomes possible again to move parallel to S(b), otherwise.
Case 2: f is a 3π/2 angle and r is not on the extension E(f) of the side U(f)
incident to f and not explored from r. (see Fig. 1(b))
Same as Case 1 with f instead of b.
Case 3: There is no obstructing angle, and either f is a 3π/2 angle and r is on
the extension E(f) of the side U(f) incident to f and not explored from r, or f
is not a 3π/2 angle. (see Fig. 1(c))

Optimality and Competitiveness of Exploring Polygons by Mobile Robots 269

(b)

r

C
S(f)

f

E(f)

U(f)

S(b)r

C

(c)

S(f)

1

r

ffC

(a)

E(b) U(b)
b

Fig. 1. The three possible configurations during the execution of Algorithm BOE

If f is a 3π/2 angle then S(f) = U(f), otherwise S(f) is the side containing f .
Move parallel to the side S(f) towards f until:

Case 3.1: Condition of Case 1 occurs
Follow Case 1.
Case 3.2: Condition of Case 2 occurs
Follow Case 2.
Case 3.3: A new π/2 angle a is explored and belongs to C (the robot reaches
the vicinity segment V (a) of the new side U(a) incident to a)
Do nothing (the algorithm proceeds to the next iteration of the repeat loop).

When the above Repeat loop is completed (C is a simple polygon), follow a
shortest path to r0 and stop.

The main result of this section is that Algorithm BOE is optimal.

Theorem 1. Algorithm BOUNDARY-ON-LINE-EXPLORATION is an optimal on-line
algorithm for the boundary exploration of rectilinear polygons with square SA in
the L1-metric, starting and ending at a point of the boundary.

First, we show that Algorithm BOE eventually terminates.

Lemma 2. Algorithm BOE eventually terminates with C set to the boundary
of the input polygon P .

Let l be the number of iterations of the main loop of Algorithm BOE before
terminating. For i = 1, 2, . . . , l, the robot is at point ri at the end of the i-th
iteration of the main loop. The point ri is either on a vicinity or on an extension
segment denoted by Mi. Indeed, at the end of an iteration corresponding to
Cases 1 or 3.1, the robot is on the extension segment E(b) of side U(b). For
Cases 2 or 3.2, the robot is on the extension segment E(f) of side U(f). Finally,
for Case 3.3, the robot is on the vicinity segment V (a) of side U(a).

We define a new trajectory BOE′ that reaches segments Mi in a greedy way.
For i ∈ 1, . . . , l, we denote by zi the point on Mi at the minimum distance (in the
L1-metric) from point zi−1, with r0 = z0 = zl+1. More formally, the trajectory
BOE′ is the one following a shortest path from zi−1 to zi, for all 1 ≤ i ≤ l + 1.

Although BOE might not follow a shortest path between the segment Mi

and Mi+1 for some i, its total length turns out to be equal to that of BOE′.

270 J. Czyzowicz, A Labourel, and A. Pelc

We denote by BOE[ri, rk] (resp. BOE′[zi, zk]) the part of the trajectory BOE
(resp. BOE′) between the points ri and rk (resp. zi and zk).

Lemma 3. The BOE′ trajectory has the same length as the BOE trajectory.

Proof. We show that for all i, there exists a j, such that BOE[ri, ri+j] is a
shortest path from point ri to Mi+j that visits segments Mi+k for 1 ≤ k < j.
The proof depends on the type of the (i + 1)-th iteration of Algorithm BOE.
Case 1: The robot follows a shortest path from ri to the extension segment
E(b) = Mi+1 as shown in [5]. Hence, the property holds for j = 1.
Case 2: Same as Case 1 with f instead of b.
Case 3.1: The robot moves parallel to S(f) and then moves towards the ex-
tension segment E(b), where b obstructs the vision to S(f) = dv (with d the
first vertex of S(f) in clockwise order) from the robot. Assume, without loss of
generality, that the robot moves east when moving parallel to S(f) (S(f) is an
east-west side) and is south of S(f).

In order to explore the vertex v, the robot has to execute an iteration corre-
sponding to Cases 2, 3.2 or 3.3. Let j denote the number of iterations executed
by the robot to fully explore S(f), the last one corresponding to Case 2, 3.2 or
3.3, needed to explore v.

Let S′ be the side following the side S(f) in the clockwise order. The segment
Mi+j is either the extension segment of S′, if the angle between S(f) and S′ is
a 3π/2 angle, or the vicinity segment of S′, if the angle between S(f) and S′ is
a π/2 angle. In both cases, Mi+j is perpendicular to all Mi+k for 0 ≤ k < j and
is east of point ri+1.

During the iterations corresponding to Cases 1 or 3.1, the robot moves either
north or east, since for all 1 ≤ k < j, Mi+k is an east-west segment and the
obstructing angle bk is in the north-east quadrant of the SA of the robot. During
the last iteration corresponding to Cases 2, 3.2, or 3.3, the robot moves either
north or east, since Mi+j is a north-south segment and the angle f (Cases 2
or 3.2) or the angle a (Case 3.3) is in the north-east quadrant of the SA of the
robot. Hence, the path from ri to ri+j is a shortest path.

We show that the point ri+j is the point of Mi+j at minimal distance from
ri. Indeed, it is reached by minimal x-axis and y-axis shifting, since the path
is monotone and the robot moves north only until reaching the y-coordinate of
the angle bj−1. Hence, the path is a shortest path to Mi+j visiting all Mi+k for
1 ≤ k < j, and the property is verified.
Case 3.2: The robot moves parallel to S(f) and then applies the strategy of
Case 2. Since this strategy consists in moving parallel to S(f) whenever it is
possible, the property is verified, as in Case 2.
Case 3.3: The robot moves parallel to S(f) from ri to the vicinity segment
Mi+1 of the side immediately after S(f) in clockwise order. The path followed
by the robot to reach Mi+1 is a shortest path, since S(f) is perpendicular to
Mi+1. Hence, the property holds for j = 1.

Recall that r0 = z0. We showed that ri = zi implies |BOE[ri, ri+j]| =
|BOE′[zi, zi+j]|, and ri+j = zi+j , for the index j (depending on i) determined

Optimality and Competitiveness of Exploring Polygons by Mobile Robots 271

above, since BOE[ri, ri+j] is a shortest path from ri to Mi+j . It follows by
induction that |BOE | = |BOE′ |.

We define a compatible order of essential segments as follows. In the natural order
of essential segments we choose an arbitrary set of disjoint pairs of consecutive
intersecting essential segments, and we swap segments in each pair.

Lemma 4. The essential segments are visited in a compatible order D1, . . . , Dm

by the BOE′ trajectory.

In order to compare the BOE trajectory to the GE trajectory, we define a
trajectory GC that greedily visits essential segments in the same compatible
order as BOE. For i ∈ 1, . . . , l, we denote by yi the point on Di at the minimum
distance from point yi−1, with r0 = y0 = ym+1. More formally, the trajectory
GC is the one following a shortest path from yi−1 to yi, for all 1 ≤ i ≤ m+ 1.

Lemma 5. a) The GC trajectory has the same length as GE.
b) The BOE′ trajectory has the same length as the GC trajectory.

Proof of Theorem 1. Any boundary exploration trajectory (including the optimal
one) has length not smaller than that of GE, by Lemma 1. By Lemma 5 (a), we
have |GE | = |GC |. By Lemma 5(b), we have |BOE′ | = |GC |. By Lemma 3,
we have |BOE′ | = |BOE |. By Lemma 2, BOE is a boundary exploration
trajectory. Hence BOE is an optimal boundary exploration trajectory. �

3.2 Negative Results

In this section we show that in all scenarios except the one covered by Theorem 1,
optimal on-line exploration is impossible.

Lemma 6. There is no optimal on-line algorithm for the exploration of recti-
linear polygons, with a square SA, in the L1-metric, even with the starting point
at the boundary.

Proof. We consider two polygonsW and T depicted in Fig. 2, and the exploration
problem starting from the point x at the boundary of each of these polygons.

Notice that the visible parts of the two polygons are identical when the robot
is at any point inside the rectangle abkl, the boundary of the rectangle included.
So, the adversary can arbitrarily choose one of the two polygons when the robot
leaves this rectangle to explore the rest of the polygon. The adversarial strategy
to prevent optimality consists in taking the polygon T , if the robot exits the
rectangle abkl through point k or b, and in taking the polygon W otherwise.

We first show that any exploration trajectory passing through point b or k
in polygon T is not optimal. Note that the order in which the two angles f
and g are explored does not matter because of the symmetry of polygon T . The
exploration trajectory R of T depicted in Fig. 2 is optimal, since the trajectory
follows shortest paths to explore the angle f (at point y) and then the angle g
(at point z) starting from point x.

272 J. Czyzowicz, A Labourel, and A. Pelc

n
4

2
fg

i
c

l ax l a

2 3 4 3 2

1
1

k bj

g

3

f

5 2 1 1 5

x

k b
h ed

m

Polygon W Polygon T

z y
3

1

Q

Fig. 2. Optimal solutions in polygon W and T

Let us assume, for contradiction, that there is an optimal exploration trajec-
tory E passing through b. In order to have the same length as R, the trajectory
E must follow shortest paths from x to b, from b to y, from y to z and from z
to x. Let us consider the square region Q of points at distance at least one from
lines ab and bk, and at distance at least two from lines lk and gf . The interior
points in Q and the points of side kl cannot be explored by a robot following a
shortest path xb, by or xy, since these points are at distance larger than one from
any shortest path connecting these pairs of points. Consequently, the points of
Q and those in the side kl need to be explored when moving on the trajectory
between z and x. To explore the points of Q, the robot has to move past the line
kl and continue moving east for a distance strictly greater than one. From the
fact that this must be a shortest path to x, the robot cannot move west after
this move and so cannot explore points of the side kl. Hence, the trajectory E is
not an exploration trajectory and so there is no optimal exploration trajectory
passing through b. By symmetry of the polygon, the same is true for point k.

We now show that any optimal exploration trajectory passing through any
point t of the segment bk (ends of the segment excluded) in polygon W exits
the rectangle abkl through b or k. Note that any optimal trajectory needs to
explore the angles e or h before the angles f or g. Indeed, there is a shortest
path from the point t to a point from which f is visible (respectively the angle g)
that explores the angle e (respectively the angle h). Consequently, any optimal
exploration trajectory needs to follow an optimal path from t to explore one of
the two angles e or h. These paths exit the rectangle abkl through point b or
k, and so no optimal exploration trajectory can exit this rectangle through an
inside point of the segment.

Lemma 7. There is neither an optimal on-line algorithm for the exploration,
nor for the boundary exploration of rectilinear polygons with:

1. a square SA, in the L1-metric, starting at an arbitrary point of the polygon.
2. a round SA, in the L1-metric, even with the starting point at the boundary.
3. a square or a round SA, in the L2-metric, even starting at the boundary.

Theorem 1 and Lemmas 6, 7 imply the following result that completely solves
the optimality problem of on-line exploration of rectilinear polygons.

Optimality and Competitiveness of Exploring Polygons by Mobile Robots 273

Theorem 2. The only case where on-line exploration of rectilinear polygons
can be optimal is the case of the boundary exploration with square SA in the
L1-metric, starting at the boundary. Algorithm BOE is optimal in this case.

4 Competitiveness

Algorithm BOE can be modified to produce a competitive on-line exploration
algorithm under all scenarios with square SA.

Theorem 3. There exists a competitive on-line algorithm for exploration and
for boundary exploration of rectilinear polygons with square SA for both metrics
and for any starting point.

We finally turn attention to exploration of arbitrary convex polygons. We present
a competitive exploration algorithm, called Algorithm Convex, working for ar-
bitrary convex polygons, for round or square SA and regardless of the starting
point. We use the L2-metric, and the result holds for the L1-metric as well by
changing the competitive constant.

The idea of Algorithm Convex is the following. First move along a direction
until a boundary point becomes explored. Call this distance δ. This is safe, as
the optimal algorithm must travel at least the distance δ/

√
2. Then move along

boundaries of increasing squares centered at the starting point, of sizes 2δ, 4δ,
8δ, and so on, until the entire polygon is explored, or until the size of the square
is at least 1. (If the boundary of the polygon to be explored prevents the robot
from continuing on the square, then it “slides” on the boundary, returning to
the travel on the square when again possible.) Since sizes of squares are doubled
at each stage, the total trajectory length is at most the double of traversing the
last square. If the whole polygon has been already explored, then the trajectory
length is proportional to that of the optimal algorithm. Otherwise, the optimal
trajectory length is proportional to the diameter and both these values must
be at least 1/4. The trajectory length up to this moment is constant, hence
making the tour of the polygon boundary and then applying the optimal off-
line algorithm to explore its interior (at this point the polygon is known) is
proportional to the diameter and hence competitive.

Theorem 4. Algorithm Convex is a competitive algorithm to explore any convex
polygon, starting from any point, for round or square SA, and for the L1 or the
L2-metric.

5 Conclusion

For the problem of optimality of on-line exploration of rectilinear polygons, our
results explain the situation in each of the considered scenarios: we gave an
optimal boundary exploration algorithm for a robot with square sensing area
starting at the boundary, in the Manhattan metric, while in all other scenarios

274 J. Czyzowicz, A Labourel, and A. Pelc

(exploration of the entire polygon, or arbitrary starting point, or round SA, or
the Euclidean metric) we proved that optimal on-line exploration is impossible.

For the problem of competitiveness of on-line exploration of rectilinear poly-
gons, our results are less complete: we showed a competitive algorithm for a robot
with square sensing area, regardless of the metric and of the starting point. It is
natural to ask if the same result is true for a round sensing area. We conjecture
that the answer to this question is positive. It should be noted that competi-
tiveness for the round SA does not immediately follow from competitiveness for
the square SA, because there is no bound on the ratio between the lengths of
optimal exploration trajectories in these scenarios.

An even bigger challenge would be to show a competitive on-line exploration
algorithm for arbitrary polygons, for both shapes of the sensing area. Our com-
petitive algorithm for convex polygons is a step in this direction.

References

1. Albers, S., Kursawe, K., Schuierer, S.: Exploring unknown environments with ob-
stacles. Algorithmica 32(1), 123–143 (2002)

2. Arkin, E.M., Fekete, S.P., Mitchell, J.S.B.: Approximation algorithms for lawn
mowing and milling. Comput. Geom. Theory Appl. 17(1-2), 25–50 (2000)

3. Chin, W., Ntafos, S.: Optimum watchman routes. In: Proc. of Symposium on Com-
putational Geometry (SCG 1986), pp. 24–33 (1986)

4. Deng, X., Kameda, T., Papadimitriou, C.: How to learn an unknown environment.
In: Proc. of Foundations of Computer Science (FOCS), pp. 298–303 (1991)

5. Deng, X., Kameda, T., Papadimitriou, C.: How to learn an unknown environment:
the rectilinear case. J. ACM 45(2), 215–245 (1998)

6. Gabriely, Y., Rimon, E.: Spanning-tree based coverage of continuous areas by a
mobile robot. In: Int. Conf. of Robotics and Automaton (ICRA 2001), pp. 1927–
1933 (2001)

7. Ghosh, S., Burdick, J., Bhattacharya, A., Sarkar, S.: Online algorithms with dis-
crete visibility - exploring unknown polygonal environments. Robotics & Automa-
tion Magazine 15(2), 67–76 (2008)

8. Hammar, M., Nilsson, B.J., Schuierer, S.: Improved exploration of rectilinear poly-
gons. Nordic J. of Computing 9(1), 32–53 (2002)

9. Held, M.: On the computational geometry of pocket machining. Springer-Verlag
New York, Inc., New York (1991)

10. Hoffmann, F., Icking, C., Klein, R., Kriegel, K.: The polygon exploration problem.
SIAM J. Comput. 31(2), 577–600 (2001)

11. Icking, C., Kamphans, T., Klein, R., Langetepe, E.: On the competitive complexity
of navigation tasks. In: Revised Papers from the International Workshop on Sensor
Based Intelligent Robots, London, UK, 2002, pp. 245–258. Springer, London (2002)

12. Icking, C., Kamphans, T., Klein, R., Langetepe, E.: Exploring simple grid polygons.
In: In 11th Internat. Comput. Combin. Conf., pp. 524–533 (2005)

13. Kleinberg, J.M.: On-line search in a simple polygon. In: Proc. ACM-SIAM Sym-
posium on Discrete Algorithms (SODA 1994), pp. 8–15 (1994)

14. Moret, B.M.E., Collins, M., Saia, J., Yu, L.: The ice rink problem. In: Proc. of the
1st Workshop on Algorithm Engineering (1997)

15. Ntafos, S.: Watchman routes under limited visibility. Comput. Geom. Theory
Appl. 1(3), 149–170 (1992)

Tractable Cases of Facility Location on a
Network with a Linear Reliability Order of Links

Refael Hassin1,�, R. Ravi2,��, and F. Sibel Salman3,� � �

1 Department of Statistics and Operations Research,
Tel Aviv University, Tel Aviv, Israel

hassin@post.tau.ac.il
2 Tepper School of Business, Carnegie Mellon University

ravi@cmu.edu
3 College of Engineering, Koç University, Istanbul, Turkey

ssalman@ku.edu.tr

Abstract. In this paper we study the problem of locating k facilities
to maximize the expected demand serviced in a network with unreliable
links. Given a linear ordering of links, which models the dependencies
among link failures, we assume that when a strong link fails, all weaker
links with lower reliability also fail. This model is due to Gunnec and
Salman [1], and for the single ordering case, an exact algorithm for max-
imizing expected serviced demand was provided in our earlier work [2]
via a greedy method and dynamic programming.

Our main result in this paper is to identify the boundary of hardness
of the problem as we extend the model to have more than one disaster
scenario and there is a different linear order in each scenario (defining the
strength of the links in the scenario). We show that in the case with two
disaster scenarios, the resulting facility location problem is polynomial
time solvable by proving total unimodularity of a linear programming
formulation. We also supply an alternate proof of this fact by the itera-
tive relaxation method. In addition, for the two scenario case, we show
that a version maximizing the expected demand served minus the sum
of facility opening costs reduces to a bipartite matching problem. We
then prove NP-hardness for the case with three orderings, even when all
reliability values are one or zero (i.e., every scenario is deterministic, and
we have three scenarios). Following the idea of the reduction, we show
that the problem with an arbitrary number of orderings generalizes the
maximum coverage problem, and hence affords a greedy approximation
algorithm with performance ratio (1− 1

e
). We also consider the distance-

bounded version of the problem where a demand point can be covered
only if a facility exists within a distance limit, and show that the problem
is NP-hard even for a single ordering and is equivalent to the maximum
k-facility location problem. Our methods represent the first attempt at
finding interesting tractable models of link failure for facility location

� This research is partially supported by a NATO Collaborative Linkage Grant.
�� Supported in part by NSF grant CCF-0728841.

� � � Supported by a TUBITAK Career Grant.

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 275–276, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

276 R. Hassin, R. Ravi, and F.S. Salman

planning for disasters. Our earlier results for the case of a single order-
ing [2] already showed the versatility of various techniques such as the
Greedy method and a Dynamic Programming algorithm for addressing
the many variants of the problem. This paper reveals an even richer
structure for the polynomially solvable two-scenario case by showing
non-trivial applications of total unimodularity, the iterative relaxation
technique and weighted bipartite perfect matchings.

References

1. Gunnec, D., Salman, F.S.: Assessing the reliability and the expected performance
of a network under disaster risk. In: Proceedings of the International Network Op-
timization Conference (INOC), Spa, Belgium, April 22-25 (2007)

2. Hassin, R., Ravi, R., Salman, F.S.: Facility Location on a Network with a Linear
Dependency Order of Unreliable Links. In: Proceedings of the International Network
Optimization Conference (INOC), Pisa, Italy, April 26-29 (2009)

Dynamic vs. Oblivious Routing in Network
Design

Navin Goyal1, Neil Olver2, and F. Bruce Shepherd3

1 Microsoft Reseach India
Bangalore, India

navin001@gmail.com
2 Department of Mathematics and Statistics

McGill University, Montreal, Canada
olver@math.mcgill.ca

3 Department of Mathematics and Statistics
McGill University, Montreal, Canada

bruce.shepherd@mcgill.ca

Abstract. Consider the robust network design problem of finding a min-
imum cost network with enough capacity to route all traffic demand ma-
trices in a given polytope. We investigate the impact of different routing
models in this robust setting: in particular, we compare oblivious routing,
where the routing between each terminal pair must be fixed in advance, to
dynamic routing, where routings may depend arbitrarily on the current
demand. Our main result is a construction that shows that the optimal
cost of such a network based on oblivious routing (fractional or integral)
may be a factor of Ω(log n) more than the cost required when using
dynamic routing. This is true even in the important special case of the
asymmetric hose model. This answers a question in [4], and is tight up
to constant factors. Our proof technique builds on a connection between
expander graphs and robust design for single-sink traffic patterns [5].

1 Introduction

One of the most widely studied applications of robustness in discrete optimiza-
tion has been in the context of network design. This is partly motivated by the
fact that traffic demands in modern data networks are often hard to determine
and/or are rapidly changing. In one general model (cf. [3]), the input consists
of a graph (network topology) where each edge comes with a cost to reserve
capacity. In addition, a universe of possible demand matrices is specified as a
polyhedron P (or more generally, as a convex body). In this paper our focus is
on undirected demands and so for a demand matrix D, the entries Dij and Dji

normally represent the same demand, and are hence equal. The problem is to
design a minimum cost network such that each demand matrix in the polytope
can be routed (according to routing models we describe shortly) in the resulting
capacitated network. Typically we seek to install edge capacities so that the sum
of costs is minimized, but other cost measures such as minimizing the maximum

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 277–288, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

278 N. Goyal, N. Olver, and F.B. Shepherd

congestion are also considered in the literature. We refer to the recent survey by
Chekuri [4] for a discussion of these models and previous work.

Since demands are potentially changing, there are two prime natural routing
models that are considered. The first is dynamic routing: for any given demand
D ∈ P , we may use a traffic routing tailored to this demand. We consider only the
case where the routing may be an arbitrary multicommodity flow, i.e. traffic flows
may be fractional. We also refer to this routing model as fr. Dynamic routing,
out of all possible routing models, clearly leads to the cheapest possible solution.
However, this model is typically considered impractical: rerouting demands in
realtime is not only computationally infeasible, it would be disruptive to existing
demands corresponding to realtime network applications.

On the other extreme, oblivious routing models, inspired by routing in packet
networks, ask for a routing template that defines ahead of time how any future
demands will be routed. For each node pair i, j, the template f specifies a unit
network flow fij between i and j. The interpretation is that if there is a future
demand of Dij between nodes i, j, then along each ij path P , we should route
Dijfij(P) flow on this path. Flow templates may be either fractional, in which
case they are called multipath routings (mpr), or we may require the f(P)’s to
be 0, 1-valued, in which case they are called single-path routings (spr). We also
discuss a special case of spr templates called tree templates where the support
of f induces a tree in the network; we refer to this model as tr. We can now
formally define the robust network design problem (cf. [5]):

Definition 1. Given a graph G on n nodes, edge costs c : E → R+, a polytope
P of demand matrices, and a routing model (fr, spr, mpr, tr), the robust
network design problem is defined as follows. Find a minimum cost capacity
installation of edge capacities u : E → R+ so that all demand matrices in P can
be routed in the given routing model. The cost of capacity installation u is given
by

∑
e∈E u(e)c(e).

For a given instance of robust network design (G, c,P), we use optFR(G, c,P),
optMPR(G, c,P), optSPR(G, c,P) and optTR(G, c,P) to denote the corre-
sponding cost of an optimally designed robust network for the four routing
models. If the context is clear, we may simply write, for instance, optFR.

Obviously we have optFR ≤ optMPR ≤ optSPR ≤ optTR. It has been
previously known that the gap between optFR and optSPR is O(log n) (credited
to A. Gupta, cf. [4]). This follows by an application of the approximation of
arbitrary metrics by tree metrics [6]. One can further show, by similar arguments
but now using a theorem of [1] instead, that the gap between optFR and optTR

is at most Õ(logn), where Õ hides an O(poly log logn) factor.

Our Results. In this paper, we seek to understand to what extent these gaps are
realizable; in other words, for any pair of routing methods, what is the maximum
possible gap between the costs of their optimal solution?

In short, the answer is that the upper bounds of O(log n) and Õ(logn) dis-
cussed above are essentially tight: for any pair of optimal solutions from
{optFR,optMPR,optSPR,optTR}, there exists a family of instances of the

Dynamic vs. Oblivious Routing in Network Design 279

robust network design problem such that the gap between the two quantities is
Ω(logn). We prove all of these gaps here except for the gap between optMPR

and optSPR, which follows from an inapproximabilty result in [13].

Discussion. In the robustness paradigm, the question of how large these gaps
can be is asked for specific classes of demand polyhedra. A class that has received
much attention consists of the so-called “hose models” which come in symmetric
and asymmetric flavours. In the symmetric hose model, each terminal v has an
associated marginal bv, which represents an upper bound on the total amount of
traffic that can terminate at v. The demand polytope consists of all symmetric
demands which do not violate these “hose” constraints; i.e.

∑
j Dij ≤ bi for each

terminal i. The asymmetric hose problem is similar, but the terminals are divided
into sources and sinks; all demand is between source and sink nodes, and again,
total demand to or from a terminal cannot exceed its marginal. Classes such as
the hose model arise naturally in switch design, but they were also motivated
by applications in data networks [7,8]; one of these is referred to as the virtual
private network (VPN) problem.

It is implicit in Fingerhut et al. [7] and explicit in Gupta et al. [8] that in
the symmetric hose model, optMPR ≤ optSPR ≤ 2 · optFR. However, the
gap instance between optMPR and optFR that we demonstrate in this paper
is in fact an instance of the asymmetric hose problem, and hence there is a
logarithmic gap for this latter model.1 We describe a class of graphs G, cost
function c, and a demand polytope P , such that optFR(G, c,P) = O(n) but
optSPR(G, c,P) = Ω(n logn) and optMPR(G, c,P) = Ω(n logn). The polytope
P has the property that all demands share a common “sink” node.

This result shows that for at least some robust network design problems of
practical interest, the routing model used may have a serious impact on the
solution cost. While completely dynamic routing is typically infeasible for reasons
mentioned previously, it is plausible that some tradeoff between the two extremes
of dynamic and oblivious routing could produce significantly better results while
remaining practical.

It turns out that the problem of designing an spr routing template for our gap
instance corresponds to the well-studied rent-or-buy network flow problem (see,
e. g., [9]) which is a generalization of the Steiner tree problem. In this problem
there is only one demand matrix instead of a polytope of demands, but the cost
function is concave. We sketch the lower bound argument for optSPR separately
in Section 2.3 since it is much simpler; it proceeds by showing that the optimal
spr templates may be assumed to be tree templates for our gap instance.

The lower bound for optMPR is more involved. We show that the cost of
an mpr template for our gap instance can be characterized by a network design
problem that we call buy-and-rent. Again there is only one demand to be satisfied,
but the cost function is more complex. The buy-and-rent cost function seems to
be new and natural: briefly, instead of asking that each edge be either rented or
bought, it allows that capacity may be partially bought and the rest rented. This

1 This rectifies an earlier assertion (cf. Theorem 4.6 in [4]).

280 N. Goyal, N. Olver, and F.B. Shepherd

new cost function is more amenable to analysis, and leads to our lower bound
for optMPR.

Relation to congestion lower bounds. We remark that our lower bounds for the
total cost model also imply lower bounds for minimizing the maximum conges-
tion, essentially because if every edge had congestion at most α, the total cost
would also be bound by a factor α. Since the polytope P we use is a subset of the
single-sink demands routable in G, this also implies a result in [10] which gives
an Ω(logn) bound for congestion via oblivious routing of single sink demands
(although their analysis also extends to the case of lower bounding performance
of a general online algorithm). Congestion minimization problems can be seen as
equivalent to a robust optimization where one uses maximum edge congestion as
a cost function; simply take the polytope consisting of all single-sink demands
which are routable in G (this is a superset of our choice P). The construction
in [10] uses meshes (grids), building on work of [2,11]. This construction does
not seem to extend to the total cost model however, and we use instead a con-
struction based on expanders, extending and simplifying a connection shown in
earlier work [5].

Note that a gap between optMPR (and hence optSPR) and optFR shows
that in general, in order to solve for optSPR it is not sufficient to find routings
for some constant number of demand matrices, and then simply add up the
capacities needed for these routings.

Gaps for tree templates. In Section 3 we give a family of instances (using a
different demand polyhedron) showing that the gap between optSPR and optTR

can be Ω(log n). This immediately implies that the gaps between optFR and
optTR and between optMPR and optTR is Ω(logn) for this family of instances.

2 A Gap Example

2.1 A Robust Network Design Instance

Let G = (V,E) be a graph on n nodes with constant degree d ≥ 3 and edge-
expansion at least 1; i.e. we have that |δG(S)| ≥ |S| for all S ⊆ V with |S| ≤ n/2.
Here δG(S) denotes the set of edges in E with one end-point in S and the other
outside S. It is well-known that such edge-expanders with the above parameters
exist. Now add a special sink node r to V to obtain our instance Ḡ = (V̄ , Ē) =
(V ∪ {r}, E ∪ {vr : v ∈ V }); see Figure 1.

We look at a single-sink hose model (cf. [5]), where our demands come from a
polytope P defined as follows. We have a specified marginal capacity bv at each
node: br = βn (where 0 < β < 1), and bv = 1 for all v ∈ V . Each demand
matrix Dij ∈ P has the property that

∑
j Dij ≤ bi for each node i ∈ V̄ , and

Dij > 0 only if r ∈ {i, j}. Although we often think of nodes routing flow towards
the sink, the demands and flows are essentially undirected in this paper.

Thus each demand matrix we must support, identifies a single-sink network
flow problem. It is a simple exercise to see that:

Dynamic vs. Oblivious Routing in Network Design 281

r

G = (V,E)

Fig. 1. The gap instance. G is a d-regular expander.

Lemma 1. If br is an integer, then our network is robust for P and a given
routing model if and only if for each subset X of br nodes in G, there is enough
capacity to route one unit from each node in X to r, using the prescribed routing
model.

We use this fact below. Finally, we also assign costs to the edges: each edge of
G has cost 1, and each edge in δḠ(r) has cost 1/β.

Our main result is the following theorem:

Theorem 1. For β = 1/ logn, there is a dynamic routing for the single-sink
hose model instance (defined above) of cost O(n), but every mpr solution (and
hence every spr solution) has cost Ω(n logn).

The first assertion is proved in the next section. In Section 2.3, we see that
determining optSPR for single-sink hose models is equivalent to the well-studied
single-sink rent-or-buy problem (see, e. g., [9]). In Section 2.3, we see that the
rent-or-buy problem always has a tree solution. This can be used to show that
optSPR = Ω(n logn) for our instance with β = 1/ logn. We give a sketch of
a proof of this since it is considerably simpler than (but implied by) the proof
of the corresponding bound for mpr. This mpr lower bound is demonstrated in
Section 2.4.

We assume throughout the paper that br = βn is an integer.

2.2 A Solution for the Dynamic Routing Model

Put capacity β on each edge of δḠ(r), and capacity 1 on each edge of G. Clearly,
the cost of this reservation is O(n) independent of β. We show that this is a valid
FR capacity reservation. Using Lemma 1 it suffices to show that for any subset
of βn nodes X in G, all nodes in X can simultaneously route a unit flow to r. To
this end, we add a new node t to Ḡ and edges vt for v ∈ X with unit capacity
to form graph G′. We show that G′ supports a t-r flow of size |X | = βn. By the
max-flow min-cut theorem it suffices to show that all r-t cuts in G′ have size at
least βn, i.e. that for each S ⊆ V we have |δG′(S ∪ {t})| ≥ βn.

282 N. Goyal, N. Olver, and F.B. Shepherd

We have
|δG′(S ∪ {t})| = β|S| + |X \ S| + |δG(S)|.

Now, if |S| ≤ n/2 then using the fact that for G we have |δG(S)| ≥ |S| we get

|δG′(S ∪ {t})| ≥ β|S| + |X \ S| + |S|
≥ β|S| + |X |
≥ |X |.

And if |S| > n/2 then using the fact that for G we have |δG(S)| ≥ n−|S| we get

|δG′(S ∪ {t})| ≥ β|S| + |X \ S| + n− |S|
≥ β|S| + |X \ S| + β(n− |S|)
= βn+ |X \ S|
≥ βn.

Hence the above capacity reservation can support the FR routing model and
costs O(n).

2.3 Rent-or-Buy: Lower Bounds for spr Oblivious Routing
Solutions

Note that the optimal cost oblivious spr network can be cast as a minimum
cost (unsplittable) flow problem as follows. Each node v ∈ V must route one
unit of flow on a path Pv to r and the overall (truncated) cost of path choices
is:

∑
e c(e)min{N(e), br}, where N(e) is the number of nodes v whose path to r

used the edge e. Clearly, if the capacity of each edge is min{N(e), br}, then we
have sufficient capacity to route any demand matrix in P using as a template
the paths Pv. The converse is in fact also true and easy; any template gives rise
to a corresponding integer flow whose truncated cost is the same.

This truncated routing cost problem is simply a so-called single-sink rent-or-
buy (ssrob) problem (cf. [9]). We are given a network G with edge costs c(e),
and a special sink node t. A parameter B ≥ 1 is also given. We also have a list
of sources si for i = 1, 2 . . . , p; each source needs to route to the sink t. For each
edge in the network, we may either purchase it at a cost of Bc(e), in which case
it is deemed to have infinite capacity, or we may rent it. In that case, we must
pay c(e) per unit of capacity that we use on the edge. The goal is to find which
edges to buy and which to rent in order to support a flow from each node to
t, at the smallest possible cost. In other words, we seek a fractional flow f of
the demands that minimizes

∑
e∈E c(e)min{f(e), B}. In general, we may also

consider such single-sink flow problems with concave costs
∑

e ge(f(e)) where
each ge is a concave function.

The following result is immediate from the concavity of the cost function:

Proposition 1. Any single-sink flow problem with nondecreasing concave costs
has an optimal solution whose support is a tree. In particular, such an optimal
solution always exists for the ssrob problem.

Dynamic vs. Oblivious Routing in Network Design 283

Proof. (Sketch) Let f be a flow giving an optimal solution to the rent-or-buy
instance, chosen so that supp(f) is setwise minimal. We show that then supp(f)
must form a tree.

Let us consider f as a directed flow, where each terminal sends flow to the
sink. If there is any directed cycle in the support of f , then we may simply
reduce flow on this cycle until some arc becomes zero; this does not increase the
cost since our cost function is nondecreasing. So we may assume our support is
acyclic in the directed sense. Suppose now that there is some undirected cycle C
in the support which by assumption corresponds to some forward (traversing C
in order) arcs F and some reverse arcs R. Let ε = min{f(a) : a ∈ R∪F}. Define
two solutions f+,f− by f±(a) = f(a) ± ε for a ∈ F , and f±(a) = f(a) ∓ ε
for a ∈ R. By concavity, C(f) ≥ (1/2)[C(f+) + C(f−)]. Then since f was an
optimal solution, C(f+) = C(f−) = C(f). Hence both f+ and f− are optimal,
and one of them must have smaller support than f , a contradiction. �	

Note that the preceding result shows that in the case of single-sink hose models,
optSPR = optTR. It is not the case that optMPR = optTR in this setting
however. If that were the case, ssrob would be polynomially solvable, but the
case where br = 1 already captures the Steiner Tree problem. Because of this tree
structure, arguing why the gap holds in the case of spr is considerably simpler.
The argument contains some intuition as to why the gap also holds for mpr, so
we outline this approach now.

Suppose we have an spr solution where we only use one edge rv from δ(r).
Then in the spr solution, everyone must route to v in G (think of this as a tree T
for now). Since G was bounded degree this means that many nodes (a constant
fraction) must use long paths, of length logd(n). If these all had to pay one unit
along their whole path then this already costs Ω(n logn). But it is not as easy
as that; if we have a subtree Tw rooted at node w that contains at least br = βn
nodes, then in fact we only need to pay for br units on the edge out of w.

Imagine removing the edges of T which are used by more than βn terminals,
leaving a number of subtrees, each containing at most βn terminals. If T is
fairly balanced, there are around Θ(n/(βn)) = Θ(1/β) such subtrees. (If T is
very unbalanced, there could be many more—consider a caterpillar. For the full
proof, one must use the larger distances of leaves to the root to get the required
bound.) In each such subtree, a good fraction of the leaves are a distance roughly
log βn from the root of this subtree. Since there is no cost sharing within this
subtree, these nodes really do pay βn log(βn). Thus the subtrees combined pay

Ω (1/β · βn log(βn)) = Ω (n log(βn)) .

If we set β = 1
log n , this yields a cost of Ω(n logn).

Making the above argument precise requires balancing the use of multiple
edges into r, and becomes somewhat technical. It also does not extend to estab-
lish the mpr gap, so instead we now turn to the latter problem (which in any
case implies the fr versus spr gap).

284 N. Goyal, N. Olver, and F.B. Shepherd

2.4 Buy-and-Rent: An Ω(log n) Gap between fr and mpr

The main difficulty with analyzing the mpr model is crystalized by the fact
that Proposition 1 does not hold for mpr. In particular, we cannot apply the
augmentation proof used in this result to the case where nodes are allowed to
use fractional routing templates.

Let us first examine more closely the cost on edges induced by an mpr routing
template for a single-sink hose design problem. As in Lemma 1, it is sufficient
to consider the cases where we wish the network to support the routing of any
βn of the nodes in V to the sink r simultaneously. Suppose that fi(e) represents
the flow that node i sends on edge e in a template, then for the single sink hose
design problem, the formula for the capacity needed by e is:

max
D∈P

∑
i∈V

Dirfi(e) = max
W⊆V :|W |=βn

∑
i∈W

fi(e), (1)

where recall that P is the set of single-sink hose matrices. In other words, the
capacity needed on edge e is just the sum of the βn largest values of fi(e).

We introduce a new routing cost model which we call (single-sink) buy-and-
rent (bar). This exactly models the mpr cost model defined above, but is more
manageable in terms of analysis. In the buy-and-rent problem, there are costs on
the edges, and unit demands from some subset W of nodes called terminals. Each
terminal wishes to (fractionally) route one unit of demand to the sink r. Apart
from the costs c(e) on the edges, we also have a parameter k. The difference from
rent-or-buy is that we may now purchase some capacity amount γ(e) ∈ [0, 1] (in
rent-or-buy we would buy an infinite capacity link) and the interpretation is
that every terminal is allowed to use up to γ(e) units of capacity on the edge. If
it chooses to route any more on that edge, then it must pay for the additional
rental cost. The cost of purchasing capacity on an edge e is kγ(e)c(e).

Buy-and-rent can be considered as an LP relaxation of (single-sink) rent-or-
buy; this formulation is in fact very similar to the LP relaxation used by Swamy
and Kumar [14] to give constant factor approximation algorithms for connected
facility location and single-sink rent-or-buy. Their formulation is stronger how-
ever (in that the optimum for their LP lies between the bar and spr optima),
and so does not exactly model the mpr problem. In particular, in buy-and-rent,
solutions may conceivably use flow paths that alternate several times between
rented capacity and purchased capacity. In contrast, a solution to the LP of
Swamy and Kumar [14] always has a connected “core” of purchased edges con-
taining the sink node and terminals use rented capacity to route to that core.

Proposition 2. The buy-and-rent problem with parameter k = βn, and the
single-sink hose design problem in the mpr routing model have the same optimal
solution.

Proof. Suppose that (f i) is an mpr routing template for the robust hose design
problem. Consider the bar solution for parameter k = βn obtained as follows.
For each edge e, order the terminals so that fπ(1)(e) ≥ fπ(2)(e) ≥ . . . fπ(n)(e).

Dynamic vs. Oblivious Routing in Network Design 285

Then we purchase γ(e) = fπ(k)(e) units of capacity on edge e, and we use the
same routing f i as the mpr solution. This guarantees that for any edge, none of
the terminals π(j) with j > k, pays to route on edge e since we purchased enough
capacity for them to travel for free. For each terminal π(j) with j ≤ k, it must pay
the rental cost to route fπ(j)(e)− fπ(k)(e) ≥ 0. This costs c(e) times the amount∑

j≤k(fπ(j)(e) − fπ(k)(e)) =
∑

j≤k fπ(j)(e) − kfπ(k)(e). Since the purchased ca-
pacity cost kfπ(k)(e)c(e), the total buy-and-rent cost is c(e)

∑
j≤k fπ(j)(e) which

is the cost of edge e in the mpr template using (1).
Conversely, suppose that we have a minimum cost solution for bar and con-

sider the robust design cost for using the same routing as a template. Without
loss of generality γ(e) = fπ(k)(e) since if γ(e) was larger than this, then by
reducing the capacity bought by sufficiently small ε > 0, the rental costs are
unaffected for terminals π(j) for j ≥ k. And for terminals π(j) with j < k, their
rental cost increases by at most εc(e). Hence the total rental cost increases by
kεc(e), and the total cost of bought capacity reduces by kεc(e), thus decreasing
the overall cost.

Similarly, if γ(e) < fπ(k)(e), then increasing the bought capacity γ by some
small ε > 0, has cost of kεc(e). But the reduction in rental costs is at least the
reduction in rental cost of the first k terminals which is kεc(e), and thus the
overall cost does not increase as a result of increasing γ. Hence the cost of edge e
is just the purchase cost c(e) ·kfπ(k)(e) plus the rental cost c(e)

∑
j≤k(fπ(j)(e)−

fπ(k)(e)) and this is identical to the robust design cost when using the same
template. �	

We again take β = 1/ logn (so k = n/ logn). We now prove that any solution to
the bar problem on our expander instance is expensive; this together with the
preceding proposition implies our main result, Theorem 1.

Theorem 2. Any solution to the bar problem on the expander instance has
cost Ω(n logn).

Proof. Consider an arbitrary bar solution, determined by bought capacity γe

on each edge, and a flow template (f i : for each terminal i).
Let γ(δ(r)) :=

∑
v∈V γvr be the total bought capacity on the port edges (these

are the edges connecting r to the nodes in V), and let γ(E) :=
∑

e∈E γe be the
capacity bought in the expander. The cost of buying capacity in the expander
is then k · γ(E), so we may assume that γ(E) < log2 n, or else the solution
already costs Ω(n logn). A similar argument for port edges (but recalling that
these edges cost log n) allows us to assume that γ(δ(r)) < logn.

For a terminal v, let Bi(v) be the set of nodes (or sometimes, their induced
graph) in the expander that are a distance at most i from v. We are particularly
interested in balls of radius R :=
logd

√
n� − 1 =
logn/(2 log d)� − 1; we use

B(v) as shorthand for BR(v). Note that since G is d-regular,

|B(v)| ≤
R∑

i=0

di ≤ dR+1 ≤ n1/2.

286 N. Goyal, N. Olver, and F.B. Shepherd

Let γE(v) :=
∑

e∈E:e⊂B(v) γ(e) and γP (v) :=
∑

w∈B(v) γ(wr). A single γ(e)
for an edge e = u1u2 contributes to many γE(v)’s, but not too many:

|{v : e ⊂ B(v)}| ≤ |{v : u1 ∈ B(v)}| = |B(u1)| ≤ n1/2.

So we must have that∑
v∈V

γE(v) ≤ n1/2γ(E) ≤ n1/2 log2 n. (2)

Similarly, ∑
v∈V

γP (v) ≤ n1/2 logn. (3)

Consider an arbitrary terminal v. The unit of flow from v can be divided up into
three types depending on how the flow enters r:

– A fraction μr
v of flow that rents on the port edge it uses.

– A fraction μb
v of flow that uses bought port capacity, on a port within a

distance R from v.
– A fraction μt

v representing all remaining flow; this flow must “travel” and
use port edges that are further than R from v.

Clearly μr
v + μb

v + μt
v = 1.

We now aim to find a lower bound on the total rental cost paid by the ter-
minals. Flow that rents the port edge must pay logn just for this edge, giving
a cost of μr

v logn. Now consider the μt
v fraction of flow that travels outside the

ball B(v) in the expander before using a port edge. This flow must cross each of
the cuts Ci := δ(Bi(v)), for 0 ≤ i ≤ R.

The maximum amount of flow that can travel across cut Ci for free (using the
bought capacity) is γ(Ci), and so there is a rental cost of at least μt

v − γ(Ci) in
crossing cut Ci. Summing over all the cuts, we find that the rental cost associated
with this travelling flow is at least

R−1∑
i=0

(μt
v − γ(Ci)) ≥ Rμt

v − γE(v).

Thus the rental cost associated with terminal v is at least

logn · μr
v +Rμt

v − γE(v).

Summing this over all terminals v, we obtain a total rental cost of at least

C(rent) ≥
∑
v∈V

(logn · μr
v +R · μt

v) −
∑
v∈V

γE(v)

≥ R
∑
v∈V

(μr
v + μt

v) −
∑
v∈V

γE(v) since R ≤ logn

≥ R
∑
v∈V

(μr
v + μt

v) − n1/2 log2 n by (2).

Dynamic vs. Oblivious Routing in Network Design 287

Finally, note that∑
v∈V

(μr
v + μt

v) =
∑
v∈V

(1 − μb
v) ≥

∑
v∈V

(1 − γP (v))

≥ n− n1/2 logn by (3).

Thus

C(rent) ≥ R · (n− n1/2 logn) − n1/2 log2 n

= Ω(n logn),

since R = Θ(logn). �	

3 Single Path Routing vs. Tree Routing

As discussed in the introduction, for any robust network design problem we have
optTR = Õ(logn)optFR. We now show that this is best possible by exhibiting
a problem instance such that optTR = Ω(log n)optSPR, and so also optTR =
Ω(logn)optFR.

Consider a graph on n vertices with girth (length of the shortest cycle in the
graph) Ω(logn), and with cn edges, where c > 1 is a constant. [Note that it’s the
requirement that c > 1 that makes the existence of such graphs nontrivial: for
c = 1, a cycle on n vertices gives a graph with girth n.] Such graphs exist: e.g.,
Lemma 15.3.2 in [12] states that there exist graphs with girth � and 1

9n
1+1/(�−1)

edges. Taking � := logn/100 gives that there exist graphs with girth at least
logn/100 and cn edges where c > 1, as needed.

This graph defines the network topology for our problem instance: all the
nodes are terminals, and all edges have unit cost. The demand polytope is given
by a single demand: there is a unit demand between terminals connected by an
edge.

Clearly, a good spr template is the network itself, and its cost is cn, the
number of edges. Now, if we take any tree template, then edges of the network
that are not included in the tree have to be routed on a path of length Ω(log n)
because of the girth property of the graph. There are at least cn − (n − 1) =
(c− 1)n+ 1 such edges, and so the total cost of the tree template is Ω(n logn).

4 Conclusions

One natural question concerns the gap between mpr and spr for the general
single-sink robust network design problem. We are not aware of any single-sink
demand polytopes for which the gap is superconstant. Hence the single-sink
robust design problem, i.e. computing optSPR, could conceivably have a con-
stant factor approximation algorithm for well-described polytopes. This would
be of interest since it generalizes a host of well-known problems such as Steiner

288 N. Goyal, N. Olver, and F.B. Shepherd

tree, single-sink rent-or-buy, and single-sink buy-at-bulk (the last follows from a
transformation given in [13]).

Acknowledgements. We would like to thank Gianpaolo Oriolo for some very
helpful discussions. We also thank an anonymous reviewer for ESA, for some
detailed and useful input.

The second author is supported by a MELS Quebec Merit Scholarship for
Foreign Students. The third author is supported by a NSERC Discovery Grant.

References

1. Abraham, I., Bartal, Y., Neiman, O.: Nearly tight low stretch spanning trees. In:
Proc. of IEEE FOCS, pp. 781–790 (2008)

2. Bartal, Y., Leonardi, S.: On-line routing in all-optical networks. Theor. Comput.
Sci. 221(1-2), 19–39 (1999)

3. Ben-Ameur, W., Kerivin, H.: New economical virtual private networks. Commun.
ACM 46(6), 69–73 (2003)

4. Chekuri, C.: Routing and network design with robustness to changing or uncertain
traffic demands. SIGACT News 38(3), 106–128 (2007)

5. Chekuri, C., Oriolo, G., Scutella, M.G., Shepherd, F.B.: Hardness of robust network
design. Networks 50(1), 50–54 (2007)

6. Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on approximating arbitrary
metrics by tree metrics. J. Comput. Syst. Sci. 69(3), 485–497 (2004)

7. Fingerhut, A.J., Suri, S., Turner, J.S.: Designing least-cost nonblocking broadband
networks. J. Algorithms 24(2), 287–309 (1997)

8. Gupta, A., Kleinberg, J., Kumar, A., Rastogi, R., Yener, B.: Provisioning a virtual
private network: a network design problem for multicommodity flow. In: Proc. of
ACM STOC, pp. 389–398 (2001)

9. Gupta, A., Kumar, A., Pál, M., Roughgarden, T.: Approximation via cost sharing:
Simpler and better approximation algorithms for network design. J. ACM 54(3),
11 (2007)

10. Hajiaghayi, M., Kleinberg, R., Räcke, H., Leighton, T.: Oblivious routing on node-
capacitated and directed graphs. ACM Trans. Algorithms 3(4), 51 (2007)

11. Maggs, B.M., Meyer aud der Heide, F., Vöcking, B., Westerman, M.: Exploiting
locality for networks of limited bandwidth. In: Proc. of IEEE FOCS, pp. 284–293
(1997).

12. Matousek, J.: Lectures on Dicrete Geometry. Springer, Heidelberg (2002)
13. Olver, N., Shepherd, F.: Approximability of robust network design. (manuscript)

(2009)
14. Swamy, C., Kumar, A.: Primal-dual algorithms for connected facility location prob-

lems. Algorithmica 40(4), 245–269 (2004)

Algorithms Meet Art, Puzzles, and Magic

Erik D. Demaine

MIT Computer Science and Artificial Intelligence Laboratory
32 Vassar Street, Cambridge, MA 02139, USA

edemaine@mit.edu

Abstract

When I was six years old, my father Martin Demaine and I designed and made
puzzles as the Erik and Dad Puzzle Company, which distributed to toy stores
across Canada. So began our journey into the interactions between algorithms
and the arts. More and more, we find that our mathematical research and artistic
projects converge, with the artistic side inspiring the mathematical side and
vice versa. Mathematics itself is an art form, and through other media such as
sculpture, puzzles, and magic, the beauty of mathematics can be brought to a
wider audience. These artistic endeavors also provide us with deeper insights
into the underlying mathematics, by providing physical realizations of objects
under consideration, by pointing to interesting special cases and directions to
explore, and by suggesting new problems to solve (such as the metapuzzle of how
to solve a puzzle). This talk will give several examples in each category, from
how our first font design led to a universality result in hinged dissections, to how
studying curved creases in origami led to sculptures at MoMA. The audience will
be expected to participate in some live magic demonstrations.

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, p. 289, 2009.

Polynomial-Time Algorithm for the Leafage of
Chordal Graphs

Michel Habib and Juraj Stacho

LIAFA – CNRS and Université Paris Diderot – Paris VII,
Case 7014, 75205 Paris Cedex 13, France
{habib,jstacho}@liafa.jussieu.fr

Abstract. Every chordal graph G can be represented as the intersection
graph of a collection of subtrees of a host tree, the so-called tree model of
G. The leafage l(G) of a connected chordal graph G is the minimum num-
ber of leaves of the host tree of a tree model of G. This concept was first
defined by I.-J. Lin, T.A. McKee, and D.B. West in [9]. In this contribu-
tion, we present the first polynomial time algorithm for computing l(G)
for a given chordal graph G. In fact, our algorithm runs in time O(n3)
and it also constructs a tree model of G whose host tree has l(G) leaves.

1 Introduction

In this paper, graph is always simple, undirected and loopless.
A graph is chordal, if it has no induced cycles of length four or longer. By

a result of Gavril [5], a graph G is chordal if and only if G can be represented
as the intersection graph of a collection of subtrees of a host tree, the so-called
tree model of G. The leafage l(G) of a connected chordal graph G is defined as
the minimum number of leaves of the host tree of a tree model of G. If G is an
interval graph (the intersection graph of intervals of the real line), we always have
l(G) = 2. Hence, the leafage can be seen as a measure of how far a chordal graph
is from being an interval graph. This has several algorithmic consequences. For
instance, it is shown in [7] that a chordal graph with bounded leafage always has
a so-called implicit representation which allows some problems on such graphs to
be solved more efficiently. Moreover, efficient solutions to NP -hard problems on
interval graphs naturally extend to efficient solutions on chordal graphs whose
leafage is bounded; e.g., the k-subcolouring problem [2,12,13].

The leafage of chordal graphs was first introduced by I.-J. Lin, T.A. McKee,
and D.B. West in [9] where the authors establish several bounds on this pa-
rameter for special cases of chordal graphs such as block graphs, split graphs,
and k-trees. Their bounds imply polynomial time algorithms for computing the
leafage in some of these special cases; however, the general question of complex-
ity of computing l(G) for a given chordal graph G is not addressed. Since their
paper, this question remained unresolved [14] except in special cases such as
split graphs [8,9] and the case of deciding l(G) ≤ k for k ∈ {2, 3}; the case k = 2
corresponds to interval graph recognition which is polynomial [1], and k = 3 is
polynomial by [10].

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 290–300, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Polynomial-Time Algorithm for the Leafage of Chordal Graphs 291

In this paper, we finally resolve this question by providing a polynomial time
algorithm computing l(G) for any given chordal graph G. In particular, our
algorithm runs in time O(n3) where n is the number of vertices of G and also
outputs a tree model of G with l(G) leaves.

The paper is structured as follows. In Section 2, we define basic notions such
as clique tree and the reduced clique graph, and we show some of their useful
properties related to the leafage. In Section 3, we introduce the so-called token
mappings and explain their relationship to clique trees. In Section 4, we define
augmenting paths and sequences and explain how they can be used to decrease
the number of leaves in a given clique tree. Finally, in Section 5, we describe our
algorithm and analyze its complexity.

2 Basic Concepts

For a graph G and a set X ⊆ V (G), we denote by G[X] the subgraph of G
induced on X , and denote by G − X the subgraph G[V (G) \ X]. A complete
subgraph or clique of G is a (not necessarily maximal) set of pairwise adjacent
vertices of G. (For a complete terminology, see [15].)

Let G be a connected chordal graph. A clique tree of G is any tree T whose
vertices are the maximal cliques of G such that for every two maximal cliques
C,C′, each clique on the path from C to C′ in T contains C ∩ C′. We shall
assume that every edge CC′ of T is labeled by C ∩ C′. (See Figure 1 for an
example of a clique tree.)

Any clique tree T can be seen as a tree model of G whose host tree is T . It is
shown in [9] that G always has a clique tree with l(G) leaves. Hence, in the rest
of the paper, we shall focus on clique trees.

Cliques C,C′ of G form a separating pair, if every path from a vertex of C \C′

to a vertex of C′ \C contains a vertex of C ∩C′. The reduced clique graph Cr(G)
of G is a graph whose vertices are the maximal cliques of G, and whose edges
CC′ are between cliques C,C′ forming separating pairs. In addition, each edge
CC′ of Cr(G) is labeled by C ∩ C′.

d

a

c

be

f

k

h

i

j

g

a)

de

adf

acd

cdk

ag ah

abc

cj

bci

d
ad

cd

a a

ac

c

bc

b)

Fig. 1. a) Example chordal graph G, b) a clique tree T of G

292 M. Habib and J. Stacho

The following is a fundamental result about reduced clique graphs.

Theorem 1. [4] A tree T is a clique tree of G if and only if T is a maximum
weight spanning tree of Cr(G) where the weight of each edge CC′ is defined as
|C ∩ C′|. Moreover, the reduced clique graph Cr(G) is precisely the union of all
clique trees of G.

de

adf

acd

cdk

ag ah

abc

cj

bci

d

d

d

ad

cd

a

a
a

a

a

ac

c

c

c

c

bc

a)

a a

adf

acd

ag ah

abc

ad

ac

b)

H{a}

Fig. 2. a) The reduced clique graph Cr(G) of G, b) minimal separator graph H{a}

2.1 Minimal Separator Graphs

Let a, b be two vertices of G. A subset S of the vertices of G disconnects a from
b in G, if a and b are in different connected components of G− S.

A subset S of the vertices of G is called a minimal separator, if there exist
vertices a and b such that (i) S disconnects a from b, and (ii) no proper subset
of S disconnects a from b in G.

For each minimal separator S, let RS denote the set of all maximal cliques
C of G with S ⊆ C, and let HS denote the graph whose vertex set is RS and
whose edges are between cliques C,C′ such that C ∩ C′ � S.

Using the graphs HS we can characterize the structure of Cr(G). (The proof
is omitted due to the length restriction.)

Theorem 2. CC′ is an edge of Cr(G) with label S = C ∩ C′ if and only if C
and C′ belong to different connected components of HS. �

Let S(G) denote the set of all minimal separators of G. Note that chordality
of G implies that for every S ∈ S(G), there exist cliques C,C′ that form a
separating pair such that C ∩ C′ = S. This implies, in particular, that every
minimal separator of G appears on some edge of Cr(G).

2.2 Structure of Clique Trees

Let T be a clique tree of G. By Theorem 1, we have that T is characterized in
terms of Cr(G) as a maximum weight spanning tree of Cr(G). Conversely, we can
characterize the reduced clique graph Cr(G) in terms of T as follows. (The proof
is omitted due to the length restriction.)

Polynomial-Time Algorithm for the Leafage of Chordal Graphs 293

Theorem 3. CC′ is an edge of Cr(G) with label S = C ∩C′ if and only if there
exists an edge with label S on the path from C to C′ in T . �

Furthermore, we can describe the structure of T in terms of the graphs HS .

Theorem 4. Let S ∈ S(G) and let kS denote the number of connected com-
ponents of HS. Then T contains exactly (kS − 1) edges with label S, and each
connected component of HS induces a connected subgraph in T .

Proof. Let C,C′ be two vertices of HS , and let P be the path from C to C′ in T .
Clearly, every vertex on P must belong to HS because it contains C ∩ C′ ⊇ S
by the definition of clique tree. Hence, the vertices of HS induce a connected
subgraph in T . Next, suppose that C,C′ belong to some component K of HS .
Again, it follows that every vertex of P also belongs to K (details omitted).
Hence, both the vertices of HS and of each component of HS induce a subtree
in T . The claim now follows. �

Note that T has at most n vertices by [3], and for each minimal separator S of
G, we have kS ≥ 2 since there is at least one edge with label S in Cr(G) (see the
remark above). Hence, every minimal separator of G appears on some edge of T ,
and conversely, for every edge CC′ of T , the set C ∩ C′ is a minimal separator
and C,C′ form a separating pair (by Theorem 1). In particular, G has at most
n− 1 minimal separators.

3 Degrees and Tokens

A degree mapping assigns to each vertex of a graph its degree.

Theorem 5. [15] A mapping f : X → N is a degree mapping of a tree if and
only if

(i) 1 ≤ f(x) ≤ |X | − 1 for each x ∈ X, and
(ii)

∑
x∈X f(x) = 2|X | − 2.

We define a similar notion. A token mapping is a mapping τ that assigns to each
maximal clique C of G a distinct set of tokens τ(C) where each token is labeled
by some minimal separator of G. If a token t belongs to τ(C), we also say that
t is a token of τ and that t belongs to C in τ .

Let T be a clique tree of G. The extended degree mapping of T , denoted by εT ,
is a token mapping that assigns to each maximal clique C a set εT (C) of tokens
corresponding to the edges incident to C in T where each token is labeled by the
label of the corresponding edge. (See Figure 3 for an example of a clique tree T
and its extended degree mapping εT .)

Using Theorem 4, we now describe necessary and sufficient conditions char-
acterizing extended degree mappings of clique trees.

Theorem 6. A token mapping τ is an extended degree mapping of a clique tree
of G if and only if

294 M. Habib and J. Stacho

de

adf

acd

cdk

ag ah

abc

cj

bci

d

d

d

ad

cd

a

a
a

a

a

ac

c

c

c

c

bc

a)

a a

d

d
ad

cd

ac
ad

cd

aa

ac

aa

bc

c

bc

c

b)

Fig. 3. a) The graph Cr(G) with an example clique tree T , b) token mapping τ = εT

(R1) for each maximal clique C of G, the set τ(C) is non-empty,
(R2) for each minimal separator S of G, if a token of τ with label S belongs to

τ(C) for some maximal clique C of G, then C ⊇ S,
(R3) for each minimal separator S of G, the number of tokens of τ with label S

is exactly 2kS − 2 where kS is the number of components of HS,
(R4) for each minimal separator S of G and every component K of HS, there

exists a token with label S in τ(C) for some vertex C of K.

Proof. The forward direction follows directly from Theorem 4. For the backward
direction, let τ be a token mapping satisfying (R1-R4). We construct a subgraph
T of Cr(G) as follows. The vertices of T are the maximal cliques of G, and initially
T has no edges.

We consider every minimal separator S of G one by one as follows. We let
K1, . . . ,KkS be the connected components of HS , and we let a1, . . . , akS denote
the number of tokens of τ with label S in K1, . . . ,KkS , respectively. By (R4),
ai ≥ 1 for each 1 ≤ i ≤ kS , and by (R2) and (R3), we have

∑kS

i=1 ai = 2kS − 2.
Hence, by Theorem 5, there exists a tree T whose vertices are K1, . . .KS such
that the degree of Ki in T is exactly ai.

Now, for each 1 ≤ i ≤ kS , we let ti1, . . . , t
i
ai

be the tokens of τ on the vertices
of Ki and let Ci

1, . . . , C
i
ai

be the vertices of Ki that contain tokens ti1, . . . , t
i
ai

,
respectively. (Possibly, Ci

j = Ci
j′ for some j �= j′.) Also, we let ei

1, . . . , e
i
ai

be a
fixed ordering of edges of T incident to Ki. Finally, for each edge e = KiKi′ of
T , we have j, j′ such that e = ei

j = ei′
j′ by the above definition, and we add the

edge Ci
jC

i′
j′ to T . (See example in Figure 4.)

We now show that T is a clique tree of G. First, we observe that T is a
subgraph of Cr(G) by Theorem 2, and it contains exactly kS −1 edges with label
S for every minimal separator S of G by our construction. By Theorem 4, every
clique tree of G also has this property. Therefore, the weight of T is the same as
the weight of any clique tree of G. By Theorem 1, it now suffices to show that T
is connected. This can be proved by showing that T [RS] is connected for each
S ∈ S(G) which follows by induction on n− |S|. (We omit further details.) �

Polynomial-Time Algorithm for the Leafage of Chordal Graphs 295

•

• •

•

•

C1
1

C2
1 C2

2

C3
1

C4
1=C4

2

K1

K2

K3

K4

a)

K1

K2

K3

K4

e2
2

e1
1

e2
1

e4
1

e3
1

e4
2b)

•

• •

•

•

C1
1

C2
1 C2

2

C3
1

C4
1=C4

2
c)

Fig. 4. a) Components of HS and tokens with label S, b) The tree T with orderings
of incident edges, c) edges added to T

We say that a token mapping τ is realizable, if it satisfies the conditions (R1-
R4). In light of the above theorem, we define the degree of C in τ , denoted by
degτ (C), to be the value degτ (C) = |τ(C)|. If degτ (C) = 1, we call C a leaf of
τ . We denote by #leaves(τ) the number of leaves of τ .

4 Alternation and Augmentation

In this section, we show how to obtain from a realizable token mapping τ another
realizable token mapping τ ′ with less number of leaves (if possible). We do this
by moving tokens along certain paths on the maximal cliques; these paths are
obtained by exploring an auxiliary graph Dτ (described below). In particular,
this process will resemble the classical maximum matching algorithm. For this
reason, we shall use “alternating” and “augmenting” to describe similar notions
in our algorithm.

Let D(G) denote the multidigraph1 on the maximal cliques of G with labeled
arcs such that e = CC′ is an arc of D(G) labeled with S if and only if C,C′

belong to RS where S is a minimal separator of G.
Let e = CC′ be an arc of D(G) with label S and τ be a token mapping

such that τ(C) contains a token t labeled with S. We write τ ÷ e for the token
mapping obtained from τ by removing the token t from τ(C) and adding t to
τ(C′).

4.1 Realizable Arcs

Let τ be a realizable token mapping, and let Dτ denote the digraph on the
maximal cliques of G with arcs e for which τ ÷ e is realizable.

We characterize the digraph Dτ as follows.

Proposition 7. An arc e = CC′ with label S belongs to Dτ if and only if

(i) C and C′ are both vertices of HS,

1 Digraph with multiple arcs between any two points allowed.

296 M. Habib and J. Stacho

1

2

3

1

1 1

4

1

2

d

d

a

a

a
a

c

c

c

a)

d

a

ad

cd

ac
ad

cd
d

aa

ac
a

bc

c

bc

c

b)

Fig. 5. a) the digraph Dτ with an augmenting path P = e1, e2, b) the token mapping
τ ′ = τ ÷ e1 ÷ e2 and the corresponding clique tree

(ii) τ(C) contains a token with label S,
(iii) degτ (C) ≥ 2, and
(iv) if K is the connected component of HS that contains C, then

(a) either C′ belongs to K,
(b) or C′ does not belong to K and there exists C′′ �= C in K such that

τ(C′′) contain a token with label S.

Proof. The claim follows directly from (R1-R4). �

4.2 Sequences

Again, let τ be a realizable token mapping.
We say that a sequence of arcs e1, . . . , ek of D(G) is a τ-sequence, if there

exists a sequence of token mappings τ0, τ1, . . . , τk where τ0 = τ such that for
each i ∈ {1 . . . k}, the arc ei = CiC

′
i satisfies

(S1) ei is an arc of Dτi−1 ,
(S2) τi = τi−1 ÷ ei,
(S3) degτi−1

(Ci) ≥ 3, and
(S4) if i < k then degτi−1

(C′
i) ≥ 2.

In addition, a τ -sequence e1, . . . , ek is an alternating τ-sequence, if

(S5) no arc among e1, . . . , ek−1 is incident to C′
k, and

(S6) degτk−1
(C′

k) ≤ 2,

and an alternating τ -sequence e1, . . . , ek is an augmenting τ-sequence if

(S7) degτk−1
(C′

k) = 1.

This definition immediately implies the following statement.

Observation 8. If e1, . . . , ek is an augmenting τ-sequence, then for τ ′ = τ ÷
e1 ÷ e2 ÷ . . .÷ ek, we have #leaves(τ) > #leaves(τ ′). �

Also, we have the following useful observation which we shall need later. (The proof
is omitted due to the length restriction.)

Polynomial-Time Algorithm for the Leafage of Chordal Graphs 297

Proposition 9. If a τ-sequence e1, . . . , ek satisfies (S7), then e1, . . . , ek is an
augmenting τ-sequence. �
We now prove the following theorem which is the first of the two ingredients in
our polynomial time algorithm for the leafage.

Theorem 10. Let T and T ∗ be two clique trees of G such that T has more
leaves than T ∗. Then there exists an augmenting εT -sequence.

Proof. We define the distance from T to T ∗ to be the value

dist(T, T ∗) =
∑

CC′∈E(T)

(
dT∗(C,C′) − 1

)
where dT∗(C,C′) denotes the distance between C and C′ in T ∗.

The proof is by induction on dist(T, T ∗). Since T has more leaves than T ∗ and
both have the same number of edges, there must exist C such that the degree
of C in T is at least three and is strictly larger than the degree of C in T ∗. This
implies that if T1, . . . , Tk are the components of T − C, there exists i such that
no vertex of Ti is adjacent to C in T ∗. Let C′ be the vertex of Ti that is adjacent
to C in T . Let A and B be the vertices of the two connected components we
obtain by removing the edge CC′ from T ; we can assume C ∈ A and C′ ∈ B.
Let P be the path from C to C′ in T ∗. Since C ∈ A and C′ ∈ B, there exists
an edge C∗C∗∗ of P such that C∗ ∈ A and C∗∗ ∈ B. By the definition of Ti, we
have C∗ �= C. Let S = C ∩ C′ and S∗ = C∗ ∩ C∗∗. Since C∗C∗∗ is on the path
from C to C′ in T ∗, we have S ⊆ S∗. Also, CC′ is on the path from C∗ to C∗∗

in T , since C∗ ∈ A and C∗∗ ∈ B. Hence, S∗ ⊆ S and consequently S = S∗. We
observe that C∗ ∩ C′ ⊆ C∗ ∩ C∗∗ = S, since the edge C∗C∗∗ lies on the path
from C∗ to C′. Hence, C∗ ∩C′ = S, since C∗ ⊇ S∗ = S and C′ ⊇ S. Finally, by
Theorem 3, we have that C∗C′ is an edge of Cr(G).

Next, let T ′ denote the tree we obtain by removing the edge CC′ from T
and adding the edge C∗C′. By Theorem 1, T ′ is a clique tree of G, since T is.
This implies that e = CC∗ is an arc of DεT with label S, since εT ′ = εT ÷ e.
Recall that degεT

(C) ≥ 3 by the choice of C. If in addition degεT
(C∗) = 1,

then e is an augmenting εT -sequence, and we are done. Therefore, we can as-
sume that degεT

(C∗) ≥ 2. We now observe that dist(T ′, T ∗) < dist(T, T ∗), since
dist(T ′, T ∗) − dist(T, T ∗) = dT∗(C∗, C′) − dT∗(C,C′) < 0 because C∗ �= C and
C∗ is on the path from C to C′ in T ∗. Hence, by induction, there exists an
augmenting εT ′-sequence e1, . . . , ek which implies that e, e1, . . . , ek is an aug-
menting εT -sequence. �

4.3 Paths

A directed path C1, C2, . . . , Ck in Dτ is an alternating path of Dτ , if
(i) degτ (C1) ≥ 3, and
(ii) degτ (Cj) ≥ 2 for each 2 ≤ j ≤ k − 1.

An alternating path C1, C2, . . . , Ck of Dτ is an augmenting path of Dτ , if
(iii) degτ (Ck) = 1.

298 M. Habib and J. Stacho

In what follows, we present the second of the two main ingredients we need for our
algorithm for the leafage. In particular, we show that whenever an augmenting τ -
sequence exists (for instance, by Theorem 10), we can find a directed path in Dτ

starting from a vertex of degree at least three to a leaf of τ , i.e., an augmenting
path, and conversely, whenever such a path P in Dτ exists, we can use it to obtain
a τ -sequence starting and ending at the same vertices as P , i.e., an augmenting τ -
sequence. In both cases, we construct the sequence (path) by incrementally adding
edges one by one; we show that whenever we get stuck, there will be a “shortcut”
in the sequence (path) which will allow us to continue this process until a desired
path (sequence) is obtained.

Finally, we note that this property (combined with Theorem 10) reduces the
problem of leafage to the problem of finding a directed path in a digraph which
is what allows us to solve the problem in polynomial time (for the details of the
algorithm, see the next section).

Theorem 11. There exists an augmenting path in Dτ if and only if there exists
an augmenting τ-sequence.

Proof. For the forward direction, let P = C1, C2, . . . , Ck be an augmenting
path of Dτ . Let F denote the subgraph of Dτ induced on C1, . . . , Ck, and let P ′

be a shortest directed path in F from C1 to Ck. It is easy to verify that P ′ is
also an augmenting path of Dτ . (Possibly P ′ = P .)

Let e1, . . . , ek′ be the arcs of P ′ in the order they appear on P ′. That is, e1 is
incident to C1, and for each 1 ≤ i < k′, the arcs ei and ei+1 share an end-point.
Now, using Proposition 7 and the minimality of P ′, it follows that e1, . . . , ek′ is
an augmenting τ -sequence (details omitted).

For the backward direction, we need the following stronger claim (∗).
If e1, . . . , ek is a alternating τ-sequence, then there exists an alternating
path of Dτ that ends in C′

k where ek = CkC
′
k such that each vertex of this

path is incident to some arc among e1, . . . , ek.
(∗)

This claim can be proved by induction on k. (We omit further details of this
proof due to the length restriction.)

Finally, let e1, . . . , ek be an augmenting τ -sequence where e1 = C1C
′
1, . . . ,

ek = CkC
′
k, and τ0, . . . , τk are token mappings such that τ0 = τ and τi = τi−1÷ei

for each 1 ≤ i ≤ k. From (S5-S7), we have degτk−1
(C′

k) = 1 and no arc among
e1, . . . , ek−1 is incident to C′

k. This yields degτ (C′
k) = degτ0

(C′
k) = 1. Now,

by (∗), there exists an alternating path P of Dτ that ends in C′
k, and since

degτ (C′
k) = 1, the path P is also an augmenting path of Dτ . That concludes the

proof. �

5 Algorithm

Now, we are finally ready to prove the main theorem of this paper.

Theorem 12. There exists an O(n3) time algorithm that, given a chordal graph
G, computes l(G) and a tree model of G with l(G) leaves.

Polynomial-Time Algorithm for the Leafage of Chordal Graphs 299

Proof. The algorithm goes as follows.

(1) Start by computing some clique tree T of G. Then construct the extended
degree mapping εT of T , and let τ = εT .

(2) Construct the digraph Dτ .
(3) Search in Dτ for a shortest directed path P from a vertex of degree at least

three in τ to a leaf of τ .
(4) If such path P is found, then consider the arcs of P one by one, and for each

arc e = CC′ of P , if S is the label of e, remove a token with label S from
τ(C) and add it to τ(C′). Then go back to step (2).

(5) If such directed path P is not found, then construct a clique tree T corre-
sponding to τ , that is, a tree T with τ = εT . Then output T and the number
of leaves of T .

The correctness of this algorithm follows from Theorems 10, and 11, and the
observation that the path P in step (4) is neccessarily an augmenting path of
Dτ , and therefore, Observation 8 implies that the new mapping τ has less leaves.
We now discuss the complexity.

Recall that G contains at most n maximal cliques. By [6], we can construct
a clique tree T of G and the mapping εT in time O(n2). To simplify processing
during the algorithm, we precompute the connected components of HS for each
minimal separator S. This can be accomplished directly in time O(n3), since G
has O(n) minimal separators.

Next, we observe that there are precisely 2n−2 tokens of τ and at most n−1
ways to move each of them. Hence, Dτ contains O(n2) arcs. In fact, for a token
with label S belonging to a clique C, we can find all arcs with label S going out
of C in Dτ by exploring HS and testing conditions of Proposition 7. This can be
easily accomplished in time O(n) using the precomputed connected components
of HS . Altogether, constructing Dτ takes O(n2) time. The next step, finding the
path P in Dτ , can be accomplished using a breadth-first search of Dτ in time
O(n2). If P is found, we can construct the new mapping τ directly in time O(n).

We repeat the above steps at most n times since T has at most n leaves, and
therefore, O(n3) time altogether.

Finally, if P is not found, we construct a tree T with εT = τ using the
proof of Theorem 6 in time O(n2). This follows from the fact that G has O(n)
minimal separators and from an observation that constructing a tree from a
degree mapping (see Theorem 5) takes O(n) time. �

6 Conclusions

We have presented the first polynomial time algorithm for the problem of com-
puting the leafage of a chordal graph. We showed that the algorithm runs in time
O(n3), however, our complexity analysis was not very tight. Therefore, it seems
likely that a more efficient, perhaps O(n2) or linear time implementation can be
found. Furthermore, the algorithm provides no certificate for the minimality of the
output. We believe that because of the min-max character of the problem it should

300 M. Habib and J. Stacho

be possible to characterize the dual of the problem which in turn can be used for
certification. Lastly, we remark that our algorithm shows that computing a mini-
mum leaf maximum weight spanning tree is polynomial time solvable for the class
of reduced clique graphs whereas this problem is NP -hard in general [11] because
the case of at most two leaves is the Hamiltonian path problem.

References

1. Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval
graphs, and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci. 13,
335–379 (1976)

2. Broersma, H., Fomin, F.V., Nešetřil, J., Woeginger, G.J.: More about subcolorings.
Computing 69, 187–203 (2002)

3. Fulkerson, D.R., Gross, O.A.: Incidence matrices and interval graphs. Pacific Jour-
nal of Mathematics 15, 835–855 (1965)

4. Galinier, P., Habib, M., Paul, C.: Chordal graphs and their clique graphs. In: Nagl,
M. (ed.) WG 1995. LNCS, vol. 1017, pp. 358–371. Springer, Heidelberg (1995)

5. Gavril, F.: The intersection graphs of subtrees in trees are exactly the chordal
graphs. Journal of Combinatorial Theory B 16, 47–56 (1974)

6. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press,
New York (1980)

7. Habib, M., Stacho, J.: Linear algorithms for chordal graphs of bounded directed
vertex leafage. In: DIMAP Workshop on Algorithmic Graph Theory, Electronic
Notes in Discrete Mathematics, vol. 32, pp. 99–108 (2009)

8. Kloks, T., Kratsch, D., Müller, H.: Asteroidal sets in graphs. In: Möhring, R.H.
(ed.) WG 1997. LNCS, vol. 1335, pp. 229–241. Springer, Heidelberg (1997)

9. Lin, I.J., McKee, T.A., West, D.B.: The leafage of a chordal graph. Discussiones
Mathematicae Graph Theory 18, 23–48 (1998)

10. Prisner, E.: Representing triangulated graphs in stars. Abhandlungen aus dem
Mathematischen Seminar der Universität Hamburg 62, 29–41 (1992)

11. Rahman, M.S., Kaykobad, M.: Complexities of some interesting problems on span-
ning trees. Information Processing Letters 94, 93–97 (2005)

12. Stacho, J.: On 2-subcolourings of chordal graphs. In: Laber, E.S., Bornstein, C.,
Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS, vol. 4957, pp. 520–530.
Springer, Heidelberg (2008)

13. Stacho, J.: Complexity of subcolourings of chordal graphs (manuscript, 2009)
14. West, D.B.: personal communication (2008)
15. West, D.B.: Introduction to Graph Theory, 2nd edn. Prentice Hall, Englewood

Cliffs (2001)

Breaking the O(m2n) Barrier for Minimum Cycle Bases

Edoardo Amaldi1, Claudio Iuliano1, Tomasz Jurkiewicz2, Kurt Mehlhorn2,
and Romeo Rizzi3

1 Dipartimento di Elettronica e Informazione, Politecnico di Milano, Milano, Italy
2 Max-Planck-Institut für Informatik, Saarbrücken, Germany

3 Dipartimento di Matematica ed Informatica, Universitá degli Studi di Udine, Udine, Italy

Abstract. We give improved algorithms for constructing minimum directed and
undirected cycle bases in graphs. For general graphs, the new algorithms are
Monte Carlo and have running time O(mω), where ω is the exponent of ma-
trix multiplication. The previous best algorithm had running time Õ(m2n). For
planar graphs, the new algorithm is deterministic and has running time O(n2).
The previous best algorithm had running time O(n2 logn). A key ingredient to
our improved running times is the insight that the search for minimum bases can
be restricted to a set of candidate cycles of total length O(nm).

1 Introduction

Cycles in graphs play an important role in many applications, e.g., analysis of electrical
networks, analysis of chemical and biological pathways, periodic scheduling, and graph
drawing, see [KLM+09, Section 7]. Cycle bases are a compact description of the set of
all cycles of a graph and cycle bases consisting of short cycles or, in weighted graphs,
of small weight cycles are to be preferred. We give improved algorithms for computing
minimum weight cycle bases. The algorithms run in time O(mω) for general graphs
and O(n2) for planar graphs; here n and m denote the number of nodes and edges,
respectively, and ω is the exponent of matrix multiplication. For planar graphs, this is
an improvement by a factor of O(logn); our result implies a similar improvement for
the all-pairs minimum cut problem in planar graphs. For general graphs, our algorithm
is the first to run faster than Õ(m2n). We mention that the previous best algorithms
already used fast matrix multiplication and our improvement is due to new structural
and algorithmic insights. A key ingredient to our improved running times is the insight
that the search for minimum bases can be restricted to a set of candidate cycles of total
length O(nm).

Let G = (V,E) be a connected undirected graph. We orient the edges of G arbitrarily
and obtain a directed graph (V,A) which we denote by either D or G. We use the notation
e = uv to denote both directed and undirected edges, i.e., the notation stands for the
directed edge (u,v) and the undirected edge {u,v}. We use δ (v) to denote the set of
edges incident to v and δ+(v) and δ−(v) for the directed edges leaving and entering v,
respectively.

Let κ be a field. A κ-cycle C in D is a vector in κE such that for any vertex v we
have ∑e∈δ+(v)Ce = ∑e∈δ−(v)Ce. In other contexts, cycles are sometimes referred to as

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 301–312, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

302 E. Amaldi et al.

1

2

e5

3

e1

e6
4

e2

e7

5

e3

e4

e8

D

1

2

e5

3

e1

e6
4

e2

e7

5

e3

e4

e8

C1

1

2

e5

3

e1

e6
4

e2

e7

5

e3

e4

e8

C2

1

2

e5

3

e1

e6
4

e2

e7

5

e3

e4

e8

C3

1

2

e5

3

e1

e6
4

e2

e7

5

e3

e4

e8

C4

Fig. 1. The figure shows a directed graph D and four circuits C1 to C4 in D. The edges of D
are e1 to e8. The circuit C1 uses the edges e1, e2, e3, and e5 in forward direction and the
edge e8 in backward direction. Thus C1 = (1,1,1,0,1,0,0,−1). The circuits C1 to C4 form
a directed cycle basis of G. The circuit C consisting of edges 1 to 4 is represented as C =
(1,1,1,1,0,0,0,0) = (C1 +C2 +C3 +C4)/3. Let G be the underlying undirected graph, let π(Ci)
be the undirected circuit corresponding to Ci, and let π(C) be the undirected circuit correspond-
ing to C. Then π(C1) = (1,1,1,0,1,0,0,1) and π(C) = π(C1)⊕π(C2)⊕π(C3)⊕π(C4), where
⊕ is addition modulo 2. The circuits π(C1) to π(C4) form an undirected cycle basis of G.
The set {C1,C2,C3,2C4 } is also a directed cycle basis of D. However, π(2C4) = 0 and hence
{π(C1),π(C2),π(C3),π(2C4)} is not an undirected cycle basis of G.

circulations and the constraint ∑e∈δ+(v)Ce = ∑e∈δ−(v)Ce is called flow conservation.
Observe that if C is a cycle, then −C is also a cycle, though a different one. The set

{C; C is a κ-cycle of G}

forms a vector space over κ , the κ-cycle space of G. The support of a cycle is the set
of edges e with Ce �= 0. A cycle is simple if Ce ∈ {−1,0,+1} for all e, and a simple
cycle is a circuit if its support is connected and for any v there are most two edges in
the support incident to v. A κ-cycle basis is a set of circuits forming a basis of the cycle
space. Any cycle basis consists of ν :=m−n + 1 circuits.

Particularly interesting are the cases κ = GF(2), the field of two elements, and κ =
Q, the field of rationals. In these cases, the cycle space and cycle basis are referred to
as undirected or directed cycle space and basis, respectively. Let G be an undirected
graph and let D be an orientation of it. For any directed circuit C ∈ {−1,0,+1}E of D,
let π(C) :=(Ce mod 2)e∈E . Then π(C) is an undirected circuit in G, the projection of C.
Figure 1 illustrates these definitions. In addition, it provides an example showing that
directed cycle bases do not necessarily project onto undirected cycle bases. However, if
a set of ν directed circuits projects onto an undirected basis, it forms a directed basis.

A weighted graph is a graph together with a non-negative weight function w : E →
R≥0. The weight of a set of edges is the sum of the weights of its members. The weight
w(C) and length |C| of a simple cycle C are

w(C) :=∑
e

|Ce|w(e) |C| :=∑
e

|Ce| ,

and the weight of a cycle basis B is the sum of the weights of its circuits, i.e.,

w(B) = ∑
C∈B

w(C) .

A minimal κ-cycle basis of G is a κ-cycle basis with minimum weight.

Breaking the O(m2n) Barrier for Minimum Cycle Bases 303

Horton [Hor87] gave the first polynomial time algorithm for minimum undirected cy-
cle bases. It had running time O(m3n). In a sequence of papers [DP95, GH02, BGdV04,
KMMP08, MM07], the running time was improved to Õ(m2n). Kavitha and Mehlhorn
[KM07] gave the first polynomial time algorithm for minimum directed cycle bases.
It had running time O(m4n). In a sequence of papers [LR05, Kav05, HKM08, MM07]
the running time was improved to O(m3n) deterministic time and Õ(m2n) Monte Carlo
time. We improve the running time to O(mω) Monte Carlo time for undirected and di-
rected bases. For planar graphs, we improve the running time from O(n2 logn) [HM94]
to O(n2); the algorithm is deterministic.

This paper is structured as follows. In Section 2 we improve upon a result of Hor-
ton [Hor87] and show that the search for cycle bases can be restricted to a set of candi-
date circuits of total length O(nm); Horton had shown that the search can be restricted
to a set of O(nm) circuits. In Section 3, we exploit this structural insight to derive the
O(mω) Monte Carlo algorithm for minimum undirected and directed bases. In Sec-
tion 4, we exploit it to derive the O(n2) algorithm for minimum bases in planar graphs.

2 Structural Results

For any two nodes u and v, let puv be a minimum weight path from u to v in G with
respect to weight function w. We assume that the collection of minimum weight paths is
consistent, i.e., if x and z lie on puv then pxz is a subpath of puv. This can be guaranteed
for instance by lexicographic ordering. Given an arbitrary numbering of the nodes from
1 to n, a path p between two nodes is considered shorter than a path q of the same
total weight if the length of p is strictly smaller than the length of q. In case of ties,
the shortest path between p and q will be the one that contains the node with minimum
index in the non-common part. For a modified minimum weight path algorithm that
ensures lex-shortest paths in time O(mn + n2 logn), see [HM94].

For any node x, let Tx be the minimum weight path tree rooted at x, i.e., Tx is the
union of the paths pxv for all v. In [Hor87] Horton shows that a polynomial subset of
all cycles is guaranteed to contain a minimum cycle basis. The set of Horton candidate
cycles, denoted by H , contains all cycles of the form Cx,e := pxuepvx, for any possible
choice of a node x and an edge e = uv not in Tx, i.e., a co-tree edge. Among these
nν cycles, we have to consider only the circuits, discarding Cx,e if pxu and pxv have
more than node x in common (see Figure 2(a)). H is a multi-set because each circuit
C can have different representations Cx,e for some of its nodes x. Note that there is no
representation for a given node x if C contains more than one co-tree edge with respect
to Tx. This is equivalent to the existence of a shortcut between x and another node in C,
i.e., the shortest path joining them does not belong to the circuit itself.

A circuit C is called isometric if for any two nodes u and v on C, puv is contained in
C. See Figure 2 (b) and (c) for examples of non-isometric circuits. The set of isometric
circuits will be denoted by I . Clearly each isometric circuit is a Horton candidate
cycle, that is I ⊆ H .

In fact, we just need to consider isometric circuits.

Proposition 2.1 ([Hor87]). I contains a minimum undirected (directed) basis.

304 E. Amaldi et al.

21
1

3
1

4
1

1x

u

v

(a)

1

2

1

4
1

1
3

1

1

x v

u

(b)

1

2

2

3

2

4

3

1
5

3

1

1

x

u v

(c)

Fig. 2. Examples of non-isometric cycles. (a) C1,{3,4} is not a circuit, because p13 and p14 have
also node 2 in common. The contained circuit is obtained as C2,{3,4}. (b) The minimum weight
path connecting 1 and 3 consists of edges {1,2} and {2,3}. C1,{3,4} is a non-isometric circuit
because of the shortcut, depicted in dashed. The only other representation is C3,{1,4}. (c) C1,{4,5}
is a non-isometric circuit with two shortcuts and no representations for any other node.

Moreover, isometric circuits can be characterized in terms of number of representations,
namely every isometric circuit C has exactly |C| representations in H .

Property 2.2 (Isometric circuits [Hor87]). Let C be any isometric circuit and let x
be an arbitrary node of C. Then there is an edge e = uv on C such that C = pxuepvx.
Conversely, if for every x ∈ C there is such an edge, then C is isometric.

Proof: Let C = (x = v0, v1, . . . , vk = x). Since the empty path is the minimum weight
path from x to x and C is not the minimum weight path from x to x, there must be
an i such that pxvi = (v0,v1, . . . ,vi) but pxvi+1 �= (v0,v1, . . . ,vi,vi+1). Then pxvi+1 =
(vk,vk−1, . . . ,vi+1) and hence e = (vi,vi+1) is the desired edge.

For the converse, consider any two nodes x and z on C and let e = uv be such that
C = pxuepvx; z lies on one of the paths and hence the minimum weight path from x to z
is contained in C.

By considering the set of isometric circuits I instead of H we have the following
simple but fundamental property.

Property 2.3. The total length of the isometric circuits is at most nν .

Proof: An isometric circuit C occurs |C| times in the Horton multi-set and hence
∑C∈I |C| can be no larger than the size of the Horton multi-set.

Note that we sum only over the isometric circuits, as we have no control over the number
of appearances of non-isometric cycles.

The upper bound of Property 2.3 is tight for instance for the complete graph Kn with
n vertices and equal weight on the edges. For any node x, the cycle obtained by adding
to Tx any co-tree edge is a triangle. H consists of nν triangles that are clearly isometric.
Since there are three representations of each possible triangle, obtained by taking as x
each one of its 3 nodes, I consists of nν/3 triangles. Therefore, the total length of the
isometric circuits is exactly nν .

The total length of the isometric circuits may be much smaller than nν . Consider
an s × s grid with equal weights on the edges. Since n = s2 and m = 2s(s − 1), we

Breaking the O(m2n) Barrier for Minimum Cycle Bases 305

have ν = (s − 1)2, and m and ν are O(n). The isometric circuits are exactly the grid
squares and hence their total length is 4(s−1)2, that is O(n), whereas the upper bound
of Property 2.3 is nν = s2(s−1)2, that is O(n2).

We will now show that we can extract I from the Horton multi-set in time O(nm).
For every node v �= x, let sx(v) be the child of x in Tx containing v in its subtree.

In other words, sx(v) is the first node on the minimum weight path from x to v. The
vectors sx for all x ∈ V can be the computed in time O(n2). Note that a candidate cycle
C = Cx,e, for e = uv, is a circuit only when pxu and pxv have only node x in common,
i.e., sx(u) �= sx(v) (see Figure 2(a)). The next Lemma shows how to identify different
representations of the same isometric circuit and how to discover non-isometric circuits.
Given a circuit Cx,uv, the idea is to check for two specific nodes x′ and x′′ of C whether
the minimum weight path px′x′′ between them belongs to C. The nodes x′ and x′′ are
chosen so that a negative answer obviously implies that the circuit is non-isometric
whereas a positive answer gives a different representation of C for one of x′ and x′′.
This is achieved by taking x′ = sx(u) and x′′ = v. In fact, if px′v belongs to C there are
only two possibilities: px′v = x′xpxv and the other representation for C is for the node x′

and is given by Cx′,uv; px′v = vupux′ and the other representation for C is for the node
v and is given by Cv,xx′ . When node x′ does not exist because node x coincides with
node u, the other representation is for node v and is given by Cv,uv. Lemma 2.4 explains
how to check (in constant time) the conditions that allow to identify the different cases,
which are illustrated in Figure 3.

Lemma 2.4. Let C = Cx,e, let u be an endpoint of e, and let v be the other endpoint.

1. If sx(u) �= sx(v) and x = u then x �= v and C = epvu = Cv,e.
2. If sx(u) �= sx(v), x �= u, and x′ = sx(u) is the first node on the minimum weight path

from x to u then:
(a) if x = sx′(v), then C = Cx′ ,e,
(b) if x �= sx′(v) and u = sv(x′) then C = Cv,xx′ , and
(c) if x �= sx′(v) and u �= sv(x′) then C is not isometric.

Proof:
If x = u, C = uvpvu = pvuuv = Cv,e. This proves the first statement.
If x �= u and x′ is the first vertex on the minimum weight path from x to u, we have

pxu = xx′px′u.
If x is the first vertex on the minimum weight path from x′ to v, then pux′ px′v = pux pxv.

Thus C = Cx′ ,e. This establishes 2a.
If x is not the first vertex on the minimum weight path from x′ to v and u is the

first node on the minimum weight path from v to x′ then C = pvxxx′px′v = Cv,xx′ . This
establishes 2b.

If x is not the first vertex on the minimum weight path from x′ to v and C is isometric,
the minimum weight path from x′ to v must be px′u followed by e. Then u is the first
vertex on the minimum weight path from v to x′. This establishes 2c.

Lemma 2.4 allows us to identify different representations of the same isometric circuit.
It also allows to exclude some circuits as non-isometric.

306 E. Amaldi et al.

1

2

1

4
4

3
1

1

x = u v

(1)

12
1

3

1

4
1

5
2

6

1

1

2

xx′

u v

(2a)

12
1

3

1

4
1

5
2

6

1

1

2

x

x′

u v

(2b)

12
1

3

1

4
1

5
2

6

1

1

2

u

v

x

x′

(2c)

Fig. 3. Examples for the different cases of Lemma 2.4. (1) C1,{1,4} where x = u = 1. (2a), (2b) and
(2c) are three different representations of the same circuit. (2a) C1,{4,5} where s2(5) = 1 and we
obtain C2,{4,5}. (2b) C2,{4,5} where s3(5) �= 2 but s5(3) = 4 and we obtain C5,{2,3}. (2c) C5,{2,3}
where s6(3) �= 5 and s3(6) �= 2, because the minimum weight path connecting 3 and 6 consists of
edges {3,4} and {4,6}. This implies that the circuit is not isometric. The shortcut is in dashed line.

1

2e1

4

e5

e4

3

e3

e2

(2,e4)

(1,e5)

(4,e1) (2,e3)

(3,e5)

(4,e2)

6

e5
5e4

4

e3

3

e2

2 e1

1

e6

Fig. 4. In the graph on the left all edges have cost one; we select e1e2 as the minimum weight
path connecting 1 and 3. The circuits C1,e3 and C3,e4 are bad by condition 2c. For the former
circuit let x = 1, u = 3, v = 4; then s1(3) = 2 and s2(4) �= 1 and s4(2) �= 3. The other circuits
are connected as shown below the graph. The figure on the right shows an isometric circuit C
embedded on a circle. The edges correspond to the circular arcs between the vertices and the
length of an arc is proportional to the weight of the corresponding edge. For any vertex x, we
have C = Cx,e where e contains the mirror image of x with respect to the center of the circle. We
have the following connections: C1,e4 and C2,e4 are connected by condition 2a, C2,e4 and C5,e2 are
connected by condition 2b, and so on.

We next show that all representations of an isometric circuit will be identified and all
non-isometric circuits will be discovered. We set up a graph whose vertices are the pairs
(x,e), x ∈ V , e ∈ E , if (x,e) is a circuit. We label (x,e) as bad if condition 2c holds. We
connect two pairs if they satisfy condition 1 or 2a or 2b, see Figure 4.

Lemma 2.5. All representations of an isometric circuit belong to the same connected
component.

Proof: Let C = (v0,v1, . . . ,vk = v0) be an isometric circuit, let ei = vivi+1, and for any
i, 0 ≤ i< k, let j(i) be such that C = Cvi ,e j(i) . Figure 4 shows how the different represen-
tations of C are linked together. In this Figure, a representation Cvi,e j(i) is indicated as a
dashed arrow from vi to e j(i). In cases 1 and 2a, vi and vi+1 point to the same edge, i.e.,
the tail of the arrow advances by one position. In case 2b, we replace the arrow from vi

to e j(i) = v j(i)v j(i)+1 by the arrow from v j(i)+1 to vivi+1, i.e., we reverse the direction of

Breaking the O(m2n) Barrier for Minimum Cycle Bases 307

the arrow and it now points from the tail of e j(i) to the edge out of vi. In this way, the
arrow sweeps around the circuit once and links all representations of the same circuit.

Lemma 2.6. If Cx,e is non-isometric then the component of (x,e) contains a bad com-
ponent.

Proof: Let C = (v0,v1, . . . ,vk = v0) be a non-isometric circuit and let ei = vivi+1. For
some, but not all, i, 0 ≤ i < k, there will be a j(i) such that C = Cvi,e j(i) . Observe, that if
C = Cvi ,e j(i) , the minimum weight paths from vi to the vertices of C are initial segments
of either pviv j(i) or pviv j(i)+1

. Also, if the minimum weight path from vi+1 to v j(i)+1 is
contained in C, then either C = Cvi+1,e j(i) or C = Cvj(i)+1,ei .

Thus if C is non-isometric, there must be i such that the minimum weight path from
vi+1 to v j(i)+1 is not contained in C. For any such i, Cvi,e j(i) will be declared bad. Any
non-bad representation of C will be linked to a bad one as described in the preceding
Lemma.

Note that checking the conditions of Lemma 2.4 is needed once for each circuit in H .
We summarize the discussion.

Theorem 2.7. In time O(nm) we can extract for each isometric circuit one pair (x,e)
with C = Cx,e.

3 Improved Algorithms for General Graphs

We refine de Pina’s approach [DP95, KLM+09] for computing minimum cycle bases,
see Figure 5. It operates in phases. In each phase, one circuit is added to the basis.
The algorithm also maintains a basis of the orthogonal space; more precisely, at the
beginning of the i-th iteration is has a set {Si, . . . ,Sν } of linearly independent vectors
S j ∈ κE with 〈Cj,S j〉 = 0, where 〈_,_〉 is the inner product of vectors over κ . Through-
out this section, κ = GF(p) for a prime p with p = O(m logm). In particular, arithmetic
in GF(p) takes constant time. At the start of the computation S j is initialized to the j-th
unit vector for 1 ≤ j ≤ ν , where the numbering of the edges is such that edges eν+1 to
em form a spanning tree of G.

1: Initialize S j to the j-th unit vector for 1 ≤ j ≤ ν .
2: for i ← 1, . . . ,ν do
3: Compute a minimum weight isometric circuit Ci with 〈Ci,Si〉 �= 0.
4: for j ← i+1, . . . ,ν do

5: S j = S j − 〈Ci,Sj〉
〈Ci,Si〉 Si

6: end for
7: end for
8: Output {C1, . . . ,Cν }.

Fig. 5. De Pina’s algorithm for computing a minimum cycle basis.

308 E. Amaldi et al.

Steps (4) and (5) of the algorithm make the S j, j > i, orthogonal to Ci and maintain
orthogonality of C1 to Ci−1. Updating the vectors S j as shown takes time O(m2) per
phase and hence total time O(m3). In [KMMP08], this was improved to time O(mω).
The best known realization of step (3) takes time Õ(mn) per phase and hence total time
Õ(m2n). We describe a Monte Carlo algorithm that improves the total time for step (3)
to o(mω). The improved algorithm exploits the new structural result presented in the
preceding section.

We start with a simple technical lemma.

Lemma 3.1. Let C be a collection of circuits. For each circuit C ∈ C , let λC ∈ GF(p)
be chosen randomly and let D = ∑C∈C λCC. Let S be a nonzero vector in GF(p)E. If all
circuits in C are orthogonal to S, D is orthogonal to S. If C contains a circuit that is
non-orthogonal to S, D is orthogonal to S with probability at most 1/p.

Proof: Clearly, if every circuit in C is orthogonal to S, then D is.
So assume that C′ ∈ C is non-orthogonal to S and consider a fixed choice of coeffi-

cients λC for the circuits C ∈ C , C �= C′. Also assume that there are two distinct choices
α and β for λC′ such that ∑C∈C λCC are orthogonal to S. Then αC′ + ∑C∈C ,C �=C′ λCC
and βC′ + ∑C∈C ,C �=C′ λCC are orthogonal to S. Thus (β − α)C′ is orthogonal to S, a
contradiction. Thus the probability that 〈D,S〉 = 0 is at most 1/p.

Consider the |I | ≤ nm isometric circuits. We sort them by nondecreasing weight and
put a binary tree (of depth at most lognm, that is O(logn)) on top of the sorted list. For
each node of the tree, we prepare k random linear combinations of the circuits below
the node. We find the cheapest circuit that has nonzero inner product with Si as follows.
Assume the search has arrived in some node of the tree. We compute the inner product
of Si with the k linear combinations associated with the left child. If one inner product
is nonzero, we proceed to the left child. If all k inner products are zero, we proceed to
the right child. The move to the left child is always correct. However, the move to the
right child may be incorrect. The probability that any specific decision is incorrect is
at most p−k. In any search, we make log |I | decisions, and we need to find ν circuits.
Thus the total number of decisions is ν log |I | and hence the total probability of error
is bounded by νlog |I |p−k.

Each step of the binary search is a scalar product and hence selecting one circuit
takes time O(km logn). Selecting all circuits takes time O(km2 logn).

How much time does it take to prepare the random linear combinations? We main-
tain them as sparse vectors, i.e., as the ordered list of their nonzero entries. In order to
prepare one linear combination for each node of the search tree, we choose a random
multiplier λC ∈ k for each isometric circuit C. We then sum the sparse vectors as indi-
cated by the tree. Each nonzero entry of a circuit contributes cost O(1) for each level
of the tree and hence the total time to prepare one random linear combination for each
node of the search tree is O(nm logn) by Property 2.3. We want k linear combinations
for each node and hence require time O(knm logn) to prepare all of them.

Theorem 3.2. There is a Monte Carlo algorithm for finding a minimum GF(p)-basis
that works in time O(nm+ n2 logn + mω + km2 logn) and errs with probability at most
νlog(nm)p−k. For k = m0.1, this is exponentially small, and the running time is O(mω).

Breaking the O(m2n) Barrier for Minimum Cycle Bases 309

Undirected bases are GF(2)-bases and hence we are done. For directed cycle bases we
use an observation in [KLM+09, Section 3.5], namely that a minimum GF(p)-basis for
a random p with p = Θ(m logm) is a minimum directed basis with probability at least
1/2.

Theorem 3.3. There is a Monte Carlo algorithm for finding a minimum directed cycle
basis that works in time O(mω) and errs with probability at most 1/2.

4 Planar Graphs

Hartvigsen and Mardon [HM94] have shown that minimum undirected cycle bases in
planar graphs can be computed in time O(n2 logn). In this section, we summarize their
result, improve the running time to O(n2), and also show that for planar graphs, the no-
tions of minimum directed, undirected, integral, weakly fundamental, and totally uni-
modular bases coincide, see [KLM+09, Section 3] and the proof of Theorem 4.2 for a
definition of the latter terms.

Let G be a plane graph, a planar graph embedded into the plane. A plane graph
divides the plane into maximal open connected sets of points that we call faces. Any
circuit C divides the plane into two maximal open connected sets of points, one bounded
and one unbounded. We use interior(C) to denote the bounded set. If interior(C) agrees
with one of the faces of G, we call C a face circuit. Note that the number of edges and
the number of face circuits are both O(n). A collection of circuits is called nested if for
any two circuits in the collection, the interiors are either disjoint or the interior of one
is contained in the interior of the other.

For a collection B of circuits, let FB be the face circuits that do not belong to B. We
define the directed inclusion graph DB with vertex set B ∪FB as follows. Let C and C′

be circuits in B ∪FB. We have an edge from C to C′ if interior(C) ⊃ interior(C′) and
there is no circuit C′′ ∈ B∪FB such that interior(C) ⊃ interior(C′′) ⊃ interior(C′). The
inclusion graph is acyclic; the nodes of DB with no outgoing edges are precisely the
face circuits of G. The inclusion graph is a forest if and only if B is nested.

In [HM94] Hartvigsen and Mardon show that the number of isometric circuits is at
most twice the number of face circuits of any planar graph G and there is at least a min-
imum cycle basis (directed or undirected) that is nested. Moreover, a nested collection
of cycles B is a minimum cycle basis iff B is a minimum weight collection of circuits
satisfying three properties: (1) every non-leaf in DB has exactly one child in FB, (2) the
circuits in FB have parents in DB, (3) the inclusion graph DB is a forest.

Our algorithm for finding a minimum weight basis differs from that of [HM94] in
two points. First, we use the all-pairs minimum weight paths method for planar graph
in O(n2) proposed in [Fre87]. Then, the main improvement is to exploit the procedure
implied by Theorem 2.7 to obtain the set of isometric circuits in O(n2). This way, the
bottleneck of O(n2 logn) decreases to O(n2). The rest of the algorithm proceeds as
in [HM94] and we summarize it below for completeness. Recall that the number of
isometric circuits is O(n) and that sorting by nondecreasing weight is O(n logn).

We construct the incidence matrix A between isometric circuits and the faces of G.
The entry corresponding to a circuit C and a face R is one if R ⊆ interior(C). This matrix
can clearly be computed in time O(n2).

310 E. Amaldi et al.

We initialize the basis B to the empty set and set up the corresponding inclusion
graph DB. The vertices of DB are the face circuits and there are no edges. As long as B
does not have the right number of circuits and hence DB does not satisfy properties (1)
and (2), we do the following.

If there is a non-leaf node C that has more than one child in FB (case 1), let R1 and R2

be two faces of G limited by two face circuits in FB having C as their common parent. If
there is no such non-leaf node, there must be a face circuit in FB without a parent (case
2). Let R1 be the face limited by this face circuit and let R2 be the unbounded face. In
either case, we find the least weight circuit D containing exactly one of R1 or R2 in its
interior. We can find D in time O(n) by scanning the columns of A.

We add D to B and update DB. If D is a face circuit, we only have to remove D from
FB. The inclusion graph stays the same. So assume that D is not a face circuit. Starting
from the face circuits in interior(D) (we can find them in matrix A), we determine the
maximal subtrees of DB that are contained in interior(D). They become children of D.
D either becomes a root (in case 2) or a child of C (in case 1). Updating DB takes time
O(n).

We conclude that we spend time O(n) per base circuit for a total of O(n2).

Theorem 4.1. A minimum (directed or undirected) circuit basis of a planar graph can
be found in time O(n2).

[HM94] observed that the minimum cycle basis problem is dual to the all-pairs mini-
mum cut problem. Hence the all-pairs minimum cut problem in planar graphs can also
be solved in time O(n2).

Theorem 4.2. Every planar graph has a minimum directed cycle basis that is weakly
fundamental, totally unimodular, and integral.

Proof: Every planar graph has a minimum directed cycle basis that is nested. Let B be
such a basis. We first show that B is totally unimodular. We need to show that any circuit
is a linear combination of the circuits in B with coefficients in {−1,0,+1}. Let C be
any circuit. Then, C can be obtained as the sum of the face circuits that limit faces in
interior(C). A face circuit either belongs to B or is equal to the difference of its parent
p(F) in DB and the sum of the other children of p(F) in DB. Thus

C = ∑
F∈B

F + ∑
F∈FB

(
p(F)− ∑

D ∈ B and D is a child of p(F) in DB

D

)
.

If a circuit D occurs twice in the representation of C, it occurs once as a parent and
once as a child. As a parent, its coefficient is +1, and as a child, its coefficient is −1
and hence the two occurrences cancel. Thus every circuit is a linear combination of the
circuits in B with coefficients in {−1,0,+1}.

We next show that B is weakly fundamental. We need to exhibit an ordering C1, . . . ,
Cν of the circuits in B such that Ci \ (C1 ∪ . . .∪Ci−1) �= /0 for all i. Let DB be the in-
clusion graph corresponding to B. If FB is empty, every face circuit belongs to B. We
determine a reverse ordering of the circuits Cν , . . . , C1 as described in [LR07]. Starting

Breaking the O(m2n) Barrier for Minimum Cycle Bases 311

from the circuit C that limits the unbounded face, we add the face circuits with an edge
in common with C. After removing the edges of C from G, we proceed in the same way.
We now extend the previous result to the general case when FB is not empty. Since every
face circuit in FB has a parent, we have a non-leaf node D in DB whose children are all
face circuits. One of these face circuits, say F , belongs to FB and all the others belong to
B. The same idea for constructing a reverse ordering is then applied to the circuits in B
corresponding to the children of D starting from F . The face circuits among these with
an edge in common with F are added and the edges of F that are not in D are removed.
Then we proceed in the same way considering the circuit that limits the new face. After
that all children of D are added, we delete them from DB. We repeat this until all nodes
in DB are isolated. By applying the procedure in the remaining graph for the case where
there are only face circuits, we find a reverse ordering of the circuits. Thus, the same
result holds for general cycle bases.

The proof is completed by the fact that any weakly fundamental basis is integral.

5 Conclusion

We have shown that minimum cycle bases can be computed in time O(mω) by a Monte
Carlo algorithm. A further improvement would have to do away with the maintenance
of a basis of the orthogonal subspace.

References

[BGdV04] Berger, F., Gritzmann, P., de Vries, S.: Minimum cycle bases for network graphs.
Algorithmica 40(1), 51–62 (2004)

[DP95] De Pina, J.C.: Applications of shortest path methods. PhD thesis, University of
Amsterdam, The Netherlands (1995)

[Fre87] Frederickson, G.N.: Fast algorithms for shortest paths in planar graphs, with appli-
cations. SIAM J. Computing 16(6), 1004–1022 (1987)

[GH02] Golynski, A., Horton, J.D.: A polynomial time algorithm to find the minimum
cycle basis of a regular matroid. In: Penttonen, M., Schmidt, E.M. (eds.) SWAT
2002. LNCS, vol. 2368, pp. 200–209. Springer, Heidelberg (2002)

[HKM08] Hariharan, R., Kavitha, T., Mehlhorn, K.: Faster deterministic and randomized al-
gorithms for minimum cycle basis in directed graphs. SIAM J. Computing 38(4),
1430–1447 (2008)

[HM94] Hartvigsen, D., Mardon, R.: The all-pairs min cut problem and the minimum cycle
basis problem on planar graphs. SIAM J. Discrete Math. 7(3), 403–418 (1994)

[Hor87] Horton, J.D.: A polynomial-time algorithm to find the shortest cycle basis of a
graph. SIAM J. Computing 16(2), 358–366 (1987)

[Kav05] Kavitha, T.: An Õ(m2n) randomized algorithm to compute a minimum cycle basis
of a directed graph. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C.,
Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 273–284. Springer, Heidelberg
(2005)

[KLM+09] Kavitha, T., Liebchen, C., Mehlhorn, K., Michail, D., Rizzi, R., Ueckerdt, T.,
Zweig, K.: Cycle bases in graphs: Characterization, algorithms, complexity, and
applications, 78 pages (submitted for publication) (March 2009)

312 E. Amaldi et al.

[KM07] Kavitha, T., Mehlhorn, K.: Algorithms to compute minimum cycle basis in directed
graphs. Theory of Computing Systems 40(4), 485–505 (2007); A preliminary ver-
sion of this paper appeared in STACS 2005, vol. 3404, pp. 654–665

[KMMP08] Kavitha, T., Mehlhorn, K., Michail, D., Paluch, K.E.: An Õ(m2n) algorithm for
minimum cycle basis of graphs. Algorithmica 52(3), 333–349 (2008); A prelimi-
nary version of this paper appeared in ICALP 2004, vol. 3142, pp. 846–857

[LR05] Liebchen, C., Rizzi, R.: A greedy approach to compute a minimum cycle basis of
a directed graph. Information Processing Letters 94(3), 107–112 (2005)

[LR07] Liebchen, C., Rizzi, R.: Classes of cycle bases. Discrete Applied Mathemat-
ics 155(3), 337–355 (2007)

[MM07] Mehlhorn, K., Michail, D.: Minimum cycle bases: Faster and simpler. Accepted
for publication in ACM Transactions on Algorithms (2007)

Shape Fitting on Point Sets with Probability
Distributions

Maarten Löffler1 and Jeff M. Phillips2

1 Department of Information and Computing Sciences, Utrecht University
2 Department of Computer Science, Duke University

Abstract. We consider problems on data sets where each data point
has uncertainty described by an individual probability distribution. We
develop several frameworks and algorithms for calculating statistics on
these uncertain data sets. Our examples focus on geometric shape fit-
ting problems. We prove approximation guarantees for the algorithms
with respect to the full probability distributions. We then empirically
demonstrate that our algorithms are simple and practical, solving for a
constant hidden by asymptotic analysis so that a user can reliably trade
speed and size for accuracy.

1 Introduction

In gathering data there is a trade-off between quantity and accuracy. The drop in
the price of hard drives and other storage costs has shifted this balance towards
gathering enormous quantities of data, yet with noticeable and sometimes inten-
tional imprecision. However, often as a benefit from the large data sets, models
are developed to describe the pattern of the data error.

For instance, in the gathering of LIDAR data for GIS applications [17], each
data point of a terrain can have error in its x- (longitude), y- (latitude) and
z-coordinates (height). Greatly simplifying, we could model the uncertainty as a
3-variate normal distribution centered at its recorded value. Similarly, large data
sets are gathered with uncertainty in robotic mapping [12], anonymized medical
data [1], spatial databases [24], sensor networks [17], and many other areas.

However, much raw data is not immediately given as a set of probability dis-
tributions, rather as a set of points. Approximate algorithms may treat this data
as exact, construct an approximate answer, and then postulate that since the raw
data is not exact, the approximation errors made by the algorithm may be similar
to the errors of the imprecise input data. This is a very dangerous postulation.

An algorithm can only provide answers as good as the raw data and the models
for error on that data. This paper is not about how to construct error models, but
how to take error models into account. While many existing algorithms produce
approximations with respect only to the raw input data, algorithms in this paper
approximate with respect to the raw input data and the error models associated
with them.

Geometric error models. An early model for imprecise geometric data, moti-
vated by finite precision of coordinates, is ε-geometry [14], where each data point

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 313–324, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

314 M. Löffler and J.M. Phillips

is known to lie within a ball of radius ε. This models has been used to study the
robustness of problems such as the Delaunay triangulation [6,19]. This model
has been extended to allow different uncertainty regions around each point for
object intersection [22] and shape-fitting problems [25]. These approaches give
worst case bounds on error, for instance upper and lower bounds on the radius
of the minimum enclosing ball. But when uncertainty is given as a probability
distribution, then these approaches must use a threshold to truncate the dis-
tribution. Furthermore, the answers in this model are quite dependent on the
boundary of the uncertainty region, while the true location is likely to be in the
interior. This paper thus describes how to use the full probability distribution
describing the uncertainty, and to only discretize, as desired, the probability
distribution of the final solution.

The database community has focused on similar problems for usually one-
dimensional data such as indexing [2], ranking [11], and creating histograms [10].

1.1 Problem Statement

Let μp : Rd → R+ describe the probability distribution of a point p where
the integral

∫
q∈Rd μp(q) dq = 1. Let μP : Rd × Rd × . . . × Rd → R+ describe

the distribution of a point set P by the joint probability over each p ∈ P . For
brevity we write the space Rd × . . .× Rd as Rdn. For this paper we will assume
μP (q1, q2, . . . , qn) =

∏n
i=1 μpi(qi), so the distribution for each point is indepen-

dent, although this restriction can be easily circumvented.
Given a distribution μP we ask a variety of shape fitting questions about the

uncertain point set. For instance, what is the radius of the smallest enclosing ball
or what is the smallest axis-aligned bounding box of an uncertain point set. In
the presence of imprecision, the answer to such a question is not a single value or
structure, but also a distribution of answers. The focus of this paper is not just
how to answer such shape fitting questions about these distributions, but how
to concisely represent them. As a result, we introduce two types of approximate
distributions as answers, and a technique to construct coresets for these answers.

ε-Quantizations. Let f : Rdn → Rk be a function on a fixed point set. Examples
include the radius of the minimum enclosing ball where k = 1 and the width
of the minimum enclosing axis-aligned rectangle along the x-axis and y-axis
where k = 2. Define the “dominates” binary operator � so that (p1, . . . , pk) �
(v1, . . . , vk) is true if for every coordinate pi ≤ vi. Let Xf (v) = {Q ∈ Rdn |
f(Q) � v}. For a query value v define, FμP (v) =

∫
Q∈Xf (v) μP (Q) dQ. Then FμP

is the cumulative density function of the distribution of possible values that f
can take1. Ideally, we would return the function FμP so we could quickly answer
any query exactly, however, it is not clear how to calculate FμP (v) exactly for
even a single query value v. Rather, we introduce a data structure, which we
call an ε-quantization, to answer any such query approximately and efficiently,

1 For a function f and a distribution of point sets μP , we will always represent the
cumulative density function of f over μP by FμP .

Shape Fitting on Point Sets with Probability Distributions 315

(a) (b) (c)

Fig. 1. (a) The true form of a monotonically increasing function from R → R. (b) The
ε-quantization R as a point set in R. (c) The inferred curve hR in R2.

illustrated in Figure 1 for k = 1. An ε-quantization is a point set R ⊂ Rk which
induces a function hR where hR(v) describes the fraction of points in R that v
dominates. Let Rv = {r ∈ R | r � v}. Then hR(v) = |Rv|/|R|. For an isotonic
(monotonically increasing in each coordinate) function FμP and any value v, an
ε-quantization, R, guarantees that |hR(v) − FμP (v)| ≤ ε. More generally (and,
for brevity, usually only when k > 1), we say R is a k-variate ε-quantization. An
example of a 2-variate ε-quantization is shown in Figure 2. The space required
to store the data structure for R is dependent only on ε and k, not on |P | or μP .

(ε, δ, α)-Kernels. Rather than compute a new data structure for each measure we
are interested in, we can also compute a single data structure (a coreset) that allows
us to answer many types of questions. For an isotonic function FμP : R+ → [0, 1],
an (ε, α)-quantization data structure M describes a function hM : R+ → [0, 1] so
for any x ∈ R+, there is an x′ ∈ R+ such that (1) |x − x′| ≤ αx and (2) |hM (x) −
FμP (x′)| ≤ ε. An (ε, δ, α)-kernel is a data structure that can produce an (ε, α)-
quantization, with probability at least 1 − δ, for FμP where f measures the width
in any direction and whose size depends only on ε, α, and δ. The notion of (ε, α)-
quantizations is generalized to a k-variate version, as are (ε, δ, α)-kernels.

Shape inclusion probabilities. A summarizing shape of a point set P ⊂ Rd

is a Lebesgue-measureable subset of Rd that is determined by P . I.e. given a
class of shapes S, the summarizing shape S(P) ∈ S is the shape that optimizes
some aspect with respect to P . Examples include the smallest enclosing ball and
the minimum-volume axis-aligned bounding box. For a family S we can study
the shape inclusion probability function sμP : Rd → [0, 1] (or sip function),
where sμP (q) describes the probability that a query point q ∈ Rd is included in

(a) (b) (c) (d)

Fig. 2. (a) The true form of a 2-variate function. (b) The ε-quantization R as a point
set in R2. (c) The inferred surface hR in R3. (d) Overlay of the two images.

316 M. Löffler and J.M. Phillips

the summarizing shape2. There does not seem to be a closed form for many of
these functions. Rather we calculate an ε-sip function ŝ : Rd → [0, 1] such that
∀q∈Rd |sμP (q) − ŝ(q)| ≤ ε. The space required to store an ε-sip function depends
only on ε and the complexity of the summarizing shape.

1.2 Contributions

We describe simple and practical randomized algorithms for the computation of
ε-quantizations, (ε, δ, α)-kernels, and ε-sip functions. Let Tf (n) be the time it
takes to calculate a summarizing shape of a set of n points Q ⊂ Rd, which gener-
ates a statistic f(Q) (e.g., radius of smallest enclosing ball). We can calculate an
ε-quantization of FμP , with probability at least 1−δ, in O(Tf (n)(1/ε2) log(1/δ))
time. For univariate ε-quantizations the size is O(1/ε), and for k-variate ε-
quantizations the size is O(k2(1/ε) log2k(1/ε)). We can calculate an (ε, δ, α)-
kernel of size O((1/α(d−1)/2) · (1/ε2) log(1/δ)) in time O((n+(1/αd−3/2))(1/ε2) ·
log(1/δ)). With probability at least 1 − δ, we can calculate an ε-sip function of
size O((1/ε2) log(1/δ)) in time O(Tf (n)(1/ε2) log(1/δ)).

All of these randomized algorithms are simple and practical, as demonstrated
by a series of experimental results. In particular, we show that the constant
hidden by the big-O notation is in practice at most 0.5 for all algorithms. Due to
space restrictions, the results in this abstract had to be compressed. For further
explanation and full proofs, please refer to the full version [18].

1.3 Preliminaries: ε-Samples and α-Kernels

ε-Samples. For a set P let A be a set of subsets of P . In our context usually
P will be a point set and the subsets in A could be induced by containment in
a shape from some family of geometric shapes. For example of A, I+ describes
one-sided intervals of the form (−∞, t). The pair (P,A) is called a range space.
We say that Q ⊂ P is an ε-sample of (P,A) if

∀R∈A

∣∣∣∣φ(R ∩Q)
φ(Q)

− φ(R ∩ P)
φ(P)

∣∣∣∣ ≤ ε,

where | · | takes the absolute value and φ(·) returns the measure of a point set.
In the discrete case φ(Q) returns the cardinality of Q. We say A shatters a set
S if every subset of S is equal to R ∩ S for some R ∈ A. The cardinality of the
largest discrete set S ⊆ P that A can shatter is the VC-dimension of (P,A).

When (P,A) has constant VC-dimension ν, we can create an ε-sample Q of
(P,A), with probability 1 − δ, by uniformly sampling O((1/ε2)(ν + log(1/δ)))
points from P [26,16]. There exist deterministic techniques to create ε-samples
[20,9] of size O(ν(1/ε2) log(1/ε)) in time O(ν3νn((1/ε2) log(ν/ε))ν). When P is
a point set in Rd and the family of ranges Rd is determined by inclusion in
axis-aligned boxes, then an ε-sample for (P,Rd) of size O((d/ε) log2d(1/ε)) can
be constructed in O((n/ε3) log6d(1/ε)) time [23].
2 For technical reasons, if there are (degenerately) multiple optimal summarizing

shapes, we say each is equally likely to be the summarizing shape of the point set.

Shape Fitting on Point Sets with Probability Distributions 317

For a range space (P,A) the dual range space is defined (A, P ∗) where P ∗ is all
subsets Ap ⊆ A defined for an element p ∈ P such that Ap = {A ∈ A | p ∈ A}.
If (P,A) has VC-dimension ν, then (A, P ∗) has VC-dimension ≤ 2ν+1. Thus,
if the VC-dimension of (A, P ∗) is constant, then the VC-dimension of (P,A) is
also constant [21].

When we have a distribution μ : Rd → R+, such that
∫

x∈R
μ(x) dx = 1, we

can think of this as the set P of all points in Rd, where the weight w of a point
p ∈ Rd is μ(p). To simplify notation, we write (μ,A) as a range space where the
ground set is this set P = Rd weighted by the distribution μ.

α-Kernels. Given a point set P ∈ Rd of size n and a direction u ∈ Sd−1, let
P [u] = arg maxp∈P 〈p, u〉, where 〈·, ·〉 is the inner product operator. Let ω(P, u) =
〈P [u]− P [−u], u〉 describe the width of P in direction u. We say that K ⊆ P is
an α-kernel of P if for all u ∈ Sd−1

ω(P, u) − ω(K,u) ≤ α · ω(P, u).

α-kernels of size O(1/α(d−1)/2) [4] can be calculated in time O(n+1/αd−3/2) [8,27].
Computing many extent related problems such as diameter and smallest enclos-
ing ball on K approximates the problem on P [4,3,8].

2 Randomized Algorithm for ε-Quantizations

We develop several algorithms with the following basic structure: (1) sample
one point from each distribution to get a random point set; (2) construct the
summarizing shape of the random point set; (3) repeat the first two steps
O((1/ε)(ν + log(1/δ))) times and calculate a summary data structure. This al-
gorithm only assumes that we can draw a random point from μp for each p ∈ P .

2.1 Algorithm for ε-Quantizations

For a function f on a point set P of size n, it takes Tf(n) time to evaluate f(P).
We construct an approximation to FμP as follows. First draw a sample point
qj from each μpj for pj ∈ P , then evaluate Vi = f({q1, . . . , qn}). The fraction
of trials of this process that produces a value dominated by v is the estimate
of FμP (v). In the univariate case we can reduce the size of V by returning 2/ε
evenly spaced points according to the sorted order.

Theorem 1. For a distribution μP of n points, with success probability at least
1 − δ, there exists an ε-quantization of size O(1/ε) for FμP , and it can be con-
structed in O(Tf (n)(1/ε2) log(1/δ)) time.

Proof. Because FμP : R → [0, 1] is an isotonic function, there exists another
function g : R → R+ such that FμP (t) =

∫ t

x=−∞ g(x) dx where
∫

x∈R
g(x) dx = 1.

Thus g is a probability distribution of the values of f given inputs drawn from
μP . This implies that an ε-sample of (g, I+) is an ε-quantization of FμP , since
both estimate within ε the fraction of points in any range of the form (−∞, x).

318 M. Löffler and J.M. Phillips

By drawing a random sample qi from each μpi for pi ∈ P , we are drawing a
random point set Q from μP . Thus f(Q) is a random sample from g. Hence, using
the standard randomized construction for ε-samples, O((1/ε2) log(1/δ)) such
samples will generate an (ε/2)-sample for g, and hence an (ε/2)-quantization for
FμP , with probability at least 1 − δ.

Since in an (ε/2)-quantization R every value hR(v) is different from FμP (v)
by at most ε/2, then we can take an (ε/2)-quantization of the function described
by hR(·) and still have an ε-quantization of FμP . Thus, we can reduce this to
an ε-quantization of size O(1/ε) by taking a subset of 2/ε points spaced evenly
according to their sorted order.
�

We can construct k-variate ε-quantizations similarly. The output Vi of f is now
k-variate and thus results in a k-dimensional point.

Theorem 2. Given a distribution μP of n points, with success probability at
least 1−δ, we can construct a k-variate ε-quantization for FμP of size O((k/ε2)(k+
log(1/δ))) and in time O(Tf (n)(1/ε2)(k + log(1/δ))).

Proof. Let R+ describe the family of ranges where a range Ap = {q ∈ Rk |
q � p}. In the k-variate case there exists a function g : Rk → R+ such that
FμP (v) =

∫
x�v

g(x) dx where
∫

x∈Rk g(x) dx = 1. Thus g describes the probability
distribution of the values of f , given inputs drawn randomly from μP . Hence a
random point set Q from μP , evaluated as f(Q), is still a random sample from
the k-variate distribution described by g. Thus, with probability at least 1− δ, a
set of O((1/ε2)(k+ log(1/δ))) such samples is an ε-sample of (g,R+), which has
VC-dimension k, and the samples are also a k-variate ε-quantization of FμP .
�

We can then reduce the size of the ε-quantization R to O((k2/ε) log2k(1/ε)) in
O(|R|(k/ε3) log6k(1/ε)) time [23] or to O((k2/ε2) log(1/ε)) in O(|R|(k3k/ε2k) ·
logk(k/ε)) time [9], since the VC-dimension is k and each data point requires
O(k) storage.

2.2 (ε, δ, α)-Kernels

The above construction works for a fixed family of summarizing shapes. In this
sectin, we show how to build a single data structure, an (ε, δ, α)-kernel, for a
distribution μP in Rd that can be used to construct (ε, α)-quantizations for
several families of summarizing shapes. In particular, an (ε, δ, α)-kernel of μP

is a data structure such that in any query direction u ∈ Sd−1, with probability
at least 1 − δ, we can create an (ε, α)-quantization for the cumulative density
function of ω(·, u), the width in direction u.

We follow the randomized framework described above as follows. The de-
sired (ε, δ, α)-kernel K consists of a set of m = O((1/ε2) log(1/δ)) (α/2)-kernels,
{K1,K2, . . . ,Km}, where each Kj is an (α/2)-kernel of a point set Qj drawn
randomly from μP . Given K, with probability at least 1 − δ, we can create an
(ε, α)-quantization for the cumulative density function of width over μP in any
direction u ∈ Sd−1. Specifically, let M = {ω(Kj, u)}m

j=1.

Shape Fitting on Point Sets with Probability Distributions 319

Lemma 1. With probability at least 1 − δ, M is an (ε, α)-quantization for the
cumulative density function of the width of μP in direction u.

Proof. The width ω(Qj, u) of a random point set Qj drawn from μP is a random
sample from the distribution over widths of μP in direction u. Thus, with proba-
bility at least 1−δ,m such random samples would create an ε-quantization. Using
the width of the α-kernels Kj instead of Qj induces an error on each random sam-
ple of at most 2α ·ω(Qj, u). Then for a query width w, say there are γm point sets
Qj that have width at most w and γ′m α-kernels Kj with width at most w. Note
that γ′ > γ. Let ŵ = w− 2αw. For each point set Qj that has width greater than
w it follows that Kj has width greater than ŵ. Thus the number of α-kernels Kj

that have width at most ŵ is at most γm, and thus there is a width w′ between w
and ŵ such that the number of α-kernels at most w′ is exactly γm.
�
Since each Kj can be computed in O(n+ 1/αd−3/2) time, we obtain:

Theorem 3. We can construct an (ε, δ, α)-kernel for μP on n points in Rd of
size O((1/α(d−1)/2)(1/ε2) · log(1/δ)) in O((n+ 1/αd−3/2) · (1/ε2) log(1/δ)) time.

The notion of (ε, α)-quantizations and (ε, δ, α)-kernels can be extended to k-
dimensional queries or for a series of up to k queries which all have approximation
guarantees with probability 1 − δ.

In a similar fashion, coresets of a point set distribution μP can be formed
using coresets for other problems on discrete point sets. For instance, sample
m = O((1/ε2) log(1/δ)) points sets {P1, . . . , Pm} each from μP and then store α-
samples {Q1 ⊆ P1, . . . , Qm ⊆ Pm} of each. This results in an (ε, δ, α)-sample of
μP , and can, for example, be used to construct (with probability 1− δ) an (ε, α)-
quantization for the fraction of points expected to fall in a query disk. Similar
constructions can be done for other coresets, such as ε-nets [15], k-center [5], or
smallest enclosing ball [7].

2.3 Shape Inclusion Probabilities

For a point set Q ⊂ Rd, let the summarizing shape SQ = S(Q) be from some
geometric family S so (Rd, S) has bounded VC-dimension ν. We randomly sample
m point sets Q = {Q1, . . . , Qm} each from μP and then find the summarizing
shape SQj = S(Qj) (e.g. minimum enclosing ball) of each Qj. Let this set of
shapes be SQ. If there are multiple shapes from S which are equally optimal
choose one of these shapes at random. For a set of shapes S′ ⊆ S, let S′

p ⊆ S′

be the subset of shapes that contain p ∈ Rd. We store SQ and evaluate a query
point p ∈ Rd by counting what fraction of the shapes the point is contained in,
specifically returning |SQ

p |/|SQ| in O(ν|SQ|) = O(νm) time. In some cases, this
evaluation can be sped up with point location data structures.

Theorem 4. Consider a family of summarizing shapes S where (Rd, S) has VC-
dimension ν and where it takes TS(n) time to determine the summarizing shape
S(Q) for any point set Q ⊂ Rd of size n. For a distribution μP of a point set of
size n, with probability at least 1 − δ, we can construct an ε-sip function of size
O((ν/ε2)(2ν+1 + log(1/δ))) and in time O(TS(n)(1/ε2) log(1/δ)).

320 M. Löffler and J.M. Phillips

Proof. If (Rd, S) has VC-dimension ν, then the dual range space (S, P ∗) has
VC-dimension ν′ ≤ 2ν+1, where P ∗ is all subsets Sp ⊆ S, for any p ∈ Rd,
such that Sp = {S ∈ S | p ∈ S}. Using the above algorithm, sample m =
O((1/ε2)(ν′ + log(1/δ))) point sets Q from μP and generate the m summarizing
shapes SQ. Each shape is a random sample from S according to μP , and thus
SQ is an ε-sample of (S, P ∗).

Let wμP (S), for S ∈ S, be the probability that S is the summarizing shape
of a point set Q drawn randomly from μP . For any S′ ⊆ P ∗, let WμP (S′) =∫

S∈S′ wμP (S) dS be the probability that some shape from the subset S′ is the
summarizing shape of Q drawn from μP .

We approximate the sip function at p ∈ Rd by returning the fraction |SQ
p |/m.

The true answer to the sip function at p ∈ Rd is WμP (Sp). Since SQ is an ε-sample
of (S, P ∗), then with probability at least 1 − δ∣∣∣∣∣ |SQ

p |
m

− WμP (Sp)
1

∣∣∣∣∣ =

∣∣∣∣∣ |SQ
p |

|SQ| −
WμP (Sp)
WμP (P ∗)

∣∣∣∣∣ ≤ ε.

Since for the family of summarizing shapes S the range space (Rd, S) has VC-
dimension ν, each can be stored using that much space.
�

Using deterministic techniques [9] the size can then be reduced to O(2ν+1(ν/ε2)·
log(1/ε)) in time O((23(ν+1) · (ν/ε2) log(1/ε))2

ν+1 · 23(ν+1)(ν/ε2) log(1/δ)).

Representing ε-sip functions by isolines. Shape inclusion probability functions
are density functions. A convenient way of visually representing a density func-
tion in R2 is by drawing the isolines. A γ-isoline is a collection of closed curves
bounding a region of the plane where the density function is greater than γ.

In each part of Figure 3 a set of 5 circles correspond to points with a proba-
bility distribution. In part (a,c) the probability distribution is uniform over the
inside of the circles. In part (b,d) it is drawn from a normal distribution with
standard deviation given by the radius. We generate ε-sip functions for the small-
est enclosing ball in Figure 3(a,b) and for the smallest axis-aligned rectangle in
Figure 3(c,d).

(a) (b) (c) (d)

Fig. 3. The sip for the smallest enclosing ball (a,b) or smallest enclosing axis-aligned
rectangle (c,d), for uniformly (a,c) or normally (b,d) distributed points

Shape Fitting on Point Sets with Probability Distributions 321

In all figures we draw approximations of {.9, .7, .5, .3, .1}-isolines. These draw-
ing are generated by randomly selecting m = 5000 (Figure 3(a,b)) or m = 25000
(Figure 3(c,d)) shapes, counting the number of inclusions at different points in
the plane and interpolating to get the isolines. The innermost and darkest re-
gion has probability > 90%, the next one probability > 70%, etc., the outermost
region has probability < 10%.

3 Measuring the Error

We have established asymptotic bounds ofO((1/ε2)(ν+log(1/δ)) random samples
for constructing ε-quantizations and ε-sip functions. In this section we empirically
demonstrate that the constant hidden by the big-O notation is approximately 0.5,
indicating that these algorithms are indeed quite practical. Additionally, we show
that we can reduce the size of ε-quantizations to 2/ε without sacrificing accuracy
and with only a factor 4 increase in the runtime. We also briefly compare the (ε, α)-
quantizations produced with (ε, δ, α)-kernels to ε-quantizations. We show that the
(ε, δ, α)-kernels become useful when the number of uncertain points becomes large,
i.e. exceeding 1000.

Univariate ε-quantizatons. We consider a set of n = 50 sample points in R3

chosen randomly from the boundary of a cylinder piece of length 10 and radius
1. We let each point represent the center of 3-variate Gaussian distribution with
standard deviation 2 to represent the probability distribution of an uncertain
point. This set of distributions describes an uncertain point set μP : R3n → R+.

We want to estimate three statistics on μP : dwid, the width of the points set in
a direction that makes an angle of 75◦ with the cylinder axis; diam, the diameter
of the point set; and seb2, the radius of the smallest enclosing ball (using code
from Bernd Gärtner [13]). We can create ε-quantizations with m samples from
μP , where the value of m is from the set {16, 64, 256, 1024, 4096}.

We would like to evaluate the ε-quantizations versus the ground truth function
FμP ; however, it is not clear how to evaluate FμP . Instead, we create another
ε-quantization Q with η = 100000 samples from μP , and treat this as if it were
the ground truth. To evaluate each sample ε-quantization R versus Q we find the
maximum deviation (i.e. d∞(R,Q) = maxq∈R |hR(q) − hQ(q)|) with h defined
with respect to diam or dwid. This can be done by for each value r ∈ R evaluating
|hR(r) − hQ(r)| and |(hR(r) − 1/|R|) − hQ(r)| and returning the maximum of
both values over all r ∈ R.

Given a fixed “ground truth” quantization Q we repeat this process for τ =
500 trials of R, each returning a d∞(R,Q) value. The set of these τ maximum
deviations values results in another quantization S for each of diam and dwid,
plotted in Figure 4. Intuitively, the maximum deviation quantization S describes
the sample probability that d∞(R,Q) will be less than some query value.

Note that the maximum deviation quantizations S are similar for both statis-
tics (and others we tried), and thus we can use these plots to estimate 1− δ, the
sample probability that d∞(R,Q) ≤ ε, given a value m. We can fit this function

322 M. Löffler and J.M. Phillips

d∞(R,Q)

1

0

1
−

δ

0 0.30.20.1

dwid

d∞(R,Q)0 0.30.20.1

diam

Fig. 4. Shows quantizations of τ = 500 trials for d∞(R,Q) where Q and R measure
dwid and diam. The size of each R is m = {16, 64, 256, 1024, 4096} (from right to left)
and the “ground truth” quantization Q has size η = 100000. Smooth, thick curves are
1 − δ = 1 − exp(−2mε2 + 1) where ε = d∞(R,Q).

as approximately 1− δ = 1− exp(−mε2/C+ ν) with C = 0.5 and ν = 1.0. Thus
solving for m in terms of ε, ν, and δ reveals: m = C(1/ε2)(ν + log(1/δ)). This
indicates the big-O notation for the asymptotic bound of O((1/ε2)(ν+ log(1/δ))
[16] for ε-samples only hides a constant of approximately 0.5.

Maximum error in sip functions. We can perform a similar analysis on sip func-
tions. We use the same input data as is used to generate Figure 3(b) and create
sip functions R for the smallest enclosing ball using m = {16, 36, 81, 182, 410}
samples from μP . We compare this to a “ground truth” sip function Q formed
using η = 5000 sampled points. The maximum deviation between R and Q in
this context is defined d∞(R,Q) = maxq∈R2 |R(q) −Q(q)| and can be found by
calculating |R(q) −Q(q)| for all points q ∈ R2 at the intersection of boundaries
of discs from R or Q.

We repeat this process for τ = 100 trials, for each value of m. This creates a
quantization S (for each value of m) measuring the maximum deviation for the
sip functions. These maximum deviation quantizations are plotted in Figure 5.
We fit these curves with a function 1−δ = 1−exp(−mε2/C+ν) with C = 0.5 and
ν = 2.0, so m = C(1/ε2)(ν + log 1/δ). Note that the dual range space (B,R2∗),
defined by disks B has VC-dimension 2, so this is exactly what we would expect.

Maximum error in k-variate quantizations. We extend these experiments to
k-variate quantizations by considering the width in k different directions. As

sip for seb2

diam

d∞(R,Q)

1

0

1
−

δ

0 0.30.20.1 d∞(R,Q)0 0.30.20.1

Fig. 5. Left: Quantization of τ = 100 trials of maximum deviation between sip functions
for smallest enclosing disc with m = {16, 36, 81, 182, 410} (from right to left) sample
shapes versus a “ground truth” sip function with η = 5000 sample shapes. Right:
Quantization of τ = 500 trials for d∞(R, Q) where Q and R measure diam. Size of
each R is m = {64, 256, 1024, 4096, 16384}, then compressed to size {8, 16, 32, 64, 128}
(resp., from right to left) and the “ground truth” quantization Q has size η = 100000.

Shape Fitting on Point Sets with Probability Distributions 323

α
ε

6.8176.535

α
ε

9.343 10.642

α
ε

13.017 13.633

Fig. 6. (ε, α)-quantization (white points) and ε-quantization (black points) for (left)
seb2, (center) dwid, and (right) diam

expected, the quantizations for maximum deviation can be fit with an equation
1 − δ = 1 − exp(−mε2/C + k) with C = 0.5, so m ≤ C(1/ε2)(k + log 1/δ). For
k > 2, this bound for m becomes too conservative. We omit the resulting figures
due to space restrictions.

3.1 Compressing ε-Quantizations

Theorem 1 describes how to compress the size of a univariate ε-quantization to
O(1/ε). We first create an (ε/2)-quantization of size m, then sort the values Vi,
and finally take every (mε/2)th value according to the sorted order. This returns
an ε-quantization of size 2/ε and requires creating an initial ε-quantization with
4 times as many samples as we would have without this compression. The re-
sults, shown in Figure 5 using the same setup as in Figure 4, confirms that this
compression scheme works better than the worst case claims. We only show the
plot for diam, but the results for dwid and seb2 are nearly identical. In particular,
the error is smaller than the results in Figure 4, but it takes 4 times as long.

3.2 (ε, δ, α)-Kernels versus ε-Quantizations

We compare (ε, δ, α)-kernels to ε-quantizations for diam, dwid, and seb2, using
code from Hai Yu [27] for α-kernels. Using the same setup as in Figure 4 with
n = 5000 input points, we set ε = 0.2 and δ = 0.1, resulting in m = 40 point
sets sampled from μP . We also generated α-kernels of size at most 40. The
(ε, δ, α)-kernel has a total of 1338 points. We calculated ε-quantizations and
(ε, α)-quantizations for diam, dwid, and seb2, each compressed to a size 10 shown
in Figure 6. This method starts becoming useful in compressing μP when n �
1000 (otherwise the total size of the (ε, δ, α)-kernel may be larger than μP) or if
computing fS is very expensive.

Acknowledgements. The authors would like to thanks Pankaj K. Agarwal for
many helpful discussions. This research was partially supported by the Nether-
lands Organisation for Scientific Research (NWO) through the project GOGO.

References

1. Agarwal, C.C., Yu, P.S. (eds.): Privacy Preserving Data Mining: Models and Algo-
rithms. Springer, Heidelberg (2008)

2. Agarwal, P.K., Cheng, S.-W., Tao, Y., Yi, K.: Indexing uncertain data. In: PODS
(2009)

324 M. Löffler and J.M. Phillips

3. Agarwal, P.K., Har-Peled, S., Varadarajan, K.: Geometric approximations via core-
sets. C. Trends Comb. and Comp. Geom. (E. Welzl) (2007)

4. Agarwal, P.K., Har-Peled, S., Varadarajan, K.R.: Approximating extent measure
of points. J. ACM 51(4) (2004)

5. Agarwal, P.K., Procopiuc, C.M., Varadarajan, K.R.: Approximation algorithms for
k-line center. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp.
54–63. Springer, Heidelberg (2002)

6. Bandyopadhyay, D., Snoeyink, J.: Almost-Delaunay simplices: Nearest neighbor
relations for imprecise points. In: SODA, pp. 403–412 (2004)

7. Bădoiu, M., Clarkson, K.: Smaller core-sets for balls. In: SODA (2003)
8. Chan, T.: Faster core-set constructions and data-stream algorithms in fixed dimen-

sions. Computational Geometry: Theory and Applications 35, 20–35 (2006)
9. Chazelle, B., Matousek, J.: On linear-time deterministic algorithms for optimiza-

tion problems in fixed dimensions. J. Algorithms 21, 579–597 (1996)
10. Cormode, G., Garafalakis, M.: Histograms and wavelets of probabilitic data. In:

ICDE (2009)
11. Cormode, G., Li, F., Yi, K.: Semantics of ranking queries for probabilistic data

and expected ranks. In: ICDE (2009)
12. Eliazar, A., Parr, R.: Dp-slam 2.0. In: ICRA (2004)
13. Gärtner, B.: Fast and robust smallest enclosing balls. In: Nešetřil, J. (ed.) ESA

1999. LNCS, vol. 1643, pp. 325–338. Springer, Heidelberg (1999)
14. Guibas, L.J., Salesin, D., Stolfi, J.: Epsilon geometry: building robust algorithms

from imprecise computations. In: SoCG, pp. 208–217 (1989)
15. Haussler, D., Welzl, E.: epsilon-nets and simplex range queries. Disc. & Comp.

Geom. 2, 127–151 (1987)
16. Li, Y., Long, P.M., Srinivasan, A.: Improved bounds on the samples complexity of

learning. J. Comp. and Sys. Sci. 62, 516–527 (2001)
17. Lillesand, T.M., Kiefer, R.W., Chipman, J.W.: Remote Sensing and Image Inter-

pretaion. John Wiley & Sons, Chichester (2004)
18. Löffler, M., Phillips, J.: Shape fitting on point sets with probability distributions.

Technical Report UU-CS-2009-013, Utrecht University, Institute of Information
and Computing Sciences (2009)

19. Löffler, M., Snoeyink, J.: Delaunay triangulations of imprecise points in linear time
after preprocessing. In: SoCG, pp. 298–304 (2008)

20. Matousek, J.: Approximations and optimal geometric divide-and-conquer. In:
SToC, pp. 505–511 (1991)

21. Matousek, J.: Geometric Discrepancy; An Illustrated Guide. Springer, Heidelberg
(1999)

22. Nagai, T., Tokura, N.: Tight error bounds of geometric problems on convex objects
with imprecise coordinates. In: Akiyama, J., Kano, M., Urabe, M. (eds.) JCDCG
2000. LNCS, vol. 2098, pp. 252–263. Springer, Heidelberg (2001)

23. Phillips, J.M.: Algorithms for ε-Approximations of Terrains. In: Aceto, L., Damg̊ard,
I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.)
ICALP 2008, Part I. LNCS, vol. 5125, pp. 447–458. Springer, Heidelberg (2008)

24. Shekhar, S., Chawla, S.: Spatial Databases: A Tour. Pearsons (2001)
25. van Kreveld, M., Löffler, M.: Largest bounding box, smallest diameter, and related

problems on imprecise points. Comp. Geom. The. and App. (2009)
26. Vapnik, V., Chervonenkis, A.: On the uniform convergence of relative frequencies

of events to their probabilities. The. of Prob. App. 16, 264–280 (1971)
27. Yu, H., Agarwal, P.K., Poreddy, R., Varadarajan, K.R.: Practical methods for

shape fitting and kinetic data structures using coresets. In: SoCG (2004)

An Efficient Algorithm for Haplotype Inference on
Pedigrees with a Small Number of Recombinants

(Extended Abstract)

Jing Xiao1, Tiancheng Lou2, and Tao Jiang3

1 IBM China Research Lab, Beijing, China
xiaojing82@gmail.com

2 Department of Computer Science and Technology, Tsinghua University, Beijing, China
loutiancheng860214@gmail.com

3 Department of Computer Science and Engineering, University of California, Riverside, CA
jiang@cs.ucr.edu

Abstract. Combinatorial (or rule-based) methods for inferring haplotypes from
genotypes on a pedigree have been studied extensively in the recent literature.
These methods generally try to reconstruct the haplotypes of each individual so
that the total number of recombinants is minimized in the pedigree. The problem
is NP-hard, although it is known that the number of recombinants in a practical
dataset is usually very small. In this paper, we consider the question of how to
efficiently infer haplotypes on a large pedigree when the number of recombinants
is bounded by a small constant, i.e. the so called k-recombinant haplotype config-
uration (k-RHC) problem. We introduce a simple probabilistic model for k-RHC
where the prior haplotype probability of a founder and the haplotype transmission
probability from a parent to a child are all assumed to follow the uniform distri-
bution and k random recombinants are assumed to have taken place uniformly
and independently in the pedigree. We present an O(mn logk+1 n) time algorithm
for k-RHC on tree pedigrees without mating loops, where m is the number of loci
and n is the size of the input pedigree, and prove that when 90 log n < m < n3,
the algorithm can correctly find a feasible haplotype configuration that obeys the
Mendelian law of inheritance and requires no more than k recombinants with

probability 1−O(k2 log2 n
mn +

1
n2). The algorithm is efficient when k is of a moderate

value and could thus be used to infer haplotypes from genotypes on large tree
pedigrees efficiently in practice. We have implemented the algorithm as a C++
program named Tree-k-RHC. The implementation incorporates several ideas for
dealing with missing data and data with a large number of recombinants effec-
tively. Our experimental results on both simulated and real datasets show that
Tree-k-RHC can reconstruct haplotypes with a high accuracy and is much faster
than the best combinatorial method in the literature.

Keywords: computational biology, haplotype inference, pedigree, recombina-
tion, combinatorial algorithm, probabilistic model.

1 Introduction

As more progress has been made in science and technology, scientists believe that ge-
netic factors should play a significant role in preventing, diagnosing and treating im-

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 325–336, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

326 J. Xiao, T. Lou, and T. Jiang

portant human diseases such as diabetes, cancer, stroke, heart disease, depression, and
asthma. With the discovery of genetic markers such as microsatellite DNA sequences
and single nucleotide polymorphisms (SNPs), it is now possible to provide a unique ge-
netic map to establish connections between diseases and specific genetic variations. One
of the main objectives of the International HapMap Project launched in October 2002
[27] is to discover the haplotype structure of human beings and examine the common
haplotypes in different populations. This information will greatly facilitate the map-
ping of many important disease-susceptibility genes. However, the diploid structure of
humans makes it very expensive to collect haplotype data directly. Instead, genotype
data are collected routinely. Since haplotype data are required (or at least desirable) in
many genetic analysis including linkage disequilibrium analysis and disease association
mapping, efficient and accurate computational methods for the inference of haplotypes
from genotypes, which is also commonly referred to as phasing, have been extensively
studied in the literature. A recent survey on these methods can be found in [19].

The existing haplotyping algorithms can be classified as either statistical or combi-
natorial (or rule-based). Both paradigms can be applied to pedigree data, population
data, or pooled samples. In this paper, we are interested in pedigree data and the com-
binatorial paradigm. Although many (statistical or combinatorial) algorithms have been
proposed for haplotype inference on pedigrees in the literature [19], they are mostly
effective for pedigrees of small to moderate sizes. For example, it took the exact al-
gorithm based on integer linear programming (ILP) in PedPhase 5 hours to solve a
pedigree with 29 individuals and 51 SNP loci [17,18] on a standard PC. The same
data took the popular program SimWalk2 [26] based on a statistical approach 6 days.
The well-known Lander-Green algorithm [15] based on the maximum likelihood (ML)
framework and its subsequent improvements [1,12,14] run in time linear in the number
of loci but exponential in the pedigree size [2,19]. These algorithms are thus limited to
relatively small pedigrees.

With the advance in sequencing technology, larger and larger pedigrees are being
genotyped and scientists are becoming increasingly interested in haplotype inference
on large pedigrees. For example, in [2,4], the inference was performed on pedigrees
of sizes 368 and 1149, respectively. The existing haplotype inference methods either
are very slow (e.g. those based on ML or ILP) or have less than desirable accuracies
(e.g. the block extension heuristic algorithm in PedPhase) when the input pedigree gets
large. In fact, the question of how to efficiently and accurately infer haplotypes from
genotypes on large pedigrees is one of the challenges raised at the recently held 2008
Haplotype Conference [13].

In general, combinatorial methods for haplotype inference are faster (or intended
to be faster) than statistical methods that attempt to maximize the likelihood of the
haplotype solution [19]. To our knowledge, all combinatorial algorithms for haplotyp-
ing pedigree data aim at solving the minimum-recombinant haplotype configuration
(MRHC) problem [16,17,18,25] where the goal is to find a haplotype solution requiring
the minimum number of recombinants. The problem is sensible since it is known that
recombinants are rare in a typical human pedigree [11]. This is especially true when the
marker loci considered are from a same haplotype block. For instance, the analysis per-
formed in [17,18] on a HapMap data shows that the average number of recombinants

An Efficient Algorithm for Haplotype Inference on Pedigrees 327

per haplotype block of each chromosome on a (relatively small) pedigree is in fact
close to 0 (although not exactly 0). Thus, a minimum-recombinant solution is likely to
be the true solution. Unfortunately, MRHC is NP-hard [16]. It remains NP-hard even
if the input pedigree is a tree without mating loops [7,21]. The ILP-based exact algo-
rithm for MRHC in PedPhase [19] works well for small pedigrees but its worst case
running time is exponential in both the number of loci and pedigree size. The heuristic
algorithm in [25] runs for days on a PC even for medium-sized datasets. Hence, recent
work on MRHC has been focused on the special case where the number of recombi-
nants is zero, the so called zero-recombinant haplotype configuration (ZRHC) problem
[5,16,20,22,23,28,30,31]. In particular, Li and Jiang [16] formulated ZRHC as a system
of linear equations over the field F(2) and devised an O(m3n3) time algorithm using
Gaussian elimination, where m is the number of loci and n is the size of the input pedi-
gree. Xiao et al. [30,31] improved the running time to O(mn2 + n3 log2 n log log n) by
using a compact system of linear equations, taking advantage of some special properties
of a pedigree graph, and the low-stretch spanning tree technique. The recent results in
[5,20,22] presented linear (i.e. O(mn)) time algorithms for ZRHC on tree pedigrees us-
ing different techniques. Note that tree pedigrees are very common in human pedigrees
[2]. They also play important roles in the analysis of general complex pedigrees [3,29].

Since the number of recombinants in a real pedigree is usually very small, a plausible
approach to solving MRHC that could potentially be very efficient in practice is to try
to infer a haplotype configuration that requires at most k recombinants in the input pedi-
gree, where k is some fixed small constant k. We will refer to this parameterized problem
as the k-recombinant haplotype configuration (k-RHC) problem. Although ZRHC (or
0-RHC) seems easy to solve [5,20,22,30,31], the general k-RHC problem remains very
hard to tackle. Observe that, we could obtain a trivial algorithm for k-RHC with time
complexity O((mn)k(mn2 + n3 log2 n log log n)) by using the algorithm in [30,31] for
ZRHC and exhaustively enumerating the possible locations of the k recombinants. This
is because the k-RHC instance can be easily transformed into a ZRHC instance once
the recombinant locations are known. Similarly, one could obtain a trivial algorithm
for k-RHC on tree pedigrees with time complexity O((mn)k+1) by using the linear time
algorithms in [5,20,22] for tree ZRHC. We note in passing that the dynamic program-
ming algorithm in [6] solves MRHC on tree pedigrees in O(nm3k+12m) time when each
parent-child pair is allowed to have at most k recombinants. This algorithm is inefficient
when the number of loci exceeds 30 even if k is very small.

In this paper, we present an algorithm for k-RHC that is efficient in the average
sense. More precisely, we consider a simple probabilistic model for k-RHC where the
haplotypes of the founders (i.e. individuals without parents in the input pedigree) are
generated randomly from a uniform distribution, a uniform random haplotype of each
parent is passed to a child, and k uniform random recombinants are assumed to have
taken place independently in the pedigree. This model is a special case of the general
probabilistic model in the genetics literature (see e.g. [24]) where the prior founder
haplotype probabilities and haplotype transmission probabilities could follow arbitrary
distributions. In other words, our model is a primitive Mendelian model. We present
an O(mn logk+1 n) time algorithm for k-RHC on tree pedigrees, and prove that when
90 log n < m < n3, the algorithm can correctly find a feasible haplotype configuration

328 J. Xiao, T. Lou, and T. Jiang

that obeys the Mendelian law of inheritance and requires no more than k recombinants

with probability 1 − O(k2 log2 n
mn +

1
n2). (Note that this result does not imply that k-RHC

is fixed-parameter tractable as defined in [8].) The algorithm is fast when k is of a mod-
erate value and could thus be used to infer haplotypes from genotypes on large tree
pedigrees in practice. We have implemented the algorithm as a C++ program named
Tree-k-RHC. The implementation incorporates several effective ideas for dealing with
missing data and data with an expectedly large number of recombinants. Our prelim-
inary experimental results on both simulated and real datasets show that Tree-k-RHC
can reconstruct haplotypes with a high accuracy and speed. In fact, it runs more than
20 times faster than the ILP-based exact algorithm in PedPahse [17,18] and is more
accurate than the heuristic algorithm in PedPhase [16]. We expect that the speed up
will grow quickly with m and n as the worst-case time complexity of the ILP-based
algorithm is at least (mn)k.

The crux of our algorithm is to formulate k-RHC as an ILP based on the system of
linear equations developed in [30,31] (also in [22]). For each instance generated by the
probabilistic model, we try to identify small areas of the pedigree where a recombinant
might have occurred by comparing the linear (equality) constraints in the ILP. Once the
locations of all k recombinants are determined (or enumerated), the instance is trans-
formed to a tree ZRHC instance and solved in linear time by using one of the algorithms
in [5,20,22].

The rest of the paper is organized as follows. In Section 2, we present an ILP formu-
lation of k-RHC based on the system of linear equations introduced in [30,31]. Section
3 reviews some graph data structures and constraint generation techniques from [30,31]
that can be used to make the ILP more compact. We present the efficient algorithm for
k-RHC on tree pedigrees and analyze its success probability in Section 4. Due to the
page limit, we will omit all the technical proofs, figures, tables, and pseudocodes as well
discussions on the implementation of the algorithm and our experimental results in this
extended abstract and present them in the full paper which will soon be submitted to a
journal.

2 An Integer Linear Program for k-RHC

In this section, we formulate k-RHC as an ILP based on the system of linear equations
in [30,31] for solving ZRHC. All the definitions are the same as in [30,31] except for
the definition of the h-variables. Throughout this paper, n denotes the number of the in-
dividuals (or members) in the input pedigree and m the number of marker loci. Without
loss of generality, suppose that each allele in the given genotypes is numbered numer-
ically as 1 or 2 (i.e. the markers are assumed to be bi-allelic, which makes the hardest
case for MRHC [16]), and the pedigree is free of genotype errors (i.e. the two alleles
at each locus of a child can always be obtained from its respective parents). Hence, we
can represent the genotype of member j as a ternary vector g j as follows: g j[i] = 0
if locus i of member j is homozygous with both alleles being 1’s, g j[i] = 1 if the lo-
cus is homozygous with both alleles being 2’s, and g j[i] = 2 otherwise (i.e. the locus
is heterozygous). For any heterozygous locus i of member j, we use a binary variable
p j[i] to denote the phase at the locus as follows: p j[i] = 0 if allele 1 is paternal, and

An Efficient Algorithm for Haplotype Inference on Pedigrees 329

p j[i] = 1 otherwise. When the locus is homozygous, the variable is set to g j[i] for some
technical reasons (so that the equations below involving p j[i] will hold). Hence, the
vector pj describes the paternal and maternal haplotypes of member j. Observe that the
vectors p1, . . . , pn represent a complete haplotype configuration of the pedigree. Also,
for technical reasons, define a vector w j for each member j such that wj[i] = 0 if its i-th
locus is homozygous and wj[i] = 1 otherwise.

Suppose that member jr is a parent of member j. We introduce an auxiliary binary
variable h jr , j[i] to indicate which allele of jr is passed to j at locus i. If jr gives its
paternal allele to j at locus i, then h jr , j[i] = 0; otherwise h jr , j[i] = 1. Suppose that j is
a non-founder member with its father and mother being j1 and j2, respectively. We can
define two linear (constraint) equations over the field F(2) to describe the inheritance
of paternal and maternal haplotypes at j on locus i respectively:{

p j1[i] + h j1, j[i] · wj1 [i] = p j[i]
p j2[i] + h j2, j[i] · wj2 [i] = p j[i] + wj[i]

(1)

Denoting d j1, j = 0 and d j2, j = w j, the above equations can be unified into a single
equation as:

p jr [i] + h jr , j[i] · w jr [i] = pj[i] + d jr , j[i] (r = 1, 2) (2)

If there are no recombinants in the pedigree, h jr, j[i] = c (which is some constant) for all
i. Conversely, if h jr , j[i] � h jr, j[i + 1], there must be a recombinant from member jr to
member j between locus i and locus i+1. Formally, we can express the k-RHC problem
as an ILP: ∑

for all parent-child pairs (jr, j)

∑m−1
i=1

∣∣∣h jr , j[i] − h jr , j[i + 1]
∣∣∣ ≤ k

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pl[i] + hl, j[i] · wl[i] = p j[i] + dl, j[i] 1 ≤ i ≤ m, 1 ≤ j, l ≤ n, l is a parent of j
p j[i] = g j[i] 1 ≤ i ≤ m, 1 ≤ j ≤ n, g j[i] � 2
wj[i] = 1 1 ≤ i ≤ m, 1 ≤ j ≤ n, g j[i] = 2
wj[i] = 0 1 ≤ i ≤ m, 1 ≤ j ≤ n, g j[i] � 2
dl, j[i] = wj[i] 1 ≤ i ≤ m, 1 ≤ j, l ≤ n, l is the mother of j
dl, j[i] = 0 1 ≤ i ≤ m, 1 ≤ j, l ≤ n, l is the father of j

(3)
where g j[i],wj[i], dl, j[i] are all constants depending on the input genotypes, and p j[i],
hl, j[i] are the unknowns. Again, the equality constraints are defined over F(2) whereas
the (only) inequality constraint is defined over all integers. Note that, the number of
p-variables is exactly mn and the number of h-variables is at most 2mn. This ILP is
different from the ILP for MRHC used in [17,18] which is not based on the system of
linear equations. Observe that for any member j, if j or any of its parents are homozy-
gous at locus i, then p j[i] is fixed based on Equation 3. Such p-variables are called
pre-determined.

3 Some Graph Structures and a Compact ILP in h-Variables

As in [30,31], the above ILP can be transformed to one concerning only the h-variables.
This is not surprising because the h-variables completely describes the inheritance re-
lationship in the pedigree, including the locations of recombinants. In this section, we

330 J. Xiao, T. Lou, and T. Jiang

review some useful graph structures and the generation of a sufficient set of equality
constraints on h-variables introduced in [30,31]. Again, all the definitions are the same
as in [30,31] except for the definition of the h-variables.

3.1 The Pedigree Graph and Locus Graphs

In [30,31], the input pedigree is transformed into a pedigree graph by connecting each
parent directly to his children. Although the edges in the pedigree graph representing
the inheritance relationship between a parent and a child are directed, we consider them
as undirected when dealing with linear constraints. Thus, these edges will sometimes
be thought of as directed but other times as undirected according to the context. Clearly,
such a pedigree graph G = (V, E) may be cyclic due to mating loops or multiple children
shared by a pair of parents. Let T (G) be any spanning tree on G. T (G) partitions the
edge set E into two subsets: the tree edges and the non-tree edges (or cross edges). Let
EX denote the set of cross edges. Since |E| ≤ 2n and the number of edges in T (G) is
n − 1, we have |EX| ≤ n + 1.

For any fixed locus i, the value wl[i] can be viewed as the weight of each edge
(l, j) ∈ E, where l is a parent of j. We construct the i-th locus graph Gi as the sub-
graph of G induced by the edges with weight 1. Formally, Gi = (V, Ei), where Ei =

{(l, j)| l is a parent of j,wl[i] = 1}. The i-th locus graph Gi induces a subgraph of the
spanning tree T (G). Since the subgraph is a forest, it will be referred to as the i-th
locus forest and denoted by T (Gi). The locus graphs can be used to identify some im-
plicit constraints on the h-variables as follows. First, for any edge (l, j) ∈ E, define
hl, j[i] = h j,l[i] and dl, j = d j,l.

Lemma 1. [30,31] For any path P = j0, . . . , jt in locus graph Gi connecting vertices
j0 and jt, we have

p j0 [i] + p jt [i] +
t−1∑
r=0

h jr , jr+1 [i] + d jr, jr+1 [i] = 0 (4)

Corollary 1. [30,31] For any cycle C = j0, . . . , jt, j0 in Gi, there exists a binary
constant b defined as b =

∑t
r=0 d jr , jr+1 mod t+1 [i] such that

∑t
r=0 h jr, jr+1 mod t+1 [i] = b.

Corollary 2. [30,31] Suppose that P = j0, . . . , jt is a path in Gi connecting vertices
j0 and jt, and the variables p j0[i] and p jt [i] are pre-determined. There exists a binary
constant b defined as b = p j0[i] + p jt [i] +

∑t−1
r=0 d jr, jr+1 [i] such that

∑t−1
r=0 h jr , jr+1 [i] = b.

3.2 Linear Equality Constraints on the h-Variables

As in [30,31], we generate a sufficient set of linear equality constraints on the h-variables
by considering each edge in a locus graph. Such a set of constraints will guarantee a
feasible solution to the ILP in Equation 3. Note that since the edges broken in a locus
graph involve pre-determined p-variables, we do not have to introduce constraints to
cover them. The constraints can be classified into two categories with respect to the
spanning tree T (G): constraints for cross edges and constraints for tree edges.

An Efficient Algorithm for Haplotype Inference on Pedigrees 331

Cross Edge Constraints. Adding a cross edge e to the spanning tree T (G) yields a
cycle C in the pedigree graph G. Suppose the edge e exists in the i-th locus graph Gi,
and consider two cases of the cycle C with respect to Gi.

Case 1: The cycle exists in Gi. We introduce a constraint along the cycle as in Corollary
1. This constraint is called a cycle constraint. The set of such cycle constraints for edge
e in all locus graphs is denoted by CC(e), i.e.,

CC(e) = {(b, e) | b is associated with the cycle in T (Gi) ∪ {e}, 1 ≤ i ≤ m}.

The set of cycle constraints for all cross edges is denoted by CC =
⊎

e∈EX CC(e).

Case 2: Some of the edges of the cycle do not exist in Gi. This means that the cycle C
is broken into several disjoint paths in Gi by the pre-determined vertices. Since e exists
in Gi, exactly one of these paths, denoted as P, contains e. Observe that both endpoints
of P are pre-determined and thus Corollary 2 could give us a constraint concerning the
h-variables along the path. Such a constraint will be called a path constraint. The set of
such path constraints for e in all locus graphs Gi is denoted by CP(e), i.e.,

CP(e) =

{
(l, j, b, e)

∣∣∣∣∣∣ in T (Gi) ∪ {e}, b is associated with the path containing e
connecting two pre-determined vertices l and j, 1 ≤ i ≤ m

}
.

The set of path constraints for all cross edges is denoted by CP =
⊎

e∈EX CP(e).

Tree Edge Constraints. By Corollary 2, there is an implicit constraint concerning the
h-variables along each path between two pre-determined vertices in the same connected
component of T (Gi). Therefore, for each connected component T of T (Gi), we arbi-
trarily pick a pre-determined vertex in the component as the seed vertex, and generate
a constraint for the unique path in T (Gi) between the seed and each of the other pre-
determined vertices in the component, as in Corollary 2. Such a constraint will be called
a tree constraint.

To conform with the notation of path constraints and for the convenience of presen-
tation, we arbitrarily pick a tree edge denoted as e0, and write the set of tree constraints
at all loci as

CT =

{
(l, j, b, e0)

∣∣∣∣∣∣ in a connected component of T (Gi) with seed l, b is associated with
the path connecting vertices l and a predetermined vertex j, 1 ≤ i ≤ m

}
.

Define C = CC∪CP ∪CT. The subset of all the constraints in C generated in locus graph
Gi will be denoted as Ci. The next two lemmas are easy to prove.

Lemma 2. [30,31] |C| = |CC| + |CP| + |CT| = O(mn).

Lemma 3. None of the constraints in CP ∪CT are defined on a path that begins or ends
at a founder.

As in [30,31], we can prove that C forms a sufficient set of constraints, i.e. any solu-
tion in terms of the h-variables satisfying all these constraints would imply a feasible
solution in terms of both the h- and p-variables satisfying Equation 3. The proof is
very similar to the corresponding proof in [30,31] and therefore omitted. The following
lemma hence follows.

332 J. Xiao, T. Lou, and T. Jiang

Lemma 4. The k-RHC problem can be expressed as the following ILP:
∑

for all edges (jr, j)

∑m−1
i=1

∣∣∣h jr, j[i] − h jr, j[i + 1]
∣∣∣ ≤ k

plus
all the linear equality constraints in C

(5)

4 An O(mn logk+1 n) Time Algorithm for k-RHC on Tree Pedigrees

As mentioned before, the basic idea of our algorithm is to locate all the k recombinants
first. Once we know the locations of all the recombinants, we can define the relationship
between h-variables at consecutive loci corresponding to the same edge in the pedigree
graph. For example, if there is a recombinant between locus i and locus i + 1 on edge
(u, v), hu,v[i] = hu,v[i + 1] + 1. If such a recombinant does not exist, hu,v[i] = hu,v[i + 1].
In this way, all the h-variables at different loci corresponding to the same edge can be
represented by a single h-variable in the ILP of Equation 5, and the k-RHC ILP is effec-
tively reduced to a ZRHC instance which can be solved by the linear-time algorithm in
[22]. Hence, the challenge here is how to locate the recombinants without exhaustively
enumerating all the possibilities in the entire pedigree. The key idea is that we com-
pare the constraints of C (as well as some additional constraints involving one or two
h-variables to be constructed in the next two subsections) at different loci to see if they
imply the necessity of a recombinants. For example, suppose that we have a constraint
along path P = j0, . . . , jt at locus i and another constraint along the same path P at
locus l (l > i). By Corollary 2, we have

∑t−1
r=0 h jr , jr+1 [i] = bi and

∑t−1
r=0 h jr, jr+1 [l] = bl. If

bi � bl, there is at least one pair of h-variables, say h jr, jr+1 [i] and h jr , jr+1 [l], that do not
have the same value. This would suggest a recombinant on the edge (jr, jr+1) between
the loci i and l. Consider the collection of the markers between of loci i and l of each
member on the path P as the region where this recombinant could occur. The size of
the region is (t + 1)(l − i + 1). If the region is not very large, it contains at most one
recombinant with a high probability (since k is a constant). Thus, we could enumerate
all the possible locations of this recombinant in the region to locate it exactly.

Before we give the algorithm, we need some notations to describe a random in-
stance of k-RHC. For each founder j, we use the random variable q j,1[i] to represent j’s
maternal allele at locus i and q j,2[i] to represent j’s paternal allele at locus i. These q-
variables are independent and they collectively represent the founder haplotypes. Ran-
dom h-variables are used to represent the random inheritance. Although h-variables
concerning different edges in the pedigree are independent, the h-variable concerning
the same edge are not. The latter variables are related by the random recombinants.
For convenience, we call the edges in the pedigree graph adjacent to the founders the
founder edges. The other edges are called the non-founder edges. In the following sub-
sections, we will show that we can determine many h-variable values (or summations
of their values) on these two kinds of edges separately. These determined h-variables
and summations will be used as additional constraints besides C to aid the search for
the locations of recombinants.

An Efficient Algorithm for Haplotype Inference on Pedigrees 333

4.1 Determining h-Variables on Non-founder Edges

For each founder j and locus i, the phase p j[i] is only determined by the random founder
allele variables q j,1[i] and q j,2[i]. The p-variables of non-founders are determined by
both the q-variables and h-variables. When the h-variables are fixed, each phase p j[i] of
a non-founder is only determined by two random q-variables q f ,s[i] and qg,t[i]. In other
words, the paternal allele of member j at locus i is inherited from q f ,s[i] and its maternal
allele is from qg,t[i]. If (f , s) = (g, t), the two alleles of j at locus i are inherited from
the same allele of some founder. In this case, the locus i of member j is homozygous
no matter what q f ,s[i], qg,t[i] are. We say that member j is pre-homozygous at locus i. If
(f , s) � (g, t), the two alleles of member j at locus i are inherited from different alleles
of the founders. Then the locus i of member j can be homozygous or heterozygous with
equal probability. We say that member j is pre-heterozygous at locus i.

Clearly, for a tree pedigree, all its members are pre-heterozygous at every locus. Us-
ing this property, the next lemma shows that the phases of many loci are pre-determined
around non-founder edges in a random k-RHC instance and thus we can determine the
h-variable values on many non-founder edges.

Lemma 5. Consider a random instance of k-RHC on a tree pedigree. If (u, v) is a non-
founder edge in the pedigree graph with u being the parent, then the probability for u
to be heterozygous at locus i and both u and v to be pre-determined at locus i (and thus
hu,v[i] to be determined) is at least 1/8.

4.2 Determining h-Variables on Founder Edges

Without loss of generality, we assume that each founder has at least two children (oth-
erwise recombinants on the edge between the founder and its only child cannot be
detected and in fact are unnecessary). For a founder x, if it is homozygous at locus i,
all the h-variables concerning locus i and founder edges incident on x will not appear
in any constraints. If it is heterozygous at locus i, its phase will not be pre-determined
for it has no parents. So, we cannot determine the h-variables on founder edges directly
like in Lemma 5. However, we can determine the summation of any pair of h-variables
concerning the same founder.

Lemma 6. Consider a random instance of k-RHC on a tree pedigree. If x is a founder
with children u and v, then the probability for a locus i to be heterozygous at x but
pre-determined at u and v (and thus the summation hx,u[i] + hx,v[i] to be determined) is
at least 1/8.

Now we are ready to describe how to locate the recombinants. We divide the loci of each
member (which could be a haplotype block) into m

a log n disjoint segments of size a log n
each, where a is a constant to be decided later on, and treat the interior and boundary
segments differently. (The boundary segments are the two segments at the end.) It turns
out that the boundary segments are much tougher to deal with.

4.3 Locating Recombinants in the Interior Locus Segments

Since we can determine each h-variable with probability 1/8 for every non-founder
edge, we can determine at least one h-variable in each segment with high probability

334 J. Xiao, T. Lou, and T. Jiang

for each non-founder edge. If there is at most one recombinant in any two consecutive
segments associated with the same non-founder edge, we can locate such a recombinant
in a small region of size O(log n) by comparing the determined h-variables of both
segments. If the values of two neighboring determined h-variables are equal, there is
no recombinant between the loci of the h-variables. Otherwise, there exists at least one.
Similarly, we can locate recombinants associated with the founder edges. Suppose that u
is a founder and v1, . . . , vl are its children. Because we can determine hu,vs [i]+hu,vt[i] for
each pair of children vs and vt at locus i with probability at least 1/8, we can determine
at least one summation hu,vs + hu,vt in each segment with high probability. If the values
of two neighboring determined summations are equal, there is no recombinant between
the associated loci. Otherwise, there exists at least one. The detailed location algorithm,
called Locate-Interior-Recombinants, will be given in the full paper.

Lemma 7. The procedure Locate-Interior-Recombinants can locate each recombinant
from an interior locus segment in a small region of size at most 4a log n correctly with

probability at least 1 − k2 6a log n
(m−1)n −

2nm
a log n

(
7
8

)a log n
.

4.4 Locating Recombinants in the Boundary Locus Segments

For a non-founder (or founder) edge (u, v), suppose that is is the smallest locus such
that hu,v[is] (or a summation containing hu,v[is]) can be determined and it is the largest
such locus. By Lemma 7, each recombinant between loci it and ib on edge (u, v) is
located in a small region of size at most 4a log n. But the lemma does not show how
to decide if there exists a recombinant between loci 1 and is or one between loci it and
m. We call these two regions, which are typically contained in the boundary segments,
the boundary regions of edge (u, v). In this subsection, we will show how to locate
recombinants from the boundary regions in small regions of size O(log n).

For convenience, define the length of a constraint as the number of h-variables in
it. First, we give an upper bound on the maximum length of any constraint in the set
C = CC ∪ CP ∪ CT.

Lemma 8. For any constant b, the length of every constraint in the set C is less than

b log n with probability 1 − 2mn2
(

1
2

) 1
4 b log n

.

Now we give the basic idea of locating recombinants in the boundary regions. Let us
consider two adjacent loci i − 1 and i. Suppose that all the h-variables at locus i have
already been determined. In other words, for the h-variables concerning non-founder
edges, their values are known, and for the h-variables corresponding to founder edges,
we know the summation of any pair of h-variables concerning edges incident on the
same founder vertex. Note that for a founder u with children v1, . . . , vl, the summa-
tion hu,vs [i] + hu,vt[i] for any pair of children vs, vt (s < t) can be calculated using∑t−1

j=s hu,v j[i] + hu,v j+1[i]. If there is no recombinant between loci i − 1 and i, all the h-
variables at locus i − 1 will be the same as those at locus i. So, we can set hu,v[i − 1] =
hu,v[i] for each non-founder edge (u, v) and hu,v j[i− 1]+ hx,v j+1[i− 1] = hu,v j[i]+ hu,v j+1[i]
for each founder u with children v1, . . . , vl, and then check if all the constraints in the
set Ci−1 hold. Note that by Lemma 3, each constraint in Ci−1 contains an even number

An Efficient Algorithm for Haplotype Inference on Pedigrees 335

of founder edges incident on the same founder. So, the validity of each constraint in
Ci−1 can be determined. If any constraint is unsatisfied, there is at least one recombi-
nant on this constraint (path) between loci i − 1 and i. Since each constraint contains
fewer than b log n h-variables by Lemma 8, it can be regarded as a small region. Thus,
each constraint contains no more than one recombinant with high probability. If all the
constraints hold, there are no recombinants between these two loci. Otherwise, we can
locate each recombinant in a region of size b log n (i.e. some unsatisfied constraint in
Ci−1). By iterating this towards locus 1 and locus m separately, we can locate all bound-
ary recombinants.

The detailed algorithm for locating boundary recombinants, called Locate-Boundary-
Recombinants, will be given in the full paper. It assumes that the procedure Locate-
Interior-Recombinants has been run to locate all recombinants in the interior regions.
Once all the recombinants have been located, Locate-Boundary-Recombinants in fact
returns a feasible (final) solution in terms of the p-variables.

Our main algorithm, Tree k-RHC, first calls a simple preprocessing procedure to set
up the constraints and then the procedures Locate-Boundary-Recombinants and Locate-
Interior-Recombinants to locate the recombinants and construct a feasible solution.
Before we analyze the performance of algorithm Tree k-RHC, we prove two lemmas.
An h-variable is called active if it appears in some constraints in C. Otherwise, it is
inactive. Clearly, the values of inactive h-variables have no impact on the constraints.

Lemma 9. For any edge (u, v) and set of 2a log n consecutive loci i + 1, i + 2, . . . , i +
2a log n, at least one of hu,v[i+1], . . . , hu,v[i+2a log n] is active with probability at least

1 − 2nm
a log n

(
7
8

)a log n
.

The next lemma shows that we can focus on active h-variables when trying to locate the
recombinants.

Lemma 10. For each edge (u, v), if hu,v[i1] � hu,v[i2] and all the h-variables hu,v[i]
(i1 < i < i2) are inactive, then there is a recombinant between loci i1 and i2 on edge
(u, v). Moreover, any two consecutive loci in this interval would be a feasible location
for this recombinant.

To prove that the algorithm Tree k-RHC finds a feasible solution in O(mn logk+1 n) time
with high probability, we need only show that all the recombinants can be located in the
correct regions with high probability.

Theorem 1. For any a > 0, b > 0 and m > 2a log n, the algorithm Tree k-RHC solves
the probabilistic k-RHC problem on tree pedigrees in time O

(
mn log n

(
max{4a,b} log n

)k)
with probability at least 1− k2 6a log n

(m−1)n −
2nm

a log n

(
7
8

)a log n
−2mn2

(
1
2

) 1
4 b log n

− k(k−1) 2ab log2 n
(m−1)n .

Corollary 3. When 90 log n < m < n3, Tree k-RHC solves the probabilistic k-RHC

problem on tree pedigrees in time O(mn logk+1 n) with probability 1 − O(k2 log2 n
mn +

1
n2).

Open Problem and Acknowledgement. It remains open to design an efficient algo-
rithm for k-RHC on large general pedigrees with possibly mating loops. The research
was supported in part by NIH grant LM008991, NSF grant IIS-0711129, NSFC grant
60553001, and National Key Project for Basic Research (973) grants 2002CB512801
and 2007CB807901.

336 J. Xiao, T. Lou, and T. Jiang

References

1. Abecasis, G.R., et al.: Nat Genet, 30(1), 97–101 (2002)
2. Albers, C.A., et al.: Genetics 177, 1101–1116 (2007)
3. Axenovich, T.I., et al.: Human Heredity 65(2), 57–65 (2008)
4. Baruch, E., et al.: Genetics 172, 1757–1765 (2006)
5. Chan, M.Y., et al.: SIAM Journal on Computing 38(6), 2179–2197 (2009)
6. Chin, F., et al.: Proc. 5th ICCS, Atlanta, GA, pp. 985–993 (2005)
7. Doi, K., et al.: Minimum recombinant haplotype configuration on tree pedigrees. In: Benson,

G., Page, R.D.M., et al. (eds.) WABI 2003. LNCS (LNBI), vol. 2812, pp. 339–353. Springer,
Heidelberg (2003)

8. Downey, R., Fellows, M.: Parameterized Complexity. Springer, Heidelberg (1999)
9. Excoffier, L., Slatkin, M.: Mol. Biol. Evol. 12, 921–927 (1995)

10. Gabriel, S.B., et al.: Science 296(5576), 2225–2229
11. Griffiths, A., et al.: Modern Genetic Analysis: Integrating Genes and Genomes. W.H. Free-

man and Company, New York (2002)
12. Gudbjartsson, D.F., et al.: Nat. Genet. 25(1), 12–13 (2000)
13. Haplotype Conference (May 2008),
http://www.soph.uab.edu/ssg/nhgri/haplotype2008

14. Kruglyak, L., et al.: Am. J. Hum. Genet. 58, 1347–1363 (1996)
15. Lander, E.S., Green, P.: Proc. Natl. Acad. Sci. USA. 84, 2363–2367 (1987)
16. Li, J., Jiang, T.: Proc. 7th RECOMB, pp. 197–206 (2003)
17. Li, J., Jiang, T.: Proc. 8th RECOMB, pp. 20–29 (2004)
18. Li, J., Jiang, T.: J. Comput. Biol. 12(6), 719–739 (2005)
19. Li, J., Jiang, T.: J. Bioinformatics and Computational Biology 6(1), 241–259 (2008)
20. Li, X., Li, J.: Proc. 7th CSB, pp. 297–308 (2008)
21. Liu, L., et al.: Complexity and approximation of the minimum recombination haplotype con-

figuration problem. In: Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 370–
379. Springer, Heidelberg (2005)

22. Liu, L., Jiang, T.: Proc. 18th GIW, pp. 95–106, Singapore (December 2007)
23. O’Connell, J.R.: Genet. Epidemiol. 19(suppl.1), S64–S70 (2000)
24. Piccolboni, A., Gusfield, D.: Journal of Computational Biololgy 10(5), 763–773 (2003)
25. Qian, D., Beckmann, L.: Am J Hum Genet, 70(6), 1434–1445 (2002)
26. Sobel, E., et al.: In: Speed, T., Waterman, M. (eds.) Genetic Mapping and DNA Sequencing,

IMA Vol in Math. and its App., vol. 81, pp. 89–110 (1996)
27. The International HapMap Consortium. Nature 426, 789–796 (2003)
28. Wang, C., et al.: Journal of Chinese Science Bulletin 52(4), 471–476 (2007)
29. Wilson, I.J., Dawson, K.J.: Theor. Popul. Biol. 72(3), 436–458 (2007)
30. Xiao, J., et al.: Proc. 18th SODA, pp. 655–664 (2007)
31. Xiao, J., et al.: SIAM Journal on Computing 38(6), 2198–2219 (2009)

http://www.soph.uab.edu/ssg/nhgri/haplotype2008

Complete Parsimony Haplotype Inference
Problem and Algorithms

Gerold Jäger1, Sharlee Climer2, and Weixiong Zhang3

1 Computer Science Institute, University of Halle-Wittenberg
D-06120 Halle (Saale), Germany

jaegerg@informatik.uni-halle.de
2 School of Medicine, Washington University
St. Louis, Missouri 63110-1093, United States

sharlee@climer.us
3 Department of Computer Science/Department of Genetics

Washington University
St. Louis, Missouri 63130-4899, United States

weixiong.zhang@wustl.edu

Abstract. Haplotype inference by pure parsimony (HIPP) is a well-
known paradigm for haplotype inference. In order to assess the biological
significance of this paradigm, we generalize the problem of HIPP to the
problem of finding all optimal solutions, which we call complete HIPP.
We study intrinsic haplotype features, such as backbone haplotypes and
fat genotypes as well as equal columns and decomposability. We explic-
itly exploit these features in three computational approaches which are
based on integer linear programming, depth-first branch-and-bound, and
a hybrid algorithm that draws on the diverse strengths of the first two
approaches. Our experimental analysis shows that our optimized algo-
rithms are significantly superior to the baseline algorithms, often with
orders of magnitude faster running time. Finally, our experiments provide
some useful insights to the intrinsic features of this interesting problem.

1 Introduction

In this age of rapid advances in biological and medical fields, a number of com-
pelling computational challenges have arisen and propelled the state-of-the-art.
Haplotype inference is one such challenge. A haplotype is a set of nucleotides that
are in physical proximity on a chromosome strand. Haplotypes do not contain
nucleotides that have a common state for all individuals within the given popula-
tion – only those nucleotides that exhibit variation. Diploid species have pairs of
chromosomes and, consequently, pairs of corresponding haplotypes. Current se-
quencers are capable of producing genotypes, which are conflations of haplotype
pairs. Thanks to recent advances, genotype data are highly accurate and com-
plete. For example, the International HapMap project has produced genotypes
that are 99.7% accurate and 99.3% complete [26]. However, identifying individ-
ual haplotypes directly in a laboratory setting is currently infeasible for all but

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 337–348, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

338 G. Jäger, S. Climer, and W. Zhang

small studies. For this reason, researchers commonly rely on mathematical mod-
els and computational algorithms for inferring haplotypes from genotypes. The
first widely used algorithm for inferring haplotypes was introduced by Clark in
1990 [4]. This algorithm is based on the assumption that the number of unique
haplotypes in a given population is relatively small. Gusfield and Hubbell inde-
pendently proposed a haplotype inference model using Pure Parsimony (HIPP),
in which the number of unique haplotypes is absolutely minimized [11]. Given
a set of genotypes, HIPP is to find a set of distinct haplotypes with minimum
cardinality such that each genotype can be resolved by two haplotypes. HIPP
was computationally studied using integer linear programming (IP) by Gus-
field [9,10]. Due to its simplicity in formulation and complexity in computation,
it has attracted much attention. Many approaches to the problem have been
developed, for example those based on IP [2,3,12], depth-first branch-and-bound
(DFBnB or BnB for short) [20], and Boolean satisfiability [14,15,16]. It is im-
portant to mention that there may exist multiple optimal solutions to a HIPP
problem and an algorithm simply returns an arbitrary optimal solution. It is
also critical to emphasize that not all optimal solutions in the formulation are
biologically equal. Furthermore, the true solution, which is the ground truth of
the haplotype structure of a given population, may not be a computationally
optimal solution, as shown in our previous study [5]. In other words, the math-
ematical formulation of HIPP captures only some of the biological aspects of
haplotype inference (HI). Similar to other computational biology problems, such
as RNA folding and multiple sequence alignment, the true solutions to HI are
often found within in the set of optimal or even near optimal solutions to the
HIPP formulation [5]. Therefore, it is desirable to find all optimal solutions [5],
which is the subject of this paper. For convenience, we call the problem of finding
all optimal solutions to a HIPP problem complete HIPP, or CHIPP. The CHIPP
formulation and our new algorithm for CHIPP have helped gaining some initial
biological insight into haplotype structures in human population [5]. Note that
since it requires to find all optimal solutions, CHIPP is computationally more
difficult than HIPP, which is NP-complete [13].

In order to develop efficient algorithms for CHIPP, we consider several intrinsic
haplotype features in this paper. These include 1) backbone haplotypes, which are
haplotypes common to all optimal solutions, 2) decomposability of a problem into
sub-problems, 3) fat genotypes, which are genotypes that reduce the solution size
by 2, if they are omitted, and 4) equal columns [20], which are sites that appear
exactly the same for all haplotypes. We then propose and study three classes
of algorithms for CHIPP by exploiting these intrinsic haplotype features. The
first two classes of algorithms are based on and extend two existing algorithms
for HIPP: Gusfield’s IP [10] and Wang and Xu’s BnB [20]. We extend beyond
these existing algorithms by introducing effective optimization techniques that
take advantage of the intrinsic haplotype features. The third class of algorithms
strategically hybridizes the greatest strengths of the first two.

Note that exploiting these intrinsic haplotype features can also be viewed
in the concept of fixed parameter tractability (FPT). For an overview of FPT

Complete Parsimony Haplotype Inference Problem and Algorithms 339

see [7,17]). The motivation of FPT is that even large instances of NP-hard
problems can be easy, because they might contain structure that can be ex-
ploited. One special idea is FPT kernelization which reduces a hard instance by
preprocessing to a smaller, equivalent problem kernel [8]. As the intrinsic fea-
tures backbone haplotypes, decomposability, fat genotypes and equal columns lead
to a reduction technique, which in a preprocessing step reduces the given CHIPP
instance to a smaller one, our approach is also a type of problem kernelization
technique.

2 Complete Haplotype Inference by Pure Parsimony

Let G represent a set of genotypes, where G = [g1, . . . , gn]T = (gij)1≤i≤n,1≤j≤m

with gij ∈ {0, 1, 2}, for n individuals with m single nucleotide polymorphism
(SNP) sites. Haplotype inference is to find a set of haplotypes, H =[h1, . . . , hp]T =
(hij)1≤i≤p,1≤j≤m with hij ∈ {0, 1}, such that the set of genotypes is explained,
or covered, by the haplotypes. If a site gij has a value of 0 or 1, it can only be
explained by two haplotype sites with values of 0 or 1, respectively. These geno-
types are referred to as homozygous. A heterozygous genotype site has a value
of 2, and can only be explained by a haplotype pair with values of 0 and 1. For
example, G = {g1 = (1, 2), g2 = (0, 0), g3 = (2, 1), g4 = (2, 2)}, will be explained
by the haplotype set H = {h1 = (0, 0), h2 = (1, 0), h3 = (0, 1), h4 = (1, 1)}. We
say that haplotypes h2 and h4 explain or cover genotype g1 and call h2 and h4 an
explaining haplotype pair for g1. We also say that both h2 and h4 partly explain
genotype g1. Note that genotype g4 can be explained by h1 and h4 or by h2 and
h3. Given a set of genotypes, HIPP is to find a minimum set of unique haplo-
types that explains the genotypes. For simplicity and without loss of generality,
we assume in this research that all individuals (genotypes) are unique. Notice
that a HIPP problem may have multiple optimal solutions [5]. This is evident
by a trivial example of one genotype g1 = (2, 2), which has two optimal solu-
tions, H1 = {(0, 0), (1, 1)} and H2 = {(0, 1), (1, 0)}. CHIPP is to find all optimal
solutions, i.e. all sets of minimal unique haplotypes covering all genotypes.

In principle, any algorithm for HIPP can lend to an algorithm for CHIPP. We
now consider two well-established computational paradigms for HIPP, IP and
BnB. In this research, we use these as the baseline algorithms for CHIPP. The
pseudo-codes of the algorithms are given as Supporting Information [27].

2.1 CHIPP Algorithm Based on Integer Linear Programming

In 2003, Gusfield [10] developed an exponential-size Integer Linear Program
(IP) formulation of HIPP. We now briefly describe this model and discuss how
to extend it for solving CHIPP.

Consider n genotypes g1, . . . , gn, and haplotypes h1, . . . , hr that cover all
n genotypes. Let ki be the number of possible explaining haplotype pairs for
genotype gi for i = 1, . . . , n. It is easy to see that ki = max{2l−1, 1} if gi

contains l 2’s. Let x = (x1, . . . , xr) be a vector defined as

340 G. Jäger, S. Climer, and W. Zhang

xi =
{

1 if haplotype hi appears in the HIPP solution,
0 else

for i = 1, . . . , r. Further, let ω = (ωij)1≤i≤n,1≤j≤ki be a matrix representing
haplotype pairs, defined as

ωij =

⎧⎨⎩
1 if the j-th explaining haplotype pair for

genotype gi is selected in the HIPP solution,
0 else

for i = 1, . . . , n and j = 1, . . . , ki. In addition, let f1(i, j) and f2(i, j) be, re-
spectively, the indices of the first and second haplotype of the j-th explaining
haplotype pair for the i-th genotype for i = 1, . . . , n and j = 1, . . . , ki. Then
HIPP can be represented by the following integer linear program (IP):

min
r∑

s=1

xi subject to (1)⎧⎪⎪⎨⎪⎪⎩
∑ki

j=1 ωij = 1 for i = 1, . . . , n

xf1(i,j) ≥ ωi,j for i = 1, . . . , n, j = 1, . . . , ki

xf2(i,j) ≥ ωi,j for i = 1, . . . , n, j = 1, . . . , ki

xs, ωi,j ∈ {0, 1} for s = 1, . . . , r, i = 1, . . . , n, j = 1, . . . , ki

In the worst case, this IP needs an exponential number of variables and con-
straints. In order to solve CHIPP using the IP representation in (1), we implicitly
enumerate all optimal solutions to the IP. The key lies in the idea of avoiding
the optimal solutions that have been found earlier in the process. In our method,
we first solve HIPP using the IP in (1), obtaining one optimal solution. Let p
represent the value of the objective function for this solution. In other words, p
unique haplotypes are the minimum number of haplotypes that can resolve this
set of genotypes. This means that for this solution, there are exactly p entries
of the haplotype index vector x having value 1; let i1, . . . , ip be the indices of
these haplotypes. In order to avoid the optimal solution that we just found, we
introduce to the IP in (1) the following inequality

p∑
s=1

xis ≤ p− 1. (2)

We then solve the newly expanded IP to find the next optimal solution, if any.
Notice that (2) can lead to two possibilities. Either the new IP has an objective
value larger than p, which means that no new optimal solution exists; or the
new IP has an objective value equal to p, which gives rise to another optimal
solution. We repeat this process of adding new inequalities in the form of (2)
and solving the incrementally expanded and more constrained new IPs to find
all optimal solutions.

Complete Parsimony Haplotype Inference Problem and Algorithms 341

2.2 CHIPP Algorithm Based on Branch-and-Bound

Wang and Xu [20] introduced an algorithm for HIPP based on BnB. The algo-
rithm starts with a heuristic solution, where for each genotype the explaining
haplotype pair is chosen, from which the corresponding haplotypes can partly ex-
plain the most genotypes. This provides the initial incumbent (or upper bound)
for the BnB search. Now the search implicitly considers all possible explaining
haplotype pairs for each genotype, and the best solution found is the optimal
solution to be returned. If during the search the node cost is equal to or exceeds
the incumbent, the current explaining haplotype pair is discarded and the algo-
rithm continues to the next explaining haplotype pair, if it exists, thus moving
on to the next branch of the current search node.

In our implementation of the above BnB algorithm, we first sorted the geno-
types in an increasing order of the numbers of 2’s that the genotypes have. In
other words, we prefer genotypes with less heterozygous sites over ones with
more heterozygous sites at nodes near the top of the search tree. For each geno-
type, we further order the explaining haplotype pairs, in a decreasing order of
the number of genotypes that haplotypes can cover. As in Section 2.1, ki is the
number of possible haplotype pairs for genotype gi for i = 1, . . . , n.

We can directly extend the BnB algorithm for HIPP to an algorithm for
CHIPP. In order to find all optimal solutions, pruning is applied only when the
node cost strictly exceeds the incumbent. This allows the algorithm to explore
a branch that may lead to another optimal solution. Further, if we have found
a better solution, all previous “optimal solutions” are discarded.

3 Features of CHIPP and Optimization Techniques

We now consider some important features of CHIPP, and describe how they can
be exploited to develop effective methods for solving this challenging problem.

3.1 Backbones

The backbone of a combinatorial optimization problem refers to the set of vari-
ables that have common values across all optimal solutions for the problem.
Backbones are intrinsic features of combinatorial optimization problems, and
have been used to characterize many difficult optimization problems [19,21,23],
such as the traveling salesman problem and maximum satisfiability, and have
been exploited in algorithms for solving these well-studied problems [6,22,24].

For our purpose, the backbone is a set of haplotypes that appear in every
optimal solution of HIPP. We call these haplotypes backbone haplotypes. One
important consequence of using backbone haplotypes is that those genotypes
that can be explained by two backbone haplotypes can be omitted in a haplotype
inference procedure, as these genotypes can be explained by any solution that
the procedure will return. This holds for HIPP and for CHIPP. We call such
genotypes backbone genotypes. Therefore, solving CHIPP can be accelerated, if
we can identify all backbone haplotypes or backbone genotypes.

342 G. Jäger, S. Climer, and W. Zhang

A special case of backbone haplotypes is when some genotypes have zero or
one SNP site, which can be easily identified. A genotype with no 2’s gives rise
to one backbone haplotype, which is the same as the genotype. A genotype with
only one 2 leads to two backbone haplotypes, which are equal to the genotype
except for the site with the 2, where one backbone haplotype has entry 0 and the
other has entry 1. We call such backbone haplotypes trivial backbone haplotypes.
In their BnB program, Wang and Xu [20] implicitly considered trivial backbone
haplotypes.

A more difficult problem is to identify all backbone haplotypes. At first sight,
the problem seems to be as difficult as finding all optimal solutions, but it turns
out that all backbone haplotypes can be identified without finding all optimal
solutions. Our idea for the problem is based on the fact that when a backbone
haplotype is omitted, no optimal solution to a HIPP or CHIPP problem can be
found. Therefore, we first find an optimal solution, and then iteratively remove,
one and one at a time, the haplotypes in the solution, and repeatedly solve each
of the resulting problems to determine if a new optimal solution can be found.
If this is the case, the considered haplotype is no backbone haplotype, otherwise
it is a backbone haplotype. In the worst case, the complexity of our algorithm is
p times the complexity of finding an optimal solution, where p is the cardinality
of the set of an optimal solution haplotypes.

3.2 Equal Column Technique

One important technique used in Wang and Xu’s BnB program for HIPP is the
so called equal column technique. The idea of this technique is as follows. Assume
we have found an optimal solution for the genotype matrix G1 = [g1, . . . , gk],
where for l = 1, . . . , k, gl is the l-th column of G1, and we want to find an optimal
solution for the genotype matrix G2 = [g1, . . . , gk, gk+1], where gk+1 = gl for
some l ∈ {1, . . . , k}. We can simply obtain an optimal solution to G2 by copying
the l-th column of all haplotypes in the optimal solution to the (k + 1)-th column,
because the (k + 1)-th column of all genotypes can be explained in the same
way as the l-th column of all genotypes. It is worthwhile to point out that this
technique is also applicable in the same spirit to Gusfield’s IP algorithm for
HIPP.

However, the equal column technique cannot be directly used to find all op-
timal solutions, since some optimal solutions might be lost by this technique.
This can be seen from the simple example of one genotype g1 = (2, 2). It has
two optimal solutions, H1 = {(0, 0), (1, 1)} and H2 = {(0, 1), (1, 0)}. However,
the equal column technique will only result in the first optimal solution, be-
cause only in this case the first and the second column of the optimal solution
are equal. This example also shows that the equal column technique cannot be
used to find all backbone haplotypes, as g0 = (2) has two backbone haplotypes
(0), (1) and g1 = (2, 2) has no backbone haplotype. Therefore, special care must
be taken when extending the equal column technique to finding all optimal so-
lutions. Again, let G1 = [g1, . . . , gk] be a genotype matrix with solution value
p and G2 = [g1, . . . , gk, gk+1] another genotype matrix, where gk+1 = gl for

Complete Parsimony Haplotype Inference Problem and Algorithms 343

some l ∈ {1, . . . , k}. The solution value of G2 is p as well, and each optimal
solution for G2 can be written as an optimal solution for G1 plus an additional
last column. Therefore, given an optimal solution H1 to G1, we have to find all
optimal solutions H2 to G2 which are equal to H1 in the first k columns. Using
the equal column technique for HIPP, we can obtain one optimal solution of
G2, if we use the l-th column of H1 as (k + 1)-th column of H2. However, there
may exist additional optimal solutions of G2. Each such optimal solution has p
haplotypes and trivially, each entry of the last column can be 0 or 1. Thus there
are a total of 2p possible optimal solutions for G2 from which at least one must
be in fact optimal. Let H0 be such a possible optimal solution. Then H0 is an
optimal solution, if and only if all genotypes can be explained by the haplotypes
of H0. So we can make use of this characteristic. Furthermore, we can reduce
the number of all possible optimal solutions to be tested, which is 2p, by the
following idea. Each haplotype of an optimal solution must be used to partly
explain at least one genotype. We test this characteristic for all 2p haplotypes
which can possibly appear in an optimal solution. If this characteristic is not
fulfilled for a particular haplotype, we do not have to consider this haplotype
and all possible optimal solutions which contain this haplotype. The extended
equal column technique for CHIPP may still require up to 2p steps for each
equal column in the worst case. Nevertheless, as we will observe in Section 4, it
is rather efficient in practice.

Furthermore, columns of a genotype matrix which contain only 0’s (1’s) can
also be omitted for solving HIPP and CHIPP because of the following reason. If
a column gl of the genotype matrix contains only 0 or 1, then the l-th column
of the haplotype matrix of each optimal solution also contains only 0’s or 1’s,
respectively.

3.3 Decomposability

Two genotypes g1 and g2 may not share any common explaining haplotypes; in
this case we say that g1 does not overlap with g2. This happens when g1 has
an entry 0 while g2 has an entry 1, or vice versa, at one site. The concept of
non-overlapping of two genotypes can be generalized to two sets of genotypes
E = {e1, . . . , es} and F = {f1, . . . , ft}. If each genotype e ∈ E does not overlap
with any genotype f ∈ F , E does not overlap with F as well.

A HIPP problem instance can be decomposed, if it contains non-overlapping
sets of genotypes, where a sub-problem contains one of these sets. It is evident
that it is sufficient to solve each of the sub-problems in order to solve the original
problem; a solution of the original problem is a union of the solutions to the sub-
problems.

This method can be simply extended to CHIPP. Here a problem instance is
decomposable if it contains l > 1 non-overlapping sets of genotypes, each of
which forms a sub-problem. Assume that each sub-problem has qi solutions for
i = 1, . . . , l. The original problem will have

∏l
i=1 qi solutions, corresponding to

all combinations of the solutions to the sub-problems. A decomposable HIPP or
CHIPP problem can be solved with a significantly reduced complexity due to

344 G. Jäger, S. Climer, and W. Zhang

the potential exponential growth in computation time as a function of the size
of the instance.

3.4 Omitting Explaining Haplotype Pairs

RTIP: In order to improve his IP approach, Gusfield [10] used a reduction for-
mulation, called RTIP. RTIP removes from the problem all explaining haplotype
pairs in which the two corresponding haplotypes partly explain only one geno-
type. The genotypes that can only be explained by such haplotype pairs can be
explained in the HIPP solution in an arbitrary way. Wang and Xu [20] used a
very similar idea in their BnB program. In order to extend this idea to CHIPP,
we first introduce the notion of fat genotypes.

Fat genotypes: Let G be a set of input genotypes with solution value p, and g
a genotype in G such that removing g from G results in a solution to the new
instance with solution value p− 2. We call such a genotype fat genotype.

A special case of a fat genotype is a genotype that does not overlap with
any other genotype (see Section 3.3) and has at least one entry 2. For exam-
ple, consider g1 = (0, 2, 0), g2 = (2, 1, 0), g3 = (1, 2, 1), where g3 does not over-
lap with g1 and g2. Then for G = {(g1, g2)} the (only) optimal solution is
{(0, 0, 0), (0, 1, 0), (1, 1, 0)} with solution value 3, whereas for G′ = (g1, g2, g3)
the (only) optimal solution is {(0, 0, 0), (0, 1, 0), (1, 1, 0), (1, 0, 1), (1, 1, 1)} with
solution value 5. Thus g3 is a fat genotype. Note that there are cases of fat geno-
types which do overlap with other genotypes. For example, let g1 = (1, 2, 2), g2 =
(2, 1, 1), g3 = (2, 0, 1), where g3 overlaps with g1. Then for G = (g1, g2) the (only)
optimal solution is {(1, 0, 0), (0, 1, 1), (1, 1, 1)} with solution value 3, whereas
for G′ = (g1, g2, g3) one optimal solution is {(1, 0, 0), (0, 1, 1), (1, 1, 1), (0, 0, 1),
(1, 0, 1)} with solution value 5. Thus g3 is a fat genotype. It is easy to see that fat
genotypes are the only genotypes for which omitting a corresponding explain-
ing haplotype pair by RTIP could cause some optimal solutions to be lost. The
fatness of all genotypes can be easily tested.

Our task is to find all optimal solutions that might be lost by RTIP. For
this purpose, assume the explaining haplotype pair (h1, h2) is omitted by RTIP,
but nevertheless is contained in at least one optimal solution. Furthermore, let
H0 be an optimal solution found by RTIP. By the definition of RTIP, h1 and h2
partly explain only one genotype g. The only possibility to recover a lost optimal
solution which includes h1 and h2 is to replace an explaining haplotype pair for
g, (h3, h4) ∈ H0, by (h1, h2). Let Hnew

0 be H0 after the replacement. Then
Hnew

0 is a new optimal solution, if and only if all genotypes can be explained by
haplotype pairs in Hnew

0 . This idea leads to an algorithm which finds all optimal
solutions after using RTIP.

If we need to save the (possibly expensive) identification of all fat genotypes, we
can try all possible replacements not only for the fat genotypes, but for all geno-
types. As mentioned, for all non-fat genotypes no further optimal solutions will be
found. On the other hand, the time saved by omitting the identification of all fat
genotypes can be lost by many more tests for possible new optimal solutions.

Complete Parsimony Haplotype Inference Problem and Algorithms 345

Further case. Wang and Xu [20] considered a case of two genotypes g1 and g2,
where g1 only has explaining haplotype pairs (h1, h2) and (h4, h5), and g2 only
has explaining haplotype pairs (h2, h3) and (h5, h6). In the considered case, all
haplotypes h1, h2, h3, h4, h5, h6 do not partly explain any other genotype. For
this case when solving HIPP, we can use (h1, h2) as explaining haplotype for
genotype g1 and (h2, h3) as explaining haplotype for genotype g2, and omit the
pairs (h4, h5) and (h5, h6).

When extending this case to CHIPP, we only have to replace in each optimal
solution the haplotypes h1, h2, h3 by the haplotypes h4, h5, h6 to find a new
optimal solution.

4 Experimental Analysis

We have implemented in C++ all the different combinations of HIPP and CHIPP
algorithms. All our experiments were carried out on a PC with an Athlon
1900MP dual CPU and 2GB shared memory, while our programs ran on a single
processor of the machine. As IP solver we used Cplex [25]. An individual exper-
iment was terminated after 6 hours of CPU time. The test data come from two
types of human biological data: genotype data from the International HapMap
Project [26], and known haplotype pairs [1,18]. Overall, we use 73 test instances:
66 random instances and 7 known instances. Details about these data and the
experimental results can be found in the Supporting Information [27] and in [5].

In Section 2 we introduced two baseline CHIPP algorithms, one based on
IP (CHIPP-IP) and the other based on BnB (CHIPP-BnB). Furthermore we
consider a hybrid algorithm, in which the heuristic for computing the initial up-
per bound for a BnB algorithm is replaced by a HIPP algorithm (CHIPP-HY).
In other words, the initial upper bound for CHIPP-HY is the cost of the op-
timal solution, which can significantly reduce the search space to be explored
and computation time needed. The optimization techniques that we discussed in
Section 3 can be combined in different ways with these three algorithms. These
possible combinations give rise to many different algorithms. These optimization
techniques or algorithmic components include: equal column technique (E) or
not; trivial backbones (T), all backbones (A) or no backbones; RTIP with com-
putation of fat genotypes (F), RTIP with no computation of fat genotypes (R)
or no RTIP. In summary, we have a total of 54 = 3 × 2 × 3 × 3 algorithms
for CHIPP to analyze, where each algorithm is written in the following way: W-
XYZ, where W = IP or W = BnB or W = HY (hybrid); X = E or X = ∅; Y
= T or Y = A or Y = ∅; Z = F or Z = R or Z = ∅. For example, IP-EAF is
used to indicate an algorithm based on IP using the equal column technique, all
backbones and RTIP with fat genotypes. Note that for all algorithms with the
option A, i.e. algorithms that exploit all backbones, a HIPP algorithm is needed.
For these algorithms that are based on BnB, the heuristic for the initial upper
bound can be replaced by a HIPP algorithm. In this regard, the BnB algorithm
and the HY algorithm using option A are in fact the same. Finally note that
with the purpose to simplify the experiments, we decided to use the technique of

346 G. Jäger, S. Climer, and W. Zhang

decomposability (Section 3.3) and the further case of Section 3.4 in all versions
except the baseline versions. As the CHIPP-HY algorithm contains a HIPP al-
gorithm and finding a single optimal solution is required by the identification of
all backbone haplotypes and by the identification of fat genotypes, an efficient
HIPP algorithm is an important component of a CHIPP algorithm. Experiments
(not described here due to space limit) show that for both HIPP versions, all of
the three features equal column technique, RTIP, and trivial backbones lead to
a larger efficiency of the HIPP algorithm, where the most important feature is
the equal column technique. This is not surprising, as each of these features can
substantially reduce the problem sizes. The equal column technique can help re-
move some sites that carry redundant information, and the techniques of trivial
backbones and RTIP can be used to omit some highly constrained explaining
haplotype pairs from the core computation of haplotype inference. Furthermore
the mentioned experiments show that the HIPP algorithm based on IP is more
efficient than that based on BnB. As a consequence of this comparison, we used
this HIPP-IP algorithm as a sub-routine in all CHIPP algorithms, where a HIPP
algorithm is needed, except one special case. The exception is the algorithm for
finding all backbone haplotypes, where we have to omit the equal column tech-
nique. As mentioned in Section 3.2, this technique cannot be used for finding
all backbone haplotypes. To reduce the overall computation for testing all 54
algorithms and all 73 instances (the 66 random and the 7 known instances),
we first tested 8 small- to medium-difficulty typical instances in the first-stage
analysis. We found that except for a few cases, most top performers use the all
backbone technique without RTIP, or with RTIP with the computation of fat
genotypes, i.e. the algorithms with options A, AF, EA, EAF. As mentioned,
these four algorithms are the same for BnB and HY. Therefore, we have identi-
fied eight top contenders for the champion for solving CHIPP. In order to find
the overall champion, we further tested these top contenders on all 73 instances.
The results clearly show that the optimized algorithms are superior to the base-
line algorithms. On many difficult problem instances, the former run orders of
magnitude faster than the latter. The results also show that for the baseline
algorithms, IP outperforms BnB, which suggests that replacing the heuristic for
computing the upper bound by a HIPP algorithm is important. However, the
result comparing the optimized IP-based and HY-based algorithms is mixed. On
some instances the optimized HY algorithms were able to solve CHIPP, while the
IP algorithms failed within the given 6 hours of running time. On the other hand,
there are other instances for which the IP algorithms were faster. One IP-based
CHIPP algorithm, algorithm EA, which uses the techniques of all backbones
and equal columns, is the champion for 19 of the 73 instances tested. This algo-
rithm is also the overall champion. In addition, among the hybrid versions, the
algorithm EA is also the best one.

5 Summary

In summary, we made three major contributions in this paper. First, we intro-
duced the problem CHIPP to expand the capability of haplotype inference by

Complete Parsimony Haplotype Inference Problem and Algorithms 347

pure parsimony for finding all optimal solutions. In [5] extensive experiments
showed that CHIPP problem instances can have a large number of optimal solu-
tions and the first optimal solution returned by an algorithm may not necessarily
be the true solution. Our results on seven known problem instances also showed
that the true solutions to four of these problems are indeed among the optimal
solutions. All these results support to find all optimal solutions.

Second, we studied many intrinsic haplotype features, some of which were
studied in earlier research on HIPP, particularly by Gusfield [10] and Wang and
Xu [20]. However, strategies to exploit these features cannot be directly ap-
plied to CHIPP and we formulated methods to recapture solutions lost by these
strategies. Furthermore, we introduced the concepts of backbone haplotypes,
decomposability and fat genotypes, and formulated and discussed in more de-
tail the concept of equal columns. All these concepts can be viewed as FPT
kernelization techniques.

Third, we systematically studied three approaches to CHIPP, one based on
integer linear programming [10], another based on depth-first branch-and-bound
[20] and one integrating these two. In our algorithms, we explicitly exploited the
intrinsic haplotype features that we studied. In our experiments, we analyzed the
possible interactions of different problem features and optimization techniques.
These studies revealed the best algorithms under these two general problem solv-
ing paradigms, as well as the best hybrid algorithms that combines the favorable
features of integer linear programming and depth-first branch-and-bound.

Acknowledgement

The research was supported in part by an Olin Fellowship to S.C., an Alzheimers
Association grant and two NSF grants (IIS-0535257 and DBI-0743797) to W.Z.

References

1. Andrés, A.M., Clark, A.G., Boerwinkle, E., Sing, C.F., Hixson, J.E.: Assessing
the accuracy of statistical haplotype inference with sequence data of known phase.
Genet. Epi. 31, 659–671 (2007)

2. Bertolazzi, P., Godi, A., Labbé, M., Tininini, L.: Solving haplotyping inference
parsimony problem using a new basic polynomial formulation. Comput. Math.
Appl. 55(5), 900–911 (2008)

3. Brown, D.G., Harrower, I.M.: Integer Programming Approaches to Haplotype In-
ference by Pure Parsimony. IEEE/ACM Transactions on Computational Biology
and Bioinformatics 3(2), 141–154 (2006)

4. Clark, A.G.: Inference of Haplotypes from PCR-Amplified Samples of Diploid Pop-
ulations. Molecular Biology and Evolution 7, 111–122 (1990)

5. Climer, S., Jäger, G., Templeton, A.R., Zhang, W.: How Frugal is Mother Nature
with Haplotypes? Bioinformatics 25(1), 68–74 (2009)

6. Climer, S., Zhang, W.: Searching for Backbones and Fat: A Limit-Crossing Ap-
proach with Applications. In: Proc. 18th National Conference on Artificial Intelli-
gence (AAAI), pp. 707–712 (2002)

348 G. Jäger, S. Climer, and W. Zhang

7. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Berlin (2006)
8. Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization.

SIGACT News 38(1), 31–45 (2007)
9. Gusfield, D.: Inference of Haplotypes from Samples of Diploid Populations: Com-

plexity and Algorithms. J. Computational Biology 8(3), 305–313 (2001)
10. Gusfield, D.: Haplotype Inference by Pure Parsimony. In: Baeza-Yates, R., Chávez,

E., Crochemore, M. (eds.) CPM 2003. LNCS, vol. 2676, pp. 144–155. Springer,
Heidelberg (2003)

11. Gusfield, D., Orzack, S.H.: Haplotype Inference. In: Handbook on Bioinformatics
(2005)

12. Halldórsson, B.V., Bafna, V., Edwards, N., Lippert, R., Yooseph, S., Istrail, S.:
A survey of computational methods for determining haplotypes. In: Istrail, S.,
Waterman, M.S., Clark, A. (eds.) DIMACS/RECOMB Satellite Workshop 2002.
LNCS (LNBI), vol. 2983, pp. 26–47. Springer, Heidelberg (2004)

13. Lancia, G., Pinotti, C.M., Rizzi, R.: Haplotype Populations by Pure Parsimony:
Complexity of Exact and Approximation Algorithms. INFORMS J. Comput-
ing 16(4), 348–359 (2004)

14. Lynce, I., Marques-Silva, J.: Efficient Haplotype Inference with Boolean Satisfi-
ability. In: Proc. 21st National Conference on Artificial Intelligence (AAAI), pp.
104–109 (2006)

15. Lynce, I., Marques-Silva, J.: SAT in Bioinformatics: Making the Case with Haplo-
type Inference. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp.
136–141. Springer, Heidelberg (2006)

16. Lynce, I., Marques-Silva, J., Prestwich, S.: Boosting Haplotype Inference with Lo-
cal Search. Constraints 13(1-2), 155–179 (2008)

17. Niedermeier, R.: Invitation to Fixed-Parameter Tractability. Oxford University
Press, Oxford (2006)

18. Orzack, S.H., Gusfield, D., Olson, J., Nesbitt, S., Subrahmanyan, L., Stanton Jr.,
V.P.: Analysis and Exploration of the Use of Rule-Based Algorithms and Consensus
Methods for the Inferral of Haplotypes. Genetics 165, 915–928 (2003)

19. Slaney, J., Walsh, T.: Backbones in Optimization and Approximation. In: Proc.
17th Intern. Joint Conf. on Artificial Intelligence (IJCAI 2001), pp. 254–259 (2001)

20. Wang, L., Xu, Y.: Haplotype Inference by Maximum Parsimony. Bioinformat-
ics 19(14), 1773–1780 (2003)

21. Zhang, W.: Phase transitions and backbones of 3-SAT and maximum 3-SAT. In:
Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 153–167. Springer, Heidelberg (2001)

22. Zhang, W.: Configuration Landscape Analysis and Backbone Guided Local Search:
Part I: Satisfiability and Maximum Satisfiability. Artificial Intelligence 158(1), 1–26
(2004)

23. Zhang, W.: Phase Transitions and Backbones of the Asymmetric Traveling Sales-
man Problem. J. Artificial Intelligence Research 20, 471–497 (2004)

24. Zhang, W., Looks, M.: A Novel Local Search Algorithm for the Traveling Salesman
Problem that Exploits Backbones. In: Proc. 19th International Joint Conference
on Artificial Intelligence (IJCAI), pp. 343–350 (2005)

25. Homepage of Cplex,
http://www.ilog.com/products/optimization/archive.cfm

26. The International HapMap Consortium: A Haplotype Map of the Human Genome.
Nature 437, 1299–1320 (2005)

27. Supporting Information to this paper,
http://www.cse.wustl.edu/~zhang/publications/supplemental/ChippSup.pdf

http://www.ilog.com/products/optimization/archive.cfm
http://www.cse.wustl.edu/~zhang/publications/supplemental/ChippSup.pdf

Linear-Time Recognition of
Probe Interval Graphs

Ross M. McConnell1 and Yahav Nussbaum2

1 Computer Science Department, Colorado State University,
Fort Collins, CO 80528, USA

rmm@cs.colostate.edu
2 The Blavatnik School of Computer Science, Tel Aviv University,

69978 Tel Aviv, Israel
yahav.nussbaum@cs.tau.ac.il

Abstract. The interval graph for a set of intervals on a line consists
of one vertex for each interval, and an edge for each intersecting pair
of intervals. A probe interval graph is a variant that is motivated by
an application to genomics, where the intervals are partitioned into two
sets: probes and non-probes. The graph has an edge between two vertices
if they intersect and at least one of them is a probe. We give a linear-
time algorithm for determining whether a given graph and partition of
vertices into probes and non-probes is a probe interval graph. If it is, we
give a layout of intervals that proves that it is. In contrast to previous
algorithms for the problem, our algorithm can determine whether the
layout is uniquely constrained. As part of the algorithm we solve the
consecutive-ones probe matrix problem.

1 Introduction

An interval graph is the intersection graph of a set of intervals on a line. The
set of intervals constitutes an interval model of the graph. Interval graphs play
an important role in many problems, see [5,7,9]. The problem of recognizing
whether a graph is an interval graph played a key role in the 1950’s in proving
the linear topology of DNA [1]; the intervals were fragments of genetic material,
and it was shown empirically that their intersections form an interval graph.

This gave rise to interest in algorithms for determining whether a graph is an
interval graph [6]. Booth and Lueker gave the first linear-time algorithm for rec-
ognizing interval graphs and constructing interval models for the graphs in the
1970’s [2]. A consecutive-ones ordering of columns of a 0-1 matrix is one such that,
for every row, the 1’s in the row are consecutive. Booth and Lueker’s approach was
to reduce the problem to that of finding a consecutive-ones ordering of a 0-1 ma-
trix, and to give a linear time bound for finding such an ordering.

A related application for interval graphs is physical mapping, which can be
used for DNA sequencing. In this process, biologists create clones, which are
copies of fragments of DNA. The problem is reconstruction of the arrangement
of the clones in the genome. For some clones, called probes, the intersection data
between them and other clones can be collected. If all clones are probes, then

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 349–360, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

350 R.M. McConnell and Y. Nussbaum

we can construct an interval graph from the clones, and an interval model for
this graph gives the original sequence.

A probe interval graphs [14,17] (also called interval probe graph) is a graph
in which the vertex set is partitioned into probes and non-probes. It is a gener-
alization of intersection graph of an interval model, such that the graph has an
edge between two vertices if their intervals intersect and at least one of them is a
probe. Information about which pairs of non-probe intervals intersect is missing.

There has been recent work on topological and combinatorial properties of
these graphs; see [9] for a survey. The problem of recognizing whether a graph
is a probe interval graph, and finding a corresponding arrangement of intervals
if it is, was first shown to be polynomial by Johnson and Spinrad [10], who gave
an O(V 2) algorithm. Using a different approach, McConnell and Spinrad gave
an O(V +E log V) algorithm [13]. The latter algorithm was a critical step in the
first linear-time algorithm for recognizing circular-arc graphs [12]. Motivated by
the biological application, where the partition into probes and non-probes is
known in advance, both algorithms get as an input a graph whose vertex set is
partitioned into probes and non-probes. Chang et al. [4] consider the problem
of recognizing this graph class when this partition is not given.

In this paper, we give the first linear-time algorithm for recognizing whether a
graph is a probe interval graph when the partition into probes and non-probes is
given, and for finding a corresponding set of intervals. In view of the complexity
of the previous work, it is surprising that we are able to reduce the problem to
that of finding consecutive-ones orderings of two easily-constructed consecutive-
ones matrices, which can then be solved by Booth and Lueker’s algorithm.

In the physical mapping problem, the arrangement of clones on the genome is
certain to be reconstructed accurately only if there is a unique linear arrangement
that is consistent with the probe interval graph. Previous algorithms for finding
probe interval arrangements have the defect that they cannot determine whether
the graph uniquely constrains the arrangement, and therefore cannot be said to
solve the physical mapping problem. Uehara [16] has addressed the issue and
gave a polynomial-time algorithm that determines whether a given probe interval
graph has a unique model. Our algorithm solves this problem as a by-product of
the recognition problem, and it is the first linear-time algorithm that solves it.

A 0-1 matrix is a consecutive-ones matrix if it has a consecutive-ones ordering.
The consecutive-ones sandwich problem is an extension of this problem where
the matrix has 0, 1 or ∗. A ∗ is a “don’t care”; it can stand for either a 0 or a
1. This problem is NP-Complete [8]. If we require that the ∗’s form a submatrix
then we get the consecutive-ones probe matrix problem (see also [3]). We solve
this problem in linear time, for any 0, 1, ∗ probe matrix.

2 Preliminaries

Except for some additional definitions, we use standard terminology and notation
from [5]. We will assume the standard adjacency-list representation of a graph.
This imposes a numbering from 1 to n on the vertices.

Linear-Time Recognition of Probe Interval Graphs 351

A graph G = (V, E) is a probe graph if the vertex set is partitioned into P ,
the set of probes, and N the set of non-probes. In this case, every edge of E
is adjacent to at least one probe. We denote this by G = (P, N, E). If X is
a nonempty subset of V , let G[X] denote the subgraph of G induced by X ,
together with the classification of members of X as probes or non-probes.

Let N(v) denote the open neighborhood of v, that is, the set of neighbors of v
in G, and let N [v] denote its closed neighborhood, that is, {v} ∪N(v).

An interval model of an interval graph is a set of intervals, one for each vertex,
such that two vertices are adjacent if and only if their intervals intersect. With-
out loss of generality, we assume that no two endpoints of intervals coincide.
Similarly, an interval model of a probe interval graph is a set of intervals, one
for each vertex, such that two vertices are adjacent if and only if their intervals
intersect and at least one of the vertices is a probe. If R is an interval model of a
(probe) interval graph G and X is a nonempty subset of V , let R[X] denote the
set of intervals of members of X . Note that R[X] is an interval model of G[X].

We define the cliques of a graph to be its maximal complete subgraphs. In an
interval model R of a graph G, each clique of G corresponds to the set of vertices
whose intervals intersect a unique clique segment in R. A clique segment occurs
where a right endpoint is immediately to the right of a left endpoint.

The clique matrix of a graph is a 0-1 matrix that has one column for each
clique, one row for each vertex, and a 1 in row i, column j if and only if vertex
i is a member of clique j. Interval graphs are exactly the set of graphs whose
clique matrices have consecutive-ones orderings [6].

An interval model consists of alternating blocks of consecutive left endpoints
and of consecutive right endpoints. The order of endpoints within a block does
not change the realized graph. Therefore, we represent an interval model combi-
natorially by giving an ordered list of blocks, listing for each block the endpoints
inside of it. In fact, a consecutive-ones ordering of the clique matrix of an interval
graph is such a model, where the set of left endpoints in a column and the set
of right endpoints in the column are each interpreted to be a block, where the
block of left endpoints is implicitly to the left of the block of right endpoints.

A chordal graph is a is a graph with no induced cycle of size greater than three.
Every interval graph is a chordal graph. A chordal graph has O(V) cliques. It is
possible to find a sparse representation of the clique matrix of a chordal graph in
O(V) time [15]. Booth and Lueker’s algorithm [2] for recognizing interval graphs
uses this to find the clique matrix or else determine that the graph is not chordal,
hence not an interval graph. If it is chordal, it reduces the problem to that of
finding a consecutive-ones ordering of this clique matrix.

The algorithm of [2] gives a compact representation of all consecutive-ones
orderings of a matrix, called a PQ-tree. The leaves of the PQ-tree are the columns
of the matrix. The PQ-tree gives all consecutive-ones orderings by constraining
the orderings of children of internal nodes as follows. Some of the internal nodes
are labeled P nodes. For such a node there is no constraint on the order of its
children. Others are labeled Q nodes. For such a node an ordering of its children
is given; the only permissible orderings of its children are the given ordering and

352 R.M. McConnell and Y. Nussbaum

its reverse. For a PQ-tree T , let Π(T) denote the set of all possible orderings of
its leaves, given these constraints. The algorithm of [2] either finds the PQ-tree
for consecutive-ones orderings of columns of a matrix, or determines that the
matrix is not a consecutive-ones matrix. Given a sparse representation of a 0-1
matrix, this takes O(i + j + k) time, where i is the number of rows, j is the
number of columns, and k is the number of 1’s in the matrix.

Let Π = Π(T). We may consider each π ∈ Π to be a bijective function that
maps elements of C, the set of columns, to elements of {1, 2, . . . , |C|}, where for
all c ∈ C, π(c) tells the position of c in a consecutive-ones ordering represented
by π. If X is a nonempty subset of C, let πX be the bijective function that maps
elements of X to {1, 2, . . . , |X |}, giving the relative order of elements of X in π.
Let Π [X] denote {πX |π ∈ Π}, namely, the relative orderings of elements of X
given by orderings in Π . It is not hard to show that Π [X] is the set of orderings
of a PQ-tree with leaf set X ; let us call this tree the restriction T [X] of T to X .
If T1 and T2 are two PQ-trees whose leaf sets are both C, it is not hard to show
that Π(T1) ∩Π(T2) is a set of permutations that can also be represented by a
PQ-tree. Let us call this tree the intersection T1 ∩ T2 of T1 and T2.

A probe matrix is a generalization of 0-1 matrix, which has the values 0, 1, ∗,
such that the ∗’s form a submatrix. The consecutive-ones probe matrix problem
is a generalization of the consecutive-ones problem. In this problem we look for
an ordering of the columns of the matrix such that there is an interpretation of
the values of the ∗’s such that the 1’s in every row are consecutive.

We represent a probe matrix in space proportional to the size of the matrix
and the number of 1’s in it, we do not represent the ∗’s explicitly. To do that,
we split a probe matrix M into two submatrices. Let MR be the submatrix of
M whose rows are the rows that do not have ∗’s, and whose columns are all
columns of M . Let MC be the submatrix of M whose columns are the columns
that do not have ∗’s, and whose rows are all rows of M . We represent M using
sparse representations of MR and MC .

The rest of the paper is organized as follows. In Sect. 3 we construct a probe
matrix for the input graph that generalizes the clique matrix. In Sect. 4 we
construct an interval model from a consecutive-ones ordering of this matrix. In
Sect. 5 we present a linear-time algorithm for the consecutive-ones probe matrix
problem. Last, in Sect. 6 we determine if the interval model is unique.

3 Extension of the Clique Matrix

In this section we show how to build a probe matrix M that has the consecutive-
ones property if G is a probe interval graph. The basis of this matrix is MP ,
the clique matrix of G[P]. In addition, for every non-probe we define either new
columns or a new row. A new column has a value of 0 or 1 for every row of MP .
Similarly, a new row has a value of 0 or 1 for every column of MP . The submatrix
of M induced by the new rows and the new columns consists exclusively of ∗’s,
and so M is a probe matrix. We view each row of M as a constraint, since it
limits the possible consecutive-ones orderings of M .

Linear-Time Recognition of Probe Interval Graphs 353

The graph G[P] has no non-probes. Therefore, if G is a probe interval graph,
then G[P] is an interval graph and MP has the consecutive-ones property. Let
x ∈ N , If G is a probe interval graph then G[P∪{x}] is an interval graph, because
a pair of non-probes is required to give rise to an interval intersection that is not
an edge. This last observation is the basis of our probe matrix construction.

Therefore, we begin by finding a consecutive-ones ordering of MP . Using [2]
we can either find such an ordering or determine that G is not a probe interval
graph, in O(V + E) time.

Let C denote the set of cliques of G[P]. For each probe p, let Q(p) denote
the set of cliques of C that contain p. In an interval model of G, the interval
for p must intersect the clique segments of members of Q(p) and these clique
segments must be consecutive. In M we represent these constraints for all P by
the rows of MP . We call these constraints probe - clique constraints.

Similarly, for each non-probe x, let Q(x) denote the set of cliques of C that are
subsets of N(x), and Qx denote

⋃
Q(x). A vertex v is simplicial if N(x) induces

a complete subgraph. We split the set of non-probes into three sets: N1 is the
set of non-probes x such that |Q(x)| ≥ 1; N2 is the set of non-simplicial vertices
with Q(x) = ∅; and N3 is the set of simplicial vertices. Note that, according to
this definition, a simplicial non-probe x such that |Q(x)| = 1 is contained both
in N1 and in N3; it does not matter into which of the two sets we put x.

The vertices of N1 and N2 add three kinds of rows (constraints) to M , while
the vertices of N3 add columns. We show the details below, but first we show
how to partition N into these three sets. We must find for every x ∈ N the set
Q(x) and determine whether x is simplicial or not.

Let the left endpoint of a row of a consecutive-ones ordering of MP be the
column of the leftmost 1 in the row, and the right endpoint be the rightmost.
Let x ∈ N , and assume that G[P] is an interval graph. In the consecutive-ones
ordering of MP we find for every p ∈ N(x) the left endpoint and the right
endpoint of the row of p. We keep the column numbers of these two endpoints,
together with their side (left or right) in a list Lx. We sort Lx for all x in linear
time using a single radix sort, with x as the primary sort key, column number
as the secondary sort key, and left versus right endpoint as the tertiary key so
that if a left endpoint and right endpoint have the same primary and secondary
key, the left endpoint goes to the left of the right.

We sweep through Lx from left to right, keeping a running count of the number
of neighbors of x in the current column. Each time we encounter a left endpoint
in Lx we increment the counter, and each time we encounter a right endpoint
we decrement it. Each time we encounter a right endpoint e that follows a left
endpoint, we compare the counter with the size of the clique C represented by
the column of e, and include C in Q(x) if they are equal.

Every time we change the value of the counter, we compare it to |N(x)|, if
these values are equal at some column C, then N(x) ⊆ C and so x is simplicial.

The procedure for x takes time proportional to |N [x]| for every non-probe x.
Summing over all x, we have an O(N + E) bound for splitting N into N1, N2
and N3. We conclude with the following lemma:

354 R.M. McConnell and Y. Nussbaum

Lemma 1. In linear time we can either split N into N1, N2 and N3 and find
Q(x) for every x ∈ N , or else determine that G is not a probe interval graph.

3.1 Non-probe - Clique Constraints

Assume that G is indeed a probe interval graph and consider the interval of
x ∈ N1 in an interval model R. The interval of x must intersect the clique
segments that correspond to members of Q(x), and these clique segments must
be consecutive in the ordering of clique segments of G[P] given by any interval
model of G.

The number of cliques containing a vertex v in an interval graph is bounded
by |N [v]|, since a neighbor of v ends at the clique segment for each clique that
contains v. Since G[P ∪{x}] is an interval graph, for any x ∈ N1, the number of
cliques in Q(x) is bounded by |N [x]|.

We therefore add to M a row for each x ∈ N1 that has 1’s in the columns
of Q(x). This adds O(|N [x]|) to the size of the matrix. We call these new rows
non-probe - clique constraints.

3.2 Non-probe - Probe Binding Constraints

The non-probe - clique constraints defined for members of N1 are not enough.
These constraints allow the interval of x ∈ N1 to intersect the clique segments
of Q(x) and thus intersect the intervals of Qx, but there may be some vertices
in N(x) \Qx. For these we add more constraints to M .

Let x ∈ N1 and let p ∈ N(x) \Qx. Since x and p are adjacent, we know that
their intervals must intersect in any model of G, and therefore Q(x)∪Q(p) must
be consecutive. Let us call this additional constraint a non-probe - probe binding
constraint imposed by x and p. Adding such a constraint for every such x and p
will make M too large. We show that a set of new rows with a linear number of
1’s is enough to enforce the non-probe - probe binding constraints.

We know that Q(x) ∩ Q(p) = ∅, because p /∈ Qx. Therefore, in any interval
model of G, the interval of p covers exactly one endpoint of the interval of x.
Moreover, in the order of the clique segments either the rightmost member of
Q(p) must be consecutive with the leftmost member of Q(x) or vice versa.

The set of probes that x is bound to is N(x) \Qx. In an interval model of G,
we can divide this set into the set Y1 that covers the left endpoint of x and the
set Y2 that covers the right endpoint of x. Note that although we used a specific
model of G, the same Y1 and Y2 arise in every model (up to interchange).

Recall that the vertices are numbered arbitrarily from 1 through n. For two
vertices v and u, let v ≺ u denote that either Q(v) ⊂ Q(u) or that Q(v) = Q(u)
and v has a smaller vertex number than u does.

Since the members of Y1 all end at the clique segment to the left of x’s left
endpoint and they all occupy consecutive cliques, it follows that for any two
y, y′ ∈ Y1, either Q(y) ⊆ Q(y′) or Q(y′) ⊆ Q(y). It follows that Y1 induces a
linear order in the ≺ relation, so it has a unique a minimal member y1 in this
relation. Similarly, Y2 has a unique minimal member y2 in the ≺ relation.

Linear-Time Recognition of Probe Interval Graphs 355

By similar reasoning, each for each probe p, the ≺ relation on non-probes that
p is bound to has at most two nonadjacent minimal members x1 and x2. Let us
say that x and p are a representative bound pair if p is a minimal bound neighbor
of x and x is a minimal bound neighbor of p in the ≺ relation.

Consider the current status of the matrix M . The matrix includes the probe
- clique constraints and the non-probe - clique constraints. In O(V + E) time
we can either find a consecutive-ones ordering of M or determine that G is not
a probe interval graph, since we cannot satisfy all the constraints. Using this
ordering of M , we can determine in O(1) time for two vertices v, u ∈ P ∪ N1
whether Q(v) ⊆ Q(u) by examining the position of leftmost and rightmost 1’s
in the rows of u and v. Thus, the relation ≺ for two vertices can be determined
in O(1) time as well. We get that we can find the minimal bound neighbors of
every vertex, and thus all the representative bound pairs, in O(V + E) time.

We add to M a row for any representative pair {x, p} that has 1’s in the
columns of Q(x) ∪Q(p). This adds O(|N [x]|+ |N [p]|) to the size of the matrix.
Since every vertex adds at most two new rows to M , the size of M remains linear
in the size of G.

A consecutive-ones ordering of M satisfies the binding constraint not just
for representative bound pairs, but for all such bound pairs of vertices. This is
true since M already has a row with the characteristic vector of Q(v) for each
probe or non-probe vertex v because of the probe - clique constraints and the
non-probe - clique constraints.

3.3 Probe - Probe Binding Constraints

Consider x ∈ N2. In this case, Q(x) = ∅ and N(x) is not a complete subgraph.
If G is a probe interval graph, then in an interval model R of G, the interval of
x lies between two consecutive clique segments of R[P]. Let C1 and C2 be the
corresponding cliques of G[P], such that C1’s segment lies to the left of C2’s.
Let Y1 = N(x) \C2 and let Y2 = N(x) \C1. The sets Y1 and Y2 satisfy Y1 ⊆ C1,
Y2 ⊆ C2 and Y1 ∩ Y2 = ∅. Also, since x is not simplicial, neither Y1 nor Y2 is
empty. Note that although we used a specific model to define Y1 and Y2 for x,
these sets are unique for every x ∈ N2, up to interchange between the two.

Let y ∈ Y1 and y′ ∈ Y2. Since x is adjacent to both y and y′, and does not
intersect any clique segment, we know that Q(y) ∪ Q(y′) must be consecutive
in any interval model of G. We call this additional constraint a probe - probe
binding constraint imposed by y and y′. As with the non-probe - probe binding
constraints, we can use the same relation ≺ and add to M such a constraint only
for a pair of minimal bound neighbors. To find these in O(V + E) time, we find
for each x ∈ N2, the sets Y1 and Y2. All elements of Y1 are bound to elements of
Y2, but it is enough to bind only the minimal members of the two sets to each
other. This gives O(|N2|) candidate pairs for bindings. We proceed on these as
in the case of probe - non-probe bindings to find representative pairs.

We add to M a row for each representative pair p, p′ that has 1’s in the
columns of Q(p)∪Q(p′). This adds O(|N [p]|+ |N [p′]|) to the size of the matrix.
Again, the size of M remains linear in the size of G.

356 R.M. McConnell and Y. Nussbaum

3.4 Additional Segments

Last, we consider N3. For this set of probes we do not define further constraints,
but refine the probe - clique constraints. This is done by adding columns to M .
As mentioned earlier, the new columns have 0 or 1 in rows of MP and ∗ in rows
that we added for N1 and N2.

Let x ∈ N3, and assume that G is a probe interval graph. Let R be an interval
model of G. The set N [x] is a clique in G. Therefore there is a clique segment
in R that is intersected by the intervals of N [x].

Let C′ = {N [x] | x ∈ N3}. The members of C′ are the cliques of G that are not
in C. For each vertex v, let Q′(v) denote the set of members of C′ that contain
v. In an interval model of G, the interval for a probe p must intersect the clique
segments that correspond to members of Q(p)∪Q′(p), and the clique segments of
Q(p)∪Q′(p) must be consecutive in the left-to-right ordering of clique segments.
This gives us a refinement of the probe - clique constraints.

To represent the cliques of C′, we add a new column for every x ∈ N3, that
has a 1 in the row of a probe p if p ∈ N(x), and 0 otherwise. Using a sparse
representation of the matrix, this adds O(|N [x]|) to the size of the matrix.

This concludes the construction of M . If G is a probe interval graph, then
there must be a consecutive-ones ordering of the columns of M that obeys all
constraints. We summarize the section in the following lemma:

Lemma 2. It takes O(V + E) time to construct the probe matrix M or else
decide that G is not a probe interval graph. Moreover, if G is a probe interval
graph then M is a consecutive-ones probe matrix.

We use the algorithm of Sect. 5 to find a consecutive-ones ordering of M . If such
an ordering does not exist then G is not a probe interval graph.

4 Constructing an Interval Model

In this section we use the consecutive-ones ordering of M that we found in the
previous section to find an interval model of G, if one exists. The construction is
similar to the construction of [2] of an interval model from the clique matrix of
an interval graph. Each interval must intersect the clique segments it belongs to.
In addition, realizing bindings requires some differential stretching of endpoints
inside the zone between two consecutive clique segments.

Recall that we represent an interval model combinatorially by a list of al-
ternating blocks of left and right endpoints. We begin by defining two sets of
endpoints for every column C of M : C� and Cr . We show below how we populate
these sets. We order the sets according to the consecutive-ones ordering of the
columns of M , such that C� is to the left of Cr.

Let v ∈ V \N2. In this case, Q(v) ∪ Q′(v) is not empty. If v ∈ P ∪N1, then
Q(v) ∪ Q′(v) has a row in M . Let C be the leftmost column with 1 in this row
and D be the rightmost column with 1 in this row. If v ∈ N3, we let C and D
both be the column of the clique N [v]. We put the left endpoint of v in C� and

Linear-Time Recognition of Probe Interval Graphs 357

the right endpoint of v in Dr. Because M has a consecutive-ones ordering, this
takes linear time. Let us denote the resulting interval model by R1.

In R1, for every column C, the segment on the line between C� and Cr is the
clique segment of C. If the intervals of v and u intersect in R1, and at least one
of the two vertices is a probe, then v and u are adjacent.

However, there still might be some edges in E that are not realized by R1.
These edges are between x ∈ N1∪N2 and p ∈ N(x)\Qx. In order to realize these
adjacencies we place the endpoints of vertices of N2 and stretch the intervals of
N1, N2 and N(x) \Qx for x ∈ N1 ∪N2 between the clique segments of C ∪ C′.

Let x ∈ N2 and let Y1 and Y2 be as defined in Sect. 3.3, that is, the two sets
for which x defines probe - probe constraints, such that the intervals of Y1 are to
the left of the intervals of Y2. Let C be the rightmost column in which all rows
of members of Y1 have a 1. Let D be the leftmost column in which all rows of
members of Y2 have a 1. The columns C and D exist and are consecutive because
of the probe - probe constraints. We place the left endpoint of x in D� and the
right endpoint of x in Cr. Denote the construction so far by R2. Note that R2
is not an interval model, since we place the left endpoint of x to the right of its
right endpoint. We will resolve this problem when we stretch the intervals.

The last step of the construction is to stretch intervals of vertices of N1, N2
and N(x) \Qx for x ∈ N1 ∪N2. Consider two vertices v and u that are adjacent
in G, but whose adjacency is not realized in R2. Assume that v is to the left
of u. (If one of them is in N2, then it does not have a real interval, but it is
still clear which one is to the left.) Because of the non-probe - probe constraints
and the probe - probe constraint, we know that the set Cr, which contains the
right endpoint of v, is immediately to the left of D�, which contains the left
endpoint of u. We must stretch the endpoints of intervals that have unrealized
intersections, between the clique segments.

For every Cr and the set to its right, D�, we split the two sets and order
them as follows. We split Cr into subsets A0, A1, . . . , A|D�| and A′ such that an
endpoint f ∈ Cr is in Ai if it is an endpoint of an interval of a probe p with
|N(p) ∩ D�| = i, and in A′ if it is an endpoint of an interval of a non-probe.
Similarly we split D� into subsets B0, B1, . . . , B|Cr| and B′. Note that some
of the subsets might be empty. We replace Cr with the Ai’s, where A0 is the
leftmost. We replace D� with Bi’s where B0 is the rightmost. For every endpoint
f ∈ B′, we place f in a set to the right of Aj where j is the largest index such
that the vertex of f is non-adjacent to all vertices of A0, A1, . . . , Aj and adjacent
to all vertices of Aj+1, Aj+2, . . . , A|D�|. Similarly we place every endpoint f ∈ A′

in a set on the left of the appropriate Bj . Note that the set between A|D�| and
B|Cr| contains both right and left endpoints. We split this set F into a set F�

of left endpoints and a set Fr of right endpoints. Let us denote the resulting
construction by R. See Fig. 1.

If G is a probe interval graph, then we can place every member of A′ and B′,
and therefore we can construct R. This is because if we cannot place f ∈ B′ on
the right side of any Ai or f ∈ A′ on the left side of any Bi, then any interval
model of G must contain an induced chordless cycle, which is impossible.

358 R.M. McConnell and Y. Nussbaum

A0

A1

A3

B1

B2

B3
FrC

A’

B’

D�

Fig. 1. Reordering the endpoints of Cr and D	. The endpoints of Cr are right end-
points and the endpoints of D	 are left endpoints. Endpoints of non-probes are empty,
endpoints of probes are full.

Since every interval has two endpoints, and the splitting of Cr and D� takes
time proportional to the number of edges between vertices that have endpoints
in these sets, in O(V + E) time we can either construct R or decide that R
cannot be constructed, and thus that G is not a probe interval graph.

If we manage to construct R, then it is an interval model of G. First, note
that the endpoints of every vertex of N2 are now ordered properly, that is, the
left endpoint is to the left of the right endpoint. To show that R realizes G,
we consider the following cases for a probe p and a vertex v, and show that
their intervals in R intersect if and only if they are adjacent. If v ∈ P then
the claim is true because R[P] is a model of G[P]. If v ∈ N1 and p ∈ Qv or
if v ∈ N3 then the claim is true because the intervals intersect if and only if
(Q(v)∪Q′(v))∩ (Q(p)∪Q′(p)) �= ∅. Otherwise, the claim follows by the way we
stretch intervals into the region between the clique segments.

We conclude with the main theorem:

Theorem 3. Let G be a probe graph. In O(V + E) time we can construct an
interval model for G, or decide that G is not a probe interval graph.

5 Consecutive-Ones Probe Matrices

In this section we present a linear-time algorithm for the consecutive-ones probe
matrix problem. Let M be a probe matrix with i rows, j columns and k 1’s. We
determine if M is a consecutive-ones probe matrix in O(i + j + k) time. We do
so by finding the PQ-tree of two 0-1 submatrices of M using [2], and combining
the trees using tools of [11]. If M is a consecutive-ones probe matrix then we
find a consecutive-ones ordering of it. With a modification of [11] we can find a
PQ-tree that represents all consecutive-ones orderings of M . We do not present
it here, because a single consecutive-ones ordering is enough, and we want to
keep the description simple.

Let MR be the submatrix of M whose rows are the rows that do not have ∗’s,
and whose columns are all columns of M . Let MC be the submatrix of M whose

Linear-Time Recognition of Probe Interval Graphs 359

columns are the columns that do not have ∗’s, and whose rows are all rows of
M . Let X be the set of columns of MC .

Let TR be the PQ-tree of MR and let TC be the PQ-tree of MC . Let T ′ =
TR[X] ∩ TC . Each permutation σ ∈ Π(T ′) is a permutation in both Π(TR[X])
and in Π(TC). This means that σ = πX where π ∈ Π(TR). Assume that such
a permutation σ ∈ Π(T ′) exists. We can order TR so that the relative order of
leaves that are members of X is σ, because it is a restriction of some π ∈ Π(TR).
At a P node, we order the set of children that contain leaf descendants in X
according to the order of those members in σ. At a Q node, if two children
contain leaf descendants in X , from the two allowed linear orders of children,
we choose the one that is consistent with σ. The result is π, a consecutive-ones
ordering of columns of MR, such that σ = πX is a consecutive-ones ordering of
MC . Therefore, π is a consecutive-ones ordering of M .

On the other hand, if Π(T ′) = ∅, then there is no ordering of X that imposes
a consecutive-ones ordering both for TR[X] and for TC , and therefore M is not
a probe interval matrix.

Using [2] we can find TR and TC in O(i + j + k) time, and using [11] we can
find TR[X] and from it T ′ in the same time bound. Choosing σ and π takes O(j)
time.

Theorem 4. Let M be a probe matrix. In time linear in the size of the matrix
and the number of 1’s in it we can either find a consecutive-ones ordering of M ,
or else decide that M is not a consecutive-ones probe matrix.

6 Determining Whether a Model Is Uniquely Constrained

Recall that we represent an interval model combinatorially by a list of alternating
blocks of left and right endpoints, as the order of endpoints within a block is
inconsequential. Let R and R′ be two interval models. We say that R and R′

are equivalent if they are identical, or if we can get R′ from R by reversing the
order of its blocks and exchanging the blocks between the two endpoints of each
interval. If every model of G is equivalent to R, then R is a unique model of G.

Let T ′ be as in Sect. 5, for the matrix M , found in Sect. 3, and let R be the
model found in Sect. 4.

The model R is unique only if M has a unique consecutive-ones ordering up
to reversal. A consecutive-ones ordering of a matrix is unique up to reversal if
and only if the PQ-tree has a single internal node that is a Q node, if this is not
the case for T ′, then R is not a unique model. The same happens also if there is
more one way to produce π from σ. Specifically, this happens if there is a P node
with a child that does not contain an element of X or if there is a Q node for
which less than two children contain elements of X . This can be checked in time
linear in the size of T ′. Otherwise, the order for the columns of M is unique.

Even if M does have a unique consecutive-ones ordering, different models are
possible. The matrix M defines a unique order for the cliques of G, and therefore
a unique order of the clique segments in any interval model of G. Thus, for every
two vertices of V such that at least one is a probe, there is a unique order defined

360 R.M. McConnell and Y. Nussbaum

among their endpoints. However, if there are two non-probes x and x′ such that
the set that contains the left endpoint of x in the model R is next to the set that
contains the right endpoint of x′, then we can change the order between the two
endpoints. In this case as well, R is not a unique model of G. This last case can
also be detected in time linear in the size of G.

References

1. Benzer, S.: On the topology of the genetic fine structure. Proc. Nat. Acad. Sci.
U.S.A. 45, 1607–1620 (1959)

2. Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval
graphs, and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci. 13,
335–379 (1976)

3. Chandler, D.B., Guo, J., Kloks, T., Niedermeier, R.: Probe matrix problems:
Totally balanced matrices. In: Kao, M.-Y., Li, X.-Y. (eds.) AAIM 2007. LNCS,
vol. 4508, pp. 368–377. Springer, Heidelberg (2007)

4. Chang, G.J., Kloks, T., Liu, J., Peng, S.-L.: The PIGSs full monty - a floor show
of minimal separators. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS,
vol. 3404, pp. 521–532. Springer, Heidelberg (2005)

5. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
McGraw Hill, Boston (2001)

6. Fulkerson, D.R., Gross, O.: Incidence matrices and interval graphs. Pacific J.
Math. 15, 835–855 (1965)

7. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press,
New York (1980)

8. Golumbic, M.C.: Matrix sandwich problems. Linear Algebra and Applications 277,
239–251 (1998)

9. Golumbic, M.C., Trenk, A.N.: Tolerance Graphs. Cambridge studies in advanced
mathematics 89, New York (2004)

10. Johnson, J.L., Spinrad, J.P.: A polynomial time recognition algorithm for probe in-
terval graphs. In: SODA 2001, pp. 477–486. Association for Computing Machinery,
New York (2001)

11. McConnell, R.M., de Montgolfier, F.: Algebraic operations on PQ trees and mod-
ular decomposition trees. In: Kratsch, D. (ed.) WG 2005. LNCS, vol. 3787, pp.
421–432. Springer, Heidelberg (2005)

12. McConnell, R.M.: Linear-time recognition of circular-arc graphs. Algorithmica 37,
93–147 (2003)

13. McConnell, R.M., Spinrad, J.P.: Construction of probe interval models. In: SODA
2002, pp. 866–875. Association for Computing Machinery, New York (2002)

14. McMorris, F.R., Wang, C., Zhang, P.: On probe interval graphs. Discrete Applied
Mathematics 88, 315–324 (1998)

15. Rose, D., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination on
graphs. SIAM J. Comput. 5, 266–283 (1976)

16. Uehara, R.: Canonical data structure for interval probe graphs. In: Fleischer, R.,
Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 859–870. Springer, Heidelberg
(2004)

17. Zhang, P.: United states patent 5667970: Method of mapping DNA fragments (July
3, 2000)

Wireless Scheduling with Power Control�

Magnús M. Halldórsson

School of Computer Science, Reykjavik University & Icelandic Center of Excellence in
Theoretical Computer Science (ICE-TCS)

www.ru.is/faculty/mmh

Abstract. We consider the scheduling of arbitrary wireless links in the
physical model of interference to minimize the time for satisfying all re-
quests. We study here the combined problem of scheduling and power
control, where we seek both an assignment of power settings and a parti-
tion of the links so that each set satisfies the signal-to-interference-plus-
noise (SINR) constraints.

We give an algorithm that attains an approximation ratio of O(log n ·
log log Λ), where Λ is the ratio between the longest and the shortest lin-
klength. Under the natural assumption that lengths are represented in
binary, this gives the first polylog(n)-approximation. The algorithm has
the desirable property of using an oblivious power assignment, where
the power assigned to a sender depends only on the length of the link.
We show this dependence on Λ to be unavoidable, giving a construc-
tion for which any oblivious power assignment results in a Ω(log log Λ)-
approximation.

We also give a simple online algorithm that yields a O(log Λ)-
approximation, by a reduction to the coloring of unit-disc graphs. In
addition, we obtain improved approximation for a bidirectional variant
of the scheduling problem, give partial answers to questions about the
utility of graphs for modeling physical interference, and generalize the
setting from the standard 2-dimensional Euclidean plane to doubling
metrics.

1 Introduction

We are interested in fundamental limits on communication in wireless networks.
How much communication throughput is possible? This is an issue of efficient
spatial separation, keeping the interference from simultaneously communicating
links sufficiently low. The interference scheduling problem is then to schedule an
arbitrary set of communication links in the least amount of time while satisfying
interference constraints. In this paper, we focus on the power control version,
where we also choose the power settings for the links.

The scheduling problem depends strongly on the model of interference. Un-
til recently, previous algorithmic work has revolved around various graph-based

� Work done in part while visiting the Research Institute for Mathematical Sciences
(RIMS) at Kyoto University. Supported by Icelandic Research Fund grant 90032021.

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 361–372, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

www.ru.is/faculty/mmh

362 M.M. Halldórsson

models, where interference is modeled as a pairwise constraint. This, however,
fails to capture the accumulative property of actual radio signals. In contrast,
researchers in information, communication, or network theory (“EE”) are work-
ing with wireless models that sum up interference and respect attenuation. The
standard model is the signal-to-interference-plus-noise (SINR) model, to be for-
mally introduced in Section 1.3. The SINR model reflects physical reality more
accurately and is therefore often simply called the physical model. On the other
hand, “EE researchers” tend to propose heuristics that are evaluated by simu-
lation, which neither give insights into the complexity of the problem nor give
algorithmic results that may ultimately lead to new protocols.

In a seminal work, Moscibroda and Wattenhofer [15] initated the study of
scheduling in the SINR model. Formally, given is an arbitrary set of links, each
a sender-receiver pair of points in the plane. We seek an assignment of power
settings to the senders and a partition of the linkset into minimum number of
slots, so that the links in each slot satisfy the SINR-constraints. We refer to this
as the PC-Scheduling problem. In the related bidirectional scheduling problem,
both nodes in a link may be transmitting, which implies a stronger, symmetric
form of interference.

We seek algorithms that result in good schedules. Beyond this rather ob-
vious objective, we seek to map the landscape of the issues surrounding SINR-
scheduling. In particular, we shall study in this paper two relevant questions: the
utility of “simple” power allocation strategies, and the extent to which graphs
can capture interference in the SINR-model.

For reasons of simplicity of use, it is desirable to use power assignments that
are precomputable independent of other links. Such oblivious assignments de-
pend only on the length of the given link. In fact, oblivious assignments appear
unavoidable in the distributed setting. The two most frequently used power as-
signment strategies are indeed of this type, using either uniform (or fixed) power
for all the links, or linear assignment that ensures that the signals received at
the intended receivers are identical.

The other issue of particular interest is the utility of graphs for modeling
interference. It is a priori given that graphs are imperfect models, given both
the non-locality and the additive nature of interference in the SINR model. The
perceived difficulty in reasoning analytically about these additional complica-
tions has been cited as a factor against SINR model. Still, graphs have proved
to be highly versatile tools for analysis and algorithm design, and pairwise con-
straints are in general much easier to handle than many-to-many constraints.
We would therefore like to quantify the cost of doing business using graphs, or
the overhead that amenable graph models have over non-graphic models, as well
as pinpointing particular situations where graphs work especially well.

1.1 Our Contributions

We present a simple scheduling algorithm that works for any oblivious power
assignment strategy, resulting in a O(log Λ) approximation ratio, where Λ is the
ratio between the maximum and minimum link length. In particular, when all

Wireless Scheduling with Power Control 363

links are of nearly equal length, we obtain the first constant approximation.
This matches the constructions in [14] that show that both fixed and linear
assignments can be as much as Ω(log Λ) factor from optimal.

We then examine a new oblivious assignment, the mean assignment studied
recently in [7], which is the geometric mean of the uniform and linear power as-
signments. We give a simple scheduling algorithm that uses mean assignment and
obtains a O(log log Λ · log n)-approximation. Under the natural assumption that
lengths can be represented in binary, this implies also O(log2 N)-approximation,
where N is the size of the input. In the bidirectional version, the algorithm re-
sults in a O(log n)-approximation, improving on the previous O(logc n)-factor
with c > 6 [6] using considerably simpler arguments.

We show that the dependence on Λ is unavoidable for oblivious power assign-
ment strategies. Namely, any oblivious assignment forces Ω(log log Λ)-
approximate schedules. Thus, within the framework of power assignments that
are oblivious of the link instance, our results are best possible up to logarithmic
factor. Our results also pinpoint the issues of essential difficulty in the scheduling
of wireless links. When the input instance is “well-behaving” in that no sender is
much closer to the receiver of another link than its sender, or when the criteria is
changed from unidirectional to bidirectional scheduling, the bound improves to a
single logarithmic factor. Thus, we can characterize more precisely the structural
property of link arrangements that make scheduling hard.

Our results apply to the standard setting of the two-dimensional Euclidean
plane with the path-loss constant α > 2 (see Section 1.3). More generally, they
hold for a general class of distance metrics that are doubling metrics, for the case
when α is greater than the doubling constant of the metric. The requirement on
α is to ensure that the cumulative power of a transmission fades away. This is
a natural assumption, since preservation or amplification would contradict the
second law of thermodynamics. We can also extend all the results to general
metrics, with a roughly logarithmic increase in the approximation factor.

The simplicity of our algorithms leaves them suitable for distributed imple-
mentation. For links of nearly equal length, we can use uniform power, and
we show that the problem reduces, within a constant factor, to the coloring of
unit-disc graphs, a very well-studied problem. This also implies an O(log Λ)-
competitive online scheduling algorithm.

Our work also gives partial answer to a nagging question regarding the utility
of graphs in representing physical models of interference. Our results indicate
that graphs can still play a useful role. For nearly equal length links, the basic
class of unit-disc graphs is in fact sufficient. The O(log n·log log Λ)-approximation
result is also relative to the underlying graph.

Finally, it can be verified that our algorithms give equivalent results for
throughput maximization, or the Single-Slot scheduling problem.

1.2 Related Work

Most work in wireless scheduling in the physical (SINR) model has been of
heuristic nature, e.g. [5]. Only after the work of Gupta and Kumar [11] did

364 M.M. Halldórsson

analytical results became en vogue, but were largely non-algorithmic and re-
stricted to networks with a well-behaving topology and traffic pattern such as
uniform geometric distribution.

In contrast, the body of algorithmic work is mostly on graph-based models
that ultimately abstract away the nature of wireless communication. The ineffi-
ciency of graph-based protocols in the SINR model is well documented and has
been shown theoretically as well as experimentally [10,13,16].

Approximation algorithms for the problem of scheduling wireless links in the
SINR model were given in [17], [14] and [3]. In all cases the performance ratios
obtained consist of the product of structural properties and a function of the
number of nodes. The structural properties are different but can all grow linearly
with the size of the network.

A number of recent related results have featured a O(log Λ)-approximation.
Andrews and Dinitz [1] gave a O(log Λ) approximation for the Single-Slot
scheduling problem. Fanghänel, Kesselheim and Vöcking [7] gave a randomized
algorithm for the scheduling problem using linear power assignment that uses
O(OPT log Λ + log2 n) slots, matching our results for dense instances. And fi-
nally, Avin, Lotker and Pignolet [2] show that assumption of α > 2 used by all
previous work may not be necessary, in that the ratio between non-oblivious and
oblivious Single-Slot schedules is O(log Λ), at least in the 1-dimensional metric.

In [6], Fanghänel et al. give a construction that shows that any schedule based
on any oblivious power assignment can be a factor of n from optimal. We show
that in terms of Λ, the gap is actually Ω(log log Λ), using similar constructions.
They also introduce the bidirectional version of the scheduling problem and
give a O(log4.5+α n)-approximation factor using the mean power assignment in
general metrics. Their proof involves non-trivial embeddings into tree metric
spaces.

In contrast, the scheduling complexity of arbitrary links in the case of fixed,
uniform power is now fairly well understood. Constant factor approximations
were recently obtained for the Single-Slot scheduling problem [8] and the schedul-
ing problem [12]. Both of these problems are known to be NP-complete [9]. The
results obtained here for power control build on and extend the techniques and
properties derived in the case of uniform power in [8,12].

1.3 Notation and Preliminaries

Given is a set L = {	1, 	2, . . . , 	n} of links, where each link 	v represents a
communication request from a sender sv to a receiver rv. The distance between
two points x and y is denoted d(x, y). The asymmetric distance from link v to
link w is the distance from v’s sender to w’s receiver, denoted dvw = d(sv, rw).
The length of link 	v is denoted simply 	v. We shall assume for simplicity of
exposition that all links are of different length; this does not affect the results
materially. We assume that each link has a unit-traffic demand, and model the
case of non-unit traffic demands by replicating the links.

The nodes can transmit with different power. Let Pv denote the power as-
signed to node v. We assume the path loss radio propagation model for the

Wireless Scheduling with Power Control 365

reception of signals, where the signal received from w at receiver v is Pw/dα
wv

and α > 2 denotes the path-loss exponent. We adopt the physical interference
model, in which a node rv successfully receives a message from a sender sv if and
only if the following condition holds:

Pv/	α
v∑

�w∈S\{�v} Pw/dα
wv + N

≥ β, (1)

where N is the ambient noise, β ≥ 1 denotes the minimum SINR (signal-to-
noise-ratio) required for a message to be successfully received, and S is the set
of concurrently scheduled links in the same slot. Note that by scaling the power
of all the senders, the effect of the noise can be made arbitrarily small, thus
we ignore this term. Of course, in real situations, there are upper bounds on
maximum power, etc, which we ignore here. We shall also assume that β = 1; by
Prop. 1 this does not affect the results materially. We say that S is SINR-feasible
if (1) is satisfied for each link in S.

The affectance of link 	v caused by a set S of links, is the sum of the inter-
ferences of the links in S on 	v relative to the power received, or

aS(v) =
∑

�w∈S\{v}

Pw/dα
wv

Pv/	α
v

=
∑

�w∈S\{v}

Pw

Pv
·
(

	v

dwv

)α

For a single link 	w, we use the shorthand aw(v) = a{�w}(v). Note that
affectance is additive in that for disjoint sets of links S1, S2, aS1∪S2(v) =
aS1(v) + aS2(v). For convenience, let av(v) = 0.

Let OPT = OPT (L) denote a SINR-feasible schedule with minimum number
of slots. Let Γ = Γ (L) denote the number of slots in OPT . A p-signal set or a
schedule is one where the affectance of any link is at most 1/p. A set is SINR-
feasible iff it is a 1-signal set. Let OPTp be a p-signal schedule with minimum
number of slots, and let Γp denote its number of slots. Let Λ denote the ratio
between the maximum and minimum length of a link.

For a graph G, let Δ(G) denote the maximum degree of a vertex, and χ(G)
denote the chromatic number.

We extend the setting from the Euclidean plane to doubling metrics (see
Clarkson [4]). We require that the path loss exponent α be strictly greater than
the doubling dimension of the metric. We shall refer to such a combination of
distance metric and path loss function as a fading metric.

Preliminaries We shall refer to two links 	v and 	w as q-independent if they
satisfy the constraint

dvw · dwv ≥ q2 · 	w	v .

A set S of links is a q-independent set if the links in S are mutually q-independent.
Define the link graph Gq(L) on a link set L, parameterized by a constant q

such that a pair of links are adjacent in Gq iff they are not q-independent. The
following observation shows that a schedule of a linkset forms a coloring of the
corresponding link graph. The converse, however, does not necessarily hold, as
we shall see. Thus, the graph representation is more relaxed than required.

366 M.M. Halldórsson

Lemma 1. Links that belong to the same qα-signal slot are q-independent.

Proof. Since the links belong to the same p-signal slot, they satisfy

Pv/	α
v

Pw/dα
wv

≥ p, and
Pw/	α

w

Pv/dα
vw

≥ p .

By multiplying these inequalities together and rearranging, we get that

dvw · dwv ≥ p2/α · 	w	v = q2 · 	w	v .

One of the main difficulty in scheduling is the asymmetry of the links. In more
stringent schedules, the links are kept further apart, which diminishes the prob-
lems of asymmetry. For this purpose, the following result from [12] is crucial,
which shows that increasing stringency affects only the constant in the approx-
imation ratio.

Proposition 1 ([12]). For any p ≥ 1 and any linkset L, Γp(L) ≤
2p�2Γ (L).

2 Uniform Power Assignment

One of the most widely used power assignment is the uniform one, where senders
use the same power setting. This might be viewed as ultra-oblivious, as trans-
missions are now independent of link length.

We show in Sec. 2.1 that uniform power assignment performs very well when
links are of nearly equal lengths. This results in a O(log Λ)-approximation of
PC-Scheduling, using any oblivious power assignment. Additionally, the global
nature of the problem disappears, and local strategies become sufficient. In fact,
as we show in Sec. 2.2, it suffices to color a unit-disc graph, with discs of radius
proportional to the link lengths, to obtain a constant approximation.

2.1 Nearly Equal Linklengths

We say that a set of links is nearly equilength if lengths of any pair of links
in the set differ by a factor of at most 2. We first observe that the scheduling
complexity of a linkset is at least proportional to the degree of its link graph.

Lemma 2. Let L be a set of nearly equilength links and q be a constant. Then,
Γ (L) = Ω(Δ(Gq)).

Proof. Let 	v be a link with a set Nv of Δ(Gq) neighbors in Gq. We shall argue
that the links in Nv must belong to distinct slots in any p′-signal schedule,
for some p′ = O(qα). The theorem then follows from the signal-strengthening
Proposition 1.

Let 	u and 	w be links in Nv and let D be the longest length of a link in Nv. By
the link relationship in Gq, we have that duv ·dvu ≤ q2	v	u ≤ q2D2 and dwv·dvw ≤
q2D2. For any pair of links 	x, 	y in Nv, we have by the triangular inequality

Wireless Scheduling with Power Control 367

that dxy ≤ dyx + 2D. Thus, we have that max(duv, dvu, dwv, dvw) ≤ (q + 2)D.
Again by the triangular inequality, duw ≤ d(su, rv) + d(rv , sw) + d(sw , rw) =
duv + dwv + 	w ≤ (2q + 5)D. Similarly, dwu ≤ (2q + 5)D. Thus,

dwu · duw ≤ (2q + 5)2D2 ≤ (4q + 10)2	w	u .

Hence, Nv forms a clique in G4q+10. Hence, by Lemma 1 Γp′ ≥ Δ(Gq), for
p′ = (4q + 10)α. By Proposition 1, the theorem now follows.

The following results extends similar lemmas in previous works (see [8,12]) from
the setting of the Euclidean plane to the more general class of doubling metrics.
It yields a converse of Lemma 1 for the case of nearly equilength links. This is
the only place where we use the fading property of the metric, i.e., that α is
strictly greater than the doubling dimension.

Lemma 3. Let S be a z-independent set of nearly equilength links in a fading
metric, with uniform power assignment. Then, S is a Ω(zα)-signal set.

The two preceding lemmas imply the following result. Lemma 3 shows that when
q is sufficiently large, any coloring of Gq(L) gives a SINR-feasible schedule, while
Lemma 2 gives a matching lower bound on the optimal solution.

Theorem 1. Let L be a set of nearly equilength links, and let q be appropriately
chosen constant. A coloring of Gq(L) with O(Δ(Gq(L))) yields a uniform-power
schedule that is a constant approximation of PC-Scheduling of L.

We can handle links of arbitrary lengths by partitioning them into groups, where
lengths of links in each group differ by a factor of at most 2. A simple approach is
to schedule each group separately using Theorem 1. We can choose an arbitrary
fixed power to apply to each length class, or modify the powers within each
class up to a constant factor. Thus, we can apply any length-consistent power
assignment.

Let g(L) denote the length diversity of the link set L, or the number of length
groups. Note that g(L) ≤ log Λ.

Theorem 2. The PC-Scheduling problem is O(g(L))-approximable, using any
oblivious power assignment.

Moscibroda and Wattenhofer [15] showed that uniform and linear power schedul-
ing can be highly suboptimal, and Moscibroda, Oswald and Wattenhofer [14]
showed that they can can be as far as n or Ω(g(L)) from optimal.

2.2 Unit Disc Graphs and SINR Scheduling

We can represent the link graph Gq = Gq(L) approximately with a unit-disc
graph (UDG). Suppose the links have lengths in the range [d, 2d). Let G′

q be the
UDG formed by the points rv, for 	v ∈ L, with radius q

2 · d. We find that the
link graphs and UDGs are closely related, in that pairs of graphs of one type
sandwich graphs of the other type.

368 M.M. Halldórsson

Lemma 4. For any q ≥ 1 and any linkset L, G′
q ⊆ Gq+1 and Gq ⊆ G′

2(q+1).

Proof. Let v and w be neighbors in G′
q. Then, d(rv, rw) ≤ q · d. Thus, dvw ≤

	v + d(rv , rw) ≤ (q + 1)	v, and similarly dwv ≤ (q + 1)	w. Hence, dvw · dwv ≤
(q + 1)2	v	w, so 	v and 	w are neighbors in Gq+1.

On the other hand, suppose we have neighbors 	u and 	w in Gq. Notice that
d(ru, rw) ≤ duw + 	v ≤ duw + 2d, and similarly d(ru, rw) ≤ dwu + 2d. Then,

(d(ru, rw)− 2d)2 ≤ duw · dwu ≤ q2	v	w ≤ (2qd)2 .

Thus, d(ru, rw) ≤ 2(q + 1)d. Hence, 	u and 	w are neighbors in G′
2(q+1).

The scheduling problem reduces then, within a constant factor, to the coloring of
UDGs. Using Lemma 4, we can now simply find an ordinary graph coloring of the
UDG graph G′

2(q+1), where q is as in Theorem 1. Any minimal coloring suffices,
leading to an easy online algorithm.

Theorem 3. Applying an algorithm that colors unit disc graphs with O(Δ(G))
colors yields a constant approximation for PC-Scheduling on nearly equilength
links. In particular, there is an online algorithm that is constant competitive on
nearly equilength links and O(log Λ)-competitive in general.

3 Oblivious Power Assignments

We present in this section an scheduling algorithm using a certain oblivious
power assignment that achieves a ratio of O(log log Λ · logn). In the bidirectional
setting, the algorithm obtains an improved O(log n)-ratio, as shown in Sec. 3.1.
We also give a construction that shows a Ω(log log Λ)-separation between the
lengths of optimal schedules with or without oblivious power assignments.

We consider the mean power assignment (or, square-root assignment [7]) given
by Pv = 	

α/2
v . The affectance of link 	w on link 	v under mean power assignment

is

aw(v) =
Pw/dα

wv

Pv/	α
v

=
(

	w

	v

)α/2 (
	v

dwv

)α

=
(√

	v	w

dwv

)α

.

We say that a set S of links is well-separated if any pair of links differ by a factor
that is either less than 2 or greater than 8n2/α. We say that a link 	v and 	w are
τ-close under mean power assignment if, max(av(w), aw(v)) ≥ τ .

The key observation that we make is that each link affects (or is affected
by) very few links that are of widely different length. We can then treat those
affectance relationships in a graph-theoretic manner.

Lemma 5. Let Q be a well-separated SINR-feasible set of links, and let 	v be a
link that is shorter than the links in Q (by a factor of at least n2/α). Suppose
all the links in Q are 1

2n -close to 	v under mean power assignment. Then, |Q| =
O(log log Λ).

Wireless Scheduling with Power Control 369

Proof. Let Q′ be a maximum 3α-signal subset of Q. By Prop. 1, |Q′| ≥ |Q|/9α.
Q′ consists of two types of links: those that affect 	v by at least 1

2n under mean
power, and those that are affected by 	v by that amount. We shall consider the
former type; the argument is nearly identical for the latter type, and will be
omitted.

Consider a pair 	w, 	w′ in Q′ that affect 	v by at least 1
2n , and suppose with-

out loss of generality that 	w ≥ 	w′ . Thus,
√

	v	w
α ≥ dα

wv · 1
2n , which implies

that dwv ≤
√

	v	w(2n)1/α. Similarly, dw′v ≤
√

	v	w′(2n)1/α. By the triangular
inequality we have that

dw′w ≤ d(sw′ , rv)+d(rv , sw)+d(sw , rw) = dw′v +dwv +�w ≤ �w +21+1/αn1/α
√

�v�w ≤ 3�w,

where the last inequality holds because 	w ≥ 8n2/α	v and α ≥ 1. Similarly,

dww′ ≤ dvw + dvw′ + 	w′ ≤ 	w′ + 21+1/αn1/α
√

	v	w .

Multiplying together, we obtain that

dw′w · dww′ ≤ 3	w′	w + 12n1/α
√

	v	w	w .

However, since Q′ is a 3α-signal set, dw′w ·dww′ ≥ 9	w	w′ . By combining the last
two inequalities and cancelling a 6	w factor, we have that

	w′ ≤ 2n1/α
√

	v	w . (2)

Note that (2) implies that 	w ≥ 2	w′ , and thus, by well-separation, that 	w ≥
8n2/α	w′.

Label the links in Q′ by 	1, 	2, . . . , 	t in increasing order of length. Equation
(2) implies that

	i+1 ≥
	2
i

	vn2/α
≥ 2

	2
i

	1
,

for any i = 2, 3, . . . , t. Thus, if we let λi = 	i/	1, we get that λi+1 ≥ 2λ2
i , and by

induction that λt ≥ 22t−1−1. Hence, |Q′| = t ≤ lg lg λt + 2 = lg lg Λ + 2, and the
lemma follows.

We find that links of widely different lengths can be scheduled together rather
easily.

Lemma 6. Let L be a set of links partitioned into length groups L1, L2, . . . , Lt

such that links in the same group differ by a factor of at most 2 but links in different
groups differ by a factor of at least n2. Suppose each group Li has been scheduled with
uniform power using Γi slots. Then, there is an algorithm that produces a combined
schedule of L with mean power assignment using O(log log Λ ·maxi Γi) slots.

Proof. Let p = O(log log Λ) denote the bound of Lemma 5 on the size of the set
Q. First, we transform the schedules of the length groups into f -signal schedules,
where f = 2α/2+1. By Proposition 1, this stretches each schedule by a factor

370 M.M. Halldórsson

of at most (f + 1)2. Let Si be some slot in the resulting schedule for Li, for
i = 1, 2, . . . , t. We show that S = ∪iSi can be scheduled in p + 1 slots, resulting
in a total of (p+ 1) · (f + 1)2 ·maxi Γi slots for L. This yields the claimed result.

Process the links in S in decreasing order of length, and consider a link 	v.
By Lemma 7, there are at most p longer links 	w in S that are 1

2n -close to 	v.
Assign 	v to a slot Tj, j ∈ {1, 2, . . . , p+1}, that does not contain a 1

2n -close link.
This completes the specification of the algorithm.

It remains to argue that this assignment yields a SINR-feasible schedule. Con-
sider a link 	v in slot Tj , that originally came from slot Sk. The affectance
aSk∩Tj (v) by links of nearly equal length in Tj is at most 1/f by the f -signal
property. Changing the power assignment in the length group Sk from uniform to
mean power assignment increases affectance by at most a factor of 2α/2, for a total
of 2α/2/f = 1/2. The affectance of all other links (from different length classes) in
Tj on 	v is at most 1/(2n) each, by construction, or at most 1/2 in total. Hence,
the total affectance is at most one, resulting in a SINR-feasible schedule.

We obtain an algorithm that processes the length groups in decreasing order,
greedily assigning the links to the first class in which it affects no link by a
non-trivial amount.

Proposition 2. Suppose there exists a ρ-approximate algorithm for PC-
Scheduling on equi-length links that uses uniform power. Then, there exists a
O(ρ · log log Λ · log n)-approximate algorithm for PC-Scheduling that uses mean
power assignment.

Proof. Given a set L of links, divide L into length groups S1, S2, . . ., such that
Si = {	v ∈ S|	v ∈ [2i−1	min, 2i	min)}, where 	min denotes the length of the
shortest link in S. Then, partition S into classes Bi = ∪jSi+j· 2

α log n, for i =
1, 2, . . . , 2

α log n. The theorem follows from applying Lemma 6 on each class Bi

separately.

Using our result of Thm. 3 on equi-length links, we obtain the following result.

Theorem 4. PC-Scheduling is O(log log Λ · log n)-approximable in fading
metrics.

For general metrics, we obtain approximations with higher logarithmic factors.
Fanghänel et al [7] gave an algorithm using linear power assignment that yields a
schedule of length O(log Λ logn(Γ (L)+ log2 n)). On nearly equilength links, this
implies a schedule length of O(log n(Γ (L) + log2 n)). They also gave a simpler
algorithm with a ratio of O(log2 n).

Corollary 1. PC-Scheduling is O(log log Λ·log3 n)-approximable in general met-
rics, and within a factor of O(log log Λ · log2 n) when Γ (L) = Ω(log2 n).

We obtain as corollary, a relationship between schedule length and the chromatic
number of the link graph.

Corollary 2. For any link set L, there is a schedule using O(log log Λ · log n)
χ(Gp) slots in fading metrics.

Wireless Scheduling with Power Control 371

3.1 Bidirectional Scheduling

In the bidirectional variant introduced by Fanghänel et al [6], a stronger sepa-
ration criteria applies, since communication along each link can occur in either
direction. The distance between two links is now the shortest distance between
any endpoints of the links. Thus, duv = dvu = min(d(rv , ru), d(rv , su), d(sv, su),
d(sv, ru)). Other definitions are unchanged.

We can obtain a better approximation ratio for this problem, with essentially
the same algorithm, via the following stronger version of Lemma 5.

Lemma 7. Let S be a set of links inducing an independent set in Gp and let 	v

be a link. Then, there is at most one link 	w in S with 	w ≥ n2/α · 	v such that
av(w) ≥ 1/(2n) under mean power assignment and bidirectional measure.

Proof. Suppose the lemma is false and let 	w, 	w′ be two links in S that are longer
than n2/α times 	v and affect it by at least 1/(2n) each. Suppose without loss
of generality that 	w ≥ 	w′ . The assumption of affectance under mean power
assignment implies that

(√
�v�u

dvu

)α

≥ 1/(2n), for u ∈ {w, w′}. Thus, dvu ≤
(2n)1/α

√
	v	u. In the bidirectional case, dvu = duv. Thus, by the triangular

inequality, we have that

dww′ ≤ dwv + dvw′ ≤ 2(2n)1/α
√

�v�w ≤ 2(2n)1/α
√

(�w′/n2/α)�w ≤ 21+1/α
√

�w′�w .

Then, 	w and 	′w are not independent in Gp, for p ≥ 2, which contradicts our
assumption.

The rest of the argument is identical to the unidirectional case.

Theorem 5. Suppose there exists a ρ-approximate algorithm for the bidirectional
schedulingproblemonequi-length links.Then, there exists aO(ρ log n)-approximate
algorithm for the general bidirectional problem. In particular, there is a O(log n)-
approximation algorithm for bidirectional scheduling in fading metrics.

We obtain as corollary a connection between length of bidirectional schedules
and the chromatic number of the link graph representation.

Corollary 3. For any link set L with link graph Gp, there is a bidirectional
schedule using O(log n)χ(Gp) slots in fading metrics.

We can show that the bound obtained is best possible for oblivious power func-
tions, up to the logarithmic factor. The following result follows also from the
constructions in [7] by analyzing the dependence on Λ.

Theorem 6. For any length-consistent power function φ, there is a SINR-
feasible instance for which any schedule under φ requires Ω(log log Λ) slots.

Acknowledgement

The author is grateful to Roger Wattenhofer for posing the questions of schedul-
ing complexity in the physical model, as well as for helpful comments and advice.

372 M.M. Halldórsson

References

1. Andrews, M., Dinitz, M.: Maximizing capacity in arbitrary wireless networks in
the sinr model: Complexity and game theory. In: INFOCOM (April 2009)

2. Avin, C., Lotker, Z., Pignolet, Y.A.: On the power of uniform power: Capacity of
wireless networks with bounded resources. In: These proceedings (2009)

3. Chafekar, D., Kumar, V., Marathe, M., Parthasarathy, S., Srinivasan, A.: Cross-
layer Latency Minimization for Wireless Networks using SINR Constraints. In:
Mobihoc (2007)

4. Clarkson, K.L.: Nearest neighbor queries in metric spaces. Discrete and Computa-
tional Geometry 22, 63–93 (1999)

5. ElBatt, T.A., Ephremides, A.: Joint scheduling and power control for wireless ad
hoc networks. IEEE Transactions on Wireless Communications 3(1), 74–85 (2004)

6. Fanghänel, A., Keßelheim, T., Räcke, H., Vöcking, B.: Oblivious interference
scheduling. In: PODC (August 2009)

7. Fanghänel, A., Keßelheim, T., Vöcking, B.: Improved algorithms for latency min-
imization in wireless networks. In: Albers, S., Marchetti-Spaccamela, A., Matias,
Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. Part II. LNCS, vol. 5556, pp.
447–458. Springer, Heidelberg (2009)

8. Goussevskaia, O., Halldórsson, M.M., Wattenhofer, R., Welzl, E.: Capacity of Ar-
bitrary Wireless Networks. In: INFOCOM (April 2009)

9. Goussevskaia, O., Oswald, Y.A., Wattenhofer, R.: Complexity in Geometric SINR.
In: Mobihoc, pp. 100–109 (2007)

10. Gronkvist, J., Hansson, A.: Comparison between graph-based and interference-
based STDMA scheduling. In: Mobihoc, pp. 255–258 (2001)

11. Gupta, P., Kumar, P.R.: The Capacity of Wireless Networks. IEEE Trans. Infor-
mation Theory 46(2), 388–404 (2000)

12. Halldórsson, M.M., Wattenhofer, R.: Wireless Communication is in APX. In: Al-
bers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.)
ICALP 2009. Part II. LNCS, vol. 5556, pp. 447–458. Springer, Heidelberg (2009)

13. Maheshwari, R., Jain, S., Das, S.R.: A measurement study of interference modeling
and scheduling in low-power wireless networks. In: SenSys, pp. 141–154 (2008)

14. Moscibroda, T., Oswald, Y.A., Wattenhofer, R.: How optimal are wireless schedul-
ing protocols? In: INFOCOM, pp. 1433–1441 (2007)

15. Moscibroda, T., Wattenhofer, R.: The Complexity of Connectivity in Wireless Net-
works. In: INFOCOM (2006)

16. Moscibroda, T., Wattenhofer, R., Weber, Y.: Protocol Design Beyond Graph-Based
Models. In: Hotnets (November 2006)

17. Moscibroda, T., Wattenhofer, R., Zollinger, A.: Topology Control meets SINR: The
Scheduling Complexity of Arbitrary Topologies. In: Mobihoc (2006)

On the Power of Uniform Power:
Capacity of Wireless Networks with Bounded

Resources

Chen Avin1, Zvi Lotker1, and Yvonne-Anne Pignolet2

1 Ben Gurion University of the Negev, Israel
{avin,zvilo}@cse.bgu.ac.il

2 ETH Zurich, Switzerland
pignolet@tik.ee.ethz.ch

Abstract. The throughput capacity of arbitrary wireless networks un-
der the physical Signal to Interference Plus Noise Ratio (SINR) model
has received much attention in recent years. In this paper, we investi-
gate the question of how much the worst-case performance of uniform
and non-uniform power assignments differ under constraints such as a
bound on the area where nodes are distributed or restrictions on the
maximum power available. We determine the maximum factor by which
a non-uniform power assignment can outperform the uniform case in the
SINR model. More precisely, we prove that in one-dimensional settings
the capacity of a non-uniform assignment exceeds a uniform assignment
by at most a factor of O(log Lmax) when the length of the network is
Lmax. In two-dimensional settings, the uniform assignment is at most a
factor of O(log Pmax) worse than the non-uniform assignment if the max-
imum power is Pmax. We provide algorithms that reach this capacity in
both cases. Due to lower bound examples in previous work, these results
are tight in the sense that there are networks where the lack of power
control causes a performance loss in the order of these factors. As a con-
sequence, engineers and researchers may prefer the uniform model due
to its simplicity if this degree of performance deterioration is acceptable.

1 Introduction

The great success of wireless networks is mainly due to the fact that any device
can exchange information with any other device in its reception range. However,
this advantage is also the most problematic characteristic of wireless networks.
Since the communication medium is shared by all participants, it is necessary
to address the problem of interference. Simultaneous communication attempts
cause interference and might even prevent the correct reception of a signal. To
tap the full potential of a network, algorithms that coordinate the transmission
of messages are necessary. To reach the throughput capacity of a network, we
have to solve the problem of assigning time slots, frequencies and (depending on
hardware capabilities) transmitting power levels to a set of n pairs of wireless
transmitters (senders) and receivers distributed in a given area.

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 373–384, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

374 C. Avin, Z. Lotker, and Y.-A. Pignolet

When attempting to solve this and related problems, we must first choose the
appropriate interference model. A standard interference model that captures
some of the key characteristics of wireless communication and is sufficiently
concise for rigorous reasoning is the physical SINR model [7]. It describes inter-
ference as continuous property, decreasing polynomially with the distance from
the sender. In this model, a message is received successfully if the ratio between
the strength of the sender signal at the receiving location and the sum of inter-
ferences created by all other simultaneous senders plus ambient noise is larger
than some hardware-defined threshold. The fading speed depends on the value
of the so-called path-loss exponent α.

The analysis of problems in the SINR model is intricate, due to the non-binary
and accumulative features of interference. Only recently have some theoretical
guarantees for SINR-based algorithms been provided. One of problems under
scrutiny is the scheduling problem. Given a set of n pairs of senders and re-
ceivers along with the power level of the transmitters, the goal is to devise a
scheduling scheme that minimizes the total number of rounds that will satisfy
all the communication requests of every pair. In addition to the timing, the
signal strengths of the transmitting nodes greatly influence the performance of
wireless networks, since the number of simultaneous transmissions can be in-
creased if the nodes are able to emit signals of different power levels. Thus,
power control constitutes an additional aspect of interest. Orthogonally to the
scheduling problem, it is necessary to address the power assignment problem,
i.e., determining a power assignment for each sender of a given set of commu-
nication pairs in such a way that the total number of communication requests
in one round is maximized. The two problems are often combined, and many
algorithms addressing the problem of joint power control and scheduling of a set
of links have been devised (see related work section). Since power control, i.e.,
the possibility to assign a different power level to each sender, may play a major
role in the complexity of the problems or the performance of the algorithms, we
distinguish between two settings: non-uniform power (i.e., power control), where
each transmitter can transmit with a different power, and uniform power, where
there is only one power level. It has been demonstrated [12,13] that uniform
power has significant performance disadvantages compared to the non-uniform
case. However, examples of situations in which power control algorithms outper-
form uniform energy assignment schemes usually position the nodes in an area
of exponential size in the number of nodes and require transmission power levels
that differ by a factor exponential in the number of nodes.

On the other hand, a uniform power assignment has several important advan-
tages due to its simplicity. Most importantly, the production cost of wireless de-
vices that always transmit at the same power is lower. Therefore, the uniform
power assignment has been widely adopted in practical systems. The lack of power
control implies that a device only has to decide whether or not it should send a mes-
sage at the certain point of time, and not at which power level. As a consequence,
there are fewer possibilities to consider which makes reaching a decision much

On the Power of Uniform Power 375

�
r2

�
r1

S1S2

�10 �5 0 5 10

�10

�5

0

5

10

�
r2

�
r1

S1S2

�10 �5 0 5 10

�10

�5

0

5

10

S1S2
�
r2

�
r1

�10 �5 0 5 10

�10

�5

0

5

10

a) b) c)

Fig. 1. Impact of the choice of the interference model and power assignment. Given
two communication pairs, l1 = (s1, r1) and l2 = (s2, r2), the shaded areas indicate
where the signal of a sender can be received (the area in the lighter gray belongs to
sender s2). White areas imply that the received signal power is too weak for reception.
a) Uniform power: only node r2 receives a message from its sender, the interference is
to high at r1. b) Non-uniform power: both transmissions are successful. c) Unit Disk
Graph model: neither r1 nor r2 receive a message from their corresponding senders.

simpler. Moreover, recently a study of SINR diagrams1 [1] showed that the recep-
tion zones of all senders are convex for a uniform scheme but not necessarily for
non-uniform power assignments. This finding suggests that designing algorithms
may be much simpler for uniform networks than for non-uniform networks.

In this paper, we compare the uniform and non-uniform cases and study the
trade-off involved between the two, i.e., simplicity vs. performance. As mentioned
above, in the absence of restrictions, the performance of the non-uniform model
clearly exceeds the uniform model. However, by taking a closer look, we notice
that this conclusion is based on examples that involve unbounded resources. Of
course, resources are restricted in reality, e.g., the maximum available power for
a transmitter or the space where nodes are distributed may be limited. This
observation has motivated us to ask the following question:

In a resource-constrained setting (i.e., bounded area, bounded power),
what is the worst-case performance difference between the uniform and
non-uniform case?

In a nutshell, we show that with bounded resources the two cases are not sig-
nificantly different; therefore, engineers and researchers may actually prefer the
uniform model due to its simplicity.

1.1 Problem Statement and Overview of Our Results

In order to quantify the gap induced by the ability to adjust the transmission
power when the available resources are bounded, we consider the following game
1 The SINR diagram of a set of transmitters divides the plane into n + 1 regions or

reception zones, one region for each transmitter that indicates the set of locations
in which it can be heard successfully, and one more region that indicates the set of
locations in which no sender can be heard. This concept is perhaps analogous to the
role played by Voronoi diagrams in computational geometry.

376 C. Avin, Z. Lotker, and Y.-A. Pignolet

between two players, a non-uniform (power control) player and a uniform player.
The non-uniform player begins by setting up a configuration by selecting n com-
munication pairs where each pair consists of a sender and a receiver and their
locations. For these pairs the following two conditions must be met:

1. The distance between a sender and its intended receiver is at least one.
2. There exists a power assignment such that the receivers are able to decode

the messages of their senders when all senders transmit simultaneously with
the same frequency, i.e., the non-uniform configuration is feasible.

After the first player has reached its decision, the uniform player can, choose
a subset of these pairs that can transmit simultaneously with uniform power,
i.e., a feasible uniform configuration. The non-uniform player tries to position
the sender/receivers in such a way that the uniform player can pick only a small
subset of the available pairs, without causing too much interference. On the other
hand, the uniform player tries to select as many pairs as possible.2

Let the size of a configuration be the number of pairs in the configuration.
Our first result concerns the one-dimensional case. If the non-uniform player can
place its configuration on a interval of length at most Lmax, then we can state
the following:

Theorem 1. For any feasible non-uniform configuration of size n, there is a
feasible uniform configuration of a size of at least Ω(n/ log Lmax) if α = 2.

This result is tight in the sense that from previously known examples [11] there
are feasible non-uniform configurations of size n for which the size of any feasi-
ble uniform configuration is at most O(n/ log Lmax). Our proof is constructive
and we present an algorithm that achieves our bound. This algorithm, combined
with previous algorithms, can be used as an approximation scheme for the uni-
form scheduling problem and the uniform power assignment problem. In both
cases, one can take the output a non-uniform scheduling and/or power assign-
ment algorithm produces, which is basically a non-uniform configuration, and
obtain a uniform configuration by “paying” an additional approximation price
of log Lmax.

In the two-dimensional case, we consider power assignments rendering the
non-uniform player’s configuration feasible with transmission power levels in the
range of [1, Pmax]. In this case we prove:

Theorem 2. For any feasible non-uniform configuration of size n, there is a
feasible uniform configuration of a size of at least Ω(n/ log Pmax) if 0 < α.

This result is tight since there is a non-uniform configuration of size n for which
the uniform player can at most select a configuration with a size of at most
O(n/ log Pmax). As for Theorem 1, we devise an algorithm that achieves this
bound. Note that even if the ratio of the lowest and the highest power level is
2 Observe that the players are assumed to have unlimited computational power, since

the problem of selecting the largest subset of nodes transmitting with fixed power
levels has been shown to be NP-hard [6].

On the Power of Uniform Power 377

constant, it is not immediately obvious that in this case the capacity for the
uniform power assignment is in the same order as in setting with power control;
namely because there are infinitely many possible power assignments and nested
pairs of links are feasible.

It follows from Theorem 1 and Theorem 2 that if we bound either Pmax or Lmax
to n in the one-dimensional case, then a uniform power assignment is at most
log n worse than the best non-uniform power assignment. In the two-dimensional
case, this is true only if we bound Pmax.

The number of links able to transmit simultaneously crucially depends on
the path-loss exponent α. The faster the signal strength falls, the smaller an
amount of interference is caused. In [15], measurements of indoor and outdoor
path-loss exponents at various frequencies are reported, ranging from 1.6 to 6.
Most existing work relies on the assumption that α > 2, exploiting the fact
that in this case the interference of far away nodes can be bounded easily. For
α ≤ 2 the situation changes dramatically and different arguments are necessary.
In this paper, the results for two dimension hold for all α > 0, the results for
one dimension for α = 2.

2 Related Work

The study of the capacity of wireless metworks has been initiated by the seminal
work of Gupta and Kumar [7]. The authors bounded the throughput capacity
in the best-case (i.e., optimal configurations) for the physical models for α > 2.
More recently, a worst-case view point was adopted [10] by proving lower bounds.
We also use this approach in the current paper. The fact that interference is
continuous and accumulative as well as the geometric constraints render the
scheduling task difficult in the physical model, even if the transmission power of
the nodes is fixed. See [5,6,9] for the analysis of such scheduling algorithms. The
complexity of connectivity of a uniform power network is examined in [2].

Depending on the hardware, nodes are able to adjust their transmission power.
This capability can increase the number of links that are able to transmit suc-
cessfully at the same time. To exploit this fact, efficient power control algorithms
are necessary. For a given set of links, the highest achievable signal to noise ratio
can be computed in polynomial time [16], yet the complexity of the problem of
joint scheduling and power control in the physical model taking into account the
geometry of the problem is unknown. Nevertheless many algorithms and heuris-
tics have been suggested, see [11] for a classification and more detailed discussion
of these approaches. Very recent work, [3,4,8] gives upper and lower bounds for
power-controlled oblivious scheduling.

Non-uniform power assignment can clearly outperform a uniform assignment
[13,12] and increase the capacity of the network, therefore the majority of the
work on capacity and scheduling addressed non-uniform power. As we discussed
earlier, the study of the uniform case is still worthwhile, due to its simplicity.
To the best of our knowledge, the gap between these two models has not been
investigated under restricted resources.

378 C. Avin, Z. Lotker, and Y.-A. Pignolet

The proof of the scheduling algorithm for fixed power levels in [5] can be
adapted to conclude that the number of links that are able to communicate
concurrently with uniform power is bounded logarithmically in the ratio of the
highest and the lowest power, yet the analysis of their algorithm depends on the
fact that α > 2. In addition, the authors adopt a different viewpoint: Given a
set of links, they try to find an approximation of the shortest schedule without
power control. In contrast, we are concerned with the lower bound of the size
of the largest subset of links that are able to communicate simultaneously with
uniform power under the assumption that the original set was feasible with a
non-uniform assignment.

Very few papers have been devoted to the one-dimensional case, as the capac-
ity is more restricted than in two dimensions, especially for randomly distributed
nodes. Nevertheless, Moscibroda et al. [12,11] showed that the capacity of one-
dimensional networks can be linear in the number of the links, at the expense of
exponentially long links and and exponentially high power. Hence, we are among
the first to study the capacity for uniform and non-uniform power assignments
in one dimension.

Another paper published at ESA addresses power control and scheduling in
the SINR model. It proposes an oblivious O(log n log log Λ)-approximation algo-
rithm for the scheduling problem, where Λ is the ratio between the longest and
the shortest link length. Moreover it considers the approximation ratio uniform
power algorithms can achieve. Using a different tool set from ours, [8] shows
that if the Assouad dimension A of the underlying metric is strictly less than α,
uniform power assignments are at most a O(log(Λ))-factor worse than uncon-
strained power control. In other words, this more general result works well for
α > A, while our results for the two-dimensional case hold for any α > 0. We
believe that the techniques of [8] and the approaches of this paper are comple-
mentary and their combination might help to understand the remaining open
problems in the SINR interference model.

3 Model and Preliminaries

Let (M, d) be a metric space and V ⊆ M a finite set of |V | nodes. A node
vj successfully receives a message from node vi depending on the set of con-
currently transmitting nodes and the applied interference model. In this pa-
per, we adopt the physical SINR model [7], where the successful reception of
a transmission depends on the strength of the received signal, the interference
caused by nodes transmitting simultaneously, and the ambient noise level. The
received power Pri(si) of a signal transmitted by a sender si at an intended
receiver ri is Pri(si) = P (si) · g(si, ri), where P (si) is the transmission
power of si and g(si, ri) is the propagation attenuation (link gain) modeled
as g(si, ri) = d(si, ri)−α. The path-loss exponent α ≥ 1 is a constant typically
between 1.6 and 6. The exact value of α depends on external conditions of the
medium (humidity, obstacles, etc.) and on the exact sender-receiver distance.
Measurements for indoor and outdoor path-loss exponents can be found in [15].

On the Power of Uniform Power 379

Given a sender and a receiver pair li = (si, ri), we use the notation Iri(sj) =
Pri(sj) for any other sender sj concurrent to si in order to emphasize that
the signal power transmitted by sj is perceived at ri as interference. The total
interference Iri(L) experienced by a receiver ri is the sum of the interference
power values created by the set L of nodes transmitting simultaneously (except
the intending sender si), i.e., , Iri(L) :=

∑
lj∈L\{li} Iri(sj). Finally, let N denote

the ambient noise power level. Then, ri receives si’s transmission if and only if

SINR(li) = Pri
(si)

N+Iri
(L) = P (si)g(si,ri)

N+
∑

j �=i P (sj)g(sj ,ri)
=

P (si)
d(si,ri)α

N+
∑

j �=i

P (sj)
d(sj,ri)α

≥ β,

where β ≥ 1 is the minimum SINR required for a successful message reception.
In the sequel we assume β = 1 we set N = 0 and ignore the influence of noise
in the calculation of the SINR, for the sake of simplicity. However, this has no
significant effect on the results: by scaling the power of all senders, the influence
of ambience noise can be made arbitrarily small. Observe that for real scenarios
with upper bounds on the maximum transmission power this is not possible,
however, for our asymptotic calculations we can neglect this term.

For a uniform power assignment, we say a set of links L = {l1, . . . , ln} is a
uniformly feasible configuration of size n if P (si) = 1 and SINR(li) ≥ β for all
links li ∈ L. If the power level of a device is adjustable, we denote a set L to
be a PC feasible configuration of size n if there exists a power assignment such
that SINR(li) ≥ β for all links li ∈ L.

Zander [16] showed that the maximum achievable SINR (denoted SINR∗) for
wireless networks can be computed efficiently. Solving the eigenvalue problem
for the matrix Z =

[
g(si,rj)
g(si,ri)

]
yields an eigenvalue λ∗ for which all elements of the

corresponding eigenvector have the same sign. Then, the maximum achievable
SINR, is given by SINR∗ = 1/(λ∗−1). Furthermore, the corresponding eigenvec-
tor P∗ is a power vector reaching this maximum for all links, i.e., they all have
the same SINR level. Since we defined β = 1, this means that the largest eigen-
value of Z has to be less than 2, otherwise the successful concurrent transmission
of all links is impossible.3

Theorem 3 (Zander [16]). A set of senders can transmit simultaneously if
the largest eigenvalue of the normalized link gain matrix is less than 2.

We use the following equations from linear algebra repeatedly.

Theorem 4 (Eigenvalue relationships). Given an n-by-n matrix with real
or complex entries where λ1, . . . , λn are the (complex and distinct) eigenvalues
of A, then it holds for k ∈ N that for the trace of Ak, tr(Ak) =

∑
λk

i . In contrast,
the determinant of A is the product of its eigenvalues; i.e., det(A) =

∏
λi.

4 One Dimension: Length Constraint

In this section, we aim at determining the advantage of power control in one-
dimensional settings. We prove that at most a factor of log Lmax more links can
3 [16] ignores the influence of noise. See [14] for an approach that handles noise as

well.

380 C. Avin, Z. Lotker, and Y.-A. Pignolet

be scheduled with power control than without, if the senders and receivers are
located on a line of length Lmax. Moreover, we present an algorithm that given a
configuration feasible with power control, selects a subset of these links that can
be scheduled with uniform power and contains at least a 1/ logLmax-fraction
of the links in the original configuration. As a first step, we show that, even
when power is adjustable, two links transmitting concurrently must not cross,
otherwise at least one of the receiver cannot decode the message.

Lemma 1 (Crossings). Two senders s1 and s2 cannot transmit successfully
at the same time if their respective receiver is closer to the other sender, i.e.,
if d(s1, r1) > d(s1, r2) and d(s2, r2) > d(s2, r1). [Proof in full version, applies
Theorem 3]

Nested pairs however are possible. But, as soon as there are more than two
nested pairs, they cannot be too close to each other, since the interference is
too high otherwise. More precisely, we can show that no matter how we position
three nested sender/receiver pairs in an interval of length three and regardless
of the power levels we assign to them, they cannot transmit simultaneously.

Lemma 2 (Nestings). Three nested communication pairs need at least an in-
terval of two times the shortest link distance, otherwise they cannot transmit
simultaneously if α = 2.

Proof. (Sketch) We compute the normalized gain matrix Z for three nested links
sending in the same direction. We show that for α = 2 the following holds

– tr(Z)) = 3
– tr(Z2) > 5
– det(Z) > 0

Applying Theorem 4 we can derive three conditions the eigenvalues of Z have to
satify and we can show that they conflict with the requirement that the largest
eigenvalue has be less than two (otherwise no feasible solution, Theorem 3). Thus
there is no configuration with three links transmitting in the same direction
simultaneously if the longest link is at most twice as long as the shortes. For
the other scenarios, where at least one link transmits in the other direction,
tr(Z)) = 3 and tr(Z2)) exceeds 9 and the arguments carry over.

We know from Lemma 2 that three nested links require an interval of more
than three times the shortest link distance. Let the shortest distance be one. If
we want to add three additional nested links that include the first three links
we need at least an interval of length 32, if we neglect the interference from the
three inner most links. We can repeat this procedure at most O(log Lmax) times,
before we cover the entire interval length Lmax. Thus Corollary 1 follows.

Corollary 1 (Nestings). At most O(log Lmax) links can be nested on a interval
of length Lmax, otherwise there exists no power assignment allowing them to
transmit simultaneously if α = 2.

On the Power of Uniform Power 381

Apart from crossing and nested links, we need to consider parallel links as well.
We can show the following lemma.

Lemma 3. Let ζ(x) =
∑∞

i i−x the Riemann zeta function. Out of m parallel
links (no crossings, no nestings) where the length of the longest link is at most
twice the length of the shortest link, there are at least k =
21/α−1ζ(α)(1/α)�
senders that can transmit successfully at the same time with a uniform power
assignment if α > 1.

Since ζ(x) konverges for all real x > 1, we have now all the ingredients necessary
to conclude how much the capacity in a uniform power setting suffers from the
lack of power control. We rephrase Theorem 1:

Theorem 5. Consider an interval of length Lmax. Given a PC-feasible config-
uration of size n, there exists a uniformly feasible configuration of size at least
Ω(n/ log Lmax) if α = 2.

Proof. Given a set of links, we divide the links into log Lmax length classes such
that the class k contains the links of length in the interval [2k−1, 2k]. We pick the
class containing the largest number of links. At least half of them transmit in the
same direction. If there are any nested links, we know thanks to Lemma 2 that
there are at most two nested links in the same length class. As a next step we
can apply Lemma 3 by picking the first and every
21/α−1ζ(α)(1/α)�th of these
links and let them transmit concurrently with a uniform power assignment. Due
to this procedure a power control algorithm can schedule at most O(log n) more
links simultaneously and the claim follows. ��

5 Power Restriction

Even if the transmission power of a device is adjustable, there is typically a
bounded range for the power or, even more restricted, a set of available power
levels. In these situations, a uniform assignment can achieve a substantial frac-
tion of the capacity a power control scheme can reach. In the following we exam-
ine the difference between the two strategies if the first player can place the nodes
in arbitrary positions and use transmission power levels in the range [1, Pmax].
We rephrase Theorem 2:

Theorem 6. Given a PC-feasible configuration of size n in the two-dimensional
Euclidean space, there exists a uniformly feasible configuration of size at least
Ω(n/ log Pmax)

We construct an algorithm that given a PC-feasible set of n links placed in the
two-dimensional Euclidean plane returns a uniformly feasible set that contains
at least Ω(n/ log Pmax) links. Before we start with the description of the algo-
rithm we elaborate on the problems that our algorithm faces. Since the senders
in the resulting set of links have to be able to transmit with the same power and

382 C. Avin, Z. Lotker, and Y.-A. Pignolet

since there is typically background noise we are forced to increase the power lev-
els (of a selected subset of transmitters) to the same power level. Consequently,
the interference raises and we need to push the interference back to the level
it was. We can do this by further reducing the number of senders. The main
challenge is to keep the number of senders as large as possible. So far we have
only considered the senders. In order to ensure that the signal to interference
ratio is high enough at the receivers as well, we use the fact that from far away
the position of the sender and the receiver almost coincide.

Proof (Sketch). Our algorithm (cf. Algorithm 2 for a description in pseudo code)
starts by computing an optimal power assignment for the given set of links. Then,
we divide the links into classes of similar power levels, i.e. we build subsets of
links where the highest transmission power is at most twice the lowest power.
Among these sets, we choose the one of greatest cardinality, T1. The intuition for
this step is that we now have a fairly homogeneous set of links and the difference
between a uniform power assignment and arbitrary power levels is negligible.
We remove some links of this set T1 to guarantee that all remaining senders
can transmit concurrently. To this end, we start with the longest link l1 and
we first clean an area around its receiver, i.e., we delete links with senders too
close to r1 from the set T1. We assign l1 to the candidate set T2 and repeat this
procedure with the remaining links until no links are left. These steps ensure
that the interference at sj and at rj is roughly the same. Next, we remove more
links to guarantee that the remaining set is uniformly feasible. We pick one
link lj of the candidate set T2 and we partition the plane into six sectors of
60◦ around sj . In each sector we remove the links whose senders are closest to
sj . Thereafter we add li to the set T3 and recursively repeat the partitioning
and removal with the remaining links. Before finally declaring the set of the
surviving links to be simultaneously schedulable, we repeat the procedure with
T3, this time considering the links in the opposite sequence. We show now that
the configuration S produced by this algorithm is uniformly feasible4 and at most
a factor of O(1/ log Pmax) smaller than the original set L. Line 4 determines the
largest set of similar power levels. A set of links where the feasible power levels
differ by at most a factor of two is very similar to a uniformly feasible set. In
particular, the number of senders in close proximity to a receiver is limited. This
can be shown by adapting Lemma 4.2 from [5] to this case.

Lemma 4 (Extension of Lemma 4.2 from [5]). For any link li of a PC-
feasible set L the number of senders within distance c · d(si, ri) from the receiver
ri is at most 2cα/β if Pmax/Pmin < 2. [Proof in full version]

Thus we can conclude that this algorithm runs in polynomial time and the orig-
inal set size is reduced by a factor of O(1/logPmax) in line 3, by O(β

2μα) in lines

4 This algorithm can be generalized to higher dimensions at the expense of a higher
constant in its approximation guarantee. The only adjustments affect the lines 11-
12 and 16-17, where cones instead of sectors are considered. We omit the explicit
treatment of higher dimensional cases to increase the clarity of the arguments and
more than three dimension are unlikely to be of practical importance.

On the Power of Uniform Power 383

4-7 (due to Lemma 4), by O(1
6ν) in lines 8-12 and by O(1

6ν) in lines 13-17. Conse-
quently, the ratio between the input and the output set is
L
S ≤ O(nβ

72μαν2 log Pmax
) ∈ O

(
n

log Pmax

)
.

Algorithm 2 2D log(pmax)-approximation
Require: PC-feasible set L = {l1, . . . , ln}
Ensure: uniformly feasible set S ⊂ L

1: set μ := 1 + 2α and ν :=
⌈
(2 · μ

μ−1
)α
⌉
− 1

2: determine power assignment for L (Zander)
3: partition L into subsets Li := {lj |2i ≤ P (sj) < 2i+1},

i = 1, . . . , log Pmax − 1
4: set T1 := arg max0≤i<log(pmax) |Li|, T2 := ∅, T3 := ∅
5: repeat
6: move longest link lj from T1 to T2

7: remove li from T1 if d(si, rj) < μd(sj , rj)
8: until T1 = ∅
9: repeat

10: move longest link lj from T2 to T3

11: partion plane into 6 sectors of 60◦ around sj

12: in each sector remove the ν links
with the closest senders to sj from T2

13: until T2 = ∅
14: repeat
15: move shortest link lj from T3 to S
16: partion plane into 6 sectors of 60◦ around sj

17: in each sector remove the ν links
with the closest senders to sj from T3

18: until T3 = ∅
19: return S;

It remains to demonstrate
that the resulting set is indeed
uniformly feasible. By setting the
transmission power to two for ev-
ery sender, the strength of the in-
terference at the receivers is at
most doubled. As a consequence
we have to reduce the number of
simultaneous transmissions such
that the interference is halved in
order to obtain a uniformly fea-
sible set. Clearing a disk around
each receiver and removing close
senders diminishes the interfer-
ence by half. We prove this in two
steps. First we show how much
the interference experienced at
the senders is decreased and then
we derive the resulting amount
of interference at their respective
receivers.

Lemma 5. Isi(S) < 1
ν+1Isi(L) and Iri(S) < (μ

μ−1)αIsi (S) for all li ∈ S. [Proof
in full version]

As a consequence the algorithm has reduced the interference at the receivers by at
least Ω(1

ν+1 ·
(

μ
μ−1

)α

) = 1

2(μ

μ−1)
α� ·

(
μ

μ−1

)α

≥ 1
2 ·
(

μ−1
μ

)α

·
(

μ
μ−1

)α

= 1
2 . There-

fore all transmitters that survive can transmit at power 2, while their receivers
are guaranteed to be able to decode the message successfully. This concludes the
proof that there always exists a uniform power O(log Pmax)-approximation of a
power control problem. ��

6 Conclusion

In this paper we show that for limited resources, e.g., an upper bound on the
maximum transmission power or the maximum distance between a sender and
a receiver, a uniform power assignment provides a log-approximation for the
achievable capacity by a non-uniform power assignment. These results can be
understood in two ways. We can design and solve algorithmic problems in the
uniform power model instead of the non-uniform power model and lose a log
factor in the solution. The result presented in this paper suggest the following
methodology for solving algorithmic problems in the non uniform power models.

384 C. Avin, Z. Lotker, and Y.-A. Pignolet

First solve the same problem in the uniform power model (this task is usually
simpler and less general). Use this solution as a guide line for the general case
involving power control and try to eliminate the logarithmic factor.

References

1. Avin, C., Emek, Y., Kantor, E., Lotker, Z., Peleg, D., Roditty, L.: SINR Diagrams:
Towards Algorithmically Usable SINR Models of Wireless Networks. In: Proc. 28th
Symposium on Principles of Distributed Computing, PODC (2009)

2. Avin, C., Lotker, Z., Pasquale, F., Pignolet, Y.A.: A Note on Uniform Power Con-
nectivity in the SINR Model. In: Proc.5th Intl Workshop on Algorithmic Aspects
of Wireless Sensor Networks, ALGOSENSOR (2009)

3. Fanghänel, A., Kesselheim, T., Räcke, H., Vöcking, B.: Oblivious Interference
Scheduling. In: Proc. 28th Symposium on Principles of Distributed Computing
(PODC) (2009)

4. Fanghänel, A., Keßelheim, T., Vöcking, B.: Improved Algorithms for Latency Min-
imization in Wireless Networks. In: Albers, S., Marchetti-Spaccamela, A., Matias,
Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. Part I. LNCS, vol. 5555, pp.
525–536. Springer, Heidelberg (2009)

5. Goussevskaia, O., Halldorsson, M., Wattenhofer, R., Welzl, E.: Capacity of Arbi-
trary Wireless Networks. In: 28th Annual IEEE Conference on Computer Commu-
nications (INFOCOM) (2009)

6. Goussevskaia, O., Oswald, Y.A., Wattenhofer, R.: Complexity in Geometric SINR.
In: ACM International Symposium on Mobile Ad Hoc Networking and Computing
(MOBIHOC), Montreal, Canada (September 2007)

7. Gupta, P., Kumar, P.R.: The Capacity of Wireless Networks. IEEE Trans. Inf.
Theory 46(2), 388–404 (2000)

8. Halldórsson, M.: Wireless Scheduling with Power Control. In: Proc. 17th annual
European Symposium on Algorithms (ESA), pp. 368–380 (2009)

9. Halldorsson, M., Wattenhofer, R.: Wireless Communication is in APX. In: Al-
bers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.)
ICALP 2009. Part I. LNCS, vol. 5555, pp. 525–536. Springer, Heidelberg (2009)

10. Moscibroda, T.: The worst-case capacity of wireless sensor networks. In: Proc. 6th
Conference on Information Processing in Sensor Networks, IPSN (2007)

11. Moscibroda, T., Oswald, Y.A., Wattenhofer, R.: How Optimal are Wireless
Scheduling Protocols? In: Proc. 26th IEEE Conference on Computer Communi-
cations (INFOCOM) (2007)

12. Moscibroda, T., Wattenhofer, R.: The Complexity of Connectivity in Wireless Net-
works. In: Proc. 25th Conference of the IEEE Computer and Communications
Societies, INFOCOM (2006)

13. Moscibroda, T., Wattenhofer, R., Weber, Y.: Protocol Design Beyond Graph-based
Models. In: Proc. 5th ACM SIGCOMM Workshop on Hot Topics in Networks,
HOTNETS (2006)

14. Pillai, S., Suel, T., Cha, S.: The Perron-Frobenius theorem. IEEE Signal Processing
Magazine 22(2), 62–75 (2005)

15. Rappaport, T.: Wireless communications. Prentice-Hall, Englewood Cliffs (2002)
16. Zander, J.: Performance of optimum transmitter power control in cellular radio

systems. IEEE Trans. Veh. Technol. 41 (1992)

Approximability of OFDMA Scheduling

Marcel Ochel and Berthold Vöcking

Department of Computer Science, RWTH Aachen University, Germany

Abstract. In this paper, we study the complexity and approximability
of the orthogonal frequency-division multiple-access (OFDMA) schedul-
ing problem with uniformly related communication channels.

One is given n ≥ 1 terminals each coming with a demand di > 0
and m ≥ n communication channels each coming with a cost parameter
pj > 0. The channels shall be assigned to the terminals in a way that each
channel is mapped to at most one terminal and each terminal receives
at least one channel. Additionally, each channel j needs to be assigned
a communication rate rj > 0 such that the sum of the rates of the
channels mapped to terminal i satisfies at least the demand di. Using
the Shannon rate-power function, the energy requirement for channel j
is assumed to be pj(2rj −1). The objective is to minimize the sum of the
energy requirements over all channels.

We prove that the problem is NP-hard and cannot be approximated
with approximation factor α, unless P = NP, where α > 1 is any poly-
nomial time computable function. We then consider a complementary
problem setting in which one is given a threshold on the energy require-
ment and the objective is to maximize λ such that each terminal receives
a rate of at least λdi. We show that this maximin version of the problem
admits a PTAS if all demands are identical and a 1

2
-approximation for

general demands.

1 Introduction

Orthogonal frequency division multiplexing (OFDM) has become an increasingly
popular technology in the area of broadband communication and its inherent
optimization problems were intensively studied by the engineering sciences [8,
11, 5].

We study the problem of downlink OFDMA (orthogonal frequency-division
multiple-access), which is a central problem faced by implementing wireless or
other modes of broadband communication in practice [6, 2, 7]. In this problem
data has to be send from a base station to n ≥ 1 many terminals using a set
of m ≥ n orthogonal subcarriers also called channels. We consider the model
of uniformely related channels, where each channel comes with an associated
cost parameter pj which is the reciprocal value to the signal-to-noise ratio of the
channel. By applying the formulas for the Shannon capacity, the energy required
to sent data with a rate of rj over channel j is assumed to be pj(2rj−1). For given
data rates di for each terminal i the total transmit power has to be minimized.

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 385–396, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

386 M. Ochel and B. Vöcking

In the general OFDM model a channel can be used for transmissions to more
than one terminal at a time, but then interference could be caused, resulting in
a possible loss of data. In order to avoid this, the sharing of channels is explicitly
forbidden in OFDMA (a composition of OFDM and FDMA, frequency-division
multiple-access), so each channel can be assigned to at most one terminal. Some
theoretical justification for this can be found in [5].

We formalize the problem of OFDMA scheduling by the following nonlinear
program:

Min-Power OFDMA

min
m∑

j=1

pj · (2rj − 1) (1)

subject to

∀i ∈ [n]
m∑

j=1

xijrj ≥ di (2)

∀j ∈ [m]
n∑

i=1

xij ≤ 1 (3)

∀i ∈ [n], ∀j ∈ [m] xij ∈ {0, 1}, rj ≥ 0 (4)

A feasible solution (X, r) with the assignment matrix X = (xij)i∈[n],j∈[m] and
the rate vector r = (r1, . . . , rm) will be called a schedule.

As in [11] we will also consider a natural complementary variant of the prob-
lem. Instead of minimizing the total transmit power satisfying given demands,
one strives to maximize the minimal fraction of demand that can be achieved
without violating a specified energy bound.

Max-Rate OFDMA
max λ (5)

subject to

m∑
j=1

pj · (2rj − 1) ≤ E (6)

∀i ∈ [n]
m∑

j=1

xijrj ≥ λdi (7)

∀j ∈ [m]
n∑

i=1

xij ≤ 1 (8)

∀i ∈ [n], ∀j ∈ [m] xij ∈ {0, 1}, rj ≥ 0 (9)

In literature many different variants of OFDMA are covered. A common gener-
alization is to allow more general rate-power functions to replace the one implied

Approximability of OFDMA Scheduling 387

by the Shannon capacity. Also independent cost parameters pij instead of the
uniformely related pj can be introduced to model user dependend signal-to-noise
ratios.

There have been numerous attempts to solve OFDMA scheduling, but because
of the widely assumed intractability of the problem these were mostly heuristics
not guaranteeing any bound on the quality of the found solutions or the running
time. Also several optimal superpolynomial time algorithms were developed.

In 2006 a proof for NP-hardness of Min-Power OFDMA was published [9] us-
ing a reduction from the Subset-Sum problem. Unfortunately the authors over-
looked an exponential blowup in their construction. Nevertheless, the problem
is NP-complete, as we will show in Section 2. Moreover, even an approximation
of Min-Power OFDMA within any polynomial time computable factor α is not
possible.

In contrast to this, we will examine approximability for the case of the Max-
Rate variant, which does not suffer from the handicap of an exponential objec-
tive function. In Section 3 we develop a polynomial time approximation scheme
(PTAS) for the Max-Rate OFDMA problem with uniform demands, that for
any given constant ε computes a schedule satisfying a minimum rate of at least
(1− ε)λoptd. Up to our knowledge no polynomial time approximation algorithm
for Max-Rate OFDMA with a theoretical worst-case bound has been known to
date. The scheme will be constructed by adapting techniques from the area of
makespan scheduling [3]. As a byproduct a PTAS different from the one in [10]
will be given for the Santa Claus Scheduling problem on identical machines.

In Section 4 we will then look at the case of Max-Rate OFDMA with general
demands which contains the case of slightly more general cost parameters of the
form pij = pi ·pj . As our PTAS does not apply there, we use a different approach
and obtain a simple 1/2-approximation algorithm.

2 Hardness of Approximation

We will show approximation-hardness of Min-Power OFDMA for any polynomial
computable factor α. This will be done by a reduction from 3-Partition. As an
intermediate step we reduce this problem to Min-3π-Partition which is defined
below.

Definition 1 (Min-3π-Partition). Given a set A = {a1, . . . , a3n} of nonneg-
ative integers. Find a partition P of A into triples such that

∑
(x,y,z)∈P xyz is

minimal.

Theorem 1. Let α(k) be any polynomial time computable function. Then Min-
3π-Partition can not be approximated in polynomial time within a factor of
α(|A|), unless P = NP.

Proof. Assume there is a polynomial time algorithm which approximates Min-
3π-Partition within a factor of α. We will reduce the classic 3-Partition problem
to Min-3π-Partition in a gap-introducing way.

388 M. Ochel and B. Vöcking

Let B = {b1, . . . , b3n} be an instance of 3-Partition. Since the problem is
known to be strongly NP-hard, we can assume the bi to be unary coded. For
every integer bi we construct an element ai = (αn)bi . Note that for every ai

the size of the binary representation is bounded by bi · log(αn) and thereby
polynomial in the size of the 3-Partition instance. Then the Min-3π-Partition
instance is given by A = {a1, . . . , a3n}.

If B is a yes-instance of 3-Partition, the cost of the optimal Min-3π-Partition
is bounded by cyes ≤ n · (αn)s where s :=

∑3n
i=1 bi/n. A no-instance B how-

ever, would incur a cost of cno > (αn)s+1 ≥ α · cyes. Thus the α-approximation
algorithm for Min-3π-Partition would solve 3-Partition, which leads to a contra-
diction (unless P = NP). ��

The following lemma will help us to identify a substructure of the OFDMA
scheduling problem that basically behaves like Min-3π-Partition.

Definition 2. For a given set C of channels, a demand d, and a channel c ∈ C
we define the function

ρ(d)
c (C) :=

d +
∑

j∈C log pj

|C| − log pc .

We call a set C of channels ρ-feasible with respect to d if for all c ∈ C we have
ρ
(d)
c (C) > 0.

We say a schedule uses a channel c if in this schedule the rate on this particular
channel is strictly positive.

Lemma 1. Consider the subproblem of OFDMA scheduling in which there is
only one terminal with demand d and a set C = {1, . . . , m} of channels with
pmin > 0. W.l.o.g. assume p1 ≤ p2 ≤ · · · ≤ pm. Then the subset of channels
used by the optimal solution is exactly the set C′ := {1, . . . , k}, where k is the
largest index such that C′ is ρ-feasible, and the optimal assignment is given by

ropt
c =

{
ρ
(d)
c (C′) c ∈ C′

0 c ∈ C \ C′

with a total cost of

optcost(d)(C) := k · k

√
2d

∏
j∈C′

pj −
∑
j∈C′

pj .

Proof. Clearly the subset of channels used by an optimal solution has the form
C∗ = {1, . . . , h} for an index h ≥ 1, otherwise there are channels c∗ ∈ C∗ and
c̄ ∈ C \C∗ with pc∗ > pc̄ which can be swapped in order to decrease the energy.

For the set {1, . . . , k} we can minimize the function

f(r1, . . . , rk−1) =
k−1∑
i=1

pi(2ri − 1) + pk(2d−∑k−1
i=1 ri)

Approximability of OFDMA Scheduling 389

which is just the relaxed version of the original problem without nonnegativity
constraint restricted to the channels 1, . . . , k. Note that f is convex and any local
minimum is a global minimum. Setting the partial derivatives to zero leads to
the solution

ri = (d +
k∑

j=1

log pj)/k − log pi = ρ
(d)
i ({1, . . . , k})

for every i ∈ [k] including i = k with rk = 1−
∑k−1

i=1 ri.
Since the set {1, . . . , k} is ρ-feasible by definition of k, the above computed

optimal solution on this set is also a feasible optimal solution to the original
problem restricted to the channels 1, . . . , k implying that h ≤ k. From the max-
imality of k follows that any rate vector r̄ with r̄h > 0 for some h > k would
have a positive partial derivative at r̄h and thereby could not be optimal.

Knowing that the optimal rates are defined by ropt
c the optimal cost for the

terminal can be easily computed. ��
Now we show approximation-hardness of Min-Power OFDMA by a gap-
preserving reduction from Min-3π-Partition.

Theorem 2. Min-Power OFDMA with uniform demands can not be approxi-
mated within a factor of α, where α is any polynomial time computable funtion
in the size of the input.

Proof. Let A = {a1, . . . , a3n} be the instance of Min-3π-Partition. For every
element of A we will add a channel to our constructed OFDM instance with
cost-coefficient pi := a3

i . The number of terminals is given by n. We choose the
demand d to be bigger than 6 · (log m + log(pmax/pmin) + log α).

Distributing all channels equally among the terminals incurs a cost smaller than
n · pmax · 2d/3, so this can be used as an upper bound on the optimal solution. Any
solution where there is a terminal which gets at most two channels has cost larger
than 2 ·pmin ·2d/2−

∑m
j=1 pj which is more than α ·n ·pmax ·2d/3 for the specified d.

Thus any solution which is within a factor of at most α times the optimal solution
has the property that every terminal gets exactly three channels.

Together with Lemma 1 it follows, that the optimal cost of a terminal is given
by 3 · 3

√
2d · pi · pj · pk − (pi + pj + pk) if the terminal gets assigned channels i, j

and k. The optimal solution yields a partition P of the channel set into triples
such that

3 · 2d/3 ·
∑

(i,j,k)∈P

3
√

pi · pj · pk −
m∑

i=1

pi

is minimal. Now consider an α-approximate solution of the instance. The cost
of this solution is less than or equal to

3 · 2d/3 ·

⎛⎝α ·
∑

(i,j,k)∈P

ai · aj · ak

⎞⎠− α ·
n∑

i=1

a3
i

which gives at least an α-approximation for Min-3π-Partition. This proves the
theorem. ��

390 M. Ochel and B. Vöcking

3 A PTAS for Max-Rate OFDMA

In this section we will develop a PTAS for the Max-Rate OFDMA problem with
uniform demands. Our approach roughly follows [3] for makespan scheduling.
We will only consider uniform demands throughout this section unless stated
otherwise.

There are some similarities between Max-Rate OFDMA, Makespan schedul-
ing [3,4] and the Santa Claus problem [1,10] also known as the max-min alloca-
tion problem with indivisible goods. Consider an optimal solution of Max-Rate
OFDMA given by the data rates r∗ = (r∗1 , . . . , r∗m) and the assignment matrix
X∗ = (x∗

ij)i∈[n],j∈[m]. Then X∗ corresponds to an optimal machine schedule,
which assigns jobs of size r∗1 , . . . , r∗m to n machines in order to maximize the
minimum processing time. Thus the problem of computing an assignment that
maximizes λd under knowledge of the optimal data rates is indeed Santa Claus
Scheduling on identical machines.

Unfortunately the ’object sizes’ in OFDMA are not known a priori — they
are variables that also have to be optimized. This results in some difficulties for
the application of known techniques that were developed for machine scheduling.
However there is a structure in optimal data rates that can be exploited in order
to construct a PTAS.

As a consequence we will first give a polynomial time approximation scheme
for the Santa Claus Scheduling problem on identical machines (which differs
from the approach in [10]) and then modify it in order to solve the Max-Rate
OFDMA problem.

3.1 PTAS for Santa Claus Scheduling

Definition 3 (Santa Claus Scheduling Problem). Given n identical ma-
chines and m jobs with processing times r1, . . . , rm. The Santa Claus Scheduling
problem is to find an assignment of jobs to machines that maximizes the mini-
mum processing time.

We can assume that the optimal minimum processing time d is known. Otherwise
we can loop the dynamic program below in a binary search for d. For every given
constant ε the following PTAS finds a schedule with minimum processing time
at least (1− ε)d.

In analogy to [3] we distinguish between the set of jobs with small size (smaller
than ε̄d, where ε̄ = ε/2) and the large ones. The large jobs are rounded down to
the nearest multiple of ε̄2d. Then a dynamic program will search the optimal of
all possible schedules of rounded large jobs, taking into account that afterwards
the small jobs are filled in by the least loaded (LL) heuristic. Using LL, each
small job gets assigned to the machine with smallest processing time at the time
of its assignment.

W.l.o.g. let the index set of large jobs be {1, . . . , m̄} (with rounded sizes
r̃1, . . . r̃m̄) and the index set of small jobs be {m̄, . . . , m}. Note that there are
at most z := (1 − ε̄)/ε̄2 + 1 many possible loads for a machine considering

Approximability of OFDMA Scheduling 391

only rounded large jobs. The important information that is kept track of in
our dynamic program is, whether a schedule of k� many machines with load
(− 1) · ε̄2d for 1 ≤ 	 ≤ z can be extended by scheduling the remaining large
jobs {i, . . . , m̄} to have minimum processing time at least (1 − 2ε̄)d after filling
it up with small jobs using LL. More precisely, the dynamic program computes
the entries of a boolean matrix B with index set [n]z × (m̄ + 1) sequentially by
the recursive rule

b(k1, . . . , kz, i) := max
�∈[z]

{b(k1, . . . , k�−1, . . . , k�+r̄i+1, . . . , kz , i+1) | k� > 0}

where r̄i := min{r̃i, z−	}. The actual schedule can be reconstructed by recording
the corresponding assignments in a second matrix.

We will see that if b(n, 0, . . . , 0, 1) = 1, then a feasible schedule satisfying a
minimum rate of (1− ε)d is found.

Let Vs :=
∑m

j=m̄ rj denote the total processing time of all small jobs, Vk :=∑z
�=1 k� · (−1)ε̄2d denote the total load of all machines according to k1, . . . , kz ,

and let Vg := n(1− ε̄)d−Vk be the corresponding total gap that needs to be filled
to reach (1− ε̄)d. Then the starting entries b(k1, . . . , kz, m̄ + 1) for the dynamic
program are defined by

b(k1, . . . , kz, m̄ + 1) :=

{
1 if Vs ≥ Vg,

0 otherwise,

for all ki ∈ [z], 1 ≤ i ≤ n. This is based on an observation formalized by the
following lemma.

Lemma 2. Consider a partial schedule for the Santa Claus problem where each
machine i ∈ [n] has load d − gi (gi ≥ 0). Let the volume of unassigned jobs be
at least as big as

∑n
i=1 gi and let rmax be the largest yet unassigned job. Then

LL computes a solution where each machine i ∈ [n] has a processing time larger
than d− rmax.

Proof. We will investigate the dynamic sets Xi of assigned jobs for each machine
i ∈ [n] during the execution of the LL heuristic. At every step LL chooses the
machine where the gap gi := d −

∑
j∈Xi

rj is largest. We define the volume of
the remaining gaps to be Vg :=

∑n
i=1 max{0, gi}. We will show that in every

step of the algorithm the invariant Vr ≥ Vg holds unless maxi gi < rmax.
Obviously at the beginning of the algorithm this is true by assumption. Now

consider a step where maxi gi ≥ rmax. Then by assigning a job with size r to a
machine, the volume Vr is decreased by r but also Vg since maxi gi ≥ rmax.

If maxi gi < rmax or Vg = 0, we already have an assignment with processing
time greater than d−rmax on each machine i ∈ [n]. Otherwise Vr ≥ Vg > 0 holds
and LL can continue assigning jobs. ��

Theorem 3. If all large jobs are rounded down to the nearest smaller multiple of
ε̄2d, then there is a schedule of large jobs that can be filled by small jobs applying
the LL-heuristic to yield a minimum processing time of at least (1 − ε)d.

392 M. Ochel and B. Vöcking

Proof. Consider an optimal schedule that by assumption has minimum process-
ing time d. There can be at most 1/ε̄ many large jobs on a machine. Each looses
at most ε̄2d size by rounding. Thus the rounded solution still guarantees a min-
imum processing time of at least (1 − ε̄)d. By removing all small jobs from this
schedule we introduce gaps that can further decrease the minimum processing
time. Lemma 2 ensures that these gaps can be covered by LL loosing at most
an additive term of size ε̄d. ��

Since the stated dynamic program tries all possible assignments of rounded large
jobs eventually the right schedule is found.

3.2 PTAS for Max-Rate OFDMA with Uniform Demands

It is not straightforward to apply the above PTAS to the Max-Rate OFDMA
problem as the optimal data rates corresponding to the fixed job sizes are un-
known. Nevertheless, the construction was done in a way that allows us to com-
pensate for this lack of knowledge with a few modifications.

The first obstacle we have to overcome is the division into ’large’ and ’small’
data rates without knowing their actual size in the optimal solution. We exploit
a property described in the following lemma.

Lemma 3. Consider an optimal rate vector r = (r1, . . . , rm) for the Max-Rate
OFDMA problem. Pick any two channels i, j ∈ [m]. If ri > rj, then pi ≤ pj.

Proof. Assume ri > rj and pi > pj . Swapping ri with rj and the respective
terminal assignments does not change the data rates on these two terminals but
the energy cost of the modified allocation decreases by pi(2ri−1)+pj(2rj − 1))−
pi(2rj−1)+pj(2ri−1). Now the terminal with the minimal data rate can increase
its rate by an ε without violating E contradicting optimality. ��

As a result, the large jobs correspond to data rates that can be achieved on cheap
channels while the small jobs are related to the costly channels. All we need to
do in order to find the right partition is to try all possibilities. W.l.o.g we assume
p1 ≤ · · · ≤ pm, so each partition is given by a split index m̄ that separates costly
from cheap channels, thus large from small data rates. The exhaustive search for
the optimal partition can be done in linear time.

Like before, the minimal rate d∗ that can be achieved for every machine in
the optimal solution can be found by a binary search containing the exhaustive
search for m̄ as an outer loop for the following dynamic program.

Our dynamic program searches for the minimum amount e(k1, . . . , kz, i) of
energy that is needed to schedule the as yet unassigned cheap channels {i, . . . , m̄}
on the partial schedule implied by k1, . . . , kz while ensuring that the total rate
on the costly channels is big enough to cover the total gap Vg = n(1− ε̄)d∗ −Vk

left to reach a minimum rate of (1− ε̄)d∗ on every terminal.
Therefore e(k1, . . . , kz, i) is computed by

min
�∈[z],1/ε̄≤t≤z−�

{pi(2t·ε̄2d∗
−1)+e(k1, . . . , k�−1, . . . , k�+t+1, . . . , kz, i+1) | k� > 0}

Approximability of OFDMA Scheduling 393

where the starting elements e(k1, . . . , kz , m̄ + 1) indicate the energy needed to
fill the total remaining gap with small data rates on the costly channels and
therefore are defined as the optimal value of the convex program Δ minimizing∑m

j=m̄+1 pj · (2rj − 1) subject to
∑m

j=m̄+1 rj ≥ Vg and 0 ≤ rj ≤ ε̄d∗ for all
j ∈ [m].

In Δ a slightly modified Min-Power OFDMA problem has to be solved. Note
that the given formulation does not use any assignment variables xij as the
channel assignment will be done later by the LL heuristic once the optimal
data rates have been computed. Therefore the upper bound on the data rates
ensures that the condition of Lemma 2 is satisfied. It is easy to see that the
simple analytic approach from Lemma 1 can be used to efficiently compute the
exact optimal solution of Δ. Just omit the upper bound on the data rates. If
the data rate of the cheapest costly channel exceeds the upper bound it is set
to ε̄d∗ and the problem is solved recursively for the decreased demand with
the remaining channels. Since by this approach the directional derivatives of the
objective funtion in every feasible direction is nonnegative the computed solution
is optimal. Although this optimality only refers to the formulation given by Δ
and not to the original OFDMA problem with rounded cheap channels we can
distribute these data rates using LL while the proof of the approximation factor
still works.

After execution of the dynamic program it is checked if the final entry
e(n, 0, . . . , 0, 1) satisfies the energy bound E. Then a feasible schedule guar-
anteeing a minimum data rate of (1 − ε)d∗ can be efficiently constructed. The
required backtracking information has to be stored independently during the
execution of the dynamic program.

Theorem 4. The above approximation scheme computes a feasible (1 − ε)-ap-
proximation of the optimal Max-Rate OFDMA solution.

Proof. As argued before, we can efficiently find d∗ and m̄ and thus assume them
to be given. Note that if the dynamic program finds a schedule, it always has a
minimum data rate of (1−ε)d∗. Also, after the execution of the dynamic program
only feasible solutions are accepted. So we only have to show that the dynamic
program always finds a solution if it is possible to reach a minimum data rate
of d∗.

Consider any feasible schedule S with minimum data rate d∗ and split index
m̄. As in Theorem 3 we know that there is a schedule with large data rates beeing
multiples of ε̄2d∗ and small data rates with total size at least as big as the total
remaining gap in order to reach (1− ε̄)d∗. Moreover using Lemma 2 we know that
independent of the actual small data rates on the costly channels we can always
schedule them by LL to reach a minimum data rate of (1− 2ε̄)d∗, so we can use
the possibly different rates computed by the convex program Δ. Note that the
optimal rates computed by Δ do not need more energy than is used by the small
rates on costly channels in schedule S — since S satisfies all the constraints of
the convex program. Only the data rates on cheap channels could violate the
energy constraint, but because we try all possible rounded rates, eventually we
find a solution in which the energy bound holds. ��

394 M. Ochel and B. Vöcking

If we consider d∗ and m̄ to be given, the running time of the above algorithm
can be bounded by O(ε−4 · n(ε−2) ·m). The exhaustive search for the split index
causes an extra factor of O(m) and the number of iterations of the binary search
for d∗ is linear in the input size and logarithmic in ε−1 because d∗ is bounded
by log(E/(m · pmin) + 1) ·m/n.

4 A 1/2-Approximation-Algorithm for OFDMA with
Non-uniform Demands

The PTAS developed in the last section fails when it comes to non-uniform de-
mands because in this case the notion of small and large jobs differs for each
terminal. However we can give a fast and simple structured approximation algo-
rithm which achieves an approximation factor of 1/2. For this result we need the
optimal fraction λ∗ to be known. We treat the case of unknown λ∗ afterwards.

Definition 4 (ordering constraint). Assume p1 ≤ · · · ≤ pm and d1 ≥ · · · ≥
dn. Let Xi denote the set of channels assigned to terminal i. Then we say that
an assignment X = (X1, . . . , Xn) satisfies the ordering constraint if for all ter-
minals i, all channels c ∈ Xi and c′ ∈

⋃n
j=i+1 Xj it holds that c < c′.

A schedule with an assignment satisfying the ordering constraint is said to be
ordered.

Theorem 5. If there exists a feasible schedule S with a minimum rate of λ∗di on
each terminal i, then there also is a feasible ordered schedule S′ that guarantees
at least a rate of λ∗di/2 on each terminal i.

Proof. We use the data rates r1 ≥ · · · ≥ rm determined by the schedule S to
build a modified schedule S′ that satisfies the ordering constraint. W.l.o.g. we
assume λ∗ = 1. Depending on the dynamic sets X1, . . . , Xn that will be updated
at every step of our construction, we define the sets Y1 ⊇ · · · ⊇ Yn by

Yi := {c ∈ [m] \
i−1⋃
j=1

Xj | rc ≤ di} .

We consider all sets to be ordered sets according to the natural ordering of the
contained numbers. The collection of the first q elements of a set Y will be called
a prefix of Y (of cardinality q).

Our construction starts with X1 := · · · := Xn := 0. We will show that the
invariants

∑
c∈Yi

rc ≥
∑n

j=i dj and c < c′ for all c ∈ Xi and c′ ∈
⋃n

j=i+1 Yj hold
for every i ∈ [n] at every step. This is trivially true at the beginning.

At step t we assign to terminal t the maximal prefix M of Yt with a total data
rate not bigger than dt. Note that by induction assumption

∑
c∈Yt

rc ≥ dt and
because of its maximality, M has a rate of at least dt/2. The prefix property
guarantees the invariant c < c′ for all c ∈ Xt and c′ ∈

⋃n
j=t+1 Yj . Moreover since

no elements are added to any set except from Xt this invariant remains satisfied
for all other sets which proves that the ordering constraint holds at every step.

Approximability of OFDMA Scheduling 395

Let Y b
i denote the dynamic set Yi before execution of the step k and Y a

i after.
To show

∑
c∈Y a

i
rc ≥

∑n
j=i dj we distinguish between two cases. The first case

is trivial: if M ⊆ Y b
t \ Y b

t+1 then the Y -sets are not changed and the invariant
follows by the induction assumption. Otherwise Y b

t+1 ⊇ Y b
t \M is true resulting

in Y a
t+1 = Y b

t+1 \M = Y b
t \M . We pick the smallest k > t with Y a

k \ Y a
k+1 �= ∅.

By the prefix property only the sets Yt+1, . . . , Yk could have been affected by the
assignment step t. Using Y a

k = Y a
t+1 = Y b

t \M we get
∑

c∈Y a
k

rc ≥
∑n

j=t dj−dt =∑n
j=t+1 dj thus proving the invariant and thereby the theorem. ��

The following algorithm always computes an optimal ordered min-power
OFDMA schedule satisfying a data rate of exactly λ∗di/2 for known λ∗ and
runs in time O(m2n).

Algorithm Opt-Ordered: Let p1 ≤ · · · ≤ pm. Set λ̄ = λ∗/2. Compute the matrix
F = (f(i, j))i∈[n],j∈[m+1] according to

f(i, j) := min
1≤k≤m−j

{f(i + 1, j + k) + optcost(λ̄di)({j, . . . , j + k − 1})}

f(i, m + 1) :=∞
f(n, j) := optcost(λ̄dn)({j, . . . , m})

where optcost(d){C} is computed according to Lemma 1 and indicates the en-
ergy value of an optimal Min-Power schedule of the single terminal variant with
demand d and set of allowed channels C. If f(1, 1) ≤ E, then a feasible schedule
which guarantees a data rate of at least λ̄di for every terminal i can be found
by backtracking the corresponding assignments.

If the optimal λ∗ is not known, Opt-Ordered can be looped in a binary search
for the maximal λ̄ that allows a feasible ordered schedule. By Theorem 5 this λ̄
is at least λ∗/2. When the maximal value λ̄ is determined up to an accuracy of
2ε, an approximate solution with guaranteed rate λdi for each terminal i with λ
at least (1−2ε) · λ̄ = (1/2−ε)λ∗ is found. This binary search can be done in time
O(log(m/(n · ε)) + log log(E/(m · pmin))) which leads to an algorithm that runs
in polynomial time even when ε is not considered to be constant but is given as
a part of the input.

5 Discussion

We examined the problem of OFDMA scheduling and gave a proof for its hard-
ness showing inapproximability for the variant where the objective is to minimize
the overall energy. However, this inapproximability result does not carry over to
the Max-Rate formulation, where the minimal fraction of demand that can be
satisfied while not violating a given energy bound has to be maximized. We
gave a polynomial time (1/2−ε)-approximation algorithm for this problem in
the general case and derived a PTAS for the case of uniform demands.

396 M. Ochel and B. Vöcking

It is an open question if for the given problem even a fully polynomial time
approximation scheme could be obtained or if instead a hardness proof show-
ing strong NP-hardness could be constructed. Because of the similarities to
Makespan Scheduling and the Santa Claus problem, we conjecture the latter.
Also, it is left open for further research whether the given PTAS could be ex-
tended to the case of general demands using known techniques from makespan
scheduling for machines with different speeds [4]. Moreover, considering the gen-
eralization of unrelated channel costs should provide further interesting
problems.

References

1. Bansal, N., Sviridenko, M.: The santa claus problem. In: STOC 2006: Proceedings
of the thirty-eighth annual ACM symposium on Theory of computing, pp. 31–40.
ACM, New York (2006)

2. Feiten, A., Mathar, R., Reyer, M.: Rate and power allocation for multiuser ofdm:
An effective heuristic verified by branch-and-bound. IEEE Transactions on Wireless
Communications 7(1), 60–64 (2008)

3. Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algorithms for schedul-
ing problems: Theoretical and practical results. J. ACM 34(1), 144–162 (1987)

4. Hochbaum, D.S., Shmoys, D.B.: A polynomial approximation scheme for schedul-
ing on uniform processors: Using the dual approximation approach. SIAM Journal
on Computing 17(3), 539–551 (1988)

5. Jang, J., Lee, K.B.: Transmit power adaptation for multiuser ofdm systems. IEEE
Journal on Selected Areas in Communications 21(2), 171–178 (2003)

6. Kim, I., Park, I.-S., Lee, Y.H.: Use of linear programming for dynamic subcarrier
and bit allocation in multiuser ofdm. IEEE Transactions on Vehicular Technol-
ogy 55(4), 1195–1207 (2006)

7. Kivanc, D., Li, G., Liu, H.: Computationally efficient bandwidth allocation and
power control for ofdma. IEEE Transactions on Wireless Communications 2(6),
1150–1158 (2003)

8. Seong, K., Yu, D.D., Kim, Y., Cioffi, J.M.: Optimal resource allocation via geo-
metric programming for ofdm broadcast and multiple access channels. In: GLOBE-
COM (2006)

9. Vemulapalli, M., Dasgupta, S.: Np-hardness of bit allocation in multiuser multi-
carrier communications. In: Proceedings of EUSIPCO 2006 (2006)

10. Woeginger, G.J.: A polynomial-time approximation scheme for maximizing the
minimum machine completion time. Operations Research Letters 20(4), 149–154
(1997)

11. Wong, C.Y., Cheng, R.S., Lataief, K.B., Murch, R.D.: Multiuser ofdm with adap-
tive subcarrier, bit, and power allocation. IEEE Journal on Selected Areas in Com-
munications 17(10), 1747–1758 (1999)

Maximum Flow in Directed Planar Graphs
with Vertex Capacities�

Haim Kaplan and Yahav Nussbaum

The Blavatnik School of Computer Science,
Tel Aviv University, 69978 Tel Aviv, Israel
{haimk,yahav.nussbaum}@cs.tau.ac.il

Abstract. In this paper we present an O(n log n) algorithm for finding a
maximum flow in a directed planar graph, where the vertices are subject
to capacity constraints, in addition to the arcs. If the source and the sink
are on the same face, then our algorithm can be implemented in O(n)
time.

For general (not planar) graphs, vertex capacities do not make the
maximum flow problem more difficult, as there is a simple reduction that
eliminates vertex capacities. However, this reduction does not preserve
the planarity of the graph. The essence of our algorithm is a different
reduction that does preserve the planarity, and can be implemented in
linear time. For the special case of undirected planar graph, an algorithm
with the same time complexity was recently claimed, but we show that
it has a flaw.

1 Introduction

The problem of finding a maximum flow in a graph, or in a network, is a well-
studied problem with applications in many fields, see the book of Ahuja, Mag-
nanti and Orlin [1] for a survey. The maximum flow problem is also interesting
if we restrict it to planar graphs, which are graphs that have an embedding in
the plane without crossing edges. The case of planar graphs appears in many
applications of the problem, for example road traffic or VLSI design. The special
structure of planar graphs allows us to get simpler and more efficient algorithms
for the maximum flow and related problems.

In the maximum flow problem, usually the arcs of the graph have capacities
which limit the amount of flow that may go through each arc. We study a version
of the problem in which the vertices of the graph also have capacities, which limit
the amount of flow that may enter each vertex. This version appears for example
when computing vertex disjoint paths in graphs, and in other problems where
the vertices model objects which have a capacity.

Ford and Fulkerson [3, Chapter I.11] studied this version of the problem.
They suggested the following simple reduction to eliminate vertex capacities.
� This research was partially supported by the United States - Israel Binational Science

Foundation, project number 2006204 and by the Laura Schwarz-Kipp Institute of
Computer Networks.

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 397–407, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

398 H. Kaplan and Y. Nussbaum

We replace every vertex v with a finite capacity c by two vertices v′ and v′′.
The arcs that were directed into v now enter v′, and the arcs that were directed
out of v now leave v′′. We also add a new arc with capacity c from v′ to v′′.
Unfortunately, this reduction does not preserve the planarity of the graph [7].
Consider for example the complete graph of four vertices, where one of the
vertices has finite capacity. This graph is planar. If we apply the construction
of Ford and Fulkerson we get a graph whose underlying undirected graph is
the compete graph with 5 vertices. This graph is not planar by Kuratowski’s
Theorem.

The most efficient algorithm for maximum flow in directed planar graphs with-
out vertex capacities, to date, was given by Borradaile and Klein [2] (Weihe [11]
gave an algorithm with the same time bound but assuming a certain connectivity
condition on the graph). Their paper also contains a survey of the history of the
maximum flow problem on planar graphs. The time bound of the algorithm of
[2] is O(n log n) where n is the number of vertices in the input graph. Borradaile
and Klein ask whether their algorithm can be generalized to the case where the
flow is subject to vertex capacities.

A planar graph is a st-planar graph if the source and the sink are on the same
face. Hassin [4] gave an algorithm for the maximum flow problem in directed st-
planar graphs without vertex capacities. The bottleneck of the algorithm is the
computation of single-source shortest-path distances, which takes O(n) time in
a planar graph, using the algorithm of Henzinger et al. [5].

Khuller and Naor [7] were the first to study the problem of maximum flow
with vertex capacities in planar graphs. They gave various results, including
an O(n

√
log n) time algorithm for finding the value of the maximum flow in

st-planar graphs (which can be improved to O(n) time using the algorithm of
[5]), an O(n log n) time algorithm for finding the maximum flow in st-planar
graphs, an O(n log n) time algorithm for finding the value of the maximum flow
in undirected planar graphs, and an O(n1.5 log n) time algorithm for the same
problem on directed planar graphs. If all vertices have unit capacities, then we
get the vertex-disjoint paths problem. Ripphausen-Lipa et al. [10] solved this
problem in O(n) time for undirected planar graphs.

Recently, Zhang, Liang and Chen [13], used a construction similar to the
one of [7] to obtain a maximum flow for undirected planar graphs with vertex
capacities that runs in O(n log n) time. Their algorithm first constructs a planar
graph without vertex capacities, and then uses the algorithm of [2] to find a
maximum flow in it, which is modified in O(n log n) time to a flow in the original
graph with vertex capacities. They also gave a different O(n) time algorithm for
finding a maximum flow in undirected st-planar graphs. Zhang et al. also ask in
their paper if there is an algorithm that solves the problem for directed planar
graphs.

In this paper we answer [2] and [13], and show a linear time reduction of the
problem of finding maximum flow in directed planar graphs with arc and vertex
capacities, to the problem of finding maximum flow in directed graphs with only
arc capacities. This problem is more general than the one for undirected planar

Maximum Flow in Directed Planar Graphs with Vertex Capacities 399

graphs, since an undirected planar graph can be viewed as a special case of a
directed planar graph, in which there are two opposite arcs between any pair of
adjacent vertices.

We show how to apply the constructions of [7] and [13] to directed planar
graphs. Given directed planar graph, we construct another directed planar graph
without vertex capacities, such that we can transform a maximum flow in the new
graph back to a maximum flow in the original graph. Since the new graph does
not have vertex capacities we can find a maximum flow in it using the algorithm
of [2] (or of [4] if it is an st-planar graph). The time bound of our reduction
is linear in the size of the graph, therefore we show that vertex capacities do
not increase the time complexity of the maximum flow problem also for planar
graphs.

In addition, we show that the algorithm of [13] unfortunately has a flaw.
We give an undirected graph in which this algorithm does not find a correct
maximum flow. Therefore, in fact our algorithm is also the first to solve the
problem for undirected graphs.

The outline of the paper is as follows: In the next section we give some back-
ground and terminology. In Sect. 3 we describe the construction of [7] that we
use, and in Sect. 4 we describe the one of [13]. In Sect. 5 we characterize when a
maximum flow in the constructed graph induces a maximum flow in the original
graph and show how to efficiently find such a flow in the constructed graph. Fi-
nally, in the last section we combine all the pieces together to get our algorithm.

2 Preliminaries

We consider a simple directed planar graph G = (V, E), where V is the set of
vertices and E is the set of arcs, with a given planar embedding. The planar
embedding of the graph G is represented combinatorially, see [9] for survey on
planar graphs. An arc e = (u, v) ∈ E is directed from u ∈ V to v ∈ V . We denote
the number of vertices by n, since the graph is planar we have |E| = O(n).

A path P = (e0, e1, . . . , ek−1) is a sequence of arcs ei = (ui, vi) such that
for 0 ≤ i < k − 1 we have vi = ui+1. If in addition vk−1 = u0 then P is a
cycle. We say that a path P contains a vertex v, if either (u, v) or (v, u) is in
P , for some vertex u. The path P = (e0, e1, . . . , ek−1) starts at u0 and ends at
vk−1. For v ∈ V , in(v) = {(u, v) | (u, v) ∈ E} is the set of incoming arcs and
out(v) = {(v, u) | (v, u) ∈ E} is the set of outgoing arcs.

The graph G has two distinguished vertices, s ∈ V is the source and t ∈ V
is the sink. The source s has no incoming arcs, and the sink t has no outgoing
arcs. Every arc e ∈ E, has a capacity c(e) ≥ 0, and in addition every vertex
v ∈ V \ {s, t} has a capacity c(v) ≥ 0. A capacity might be ∞. We assume that
the source and the sink have no capacities, if we wish to allow them to have
capacities, we can add a vertex s′ that will be the source instead of s, and an
arc (s′, s) with the desired capacity, and similarly add a new sink t′, and an arc
(t, t′) with the desired capacity. Note that this transformation keeps the graph
planar, and even st-planar if it was so. It is easy to extend the given embedding

400 H. Kaplan and Y. Nussbaum

to accommodate s′, t′, and the arcs (s′, s) and (t, t′). A graph without vertex
capacities can be viewed as a special case in which c(v) = ∞ for every vertex.

A function f : E → R is a flow function if and only if it satisfies the following
three constraints:

0 ≤ f(e) ≤ c(e) ∀e ∈ E , (1)∑
e∈in(v)

f(e) ≤ c(v) ∀v ∈ V \ {s, t} , (2)

∑
e∈in(v)

f(e) =
∑

e∈out(v)

f(e) ∀v ∈ V \ {s, t} . (3)

Constraints (1) are the arc capacity constraints, Constraints (2) are the vertex
capacity constraints and Constraints (3) are the flow conservation constraints.

We say that e ∈ in(v) carries flow into v if f(e) > 0, and that e′ ∈ out(v)
carries flow out of v if f(e′) > 0.

The value of a flow f is
∑

e∈in(t) f(e), the amount of flow which enters the
sink. If the value of f is 0 then f is a circulation. Our goal, in the maximum flow
problem, is to find a flow function of maximum value.

For a flow function f we define a cycle C to be a flow-cycle if f(e) > 0 for
every arc in C. We extend this definition to every function f : E → R, even if
it is not a flow. If a function f has no flow-cycles we say that f is acyclic. An
acyclic flow is a flow function which is acyclic.

Let e = (u, v) we denote rev(e) = (v, u). For a flow function f , we may assume
that f does not contain an arc e such that both f(e) > 0 and f(rev(e)) > 0,
because otherwise the flows in both directions can cancel each other. For a path
P = (e0, e1, . . . , ek−1) we let rev(P) = (rev(ek−1), rev(ek−2), . . . , rev(e0)).

The planar embedding of G partitions the plane into connected regions called
faces. For a simpler description of our algorithm, we fix an embedding of G such
that t is on the boundary of the infinite face. It is easy to convert any given
embedding to such an embedding [9].

The dual graph G∗ of G has a vertex D(h) for every face h of G, and an arc
D(e) for every arc e of G. The arc D(e) connects the two vertices corresponding to
the faces incident to e. The arc D(e) is directed from the vertex that corresponds
to the face on the left side of e to the one of the face on the right side of
e. Intuitively, G∗ is obtained from G by turning the arcs clockwise. The dual
graph G∗ is planar, but it is may have loops or parallel arcs. Every face h of G∗

corresponds to a vertex v in G, such that the arcs that bound h are dual to the
arcs that are incident to v. See Fig. 1. The capacity of e ∈ E, c(e), is interpreted
in G∗ as the length of D(e).

In the construction we present below we add undirected edges to directed
graphs. Each such undirected edge uv can be represented by two antiparallel
directed arcs (u, v) and (v, u), with the same capacity. If e is an undirected edge,
then D(e) is also undirected.

Maximum Flow in Directed Planar Graphs with Vertex Capacities 401

s t

Fig. 1. A planar graph and its dual graph. The vertices of G are dots, and its arcs
are solid. The vertices of G∗ are circles, and its arcs are dashed. The bold arcs are an
arc-cut in G and a cut-cycle in G∗. Capacities are not shown in this figure.

2.1 Residual Cycles

Let f be a flow in G. The residual capacity of an arc e with respect to f is defined
as cr(e) = c(e) − f(e) + f(rev(e)). In other words, the residual capacity of e is
the amount of flow that we can add to e, or reduce from rev(e). The residual
graph of G with respect to f has the same vertex set and arc set as G, and the
capacity for each edge e is cr(e). A residual arc with respect to f is an arc e with
a positive residual capacity. A residual path is a path made of residual arcs. A
residual cycle is a cycle made of residual arcs.

Khuller, Naor and Klein [8] presented an algorithm that finds a circulation
such that there are no clockwise residual cycles with respect to this circulation, in
a directed planar graph. The bottleneck of the algorithm of [8] is the computation
of single-source shortest-path distances. Henzinger et al. [5] showed how to find
these distances in a planar graph in O(n) time, so the algorithm of [8] can be
implemented in the same time bound. The complete details of the algorithm
can be found also in [2]. We present an extension of this algorithm that changes
a given flow into another flow, with the same value, without clockwise residual
cycles with respect to it. We use this algorithm later to get the linear time bound
for our reduction. The algorithm of [8] is for directed planar graphs without
vertex capacities, so for the rest of this section assume that the graph G does
not have vertex capacities.

In this section we also assume that if e ∈ E then also rev(e) ∈ E. This
assumption can be satisfied, without changing the problem, by adding the arc
rev(e) with capacity 0 for every arc e such that rev(e) is not in E.

Given a flow f in G, we wish to find a flow f ′ with the same value, such that
there are no clockwise residual cycles with respect to f ′.

Let G′ be the residual graph of G with respect to f . We find a circulation
fr in G′, such that G′ does not have clockwise residual cycles with respect to
fr, using the algorithm of [8]. Define f ′ to be the sum of f and fr, that is
f ′(e) = max{0, f(e) + fr(e)− [f(rev(e)) + fr(rev(e))]}. In other words, we add
f(e) and fr(e), and let the flows on e and rev(e) cancel each other.

402 H. Kaplan and Y. Nussbaum

The function f ′ satisfies the two constraints of a flow without vertex capacities.
The capacity of an arc e in G′ is c(e) − f(e) + f(rev(e)) and therefore fr(e) is
smaller than this capacity, therefore f(e) + fr(e) − [f(rev(e)) + fr(rev(e))] ≤
c(e), so f ′(e) ≤ c(e) and the arc capacity constraints are satisfied in f ′. The
conservation constraints are satisfied, because these constraints are satisfied for
f and for fr, and f ′ is the sum of these two flows.

The value of the flow f ′ is the sum of the values of f and fr. Since fr is a
circulation, its value is 0, and so the value of f ′ is the same as the value of f .

The flow f ′ has the desired property that G has no clockwise residual cycles with
respect to f ′. To show that, we show that if C is a clockwise residual cycle in G
with respect to f ′, then C is also a residual cycle in G′ with respect to fr, contrary
to the way we find fr. Let e be an arc of C, and assume for contradiction that e
is not residual in G′ with respect to fr. From our assumption fr(e) = cr(e) =
c(e) − f(e) + f(rev(e)) and fr(rev(e)) = 0. Therefore, f ′(e) = c(e) and e is not
residual in G with respect to f ′, contradicting the fact that e is a member of C.

Lemma 1. Let G be a directed planar graph without vertex capacities, and let
f be a flow in G. We can find a flow f ′ in G, with the same value as f , such
that there are no clockwise residual cycles with respect to f ′, in O(n) time.

3 Minimum Cut

In a graph without vertex capacities, a cut S is a minimal subset of E such that
every path from s to t contains an arc in S. To avoid ambiguity later, when we
introduce cuts that may contain vertices, we call such a cut an arc-cut. See Fig. 1.
The value of an arc-cut S is

∑
e∈S c(e). The minimum cut problem asks to find

an arc-cut of minimum value. The fundamental connection between maximum
flow and the minimum cut problems was given by Ford and Fulkerson [3] in the
Max-Flow Min-Cut Theorem:

Theorem 2. [3] The value of the maximum flow (in a graph without vertex
capacities) is equal to the value of the minimum arc-cut in the same graph.

Let C be a cycle in G∗. We say that C is a cut-cycle if it separates the faces
corresponding to s and t, and goes counterclockwise around s (or equivalently,
clockwise around t). See Fig. 1. The length of C is the sum of the lengths of its
arcs. Johnson [6] showed the following relation between the value of minimum
arc-cut and the value of shortest cut-cycle:

Lemma 3. [6] Let G be a directed planar graph without vertex capacities. Then
the value of the minimum arc-cut of G, is the same as the length of the shortest
cut-cycle in G∗.

Ford and Fulkerson [3, Chapter I.11] extended the definition of cuts to graphs
with vertex capacities. In such a graph, a cut S is a minimal subset of E ∪ V
such that every path from s to t contains an arc or a vertex in S. The value of
a cut S is similarly defined as

∑
x∈S c(x). Ford and Fulkerson also presented a

Maximum Flow in Directed Planar Graphs with Vertex Capacities 403

s t

Fig. 2. Construction of GC and GE for the graph in Fig. 1. The graph GC is presented
as the dual graph of GE . The newly added (undirected) edges are without arrowheads.
Capacities are not shown in this figure.

version of the Max-Flow Min-Cut Theorem for graphs with vertex capacities, in
this case the value of maximal flow (subject to both arc and vertex capacities) is
equal to the value of the minimum cut (which contains both arcs and vertices).

Khuller and Naor [7] extended Lemma 3 using a supergraph GC of G∗ which
they construct as follows. Let h be a face of G∗ that corresponds to a vertex v
of G with finite capacity. We add a new vertex vh inside h and connect it by
an (undirected) edge of length c(v)/2 to every vertex on the boundary of h. See
Fig. 2.

Lemma 4. [7] The values of the maximum flow and minimum cut in G are
equal to the length of the shortest cut-cycle in GC .

4 The Extended Graph

Zhang, Liang and Jiang [12] and Zhang, Liang and Chen [13] construct the
extended graph for an undirected graph with vertex capacities, based on the
construction of Khuller and Naor [7]. We use the same construction for di-
rected planar graphs with vertex capacities. The extended graph is defined as
follows. We replace every vertex v ∈ V which has a finite capacity with d vertices
v0, · · · , vd−1, where d = |in(v)| + |out(v)| is the degree of v. We connect every
vi to v(i+1)modd with an (undirected) edge of capacity of c(v)/2. We make every
arc that was adjacent to v, adjacent to some vertex vi instead, such that each
arc is connected to a different vertex vi, and the clockwise order of the arcs is
preserved. We identify the new arc (u, vi) or (vi, u) with the original arc (u, v) or
(v, u). We denote the resulting graph by GE , and the cycle that replaces v ∈ V
in GE by Cv. The graph GE is a simple directed planar graph without vertex
capacities. The arc set of GE contains the arc set of G. See Fig. 2.

404 H. Kaplan and Y. Nussbaum

From the construction of GE and GC follows that GC is the dual of GE . Let
v be a vertex with finite capacity and let h be the corresponding face in G∗.
Then, in GE we replaced v with Cv, and in GC we placed vh inside h. The edges
which connects vh to the boundary of h are dual to the edges of Cv.

From Theorem 2 we get that the value of the maximum flow in GE is the
same as the value of minimum arc-cut in GE . By Lemma 3 this value is the
same as the value of the shortest cut-cycle in GC . Lemma 4 implies that this
value equals to the value of the maximum flow in G, so the next lemma follows.

Lemma 5. The value of the maximum flow of G is equal to the value of the
maximum flow of GE.

5 Reduction from the Extended Graph to the Original
Graph

We denote by fE a flow function in GE , and by f the restriction of fE to the
arcs of G, that is for every arc e of G, f(e) = fE(e). The value of f is the same
as the value of fE . The next lemma generalizes the result of Zhang et al. [13,
Theorem 3], and its proof is similar.

Lemma 6. Let fE be a flow function in GE . If f is acyclic then f is a flow
function in G.

In order to use Lemma 6 we must find a maximum flow fE in GE such that f
is acyclic. In this section we show how to do that.

The algorithm of Zhang et al. [13, Section 3] for undirected planar graphs
finds a flow fE in GE and than cancels flow-cycles in f in an arbitrary order.
They call the resulting flow fa and claim that this flow satisfies vertex capacities
constraints. This approach is flawed. Fig. 3 shows an example on which the
algorithm of [13] fails. After we cancel flow-cycles in f in an arbitrary order it
is possible that there is no flow f ′

E in GE such that the restriction f ′ of f ′
E to

G is fa, and therefore Lemma 6 does not apply.
As the example in Fig. 3 shows, it is not enough to cancel arbitrary flow-

cycles in f . We can cancel a flow-cycle in f only if there is a cycle C in GE

that contains it, such that we can reduce flow along the cycle C. In this case the
cycle rev(C) in GE is a residual cycle with respect to fE . Therefore, in order to
cancel a flow-cycle in G with respect to f we must cancel a residual cycle in GE

with respect to fE . Canceling a arbitrary residual cycle is not enough, since we
always want to reduce the flow that f assigns to arcs, and never increase it.

Let fE be a flow in GE . We define a new capacity function c′ on the arcs of
GE which guarantees that the flow in an arc e of G never increases beyond the
value of f(e). For e ∈ E we let c′(e) = f(e). The arcs of GE which are not in
G are arcs of Cv for some vertex v, for these arcs we do not have to limit the
flow to the amount in fE, so we set c′(e) = c(e) = c(v)/2. The flow function fE

is also a flow function in GE with the new capacity function c′, by the way we
defined c′. Since c′(e) ≤ c(e) for every arc e, every flow in GE with the capacity
function c′ is also a flow in GE with the original capacity function c.

Maximum Flow in Directed Planar Graphs with Vertex Capacities 405

s t

Cv

Fig. 3. A counterexample to the algorithm of [13]. The edges of the original undirected
graph G are solid. The vertex v has capacity 1, the edges of Cv are dotted. The flow
in every solid edge is 1, the flow in every dotted edges is 1/2, in the specified direction
(the edges are undirected). The bold edges form a flow-cycle in G, after we cancel it
we remain with an acyclic flow in G, but the amount of flow that enters v is 2. The
correct solution is to cancel the flow in the two internal flow-cycles.

Instead of canceling the residual cycles one by one, we apply to GE and c′ the
algorithm in Sect. 2.1 and find a new flow f ′

E with the same value as fE , such
that there are no clockwise residual cycles in GE with respect to f ′

E and c′. The
following lemma shows the crucial property of f ′

E .

Lemma 7. The restriction f ′ of f ′
E to G does not contain counterclockwise

flow-cycles.

Proof. Assume, for a contradiction, that there is a counterclockwise flow-cycle
C with respect to f ′ in G. We choose C such that C does not contain any other
counterclockwise flow-cycle inside its embedding in the plane. We show that we
can extend rev(C) to a clockwise residual cycle with respect to f ′

E in the graph
GE with capacity function c′, in contradiction to the way we constructed f ′

E .
For every arc e ofC, f ′

E(e) > 0, and therefore rev(e) is a residual arc with respect
to f ′

E and c′. If C does not contain a vertex v ∈ V with c(v) �= ∞ then rev(C) is a
clockwise residual cycle with respect to f ′

E and c′, and we obtain a contradiction.
Let v be a vertex in C with c(v) �= ∞. Let (u, v) and (v, u′) be the arcs of

C which are incident to v. These arcs correspond to arcs (u, vi) and (vj , u
′) in

GE , where vi and vj are in Cv. Let P be the path from vj to vi which goes
counterclockwise around Cv (recall that Cv is undirected in GE). To show a
complete residual cycle in GE , we argue that P is a residual path in GE with
respect to f ′

E and c′, so we can use it to fill the gap between vj and vi in rev(C).
An arc e of P is not residual if and only if f ′

E(e) = c′(e) = c(v)/2. Without loss
of generality we assume that the vertex vk in the path P is followed by vk+1.

Let ei = (vi−1, vi) be the last arc in the path P from vj to vi. Assume for con-
tradiction that the arc ei is not residual with respect to f ′

E and c′. Then f ′
E(ei) =

c(v)/2 and so the total flow into vi in f ′
E is

∑
e∈in(vi) f ′

E(vi) ≥ f ′
E((u, vi)) +

f ′
E(ei) > c(v)/2. The only remaining arc that can carry flow out of vi is ei+1 =

(vi, vi+1). Because f ′
E satisfies flow conservation constraints f ′

E(ei+1) > c(v)/2.
But this is impossible since the capacity of the arc ei+1 is c(v)/2. Therefore,
f ′

E(ei) < c(v)/2 and ei is residual with respect to f ′
E and c′.

We now proceed by induction. Assume by induction that we already know
that the arc ek+1 = (vk, vk+1) on the path P from vj to vi is residual with

406 H. Kaplan and Y. Nussbaum

respect to f ′
E and c′. If k = j then we are done. Otherwise, we prove that

ek = (vk−1, vk) ∈ P is also residual with respect to f ′
E and c′. Since ek+1 is

residual it follows that f ′
E(ek+1) < c(v)/2 . Let e′ be the single arc of E incident

to vk. If e′ is directed out of vk and f ′
E(e′) > 0 then since C is a cycle and e′ is

inside C in the embedding of G, there must be a path carrying flow that starts
with e′ and continues to another vertex on C. (Recall that t is on the boundary
of the outer face.) This implies that there is a counterclockwise flow-cycle with
respect to f ′ and G inside the embedding of C, in contradiction to the choice of
C. Therefore e′ does not carry flow of f ′

E out of vk in GE . This implies, by the
conservation constraint on vk, that f ′

E(ek) ≤ f ′
E(ek+1) < c(v)/2, so ek is indeed

residual with respect to f ′
E and c′.

We showed that there is a residual path from vj to vi. Since v was an arbitrary
vertex with c(v) > 0 on C it follows that we can extend rev(C) to a residual cycle
in GE with respect to f ′

E and c′. Since C is a counterclockwise cycle, the residual
cycle we get from rev(C) is a clockwise cycle. This contradicts the definition of
f ′

E , and therefore a counterclockwise flow-cycle C with respect to f ′ and G does
not exist. ��

We repeat the previous procedure symmetrically, by defining a new capacity c′′

which restricts the flow in G to the flow in f ′, and applying a symmetric version
of the algorithm of Sect. 2.1. This way we get from f ′

E a flow f ′′
E of the same

value, such that f ′′ does not contain clockwise flow-cycles in G. For every e ∈ E
we changed the flow such that f ′′(e) ≤ f ′(e) ≤ f(e), so we did not create any
new flow-cycles. Therefore we have the following lemma.

Lemma 8. The flow function f ′′
E has the same value as the flow function fE.

The restriction f ′′ of f ′′
E to G is acyclic.

6 The Algorithm

Combining together the results of the previous sections we get an algorithm for
finding maximum flow in a directed planar graph with vertex capacities.

First, we construct GE from G by replacing each vertex that has a finite
capacity with Cv as defined in Sect. 4. Next, we find a maximum flow fE in GE ,
which is a directed planar graph without vertex capacities. Last, we change fE

to another flow f ′′
E as in Sect. 5.

According to Lemma 8, the flow f ′′
E is a maximum flow in GE , and its restriction

f ′′ is acyclic. By Lemma 6, the function f ′′ is a flow in G. Since the value of f ′′ is
the same as the value of fE , Lemma 5 implies that f ′′ is a maximum flow.

The construction of GE from G takes O(n) time. The computation of f ′′
E

from fE also takes O(n) time by Lemma 1. Therefore, the only bottleneck of
our algorithm is finding fE, a maximum flow in a directed planar graph without
vertex capacities.

Theorem 9. The maximum flow in a directed planar graph with both arc ca-
pacities and vertex capacities can be computed within the same time bound as
the maximum flow in a directed planar graph with arc capacities only.

Maximum Flow in Directed Planar Graphs with Vertex Capacities 407

The algorithm of Borradaile and Klein [2] finds a maximum flow in directed
planar graph with arcs capacities in O(n log n) time. If G is a st-planar graph,
then GE preserves this property. In this case the algorithm of Hassin [4], using
the algorithm of [5] for single-source shortest-path distances, finds a maximum
flow in O(n) time.

References

1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms and
Applications. Prentice-Hall, New Jersey (1993)

2. Borradaile, G., Klein, P.: An O(n log n) algorithm for maximum st-flow in a di-
rected planar graph. J. ACM 56 (2009)

3. Ford, L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press, New
Jersey (1962)

4. Hassin, R.: Maximum flow in (s, t) planar networks. Information Processing Let-
ters 13, 107 (1981)

5. Henzinger, M.R., Klein, P., Rao, S., Subramania, S.: Faster shortest-path algo-
rithms for planar graphs. J. Comput. Syst. Sci. 55, 3–23 (1997)

6. Johnson, D.B.: Parallel algorithms for minimum cuts and maximum flows in planar
networks. J. ACM 34, 950–967 (1987)

7. Khuller, S., Naor, J.: Flow in planar graphs with vertex capacities. Algorithmica 11,
200–225 (1994)

8. Khuller, S., Naor, J., Klein, P.: The lattice structure of flow in planar graphs. SIAM
J. Disc. Math. 63, 477–490 (1993)

9. Nishizwki, T., Chiba, N.: Planar Graphs: Theory and Algorithms. Ann. Discrete
Math, vol. 32. North-Holland, Amsterdam (1988)

10. Ripphausen-Lipa, H., Wagner, D., Weihe, K.: The vertex-disjoint Menger problem
in planar graphs. SIAM J. Comput. 26, 331–349 (1997)

11. Weihe, K.: Maximum (s, t)-flows in planar networks in O(|V | log |V |)-time. J. Com-
put. Syst. Sci. 55, 454–476 (1997)

12. Zhang, X., Liang, W., Jiang, H.: Flow equivalent trees in node-edge-capacitated
undirected planar graphs. Information Processing Letters 100, 100–115 (2006)

13. Zhang, X., Liang, W., Chen, G.: Computing maximum flows in undirected pla-
nar networks with both edge and vertex capacities. In: Hu, X., Wang, J. (eds.)
COCOON 2008. LNCS, vol. 5092, pp. 577–586. Springer, Heidelberg (2008)

A Fast Output-Sensitive Algorithm for Boolean Matrix
Multiplication�

Andrzej Lingas

Department of Computer Science, Lund University, 22100 Lund, Sweden
Andrzej.Lingas@cs.lth.se

Abstract. We use randomness to exploit the potential sparsity of the Boolean
matrix product in order to speed up the computation of the product. Our new
fast output-sensitive algorithm for Boolean matrix product and its witnesses is
randomized and provides the Boolean product and its witnesses almost certainly.
Its worst-case time performance is expressed in terms of the input size and the
number of non-zero entries of the product matrix. It runs in time Õ(n2sω/2−1),
where the input matrices have size n × n, the number of non-zero entries in the
product matrix is at most s, ω is the exponent of the fast matrix multiplication
and Õ(f(n)) denotes O(f(n) logd n) for some constant d. By the currently best
bound on ω, its running time can be also expressed as Õ(n2s0.188). Our algorithm
is substantially faster than the output-sensitive column-row method for Boolean
matrix product for s larger than n1.232 and it is never slower than the fast Õ(nω)-
time algorithm for this problem.

We also present a partial derandomization of our algorithm as well as its gener-
alization to include the Boolean product of rectangular Boolean matrices. Finally,
we show several applications of our output-sensitive algorithms.

1 Introduction

Boolean matrix multiplication is a basic tool in the design of efficient algorithms, espe-
cially graph algorithms (see, e.g., [5,17,18]). Just squaring a Boolean matrix is equiv-
alent to the following fundamental problem: for n subsets of {1, 2, ..., n}, determine
all pairs of the subsets that have a non-empty intersection. This problem has numerous
applications, among other things, in databases and data mining [2].

By the standard definition of Boolean matrix multiplication, it is sufficient to use
O(n3) conjunctions and disjunctions to compute the Boolean product of two Boolean
n× n matrices. Slightly less known is another simple combinatorial way of computing
the Boolean product termed as a column-row method [21].

Consider two Boolean n × n matrices A and B, and their Boolean product C. If
C[i, j] = 1 then any index k such that A[i, k] = 1 and B[k, j] = 1 is called a witness
for C[i, j]. In the column-row approach, for each k, one considers the set of indices of
rows in A that have 1 in the k-th column of A as well as the set of indices of columns
in B that have 1 in the k-th row of B. Note that for any i in the former set and any j
in the latter one, k is a witness for C[i, j]. It follows that the column-row method can

� Research supported in part by the VR grant 621-2005-4085.

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 408–419, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A Fast Output-Sensitive Algorithm for Boolean Matrix Multiplication 409

be implemented in time O(W + n2) where W is the total number of witnesses for all
non-zero entries of C [21].

The column-row approach is output sensitive in terms of the number s of non-zero
entries of the product matrix. Simply, each non-zero entry can have at most n witnesses
and therefore the total number of witnesses cannot exceed ns. In this way, we obtain
the output sensitive upper time-bound of O(ns + n2) for Boolean square matrix multi-
plication.

This upper bound is still attractive in comparison with the running time of the fastest
known combinatorial algorithms for Boolean matrix multiplication, which is
O(n3/ log2 n) (see [3,5,18]). However, it seems less attractive when compared with
the running time of the fastest known algorithm for Boolean matrix multiplication. The
latter is simply obtained by treating the Boolean 0 and 1 as arithmetic ones and us-
ing the fast arithmetic matrix multiplication. Thus, its running time is O(nω), where
ω is the smallest constant for which the product of two n × n arithmetic matrices can
be computed in time O(nω). The best currently known asymptotic upper bound on ω
is 2.376, due to Coppersmith and Winograd [9]. Thus, the fast algorithm for Boolean
matrix multiplication subsumes the output-sensitive column-row method whenever s is
substantially larger than n1.376.

In the mathematical programming literature, the assumption of no cancellation, i.e.,
that the inner product of two vectors with overlapping non-zero entries never cancels to
zero is very common [7]. The justification of the assumption comes from the unlikeness
of cancellations and the aggregation of rounding errors. For this reason, the important
problem of the structure prediction of the product of two arithmetic matrices reduces
to that of the Boolean product of the two corresponding Boolean matrices, where the
Boolean 1 entries correspond to the non-zero ones.

The prediction of the structure of the product of two matrices is important both in
efficient memory block allocation as well as in determining an optimal order of chains
of matrix products [7,12]. Cohen provided an efficient procedure for close estimation of
the size of rows and columns in the Boolean product [7]. The problem of more precise
efficient prediction of the structure of arithmetic matrix product has remained open.

Of course one can simply compute the Boolean product of the corresponding
Boolean matrices. Unfortunately, the fast method for Boolean matrix multiplication
takes no fewer operations than the multiplication of the original arithmetic matrices
itself, i.e., O(nω). What about the situation when the Boolean matrix product is mod-
erately dense or sparse, i.e., it has a substantially sub-quadratic and substantially super-
linear in n number of non-zero entries?

Very recently, Amossen and Pagh [2], extending the input sensitive algorithm of
Yuster and Zwick [22], proposed an input- and output-sensitive algorithm for Boolean
matrix product running in time O(t0.86s0.41 + (ts)2/3), where t stands for the number
of non-zero entries in the input matrices and s for the number of non-zero entries in
the output matrix. While their upper time-bound is very interesting, it can easily exceed
nω, when the input matrices are quite dense and the ouput one is moderately dense.

Summarizing, a natural question arises if there is a fast output-sensitive algorithm
for Boolean matrix multiplication, whose running time is substantially better than that

410 A. Lingas

of the output-sensitive column-row method, and than O(nω) when the product matrix
is moderately dense/sparse?

We answer this question in the affirmative by providing a randomized algorithm for
Boolean matrix product and its witnesses running in time Õ(n2sω/2−1).

Thus, using the upper bound of Coppersmith-Winograd on ω, our algorithm runs in
time Õ(n2s0.188). Since n2sω/2−1 ≤ nω for all s ≤ n2, our algorithm is never slower
than that of Coppersmith-Winograd and it is faster than the column-row method for
s > n1/(2−w/2) ≈ n1.232.

It is not an easy task to compare our algorithm with the algorithm of Amossen and
Pagh which is also input sensitive. For instance, for moderately dense/sparse random
input Boolean matrices, the Boolean product might be expected to be already dense.
Then the input sensitive algorithms of Yuster and Zwick, and of Amossen and Pagh
will be superior. However, the sparsity of the product matrix does not imply the sparsity
of any of the input matrices generally. For instance, if only the first halves of rows in the
first input matrix are filled with ones and similarly only the second halves of columns
in the other input matrix are filled with ones, then we have t = n2 and s = 0. Assuming
a worst-case scenario for input sensitivity, i.e., t = Ω(n2), our algorithm is faster than
that of Amossen and Pagh for s > n1.244.

The use of randomness to exploit the potential sparsity of the Boolean product is
crucial in the design of our algorithm. However, if upper bounds on the number of non-
zero entries in the respective rows and columns of the product matrix summing to at
most 2s are given a priori then we can partially derandomize our algorithm so it uses
only O(log2 n) random bits and runs in the same asymptotic time. In both cases, our
algorithms provide the Boolean matrix products and their witnesses almost certainly.
We also present generalizations of our algorithms to include the Boolean product of
rectangular Boolean matrices.

Finally, we show applications of our algorithms and its generalizations to the deriva-
tion of output-sensitive upper time-bounds for the following problems: composition of
binary relations, maximum witnesses of Boolean matrix product, lowest common an-
cestors in directed acyclic graphs and prediction of the structure of arithmetic matrix
product.

1.1 Other Related Results

The column-row approach to (non-necessarily Boolean) matrix multiplication has been
known for a long time. In the arithmetic case, it can be expressed as the fact that the
matrix product of two n×n matrices A and B is equal to the sum of the outer products
of the i-th column of A with the i-th row of B, over i = 1, ..., n [7,13]. Thus, the
column-row approach takes O(

∑n
k=1 akbk) multiplications and additions, where ak is

the number of non-zero elements in the k-th column of A and bk is the number of
elements in the k-th row of B. Additionally, an O(n2) time is sufficient to compute the
list of non-zero elements for each column of A and each row of B. Hence, under the no
cancellation assumption the O(ns+n2) time-bound, where s is the number of non-zero
entries in the product, easily follows in the arithmetic case.

Sparse arithmetic matrices, and hence also, sparse Boolean matrices, are well known
to admit more efficient multiplication algorithms than those aforementioned for the

A Fast Output-Sensitive Algorithm for Boolean Matrix Multiplication 411

general case, see [7,22]. Note that if A or B has at most m non-zero entries then by∑n
k=1 akbk ≤ max{(

∑n
k=1 ak)n, (

∑n
k=1 bk)n} ≤ mn, one obtains an O(mn + n2)

upper bound for sparse matrix multiplication by the column-row approach [22]. For the
case where both A and B have at most m non-zero entries, Yuster and Zwick provide
an algorithm using O(m0.7n1.2 + n2+o(1)) multiplications, additions and subtractions
over R [22]. Their algorithm consists in a nice and simple reduction to the sum of two
rectangular matrix multiplications, the first fast one corresponding to the indices that
are witnesses for relatively many entries and the other column-row one corresponding
to the indices that are witnesses for relatively few entries.

One of the drawbacks of the fast Boolean matrix multiplication is that it does not
yield explicitly witnesses for the non-zero entries of the product matrix in contrast with
the aforementioned combinatorial methods. However, at the beginning of the 90s, effi-
cient randomized and deterministic methods for Boolean product witnesses have been
developed [4,11,20]. They typically provide a single witness per non-zero entry and run
in time Õ(nω).

1.2 Organization

In the next section, we present our fast output-sensitive randomized algorithm for the
Boolean product of two square Boolean matrices and its analysis. In Section 3, we
discuss its partial derandomization. In section 4, we outline a generalization of our
algorithm and its analysis to include rectangular input Boolean matrices. In section 5,
we show a number of applications of our output-sensitive algorithms for Boolean matrix
product.

2 The Output-Sensitive Algorithm for Boolean Product

The following definition and two lemmata lie behind the idea of our algorithm.

Definition 1. Let C be an n×n Boolean matrix. A row of C is r-sparse if the number of
non-zero entries in it is at most r, and otherwise, the row is r-dense. Similarly, a column
of C is r-sparse if the number of non-zero entries in it is at most r, and otherwise, the
column is r-dense. An entry of C is r-sparse if both its row and column are r-sparse,
otherwise the entry is r-dense.

Lemma 1. If an n × n Boolean matrix C has at most r2 non-zero entries then the
number of r-dense rows and r-dense columns in C is O(r).

Proof. Otherwise, there would be more than r2 non-zero entries in C. ��

Lemma 2. Let C be an n× n Boolean matrix with at most r2 non-zero entries. Let C′

be the matrix resulting from permuting uniformly at random the rows and the columns
of C. For a given constant c > 1, divide C′ into cr × cr sub-arrays of size n

cr ×
n
cr .

For any given r-sparse non-zero entry C[i, j] of C the probability that another non-zero
entry of C is in the same sub-array of C′ is O(1

c).

412 A. Lingas

Proof. The probability that another non-zero entry C[i′, j′] of C, where i �= i′ and
j �= j′, is in the same sub-array of C′ is at most

(r2 − 1)
(n

cr − 1)
n− 1

(n
cr − 1)
n− 1

= O(
1
c2)

The probability that another non-zero entry C[i′, j′] of C, where either i = i′ or j = j′,
is in the same sub-array of C′ is at most

2(r − 1)
(n

cr − 1)
n− 1

= O(
1
c
)

��

Before presenting our algorithm, we recall the concept of witnesses in Boolean matrix
multiplication.

Definition 2. If an entry C[i, j] of the Boolean product of two Boolean matrices A and
B is equal to 1 then any index l such that A[i, l] and B[l, j] are equal to 1 is a witness
for C[i, j]. The problem of computing witnesses for the product matrix C consists in
determining for each non-zero entry of C a single witness.

Our algorithm consists of two main stages. The first stage takes care of the r-sparse non-
zero entries. It consists of iterations of Algorithm 1 which is an efficient algorithmic
counterpart of Lemma 2, where the matrix C is the Boolean product of two Boolean
matrices A and B. In Algorithm 1, the sub-arrays of C′ in Lemma 2 correspond to
single entries of a smaller product matrix resulting from gluing batches of Ω(n

r) rows
in the row-permuted matrix A and batches of Ω(n

r) columns in the column-permuted
matrix B.

Algorithm 1
Input: Two n × n Boolean matrices A and B whose Boolean product has at most r2

non-zero entries.
Output: An n×n Boolean matrix C whose non-zero entries are a subset of the non-zero
entries of the Boolean product of A and B, and witnesses for the non-zero entries of C.

1. Permute uniformly at random the rows of A and the columns of B.
2. Contract each block of n

r consecutive rows of row-permuted A into a single super-
row by taking the “or” along the n

r -long column fragments. Similarly, contract each
block of n

r consecutive columns of column permuted B into a single super-column
by taking the “or” along the n

r -long row fragments.
3. Form the r×n matrix A∗ composed of the super-rows, and similarly form the n×r

matrix B∗ composed of the super-columns.
4. Compute the witnesses of the Boolean product C∗ of A∗ with B∗ (one for each

non-zero entry of C∗).
5. For each witness k of an entry C∗[i∗, j∗] computed in the previous step, find the

first row i′ in the block of the row-permuted A corresponding to the i∗ (super)row
of A∗ satisfying A[i′, k] = 1, as well as the first column j′ in the block of column-
permuted B corresponding to the j∗ (super)column of B∗ satisfying B[k, j′] = 1.

A Fast Output-Sensitive Algorithm for Boolean Matrix Multiplication 413

Let i be the row number of i′ in the original matrix A, and similarly, let j be the
column number of j′ in the original matrix B. Set C[i, j] to 1 and the witness of
C[i, j] to k.

Lemma 3. Algorithm 1 is partially correct, i.e., it sets to 1 only non-zero entries of the
product matrix and it provides true witnesses (one for each non-zero entry) for them.

Proof. It is sufficient to prove the correctness of the settings in Step 5. The i∗-th row of
A∗ is the result of column-wise “or” of the rows (i∗ − 1)n

r + 1 through i∗ n
r . Similarly,

the j∗-th column of B∗ is the result of row-wise “or” of the columns (j∗ − 1)n
r + 1

through j∗ n
r . Consequently, a witness k for the entry C∗[i∗, j∗] is an index k which

satisfies
∨i∗ n

r

i′′=(i∗−1) n
r +1 A[i′′, k] = 1 and

∨j∗ n
r

j′′=(j∗−1) n
r +1 B[k, j′′] = 1. Hence, the

indices i′ and j′ are well defined in Step 5 and k is also a witness of C[i, j]. ��

Throughout this section, we shall assume that there is an available method for square
(m ×m) Boolean matrix product also producing a witness for each non-zero entry of
the product, running in time f(m). Clearly, we have f(m) ≥ m2, and we may assume
w.l.o.g that f(qm) ≤ q3f(m) for any positive integer q.

For instance, f(m) could be O(m3) in case of the straightforward Boolean product
method following from the definition, or Õ(nω) in case of the method based on the fast
arithmetic matrix multiplication and the following fact due to Alon and Naor [4] (see
also [20] for an earlier randomized version of this fact).

Fact 1. For all non-zero entries of the Boolean product of two n × n Boolean matri-
ces representatives of their witnesses can be computed deterministically in total time
Õ(nω).

Lemma 4. Algorithm 1 can be implemented in time O(n
r f(r) + n2).

Proof. Steps 1,2,3 can be easily implemented in time linear in the input size, i.e.,
O(n2). To implement Step 4, we divide vertically A∗ into square r × r sub-arrays
A∗

p, p = 1, ..., n
r , as well as B∗ horizontally into r × r sub-arrays B∗

p , p = 1, ..., n
r .

In this way, we reduce the computation of the witnesses for the product C∗ of A∗ and
B∗ to the computation of witnesses for the products A∗

p ×B∗
p , p = 1, ..., n

r , and taking
their union. This all takes time n

r × O(f(r) + r2) = O(n
r f(r) + nr). Finally, Step 5

takes time O(n
r r2) = O(nr). ��

Lemma 5. Suppose that the Boolean product C of A and B has at most r2 non-zero
entries. For sufficiently large constant c, after O(log n) iterations of Algorithm 1, the
non-zero r-sparse entries of the Boolean product C will be set to 1 and their witnesses
will be provided, almost certainly, i.e., with probability not less than 1 − 1

nα for some
α > 1.

Proof. Set c to the smallest positive integer such that the probability bound O(1
c) in

Lemma 2 is at most 1
2 . It follows then from the specification of Algorithm 1 and Lemma

2 that for a given non-zero r-sparse entry of C the probability that it is not set to 1 (and
its witness is not provided) after d log n iterations is at most 2−d log n. Hence, for a
given α > 1, there is a sufficiently large constant d so the probability that at least one
non-zero r-sparse entry is not set to 1 after d log n iterations is at most n−α. ��

414 A. Lingas

The second stage of our algorithm takes care of, i.e., provides witnesses for, the non-
zero r-dense entries of the Boolean product of A and B. It relies on Lemma 1 and the
following fact due to Cohen (see pp. 312-315 in [7]).

Fact 2. Let A and B be two n × n Boolean matrices. For any fixed ε > 0, there is an
O(n2 log n)-time randomized algorithm that estimates the number of non-zero entries
in the columns and rows of the Boolean product of A and B with relative error < ε
almost certainly.

Lemma 6. The witnesses for a superset of the non-zero r-dense entries of the Boolean
product of A and B can be computed in time O((n

r)2f(r)+n2 log n), almost certainly.

Proof. We can detect a superset of the rows of the matrix A corresponding to the r-
dense rows of the product of A and B, as well as the columns of the matrix B corre-
sponding to the r-dense columns of the product matrix as follows. We run the algorithm
of Cohen [7] with ε set, say to 1

2 , to estimate the number of non-zero entries in each
row and each column of the product matrix in time O(n2 log n). If the estimation for a
row or a column of the product matrix exceeds r

2 then we mark the corresponding row
of A or the corresponding column of B.

Note that in particular all r-dense rows and columns of the product matrix are marked
in this way. On the other hand, each of the marked rows or columns is r

4 dense.
Let A∗ be the matrix composed of the marked rows of the matrix A. Similarly, let

B∗ be the matrix composed of the marked rows of B. Now, it is sufficient to determine
witnesses for the Boolean products of A∗ with B and A with B∗. The union of the
two resulting sets of witnesses has to include witnesses for all r-dense non-zero entries
of the product of A with B. Since the rows of A∗ correspond to some r

4 dense rows
of the product matrix, A∗ has at most O(r) rows by Lemma 1. Analogously, B∗ has
at most O(r) columns. Hence, by dividing A∗ vertically into O(n

r) sub-arrays of size
O(r) × O(r) and B both horizontally and vertically into O((n

r)2) sub-arrays of size
O(r) × O(r), we can compute the witnesses of the product of A∗ with B by com-
puting the witnesses of O((n

r)2) products of O(r) × O(r) sub-arrays. This takes time
O((n

r)2f(r)). Symmetrically, we can compute the witnesses for the product of A with
B∗ in time O((n

r)2f(r)). ��

We can also use the application of Fact 2 in Lemma 6 to estimate the number r2 of non-
zero entries in the Boolean product matrix for the sake of the iterations of Algorithm
1. Note that if we set s = r2 then the upper bound O((n

r)2f(r) + n2 log n) given in

Lemma 6 can be rewritten as O(n2

s f(
√

s) + n2 log n) = Õ(n2

s f(
√

s)). Similarly the

time taken by O(log n) iterations of Algorithm 1 can be expressed as Õ(n√
s
f(
√

s)+n2)
by Lemma 4. Hence, by combining Lemmata 3, 4, 5, 6, we obtain our main theorem.

Theorem 1. Let A and B be two n× n Boolean matrices whose Boolean product has
at most s non-zero entries. The Boolean product of A and B, and the witnesses for
the product can be computed by a randomized algorithm in time Õ(n2

s f(
√

s)), almost
certainly. In particular, if we apply the fastest algorithm for the Boolean product and
its witnesses, i.e., f(m) = Õ(mω), the running time is Õ(n2sω/2−1).

A Fast Output-Sensitive Algorithm for Boolean Matrix Multiplication 415

Note that if we apply the straightforward cubic-time algorithm for the Boolean product
and its witnesses, i.e., f(m) = O(m3), we obtain another output-sensitive algorithm
for this problem running in time Õ(n2√s).

3 Partial Derandomization

Let Sn be the set of all permutations of 0, ..., n− 1. A family of permutations F ⊆
Sn is pairwise independent (cf. [6]) if for any π chosen at random in F and any
{i1, i2, k1, k2} ⊆ {0, ..., n− 1} where i1 �= i2 and k1 �= k2,

P r(π(i1) = k1 & π(i2) = k2) =
1

n(n− 1)

Assuming that n is a prime number, the family of linear transformations of the form
π(i) = ai + b mod n, where a �= 0, is known to be pairwise independent (e.g., see
Exercise in [16]).

Under the assumption that n is a prime number, we can replace uniform at random
permutations in step 1 in Algorithm 1 with such randomly chosen linear transforma-
tions. Due to the property of pairwise independence, Lemma 5 can be proved analo-
gously after the replacement. Then, if additionally we use the deterministic version of
the algorithm due to Alon and Naor for witnesses of Boolean matrix product [4], one
iteration of the so modified Algorithm 1 will require only O(log n) random bits. Thus,
the total number of random bits used by our method, but for the application of Cohen’s
algorithm to estimate the number of non-zero entries in the rows and columns of the
product, can be decreased to O(log2 n) at the cost of increasing its time complexity by
a poly-logarithmic factor. The increase is caused by patching the input matrices to the
size n′×n′, where n′ is the smallest prime number not larger than n, and the use of the
deterministic algorithm for witnesses [4]. (To find such a prime number n′, one can use
the AKS primality testing or its improved versions running in time polynomial in the
length of bit representation [1].)

Hence, we obtain the following variant of Theorem 1.

Theorem 2. Let A and B be two n × n Boolean matrices. Suppose that there are
given a priori upper bounds on the number of non-zero entries in the respective rows
and columns of the Boolean product of A and B summing to at most 2s. The Boolean
product of A and B, and the witnesses for the product can be computed almost certainly
by a randomized algorithm, using O(log2 n) random bits and Õ(n2sω/2−1) time.

4 Rectangular Boolean Matrix Multiplication

Analogous output sensitive algorithms can be derived for rectangular Boolean matrix
multiplication.

Denote by ω(p, q, t) the exponent of the fast multiplication of an np × nq matrix by
an nq × nt matrix.

We obtain the following partial generalization of Theorems 1, 2.

416 A. Lingas

Theorem 3. Let A and B be two Boolean matrices of size np × nq and nq × nt, re-
spectively, such that their product has at most np(1−δ1)+t(1−δ2) non-zero entries. The
Boolean product of A and B and its witnesses can be computed by a randomized algo-
rithm running in time Õ(nω(|p−δ1|,q,t)+nω(p,q,|t−δ2|)+np+q +nq+t), almost certainly.
Furthermore, if upper bounds on the number of non-zero entries in the respective rows
and columns of the Boolean product of A and B summing to at most nq(1−δ1)+t(1−δ2)

are known a priori then the algorithm requires only O(log2 n) random bits.

Proof. sketch. Let C denote the np×nt Boolean product of A and B. Consider nt(1−δ2)-
sparse rows of C, i.e., the rows of C with at most nt(1−δ2) non-zero entries as well
as np(1−δ1)-sparse columns of C, i.e., the columns of C with at most np(1−δ1) non-
zero entries. Next, define (np(1−δ1), nt(1−δ2))-sparse non-zero entries as those non-zero
entries which lie within a nt(1−δ2)-sparse row and a np(1−δ1)-sparse column of C. The
remaining entries are (np(1−δ1), nt(1−δ2))-dense.

The consecutive steps of the proof are straightforward generalizations of those in the
proof of Theorems 1, 2, resulting from the use of the generalized concepts of sparse
(and, dense) rows, columns and entries of C. For instance, the generalization of Lemma
1 states that if C has at most np(1−δ1)+t(1−δ2) non-zero entries then the number of
nt(1−δ2)-dense rows is O(np(1−δ1)) while the number of np(1−δ1)-dense columns is
O(nt(1−δ2)). Next, in the generalization of Lemma 2, C′ is divided into cnp(1−δ1) ×
cnt(1−δ2) sub-arrays of size npδ1

c × ntδ2

c , and so on. The further analogous details in
the generalizations of consecutive lemmata as well as in Algorithm 1 are left to the full
version.

The terms nω(|p−δ1|,q,t) and nω(p,q,|t−δ2|) in the claimed upper time-bound come
from the final step (the generalization of Lemma 6), taking care of the non-zero
(np(1−δ1), nt(1−δ2))-dense entries. They overshadow the term nω(|p−δ1|,q,|t−δ2|) com-
ing from the iterations of a generalization of Algorithm 1. ��

Note that since the sizes of A and B are not necessarily symmetric, forcing δ1 = δ2
might weaken the upper time-bound in Theorem 3.

5 Applications

Theorems 1, 2 yield corresponding output-sensitive upper time-bounds for several ap-
plications of Boolean matrix product and its witnesses, e.g., composition of binary re-
lations, maximum witnesses of Boolean product, lowest common ancestors in directed
acyclic graphs, prediction of the structure of the arithmetic matrix product, etc.

A binary relation is a set of ordered pairs over some universe. The composition of
two binary relations R1 and R2 over a common universe U is a binary relation R3 over
U defined by R3 = {(v, w)|∃u∈U (v, u) ∈ R1 ∧ (u, w) ∈ R2}.

Corollary 1. If the composition of two binary relations over an n-element universe has
at most s elements then it can be computed from these two relations by a randomized
algorithm in time Õ(n2sω/2−1), almost certainly.

A maximum witness for a non-zero entry C[i, j] of the Boolean product of two n × n
Boolean matrices A, B is the largest witness for C[i, j], i.e., the largest index k such

A Fast Output-Sensitive Algorithm for Boolean Matrix Multiplication 417

that A[i, k] = 1 and B[k, j] = 1. The next corollary is concerned with computing
maximum witnesses (one per each non-zero entry) in a sparse Boolean matrix product.

Corollary 2. Let A and B be two n× n Boolean matrices whose product has at most
n2−2δ non-zero entries, and let λ(δ) be such that ω(1, λ(δ), |1 − δ|) = 1 + λ(δ).
The maximum witnesses of the product of A and B can be computed by a randomized
algorithm running in time Õ(n2+λ(δ)), almost certainly. By augmenting this upper time
bound with the additive term O(nω), we can decrease the number of required random
bits to O(log2 n).

Proof. The proof requires solely a slight modification of the proof of Theorem 16 in
[10]. The key observation is that in the aforementioned proof the matrices Cp, p =
1, ..., n/l, have also at most n2−2δ non-zero entries like the Boolean product C of A
and B. Hence, since such a matrix Cp is the Boolean product of an n × nr Boolean
matrix with an nr ×n Boolean matrix (see [10]), where r = logn l, it can be computed
in time Õ(nω(1,r,|1−δ|) + nω(|1−δ|,r,1) + n1+r) by Theorem 3. Therefore, by the proof
of Theorem 16 in [10] and the equality ω(1, r, |1 − δ|) = ω(|1 − δ|, r, 1), the total
cost of computing the maximum witnesses is Õ(n1−r+ω(1,r,|1−δ|) + n3−r + n2+r).
Analogously as in [10], we get rid of the additive term n3−r assuming r ≥ 1

2 , and
solve the equation 1 − λ(δ) + ω(1, λ(δ), |1 − δ|) = 2 + λ(δ), implying λ(δ) ≥ 1

2 by
ω(1, λ(δ), |1 − δ|) ≥ 2, in order to balance the two remaining exponent terms. This
yields the first claimed upper time-bound. To estimate the number of non-zero entries
in the rows and columns of the product matrix we can simply compute the product in
time O(nω) instead of using the algorithm of Cohen [7]. ��

By [8,14], the best known upper bound on λ(0) is 0.575 (see, e.g., [10]). Hence, the
partially derandomized version of Corollary 2 should be interesting at least for small δ.

In turn, the problem of maximum witnesses has many applications [19]. Here, we
just consider its original application to computing lowest common ancestors in directed
acyclic graphs [10,15]. By combining Corollary 2 with Theorem 11 in [10], we obtain
the corollary

Corollary 3. Let G be a directed acyclic graph on n vertices such that at most n2−2δ

pairs of vertices in G have a common ancestor. Next, let λ(δ) be such that ω(1, λ, |1−
δ|) = 1 + λ(δ). There is a randomized algorithm almost certainly reporting for all
pairs of vertices in G with a common ancestor their lowest common ancestor, running
in total time Õ(n2+λ(δ)). By augmenting this upper time bound with the additive term
O(nω), we can decrease the number of required random bits to O(log2 n).

The methods of Theorems 1 and 2 applied to Boolean counterparts of two n× n arith-
metic matrices yield the complete information on the location of non-zero entries in the
product of these two arithmetic matrices under the assumption of no cancellation.

Corollary 4. Let A and B be two n × n arithmetic matrices whose product has at
most s non-zero entries. Under the assumption of no cancellation, the exact non-zero
structure of the product of A and B can be determined by a randomized algorithm
running in time Õ(n2sω/2−1), almost certainly. Furthermore, if the upper bounds on

418 A. Lingas

the number of non-zero entries in the respective rows and columns of the product matrix
summing to at most 2s are known a priori then the algorithm requires only O(log2 n)
random bits.

6 Conclusions and Extensions

Our main new idea is the use of randomness to compute sparse Boolean product. We
have applied the idea to the fast algorithms for Boolean product and its witnesses, treat-
ing them as black boxes.

The next natural step would be to derive general upper time bounds sensitive both to
the sparsity of the input matrices as well as to that of the product matrix by combining
the ideas from this paper with those from [2,22].

Acknowledgments

The author is grateful to all those who provided useful comments, in particular
Mirosław Kowaluk, Christos Levcopoulos, Rasmus Pagh and several anonymous
referees.

References

1. Agrawal, M., Kayal, N., Saxena, N.: PRIMES is in P. Annals of Mathematics 160(2), 781–
793 (2004)

2. Amossen, R.R., Pagh, R.: Faster Join-Projects and Sparse Matrix Multiplication. To appear
in proc. ACM International Conference on Database Theory (ICDT 2009), St. Petersburg
(March 2009)

3. Arlazow, V.L., Dinic, E.A., Kronrod, M.A., Faradzev, I.A.: On economical construction of
the transitive closure of an oriented graph. Soviet Math. Dokl. 11, 1209–1210 (1970)

4. Alon, N., Naor, M.: Derandomization, Witnesses for Boolean Matrix Multiplication and Con-
struction of Perfect hash functions. Algorithmica 16, 434–449 (1996)

5. Bash, J., Khanna, S., Motwani, R.: On Diameter Verification and Boolean Matrix Multipli-
cation. Technical Report, Stanford University CS department (1995)

6. Broder, A.Z., Charikar, M., Frieze, A.M., Mitzenmacher, M.: Min-Wise Independent Permu-
tations. Journal of Computer and System Sciences 60, 630–659 (2000)

7. Cohen, E.: Structure Prediction and Computation of Sparse Matrix Products. Journal of Com-
binatorial Optimization 2, 307–332 (1999)

8. Coppersmith, D.: Rectangular matrix multiplication revisited. Journal of Symbolic Compu-
tation 13, 42–49 (1997)

9. Coppersmith, D., Winograd, S.: Matrix Multiplication via Arithmetic Progressions. J. of
Symbolic Computation 9, 251–280 (1990)

10. Czumaj, A., Kowaluk, M., Lingas, A.: Faster algorithms for finding lowest common an-
cestors in directed acyclic graphs. The special ICALP 2005 issue of Theoretical Computer
Science 380(1-2), 37–46 (2005)

11. Galil, Z., Margalit, O.: Witnesses for Boolean Matrix Multiplication and Shortest Paths. Jour-
nal of Complexity, 417–426 (1993)

12. George, A., Gilbert, J., Liu, J.W.H. (eds.): Graph Theory and Sparse Matrix Computation.
The IMA Volumes in Mathematics and its Applications, vol. 56. Springer, Heidelberg (1993)

A Fast Output-Sensitive Algorithm for Boolean Matrix Multiplication 419

13. Golub, G., Van Loan, C. (eds.): Matrix Computations. The Johns Hopkins U. Press, Balti-
more (1989)

14. Huang, X., Pan, V.Y.: Fast rectangular matrix multiplications and applications. Journal of
Complexity 14, 257–299 (1998)

15. Kowaluk, M., Lingas, A.: LCA queries in directed acyclic graphs. In: Caires, L., Italiano,
G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp.
241–248. Springer, Heidelberg (2005)

16. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cam-
bridge (1995)

17. Munro, J.I.: Efficient determination of the transitive closure of a directed graph. Information
Processing Letters 1(2), 56–58 (1971)

18. Rytter, W.: Fast recognition of pushdown automaton and context-free languages. Information
and Control 67(1-3), 12–22 (1985)

19. Shapira, A., Yuster, R., Zwick, U.: All-pairs bottleneck paths in vertex weighted graphs. In:
Proc. SODA 2007, pp. 978–985 (2007)

20. Seidel, R.: On the All-Pairs-Shortest-Path Problem. In: Proc. 24th annual ACM Symposium
on Theory of Computing, pp. 745–749 (1992)

21. Schnorr, C.P., Subramanian, C.R.: Almost Optimal (on the average) Combinatorial Algo-
rithms for Boolean Matrix Product Witnesses, Computing the Diameter. In: Rolim, J.D.P.,
Serna, M., Luby, M. (eds.) RANDOM 1998. LNCS, vol. 1518, pp. 218–231. Springer, Hei-
delberg (1998)

22. Yuster, R., Zwick, U.: Fast sparse matrix multiplication. ACM Transactions on Algorithms
(TALG) 1(1), 2–13 (2004) (Preliminary version in proc. ESA 2004)

On Optimally Partitioning a Text to Improve Its
Compression�

Paolo Ferragina, Igor Nitto, and Rossano Venturini

Department of Computer Science, University of Pisa
{ferragina,nitto,rossano}@di.unipi.it

Abstract. In this paper we investigate the problem of partitioning an
input string T in such a way that compressing individually its parts
via a base-compressor C gets a compressed output that is shorter than
applying C over the entire T at once. This problem was introduced in
[2,3] in the context of table compression, and further elaborated and
extended to strings and trees by [10,11,20], but it is still open how to
efficiently compute the optimal partition [4]. In this paper we provide the
first algorithm which is guaranteed to compute in O(n polylog(n)) time
a partition of T whose compressed output is guaranteed to be no more
than (1 + ε)-worse the optimal one, where ε is any positive constant.

1 Introduction

Reorganizing data in order to improve the performance of a given compressor
C is an important paradigm of data compression (see e.g. [3,10]). The basic
idea consist of permuting the input data T to form a new string T ′ which is
then partitioned into substrings that are finally compressed individually by the
base compressor C. The goal is to find the best instantiation of the two steps
Permuting+Partitioning which minimizes the total length of the compressed
output. This approach (hereafter abbreviated as PPC) is clearly at least as
powerful as the classic data compression approach that applies C to the entire
T : just take the identity permutation and set k = 1. The question is whether it
can be more powerful than that!

Intuition leads to think favorably about it: by grouping together objects that
are “related”, one can hope to obtain better compression even using a very
weak compressor C. Surprisingly enough, this intuition has been sustained by
convincing theoretical and experimental results only recently. These results have
investigated the PPC-paradigm under various angles by considering: different
data formats (strings [10], trees [11], tables [3], etc.), different granularities for
the items of T to be permuted (chars, node labels, columns, blocks [1,19], files
[6,23], etc.), different permutations (see e.g. [14,25]), different base compressors
to be boosted (0-th order compressors, gzip, bzip2, etc.). Among these plethora

� It has been partially supported by Yahoo! Research, and two Italian MIUR FIRB
Projects: Italy-Israel and 2006-Linguistica. The authors’ address is Dipartimento di
Informatica, L.go B. Pontecorvo 3, 56127 Pisa, Italy.

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 420–431, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

On Optimally Partitioning a Text to Improve Its Compression 421

of proposals, we survey below the most notable examples which are useful to
introduce the problem we attack in this paper, and refer the reader to the cited
bibliography for other interesting results.

The PPC-paradigm was introduced in [2], and further elaborated upon in [3].
In these papers, T is a table formed by fixed-size columns, and the goal is to
permute them in such a way that individually compressing contiguous groups
of columns gives the shortest compressed output. The authors of [3] showed
that the PPC-problem in its full generality is MAX-SNP hard, devised a link
between PPC and the classical asymmetric TSP problem, and then resorted
known heuristics to find approximate solutions for the A-TSP based on several
measures of correlations between the table’s columns. For the grouping they pro-
posed either an optimal but very slow approach, based on Dynamic Programming
(see below), or some fast and very simply heuristics.

When T is a text string, the most famous instantiation of the PPC-paradigm
has been obtained by combining the Burrows and Wheeler Transform [5] (shortly
BWT) with a context-based grouping of the input characters, which are finally
compressed via proper 0-th order-entropy compressors (like MTF, RLE, Huffman,
Arithmetic, or their combinations, see e.g. [26]). In this scenario the permuta-
tion acts on single characters, and the partitioning/permuting steps deploy the
context (substring) following each symbol in the original string. Several papers
have given an analytic account of this phenomenon [21,9,17,20] and have shown,
also experimentally [8], that the partitioning of the BW-transformed text is a
key step for achieving effective compression ratios. Starting from these premises,
[15] attacked the computation of the optimal partition of T via a DP-approach,
which turned out to be very costly; then [10] (and subsequently many other au-
thors, see e.g. [9,20,11]) proposed a boosting solution which is not optimal but,
nonetheless, achieves interesting k-th order-entropy bounds. This is indeed a sub-
tle point, frequently neglected. In fact, we are able to show [12] that there exists
an infinite class of strings for which the compression achieved by the booster is
far from the optimal-partitioning by a multiplicative factor Ω(

√
log n).

There is another interesting scenario in which the PPC-paradigm occurs and
this is when T is a single (long) file, eventually obtained by concatenating a
collection of (smaller) files via any permutation of them: think to the serialization
induced by the Unix tar command, or other more sophisticated heuristics like
the ones discussed in e.g. [23,6]. In these cases, the partitioning step looks for
homogeneous groups of contiguous files (or even within-file blocks of chars) which
can be effectively compressed together by a base-compressor C — typically gzip,
bzip2, ppm, etc. [26]. It is clear that how much redundancy can be detected and
exploited by these compressors depends on their ability to “look back” at the
previously seen data, and this has a cost in terms of memory usage and running
time. Thus most compression systems provide a facility that controls the amount
of data that may be processed at once — usually called the block size — ranging
from few hundreds KBs [26] to few hundreds MBs [8]. Subtly, using larger blocks
to be compressed at once does not necessarily induce a better compression ratio!
As an example, let us take C as the simple Huffman or Arithmetic coders and

422 P. Ferragina, I. Nitto, and R. Venturini

use them to compress the text T = 0n/21n/2: there is a clear difference whether
we compress individually the two halves of T (achieving an output size of about
O(log n) bits) or we compress T as a whole (achieving n + O(log n) bits). A
similar example can be shown [12] for more powerful compressors, such as the
k-th order entropy encoder ppm which compresses each symbol according to its
preceding k-long context. Therefore the impact of the choice of the block size
cannot be underestimated and may be problematic, since it may change along
the whole file we are compressing.

In summary, fast and effective algorithms or heuristics for the permuting step
are known (see e.g. [3,10,11,24]), but not yet known is how to compute efficiently
the optimal partition of the permuted data for compression boosting (see [4]).
The goal of this paper is to provide the first efficient approximation algorithm
for this problem, formally stated as follows.

Let C be the base compressor we wish to boost, and let T [1, n] be the input
string we wish to partition and then compress by C. So, we are assuming that T
has been (possibly) permuted in advance, and we are concentrating on the last
two steps of the PPC-paradigm. Now, given a partition P of the input string
into contiguous substrings, say T = T1T2 · · ·Tk, we denote by Cost(P) the cost
of this partition and measure it as

∑l
i=1 |C(Ti)|, where |C(α)| is the length in

bit of the string α compressed by C. The problem of optimally partitioning T
according to the base-compressor C consists then of computing the partition Popt

which achieves the shortest compressed output, namely Popt = minP Cost(P).
As we mentioned above, Popt might be computed via a Dynamic-Programming
approach [3,15] in Θ(n3) time, which is clearly unfeasible even on small input
sizes n. In this paper we provide the first algorithm which is guaranteed to
compute in O(n(log1+ε n) polylog(n))) time a partition of T whose compressed
output is guaranteed to be no more than (1 + ε)-worse than the optimal one,
where ε may be any positive constant. Due to the lack of space, proofs and many
details are omitted from this paper but can be found in [12].

2 Notation

In this paper we will use entropy-based upper bounds for the estimation of
|C(T [i, j])|, so we need to recall some basic notation and terminology about
entropies. Let T [1, n] be a string drawn from the alphabet Σ of size σ. For
each c ∈ Σ, we let nc be the number of occurrences of c in T . The zero-th
order empirical entropy of T is defined as H0(T) =

∑h
c∈Σ

nc

n log n
nc

. Recall that
|T |H0(T) provides an information-theoretic lower bound to the output size of
any compressor that encodes each symbol of T with a fixed code [26]. The so-
called zero-th order statistical compressors (such as Huffman or Arithmetic [26])
achieve an output size which is very close to this bound. However, they require
to know information about frequencies of input symbols (called the model of
the source). Those frequencies can be either known in advance (static model)
or computed by scanning the input text (semi-static model). In both cases the
model must be stored in the compressed file to be used by the decompressor.

On Optimally Partitioning a Text to Improve Its Compression 423

In the following we will bound the compressed size achieved by zero-th order
compressors by |C0(T)| ≤ λnH0(T) + f0(n, σ) bits, where λ is a positive con-
stant and f0(n, σ) is a function including the extra costs of encoding the source
model and/or other inefficiencies of C. We will also assume that f0(n, σ) can be
computed in constant time. As an example, Huffman has f0(n, σ) = σ log σ + n
and λ = 1, whereas Arithmetic has f0(n, σ) = σ log n + log n/n and λ = 1.

Let us now come to more powerful compressors. For any string u of length
k, we denote by uT the string of single symbols following the occurrences of u
in T , taken from left to right. For example, if T = mississippi and u = si,
we have uT = sp since the two occurrences of si in T are followed by the
symbols s and p, respectively. The k-th order empirical entropy of T is defined
as Hk(T) = 1

|T |
∑

u∈Σk |uT |H0(uT). We have Hk(T) ≥ Hk+1(T) for any k ≥ 0.
As usual in data compression [21], the value nHk(T) is an information-theoretic
lower bound to the output size of any compressor that encodes each symbol of
T with a fixed code that depends on the symbol itself and on the k immediately
preceding symbols. Recently (see e.g. [18,21,10,9,20,11] and refs therein) authors
have provided upper bounds in terms of Hk(T) for sophisticated data-compression
algorithms, such as gzip [18], bzip2 [21,10,17], and ppm. These bounds have
the form |C(T)| ≤ λ|T | Hk(T) + fk(|T |, σ), where λ is a positive constant and
fk(|T |, σ) is a function including the extra-cost of encoding the source model
and/or other inefficiencies of C. The smaller are λ and fk(), the better is the
compressor C. As an example, the bound of the compressor in [20] has λ = 1
and f(|T |, σ) = O(σk+1 log |T |+ |T | log σ log log |T |/ log |T |).1

In our paper we will use these entropy-based bounds for the estimation of
|C(T [i, j])|, but of course this will not be enough to achieve a fast DP-based
algorithm for our optimal-partitioning problem. We cannot re-compute from
scratch those estimates for every substring T [i, j] of T , being them Θ(n2) in
number. So we will show some structural properties of our problem (Sect 3)
and introduce few novel technicalities (Sect 4–5) that will allow us to compute
Hk(T [i, j]) only on a reduced subset of T ’s substrings, having size O(n log1+ε n),
by taking O(polylog(n)) time per substring and O(n) space overall.

3 The Problem and Our Solution

The optimal partitioning problem, stated in Sect 1, can be reduced to a single
source shortest path computation (SSSP) over a directed acyclic graph G(T)
defined as follows. The graph G(T) has a vertex vi for each text position i of
T , plus an additional vertex vn+1 marking the end of the text, and an edge
connecting vertex vi to vertex vj for any pair of indices i and j such that i <
j. Each edge (vi, vj) has associated the cost c(vi, vj) = |C(T [i, j − 1])| that
corresponds to the size in bits of the substring T [i, j − 1] compressed by C. We
remark the following crucial, but easy to prove, property of the cost function:
1 Many results (see [21,10,9] and refs therein) are expressed in term of k-th order

modified empirical entropy of T and have the form λ|T |H∗
k(T) + gk(σ). In [12] we

show how to extend our results to this entropy too.

424 P. Ferragina, I. Nitto, and R. Venturini

Fact 1 For any vertex vi, it is 0 < c(vi, vi+1) ≤ c(vi, vi+2) ≤ . . . ≤ c(vi, vn+1)

There is a one-to-one correspondence between paths from v1 to vn+1 in G(T) and
partitions of T : every edge (vi, vj) in the path identifies a contiguous substring
T [i, j − 1] of the corresponding partition. Therefore the cost of a path equals
the (compression-)cost of the corresponding partition. Thus we can find the
optimal partition of T by computing the shortest path in G(T) from v1 to vn+1.
Unfortunately this simple approach has two main drawbacks:

1. the number of edges in G(T) is Θ(n2), thus making the SSSP computation
inefficient if executed directly over G(T);

2. the computation of the each edge cost might take Θ(n) time over most T ’s
substrings, if C is run on each of them from scratch.

In the following sections we will successfully address both these two drawbacks.
First, we sensibly reduce the number of edges in the graph G(T) to be ex-
amined during the SSSP computation and show that we can obtain a (1 + ε)
approximation using only O(n log1+ε n) edges, where ε > 0 is a user-defined pa-
rameter (Sect 3.1). Second, we show some sufficient properties that C needs to
satisfy in order to compute every edge’s cost efficiently. These properties hold
for some well-known compressors— e.g. 0-order compressors, PPM-like and bzip-
like compressors— so, for them, we will show how to compute each edge cost in
constant or polylogarithmic time (Sect 4–6).

3.1 A Pruning Strategy

The aim of this section is to design a pruning strategy that produces a subgraph
Gε(T) of the original DAG G(T) in which the shortest path distance between its
leftmost and rightmost nodes, v1 and vn+1, increases by no more than a factor
(1 + ε). We define Gε(T) to contain all edges (vi, vj) of G(T), recall i < j, such
that at least one of the following two conditions holds:

1. there exists a positive integer k such that c(vi, vj) ≤ (1 + ε)k < c(vi, vj+1);
2. j = n + 1.

In other words, by property 1, we are keeping for each integer k the edge of
G(T) that approximates at the best the value (1 + ε)k from below. Given this,
we will call ε-maximal the edges of Gε(T). Clearly, each vertex of Gε(T) has at
most log1+ε n = O(1

ε log n) outgoing edges, which are ε-maximal by definition.
Therefore the total size of Gε(T) is O(n log1+ε n). Hereafter, we denote with
dG(−,−) the shortest path distance between any two nodes in a graph G.

The following lemma states a basic property of shortest path distances over
our special DAG G(T):

Lemma 1. For any triple of indices 1 ≤ i ≤ j ≤ q ≤ n+1 we have dG(T)(vj , vq)
≤ dG(T)(vi, vq) and dG(T)(vi, vj) ≤ dG(T)(vi, vq).

On Optimally Partitioning a Text to Improve Its Compression 425

The correctness of our pruning strategy relies on the following theorem:

Theorem 2. For any text T , the shortest path in Gε(T) from v1 to vn+1 has a
total cost of at most (1 + ε) dG(T)(v1, vn+1).

Proof: We prove a stronger assertion: dGε(T)(vi, vn+1) ≤ (1 + ε) dG(T)(vi, vn+1)
for any index 1 ≤ i ≤ n+1. This is clearly true for i = n+1, because in that case
the distance is 0. Now let us inductively consider the shortest path π in G(T)
from vi to vn+1 and let (vk, vt1)(vt1 , vt2) . . . (vth

vn+1) be its edges. By the defi-
nition of ε-maximal edge, it is possible to find an ε-maximal edge (vk, vr) with
t1 ≤ r, such that c(vk, vr) ≤ (1 + ε) c(vk, vt1). By Lemma 1, dG(T)(vr, vn+1) ≤
dG(T)(vt1 , vn+1). By induction, dGε(T)(vr, vn+1) ≤ (1 + ε) dG(T)(vr, vn+1). Com-
bining this with the triangle inequality we get the thesis. ��

3.2 Space and Time Efficient Algorithms for Generating Gε(T)

Theorem 2 ensures that, in order to compute a (1 + ε) approximation of the
optimal partition of T , it suffices to compute the SSSP in Gε(T) from v1 to vn+1.
This can be easily computed in O(|Gε(T)|) = O(n logε n) time since Gε(T) is a
DAG [7], by making a single pass over its vertices and relaxing all edges going
out from the current one.

However, generating Gε(T) in efficient time is a non-trivial task for three main
reasons. First, the original graph G(T) contains Ω(n2) edges, so that we cannot
check each of them to determine whether it is ε-maximal or not, because this
would take Ω(n2) time. Second, we cannot compute the cost of an edge (vi, vj)
by executing C(T [i, j−1]) from scratch, since this would require time linear in the
substring length, and thus Ω(n3) time over all T ’s substrings. Third, we cannot
materialize Gε(T) (e.g. its adjacency lists) because it consists of Θ(n polylog(n))
edges, and thus its space occupancy would be super-linear in the input size.

The rest of this section is devoted to design an algorithm which overcomes the
three limitations above. The specialty of our algorithm consists of materializing
Gε(T) on-the-fly, as its vertices are examined during the SSSP-computation, by
spending only polylogarithmic time per edge. The actual time complexity per
edge will depend on the entropy-based cost function we will use to estimate
|C(T [i, j− 1])| (see Sect 2) and on the dynamic data structure we will deploy to
compute that estimation efficiently.

The key tool we use to make a fast estimation of the edge costs is a dynamic
data structure built over the input text T and requiring O(|T |) space. We state
the main properties of this data structure in an abstract form, in order to design
a general framework for solving our problem; in the next sections we will then
provide implementations of this data structure and thus obtain real time/space
bounds for our problem. So, let us assume to have a dynamic data structure that
maintains a set of sliding windows over T denoted by w1, w2, . . . , wlog1+ε n. The
sliding windows are substrings of T which start at the same text position l but
have different lengths: namely, wi = T [l, ri] and r1 ≤ r2 ≤ . . . ≤ rlog1+ε n. The
data structure must support the following three operations:

426 P. Ferragina, I. Nitto, and R. Venturini

1. Remove() moves the starting position l of all windows one position to the
right (i.e. l + 1);

2. Append(wi) moves the ending position of the window wi one position to the
right (i.e. ri + 1);

3. Size(wi) computes and returns the value |C(T [l, ri])|.

This data structure is enough to generate ε-maximal edges via a single pass over
T , using O(|T |) space. More precisely, let vl be the vertex of G(T) currently
examined by our SSSP computation, and thus l is the current position reached
by our scan of T . We maintain the following invariant: the sliding windows cor-
respond to all ε-maximal edges going out from vl, that is, the edge (vl, v1+rt) is
the ε-maximal edge satisfying c(vl, v1+rt) ≤ (1 + ε)t < c(vl, v1+(rt+1)). Initially
all indices are set to 0. To maintain the invariant, when the text scan advances
to the next position l + 1, we call operation Remove() once to increment index
l and, for each t = 1, . . . , log1+ε(n), we call operation Append(wt) until we find
the largest rt such that Size(wt) = c(vl, v1+rt) ≤ (1 + ε)t. The key issue here is
that Append and Size are paired so that our data structure should take advan-
tage of the rightward sliding of rt for computing c(vl, v1+rt) efficiently. Just one
character is entering wt to its right, so we need to deploy this fact for making the
computation of Size(wt) fast (given its previous value). Here comes into play the
second contribution of our paper that consists of adopting the entropy-bounded
estimates for the compressibility of a string, mentioned in Sect 2, to estimate
indeed the edge costs Size(wt) = |C(wt)|. This idea is crucial because we will
be able to show that these functions do satisfy some structural properties that
admit a fast incremental computation, as the one required by Append + Size.
These issues will be discussed in the following sections, here we just state that,
overall, the SSSP computation over Gε(T) takes O(n) calls to operation Remove,
and O(n log1+ε n) calls to operations Append and Size.

Theorem 3. If we have a dynamic data structure occupying O(n) space and
supporting operation Remove in time L(n), and operations Append and Size in
time R(n), then we can compute the shortest path in Gε(T) from v1 to vn+1
taking O(n L(n) + (n log1+ε n) R(n)) time and O(n) space.

4 On Zero-th Order Compressors

In this section we explain how to implement the data structure above when-
ever C is a 0-th order compressor, and thus H0 is used to provide a bound to
the compression cost of G(T)’s edges (see Sect 2). The key point is actually to
show how to efficiently compute Size(wi) as the sum of |T [l, ri]|H0(T [l, ri]) =∑

c∈Σ nc log((ri−l+1)/nc) (see its definition in Sect 2) plus f0(ri−l+1, |ΣT [l,ri]|),
where nc is the number of occurrences of symbol c in T [l, ri] and |ΣT [l,ri]| denotes
the number of different symbols in T [l, ri].

The first solution we are going to present is very simple and uses O(σ) space
per window. The idea is the following: for each window wi we keep in memory an
array of counters Ai[c] indexed by symbol c in Σ. At any step of our algorithm,

On Optimally Partitioning a Text to Improve Its Compression 427

the counter Ai[c] stores the number of occurrences of symbol c in T [l, ri]. For any
window wi, we also use a variable Ei that stores the value of

∑
c∈Σ Ai[c] log Ai[c].

It is easy to notice that:

|T [l, ri]| H0(T [l, ri]) = (ri − l + 1) log(ri − l + 1)− Ei. (1)

Therefore, if we know the value of Ei, we can answer to a query Size(wi) in
constant time. So, we are left with showing how to implement efficiently the two
operations that modify l or any rs value and, thus, modify appropriately the E’s
value. This can be done as follows:

1. Remove(): For each window wi, we subtract from the appropriate counter and
from variable Ei the contribution of the symbol T [l] which has been evicted
from the window. That is, we decrease Ai[T [l]] by one, and update Ei by sub-
tracting (Ai[T [l]]+1) log(Ai[T [l]]+1) and then summing Ai[T [l]] logAi[T [l]].
Finally we set l = l + 1.

2. Append(wi): We add to the appropriate counter and variable Ei the con-
tribution of the symbol T [ri + 1] which has been appended to window wi.
That is, we increase Ai[T [r + 1]] by one, then we update Ei by subtracting
(A[T [ri+1]]−1) log(A[T [ri+1]]−1) and summing A[T [ri+1]] log A[T [ri+1]].
Finally we set ri = ri + 1.

In this way, operation Remove requires constant time per window, hence
O(log1+ε n) time overall. Append(wi) takes constant time. The space required
by the counters Ai is O(σ log1+ε n) words. Unfortunately, the space complexity
of this solution can be too much when it is used as the basic-block for com-
puting the k-th order entropy of T (see Sect 2) as we will do in Sect 5. In fact,
we would achieve min(σk+1 log1+ε n, n log1+ε n) space, which may be superlinear
in n depending on σ and k. We can extend the previous scheme to obtain an
efficient solution up to σ = O(poly(n)) but, because of space limitations, its
technicalities are reported in the full version of this paper [12]. The following
lemma states the final result.

Lemma 2. Let T [1, n] be a text drawn from an alphabet of size σ = poly(n).
If we estimate Size() via 0-th order entropy (as detailed in Sect 2), then we
can design a dynamic data structure that takes O(n) space and supports the
operations Remove in R(n) = O(log1+ε n) time, and Append and Size in L(n) =
O(1) time.

In order to evict the cost of the model from the compressed output (see Sect
2), authors typically resort to zero-th order adaptive compressors which do not
store the symbols’ frequencies, since they are computed incrementally during the
compression [16]. An approach similar to the previous one (but with little more
technicalities, given in [12]) can be used to solve the case in which we use a 0-th
order adaptive compressor C for providing the edge-costs of G(T). For this case
we can prove the same time and space bounds of Lemma 2. Combining this with
Theorem 3 we obtain:

428 P. Ferragina, I. Nitto, and R. Venturini

Theorem 4. Given a text T [1, n] drawn from an alphabet of size σ = poly(n),
we can find an (1 + ε)-optimal partition of T with respect to a 0-th order (adap-
tive) compressor in O(n log1+ε n) time and O(n) space, where ε is any positive
constant.

We point out that this result can be applied to the compression booster of [10]
to fast obtain an approximation of the optimal partition of BWT(T). This may be
better than the algorithm of [10] both in time complexity, since that algorithm
takes O(nσ) time, and in compression ratio (details in [12]). The case of a large
alphabet (namely, σ = Ω(polylog(n))) is particularly interesting whenever we
consider either a word-based BWT [22] or the XBW-transform over labeled trees [10]
for which Σ is either the set of words or tags in a text. We notice that our result
is interesting also for the Huffword compressor which is the standard choice for
the storage of Web pages [26]; here Σ consists of the distinct words constituting
the Web-page collection.

5 On k-th Order Compressors

In this section we make one step further and consider the more powerful k-th
order compressors, for which do exist Hk bounds for estimating the size of their
compressed output. Here Size(wi) must compute |C(T [l, ri])| which is estimated,
as detailed in Sect 2, by (ri − l + 1)Hk(T [l, ri]) + fk(ri − l + 1, |ΣT [l,ri]|), where
ΣT [l,ri] denotes the number of different symbols in T [l, ri]..

Let us denote with Tq[1, n− q] the text whose i-th symbol Tq[i] is equal to the
q-gram T [i, i + q − 1]. Actually, we can remap the symbols of Tq to integers in
[1, n]. In fact the number of distinct q-grams occurring in Tq is less than n = |T |.
Thus Tq’s symbols take O(log n) bits and Tq can be stored in O(n) space. This
remapping takes linear time and space, whenever σ is polynomial in n.

It is well-known that the k-th order entropy of a string (see definition Sect
2) can be expressed as the difference between the zero-th order entropy of its
(k + 1)-grams and the one of its k-grams. This suggests that we can use the
solution of the previous section in order to compute the zero-th order entropy of
the appropriate substrings of Tk+1 and Tk. More precisely, we use two instances
of the data structure of Theorem 4 (one for Tk+1 and one for Tk), which are
kept synchronized in the sense that, when operations are performed on one data
structure, then they are also executed on the other.

Lemma 3. Let T [1, n] be a text drawn from an alphabet of size σ = poly(n).
If we estimate Size() via k-th order entropy (as detailed in Sect 2), then we
can design a dynamic data structure that takes O(n) space and supports the
operations Remove in R(n) = O(log1+ε n) time, and Append and Size in L(n) =
O(1) time.

Essentially the same technique is applicable to the case of k-th order adaptive
compressor C, in this case we keep up-to-date the 0-th order adaptive entropies
of the strings Tk+1 and Tk (details in [12]).

On Optimally Partitioning a Text to Improve Its Compression 429

Theorem 5. Given a text T [1, n] drawn from an alphabet of size σ = poly(n),
we can find an (1 + ε)-optimal partition of T with respect to a k-th order (adap-
tive) compressor in O(n log1+ε n) time and O(n) space, where ε is any positive
constant.

We point out that this result applies also to the practical case in which the
base compressor C has a maximum (block) size B of data it can process at once
(this is the typical scenario for gzip, bzip2, etc.). In this situation the time
performance of our solution reduces to O(n log1+ε(B log σ)).

6 On BWT-based Compressors

As we mentioned in Sect 2 we know entropy-bounded estimates for the output
size of BWT-based compressors. So we could apply Theorem 5 to compute the
optimal partitioning of T for such a type of compressors. Nevertheless, it is also
known [8] that such compression-estimates are rough in practice because of the
features of the compressors that are applied to the BWT(T)-string. Typically, BWT
is encoded via a sequence of simple compressors such as MTF, RLE (which is op-
tional), and finally a 0-order encoder like Huffman or Arithmetic [26]. For each
of these compression steps, a 0-th entropy bound is known [10,9], but the com-
bination of these bounds may result far from the final compressed size produced
by the overall sequence of compressors in practice [8].

We propose a solution to the optimal partitioning problem for BWT-based com-
pressors that introduces a Θ(σ log n) slowdown in the time complexity of Theo-
rem 5, but with the advantage of computing the (1+ ε)-optimal solution wrt the
real compressed size, thus without any estimation of it by entropy-cost functions.
Since in practice it is σ = polylog(n), this slowdown is negligible. In order to
achieve this result, we need to address a slightly different problem which is de-
fined as follows. The input string T has the form S[1]#1S[2]#2 . . . S[m]#n where
each S[i] is a text (called page) drawn from an alphabet Σ, and #1, #2, . . . , #n

are special characters greater than any symbol of Σ. A partition of T must be
page-aligned, in that it must form groups of contiguous pages S[i]#i . . . S[j]#j ,
denoted also S[i, j]. Our aim is to find a page-aligned partition whose compressed
output-size is a factor at most (1 + ε) the minimum possible one, for any fixed
ε > 0. We notice that this problem generalizes the table partitioning problem
[3], since we can assume that S[i] is a column of the table.

To simplify things we will drop the RLE encoding step of a BWT-based algo-
rithm, and defer the complete solution to the full version of this paper. We start
by noticing that an analog of Theorem 3 holds for this variant of the optimal
partitioning problem, which implies that a (1+ε)-approximation of the optimum
cost (and the corresponding partition) can be computed using a data structure
supporting operations Append, Remove, and Size; with the only difference that
the windows w1, w2, . . . , wm subject to the operations are groups of contiguous
pages of the form wi = S[l, ri].

It goes without saying that there exist data structures designed to maintain
a dynamic text compressed with a BWT-based compressor under insertions and

430 P. Ferragina, I. Nitto, and R. Venturini

deletions of symbols (see [13] and references therein). But they do not fit our
context for two reasons: (1) their underlying compressor is significantly different
from the scheme above; (2) in the worst case, they would spend linear space per
window yielding a super-linear overall space complexity.

Instead of keeping a given window w in compressed form, our approach
will only store the frequency distribution of the integers in the string w′ =
MTF(BWT(w)) since this is enough to compute the compressed output size pro-
duced by the final step of the BWT-based algorithm, which is usually implemented
via Huffman or Arithmetic [26]. Indeed, since MTF produces a sequence of inte-
gers from 0 to σ, we can store their number of occurrences for each window wi

into an array Fwi of size σ. The update of Fwi due to the insertion or the removal
of a page in wi incurs two main difficulties: (1) how to update w′

i as pages are
added/removed from the extremes of the window wi, (2) perform this update
implicitly over Fwi , because of the space reasons mentioned above. Our solution
relies on two key facts about BWT and MTF:

1. Since the pages are separated in T by distinct separators, inserting or re-
moving one page into a window w does not alter the relative lexicographic
order of the original suffixes of w (see [13]).

2. If a string s′ is obtained from string s by inserting or removing a char c
into an arbitrary position, then MTF(s′) differs from MTF(s) in at most σ
symbols. More precisely, if c′ is the next occurrence in s of the newly inserted
(or removed) symbol c, then the MTF has to be updated only in the first
occurrence of each symbol of Σ among c and c′.

Due to space limitations we defer to [12] for details, and state here the result we
are able to achieve.

Theorem 6. Given a sequence of texts of total length n and alphabet size σ =
poly(n), we can compute an (1 + ε)-approximate solution to the optimal parti-
tioning problem for a BWT-based compressor, in O(n(log1+ε n) σ log n) time and
O(n + σ log1+ε n) space.

We conclude this paper by devising two possible directions of research, which
consist either in investigating the design of o(n2)-time algorithms for computing
the exact optimal partition, and/or experimenting our solution over large textual
datasets.

References

1. Bentley, J.L., McIlroy, M.D.: Data compression with long repeated strings. Infor-
mation Sciences 135(1-2), 1–11 (2001)

2. Buchsbaum, A.L., Caldwell, D.F., Church, K.W., Fowler, G.S., Muthukrishnan,
S.: Engineering the compression of massive tables: an experimental approach. In:
Proc. ACM-SIAM SODA, pp. 175–184 (2000)

3. Buchsbaum, A.L., Fowler, G.S., Giancarlo, R.: Improving table compression with
combinatorial optimization. J. ACM 50(6), 825–851 (2003)

On Optimally Partitioning a Text to Improve Its Compression 431

4. Buchsbaum, A.L., Giancarlo, R.: Table compression. In: Kao, M.Y. (ed.) Encyclo-
pedia of Algorithms, pp. 939–942. Springer, Heidelberg (2008)

5. Burrows, M., Wheeler, D.: A block-sorting lossless data compression algorithm.
Technical Report 124, Digital Equipment Corporation (1994)

6. Chang, F., Dean, J., Ghemawat, S., et al.: Bigtable: A distributed storage system
for structured data. ACM Trans. Comput. Syst. 26(2) (2008)

7. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd edn. The MIT Press, McGraw-Hill Book Company (2001)

8. Ferragina, P., Giancarlo, R., Manzini, G.: The engineering of a compression boost-
ing library: Theory vs practice in BWT compression. In: Azar, Y., Erlebach, T.
(eds.) ESA 2006. LNCS, vol. 4168, pp. 756–767. Springer, Heidelberg (2006)

9. Ferragina, P., Giancarlo, R., Manzini, G.: The myriad virtues of wavelet trees.
Information and Computation 207, 849–866 (2009)

10. Ferragina, P., Giancarlo, R., Manzini, G., Sciortino, M.: Boosting textual compres-
sion in optimal linear time. J. ACM 52, 688–713 (2005)

11. Ferragina, P., Luccio, F., Manzini, G., Muthukrishnan, S.: Structuring labeled trees
for optimal succinctness, and beyond. In: Proc. FOCS, pp. 184–193 (2005)

12. Ferragina, P., Nitto, I., Venturini, R.: On optimally partitioning a text to improve
its compression. CoRR, abs/0906.4692 (2009)

13. Ferragina, P., Venturini, R.: The compressed permuterm index. ACM Transactions
on Algorithms (to appear, 2009)

14. Giancarlo, R., Restivo, A., Sciortino, M.: From first principles to the burrows and
wheeler transform and beyond, via combinatorial optimization. Theoretical Com-
puter Science 387(3), 236–248 (2007)

15. Giancarlo, R., Sciortino, M.: Optimal partitions of strings: A new class of Burrows-
Wheeler compression algorithms. In: Baeza-Yates, R., Chávez, E., Crochemore, M.
(eds.) CPM 2003. LNCS, vol. 2676, pp. 129–143. Springer, Heidelberg (2003)

16. Howard, P.G., Vitter, J.S.: Analysis of arithmetic coding for data compression.
Information Processing Management 28(6), 749–764 (1992)

17. Kaplan, H., Landau, S., Verbin, E.: A simpler analysis of burrows-wheeler-based
compression. Theoretical Computer Science 387(3), 220–235 (2007)

18. Kosaraju, R., Manzini, G.: Compression of low entropy strings with Lempel–Ziv
algorithms. SIAM Journal on Computing 29(3), 893–911 (1999)

19. Kulkarni, P., Douglis, F., LaVoie, J.D., Tracey, J.M.: Redundancy elimination
within large collections of files. In: USENIX, pp. 59–72 (2004)

20. Mäkinen, V., Navarro, G.: Implicit compression boosting with applications to self-
indexing. In: Ziviani, N., Baeza-Yates, R. (eds.) SPIRE 2007. LNCS, vol. 4726, pp.
229–241. Springer, Heidelberg (2007)

21. Manzini, G.: An analysis of the Burrows-Wheeler transform. J. ACM 48(3), 407–
430 (2001)

22. Moffat, A., Isal, R.Y.: Word-based text compression using the Burrows-Wheeler
transform. Information Processing Management 41(5), 1175–1192 (2005)

23. Suel, T., Memon, N.: Algorithms for delta compression and remote file synchro-
nization. In: Lossless Compression Handbook. Academic Press, London (2002)

24. Trendafilov, D., Memon, N., Suel, T.: Compressing file collections with a TSP-
based approach. Technical report, TR-CIS-2004-02, Polytechnic University (2004)

25. Vo, B.D., Vo, K.-P.: Compressing table data with column dependency. Theoretical
Computer Science 387(3), 273–283 (2007)

26. Witten, I.H., Moffat, A., Bell, T.C.: Managing Gigabytes: Compressing and Index-
ing Documents and Images. Morgan Kaufmann, San Francisco (1999)

An Average-Case Analysis for Rate-Monotonic
Multiprocessor Real-Time Scheduling

Andreas Karrenbauer� and Thomas Rothvoß

Institute of Mathematics
EPFL, Lausanne, Switzerland

{andreas.karrenbauer,thomas.rothvoss}@epfl.ch

Abstract. We introduce the First Fit Matching Periods algorithm for rate-mo-
notonic multiprocessor scheduling of periodic tasks with implicit deadlines and
show that it yields asymptotically optimal processor assignments if utilization
values are chosen uniformly at random. More precisely we prove that the expected
waste is upper bounded by O(n3/4(log n)3/8). Here the waste denotes the ratio
of idle times, cumulated over all processors and n gives the number of tasks.

The algorithm can be implemented to run in time O(n log n) and even in the
worst case, an asymptotic approximation ratio of 2 is guaranteed. Experiments
yield an average waste proportional to n0.70, indicating that the above upper
bound on the expected waste is almost tight.

While such average-case analyses are a classical topic of Bin Packing, to the
best of our knowledge, this is the first result dealing with a theoretical average-
case analysis for this scheduling problem, which was described by Liu and Lay-
land more than 35 years ago and has received a lot of attention, especially in the
real-time and embedded-systems community.

1 Introduction

In this paper, we are concerned with a scheduling problem introduced by Liu and Lay-
land [1], which is of fundamental importance in the real-time and embedded-systems
community. Here one is given a set of tasks S = {τ1, . . . , τn}, where each task τ is
characterized by two positive values, its period p(τ) and its running time c(τ). The
task τ releases a job requiring running time c(τ) at each integer multiple of its pe-
riod. Each job has a relative deadline of p(τ), thus we have implicit deadlines. The
utilization of a task τ is defined as u(τ) = c(τ)/p(τ), thus it gives the average fraction
of processor cycles, which are consumed by τ . More general for a set S, we denote
u(S) =

∑
τ∈S u(τ).

We consider fixed-priority, preemptive scheduling, i.e. priorities are assigned to the
tasks and the arrival of a job of a higher priority task, preempts the execution of lower
priority tasks. Liu and Layland [1] have proven that the rate-monotonic (RM) schedul-
ing policy is optimal, meaning that if there is a feasible priority assignment, then the
one in which the priority of a task τ equals 1/p(τ) is also feasible (i.e. larger periods
imply lower priorities). Therefore we only consider rate-monotonic priorities.

� Supported by the Deutsche Forschungsgemeinschaft (DFG) within Priority Programme 1307
“Algorithm Engineering”.

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 432–443, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

An Average-Case Analysis for Rate-Monotonic Multiprocessor Real-Time Scheduling 433

c(τ1)=1
p(τ1)=2

c(τ2)=2
p(τ2)=5

� � �

0 1 2 3 4 5 6 7 8 9 10

Fig. 1. The picture shows a set S = {τ1, τ2} of tasks. The arrows indicate the points in time,
where the two tasks τ1 and τ2 release jobs. At time 0, the first job of τ1 as well as the first job
of τ2 are released. Since the period of τ1 is smaller than the period of τ2, the first job of τ1 is
executed, until it is finished at time 1. Now the first job of τ2 is executed, but interrupted by the
second job of τ1 at time 2. The execution of the first job of τ2 is resumed at time 3 and finished at
time 4. Notice that the processor is idle for one time unit at time 9 and that the schedule repeats
at the least common multiple of the periods which is 10. All jobs finish in time. The set S is
feasible.

If several tasks S′ ⊆ S are assigned to one processor, then we call this assignment
feasible (or RM-schedulable) if in the rate-monotonic schedule all jobs of all tasks
always meet their deadlines. See Figure 1 for an example.

In a multiprocessor environment, the algorithmic challenge is to determine a par-
tition of a task-set S into S1, . . . ,Sk, such that each Si is a feasible set of tasks for
one processor and the number k of processors is minimized. The minimum possible
value for k is denoted by OPT . The rate-monotonic multiprocessor scheduling prob-
lem has received considerable attention in the real-time and embedded-systems commu-
nity [2,3,4,5,6,7,8,9,10,11,12,13]. This popularity is due to the fact that more and more
safety-critical control applications are carried out by microprocessors and in particular
by multiprocessor environments. Such scheduling problems are for example relevant in
the automotive and aviation industry.

A measure for the quality of a solution is the so-called waste, which is frequently
used concerning the related Bin Packing problem. That is, the waste of a solution
with k processors is the ratio of idles times, cumulated over all processors, i.e. k −
u(S). Clearly, minimizing the waste is equivalent to minimization of the number of
partitions.

For the rate-monotonic single-processor scheduling Lehoczky et al. [2] gave a prob-
abilistic analysis, indicating that the reachable processor utilization on average is much
better, than the worst-case value of ln(2) ≈ 69%. For example, if periods are drawn
from [1, 100] and the running times are scaled by the largest value, such that the system
is barely schedulable, then the utilization tends to 88% for n →∞.

This motivates us to study also the average-case behavior in the multiprocessor case.
Our analysis will work for an arbitrary distribution of the periods, as long as the utiliza-
tion values are drawn independently and uniformly from [0, 1].

434 A. Karrenbauer and T. Rothvoß

Related work. For the famous Bin Packing problem a list of items a1, . . . , an ∈ [0, 1]
is given. The goal is to assign these items to a minimal number of bins such that the
total sizes of items, assigned to each bin does not exceed 1.

We will see that if for the considered scheduling problem all periods p(τ) were multi-
ples of each other, then the problem would be exactly Bin Packing, where the utilization
values correspond to the item sizes. This is because a set of tasks S′ ⊆ S would be fea-
sible on one processor in this case if and only if the sum of their utilization is bounded
by one.

Successful heuristics for Bin Packing are First Fit, Next Fit and Best Fit. In all vari-
ants the items are assigned in a consecutive manner to a bin, which has enough space
(or a new one is opened). For First Fit the current item is put in the bin with the smallest
index, in Best Fit it is assigned to the bin, whose item sum is maximal. For Next Fit an
active bin is maintained. If the current item does not fit into it, a new bin is opened, now
being the active one; old bins are never considered again. In First Fit Decreasing the
items are first sorted by decreasing sizes and then distributed via First Fit. In the worst
case Next Fit produces a 2-approximation, while First Fit needs
 17

10OPTBinPacking�+ 1
[14] many bins. Asymptotically both, Best and First Fit Decreasing have an approxima-
tion ratio of 11/9 [15].

If the items are generated randomly, the heuristics perform much better, than in the
worst-case scenarios. For item sizes drawn uniformly at random from [0, 1] the Best Fit
algorithm yields an expected waste of Θ(

√
n log3/4 n) [16], while for First Fit this value

is lower bounded by Ω(n2/3) and upper bounded by O(n2/3√log n) [16]. The upper
bound even holds if First Fit is restricted to never assign more than 2 items per bin.
Later we will refer to this algorithm as Matching First Fit (MFF). First Fit Decreasing
yields an even smaller waste of Θ(

√
n) [17,18,19]. If item sizes are drawn uniformly

from [0, α], for any constant α ≤ 1/2, the waste of First Fit Decreasing is even constant
with high probability.

Note that here the waste is defined similar to multiprocessor scheduling, namely as
the number of bins minus the sum of all item sizes. But for Bin Packing also in the
worst-case nearly optimal solutions can be computed, for example there is an asymp-
totic PTAS [20] and even an asymptotic FPTAS exists [21]. More on Bin Packing can
be found in the excellent survey of Coffman, Garey and Johnson [22].

One major difference between rate-monotonic scheduling and Bin Packing is that
for the latter it can be checked easily whether given items fit into one bin, whereas it
is conjectured that this does not hold for a set of tasks and one processor. If a set S of
implicit-deadline tasks is feasible (i.e. RM-schedulable), then the utilization u(S) is at
most 1. However, S can be infeasible, even if u(S) < 1. Consider, for example, again
the task system S in Figure 1. If we increase the running time of τ2 by any ε > 0,
then the set S is no longer feasible and its utilization is u(S) = (9 + 2ε)/10. Liu
and Layland [1] have shown that S is feasible, if u(S) is bounded by n(21/n − 1),
where n = |S|. This bound tends to ln(2) ≈ 0.69 and the condition is not necessary for
feasibility, as the example in Figure 1 shows. Stronger, but still not necessary conditions
for feasibility are given in [8,7,6].

An Average-Case Analysis for Rate-Monotonic Multiprocessor Real-Time Scheduling 435

Note that the first job of each task is the critical instance [1], thus if p(τ1) ≤ . . . ≤
p(τn) then response times for τi in a rate-monotonic, single-processor schedule are
given by the smallest value r(τi) ≥ 0 with

r(τi) = c(τi) +
∑
j<i

⌈
r(τi)
p(τj)

⌉
c(τj).

Of course τ1, . . . , τn are feasible if and only if r(τi) ≤ p(τi) for i = 1, . . . , n [2].
But it was proven in [23] that such response times cannot even be approximated in
polynomial time within a factor of nc/ log log n for a fixed constant c > 0, unless NP =
P. Nevertheless in practice response times can be efficiently computed using a fix-
point iteration approach [5]. Furthermore Baruah and Fisher [12] showed that there is
an FPTAS for computing the minimum processor speed, which is needed to make a task
system RM-schedulable.

Baker and Oh [10] showed that if m processors are needed to schedule S, one must
have u(S) ≥ m · (

√
2− 1) ≈ 0.41m. This quantity was later improved by Liebeherr et

al. [8] to m · 1
1+ m√2

≈ 0.5m (for large m).
Most popular algorithms for rate-monotonic periodic multiprocessor scheduling first

sort the tasks in a suitable way and then distribute them in a First Fit or Next Fit manner
using a sufficient feasibility criterion. See the following table for an overview (with our
algorithm in the last row, for the sake of comparability).

Name sorting distribution ratio run time
RMNF inc. p(τ) Next Fit 2.67 O(n log n)
RMFF inc. p(τ) First Fit 2.00 O(n log n)
FFDU dec. u(τ) First Fit 2.00 O(n log n)
RMST inc. α(τ) Next Fit 1

1−umax
O(n log n)

RMGT - First Fit + RMST 1.75 O(n2)
FFMP inc. α(τ) First Fit 2.00 O(n log n)

Here α(τ) = log2 p(τ) − �log2 p(τ)� and umax = maxτ∈S u(τ). In the table, the
column ”ratio” gives the best known upper bounds on the asymptotic approximation
ratio. The rate-monotonic general task algorithm (RMGT) [8] distributes tasks with
utilization at most 1/3 using RMST and the rest separately with First Fit. A more detailed
description can be found in [13].

Furthermore there is an asymptotic PTAS under resource augmentation, computing
for any fixed ε > 0 a solution with (1+ε)OPT +1 processors, where the tasks on each
processor can be feasibly scheduled after increasing the processor speed by a factor
of 1 + ε [24]. In the same paper it was proven that unless P �= NP no asymptotic
FPTAS can exist for this multiprocessor scheduling problem. But it is still an open
question whether there might be an asymptotic PTAS and thus an algorithm that is
asymptotically optimal and does not depend on any assumption about the input. Here
we call an algorithm asymptotically optimal, if the approximation ratio tends to 1 for
OPT → ∞. We refer to the article of Baruah and Goossens [11] for an overview on
complexity issues of real-time scheduling.

436 A. Karrenbauer and T. Rothvoß

Our contribution We introduce an efficient and easy to implement algorithm for the
multiprocessor rate-monotonic scheduling problem called First Fit Matching Periods
(FFMP) . We proof that it is asymptotically optimal for arbitrary periods provided that
the utilizations follow a uniform distribution1. To this end, we show that our algorithm
produces a solution with expected waste of O(n3/4(log n)3/8). Since the expected ap-
proximation ratio of 1 + O(n−1/4(log n)3/8) tends to 1 for n → ∞, the solution is
asymptotically optimal on average. To the best of our knowledge this is the first proof
that any algorithm for this problem admits this property w.r.t. a reasonable probability
distribution.

To achieve our results, we use the following technique: We introduce an auxiliary
algorithm FFMP∗ and prove that for any task set it needs at least as many processors as
FFMP. Thus it suffices to derive an upper bound on the waste of this easier algorithm.
We then point out that for suitable subsets of the input tasks, FFMP∗ behaves like a well
studied Bin Packing algorithm MFF. Eventually this allows to bound the waste for FFMP∗

in terms of the waste of MFF.
In addition to the proof of the asymptotic optimality of our algorithm, we present

experimental results showing that FFMP outperforms the algorithms known from litera-
ture already on random instances with a small number of tasks. We thereby provide an
example of an algorithm that has been designed for asymptotic optimality and which
is, in addition, competitive on reasonably small instances. Moreover, we present a fam-
ily of instances where the average waste scales with n0.70, which is almost tight to
our theoretical upper bound and thus showing that our technique is suitable for sharp
analyses.

2 Preliminaries

For our algorithm we need the following sufficient (but still not necessary) schedulabil-
ity condition of Burchard et al.

Lemma 1. [8] For tasks S = {τ1, . . . , τn} define

α(τi) := log2 p(τi)− �log2 p(τi)� and β(S) := max
i=1,...,n

α(τi)− min
i=1,...,n

α(τi).

Then the tasks can be RM-scheduled on a single processor if u(S) ≤ 1− β(S) ln(2).

The intuition behind this is that a small value of β(S) indicates that the periods of tasks
in S are nearly multiples of each other and consequently the tasks are guaranteed to
“harmonize”.

The idea for our heuristic is now as follows: Sort the tasks w.r.t. their α-values. Then
assign them in a First Fit manner using the sufficient feasibility test from Lemma 1. See
Algorithm 1 for a formal description.

Note that the Rate-monotonic small tasks algorithm (RMST) of Burchard et al. [8] is
similar, just that a Next Fit assignment is used instead of First Fit. But already from
average case analysis of Bin Packing, it is well know that Next Fit approaches generate
linear waste for uniformly distributed item sizes [25].

1 To be exact, we assume that first arbitrary periods may be given and then the utilizations are
chosen randomly.

An Average-Case Analysis for Rate-Monotonic Multiprocessor Real-Time Scheduling 437

Algorithm 1. FFMP
Input: Set τ1, . . . , τn of implicit-deadline tasks

(1) Sort tasks such that 0 ≤ α(τ1) ≤ α(τ2) ≤ . . . ≤ α(τn) < 1
(2) FOR i = 1, . . . n DO

(3) Assign τi to the processor Pj with least index j such that u(Pj ∪ {τi}) ≤ 1 − β(Pj ∪
{τi}) · ln(2)

3 The Result of Shor

It is our aim to convey known bounds on the waste of Bin Packing algorithms to the
waste of our algorithm. To this end we consider the following auxiliary algorithm
Matching First Fit (MFF) of Shor [16], which distributes a list L = (a1, . . . , an) of
items to bins Bj . Denote size(Bj) =

∑
i∈Bj

ai.

Algorithm 2. Matching First Fit (MFF)
Input: Set a1, . . . , an of items

(1) FOR i = 1, . . . , n DO
(2) Assign item ai to the bin Bj with the least index j such that either Bj is empty or both

of the following conditions hold
– Bj contains one item and this item has size at least 1/2
– size(Bj) + ai ≤ 1

Shor [16] proved that MFF is monotonic, i.e. for all Bin Packing instances I and all items
ai ∈ I one has

MFF(I) ≥ MFF(I\{ai}) ≥ MFF(I)− 1

where MFF(I) denotes the number of bins used by MFF if applied to instance I . Further-
more MFF is never better than the pure First Fit algorithm and it has an expected waste of
O(n2/3√log n) for Bin Packing instances, whose item sizes are taken uniformly from
[0, 1].

Like MFF is a restriction to First Fit, we now state a restricted version of FFMP.

4 An Auxiliary Algorithm

Let γ := γ(n) be an integer value, which we are going to choose later. We now define a
simplified version FFMP∗ of FFMP which can be analyzed more easily. First the tasks are
partitioned into groups S1, . . . ,Sγ with Sj = {τi ∈ S | j−1

γ ≤ α(τi) < j
γ }, thus the

α-values of tasks from the same group differ only slightly. Next, FFMP∗ never assigns
more than 2 tasks to each processor and tasks from different periods are never mixed.
Here we say that an algorithm mixes two tasks τ1, τ2, if they are assigned to the same
processor. The algorithm even considers a processor to be full if the first assigned task

438 A. Karrenbauer and T. Rothvoß

has a utilization of at most ≈ 1/2. Note that this algorithm is precisely tailored for the
used probability distribution. A formal definition of FFMP∗ now follows

Algorithm 3. FFMP∗

Input: Set τ1, . . . , τn of implicit-deadline tasks

(1) Sort tasks such that 0 ≤ α(τ1) ≤ . . . ≤ α(τn) < 1
(2) Partition tasks into groups S1, . . . ,Sγ with Sj = {τi ∈ S | j−1

γ
≤ α(τi) < j

γ
}.

(3) FOR i = 1, . . . n DO
(4) Assign τi to the processor Pj with the least index j such that either Pj is empty or all

following conditions are satisfied
(a) Pj contains only one item and this item is from the same group as τi

(b) the item on Pj has utilization ≥ (1 − ln(2)
γ

)/2

(c) u(Pj ∪ {τi}) ≤ 1 − ln(2)
γ

Note that 1 − ln(2)
γ is just slightly below 1. Observe that FFMP∗ assigns either 1

or 2 tasks to each processor. Let FFMP∗(S) be the number of processors, needed when
scheduling tasks S with algorithm FFMP∗. As a slight abuse of notation FFMP∗(S) means
as well the schedule, obtained when applying FFMP∗ to S, however the meaning will
be clear from the context. From Lemma 1 we see that the produced solution is always
feasible since either a single task is assigned to a processor or in case that two tasks are
assigned, their α-values differ by at most 1/γ and their cumulated utilization is upper
bounded by 1− ln(2)/γ.

The following observation is crucial for our analysis and allows to link the expected
waste of FFMP∗ to MFF.

Observation 1. Consider tasks τ1, . . . , τm such that one has j−1
γ ≤ α(τi) < j

γ (i.e.

all tasks fall into the same group) and 0 ≤ u(τi) ≤ 1 − ln(2)
γ for all i = 1, . . . , m.

Create m Bin Packing items a1, . . . , am with item sizes ai := u(τi) · /(1 − ln(2)/γ),
i.e. ai ∈ [0, 1]. Then FFMP∗ schedules τ1, . . . , τm in exactly the same way, that MFF
distributes a1, . . . , am, i.e. task τi is assigned to the 	th processor if and only if item ai

is assigned to the 	th bin. Especially FFMP∗({τ1, . . . , τm}) = MFF({a1, . . . , am}).

The main result of this section will be to show that FFMP∗(S) ≥ FFMP(S) for any set of
tasks S. The simplicity of FFMP∗ will enable us to prove monotonicity for it, meaning
that removing tasks from S can only lower the value of FFMP∗(S). Although this is
trivially true for algorithms yielding optimal solutions, for approximation algorithms
with a complex behavior this does not necessarily hold.

Lemma 2. For any set of tasks S and τ∗ ∈ S one has

FFMP∗(S) ≥ FFMP∗(S\{τ∗}) ≥ FFMP∗(S)− 1

Proof. Denote S′ = S\{τ∗} and let S1, . . . ,Sγ [S′
1, . . . ,S′

γ] be the groups of S [S′,
resp.]. Let i∗ be the index such that τ∗ ∈ Si∗ . Since the algorithm never mixes tasks

An Average-Case Analysis for Rate-Monotonic Multiprocessor Real-Time Scheduling 439

from different groups one has FFMP∗(S′
i) = FFMP∗(Si) for all i �= i∗ and FFMP∗(S) =∑γ

i=1 FFMP
∗(Si). Thus we may assume that all groups but Si∗ are empty. Furthermore

tasks with utilization larger than 1 − ln(2)
γ are never mixed with other tasks, thus their

removal does not change the claim. Due to this we may assume that such tasks are
not contained in S = Si∗ , hence S contains just tasks from the same group, all with
utilization at most 1 − ln(2)

γ . Sticking together Observation 1 and the monotonicity of
MFF [16] yields the claim.

By iteratively applying Lemma 2 we obtain

Corollary 1. For all task sets S and S′ ⊆ S one has

FFMP∗(S) ≥ FFMP∗(S′).

We may now conclude that the restricted variant of FFMP never produces better solutions
than FFMP itself.

Theorem 2. For all task sets S one has

FFMP∗(S) ≥ FFMP(S).

Proof. Let P1∪̇ . . . ∪̇Pm = S be the solution computed by FFMP and denote the groups
of S by S1, . . .Sγ . Consider an arbitrary processor Pj and after renaming let τ1, . . . , τp

be the tasks on Pj in incoming order (p ≥ 1). Remove τ3, . . . , τp. Given that p ≥ 2,
remove τ2 if at least one of the following conditions is true

– τ1 and τ2 stem from different groups
– u(τ1) < 1

2 (1 − ln(2)
γ)

– u({τ1, τ2}) > 1− ln(2)
γ

Let S′ ⊆ S the remaining tasks. Clearly FFMP∗ schedules S′ in exactly the same
way that FFMP schedules them in the solution leading to FFMP(S). Thus FFMP∗(S′) =
FFMP(S). From Corollary 1 we gain FFMP∗(S) ≥ FFMP∗(S′). Plugging both equa-
tions/inequalities together, yields the claim.

5 An Upper Bound for FFMP∗

In this section we will give an upper bound on the expected waste of FFMP∗, by exploit-
ing the bound on the waste of MFF. Again Observation 1 will be crucial.

Theorem 3. Let f : R≥1 → R be a concave and monotonic increasing function, such
that f(n) yields an upper bound on the expected waste of MFF applied to n items drawn
uniformly at random from [0, 1]. Then the expected waste of FFMP∗ is bounded by n

γ +
γ · f(n/γ) for n tasks with arbitrary periods, but utilization values drawn uniformly at
random from [0, 1].

440 A. Karrenbauer and T. Rothvoß

Proof. Let S1, . . . ,Sγ be the partition of the tasks S into groups. Denote n = |S| and
ni = |Si|. FFMP∗ never mixes tasks from different groups, thus

FFMP∗(S) =
γ∑

i=1

FFMP∗(Si).

Consider an arbitrary group Si. Call tasks τ with a utilization of u(τ) > 1 − ln(2)
γ full

tasks and ordinary tasks otherwise. Let Sfull
i be the set of full tasks from Si and let

S′
i = Si\Sfull

i be the ordinary tasks. Condition that |S′
i| = no

i . Clearly the algorithm
FFMP∗ does not mix ordinary and full tasks, thus

FFMP∗(Si) = FFMP∗(Sfull
i) + FFMP∗(S′

i).

A full task has a utilization of at least 1 − ln(2)
γ , thus for each full task it suffices to

account a waste of ln(2)
γ ≤ 1

γ . The expected waste stemming from the processors,
owning the full tasks of group i is then

E[FFMP∗(Sfull
i)− u(Sfull

i)] ≤ ni − no
i

γ
.

It remains to bound the waste from the ordinary tasks. The utilization values of tasks in
S′

i are conditioned to be in [0, 1− ln(2)
γ]. It is not difficult to see that the distribution of

u(τ) for τ ∈ S′
i is uniformly w.r.t. [0, 1 − ln(2)

γ]. If we define a Bin Packing instance

I ′i with an item of size u(τ)/(1 − ln(2)
γ) for each τ ∈ S′

i , then the item sizes in I ′i are
distributed uniformly w.r.t. [0, 1]. By Observation 1

E[FFMP∗(S′
i)] = E[MFF(I ′i)] ≤

no
i

2
+ f(no

i).

The rest of the proof simply consists of summing up the achieved bounds on the waste.
We can express the expected waste, stemming from the processors owning ordinary
tasks from the ith group as

E[FFMP∗(S′
i)− u(S′

i)] ≤ (
no

i

2
+ f(no

i))− E[u(S′
i)]

= (
no

i

2
+ f(no

i))− no
i

1− ln(2)/γ

2
≤ f(no

i) +
no

i

γ

Combining ordinary and full tasks yields

E[FFMP∗(Si)− u(Si)] ≤
ni − no

i

γ
+ (f(no

i) +
no

i

γ
) ≤ f(ni) +

ni

γ

using monotonicity of f . Hence the total expected waste for solution FFMP∗(S) can be
written as

E[FFMP∗(S)−u(S)]
(∗)
=

γ∑
i=1

E[FFMP∗(Si)−u(Si)] ≤
γ∑

i=1

(f(ni)+
ni

γ
)

(∗∗)
≤ n

γ
+γ·f(

n

γ
)

For (∗) we used linearity of expectation and (∗∗) follows by Jensen’s inequality and
concaveness of f .

An Average-Case Analysis for Rate-Monotonic Multiprocessor Real-Time Scheduling 441

Applying the best known bound on f(n) we obtain

Theorem 4. For the expected waste of FFMP one has

E[FFMP(S)− u(S)] = O(n3/4(log n)3/8)

if S consists of n tasks, whose utilization values are drawn uniformly at random from
[0, 1].

Proof. Theorem 2 provides that bounding the waste of FFMP∗ is sufficient. Choosing
γ(n) =
n1/4/(log n)3/8� and using the bound of f(n) = O(n2/3(log n)1/2) [16]
together with Theorem 3 yields the claim (observe that c · n2/3 · (log n)1/2 is concave
and monotonic).

Observing that OPT (S) = Ω(n) with very high probability, we conclude that

Corollary 2. Let S consist of n tasks, whose utilization values are drawn uniformly at
random from [0, 1]. Then the expected approximation ratio of FFMP is

E

[
FFMP(S)
OPT (S)

]
≤ 1 +O(n−1/4(log n)3/8)

Using essentially the same proof as [8] (see also [13]) one can easily show that even in
the worst-case one has FFMP(S) ≤ 2u(S) + 4, i.e. the asymptotic worst-case approxi-
mation ratio of FFMP is 2. A proof can be found in the full version of this paper.

6 Experimental Results

We have performed simulations of our FFMP algorithm and compared it with RMFF,
FFDU, and RMGT. The experimental setting is as follows. We choose the periods p(τi) ∈
[0, 500] and the utilizations u(τi) ∈ [0, 1] uniformly at random. We create random
instances in the range of 10 to 100000 tasks. For each given n, we generate 100 random
samples to get a good estimate of the expected value of the waste. We use the same
instances to test each algorithm to allow also a direct comparison of their performance.

The log-log-plot in Fig. 2 shows the power law behavior of the average waste of
FFMP as predicted by Theorem 4. The regression yields an exponent of 0.70 which is
close to 3

4 from the Theorem showing that the theoretical analysis is almost tight, i.e.
that we do not loose much by analyzing the dominated algorithm FFMP∗. In contrast to
that, the average waste produced by the other algorithms shows an almost linear depen-
dence on the number of tasks. In fact, we believe that the dependence is linear since the
measurements of their average waste show a slight curvature to the left, indicating that
the averages are actually growing faster than the fitted straight lines.

The simulated average processor load shown in Fig. 2 supports this claim. By aver-
age processor load, we mean the expected value of the mean utilization of the proces-
sors. The closer this value is to 1 the less processor cycles are wasted. Hence, it comes
to no surprise that the average load for FFMP tends to 1 with increasing n. For the other
algorithms, there is strong evidence that they converge to respective constants strictly
smaller than 1 and likely even not more than 0.9.

442 A. Karrenbauer and T. Rothvoß

10 100 1000 10000 1e+05
number of tasks

1

10

100

1000

10000

av
er

ag
e

w
as

te

FFDU: waste = 0.15 n^0.94
RMFF: waste = 0.20 n^0.93
RMGT: waste = 0.20 n^0.90
FFMP: waste = 0.33 n^0.70

10 100 1000 10000 1e+05
number of tasks

0.7 0.7

0.8 0.8

0.9 0.9

1 1

av
er

ag
e

lo
ad

FFMP
RMGT-FF
RMGT
FFDU
RMFF

Fig. 2. The average waste depending on the number of tasks are shown with 3σ error bars for
FFMP and three algorithms from literature. For each algorithm, we fit a power function (straight
lines in the log-log plot) and display the results in the legend box of (a). The average load of the
processors is shown in (b) with 3σ error bars. In the algorithm RMGT-FF, the Next Fit distribution
for the small tasks is replaced by First Fit.

Interestingly, the quadratic running time of RMGT, which is due to the exact feasi-
bility test for the large tasks, does not pay off in comparison with FFMP, which runs
in O(n log n) time. This does not only hold for the average waste, but also on a per
instance basis: FFMP performs better than RMGT for 94 out of 100 random instances
with 10 tasks and always better on our random test instances with a larger number of
tasks. This is due to the splitting of the tasks into small tasks (i.e. utilization at most
1/3) and large tasks. Thus all tasks with utilization at least 2/3 are deterministically
scheduled alone on a processor. For example in expectation 10% of all tasks have a
utilization between 0.7 and 0.8. Each of those tasks contributes at least 0.2 to the total
waste. Therefore the expected waste of RMGT must be at least 0.1 · 0.2 ·n = Ω(n), even
if after splitting, the algorithm would find an optimum solution for both parts. FFMP can
be implemented in O(n log n) using a heap data structure (see the full version of this
paper).

Acknowledgement

The authors want to thank Sanjoy K. Baruah, for reading a preliminary version of this
paper and giving very helpful advices.

References

1. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-real-time
environment. J. ACM 20(1), 46–61 (1973)

2. Lehoczky, J.P., Sha, L., Ding, Y.: The rate monotonic scheduling algorithm: Exact character-
ization and average case behavior. In: IEEE Real-Time Systems Symposium (1989)

3. Lehoczky, J.P.: Fixed priority scheduling of periodic task sets with arbitrary deadlines. In:
IEEE Real-Time Systems Symposium, pp. 201–213 (1990)

4. Korst, J., Aarts, E.H.L., Lenstra, J.K., Wessels, J.: Periodic multiprocessor scheduling. In:
Aarts, E.H.L., van Leeuwen, J., Rem, M. (eds.) PARLE 1991. LNCS, vol. 505, pp. 166–178.
Springer, Heidelberg (1991)

An Average-Case Analysis for Rate-Monotonic Multiprocessor Real-Time Scheduling 443

5. Audsley, A.N., Burns, A., Richardson, M., Tindell, K.: Applying new scheduling theory to
static priority pre-emptive scheduling. Software Engineering Journal, 284–292 (1993)

6. Oh, Y., Son, S.H.: Allocating fixed-priority periodic tasks on multiprocessor systems. Real-
Time Syst. 9(3), 207–239 (1995)

7. Davari, S., Dhall, S.K.: On-line algorithms for allocating periodic-time-critical tasks on mul-
tiprocessor systems. Informatica (Slovenia) 19(1) (1995)

8. Liebeherr, J., Burchard, A., Oh, Y., Son, S.H.: New strategies for assigning real-time tasks to
multiprocessor systems. IEEE Trans. Comput. 44(12), 1429–1442 (1995)

9. Korst, J., Aarts, E., Lenstra, J.K.: Scheduling periodic tasks with slack. INFORMS J. Com-
put. 9(4), 351–362 (1997)

10. Oh, D.I., Baker, T.P.: Utilization bounds for N-processor rate monotone scheduling with
static processor assignment. Real-Time Systems (1998)

11. Baruah, S., Goossens, J.: Scheduling real-time tasks: Algorithms and complexity. In: Le-
ung, J.Y.T. (ed.) Handbook of Scheduling — Algorithms, Models, and Performance Analy-
sis. Computer and Information Science Series, vol. 28. Chapman & Hall/CRC, Boca Raton
(2004)

12. Fisher, N., Baruah, S.: A fully polynomial-time approximation scheme for feasibility analysis
in static-priority systems with arbitrary relative deadlines. In: ECRTS 2005. IEEE Computer
Society, Los Alamitos (2005)

13. Leung, J., Kelly, L., Anderson, J.H.: Handbook of Scheduling: Algorithms, Models, and
Performance Analysis. CRC Press, Inc., Boca Raton (2004)

14. Garey, M.R., Graham, R.L., Johnson, D.S., Yao, A.C.C.: Resource constrained scheduling as
generalized bin packing. J. Combin. Theory Ser. A 21, 257–298 (1976)

15. Johnson, D.S.: Near-optimal bin packing algorithms. PhD thesis, MIT, Cambridge, MA
(1973)

16. Shor, P.W.: The average-case analysis of some on-line algorithms for bin packing. In: FOCS
1984, Singer Island, FL. IEEE, Los Alamitos (1984)

17. Frederickson, G.N.: Probabilistic analysis for simple one- and two-dimensional bin packing
algorithms. Information Processing Letters 11(4/5), 156–161 (1980)

18. Knödel, W.: A bin packing algorithm with complexity O(n log n) and performance 1 in the
stochastic limit. In: Gruska, J., Chytil, M.P. (eds.) MFCS 1981. LNCS, vol. 118, pp. 369–378.
Springer, Heidelberg (1981)

19. Lueker, G.S.: An average-case analysis of bin packing with uniformly distributed item sizes.
Technical Report 181, Dept. Inf. and CS, University of California at Irvine (1982)

20. Fernandez de la Vega, W., Lueker, G.S.: Bin packing can be solved within 1 + ε in linear
time. Combinatorica 1(4), 349–355 (1981)

21. Karmarkar, N., Karp, R.M.: An efficient approximation scheme for the one-dimensional bin-
packing problem. In: FOCS 1982, pp. 312–320. IEEE, Los Alamitos (1982)

22. Coffman Jr., E.G., Garey, M.R., Johnson, D.S.: Approximation algorithms for bin-packing—
an updated survey. In: Algorithm design for computer system design. CISM Courses and
Lectures, vol. 284, pp. 49–106. Springer, Vienna (1984)

23. Eisenbrand, F., Rothvoß, T.: Static-priority Real-time Scheduling: Response Time Computa-
tion is NP-hard. In: IEEE Real-Time Systems Symposium, RTSS (2008)

24. Eisenbrand, F., Rothvoß, T.: A PTAS for static priority real-time scheduling with resource
augmentation. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir,
A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 246–257. Springer,
Heidelberg (2008)

25. Coffman, E.G.J., So, K., Hofri, M., Yao, A.C.: A stochastic model of bin-packing. Inf. Con-
trol 44, 105–115 (1980)

Minimizing Maximum Response Time and
Delay Factor in Broadcast Scheduling

Chandra Chekuri�, Sungjin Im��, and Benjamin Moseley� � �

Dept. of Computer Science, University of Illinois, Urbana, IL 61801
{chekuri,im3,bmosele2}@cs.illinois.edu

Abstract. We consider online algorithms for pull-based broadcast
scheduling. In this setting there are n pages of information at a server
and requests for pages arrive online. When the server serves (broadcasts)
a page p, all outstanding requests for that page are satisfied. We study
two related metrics, namely maximum response time (waiting time) and
maximum delay-factor and their weighted versions. We obtain the fol-
lowing results in the worst-case online competitive model.
– We show that FIFO (first-in first-out) is 2-competitive even when

the page sizes are different. Previously this was known only for unit-
sized pages [10] via a delicate argument. Our proof differs from [10]
and is perhaps more intuitive.

– Wegive an online algorithm formaximumdelay-factor that isO(1/ε2)-
competitive with (1 + ε)-speed for unit-sized pages and with (2 + ε)-
speed for different sized pages. This improves on the algorithm in [13]
which required (2 + ε)-speed and (4 + ε)-speed respectively. In addi-
tion we show that the algorithm and analysis can be extended to ob-
tain the same results for maximum weighted response time and delay
factor.

– Weshowthat anatural greedy algorithmmodeled after LWF(Longest-
Wait-First) is not O(1)-competitive for maximum delay factor with
any constant speed even in the setting of standard scheduling with
unit-sized jobs. This complements our upper bound and demonstrates
the importance of the tradeoff made in our algorithm.

1 Introduction

We consider online algorithms in pull-based broadcasting. In this model there
are n pages (representing some form of useful information) available at a server
and clients request a page that they are interested in. When the server transmits
a page p, all outstanding requests for that page p are satisfied since it is assumed
that all clients can simultaneously receive the information. It is in this respect
that broadcast scheduling differs crucially from standard scheduling where each
job needs its own service from the server. We distinguish two cases: all the pages

� Partially supported by NSF grants CCF-0728782 and CNS-0721899.
�� Partially supported by NSF grant CNS-0721899 and Samsung Fellowship.

� � � Partially supported by NSF grant CNS-0721899.

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 444–455, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Minimizing Maximum Response Time and Delay Factor 445

are of same size (unit-size without loss of generality) and when the pages can
be of different size. Broadcast scheduling is motivated by several applications
in wireless and LAN based systems [1,2,26]. It has seen a substantial interest
in the algorithmic scheduling literature starting with the work of Bartal and
Muthukrishanan [5]; see [21]. In addition to the applications, broadcast schedul-
ing has sustained interest due to the significant technical challenges that basic
problems in this setting have posed for algorithm design and analysis. To dis-
tinguish broadcast scheduling from “standard” job scheduling, we refer to the
latter as unicast scheduling — we use requests in the context of broadcast and
jobs in the context of unicast scheduling.

In this paper, we focus on scheduling to minimize two related objectives:
the maximum response time and the maximum delay factor. We also consider
their weighted versions. Interestingly, the maximum response time metric was
studied in the (short) paper of Bartal and Muthukrishnan [5] where they claimed
that the online algorithm FIFO (for First In First Out) is 2-competitive for
broadcast scheduling, and moreover that no deterministic online algorithm is
(2−ε)-competitive. (It is easy to see that FIFO is optimal in unicast scheduling).
Despite the claim, no proof was published. It is only recently, almost a decade
later, that Chang et al. [10] gave formal proofs for these claims for unit-sizes
pages. This simple problem illustrates the difficulty of broadcast scheduling: the
ability to satisfy multiple requests for a page p with a single transmission makes
it difficult to relate the total “work” that the online algorithm and the offline
adversary do. The upper bound proof for FIFO in [10] is short but delicate. In
fact, [5] claimed 2-competitiveness for FIFO even when pages have different sizes.
As noted in previous work [5,15,25], when pages have different sizes, one needs
to carefully define how a request for a page p gets satisfied if it arrives midway
during the transmission of the page. In this paper we consider the sequential
model [15], the most restrictive one, in which the server broadcasts each page
sequentially and a client receives the page sequentially without buffering; see [25]
on the relationship between different models. The claim in [5] regarding FIFO
for different pages is in a less restrictive model in which clients can buffer and
take advantage of partial transmissions and the server is allowed to preempt.
The FIFO analysis in [10] for unit-sized pages does not appear to generalize for
different page sizes. Our first contribution in this paper is the following.

Theorem 1. In the sequential model, FIFO is 2-competitive for minimizing
maximum response time in broadcast scheduling even with different page sizes.
Remark 1. In the model where buffering is allowed, a variant of FIFO can be
shown to be 2-competitive. We defer the proof to the full version of this paper.

Note that FIFO, whenever the server is free, picks the page p with the earliest
request and non-preemptively broadcasts it. Our bound matches the lower bound
shown even for unit-sized pages, thus closing one aspect of the problem. Our
proof differs from that of Chang et al.; it does not explicitly use the unit-size
assumption and this is what enables the generalization to different page sizes.
The analysis is inspired by our previous work on maximum delay factor [13]
which we discuss next.

446 C. Chekuri, S. Im, and B. Moseley

Maximum (Weighted) Delay Factor and Weighted Response Time:
The delay factor of a schedule is a metric recently introduced in [10] (and im-
plicitly in [7]) when requests have deadlines. Delay factor captures how much
a request is delayed compared to its deadline. More formally, let Jp,i denote
the i’th request of page p. Each request Jp,i arrives at ap,i and has a deadline
dp,i. The finish time fp,i of a request Jp,i is defined to be the earliest time after
ap,i when the page p is sequentially transmitted by the scheduler starting from
the beginning of the page. Note that multiple requests for the same page can
have the same finish time. Formally, the delay factor of the job Jp,i is defined as
max{1,

fp,i−ap,i

dp,i−ap,i
}; we refer to the quantity Sp,i = dp,i − ap,i as the slack of Jp,i.

For a more detailed motivation of delay factor, see [13]. Note that for unit-sized
pages, delay factor generalizes response time since one could set dp,i = ap,i + 1
for each request Jp,i in which case its delay factor equals its response time. In
this paper we are interested in online algorithms that minimize the maximum
delay factor, in other words the objective function is min maxp,i{1,

fp,i−ap,i

dp,i−ap,i
}.

We also consider a related metric, namely weighted response time. Let wp,i be
a non-negative weight associated with Jp,i; the weighted response time is then
wp,i(fp,i − ap,i) and the goal is to minimize the maximum weighted response
time. Delay factor and weighted response time have syntactic similarity if we
ignore the 1 term in the definition of delay factor — one can think of the weight
as the inverse of the slack. Although the metrics are some what similar we note
that there is no direct way to reduce one to the other. On the other hand,
we observe that upper bounds for one appear to translate to the other. We
also consider the problem of minimizing the maximum weighted delay factor
min maxp,i wp,i{1,

fp,i−ap,i

dp,i−ap,i
}.

Surprisingly, the maximum weighted response time metric appears to not have
been studied formally even in classical unicast scheduling; however a special case,
namely maximum stretch has received attention. The stretch of a job is its response
time divided by its processing time; essentially the weight of a job is the inverse of
its processing time. Bender et al. [6,8], motivated by applications to web-server
scheduling, studied maximum stretch and showed very strong lower bounds in the
online setting. Using similar ideas, in some previous work [13], we showed strong
lower bounds for minimizing maximum delay factor even for unit-time jobs. In [13],
constant competitive algorithms were given for minimizing maximum delay factor
in both unicast and broadcast scheduling; the algorithms are based on resource
augmentation [20] wherein the algorithm is given a speed s > 1 server while the
offline adversary is given a speed 1 server. They showed that SSF (shortest slack
first) is O(1/ε)-competitive with (1+ε)-speed in unicast scheduling. SSF does not
work well in the broadcast scheduling. A different algorithm that involves waiting,
SSF-W (shortest slack first with waiting) was developed and analyzed in [13]; the
algorithm is O(1/ε2)-competitive for unit-size pages with (2 + ε)-speed and with
(4 + ε)-speed for different sized pages. In this paper we obtain improved results
by altering the analysis of SSF-W in a subtle and important way. In addition we
show that the algorithm and analysis can be altered in an easy fashion to obtain
the same bounds for weighted response time and delay factor.

Minimizing Maximum Response Time and Delay Factor 447

Theorem 2. There is an algorithm that is (1 + ε)-speed O(1/ε2)-competitive for
minimizing maximum delay factor in broadcast scheduling with unit-sized pages.
For different sized pages there is a (2+ε)-speed O(1/ε2)-competitive algorithm. The
same bounds apply for minimizing maximum weighted response time and maximum
weighted delay factor.

Remark 2. Minimizing maximum delay factor is NP-hard and there is no (2−ε)-
approximation unless P = NP for any ε > 0 in the offline setting for unit-sized
pages. There is a polynomial time computable 2-speed schedule with the optimal
delay factor (with 1-speed) [10]. Theorem 2 gives a polynomial time computable
(1 + ε)-speed schedule that is O(1/ε2)-optimal (with 1-speed).

We remark that the algorithm SSF-W makes an interesting tradeoff between
two competing metrics and we explain this tradeoff in the context of weighted
response time and a lower bound we prove in this paper for a simple greedy
algorithm. Recall that FIFO is 2-competitive for maximum response time in
broadcast scheduling and is optimal for job scheduling. What are natural ways
to generalize FIFO to delay factor and weighted response time? As shown in
[13], SSF (which is equivalent to maximum weight first for weighted response
time) is O(1/ε)-competitive with (1+ ε)-speed for job scheduling but is not com-
petitive for broadcast scheduling — it may end up doing much more work than
necessary by transmitting a page repeatedly instead of waiting and accumulating
requests for a page. One natural algorithm that extends FIFO for delay factor
or weighted response time is to schedule the request in the queue that has the
largest current delay factor (or weighted wait time). This greedy algorithm was
labeled LF (longest first) since it can be seen as an extension of the well-studied
LWF (longest-wait-first) for average flow time. Since LWF is known to be O(1)-
competitive with O(1)-speed for average flow time, it was suggested in [11] that
LF may be O(1)-speed O(1)-competitive for maximum delay factor. We show
that this is not the case even for unicast scheduling.

Theorem 3. For any constants s, c > 1, LF is not c-competitive with s-speed
for minimizing maximum delay factor (or weighted response time) in unicast
scheduling of unit-time jobs.

Our algorithm SSF-W can be viewed as an interesting tradeoff between SSF
and LF. SSF gives preference to small slack requests while the LF strategy
helps avoid doing too much extra work in broadcast scheduling by giving pref-
erence to pages that have waited sufficiently long even if they have large slack.
The algorithm SSF-W considers all requests whose delay factor at time t (or
weighted wait time) is within a constant factor of the largest delay factor at
t and amongst those requests schedules the one with the smallest slack. This
algorithmic principle may be of interest in other settings and is worth exploring
in the future.

Other Related Work: We have focussed on maximum response time and its
variants and have already discussed closely related work. Other metrics that have
received substantial attention in broadcast scheduling are minimizing average

448 C. Chekuri, S. Im, and B. Moseley

flow time and maximizing throughput of satisfied requests when requests have
deadlines. We refer the reader to a comprehensive survey on online scheduling
algorithms by Pruhs, Sgall and Torng [24] (see also [23]). The recent paper of
Chang et al. [10] addresses, among other things, the offline complexity of several
basic problems in broadcast scheduling. Average flow-time received substantial
attention in both the offline and online settings [21,17,18,19,3,4]. For average
flow time, there are three O(1)-speed O(1)-competitive online algorithms. LWF
is one of them [15,11] and the others are BEQUI [15] and its extension [16]. Our
recent work [11] has investigated Lk norms of flow-time and showed that LWF is
O(k)-speed O(k)-competitive algorithm. Constant competitive online algorithms
for maximizing throughput for unit-sized pages can be found in [22,9,27,14]. A
more thorough description of related work is deferred to a full version of the
paper.
Organization: We prove each of the theorems mentioned above in a different
section. The algorithm and analysis for weighted response time and weighted
delay factor are very similar to that for delay factor and hence, in this version,
we omit the analysis and only describe the algorithm for weighted response time.
Due to space limitations, we prove Theorem 2 only with unit-sized pages and
briefly discuss Theorem 3. See [12] for a more detailed version.

Notation: We denote the length of page p by 	p. That is, 	p is the amount of
time a 1-speed server takes to broadcast page p non-preemptively. We assume
without loss of generality that for any request Jp,i, Sp,i ≥ 	p. For an algorithm A
we let αA denote the maximum delay factor witnessed by A for a given sequence
of requests. We let α∗ denote the optimal delay factor of an offline schedule.
Likewise, we let ρA denote the maximum response time witnessed by A and ρ∗

the optimal response time of an offline schedule. For a time interval I = [a, b] we
define |I| = b− a to be the length of interval I.

2 Minimizing the Maximum Response Time

In this section we analyze FIFO for minimizing maximum response time when
page sizes are different. We first describe the algorithm FIFO. FIFO broadcasts
pages non-preemptively. Consider a time t when FIFO finished broadcasting a
page. Let Jp,i be the request in FIFO’s queue with earliest arrival time breaking
ties arbitrarily. FIFO begins broadcasting page p at time t. At any time during
this broadcast, we will say that Jp,i forced FIFO to broadcast page p at this
time. When broadcasting a page p all requests for page p that arrived before the
start of the broadcast are simultaneously satisfied when the broadcast completes.
Any request for page p that arrive during the broadcast are not satisfied until
the next full transmission of p.

We consider FIFO when given a 1-speed machine. Let σ be an arbitrary
sequence of requests. Let OPT denote some fixed offline optimum schedule and
let ρ∗ denote the optimum maximum response time. We will show that ρFIFO ≤
2ρ∗. For the sake of contradiction, assume that FIFO witnesses a response time
cρ∗ by some job Jq,k for some c > 2. Let t∗ be the time Jq,k is satisfied, that

Minimizing Maximum Response Time and Delay Factor 449

is t∗ = fq,k. Let t1 be the smallest time less than t∗ such that at any time t
during the interval [t1, t∗] the request which forces FIFO to broadcast a page
at time t has response time at least ρ∗ when satisfied. Throughout the rest of
this section we let I = [t1, t∗]. Let JI denote the requests which forced FIFO
to broadcast during I. Notice that during the interval I, all requests in JI are
completely satisfied during this interval. In other words, any request in JI starts
being satisfied during I and is finished during I.

We say that OPT merges two distinct requests for a page p if they are satisfied
by the same broadcast.

Lemma 1. OPT cannot merge any two requests in JI into a single broadcast.

Proof. Let Jp,i, Jp,j ∈ JI s.t. i < j. Note that that Jp,i is satisfied before Jp,j .
Let t′ be the time that FIFO starts satisfying request Jp,i. By the definition of
I, request Jp,i has response time at least ρ∗. The request Jp,j must arrive after
time t′, that is ap,j > t′, otherwise Jp,j is satisfied by the same broadcast of page
p that satisfied Jp,i. Hence, it follows that if OPT merges Jp,i and Jp,j then the
finish time of Jp,i in OPT is strictly greater than its finish time in FIFO which
is already at least ρ∗; this is a contradiction to the definition of ρ∗. ��

Lemma 2. All requests in JI arrived no earlier than time t1 − ρ∗.

Proof. For the sake of contradiction, suppose some request Jp,i ∈ JI arrived
at time ap,i < t1 − ρ∗. During the interval [ap,i + ρ∗, t1] the request Jp,i must
have wait time at least ρ∗. However, then any request which forces FIFO to
broadcast during [ap,i +ρ∗, t1] must have response time at least ρ∗, contradicting
the definition of t1. ��

We are now ready to prove Theorem 1, stating that FIFO is 2-competitive.

Proof. Recall that all requests in JI are completely satisfied during I. Thus we
have that the total size of requests in JI is |I|. By definition Jq,k witnesses a
response time greater than 2ρ∗ and therefore t∗ − aq,k > 2ρ∗. Since Jq,k ∈ JI

is the last request done by FIFO during I, all requests in JI must arrive no
later than aq,k. Therefore, these requests must be finished by time aq,k + ρ∗ by
the optimal solution. From Lemma 2, all the requests JI arrived no earlier than
t1 − ρ∗. Thus OPT must finish all requests in JI , whose total volume is |I|,
during Iopt = [t1 − ρ∗, aq,k + ρ∗]. Thus it follows that |I| ≤ |[t1 − ρ∗, aq,k + ρ∗]|,
which simplifies to t∗ ≤ aq,k + 2ρ∗. This is a contradiction to the fact that
t∗ − aq,k > 2ρ∗. ��

We now discuss the differences between our proof of FIFO for varying sized pages
and the proof given by Chang et al. in [10] showing that FIFO is 2-competitive for
unit sized pages. In [10] it is shown that at anytime t, F (t), the set of unique pages
in FIFO’s queue satisfies the following property: |F (t)\O(t)| ≤ |O(t)| where O(t)
is the set of unique pages in OPT’s queue. This easily implies the desired bound.
To establish this, they use a slot model in which unit-sized pages arrive only during
integer times which allows one to define unique pages. This may appear to be a

450 C. Chekuri, S. Im, and B. Moseley

t1 − ρ∗
t1 aq,k aq,k + ρ∗ t∗

Time

I

Iopt

Jq,k

Fig. 1. Broadcasts by FIFO satisfying requests in JI are shown in blue. Note that
aq,k and aq,k + ρ∗ are not necessarily contained in I .

technicality, however when considering different sized pages, it is not so clear how
one even defines unique pages since this number varies during the transmission of
p as requests accumulate. Our approach avoids this issue in a clean manner by not
assuming a slot model or unit-sized pages.

3 Minimizing Maximum Delay Factor and Weighted
Response Time

In this section we consider the problem of minimizing maximum delay factor
and prove Theorem 2.

3.1 Unit Sized Pages
In this section we consider the problem of minimizing the maximum delay factor
when all pages are of unit size. In this setting we assume preemption is not
allowed. In the standard unicast scheduling setting where each broadcast satisfies
exactly one request, it is known that the algorithm which always schedules the
request with smallest slack at any time is (1 + ε)-speed O(1

ε)-competitive [13].
However, in the broadcast setting this algorithm, along with other simple greedy
algorithms, do not provide constant competitive ratios even with extra speed.
The reason for this is that the adversary can force these algorithm to repeatedly
broadcast the same page even though the adversary can satisfy each of these
requests in a singe broadcast.

Due to this, we consider a more sophisticated algorithm called SSF-W
(Shortest-Slack-First with Waiting). This algorithm was developed and analyzed
in [13]. In this paper we alter the algorithm in a slight but practically important
way. The main contribution is, however, a new analysis that is at a high-level
similar in outline to the one in [13] but is subtly different and leads to much
improved bound on its performance. SSF-W adaptively forces requests to wait
after their arrival before they are considered for scheduling. The algorithm is
parameterized by a real value c > 1 which is used to determine how long a re-
quest should wait. Before scheduling a page at time t, the algorithm determines
the largest current delay factor of any request that is unsatisfied at time t, αt.
Amongst the unsatisfied requests that have a current delay factor at least 1

cαt,
the page corresponding to the request with smallest slack is broadcasted. Note
that in the algorithm, each request is forced to wait to be scheduled until it has
delay factor at least 1

cαt. Thus SSF-W can be seen an adaptation of the al-
gorithm which schedules the request with smallest slack in broadcasting setting

Minimizing Maximum Response Time and Delay Factor 451

with explicit waiting. Waiting is used to potentially satisfy multiple requests
with similar arrival times in a single broadcast. Another interpretation, that we
mentioned earlier, is that SSF-W is a balance between LF and SSF.

Algorithm. SSF-W
– Let αt be the maximum delay factor of any request in SSF-W’s queue at

time t.
– At time t, let Q(t) = {Jp,i | Jp,i has not been satisfied and t−ap,i

Sp,i
≥ 1

cαt}.
– If the machine is free at t, schedule the request in Q(t) with the smallest

slack non-preemptively.

First we note the difference between SSF-W above and the one described in
[13]. Let α′

t denote the maximum delay factor witnessed so far by SSF-W at time
t over all requests seen by t including satisfied and unsatisfied requests. In [13], a
request Jp,i is in Q(t) if t−ap,i

Sp,i
≥ 1

cα′
t. Note that α′

t is monotonically increases with
t while αt can increase and decrease with t and is never more than α′

t. In the old
algorithm it is possible that Q(t) is empty and no request is scheduled at t even
though there are outstanding requests! Our new version of SSF-W can be seen as
more practical since there will always be requests in Q(t) if there are outstanding
requests and moreover it adapts and may reduceαt as the request sequence changes
with time. It is important to note that our analysis and the analysis given in [13]
hold for both definitions of SSF-W with some adjustments.

We analyze SSF-W when it is given a (1 + ε)-speed machine. Let c > 1 + 2
ε

be the constant which parameterizes SSF-W. Let σ be an arbitrary sequence
of requests. We let OPT denote some fixed offline optimum schedule and let α∗

and αSSF-W denote the maximum delay factor achieved by OPT and SSF-W,
respectively. We will show that αSSF-W ≤ c2α∗. For the sake of contradiction,
suppose that SSF-W witnesses a delay factor greater than c2α∗. We consider
the first time t∗ when SSF-W has some request in its queue with delay factor
c2α∗. Let the request Jq,k be a request which achieves the delay factor c2α∗ at
time t∗. Let t1 be the smallest time less than t∗ such that at each time t during
the interval [t1, t∗] if SSF-W is forced to broadcast by request Jp,i at time t

it is the case that t−ap,i

Sp,i
≥ α∗ and Sp,i ≤ Sq,k. Throughout this section we let

I = [t1, t∗]. The main difference between the analysis in [13] and the one here is
in the definition of t1. In [13], t1 was implicitly defined to be aq,k +c(fq,k−aq,k).

We letJI denote the requests which forced SSF-W to schedule broadcasts dur-
ing the interval [t1, t∗]. We now show that any two request in JI cannot be satisfied
with a single broadcast by the optimal solution. Intuitively, the most effective way
the adversary to performs better than SSF-W is to merge requests of the same
page into a single broadcast. Here we will show this is not possible for the requests
inJI . We omit the proof of Lemma 3, since the proof is similar to that of Lemma 1.

Lemma 3. OPT cannot merge any two requests in JI into a single broadcast.

To fully exploit the advantage of speed augmentation, we need to ensure that
the length of the interval I is sufficiently long.

452 C. Chekuri, S. Im, and B. Moseley

Lemma 4. |I| = |[t1, t∗]| ≥ (c2 − c)Sq,kα∗.

Proof. The request Jq,k has delay factor at least cα∗ at any time during I ′ =
[t′, t∗], where t′ = t∗ − (c2 − c)Sq,kα∗. Let τ ∈ I ′. The largest delay factor any
request can have at time τ is less than c2α∗ by definition of t∗ being the first
time SSF-W witnesses delay factor c2α∗. Hence, ατ ≤ c2α∗. Thus, the request
Jq,k is in the queue Q(τ) because cα∗ ≥ 1

cατ . Moreover, this means that any
request that forced SSF-W to broadcast during I ′, must have delay factor at
least α∗ and since Jq,k ∈ Q(τ) for any τ ∈ I ′, the requests scheduled during I ′

must have slack at most Sq,k. ��

We now explain a high level view of how we lead to a contradiction. From
Lemma 3, we know any two requests in JI cannot be merged by OPT. Thus if
we show that OPT must finish all these requests during an interval which is not
long enough to include all of them, we can draw a contradiction. More precisely,
we will show that all requests in JI must be finished during Iopt by OPT, where
Iopt = [t1 − 2Sq,kα∗c, t∗]. It is easy to see that all these requests already have
delay factor α∗ by time t∗, thus the optimal solution must finish them by time
t∗. For the starting point, we will bound the arrival times of the requests in JI

in the following lemma. After that, we will draw a contradiction in Lemma 6.

Lemma 5. Any request in JI must have arrived after time t1 − 2Sq,kα∗c.

Proof. For the sake of contradiction, suppose that some request Jp,i ∈ JI arrived
at time t′ < t1−2Sq,kα∗c. Recall that Jp,i has a slack no bigger than Sq,k by the
definition of I. Therefore at time t1 − Sq,kα∗c, Jp,i has a delay factor of at least
cα∗. Thus any request scheduled during the interval I ′ = [t1 − Sq,kα∗c, t1] has a
delay factor no less than α∗. We observe that Jp,i is in Q(τ) for τ ∈ I ′; otherwise
there must be a request with a delay factor bigger than c2α∗ at time τ and
this is a contradiction to the assumption that t∗ is the first time that SSF-W
witnessed a delay factor of c2α∗. Therefore any request scheduled during I ′ has
a slack no bigger than Sp,i. Also we know that Sp,i ≤ Sq,k. In sum, we showed
that any request done during I ′ had slack no bigger than Sq,k and a delay factor
no smaller than α∗, which is a contradiction to the definition of t1. ��

Now we are ready to prove the competitiveness of SSF-W.

Lemma 6. Suppose c is a constant s.t. c > 1+2/ε. If SSF-W has (1+ ε)-speed
then αSSF-W ≤ c2α∗.

Proof. For the sake of contradiction, suppose that αSSF-W > c2α∗. During the
interval I, the number of broadcasts which SSF-W transmits is (1+ ε)|I|. From
Lemma 5, all the requests processed during I have arrived no earlier than t1 −
2cα∗Sq,k. We know that the optimal solution must process these requests before
time t∗ because these requests have delay factor at least α∗ by t∗. By Lemma 3
the optimal solution must make a unique broadcast for each of these requests.
Thus, the optimal solution must finish all of these requests in 2cα∗Sq,k + |I| time
steps. Thus, the it must hold that (1 + ε)|I| ≤ 2cα∗Sq,k + |I|. Using Lemma 4,
this simplifies to c ≤ 1 + 2/ε, which is a contradiction to c > 1 + 2/ε. ��

Minimizing Maximum Response Time and Delay Factor 453

The previous lemmas prove the first part of Theorem 2 when c = 1+3/ε. Namely
that SSF-W is a (1 + ε)-speed O(1

ε2)-competitive algorithm for minimizing the
maximum delay factor in broadcast scheduling with unit sized pages.

We now compare proof of Theorem 2 and the proof of Theorem 1 with the
analysis given in [13]. The central technique used in [13] and in our analysis is to
draw a contradiction by showing that the optimal solution must complete more
requests than possible on some time interval I. This technique is well known in
unicast scheduling. At the heart of this technique is to find the which requests
to consider and bounding the length of the interval I. This is where our proof
and the one given in [13] differ. Here we are more careful on how I is defined and
how we find requests the optimal solution must broadcast during I. This allows
us to show tighter bounds on the speed and competitive ratios while simplifying
the analysis. In fact, our analysis of FIFO and SSF-W shows the importance
of these definitions. Our analysis of FIFO shows that a tight bound on the
length of I can force a contradiction without allowing extra speed-up given to
the algorithm. Our analysis of SSF-W shows that when the length of I varies
how resource augmentation can be used to force the contradiction.

3.2 Weighted Response Time and Weighed Delay Factor

In this section, we discuss the connection of our analysis of SSF-W to the
problem of minimizing weighted response time. In this setting a request Jp,i

has a weight wp,i instead of a slack. The goal is to minimize the maximum
weighted response time maxp,i wp,i(fp,i − ap,i). We develop an algorithm which
we call BWF-W for Biggest-Wait-First with Waiting. This algorithm is defined
analogously to the definition of SSF-W. The algorithm is parameterized by a
constant c > 1. At any time t before broadcasting a page, BWF-W determines
the largest weighted wait time of any request which has yet to be satisfied. Let
this value be ρt. The algorithm then chooses to broadcast a page corresponding
to the request with largest weight amongst the requests whose current weighted
wait time at time t is larger than 1

cρt.

Algorithm. BWF-W
– Let ρt be the maximum weighted wait time of any request in BWF-W’s

queue at time t.
– At time t,

let Q(t) = {Jp,i | Jp,i has not been satisfied and wp,i(t− ap,i) ≥ 1
cρt}.

– If the machine is free at t, schedule the request in Q(t) with largest weight
non-preemptively.

Although minimizing the maximum delay factor and minimizing the maxi-
mum weighted flow time are very similar metrics, the problems are not equiva-
lent. For the problems of minimizing the maximum weighted response time and
weighted delay factor, the upper bounds shown for SSF-W in this paper also
hold for BWF-W. The analysis of BWF-W is very similar to that of SSF-W
and the proof is omitted.

454 C. Chekuri, S. Im, and B. Moseley

4 Lower Bound for a Natural Greedy Algorithm LF

We briefly discuss the algorithm LF which always schedules the page with the
largest delay factor and show that it is not O(1)-competitive with any constant
speed. This is interesting, since LF can be seen as a natural generalization of
FIFO to the problem of minimizing maximum delay factor. This demonstrates
the importance of the tradeoff between scheduling a request with smallest slack
and forcing requests to wait; notice that our algorithm LF is the same as SSF-W
when c = 1. Interestingly, our lowerbound instance σ holds even in the standard
unicast scheduling with unit sized jobs. In the instance σ, a series of job groups Ji

for 0 ≤ i ≤ k arrive, with all jobs in each group having the same arrival time and
the same slack. The slack and the number of jobs in Ji exponentially decreases
with i. Here the optimal solution is to process J1 through Jk, and finally J0
where jobs have a very big slack. However, LF, which makes a scheduling decision
only based on the current largest delay factor ignoring slack sizes, processes jobs
from J0 through Jk, thereby resulting in a large delay factor for some jobs in
Jk. The full proof can be found in [12].

5 Conclusion

In this paper, we showed an almost fully scalable algorithm1 for minimizing the
maximum delay factor in broadcasting for unit sized jobs. The slight modification
we make to SSF-W from [13] makes the algorithm more practical. Using the
intuition developed for the maximum delay factor, we proved that FIFO is in
fact 2-competitive for varying sized jobs closing the problem for minimizing the
maximum response time online in broadcast scheduling.

We close this paper with the following open problems. Although the new algo-
rithm for the maximum delay factor with unit sized jobs is almost fully scalable,
it explicitly depends on speed given to the algorithm. Can one get another algo-
rithm independent of this dependency? For different sized pages, it is still open
on whether there exists a (1 + ε)-speed algorithm that is O(1)-competitive. For
minimizing the maximum response time offline it is of theoretical interest to
show a lower bound on the approximation ratio that can be achieved or to show
an algorithm that is a c-approximation for some c < 2, improving upon FIFO.

References

1. Acharya, S., Franklin, M., Zdonik, S.: Dissemination-based data delivery using
broadcast disks. IEEE Pers. Commun. 2(6), 50–60 (1995)

2. Aksoy, D., Franklin, M.J.: rxw: A scheduling approach for large-scale on-demand
data broadcast. IEEE/ACM Trans. Netw. 7(6), 846–860 (1999)

3. Bansal, N., Charikar, M., Khanna, S., Naor, J.S.: Approximating the average re-
sponse time in broadcast scheduling. In: SODA, pp. 215–221 (2005)

1 An algorithm is said to be almost fully scalable if for any fixed ε > 0, it is O(1+ε)-
speed O(1)-competitive.

Minimizing Maximum Response Time and Delay Factor 455

4. Bansal, N., Coppersmith, D., Sviridenko, M.: Improved approximation algorithms
for broadcast scheduling. In: SODA, pp. 344–353 (2006)

5. Bartal, Y., Muthukrishnan, S.: Minimizing maximum response time in scheduling
broadcasts. In: SODA, pp. 558–559 (2000)

6. Bender, M.A., Chakrabarti, S., Muthukrishnan, S.: Flow and stretch metrics for
scheduling continuous job streams. In: SODA, pp. 270–279 (1998)

7. Bender, M.A., Clifford, R., Tsichlas, K.: Scheduling algorithms for procrastinators.
J. Scheduling 11(2), 95–104 (2008)

8. Bender, M.A., Muthukrishnan, S., Rajaraman, R.: Improved algorithms for stretch
scheduling. In: SODA, pp. 762–771 (2002)

9. Chan, W.-T., Lam, T.W., Ting, H.-F., Wong, P.W.H.: New results on on-demand
broadcasting with deadline via job scheduling with cancellation. In: Chwa, K.-
Y., Munro, J.I.J. (eds.) COCOON 2004. LNCS, vol. 3106, pp. 210–218. Springer,
Heidelberg (2004)

10. Chang, J., Erlebach, T., Gailis, R., Khuller, S.: Broadcast scheduling: algorithms
and complexity. In: SODA, pp. 473–482 (2008)

11. Chekuri, C., Im, S., Moseley, B.: Longest wait first for broadcast scheduling
(manuscript, 2009)

12. Chekuri, C., Im, S., Moseley, B.: Minimizing maximum response time and delay
factor in broadcast scheduling. CoRR, abs/0906.2048 (2009)

13. Chekuri, C., Moseley, B.: Online scheduling to minimize the maximum delay factor.
In: SODA, pp. 1116–1125 (2009)

14. Chrobak, M., Dürr, C., Jawor, W., Kowalik, L., Kurowski, M.: A note on scheduling
equal-length jobs to maximize throughput. J. Scheduling 9(1), 71–73 (2006)

15. Edmonds, J., Pruhs, K.: Multicast pull scheduling: When fairness is fine. Algorith-
mica 36(3), 315–330 (2003)

16. Edmonds, J., Pruhs, K.: Scalably scheduling processes with arbitrary speedup
curves. In: SODA, pp. 685–692 (2009)

17. Erlebach, T., Hall, A.: Np-hardness of broadcast scheduling and inapproximability
of single-source unsplittable min-cost flow. In: SODA, pp. 194–202 (2002)

18. Gandhi, R., Khuller, S., Kim, Y.-A., Wan, Y.-C.J.: Algorithms for minimizing
response time in broadcast scheduling. Algorithmica 38(4), 597–608 (2004)

19. Gandhi, R., Khuller, S., Parthasarathy, S., Srinivasan, A.: Dependent rounding and
its applications to approximation algorithms. J. ACM 53(3), 324–360 (2006)

20. Kalyanasundaram, B., Pruhs, K.: Speed is as powerful as clairvoyance. J.
ACM 47(4), 617–643 (2000)

21. Kalyanasundaram, B., Pruhs, K., Velauthapillai, M.: Scheduling broadcasts in
wireless networks. J. Scheduling 4(6), 339–354 (2000)

22. Kim, J.-H., Chwa, K.-Y.: Scheduling broadcasts with deadlines. Theor. Comput.
Sci. 325(3), 479–488 (2004)

23. Pruhs, K.: Competitive online scheduling for server systems. SIGMETRICS Per-
form. Eval. Rev. 34(4), 52–58 (2007)

24. Pruhs, K., Sgall, J., Torng, E.: Online Scheduling. In: Handbook of Scheduling:
Algorithms, Models, and Performance Analysis (2004)

25. Pruhs, K., Uthaisombut, P.: A comparison of multicast pull models. Algorith-
mica 42(3-4), 289–307 (2005)

26. Wong, J.: Broadcast delivery. Proc. IEEE 76(12), 1566–1577 (1988)
27. Zheng, F., Fung, S.P.Y., Chan, W.-T., Chin, F.Y.L., Poon, C.K., Wong, P.W.H.:

Improved on-line broadcast scheduling with deadlines. In: Chen, D.Z., Lee, D.T.
(eds.) COCOON 2006. LNCS, vol. 4112, pp. 320–329. Springer, Heidelberg (2006)

Preemptive Online Scheduling with Reordering

György Dósa1 and Leah Epstein2

1 Department of Mathematics, University of Pannonia, Veszprém, Hungary
dosagy@almos.vein.hu

2 Department of Mathematics, University of Haifa, 31905 Haifa, Israel
lea@math.haifa.ac.il

Abstract. We consider online preemptive scheduling of jobs, arriving
one by one, on m identical parallel machines. A buffer of a positive fixed
size, K, which assists in partial reordering of the input, is available for
the storage of at most K unscheduled jobs. We study the effect of using
a fixed sized buffer (of an arbitrary size) on the supremum competitive
ratio over all numbers of machines (the overall competitive ratio), as well
as the effect on the competitive ratio as a function of m.

We find a tight bound on the competitive ratio for any m. This bound
is 4

3
for even values of m and slightly lower for odd values of m. We show

that a buffer of size Θ(m) is sufficient to achieve this bound, but using
K = o(m) does not reduce the best overall competitive ratio which
is known for the case without reordering, e

e−1
. We further consider the

semi-online variant where jobs arrive sorted by non-increasing processing
time requirements. In this case we show that it is possible to achieve a
competitive ratio of 1. In addition, we find tight bounds as a function of
both K and m.

1 Introduction

Scheduling of jobs arriving one by one (or over list) is a basic model in online
scheduling [17]. The system consists of a set of m identical machines that can
process a sequence of arriving jobs. Each job j, which has a processing time
pj associated with it (also called size), needs to be assigned upon arrival. The
completion time, or load, of a machine is the total time needed to process the
jobs assigned to it, including idle time in which the machine is waiting for a
job to be executed (if idle time exists). The goal is to minimize the maximum
completion time of any machine, also known as the makespan.

We consider online and semi-online preemptive scheduling of jobs. An arriving
job can be split into parts, which need to be assigned to non-overlapping time
slots, possibly on different machines. Idle time is allowed, and each machine can
process at most one job at each time. In the online scenario, a job must be treated
before the next job is revealed. For an algorithm A, we denote its cost by A as
well. An optimal offline algorithm that knows the complete sequence of jobs in
advance is denoted by opt. In this paper we measure the performance quality
of algorithms using the (absolute) competitive ratio, which is the most common

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 456–467, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Preemptive Online Scheduling with Reordering 457

measure for the performance evaluation of online algorithms. The competitive
ratio of A is the infimum R such that for any input, A ≤ R · opt.

We consider a model where a reordering buffer, of a fixed size K > 0, is
available. This buffer can store up to K unassigned jobs and thus assists in
partial reordering of the input. Upon the arrival of a job, it is possible to either
assign it completely to machines and time slots, or otherwise it is possible to
store it in the buffer rather than assigning it. If the buffer already contains K
jobs, at least one of these jobs must be assigned to the machines in order to
make room for the new job, or else the new job must be assigned.

Non-preemptive scheduling (i.e., the case where a job cannot be split into
parts and must be processed continuously on one machine), with a reordering
buffer, was previously studied in several papers [12,19,13,6,3]. The main research
question in these papers was to find the effect of using a reordering buffer on
the competitive ratio, that is, finding the lowest competitive ratio which can
be achieved if the online algorithm is supplied with a buffer, and whether this
competitive ratio is achievable only in the limit, or whether there exists a size
of a buffer which allows to achieve this bound. This competitive ratio can then
be compared to the best possible competitive ratio which can be achieved with-
out a buffer. Clearly, an offline algorithm can be seen as an algorithm which
uses an unbounded buffer. Limiting the online algorithm to a fixed sized buffer
still means in most cases that the algorithm cannot perform as well as an opti-
mal offline algorithm. Consequently, the competitive ratio for every value of m
is of interest, as well as the overall competitive ratio, which is the supremum
competitive ratio over all values of m.

In all (non-preemptive) variants studied in the past, a finite length buffer al-
ready allows to achieve the best competitive ratio. In particular, for two identical
machines, a buffer of size 1 is sufficient, as was proved by Kellerer et al. [12] and
independently by Zhang [19]. For m identical machines, Englert, Özmen and
Westermann [6] showed that a buffer of size O(m) is sufficient. For the more
general case of uniformly related machines, where machines may have different
speeds, it was shown [3] that for two machines, a buffer of size 2 allows to achieve
the best competitive ratio. In fact, for some speed ratios between the two ma-
chines, a buffer of size 1 is sufficient, while for some other speed ratios, a buffer
of size 1 provably does not allow to achieve the best bound. Note that it was
shown by [6] that a buffer of size m − 1 reduces the competitive ratio for uni-
formly related machines below the lower bound of the case without reordering.
In this paper we answer analogous questions for preemptive scheduling.

Preemptive online scheduling without reordering was studied by Chen, van
Vliet, and Woeginger [2] (see also [14,16,1]). They designed an algorithm of the
best possible competitive ratio for any number of machines m. This competitive
ratio is a monotonically increasing function of m, mm

mm−(m−1)m , which implies
an overall competitive ratio of e

e−1 ≈ 1.58. A number of papers generalized this
result for uniformly related machines [18,9,7,4,10].

We study an additional variant where it is known in advance that jobs arrive
sorted by size, in a non-increasing order. This common semi-online variant of

458 G. Dósa and L. Epstein

preemptive semi-online scheduling was analyzed by Seiden, Sgall and Woeginger
for identical machines [15]. The overall tight bound on the competitive ratio
shown by [15] is 1+

√
3

2 ≈ 1.366. Semi-online preemptive scheduling on uniformly
related machines was considered in [8,5].

Our results. We study the case of m identical machines. We find a tight
bound on the competitive ratio for general inputs for any number of machines,
m. We show that a buffer of size
m−2

2 � is sufficient to achieve this bound. In
fact, reordering via the usage of a buffer allows to reduce the tight competitive
ratio to 4

3 for even m, and to 4m2

3m2+1 < 4
3 for odd m, whereas K = o(m) does not

reduce the overall competitive ratio, which remains e
e−1 , as in [2]. Surprisingly,

we find that the best competitive ratio, as a function of m, is not monotone, and
the overall competitive ratio is 4

3 . Note that this value is the tight competitive
ratio for m = 2, the only case where a buffer is not necessary. This is different
from the non-preemptive problem, where for m = 2 the usage of a buffer reduces
the best competitive ratio from 3

2 to 4
3 [12,19,6]. As a motivation for using this

specific size of buffer,
m−2
2 �, we show that for m = 6 machines, where our

general result uses K = 2, a buffer of size 1 leads to a larger competitive ratio.
We show tight bounds of 19

14 ≈ 1.35714 on the competitive ratio for this case.
We further consider the semi-online variant where jobs arrive sorted by non-

increasing processing time requirements. In this case we show that a buffer of
size m − 1 is sufficient to achieve a competitive ratio of 1, whereas a buffer of
size m− 2 is not sufficient. That is, the combination of a reordering buffer with
jobs arriving in a sorted order is as good as receiving the entire set of jobs in
advance. We show that the tight bound for this last case, where the buffer has
a size of m− 2, is 1 + 1

m2+m−1 . Finally, we find tight bounds for all buffer sizes
K < m− 2, in these cases, the competitive ratio is the maximum of m−K − 1
values max1≤μ≤m−K−1

2m(m+μ)
2m2+2Kμ+μ2+μ .

Our algorithms are based on a unified approach where largest jobs are kept
in the buffer, and the created schedule is as imbalanced as possible keeping
less loaded machines free to receive new jobs. Using the master algorithm with
different parameters results in distinct algorithms for the multiple cases. Lower
bounds are based on a unified approach where one sequence is used, and the
considered inputs are its subsequences. This approach is general and allows the
usage of several types of inputs for the different cases. These general approaches
were used in the past for preemptive problems, but some important adaptations
were required to be able to deal with the existence of a buffer.

Due to space constraints, some of the proofs are omitted.

2 Algorithms

2.1 The Master Algorithm

All our algorithms have a common structure which is explained in this section.
These algorithms avoid the usage of idle time, and try to assign as much work

Preemptive Online Scheduling with Reordering 459

as possible to the more loaded machines, while keeping K jobs is the buffer. Let
n denote the number of jobs (which is unknown to the online algorithm).

The algorithm can be used for any K ≤ m (we will see later that larger values
of K are not useful). In addition to the number of machines m and the size of
the buffer K, the master algorithm uses a parameter R, which is the required
competitive ratio. In the case K = 0, the algorithm reduces to that used by [2].
We note that in the case of identical machines, idle time gives no advantage.

After initialization, and as long as atmostK jobs have arrived, all jobs are stored
in the buffer. If the input consists of at most K jobs, then each job is assigned to
a separate machine, to run on this machine non-preemptively, starting from time
0, which results in an optimal solution. Otherwise, after K + 1 jobs have arrived,
and as long as jobs keep arriving, the algorithm keeps the K largest jobs seen so far
in the buffer. After jobs stop arriving, the algorithm keeps removing a smallest job
from the buffer and assigning it using the same algorithm, until all jobs have been
assigned. The loads after the assignment of i jobs are denoted by Li

1 ≤ Li
2 ≤ . . . ≤

Li
m. Note that these are the loads after the arrival ofmin{K+i, n} jobs. Specifically,

if K + i ≤ n, then these are the loads after the arrival of K + i jobs, out of which
K are stored in the buffer. Otherwise, if K + i > n, these are the loads after all
jobs have arrived and n− i of them are in the buffer. We also use Qi =

∑m
k=1 Li

k,
i.e., Qi is the total size assigned jobs after i jobs have been assigned. This amount
includes all scheduled jobs in both of the described cases. Let opti denote the cost
of opt at this time, after i jobs have been assigned.

We assume that each machine has an index in {1, 2, . . . , m}. We first explain
how to assign jobs to machines in a way that the sorted order of machines does
not change, that is, the load Li

g is always the load of machine g. Later we show
how to modify the algorithm so that it uses at most one preemption per job, the
sequence of loads remains as in the first variant of the algorithm, but the sorted
order of machines changes frequently (i.e., Li

g is the g-th load in the sorted order
of loads, but it does not necessarily belong to machine g).

We say that the buffer is full, if it contains exactly K jobs. Since the algorithm
for the case n ≤ K is completely defined above, we assume in what follows that
n > K, i.e., there is at least one case where a job needs to be assigned while
the buffer is full, and we describe the assignment of jobs for the cases where the
buffer is full, or was full at some previous time. This last option means that jobs
no longer arrive, and the jobs which remained in the buffer need to be assigned.

To assign a job, non-overlapping slots are reserved on the machines, and the
job is assigned into these slots, one by one, by a decreasing order of indices of
machines, until the job is completely assigned, or until all slots are full. In each
case for which we use this master algorithm with specific parameters, we will
show that the second option never occurs. If one of the used slots is not filled
completely, then the earliest part of this slot is used, so that no idle time is
created. The slots for the (i + 1)-th job ever assigned are [Li

m,R · opti+1] on
machine m, and [Li

j , L
i
j+1] for on each other machine, 1 ≤ j < m. The slots are

clearly non-overlapping. Note that some of the slots may be empty, if there are
at least two consecutive identical loads.

460 G. Dósa and L. Epstein

In order to prove upper bounds, we use two lower bounds on the cost of
an optimal solution, which are the average load, implied by the sum of all jobs
(including those in the buffer), and the maximum size of any job. The algorithm,
however, needs to compute the exact value of opti. We exploit the property
that opti is in fact equal to the maximum of these two bounds [11]. Therefore,
calculating the slot on machine m for the assignment of a job can be done in
constant time.

Clearly, as long as every job is assigned successfully, the competitive ratio of the
master algorithm is at mostR. Therefore, in each case we consider, it is necessary
to show that the algorithm never fails. In most cases we derive a set of invariants
which are proved by induction and allow to prove this property. In one case we use
a small number of invariants and a direct proof for the most important invariant
rather than induction. In the latter case, the usage of a similar structure of proof
to the former case, i.e., additional similar invariants together with induction, does
not seem to be helpful. Since the algorithm is a generalization of the algorithm of
[2], the main technical contribution here is the design of the correct set of invari-
ants, or the design of a more direct proof. This is done for each case separately,
since the exact value ofR affects the execution of the algorithm and leads to very
different schedules in the different cases. Note that for both variants and all values
of m, the largest jobs are always the jobs which are kept in the buffer. In the case of
general inputs, it is either the case that the new job is stored in the buffer, or that
it is the job which is assigned. In the case of non-increasing sequences, the first K
jobs are kept in the buffer until the sequence ends, and then they are assigned in
an order which is opposite to the order of their arrival.

In previous work on scheduling with a buffer, in many cases, the largest jobs
(or largest job, in the case K = 1) were those which are stored in the buffer.
Intuitively, this seems to be the correct approach; the algorithm is aware of the
exact sizes of the largest jobs and takes them into account in the other scheduling
decisions, but it postpones their assignment until the later. Nevertheless, in [3]
one of the algorithms of optimal competitive ratio, which uses K = 1, has
two cases, where in one of the cases the larger available job is assigned while
the smaller job is stored in the buffer. We note an interesting difference with
the algorithms of [6]. Our algorithm uses the same method of assignment for
all jobs, even after no additional jobs arrive. It is possible in fact to use the
same algorithm also in the case n ≤ K and avoid cases in the definition of
the algorithm. However, since this case is very simple, so we prefer the current
presentation, to avoid cases in the proof.

Finally, we show how to modify the algorithm to use at most one preemption
per job instead of at most m − 1 preemptions. Assume that machine j has
the j-th load before the assignment of a job. If the job is assigned to slots on
machines j, j + 1, . . . , m, where j < m − 1, i.e., it was assigned using at least
two preemptions, then instead of using the slots on machines j + 2, . . . , m, it
is possible to assign all these parts continuously on machine j + 1. Due to the
definition of the algorithm, the only idle time in the processing of the job (but
not in the schedule) may occur between the end of the time slot in which it is

Preemptive Online Scheduling with Reordering 461

assigned to run on machine j and the beginning of the time slot on machine
j + 1, since the slot on machine j is not necessarily completely occupied. In this
case the assignment of the part to machine j remains unchanged. The load of
machine j + 1 becomes the largest load (i.e., the m-th load), while the load of a
machine y (for j+2 ≤ y ≤ m) becomes the (y−1)-th load. If the slot on machine
j it is occupied completely, and j < m, then it is possible to schedule the job
on machine j non-preemptively and without idle time (if j = m, then the job is
already scheduled non-preemptively). In this case, the resulting load of machine
j becomes the m-th load, while the load of machine y (for j + 1 ≤ y ≤ m)
becomes the (y − 1)-th load. In both cases, the resulting sorted list of loads is
the same as before, but some machines may switch places in this list.

2.2 General Inputs

The algorithm uses a buffer of size K = �m−1
2 � =
m−2

2 �, that is, K = m
2 − 1

for even values of m, and K = m−1
2 for odd values of m. Let R = 4

3 if m is even,
and R = 4m2

3m2+1 if m is odd. Thus the bound for odd m is strictly below 4
3 , and

achieves it lowest value for m = 3, for which the bound equals to 9
7 ≈ 1.28571.

For m = 2 the competitive ratio is 4
3 , but the size of the buffer which we use is

zero, thus the result of [2] for m = 2 already covers this case. By the results of
Section 3, this result is best possible, i.e., the usage of a buffer does not improve
the performance in this case.

We define a set of invariants which must hold after every assignment. Invariant

j (for 1 ≤ j ≤ �m
2 �) at time i is defined by

j∑
k=1

Li
k ≤ (R− 1) j·Qi

m−j .

The motivation of these invariants comes from a situation where very small
jobs of a total size of x arrive first, after which some number j ≤ �m

2 � of identical
jobs of size x

m−j arrive. An optimal solution spreads the small jobs over m − j
machines, while the best response of the algorithm would be to use the j least
loaded machines. The invariants make sure that in such a case the competitive
ratio is not exceeded. Note that even though such a construction could be a good
candidate for a lower bound proof, the lower bound proof of Section 3 considers
an input with a much smaller number of cases.

We use some further definitions and notations. After i ≥ 0 jobs were assigned,
no matter whether a new job arrives, or if no additional jobs arrive, but the buffer
is non-empty, let the sorted list of sizes of jobs, which includes the jobs in the
buffer and the new job (if exists) be Y i+1

0 ≤ Y i+1
1 ≤ . . . ≤ Y i+1

�−1 , where 	 ≤ K+1.
If a new job has just arrived (and thus the buffer is full) then 	 = K + 1. We
are going to assign the smallest job, thus Qi+1 = Qi + Y i+1

0 . In addition, as

explained in Section 2.1, opti+1 = max{Y i+1
�−1 , 1

m (Qi +
�−1∑
k=0

Y i+1
k)}, i.e., opti+1

is the optimal cost for a schedule for all received jobs so far, just before Y i+1
0 is

scheduled. Using Y i+1
0 ≤ Y i+1

k for any 1 ≤ k ≤ 	 − 1, we have opti+1 ≥ Y i+1
0

and opti+1 ≥ 1
m (Qi + jY i+1

0), which holds for any 1 ≤ j ≤ 	.

462 G. Dósa and L. Epstein

Lemma 1. For a given value of i, if after i jobs were assigned the buffer is full,
then the j-th invariant holds for time i and every 1 ≤ j ≤ �m

2 �. If the buffer
contains 	 < K jobs at this time, then the j-th invariant holds for time i and
every 1 ≤ j ≤ 	.

As mentioned above, the main technical difficulty lies in finding the correct
invariants.

Lemma 2. For every i + 1 (i ≥ 0), if the invariants hold for time i (i < n),
then the algorithm assigns the (i + 1)-th job successfully.

Proof. We first show that there is enough space for the job, that is, the total
size of the slots is no smaller than the size of the job to be assigned. This gives
the following condition: R · opti+1 − Li

1 ≥ Y i+1
0 .

Using invariant 1 at time i, Li
1 ≤ (R− 1) Qi

m−1 , and the following bounds on
the optimal cost: opti+1 ≥ Y i+1

0 and mopti+1 ≥ Qi + Y i+1
0 , we get

Li
1 + Y i+1

0 ≤ (R− 1)
Qi

m− 1
+ Y i+1

0 =
R− 1
m− 1

(Qi + Y i+1
0) + Y i+1

0 (
m−R
m− 1

)

≤ R− 1
m− 1

mopti+1 + opti+1(
m−R
m− 1

) ≤ Ropti+1 ,

for any R ≤ 2. ��

Theorem 5 will show that the obtained bounds are tight within algorithms for
a fixed size buffer. We summarize these bounds in the following.

Theorem 1. An application of the master algorithm, using K = m
2 − 1 and

R = 4
3 for even values of m, and K = m−1

2 and R = 4m2

3m2+1 , for odd values of
m, is successful, i.e., results in an algorithm of a competitive ratio of at most R.

One special case. We investigate the special case m = 6 separately. In this
case, the application of the master algorithm with K = m−2

2 = 2 leads to a
competitive ratio of 4

3 . We show that a buffer of size 1 does not allow to achieve
the best possible competitive ratio, 4

3 . In this last case, K = 1, we show that the
best competitive ratio which can be achieved is R = 19

14 ≈ 1.3571 > 4
3 . To prove

the upper bound, the algorithm of Section 2.2 is applied with R = 19
14 . Using a

different method of analysis we prove the following theorem. The proved bound
is tight, by Theorem 6.

Theorem 2. An application of the master algorithm for m = 6 using K = 1
and R = 19

14 is successful.

In this proof we use two invariants. The first one is Li
5 +Li

6 ≥ R· Qi

3 = 19
42Qi and

the second one is Li
1 ≤ R−1

5 Qi = Qi

14 . The first invariant is proved by induction
while the second one is proved directly.

Lemma 3. The first invariant holds for any i ≥ 0, for which after i jobs have
been assigned, the buffer contains a job.

Preemptive Online Scheduling with Reordering 463

Lemma 4. The second invariant holds for any i ≥ 0, for which after i jobs have
been assigned, the buffer contains a job, as long as the first i jobs ever assigned
are assigned successfully.

Lemma 5. For every time i + 1 (i ≥ 0), if the invariants hold at time i, then
the algorithm assigns the next job successfully.

Note that it is not assumed in Lemma 5 that there is an additional job in the
buffer, thus it holds for the very last job which is assigned as well. The next
corollary completes the proof.

Corollary 1. All jobs are scheduled successfully.

2.3 Non-increasing Job Sizes

We assume that jobs arrive sorted by non-increasing sizes. We use the master
algorithm with the parameters R = max

μ∈{0,1,2,...,m−K−1}
2m(m+μ)

2m2+2Kμ+μ2+μ , for 1 ≤
K ≤ m − 1. In the case K = m − 1, R = 1, so the algorithm finds an optimal
schedule.

Recall that in this semi-online variant the algorithm keeps the first K jobs
(which are the largest jobs) in the buffer, and that we assume n > K. Let
Z1 ≥ Z2 ≥ . . . ≥ ZK be the sizes of jobs which are stored in the buffer. After
n− s jobs are assigned, for 0 ≤ s < K, the buffer contains only the jobs of sizes
Z1, Z2, . . . , Zs. Let Xi denote the size of the i-th job which is assigned. Since Z1
is the size of the largest job in the sequence, if the buffer contains 	 jobs after the

i-th job is assigned, then we have opti = max{Z1,
1
m (Qi +

�∑
k=1

Zk)}. Thus there

exists an integer 1 ≤ f ≤ n + 1 so that opti = Z1 for all i < f and opti > Z1
for all i ≥ f .

We next define a set of invariants which must hold after every assignment,
which are addressed in Lemma 6 below. Invariant j at time i is defined by

j∑
k=1

Li
k +

j∑
k=1

Zk ≤ j · Ropti.

Lemma 6. For a given i, let 	 denote the number of jobs in the buffer after i
jobs were assigned. The j-th invariant holds for i and every 1 ≤ j ≤ 	.

The motivation of these invariants comes from the possibilities of assigning the
jobs which are stored in the buffer, if no additional jobs arrive. Every set of
largest j jobs cannot run in parallel on more than j machines. The invariants
consider the load resulting from assigning the largest j jobs to the least loaded j
machines. To prove the K-th invariant, if the invariant does not hold immediately
using induction, we use a direct proof, similar to the direct proof of Lemma 4.

Lemma 7. For every time i + 1 (i ≥ 0 and i + 1 ≤ n), if the invariants hold at
time i, then the algorithm assigns the next job successfully.

464 G. Dósa and L. Epstein

Theorem 3. The applications of the master algorithm using the parameter 1 ≤
K ≤ m− 1 and R = max

0≤μ≤m−K−1

2m(m+μ)
2m2+2Kμ+μ2+μ is successful. These bounds are

best possible.

3 Lower Bounds

In order to prove lower bounds, we provide a “recipe” for designing lower bounds
for the problem. This method is an adaptation of the method used in [10,16],
which takes into account the existence of a buffer.

We restrict ourselves to inputs which have a specific form. All the considered
inputs are prefixes of one sequence. The sequence consists of a non-negative
number of blocks b ≥ 0, where each block contains identical sized jobs, and
finally, the sequence of blocks may be followed by t additional jobs. Let ni be
the number of jobs in the i-th block, and si be the size of each such job. We
require ni ≥ K+1. The additional jobs arriving after all blocks are called further
jobs. Let qj denote the size of the j-th further job, for 1 ≤ j ≤ t. We also require

that t +
b∑

i=1
ni ≥ m. We denote such a sequence, for a specific value of K, by σ.

We use optj to denote the optimal makespan for the sequence of jobs up
to (and including) the j-th further job. In addition, we let opti,j denote the
optimal makespan for the sequence of jobs up to (and including) the j-th job of
the i-th block.

For each block i, we define the last ni −K optimal costs (opti,j for K + 1 ≤
j ≤ ni) as crucial.

We define a sequence of costs Cj for 1 ≤ j ≤ m as follows. Consider first
the sequence of all crucial optimal costs of all blocks (i.e., neglecting the first K
optimal costs of each block), followed by the optimal costs optj for K+1 ≤ j ≤ t,
and finally, K times the cost optt. The last m costs in this sequence are denoted
by C1, C2, . . . , Cm.

For the analysis, we define a modified sequence, which is based on a specific
output of the online algorithm, as follows. For each block i, remove from the
schedule the last K jobs of this block (i.e., of size si) which were ever assigned.
If the execution of the algorithm on the original sequence is restricted to the
modified sequence (and the treatment of the removed jobs is simply neglected),
then at the time of arrival of the first job of a block, and also at the time of
arrival of the first further job, the buffer is empty. This holds since the buffer
can contain at most K such jobs, which are the last jobs of this block which are
assigned, and thus all these jobs were removed from the schedule. Therefore, the
order of assignment is according to blocks, and the further jobs are assigned last,
in some order. We consider the relation between the Cj values and the optimal
costs at the time of assignment of jobs. Let a1, a2, . . . , am be the last m jobs of
the modified sequence ever assigned. Let Oj denote the optimal cost at the time
of assignment of aj.

Lemma 8. For every 1 ≤ j ≤ m, Oj ≤ Cj.

Preemptive Online Scheduling with Reordering 465

Theorem 4. Given a sequence σ as defined above. The competitive ratio of any
algorithm with a buffer of size K is at least

(
t∑

j=1

qj +
b∑

i=1

(ni −K) · si)/(
m∑

k=1

Ck) .

We use Theorem 4 to prove all the lower bounds in the section. We start with
a lower bound for general inputs which is not specific, but it uses a single block
before the further jobs. This lower bound can be used for different values of K.
This lower bound sequence σ1 contains a block of very small jobs, and t < m
further jobs. Let N be a large integer, and let δ = 1

N . The first block contains
KN jobs of size 1

KN = δ
K .

Lemma 9. For any fixed value of K, the competitive ratio of any algorithm with
a buffer of size K is at least 4

3 for even m and at least 4m2

3m2+1 for odd m.

Lemma 10. Let t < m. The competitive ratio of any algorithm which uses a
buffer of size K < t is at least

(1 +
t∑

i=1

qi)/(
m− t

m
+

t−K∑
i=1

opti+K + Koptt) ,

where qj is the size of the j-th further job in the sequence σ1, and optj is the
optimal cost computed for σ1 excluding the last t− j jobs.

We next consider a special case of σ1, where the list of further jobs consists of K+
1 identical jobs, followed by a sequence of jobs with increasing sizes. The sequence
is constructed so that an optimal schedule for the sequence up to the (K +1)-th
further job is flat, that is, each further job is assigned to a dedicated machine,
and spreading the small jobs on the other machines equally gives the same load to
each machine. The additional further jobs form an increasing sequence of sizes,
where the size of each job is exactly of the size that would cause an optimal
schedule to assign it to a separate machine, where all previous jobs are spread
over the other machines, giving a flat schedule.

Corollary 2. The competitive ratio of any algorithm which uses a buffer of size
K ≤
m−2

2 � is at least

(mt)/((t + tK − tm−Km)mK−1(m− 1)t−K−1 + (K + m)mt−1) .

for any K + 1 ≤ t ≤ m− 1.

We next show as a corollary of the lower bound above that using a buffer of size
o(m) gives a competitive ratio which tends to e

e−1 for m → ∞. Thus, the size
of the buffer must be a linear function of m in order to improve over the upper
bound of the case where no buffer is used.

466 G. Dósa and L. Epstein

Corollary 3. Any algorithm using a buffer of size o(m) has an overall compet-
itive ratio of at least e

e−1 .

We summarize the results which show the optimality of the results of Section
2.2 (excluding the special case, which is considered later).

Theorem 5. No algorithm for general inputs which uses a fixed size buffer can
have a smaller competitive ratio than 4

3 for even m, and no algorithm which uses
a fixed size buffer can have a smaller competitive ratio than 4m2

3m2+1 for odd m.
An algorithm which uses a buffer of size o(m) has an overall competitive ratio
of e

e−1 , that is, the usage of a buffer of this size is not helpful.

In the construction of the sequence of the following proof, two blocks are used
before the further jobs.

Theorem 6. Any algorithm with K = 1 has a competitive ratio of at least
4m3−12m2+4m

3m3−11m2+18m−24 , which gives a lower bound of 19
14 for m = 6.

Note that the lower bound for the case m = 6, K = 1 resulting from Corollary 2
(with t = 4) is only 648

481 ≈ 1.3472. The lower bound for m = 7 given by Theorem
6 is 203

148 ≈ 1.3716216, which is an improvement over the lower bound which is
implied of Corollary 2 as well. Next, we consider the case of non-increasing job
sizes and prove the following.

Corollary 4. For the case of non-increasing job sizes, let 0 ≤ K ≤ m− 2. The
competitive ratio of any algorithm is at least max

1≤μ≤m−K−1

2m(m+μ)
2m2+2Kμ+μ2+μ (where

μ takes integer values). Specifically, if K ≤ m−2, then no algorithm can compute
an optimal solution. The competitive ratio of an algorithm with K = m− 2 is at
least m2+m

m2+m−1 . For K = m− 1 (or for any other value of K), no algorithm can
have a competitive ratio below 1. Thus, the algorithms of Section 2.3 are best
possible both in terms of competitive ratio and the size of the used buffer.

4 Conclusion

We studied preemptive scheduling with reordering and showed that a buffer of
size Θ(m) is necessary and sufficient to achieve the best competitive ratios for
both general sequences and for non-increasing sequences. All the algorithms do
not use idle time, which is not helpful in the case of identical machines.

One direction for future research is to find the tight competitive ratio for every
pair K, m of a buffer size and number of machines. This goal is already achieved
here for the case of non-increasing job sequences.

The algorithms considered here are deterministic. Allowing randomization
would not be helpful since even though the lower bounds are stated determinis-
tically, all the lower bounds of Section 3 can be extended for randomized algo-
rithms by considering expected loads of machines rather than the loads.

Preemptive Online Scheduling with Reordering 467

References

1. Chen, B., van Vliet, A., Woeginger, G.J.: Lower bounds for randomized online
scheduling. Information Processing Letters 51, 219–222 (1994)

2. Chen, B., van Vliet, A., Woeginger, G.J.: An optimal algorithm for preemptive
on-line scheduling. Operations Research Letters 18, 127–131 (1995); Also in ESA
1994

3. Dósa, G., Epstein, L.: Online scheduling with a buffer on related machines. Journal
of Combinatorial Optimization (2008) (to appear)

4. Ebenlendr, T., Jawor, W., Sgall, J.: Preemptive online scheduling: Optimal algo-
rithms for all speeds. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168,
pp. 327–339. Springer, Heidelberg (2006)

5. Ebenlendr, T., Sgall, J.: Semi-online preemptive scheduling: One algorithm for
all variants. In: Proc. of the 26th Annual Symposium on Theoretical Aspects of
Computer Science, STACS 2009 (to appear, 2009)

6. Englert, M., Özmen, D., Westermann, M.: The power of reordering for online mini-
mum makespan scheduling. In: Proc. 48th Symp. Foundations of Computer Science
(FOCS), pp. 603–612 (2008)

7. Epstein, L.: Optimal preemptive on-line scheduling on uniform processors with non-
decreasing speed ratios. Operations Research Letters 29(2), 93–98 (2001); Also in
STACS 2001

8. Epstein, L., Favrholdt, L.M.: Optimal preemptive semi-online scheduling to mini-
mize makespan on two related machines. Operations Research Letters 30(4), 269–
275 (2002)

9. Epstein, L., Noga, J., Seiden, S.S., Sgall, J., Woeginger, G.J.: Randomized online
scheduling on two uniform machines. Journal of Scheduling 4(2), 71–92 (2001)

10. Epstein, L., Sgall, J.: A lower bound for on-line scheduling on uniformly related
machines. Operations Research Letters 26(1), 17–22 (2000)

11. Horwath, E., Lam, E.C., Sethi, R.: A level algorithm for preemptive scheduling.
Journal of the ACM 24, 32–43 (1977)

12. Kellerer, H., Kotov, V., Speranza, M.G., Tuza, Z.: Semi online algorithms for the
partition problem. Operations Research Letters 21, 235–242 (1997)

13. Li, S., Zhou, Y., Sun, G., Chen, G.: Study on parallel machine scheduling problem
with buffer. In: Proc. of the 2nd International Multisymposium on Computer and
Computational Sciences (IMSCCS 2007), pp. 278–281 (2007)

14. Seiden, S.: Preemptive multiprocessor scheduling with rejection. Theoretical Com-
puter Science 262(1-2), 437–458 (2001)

15. Seiden, S., Sgall, J., Woeginger, G.: Semi-online scheduling with decreasing job
sizes. Operations Research Letters 27(5), 215–221 (2000)

16. Sgall, J.: A lower bound for randomized on-line multiprocessor scheduling. Infor-
mation Processing Letters 63(1), 51–55 (1997)

17. Sgall, J.: On-line scheduling. In: Fiat, A., Woeginger, G. (eds.) Online Algorithms
- The State of the Art, ch. 9, pp. 196–231. Springer, Heidelberg (1998)

18. Wen, J., Du, D.: Preemptive on-line scheduling for two uniform processors. Oper-
ations Research Letters 23, 113–116 (1998)

19. Zhang, G.: A simple semi on-line algorithm for P2//Cmax with a buffer. Informa-
tion Processing Letters 61, 145–148 (1997)

d-Dimensional Knapsack in the Streaming Model

Sumit Ganguly1 and Christian Sohler2,�

1 Indian Institute of Technology, Kanpur, India
2 Technical University Dortmund, Dortmund, Germany

Abstract. We study the d-dimensional knapsack problem in the data
streaming model. The knapsack is modelled as a d-dimensional integer
vector of capacities. For simplicity, we assume that the input is scaled
such that all capacities are 1. There is an input stream of n items, each
item is modelled as a d-dimensional integer column of non-negative inte-
ger weights and a scalar profit. The input instance has to be processed in
an online fashion using sub-linear space. After the items have arrived, an
approximation for the cost of an optimal solution as well as a template
for an approximate solution is output.

Our algorithm achieves an approximation ratio (2(1
2

+
√

2d + 1
4
))−1

using space O(2O(d) · logd+1 d · logd+1 Δ · log n) bits, where { 1
Δ

, 2
Δ

, . . . , 1},
Δ ≥ 2 is the set of possible profits and weights in any dimension. We also
show that any data streaming algorithm for the t(t−1)-dimensional knap-
sack problem that uses space o(

√
Δ/t2) cannot achieve an approximation

ratio that is better than 1/t. Thus, even using space Δγ , for γ < 1/2, i.e.
space polynomial in Δ, will not help to break the 1/t ≈ 1/

√
d barrier in

the approximation ratio.

1 Introduction

The 0/1 knapsack problem is a popular and well-studied combinatorial problem
with applications in many different areas. Its basic form is as follows. Given n
items numbered i = 1, 2, . . . , n and their weights wi and profits pi, find a subset
of the items with maximum profit whose sum of weights does not exceed a given
sack size R. The problem is well-known to be an NP-hard problem [7] with a
classical FPTAS approximation algorithm by Ibarra and Kim [4].

A well-studied generalization is the d-dimensional knapsack problem (see, for
example, [2], whose input is the set of items indexed by {1, 2, . . . , n}, where
the ith item is associated with (a) a non-negative d-dimensional vector Ai =
[A1,i, . . . , Ad,i]T denoting the weight of the item along each of the d dimensions,
and, (b) a profit pi. The knapsack dimensions is given by the column vector
R with Rs being the sack dimension along dimension s. The problem may be
specified as follows. maxS⊂{1,2,...,n}

∑
j∈S pj subject to

∑
j∈S As,j ≤ Rs, s =

1, 2, . . . , d . We consider the above problem in the data stream setting. For sim-
plicity, we assume that the knapsack capacities are scaled to be 1. This is equiva-
lent to assuming that the knapsack capacities are given as input to the algorithm
� Supported by DFG project So 514/1-2.

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 468–479, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

d-Dimensional Knapsack in the Streaming Model 469

instead of being read from the stream. In this setting, the items arrive in a se-
quence whose entries are of the form (item, profit, d-dimensional column of
weights)= (i, pi, Ai). The profits and weights are chosen from { 1

Δ , 2
Δ , . . . , 1},

Δ ≥ 2. The algorithm may only use a small amount of space, say s(n, d, Δ)
bits, for storing the input. In the streaming scenario we aim at s(n, d, Δ) being
sublinear or even polylogarithmic in the input length. Each item is processed in
an online fashion. After all the items have been processed, the streaming algo-
rithm may use its s(n, d, Δ)-bit state to report a template for a packing of the
items into the knapsack. The following constraints must be satisfied: (1) Any
template packing of items reported by the algorithm must be feasible for the
original instance, and, (2) the corresponding profit reported must not be higher
than the sum of the profits of the items in the sack.

The knapsack problem in the data stream setting is substantially different
than the online resource knapsack problem with resource augmentations, studied
by Iwama and Taketomi [5] and by Iwama and Zhang [6]. In the online knapsack
problem, each item may be seen only once, and a decision regarding whether to
include it in the knapsack must be made. Additionally, items arriving later may
cause a currently included item in the sack to be evicted; evicted items are not
recoverable. Iwama and Zhang show that the problem is not approximable (i.e.,
ratio is ∞). However, if one allows resource augmentation, that is, the algorithm
is allowed to store a set of items whose weight is at most α ≥ 1 knapsacks, then,
a greedy algorithm attains a α− 1 approximation ratio and this is optimal [6].

The main difference between the online resource augmented version and the
streaming version is that the online version allows a set of items to be stored
as long as its weight is at most αR. Since items may have small weight, it is
possible that Θ(n) items are stored, which would not be allowed in the data
stream setting.

Contributions and Overview. In this work, we study deterministic solutions to
the d-dimensional knapsack problem in the streaming model. We assume that
the input is scaled such that the sack capacities are 1. We show that for ε =

O(1/ log(d)), there is an algorithm that gives a (2(1
2 +

√
2d + 1

4))−1-approximate

packing using space O(2O(d)ε−(d+1)(logd+1 Δ)(log n)), where weights and profits
are taken from { 1

Δ , 2
Δ , . . . , 1}, Δ ≥ 2. Further, we show that for any d = t(t−1),

any algorithm that uses o(Δ/d) space has approximation ratio no better than
1/t. Thus, our technique yields an approximation ratio that is within a small
constant factor of the best possible. In fact, even using space polynomial in Δ
will not help to break the 1/t ≈ 1/

√
d barrier in the approximation ratio.

Our technique is as follows. We compress the input instance by rounding up
the weights1 and rounding down the profits, respectively, to the nearest power
of 1+ε. The input instance is now approximated as a d+1-dimensional array H ,
where there are d coordinates for each of the weight dimensions and one profit
coordinate. An entry H [w1, . . . , wd, p] in this array is the count of the number of

1 The actual scheme for rounding up weights is slightly more involved.

470 S. Ganguly and C. Sohler

items that have profit p and weights w1, . . . , wd respectively in the d-dimensions,
after the rounding operation.

Our approach for the analysis is to take any given feasible solution F for the

original instance and show that it can be packed into at most 2(1
2 +

√
2d + 1

4)
sacks using the modified weights. This is done using a 2-level hierarchical packing
method. The first level is obtained as the color classes of an optimal coloring of
a certain hypergraph. In the second stage, we use the probabilistic method to
prove that the items of each of the color classes can be packed into 2 sacks. We

show that the first level coloring has at most 1
2 +

√
2d + 1

4 color classes. Since

each such class is packed using at most 2 sacks, we obtain a 2(1
2 +

√
2d + 1

4)-sack
packing of the given feasible solution F . Therefore, one among these packings has

cost at least 1/(2(1
2 +

√
2d + 1

4) of the original feasible solution F . By choosing

the feasible solution to be the optimal solution, we obtain a 1/(2(1
2 +

√
2d + 1

4)-
approximate solution for the modified weights instance.

Our lower bound is obtained as a reduction from the t-party set disjointness
problem in one-way communication complexity.

2 Compressed Representation

An instance Π = (A, p) of the d-dimensional knapsack problem is a d × n-
dimensional weights matrix A and an n-dimensional row vector p. To simplify
notation, we will assume that the item weights along each dimension, namely
the Ai,j ’s are from { 1

Δ , 1
Δ , . . . , 1}, Δ ≥ 2. The knapsack is assumed to have unit

capacity in each of its dimensions. Thus our problem is the following.

maxF⊂{1,2,...,n}
∑
j∈F

pj subject to
∑
j∈F

Aij ≤ 1, i = 1, 2, . . . d .

Let a = 1/Δ. In order to represent the input instance using compact space,
we discretize the weights and profits as follows. The interval [a, 1/2] is divided
into bins using a logarithmic scale: (a, a(1 + ε)], (a(1 + ε), a(1 + ε)2], . . . , (a(1 +
ε)j0 , 1/2] . The last interval ends at 1/2. For x ∈ [a, 1/2], we map x to the
right end of the interval in powers of (1 + ε) that contains x; however, we
never cross 1/2. Call this mapping x �→ upa,ε(x), that is, upa,ε(x) = min(a(1 +
ε)�log1+ε(x/a)�, 1/2), a ≤ x ≤ 1/2 . This gives
log1+ε 1/(2a)� distinct discrete
weights. Define the mapping x �→ dna,ε(x), where, dna,ε(x) is the left end of
the interval in the above list of intervals that contains x, that is, dna,ε(x) =
a(1 + ε)�log1+ε(x/a)�, a ≤ x ≤ 1/2 . The mapping for the interval [1/2, 1 − a]
is obtained by dividing the interval backwards, that is, x �→ upa,ε(x), where,
upa,ε(x) = 1 − dna,ε(1 − x), 1/2 < x < 1 − a . In the interval [a, 1/2], upa,ε(x)
rounds x upwards to the nearest value of the form a(1 + ε)j . Hence, a ≤
upa,ε(x) ≤ 1/2, x ∈ [a, 1/2] and 0 ≤ upa,ε(x) − x ≤ εx, for x ∈ [a, 1/2]. In

d-Dimensional Knapsack in the Streaming Model 471

the interval [1/2, 1], upa,ε(x) rounds x upwards to 1 − dna,ε(1 − x). There-
fore, (1 + ε)/2 ≤ upa,ε(x) ≤ 1 − a, x ∈ (1/2, 1 − a], and 0 ≤ upa,ε(x) − x ≤
ε(1 − x), for x ∈ (1/2, 1 − a] . A round-down discretization is performed for
profits by mapping pi to dnpmin,ε(pi), for the entire range of profit values, where,
pmin is a lower bound on the smallest profit and ε is a parameter. This ensures
that 0 ≤ pj − dnpmin,ε(pj) ≤ εpj, which is sufficient for our purposes.

Compressed instance. Let A′ be the d × n matrix obtained by mapping each
entry Aij to upa,ε(Aij), for 1 ≤ i ≤ d, 1 ≤ j ≤ n. We represent A′ as a histogram
H in d + 1-dimensions as follows, where, the first d dimensions are the weights
and the last dimension is the profit. H contains 2
log1+ε(1/2a)� + 2 entries
in each of first d dimensions and
log1+ε(Δ)� + 1 entries for each the profit
dimension. Each cell of H is initialized to 0. When an item with profit pj and
weight column Aj appears, we map Aj to the vector Aj �→ A′

j = upa,ε(Aj) =
[upa,ε(A1,j), upa,ε(A2,j), . . . , upa,ε(Ad,j)]T and the profit pj to dnpmin,ε(pj). The
histogram entry corresponding to H [A′

j , p
′
j] is incremented by 1.

Space requirement.Each entry of the histogram stores a count of the number of
items with the same rounded weights and profit. It suffices to use log n bits for
each entry. Thus, the histogramrequires spaceO((
log1+ε(2/a)�+2)d(log1+ε(Δ)+
1)(log n)) = O(2O(d)ε−d+1 logd+1(Δ)(log n)) bits where, n is the number of items
and Δ ≥ 2.

A simple but important property of the rounding procedure is that, (a) a
feasible solution for the modified (i.e., the rounded) instance is a feasible solution
for the original instance–this is a consequence of the rounding up of the weights,
and, (b) the profit of a feasible solution of the modified instance is at most
the profit of the same solution for the original instance–this is a consequence of
rounding down of the profits. The profit of a feasible solution of the modified
instance is at least 1/(1 + ε) of the profit of the same solution for the original
instance.

Definition 1. Let Π = (A, p) be an instance of the d-dimensional knapsack
problem. A pair-wise non-intersecting family of subsets S1, . . . , Sk is called a
feasible packing using k knapsacks or, in short, a feasible k-sack solution, if∑

l∈Sj
Ai,l ≤ 1, for each j = 1, 2, . . . , k and 1 ≤ i ≤ d .

We use feasible k-sack solutions as follows. Given an instance Π of a knapsack
problem, let OPT(Π) denote the optimal profit feasible.

Lemma 1. Let g be a function that maps an instance Π of the knapsack to
another instance g(Π) that does not change the profit vector p but may change
the weight matrix A to A′. Suppose that for every instance Π and every feasible
solution F of Π, there is a feasible k-sack solution for g(Π) whose union of sets
is F . Then, OPT(g(Π)) ≥ OPT(Π)/k, for all instances Π.

Proof. There is a k-sack feasible solution for g(Π) whose union is OPT(Π). One
of these k-sacks has profit at least OPT(Π)/k. Thus OPT(g(Π)) ≥ OPT(Π)/k.

472 S. Ganguly and C. Sohler

Lemma 1 guides our approach towards obtaining a bound of k on the approxima-
tion ratio of the original versus the compressed instance. The bound is obtained
by showing that for each feasible solution of the original instance there is a
k-sack feasible solution of the compressed instance. It then follows that the op-
timal solution for the compressed instance is 1/k-approximation. The problem
now reduces to making k as small as possible.

3 Conflict Hypergraph and Its Coloring

Given an instance Π of the knapsack problem, we denote by Π ′ the instance
that replaces all input weights At,j by A′

t,j := upa,ε(At,j) and profits pj by
p′j := dnpmin,ε(pj). Let F be an arbitrary feasbile solution for Π . We define a
conflict hypergraph that captures all sets of items of F that violate the sack size
in any dimension for instance Π ′.

Definition 2. The hypergraph HF = (V, EF) with V := F and EF := {h ⊆ V :
∃s, 1 ≤ s ≤ d,

∑
j∈h A′

s,j > 1} is called conflict hypergraph of a feasible solution
F . An edge h has label s, if

∑
j∈h A′

s,j > 1. Note that an edge can have different
labels.

A hypergraph k-coloring is an assignment χ : V → {1, . . . , k} of the vertices to
one of the k colors. We call the sets χ−1(i) the color classes of the coloring. A
hyperedge h is called monochromatic (under a k-coloring χ), if there exists a
color c, 1 ≤ c ≤ k such that χ(v) = c for all v ∈ h. A coloring is called proper, if
there are no monochromatic edges. A hypergraph is called k-colorable, if it has
a proper k-coloring. A hypergraph has chromatic number k, if it is k-colorable
but not k − 1-colorable. We can now formulate a relationship between the error
introduced by our rounding procedure and the problem of coloring the conflict
hypergraph.

Lemma 2. Let F be a feasible solution for Π = (A, p). A feasible k-sack solution
S′

1, . . . , S
′
k for Π ′ = (A′, p′) with F =

⋃
i∈{1,...,k} S′

i exists, iff HF is k-colorable.

Proof. Let S′
1, . . . , S

′
k be a feasible k-sack solution for Π ′ = (A′, p′). We define a

k-coloring χ for HF by setting χ−1(j) = S′
j for 1 ≤ j ≤ k. The coloring is well-

defined since by definition of a k-sack solution the sets S′
j do not intersect and

since F =
⋃

j∈{1,...,k} S′
j . By the definition of a feasible k-sack solution we have

that
∑

l∈S′
j
A′

i,l ≤ 1, for each j = 1, 2, . . . , k and 1 ≤ i ≤ d . Now assume
that there is a hyperedge h and a color c with χ(v) = c for all v ∈ h. Then we
have that v ∈ S′

c for all v ∈ h and so
∑

l∈h A′
i,l ≤

∑
l∈S′

c
A′

i,l ≤ 1 for 1 ≤ i ≤ d.
But this is a contradiction to the fact that h ∈ EF , which states that for some
dimension s we have

∑
l∈h A′

s,l > 1.
Now let us assume that there is a proper coloring of HF . Then we define

S′
j := χ−1(j). By definition of a proper coloring, there is no edge h ⊆ S′

j . Hence,∑
l∈S′

j
A′

i,l ≤ 1 for each 1 ≤ j ≤ k and 1 ≤ i ≤ d. Thus S1, . . . , Sk is a feasible
k-sack solution. ��

d-Dimensional Knapsack in the Streaming Model 473

Our approach will be to show that, for every feasible solution F , the conflict

hypergraph HF has chromatic number at most k := 2(1
2 +

√
2d + 1

4). By the
above lemma this implies that a k-sack feasible solution exists. By Lemma 1 this
will give a 1/k-approximate solution.

We first give a folklore result that any hypergraph with E edges can be colored

using 1
2 +

√
2|E|+ 1

4 colors. The result follows from the observation that a
coloring with minimum number of colors must have a hyperedge for every pair
of colors. The proof for the graph version (see, for example, [3], page 124) extends
immediately to hypergraphs.

Lemma 3 (folklore). Let H = (V, E) be a hypergraph. Then, H is 1
2 +√

2|E|+ 1
4 -colorable. ��

Lemma 3 will prove useful in obtaining desirable packings. However, an immedi-
ate application of Lemma 3 is not useful, since, the number of conflict edges could
be exponential in the number of vertices. Thus, the number k of sacks required
to obtain a k-feasible packing by Lemma 3 may be exponential. It is therefore

necessary to apply a two step approach to construct a proper (2(1
2 +

√
2d + 1

4))-
coloring of HF . Our first step will be to construct a restricted conflict graph H ′

F

over vertex set F and obtain a 1
2 +

√
2d + 1

4 -coloring of H ′
F . This coloring is

later refined to a (2(1
2 +

√
2d + 1

4))-coloring of HF .

Definition 3. Let ZF,s =
⋂

g∈EF : g has label s g and E′
F := {ZF,s : |ZF,s| > 1}.

The hypergraph H ′
F = (F, E′

F) is called restricted conflict hypergraph.

An immediate motivation for Definition 3 is to reduce the number of hyperedges.
Corresponding to any feasible solution F of the original instance, by construc-
tion, H ′

F has at most one hyperedge per dimension. Hence, |E′
F | ≤ d, and by

Lemma 3, there exists a 1
2 +

√
2d + 1

4 -coloring χ of H ′
F . However, not all conflicts

in HF are reflected in H ′
F and thus, there may be monochromatic edges in HF

under the coloring χ. However, an edge with label s can only be monochromatic,
if |ZF,s| ≤ 1.

Therefore we revise our strategy to a 2-level hierarchical packing. Given a
feasible packing of the original instance, we first obtain a decomposition of the
vertices into color classes that are a proper coloring of the restricted conflict
hypergraph H ′

F . In the second stage, we take the items in each of the color
classes obtained and show that these items can be packed into 2 sacks. In order
to prove this, we only have to show that for every dimension s with |ZF,s| ≤ 1
the items can be packed into two sacks. We use the probabilistic method to
show this, namely, we show that a random packing is a feasible packing with
constant probability. This implies that there exists a refined coloring that has
no monochromatic edges.

From now on, let us assume that we are given a subset S of items that forms
a color class of the restricted conflict hypergraph H ′

F corresponding to some

474 S. Ganguly and C. Sohler

given feasible packing F of the original instance of the knapsack problem. By
construction, we only have to consider dimensions s with |ZF,s| = 0 or 1. Clearly,
in the worst case we have S = F and so we will show that even in this case,
our random packing will succeed with large probability. We will first analyze
consequences of |ZF,s| being 0 or 1. To simplify notation, let Ai,J :=

∑
j∈J Ai,j .

Lemma 4. Let ε < 1/3. Suppose that we are given a feasible solution F for the
original instance of the knapsack problem and a dimension s ∈ {1, 2, . . . , d} such
that |ZF,s| = 1 and ZF,s = {us}. Let g, h be hyperedges in the conflict hypergraph
HF that have label s and contain us. Let I = g − {us} and J = h− {us}.

1. If As,us > 1/2 then, As,I∩J > 1−3ε
1+ε (1−As,us).

2. If As,us ≤ 1/2, then, As,I∩J > 1−ε
1+ε −As,us .

Proof. Case 1 : As,us > 1/2. Since g is not feasible for the modified weights,
A′

s,g > 1. So, 1 < A′
s,g = A′

s,us
+ A′

s,I ≤ ε(1 − As,us) + As,us + (1 + ε)As,I .
Therefore, we get, (1 + ε)As,I > (1 − ε)βs, where, βs = (1 − As,us) . Applying
the above inequality to the hyperedge h, we obtain similarly that (1 + ε)As,J >
(1−ε)βs . Adding, we have, (1+ε)(As,I+As,J) = (1+ε)(As,I∩J +As,I∪J) > 2(1−
ε)βs . However, since F is a feasible set, the set of elements {us}∪I∪J fit in the
sack along dimension s. Thus, As,us +As,I∪J ≤ 1 or, As,I∪J ≤ 1−As,us = βs and
therefore, (1+ε)(As,I∩J +βs) > 2(1−ε)βs or, As,I∩J > 2(1−ε)βs

1+ε −βs = (1−3ε)βs

1+ε .
Case 2: As,us ≤ 1/2. We have 1 < A′

s,g = A′
s,us

+ A′
s,I ≤ (1 + ε)As,us + (1 +

ε)As,I , and 1 < A′
s,h = A′

s,us
+ A′

s,J ≤ (1 + ε)As,us + (1 + ε)As,J Adding, we
obtain 2 < 2(1 + ε)As,us + (1 + ε)(As,I∪J + As,I∩J) = (1 + ε)(As,us + As,I∩J) +
(1 + ε)(As,us + As,I∪J) . Since F is a feasible packing, the elements {s} ∪ I ∪ J
all fit in the sack in terms of their original weights, that is, As,us + As,I∪J ≤ 1.
Thus, 2 < (1 + ε)(As,us + As,I∩J) + (1 + ε), or, As,I∩J > 1−ε

1+ε −As,us . ��

Lemma 5. Let ε < 1/3 and F be a feasible solution for the original instance of
the knapsack problem. Let s be a dimension s ∈ {1, 2, . . . , d} such that |ZF,s| = 1
and ZF,s = {us}. Suppose j is a member of some hyperedge in HF with label
s.Then, the following holds.

1. For j �= us and As,us > 1/2, As,j ≤ (1−As,us)(4ε)/(1 + ε).
2. For j �= us and As,us ≤ 1/2, As,j ≤ 2ε/(1 + ε).

If j is not a member of any hyperedge in HF with label s, then, As,j ≤ ε/(1+ ε).

Proof. Let βs = 1 − As,us . We will consider two cases with regard to an item
j �= us; Case 1 when an item j is a member of some hyperedge in HF with label s,
and, Case 2 when an item j is not a member of any hyperedge in HF labeled s.

Case 1: Suppose j �= us and j is a member of some hyperedge {us} ∪ I in
HF . Since, j �∈ Zs, there exists another hyperedge h = {us} ∪ J in HU such
that j �∈ h. We get As,j ≤ βs − As,I∩J . Case 1.1: As,us > 1/2. By Lemma 4
part (1), As,I∩J ≥ βs(1 − 3ε)/(1 + ε). Thus, As,j ≤ βs − βs

1−3ε
1+ε = 4εβs

1+ε . Case
1.2: As,us ≤ 1/2. By Lemma 4 part (2), As,I∩J ≥ 1−ε

1+ε − As,us . Therefore,

d-Dimensional Knapsack in the Streaming Model 475

As,j ≤ 1 − As,us − 1−ε
1+ε + As,us = 2ε

1+ε . Case 2: Suppose j is not a member of
any hyperedge in HF with label s. Then, for any hyperedge g with label s (and
there is at least one since |Zs| = 1), 1 < A′

s,g ≤ (1 + ε)As,g ≤ (1 + ε)(1 − As,j)
or, As,j < ε

1+ε . ��
Lemma 5 implies that for the case when |ZF,s| = 1, all elements except the
largest element are of size O(ε). This follows from Lemma 5 by noting that
As,j ≤ (1−As,us)(4ε)/(1 + ε) ≤ 4ε/(1 + ε), since, 0 ≤ 1−As,us ≤ 1.

Lemma 6. Given a feasible solution F for the original instance of the knapsack
problem and a dimension s ∈ {1, 2, . . . , d} such that |ZF,s| = 0. Then, either
there are no conflicting edges along dimension s, or, all items have weight at
most ε/(1 + ε) along dimension s.

Proof. If there are no conflicting edges in HF with label s then there is nothing to
prove. So suppose there exists at least one conflicting edge g in HF with label s.

Case 1: Suppose j ∈ g. Since ZF,s = φ, it follows that there is at least one
other conflicting edge h ∈ HF such that j �∈ h. Therefore, A′

s,h > 1, or, 1 <
A′

s,h ≤ (1 + ε)As,h ≤ (1 + ε)(1 −As,j) . Simplifying, we obtain As,j ≤ ε
1+ε .

Case 2: Suppose j does not appear in any hyperedge of HF with label s, then,
the argument of Lemma 5 can be used to show that As,j ≤ ε/(1 + ε). ��

Packing Items in a Color Class

In this section, we consider the remaining portion of the strategy of the 2-level
hierarchical packing outlined above. In the hierarchical packing strategy, given a
feasible solution F for the original knapsack instance, we first form the conflict
hypergraph HF and then derive the restricted conflict hypergraph H ′

F from it
as explained earlier. The vertex set F of the restricted conflict hypergraph H ′

F

is partitioned into the color classes of a proper coloring. The final step is to
pack the items comprising each color class using as few sacks as possible. In this
section, we present this step.

We will pack the items in an independent set of H ′
F using a random strategy.

The random packing strategy picks each item at random with probability p and
attempts to place it in the sack. We will show that for p = 1/2 with some
probability the sack does not overflow.

Lemma 7. Let p = 1/2 and ε ≤ min(1/24, 1/(64 log(4d))) and F be a feasible
solution to the original knapsack instance. Let S be a set of items that forms
a color class of the restricted conflict hypergraph H ′

F . If we put each item with
probability p into the sack, the probability that the sack overflows along any given
dimension is at most 1/(4d).

Proof. Consider a random packing that chooses each item with probability p. De-
fine an indicator variable xj to be 1 if item j is selected and 0 otherwise. Let ut be
an item with the maximum weight along dimension t, that is At,ut = maxi At,i.

Let β′
t = 1−A′

t,ut
and for j �= ut, let w′

t,j =
A′

t,j

maxk �=ut A′
t,k

xj , j ∈ {1, 2, . . . , n}−{ut}

and let Xt =
∑

j �=ut
w′

t,j . Thus, E [Xt] =
∑

j �=ut

A′
s,j

maxk �=ut A′
t,k

p

476 S. Ganguly and C. Sohler

Case 1.1: |ZF,t| = 1 and At,ut > 1/2. By Lemma 5, if |ZF,t| = 1 then,
maxk �=ut A′

t,k ≤ 4ε(1 − At,ut)/(1 + ε). We wish to obtain an upper bound for
the probability that the items selected do not fit into the sack along dimension
t, while leaving room for ut. A sufficient condition for this is

∑
j �=ut

A′
t,jxj ≤

β′
t, or, equivalently, Xt ≤ β′

t

maxk �=ut A′
t,k

.

Pr {Overflow along dimension t} = Pr

{
Xt >

β′
t

maxk �=ut A′
t,k

}
.

By Hoeffding’s bound applied to the sum Xt of random variables w′
t,j , with

p ≥ 1/2, by Lemma 5 this is

Pr

{
Xt >

β′
t

maxk �=ut A′
t,k

}
≤ exp

{
−(1/6)

((1− ε)− (1 + ε)p)2

ε(1 + (1 + ε)p)

}
. (1)

Case 1.2: |ZF,t| = 1 and At,ut ≤ 1/2. By Lemma 5, maxk �=ut A′
t,k ≤ (1+ε)At,k ≤

2ε. It follows

Pr

{
Xt >

β′
t

maxk �=ut A′
t,k

}
< exp

{
−(1/3)

((1− ε)− (1 + ε)p)2

ε(1 + (1 + ε)p)

}
. (2)

Case 2: |ZF,t| = 0. By Lemma 6, if |ZF,t| = 0, then, maxk A′
t,k ≤ (1 +

ε)maxk At,k ≤ ε. Applying Hoeffding’s bound yields,

Pr

{
Xt >

β′
t

maxk �=ut A′
t,k

}
< exp

{
−(2/3)

((1− ε)− (1 + ε)p)2

ε(1 + (1 + ε)p)

}
. (3)

Combining (1), (2) and (3), we have under all cases,

Pr

{
Xt >

β′
t

maxk �=ut A′
t,k

}
≤ exp

{
−(1/6)

((1− ε)− (1 + ε)p)2

ε(1 + (1 + ε)p)

}
. (4)

Therefore, Pr
{
Xt >

β′
t

maxk �=ut A′
t,k

}
≤ 1/(4d) provided ((1−ε)−(1+ε)p)2

ε(1+(1+ε)p) > 6 log(4d).

Equation (3) is satisfied if p = 1/2 and ε = min(1/24, 1/(64 log(4d))). ��

We can now use Lemma 7, to prove that a 2-sack packing of the items in each
color class can be obtained.

Lemma 8. Let p = 1/2 and ε = min(1/24, 1/(64 log(4d))) and F be a feasible
solution to the original knapsack instance. Let S be a set of items that forms a
color class of the restricted conflict hypergraph H ′

F . Then, there exists a 2-sack
feasible packing of the items in S.

Proof. Suppose we sample items with probability 1/2. In this case, the probabil-
ity that an item is not sampled is also 1/2. Thus, we can also apply the previous

d-Dimensional Knapsack in the Streaming Model 477

analysis (Lemma 7) to the set of items that were not selected in the sample.
The packing of this set of items succeeds with probability 1− d/(4d). Thus, by
the union bound, the probability that for every dimension and both the sets of
selected and not selected items are feasible is at least 1 − (2d)/(4d) = 1/2 > 0
by the union bound. Thus a 2-sack feasible packing of the items in S exists. ��

We can now state the resulting property of our hierarchical packing analysis.

Theorem 1. For ε ≤ min(1/24, 1/(64 log(4d))), our algorithm computes a

rounded instance such that this instance has a (2(1
2 +

√
2d + 1

4))−1-approximate
solution. Our rounded instance is stored in a histogram that requires
O(2O(d) logd+1(d) logd+1(Δ)(log n)) bits of space, for some constant c.

Proof. The algorithm for filling the knapsack is as follows. We round up the
weights as explained in Section 2 and round down the profits. In this manner
we create a histogram of multi-dimensional weights. The size of this histogram
is O(2O(d)(ε−(d+1)) logd(Δ) log n) bits. From the histogram we can obtain a so-
lution using exhaustive search.

The approximation factor is derived as follows. Let F be any feasible solution
for the original instance. Let HF be the conflict hypergraph and let H ′

F denote
the restricted conflict hypergraph (Definition 3. We then color H ′

F using the
smallest number of colors. Lemma 3 shows that this can be done using at most
1
2 +

√
2d + 1

4 colors. Since, there are at most d edges in H ′
F , we obtain at most

1
2 +

√
2d + 1

4 color classes with no hyperedges from H ′
F .

By Lemma 8 each color class S can be packed using t = 2 sacks, where,
ε = O(1/(log(d)). This means that the set of items in F can be packed into at

most 2(1
2 +

√
2d + 1

4) sacks. By Lemma 1, this implies that there is a 1/(t(1
2 +√

2d + 1
4))-approximation solution. The final two statements of the theorem are

special cases obtained from the corresponding special cases of Lemma 8. ��

4 Lower Bounds: Space versus Approximation Ratio

In this section, we present a lower bound on space versus approximation ratio
of streaming algorithms for the d-dimensional knapsack problem.

Theorem 2. For t ≥ 1, any streaming algorithm for the t(t − 1)-dimensional
knapsack problem with items from the universe { 1

Δ , 2
Δ , . . . , 1} that uses o(

√
Δ/t2)

bits has an approximation ratio of at most 1/t.

Let t be a positive integer such that d = t(t − 1)/2. We reduce the t-party set
disjointness problem to 2d-dimensional knapsack problem. An instance of the
t-party set disjointness problem consists of subsets S1, . . . , St of [n] provided
to each of t players. It is given that the sets are either pair-wise disjoint, or,
there is exactly one element in the common intersection. The players follow a

478 S. Ganguly and C. Sohler

pre-specified communication protocol at the end of which a designated player
can distinguish between the two kinds of input. If the protocol is randomized,
then, the final answer must be correct with probability say 7/8. The commu-
nication complexity of a protocol is the maximum over all legal inputs, of the
total number of bits communicated during the execution of the protocol. The
communication complexity of the problem is the complexity of the best possible
protocol for this problem. It was shown by Chakrabarti, Khot and Sun [1] that
the randomized communication complexity of this problem is Ω(n/(t log t)). As-
suming the one-way communication model, where, the players communicate in
a certain order, that is, player 1 sends to player 2, player 2 to player 3 and so
on, the communication complexity is Ω(n/t) [1].

Proof. Consider an input instance of the t-player set disjointness problem,
namely, t subsets S1, . . . , St of the universe {1, 2, . . . , n} that is provided to
each of the t-parties, together with the promise that either, (a) the sets are
pair-wise disjoint, or, (b) they have exactly one common intersection element
and are otherwise pair-wise disjoint. We view the set {1, . . . , t(t − 1)} as be-
ing isomorphic to the set of triples {(a, b, 0/1)}, where 1 ≤ a < b ≤ t. Let
d = t(t − 1). For each c = 1, 2, . . . , t, player c maps each element x of Sc to
a d-dimensional vector denoted by x(c) and whose coordinates are referred to
as [x(c)

a,b,e], 1 ≤ a < b ≤ t and e ∈ {0, 1} . The vector x(c) is constructed as
follows.

1. x
(c)
c,b,0 = 2x, x

(c)
c,b,1 = 2(4n− x)

2. x
(c)
a,c,0 = 2(4n− x), x(c)

a,c,1 = 2x

3. x
(c)
a,b,0 = x

(c)
a,b,1 = ε, if a �= c and b �= c .

ε is chosen to be a sufficiently small number, say 1/(2n), so that nε < 1. Suppose
that the knapsack size is 8n + 1 along each dimension.

Case: non-empty intersection. Suppose there is a common element x in each of
the Sc’s. Then, x

(a)
a,b,0 = 2x, x

(b)
a,b,0 = 2(4n− x) and x

(t)
a,b,0 = ε, for all t �= a, t �= b.

So the sum of coordinate (a, b, 0) of the d-dimensional vectors corresponding to
x across the t parties is 2x + 2(4n − x) + (n − 2)ε < 8n + 1 . Similarly, the
coordinate (a, b, 1) of the sum of the d-dimensional vectors corresponding to x
across the t parties is less than 8n + 1. That is, the vectors {x(1), . . . , x(t)} form
a feasible packing into one knapsack.

Case: empty intersection. Choose a pair of distinct elements x ∈ Sc and
y ∈ Sc′ , and suppose that c < c′. Then, x

(c)
c,c′,0 + y

(c′)
c,c′,0 = 2x + 2(4n − y) and

x
(c)
c,c′,1 +y

(c)
c,c′,1 = 2(4n−x)+2y Both 2x+2(4n−y) and 2(4n−x)+2y cannot be

at most 8n unless x = y, hence, at least one of the two is at least 8n + 2 (being
even), and therefore does not fit in the knapsack of size 8n + 1.

We also note that no two items from the same set Sc can fit in one sack.
Let x, y ∈ Sc. Then, for any c′ with c < c′, x

(c)
c,c′,0 + y

(c)
c,c′,0 = 2x + 2y and

x
(c)
c,c′,1 + y

(c)
c,c′,1 = 2(4n− x) + 2(4n− y) Both 2x + 2y and 2(4n− x) + 2(4n− y)

cannot be at most 8n unless x+ y = 4n. [If 2x+2y ≤ 8n, then, x+ y ≤ 4n, and

d-Dimensional Knapsack in the Streaming Model 479

2(4n− x) + 2(4n− y) ≤ 8n implies that x + y ≥ 4n, or, x + y = 4n.] However,
x, y are each at most n, and hence x + y < 2n− 1. Thus, no two items from the
same set Sc can fit in one knapsack.

So, in the case of a common intersection {x} of the sets, the d elements x(c),
c = 1, 2, . . . , t fit together in a sack. Assuming all profits of all items to be 1, the
total profit is t. In case when the sets are disjoint, then, at most one element
from any of the sets may be placed in the sack, with resulting profit 1.

Suppose there is a streaming algorithm for the t(t− 1)-dimensional knapsack
problem with approximation ratio less than 1/t and that uses s bits. Player 1
presents the input {x(1) : x ∈ S1} to this algorithm with all profits set to 1. The
state of the algorithm is then sent to player 2, which in turn inserts its input
{x(2) : x ∈ S2} to the state of the algorithm, relays it to player 3 and so on.
Finally, player t calls the profit function of the streaming knapsack algorithm.
If this profit is 1 or less, it concludes that the sets are disjoint, otherwise, it
concludes that the sets have unique common intersection. This protocol cor-
rectly determines set disjointness, since, as argued above, for the disjoint case
the optimal profit is 1 and is reported as no more than 1 by the streaming knap-
sack solution. For the unique intersection case, the optimal profit is t and is
reported to be greater than 1, since, the approximation ratio is 1/t. The total
communication is (t−1) times the space requirement of the streaming algorithm,
namely, s bits. Note that the entries of the vector x(c) are at most 8n and at least
epsilon = 1/(2n) and the sack size of 8n+1. Therefore, we can scale the input in
such a way that the entries come from { 1

Δ , 2
Δ , . . . , 1} by setting Δ = 2n ·(8n+1).

By the lower bound of the t-party set disjointness problem, (t− 1)s = Ω(n/t)
or, s = Ω(n/t2) = Ω(

√
Δ/t2). Thus any streaming algorithm for the t(t − 1)-

dimensional knapsack problem that uses o(
√

Δ/t2) bits must have an approxi-
mation ratio at best 1/t. ��

References

1. Chakrabarti, A., Khot, S., Sun, X.: Near-Optimal Lower Bounds on the Multi-Party
Communication Complexity of Set Disjointness. In: Proceedings of International
Conference on Computational Complexity, pp. 107–117 (2003)

2. Chekuri, C., Khanna, S.: On multi-dimensional packing problems. In: Proceedings
of the 10th ACM-SIAM Symposium on Discrete Algorithms, pp. 185–194 (1999)

3. Diestel, R.: Graphentheorie. Springer, Heidelberg (2006)
4. Ibarra, O.H., Kim, C.E.: Fast Approximation Algorithms for the Knapsack and the

Sum of Subset Problems. J. ACM 22(4) (October 1975)
5. Iwama, K., Taketomi, S.: Removable online knapsack problems. In: Proc. of the 29th

Intl. Conf. on Automata, Languages and Programming, pp. 293–305 (2002)
6. Iwama, K., Zhang, G.: Optimal Resource Augmentations for Online Knapsack. In:

Proceedings of the 10th Intl. Workshop on Approximation Algorithms for Combi-
natorial Optimization Problems, pp. 180–188 (2007)

7. Karp, R.: Reducibility among Combinatorial Problems. In: Complexity of Computer
Computations, pp. 85–103 (1972)

Sparse Cut Projections in Graph Streams

Atish Das Sarma1, Sreenivas Gollapudi2, and Rina Panigrahy2

1 Georgia Institute of Technology
atish@cc.gatech.edu

2 Microsoft Research, Silicon Valley
{sreenig,rina}@microsoft.com

Abstract. Finding sparse cuts is an important tool for analyzing large graphs that
arise in practice, such as the web graph, online social communities, and VLSI cir-
cuits. When dealing with such graphs having billions of nodes, it is often hard to
visualize global partitions. While studies on sparse cuts have traditionally looked
at cuts with respect to all the nodes in the graph, some recent works analyze graph
properties projected onto a small subset of vertices that may be of interest in a
given context, e.g., relevant documents to a query in a search engine. In this pa-
per, we study how sparse cuts in a graph partition a certain subset of nodes. We
call this partition a cut projection. We study the problem of finding cut projec-
tions in the streaming model that is appropriate in this context as the input graph
is too large to store in main memory. Specifically, for a d-regular graph G on n
nodes with a cut of conductance Φ and constant balance, we show how to parti-
tion a randomly chosen set of k nodes in Õ(1√

αΦ
) passes over the graph stream

and space Õ(nα + n3/4k1/4
√

αΦ19/4), for any choice of α ≤ 1. The resulting partition

is the projection of a cut of conductance of at most Õ(
√

Φ). We note that for
k < nα6ΦO(1), this can be done in Õ(1/

√
αΦ) passes and space Õ(nα) that is

sublinear in the number of nodes.

1 Introduction

The problem of finding sparse cuts on graphs has been studied extensively
[6,5,13,4,22,20]. Sparse cuts form an important tool for analyzing/partitioning real
world graphs, such as the web graph, click graphs from search engine query logs and
online social communities [8]. While traditionally studies on sparse cuts have looked at
cuts with respect to all the nodes in the graph, more recent works [17,16] study graph
properties projected onto a small subset of nodes that may be of interest. For example,
while the web graph may consist of several billions of nodes, in a given context, one
may only be interested in the most important nodes such as those with high PageRank
or those nodes (representing web pages) relevant to a specific search query. Specifically,
we may be interested in finding how connected components of the graph partition these
nodes, or we may wish to compute the diameter of the graph with respect to these nodes,
or perhaps compute the distance between these nodes with respect to the original graph.
Such operations not only enable us to understand the structure of a facet of the graph,
but also make it feasible to visualize the graph using a much smaller set of nodes. This
approach has been taken in several studies including HITS [14], SALSA [15], and web

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 480–491, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Sparse Cut Projections in Graph Streams 481

projections [16], where they study the properties of the web graph restricted to a set of
documents that match a given query.

A well developed framework for studying large graphs under memory constraints is
the streaming model wherein the input graph is assumed to be on disk, and the algorithm
is allowed to make few sequential passes over the input while using a small amount of
space in main memory. Our approach works on the streaming model with sub-linear
space. The space and pass requirements on streaming algorithms can vary significantly
depending on the problem. Demetrescu et. al. [10] give an excellent exposition on the
space-passes trade off in graph streaming problems. Henzinger et. al. [12] showed linear
lower bounds on the “space × passes” product for several graph problems including
connectivity and shortest path problems. In this work, we present a streaming algorithm
for finding how a sparse cut partitions a small random set of nodes when the graph
is presented as a stream of edges in no particular order. Our streaming algorithm uses
space sublinear in the number of nodes. We also provide an algorithm for finding a
sparse cut on the entire graph. We now introduce some definitions below.

Definition 1 (Conductance and Sparsity). The conductance of a graph G = (V, E) of
n nodes 1, 2, . . . , n is defined as Φ(G) = minS:E(S)≤E(V)/2

E(S,V \S)
E(S) where E(S, V \

S) is the number of edges crossing the cut (S, V \ S) and E(S) is the number of edges
with at least one end point incident on S. For d-regular graphs, Φ(G) = minS:|S|≤|V |/2
E(S,V \S)

d|S| . Further, this is within a factor two of minS
nE(S,V \S)
d|S||V \S| . We also note that the

sparsity of a d-regular graph is related to the conductance by a factor d.

Definition 2 (Balance). The balance of a cut (S, V \S) is defined as min{ |V \S|
|V | , |S|

|V |}.

Definition 3 (Cut Projections). Given a cut (S, V \S), we will say that (S∩U, V \S∩
U) is a projection of the cut (S, V \S) on U . Further, we will say that a cut (C, U \C),
where C ⊆ U , is a projected cut of conductance Φ if it is a projection of a cut (S, V \S)
with conductance Φ.

1.1 Contributions of This Study

Our approach builds on the streaming algorithms presented in [9] for performing a large
number of random walks efficiently on a graph stream. These random walks are used to
estimate the probability distribution of the random walk that is in turn be used to find a
sparse cut by adapting the method of Lovasz and Simonovits [18,22].

One of the main contributions of this paper is an algorithm to estimate the proba-
bility distributions on an arbitrarily chosen subset of k nodes in a d-regular graph. To
obtain the probability of reaching destination t from source s after a walk of length
l, the algorithm runs multiple walks (starting with length l/2) from source-destination
pairs, and recursively estimates probability distributions of mid-points, by looking at
the “collisions” of these walks. A similar idea has been used in property testing for
expander graphs in [11]. However, in their case, they just need to run walks of length
l/2 and investigate the collisions. Since we need a good estimate of the probability dis-
tribution at t, the algorithm needs to run walks recursively of shorter lengths. All our
techniques depend on the reversibility of the random walk, and hence only work for

482 A. Das Sarma, S. Gollapudi, and R. Panigrahy

d-regular, unweighted graphs. We now describe our results beginning with a definition
of some notation.

Definition 4. Let Pl[st] denote the probability of landing at node t after a random walk
of length l starting from s. Further, let pl(i) = Pl[si]. We drop the subscript l when it is
clear from context.

The following theorem, proved in Section 3, shows how to compute the approximate
distribution on a arbitrarily chosen subset K of k nodes.

Theorem 1. Given an arbitrarily chosen subset K of k nodes, one can compute an
estimate p̃(i) for p(i) (the probability distribution after a walk of length l) for all i ∈ K

in Õ(
√

l
α) passes and Õ(nα + 1

ε

√
nkl
α) space for any choice of α ≤ 1, such that the

error in the estimate |p̃(i)− p(i)| is at most Õ(l
√

p(i)ε
n + lε

n + (l
√

ε)p(i)).

Our main results for computing projected cuts (described in Section 4) with sparsity at
most Õ(

√
Φ) are stated below.

Theorem 2. For any d-regular graph G that has a cut of balance b and conductance at
most Φ, given a set K of randomly chosen k nodes, we show that there is an algorithm
that achieves the following on a graph stream (for any choice of α ≤ 1).
(a) Partitions K into two sets such that the partitioning is a projected cut of conductance

at most Õ(
√

Φ), in Õ(1√
αΦ

) passes and Õ(nα + n3/4k1/4

b
√

αΦ19/4) space.
(b) Outputs k candidate partitions such that at least one of them is a projected cut of
conductance at most Õ(

√
Φ), in Õ(1√

αΦ
) passes and Õ(nα +

√
nk

b
√

αΦ
9
2
) space.

Corollary 1. Given a set of randomly chosen k ≤ nα6b4ΦO(1) nodes, there is an al-
gorithm that partitions them, in Õ(1√

Φα
) passes and Õ(nα) space, into a projected cut

of conductance at most Õ(
√

Φ) w.h.p.

Observe that the space required is sublinear in the number of nodes if k satisfies the
bound in the above corollary. Our algorithms can also be extended to partition all the
n nodes in the graph; that is, find the entire (approximate, sparse) cut. The following
theorem shows how find an approximate sparse cut in (possibly) sublinear space. The
proof is detailed in the full version of the paper.

Theorem 3. For any d-regular graph G that has a cut of conductance at most Φ and

balance b, there is an algorithm that performs Õ(
√

1
Φα) passes over the graph stream

and using space Õ(min{nα + 1
b

(
nα
dΦ3 + n

d
√

αΦ5/2

)
, (nα + 1

b
n

dαΦ2)
√

1
Φα + 1

Φ}), for

any choice of α ≤ 1. and outputs, with high probability, a cut of conductance at most
Õ(
√

Φ).

1.2 Related Work

A well-known approach for graph partitioning is to compute the second eigenvector that
can be used to compute a sparse cut by ordering the nodes in increasing order of coor-
dinate value in the eigenvector. The second eigenvector technique has been analyzed in
a series of results [2,7,21] relating the gap between the first and second eigenvalue.

Sparse Cut Projections in Graph Streams 483

The best known approximation algorithm to compute the sparsest cut in a graph is
due to Arora, Rao, and Vazirani [4]. They provide O(

√
log n)-approximation algorithm

using semi-definite programming techniques. While their algorithm guarantees good
approximation ratios, it is slower than algorithms based on spectral methods and ran-
dom walks.

Lovasz and Simonovits [18,19] proposed another approach to finding cuts of small
conductance. They showed how random walks can be used to find sparse cuts. Specifi-
cally, they show that if you start a random walk from a certain node and order the nodes
by the probability of reaching them, then this ordering contains a sparse cut. They prove
that if the sparsest cut has conductance φ, then their method can be used to find a cut
with conductance at most O(

√
φ).

Spielman and Teng [22] build upon the work of Lovasz and Simonovits and show
how it can be implemented more efficiently by sparsifying the graph. They show that for
a dense graph, it is possible to look at a near linear number of edges and only compute
the sparse cuts on the sampled set of vertices. Given a graph G = (V, E) with a cut
(S, V \ S) with sparsity φ and balance b(S) = |e(S)|/2|E| ≥ 1/2 where e(.) denotes
the set of edges incident on nodes in S, their algorithm finds a cut (D, V \ D) with
sparsity O(φ1/3 logO(1) n) and balance of the cut (D, V \D), b(D) ≥ b(S)/2.

Andersen, Chung, and Lang [3] proposed a local partitioning algorithm to find cuts
near a specified vertex and global cuts. The running time of their algorithm was propor-
tional to the size of small side of the cut. Their results improve upon those in [22];

In a more recent work [9], the authors proposed algorithms to perform several ran-
dom walks efficiently on graphs presented as edge streams using a small number of
passes. A recent study [1] shows how to find 1 + ε-approximate sparse cuts in Õ(n)
space by making use of graph sparsifiers. In contrast, our algorithm requires sublinear
space for a certain range of parameters, but provides much a weaker approximation to
the sparsest cut.

2 Cuts from Approximate Probability Distributions of Random
Walks

In this section we will show how one can compute candidate sparse cuts from approxi-
mate probability distributions of random walks. We start from a random source s from
the smaller side of the best cut with conductance Φ and perform a random walk of length
about 1/Φ. We extend the algorithm of Lovasz and Simonovits [18] to find sparse cuts
using approximate distributions. This is similar to the work by Spielman and Teng [22]
that also works with estimates of p(i). But the magnitude of error allowed in our work
is larger than in theirs. We adapt a set of lemmas from their work to prove Theorem 4
below. The proof is detailed in the full version of this paper.

Definition 5. For a probability distribution p(i) on nodes, let ρp(i) = p(i)/d(i). Let πp

denote the ordering of nodes in decreasing order of ρp; that is, ρp(πp(i)) ≥
ρp(πp(i + 1)).

Recall that p(i) denotes the probability of ending at node i after a random walk of
length l. The following theorem shows how one can find candidate sparse cuts using

484 A. Das Sarma, S. Gollapudi, and R. Panigrahy

approximate values p̃(i) of p(i). It looks at the n candidate cuts obtained by ordering
the nodes in the order πp̃.

Theorem 4. Let (U, V \ U) (with |U | ≤ |V |/2) be a cut of conductance at most Φ.
Let p̃(i) denote an estimate for the probability p(i) of a random walk of length l from a
source s from U . Assume that |p̃(i)− p(i)| ≤ ε(p(i)+ 1/n), where ε ≤ o(Φ). Consider
the n candidate cuts obtained by ordering the vertices in decreasing order of ρp̃(i); each
candidate cut (S, V \S) is obtained by setting S equal to a prefix Sj = πp̃{1, 2, . . . , j}.
If the source node s is chosen randomly from U and the length l is chosen randomly
in the range {1, . . . , O(1/Φ)}, then with constant probability, one of these n candidate
cuts has conductance Φ(Sj) ≤ Õ(

√
Φ)

Note that the source node s needs to be sampled from U , the smaller side of the cut.
To obtain such a source, we have to sample several sources from V , since U is not
known, and execute the algorithm in parallel (so as not to increases the number of passes
required). Given a cut of balance b, this increases the number of walks required by a
factor of Õ(1

b), and therefore the space required accordingly; in all our space bounds,
the first term of nα, however, does not depend on the number of walks performed.

In section 4 we will show how Theorem 4 in conjunction with Theorem 1 is used
to prove Theorem 2. The essential idea is to look at the k candidate cuts obtained by
arranging the nodes in decreasing order of πp̃ and then estimate the conductance across
these candidate cuts to pick the best one.

In proving these theorems, we use the techniques presented in [9] for performing a
large number of random walks efficiently on a graph stream. They show how to perform

O(n/l) independent random walks using Õ(nα) space and Õ(
√

l
α) passes over the

graph stream. Their main result is stated below.

Theorem 5 ([9]). One can perform k independent random walks from a given source
distribution, on a graph stream, in Õ(

√
l/α) passes and Õ(min{nα + klα + k

√
l/α,

nα
√

l/α+ k
√

l/α+ l}) space, for any choice of α ≤ 1. For k = n
l walk, this requires

Õ(
√

l/α) passes and Õ(nα) space for 1/l ≤ α ≤ 1.

Next we will show how performing random walks can be used to compute the proba-
bility distribution approximately so that we may apply theorem 4. To get good approx-
imations, we need to perform random walks recursively as shown in the next section.

3 Estimating Probability Distribution pi on a Small Set of Nodes

In this section we show how to estimate the probability distribution on a small set of k
nodes resulting in Theorem 1. The distribution is required for the endpoint of a random
walk of length l from a specific source node s (or more generally a source distribution).
The naı̈ve approach would be to perform several random walks of length l from s and
look at the end points of these walks to see how many times each of the k nodes occurs.
This can be inefficient as k may be much smaller than n and most of the random walks
may end up at nodes other than the k nodes we are interested. So we seek a more

Sparse Cut Projections in Graph Streams 485

efficient approach tailored towards estimating the distribution of a specific small set of
nodes.

We will begin by stating the following technical lemma. The lemma is later used to
approximate distributions. It bounds the error in estimating aij for a matrix A, where i
and j are drawn from two different probability distributions. The guarantee is stated as
a trade-off with the number of samples drawn for i and for j.

Lemma 1. Let A = {aij}m×n denote a matrix of non-negative entries aij . Let μXY =
Ei∈X,j∈Y [aij] denote the expected value of aij where i and j are drawn independently
from probability distributions X = {xi, x2, . . . , xm} and Y = {y1, y2, . . . , yn} on the
rows and columns respectively. Assuming ||Atx||∞ ≤ Õ(1

εnx
) and ||Ay||∞ ≤ Õ(1

εny
),

one can obtain an estimate μX̃Ỹ for μXY by drawing Õ(nx) samples from X and
Õ(ny) samples from Y . Here X̃ and Ỹ are the distributions induced by the Õ(nx) and

Õ(ny) samples respectively. The error |μX̃Ỹ − μXY | is at most Õ(
√

μXY

εnxny
+ 1

εnxny
)

w.h.p.

Proof. Let μD = Ei∈D[ci]. For a distribution D and a vector c with non-negative
entries between [0, 1], Õ(n) samples are drawn from D to estimate μD w.h.p such that

|μD̃−μD| ≤
√

μ
n + 1

n by Chernoff bounds. More generally, |μD̃−μD| ≤
√

μ||c||∞
n +

||c||∞
n .
We need to bound |μXY − μX̃Ỹ | ≤ |μXY − μXỸ | + |μX̃Y − μX̃Ỹ |. Set ci =

Ej∈Y [aij], i.e., c = Ay. This gives |μXY − μX̃Y | ≤
√

μXY ||Ay||∞
nx

+ ||Ay||∞
nx

≤√
μXY

εnxny
+ 1

εnxny
.

Further, setting cj = Ei∈X̃ [aij] or c = Atx̃ gives |μX̃Y −μX̃Ỹ | ≤
√

μX̃Y ||Atx̃||∞
ny

+
||Atx̃||∞

ny
w.h.p. But, note that ||Atx̃||∞ ≤ ||Atx||∞ + Õ(

√
At||x||∞

nx
+ At||x||∞

nx
) ≤

Õ(1
εnx

) as ||Atx||∞ ≤ Õ(1
εnx

). And since μX̃Y ≤ μXY + Õ(
√

μXY

εnxny
+ 1

εnxny
) ≤

Õ(μXY + 1
εnxny

), the difference is at most Õ(

√
(μXY + 1

εnxny
)1/εnx

ny
+ 1

εnxny
) ≤

Õ(
√

μXY

εnxny
+ 1

εnxny
). Combining the two, the lemma follows.

We first describe the main idea in estimating the probabilities after a random walk
for a subset of nodes as Algorithm RECURSIVERANDOMWALK. The algorithm uses
a parameter m that controls the accuracy of error in estimation. Given a set of nodes
K , with |K| = k, and a source node s, we wish to estimate Pl[st] for all nodes in
t ∈ K up to an additive accuracy of about O(

√
Pl[st]/m). Rather than performing m

walks of length l from s, Θ̃(
√

mk) walks are performed from s and Θ̃(
√

m
k) walks

from each node in K , all of length l/2. Note that the product of the number of walks
performed is m. We then use collisions in the end points of these walks of length l/2 to
estimate the probabilities (since it is a reversible random walk). The key insight is that
Pl[st] =

∑
i Pl/2[sui].Pl/2[tui] =

∑
i xiyi where xi = Pl/2[sui] and yi = Pl/2[tui].

That is, one can break all paths from s to t at half way, and sum over all l/2 length paths

486 A. Das Sarma, S. Gollapudi, and R. Panigrahy

from s to ui and ui to t. Any node ui may either have a small or a large probability
of being reached from s after a random walk of length l/2; the same observation holds
for for t as well. Roughly, a node u has a small probability for source s if Pl/2[su] is
o(1/

√
mk), and large probability otherwise. In the formal description of the algorithm

we denote these sets of nodes by Sa and Sb respectively. Notice that o(1/
√

mk) is less
than the reciprocal of the number of walks run from s. We denote the number of walks of
length l/2 performed from s by ns. Similarly, a node u has small probability estimate
from t if Pl/2[tu] is o(

√
m/k), and a large probability otherwise. In the algorithm,

these sets of nodes are denoted by Ta and tb respectively. The total number of walks
of length l/2 performed from each node t is denoted by nt. Now, four cases arise for
every ui.

• xiyi is Ω(1/m) and xi is Ω(1√
mk

) and yi is Ω(
√

k
m).

• xiyi is o(1/m) and xi is o(1√
mk

) and yi is o(
√

k
m).

• xiyi is Ω(1/m) but xi is o(1√
mk

) and yi is Ω(
√

k
m).

• xiyi is Ω(1/m) but xi is Ω(1√
mk

) and yi is o(
√

k
m).

The first case is when ui has large Pl/2[sui] and Pl/2[tui], and therefore, it will be
seen in walks from both ends and gives us a good estimate of ui’s contribution to∑

i Pl/2[sui].Pl/2[tui]. The second case is when ui has small probability for both s and
t. In this case, w.h.p., ui will not be seen in either set of walks. Therefore, ui’s contribu-
tion to

∑
i Pl/2[sui].Pl/2[tui] cannot be estimated. However, since Pl/2[sui].Pl/2[tui]

itself is o(1/m), ui’s contribution to the estimate of Pl[st] is negligible.
The difficulty arises in estimating the product for ui in the third and fourth cases.

In both these scenarios, just the walks described above aren’t sufficient to estimate the
product and yet the contribution may be significant. This is because ui has a large prob-
ability from one end, but a small probability from the other end. The small probability
cannot be estimated with just these walks, but the product could be significant, in partic-
ular the product could be Ω(1/m). Hence one needs to resort to a recursive estimation
algorithm where the small estimate is captured by performing further walks.

For any node ui with a large value of Pl/2[sui] and a small value of Pl/2[tui], we
adopt a recursive approach between ui and t by performing random walks of length
l/4 from all such ui and from t. Similarly, for all nodes ui that have a large value of
Pl/2[tui] and a small value of Pl/2[sui], we perform random walks of length l/4 from
s and all these ui to get better estimates of Pl/2[sui] and consequently the product
Pl[st]. These probabilities may themselves be estimated by random walks of length
l/8, in another depth of the recursion, and so on. Eventually, combining all of these
carefully gives us the probability distribution of t from s after a random walk of length
l (notice that we use the reversibility of the random walk). The exact details are stated
in Algorithm 1.

We now state and prove the guarantee of RECURSIVERANDOMWALK in estimating
probabilities by making use of Lemma 1.

Lemma 2. Algorithm RECURSIVERANDOMWALK gives an estimate of μ = Pl[st]
within an additive error of Õ(l

√
εμ + l

√
μ

εm + l
εm).

Sparse Cut Projections in Graph Streams 487

Algorithm 1. RECURSIVERANDOMWALK(s, K , l)

1: Input: Starting node/distribution s, length l, and chosen set of k nodes K. Set K need not
necessarily be chosen at random.

2: Output: p(t) = P̃l[st] for each t ∈ K, an estimate of Pl[st] with explicit bound on additive
error.

3: Perform ns = Θ̃(
√

mk) walks from s and nt = Θ̃(
√

m/k) walks from each t ∈ K, all of
length l/2.

4: Denote by Sa the set of nodes seen at most Õ(1
ε
) times (small number of times) as endpoints

of the ns walks from s and denote the remaining nodes (seen large number of times) by
Sb. Similarly, for each t, partition the nodes into ta(seen small number of times from t) and
tb(seen large number of times from t). Denote by x̃ and ỹ the distributions of nodes in the
end points of the walks from s and t respectively. Thus, x̃i is the fraction of walks from s
that end up at node i.

5: Let w(Sb) =
∑

i∈Sb
x̃i and w(tb) =

∑
i∈tb

ỹi. Denote by DSb the distribution of end
points of walks over the nodes in Sb, i.e., the probability of i in DSb is x̃i/w(Sb) if i ∈ Sb

and 0 otherwise. Similarly, denote by Dtb the distribution of end points of walks over the
nodes in tb.

6: For each t ∈ K, set Pl[st] =
∑

i∈Sa∩ta
x̃iỹi + w(Sb)Pl/2[DSbt] + w(tb)Pl/2[sDtb] −∑

i∈Sb∩tb
x̃iỹi.

7: In the above expression, Pl/2[DSb t] and Pl/2[sDtb] are estimated recursively for all the
t ∈ K. Note that if length is 1, P1[st] can be computed exactly in one pass.

Proof. Pl[st] =
∑n

i=1 xiyi. If all xi are smaller than Õ(1
ε
√

km
) and yi is smaller than

Õ(1
ε
√

m/k
), then by Lemma 1, the algorithm estimates μ = Pl[st] within error of

Õ(
√

μ
εm + 1

εm). More generally, Pl[st] can be computed as a sum over four sets as
Pl[st] =

∑
i∈Sa∩ta

xiyi +
∑

i∈tb
xiyi +

∑
i∈Sb

xiyi −
∑

i∈Sb∩tb
xiyi; here i ∈ Sa if

xi is Õ(1
ε
√

km
) and i ∈ Sb otherwise.−

∑
i∈Sb∩tb

xiyi is required as it is counted once

in each of
∑

i∈tb
xiyi and

∑
i∈Sb

xiyi. Similarly j ∈ ta if yj is Õ(1
ε
√

m/k
), and j ∈ tb

otherwise. We will argue that step 6 of the algorithm RECURSIVERANDOMWALK is
summing the estimates of each term.

Let μaa, μ∗b, μb∗, μbb respectively denote
∑

i∈Sa∩ta
xiyi,

∑
i∈tb

xiyi,
∑

i∈Sb
xiyi

and
∑

i∈Sb∩tb
xiyi. Note that it is not known which of xi’s or yi’s are small or large.

The number of walks performed, however, are sufficient to obtain the right classification
to small or large, by standard Chernoff bounds.

Let x̃ and ỹ denote the distributions induced by the end points of the ns walks
and nt walks respectively. Note that by Lemma 1,

∑
i∈Sa∩ta

xiyi can be estimated

as
∑

i∈Sa∩ta
x̃iỹi with error at most Õ(

√
μaa

εm + 1
εm). Also note that if i ∈ Sb, then

x̃i is within (1±
√

ε)x̃i w.h.p. from Chernoff bounds. Thus, μbb can be estimated with
error at most

√
εμbb. Again, μ∗b can be estimated as μ∗b̃ =

∑
i∈tb

xiỹi where the er-
ror |μ∗b − μ∗b̃| ≤

√
εμ∗b. Similarly, μb∗ can be estimated as μb̃∗ =

∑
i∈Sb

x̃iyi with
additive error at most

√
εμb∗.

Observe that the μ∗b̃ =
∑

i∈tb
xiỹi = w(Sb)Pl/2[DSb

t] and μb∗̃ =
∑

i∈Sb
x̃iyi =

w(tb)Pl/2[sDtb
] are estimated recursively by computing Pl/2[DSb

t] and Pl/2[sDtb
].

488 A. Das Sarma, S. Gollapudi, and R. Panigrahy

Let δl(Pl[st]) denote the error in estimating the probability Pl[st]. Then
δl(μ) =

√
μaa

εm + 1
εm +

√
εμbb +

√
εμb∗ +

√
εμ∗b +w(Sb)δl/2(Pl/2[DSb

t])+w(tb)δl/2

(Pl/2[sDtb
]) ≤

√ μ
εm + 1

εm + 3
√

εμ + w(Sb)δl/2(
μ

w(Sb)
) + w(tb)δl/2(

μ
w(tb)

).
The branching factor of the recursion is 2 and has depth log l with l leaves. Also note

that at the leaf, δ1(P1[st]) = 0. It follows from standard methods for solving recursion
that δl(μ) = Õ(l

√
εμ + l

√
μ

εm + l
εm).

We now use the approach in [9] to bound the number of passes and space required
in performing RECURSIVERANDOMWALK. The analysis is simple and only requires
a careful calculation of the number of walks performed for each length l/2, l/4,
l/8,

Lemma 3. Algorithm RECURSIVERANDOMWALK can be implemented on a graph

stream in Õ(
√

l
α) passes and Õ(nα +

√
mkl
α) space for any choice of α ≤ 1.

Proof. Notice that in the first phase of RECURSIVERANDOMWALK, O(
√

mk) walks
are performed from s of length l/2 and O(

√
m/k) walks from each t of length l/2.

Whenever recursively calculating the distribution, O(
√

mk) walks are required for any
source distribution to destination distribution pair. Since the length of the walks halve
with every recursive depth, the number of levels is O(log l) before the length of the
walks required becomes a constant. However, the pairs for which the distributions need
to be estimated keeps doubling. So after, say, t phases, we perform O(2t

√
mk) walks

of length l/2t.
From [9], the space required for k walks is Õ(nα + klα + k

√
l/α). Although [9]

assumes that the source distribution was the same for all the k walks, it is easy to extend
their result to perform a specific number of walks from different source distributions (to
a total of k walks), with only a logarithmic factor increase in the space (by Chernoff
bounds).

Summing this over t phases, the first term remains Õ(nα). The second term of
Õ(klα) is always Õ(

√
mklα), as only a log l factor increases. The third term of k

√
l/α

is dominated by the last phase (since this term depends linearly in k but only as square-
root in the length of the walks), where l

√
mk walks of length O(1) are performed. The

dominating term therefore is Õ(
√

mklα), completing the proof.

Remark 1. If algorithm RECURSIVERANDOMWALK is to be performed from r differ-

ent sources, this would increase the space requirement to Õ(nα+r
√

mkl
α). This follows

from the fact that the first term of Õ(nα) in the space requirement does not depend on
the number of walks performed.

Notice that combining Lemmas 2, 3, and choosing m = n
ε2 immediately gives Theo-

rem 1. Observe that by setting ε = o(Φ2/l2) we satisfy the conditions of Theorem 4
and can thus compute candidate cuts.

Sparse Cut Projections in Graph Streams 489

Algorithm 2. CUTPROJECTIONCANDIDATES(G, K , s)

1: Input: Graph G, set K of k randomly sampled nodes, and a source node s.
2: Output: k partitions on these k nodes.
3: Estimate probabilities on the k nodes using RECURSIVERANDOMWALK for source s and

walk of length l, where l is chosen at random between 1 and O(1/φ2).
4: Order the k nodes in decreasing order of the probability estimates. Return the k candidate

cuts implied by taking prefixes of this ordering.

Algorithm 3. CUTPROJECTION

1: Input: Graph G with cut of conductance at most Φ and source s from the smaller side of this
cut; set K of k randomly sampled nodes.

2: Output: Partition of these k nodes such that this is a projected cut of conductance is at most
φ = Õ(

√
Φ) with constant probability.

3: Sample additional nodes randomly and add it to the set K so that the resulting set K′ is of

size k′ =
√

kn
φ

.

4: Call CUTPROJECTIONCANDIDATES with G′, K′, s.
5: Consider all of the k′ cuts returned by CUTPROJECTIONCANDIDATES that have at least k′

k

nodes on either side of the cut. Notice that each of these cuts has at least one of the k nodes
in K on either side, with constant probability.

6: For each of these cuts, compute the conductance on the induced subgraph over these k′ nodes.

7: Output the cut induced on the k nodes by the cut on the k′ nodes that has the minimum
conductance in the induced subgraph.

4 Finding Sparse Cut Projections on a Small Set of Nodes

In this section, we prove Theorem 2. Approximate values of p(i) are known from The-
orem 1. By setting ε = Õ(Φ2

l2) in theorem 4, we find probability estimates p̃(i) that
satisfy the condition required in theorem 1. Notice that part (b) of Theorem 2 follows
directly by using walks of length l = O(1

Φ). If we order all the n vertices by the proba-
bility estimates at least one cut has conductance at most Õ(

√
Φ). Naturally this ordering

induces an ordering on the k vertices that results in k candidate cuts. Note that in our
algorithm we need to sample Ω̃(1/b) sources so that at least one falls on the smaller
side of the optimal cut with high probability. The factor 1/b is not applied to the nα
term as we can perform all the random walks concurrently as stated in remark 1.

We now prove Theorem 2 part (a). We need to estimate the projected cut conductance
for each of the k candidate cuts from the ordering of approximate probabilities. This
is done by boosting the number of random nodes from k to k′. It turns out that one
can estimate the projected cut conductance value of a specific cut on the k nodes by
looking at the conductance on the induced subgraph and cuts on the k′ nodes (for an
appropriate choice of k′), as stated in Lemma 4. The formal description is in algorithm
CUTPROJECTIONCANDIDATES and algorithm CUTPROJECTION. Let ΦK′(U, K ′ \U)
denote the conductance of the cut (U, K ′ \U) on the induced subgraph on nodes in K ′.

490 A. Das Sarma, S. Gollapudi, and R. Panigrahy

Lemma 4. For a set K ′ of randomly chosen nodes with |K ′| = k′ ≥
√

kn
φ and |U | ≥

k′
k and |K ′ \ U | ≥ k′

k , and let (U, K ′ \ U) be a projected cut of conductance of be Ψ .
Then ΦK′(U, K ′ \U) gives a constant factor approximation to Ψ with high probability.

Proof (sketch). The essential idea is that considering the conductance of the induced

cut on
√

kn
φ nodes, is identical to estimating

∑
(i,j)∈E naijxiyj/(|X ||Y |) by sampling

each xi with probability k′|X |/n and each yi with probability k′|Y |/n and aij is 1
d for

an edge (i, j). The proof is then completed using Lemma 1. A more detailed exposition
is presented in the full version of the paper.

This lemma automatically gives a method for estimating the projected cut conductance
for a partition of a subset of k nodes. We are now ready to prove the main theorem 2
part (b).

Proof (Proof of Theorem 2(b)). By setting ε = Õ(Φ2

l2) in theorem 4, we find probability
estimates p̃(i) that satisfy the condition required in theorem 1. So if we order all the n
vertices by the probability estimates at least one cut has conductance at most Õ(

√
Φ).

Naturally this ordering induces an ordering on the k′ vertices that contain the set K .
We are simply estimating the conductance of all the cuts in this ordering that has at
least one vertex from K in the smaller side. If none of these cuts give the required
conductance of Õ(

√
Φ), then all k nodes are put on the same side of the cut and output.

Note that in our algorithm we need to sample Ω̃(1/b) sources so that at least one falls

on the smaller side of the optimal cut with high probability. This gives
√

l
Φα passes and

Õ(nα+ 1
b

1
ε

√
nk′
φα) = Õ(nα+ n3/4k1/4

b
√

αΦ19/4) space. The factor 1/b is not applied to the nα

term as the we can perform all the random walks concurrently as stated in remark 1.

5 Conclusions

In this work, we present an approach for finding cuts that approximate the conductance
of a graph presented as a stream of edges. In particular, we show that this problem can
be solved more efficiently if we are only required to partition a small set of k random
nodes with respect to a sparse cut. The streaming algorithms we present require space
that is sublinear in the number of nodes for a certain range of parameters.

Acknowledgments. We thank D. Sivakumar, S. Vempala, and K. Munagala for com-
ments on the paper.

References

1. Ahn, K.J., Guha, S.: Graph sparsification in the semi-streaming model. In: Albers, S.,
Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. Part
II. LNCS, vol. 5556, pp. 328–338. Springer, Heidelberg (2009)

2. Alon, N.: Eigenvalues and expanders. Combinatorica 6(2), 83–96 (1986)

Sparse Cut Projections in Graph Streams 491

3. Andersen, R., Chung, F.R.K., Lang, K.J.: Local Graph Partitioning using PageRank Vectors.
In: FOCS, pp. 475–486 (2006)

4. Arora, S., Rao, S., Vazirani, U.V.: Expander flows, geometric embeddings and graph parti-
tioning. In: STOC, pp. 222–231 (2004)

5. Benczúr, A.A., Karger, D.R.: Approximating s-t Minimum Cuts in Õ(n2) Time. In: STOC,
pp. 47–55 (1996)

6. Bhatt, S.N., Leighton, F.T.: A Framework for Solving VLSI Graph Layout Problems. J. Com-
put. Syst. Sci. 28(2), 300–343 (1984)

7. Boppana, R.: Eigenvalues and graph bisection: an average case analysis. In: 28th IEEE Sym-
posium on Foundations of Computer Science, FOCS (1987)

8. Borgs, C., Chayes, J.T., Mahdian, M., Saberi, A.: Exploring the community structure of
newsgroups. In: KDD, pp. 783–787 (2004)

9. Sarma, A.D., Gollapudi, S., Panigrahy, R.: Estimating PageRank on graph streams. In:
PODS, pp. 69–78 (2008)

10. Demetrescu, C., Finocchi, I., Ribichini, A.: Trading of space for passes in graph streaming
problems. In: ACM-SIAM Symposium on Discrete Algorithms, SODA, pp. 714–723 (2006)

11. Goldreich, O., Ron, D.: Property Testing in Bounded Degree Graphs. In: STOC, pp. 406–415
(1997)

12. Henzinger, M., Raghavan, P., Rajagopalan, S.: Computing on data streams. In: External
Memory Algorithms. DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, vol. 50, pp. 107–118 (1999)

13. Karger, D.R.: Minimum cuts in near-linear time. J. ACM 47(1), 46–76 (2000)
14. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. In: SODA, pp. 668–677

(1998)
15. Lempel, R., Moran, S.: Salsa: the stochastic approach for link-structure analysis. ACM Trans.

Inf. Syst. 19(2), 131–160 (2001)
16. Leskovec, J., Dumais, S., Horvitz, E.: Web projections: learning from contextual subgraphs

of the web. In: WWW 2007: Proceedings of the 16th international conference on World Wide
Web, pp. 471–480. ACM, New York (2007)

17. Leskovec, J., Faloutsos, C.: Sampling from large graphs. In: KDD, pp. 631–636 (2006)
18. Lovász, L., Simonovits, M.: The Mixing Rate of Markov Chains, an Isoperimetric Inequality,

and Computing the Volume. In: FOCS, pp. 346–354 (1990)
19. Lovász, L., Simonovits, M.: Random Walks in a Convex Body and an Improved Volume

Algorithm. Random Struct. Algorithms 4(4), 359–412 (1993)
20. Manokaran, R., Naor, J., Raghavendra, P., Schwartz, R.: SDP gaps and UGC hardness for

multiway cut, 0-extension, and metric labeling. In: STOC, pp. 11–20 (2008)
21. Sinclair, A., Jerrum, M.: Conductance and the mixing property of markov chains; the ap-

proximation of the permanent resolved. In: Proc. of the 20th annual ACM Symposium on
Theory of computing, pp. 235–244 (1988)

22. Spielman, D.A., Teng, S.-H.: Nearly-linear time algorithms for graph partitioning, graph
sparsification, and solving linear systems. In: STOC, pp. 81–90 (2004)

Bipartite Graph Matchings
in the Semi-streaming Model

(Extended Abstract)

Sebastian Eggert, Lasse Kliemann�, and Anand Srivastav

Institut für Informatik
Christian-Albrechts-Universität Kiel

Christian-Albrechts-Platz 4
24118 Kiel

{see,lki,asr}@informatik.uni-kiel.de

Abstract. We present an algorithm for finding a large matching in a
bipartite graph in the semi-streaming model. In this model, the input
graph G = (V, E) is represented as a stream of its edges in some arbi-
trary order, and storage of the algorithm is bounded by O(n polylog n)
bits, where n = |V |. For ε > 0, our algorithm finds a 1

1+ε
-approximation

of a maximum-cardinality matching and uses O
(
(1

ε
)8
)

passes over the
input stream. The only previously known algorithm with such arbitrarily
good approximation – though for general graphs – required exponentially
many Ω

(
(1

ε
)

1
ε

)
passes (McGregor 2005).

Keywords: bipartite graph matching, streaming algorithms, approx.
algorithms.

1 Introduction

Given a bipartite graph G = (A, B, E), n := |A∪̇B|, the maximum-cardinality
matching problem (or maximum matching problem, as we will refer to it) is
to find a cardinality-maximal set of edges such that no two intersecting edges
are selected. An exact solution for this problem can be found in O(n2.5) time
with the algorithm of Hopcroft and Karp [3]. There is also a faster randomized
algorithm by Mucha and Sankowski [5], which runs in O(nω), where ω depends
on the running time of the best known matrix multiplication algorithm; it is
ω < 2.38. For massive graphs, not only the time complexity, but also the space
complexity plays an important role. In the streaming model, we assume that the
entire graph cannot be stored in random access memory (RAM). Therefore the
algorithm has no random access to the whole input, which is required for most
of the algorithms. The set of edges has to be stored on an external device, like
a disk or a tape, and is only presented as a stream. In this stream, each edge
� Supported by Deutsche Forschungsgemeinschaft, Priority Program 1307

Algorithm Engineering, Grant Sr7/12-1.

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 492–503, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Bipartite Graph Matchings in the Semi-streaming Model 493

is presented exactly once, and each time the stream is read, edges may appear
in an arbitrary order. The stream can only be read as a whole and reading the
whole stream once is called a pass (over the input). It sometimes is assumed
that the order in which edges appear is arbitrary, but the same for each pass.
However, our result works without such an assumption.

The number of passes used by the algorithm should be independent of the size
n of the input graph. One is interested in a good approximation of the optimum,
and there the number of passes can and does depend on the approximation
parameter, e.g., [2] or [4].

Standard streaming models, for example a (poly)log-space streaming model,
are too restrictive for graph problems. For example, it is impossible to decide if
there is a path of length 2 between two given vertices x and y [2]. This shows
that even easy graph problems are not solvable in this model. For solving graph
problems, Muthukrishnan [6] proposed the semi-streaming model: memory of
the algorithm is restricted to O(n polylog n), which is not enough to store the
entire graph if the graph is sufficiently dense, but enough to store O(n) edges.

Feigenbaum et al. [2] showed that finding an exact solution of the maximum
matching problem in one pass requires Ω(m) bits of space. Therefore, with the
given memory restriction, we aim for an approximation of a maximum matching.
We speak of an α-approximation, or α-factor approximation, for 0 < α ≤ 1, if
the algorithm delivers a matching of cardinality at least α OPT, where OPT is
the cardinality of a maximum matching. It is desirable to achieve an arbitrarily
good, say a 1

1+ε -approximation, where ε > 0, called approximation parameter,
can be arbitrarily small. An algorithm for finding a (2

3 − ε)-approximation of a
maximum matching in bipartite graphs was given by Feigenbaum et al. [2]. This
algorithm requires O

(
1
ε log 1

ε

)
passes over the input stream. For general graphs,

McGregor in his pioneering paper [4] gave the first randomized algorithm in the
semi-streaming model for finding a 1

1+ε -approximation of maximum matching
with a constant number of passes over the input stream, where ε is considered
a constant. The dependence on 1

ε is rather strong, namely Ω
(
(1

ε)
1
ε

)
passes are

needed. In Sec. 3 we show that this requirement essentially also holds for the
special case of bipartite graphs. A more efficient approximation would insist on
a polynomial dependence on relevant input parameters. In the last years this
has been a key issue in the qualification of efficiency, for example in research on
parameterized complexity. For the maximum (bipartite) matching problem it was
not known whether there is an approximation algorithm in the semi-streaming
model requiring only a polynomial number of passes in 1

ε .
Our Contribution. We present in the semi-streaming model a deterministic

1
1+ε -approximation algorithm for the maximum matching problem in bipartite

graphs with only O
(
(1

ε)8
)

passes over the input stream, and thus break the
exponential barrier on the number of passes.

Both, McGregor’s and our algorithm, build augmenting paths in a layer-wise
fashion. McGregor repeatedly uses randomization to decide which matching edge
may occur in which layer. As we show in Thm. 1, unfavorable random decisions

494 S. Eggert, L. Kliemann, and A. Srivastav

can be responsible for the requirement of a large number of passes. The novelty
of our approach is to introduce a new dynamic and deterministic assignment of
matching edges to layers which is responsible for the complexity reduction. We
will give a detailed description of our algorithm that can be easily implemented.

2 Preliminaries

We denote by G = (A, B, E) a bipartite graph with vertex set V = A∪B, where
A∩B = ∅, and edge set E. A set M ⊆ E is called a matching if no two edges in
M intersect. A matching M is a maximal matching if M ∪{e} is not a matching
for any e ∈ M� (= E \M). A matching is called a maximum matching if it has
maximum cardinality among all matchings. Obviously, a maximum matching is
also a maximal matching. A vertex is called free if it does not appear in any edge
from M , and matched otherwise. The free vertices of a subset X ⊆ V are denoted
free(X). We often denote free vertices with small Greek letters, e.g., α ∈ free(A)
for a free vertex of partition A. For a matched vertex v denote ΓM (v) := u where
{v, u} ∈ M . We denote paths as sequences of vertices and edges; this notation
has redundancy, but will be helpful in some places. Denote E(P) the edges in
a path P and V (P) the vertices. The length of a path P , denoted |P |, is its
number of edges. An M -augmenting path of length 2k + 1 is a path with 2k + 1
edges and 2k+2 vertices which is (M�, M)-alternating and starts and ends with
a free vertex, formally: (v0, e1, v1, m1, v2, . . . , v2k−1, mk, v2k, ek+1, v2k+1), where
v0 and v2k+1 are free vertices, ej = {v2j−2, v2j−1} ∈ M� for j ∈ [k + 1] and
mj = {v2j−1, v2j} ∈ M for j ∈ [k]. For a matching M and an M -augmenting
path P , the symmetric difference M � E(P) = (M ∪ E(P)) \ (M ∩ E(P)) is a
matching of size |M |+ 1.

Motivated by Berge’s famous theorem [1], stating that a matching is a max-
imum matching if and only if there is no M -augmenting path, a majority of
matching algorithms uses augmenting paths for finding a maximum matching.
As well, our algorithm uses augmenting paths for increasing the size of the match-
ing constructed so far. It starts with a maximal matching, which can be found
easily in one pass over the input by selecting an edge iff this edge is not incident
with any already selected edge. It is a well-known fact that a maximal matching
is already a 1

2 -approximation of a maximum matching. But for our result, this
approximation factor is not good enough. On the other hand, we will not aim for
eliminating all augmenting paths, but only up to a certain limit. We will prove
two lemmas, Lem. 3 and 4, which guarantee a good approximation if there are
only few augmenting paths left. We will elaborated on this fact in Sec. 5.

3 McGregor’s Algorithm

We briefly describe McGregor’s Algorithm [4]. It is a randomized algorithm and
finds a 1

1+ε -approximation of a maximum matching in general graphs in the
semi-streaming model. We then show that even on a bipartite input, it requires

Bipartite Graph Matchings in the Semi-streaming Model 495

Ω
(
(1

ε − 1)
1
ε −1

)
passes over the input stream in order to achieve the claimed

success probability of 1 − e−1, cf. [4, Th. 2]. It is hence – on bipartite graphs –
outperformed by our algorithm, which only needs a number of passes polynomial
in 1

ε , and moreover is deterministic.
McGregor’s algorithm takes a general graph G and a parameter ε as input. It

first computes a maximal matching M , which is done in one pass over the input
stream. Define k :=
 1

ε +1� and r := Ω(kk). The algorithm performs r iterations,
each of them called a phase. A phase consists of k iterations, i := 1, . . . , k, of a
sub-routine that tries to find a large set of pairwise vertex-disjoint M -augmenting
paths, each of length 2i + 1. Of those k sets of M -augmenting paths, one set P
is chosen which yields the largest augmented matching M �E(P), and then M
is replaced by that augmented matching, and the next phase starts. Each phase
needs at least one pass over the input, and so we have Ω(kk) passes, which
means Ω

(
(1

ε)
1
ε

)
passes. For each i in each phase, a bipartite graph G′ is (im-

plicitly) constructed, that captures certain aspects of the relation of M to G and
helps finding M -augmenting paths. We describe the construction of the bipartite
graph. The set of free vertices is partitioned randomly into Fleft and Fright, with
each vertex being independently assigned to one of the sets with probability 1

2 .
Then matching edges M are randomly partitioned into M1, . . . , Mi, each one
independently assigned to one of these sets with probability 1

i . Each matching
edge {u, v} is given an orientation randomly: either we have (u, v) or we have
(v, u), each chosen with probability 1

2 and independently for each edge.1 Denote
the sets of oriented edges by

−→
M1, . . . ,

−→
M i. The random choices reflected by sets

Fleft, Fright and
−→
M1, . . . ,

−→
M i fully specify the bipartite graph G′ = (V ′, E′) in the

following way. We interpret the free vertices and the directed matching edges as
vertices of G′, i.e., V ′ = Fleft ∪ Fright ∪

⋃i
j=1

−→
M j . Edges run as follows:

E′ = {
{
x, (u, v)

}
; x ∈ Fleft, (u, v) ∈ −→M1, {x, u} ∈ E}

∪
i−1⋃
j=1

{
{
(s, t), (u, v)

}
; (s, t) ∈ −→M j , (u, v) ∈ −→M j+1, {t, u} ∈ E}

∪ {
{
(u, v), y

}
; (u, v) ∈ −→M i, y ∈ Fright, {v, y} ∈ E} .

We can think of G′ being in layers: on the left is Fleft, then we have2 −→M1, . . . ,
−→
M i,

and on the right we have Fright. All directed edges (which are vertices of G′) point
to the right. Edges in G′ only run between neighboring layers.

Storing E′ in memory is impossible in general, and so we only store V ′ and
determine parts of E′ as needed by passes over the input stream. A path in G′

between the ‘end’ layers Fleft and Fright yields an M -augmenting path of length
2i + 1 in G. McGregor’s algorithm tries to find a large collection of such paths
once G′ is constructed; we skip those details here.

1 In [4] symbols “a” and “b” are used to mark the orientation.
2 In [4] layers are enumerated with decreasing indices from left to right.

496 S. Eggert, L. Kliemann, and A. Srivastav

Theorem 1. There are bipartite instances on which McGregor’s algorithm re-
quires Ω

(
(1

ε − 1)
1
ε −1

)
passes over the input stream to succeed with probability

at least 1− e−1.

Proof. Let l ∈ N and G be the path on 2l − 1 edges, and ε := 1
l . Suppose the

algorithm chooses an initial maximal matching M such that there exists exactly
one M -augmenting path of length 2l−1 in G, namely G itself. Then |M | = l−1,
and the size of a maximum matching is l. This gives (1 + ε)|M | = (1 + 1

l)(l− 1)
= l − 1 + l−1

l < l = OPT. Hence M is not a 1
1+ε -approximation. The only

way to find the desired approximation is to find that one M -augmenting path,
which is G itself. To this end, the two free vertices must be assigned to different
layers, and all matching edges must be assigned to the layers and oriented in a
way that G occurs as a path in G′. This can only happen in an iteration where
i = l − 1, and then the probability that it happens is p := 1

2
1

(l−1)(l−1)
1

2(l−1) .
The probability that it does not happen within d phases is (1 − p)d. To push
this probability below e−1, we need d ln(1 − p) ≤ −1, hence, using that for all
−1 < x we have ln(1 + x) ≤ x,

d ≥ −1
ln(1− p)

=
1

ln (1
1−p)

=
1

ln (1 + (1
1−p − 1))

≥ 1
1

1−p − 1
=

1
p
− 1 ≥ (l − 1)l−1 − 1 =

(
1
ε
− 1

) 1
ε −1

− 1 . ��

This lower bound still stands if we do a straightforward modification of the
algorithm, allowing it to use the knowledge that it is working on a bipartite graph
G = (A, B, E). Consider the following modification. We put the free vertices of
A into Fleft and the free vertices of B into Fright. Each matching edge {a, b} with
a ∈ A and b ∈ B is oriented (b, a). Probability p in the above example is now
p := 1

(l−1)(l−1) , yielding the same lower bound for d.

4 Our Matching Algorithm

The main algorithm is approx-maximum-matching, shown on page 499. It imple-
ments the usual scheme of starting with an arbitrary maximal matching M , then
repeatedly computing a set of vertex-disjoint M -augmenting paths and replacing
M by an augmented version. We stop when the number of augmenting paths
found falls below the threshold of 2δ|M |. We only consider M -augmenting paths
of length at most 2k+1. These are computed by sub-routine disjoint-paths. That
sub-routine is the most complex part; it is displayed on page 499. We now give
an explanatory description of it; an illustration is given in Fig. 1 on page 500.
Input is the bipartite graph G, given as a stream, a threshold parameter δ, a
length parameter k, and a maximal matching M . The task is to find many pair-
wise vertex-disjoint M -augmenting paths of length at most 2k + 1. The state of
its main loop, starting in line 4, is (essentially) given by:

Bipartite Graph Matchings in the Semi-streaming Model 497

– a position number i ∈ {1, . . . , k + 1};
– for each matching edge m ∈M a position limit 	(m) ∈ {1, . . . , k + 1};
– the remaining vertices V ′;
– for each α ∈ free(A) a path P (α) = (α, . . .) of length at most 2k + 1, being

called a constructed path.
The set of constructed paths is partitioned into incomplete paths I and augment-
ing paths A. Set I consists of (M�, M)-alternating paths which could not (yet)
be completed to M -augmenting paths. Set A consist of M -augmenting paths;
it is the result of disjoint-paths when it terminates. Once an incomplete path is
completed to an augmenting path, it is moved from I to A and never touched
again until the end of this run of disjoint-paths; its vertices are removed from V ′.
Denote I>0 the set of all incomplete paths that consist of at least one edge (they
in fact consist of at least two edges then). Several invariants hold for the con-
structed paths during execution: Any two constructed paths are vertex-disjoint.
All constructed paths are (M�, M)-alternating. Their vertices are alternately
from A and B. Incomplete paths end with a matching edge and with a vertex
from A.

We think of constructed paths starting at the left and proceeding to the right.
So, in each incomplete path, each vertex from B has a matching edge to its right.
If a matching edge m is contained in an incomplete path P , its position limit
	(m) is exactly so that m is matching edge number 	(m) counted from the left
of P , that is edge number 2 	(m).

Initialization is done by setting position limits 	(m) := k + 1 for each m ∈M
(which is an impossible value for an edge inside a constructed path) and con-
structed paths P (α) := (α) for each α ∈ free(A). Then the algorithm does several
passes over the input. It cycles the position i after each pass, realized by the for
loop in line 5. We call one execution of that for loop a sweep. Hence, a sweep
consists of k + 1 passes, with positions i = 1, . . . , k + 1.

We explain what happens for each edge during a pass. Let the current edge
be e = {a, b}, a ∈ A, b ∈ B, between two remaining vertices. It is tested whether
we can – and wish to – use e to extend an incomplete path. Two conditions have
to be met for a P (α) to be eligible for extension:
(i) P (α) must have length 2(i− 1);
(ii) P (α) must have a as its endpoint, i.e., P (α) = (α, . . . , a).
Since all paths are pairwise vertex-disjoint, there can be at most one path that
fulfills condition (ii). If there is none, we discard e and continue the pass with
the next edge. Otherwise, let P (α∗) = (α∗, . . . , a) be that path.

If b is a free vertex, we have found an augmenting path, namely A := (α∗,
. . . , a, e, b). We set A := A ∪ {A}, I := I \ {P (α∗)}, and update the set of
remaining vertices V ′.

The other case is that b is a matched vertex, let m := {b, ΓM(b)} ∈ M . Then
we check whether we are below m’s position limit, i.e., i < 	(m). If so, there are
two more cases to consider. The first is that m is in no incomplete path (it then is

498 S. Eggert, L. Kliemann, and A. Srivastav

in no constructed path at all). Then we set3 P (α∗) := (α∗, . . . , a, e, b, m, ΓM(b))
and 	(m) := i. That is, we append e and its matching edge m to the incomplete
path and update m’s position limit. The second case is that m is included in
another incomplete path P (α̃) = (α̃, . . . , ã, ẽ, b, m, ΓM (b), . . .). The order is in
fact always (. . . , b, m, ΓM (b), . . .), since b ∈ B and ΓM (b) ∈ A; moreover it is
always e �= ẽ. We now move b and its right wing in P (α̃) to P (α∗), i.e., we set
P (α̃) := (α̃, . . . , ã) and P (α∗) := (α∗, . . . , a, e, b, m, ΓM (b), . . .). We set 	(m) := i
and also update the position limits of any matching edges to the right of m
in the sub-path which we just moved, i.e., the next matching edge m′ will get
	(m′) := i + 1, and so on.

When the pass is over and i = 1, a test is done whether we shall carry on
or finish and return A to the main algorithm.4 We finish when |I>0| ≤ δ|M |.
We will later show that disjoint-paths cannot find more then 2|I>0| additional
augmenting paths. When the pass is over and i = k + 1, i.e., we just completed
a pass at maximal position, we do backtracking. This means to remove the last
two edges from each incomplete path in I>0, i.e., if P (α) = (α, . . . , a, e, b, m, a′)
we set P (α) := (α, . . . , a) for each α ∈ free(A) such that P (α) ∈ I>0. The
justification for this is that an incomplete path P (α) ∈ I>0 that could not be
completed in the sweep which just finished will also not be completed in any
following sweep – any admissible way of extending P (α) has already been tried.
The removed edges will never be put at that position in P (α) again, due to their
position limits. This gives a chance to other edges to be included there instead.

Then the next pass begins, with the next position, which is either i + 1 if
i < k + 1, or 1 if i = k + 1.

We can think of all matching edges being to the right, at position k + 1, in
the beginning. This is an impossible position to obtain inside of a constructed
path. Then, matching edges move to the left. Each time a matching edge m
is inserted into a constructed path, it moves at least one position to the left,
accompanied by a decrement of its position limit 	(m). When it is removed by
backtracking, its position limit is not changed, hence the edge is still eligible for
being inserted in any position left of its last one. If a matching edge has reached
the left end, that is, its position limit has been decreased to 1, and if it then
is removed by backtracking, it will not be inserted into any constructed path
again.

If an edge is in some constructed path, the only way by which it is made a
non-member of any constructed path is that it is captured by backtracking in
line 23. During a pass with position i, incomplete paths of length at most 2(i−2)
or length exactly 2i are not changed in any way. Incomplete paths with length
at least 2(i + 1) may be reduced, namely when they contain a matching edge
(at some position right of i) that can be used to extend some incomplete path
of length 2(i− 1).

3 Strictly, we should write I := (I\(α∗, . . . , a))∪{(α∗, . . . , a, e, b, m, ΓM (b))}. However,
in order to simplify notation, we treat I as a set of ‘mutable’ objects, to which we
refer by P (·).

4 We could as well do this test for all i, but it suffices for i = 1.

Bipartite Graph Matchings in the Semi-streaming Model 499

Algorithm 1. approx-maximum-matching
Input: bipartite graph G = (A, B, E), parameter ε > 0
Output: matching M
set k :=

⌈
1
ε

⌉
and set δ := 1

8k(k+1)(k+2)1

set M := maximal matching2
repeat3

set c := |M |4
set A := disjoint-paths(G, δ, k, M)5
set M := M � E(A)6

until |A| ≤ 2δc7
return M8

Algorithm 2. disjoint-paths
Input: bipartite G = (A,B, E), δ > 0, k ∈ N, maximal matching M
Output: M -augmenting paths A of length at most 2k + 1
forall m ∈ M do set �(m) := k + 11
forall α ∈ free(A) do set P (α) := (α); set I := I ∪ {P (α)}2
set A := ∅ and set V ′ := A ∪ B3
repeat4

for i := 1 to k + 1 do5
forall e = {a, b} ∈ E do /* assume a ∈ A, b ∈ B */6

if a, b ∈ V ′ and ∃P (α∗) = (α∗, . . . , a) ∈ I : |P (α∗)| = 2(i − 1) then7
if b is a free vertex then8

set P (α∗) := (α∗, . . . , a, e, b)9
set A := A ∪ {P (α∗)} /* store */10
set I := I \ {P (α∗)}11
set V ′ := V ′ \ V (P (α∗))12

else if i < �(m) with m = {b, ΓM (b)} then13
if b is in no incomplete path then14

set P (α∗) := (α∗, . . . , a, e, b, m,ΓM (b))15
set � (m) := i16

else17
let P (α̃) = (α̃, . . . , ã, ẽ, b, m,ΓM (b), . . .) ∈ I18
/* move right wing of b from P (α̃) to P (α) */
set P (α̃) := (α̃, . . . , ã)19
set P (α∗) := (α∗, . . . , a, e, b, m,ΓM (b), . . .)20
adjust �-values on new edges of P (α∗)21

if i = 1 and |I>0| ≤ δ|M | then break and return A22

forall P ∈ I>0 do remove last two edges from P23

until forever24

5 Analysis – Approximation

The key idea is to consider a relaxation of the semi-streaming model restrictions
in the following way: we allow more than a constant number of passes. This gives
us the possibility to find a maximal set of vertex-disjoint M -augmenting paths
of length at most 2k + 1.

500 S. Eggert, L. Kliemann, and A. Srivastav

i = 4 k + 1 = 8

Fig. 1. A state of disjoint-paths with position i = 4. We call the region between the
two thick vertical lines the focus of the sweep; the other vertical lines mark possible
other positions for the sweep. There are 6 incomplete paths, 5 of them in I>0. The
non-filled vertices on the left are free vertices of A. Thick edges are matching edges.
Length parameter is k = 7, so we are looking for augmenting paths of length at most
2k + 1 = 15, and the maximal position for the sweep is k + 1 = 8. Edges may only be
inserted in the focus of the sweep, so for the current position i = 4, only paths number
2 and 4 can be extended. Edges may only be removed from paths provided that they
are positioned outside of the focus and to its right. So, we can only remove edges from
path number 1 here. In particular, any edges inserted in the focus will not be removed
during the rest of this sweep (unless their path is completed).

Lemma 1. If condition “|I>0| ≤ δ|M |” in line 22 is substituted by “|I>0| = 0,”
then algorithm disjoint-paths finds a maximal set of pairwise vertex-disjoint
M -augmenting paths of length at most 2k + 1.

Proof. Let the stop condition in line 22 be “i = 1 and |I>0| = 0.” Consider the
point of time when this condition is reached and the algorithm terminates. Let
us assume that there exists a path (α, e1, v1, m1, . . . , mr, v2r, er+1, β) in G with
1 ≤ r ≤ k, ej ∈ M� for all j ∈ [r + 1], mj ∈ M for all j ∈ [r], α ∈ free(A) and
β ∈ free(B), which is vertex-disjoint to all paths in A. In the following we show
that this assumption leads to a contradiction.

We show by induction over j, from j = r downwards to 1, that for all 1 ≤ j ≤ r
it holds that 	(mj) > j. In particular, 	(m1) is thus greater than 1. We can then
conclude as follows. In the beginning of the algorithm, free vertex α is made the
starting vertex of an incomplete path. Since α is in no augmenting path in A,
its path remains incomplete until the end. In the last sweep, the stop condition
is fulfilled, meaning that there are no incomplete paths of positive length left at
the end of the pass with i = 1. Due to the test in line 13, once a matching edge
is added to some incomplete path at position 1 during a sweep S, or if it is there
at the start of a sweep S, it remains there for the rest of S, unless its path is
completed and stored in A. In the given situation, this means that at the start
of the last pass (with i = 1), the incomplete path containing α has length 0, or
otherwise it would still be in I>0 when the test in line 22 is made. Moreover, e1,

Bipartite Graph Matchings in the Semi-streaming Model 501

which has α as an endpoint, and m1 are still in G[V ′]. So, α occurs as vertex a
in some pass with b such that {b, ΓM(b)} = m1. Since, by induction, 	(m1) > 1,
the test in line 13 is true in this pass, resulting in e1 and m1 being added behind
α. This is a contradiction and the proof is finished.

We start the induction. Consider case j = r, i.e., the induction base. If 	(mj) =
k + 1, then we are done. Assume hence for contradiction that 	(mj) ≤ k, which
means that mj was inserted into some constructed path – and removed again
by backtracking, since in the end it is neither in any path of A nor in any path
of I (since I>0 is empty). Let S be a sweep directly after which mj is removed
from its path the last time, i.e., made a non-member of any path. The removal
can only happen by backtracking, line 23. This means that mj has to be at the
end of its path after the last pass of S. We consider all possible developments
that can lead to this, and show that each induces a contradiction. The reader is
encouraged to frequently look at Fig. 1 while reading the proof. We need three
general claims. The first follows directly from the test in line 13:

Let m ∈ M be in some incomplete path. Position limit 	(m) does
not change in a pass with position i for which 	(m) ≤ i. This holds in
particular for such a pass in which m is inserted into an incomplete
path.

(+)

The second claim is a direct consequence of where the algorithm inserts edges
into incomplete paths:

For any matching edge m: if during a pass with position i, position
limit 	(m) is reduced at all, it is reduced to no less than i. (++)

The third claim in particular implies that no edges may be added behind mj in
sweep S:

Once some edges are added behind mj (which would happen in line
15 or line 20) in some sweep, edge mj will never be at the end of
some incomplete path again during the same sweep.

(∗)

Proof of (∗). Let e and m ∈M be edges added behind mj in a pass with position
i0. Then 	(m) = i0 for the rest of this sweep by (+). These edges could, during
this sweep, only be removed from this incomplete path in line 19. For this to
happen in a pass with position i ≥ i0, it is required that 	(m) > i. This is
impossible since i ≥ i0 = 	(m). This proves (∗).

Recall that we consider a sweep S directly after which mj is removed. By (∗),
the following three cases are left to consider:
(1) mj is at the end of an incomplete path when S starts and it remains at the

end of an incomplete path until the end of S.
(2) mj = {bj, aj} is somewhere in the middle of an incomplete path P (α̃) when

S starts, say (α̃, . . . , bj , mj, aj , e
′, b′, m′, a′, . . .), and then (e′, b′, m′, a′, . . .) is

removed from P (α̃) in line 19, and henceforth mj remains at the end of P (α̃)
until the end of S.

502 S. Eggert, L. Kliemann, and A. Srivastav

(3) mj is inserted into an incomplete path during S and remains at its end until
the end of S.

We can bring all three cases to a contradiction by the following claim:

mj cannot be at the end of an incomplete path at the start of a pass
with position 	(mj) + 1 in sweep S. (#)

Proof of (#). Assume mj is at the end of an incomplete path P (α∗) at the start
of a pass with position i = 	(mj) + 1. Then |P (α∗)| = 2	(mj) = 2(i − 1), and
so it is eligible for being extended. However, mj remains at the end of this path
during this pass because of (∗) (so the path is in fact not extended), and also mj ’s
position limit 	(mj) does not change because of (+). This implies a contradiction
immediately: when we reach ej+1 in the input stream, the algorithm will use it
to complete mj ’s incomplete path, with β as endpoint. This is a contradiction
to that mj does not occur in any augmenting path in A. We have proved (#).

This immediately rules out case (1). Case (2) is also ruled out: the removal
of (e′, b′, m′, a′, . . .) could only happen in a pass with position i0 < 	(m′) =
	(mj) + 1, and then mj would be at the end of an incomplete path at the start
of all later passes, i.e., passes with positions i0 + 1, i0 + 2, By (++) this is
true in particular for that pass with position 	(mj) + 1, with 	(mj) taken at the
time when the pass occurs; a contradiction by (#).

The final possibility to consider is case (3). If mj is inserted into its path
during S in a pass with position i0, henceforward we have 	(mj) = i0 for the
rest of S by (+), and so in particular the next pass has position i0+1 = 	(mj)+1.
This is a contradiction by (#).

We have completed the induction base. The induction step works similar:
claim (#) holds with a different proof, which uses the induction hypothesis, and
the treatment of the three cases works the same. ��
We can show that with the relaxation of the semi-streaming model, the algorithm
would find only a small number of additional M -augmenting paths.

Lemma 2. Let r ≥ 0. If algorithm disjoint-paths terminates when |I>0| = 0
instead of |I>0| ≤ r, then it finds at most 2r additional pairwise vertex-disjoint
M -augmenting paths of length at most 2k + 1.

We apply this lemma with r := δ|M | and consider the set Y of M -augmenting
paths which would be constructed by disjoint-paths with stop condition “ |I>0| = 0”.

Corollary 1. Let A be the output of disjoint-paths(G, δ, k, M). Then there exists
a maximal set Y of pairwise vertex-disjoint M -augmenting paths of length at
most 2k + 1 such that |Y| ≤ |A|+ 2δ|M |.
The following lemma, similar to [4, Lem. 1], is used in the proof of Lem. 4, which
allows us to deduce the main approximation result in Thm. 2 from Cor. 1.

Lemma 3. Let M be a maximal and M∗ a maximum matching. Let k ∈ N.
Choose αi ∈ [0, 1] for each i ≥ 1 such that αi|M | is the number of connected
components in M � M∗ with i edges from M and i + 1 edges from M∗. If∑k

i=1 αi ≤ 1
2k(k+1) then (1 + 1

k)|M | ≥ |M∗|.

Bipartite Graph Matchings in the Semi-streaming Model 503

Lemma 4. Let M be a maximal and M∗ a maximum matching. Let Y be a
maximal set of pairwise vertex-disjoint M -augmenting paths of length at most
2k + 1 such that |Y| ≤ 1

2k(k+1)(k+2) |M |. Then (1 + 1
k)|M | ≥ |M∗|.

Theorem 2. Let M∗ be a maximum matching and ε > 0. Algorithm approx-
maximum-matching finds a matching M with (1 + ε)|M | ≥ |M∗|.

6 Analysis – Running Time and Space Requirements

Lemma 5. Algorithm disjoint-paths needs at most (k + 1)2 1
δ passes.

Proof (Idea). It is sufficient to bound the number of sweeps. For each sweep (ex-
cept the last one), we can guarantee a minimum number of edges being removed
from incomplete paths. This implies a certain demand for edges being inserted
into those paths. Each insertion, however, decreases a position limit, and this
can only happen a limited number of times. ��

Using this lemma, we can show the claimed bound on the number of passes.
Since we only have to store O(n) edges at a time, we also get the necessary
bound on the space requirement.

Theorem 3. Algorithm approx-maximum-matching needs O
(
(1

ε)8
)

passes and
O(n log n) bits of space.

7 Open Questions

The most intriguing question is whether our approach can be adapted to the
maximum matching problem in general graphs, while maintaining a substantially
lower number of passes than McGregor’s algorithm needs. It is also worth asking
whether the number of passes can be reduced further for the bipartite case.

References

1. Berge, C.: Two theorems in graph theory. Proceedings of the National Academy of
Sciences of the United States of America 43(9), 842–844 (1957)

2. Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: On graph problems
in a semi-streaming model. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D.
(eds.) ICALP 2004. LNCS, vol. 3142, pp. 531–543. Springer, Heidelberg (2004)

3. Hopcroft, J.E., Karp, R.M.: An n5/2 algorithm for maximum matchings in bipartite
graphs. SIAM J. Comput. 2(4), 225–231 (1973)

4. McGregor, A.: Finding graph matchings in data streams. In: Chekuri, C., Jansen,
K., Rolim, J.D.P., Trevisan, L. (eds.) APPROX 2005 and RANDOM 2005. LNCS,
vol. 3624, pp. 170–181. Springer, Heidelberg (2005)

5. Mucha, M., Sankowski, P.: Maximum matchings via Gaussian elimination. In: 45th
Symposium on Foundations of Computer Science (FOCS 2004), Rome, Italy, Octo-
ber 2004, pp. 248–255 (2004)

6. Muthukrishnan, S.M.: Data streams: Algorithms and applications. Foundations and
Trends in Theoretical Computer Science 1(2), 67 (2005)

The Oil Searching Problem

Andrew McGregor1, Krzysztof Onak2,�, and Rina Panigrahy3

1 University of Massachusetts, Amherst
mcgregor@cs.umass.edu

2 Massachusetts Institute of Technology
konak@mit.edu

3 Microsoft Research Silicon Valley
rina@microsoft.com

Abstract. Given n potential oil locations, where each has oil at a certain depth,
we seek good trade-offs between the number of oil sources found and the total
amount of drilling performed. The cost of exploring a location is proportional to
the depth to which it is drilled. The algorithm has no clue about the depths of
the oil sources at the different locations or even if there are any. Abstraction of
the oil searching problem applies naturally to several life contexts. Consider a
researcher who wants to decide which research problems to invest time into. A
natural dilemma whether to invest all the time into a few problems, or share time
across many problems. When you have spent a lot of time on one problem with
no success, should you continue or move to another problem?

One could study this problem using a competitive analysis that compares the
cost of an algorithm to that of an adversary that knows the depths of the oil
sources, but the competitive ratio of the best algorithm for this problem is Ω(n).
Instead we measure the performance of a strategy by comparing it to a weaker
adversary that knows the set of depths of the oil sources but does not know which
location has what depth. Surprisingly, we find that to find k oil sources there
is a strategy whose cost is close to that of any adversary that has this limited
knowledge of only the set of depths. In particular, we show that if any adversary
can find k oil sources with drilling cost B while knowing the set of depths, our
strategy finds k − Õ(k5/6) sources with drilling cost B(1 + o(1)). This proves
that our strategy is very close to the best possible strategy in the total absence of
information.

1 Introduction

Consider n potential oil locations where each has oil at a certain depth. The cost of
exploring a location is proportional to the depth to which it is drilled. If a location
has been drilled to depth d1 at some point in the past, then drilling it do depth d2 >
d1 costs d2 − d1. The algorithm has no clue about the depths of the oil sources at
the different locations or even if there are any. The natural question then is what is a
good strategy to go about drilling for oil. Our abstraction of the oil searching problem

� The research was initiated during a summer internship at Microsoft Research Silicon Valley.
The author is supported in part by a Symantec Research Fellowship, NSF grant 0732334, and
NSF grant 0728645.

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 504–515, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

The Oil Searching Problem 505

applies naturally to several life contexts. Consider a researcher who wants to decide
which research problems to invest time into. A natural dilemma is that of whether one
should invest all the time into few problems, or share time across many problems. When
you have spent a lot of time at one problem with no success, should you continue or
move to another problem? Is it better to continue since you already invested so much
time or should you cut your losses and move to another problem? These dilemmas cut
across several common decision-making processes including management strategies,
investment decisions, and career changes.

While it is typical to study such an ‘online’ problem under competitive analysis that
compares the cost incurred by an algorithm to that of an adversary that knows the depths
of the oil sources, we note that in this problem the competitive ratio of the best algorithm
is Ω(n); e.g., consider one location with oil at depth 1 and the other n − 1 locations
having no oil. While giving some insight, competitive analysis doesn’t fully capture
what constitutes a good strategy in practice. When should we give up on a research
problem (drilling location) and move on to other? The approach we take here to measure
the performance of a strategy is to compare its performance to a weaker adversary that
knows the set of depths of the oil sources but does not know which location has what
depth. Surprisingly, we find that to find k oil sources there is a strategy whose cost is
close to that of any adversary that has this limited knowledge of only the set of depths.
In particular, we show that if any adversary can find k oil sources in drilling cost B
while knowing the set of depths, our strategy finds k− Õ(k5/6) sources of oil in budget
B(1 + o(1)). This essentially proves our strategy is ‘very close’ in performance to
the best possible strategy in the total absence of information. When k is constant, our
strategy incurs at most O(log n) times the cost of any strategy that knows the set of
depths. We show that this is the best possible ratio.

Search Games: Our problem is closely related to the class of problems known as
search games. In general, there are two players: the Hider and the Searcher. The Hider
is hiding in a space (which can be a weighted graph, or some continuous metric space),
and the goal of the Searcher is to locate the Hider by traversing the space and wants to
minimize the traversed distance. An extensive description of search games can be found
in the book of Gal [1] or the book of Alpern and Gal [2]. A well-known example of a
search game is looking for lost key on a road when we do not know in which direction
the key is and at what distance. It is easy to show that a near-optimal strategy is to
alternate search direction doubling the search distance iteratively. Search games find
applications in robotics when a robot searches for an object in unknown terrain.

A special case of the oil searching problem, where we are only looking for one oil
source has been studied as the cow-path problem, where a cow searches for a grass
field starting at a junction of several roads. A sequence of papers resulted in an optimal
solution to this problem [3,4,5] in terms of the competitive-ratio of distance travelled
to the distance from the field. As we stated before, our analysis style is very different
as we do not compare ourselves to an all knowing adversary. Lastly we note that, in
the same proceedings, Kirkpatrick [6] also studies variations of the cow-path and oil
searching problems. His focus is on finding a single oil source.

Multi-armed bandits: Our problem is also related to work on multi-armed bandits (see,
e.g., [7,8,9]) and there has been work in the multi-armed bandit setting that attempts to

506 A. McGregor, K. Onak, and R. Panigrahy

model some of the issues that arise when drilling for oil (see, e.g., [10,11,12]). In this
problem we consider several arms of a bandit each of which is has a known “state.” At
each time step, one of the arms can be played resulting in a random payoff according to
a distribution determined by the current state of the arm. Given a current state and the
payoff, the arm may deterministically move into a new state. Various objective functions
are considered including maximizing the discounted reward over an infinite horizon or
minimizing the regret over a finite number of steps. Our objective functions do not map
to either of these objective function although, in spirit, the goal is similar.

The Problems: We are given n locations and each contains oil at some depth from
{1, 2, 3, . . .}. The set of depths of the oil is {d1, . . . , dn}. The algorithm has no infor-
mation about the set of depths. The adversary on the other hand knows the set of depths
but does not know which location has which depth – the n locations are assigned a
random permutation of these depths which is unknown to the adversary. Let n≤d be the
number of oil wells whose depth is at most d. The cost of obliviousness is the ratio be-
tween the performance (appropriately defined) of an optimal algorithm that knows the
set of depths to an optimal algorithm that has no information of the depths whatsoever.

Our Contributions: We present an algorithm that expects to find k− Õ(k5/6) sources
of oil in budget B(1 + o(1)), where the adversary, who knows the set of depths, would
expect to find at most k sources in expected budget B. We develop the algorithm in
stages, first studying the problem for one oil source (in Section 2) getting a cost of
obliviousness of O(log n); we also show that this is tight. Next in Section 3 we study a
variant of the problem where the set of depths are chosen from a distribution; again the
adversary knows the distribution and the algorithm doesn’t. Section 3.1 investigates the
strategy the adversary who knows the distribution should use; Section 3.2 shows how
the algorithm can emulate this strategy by first trying to learn the distribution during the
initial few drills. In Section 4, we generalize our algorithm to the case when the set of
depths is simply a set and is not necessarily chosen from a distribution (note the subtle
difference between the two cases as picking from a distribution corresponds to selecting
the depth of each location independently with replacement whereas when there is a set
of n depths, these depths are matched to the locations in some permutation.) Again the
algorithm essentially treats the set as a distribution and makes use of the algorithm for
the distribution case. In the full version we extend the problem to trees.

2 Warm-Up: Finding a Single Oil Source

In this section we consider the expected amount of drilling required to find one oil
source or to find one oil source with constant probability. We show that there exists an
oblivious algorithm that in expectation uses at most a factor O(log n) more drilling than
an algorithm that knows the set of the oil depths. This is best possible.

We start by showing that if we wish to maximize the probability of finding a single
oil source given some budget, we may restrict to algorithms that choose k ≤ n locations
at random and drill to some set of depths at these locations.

Lemma 1. Consider a fixed set of depths. Let A be an algorithm that for any assign-
ment of depths to locations, finds oil with probability p using budget B. There is a set

The Oil Searching Problem 507

Algorithm 1. For finding a single source of oil when the depths are not known.

b := 11

while oil not found do2

for i = 0, . . . , �log n� do3

Drill in min{2i, n} random locations to depth b/2i4

b := 2b5

of k depths b1, . . . , bk satisfying
∑

bi ≤ B such that the probability that one finds oil
by drilling to depths bi in k different random locations is at least p.

Proof. Assume that the locations are randomly permuted before A starts solving the
problem. This does not impact the probability with which A solves the problem. Con-
sider coin tosses ofA. For some setting of coin tosses the probability of finding oil is at
least p. We simulateA for this setting of coin tosses. We tell the algorithm that it hasn’t
found oil, as long as it hasn’t drilled enough to find oil for all permutations of locations.
We stop whenA stops, or we know it must have found oil. This exhibitsA’s exploration
pattern. We set k to the number of locations A drilled in. We also set bi, 1 ≤ i ≤ k, to
the depths A drilled to in consecutive locations. Clearly

∑
bi ≤ B, because A does at

most B drilling. By using the same exploration pattern as A with locations permuted at
random, and therefore, with drilling applied to random locations, one can also find oil
with probability at least p. ��

Lemma 2. Drilling to depths b1 ≥ . . . ≥ bk at k ≤ n random, distinct locations finds
oil with probability 1−

∏k
i=1 (1− n≤bi/(n− i + 1)).1

Proof is deferred to the full version. Hence finding an oil source with constant proba-
bility requires Ω(mind (dn/n≤d)) drilling.

Theorem 3. Algorithm 1 finds a single oil source with constant probability using at
most a factor O(log n) more drilling than that required by an algorithm that knows the
set of the oil depths.

Proof. Suppose all depths to powers of 2 and note that this assumption at most doubles
the amount of drilling. The cost of the k-th round in Algorithm 1 is O(2k log n), and
therefore, the total cost of the first k rounds is also O(2k log n). Let d∗ = argmind

(dn/n≤d) and note that OPT ≥ d∗n/n≤d∗ . The algorithm has found a source of oil
with constant probability by the time it reaches level log(d∗n/n≤d∗). But at this point
at most O(OPT log n) drilling has been performed. ��

Theorem 4. Any oblivious algorithm that finds a single oil source with constant prob-
ability may need to use a factor Ω(log n) more drilling than that required by an algo-
rithm that knows the set of the oil depths.

Proof. Consider the following sets Ii of depths, for i ∈ [log n]. Ii consists of 2i oil
sources at depth 2i, and the other oil sources are at depth ∞. For each i, there is an

1 Dynamic programming can maximize these probabilities for
∑

bi ≤ B in poly(B, n) time.

508 A. McGregor, K. Onak, and R. Panigrahy

algorithm that finds oil with probability 1/2 by drilling to depth 2i in n/2i locations,
which gives n drilling in total. Assume that each Ii appears with the same probability.
Suppose that the oblivious algorithm finds oil with constant probability by drilling only
d units in total. By Lemma 1, we can assume that the algorithm chooses a few depths
d1 to dk that it drills to in different locations. We know that

∑
di = d. The expected

number of oil sources found by this strategy bounds the probability of finding at least
one oil source. Let Xi be the event that drilling to depth di exhibits oil. We have

Pr[∃Xi = 1] ≤
∑

i

E[Xi] =
∑

i

∑
1≤j≤log di

1
�log n� ·

2j

n
≤

∑
i 2di

n · �log n� =
2d

n · �log n� .

Hence, the oblivious algorithm must drill Ω(n log n) in total, which is a factor Ω(log n)
more than the optimal strategy drills for any of the inputs. ��

Remark: Similarly, one can show that for a given set of depths, Algorithm 1 uses in
expectation at most O(log n) factor more than an algorithm that knows the input and
minimizes the expected amount of drilling to find one oil source. Any oblivious algo-
rithm must use Ω(log n) more drilling in some cases.

3 Multiple Sources When Depths Are Chosen from a Distribution

If the adversary can find k oil sources in B drilling cost, the objective of the algorithm
is to match this cost as well as possible. In this section, we will consider a special case
where the depths of the oil sources are independently chosen from the same distribution
and there are infinitely many locations to dig; again the adversary knows the distribution
and the algorithm does not. In the next section we will generalize such an algorithm to
the case when there are finitely many locations and the depths are not chosen from a
distribution but simply assigned using a set of n depths that is known to the adversary.

3.1 Adversary’s Strategy When Distribution Is Known

In this section we will show a simple procedure for minimizing the expected amount of
drilling to find k oil sources for the adversary who knows the distribution. It turns out
that when there are infinitely many locations, the best algorithm for the adversary is to
simply to dig upto a fixed depth repeatedly; that fixed depth depends on the distribution.
Consider an algorithm for the adversary that in a given location drills until a fixed depth
d, unless it finds oil earlier. Let X be a random variable equal to the depth at which
oil occurs. The expected payoff, i.e., the number of oil sources found by the algorithm,
divided by the expected amount of drilling equals

g(d) =
E[payoff]

E[amount of drilling]
=

Pr[X ≤ d]
d · Pr[X > d] +

∑
1≤j≤d j · Pr[X = j]

.

Define x� to be the smallest d ∈ Z+ ∪ {∞} that maximizes the above value. The next
lemma shows that no algorithm exploring one location can achieve a better ratio of
the expected payoff to the expected amount of drilling than g(x�). The proof (deffered

The Oil Searching Problem 509

Algorithm 2. For finding k oil sources when the depths are known.

while less than k oil sources found do1

pick a new location, and drill until depth x� or until oil found2

to full version) starts by showing that any algorithm that explores one oil source is
equivalent to an algorithm that selects a depth d from some distribution, and drills to
d. Then, the ratio of the expected payoff to the expected amount of drilling cannot be
greater than the maximum such ratio for depths in the distributions, which is bounded
by g(x�).

Lemma 5. E[payoff]/E[amount of drilling] ≤ g(x�) for any algorithm A that ex-
plores only one location.

The proof of the next lemma (deferred to full version) shows that even if drilling in
multiple locations, the ratio of the expected payoff to the expected amount of drilling is
still at most g(x�). This gives a lower bound on the expected amount of drilling to find
k oil sources.

Lemma 6. LetA be an algorithm that finds exactly k oil sources.A’s expected amount
of drilling is at least k/g(x�).

Theorem 7. Algorithm 2 minimizes the expected amount of drilling to find k oil sources,
when the distribution is known.

Proof. By Lemma 6 we know that the expected amount of drilling to find k oil sources
is at least k/g(x�). It suffices to show that the expected time to find one oil source is
exactly 1/g(x�). Let p = Pr[X ≤ x�], and let D be the expected amount of drilling
in a new location. By definition, p/D = g(x�). Since the depth at each location is
independent, by Wald’s theorem, the expected amount of drilling until one oil source is
found is exactly D ·

∑∞
i=0(1− p)i = p/g(x�) · 1/p = 1/g(x�). ��

3.2 Extending to an Algorithm When Distribution Is Unknown

We will now show how the adversary’s strategy can be extended to an algorithm that
does not know the distribution. The essential idea is to estimate the distribution in the
initial few drillings, and then emulate the adversary’s strategy. Our oblivious algorithm
finds k oil sources with probability 1 − δ, and performs in expectation at most a factor
(1 + Õ(5

√
k−1 log δ−1)) more drilling than the expected amount of drilling for the

adversary’s algorithm. Let B1 be the min. expected amount of drilling to find one oil
source.

Lemma 8. There is an algorithm that approximates B1 up to a factor of O(log B1)
with probability 1− δ. The expected amount of drilling is O(B1 · log B1 · log(1/δ)).

Proof. Note that the minimum expected budget to get one oil source and the minimum
budget to get a single oil source with probability 1/2 are within a constant factor. Thus,

510 A. McGregor, K. Onak, and R. Panigrahy

Algorithm 3. For finding a single source of oil when the distribution is unknown.

Let b := 11

while no oil found do2

For each i ∈ {1, . . . , log b}, drill 2i locations up to depth b/2i3

b :=
√

2 · b4

Return b5

it suffices to approximate the latter. To do this we run Algorithm 3 a total of O(log δ−1)
times. There is a constant C1 such that the probability that we find oil using a budget b ≤
C1 · B1/ log B1 is less than 1/4. Otherwise, we could get a better minimum expected
budget to find a single oil source. On the other hand, there is a constant C2 such that
the probability that b ≥ C2 · B1 is less than 1/4. Hence, by the Chernoff bounds, if we
have O(log(1/δ)) samples and take the median of them, we get a value that is between
C1 ·B1/ logB1 and b ≥ C2 ·B1 with probability 1− δ. Once b gets greater than some
constant times B1, it finds oil in each iteration with probability greater than 1/2. Since
the total budget spent grows by a factor smaller than and bounded away from 2, the
expected amount of drilling in each run of the auxiliary algorithm is O(B1 log B1). ��

Fact 9. Let X be a Bernoulli variable and let δ, ε ∈ (0, 1). O(δ−1ε−2) samples of X
suffice to distinguish Pr[X = 0] ≤ δ from Pr[X = 0] ≥ δ(1 + ε) with probability 2/3.

Lemma 10. Let t satisfy Pr[X > t] ≤ ε and x� > t. Then, g(t) ≥ g(x�) · (1− ε).

Proof. Let T and D be the expected amount of drilling if we stop at depth t and x�

respectively. Then g(t) = (1− Pr[X > t])/T ≥ (1− ε)/D ≥ (1 − ε)g(x�). ��

Lemma 11. There is an algorithm that finds t such that g(t) ≥ g(x�)(1 − ε) with
probability 1− δ. The expected amount of drilling used is Õ(B1ε

−4 · log(1/δ)).

Proof. We first run the algorithm of Lemma 8 to approximate the minimum expected
budget B1 required to discover a single oil source. We get a budget upper-bound b =
O(B1 log B1). We now argue that our desired t is O(B1 log B1 log(1/ε)). By Lemma 10,
we need not care about big depths. Since we can find oil with probability at least 1/2 up
to depth O(B1 log B1) using a budget of at most b, it makes no sense to drill deeper than
d = O(B1 log B1 log(1/ε)) to find oil with probability higher than 1−ε in any location,
since there is a more effective method that explores only small depths. Next we round
up each drilling depth to a power of (1 + ε). This decreases g(x) by at most a factor of
1 + ε for any x, We now have s = log1+ε d possible values for t. We have

g((1 + ε)i)
1 + ε

≤ Pr[X ≤ (1 + ε)i]
1 +

∑
0≤j≤i−1 ε(1 + ε)j · Pr[X ≥ (1 + ε)j]

≤ g((1 + ε)i) .

Now using O(dε−4 log(s/δ)) drilling, we learn for each of the possible choices (1+ ε)i

for t the probability Pr[X ≥ (1 + ε)i] up to an additive term of ε2. If the probability
is smaller than ε for some (1 + ε)i, we can assume by Lemma 10 that t is bounded by
(1 + ε)i. Otherwise, our approximation gives a good multiplicative approximation for
the denominator of g((1 + ε)i).

The Oil Searching Problem 511

It remains to estimate the numerator. We are only interested in i such that the prob-
ability of finding oil up to depth (1 + ε)i using a total budget of b is Ω(1). This means
that we are interested in (1 + ε)i such that Pr[X ≤ (1 + ε)i] = Ω((1 + ε)i/b). To
approximate each Pr[X ≥ (1 + ε)i] up to a factor of 1 + ε, given it is larger than
Ω((1 + ε)i/b), it suffices to use O

(
s(log s)bε−2 log(sδ−1)

)
drilling by Fact 9. Hence

with Õ(B1ε
−4 log(1/δ)) drilling we find t with g(t) ≥ g(x�)/(1 + ε)O(1) with proba-

bility 1− δ. Rescaling ε we get the required approximation. ��

Corollary 12. There is an algorithm that with probability 1− δ uses

B
(
1 + Õ

(
5
√

log(1/δ)k−1
))

drilling in expectation to find k oil sources, while the

minimum expected amount of drilling to find k oil sources is B = kB1.

Proof. We use the algorithm described in the proof of Lemma 11 to find a t such
that g(t) approximates g(x�). By running an algorithm that drills up to depth t, with
probability 1 − δ, the expected amount of drilling we use to find k oil sources is
kB1(1 + ε) + Õ

(
B1ε

−4 · log(1/δ)
)
. Setting ε = 5

√
log(1/δ)/k gives the result. ��

4 Generalizing to an Arbitrary Set of Depths

We will now genaralize the algorithms to the case when the depths of the locations are
a (random) permutation of a set of n depths that is known only to the adversary.

4.1 Adversary’s Strategy When Set of Depths Is Known

In this section we will study algorithms for the case when the set of depths are known
but not the depth of each oil source separately. We will provide an efficient (polynomial
time) algorithm for the adversary whose perfomance is close to that of the best possible
(perhaps exponential time) algorithm. If any algorithm finds k′ oil sources in expecta-
tion using B amount of drilling in expectation then the proposed algorithm can find k
sources in expectation using B(1 + ε) expected drilling where k′ ≤ k + Õ(

√
k/ε).

Assume that all the depths in the input instance are rounded up to powers of (1 + ε);
this only increases the budget by a factor of (1 + ε). Denote different depths by Hi =
(1 + ε)i for i ≤ r = O(ε−1log B). Define hi = Hi −Hi−1, where H−1 = 0.

We will say that (B, k) is an achievable solution if there exists an algorithm whose
expected drilling is B and the expected number of oil sources found is k. We say that
the pair (B, k) is feasible in the following program if the program has a solution. We
write nd and n≥d to denote the number of oil sources at depth exactly d and at least d,
respectively. Here mi = nHi/n≥Hi . xi corresponds to the number of locations that we
drill from depth Hi−1 to Hi, which results in expectation in ximi oil source discoveries.

k ≤
∑

min(mixi, xi − xi+1); B ≥
∑

hixi; xr ≤ . . . ≤ x0 ≤ n (1)

The first inequality corresponds to stating that at least k oil sources are found in ex-
pectation. Note that mixi is the expected number of oil sources found while drilling
from depth Hi−1 to Hi; however it cannot exceed xi − xi+1. The second inequality

512 A. McGregor, K. Onak, and R. Panigrahy

Algorithm 4. For finding k oil with a known set of depths in budget B.

Compute a (B, k) solution to Program 2.1

Start drilling x0 random locations to depth h0.2

Let Ai be the number of locations drilled to depth Hi where no oil was found. Among3

these, choose min(xi+1, Ai) at random and drill these to depth Hi+1.

ensures that the total budget is at most B. The third simply ensures that the solution is
meaningful as the number of wells drilled to increasing depths must be decreasing. We
show (proof deferred to the full version) that Program 1 is equivalent to:

k ≤
∑

mixi; B ≥
∑

hixi; ∀ i ∈ [r − 1] : xi+1 ≤ (1−mi)xi; x0 ≤ n (2)

Lemma 13. If (B, k) is feasible in Program 2 then Algorithm 4 finds k oil sources in
expectation while spending budget B.

Proof. Consider Algorithm 4 and let Yi be the number of locations that we drill from
depth Hi−1 to Hi. Since Yi ≤ xi the total amount of drilling is at most B. We will
argue that the expected number of oil sources it finds is at least k. To prove this, we
alter the algorithm so that even if less than xi locations are available to drill to depth
Hi as we have found oil in some of them, we will pretend to also continue drilling
xi − Yi locations where we found oil earlier. This can only increase the cost but will
not change the number of oil sources found. The number of locations drilled to depth
Hi is exactly xi. The number of oil sources Gi found at depth Hi is xi − Ai. Now,
E[Gi] = xi − E[Ai]. But E[Ai] = (1 −mi)E[Yi] ≤ (1 −mi)xi. So E[Gi] ≥ mixi,
and hence,

∑
i E[Gi] ≥

∑
i mixi ≥ k. ��

Next we will lower bound the performance of the best possible algorithm. We will show
that if (B, k) is achievable, then it must be feasible in the following program.

k ≤
∑

i

min((mi +εi)xi +ε′i, xi−xi+1); B =
∑

i

hixi; xi+1 ≤ . . . ≤ x0 ≤ n (3)

where εi = Õ(
√

mi/n≥Hi + 1/n≥Hi) and ε′i = mi/(n≥Hi)Ω(1) as guaranteed by the
following lemma (proof deferred to the full version) for n≥Hi boxes with min≥Hi of
them containing gold.

Lemma 14 (Boxes of Gold). Consider n boxes of which pn contain a gold ingot.
For any randomized algorithm that opens B boxes and finds G ingots, E[G] ≤ (p +
ε)E[B] + ε′ where ε = Õ(

√
p/n + 1/n), ε′ = p/nΩ(1).

Lemma 15. If (B, k′) is an achievable solution for an instance of the oil searching
problem with known depths then it is a feasible solution for Program 3

Proof. Assume that there is an algorithm A∗ that spends budget B in expectation and
finds k′ oil in expectation. Let xi = E[number of wells drilled to depth at least Hi]. Let
gi = E[number of wells found at depth Hi]. Then, by Lemma 14, gi ≤ (mi+εi)xi+ε′i

The Oil Searching Problem 513

as we can think of each location with the depth at least Hi as a box and the ones
with oil at depth Hi as boxes containing gold. Also clearly gi ≤ xi − xi+1 as we can
continue drilling to depth Hi+1 only if we have not found gold already. So k′ =

∑
gi ≤∑

i min((mi + εi)xi + ε′i, xi − xi+1) and B =
∑

i hixi. ��

Lemma 16. If (B, k′) is feasible for Program 3 then (B, k) is feasible for Program 1
where k′ ≤ k + Õ(

√
k/ε).

Proof. Consider the feasible solution in Program 3 that satisfies k′ ≤
∑

i min((mi +
εi)xi + ε′i, xi − xi+1). Substituting this solution in Program 1 is feasible if
k =

∑
i min(mixi, xi−xi+1). Let Q denote the set {i : (mi+εi)xi +ε′i ≤ xi−xi+1}.

Now k′ − k ≤
∑

i∈Q xiεi + ε′i ≤ Õ(
∑

i∈Q

√
mixi)) + o(1). Since

∑
i∈Q mixi ≤ k′,

this is at most Õ(
√

k
′
r) = Õ(

√
k/ε) . ��

The above lemmas, with the depth rounding, gives the main theorem of this section:

Theorem 17. If (B, k′) is an achievable solution for an instance of the oil searching
problem with known depths then Algorithm 4 finds in expectation k oil sources in ex-
pected cost B(1 + ε) where k′ ≤ k + Õ(

√
k/ε).

4.2 Extending to an Algorithm That Does Not Know the Set of Depths

We now study algorithms that are oblivious to the set of depths. We compare our solu-
tion to that which can be achieved by the adversary with knowledge of the set of depths
but not the depth of each source separately. We show that if an adversary that knows
the set of depths, expects to find k′ oil sources, and expected to perform B drilling in
expectation, then our algorithm expects to find k oil sources where k′ ≤ k + Õ(k5/6)
sources and peforms B(1 + o(1)) drilling in expectation.

Let us view the set of depths S as a distribution D(S) obtained by picking a random
location from the set S. Any algorithm that drills one location at random from the set
S is an algorithm that drills one location with depth from the distribution D(S). Now
we know from the results in Section 3.1 that the optimal k/B is obtained by drilling
up to depth d = x∗, which maximizes g(d). Let us say that a solution to Program 2
is tight if the first two inequalities involving B and k are equalities. Any tight solution
to Program 2 can be converted to an algorithm for drilling locations from distribution
D(S) achieving and vice-versa. For instance, an algorithm that drills all locations up to
depth d = Hs can be realized by setting x0 = n and xi+1 = (1−mi)xi, for all i+1 ≤ s,
and xi+1 = 0, for all i + 1 ≥ s + 1, in Program 2. Let (Bs, ks) denote the values of
B and k in this tight solution. Similarly we can view a tight solution to Program 2
as a strategy to drill one location drawn from the distribution D(S) by scaling all xi

by x0 resulting in (B/x0, k/x0) expected budget and payoff. The strategy continues
drilling from Hi to Hi+1 with probability xi+1/((1−mi)xi). Clearly ks/Bs = g(Hs).
The algorithm of Lemma 11 can be used to compute a near optimal depth Ht so that
g(Ht) ≥ g(x∗)(1 − ε). This is done by sampling locations from S with replacement.

Lemma 18. (B, k) is a tight solution for Program 2 if and only if it can be expressed
as a linear combination

∑
i αi(Bi, ki) such that

∑
i αi ≤ 1.

514 A. McGregor, K. Onak, and R. Panigrahy

Proof. Without loss of generality we may assume that x0 = n as any solution to Pro-
gram 2 can be scaled to satisfy this. We know that any such solution (B, k) to Pro-
gram 2 can be viewed as an algorithm to drill one location chosen from distribution
D(S) achieving expected budget and payoff: (B/n, k/n). We know from the proof of
Lemma 5 that any such algorithm can be viewed as a distribution or linear combination
of the strategies that always drill a location up to Hi. The latter result corresponds to
(Bs/n, ks/n) expected budget and payoff. The only if part is trivial. ��

Theorem 19. If (B, k) is a tight solution for Program 2, then there is a (B, k(1 − ε))
solution for Program 2 such that xi+1 = (1 − mi)xi, for all i ≤ t − 1 and either
x0 = n, or xt > 0. This essentially corresponds to a solution that first explores all
locations to depth up to Ht, and only then drills to greater depths.

Proof. Express (B, k) as
∑

i αi(Bi, ki). The essential observation is that shifting bud-
get to αt from other αi can only increase k. It suffices to show that we can convert
the (B, k) solution to a (B, k(1 − ε)) solution, where either αi = 0, for all i < t,
and

∑
i αi = 1, or only αt is non-zero and others 0. Assume first for simplicity that

g(Ht) = g(x∗). Hence transferring budget from any other (Bi, ki) to (Bt, kt) only in-
creases k. However we need to respect the constraint

∑
i αi ≤ 1. Also note that trans-

ferring budget from components i < t only decreases
∑

i αi as Bi is non-decreasing in
i. So we can always move to an improved (or same quality) solution where αi = 0 for
all i < t. Further, as long as

∑
i αi < 1 we can transfer budget from higher components

i > t till
∑

i αi hits 1. We stop only if either αi = 0 for all i �= t or
∑

i αi = 1 and
αi = 0 for all i < t. Now if g(Ht) = g(x∗)(1 − ε) then each transfer of budget will
have a rate of return that is smaller by a factor of ε. So total payoff loss is at most εk. ��

Remark: Observe that the above theorem also implies that there is an optimal solution
to 2 that first spends all its budget drilling to x∗ and then recursively solves the remain-
ing instance. The solution is thus to drill according to a sequence of depths x∗’s for the
different instances until either all locations are drilled or budget is exhausted. Also (as-
suming g(Ht) = g(x∗)) the g(x∗)’s found in the different recursions is non-increasing
as otherwise there is a better value of x∗ at the recursion after which it increased. Fur-
ther if we use Ht at each recursive step instead of x∗ the total loss in payoff is at most
εk as the budget moved in the different recursions is disjoint (the budget moved in a
recursion is never moved again in another recursion). If B̃ is the expected budget and k̃
is the expected payoff used in a recursion then B̃/k̃ = g(Ht).

See Algorithm 5. The depth of the recursion is at most r = log G/ε as there are only
r distinct depths. This gives:

Lemma 20. If (B, k) is a feasible solution for Program 2 then Algorithm 5 finds k(1−
ε) oil sources in expectation with budget B (ignoring the cost of computing g(Ht)).

We also need to take into account the cost O(ε−4 log(1/δ)/g(x∗)) of computing g(Ht)
at the beginning each recursive step. Besides this the only non-determinism in the bud-
get used and payoff is in the last step of the recursion; at previous steps both are fixed
as we are dealing with a set of depths.

The Oil Searching Problem 515

Algorithm 5. Finding multiple sources with budget B and unknown set of depths.

Treating the set of depths as a distribution, compute t such that g(Ht) ≥ g(x∗)(1 − ε).1

This is done with the algorithm (of Lemma 11) for estimating g(x∗) on the distribution
D(S) by sampling locations with replacement.
Drill all locations to depth Ht (except those that hit oil earlier) unless budget is exhausted.2

If budget is left over we have found all oil sources at depth at most Ht. The remaining
locations are all drilled to depth Ht.
In such a case recursively explore the remaining locations with the remaining budget.3

Theorem 21. If (B, k′) is an achievable solution for the oil searching problem with
known depths then with probability 1− rδ, algorithm 5 finds in expectation k(1− ε)−
Õ(log(1/δ)/ε5) sources in expectation, where k′ ≤ k + (̃

√
k/ε), and spends B(1 + ε)

budget. For ε = o(k−1/6), this amounts to k− Õ(k5/6) sources in budget B(1 + o(1)).

Proof. If (B, k′) is a feasible solution for the oil searching problem with known depths
then there is a (B, k) solution to Program 2 where k′ ≤ k + O(min{k,

√
kr}). To

bound the cost of computing g(Ht), we increase B by a factor of ε and in each recursion
only allocate at most ε fraction of the remaining budget to computing g(Ht). If cost of
computing g(Ht) is more than ε fraction of remaining budget in a certain recursion, then
we can stop the algorithm as this means O(log(1/δ)/(ε5g(x∗)) ≥ εB, which means we
can find at most g(x�)B ≤ O(log(1/δ)/ε5) more sources in expectation. Thus, if we
stop, we are only giving up O(log(1/δ)/ε5) sources. ��

References

1. Gal, S.: Search Games. Academic Press, London (1980)
2. Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous. Kluwer Academic Pub-

lishers, Dordrecht (2003)
3. Baeza-Yates, R.A., Culberson, J.C., Rawlins, G.J.E.: Searching in the plane. Inf. Com-

put. 106(2), 234–252 (1993)
4. Kao, M.Y., Reif, J.H., Tate, S.R.: Searching in an unknown environment: An optimal ran-

domized algorithm for the cow-path problem. Inf. Comput. 131(1), 63–79 (1996)
5. Kao, M.Y., Ma, Y., Sipser, M., Yin, Y.L.: Optimal constructions of hybrid algorithms. J.

Algorithms 29(1), 142–164 (1998)
6. Kirkpatrick, D.: Hyperbolic dovetailing. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS,

vol. 5757, pp. 516–527. Springer, Heidelberg (2009)
7. Robbins, H.: Some aspects of the sequential design of experiments. Bull. Amer. Math.

Soc. 58, 527–535 (1952)
8. Gittins, J.C., Jones, D.M.: A dynamic allocation index for the sequential design of exper-

iments. In: Progress in Statistics: European Meeting of Statisticians, vol. 1, pp. 241–266
(1974)

9. Whittle, P.: Arm-acquiring bandits. The Annals of Probability 9, 284–292 (1981)
10. Benkherouf, L., Pitts, S.: On a multidimensional oil exploration problem. Journal of Applied

Mathematics and Stochastic Analysis 2005(2), 97–118 (2005)
11. Benkherouf, L., Glazebrook, K., Owen, R.: Gittins indices and oil exploration. J. Roy. Statist.

Soc. Ser. B 54, 229–241 (1992)
12. Grayson, C.: Decisions Under Uncertainty: Drilling Decisions by Oil and Gas Operators.

Harvard, Division of Research, Graduate School of Business Administration (1960)

Hyperbolic Dovetailing

David Kirkpatrick

University of British Columbia, Vancouver, Canada
kirk@cs.ubc.ca

Abstract. A familiar quandary arises when there are several possible
alternatives for the solution of a problem, but no way of knowing which,
if any, are viable for a particular problem instance. Faced with this un-
certainty, one is forced to simulate the parallel exploration of alternatives
through some kind of co-ordinated interleaving (dovetailing) process. As
usual, the goal is to find a solution with low total cost. Much of the exist-
ing work on such problems has assumed, implicitly or explicitly, that at
most one of the alternatives is viable, providing support for a competi-
tive analysis of algorithms (using the cost of the unique viable alternative
as a benchmark). In this paper, we relax this worst-case assumption in
revisiting several familiar dovetailing problems.

Our main contribution is the introduction of a novel process interleav-
ing technique, called hyperbolic dovetailing that achieves a competitive ra-
tio that is within a logarithmic factor of optimal on all inputs in the worst,
average and expected cases, over all possible deterministic (and random-
ized) dovetailing schemes. We also show that no other dovetailing strategy
can guarantee an asymptotically smaller competitive ratio for all inputs.

An interesting application of hyperbolic dovetailing arises in the de-
sign of what we call input-thrifty algorithms, algorithms that are de-
signed to minimize the total precision of the input requested in order to
evaluate some given predicate. We show that for some very basic predi-
cates involving real numbers we can use hyperbolic dovetailing to provide
input-thrifty algorithms that are competitive, in this novel cost measure,
with the best algorithms that solve these problems.

1 Introduction

You are trapped underground in a mine following a massive earthquake. While
there are many potential escape routes, you have no way of knowing how much
effort will be required to clear any one of them. You quickly realize the first
exploration strategies that come to mind might be poor choices for your partic-
ular situation. If it happens that all of the escape routes have about the same
amount of debris, then you may as well simply choose one and start digging. On
the other hand, if only a few of routes are viable, it makes sense to keep trying
all of the routes, more or less equitably, until one of these few is discovered.

Upon further reflection, you recognize that being trapped in this way is not
such an uncommon occurrence. Being more adept at thinking than digging, you
wonder if there are strategies that are arguably good, or even best, to adopt in
situations like this...

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 516–527, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Hyperbolic Dovetailing 517

1.1 Dovetailed Execution of Multiply-Viable Process Sets

Finding an escape route in a mine has much in common with problems that arise
in many computational settings where several possible avenues are available for
the solution of a problem but there is no way of knowing which, if any, are
viable (or adequately efficient) for a particular problem instance. Faced with
this uncertainty, we elect to simulate their parallel exploration through some
kind of co-ordinated interleaving (dovetailing) of their associated processes. The
goal, of course, is to find a solution with low total cost. (Examples include
geometric or graph search, the synthesis of hybrid algorithms based on a suite
of heuristics, and adaptive raising strategies.) Existing work on such problems
invariably makes the assumption that at most one of the processes is viable.
This provides support for a competitive analysis of algorithms (using the cost
of running the unique viable process alone as a benchmark). Algorithms with
optimal competitive ratios, based on variants of round-robin doubling search,
have been formulated for a large variety of such problems [2,6,8,9,10,13,16].

Competitive analysis was introduced to provide a more realistic alternative
to worst-case analysis, which in our setting would make all strategies equivalent
since each could, with sufficiently bad input, be forced to run an arbitrarily
long time. However, it is similarly unrealistic in many scenarios, including those
mentioned above, to adopt the worst-case assumption that at most one of the
underlying process is viable.

In this paper, we relax this assumption in revisiting some of these dovetailing
problems. Our contributions are of four types: (i) we formulate a natural notion
of intrinsic cost that provides a basis for a modified form of competitive analysis
that can be applied in this more general setting; (ii) we introduce a non-uniform
process interleaving technique, called hyperbolic dovetailing, that can be viewed
as a hybrid (or mixture) of a family of bounded depth-first strategies covering the
full spectrum between a pure breadth-first (i.e. round robin) and a pure depth-
first strategy, (iii) we prove that hyperbolic dovetailing achieves a competitive
ratio that is within a logarithmic factor of optimal on all inputs in the worst,
average and expected cases, over all possible deterministic (and randomized)
dovetailing schemes, and (iv) we prove that no other dovetailing strategy can
guarantee an asymptotically smaller competitive ratio for all inputs.

Our work was motivated, in part, by the need to develop efficient algorithms
in computational settings in which knowledge about the input is incomplete but
extendable. For instance, input numbers may initially be known only up to some
precision, and additional precision may be obtainable, but only at a high cost.
Here are two examples for such a scenario: 1) the input numbers are initially the
result of cheap measurements, and with further, more elaborate measurements
additional precision can be obtained; 2) the input numbers are produced bit
by bit by a computational process such as root-finding via bisection. In such
scenarios it is of interest to design algorithms that solve the problem using as
little total input precision as possible.

We show that the hyperbolic dovetailing technique can be applied to the
design of algorithms for certifying certain simple properties of a set of input

518 D. Kirkpatrick

numbers, with the goal of minimizing the number of input bits that need to
be examined by the algorithm, for each set of possible inputs. We refer to this
as the leading-input-bits-cost, or LIB-cost, of the algorithm. Algorithms whose
LIB-cost is “small”, in some quantifiable sense, relative to the intrinsic LIB-cost
for every input, are said to be input-thrifty algorithms.

1.2 Multi-list and Cow-Path Traversal Problems

The following multi-list traversal problem captures the essence of the mine-
escape-route search problem; it is a simplified version of other multi-process
dovetailing problems that we wish to study and, as such, it allows us to intro-
duce our strategies and analyses in their most basic setting. Let L be a given
multi-list, that is a sequence of m not-necessarily-finite-length lists. Let λi de-
note the length of the i-th longest list in L, so ∞ ≥ λ1 ≥ λ2 ≥ . . . ≥ λm. The
goal is to traverse at least one list to its end, while minimizing the total cost (the
number of list positions examined). In general, we assume that the (multi)set
of list lengths Λ = {λ1, λ2, . . . , λm} is not known to the strategy, and we do
worst-case or average-case analysis over the set of all multi-lists with associated
lengths set Λ (what we refer to as presentations of Λ). However, for the sake
of comparison, we also consider the the behaviour of strategies that know Λ
(so, they are not constrained to run efficiently, or even terminate correctly, for
multi-lists outside of this restricted class).

Our multi-list traversal problem bears a strong resemblance to what has come
to be known as the m-lane cow-path problem. An instance of the cow-path prob-
lem specifies a sequence of m rays (lanes) of unbounded length incident on a
common origin (crossroad). A goal (pasture) lies at some unknown distance d
from the origin along some (unknown) ray. The objective is to to formulate a
provably good strategy for an agent (cow) to reach the goal, starting from the
origin.

The cow-path problem was introduced by Baeza-Yates et al. [2] as a simple
graph-theoretic abstraction of search problems in the plane. It has been studied
in several variations including directionally dependent traversal costs, turnaround
penalties, shortcuts and dead-ends [6,8,12,13,15]. It has also been analysed in
terms of worst-case and average-case competitive ratio (using the distance d as
a benchmark), as well as in a game-theoretic framework [2,9,10,16,17,18].

Essentially the same ideas as those used in solving the cow-path problem have
been used in the synthesis of deterministic and randomized hybrid algorithms
with optimal (or near optimal) competitive ratios [1,9]. The setting is one in
which there are a number of basic algorithms which might (or might not) be
useful in solving some problem. The goal is to synthesize a hybrid algorithm
from these basic components by some kind of dovetailing process. In this context,
memory limitations may impose restrictions on the number of processes that can
be suspended at any given time (the alternative being a complete restart with
successively larger computation bounds).

As we have already suggested, the multi-list traversal problem provides a
natural generalization of the cow-path problem in which every ray leads to a

Hyperbolic Dovetailing 519

goal (perhaps arbitrarily far from the origin) Of course, the list traversal cost is
not the same as that employed in the cow-path problem; in particular, it does
not take into account the cost of re-traversal of paths. However, as we shall see
later, our multi-list traversal algorithm can be implemented in such a way that
the two traversal cost functions agree to within a small constant factor, without
increasing the total list traversal cost by more than a small constant factor.

1.3 Competitive Analysis

In order to formulate a compelling notion of competitiveness (in the spirit of
[19]) for our multi-list traversal problems, we need to specify some measure of
inherent complexity that permits us to distinguish easy from more difficult prob-
lem instances. The objective, of course, is to formulate adaptive strategies that
run relatively more efficiently on instances of relatively low inherent complexity.

One natural candidate is simply the length of the shortest list. Since this cor-
responds to the length of the shortest proof that some specified list has some
specified length, we refer to this as the minimum certification cost of the instance.
Clearly this provides a lower bound on the cost of any multi-list traversal strat-
egy, and is realizable by a strategy that knows (or correctly guesses) the identity
of the shortest list. It also coincides with the notion of inherent complexity that
underlies the competitive analysis used for the conventional m-lane cow-path
problem.

In general, however, traversal strategies must deal with uncertainty in both
the set Λ of numbers that correspond to the path lengths (and completely de-
termine the minimum certification cost) and the presentation of these numbers
as a sequence (that is their assignment to individual paths). For a given set Λ,
we specify the maximum-traversal-cost of an algorithm A for Λ, and then define
the intrinsic maximum-traversal-cost of Λ to be the minimum, over all algo-
rithms A that are only guaranteed to solve the problem for multi-lists that are
presentations of Λ, of the maximum-traversal-cost of A for Λ. These definitions
resemble refinements of competitive analysis (in particular, the so-called relative
worst order ratio) introduced to provide a more meaningful/sensitive analysis
for certain on-line algorithms [3,4,5,11]. (See [7] for a comprehensive overview of
these alternative measures.)

It turns out to be reasonably straightforward to specify the intrinsic maximum-
traversal-cost of an arbitrary input set Λ in this way. With this in hand, we do
competitive analysis of two types: (i) with respect to the family of algorithms that
are constrained to answer correctly only when the input multi-list is a presentation
of Λ (i.e. relative to the intrinsic maximum traversal-cost); and (ii) with respect
to the family of algorithms that are constrained to answer correctly only when its
input multi-list is a presentation of some input set Λ′ whose intrinsic maximum-
traversal-cost is the same as that of Λ.

In the former case, we show that our algorithms are competitive to within a
logarithmic factor. More precisely, for every set Λ, if ξ(Λ) denotes the intrinsic
maximum-traversal-cost of input set Λ, then our algorithm achieves maximum-
traversal-cost O(ξ(Λ) log min{ξ(Λ), |Λ|}). In the latter case, we show that our

520 D. Kirkpatrick

algorithms are competitive in maximum-traversal-cost to within a constant fac-
tor. We also develop similar results for average-traversal-cost.

Results that have striking similarities to those in this paper were presented by
Luby et al. [14] for the problem of minimizing the expected time to complete the
execution of Las Vegas algorithms (which can be viewed as an infinite sequence
of deterministic algorithms with unknown completion times).

2 Multi-list Traversal Strategies

Let Λ be a (multi)set of m (positive) list lengths, and let λi denote the ith largest
element of Λ, for 1 ≤ i ≤ m. We denote by L a generic presentation of Λ (that
is, a multi-list whose associated set of list lengths coincides with Λ).

2.1 Intrinsic Maximum-Traversal-Cost and Average-Traversal-Cost

We define the maximum-traversal-cost of some multi-list traversal strategy A
on Λ to be the maximum cost of A over all multi-list presentations of Λ. The
intrinsic maximum-traversal-cost of Λ, denoted ξ(Λ), is the minimum, over all
multi-list traversal strategies A of the maximum-traversal-cost of A on Λ.

Theorem 1. ξ(Λ) = min1≤i≤m iλi.

Proof. Consider any multi-list traversal strategy A that works correctly on all
presentations of Λ. Such a strategy specifies a sequence of traversal steps that
culminates in the discovery of the end of some list. At any point in time, up to
termination, the strategy has traversed the i-th list to some depth di. Provided
that d̂i, the i-th largest element of {d1, . . . , dm}, satisfies d̂i < λi, for 1 ≤ i ≤ m,
the strategy will have not terminated for at least one multi-list presentation of
Λ. Thus, at termination, we must have d̂i = λi, for some i, and d̂j ≥ λi, for all
j, 1 ≤ j < i. It follows that A must explore at least min1≤i≤m iλi list positions.

On the other hand, if iΛ = argmin1≤i≤miλi, then the strategy that ex-
plores lists to fixed depth λiΛ , in any sequence, will never explore more than
min1≤i≤m iλi list positions. ��

In the average case, where the average is taken over all presentations of the given
length set Λ, we can hope to get away with something considerably less than
the intrinsic maximum-traversal cost. We note that the average case behaviour
of any deterministic multi-list traversal strategy is realized as the expected be-
haviour of a two-phased randomized algorithm that first randomly permutes
the indices of the lists in the input multi-list and then continues in an entirely
deterministic fashion. Thus, a lower bound on the expected cost of any ran-
domized list-traversal strategy is also a lower bound on the average-case cost of
(deterministic) list traversal.

Consider first the fixed-depth traversal strategy (denoted FDT(d)), already
encountered, that explores the lists, one after another, to some fixed depth d,
stopping if and when some list is completely traversed.

Hyperbolic Dovetailing 521

Lemma 1. Strategy FDT(λk) solves the multi-list traversal problem, with av-
erage cost (over all presentations of Λ) at most λk(m + 1)/(m− k + 2).

Proof. By definition, at least m − k + 1 of the lists have length at most λk.
Since lists are explored to depth λk, it suffices to argue that, among all possible
permutations of the input lists (i.e. all possible presentations of Λ) the average
position of the first list with length at most λk is at most (m + 1)/(m− k + 2).
(Equivalently, this is the expected position of the first 1 in a random permutation
of a binary string of length m containing n− k + 1 1’s.) ��

Let īΛ = argmin1≤i≤n{λi/(m − i + 2)}. Then, assuming that Λ is known, a
strategy, namely FDT(λīΛ

), exists that solves the list traversal problem with
average cost at most mλīΛ

/(m− īΛ+2). Thus the intrinsic average-traversal-cost
of the list length set Λ, which we denote by ξ̄(Λ), is at most mλīΛ

/(m− īΛ + 2).
As it turns out, this bound is essentially tight:

Lemma 2. Any randomized multi-list traversal strategy B that terminates after
at most mλīΛ

/3(m− īΛ +2) steps on all presentations of Λ, fails with probability
at least one half on a random presentation of Λ.

Proof. Since an adversary is free to choose the least favourable list indexing, the
expected cost of strategy B, forced by an adversary, is at least that which is
required for a random permutation of the input lists. Hence, we can assume that
B behaves the same on all list orderings (without loss of generality, it begins by
randomly permuting the lists) and thus the i-th list has length λπ(i), for some
random permutation π.

Denote the expression mλīΛ
/(m− īΛ + 2) by cΛ. To prove the desired result,

it suffices to argue that any randomized list-traversal strategy that has been
modified to terminate after exploring at most cΛ/3 list positions, must fail (i.e.
not complete the traversal of any list) with probability at least 1/2. We note that
any such truncated list-traversal strategy can be interpreted as a probability
distribution over the set of all (deterministic) traversals where list i is traversed
to depth di and

∑
1≤i≤n di ≤ cΛ/3.

Because the list indices are assigned randomly, we can assume, without loss of
generality, thatd1 ≥ d2 ≥ . . . ≥ dm.Wewill argue that every such (d1, d2, . . . , dm)-
traversal fails with probability at least 1/2. Let Λ̂ = {λ̂1, . . . , λ̂m}, where λ̂i =
(m− i+ 2)cΛ/m, for 1 ≤ i ≤ m. Since λ̂i ≤ λi, for 1 ≤ i ≤ m, and ξ̄(Λ̂) = ξ̄(Λ), it
suffices to prove the result under the assumption that Λ = Λ̂. Furthermore, since
the strategy need only work for presentations of Λ, there is no loss of generality in
assuming that the strategy exploits the knowledge that all of the λi values are inte-
gral multiples of cΛ/m and thus the exploration depth values d1, d2, . . . , dm satisfy
di = kicΛ/m, for some integers k1 ≥ k2 . . . ≥ km ≥ 0.

Since
∑

i ki =
∑

i dim/cΛ ≤ m/3, it follows that ki = 0, for m/3 < i ≤ m.
Furthermore, since λj > di just when j < m − ki + 2, at least m − ki of the
lists have length greater than di. Thus, Pr(failure) =

∏m
j=1 Pr(λπ(i) > dj) ≥∏m

j=1

(m−j+1−kj

m−j+1

)
=

∏m/3
j=1

(m−j+1−kj

m−j+1

)
. If we relax the constraint that ki ≥ kj ,

522 D. Kirkpatrick

for i ≤ j, the expression
∏m/3

j=1

(m−j+1−kj

m−j+1

)
is minimized when km/3 = m/3 and

kj = 0, for j < m/3. Hence, Pr(failure) ≥ 1/2. ��

Corollary 1. The average cost of any deterministic multi-list traversal strategy,
over all presentations of Λ, is at least mλīΛ

/6(m− īΛ + 2), even if Λ is known.

Theorem 2. ξ̄(Λ) = Θ(mλīΛ
/(m− īΛ + 2)).

2.2 Competitive Ratio of Conventional Dovetailing Strategies

It is instructive to analyse the competitive ratios achieved by two familiar dovetail-
ing strategies applied to multi-list traversal. These correspond to the extremes of
uniformity in traversal of lists; breadth-first (usually called round-robin) traversal
explores all lists in a completely equitable fashion and depth-first traversal chooses
one list and explores it to its end.

Theorem 3. For both the maximum and average-traversal-costs, the competi-
tive ratio of breadth-first traversal is Ω(m) and the competitive ratio of depth-first
traversal is unbounded.

Proof. Suppose first that we have a multi-list whose associated length set Λ
consists of one finite value d and m−1 infinite (or arbitrarily large) values. In this
case, it is easy to confirm that the intrinsic maximum-traversal-cost of Λ, ξ(Λ),
satisfies ξ(Λ) = md and the intrinsic average-traversal-cost of Λ, ξ̄(Λ), satisfies
ξ̄(Λ) = Θ(d). This coincides with the familiar observation that an adversary can
“hide” the identity of the sole finite list until all other lists have been explored
to depth at least d. Breadth-first traversal achieves maximum-traversal-cost and
average-traversal-cost Θ(md), but depth-first traversal has an unbounded cost
in this case, for both maximum-traversal-cost and average-traversal-cost.

On the other hand, if we have a multi-list whose associated length set Λ
consists of m lists all of which have the same length d, then ξ(Λ) and ξ̄(Λ) are
both Θ(d) (despite the fact that the minimum certification cost d is the same
as in the previous example). In this case the intrinsic maximum-traversal-cost is
achieved by any depth-first traversal but breadth-first traversal has maximum-
traversal-cost and average-traversal-cost Θ(md). ��

2.3 Hyperbolic Dovetailing

We now introduce a novel multi-list traversal strategy that makes use of a tech-
nique that we call hyperbolic dovetailing. The strategy maintains an indexing of
all the list positions in the input multi-list and, in terms of this indexing, de-
fines a rank function on the next unexplored position of each list. The traversal
explores positions in order of increasing rank until some list is exhausted. In
general, the rank of the t-th position of the i-th list (in the input order) is just
the product ti. Thus if we view the list positions as points in the plane (where
the t-th position of the i-th list has coordinates (i, t)), the positions are examined
in the order encountered by a hyperbola t = c/i, for increasing values of c (see
Fig. 1(b)). This interpretation explains the term “hyperbolic dovetailing”.

Hyperbolic Dovetailing 523

d

(a) Bounded depth-first traversal (b) Hyperbolic traversal

Fig. 1.

Hyperbolic-Traversal

c ← 1;
repeat until some list is fully explored

for i = 1 to m
do continue exploration of list i up to depth �c/i�;

increment c;

2.4 Worst-Case Competitive Case Analysis of Hyperbolic Traversal

Here we argue that hyperbolic traversal is competitive, up to a logarithmic factor,
even against strategies that know the set of list lengths.

Theorem 4. The hyperbolic-traversal strategy solves the multi-list traversal
problem for a multi-list with associated length set Λ, with maximum-traversal-
cost O(ξ(Λ) lg min{|Λ|, ξ(Λ)}).

Proof. Suppose that the last list position explored in the hyperbolic traversal has
rank c. Then (i) c ≤ ξ(Λ), and (ii) the total number of list positions traversed is
O(c lg min{m, c}). Point (i) follows from Theorem 1. Point (ii) follows from the
fact that, according to our hyperbolic traversal, all of the explored positions in
each list have rank at most c and, since there are at most �c/t� positions of rank
at most c in the t-th list, the number of list positions explored is bounded above
by

∑m
t=1�c/t� ≤

∑min{m,c}
t=1 c/t ≤ c +

∫ min{m,c}
1

c
t dt = c(1 + ln min{m, c}). ��

Furthermore, the logarithmic competitiveness bound is the best that one could
hope for in a general strategy.

Theorem 5. Any deterministic list-traversal strategy that behaves correctly on
all multi-list presentations of length sets Λ satisfying ξ(Λ) = ξ0, must have
maximum-traversal-cost at least ξ0 ln min{|Λ|, ξ0}, on at least one such presen-
tation.

Proof (Sketch). We define a family of canonical input length sets Λ, with ξ(Λ) =
ξ0 and argue that any deterministic traversal strategy that explores fewer than
ξ0 ln ξ0 list positions must, in the worst case, fail to complete the traversal of at
least one presentation of some Λ in this family. ��

524 D. Kirkpatrick

2.5 Average and Expected Case Competitive Analysis of
Hyperbolic Traversal

We now turn to the average case behaviour of our hyperbolic multi-list traver-
sal strategy. As in the worst case, hyperbolic traversal is competitive, up to a
logarithmic factor, even against strategies that know the set of list lengths.

Theorem 6. The hyperbolic-traversal strategy solves the multi-list traversal
problem for a multi-list with associated length set Λ with average-traversal-cost
O(ξ̄(Λ) lg min{|Λ|, ξ̄(Λ)}).

Proof. Let T (j) = {δ(j)
1 , . . . , δ

(j)
m }, where δ

(j)
i = λj , for j ≤ i ≤ m and δ

(j)
i = ∞,

for i < j. By the monotonicity of average traversal cost, avg-trav-cost(Λ) ≤
min1≤j≤m avg-trav-cost(T (j)). Given this is suffices to prove that for the
hyperbolic-traversal strategy avg-trav-cost(T (j)) is O(ĉj ln ĉj), where ĉj = λjm/
(m− j + 1).

By the nature of T (j), any strategy discovers the end of a list at depth exactly
λj . But, since exactly j − 1 lists have length greater than λj , the probability
that the number of lists that need to be explored exceeds m/(m− j + 1) (which
happens just when the first m/(m− j + 1) lists all have length exceeding λj) is

just
(

j−1
m/(m−j+1)

)
/
(

m
m/(m−j+1)

)
<

(
j−1
m

)m/(m−j+1)
<

(1
e

)
.

Since the hyperbolic-traversal strategy explores �c/λj� lists to depth λj when
its traversal parameter has the value c, it follows that the event, denoted τt, that
it fails to terminate by the time its traversal parameter reaches tĉj has probability
at most

(1
e

)t
. As we have already seen, if τt holds, the total exploration cost is

O(tĉj lg(tĉj)). Thus, the total expected cost is
∑∞

r=−∞
∑2r+1

t=2r Pr(τt)tĉj lg(tĉj)) =
O(ĉj lg(tĉj)). ��
If we precede the hyperbolic traversal strategy with a step that randomly per-
mutes the indices of the input lists, we produce a randomized algorithm whose
expected cost coincides with the average cost of deterministic hyperbolic traver-
sal. This randomized hyperbolic traversal strategy, which works correctly on all
input list sets, is essentially optimal even among randomized list traversal strate-
gies whose only constraint is that they succeed with probability at least 1/2 on
multi-lists whose associated length sets Λ satisfy ξ̄(Λ) = ξ̄0, for some fixed ξ̄0.

Theorem 7. Any randomized list-traversal strategy that succeeds with prob-
ability at least 1/2 on all multi-list presentations of length sets Λ satisfying
ξ̄(Λ) = ξ̄0, must have expected cost at least cξ̄0 lg ξ̄0, for some fixed constant
c > 0, on at least one such presentation.

Proof (Sketch). We view a randomized algorithm as being a distribution over
deterministic strategies. Suppose that

∑
1≤i≤n di = ξ̄0 lg ξ̄0/3. We argue that

any (d1, d2, . . . , dm)-traversal, with d1 ≤ d2 ≤ . . . ≤ dm, will fail on at least
half of the presentations of at least half of the members of a family of canonical
input length sets Λ, with ξ̄(Λ) = ξ̄0. It follows that at least one of these sets will,
for at least half of its presentations, be incompletely traversed by deterministic
strategies whose total assigned probability is at least 1/2.

Hyperbolic Dovetailing 525

Corollary 2. Any deterministic list-traversal strategy that behaves correctly on
all multi-list presentations of length sets Λ satisfying ξ̄(Λ) = ξ̄0, must have av-
erage cost at least cξ̄0 lg ξ̄0, for some fixed constant c > 0, on at least one such
presentation.

3 Applications of Hyperbolic Dovetailing

3.1 Generalized Cow-Path Search and Hybrid Algorithm Synthesis

As discussed in the introduction, the multi-list traversal problem provides a well-
motivated generalization of cow-path search and hybrid algorithm synthesis. The
variations in search cost functions, while significant for the exact competitive
analysis of interest in the single goal versions of these problems, are essentially
negligible when we consider asymptotic competitiveness bounds. For example,
our lower bounds for multi-list traversal obviously still hold in the setting of cow-
path search (where search cost is counted for revisiting path locations) but our
hyperbolic traversal algorithm can be modified (by re-exploring a list only when
the hyperbolic rank function doubles its value from the preceding exploration)
so that the total search cost (counting revisits) can be assigned in such a way
that every explored location has O(1) charges. Thus all of our multi-list traversal
results carry over (with modified asymptotic constants) to these other problems.

Our results also extend to a slightly more general form of multi-list search in
which individual lists may contain zero or more goal locations and the objective
is to traverse at least one list to the location of its first goal. By truncating lists
at their first goal, this reduces to what we call the signed multi-list traversal
problem in which some lists are positive (i.e. they have a goal location at their
end) and some are negative (i.e. they terminate, if at all, in a dead-end). Signed
multi-list traversal provides a natural model of dovetailing processes that may
terminate without success.

3.2 Input-Thrifty Algorithms

In many natural problem settings the knowledge about the input is incomplete.
For instance, input numbers may initially be known only up to some precision,
and additional precision may be obtainable, but only at a high cost. In such
situations it is of interest to design algorithms that solve the problem using as
little total input precision as possible.

Our results on list searching provide a modest but non-trivial contribution
to the study of such algorithms, taking the extreme point of view that the
computation within such an algorithm is free, and the only cost incurred is the
number of input bits that need to be examined by the algorithm. Specifically, for
a given algorithm and input sequence, we define the leading-input-bits-cost, or
LIB-cost, for short, to be the number of input bits that the algorithm examines.
We are interested in input-thrifty algorithms, i.e. algorithms whose LIB-cost is
“small” in some quantifiable sense.

526 D. Kirkpatrick

We consider problems whose input is a sequence p1, . . . , pn of real numbers
in the half-open interval [0, 1). An algorithm can access each such number p =∑

j>0 p(j)2−j via its binary representation p(1), p(2), · · · , and this happens by
examining the bits p(j) individually in order of decreasing significance, i.e. an
algorithm can examine bit p(j) only after it has examined bits p(1) through p(j−1)

already. In practice, we will assume that each pi has a finite, although arbitrarily
long, representation (thereby guaranteeing finite cost for all inputs).

As a concrete application, suppose we are given a set of s numbers {p1, . . . , ps}.
Our goal is to determine if there exists a pair (pi, pj), such that pi �= pj . We
can map this to an instance of the multi-list traversal problem as follows: each
number pi is interpreted as a list of length λi, where λi = argmin{j | p(j)

i �= p
(j)
1 },

(that is the position of the most significant bit on which pi and p1 differ). It
should be clear that (i) if the input set contains at least two distinct numbers
then the associated multi-list contains at least one finite length list, and (ii) any
multi-list traversal scheme corresponds to an not-all-equal certification algorithm
in the LIB-cost model.

Note that any not-all-equal certification algorithm can be reformulated in such
a way that at least as many bits of input p1 are explored as any other input,
with at most a constant factor increase in the LIB-cost. (In effect this says that
in the LIB-cost model the cost of certifying not-all-equal is essentially the same
as certifying that some input number differs from one specific input, p1.) It
follows that competitive algorithms for multi-list traversal translate directly to
input-thrifty not-all-equal certification algorithms.

Acknowledgements

The author gratefully acknowledges helpful discussions concerning the material
of this paper with Rolf Klein, Robert Tseng, and especially Raimund Seidel.

References

1. Azar, Y., Broder, A.Z., Manasse, M.S.: On-line choice of on-line algorithms. In:
Proc. 4th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 432–440
(1993)

2. Baeza-Yates, R.A., Culberson, J.C., Rawlins, G.J.E.: Searching in the plane. In-
formation and Computation 106(2), 234–252 (1993)

3. Ben-David, S., Borodin, A.: A new measure for the study of on-line algorithms.
Algorithmica 11, 73–91 (1994)

4. Boyar, J., Favrholdt, L.M.: The relative worst order ratio for on-line algorithms.
ACM Trans. on Algorithms 3(2) (2007)

5. Boyar, J., Favrholdt, L.M., Larsen, K.S.: The relative worst order ratio applied to
paging. In: Proc. 16th Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 718–727 (2005)

6. Demaine, E., Fekete, S., Gal, S.: Online searching with turn cost. Theoretical Com-
puter Science 361, 342–355 (2006)

Hyperbolic Dovetailing 527

7. Dorrigiv, R., Lopez-Ortiz, A.: A survey of performance measures for on-line algo-
rithms. ACM SIGACT News 36(3), 67–81 (2005)

8. Kao, M.-Y., Littman, M.L.: Algorithms for informed cows. In: AAAI 1997 Work-
shop on On-Line Search (1997)

9. Kao, M.-Y., Ma, Y., Sipser, M., Yin, Y.: Optimal constructions of hybrid algo-
rithms. J. Algorithms 29(1), 142–164 (1998)

10. Kao, M.-Y., Reif, J.H., Tate, S.R.: Searching in an unknown environment: An
optimal randomized algorithm for the cow-path problem. Information and Com-
putation 131(1), 63–79 (1996)

11. Kenyon, C.: Best-fit bin-packing with random order. In: Proc. 7th Annual ACM-
SIAM Symposium on Discrete Algorithms, pp. 359–364 (1996)

12. Koutsoupias, E., Papadimitriou, C., Yannakakis, M.: Searching a fixed graph. In:
Proc. 23rd International Colloquium on Automata, Languages and Programming,
pp. 280–289 (1996)

13. Lopez-Ortiz, A., Schuierer, S.: The ultimate strategy to search on m rays. Theo-
retical Computer Science 2(28), 267–295 (2001)

14. Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of Las Vegas algorithms.
In: Proc. Second Israel Symposium on Theory of Computing and Systems, June
1993, pp. 128–133 (1993)

15. Papadimitriou, C.H., Yannakakis, M.: Shortest path without a map. In: Proc. 16th
International Colloquium on Automata, Languages and Programming, pp. 610–620
(1989)

16. Schonhage, A.: Adaptive raising strategies optimizing relative efficiency. In: Proc.
30th International Colloquium on Automata, Languages and Programming, pp.
611–623 (2003)

17. Schuierer, S.: Lower bounds in on-line geometric searching. Computational Geom-
etry: Theory and Applications 18(1), 37–53 (2001)

18. Schuierer, S.: A lower bound for randomized searching on m rays. In: Klein, R.,
Six, H.-W., Wegner, L. (eds.) Computer Science in Perspective. LNCS, vol. 2598,
pp. 264–277. Springer, Heidelberg (2003)

19. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.
Comm. ACM, 202–208 (February 1985)

On the Expansion and Diameter of
Bluetooth-Like Topologies�

Alberto Pettarin, Andrea Pietracaprina, and Geppino Pucci

Department of Information Engineering,
University of Padova, Padova, Italy

{pettarin,capri,geppo}@dei.unipd.it

Abstract. The routing capabilities of an interconnection network are
strictly related to its bandwidth and latency characteristics, which are
in turn quantifiable through the graph-theoretic concepts of expansion
and diameter. This paper studies expansion and diameter of a family
of subgraphs of the random geometric graph, which closely model the
topology induced by the device discovery phase of Bluetooth-based ad
hoc networks. The main feature modeled by any such graph, denoted
as BT (r(n), c(n)), is the small number c(n) of links that each of the n
devices (vertices) may establish with those located within its communi-
cation range r(n). First, tight bounds are proved on the expansion of
BT (r(n), c(n)) for the whole set of functions r(n) and c(n) for which
connectivity has been established in previous works. Then, by leveraging
on the expansion result, tight (up to a logarithmic additive term) upper
and lower bounds on the diameter of BT (r(n), c(n)) are derived.

1 Introduction

Random graph models have been employed in the literature for the analytical
characterization of topological properties of ad hoc wireless networks governed by
a variety of network-formation protocols. One such case concerns networks based
on the Bluetooth technology [1,2]. A Bluetooth network connects n devices, each
endowed with a wireless transmitter/receiver able to communicate within a cer-
tain visibility range. The network is obtained by means of the following process:
each device attempts at discovering other devices contained within its visibility
range and at establishing reliable communication channels with them, in order
to form a connected topology, called the Bluetooth topology. Subsequently, a hi-
erarchical organization is superimposed on this initial topology. Since requiring
each device to discover all of its neighbors is too time-consuming [3], the de-
vice discovery phase is terminated by a suitable time-out, hence only a limited
number of neighbors are actually discovered.

The following random graph model for the Bluetooth topology has been pro-
posed in [4] and subsequently generalized in [5]. The devices are represented by

� Support for the authors was provided in part by the European Union under the
FP6-IST/IP Project AEOLUS.

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 528–539, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

On the Expansion and Diameter of Bluetooth-Like Topologies 529

n nodes, whose coordinates are randomly chosen within the unit square [0, 1]2;
each node selects c(n) neighbors among all visible nodes, that is, among all
nodes within Euclidean distance r(n), where r(n) models the visibility range,
which is assumed to be the same for all devices. The resulting graph, called
BT (r(n), c(n)), is the one where there is an undirected edge for each pair of
neighbors. Note that such a graph is a subgraph of the well-known random ge-
ometric graph in [0, 1]2, where all pairs of visible nodes are connected by an
edge [6]. Experimental evidence shows that BT (r(n), c(n)) is a good model for
the Bluetooth topology [4]. Moreover, BT (r(n), c(n)) may be employed as a
model for network scenarios where nodes are constrained to maintain a small
number of simultaneous connections, because of limited resources, both energetic
and computational, or where establishing links to every visible node is, by far,
too costly either in time or energy.

Properties of BT (r(n), c(n)) have been investigated in a number of recent
works. In [7] the authors show that for any fixed constant r > 0 there exists
a (large) constant c such that BT (r, c) is an expander with high probability.
In [8] it is proved that with high probability BT (r, c) is connected for any fixed
constant r > 0 and c ≥ 2 whenever n becomes sufficiently large. These results
require that the visibility range be a constant, which implies that every node can
choose its neighbors among a constant fraction of all of the nodes in the system.
Such an assumption becomes unfeasible as the number of devices grows large.

To overcome the latter problem, a more general setting has been analyzed
in [5], where it has been proved that BT (r(n), c(n)) stays connected, with high
probability, also for vanishing values of r(n) (as n → ∞), as long as each node
selects a suitable number of neighbors. Precisely, if r(n) = Ω

(√
log n/n

)
, just

allowing c(n) = O (log (1/r(n))) neighbor selections per node ensures that the
resulting graph be connected with high probability. The lower bound on r(n)
cannot be improved: in fact, when r(n) ≤ δ

√
log n/n, for some constant 0 < δ <

1, the visibility graph obtained connecting every node to all visible ones (i.e.,
the random geometric graph RGG (r(n)) of [6] with radius r(n)) is disconnected
with high probability [9]. The tightness of the lower bound on c(n) is instead an
open problem.

Most of the previous research focuses on the connectivity of the Bluetooth
topology, with the exception of the expansion result of [7] which only considers
the extreme case of constant visibility range. In this paper, we contribute to a
deeper understanding of the Bluetooth topology by providing upper and lower
bounds for two crucial structural properties, namely, expansion and diameter,
for the values of r(n) and c(n) for which connectivity has been established by
previous works. All of our bounds are tight, except for an additive logarithmic
term in the upper bound on the diameter. To emphasize the relevance of our
results, observe that the bandwidth and latency characteristics of a network,
which determine its ability to perform efficient routing, are closely related to the
expansion and diameter properties of its underlying topology [10].

The rest of the paper is organized as follows. Section 2 introduces key defi-
nitions and properties which will be used throughout the paper. The lower and

530 A. Pettarin, A. Pietracaprina, and G. Pucci

upper bounds on the expansion of BT (r(n), c(n)) are presented in Section 3,
while those on the diameter are obtained in Section 4. Section 5 concludes the
paper with some final remarks.

2 Preliminaries

In this section we formally define the Bluetooth topology, illustrate the notation
and recall some facts for later use.

Definition 1 (Bluetooth topology). Given an integer n, a real-valued func-
tion r(n) → (0,

√
2] and a positive integer function c(n), the Bluetooth topology,

denoted by BT (r(n), c(n)), is the undirected random graph G = (Vn, En), defined
as follows.

– The vertex set Vn is a set of n points chosen uniformly and independently at
random in [0, 1]2.

– The edge set En is obtained through the following process: independently,
each node selects a random subset of c(n) neighbors among all nodes within
distance r(n) (all of them, if they are less than c(n)). An edge {u, v} ∈ En

exists if and only if u has selected v, or viceversa.

In the next sections, we assume the following setting. Consider the standard
tessellation of [0, 1]2 into k2 square cells of side 1/k where k =

⌈√
5/r(n)

⌉
. We

say that two cells are adjacent if they share a side. Thus, any two nodes residing
in the same or in two adjacent cells are at distance at most r(n) (i.e., each node
is within the range of the other) and we say that they can see each other. When
the context is clear, with a slight abuse of notation, we identify a cell with the
set of nodes residing therein.

Recall that an event occurs with high probability (in brief, w.h.p.) if its proba-
bility is at least 1− 1/ poly(n). Let m = n/k2 be the expected number of nodes
residing in a cell. The following proposition will be exploited several times.

Proposition 1 ([5]). Let α = 9/10, β = 11/10. There exists a constant γ1 > 0
such that for every r(n) ≥ γ1

√
log n/n the following two events occur w.h.p.:

1. every cell contains at least αm and at most βm nodes;
2. every node has at least (α/4)πnr2(n) and at most βπnr2(n) nodes in its

visibility range.

Let G = (V, E) be an undirected graph. Below, we define the quantities at the
center of our analysis.

Definition 2 (Neighborhood). Given a set of vertices X ⊆ V , its neighbor-
hood is the set Γ (X) = { u ∈ V (G) : ∃e = {u, v} ∈ E(G), v ∈ X }.

Definition 3 (Expansion). The expansion of G is a function λ(s), for 1 ≤
s ≤ |V | /2, such that

λ(s) = min
S⊆V : |S|=s

|Γ (S)− S|
|S| .

On the Expansion and Diameter of Bluetooth-Like Topologies 531

We remark that, in some works, the term “expansion” is used to refer to a global
property of the graph, that is, the minimum value of the function λ(s) [10]. In
contrast, in this paper we offer a finer characterization of the expansion proper-
ties of BT (r(n), c(n)) by proving explicit bounds on all values of λ(s).

Definition 4 (Diameter). The diameter of G, denoted as diam(G), is the
maximum distance between any two nodes u, v ∈ V , where the distance between
two nodes is the number of edges of a shortest path connecting them.

Observe that, under any reasonable cost model for communication, the maxi-
mum latency to be expected of a point-to-point communication in a network is
proportional to the diameter of its underlying topology.

In the rest of the paper we focus on BT (r(n), c(n)) and we study its ex-
pansion and diameter for those ranges of the parameters for which the con-
nectivity is guaranteed by the results of [5], that is, r(n) ≥ γ1

√
log n/n and

c(n) = γ2 log (1/r(n)) for two suitable positive real constants γ1, γ2.

3 Expansion of BT (r(n), c(n))

In this section we study the node expansion of BT (r(n), c(n)). Specifically, in
Section 3.1 and Section 3.2 we establish, respectively, a lower bound and an
upper bound to the node expansion of this family of random graphs. Recall that
m = n/k2 = Θ

(
nr2(n)

)
denotes the expected number of nodes residing in a cell.

3.1 Lower Bound

The main result of this section is the following theorem.

Theorem 1. Consider an instance of BT (r(n), c(n)) with r(n) ≥ γ1
√

log n/n
and c(n) = γ2 log (1/r(n)), for two suitable positive constants γ1 and γ2. With
high probability, for every integer s, 1 ≤ s ≤ n/2, we have

λ(s) =

{
Ω (min {c(n), m/s}) if 1 ≤ s ≤ αm

Ω
(√

m/s
)

if αm < s ≤ n/2.

The proof of Theorem 1 relies on three technical lemmas, which characterize the
expansion of certain types of node subsets confined within a single cell. Consider
a given subset of vertices S of size s. For any cell Q, we call the set P = S ∩Q
the pocket of S in Q.

Lemma 1. Let α′ and ε′ be two suitable positive constants, with α′ ≤ min {ε′, α}.
When |P | ≥ log n or r(n) = O

(
n−1/8

)
, then with high probability, for any cell

Q and for every pocket P ⊆ Q, with 1 ≤ |P | ≤ α′m, we have |Γ (P)− P | ≥
ε′ min {c(n) |P | , m} .

532 A. Pettarin, A. Pietracaprina, and G. Pucci

Proof. Fix a cell Q and a size p for P , with 1 ≤ p ≤ α′m. We bound the proba-
bility that, for every P ⊆ Q its neighborhood is contained in P ∪T , where T is a
set of nodes not belonging to P with a certain (small) size t. For notational con-
venience, we abbreviate c = c(n) = γ2 log (1/r(n)) and introduce the following
quantities:

– q is the number of nodes in Q;
– v is the total number of nodes visible by at least one node in Q;
– w is the minimum number of nodes visible by any node;
– w′ is the maximum number of nodes visible by any node;
– z is the minimum number of nodes visible by all nodes in P .

Conditioning on the events of Proposition 1, we have that q, v, w, w′, z = Θ (m).
Let E be the union, over all the cells Q and all the choices of the pocket

P ⊆ Q, of the events |Γ (P)− P | ≤ t. We can bound the probability of E :

Pr [E] ≤
(

q

p

)(
v

t

)((
t+p

c

)(
w
c

))p ((
w′−p

c

)(
w′
c

))z−(t+p)

≤
(

eq

p

)p (ev

t

)t
(

t + p

w

)cp (
w′ − p

w′

)c(z−(t+p))

≤
(

eq

p

)p (ev

t

)t
(

t + p

w

)cp

e−
cp

w′ (z−(t+p)).

We distinguish between two cases, depending on the value of p.
Case 1: 1 ≤ p ≤ m/c. Let t = ε′cp. We rewrite the bound on Pr [E] as

Pr [E] ≤
((

eqc

cp

)1/c (
ev

ε′cp

)ε′ (
ε′cp
aw

))cp

,

where a is a positive constant, since p = O(t) and (z − (t + p))/w′ = Θ (1). By
regrouping the factors, we obtain:

Pr [E] ≤
(

c1/c

aε′ε′
(eq)1/c (ev)ε′

w
(cp)1−ε′−1/c ε′

)cp

<
1
n3 ,

where the last inequality holds for a sufficiently large γ2 in c = γ2 log(1/r(n)),
and for a sufficiently small ε′, since cp = Ω (log n). The claim follows by invoking
the union bound over the O (n) cells and the O (n) choices of p = |P |.

Case 2: m/c < p ≤ α′m. Note that in this case cp > m, whence we set
t = ε′m. We rewrite the upper bound on Pr [E] as

Pr [E] ≤
(

eq

p

)p (ev

ε′m

)ε′m
(

ε′m + p

aw

)cp

≤
((

eq

p

)1/c (ev

ε′m

)ε′m/(cp)
(

ε′m + p

aw

))cp

.

On the Expansion and Diameter of Bluetooth-Like Topologies 533

The first and the second factor of the latter bound are bounded by a constant,
for a suitable choice of c and ε′. By our choice of α′, letting ε′ be a sufficiently
small value, we can make the product of the three factors at most a constant
less than 1, so that Pr [E] < 1

n3 since cp = Ω (log n). The claim then follows by
applying the union bound as done for Case 1. ��

Lemmas 2 and 3 are proved via counting arguments which are similar in spirit
to the one employed in the proof of Lemma 1, and are omitted due to space
limitations. Detailed proofs are reported in [11].

Lemma 2. Let r(n) = Ω
(
n−1/8

)
, and c(n) ≥ 3. With high probability, for any

cell Q and for every pocket P ⊆ Q, with |P | < log n, we have |Γ (P)| > 1
3c(n) |P |.

Lemma 3. Let α′′ and ε′′ be two suitable positive constants, with α′′ ≤ α/(2(1+
ε′′)). With high probability, for any pair of distinct adjacent cells Q and Q′ and
for every pocket P ⊆ Q, with m/c(n) ≤ |P | ≤ α′′m, we have |Γ (P) ∩Q′| ≥
(1 + ε′′) |P |.

We are now ready to prove the main result of this section.

Proof (Theorem 1). Throughout the proof, we condition on the events stated in
Proposition 1 and in the three previous lemmas. We also define ᾱ = min {α′, α′′}
and ε̄ = min {ε′, ε′′, 1/3} where α′, α′′, ε′, ε′′ are the constants appearing in the
statements of Lemma 1 and Lemma 3, respectively. Consider an arbitrary set S
of s vertices of BT (r(n), c(n)), with 1 ≤ s ≤ n/2. We classify the cells according
to the size of the pockets of S that they contain: namely, a cell Q such that
Q ∩ S �= ∅ is said to be black if it contains at least ᾱm nodes of S, and gray
otherwise. Two cases are possible: either a majority of nodes of S resides in black
cells or a majority of nodes of S resides in gray cells.

In the first case, there are at least
s/(2βm)� black cells. By well-known
topological properties of two-dimensional meshes [12], we have that at least
Ω
(√

s/m
)

black cells are adjacent to distinct non-black cells. From Lemma 3,
every subset P ′ ⊆ S of size ᾱm contained in one of these black cells expands
into the corresponding adjacent non-black cell Q′ of at least (1 + ε̄) times its
cardinality, hence |Γ (P)− S| ≥ |(Γ (P ′) ∩Q′)− S| ≥ ε̄ᾱm, and thus λ(s) =
Ω
(√

m/s
)
, which is the correct bound since s = Ω (m) in this case.

In the second case, we resort to a proof strategy inspired by the one employed
in [7]. Referring to the tessellation of [0, 1]2 into k2 cells, let us index the cells
as Qij , with 1 ≤ i, j ≤ k. Define the sector Sij of a cell Qij as

Sij =
⋃

max{i−6,1}≤x≤min{i+6,k}
max{j−6,1}≤y≤min{j+6,k}

Qxy.

The active area Aij of sector Sij is defined as

Aij =
⋃

max{i−3,1}≤x≤min{i+3,k}
max{j−3,1}≤y≤min{j+3,k}

Qxy.

534 A. Pettarin, A. Pietracaprina, and G. Pucci

Cell Qij is called the center of both sector Sij and its active area Aij . Note that
the neighborhood of the pocket Pij = Qij ∩ S is entirely contained in Aij and
that the definition of a sector ensures that given two sectors Sij and Si′j′ , with
Qi′j′ ∩ Sij = ∅, their active areas are non-overlapping.

Let G be the set of at least s/2 nodes of S belonging to gray cells. To es-
timate the expansion of S, we first execute a greedy procedure, which selects
a number of gray cells which are centers of nonoverlapping active areas, and
then obtain a lower bound on the expansion by adding up the contributions
related to these selected cells. The selection of the centers is obtained via the
following marking strategy. Initially all of the gray cells are unmarked. Then,
iteratively, the center of the next active area is selected as the unmarked gray
cell Q containing the largest pocket of S, and all of the unmarked cells of the
sector centered at Q are marked. The procedure terminates as soon as every gray
cell becomes marked. The procedure is described by the following pseudocode,
where sets I and U maintain, respectively, the indices of the selected centers
and the indices of unmarked cells, and subroutine LargestPocket(U) returns
the pair (i, j) corresponding to the unmarked cell with the largest pocket (ties
broken arbitrarily).

Center Selection

I ← ∅; U ← {(i, j) : Qij is a gray cell}
while U �= ∅ do

(i, j)← LargestPocket(U)
I ← I ∪ (i, j)
for each Qxy ∈ Sij do U ← U − (x, y)

Let 〈 c1, c2, . . . , cw 〉 be the list of w centers picked by Center Selection, where
ct = (it, jt) was chosen at the t-th iteration of the while loop. Let pt = |Pct |,
and let gt be the number of nodes residing in unmarked gray cells of Sct at the
beginning of iteration t. Clearly, we have that

∑w
t=1 gt = |G| and, by the greedy

choice of the centers, gt ≤ 169pt.
In order to lower bound the expansion of S, we proceed as follows. For each

t, with 1 ≤ t ≤ w, we determine a suitable set of nodes Nt ⊆ Γ (S), which
belong to gray cells of Act . We distinguish between two different cases. If Act

contains a black cell, since Qct is gray, there must exists a pair of adjacent black-
gray cells in Act , and we pick Nt as a set of (1 + ε̄)ᾱm nodes in the gray cell
reached by nodes of S in the black cell, which exists by virtue of Lemma 3.
Otherwise, we let Nt = Γ (Pct) − Pct and observe that by Lemmas 1 and 2,
|Nt| ≥ ε̄ min {c(n)pt, m} . Note that the Nt’s are all disjoint, but the sum of
their sizes does not immediately yield a lower bound to |Γ (S)− S|, since each
Nt may itself contain nodes of S, which have to be subtracted from the overall
count.

Let us first consider the special case when no active area Act contains black
cells. In this case, the number of external neighbors of S (i.e., nodes of Γ (S)−S)
accounted for by the Nt’s is(

w∑
t=1

|Nt|
)
− |G| =

w∑
t=1

(|Nt| − gt) ≥
w∑

t=1

(|Nt| − 169pt) .

On the Expansion and Diameter of Bluetooth-Like Topologies 535

Since pt ≤ ᾱm and |Nt| ≥ ε̄ min {c(n)pt, m}, then for a sufficiently large choice
of γ2 in c(n) = γ2 log (1/r(n)) and a sufficiently small value of ᾱ, we have that
|Nt| − 169pt ≥ μ |Nt| for a certain constant μ > 0. Hence,

w∑
t=1

(|Nt| − 169pt) = Ω

(
w∑

t=1

ε̄ min {c(n)pt, m}
)

= Ω (min {c(n)s, m}) ,

and the theorem follows.
Consider now the general case where some active areas contain black cells,

which implies that s = Ω (m). Observe that
∑w

t=1 |Nt| = Ω (|G|) = Ω (s), and
note that it is sufficient to show that the number of external neighbors of S is
Ω (

∑w
t=1 |Nt|). Partition the index set I = {1, 2, . . . , t} into two disjoint subsets

B1 and B2, such that t ∈ B1 if Act contains no black cells, and t ∈ B2 otherwise.
Suppose that

∑
t∈B2

|Nt| ≥ τ
∑

t∈B1
|Nt|, for a suitable positive constant τ which

will be specified later. For each t ∈ B2 the set Nt contains (1 + ε̄)ᾱm nodes,
and at least ε̄ᾱm of these nodes are external neighbors of S. Hence, the total
number of external neighbors of S is at least

∑
t∈B2

ε̄ᾱm =
ε̄

1 + ε̄

∑
t∈B2

|Nt| ≥
ε̄

1 + ε̄

τ

1 + τ

w∑
t=1

|Nt| ,

and the theorem follows. Finally, if
∑

t∈B2
|Nt| < τ

∑
t∈B1

|Nt|, the number of
external neighbors of S accounted for by the nodes in the Nt’s is(

w∑
t=1

|Nt|
)
− |G| =

∑
t∈B1

(|Nt| − 169pt) +
∑
t∈B2

(|Nt| − 169pt)

≥
∑
t∈B1

μ |Nt|+
∑
t∈B2

((1 + ε̄)ᾱm− 169ᾱm)

>
∑
t∈B1

μ |Nt| −
∑
t∈B1

(
169

1 + ε̄
− 1

)
τ |Nt| .

By fixing τ such that ((169/(1 + ε̄))− 1)τ = μ/2, we get

∑
t∈B1

μ |Nt| −
∑
t∈B1

(
169

1 + ε̄
− 1

)
τ |Nt| =

μ

2

∑
t∈B1

|Nt| = Ω

(
w∑

t=1

|Nt|
)

,

and the theorem follows. ��

3.2 Upper Bound

We now prove that the lower bound of Theorem 1 is asymptotically tight.

Theorem 2. Consider an instance of BT (r(n), c(n)) with r(n) ≥ γ1
√

log n/n
and c(n) = γ2 log (1/r(n)), for two suitable positive constants γ1 and γ2. With

536 A. Pettarin, A. Pietracaprina, and G. Pucci

high probability, for every integer s, 1 ≤ s ≤ n/2, there exists a set of vertices S
of size s whose expansion is

λ(s) =

{
O (min {c(n), m/s}) if 1 ≤ s ≤ αm

O
(√

m/s
)

if αm < s ≤ n/2.

Proof. Suppose that the events stated in Proposition 1 occur. If s ≤ αm, we
can choose any subset S of the nodes in a single corner cell Q, so that a total
of at most 13βm nodes are visible from S. Hence, λ(s) = O (m/s). Consider a
list 〈 v1, v2, . . . , vn 〉 of the vertices of V , sorted by nondecreasing node degree. If
we take S = {v1, v2, . . . , vs}, we are guaranteed that the sum of the degrees of
all nodes in S is not greater than 2c(n)s, or otherwise the sum of the degrees
of the n nodes would exceed 2c(n)n, which is impossible. Combining the two
cases above yields the thesis for the case s ≤ αm. Let s > αm and consider a
set S which occupies an approximately square area of Θ (s/m) cells in a corner
of [0, 1]2. Since only the nodes in O

(√
s/m

)
cells are visible from S, we have

that λ(s) = O (
√

ms/s) = O
(√

m/s
)
, and the theorem follows. ��

We remark that the tight bounds on the expansion of BT (r(n), c(n)) provided by
Theorems 1 and 2 extend the results in [7] from the specific case of r(n) = Θ (1)
to any value of r(n) which guarantees the connectivity of the graph. Note also
that if we consider the minimum expansion λ = min1≤s≤n/2 λ(s), we obtain that
for the Bluetooth topology λ = Θ (r(n)).

Similar techniques may be applied to prove that RGG (r(n)) features an
expansion of λ(s) = Θ (m/s) for 1 ≤ s ≤ αm, and λ(s) = Θ

(√
m/s

)
for

αm < s ≤ n/2 (details are given in [11]). Hence, quite surprisingly, the expan-
sion of BT (r(n), c(n)) is, within a constant factor, equal to the expansion of
RGG (r(n)) whenever s = Ω (m/c(n)).

4 Diameter of BT (r(n), c(n))

In this section, we provide upper and lower bounds on the diameter of
BT (r(n), c(n)) by leveraging on the expansion result of Section 3. Specifically,
the upper bound relies on the following lemma, which relates diameter and ex-
pansion.

Lemma 4. Given a connected undirected graph G = (V, E) with n nodes and
expansion λ(s), for 1 ≤ s ≤ n/2, consider the following recurrence:

N0 = 1
Ni = (1 + λ(Ni−1))Ni−1.

(1)

Define i� as the smallest index such that Ni� > n/2. Then, diam(G) ≤ 2i�.

On the Expansion and Diameter of Bluetooth-Like Topologies 537

Proof. Let d = diam(G) and let u and v be two nodes at distance d in G.
Consider a breadth-first tree rooted at u. For 0 ≤ i ≤ d, let Wi denote the
set of nodes at level i in the tree, and Yi =

⋃i
�=0 W�. Note that the expansion

properties of G imply that |Yi| ≥ Ni. Define now j� as the smallest index such
that |Yj� | > n/2, which implies that j� ≤ i�. Also, w.l.o.g., we can assume that
j� ≥
d/2�, or otherwise we repeat the argument considering the breadth-first
tree rooted at v. Indeed, since u and v are at distance d, one of the two breadth-
first trees must reach at most n/2 nodes within the first
d/2�−1 levels, or there
would be a path shorter than d connecting u and v. The lemma follows. ��
Theorem 3. Consider an instance of BT (r(n), c(n)) with r(n) ≥ γ1

√
log n/n

and c(n) = γ2 log (1/r(n)), for two suitable positive constants γ1 and γ2. With
high probability,

diam(BT (r(n), c(n))) = O

(
1

r(n)
+ log n

)
.

Proof. We apply Lemma 4 by estimating the value i� for the graph
BT (r(n), c(n)), conditioning on the fact that the expansion of BT (r(n), c(n))
is λ(s) = Ω (min {c(n), m/s}) for s ≤ αm, and λ(s) = Ω

(√
m/s

)
for s > αm,

which happens w.h.p. (see Theorem 1).
In order to account for these two different expansion regimes, we proceed as

follows. Let K(j) = min
{
i : Ni ≥ 2j

}
, so that i� = K(logn − 1) and let j1 be

such that 2j1 = Θ (m). Since λ(Ni) = Ω (1) for 0 ≤ i < K(j1), it follows that
K(j1) = O (log n). Observe that for i > K(j1), there exists a constant σ such
that λ(Ni) ≥ σ

√
m/Ni. As a consequence, for j > j1, we have:

NK(j) ≥ NK(j−1)

K(j)−1∏
s=K(j−1)

(
1 +

σ
√

m√
Ns

)

≥ NK(j−1)

(
1 +

σ
√

m√
NK(j)−1

)K(j)−K(j−1)

≥ 2j−1
(

1 +
σ
√

m

2j/2

)K(j)−K(j−1)

.

Since K(j) is defined as the smallest index for which NK(j) ≥ 2j , from the above

inequalities it follows that K(j)−K(j − 1) = O
(

2j/2

r(n)
√

n

)
. Therefore,

i� = K(log n− 1) =
log n−1∑

j=1

(K(j)−K(j − 1))

=
j1∑

j=1

(K(j)−K(j − 1)) +
log n−1∑
j=j1+1

(K(j)−K(j − 1))

= O (log n) + O

(
1

r(n)

)
,

and the theorem follows from Lemma 4. ��

538 A. Pettarin, A. Pietracaprina, and G. Pucci

We now show that Theorem 3 gives a tight estimate for the diameter of
BT (r(n), c(n)) when r(n) = O (1/ logn).

Theorem 4. Consider an instance of BT (r(n), c(n)) with r(n) ≥ γ1
√

log n/n
and c(n) ≥ γ2 log (1/r(n)), for two suitable positive constants γ1 and γ2. With
high probability,

diam(BT (r(n), c(n))) = Ω

(
1

r(n)

)
.

Proof. Consider the natural tessellation introduced in Section 2. By Proposi-
tion 1, with high probability the top leftmost cell and the bottom rightmost
cell contain at least one node each, hence the Euclidean distance between these
two nodes is Θ (1). Therefore, any path in BT (r(n), c(n)) connecting them must
contain at least Ω (1/r(n)) nodes. ��

We point out that the lower bound for the case r(n) = Θ (1) can be improved to
Ω (log n/ log log n). (Full details will be given in the full version of this extended
abstract.)

5 Conclusions

The main result of this paper is a tight characterization of the node expansion
properties of the Bluetooth topology. Since expansion is essentially a measure
of bandwidth, being able to provide a quantitative estimate of this property is
useful for the design and analysis of routing strategies [10]. Our result is valid
for the entire set of visibility ranges r(n) and number of neighbor choices c(n)
which are known to produce a connected graph, as opposed to the result of [7]
which holds only for the extreme case r(n) = Θ (1).

By leveraging on the expansion properties, we also derive nearly tight bounds
on the diameter of the same topology, which is again an important measure for
routing, related to the latency of the network. Our bounds are tight for a large
spectrum of visibility ranges (i.e., r(n) = O (1/ logn)), which includes “small
ranges”, that is, those which are most interesting for the large scale deployment
of the technology. In fact, for the larger ranges r(n) = ω (1/ logn) the upper and
lower bounds differ by a mere additive logarithmic term. Closing this gap is still
an open problem.

A consequence of our results is that for subsets of s = Ω (m/c(n)) vertices,
BT (r(n), c(n)) exhibits roughly the same expansion as the much denser random
geometric graph RGG (r(n)) of [6]. Also, the diameters of the two graphs differ
by at most a logarithmic additive term. These are important considerations for
real ad hoc networks, especially for what concerns routing capabilities, since they
imply that BT (r(n), c(n)) features similar bandwidth and latency characteristics
of RGG (r(n)) at only a fraction of the costs.

Finally, we recall that it is still an open problem to establish, for every given
visibility range r(n) = Ω

(√
log n/n

)
, the minimum number c(n) of neighbor

choices which yield connectivity and to assess the corresponding diameter and
expansion properties.

On the Expansion and Diameter of Bluetooth-Like Topologies 539

References

1. Whitaker, R., Hodge, L., Chlamtac, I.: Bluetooth scatternet formation: a survey.
Ad Hoc Networks 3, 403–450 (2005)

2. Stojmenovic, I., Zaguia, N.: Bluetooth scatternet formation in ad hoc wireless
networks. In: Misic, J., Misic, V. (eds.) Performance Modeling and Analysis of
Bluetooth Networks, pp. 147–171. Auerbach Publications (2006)

3. Basagni, S., Bruno, R., Mambrini, G., Petrioli, C.: Comparative performance evalu-
ation of scatternet formation protocols for networks of Bluetooth devices. Wireless
Networks 10(2), 197–213 (2004)

4. Ferraguto, F., Mambrini, G., Panconesi, A., Petrioli, C.: A new approach to device
discovery and scatternet formation in Bluetooth networks. In: Proc. of the 18th
Int. Parallel and Distributed Processing Symposium (2004)

5. Crescenzi, P., Nocentini, C., Pietracaprina, A., Pucci, G.: On the connectivity of
Bluetooth-based ad hoc networks. Concurrency and Computation: Practice and
Experience 21(7), 875–887 (2009)

6. Penrose, M.: Random Geometric Graphs. Oxford University Press, Oxford (2003)
7. Panconesi, A., Radhakrishnan, J.: Expansion properties of (secure) wireless net-

works. In: Proc. of the 16th ACM Symp. on Parallelism in Algorithms and Archi-
tectures, pp. 281–285 (2004)

8. Dubhashi, D., Johansson, C., Häggström, O., Panconesi, A., Sozio, M.: Irrigating
ad hoc networks in constant time. In: Proc. of the 17th ACM Symp. on Parallelism
in Algorithms and Architectures, pp. 106–115 (2005)

9. Ellis, R., Jia, X., Yan, C.: On random points in the unit disk. Random Structures
and Algorithms 29(1), 14–25 (2005)

10. Leighton, T., Rao, S.: Multicommodity max-flow min-cut theorems and their use
in designing approximation algorithms. J. ACM 46(6), 787–832 (1999)

11. Pettarin, A., Pietracaprina, A., Pucci, G.: On the expansion and diameter of
Bluetooth-like topologies. Technical report,
http://www.dei.unipd.it/~pettarin/pubb/manu/PettarinPP09.pdf

12. Bilardi, G., Preparata, F.P.: Area-time lower-bound techniques with applications
to sorting. Algorithmica 1(1), 65–91 (1986)

http://www.dei.unipd.it/~pettarin/pubb/manu/PettarinPP09.pdf

Minimum Makespan Multi-vehicle Dial-a-Ride

Inge Li Gørtz1,�, Viswanath Nagarajan2, and R. Ravi3,��

1 Technical University of Denmark
ilg@imm.dtu.dk

2 IBM T.J. Watson Research Center
viswanath@us.ibm.com

3 Tepper School of Business, Carnegie Mellon University
ravi@cmu.edu

Abstract. Dial-a-Ride problems consist of a set V of n vertices in a metric space
(denoting travel time between vertices) and a set of m objects represented as
source-destination pairs {(si, ti)}m

i=1, where each object requires to be moved
from its source to destination vertex. In the multi-vehicle Dial-a-Ride problem,
there are q vehicles each having capacity k and where each vehicle j ∈ [q] has
its own depot-vertex rj ∈ V . A feasible schedule consists of a capacitated route
for each vehicle (where vehicle j originates and ends at its depot rj) that together
move all objects from their sources to destinations. The objective is to find a fea-
sible schedule that minimizes the maximum completion time (i.e. makespan) of
vehicles, where the completion time of vehicle j is the time when it returns to
its depot rj at the end of its route. We consider the preemptive version of multi-
vehicle Dial-a-Ride, where an object may be left at intermediate vertices and
transported by more than one vehicle, while being moved from source to des-
tination. Approximation algorithms for the single vehicle Dial-a-Ride problem
(q = 1) have been considered in [3,10].

Our main results are an O(log3 n)-approximation algorithm for preemptive
multi-vehicle Dial-a-Ride, and an improved O(log t)-approximation for its spe-
cial case when there is no capacity constraint (here t ≤ n is the number of distinct
depot-vertices). There is an Ω(log1/4 n) hardness of approximation known [9]
even for single vehicle capacitated preemptive Dial-a-Ride. We also obtain an
improved constant factor approximation algorithm for the uncapacitated multi-
vehicle problem on metrics induced by graphs excluding any fixed minor.

1 Introduction

The multi-vehicle Dial-a-Ride problem involves routing a set of m objects from their
sources to respective destinations using a set of q vehicles starting at t distinct depot
nodes in an n-node metric. Each vehicle has a capacity k which is the maximum number
of objects it can carry at any time. Two versions arise based on whether or not the
vehicle can use any node in the metric as a preemption (a.k.a. transshipment) point -
we study the less-examined preemptive version in this paper. The objective in these
problems is either the total completion time or the makespan (maximum completion
time) over the q vehicles, and again we study the more challenging makespan version

� Sponsored in part by a grant from the Carlsberg Foundation.
�� Supported in part by NSF grant CCF-0728841.

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 540–552, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Minimum Makespan Multi-vehicle Dial-a-Ride 541

of the problem. Thus this paper studies the preemptive, capacitated minimum makespan
multi-vehicle Dial-a-Ride problem.

While the multiple qualifications may make the problem appear contrived, this is
exactly the problem that models courier or mail delivery over a day from several city
depots: preemption is cheap and useful for packages, trucks are capacitated and the
makespan reflects the daily working time limit for each truck. Despite its ubiquity,
this problem has not been as well studied as other Dial-a-Ride versions. One reason
from the empirical side is the difficulty in handling the possibility of preemptions in a
clean mathematical programming model. On the theoretical side which is the focus of
this paper, the difficulty of using preemption in a meaningful way in an approximation
algorithm persists. It is further compounded by the hardness of the makespan objective.

The requirement in preemptive Dial-a-Ride, that preemptions are allowed at all ver-
tices, may seem unrealistic. In practice, a subset P of the vertex-set V represents the
vertices where preemption is permitted: the two extremes of this general problem are
non-preemptive Dial-a-Ride (P = ∅) and preemptive Dial-a-Ride (P = V). However
preemptive Dial-a-Ride is more generally applicable: specifically in situations where
the preemption-points P form a net of the underlying metric (i.e. every vertex in V has
a nearby preemption-point). I.e., approximation algorithms for preemptive Dial-a-Ride
imply good approximations even in this general setting, wherein the precise guarantee
depends on how well P covers V .

We note that although our model allows any number of preemptions and preemptions
at all vertices our algorithms do not use this possibility to its full extent. Our algorithm
for the capacitated case preempts each object at most once and our algorithm for the
uncapacitated case only preempts objects at depot vertices.

The preemptive Dial-a-Ride problem has been considered earlier with a single ve-
hicle, for which an O(log n) approximation [3] and an Ω(log1/4−ε n) hardness of ap-
proximation (for any constant ε > 0) [9] are known. Note that the completion time and
makespan objectives coincide for this case.

Moving to multiple vehicles, the total completion time objective admits a straightfor-
ward O(log n) approximation along the lines of the single vehicle problem [3]: Using
the FRT tree embedding [7], one can reduce to tree-metrics at the loss of an expected
O(log n) factor, and there is a simple constant approximation for this problem on trees.
The maximum completion time or makespan objective, which we consider in this paper
turns out to be considerably harder. Due to non-linearity of the makespan objective,
the above reduction to tree-metrics does not hold. Furthermore, the makespan objective
does not appear easy to solve even on trees.

Unlike in the single-vehicle case, note that an object in multi-vehicle Dial-a-Ride
may be transported by several vehicles one after the other. Hence it is important for the
vehicle routes to be coordinated so that the objects trace valid paths from respective
sources to destinations. For example, a vehicle may have to wait at a vertex for other
vehicles carrying common objects to arrive. Interestingly, the multi-vehicle Dial-a-Ride
problem captures aspects of both machine scheduling and network design problems.

Results and Paper Outline. We first consider the special case of multi-vehicle Dial-
a-Ride (uncapacitated mDaR) where the vehicles have no capacity constraints (i.e.
k ≥ m). This problem is interesting in itself, and serves as a good starting point before
we present the algorithm for the general case. The uncapacitated mDaR problem itself

542 I.L. Gørtz, V. Nagarajan, and R. Ravi

highlights differences from the single vehicle case: For example, in single vehicle Dial-
a-Ride, preemption plays no role in the absence of capacity constraints; however in
uncapacitated mDaR, an optimal non-preemptive schedule may take Ω(

√
q) longer

than the optimal preemptive schedule (see the full version of the paper). We prove the
following theorem in Section 2.

Theorem 1. There is an O(log t)-approximation algorithm for uncapacitated preemp-
tive mDaR obtaining a tour where objects are only preempted at depot vertices.

The above algorithm has two main steps: the first one reduces the instance (at a constant
factor loss in the performance guarantee) to one in which all demands are between
depots (a “depot-demand” instance). In the second step, we use a sparse spanner on the
demand graph to construct routes for moving objects across depots.

We also obtain an improved guarantee for the following special class of metrics using
the notion of sparse covers in such metrics [14].

Theorem 2. There is an O(1)-approximation algorithm for uncapacitated mDaR on
metrics induced by graphs that exclude any fixed minor.

In Section 3, we study the capacitated preemptive mDaR problem, and obtain our main
result. Recall that there is an Ω(log1/4−ε n) hardness of approximation for even sin-
gle vehicle Dial-a-Ride [9]. A feasible solution to preemptive mDaR is said to be 1-
preemptive if every object is preempted at most once while being moved from its source
to destination.

Theorem 3. There is an O(log3 n) approximation algorithm for preemptive mDaR
obtaining a 1-preemptive tour.

This algorithm has four key steps: (1) We preprocess the input so that demand points
that are sufficiently far away from each other can be essentially decomposed into sep-
arate instances for the algorithm to handle independently. (2) We then solve a single-
vehicle instance of the problem that obeys some additional bounded-delay property
(Theorem 6) that we prove; This property combines ideas from algorithms for light ap-
proximate shortest path trees [13] and capacitated vehicle routing [11]. The bounded-
delay property is useful in randomly partitioning the single vehicle solution among the
q vehicles available to share this load. This random partitioning scheme is reminiscent
of the work of Hochbaum-Maass [12], Baker [1] and Klein-Plotkin-Rao [14], in trying
to average out the effect of the cutting in the objective function. (3) The partitioned
segments of the single vehicle tour are assigned to the available vehicles; However, to
check if this assignment is feasible we solve a matching problem that identifies cases
when this load assignment must be rebalanced. This is perhaps the most interesting
step in the algorithm since it identifies stronger lower bounds for subproblems where
the current load assignment is not balanced. (4) We finish up by recursing on the load
rebalanced subproblem; An interesting feature of the recursion is that the fraction of
demands that are processed recursively is not a fixed value (as is more common in such
recursive algorithms) but is a carefully chosen function of the number of vehicles on
which these demands have to be served.

Due to lack of space some proofs are omitted from this paper. The proofs can be
found in the full version.

Minimum Makespan Multi-vehicle Dial-a-Ride 543

Related Work. Dial-a-Ride problems form an interesting subclass of Vehicle Routing
Problems that are well studied in the operations research literature. Paepe et al. [5] pro-
vide a classification of Dial-a-Ride problems using a notation similar to that for schedul-
ing and queuing problems: preemption is one aspect in this classification. Savelsberg
and Sol [18] and Cordeau and Laporte [4] survey several variants of non-preemptive
Dial-a-Ride problems that have been studied in the literature. Most Dial-a-Ride prob-
lems arising in practice involve making routing decisions for multiple vehicles.

Dial-a-Ride problems with transshipment (the preemptive version) have been stud-
ied in [15,16,17]. These papers consider a more general model where preemption is
allowed only at a specified subset of vertices. Our model (and that of [3]) is the spe-
cial case when every vertex can serve as a preemption point. It is clear that preemption
only reduces the cost of serving demands: [17] studied the maximum decrease in the
optimal cost upon introducing one preemption point. [15,16] also model time-windows
on the demands, and study heuristics and a column-generation based approach; they
also describe applications (eg. courier service) that allow for preemptions. The truck
and trailer routing problem has been studied in [2,19]. Here a number of capacitated
trucks and trailers are used to deliver all objects. Some customers are only accessible
without the trailer. The trailers can be parked at any point accessible with a trailer and it
is possible to shift demand loads between the truck and the trailer at the parking places.

For single vehicle Dial-a-Ride, the best known approximation guarantee for the pre-
emptive version is O(log n) (Charikar and Raghavachari [3]), and an Ω(log1/4−ε n)
hardness of approximation (for any constant ε > 0) is shown in Gørtz [9]. The non-
preemptive version appears much harder and the best known approximation ratio is
min{

√
k log n,

√
n log2 n} (Charikar and Raghavachari [3], Gupta et al. [10]); however

to the best of our knowledge, APX-hardness is the best lower bound. There are known
instances of single vehicle Dial-a-Ride where the ratio between optimal non-preemptive
and preemptive tours is Ω(

√
n) in general metrics [3], and Ω̃(n1/8) in the Euclidean

plane [10]. A 1.8-approximation is known for the k = 1 special case of single vehicle
Dial-a-Ride (a.k.a. stacker-crane problem) [8].

The uncapacitated case of preemptive mDaR is also a generalization of a problem
called nurse-station-location that was studied in Even et al. [6] (where a 4-approximation
algorithm was given). Nurse-station-location is a special case of uncapacitated mDaR
when each source-destination pair coincides on a single vertex. In this paper, we handle
not only the case with arbitrary pairs (uncapacitated mDaR), but also the more general
problem with finite capacity restriction.

Problem Definition and Preliminaries We represent a finite metric as (V, d) where
V is the set of vertices and d is a symmetric distance function satisfying the triangle
inequality. For subsets A, B ⊆ V we denote by d(A, B) the minimum distance between
a vertex in A and another in B, so d(A, B) = min{d(u, v) | u ∈ A, v ∈ B}. For a
subset E ⊆

(
V
2

)
of edges, d(E) :=

∑
e∈E de denotes the total length of edges in E.

The multi-vehicle Dial-a-Ride problem (mDaR) consists of an n-vertex metric (V, d),
m objects specified as source-destination pairs {si, ti}m

i=1, q vehicles having respective
depot-vertices {rj}q

j=1, and a common vehicle capacity k. A feasible schedule is a set
of q routes, one for each vehicle (where the route for vehicle j ∈ [q] starts and ends
at rj), such that no vehicle carries more than k objects at any time and each object is
moved from its source to destination. The completion time Cj of any vehicle j ∈ [q]

544 I.L. Gørtz, V. Nagarajan, and R. Ravi

is the time when vehicle j returns to its depot rj at the end of its route (the schedule is
assumed to start at time 0). The objective in mDaR is to minimize the makespan, i.e.,
min maxj∈[q] Cj . We denote by S := {si | i ∈ [m]} the set of sources, T := {ti | i ∈
[m]} the set of destinations, R := {rj | j ∈ [q]} the set of distinct depot-vertices, and
t := |R| the number of distinct depots. Unless mentioned otherwise, we only consider
the preemptive version, where objects may be left at intermediate vertices while being
moved from source to destination.

Single vehicle Dial-a-Ride. The following are lower bounds for the single vehicle prob-
lem: the minimum length TSP tour on the depot and all source/destination vertices
(Steiner lower bound), and

∑m
i=1 d(si,ti)

k (flow lower bound). Charikar and Raghavachari
[3] gave an O(log n) approximation algorithm for this problem based on the above
lower bounds. Gupta et al. [10] showed that the single vehicle preemptive Dial-a-Ride
problem always has a 1-preemptive tour of length O(log2 n) times the Steiner and flow
lower-bounds.

Lower bounds for mDaR. The quantity
∑m

i=1 d(si,ti)
qk is a lower bound similar to the

flow bound for single vehicle Dial-a-Ride. Analogous to the Steiner lower bound above,
is the optimal value of an induced nurse-station-location instance. In the nurse-station-
location problem [6], we are given a metric (V, d), a set T of terminals and a multi-
set {rj}q

j=1 of depot-vertices; the goal is to find a collection {Fj}q
j=1 of trees that

collectively contain all terminals T such that each tree Fj is rooted at vertex rj and
maxq

j=1 d(Fj) is minimized. Even et al. [6] gave a 4-approximation algorithm for this
problem. The optimal value of the nurse-station-location instance with depots {rj}q

j=1
(depots of vehicles in mDaR) and terminals T = S ∪ T is a lower bound for mDaR.
The following are some lower bounds implied by nurse-station-location: (a) 1/q times
the minimum length forest that connects every vertex in S ∪ T to some depot ver-
tex, (b) maxi∈[m] d(R, si), and (c) maxi∈[m] d(R, ti). Finally, it is easy to see that
maxi∈[m] d(si, ti) is also a lower bound for mDaR.

2 Uncapacitated Preemptive mDaR

In this section we study the uncapacitated special case of preemptive mDaR, where
vehicles have no capacity constraints (i.e., capacity k ≥ m). We give an algorithm that
achieves an O(log t) approximation ratio for this problem (recall t ≤ n is the number
of distinct depots). Unlike in the single vehicle case, preemptive and non-preemptive
versions of mDaR are very different even without capacity constraints (there exists an
Ω(
√

q) factor gap, where q is number of vehicles). The algorithm for uncapacitated pre-
emptive mDaR proceeds in two stages. Given any instance, it is first reduced (at the loss
of a constant factor) to a depot-demand instance, where all demands are between depot
vertices. Then the depot-demand instance is solved using an O(log t) approximation
algorithm.

Reduction to depot-demand instances. We define depot-demand instances as those
instances of uncapacitated mDaR where all demands are between depot vertices. Given
any instance I of uncapacitated mDaR, the algorithm UncapMulti (given below) re-
duces I to a depot-demand instance.

Minimum Makespan Multi-vehicle Dial-a-Ride 545

Input: instance I of uncapacitated preemptive mDaR.

1. Solve the nurse-station-location instance with depots {rj}q
j=1 and all sources/ des-

tinations S∪T as terminals, using the 4-approximation algorithm [6]. Let {Fj}q
j=1

be the resulting trees covering S ∪ T such that each tree Fj is rooted at depot rj .
2. Define a depot-demand instanceJ of uncapacitated mDaR on the same metric and

set of vehicles, where the demands are {(rj , rl) | si ∈ Fj & ti ∈ Fl, 1 ≤ i ≤ m}.
For any object i ∈ [m] let the source depot be the depot rj for which si ∈ Fj and
the destination depot be the depot rl for which ti ∈ Fl.

3. Output the following schedule for I:
(a) Each vehicle j ∈ [q] traverses tree Fj by an Euler tour, picks up all objects

from sources in Fj and brings them to their source-depot rj .
(b) Vehicles implement a schedule for depot-demand instance J , and all objects

are moved from their source-depot to destination-depot (see Section 2).
(c) Each vehicle j ∈ [q] traverses tree Fj by an Euler tour, picks up all objects

having destination-depot rj and brings them to their destinations in Fj .

Note that objects only are preempted at depot vertices. We now argue that the reduction
in UncapMulti only loses a constant approximation factor. Let B denote the optimal
makespan of instance I. Since the optimal value of the nurse-station-location instance
solved in the first step of UncapMulti is a lower bound for I, we have maxq

j=1 d(Fj) ≤
4B.

Claim. The optimal makespan for the depot-demand instance J is at most 17B.

Assuming a feasible schedule for J , it is clear that the schedule returned by Uncap-
Multi is feasible for the original instance I. The first and third rounds in I’s schedule
require at most 8B time each. Thus an approximation ratio α for depot-demand in-
stances implies an approximation ratio of 17α + 16 for general instances. Next we
show an O(log t)-approximation algorithm for depot-demand instances (here t is the
number of depots), which implies Theorem 1.

Algorithm for depot-demand instances. Let J be any depot-demand instance: note
that the instance defined in the second step of UncapMulti is of this form. It suffices to
restrict the algorithm to the induced metric (R, d) on only depot vertices, and use only
one vehicle at each depot in R. Consider an undirected graph H consisting of vertex
set R and edges corresponding to demands: there is an edge between vertices r and
s iff there is an object going from either r to s or s to r. Note that the metric length
of any edge in H is at most the optimal makespan B̃ of instance J . In the schedule
produced by our algorithm, vehicles will only use edges of H . Thus in order to obtain
an O(log t) approximation, it suffices to show that each vehicle only traverses O(log t)
edges. Based on this, we further reduce J to the following instanceH of uncapacitated
mDaR: the underlying metric is shortest paths in the graph H (on vertices R), with
one vehicle at each R-vertex, and for every edge (u, v) ∈ H there is a demand from u
to v and one from v to u. Clearly any schedule for H having makespan β implies one
for J of makespan β · B̃. The next lemma implies an O(log |R|) approximation for
depot-demand instances.

Lemma 4. There exists a poly-time computable schedule forHwith makespan O(log t),
where t = |R|.

546 I.L. Gørtz, V. Nagarajan, and R. Ravi

Proof: Let α =
lg t� + 1. We first construct a sparse spanner A of H as follows:
consider edges of H in an arbitrary order, and add an edge (u, v) ∈ H to A iff the
shortest path between u and v using current edges of A is more than 2α. It is clear from
this construction that the girth of A (length of its shortest cycle) is at least 2α, and that
for every edge (u, v) ∈ H , the shortest path between u and v in A is at most 2α.

We now assign each edge of A to one of its end-points such that each vertex is
assigned at most two edges. Repeatedly pick any vertex v of degree at most two in A,
assign its adjacent edges to v, and remove these edges and v from A. We claim that at
the end of this procedure (when no vertex has degree at most 2), all edges of A would
have been removed (i.e. assigned to some vertex). Suppose for a contradiction that this
is not the case. Let Ã �= φ be the remaining graph; note that Ã ⊆ A, so the girth of Ã is
at least 2α. Every vertex in Ã has degree at least 3, and there is at least one such vertex
w. Consider performing a breadth-first search in Ã from w. Since the girth of Ã is at
least 2α, the first α levels of the breadth-first search is a tree. Furthermore every vertex
has degree at least 3, so each vertex in the first α− 1 levels has at least 2 children. This
implies that Ã has at least 1 + 2α−1 > t vertices, which is a contradiction! For each
vertex v ∈ R, let Av denote the edges of A assigned to v by the above procedure; we
argued that ∪v∈RAv = A, and |Av| ≤ 2 for all v ∈ R.

The schedule for H involves 2α rounds as follows. In each round, every vehicle
v ∈ R traverses the edges in Av (in both directions) and returns to v. Since |Av| ≤ 2
for all vertices v, each round takes 4 units of time; so the makespan of this schedule is
8α = O(log t). The route followed by each object in this schedule is the shortest path
from its source to destination in spanner A; note that the length of any such path is at
most 2α. To see that this is indeed feasible, observe that every edge of A is traversed
by some vehicle in each round. Hence in each round, every object traverses one edge
along its shortest path (unless it is already at its destination). Thus after 2α rounds, all
objects are at their destinations.

Tight example for uncapacitated mDaR lower bounds. We note that known lower
bounds for uncapacitated preemptive mDaR are insufficient to obtain a sub-logarithmic
approximation guarantee. The lower bounds we used in our algorithm are the follow-
ing: maxi∈[m] d(si, ti), and the optimal value of a nurse-station-location instance with
depots {rj}q

j=1 and terminals S ∪ T . We are not aware of any lower bounds stronger
than these two bounds. There exist instances of uncapacitated mDaR where the optimal
makespan is a factor Ω(log t

loglog t) larger than both the above lower bounds.

3 Preemptive Multi-vehicle Dial-a-Ride

In this section we prove our main result: an O(log2 m · log n) approximation algorithm
for the preemptive mDaR problem. In the full version we remove this dependence on
m, to obtain Theorem 3. We first prove a new structure theorem on single-vehicle Dial-
a-Ride tours (Subsection 3.1) that preempts each object at most once, and where the
total time spent by objects in the vehicle is small. Obtaining such a single vehicle tour
is crucial in our algorithm for preemptive mDaR, which appears in Section 3.2. The
algorithm for mDaR relies on a partial coverage algorithm Partial that, given subsets
Q of vehicles and D of demands, outputs a schedule for Q of near-optimal makespan
that covers some fraction of demands in D. Algorithm Partial follows an interesting

Minimum Makespan Multi-vehicle Dial-a-Ride 547

recursive framework where the fraction of satisfied demands is not a fixed value but
some function of the number |Q| of vehicles (Lemma 7). The main steps in Partial are
as follows. (1) Obtain a single-vehicle tour satisfying 1-preemptive and bounded-delay
properties (Theorem 6), (2) Randomly partition the single vehicle tour into |Q| equally
spaced pieces, (3) Solve a matching problem to assign some of these pieces to vehicles
of Q that satisfy a subset of demands D, (4) A suitable fraction of the residual demands
in D are covered recursively by unused vehicles of Q.

3.1 Capacitated Vehicle Routing with Bounded Delay

Before we present the structural result on Dial-a-Ride tours, we consider the classic
capacitated vehicle routing problem [11] with an additional constraint on object ‘de-
lays’. In the capacitated vehicle routing problem (CVRP) we are given a metric (V, d),
specified depot-vertex r ∈ V , and m objects each having source r and respective desti-
nations {ti}i∈[m]. The goal is to compute a minimum length non-preemptive tour of a
capacity k vehicle originating at r that moves all objects from r to their destinations. In
CVRP with bounded delay, we are additionally given a delay parameter β > 1, and the
goal is to find a minimum length capacitated non-preemptive tour serving all objects
such that the time spent by each object i ∈ [m] in the vehicle is at most β · d(r, ti). The
following are natural lower bounds [11], even without the bounded delay constraint: (i)
the minimum length TSP tour on {r} ∪ {ti | i ∈ [m]} (cf. Steiner lower bound), and
(ii) the quantity 2

k

∑m
i=1 d(r, ti) (cf. flow lower bound).

Theorem 5. There is a (2.5 + 3
β−1) approximation algorithm for CVRP with bounded

delay, where β > 1 is the delay parameter. This guarantee is relative to the Steiner and
flow lower bounds.

We now consider the single vehicle preemptive Dial-a-Ride problem given by metric
(V, d), set D of demands, and a vehicle of capacity k. We prove the following structural
result which extends a result from [10].

Theorem 6. There is a randomized poly-time computable 1-preemptive tour τ ser-
vicing D that satisfies the following conditions (where LBpmt is the maximum of the
Steiner and flow lower bounds):

1. Total length: d(τ) ≤ O(log2 n) · LBpmt.
2. Bounded delay:

∑
i∈D Ti ≤ O(log n)

∑
i∈D d(si, ti) where Ti is the total time

spent by object i ∈ D in the vehicle under the schedule given by τ .

3.2 Algorithm for Preemptive mDaR

The algorithm first guesses the optimal makespan B of the given instance of preemptive
mDaR (it suffices to know B within a constant factor for a polynomial-time algorithm).
Let α = 1− 1

1+lg m . For any subset Q ⊆ [q], we abuse the notation and use Q to denote
both the set of vehicles Q and the multi-set of depots corresponding to vehicles Q.

We give an algorithm Partial that takes as input a tuple 〈Q, D, B〉 where Q ⊆ [q]
is a subset of vehicles, D ⊆ [m] a subset of demands and B ∈ R+, with the promise
that vehicles Q (originating at their respective depots) suffice to completely serve the

548 I.L. Gørtz, V. Nagarajan, and R. Ravi

demands D at a makespan of B. Given such a promise, Partial 〈Q, D, B〉 returns a
schedule of makespan O(log n logm) · B that serves a good fraction of D. Algorithm
Partial〈Q, D, B〉 is given in below. We set parameter ρ = Θ(log n logm), the precise
constant in the Θ-notation comes from the analysis.

Input: Vehicles Q ⊆ [q], demands D ⊆ [m], bound B ≥ 0 such that Q can serve D at
makespan B.

Preprocessing
1. If the minimum spanning tree (MST) on vertices Q contains an edge of length

greater than 3B, there is a non-trivial partition {Q1, Q2} of Q with d(Q1, Q2) >
3B. For j ∈ {1, 2}, let Vj = {v ∈ V | d(Qj , v) ≤ B} and Dj be all demands
of D induced on Vj . Run in parallel the schedules from Partial〈Q1, D1, B〉 and
Partial〈Q2, D2, B〉. Assume there is no such long edge in the following.
Random partitioning

2. Obtain single-vehicle 1-preemptive tour τ using capacity k and serving demands
D (Theorem 6).

3. Choose a uniformly random offset η ∈ [0, 2ρB] and cut edges of tour τ at distances
{2pρB + η | p = 1, 2, · · · } along the tour to obtain a set P of pieces of τ .

4. C′′ is the set of objects i ∈ D such that i is carried by the vehicle in τ over some
edge that is cut in Step (3); and C′ := D \C′′. Ignore the cut objects C′′ in the rest
of the algorithm.
Load rebalancing

5. Construct a bipartite graph H with vertex sets P and Q and an edge between piece
P ∈ P and depot f ∈ Q iff d(f, P) ≤ 2B. For any subset A ⊆ P , Γ (A) ⊆ Q
denotes the neighborhood of A in graph H . Let S ⊆ P be any maximal set that
satisfies |Γ (S)| ≤ |S|

2 .
6. Compute a 2-matching π : P \S → Q\Γ (S), i.e., a function such that the number

of pieces mapping to any f ∈ Q \ Γ (S) is |π−1(f)| ≤ 2.
Recursion

7. Define C1 := {i ∈ C′ | either si ∈ S or ti ∈ S}; and C2 := C′ \ C1.
8. Run in parallel the recursive schedule Partial〈Γ (S), C1, B〉 for C1 and the follow-

ing for C2:
(a) Each vehicle f ∈ Q\Γ (S) traverses the pieces π−1(f), moving all C2-objects

in them from their source to preemption-vertex, and returns to its depot.
(b) Each vehicle f ∈ Q\Γ (S) again traverses the pieces π−1(f), this time moving

all C2-objects in them from their preemption-vertex to destination, and returns
to its depot.

Output: A schedule for vehicles Q of makespan (16 + 16ρ) · B that serves an
αlg min{|Q|,2m} fraction of D.

Lemma 7. If there exists a schedule for vehicles Q covering all demands D, having
makespan at most B, then Partial invoked on 〈Q, D, B〉 returns a schedule of vehicles
Q of makespan at most (16 + 16ρ) · B that covers at least an αlg z fraction of D (here
z := min{|Q|, 2m} ≤ 2m).

The final algorithm invokes Partial iteratively until all demands are covered: each time
with the entire set [q] of vehicles, all uncovered demands, and bound B. If D ⊆ [m] is

Minimum Makespan Multi-vehicle Dial-a-Ride 549

the set of uncovered demands at any iteration, Lemma 7 implies that Partial〈[q], D, B〉
returns a schedule of makespan O(log m log n) · B that serves at least 1

4 |D| demands.
Hence a standard set-cover analysis implies that all demands will be covered in O(logm)
rounds, resulting in a makespan of O(log2 m log n) · B.

It remains to prove Lemma 7. We proceed by induction on the number |Q| of vehi-
cles. The base case |Q| = 1 reduces to the single vehicle preemptive Dial-a-Ride, where
we can serve all the demands D in a 1-preemptive fashion at makespan O(log2 n) · B
using the algorithm from [10]. In the rest of this section, we prove the inductive step.

Preprocessing. Suppose Step (1) applies. Note that d(V1, V2) > B and hence there is
no demand with source in one of {V1, V2} and destination in the other. So demands D1
and D2 partition D. Furthermore in the optimal schedule, vehicles Qj (any j = 1, 2)
only visit vertices in Vj (otherwise the makespan would be greater than B). Thus the
two recursive calls to Partial satisfy the assumption: there is some schedule of vehicles
Qj serving Dj having makespan B. Inductively, the schedule returned by Partial for
each j = 1, 2 has makespan at most (16 + 16ρ) · B and covers at least αlg c · |Dj |
demands from Dj , where c ≤ min{|Q| − 1, 2m} ≤ z. The schedules returned by
the two recursive calls to Partial can clearly be run in parallel and this covers at least
αlg z(|D1|+ |D2|) demands, i.e. an αlg z fraction of D. So we have the desired perfor-
mance in this case.

Random partitioning. The harder part of the analysis is when Step (1) does not apply:
so the MST length on Q is at most 3|Q| ·B. Note that when the depots Q are contracted
to a single vertex, the MST on the end-points of D plus the contracted depot-vertex has
length at most |Q| · B (the optimal makespan schedule induces such a tree). Thus the
MST on the depots Q along with end-points of D has length at most 4|Q| · B. Based
on the assumption in Lemma 7 and the flow lower bound, we have

∑
i∈D d(si, ti) ≤

k|Q| · B. It follows that for the single vehicle Dial-a-Ride instance solved in Step (2),
the Steiner and flow lower-bounds (denoted LBpmt in Theorem 6) are O(1) · |Q|B.
Theorem 6 now implies that τ is a 1-preemptive tour τ servicing D, of length at most
O(log2 n)|Q| · B such that

∑
i∈D Ti ≤ O(log n) · |D|B, where Ti denotes the total

time spent in the vehicle by demand i ∈ D. The bound on the delay uses the fact that
maxm

i=1 d(si, ti) ≤ B.
Choosing a large enough constant corresponding to ρ = Θ(log n log m), the length

of τ is upper bounded by ρ|Q| ·B (since n ≤ 2m). So the cutting procedure in Step (3)
results in at most |Q| pieces of τ , each of length at most 2ρB. The objects i ∈ C′′ (as
defined in Step (4)) are called cut objects. We restrict our attention to the other objects
C′ = D \ C′′ that are not ‘cut’. For each object i ∈ C′, the path traced by it (under
single vehicle tour τ) from its source si to preemption-point and the path (under τ) from
its preemption-point to ti are each completely contained in pieces of P . Figure 1 gives
an example of objects in C′ and C′′, and the cutting procedure.

Claim. The expected number of objects in C′′ is at most
∑

i∈D
Ti

2ρB ≤ O(1
log m) · |D|.

We can derandomize Step (3) and pick the best offset η (there are at most polynomially
many combinatorially distinct offsets). Claim 3.2 implies (again choosing large enough
constant in ρ = Θ(log n log m)) that |C′| ≥ (1− 1

2 lg m)|D| ≥ α · |D| demands are not
cut. From now on we only consider the set C′ of uncut demands. LetP denote the pieces
obtained by cutting τ as above, recall |P| ≤ |Q|. A piece P ∈ P is said to be non-trivial

550 I.L. Gørtz, V. Nagarajan, and R. Ravi

if the vehicle in the 1-preemptive tour τ carries some C′-object while traversing P .
Note that the number of non-trivial pieces in P is at most 2|C′| ≤ 2m: each C′-object
appears in at most 2 pieces, one where it is moved from source to preemption-vertex
and other from preemption-vertex to destination. Retain only the non-trivial pieces in
P ; so |P| ≤ min{|Q|, 2m} = z. The pieces in P may not be one-one assignable to the
depots since the algorithm has not taken the depot locations into account. We determine
which pieces may be assigned to depots by considering a matching problem between P
and the depots in Step (5) and (6).

Load rebalancing. The bipartite graph H (defined in Step (5)) represents which pieces
and depots may be assigned to each other. Piece P ∈ P and depot f ∈ Q are assignable
iff d(f, P) ≤ 2B, and in this case graph H contains an edge (P, f). We claim that
corresponding to the ‘maximal contracting’ set S (defined in Step (5)), the 2-matching
π (in Step (6)) is guaranteed to exist. Note that |Γ (S)| ≤ |S|

2 , but |Γ (T)| > |T |
2 for all

T ⊃ S. For any T ′ ⊆ P \ S, let Γ̃ (T ′) denote the neighborhood of T ′ in Q \ Γ (S).
The maximality of S implies: for any non-empty T ′ ⊆ P \ S, |S|

2 + |T ′|
2 = |S∪T ′|

2 <

|Γ (S ∪ T ′)| = |Γ (S)|+ |Γ̃ (T ′)|, i.e. |Γ̃ (T ′)| ≥ |T ′|
2 . Hence by Hall’s condition, there

is a 2-matching π : P \ S → Q \ Γ (S). The set S and 2-matching π can be easily
computed in polynomial time.

Tour τ p1

s1

t2
p2

t1

p1

p2

The 1-preemptive tour τ is cut at the dashed lines.

Object 1 is in C ′, it is not cut.

Object 2 is not in C ′, it is a cut object.

s2

S
Γ(S)

P Q

The bipartite graph H

The 2-matching π is shown by dashed edges.

Solved recursively

Fig. 1. Cutting and patching steps in algorithm Partial

Recursion. In Step (7), demands C′ are further partitioned into two sets: C1 consists of
objects that are either picked-up or dropped-off in some piece of S; and C2-objects are
picked-up and dropped-off in pieces of P \S. The vehicles Γ (S) suffice to serve all C1
objects, as shown below.

Claim. There exists a schedule of vehicles Γ (S) serving C1, with makespan B.

In the final schedule, a large fraction of C1 demands are served by vehicles Γ (S), and
all the C2 demands are served by vehicles Q\Γ (S). Figure 1 shows an example of this
partition.

Serving C1 demands. Based on Claim 3.2, the recursive call Partial 〈Γ (S), C1, B〉
(made in Step (8)) satisfies the assumption required in Lemma 7. Since |Γ (S)| ≤

Minimum Makespan Multi-vehicle Dial-a-Ride 551

|P|
2 ≤ |Q|

2 < |Q|, we obtain inductively that Partial 〈Γ (S), C1, B〉 returns a sched-
ule of makespan (16 + 16ρ) · B covering at least αlg y · |C1| demands of C1, where
y = min{|Γ (S)|, 2m}. Note that y ≤ |Γ (S)| ≤ |P|/2 ≤ z/2 (as |P| ≤ z), which
implies that at least αlg z−1|C1| demands are covered.

Serving C2 demands. These are served by vehicles Q\Γ (S) using the 2-matching π, in
two rounds as specified in Step (8). This suffices to serve all objects in C2 since for any
i ∈ C2, the paths traversed by object i under τ , namely si � pi (its preemption-point)
and pi � ti are contained in pieces of P \ S. Furthermore, since |π−1(f)| ≤ 2 for all
f ∈ Q\Γ (S), the distance traveled by vehicle f in one round is at most 2·2(2B+2ρB).
So the time taken by this schedule is at most 2 · 4(2B + 2ρB) = (16 + 16ρ) ·B.

The schedule of vehicles Γ (S) (serving C1) and vehicles Q \Γ (S) (serving C2) can
clearly be run in parallel. This takes time (16 + 16ρ) · B and covers in total at least
|C2|+ αlg z−1|C1| ≥ αlg z−1|C′| ≥ αlg z|D| demands of D. This proves the inductive
step of Lemma 7.

Using Lemma 7 repeatedly as mentioned earlier, we obtain an O(log2 m · log n)
approximation algorithm for capacitated preemptive mDaR.

References

1. Baker, B.S.: Approximation Algorithms for NP-Complete Problems on Planar Graphs.
J. ACM 41, 153–180 (1994)

2. Chao, I.-M.: A tabu search method for the truck and trailer routing problem. Computer &
Operations Research 29, 469–488 (2002)

3. Charikar, M., Raghavachari, B.: The Finite Capacity Dial-A-Ride Problem. In: FOCS, pp.
458–467 (1998)

4. Cordeau, J.-F., Laporte, G.: The Dial-a-Ride Problem (DARP): Variants, modeling issues and
algorithms. 4OR: A Quarterly Journal of Operations Research 1(2) (2003)

5. de Paepe, W.E., Lenstra, J.K., Sgall, J., Sitters, R.A., Stougie, L.: Computer-Aided Complex-
ity Classification of Dial-a-Ride Problems. Informs J. Comp. 16(2), 120–132 (2004)

6. Even, G., Garg, N., Könemann, J., Ravi, R., Sinha, A.: Covering Graphs Using Trees and
Stars. In: Arora, S., Jansen, K., Rolim, J.D.P., Sahai, A. (eds.) RANDOM 2003 and APPROX
2003. LNCS, vol. 2764, pp. 24–35. Springer, Heidelberg (2003)

7. Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on approximating arbitrary metrics
by tree metrics. In: STOC, pp. 448–455 (2003)

8. Frederickson, G.N., Hecht, M.S., Kim, C.E.: Approximation algorithms for some routing
problems. SIAM J. Comput. 7(2), 178–193 (1978)

9. Gørtz, I.L.: Hardness of Preemptive Finite Capacity Dial-a-Ride. In: Dı́az, J., Jansen, K.,
Rolim, J.D.P., Zwick, U. (eds.) APPROX 2006 and RANDOM 2006. LNCS, vol. 4110, pp.
200–211. Springer, Heidelberg (2006)

10. Gupta, A., Hajiaghayi, M., Nagarajan, V., Ravi, R.: Dial a Ride from k-forest. In: Arge,
L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 241–252. Springer,
Heidelberg (2007)

11. Haimovich, M., Kan, A.H.G.R.: Bounds and heuristics for capacitated routing problems.
Math. Oper. Res. 10, 527–542 (1985)

12. Hochbaum, D., Maass, W.: Approximation Schemes for Covering and Packing Problems in
Image Processing and VLSI. J. ACM 32, 130–136 (1985)

13. Khuller, S., Raghavachari, B., Young, N.: Balancing minimum spanning and shortest path
trees. In: SODA, pp. 243–250 (1993)

552 I.L. Gørtz, V. Nagarajan, and R. Ravi

14. Klein, P., Plotkin, S.A., Rao, S.: Excluded minors, network decomposition, and multicom-
modity flow. In: STOC, pp. 682–690 (1993)

15. Mitrović-Minić, S., Laporte, G.: The Pickup and Delivery Problem with Time Windows and
Transshipment. INFOR Inf. Syst. Oper. Res. 44, 217–227 (2006)

16. Mues, C., Pickl, S.: Transshipment and time windows in vehicle routing. In: 8th Int. Symp.
on Parallel Architectures, Algorithms and Networks, pp. 113–119 (2005)

17. Nakao, Y., Nagamochi, H.: Worst case analysis for pickup and delivery problems with trans-
fer. IEICE Trans. on Fund. of Electronics, Comm. and Computer Sci. E91-A(9) (2008)

18. Savelsbergh, M., Sol, M.: The general pickup and delivery problem. Transportation Sci-
ence 29, 17–29 (1995)

19. Scheuerer, S.: A tabu search heuristic for the truck and trailer routing problem. Computer &
Operations Research 33, 894–909 (2006)

Google’s Auction for TV Ads

Noam Nisan

The Selim and Rachel Benin School of Computer Science and Engineering
The Hebrew University of Jerusalem

and Google, Tel-Aviv
noam@cs.huji.ac.il

Abstract. This talk describes the auction system used by Google for
allocation and pricing of TV ads. It is based on a simultaneous ascending
auction, and has been in use since September 2008.

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, p. 553, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Inclusion/Exclusion Meets
Measure and Conquer

Exact Algorithms for Counting Dominating Sets

Johan M.M. van Rooij1, Jesper Nederlof2,�, and Thomas C. van Dijk1

1 Department of Information and Computing Sciences, Utrecht University,
P.O.Box 80.089, 3508 TB Utrecht, The Netherlands

{jmmrooij,thomasd}@cs.uu.nl
2 Department of Informatics, University of Bergen,

N-5020 Bergen, Norway
Jesper.Nederlof@ii.uib.no

Abstract. In this paper, two central techniques from the field of ex-
ponential time algorithms are combined for the first time: inclusion/ex-
clusion and branching with measure and conquer analysis.

In this way, we have obtained an algorithm that, for each κ, counts the
number of dominating sets of size κ in O(1.5048n) time. This algorithm
improves the previously fastest algorithm that counts the number of
minimum dominating sets. The algorithm is even slightly faster than the
previous fastest algorithm for minimum dominating set, thus improving
this result while computing much more information.

When restricted to c-dense graphs, circle graphs, 4-chordal graphs or
weakly chordal graphs, our combination of branching with inclusion/ex-
clusion leads to significantly faster counting and decision algorithms than
the previously fastest algorithms for dominating set.

All results can be extended to counting (minimum) weight dominating
sets when the size of the set of possible weight sums is polynomially
bounded.

1 Introduction

Recently, the field of exact exponential time algorithms has been an area of
growing interest. Maybe the most notable recent developments are measure
and conquer [10,11] and inclusion/exclusion [1,5,17]. Both techniques have been
demonstrated on Set Cover problems in early stages: measure and conquer
was introduced on a set cover formulation of Dominating Set, and in [5] in-
clusion/exclusion was used for counting sets coverings and set partitionings.

In this paper, we show that it is possible to use both techniques in one com-
bined approach. This allows for fast measure and conquer running times on
inclusion/exclusion based algorithms.

� This research was done while all authors were associated with Utrecht University.

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 554–565, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Inclusion/Exclusion Meets Measure and Conquer 555

The best known shape of inclusion/exclusion is the formula summing over
some powerset; see [3,5,17]. However, the fundamental branching perspective
from [1] is more direct and powerful. In this paper, we will apply this branching
perspective to set cover instances obtained from the set cover formulation of
dominating set that has been used to introduce measure and conquer [10,16].

In this setting, we use a traditional branching rule to branch on a set, or an ap-
plication of inclusion/exclusion to branch on an element. The sole application of
either one of these strategies gives a typical exhaustive search or the aforemen-
tioned shape of inclusion/exclusion sum, respectively. We use both branching
strategies in unity obtaining a mixed inclusion/exclusion branching algorithm
that can be analysed using measure and conquer.

Until 2004, no exact algorithm for Dominating Set beating the trivial
O(2nnO(1)) was known. In that year, three algorithms were published [13,16,20],
the fastest of which is Grandoni’s running in time O(1.8019n) [16]. One year
later, the algorithm of Grandoni was analysed using measure and conquer giv-
ing a bound of O(1.5137n) on the running time [10]. This was later improved by
Van Rooij and Bodlaender [21] to O(1.5063n).

When we want to count minimum dominating sets, there is an algorithm by
Fomin et al. running in time O(1.5535n) [9]. This algorithm combines branch-
ing with path decomposition techniques: something we will use for our own
algorithm as well. Also related is a result by Björklund and Husfeldt solving
this problem on cubic graphs in O(1.3161n) using path decompositions in com-
bination with inclusion/exclusion [3]. To our knowledge, there are no existing
algorithms combining measure and conquer with inclusion/exclusion.

Our algorithm is more general. It counts the number of dominating sets in an
n-vertex graph of each size 0 ≤ κ ≤ n, with an upper bound on the running time
of O(1.5048n). This is slightly faster than even the current fastest algorithm that
computes a minimum dominating set.

Gaspers et al. [14] show that algorithms for the set cover formulation of domi-
nating set can be combined with dynamic programming over tree decompositions
to obtain faster running times for the dominating set problem restricted to some
graph classes. These classes are c-dense graphs, chordal graphs, circle graphs,
4-chordal graphs and weakly chordal graphs. We show that our mixed branching
approach with inclusion/exclusion branches works even better on four of these
graph classes; we do not only improve these results because we have a faster
algorithm for the underlying set cover problem, but do so more significantly by
exploiting vertices of high degree twice by using both techniques. Moreover, we
can count the number of dominating sets of each size, in contrast to the previous
results that only compute a single minimum dominating set.

2 Preliminaries

We consider the #κ-Dominating Set problem: how many dominating sets of
size κ exist for G, i.e., how many subsets V ′ ⊆ V with |V ′| = κ such that for all
u ∈ V \V ′ there is a v ∈ V ′ for which (u, v) ∈ E?

556 J.M.M. van Rooij, J. Nederlof, and T.C. van Dijk

We formulate the problem as the set cover variant #κ-Set Cover [16]: given
a collection of subsets S of a finite universe U and a positive integer κ, how
many set covers for U of size κ does S contain? The transformation between this
problem and our original problem is straightforward: for every vertex in v ∈ V
we introduce both an element in U and a set in S corresponding to N [v]. We now
use the cardinality |S| of the set S and the frequency f(e) of the element e instead
of the degree of a vertex. The dimension of a set cover instance is defined as
dim(S,U) = |S|+|U|. Hence, an n-vertex dominating set instance is transformed
into a set cover instance of dimension d = 2n.

We also look at the problem as a #κ-Red/Blue Dominating Set problem
in the incidence graph of the set cover instance [9]. The incidence graph is the
bipartite graph with red vertices VRed = S and blue vertices VBlue = U . Vertices
S ∈ VRed and u ∈ VBlue are adjacent if and only if u ∈ S. In this problem, we
count the number of ways to take κ red vertices to dominate all the blue vertices.
It is easy to see that this perspective is equivalent to the set cover variant.

Finally, we assume the reader to be familiar with the concepts of a (nice) tree
decomposition and a (nice) path decompositions of a graph, and how to perform
dynamic programming over these structures. For a good overview see [6,7].

3 Inclusion/Exclusion Based Branching

We will begin by showing that one can look at Inclusion/Exclusion as a branching
rule [2]. In this way, we can Inclusion/Exclusion-branch on an element in a Set

Cover instance in the same way as one would normally branch on a set.
A set S is optional in an instance, if either S is in the solution, or S is not.

Branching on this choice is straightforward: the total number of set covers of
size κ equals the number of set covers of size κ − 1 after we take S (require),
plus the number of set covers of size κ after we discard S (forbid). I.e.:

optional = required + forbidden

We now consider branching on an element [2]. This may appear strange at first
as elements are not optional. Inspired by Inclusion/Exclusion techniques, we can,
however, rearrange the above formula to give:

required = optional− forbidden

That is, the number of solutions that cover an element e is equal to the number
of solutions in which covering e is optional (maybe cover e), minus the number
of solutions in which covering e is forbidden (that do not cover e). We call this
type of branching inclusion/exclusion based branching or simply IE-branching.

Notice that both branching rules are symmetric when applied to the incidence
graph representation of our problem: in one branch a (red or blue) vertex is
removed, and in the other, this vertex and its neighbours are removed.

An algorithm that branches on every set is called exhaustive search, while an
algorithm that solely use IE-branching is an inclusion/exclusion algorithm.

Inclusion/Exclusion Meets Measure and Conquer 557

To see the relation to the inclusion/exclusion formula [5], let cκ be the number
of set covers of cardinality κ, and let a(X) be the number of sets in S that do
not contain any element in X . Consider the branching tree after exhaustively
applying IE-branching and look at the contribution of a leaf to the total number
computed. In each leaf of the tree, each element is either optional or forbidden;
the 2|U| leaves represent the possible subsets X ⊆ U of forbidden elements. The
contribution of this leaf equals the number of set covers of cardinality κ where it
is optional to cover each element not in X and forbidden to cover an element in
X , i.e.

(
a(X)

κ

)
. A minus sign is added for each time we have entered a forbidden

branch, so the total contribution equals (−1)|X|(a(X)
κ

)
. This leads to the formula

given below on the left. Compare this to the inclusion/exclusion formula [5] on
the right: the difference comes from the fact that Björklund et al. allow a single
set to be picked multiple times while we do not.

cκ =
∑
X⊆U

(−1)|X|
(

a(X)
κ

)
c′κ =

∑
X⊆U

(−1)|X|a(X)κ

4 An Algorithm for Counting Dominating Sets

We start by applying our combined technique to the problem of counting dom-
inating sets. The previously fastest algorithm that counts the number of mini-
mum dominating sets is by Fomin et al. [9]. Their algorithm combines pathwidth
techniques with branching and measure and conquer analysis. We present a mod-
ification of this algorithm (Algorithm 1) that solves the #κ-Dominating Set

problem. This algorithm computes the number of dominating sets of each size
κ (0 ≤ κ ≤ n) in O(1.5048n) time improving both the results of [9] and the
previously fastest algorithm for minimum dominating set [21].

Algorithm 1 works on the #κ-Set Cover transformation of the problem and
returns a list containing the number of set covers nκ of size κ for each 0 ≤ κ ≤ n.
It is a branch and reduce algorithm, branching both on sets and elements as
discussed in Section 3. When an instance generated by the branching is sparse
enough, the algorithm will compute a path decomposition of the incidence graph
of the instance. The algorithm then solves this instance by dynamic programming
on this path decomposition.

Algorithm 1 takes as input a collection of sets S forming a #κ-Set Cover

instance, and a multiplicity function m. This function m exists because we want
to avoid identical sets to be created by the algorithm; the algorithm deals with
multiple identical sets by using the multiplicity counters in m. We will begin by
describing a series of polynomial time reduction rules that Algorithm 1 applies
before branching or applying pathwidth techniques.

Base Case
Some inputs can be completely reduced to a collection of m′ empty sets by the
reduction rules below. There are no elements left, and we only have empty sets
to choose from, therefore the algorithm returns nκ =

(
m′
k

)
for each 0 ≤ κ ≤ n.

558 J.M.M. van Rooij, J. Nederlof, and T.C. van Dijk

Algorithm 1. Count-SC(S,m)
Input: A collection of sets S over the universe U = ∪S and a multiplicity function m.
Output: A list n of length #(S) + 1 containing the number of set covers of (S ,U) of

each size 0 ≤ κ ≤ #(S).
1: //reduction rules
2: if S equals a collection of m′ = m(∅) empty sets then //base case
3: return (

(
m′
0

)
,
(

m′
1

)
, . . . ,

(
m′
m′
)
)

4: else if there exist identical sets in S then //identical sets
5: Remove the identical sets from S and update the multiplicity function m.
6: return Count-SC(S,m)
7: else if there exists an element e ∈ U of frequency one then //unique elements
8: Let S ′ be S after removing the set S with e ∈ S and let ntake = Count-SC(S,m)

9: return ntake after updating it using the multiplicity of S in formula 1
10: else if there exist two elements e, e′ ∈ U such that for all S ∈ S : if e ∈ S, then

e′ ∈ S then //subsumption
11: Let S ′ = {S\{e′} | S ∈ S}, and update m such that it now works on S ′

12: return Count-SC(S ′,m)
13: else if if S can be partitioned in two subcollections C, C̄ such that every element

of e ∈ U occurs either in C or in C̄ and not in both then //connected components
14: Let nC = Count-SC(C,m), and nC̄ = Count-SC(C̄,m)
15: return The solution to S by merging nC and nC̄ using formula 2
16: end if
17:
18: //branching or path decomposition
19: Let S ∈ S be of maximum cardinality and not an exceptional case1

20: Let e ∈ U be of maximum frequency, also not an exceptional case1

21: Preference order P: S4 < S5 < S6 < E5 < E6 < S7 < E7 < E≥8 = S≥8

22: if S|S| and Efreq(e) are too small to be in P then //path decomposition
23: Compute a path decomposition PI of the incidence graph of (S ,U)
24: return The solution to S obtained by dynamic programming over PI .
25: else if Efreq(e) is in the order P and Efreq(e) �< S|S| then //element branch
26: Let S ′ = {S\{e′} | S ∈ S}, and update m such that it now works on S ′

27: Let noptional = Count-SC(S ′,m)
28: Let nforbidden = Count-SC(S \ {S ∈ S | e ∈ S},m)
29: return noptional − nforbidden

30: else //S|S| is in the order P and S|S| �< Efreq(e) //set branch
31: Let S ′ = {S′\S | S′ ∈ (S \ {S})}, and update m such that it now works on S ′

32: Let ntake = Count-SC(S ′,m)
33: Update ntake using the multiplicity of S in formula 1
34: Let ndiscard = Count-SC(S \ {S},m)
35: return ntake + ndiscard

36: end if
1 There are some exceptional combinations of cardinalities of sets and frequencies of
elements on which the algorithm will not branch. These will be handled by the path
decomposition phase. For a complete list of these cases see Overview 1.

Inclusion/Exclusion Meets Measure and Conquer 559

Identical Sets
When S contains identical sets, we remove all but one copies of this set and keep
track of this using multiplicity counters in m. We can do this because taking at
least one copy in a solution will result in the same subproblem regardless of the
number of copies chosen. Whenever the set is explicitly taken in a solution later
on, we compute the required result from the values from the recursive call n′

κ

using the formula below.

nκ =
m∑

i=1

(
m

i

)
n′

κ−i (1)

To avoid confusion, we consider copies of sets to be removed when considering
the frequency of its elements or the number of sets in S.

Unique Elements
Whenever there exists an element e of frequency one in U , the set S containing e
must belong to every set cover. Therefore, the algorithm acts as if it takes this
set and goes in recursion on the instance with S and all its elements removed,
counting the number of set covers of size κ-1. Notice that it is not a problem if
the set taken has multiplicity greater than one: simply use the above formula.

Subsumption
If there exists an element e which occurs in every set (and possibly more) in which
another element e′ occurs, then every set cover that covers e also covers e′. Thus,
we can remove e′ from the instance and recursively apply our algorithm.

Connected Components
If the incidence graph of the instance contains multiple connected components,
then we can solve the problem on each component separately and merge the
results. In this case, there exist two disjoint sets C, C̄ with C ∪ C̄ = S and with
the property that every element of e ∈ U occurs either in C or in C̄ and not
in both. Let n(C)κ, n(C̄)κ be the number of solutions of size κ to these two
subproblems. In order to compute the total number of size covers nκ of size κ
in C ∪ C̄ we evaluate the following sum:

nκ =
κ∑

i=0

n(C)i × n(C̄)κ−i where: n(C)i = 0 if i > |C| (2)

Branching
When no reduction rules are applicable, the algorithm chooses a set or an element
to branch on. From the instance, it chooses a set of maximum cardinality and
an element of maximum frequency that are both not exceptional cases. We post-
pone the discussion of these exceptional cases for a moment. In order to choose
between branching on the chosen set and branching on the chosen element, the
algorithm uses the following preference order P:

P : S4 < S5 < S6 < E5 < E6 < S7 < E7 < E≥8 = S≥8

560 J.M.M. van Rooij, J. Nederlof, and T.C. van Dijk

There are exceptional cases of elements on which, despite the preference order, our
algorithm does not branch. These cases represent local neighbourhoods of sets or ele-
ments which would increase the running time of the algorithm when branched on, but
can be handled by dynamic programming on a path decomposition quite effectively.
The exceptional cases are:
1. Elements of frequency five that occur in many sets of small cardinality.

Let the 5-tuple (s1, s2, s3, s4, s5, s6) represent a frequency five element occurring si

times in a cardinality i set. In this way, our special cases can be denoted as:

(1, 4, 0, 0, 0, 0) - (0, 5, 0, 0, 0, 0) - (1, 3, 1, 0, 0, 0) - (0, 4, 1, 0, 0, 0) - (1, 2, 2, 0, 0, 0)
(0, 3, 2, 0, 0, 0) - (1, 1, 3, 0, 0, 0) - (0, 2, 3, 0, 0, 0) - (0, 1, 4, 0, 0, 0) - (1, 0, 4, 0, 0, 0)
(1, 3, 0, 1, 0, 0) - (0, 4, 0, 1, 0, 0) - (1, 2, 1, 1, 0, 0) - (0, 3, 1, 1, 0, 0) - (1, 1, 2, 1, 0, 0)
(1, 0, 3, 1, 0, 0) - (1, 2, 0, 2, 0, 0) - (1, 3, 0, 0, 1, 0) - (1, 2, 1, 0, 1, 0) - (1, 3, 0, 0, 0, 1)

2. Sets of cardinality four, five or six, containing one of the elements described above.

Overview 1. Exceptional cases for our algorithm

In this ordering, Si < Ej means that the algorithm prefers to branch on an
element of frequency j over branching on a set of cardinality i.

Sets of cardinality at most three and elements of frequency at most four do
not occur in the preference order P. These are considered too small for efficient
branching since branching on them would remove or reduce too few elements
and sets. The remaining instances are handled by dynamic programming over a
path decomposition of the incidence graph, similar to [9].

The exceptional cases are described in Overview 1. These exceptional cases
represent local neighbourhoods around a set or an element which, despite the
general rule imposed by the preference order, can be handled more efficiently by
the path decomposition phase of our algorithm than by branching. They exist
to properly balance the two parts of the algorithm.

Theorem 1. There is an algorithm that solves the #κ-Dominating Set for
all 0 ≤ κ ≤ n in an n-vertex graph G in O(1.5048n).

Proof (Sketch). The proof consists of a measure and conquer analysis of Algo-
rithm 1 and is an extension of the proof in [9]. Due to space restrictions, we will
only sketch it here. For the full proof, see [23].

We analyse our algorithm using measure and conquer [10,11]; see also [15,21].
Let v, w : N → [0, 1] be weight functions giving weight v(i) to an element of
frequency i and weight w(i) to a set of cardinality i, respectively. With these
functions we define the following complexity measure (identical to [10,21]):

k(S,U) =
∑
S∈S

w(|S|) +
∑
e∈U

v(f(e)) notice: k(S,U) ≤ dim(S,U)

We derive recurrence relations for the number of subproblems generated by the
branching of the algorithm expressed in this complexity measure k. Given fuc-
tions v, w, we can solve these recurrences and obtain an upper bound on the

Inclusion/Exclusion Meets Measure and Conquer 561

number of subproblems generated. The proof the comes down to computing the
functions v, w that minimise the running time. This is a quasiconvex program
[8] that we solve by computer. In this way, we prove:

Let Nh(k) be the number of subproblem of complexity h generated by our
algorithm on an input of complexity k. Then, Nh(k) < 1.22670k−h.

Next, we use that by standard dynamic programming techniques we can solve
the problem on a path decomposition of width p inO∗(2p). We compute an upper
bound on the maximum width p any path decomposition that is computed by
our algorithm can have. Using upper bound on the pathwidth of sparse graphs
[9,12], we formulate a linear program that computes the maximum pathwidth
that any instance of complexity k. As a result we find that p < 0.28991k, and
thus this part of the algorithm runs in O(20.28991k) ⊂ O(1.2226k).

By combining the time bound on both parts of the algorithm and using
that initially k ≤ 2n, we conclude that Algorithm 1 runs in O(1.226702n) ⊂
O(1.5048n). ��

5 Dominating Set Restricted to Some Graph Classes

The algorithm from the previous section, not only gives the currently fastest
algorithm to compute the number of dominating sets of given sizes, but also
is the currently fastest algorithm for the minimum dominating set problem.
However, the improvement over the previous fastest minimum dominating set
algorithm [21] is small. When we consider the dominating set problem on specific
graph classes, we get a larger improvement with our approach. This also extends
the results on these graph classes to the counting variant of Dominating Set.

Gaspers et al. [14] consider exact algorithms for the dominating set problem
on c-dense graphs, circle graphs, chordal graphs, 4-chordal graphs, and weakly
chordal graphs. On these graph classes the problem is still NP-complete. They
show that if we restrict ourselves to such a graph class, then there are either many
vertices of high degree allowing more efficient branching, or the graph has low
treewidth allowing the problem to be efficiently solved by dynamic programming
over a tree decomposition. Using our approach, we will show that less vertices
of high degree are required to obtain the same effect by branching on them with
both branching rules. This leads to faster algorithms.

If we combine the results of the previous section with a result from Gaspers
el al. [14], then we have the following proposition:

Proposition 1 ([14], Theorem 1). Let t > 0 be a fixed integer, and let Gt be
a class of graphs with for all G ∈ Gt: |{v ∈ V (G) : d(v) ≥ t − 2} ≥ t. Then,
there is a O(1.226702n−t) time algorithm to solve the minimum dominating set
problem on graphs in Gt.

Using our two branching rules, we prove a stronger variant of this proposition.

Lemma 1. Let t > 0 be a fixed integer, and let Gt be a class of graphs with for
all G ∈ Gt: |{v ∈ V (G) : d(v) ≥ t− 2}| ≥ 1

2 t. Then, there is a O(1.226702n−t)
time algorithm to solve the minimum dominating set problem on graphs in Gt.

562 J.M.M. van Rooij, J. Nederlof, and T.C. van Dijk

Table 1. Effect of two branching rules on the running times on some graph classes

Graph class [14] (+[21]+[22]) [14] (+[22]) + Lemma 1

c-dense graphs O
(
1.2273(1+

√
1−2c)n

)
O
(
1.2267(1

2+ 1
2
√

9−16c)n
)

circle graphs O(1.4843n) O(1.4806n)
chordal graphs O(1.3720n) O(1.3712n) ∗

4-chordal graphs O(1.4791n) O(1.4741n)
weakly chordal graphs O(1.4706n) O(1.4629n)

∗ This result does not use Lemma 1; the improvement comes only from Theorem 1.

Proof. Let H be the set of vertices of degree at least t− 2 from the statement of
the lemma, and consider the set cover formulation of the dominating set problem.

Let S be a set corresponding to a vertex in H . We branch on this set and
consider the branch in which we take this set in the set cover: the set is removed
and all its elements are covered and hence removed also. These are at least t− 1
elements, and therefore this branch results in a problem of dimension at most
2n− t. Only a single set is removed in the other branch, in which case we repeat
this process and branch on the next set represented by another vertex in H .
This gives us 1

2 t problem instances of dimension at most 2n− t and one problem
instance of dimension 2n− 1

2 t because here 1
2 t sets are removed.

In this latter instance, we use our new inclusion/exclusion based branching
rule on the elements corresponding to the vertices in H . These elements still
have frequency at least 1

2 t− 1, since only 1
2 t sets have been discarded until now.

When branching on an element and forbidding it, a subproblem of dimension at
most 2n − t is created because at least an additional element and 1

2 t − 1 sets
are removed in this branch. What remains is one subproblem generated in the
branch after discarding 1

2 t sets and making 1
2 t elements optional. Since all these

sets and elements are removed in these branches, this also gives us a problem of
dimension 2n− t.

The above procedure generates t+1 problems of dimension 2n− t, which can
all be solved by Algorithm 1 in O(1.226702n−t) time. These are only a linear
number of instances giving us a total running time of O(1.226702n−t). ��
Using Lemma 1 and following the computations in [14] we have obtained the
following result. Due to space restrictions we refer to [23] for the full proof.

Theorem 2. There exist algorithms that count the number of dominating sets
of each size in a c-dense graph in O

(
1.2267(1

2+ 1
2

√
9−16c)n

)
time, in a circle graph

in O(1.4806n) time, in a 4-chordal graph in O(1.4741n) time, and in a weakly
chordal graph in O(1.4629n) time.

See Figure 1 and Table 1 for a comparison of our results with [14].

6 Further Applications

In principle, we could take any inclusion/exclusion algorithm and reformulate it
into a branching algorithm. Then, we can look for reduction rules transforming

Inclusion/Exclusion Meets Measure and Conquer 563

The solid line represents the upper bound on the running time of our algorithm, and the dashed line

represents the upper bound obtained from [14] after plugging in our faster algorithm for dominating

set.

Fig. 1. Comparison of bounds on the running time on c-dense graphs

it into a branch and reduce algorithm. Finding these reduction rules is often not
very hard. However, finding any reduction rules for which you can prove that it
improves the worst case behaviour of the algorithm is often very hard.

For example, consider the problem of counting the number of perfect match-
ings in a graph. This is easily modified into a #(n/2)-Set Cover instance with
n elements and possibly O(n2) sets to which we can apply a branching algorithm
using the reduction rules of Algorithm 1. However, for such an algorithm, it is of
no use to branch on a set since their cardinalities are too small, and we obtain
an O∗(2n) algorithm using polynomial space as in [3].

What this approach does accomplish, is that a branch and reduce inclu-
sion/exclusion algorithm no longer has the property that its worst and best case
behaviour conincide. When using the inclusion/exclusion formula one always
evaluates every term of the sum, while if we are branching, then the number of
leaves of the search tree can very well be a lot smaller due to the reduction rules.

To apply our combined approach, branching both on sets and elements, we
need to consider problems that can be transformed into variations of set cover
instances having a linear number of sets and elements. In search of such prob-
lems, we, very recently, obtained several results when considering the problem
of whether there exists a locally subjective homomorphism form a fixed graph
H into the input graph G (also known as role-assignment problems) [19].

7 Conclusion

While the improvements of the running times for the studied problems are inter-
esting, we believe that the most important contribution of our paper is the novel
combination of inclusion/exclusion and branching with a measure and conquer
analysis. This gives a nice way to create inclusion/exclusion algorithms without
the usual O(2nnO(1)) running time.

564 J.M.M. van Rooij, J. Nederlof, and T.C. van Dijk

Many counting and decision variants of dominating set can be translated
to set cover problems and solved by our algorithms in the same time. For ex-
ample: directed dominating set, total dominating set2, k-distance dominating
set2, weak/strong dominating, and combinations of these. We can also solve the
weighted versions of all these problems as long as the size of the set of possi-
ble weight sums Σ is polynomially bounded: modify the algorithm such that it
computes the number of set covers of each possible weight w ∈ Σ at each step.

Our running times are highly dependent on the current best known upper
bounds on the pathwidth of bounded degree graphs [9,12]. Any result that would
improve these bounds would also improve our algorithm.

We use path decompositions while tree decompositions are more general and
allow the same running times when using fast subset convolutions [4] to perform
join operations [22]. We consider it to be an important open problem to give
stronger (or even tight) bounds on the treewidth [18] or pathwidth of bounded
degree graphs for which decompositions can be computed efficiently.

Acknowledgements

We would like to thank our advisor Hans L. Bodlaender for his enthusiasm for
this research and for useful comments on an earlier draft of this paper. We would
also like to thank Alexey A. Stepanov for useful discussions on [9].

References

1. Bax, E.T.: Inclusion and exclusion algorithm for the hamiltonian path problem.
Information Processing Letters 47(4), 203–207 (1993)

2. Bax, E.T.: Recurrence-based reductions for inclusion and exclusion algorithms ap-
plied to #P problems (1996)

3. Björklund, A., Husfeldt, T.: Exact algorithms for exact satisfiability and number
of perfect matchings. Algorithmica 52(2), 226–249 (2008)

4. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Fourier meets Möbius: fast
subset convolution. In: STOC 2007: Proceedings of the thirty-ninth annual ACM
symposium on Theory of computing, pp. 67–74. ACM, New York (2007)

5. Björklund, A., Husfeldt, T., Koivisto, M.: Set partitioning via inclusion-exclusion.
SIAM Journal of Computing, Special Issue for FOCS 2006 (to appear)

6. Bodlaender, H.L.: A tourist guide through treewidth. Acta Cybernetica 11, 1–23
(1993)

7. Bodlaender, H.L., Koster, A.M.C.A.: Combinatorial optimization on graphs of
bounded treewidth. The Computer Journal 51(3), 255–269 (2008)

8. Eppstein, D.: Quasiconvex analysis of backtracking algorithms. In: Proceedings of
the 15th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2004, pp.
781–790 (2004)

2 Total dominating set requires a O(4tnO(1)) algorithm on tree decompositions [22]. k-
distance dominating set can also not be solved on tree decompositions in O(3tnO(1))
if k > 1. Hence the results from Section 5 do not extend to these problems.

Inclusion/Exclusion Meets Measure and Conquer 565

9. Fomin, F.V., Gaspers, S., Saurabh, S., Stepanov, A.A.: On two techniques of com-
bining branching and treewidth. In: Algorithmica Special issue of ISAAC 2006
(2006) (to appear)

10. Fomin, F.V., Grandoni, F., Kratsch, D.: Measure and conquer: Domination — a
case study. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M.
(eds.) ICALP 2005. LNCS, vol. 3580, pp. 191–203. Springer, Heidelberg (2005)

11. Fomin, F.V., Grandoni, F., Kratsch, D.: Measure and conquer: a simple O(20.288n)
independent set algorithm. In: Proceedings of the 16th Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA 2006, pp. 18–25 (2006)

12. Fomin, F.V., Høie, K.: Pathwidth of cubic graphs and exact algorithms. Informa-
tion Processing Letters 97, 191–196 (2006)

13. Fomin, F.V., Kratsch, D., Woeginger, G.J.: Exact (exponential) algorithms for the
dominating set problem. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG
2004. LNCS, vol. 3353, pp. 245–256. Springer, Heidelberg (2004)

14. Gaspers, S., Kratsch, D., Liedloff, M.: Exponential time algorithms for the min-
imum dominating set problem on some graph classes. In: Arge, L., Freivalds, R.
(eds.) SWAT 2006. LNCS, vol. 4059, pp. 148–159. Springer, Heidelberg (2006)

15. Gaspers, S., Sorkin, G.B.: A universally fastest algorithm for max 2-sat, max 2-
csp, and everything in between. In: Proceedings of the 20th annual ACM-SIAM
Symposium on Discrete Algorithms (SODA 2009). SIAM, Philadelphia (to appear,
2009)

16. Grandoni, F.: A note on the complexity of minimum dominating set. J. Disc. Alg. 4,
209–214 (2006)

17. Karp, R.M.: Dynamic programming meets the principle of inclusion-exclusion. Op-
erations Research Letters 1, 49–51 (1982)

18. Kneis, J., Mölle, D., Richter, S., Rossmanith, P.: Algorithms based on the treewidth
of sparse graphs. In: Kratsch, D. (ed.) WG 2005. LNCS, vol. 3787, pp. 385–396.
Springer, Heidelberg (2005)

19. Paulusma, D., van Rooij, J.M.M.: A fast exact algorithm for the 2-role assignment
problem (submitted)

20. Randerath, B., Schiermeyer, I.: Exact algorithms for minimum dominating set.
Technical Report zaik2004-469, Universität zu Köln, Cologne, Germany (2005)

21. van Rooij, J.M.M., Bodlaender, H.L.: Design by measure and conquer – a faster
exact algorithm for dominating set. In: Albers, S., Weil, P. (eds.) Proceedings of
the 25th Annual Symposium on Theoretical Aspects of Computer Science, STACS
2008, pp. 657–668. IBFI Schloss Dagstuhl (2008)

22. van Rooij, J.M.M., Bodlaender, H.L., Rossmanith, P.: Dynamic programming on
tree decompositions using generalised fast subset convolution. In: Fiat, A., Sanders,
P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 566–577. Springer, Heidelberg (2009)

23. van Rooij, J.M.M., Nederlof, J., van Dijk, T.C.: Inclusion/exclusion meets mea-
sure and conquer: Exact algorithms for counting dominating set. Technical Report
UU-CS-2008-043, Department of Information and Computing Sciences, Utrecht
University, Utrecht, The Netherlands (2008)

Dynamic Programming on Tree Decompositions
Using Generalised Fast Subset Convolution

Johan M.M. van Rooij1, Hans L. Bodlaender1, and Peter Rossmanith2

1 Department of Information and Computing Sciences, Utrecht University,
P.O.Box 80.089, 3508 TB Utrecht, The Netherlands

{jmmrooij,hansb}@cs.uu.nl
2 Computer Science Department, RWTH Aachen University,

52056 Aachen, Germany
rossmani@cs.rwth-aachen.de

Abstract. In this paper, we show that algorithms on tree decomposi-
tions can be made faster with the use of generalisations of fast subset
convolution. Amongst others, this gives algorithms that, for a graph,
given with a tree decomposition of width k, solve the dominated set

problem in O(nk23k) time and the problem to count the number of per-
fect matchings in O∗(2k) time. Using a generalisation of fast subset con-
volution, we obtain faster algorithms for all [ρ, σ]-domination problems
with finite or cofinite ρ and σ on tree decompositions. These include
many well known graph problems. We give additional results on many
more graph covering and partitioning problems.

1 Introduction

Many recent investigations show that problems that are intractable on general
graphs (e.g., NP-hard) become tractable (e.g., linear time solvable) when re-
stricted to graphs of bounded treewidth. However, the constant factors involved
in such algorithms are often large, and thus, for practical considerations, it is
useful to find algorithms on graphs of small treewidth where the factor in the
time, as function of treewidth, grows as slow as possible.

Most algorithms on graphs of bounded treewidth consist of two steps:

1. Find a tree decomposition of small width of the input graph.
2. Solve the problem on this tree decomposition using dynamic programming.

Concerning the first of these steps, one can find in linear time a tree decom-
position of width at most k, for fixed k, if existing [4], but the constant factor
of this algorithm is very high. However, in several cases, tree decompositions of
small width can be obtained for special graph classes (see [5]), and there are also
several good heuristics that often work well in practice (see [7]).

In this paper, we improve on the running time of the second of these steps, as a
function of the treewidth. In particular, we show that covering products and fast
subset convolutions [3] can be used to speed up these algorithms. In some cases,

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 566–577, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Dynamic Programming on Tree Decompositions 567

our algorithms use a generalisation of these algorithms. While covering products
and subset convolutions are defined on sets with subsets, we generalise these to
multiple states. Our algorithms are optimal in a certain sense: the running times
are a polynomial in the size of the graph times the size of tables in any known
tree decomposition based dynamic programming algorithm for the problems.

There are several recent papers that analyse the running time of algorithms
on tree decompositions. For several vertex partitioning problems, Telle and
Proskurowski [16] show that there are algorithms that solve these problems in
O(ckn) time, with c a constant only depending on the problem at hand. For
the Dominating Set problem, Alber and Niedermeier [2] give an improved
algorithm that runs in O(4kn) time; similar results are given in [2] for related
problems: Independent Dominating Set, Total Dominating Set, Per-

fect Dominating Set, Perfect Code, Total Perfect Dominating Set,
weighted versions, and Red-Blue Dominating Set. See also [1]. The improve-
ment in [2] is used by exploiting a notion of monotonicity. In this paper, we
introduce two new techniques, the first using a variant of convolutions, and the
second a simple way of partitioned table handling, that speed up these results
and can be used for several other problems as well.

Another technique to speed up algorithms on tree decompositions or on the
related branch decompositions was introduced by Dorn [9], who employed fast
matrix multiplication. If the input graph is planar, then other improvements are
possible, see [10,12]. In [10], Dorn showed amongst others, that Dominating

Set for planar graphs with a given tree decomposition of width k can be solved
in O∗(3k) time. Some of these results can be generalised to graphs that avoid a
minor, see [11]. We obtain the same result without requiring planarity.

Many dynamic programming algorithms on tree decompositions compute a
table for each node in the tree decomposition. These tables have an entry for
each assignment of a state from some fixed set to each vertex in the bag. It is
possible to use different sets of states for the same problem that lead to different
running times. In Section 3, we discuss how we can transfer a table for one
set of states to the equivalent table for a different set of states. In Sections 4
and 5, we obtain faster tree decomposition algorithms for Dominating Set and
#Perfect Matching; the switch technique of Section 3 is used as a subroutine.
These results serve as examples of a general method, as the techniques can be
applied to many problems. In Section 6, we obtain faster tree decomposition
algorithms for a large set of problems, namely all [ρ, σ]-domination problems
with finite or cofinite ρ and σ, as introduced by Telle and Proskurowski [16].

2 Preliminaries

Let G = (V, E) be an n-vertex graph. A tree decomposition of G is a tree T in
which each node i ∈ T has an assigned set of vertices Xi ⊆ V (called a bag) such
that

⋃
i∈T Xi = V with the following properties:

1. for all {u, v} ∈ E, there exists an i ∈ T such that {u, v} ⊆ Xi.
2. if v∈Xi and v∈Xj , then v∈Xk for all Xk on the path from Xi to Xj in T .

568 J.M.M. van Rooij, H.L. Bodlaender, and P. Rossmanith

Table 1. [ρ, σ]-domination problems (taken from [15,16])

ρ σ Standard problem description
{0, 1, . . .} {0} Independent Set
{1, 2, . . .} {0, 1, . . .} Dominating Set
{0, 1} {0} Strong Stable Set/2-Packing/Distance-2 Independent Set
{1} {0} Perfect Code/Efficient Dominating Set
{1, 2, . . .} {0} Independent Dominating Set
{1} {0, 1, . . .} Perfect Dominating Set
{1, 2, . . .} {1, 2, . . .} Total Dominating Set
{1} {1} Total Perfect Dominating Set
{0, 1} {0, 1, . . .} Nearly Perfect Set
{0, 1} {0, 1} Total Nearly Perfect Set
{1} {0, 1} Weakly Perfect Dominating Set
{0, 1, . . .} {0, 1, . . . , p} Induced Bounded Degree Subgraph
{p, p + 1, . . .} {0, 1, . . .} p-Dominating Set
{0, 1, . . .} {p} Induced p-Regular Subgraph

The treewidth of a tree decomposition is the size of the largest bag of T minus
one: maxi∈T |Xi|−1. The treewidth of a graph G is the minimum treewidth over
all possible tree decompositions of G. In this paper, we will always assume that
tree decompositions of the appropriate width are given.

Dynamic programming algorithms solving NP-hard problems on graphs of
bounded treewidth are often presented on nice tree decompositions. These are
rooted tree decompositions in which each node is of one of the following types:

1. Leaf node: a leaf of T .
2. Introduce node: an internal node i with one child node c for which Xi =

Xc ∪ {v}. This node is said to introduce the vertex v.
3. Forget node: an internal node i with one child node c for which Xi = Xc\{v}.

This node is said to forget the vertex v.
4. Join node: an internal node i with two child nodes l, r with Xi = Xl = Xr.

Given a tree decomposition, a nice tree decomposition of equal width can be
found in polynomial time [14]. For more information on tree decompositions and
dynamic programming over tree decompositions, see [6]. We associate to each
node i in the tree decomposition a subgraph Gi = (Vi, Ei) of G. A vertex v ∈ V
belongs to Gi, if and only if there is a bag j with j = i or j a descendant of i
with v ∈ Xj, and {v, w} ∈ E belongs to Gi iff v, w ∈ Vi.

A dominating set in a graph G is a set of vertices D ⊆ V such that for every
v ∈ V \ D there exists a (v, d) ∈ E with d ∈ D. Finding a dominating set of
minimum size in G is a classical NP-complete problem (Dominating Set).

A perfect matching in G is a set of edges M ⊆ E such that every v ∈ V is
contained in exactly one edge e ∈ M . Counting the number of perfect matchings
in a graph is a classical #P-complete problem (#Perfect Matching).

Let ρ, σ ⊆ N, a [ρ, σ]-dominating set is a subset D ⊆ V such that: for every
v ∈ V \D: |N(v) ∩D| ∈ ρ, and for every v ∈ D: |N(v) ∩ D| ∈ σ, where N(v)
denotes the open neighbourhood of a vertex v ∈ V in G.

Dynamic Programming on Tree Decompositions 569

The [ρ, σ]-domination problems were introduced by Telle in [15,16] and form
a large class of graph covering problems: see Table 1. Throughout this paper, we
assume that ρ and σ are either finite or cofinite.

Throughout the paper, tables are denoted with their parameters, e.g., A(c)
is a table that maps each c (from a domain that is clear from the context) to a
value (with the range also clear from the context).

3 Switching between State Representations

A dynamic programming algorithm on a tree decomposition T traverses T in a
bottom up fashion. In each visited node i ∈ T , partial solutions to the problem on
Gi are stored. These partial solutions must satisfy all problem specific constraints
everywhere except on the vertices in Xi. To store these partial solutions and
identify them by their behaviour on the current bag, for each node of T , a table
A(c) is computed containing the solutions corresponding to an assignment of
states c (also called a colouring) to the vertices in Xi. During the traversal,
the table for each node is computed from the tables from its child nodes. This
results in an algorithm that is polynomial in the size of T , but exponential in
the treewidth of T (the size of the largest bag).

For example, when solving #Perfect Matching, the obvious tree decompo-
sition based dynamic programming algorithm uses states {0, 1}, where 1 means
this vertex is matched and 0 means that it is not. The table entry A(c) now
contains the number of matchings in Gi such that the only vertices that are not
matched are exactly the vertices in the current bag Xi with state 0 in c.

We make the following observation: the described table A(c) contains exactly
the same information as a table A′(c) using states {0, ?}, where ? represents a
vertex where we do not specify if it is matched. I.e., for a specific assignment of
states c, we count the number of matchings in Gi, where all vertices in Vi\Xi are
matched, all vertices with state 0 in c are unmatched, and all vertices with state ?
can either be matched or not. In this second representation, there no longer is
a direct relation between the partial solutions and the states: a matching where
a vertex v ∈ Xi is not matched is counted both in the cases where v has state ?
and where v has state 0. We will use such alternative representations throughout
this paper to obtain exponentially faster algorithms.

Lemma 1. A table containing the number of perfect matchings corresponding
to states {0, 1} contains the same information as a table using states {0, ?}.
Transformations using O(k2k) operations between both tables exists.

If one defines a vertex with state 1 or ? to be in S, and a vertex with state 0 not
to be in S, then the state changes are Möbius transforms and inversions, see [3].
The proof then directly follows from their fast evaluation algorithms.

Proof. The fast transformations work in k steps. In step 1 ≤ i ≤ k, we assume
that the first i−1 coordinates of the colouring c in our table use one set of states,
and the other k − i + 1 coordinates use the other set of states. Using this as an
invariant, we change the set of states used for the i-th coordinate at step i.

570 J.M.M. van Rooij, H.L. Bodlaender, and P. Rossmanith

Table 2. Vertex states for the Dominating Set Problem

state meaning
1 this vertex is in the dominating set.

01 this vertex is not in the dominating set and has already been dominated.
00 this vertex is not in the dominating set and has not yet been dominated.
0? this vertex is not in the dominating set and may or may not be dominated.

Transforming from {0, 1} to {0, ?} can be done using the following formula
in which A(c) represents our table for colouring c, c1 is a subcolouring of size i
using states {0, 1}, and c2 is a subcolouring of size k − i− 1 using states {0, ?}.

A(c1 × {?} × c2) = A(c1 × {0} × c2) + A(c1 × {1} × c2)

In words, the number of matchings that may contain some vertex equals the sum
of those that do and those that do not contain it.

For the reverse transformation from {0, ?} to {0, 1} there is a similar formula:

A(c1 × {1} × c2) = A(c1 × {?} × c2)−A(c1 × {0} × c2)

In words, the number of matchings that contain some vertex equals all matchings
minus those that do not contain the vertex.

Each step computes 2k values resulting in O(k2k) time transformations. ��

For Dominating Set the obvious set of states to use would be {1, 01, 00}: see
Table 2. The tables of the dynamic programming algorithm would then, for each
colouring c, store the minimum size of a vertex set dominating all vertices seen
this far except those with state 00 in the current bag and that contain exactly
those vertices in the current bag that have state 1.

We take a slightly different approach and use a table A(c, κ) containing the
number of dominating sets of each size 0 ≤ κ ≤ n corresponding to the colouring
c on the current bag. With this modification, we can also use different sets of
states capturing exactly the same information for Dominating Set.

Lemma 2. A table A(c, κ) containing the number of dominating sets of size
0 ≤ κ ≤ n corresponding to a colouring c contains the same information indepen-
dent of the following three choices of states (see Table 2): {1, 01, 00}, {1, 01, 0?},
{1, 0?, 00}. Transformations using O(nk3k) operations between the tables exist.

Proof. Repeat the following for each 0 ≤ κ ≤ n. Fix the 1 states and then apply
the same transformations as described in Lemma 1 on the 0 states. We can use
either one of the three sets of states since the 0? state can be created while
preserving either the 00 state or the 01 state. ��

4 Minimum Dominating Set

The previously fastest algorithm for Dominating Set on graphs of treewidth k
runs in O(n4k) and due is to Alber et al. [1,2]. Their dynamic programming

Dynamic Programming on Tree Decompositions 571

Table 3. Join tables for the Dominating Set and #Perfect Matching problems

× 1 01 00

1 1
01 01 01

00 01 00

× 1 01 0?

1 1
01 01

0? 01 0?

× 1 0? 00

1 1
0? 0?

00 00

× 0 1
0 0 1
1 1

× 0 ?
0 0
? � ?

algorithm uses states {1, 01, 0?} (see Table 2), and stores the sizes of the min-
imum dominating sets corresponding to each state colouring on the bag. This
algorithm uses O∗(3k) time on leaf, introduce and forget bags, but O∗(4k) time
on a join bag. Using the results from Section 3, we will improve this to O∗(3k).

First of all, we observe that the Alber et al. algorithm [1,2] can be extended
quite easily to count the number of dominating sets of each size 0 ≤ κ ≤ n; we
will use these procedures to compute tables for leaf, introduce, and forget bags.

We begin with our main theorem on Dominating Set.

Theorem 1. There is an algorithm counting the number of dominating set of
each size 0 ≤ κ ≤ n on a graph of treewidth k in O(n33ki×(n)) time.

Here, i×(n) is the time required to work with (multiply) n-bit integers: currently
i×(n) = n log(n)2log∗(n) [13].

Proof. We prove the result by showing that we can perform a join operation in
O(n23ki×(n)) time. For this operation, two child bags with given tables AL(c, κ)
and AR(c, κ) are provided. Using Lemma 2, we make sure that they are given
using states {1, 0?, 00}. Now, the table for the join bag A(c, κ) can be computed
using the following formula, where #1(c) stand for the number of 1 states in c:

A(c, κ) =
∑

κL+κR−#1(c)=κ

AL(c, κL) · AR(c, κR)

We sum over all ways to obtain a set of size κ by combining both child tables.
The sum is evaluated in O(ni×(n)) time, giving an O(n23ki×(n)) time join.

This is correct because each vertex with one of three states in {1, 0?, 00} in
the join bag requires that the corresponding vertices in both child bags have the
same state: a vertex is in the dominating set if it is so in both child bags (1), a
vertex may or may not be dominated if it is so in both child bags (0?), and a
vertex is not dominated if it is so in both child bags (00), see Table 3. ��

A similar join with states {1, 01, 00} in which a 01 state can be created from
a 01 from both children, or a 01 from one child and a 00 from the other, gives an
O∗(5k) algorithm. The decision procedure of Alber et al. with states {1, 01, 0?}
leads to an O∗(4k) algorithm. See Table 3.

The proof of Theorem 1 uses the principle of the covering product [3]. We
presented it using mostly terminology from tree decomposition algorithms. We
choose this manner of presentation because it easily generalises to more than
two states. In this way, one, for example, easily proves the following proposition.

572 J.M.M. van Rooij, H.L. Bodlaender, and P. Rossmanith

Proposition 1. There is an algorithm counting the number of partitions of a
graph of treewidth k into two total dominating sets in O∗(6k).

We proceed by improving the polynomial factors for Dominating Set.

Corollary 1. There is an algorithm counting the number of minimum dominat-
ing sets on a graph of treewidth k in O(nk23ki×(n)) time.

Proof. Dominating set has the finite integer index property [8]: the size difference
between any two minimum dominating sets stored in a table is at most k.

For the leaf, introduce and forget bags, we store for each colouring c the size
of the corresponding minimum dominating set B(c) and the number of such sets
A(c) using states {1, 01, 00}. At a join node, we expand the tables to:

A(c, κ) =
{

A(c) if B(c) = κ
0 otherwise

Then, change states as in Theorem 1 and perform the join. To extract A(c) and
B(c) for the join table, let A(c) = A(c, κ′) and let B(c) = κ′, where κ′ is the
smallest value of κ for which A(c, κ) is non-zero. The sum now has at most k
terms on child tables of size only k3k giving the running time. ��

Corollary 2. There is an algorithm solving the minimum dominating set prob-
lem on graphs of treewidth k in O(nk23k) time.

Proof. We improve on Corollary 1 by only keeping track of the size of the dom-
inating set B(c) using states {1, 01, 00}. At a join node, expand the tables to:

A(c, κ) =
{

1 if B(c) = κ
0 otherwise

Then, proceed as in Corollary 1 and perform the join. Now, we do not count
dominating sets, but simply the number of 1-entries in the table A(c, κ). ��

5 Counting the Number of Perfect Matchings

We need a more involved algorithm to count the number of perfect matchings
on a graph of treewidth k. This algorithm uses fast subset convolutions [3].

Given a set U and functions f, g : 2U → Z their subset convolution is defined:

(f ∗ g)(S) =
∑
X⊆S

f(X)g(S \X) (1)

The fast subset convolution algorithm computes this in O(k22k) operations [3].
Our algorithm uses states {0, 1} with the invariant that vertices with state 1

are matched only with vertices outside of the bag, i.e. vertices that have already
been forgotten by the algorithm. This prevents vertices to be matched within
the bag and greatly simplifies the join. To obtain the final solution from the root
of the tree decomposition, we add a series of forget nodes to the root.

Our proof uses the fast subset convolution algorithm without mentioning it.
Instead, we use state changes: this approach will be generalised in Section 6.

Dynamic Programming on Tree Decompositions 573

Theorem 2. There is an algorithm counting the number of perfect matchings
in a graph of treewidth k in O(nk22ki×(n)) time.

Proof. Due to space restrictions, we will only explain the join operation.
We cannot simply change states to {0, ?} and perform the join similar to

dominating set as suggested by Table 3. This is because two ? states do not
combine to a new ? state since this would allow a vertex to be matched twice.

To compensate for this, one can expand the tables and index them by the
number of matched vertices. Let AC(c) be one of the child tables AL(c) or
AR(c).

AC(c, i) =
{

AC(c) if #1(c) = i
0 otherwise

Now we do the following. First change the state representation in the tables
AC(c, i) to {0, ?} obtaining new tables A′

C(c, i); these tables does not use state 1,
but are still indexed by the number of 1 states used in the previous representa-
tion. Then, join the tables by combining all possibilities that arise from i 1 states
in the old representation (stored in the index i) using the following formula:

A′(c, i) =
∑

i=iL+iR

A′
L(c, iL) · A′

R(c, iR)

Next, change states back to {0, 1} obtaining a table A(c, i); notice that a 1 state
can now represent a vertex that is matched twice. Finally, we can find those
entries that do not match a vertex twice by the following observation: the total
number of 1 states in c should equal the sum of those in its child tables, now
stored in the index i. The join table follows A(c) from extracting these entries:

A(c) = A(c, #1(c))

The running time is dominated by the time required to compute A′(c, i): k2k

entries, each requiring a k-term sum, giving the O(nk22ki×(n)) time bound. ��

6 [ρ, σ]-Domination Problems

We have shown how to solve two elementary problems in O∗(sk) on graphs of
treewidth k, where s is the number of states per vertex used in representations of
solutions. In this section, we generalise our results and show that we can solve all
[ρ, σ]-domination problems with finite or cofinite ρ and σ in O∗(sk); this includes
existence, minimisation, maximisation, and counting variants of the problems.

For the [ρ, σ]-dominating problems one could use states ρj and σj , where
ρj and σj represent vertices in or not in the [σ, ρ]-dominating set D, respec-
tively, that have j neighbours in D. For finite ρ, σ we can suffice with states
{ρ0, . . . , ρp, σ0, . . . , σq}. If ρ or σ is cofinite, we replace the last states by ρ≥p or
ρ≥q, respectively. For readability reasons, we restrict ourselves to finite ρ and σ.

In our algorithm, the meaning of these states is slightly different: the sub-
script j of states ρj and σj will count only the number of neighbours in the

574 J.M.M. van Rooij, H.L. Bodlaender, and P. Rossmanith

[ρ, σ]-dominating set D that have already been forgotten by the algorithm. This
prevents us from having to keep track of any adjacencies within a bag during a
join operation; we can update these subscripts j easily in each forget bag.

Dynamic programming tables for the [ρ, σ]-domination problems can also be
represented using different sets of states that contain the same information.

Lemma 3. A table A(c, κ) containing the number of [ρ, σ]-dominating sets of
size κ corresponding to the colouring c on a bag of size k contains the same
information independent of the following choices of states:

– Set I: {ρ0, ρ1, ρ2, . . . , ρp, σ0, σ1, σ2, . . . , σq}.
– Set II: {ρ0, ρ≤1, ρ≤2, . . . , ρ≤p, σ0, σ≤1, σ≤2, . . . , σ≤q}.

The identifiers of the states are self explaining: ρcondition, σcondition considers the
number of [ρ, σ]-dominating sets D that do not contain (ρ state) or do contain
(σ state) this vertex with a number of neighbours in D satisfying the condition.

Proof (Sketch). Repeatedly apply transformations as in Lemma 2. ��

In the proof of Theorem 2, we expanded the child tables to A(c, i), where i
was an index indicating the number of 1 states used to create the ? states in c.
We need to generalise this to more states to prove our result. To this end, we
introduce an index vector i = (iρ1, iρ2, . . . , iρp, iσ1, iσ2, . . . , iσq), where iρj and
iσj index the sum of the number of neighbours in D of the vertices with state
ρ≤j and σ≤j , respectively. We say that a solution corresponding to a colouring c
using state set I (Lemma 3) satisfies a combination of a colouring c′ using state
set II and an index vector i if: c is counted in c′, and for each iρj , iσj , the sum of
the number of neighbours in D in the colouring c for vertices which have colour
ρ≤j and σ≤j in c′ equal iρj and iσj , respectively. We explain this by example.

Suppose that we have a bag of size 3 and use states {ρ0, ρ1, ρ2, σ0} which we
want to transform to states {ρ0, ρ≤1, ρ≤2, σ0}; thus i = (iρ1, iρ2). A partial solu-
tion with states c = (ρ0, ρ1, ρ2) will be counted in both c′1 = (ρ0, ρ≤2, ρ≤2) and
c′2 = (ρ≤1, ρ≤1, ρ≤2). In this case, c satisfies the combination (c′1, i = (0, 3)) but
no combination of c′1 with an other index vector. Also, c satisfies the combination
(c′2, i = (1, 2)) and no other combination involving c′2.

What we need is a table containing, for each possible combination of a colour-
ing using state set II with an index vector, the number of partial solutions that
satisfy these. We can do this by using the following lemma.

Lemma 4. Given a table A(c, κ) containing the number of [ρ, σ]-dominating
sets of size κ corresponding to the colouring c on a bag of size k using states
set I from Lemma 3, we can compute a table A(c, κ, i) containing the number
of solutions of size κ satisfying the combination of a colouring using state set II
from Lemma 3 and the index vector i in O(nk2(sk)s−2sk) time.

Proof. We start with the following table A(c, κ, i) using state set I:

A(c, κ, i) =
{

A(c, κ) if i is the all-0 vector
0 otherwise

Dynamic Programming on Tree Decompositions 575

Then, we change the states of the j-th coordinate at step j, similar to previous
state changes, but now changing all states at this coordinate in one pass using
the following formulas that also updates the index vector i:

A(c1 × {ρ≤j} × c2, κ, i) =
j∑

k=0

A(c1 × {ρk} × c2, κ, iiρj→(iρj−k))

A(c1 × {σ≤j} × c2, κ, i) =
j∑

k=0

A(c1 × {σk} × c2, κ, iiσj→(iσj−k))

Here, iiρj→(iρj−k) is the vector i with the value of iρj set to iρj − k.
The algorithm runs in k steps, computing a value for each of the sk colourings,

n sizes, and s− 2 indices that range over sk values in a k-term sum. This gives
a running time bounded by O(nk2(sk)s−2sk). ��

Since we fix the specific [ρ, σ]-domination problem, this is O∗(sk) time.
We are now ready to prove our main result of this section.

Theorem 3. Let ρ, σ ⊆ N finite or cofinite. There exist an algorithm counting
the number of [ρ, σ]-dominating sets of each size 0 ≤ κ ≤ n of a fixed [ρ, σ]-
domination problem involving s states in O∗(sk) time on graphs of treewidth k.

Proof. We will only describe the join operation of the algorithm for finite σ, ρ.
First, we transform the child tables to state set II (Lemma 3) using Lemma 4

obtaining tables A′
L(c, κ, l), A′

R(c, κ, r), where we have the extra index vectors
indicating, for each state, the sum of the number of neighbours in D of the set
of vertices with this state. Then, compute the table A(c, κ, i) by joining both
tables combining identical states from both tables using the formula below. In
this formula, we sum over all ways of getting a set of size κ by combining the
sizes in the child tables and all ways of getting index vector i from i = r + l.

A′(c, κ, i) =
∑

κL+κR−#1(c)=κ

⎛⎝ ∑
iρ1=rρ1+lρ1

· · ·
∑

iσq=rσq+lσq

A′
R(c, κR, r) · A′

L(c, κL, l)

⎞⎠
A joined partial solution is counted in an entry in A′(c, κ, i) if and only if it
satisfies the following three conditions.

– The sum of the number of neighbours in D of this joined solution on the ρ≤j

and σ≤j states equals iρj and iσj , respectively.
– The number of neighbours in D in both partial solutions used to create this

joined solution on each of the ρ≤j and σ≤j states is at most j.
– The total number of vertices in D in this joined solution is κ.

Let Σi
ρ(c), Σi

σ(c) be the weighted sums of the number of ρj and σj states with
0 ≤ j ≤ i in c, respectively, defined by:

Σi
ρ(c) =

i∑
j=1

j ·#ρi(c) Σi
σ(c) =

i∑
j=1

j ·#σi(c)

576 J.M.M. van Rooij, H.L. Bodlaender, and P. Rossmanith

Now, using Lemma 3 we change states back to state set I to obtain a table
A(c, κ, i) and extract the join table in the following way:

A(c, κ) = A
(
c, κ, (Σ1

ρ(c), Σ2
ρ(c), . . . , Σp

ρ(c), Σ1
σ(c), Σ2

σ(c), . . . , Σq
σ(c))

)
We will now prove correctness of the entries in A(c, κ).

An entry in A(c, κ) with c ∈ {ρ0, σ0}k is correct: these states are unaffected
by the state changes and the index vector is not used.

Now consider an entry in A(c, κ) with c ∈ {ρ0, ρ1, σ0}k. Each ρ1 state comes
from a ρ≤1 state in A′(c, κ, i) and is a join of partial solutions with the following
combinations of states on this vertex: (ρ0, ρ0), (ρ0, ρ1), (ρ1, ρ0), (ρ1, ρ1). Because
we have changed states back to set I, each (ρ0, ρ0) combination is counted in
the ρ0 state on this vertex, and subtracted from the combinations used to from
state ρ1: the other tree combinations remain counted in the ρ1 state. Since we
consider only those solutions with index vector iρ1 = Σ1

ρ(c), the total number of
ρ1 states used to form this joined solutions equals Σ1

ρ(c) = #ρ1(c). Therefore no
(ρ1, ρ1) combination could have been used, and each partial solution counted in
A(c, κ) has exactly one neighbour in D on each of the ρ1 states.

We repeat this argument for the other states, but omit the details. ��

This proof generalises ideas from the fast subset convolution algorithm; while
convolutions use ranked Möbius transforms, we use transformations with multi-
ple ranks and multiple states. The polynomial factors in the proof of Theorem 3
can be improved in several ways, some of which resemble Corollaries 1 and 2.

7 Conclusion

In this paper, we have introduced the use of fast subset convolutions and gen-
eralisations of these to speed up the running time of algorithms on tree decom-
positions. Our techniques can be applied to a large number of problems, and in
our paper, we have given a few of such examples, but it is not hard to find more
applications. We give one set of such results without proof. Because each of the
problems is finite integer index, the running time is linear in n.

Proposition 2. The Maximum Triangle Packing, Partition into Tri-

angles, Partition into 	-cliques for fixed 	 and Minimum Clique Parti-

tion can be solved in O(poly(k)2kn) time on graphs of treewidth k.

Our algorithms are in a certain sense optimal concerning the exponential de-
pendency on the width of the tree decomposition, as the running times equal
a polynomial in n and k times the ‘usual’ size of the dynamic programming
tables. However, we have to pay: this exponential improvement goes with extra
polynomial factors. In some cases, the pay is little, e.g., for Dominating Set,
we improve the O(4kn) time [2] to O(k23kn), but this is not always the case.

We end with a few directions for further research. An experimental study on
these algorithms would be very interesting. Other questions are: is it possible to
use similar techniques to speed up algorithms on branch decompositions? Is it

Dynamic Programming on Tree Decompositions 577

possible to use generalisations of fast subset convolution to speed up algorithms
on (tree or branch decompositions of) planar graphs, as in [12]?

Acknowledgements. The first author thanks Jan Arne Telle and Jesper Ned-
erlof for several very useful discussions.

References

1. Alber, J., Bodlaender, H.L., Fernau, H., Kloks, T., Niedermeier, R.: Fixed pa-
rameter algorithms for dominating set and related problems on planar graphs.
Algorithmica 33, 461–493 (2002)

2. Alber, J., Niedermeier, R.: Improved tree decomposition based algorithms for
domination-like problems. In: Rajsbaum, S. (ed.) LATIN 2002. LNCS, vol. 2286,
pp. 613–627. Springer, Heidelberg (2002)

3. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Fourier meets Möbius: Fast
subset convolution. In: Proceedings of the 39th Annual Symposium on Theory of
Computing, STOC 2007, pp. 67–74 (2007)

4. Bodlaender, H.L.: A linear time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput. 25, 1305–1317 (1996)

5. Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theor.
Comp. Sc. 209, 1–45 (1998)

6. Bodlaender, H.L., Koster, A.M.C.A.: Combinatorial optimization on graphs of
bounded treewidth. The Computer Journal 51(3), 255–269 (2008)

7. Bodlaender, H.L., Koster, A.M.C.A.: Treewidth computations I. upper bounds.
Technical Report UU-CS-2008-032, Department of Information and Computing
Sciences, Utrecht University, Utrecht, the Netherlands, Submitted (2008)

8. Bodlaender, H.L., van Antwerpen-de Fluiter, B.: Reduction algorithms for graphs
of small treewidth. Information and Computation 167, 86–119 (2001)

9. Dorn, F.: Dynamic programming and fast matrix multiplication. In: Azar, Y.,
Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 280–291. Springer, Heidelberg
(2006)

10. Dorn, F.: How to use planarity efficiently: New tree-decomposition based al-
gorithms. In: Brandstädt, A., Kratsch, D., Müller, H. (eds.) WG 2007. LNCS,
vol. 4769, pp. 280–291. Springer, Heidelberg (2007)

11. Dorn, F., Fomin, F.V., Thilikos, D.M.: Catalan structures and dynamic program-
ming in h-minor-free graphs. In: Proceedings of the 18th Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA 2008, pp. 631–640 (2008)

12. Dorn, F., Penninkx, E., Bodlaender, H.L., Fomin, F.V.: Efficient exact algorithms
on planar graphs: Exploiting sphere cut branch decompositions. In: Brodal, G.S.,
Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 95–106. Springer, Heidelberg
(2005)

13. Fürer, M.: Faster integer multiplication. In: Proceedings of the 39th Annual Sym-
posium on Theory of Computing, STOC 2007 (2007)

14. Kloks, T.: Treewidth. Computations and Approximations. LNCS, vol. 842.
Springer, Heidelberg (1994)

15. Telle, J.A.: Complexity of domination-type problems in graphs. Nordic J. Com-
put. 1, 157–171 (1994)

16. Telle, J.A., Proskurowski, A.: Algorithms for vertex partitioning problems on par-
tial k-trees. SIAM J. Disc. Math. 10, 529–550 (1997)

Counting Paths and Packings in Halves

Andreas Björklund1, Thore Husfeldt1,2, Petteri Kaski3,�, and Mikko Koivisto3,�

1 Lund University, Department of Computer Science,
P.O. Box 118, SE-22100 Lund, Sweden

andreas.bjorklund@yahoo.se, thore.husfeldt@cs.lu.se
2 IT University of Copenhagen,

Rued Langgaards Vej 7, 2300, København S, Denmark
3 Helsinki Institute for Information Technology HIIT,

Department of Computer Science, University of Helsinki,
P.O. Box 68, FI-00014 University of Helsinki, Finland

petteri.kaski@cs.helsinki.fi, mikko.koivisto@cs.helsinki.fi

Abstract. We show that one can count k-edge paths in an n-vertex
graph and m-set k-packings on an n-element universe, respectively, in
time

(
n

k/2

)
and

(
n

mk/2

)
, up to a factor polynomial in n, k, and m; in

polynomial space, the bounds hold if multiplied by 3k/2 or 5mk/2, re-
spectively. These are implications of a more general result: given two set
families on an n-element universe, one can count the disjoint pairs of sets
in the Cartesian product of the two families with O(n�) basic operations,
where � is the number of members in the two families and their subsets.

1 Introduction

Some combinatorial structures can be viewed as two halves that meet in the
middle. For example, a k-edge path is a combination of two k/2-edge paths. Bidi-
rectional search [10,25] is a general approach to find such structures by searching
the two halves simultaneously until the two search frontiers meet. In instanti-
ations of this idea, it is crucial to efficiently join the two frontiers to obtain a
valid or optimal solution. For instance, the meet-in-the-middle algorithm for the
Subset Sum problem, by Horowitz and Sahni [15], implements the join operation
via a clever pass through two sorted lists of subset sums.

In the present paper, we take the meet-in-the-middle approach to counting
problems, in particular, to counting paths and packings. Here, the join operation
amounts to consideration of pairs of disjoint subsets of a finite universe, each
subset weighted by the number of structures that span the subset. We begin in
Sect. 2 by formalizing this as the Disjoint Sum problem and providing an algo-
rithm for it based on inclusion–exclusion techniques [5,6,7,17,18,20]. In Sect. 3
we apply the method to count paths of k edges in a given n-vertex graph in
time O∗((n

k/2

))
; throughout the paper, O∗ suppresses a factor polynomial in the

� This research was supported in part by the Academy of Finland, Grants 117499
(P.K.) and 125637 (M.K.).

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 578–586, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Counting Paths and Packings in Halves 579

mentioned parameters (here, n and k). In Sect. 4 we give another application, to
count k-packings in a given family of m-element subsets of an n-element universe
in time O∗((n

mk/2

))
. For both problems we also present slightly slower algorithms

that require only polynomial space.
We note that an earlier report on this work [8] already introduces a somewhat

more general technique and an application to counting paths. The results on the
application in particular have attracted some recent interest [1,26]; these results
are subsumed by the present work. We discuss related work in more detail below.

1.1 Related Work and Discussion

Deciding whether a given n-vertex graph contains a Hamiltonian path, that
is, a simple path of n − 1 edges, is well known to be NP-hard. The fastest
known algorithms, due to Bellman [3,4] and, independently, Held and Karp [14],
are based on dynamic programming across the vertex subsets and run in time
O∗(2n). Equally fast polynomial-space variants that actually count all Hamil-
tonian paths via inclusion–exclusion were discovered later by Kohn, Gottlieb,
and Kohn [20], and independently, Karp [17]. Our algorithm (cf. Theorem 2, for
k = n− 1), too, runs in time O∗(2n), if allowing exponential space.

In this light, it is intriguing that the parameterized problem of counting paths
of k edges seems harder than the corresponding decision problem; this is the
present understanding that has emerged from a series of works, starting per-
haps in Papadimitriou and Yannakakis’s [24] conjecture that for k = O(log n)
the decision problem can be solved in polynomial time. The conjecture was
proved by Alon, Yuster, and Zwick’s [2] color-coding technique that gave a ran-
domized algorithm with expected running time O∗(5.44k) and a derandomized
variant with running time O∗(ck) for a large constant c. With a more efficient
color-coding scheme, Chen, Lu, Sze, and Zhang [9] improved the latter bound
to O∗(12.8k); see also Kneis, Mölle, Richter, and Rossmanith [19]. Using com-
pletely different techniques, Koutis [22], followed by Williams [27], developed a
randomized algorithm that runs in expected time O∗(2k). Unfortunately, it is
unlikely that the randomization based techniques extend to counting. For in-
stance, very recently Alon and Gutner [1] showed that color-coding is doomed
to fail as every “balanced” family of hash functions from a k-set to an n-set is of
size at least c(k)n�k/2� for some function c. Flum and Grohe [12] proved another
negative result, namely that the counting problem is #W[1]-hard with respect
to the parameter k. Thus it is not expected that the problem, unlike its decision
counterpart, is fixed–parameter tractable. From the positive side, a very recent
result of Vassilevska and Williams [26] implies that k-edge paths can be counted
in time O∗(2k(k/2)!

(
n

k/2

))
in polynomial space; our polynomial-space algorithm

(cf. Theorem 3) is faster still, by a factor of (4/3)k/2(k/2)!.
Concerning set packings the situation is analogous, albeit the research has

been somewhat less extensive. Deciding whether a given family of f subsets
of an n-element universe contains a k-packing is known to be W[1]-hard [11],
and thus it is unlikely that the problem is fixed–parameter tractable, that is,
solvable in time c(k)fd for some function c and constant d. If f is fairly large,

580 A. Björklund et al.

say exponential in n, the fastest known algorithms actually count the packings
by employing the inclusion–exclusion machinery [5,6] and run in time O∗(2n).
This bound holds also for the presented algorithm (cf. Theorem 4).

Again, it is interesting that there is a natural parameterization under which
counting k-packing seems harder than the corresponding decision problem. In-
deed, Jia, Zhang, and Chen [16] showed that the decision problem is fixed–
parameter tractable with respect to the total size mk of the packing, assuming
each member is of size m. Koutis [21], followed by Chen, Lu, Sze, and Zhang [9],
gave faster algorithms with running time O∗(cmk) for some constant c; we note
that here the running time also grows about linearly in the input size f , which
can be as large as

(
n
m

)
. For counting m-set k-packings, previous techniques [5,6]

alone only give a running time bound of O∗((n
mk

))
if mk ≤ n/2 and O∗(2n) oth-

erwise. Besides the present work, we are aware of two recent improvements: For
the special case of counting t-matchings, that is 2-set t/2-packings,1 Vassilevska
and Williams [26] give a time bound of O∗(2t+c(t)

(
n

t/2

))
, where c(t) is of order

o(t); our polynomial-space algorithm (cf. Corollary 1) turns out to be slightly
faster, by a factor of about (4/3)t/2. For the general case, Koutis and Williams
[23] give a time bound of O∗(nmk/2

)
; our bounds (Theorem 4) appear to be

superior, e.g., when mk grows linearly in n.
The presented meet-in-the-middle approach resembles the randomized divide-

and-conquer technique by Chen, Lu, Sze, and Zhang [9] and the similar divide-
and-color method by Kneis, Mölle, Richter, and Rossmanith [19], designed for
parameterized decision problems. These can, in turn, be viewed as extensions of
the recursive partitioning technique of Gurevich and Shelah [13] for the Hamil-
tonian Path problem. That said, the contribution of the present paper is mainly
in the observation that, in the counting context, the join operation can be imple-
mented efficiently using the inclusion–exclusion machinery. While our formaliza-
tion of the problem as the Disjoint Sum problem is new, the solution itself can,
in essence, already be found in Kennes [18], even though in terms of possibility
calculus and without the idea of “trimming,” that is, restricting the computa-
tions to small subsets. Kennes’s results were rediscovered in a dual form and
extended to accommodate trimming in the authors’ recent works [5,6,7].

2 The Disjoint Sum Problem

Given two set families A and B, and functions α and β that associate each
member of A and B, respectively, an element from a ring R, the Disjoint Sum
problem is to find the sum of the products α(A)β(B) over all disjoint pairs
of subsets (A, B) in the Cartesian product A × B; denote the sum by α � β.
In applications, the ring R is typically the set of integers equipped with the
usual addition and multiplication operation. Note that, had the condition of
disjointness removed, the problem could be easily solved using about |A| + |B|
1 Whether counting t-matchings is fixed–parameter tractable remains a major open

question in parameterized complexity.

Counting Paths and Packings in Halves 581

additions and one multiplication. However, to respect the disjointness condition,
the straightforward algorithm appears to require about |A||B| ring operations
and tests of disjointness.

In many cases, we fortunately can do better by applying the principle of
inclusion and exclusion. The basic idea is to compute the sum over pairs (A, B)
with A ∩ B = ∅ by subtracting the sum over pairs with A ∩ B = X �= ∅ from
the sum over pairs with no constraints. For a precise treatment, it is handy to
denote by N the union of all the members in the families A and B, and extend
the functions α and β to all subsets of N by letting them evaluate to 0 outside
A and B, respectively. We also use the Iverson bracket notation: [P] = 1 if P is
true, and [P] = 0 otherwise. Now, by elementary manipulation,

α � β =
∑
A

∑
B

[A ∩B = ∅] α(A)β(B)

=
∑
A

∑
B

∑
X

(−1)|X| [X ⊆ A ∩B] α(A)β(B)

=
∑
X

(−1)|X|∑
A

∑
B

[X ⊆ A] [X ⊆ B] α(A)β(B)

=
∑
X

(−1)|X|
(∑

A⊇X

α(A)
)(∑

B⊇X

β(B)
)

. (1)

Here we understand that A, B, and X run through all subsets of N unless other-
wise specified. Note also that the second equality holds because every nonempty
set has exactly as many subsets of even size as subsets of odd size.

To analyze the complexity of evaluating the inclusion–exclusion expression
(1), we define the lower set of a set family F, denoted by ↓F, as the family
consisting of all the sets in F and their subsets. We first observe that in (1) it
suffices to let X run over the intersection of ↓A and ↓B, for any other X has no
supersets in A or in B. Second, we observe that the values

α̂(X) .=
∑

A⊇X

α(A) ,

for all X ∈ ↓A, can be computed in a total of |↓A|n ring and set operations, as
follows. Let a1, a2, . . . , an be the n elements of N . For any i = 0, 1, . . . , n and
X ∈ ↓A define α̂i(X) as the sum of the α(A) over all sets A ∈ ↓A with A ⊇ X
and A∩{a1, a2, . . . , ai} = X ∩{a1, a2, . . . , ai}. In particular, α̂n(X) = α(X) and
α̂0(X) = α̂(X). Furthermore, by induction on i one can prove the recurrence

α̂i−1(X) = [ai �∈ X] α̂i(X) + [X ∪ {ai} ∈ ↓A] α̂i(X ∪ {ai}) ;

for details, see closely related recent work on trimmed zeta transform and Moe-
bius inversion [6,7]. Thus, for each i, the values α̂i(X) for all X ∈ ↓A can be
computed with |↓A| ring and set operations.

We have shown the following.

582 A. Björklund et al.

Theorem 1. The Disjoint Sum problem can be solved with O
(
n (|↓A|+ |↓B|)

)
ring and set operations, and with a storage for O

(
|↓A| + |↓B|

)
ring elements,

where n is the number of distinct elements covered by the members of A and B.

3 Paths

Consider paths in an undirected graph with vertex set V and edge set E. Define
a k-edge path as a sequence of k + 1 distinct vertices v0v1 · · · vk such that the
adjacent vertices vi−1 and vi are connected by an edge vi−1vi in E, for i =
1, 2, . . . , k. We call the set {v0, v1, . . . , vk} the support of the path and v0 and vk

the ends of the path. For any vertex v and a subset of j vertices S ⊆ V , let pj(S, v)
denote the number of j-edge paths with an end v and support S ∪ {v}. Clearly,
the values can be computed by dynamic programming using the recurrence

p0(S, v) = [S = ∅] , pj(S, v) =
∑
u∈S

pj−1(S \ {u}, u) [uv ∈ E] for j > 0 .

Alternatively, one may use the inclusion–exclusion formula [17,20]

pj(S, v) =
∑
Y ⊆S

(−1)|S\Y | wj(Y, v) ,

where wj(Y, v) is the number of j-edge walks starting from v and visiting some
vertices of Y , that is, sequences u0u1 · · ·uj with u0 = v, each ui−1ui ∈ E, and
u1, u2, . . . , uj ∈ Y . Note that for any given Y , v, and j, the term wj(Y, v) can
be computed in time polynomial in n. Using either of the above two formulas,
the values pj(S, v) for all v ∈ V and sets S ⊆ V \ {v} of size j, can be computed
in time O∗((n

↓j

))
; here and henceforth,

(
q

↓r

)
denotes the sum of the binomial

coefficients
(
q
0

)
+
(
q
1

)
+ · · ·+

(
q
r

)
. In particular, the number of k-edge paths in the

graph is obtained as the sum of pk(S, v) over all v ∈ V and S ⊆ V \ {v} of size
k, in time O∗((n

↓k

))
.

However, meet-in-the-middle yields a much faster algorithm. Assuming for
simplicity that k is even, the path has a mid-vertex, vk/2, at which the
path uniquely decomposes into two k/2-edge paths, namely v0v1 · · · vk/2 and
vk/2vk/2+1 · · · vk, with almost disjoint supports. Thus, the number of k-edge
paths is obtained as the sum of the products

pk/2(S, v) pk/2(T, v)
/

2

over all vertices v ∈ V and disjoint pairs of subsets S, T ⊆ V \ {v} of size k/2.
Applying Theorem 1, once for each v ∈ V , with A

.= B
.= {S ⊆ V \ {v} : |S| =

k/2} and α
.= β

.= pk/2 gives the following.

Theorem 2. The k-edge paths in a given graph on n vertices can be counted in
time O∗((n

k/2

))
.

Counting Paths and Packings in Halves 583

In the remainder of this section we present a polynomial-space variant of the
above described algorithm. Let the mid-vertex v be fixed. Then the task is to
compute, for each X ⊆ V \ {v} of size at most k/2, the sum∑

S⊇X

pk/2(S, v) =
∑
S⊇X

∑
Y ⊆S

(−1)|S\Y | wk/2(Y, v)

in space polynomial in n and k. If done in a straightforward manner, the running
time, ignoring polynomial factors, becomes proportional to the number of triplets
(X, S, Y) with X, Y ⊆ S ⊆ V \ {v} and |S| = k/2. This number is

(
n−1
k/2

)
2k

because there are
(
n−1
k/2

)
choices for S and for any fixed S, there are 2k/2 choices

for X and 2k/2 choices for Y .
A faster algorithm is obtained by reversing the order of summation:∑

S⊇X

pk/2(S, v) =
∑
Y

wk/2(Y, v)
∑

S

(−1)|S\Y | [X, Y ⊆ S]

=
∑
Y

wk/2(Y, v) (−1)k/2−|Y |
(

n− |X ∪ Y |
k/2− |X ∪ Y |

)
;

here Y and S run through all subsets of V \ {v} of size at most k/2 and exactly
k/2, respectively. The latter equality holds because S is of size k/2 and contains
X ∪ Y . It remains to find in how many ways one can choose the sets X and Y
such that the union U

.= X ∪ Y is of size at most k/2. This number is

k/2∑
s=0

(
n− 1

s

)
3s ≤ 3

2

(
n− 1
k/2

)
3k/2 ,

because there are
(
n−1

s

)
ways to choose U of size s, and one can put each element

in U either to X or Y or both.

Theorem 3. The k-edge paths in a given graph on n vertices can be counted in
time O∗(3k/2

(
n

k/2

))
in space polynomial in n and k.

4 Set Packing

Next, consider packings in a set family F consisting of subsets of a universe N .
We will assume that each member of F is of size m. A k-packing in F is a set of k
mutually disjoint members of F. The members F1, F2, . . . , Fk of a k-packing can
be ordered in k! different ways to an ordered k-packing F1F2 · · ·Fk. Define the
support of the ordered k-packing as the union of its members. For any S ⊆ N ,
let πj(S) denote the number of ordered j-packings in F with support S. The
values can be computing by dynamic programming using the recurrence

π0(S) = [S = ∅] , πj(S) =
∑
F⊆S

πj−1(S \ F) [F ∈ F] for j > 0 .

584 A. Björklund et al.

Alternatively, one may use the inclusion–exclusion formula

πj(S) =
∑
Y ⊆S

(−1)|S\Y |
(∑

F⊆Y

[F ∈ F]
)j

(here we use the assumption that every member of F is of size m) [5,6]. Using
the inclusion–exclusion formula, the values πj(S) for all S ⊆ N of size mj can be
computed in time O∗((n

↓mj

))
, where n is the cardinality of N ; a straightforward

implementation of the dynamic programming algorithm yields the same bound,
provided that m is a constant. In particular, the number of k-packings in F is
obtained as the sum of πk(S)

/
k! over all S ⊆ N of size mk, in time O∗((n

↓mk

))
.

Again, meet-in-the-middle gives a much faster algorithm. Assuming for sim-
plicity that k is even, we observe that the ordered k-packing decomposes uniquely
into two ordered k/2-packings F1F2 · · ·Fk/2 and Fk/2+1Fk/2+2 · · ·Fk with dis-
joint supports. Thus the number of ordered k-packings in F is obtained as the
sum of the products

πk/2(S)πk/2(T)
/

2

over all disjoint pairs of subsets S, T ⊆ N of size mk/2. Applying Theorem 1
with A

.= B
.= {S ⊆ N : |S| = mk/2} and α

.= β
.= πk/2 gives the following.

Theorem 4. The k-packings in a given family of m-element subsets of an n-
element set can be counted in time O∗((n

mk/2

))
.

We next present a polynomial-space variant. The task is, in essence, to compute
for each X ⊆ N of size at most mk/2 the sum∑

S⊇X

πk/2(S) =
∑
S⊇X

∑
Y ⊆S

(−1)|S\Y |
(∑

F⊆Y

[F ∈ F]
)k/2

in space polynomial in n, k, and m.
As with counting paths in the previous section, a faster than the straightfor-

ward algorithm is obtained by reversing the order of summation:∑
S⊇X

πk/2(S) =
∑
Y

(∑
F⊆Y

[F ∈ F]
)k/2 ∑

S

(−1)|S\Y |[X, Y ⊆ S]

=
∑
Y

(∑
F⊆Y

[F ∈ F]
)k/2

(−1)k/2−|Y |
(

n− |X ∪ Y |
mk/2− |X ∪ Y |

)
;

here Y and S run through all subsets of N of size at most mk/2 and exactly
mk/2, respectively. It remains to find the number of triplets (X, Y, F) satisfying
|X ∪ Y | ≤ mk/2, |F | = m, and F ⊆ Y . This number is

mk/2∑
s=m

(
n

s

)(
s

m

)
2m3s−m <

3
2

(
n

mk/2

)(
mk/2

m

)
2m3mk/2−m

≤ 3
2

(
n

mk/2

)
5mk/2 , (2)

Counting Paths and Packings in Halves 585

because there are
(

n
mk/2

)
choices for the union U

.= X∪Y of size s, within which
there are

(
s
m

)
choices for F ; the elements in F can be put to only Y or to both

X and Y , whereas each of the remaining s−m elements in U is put to either X
or Y or both.

Theorem 5. The k-packings in a given family of m-element subsets of an n-
element set can be counted in time O∗(5mk/2

(
n

mk/2

))
in space polynomial in n,

k, and m.

We remark that the upper bound (2) is rather crude for small values of m. In
particular, provided that m is a constant, we can replace the constant 5 by 3.

Corollary 1. The k-packings in a given family of 2-element subsets of an n-
element set can be counted in time O∗(3k

(
n
k

))
in space polynomial in n and k.

References

1. Alon, N., Gutner, S.: Balanced hashing, color coding and approximate counting.
Electronic Colloquium on Computational Complexity, Report TR09-12 (2009)

2. Alon, N., Yuster, R., Zwick, U.: Color-coding. J. Assoc. Comput. Mach. 42, 844–856
(1995)

3. Bellman, R.: Combinatorial processes and dynamic programming. In: Bellman, R.,
Hall Jr., M. (eds.) Combinatorial Analysis. Proceedings of Symposia in Applied
Mathematics 10, pp. 217–249. American Mathematical Society (1960)

4. Bellman, R.: Dynamic programming treatment of the travelling Salesman Problem.
J. Assoc. Comput. Mach. 9, 61–63 (1962)

5. Björklund, A., Husfeldt, T., Koivisto, M.: Set partitioning via inclusion–exclusion.
SIAM J. Comput. (to appear) Special Issue for FOCS 2006

6. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Fourier meets Möbius: fast sub-
set convolution. In: 39th ACM Symposium on Theory of Computing (STOC 2007),
pp. 67–74. ACM Press, New York (2007)

7. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Trimmed Moebius inversion
and graphs of bounded degree. In: 25th International Symposium on Theoretical
Aspects of Computer Science (STACS 2008). Dagstuhl Seminar Proceedings 08001,
pp. 85–96. IBFI Schloss Dagstuhl (2008)

8. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: The fast intersection transform
with applications to counting paths. CoRR, abs/0809.2489 (2008)

9. Chen, J., Lu, S., Sze, S.-H., Zhang, F.: Improved algorithms for path, matching, and
packing problems. In: 18th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2007), Philadelphia, PA, USA, pp. 298–307. Society for Industrial and
Applied Mathematics (2007)

10. Danzig, G.: Linear Programming and Extensions. Princeton University Press,
Princeton (1963)

11. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Berlin (1999)
12. Flum, J., Grohe, M.: The parameterized complexity of counting problems. SIAM

J. Comput. 33, 892–922 (2004)
13. Gurevich, Y., Shelah, S.: Expected computation time for Hamiltonian path prob-

lem. SIAM J. Comput.1̃6, 486–502 (1987)

586 A. Björklund et al.

14. Held, M., Karp, R.M.: A dynamic programming approach to sequencing problems.
J. Soc. Indust. Appl. Math.1̃0, 196–210 (1962)

15. Horowitz, E., Sahni, S.: Computing partitions with applications to the knapsack
Problem. J. Assoc. Comput. Mach.2̃1, 277–292 (1974)

16. Jia, W., Zhang, C., Chen, J.: An efficient parameterized algorithm for m-set pack-
ing. J. Algorithms 50, 106–117 (2004)

17. Karp, R.M.: Dynamic programming meets the principle of inclusion and exclusion.
Oper. Res. Lett. 1, 49–51 (1982)

18. Kennes, R.: Computational aspects of the Moebius transform on a graph. IEEE
Transactions on System, Man, and Cybernetics 22, 201–223 (1991)

19. Kneis, J., Mölle, D., Richter, S., Rossmanith, P.: Divide-and-color. In: Fomin, F.V.
(ed.) WG 2006. LNCS, vol. 4271, pp. 58–67. Springer, Heidelberg (2006)

20. Kohn, S., Gottlieb, A., Kohn, M.: A generating function approach to the traveling
salesman problem. In: ACM Annual Conference (ACM 1977), pp. 294–300. ACM
Press, New York (1977)

21. Koutis, I.: A faster parameterized algorithm for set packing. Information Processing
Letters 94, 4–7 (2005)

22. Koutis, I.: Faster algebraic algorithms for path and packing problems. In: Aceto, L.,
Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz,
I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 575–586. Springer, Heidelberg
(2008)

23. Koutis, I., Williams, R.: Limitations and applications of group algebras for parame-
terized problems. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas,
S., Thomas, W. (eds.) ICALP 2009. Part I. LNCS, vol. 5555, pp. 653–664. Springer,
Heidelberg (2009)

24. Papadimitriou, C.H., Yannakakis, M.: On limited nondeterminism and the com-
plexity of the V-C dimension. J. Comput. Syst. Sci. 53, 161–170 (1996)

25. Pohl, I.: Bi-directional and heuristic search in path problems. PhD thesis, Report
SLAC-104, Stanford University (1969)

26. Vassilevska, V., Williams, R.: Finding, minimizing, and counting weighted sub-
graphs. In: 41st ACM Symposium on Theory of Computing (STOC 2009), pp.
455–464 (2009)

27. Williams, R.: Finding paths of length k in O*O∗(2k) time. Information Processing
Letters 109, 315–318 (2009)

Accelerating Multi-modal Route Planning
by Access-Nodes�

Daniel Delling, Thomas Pajor, and Dorothea Wagner

Department of Computer Science, Universität Karlsruhe (TH), P.O. Box 6980, 76128 Karlsruhe,
Germany

{delling,pajor,wagner}@informatik.uni-karlsruhe.de

Abstract. Recent research on fast route planning algorithms focused either on
road networks or on public transportation. However, on the long run, we are in-
terested in planning routes in a multi-modal scenario: we start by car to reach
the nearest train station, ride the train to the airport, fly to an airport near our
destination and finally take a taxi. In other words, we need to incorporate public
transportation into road networks. However, we do not want to switch the type
of transportation too often. We end up in a label constrained variant of the short-
est path problem. In this work, we present a first efficient solution to a restricted
variant of this problem including experimental results for transportation networks
with up to 125 Mio. edges.

1 Introduction

s
t

car

(a) Suboptimal path.

s
t

(b) Valid path.

Fig. 1. Motivation of a label-constrained
shortest path: while the path at the top is
the quickest connection, it requires us to
use a car (black) between two trains (gray).
The path to the bottom, however, is prefer-
able since we do not need to leave the train.

Computing the quickest path in graphs model-
ing transportation networks is one of the show-
pieces of applied algorithms. In general, DI-
JKSTRA’s algorithm [1] finds a shortest (or
quickest) path between a given source s and
target t. Unfortunately, the algorithm is far too
slow to be used on huge datasets which ap-
pear frequently in route planning. Thus, sev-
eral speed-up techniques have been developed
that compute additional data during a prepro-
cessing step in order to speed-up queries dur-
ing the online phase.

However, all developed techniques so far
suffer from one drawback: they only work ei-
ther in road or railway networks. On the long
run, we are interested in multi-modal queries
where we change the type of transportation
along our journey. Unfortunately, it is not suf-
ficient to merge all networks and compute

� Partially supported by the Future and Emerging Technologies Unit of EC (IST priority –
6th FP), under contract no. FP6-021235-2 (project ARRIVAL) and the DFG (project WA
654/16-1).

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 587–598, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

588 D. Delling, T. Pajor, and D. Wagner

quickest paths in the resulting bigger network: the quickest path may force us to change
the type of transportation too frequently. See Figure 1 for an example. A possible ap-
proach to this problem is the LABEL CONSTRAINED SHORTEST PATH PROBLEM. The
idea is as follows. Each edge gets a label assigned depicting the type of transportation
network it represents. Then, only a path between s and t is valid if certain constraints
are fulfilled by the labels along the path. In this work, we present an approach how to
accelerate multi-modal queries by skipping main parts of the network without losing
correctness.

Related Work. Theoretical results on the hardness of the LABEL CONSTRAINED

SHORTEST PATH PROBLEM can be found in [3,4]. Experimental evaluations of ba-
sic algorithms are given in [5], while basic speed-up techniques like A∗ [6] and bidirec-
tional search [7] have systematically been examined in [8]. Route planning in uni-modal
scenarios has been undergoing a rapid development in recent years with the fastest tech-
niques yielding query times of several microseconds in road networks [9]. For a recent
overview over uni-modal speed-up techniques, we direct the interested reader to [2].
However, to the best of our knowledge, there exists no route planning algorithm that
can answer a multi-modal query in a huge combined transportation network within
milliseconds. Since our approach is closely related to (uni-modal static) Transit-Node
Routing [9], we briefly recap this technique. TNR selects a subset T ⊂ V (normally
10 000 nodes) of so called transit nodes and stores distances between them in a ta-
ble. Moreover, each node v ∈V stores the distances to all relevant transit nodes, called
access-nodes. Then, with good choice of T , a long-range query can be reduced to three
table lookups. In order to decide whether a query is a long-range query, a locality filter is
introduced. In case s and t are too close to each other, an arbitrary speed-up technique
is applied. The percentage of global queries can be increased by introducing several
layers of transit nodes.

Our Contribution. In this work, we present an efficient approach to a special case of
multi-modal route planning. We assume that we want to use the road network only at
the beginning and the end of a journey and that the public transportation network is
much smaller than the road network. Then, by adapting some ideas from Transit-Node
Routing, we may “skip” the road network with a table lookup and restrict the search
to the much smaller public transportation network (PTN). We present how to compute
so-called access-nodes to the PTN for each node efficiently. With this information at
hand, we are able to present Access-Node Routing, accelerating multi-modal queries
(in our scenario) by more than 4 orders of magnitude. However, the main achievement
is that we are able to separate the public transportation network from the road network
in a multi-modal context. This allows us to run different query algorithms on the public
transportation and the road networks. Although, in this work we use an augmentation of
DIJKSTRA’s algorithm on the public transportation network, it would also be possible
to use a speed-up technique or even multi-criteria search.

This work is organized as follows. Section 2 settles basic definitions we need for
this work. In Section 3 we briefly recapt existing and new approaches for modeling
transportation networks. Moreover, we show how to obtain a multi-modal network
and present that a label-constrained variant of the shortest path problem is a possible

Accelerating Multi-modal Route Planning by Access-Nodes 589

approach for better routes in multi-modal networks. It turns out that we need an automa-
ton that restricts the number of network changes. Starting from analyzing our networks
and automata, we develop our main contribution (Section 4) of this work: Access-Node
Routing. By running several experiments on transportation networks with up to 125
Mio. edges (Section 5), we show that Access-Node Routing is up to 31 000 times faster
than a label-constrained variant of DIJKSTRA. This value is achieved without using a
speed-up technique within the public transportation network. Section 6 concludes our
work with a brief summary and interesting open questions.

2 Preliminaries

A graph is a tuple G = (V,E) consisting of a finite set V of nodes and a set E ⊆V×V of
edges which are ordered pairs (u,v) if the graph is directed. The node u is called the tail

of the edge, v the head. The reverse graph
←−
G = (V,

←−
E) is the graph obtained from G by

substituting each (u,v)∈E by (v,u). The main difference between uni- and multi-modal
route planning is that the nodes and edges of a graph are labeled by a finite set Σ of
symbols which is often called an alphabet. The node-label is denoted by lab : V → Σ ,
the edge-label by lab : E → Σ . Throughout the whole work we restrict ourselves to
directed labeled graphs which are weighted by a length function len depicting the travel
time from u to v. Depending on the edge-label, edge weights may be time-independent
or time-dependent. For time-independent weights, we use a positive length function
len : E→�+, while for time-dependent edges, we use a time-dependent length function
len : E → � with the function space � consisting of positive periodic functions f :
Π → �

+,Π = [0, p], p ∈ � such that f (0) = f (p) and f (x) + x ≤ f (y) + y for any
x,y ∈ Π ,x ≤ y. Note that these functions respect the FIFO property [10], and hence
our networks fulfill the FIFO property as well. In the following, we call Π the period
of the input. The upper bound of f is denoted by f = maxx∈Π f (x), the lower by f =
minx∈Π f (x). Note that we can obtain a time-independent labeled lower/upper bound
graph G/G from G by replacing each edge function with their lower/upper bounds.

A sequence w := σ1,σ2, . . . ,σk of symbols from Σ is called a word. The length of
a word is the number of symbols it is composed of. A not necessarily finite set L of
words over Σ is called a language over Σ . A non-deterministic finite automaton A :=
(Q,Σ ,δ ,S,F) consists of a finite set Q of states, an alphabet Σ , the transition function
δ : Q×Σ →P(Q), a set S of initial states and a set F of final states. A language L
is called regular if it can be accepted by a non-deterministic finite automaton [11,12].
Throughout the whole work we restrict ourselves to regular languages.

3 Models and Basic Algorithms

We now briefly present how to model transportation networks as graphs and how to con-
struct a multi-modal graph from these ingredients. Finally, we present why the LABEL

CONSTRAINED SHORTEST PATH PROBLEM is useful for our application of reasonable
route planning in multi-modal scenarios.

590 D. Delling, T. Pajor, and D. Wagner

3.1 Models

Modeling a road network or foot networks as a graph Groad is straightforward. Junctions
are modeled as nodes and an edge e = (u,v) between two junctions u,v ∈V is inserted
if and only if a road segment from u to v exists in the road network. The edge weights
len(e) in the road network represent the average travel time on the specific road seg-
ment. For foot edges, we assign a weight based on the assumption that we walk the seg-
ment with 4 km/h on average. Note that our foot networks compared to our road networks
have the same node set whereas the edge sets may differ due to motorways (not open to
pedestrians), one-ways and pedestrian zones (not open to traffic). For railway networks
Grail, we use the realistic time-dependent approach as presented in [13] where edges
are time-dependent and depict several trains running on the same route from one station
to another. We model flight networks Gflight as follows. Our realistic raw data incor-
porates two major flight alliances: StarAlliance [14] and Oneworld [15]. Thus, for each
airport we introduce a supernode and two departure and arrival nodes—one for each
flight alliance. Edges between supernodes and departure nodes model check-in, arrival-
departure edges the changing of planes (with different weights for transfers between
flight alliances) and arrival-supernode edges the check-out. Time-dependent edges be-
tween two airports A and B depict direct flights between A and B. Depending on the
fact which flight alliance operates the respective flight, head and tail are chosen as the
corresponding departure and arrival nodes. See [16] for details.

Let Σ = {road,foot,rail,flight} be an alphabet. We construct a multi-modal
network from our four types of transportation networks Gσ = (Vσ ,Eσ),σ ∈ Σ by first
labeling each node u and each edge e with a label lab(u), lab(e) ∈ Σ . Then, we unify
the node and edge-sets to a graph Gmulti = (

⋃
σ∈Σ Vσ ,

⋃
σ∈Σ Eσ) =: (Vmulti,Emulti). In

order to connect the networks among each other, we introduce so called link-edges (u,v)
with lab((u,v)) = link and lab(u) �= lab(v). These edges depict possible switches from
one transportation type to another. So, we have Σ = {road,foot,rail,flight,link}.
We connect each station node (railways) and supernode (flights) with its closest node
from the road network. Moreover, we connect each airport with its closest train stations
by a link edge. However, head and tail must not be more than 5 km away from each
other.

3.2 The Label-Constrained Shortest Path Problem

The LABEL CONSTRAINED SHORTEST PATH PROBLEM is an augmentation of the
classic SHORTEST PATH PROBLEM. The idea is that only such paths between s and
t are valid that form a word of a language L. More precisely, given an alphabet Σ ,
a language L ⊂ Σ∗, a weighted, directed graph G = (V,E) with Σ -labeled edges and
source and target nodes s,t ∈V , we ask for a shortest path P = (u1, . . . ,uk) from s = u1

to t = uk, where the sequence of labels along the edges of the path forms a word of L.
In other words, lab((u1,u2)) . . . lab((uk−1,uk)) ∈ L must hold.

It turns out that the complexity of this problem depends on the restrictions to L [4].
In our case, where L is regular, the problem remains polynomially solvable. Then, we
can use a straightforward adaption of DIJKSTRA’s algorithm for computing a label-
constrained shortest s–t path. Besides the inputs for a normal DIJKSTRA, we also

Accelerating Multi-modal Route Planning by Access-Nodes 591

require an automaton A := (Q,Σ ,δ ,S,F) that accepts our language L. We initial-
ize pairs (s,q), q ∈ S with dists((s,q)) = 0 and insert them with key 0 into a pri-
ority queue. Any other node-state tuple (u,q′) is initialized with dists((u,q′)) = ∞.
Then, we remove a node-state tuple (u,q′) with minimum key from the queue, relax
all outgoing edges e = (u,v), determine all states q′′ ∈ δ (q′, lab(e)) and check whether
dists((u,q′))+ len(e) < dists((v,q′′)) holds. If so, we update the distance label and en-
queue (v,q′′). We may stop the search as soon as we settle a tuple (t,q′) with a final
state q′ ∈ F .

Note that this procedure can be adapted to a time-dependent scenario easily: if we
want to compute the shortest path for a given departure time τ , we simply have to eval-
uate edge weights for their correct departure time when relaxing them. If we want to
compute the shortest path for all departure times, we have to use a label-correcting al-
gorithm that propagates functions instead of constants through the network (see [17,18]
for details).

A Special Case. When planning a typical multi-modal voyage, we observe that in most
cases we start in the road or foot network. Then, we enter the public transportation
network without using the road network again (except for transfers) until the end of
the journey. There, we either use a taxi or rental car or go by foot to reach our final
destination. This observation is characterized by the following definition on languages.

Definition 1 (Enclose Property). Let L be a regular language over the alphabet Σ
of edge-labels. If L is of the form L = σ∗r1

lσ∗t lσ∗r2
, where σr1 ,σr2 ∈ {road,foot} and

σt ∈ {rail,flight} and l = link, we say that L fulfills the enclose property.

In other words, the public transportation is enclosed by the road network part. An ex-
ample for an automaton for such languages only allows railway connections enclosed
by foot-edges. In the following, we denote this automaton by foot-and-rail. By sub-
stituting foot by road and rail by flight, we obtain a second automaton which we
call road-and-flight.

Trees and Profile-Graphs. In the following, we build label-constrained shortest path
trees and profile graphs. As discussed in Section 3.1, our railway- and flight-networks
are time-dependent. So, running a label-constrained DIJKSTRA with a given departure
time τ from a node u until the priority queue is empty yields a tree rooted at u. Simi-
larly, running a label-constrained label-correcting algorithm (cf. [17,18]) for all possible
departure times from u yields a so-called profile-graph. For each node v, we obtain a
function depicting the travel time from v to u (the profile) with changing parent node
during the period.

4 Access-Node Routing

Analyzing the networks obtained from our multi-modal approach, we observe that most
part of the graph is made up of road segments and, hence, a multi-modal DIJKSTRA

spends most its time settling road nodes. Access-Node Routing (ANR) accelerates
queries with an automaton fulfilling the enclose property as described in Section 3.2.

592 D. Delling, T. Pajor, and D. Wagner

The main idea is to precompute distances to all relevant access points to the public
transportation network. With this information at hand, we may “skip” the road network
and restrict the search to a much smaller network. In the following, we define access-
nodes, how they can be computed efficiently and the resulting query algorithm. It turns
out that space consumption of this approach is rather high, hence, we present how to
reduce space consumption by using the concept of contraction [19]. Note that in the
following, we explain how to skip the road network, however, this approach can also be
used to skip a foot network. Experiments for both variants can be found in Section 5.

4.1 Access-Nodes

Not every node in the public transportation network is suited as “access-node”. For ex-
ample, in the flight network the departure and arrival nodes are used to model internal
procedures at airports and should not be accessed directly from the road network. More
precisely, a node v is called access-node candidate if lab(v) �= road and at least one in-
cident edge is a link-edge. The set of all access-node candidates is denoted by A. In our
case the set A includes exactly all station nodes regarding the railway network and all
supernodes of the flight network (cf. Section 3). Nodes v∈ A can be interpreted as entry
(or exit) points to/from the public transportation network. Computing distances from
every road network node to every access-node would require too much space. More-
over, not every entry point to the public transportation network is mandatory for correct
shortest paths. More precisely, a node v ∈ A with lab(v) �= road is an access-node for
all nodes u with lab(u) = road if there exists another node w ∈ A with lab(w) �= road
for which the shortest u–w path (for at least one departure time) uses v to enter the
public transportation network (i.e., all ancestors of v are road-labeled). The set of (for-
ward) access-nodes for a node u is denoted by−→A (u). Note that we can define backward
access-nodes←−A (u) analogously.

4.2 Computing Access-Nodes

In the following, we explain how to compute forward access-nodes for each v ∈ Vmulti

with lab(v) = road efficiently. Computing backward access-nodes is done analogously.
In general, we present two approaches for computing access-nodes, a forward and an
inverse approach, which we both explain in detail.

For the forward approach, we construct a profile-graph (with an automaton fulfilling
the enclose property) Tv from each v with lab(v) = road. Whenever we settle a can-
didate node a ∈ A, we add a to −→A (v) if a parent—with respect to Tv—of a is a road
node. We may stop the search as soon as all nodes u in the priority queue are covered.
A node u is called covered if at least one of its ancestors—with respect to Tv—is a
non-road node. Note that this approach requires two profile-graph constructions (for-
ward and backward) per road node. Hence, this approach is only useful if the number
of access-node candidates is high and thus, the construction terminates early.

For the backward approach, we compute for each access-node candidate a ∈ A all
nodes u ∈ A−1(a). Therefore, we construct a backward profile-graph not relaxing edges
whose tail is a road node. By this, we obtain travel time functions from each a′ ∈ A \
{a} to a ∈ A. Next, we construct a backward shortest path forest: we initialize a with

Accelerating Multi-modal Route Planning by Access-Nodes 593

distance 0 and any a′ with an upper bound on the travel time functions to a. This time,
we do not relax public transportation edges. We may stop the search as soon as all nodes
u in the priority queue have a node a′ ∈ A \ {a} as ancestor. Finally, we add all nodes
with ancestor a to A−1(a). After performing this task for all candidates, we obtain−→A (v)
for all road nodes by inverting the relation A−1(·). Note that by bounding the functions,
we may compute a superset of the actual access-nodes.

4.3 Query

With the preprocessed data at hand, we can skip the road network part for multi-modal
queries with automata fulfilling the enclose property. Assume lab(s) = lab(t) = road.
In a first step, we add node-state tuples (as,qs) (with corresponding distances) for all
as ∈ −→A (s) and all qs ∈ Q obtained by a link-labeled transition originating from an
arbitrary initial state of the automaton to the priority queue. Node-state tuples (a f ,q f)
for all a f ∈ ←−A (t) and all q f ∈ Q such that there is a link-labeled transition from q f

to a final state in the automaton are accumulated in a target node set T . In a second
step, we run a multi-modal query in the public transportation network to T not relaxing
edges whose head is a road node. We may stop the search if all (a f ,q f) ∈ T have
a final label assigned or the priority queue runs empty. We end up having distances
dists((a f ,q f)) for all (a f ,q f) ∈ T . Then, the length of the shortest path from s to t is
min(a f ,q f)∈T{dists((a f ,q f))+ dist(a f ,t)}. Note that we can run time-, profile-, or even
multi-criteria-queries within the public transportation network. The main gain we obtain
is skipping the road network.

Note that the paths found by our access-node query algorithm must contain a public
transportation node. While for long-range queries this may be a meaningful restriction
(nobody wants to drive 30 hours by car), low-range queries may contain only road
nodes. Fortunately, computations of quickest paths in road networks can be done in
microseconds. So, we run a check-query with the CHASE-algorithm [20] that outputs
the length of the quickest path if only the road network is used.

4.4 Core Access-Node Routing

One of the main drawbacks of pure Access-Node Routing is its high space consump-
tion. For each node v of the road network we store two sets of access-nodes together
with corresponding distances. Although the number of access-nodes per road node is
relatively small, it is not necessary to store these sets for all nodes but only for important
ones, i.e., the core of the graph. We use a contraction routine that removes unimportant
nodes and adds shortcuts in order to preserve distances between core nodes.

Preprocessing for Core-Based Access-Node Routing is done in two steps. First,
we contract the graph by a node-reduction followed by an edge-reduction which we
obtain by a straightforward adaption of the concepts presented in [20]. However, in
order to preserve correctness, we may only remove road nodes having no incident link-
edges. As a result, the embedded time-dependent public transportation network is fully
contained in the core. See [19] for more details on uni-modal contraction. In a sec-
ond step, we compute forward and backward access-nodes for all core nodes u with
lab(u) = road.

594 D. Delling, T. Pajor, and D. Wagner

The query is a three-phase algorithm. During phase 1, we run a bidirectional DI-
JKSTRA, not relaxing edges outgoing from core-nodes. Whenever the forward search
settles a core node, we add it to a set S. A set T is maintained for backward search analo-
gously. Phase 1 ends if both priority queues are empty. Then, a (two-phase) access-node
query is started with S as source nodes and T as target nodes.

4.5 Comparison to Transit-Node Routing

As already mentioned, Access-Node Routing (ANR) adapts ideas from Transit-Node
Routing (TNR). Recall that TNR has three ingredients: a table for storing distances
between transit nodes, stored distances for each node to its relevant transit (access)
nodes, and a locality filter for deciding whether s and t are far away enough from each
other (cf. Section 1). In fact, ANR can be interpreted as a multi-modal variant of TNR.
Our access-node candidates become transit nodes and we store distances to the relevant
access-nodes. Unfortunately, due to poor upper bounds on the travel time functions of
the time-dependent edges of the public transportation network, we cannot make up an
efficient locality filter as for TNR: we have to run a local path query in almost all cases.
In fact, the only time we do not need to run a check query is when s and t are not in the
same component of the road network.

Note that TNR uses a (sophisticated) forward approach for determining the relevant
access-nodes. Unfortunately, our public transportation networks tend to be sparse and
they are time-dependent as well. As a result, the inverse approach turns out to be better
for our scenario. Summarizing, ANR can be interpreted as a variant of TNR with higher
flexibility but worse query performance. However, TNR has neither been adapted to
time-dependent nor label-constrained route planning so far. Both aspects are crucial
preconditions for route planning in our scenario.

5 Experiments

We conducted our experiments on one core of an AMD Opteron 2218 running SUSE
Linux 10.3. The machine is clocked at 2.6 GHz, has 32 GB of RAM and 2 x 1 MB
of L2 cache. The program was compiled with GCC 4.2, using optimization level 3.
Our implementation is written in C++ using solely the STL at some points. As priority
queue we use a binary heap.

Inputs. We use two different networks and two automata. The first network depicts
the foot network of Germany (|V | ≈ 4.5 Mio, |E| ≈ 11.2 Mio) merged with all long
distance trains from the timetable of the winter period 2000/2001 (498 stations and
18069 connections). This includes InterRegio (IR), InterCity (IC) and InterCityEx-
press (ICE) trains. We call the resulting graph de-road-rail(long) and apply the
foot-and-rail automaton to this input. Our second input consists of the road net-
work of Western Europe (|V | ≈ 30 Mio, |E| ≈ 73 Mio) and North America (including
Canada, |V | ≈ 20 Mio, |E| ≈ 51 Mio) and the flight network of both flight alliances (359
airports with 32 621 flights). We use this graph together with the road-and-flightau-
tomaton. In the following, this input is referenced to by na-eur-road-flight. Note
that second input has about 50 Mio. nodes and 125 Mio. edges.

Accelerating Multi-modal Route Planning by Access-Nodes 595

Methodology. In the following, we report preprocessing times and the overhead of the
preprocessed data in terms of additional bytes per node. We evaluate query performance
by random queries, i.e., the nodes s and t are picked uniformly at random. Since public
transportation networks are time-dependent, we additionally need a departure time τ ,
which we pick uniformly at random as well. We provide the average number of set-
tled nodes, i.e., the number of nodes extracted from the priority queue and the average
query time. Unless otherwise stated, all figures in this paper are based on 1 000 000
random s-t queries and refer to the scenario that only the lengths of the shortest paths
have to be determined, without outputting a complete description of the paths. Effi-
cient methods for unpacking table lookups have been published in [9]. Local paths are
computed by CHASE [20]which is a combination of Contraction Hierarchies [19] and
Arc-Flags [21].

Preprocessing. In Section 4, we presented two approaches to compute access-nodes:
a forward variant and an inverse approach. It turns out that the former is too slow for
our multi-modal inputs, hence, we only use the inverse approach. Table 1 reports key
figures for computing access-nodes. Note that na-eur-road-flight, we only use the
core-based approach (cf. Section 4.4). Also note that we report the preprocessing effort
for CHASE. Since we need to keep the road network as a uni-modal graph in memory,
the space consumption here includes the graph.

Regarding de-road-rail(long), the average number of forward and backward
access-nodes per road node is 32.4 resp. 20.9. Thus, 32.4 railway stations are important
(on average) to enter the railway network. While this seems to be a very high number
(even more if we consider that these railway stations have to be reached by foot), there
are two good reasons for this. First, the railway network is sparsely embedded into the
road network, thus, for a single road network node a lot of stations are important at least
once a day. Second, long distance trains do not operate very frequently on some parts of
the network. As a consequence, the upper bounds are of poor quality yielding many un-
necessary access-nodes. The same effect can be observed in the na-eur-road-flight
network, as flights are even more infrequent. This makes it attractive to cover far dis-
tances by car, thus, including many (also far away) airports into the set of relevant
access-nodes.

Preprocessing times are in the range of several hours (between 26 minutes for the
core of the German network and almost three hours for the core of the continental

Table 1. Preprocessing Figures for (Core-Based) Access-Node Routing. We report the number
of access-node candidates, the average number of forward and backward access-nodes per road
node and the preprocessing time for computing access-nodes as well as the additionally required
space per node. We also report preprocessing effort for CHASE. Note that for CHASE we report
the space consumption including the graph.

Access-Node Routing CHASE
core- AN- forward backward time space time space

network based cand. access-nodes access-nodes [min] [B/n] [min] [B/n]
de-road-rail(long) 473 32.4 (6.8%) 20.9 (4.4%) 143 435 17 56
de-road-rail(long) � 473 31.0 (6.5%) 19.7 (4.1%) 26 56 17 56
na-eur-road-flight � 359 118.7 (33.0%) 119.1 (33.1%) 161 224 233 57

596 D. Delling, T. Pajor, and D. Wagner

network). As expected, switching to Core-Based Access-Node Routing drastically re-
duces both preprocessing time and the required space for the access-nodes. The addi-
tional effort for preprocessing CHASE is comparable to ANR. We need 56 bytes per
node (including a uni-modal graph) and preprocessing times are within a reasonable
range.

Query Performance. Table 2 reports query performance of a multi-modal DIJKSTRA,
ANR, and of our CHASE check-query for all our inputs. Note that the figures for
plain DIJKSTRA are based on 1 000 random queries. We observe a drastic drop in
both the number of settled nodes and the query time when using Access-Node Rout-
ing. In de-road-rail(long) we observe that the query time increases from 3.9 to
5.8 milliseconds when switching to the core-based variant. This is due to the compu-
tational overhead of the initialization phase. The performance of Access-Node Routing
on na-eur-road-flight is better than on de-road-rail(long). This is due to the
fact that the flight network is significantly smaller than the railway network embed-
ded in de-road-rail(long). Moreover, the number of access-nodes per road node is
only 14.2 whereas in Germany it is twice that much. The highest speed-up of 31551
is achieved when applying our biggest input. We are able to perform intercontinental
queries with an average time of 2.3ms compared to over 72sec when the standard algo-
rithm is used. We also observe that the running time for CHASE is negligible compared
to the execution time of ANR: query times are between 51 and 111 μs for settling only
very few nodes.

Three Phases. The query algorithm for Core-Based Access-Node Routing is made up
of three distinct phases (cf. Section 4.4). Table 3 reports the distribution of the running
time among the particular phases of the query algorithm. We observe that the pub-
lic transportation query makes up the major part of the running time (between 73.9%
and 96.2% depending on the network). This is expected since we do not use a speed-
up technique within the public transportation network. The time for looking up the
access-nodes is negligible as it is less than 2% on de-road-rail(long) and 7.9%
on na-eur-road-flight of the running time. This is due to the fact that the number
of average access-nodes per road node is higher than on the other two networks (cf.
Table 1).

Furthermore, we report the relative number of local paths, i.e., how many quickest
paths do not use the public transportation network. We observe a great variation de-
pending on the network. While in de-road-rail(long) only 2.3% of the queries do

Table 2. Query performance of (Core-Based) Access-Node Routing without local queries (i.e.,
all shortest paths use the transportation network) compared to plain multi-modal DIJKSTRA. Note
that the figures for the latter are based on only 1000 random queries.

DIJKSTRA Access-Node Routing Local (CHASE)
settled time core- #settled time speed- #settled time

network nodes [ms] based nodes [ms] up nodes [ms]
de-road-rail(long) 2483030 3492 13295 3.9 895 168 0.111
de-road-rail(long) 2483030 3492 � 13524 5.8 602 168 0.111
na-eur-road-flight 46244703 72566 � 4200 2.3 31551 75 0.051

Accelerating Multi-modal Route Planning by Access-Nodes 597

Table 3. In-depth analysis of Core-Based Access-Node Routing. This table reports the dis-
tribution of query time among the particular phases of the query algorithm: the bidirectional
initialization, the table-lookups of access-nodes, and DIJKSTRA on the public transportation net-
work. Furthermore, we report the amount of local queries (paths that do not use the transporta-
tion network) when generating 1000 (de-road-rail(long), ny-de-road-flight) and 100
(na-eur-road-flight) random queries.

QUERY

initialization access-node public total local
Network phase lookup transport [ms] queries
de-road-rail(long) 0.15 (2.4%) 0.08 (1.4%) 5.87 (96.2%) 5.8 2.3%
na-eur-road-flight 0.42 (18.2%) 0.18 (7.9%) 1.70 (73.9%) 2.3 24%.0

not use the railway, while for na-eur-road-flight the amount of local queries is
24%. Still, as observable in Table 2, running a CHASE query comes almost for free
compared to the running time of the multi-modal query. In general, the high num-
ber of local queries is also due to the fact that we pick τ randomly. By computing a
departure time with minimal travel time via profile-searches [18], the amount of lo-
cal queries most probably will decrease. Note that in our scenario, it is sufficient to
use profile-searches within the public-transportation network in order to answer such
requests.

6 Conclusion

In this work we presented a first efficient approach to a special variant of multi-modal
routing in large transportation networks. Using the reasonable assumption that we want
to use a car only at the beginning and the end of the journey, we can split the search
by adapting some ideas from Transit-Node Routing. The key idea is to skip the road
network during the query. Experiments on real-world multi-modal networks with up to
125 Mio. edges confirm the feasibility of our approach: random queries are up to 31 000
times faster than with a multi-modal variant of DIJKSTRA. We want to stress out that
we could achieve further speed-ups by using a better routing algorithm than DIJKSTRA

within the public transportation network.
Regarding future work, it would be interesting to develop a multi-modal speed-

up technique that does not restrict the choice of the automaton combined with rea-
sonable speed-ups. Preliminary results from [16] confirm that the adaption of some
speed-up techniques, e.g., Contraction Hierarchies, Arc-Flags or Landmarks, is much
more challenging than one might expect. So, such a technique is non-trivial. Further-
more, we want to develop better foot networks and accelerate public transportation
queries.

Acknowledgments. We would like to thank Martin Holzer and Christos Zaroliagis for
interesting discussions on multi-modal route planning. Moreover, we thank PTV AG
and HaCon for providing us with real-world data for scientific use.

598 D. Delling, T. Pajor, and D. Wagner

References

1. Dijkstra, E.W.: A Note on Two Problems in Connexion with Graphs. Numerische Mathe-
matik 1, 269–271 (1959)

2. Delling, D., Sanders, P., Schultes, D., Wagner, D.: Engineering Route Planning Algorithms.
In: Lerner, J., Wagner, D., Zweig, K.A. (eds.) Algorithmics of Large and Complex Networks.
LNCS, vol. 5515, pp. 117–139. Springer, Heidelberg (2009)

3. Mendelzon, A.O., Wood, P.T.: Finding Regular Simple Paths in Graph Databases. SIAM
Journal on Computing 24(6), 1235–1258 (1995)

4. Barrett, C., Jacob, R., Marathe, M.V.: Formal-Language-Constrained Path Problems. SIAM
Journal on Computing 30(3), 809–837 (2000)

5. Barrett, C., Bisset, K., Jacob, R., Konjevod, G., Marathe, M.V.: Classical and Contemporary
Shortest Path Problems in Road Networks: Implementation and Experimental Analysis of
the TRANSIMS Router. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461,
p. 126. Springer, Heidelberg (2002)

6. Hart, P.E., Nilsson, N., Raphael, B.: A Formal Basis for the Heuristic Determination of Mini-
mum Cost Paths. IEEE Transactions on Systems Science and Cybernetics 4, 100–107 (1968)

7. Dantzig, G.B.: Linear Programming and Extensions. Princeton University Press, Princeton
(1962)

8. Barrett, C., Bisset, K., Holzer, M., Konjevod, G., Marathe, M.V., Wagner, D.: Engineering
Label-Constrained Shortest-Path Algorithms. In: Shortest Paths: Ninth DIMACS Implemen-
tation Challenge. DIMACS Book. American Mathematical Society (to appear, 2009)

9. Bast, H., Funke, S., Sanders, P., Schultes, D.: Fast Routing in Road Networks with Transit
Nodes. Science 316(5824), 566 (2007)

10. Orda, A., Rom, R.: Shortest-Path and Minimum Delay Algorithms in Networks with Time-
Dependent Edge-Length. Journal of the ACM 37(3), 607–625 (1990)

11. Kleene, S.C.: Representation of Events in Nerve Nets and Finite Automata. In: Shannon,
C.E., McCarthy, J. (eds.) Automata Studies. Annals of Mathematics Studies, pp. 3–42.
Princeton University Press, Princeton (1956)

12. Rabin, M.O., Scott, D.: Finite Automata and their Decision Problems. IBM Journal of Re-
search and Development 3(1559), 114–125

13. Pyrga, E., Schulz, F., Wagner, D., Zaroliagis, C.: Efficient Models for Timetable Information
in Public Transportation Systems. ACM J. of Exp. Algorithmics 12, Article 2.4 (2007)

14. Star Alliance (1997), http://www.staralliance.com
15. Oneworld Management Ltd. (1999), http://www.oneworld.com
16. Pajor, T.: Multi-Modal Route Planning. Master’s thesis, Universität Karlsruhe (TH), Fakultät

für Informatik (2009)
17. Dean, B.C.: Continuous-Time Dynamic Shortest Path Algorithms. Master’s thesis, Mas-

sachusetts Institute of Technology (1999)
18. Delling, D.: Time-Dependent SHARC-Routing. Algorithmica (to appear, 2009)
19. Geisberger, R., Sanders, P., Schultes, D., Delling, D.: Contraction Hierarchies: Faster and

Simpler Hierarchical Routing in Road Networks. In: McGeoch, C.C. (ed.) WEA 2008.
LNCS, vol. 5038, pp. 319–333. Springer, Heidelberg (2008)

20. Bauer, R., Delling, D., Sanders, P., Schieferdecker, D., Schultes, D., Wagner, D.: Combin-
ing Hierarchical and Goal-Directed Speed-Up Techniques for Dijkstra’s Algorithm. In: Mc-
Geoch, C.C. (ed.) WEA 2008. LNCS, vol. 5038, pp. 303–318. Springer, Heidelberg (2008)

21. Hilger, M., Köhler, E., Möhring, R.H., Schilling, H.: Fast Point-to-Point Shortest Path Com-
putations with Arc-Flags. In: Shortest Paths: Ninth DIMACS Implementation Challenge.
DIMACS Book. American Mathematical Society (to appear, 2009)

http://www.staralliance.com
http://www.oneworld.com

Parallel Algorithms for Mean-Payoff Games:
An Experimental Evaluation�

Jakub Chaloupka

Faculty of Informatics, Masaryk University,
Botanická 68a, 60200 Brno, Czech Republic

xchalou1@fi.muni.cz

Abstract. Mean-payoff games (MPGs) have many applications, especially in the
synthesis, analysis and verification of computer systems. Because of the size of
these systems, there is a need to solve very large MPGs. Existing algorithms for
solving MPGs are sequential, hence limited by the power of a single computer. In
this paper, we propose several parallel algorithms based on the sequential ones.
We also evaluate and compare the parallel algorithms experimentally.

Keywords: mean-payoff games, parallel algorithms, experimental evaluation.

1 Introduction

A Mean-Payoff Game (MPG) [7,9,15] is a two-player infinite game on a finite weighted
directed graph. The two players, named Max and Min, move a token along the edges of
the graph ad infinitum. Roughly speaking, Max wants to maximize the average weight
of the traversed edges whereas Min wants to minimize it. The exact statement of the
problem is given in Section 2.

Mean-payoff games have many applications, especially in the synthesis, analysis
and verification of reactive (non-terminating) systems. Many natural models of such
systems include quantitative information, and the corresponding question requires the
solution of quantitative games, like MPGs. Quantities may represent, for example, the
power usage of an embedded component, or the buffer size of a networking element [3].

Examples of applications include various kinds of scheduling, finite-window online
string matching, or more generally, analysis of online problems and algorithms, and se-
lection with limited storage [15]. Moreover, µ-calculus model-checking is polynomial-
time reducible to MPGs via parity games [10]. MPGs can even be used for solving the
max-plus algebra Ax = Bx problem, which in turn has further applications [6].

Because of their importance, MPGs have attracted many researchers, especially in
the last decade, and several algorithms for solving MPGs have been proposed. They
can be roughly divided into two categories. In the first category are algorithms based on
linear programming [1,14]. This category also includes algorithms based on reduction
to discounted payoff games [12] and simple stochastic games [5]. In the second category
are pure combinatorial graph algorithms [15,2,11,6,9,13].

� This work has been partially supported by the Grant Agency of the Czech Republic grant No.
201/09/1389.

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 599–610, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

600 J. Chaloupka

The systems that need to be analyzed are often very complex, which leads to large
MPGs. Solving such games is very time and memory consuming. Natural way to expand
our possibilities is to employ parallel computers. However, the algorithms mentioned
above are sequential, they were not designed to run in parallel environment. To the best
of our knowledge, to date, there is no work on parallel algorithms for solving MPGs.

We considered all the sequential combinatorial algorithms from [15,2,11,6,9,13] for
parallelization and we proposed parallel versions of all of them except for the algorithms
of Lifshits and Pavlov [11] (LP) and Schewe [13] (SCH). LP was excluded because of
its exponential space complexity and SCH was excluded because we were unable to
design an efficient parallelization of it. SCH uses a technique which Schewe calls a
“generalization” of Dijkstra’s single source shortest path algorithm. Although there are
methods to make Dijkstra’s algorithm parallel, they are not usable for SCH. The paral-
lelization of the remaining algorithms also was not always completely straightforward.
We had to adjust some of the original algorithms, which sometimes led to more vari-
ants of one algorithm. This is described in detail in Section 3. To evaluate the parallel
algorithms, we implemented them and carried out an experimental study.

According to the experimental study, the best algorithm is the algorithm of Dhingra
and Gaubert [6] (DG) with a modification that we proposed. Interestingly enough, the
algorithm of Björklund and Vorobyov [2] (BV), which is not much worse than DG on
completely random MPGs, dramatically fails on more structured instances. The algo-
rithms of Zwick and Paterson [15] and Gurvich, Karzanov, and Khachivan [9] turned
out to be practically unusable.

We did not include the algorithms based on linear programming in the study. The
reasons are the following. First, the algorithms based on linear programming are numer-
ically unstable due to round-off errors. Second, the use of well-established LP solver
would make the comparison unfair, since the combinatorial algorithms were imple-
mented from scratch. Both problems could be alleviated by using arbitrary precision
arithmetic, and developing our own LP solver or improving our implementations of the
combinatorial algorithms, but for space reasons we decided not to do so.

2 Algorithms

This section presents the algorithms included in our study. The next section shows how
to parallelize them. Before the actual presentation, we give basic terms and definitions.

A Mean-Payoff Game (MPG) [7,9,15] is given by a triple (G ,VMax,VMin), where
G = (V,E,w) is a finite weighted directed graph such that V is a disjoint union of the
sets VMax and VMin, w : E → Z is the weight function, and each v ∈ V has out-degree
at least one. The game is played by two opposing players, named Max and Min. A
play starts by placing a token on some given vertex and the players then move the token
along the edges of G ad infinitum. If the token is on vertex v∈VMax, Max moves it. If the
token is on vertex v ∈ VMin, Min moves it. This way an infinite path p = (v0,v1,v2, . . .)
is formed. Max’s aim is to maximize his gain: liminfn→∞

1
n ∑n−1

i=0 w(vi,vi+1), and Min’s
aim is to minimize her loss: limsupn→∞

1
n ∑n−1

i=0 w(vi,vi+1). For each vertex v ∈ V , we
define its value, denoted by ν(v), as the maximum gain that Max can ensure if the play
starts at vertex v. It was proved that it is equal to the minimum loss that Min can ensure.

Parallel Algorithms for Mean-Payoff Games: An Experimental Evaluation 601

Moreover, both players can ensure ν(v) by using positional strategies defined below [7].
A strategy that ensures ν(v), for all v∈V is called an optimal strategy. To solve an MPG
is to find the values of all vertices and, optionally, also optimal positional strategies for
both players.

A positional strategy for Max is a function σ : VMax →V such that (v,σ(v)) ∈ E , for
each v ∈VMax. A positional strategy for Min is defined analogously. We define Gσ, the
restriction of G to σ, as the graph (V,Eσ,wσ), where Eσ = {(u,v)∈E | u∈VMin∨σ(u)=
v}, and wσ = w|Eσ . That is, we get Gσ from G by deleting all the edges emanating from
Max’s vertices that do not follow σ. Let now σ be a strategy of Max and let π be a
strategy of Min. Gσ has just been defined, Gπ is defined analogously, and Gσ∪π is the
intersection of Gσ and Gπ, i.e., Gσ∪π = (V,Eσ∪π,wσ∪π), where Eσ∪π = {(u,v)∈ E | (u∈
VMin∧π(u) = v)∨ (u ∈VMax∧σ(u) = v)}, and wσ∪π = w|Eσ∪π .

In this paper, we often talk about paths and cycles. The weight of a path is the sum
of the weights of its edges, and the length of a path is the number of its edges. Similarly
for cycles. For the whole paper, let (G = (V,E,w),VMax,VMin) be an MPG, and W =
maxe∈E |w(e)|. The presentation of the algorithms follows.

2.1 Zwick-Paterson (ZP)

The algorithm of Zwick and Paterson [15] (ZP) uses the following facts. We can define,
for each v ∈ V , the value νk(v) as the maximal sum of weights of traversed edges that
Max can ensure in a k-step game on the graph G . This value is, of course, equal to
the the minimal sum of weights of traversed edges that Min can ensure, and it can be
defined inductively in the following way:

ν0(v) = 0 ∀v ∈V
νk+1(v) = max(v,u)∈E(νk(u)+ w(v,u)) ∀v ∈VMax

νk+1(v) = min(v,u)∈E(νk(u)+ w(v,u)) ∀v ∈VMin

From the existence of positional strategies in the original infinite game, it follows that
νk(v)/k converges to ν(v). Moreover, if k is large enough, the exact value of ν(v) can
be computed from νk(v). This follows from the fact that ν(v) is always a fraction with
denominator at most |V |. Zwick and Paterson showed that k = 4 · |V |3 ·W is sufficient for
the exact computation of ν(v), for each v∈V . The νk values can be easily computed using
the inductive definition, which yields an algorithm with complexity Θ(|V |3 · |E| ·W).

2.2 Gurvich-Karzanov-Khachivan (GKK)

The basic building block of the algorithm of Gurvich, Karzanov and Khachivan [9]
(GKK) is a method to divide V into vertices with ν ≥ 0 and vertices with ν < 0. This
method can also be used to divide V into vertices with ν ≥ c and vertices with ν < c,
for arbitrary c ∈ Q, because by subtracting c from all edge-weights, the ν value of all
vertices also decreases by c. The exact values are then computed by binary search.
Each branch of the search is finished when there is only one fraction with denominator
at most |V | in the search interval, which has to be the ν value of all vertices in that
branch. It remains to show how the vertices are divided. For this task, GKK employs
potential transformation.

602 J. Chaloupka

If we assign a potential d(v) to each vertex v ∈ V and use the potentials to create
a new weight function w′, w′(x,y) = w(x,y)+ d(x)−d(y), then for each vertex v ∈ V ,
ν(v) in the modified game (G = (V,E,w′),VMax,VMin) is the same as ν(v) in the original
game. It follows from the fact that the weights of all cycles remain the same. It is
possible to select the potentials in such a way that Max has a strategy to force a play
starting in a vertex with ν≥ 0 to traverse only edges with w′ ≥ 0, and Min has a strategy
to force a play starting in a vertex with ν < 0 to traverse only edges with w′ ≤ 0 and
to traverse at least one edge with w′ < 0 infinitely many times. The potentials with the
above properties can then be considered as a proof of the fact that a certain vertex has
ν≥ 0 or ν < 0. GKK computes these potentials and it computes them iteratively.

GKK starts with d(v) = 0, for each vertex v ∈ V , and computes a set of vertices
from which Min can force a play to traverse at least one (strictly) negative edge without
traversing a (strictly) positive edge first. Let’s denote the set by X . It follows that Max
has a strategy to force a play starting in any vertex from ¬X to traverse at least one
positive edge without traversing a negative edge first. The next step is to increase the
potentials of all vertices in X by the same amount ε > 0. As a result, the weights of
the edges from ¬X to X decrease and the weights of the edges from X to ¬X increase.
The value of ε is defined as the maximal value that keeps Min a strategy to force a
non-positive first step in a play starting from X and that keeps Max a strategy to force
a non-negative first step in a play starting from ¬X . Then the whole process is repeated
with the new weight function w′. The algorithm terminates when ε can be arbitrarily
large, in which case the set X is the set of all vertices with ν < 0.

The overall complexity of GKK is O(|V |3 · |E| · (|V |+ log(W)) ·W).

2.3 Björklund-Vorobyov (BV)

Like the algorithm GKK, the algorithm of Björklund and Vorobyov [2] (BV) builds
on a method that divides V into vertices with ν > 0 and vertices with ν ≤ 0, and the
exact values are computed by binary search. The inequalities defining the division are
actually slightly different than in GKK, where the first is not strict and the second is.
However, this is not significant, because each of these two algorithms can be adjusted
so that it divides the vertices as the other algorithm. To divide the vertices, BV uses
a strategy improvement technique. It starts with a certain strategy σ of Max and then
improves it until it ensures that Max’s gain in a play starting from any vertex with ν > 0
will be (strictly) positive, which is equivalent to the statement that all cycles reachable
from vertices from {v ∈V | ν(v) > 0} in Gσ are (strictly) positive.

Before the actual strategy improvement, BV introduces an auxiliary vertex r called
“retreat” and adds a zero-weight edge from each Max’s vertex to r. Then, it removes all
negative and zero-weight cycles consisting of Min’s vertices only. It also removes the
vertices from which Min has a strategy that forces a play to the removed cycles. It is
obvious that these vertices have ν≤ 0 and they have to be eliminated because otherwise
BV could give us incorrect results.

The iterative process of strategy improvement starts with a strategy σ that for each
vertex v∈VMax, selects the auxiliary edge, i.e., σ(v) = r. Each iteration consists of strat-
egy evaluation and strategy improvement. To evaluate σ, BV computes the weight d(v)
of the minimum-weight path from v to r in Gσ, for each vertex v ∈ V . The vector d is

Parallel Algorithms for Mean-Payoff Games: An Experimental Evaluation 603

then used to improve σ: Each edge (x,y) ∈ E , where x∈VMax, is checked to see whether
d(x) < d(y)+ w(x,y). If there is such an edge, then σ(x) is set to y. If there are more
such edges, any combination of improvements is acceptable. After the improvement,
another iteration is started. If no improvement is possible, the algorithm terminates and
the vertices from which r is not reachable in Gσ are exactly the vertices with ν > 0.

The original algorithm is a sub-exponential randomized algorithm. To prove that the
algorithm is sub-exponential, some restrictions had to be imposed. If these restrictions
are not obeyed, BV runs faster. Therefore, we decided not to obey the restrictions.
We used only the modified BV algorithm in our experimental study, its complexity
is O(|V |3 · |E| · log(|V | ·W) ·W) and it is no longer a randomized algorithm.

2.4 Dhingra-Gaubert (DG)

The algorithm of Dhingra and Gaubert [6] (DG) could be called a double strategy im-
provement algorithm. It is because it alternately improves Min’s and Max’s strategy
until they both become optimal.

DG starts with an arbitrary strategy π of Min and an arbitrary strategy σ of Max.
Then it improves π, so that for each vertex v ∈ V , the unique cycle reachable from v in
Gσ∪π has the minimum mean-weight among all cycles reachable from v in Gσ. It means
that π is an optimal counter-strategy to σ. The improvement of π proceeds iteratively. In
each iteration, the strategy is first evaluated and then improved. The evaluation consists
of two vectors of size |V |, d and mw. For each v ∈V , mw(v) is the mean-weight of the
unique cycle reachable from v in Gσ∪π, and d(v) is the “distance” to the cycle. More
precisely, one vertex in each cycle in Gσ∪π is selected and d(v) is a reduced weight of
the unique path p from v to the appropriate selected vertex. The reduced weight is the
weight of p with respect to the reduced weight function w′, w′(x,y) = w(x,y)−mw(y).
In other words, the weight of each edge (x,y) ∈ Eσ∪π is reduced by the mean-weight of
the unique cycle reachable from x in Gσ∪π. After d and mw are computed, the strategy
π is improved. To that end, each edge (v,u) ∈ E ∩VMin×V is checked to see whether
it satisfies the strategy improvement condition of Min: mw(v) > mw(u) ∨ (mw(v) =
mw(u)∧d(v) > d(u)+w(v,u)−mw(u)). If yes, then π(v) is set to u. If there is a vertex
v ∈VMin such that more than one edge emanating from v satisfies the condition, anyone
of them can be used for the improvement. Then, another iteration is started. If there are
no edges satisfying the condition, DG proceeds to the improvement of σ for which it
will use the final values of d and mw.

Actually, it may be necessary to recompute d and mw before they are used to im-
prove σ. The recomputation is needed if the vector mw didn’t increase due to the last
improvement of σ, i.e., mw = mw′, where mw′ is the previous vector of mean-weights.
Let d′ be the vector of distances corresponding to mw′. To recompute mw and d, DG
first finds all vertices with the property that their mw value is equal to the mean-weight
of some cycle in Gσ they are part of. These vertices are assigned their d′ values as
their new d values. The new d values of the other vertices are then computed using a
Bellman-Ford-like algorithm which works with the reduced weights, which guarantees
absence of negative cycles. With or without the recomputation, we now have vectors
d and mw that are used to improve σ. The vectors are also stored and will be used for
testing if recomputation is needed before the next improvement of σ.

604 J. Chaloupka

To improve σ, each edge (v,u)∈E∩VMax×V is checked to see whether it satisfies the
strategy improvement condition of Max: mw(v) < mw(u) ∨ (mw(v) = mw(u)∧d(v) <
d(u)+ w(v,u)−mw(u)). Max’s improvement technique is analogous to the improve-
ment technique of Min. If σ is improved, DG goes again to the improvement of π and
repeats the whole process. If there are no edges satisfying the condition, σ is an optimal
strategy, and for each v ∈V , mw(v) = ν(v).

The authors of DG do not state its overall complexity in [6]. We derived a rough
upper bound on the complexity of the algorithm from the lower and upper bounds on the
vectors d and mw. The complexity is pseudo-polynomial, namely O(|V |10 · |E| · |W |3).

3 Parallelization

We adapted the algorithms to the multi-processor/multi-core environment with shared
memory. Let’s suppose we have r processing nodes numbered 0, . . . , r− 1. The in-
put graph is partitioned into r disjoint, roughly equal-sized parts, V0,V1, . . . ,Vr−1. Each
one of the r processing nodes owns one of the parts. There is a function owner : V →
{0, . . . ,r− 1} that for a vertex v ∈ V gives the number of the node that owns v, i.e.
owner(v) = i⇔ v ∈Vi. This function is available to all nodes. The partitioning divides
the edges into local edges, those with both ends on the same node, and cross edges,
those with its ends on different nodes. Each node executes the same code. The rest of
this section discusses the parallelization of the individual algorithms.

ZP. The easiest algorithm to parallelize is the algorithm ZP. Each node computes the
k-step game values of its vertices. For that purpose, values of vertices belonging to other
nodes may be needed, but since we have a shared memory, each node has access to the
values computed by the other nodes. Therefore, the only thing that we have to add is a
barrier synchronization that separates distinct iterations of the algorithm to ensure that
one processing node does not start a new iteration too early, which could result in usage
of variables that have not been assigned the correct values yet. The synchronization can
be implemented using a shared variable with mutually exclusive access.

GKK. The parallel version of GKK also has to separate distinct iterations by barrier
synchronization, but the rest is not as easy as in ZP. In each iteration, GKK has to com-
pute the set X from which Min can force plays with certain properties. This is done by a
procedure similar to backward reachability analysis. It starts from vertices which are ei-
ther Max’s vertices and all of their emanating edges are negative or Min’s vertices with
at least one negative emanating edge. The procedure then traverses only zero-weight
edges in their reversed direction and proceeds through Max’s vertex only if it was vis-
ited from all it’s successors except for those connected with negative edges. Fortunately,
this procedure can also be parallelized quite easily. Each node executes the sequential
algorithm on its subset of vertices. When a node encounters a cross edge (u,v), it stops
this branch of the search and tells to the owner of v to continue computation from v.
To this end, for each pair of nodes (A,B), there is a queue qAB designated for passing
messages from A to B. A enqueues messages to qAB, and B then takes the messages
from qAB. We also need a method to detect a point when all r processing nodes finished
their computation and the algorithm can proceed to adjustment of potentials. For space
reasons, we do not discuss this in detail. It is accomplished by counting sent/received
messages and storing this information in shared variables.

Parallel Algorithms for Mean-Payoff Games: An Experimental Evaluation 605

BV. To parallelize the algorithm BV, we had to make a modification to it (other than the
one mentioned in Section 2.3). BV needs to eliminate negative and zero-weight cycles
consisting of Min’s vertices only. This complicates the parallelization. Therefore, we
modified the algorithm, so that the cycle elimination is not necessary. Instead, new
vertices are introduced that ensure that each cycle in the game graph contains at least
one Max’s vertex. This modification does not increase the complexity of the algorithm.

We already described everything that is needed to parallelize the modified version of
BV. Distinct iterations are, again, separated by barrier synchronization and minimum-
weight paths are computed using Bellman-Ford, the parallelization of which uses the
same techniques as reachability analysis in the algorithm GKK.

DG. The crucial part of the algorithm DG with respect to parallelization is the compu-
tation of the vectors d and mw in the graph Gσ∪π. The original algorithm finds all cycles
in Gσ∪π by repeatedly picking an arbitrary unvisited vertex v and following the unique
path that leads from v until a cycle is closed. When all vertices are visited all cycles
are found. This gives us the vector mw. The vector d is computed using a backward
reachability from the selected vertices in the cycles. This method is “too sequential”,
especially the part that searches for cycles, because it explores only one path at a mo-
ment. Moreover, if there are not many cycles, which is typically the case, the backward
reachability analysis also does not provide a lot of space for parallelism, because the
graph has only |V | edges. Therefore, we modified the algorithm.

Not one, but all processing nodes start a cycle search and each node proceeds not only
through its own vertices, but through all vertices it encounters until a vertex it visited
earlier is reached. To this end, each node has a visited flag for all v∈V . Therefore, each
vertex has r visited flags assigned to it. This increases memory consumption, but not in
a serious way. Also, since each vertex can be visited up to r times, the complexity of
cycle searching increases from O(|V |) to O(r · |V |). However, in practice, each vertex
is almost always visited much less than r times, because, for each node i, significantly
less that |V | vertices are reachable from Vi.

The computation of the vector d is done similarly as the cycle searching. Each node
selects one of its unvisited vertices and follows the unique path that starts at that vertex.
This time, all visited vertices are pushed into a stack. The traversal stops either at a
previously visited vertex or at the unique reachable selected vertex. The d and mw
values of the vertex at which the search stops are then used to compute the d and mw
values of all vertices in the stack that belong to the node that started the search.

We included two versions of the algorithm DG in our study. Both of them use our
method for the computation of the vectors d and mw described above. The difference is
that one version does not have to recompute the vectors as described in Section 2.4. We
will first describe the version that has to recompute the vectors. The first problem is that
the computation of vertices that keep the d value from the previous iteration involves SCC
decomposition, which is difficult to parallelize. However, according to our experiments,
the SCC decomposition is not a bottleneck of the algorithm. Therefore, we implemented it
sequentially (All but one processing node are stopped and the whole graph is decomposed
by the remaining node). The Bellman-Ford is then parallelized in the same way as in BV.

606 J. Chaloupka

The second version of DG avoids the recomputation by assigning the previous d
values to the selected vertices in the cycles in Gσ∪π already during the improvement
of π, but only in those cycles, the mean-weighs of which are equal to the previous mw
values of their vertices. It is not trivial to prove the correctness of this modification,
but it can indeed be done. We note that the two versions are not equivalent, they may
produce different vectors d.

4 Experimental Evaluation

The experiments were carried out on a machine equipped with eight dual-core AMD
OpteronTM 880 processors and 32GB of RAM, running GNU/Linux kernel version
2.6.28. All algorithms were implemented in C++ on the top of the POSIX Threads
standard and compiled with GCC version 4.3.2 with the “-O2”option.

4.1 Input MPGs

This paper presents the results of the algorithms on synthetic MPGs generated by two
generators, namely SPRAND and TOR [4], downloadable from [8]. The outputs of these
generators are only directed weighted graphs, and so we had to divide vertices between
Max and Min ourselves. We divided them uniformly at random.

SPRAND was used to generate the “randx” MPG family. Each of these MPGs con-
tains |E|= x · |V | edges and consist of a random Hamiltonian cycle and |E|− |V | addi-
tional random edges, with weights chosen uniformly at random from [1,1000].

TOR was used for generation of the families “sqnc”, “lnc”, and “pnc”, which are
more structured. The families sqnc and lnc are 2-dimensional grids with wrap-around,
where each vertex is connected to its neighbor above by a short edge (with weight in
[1,100]) and to its neighbor to the right by a long edge (with weight in [1000,10000]).
The two families differ in dimensions of the grids, sqnc are square grids with

√
|V |

columns and rows, and lnc are long grids, with |V |/16 columns and 16 rows. The family
denoted by pnc contains layered networks embedded on a torus. Graphs are partitioned
into layers, each containing a cycle of 32 edges of weight 1, plus 64 random edges (all
with weight in the range [1,100]). Each vertex also has five edges to forward layers
(with wrap-around): an edge going x layers forward has length picked uniformly at
random from [1,10000] and multiplied by x2.

We also created subfamilies of the families generated by TOR by adding negative
cycles of weight −1 to the graphs. The subfamily (01) contains no added cycles, (02)
contains one added cycle of length 3, (03) contains

√
|V | added cycles of length 3,

(04) contains eight added cycles of length
√
|V |, and (05) contains one added cycle of

length |V |. After the cycles are added to each subfamily, potentials are used to transform
edge-weights. Each vertex is assigned a random value in [0,16384) and the weight of
each edge is changed by the difference of the potentials of its endpoints.

Our implementations were also tested on MPGs modeling simple reactive systems.
However, for space reasons, we did not include the results on these MPGs in the paper.
They are “easy” for the algorithms and the runtimes relative to number of vertices were
very similar to the runtimes on the SPRAND generated MPGs.

Parallel Algorithms for Mean-Payoff Games: An Experimental Evaluation 607

4.2 Results

We will first comment on the results of the algorithms ZP and GKK. ZP has a great
potential for speedup, because the computation of νk can be almost perfectly divided
among the processing nodes and the only thing that slows it down is the barrier synchro-
nization that separates distinct iterations. However, the enormous number of iterations
necessary to finish the computation makes it practically unusable. Moreover, when ZP
is ran on a very small MPG which can be solved in reasonable time, the speedup gained
from the perfect division of work is lost due to too frequent synchronizations.

The algorithm GKK also has a great potential for speedup, because most of the time
is spent on the computation of ε, which is done by examining all edges, which in turn
can be almost perfectly divided among the processing nodes. GKK also achieves much
better results than ZP, but its runtimes are still too high for it to be practically usable.

We illustrate the behavior of ZP and GKK on two small MPGs from the sqnc01
subfamily. On one core, it took ZP more than 22 minutes to solve an MPG with only
64 vertices and the time increased as more cores were added, to more than 15 hours
on eight cores. The reason for this was given above. GKK is much better than ZP. It
solves the game with 64 vertices instantly and on a game with 4096 vertices, it achieves
a very good speedup: from 71 minutes on one core to 9 minutes on 16 cores. However,
71 minutes on an MPG with 4096 vertices is still too much in comparison with the best
algorithms. Therefore, the rest of this section focuses only on BV and the two versions
of DG. In the following, the version of DG that recomputes the vectors d and mw is
denoted by “DG”. The version that avoids the recomputation is denoted by “MDG”.

Tables 1 and 2 give the results of our experiments. The column heading “nc” stands
for number of processor cores. Each column headed by a name of an algorithm contains
runtimes of that algorithm. Each MPG used in the experiments has five rows in each
table. For the runtimes of all algorithms on one, two, four, eight, and sixteen cores. Each
runtime is an average of 5 runs, rounded to whole seconds. All MPGs in Table 1 have
65536 vertices. In Table 2, the MPGs with no suffix have 65536 vertices, the MPGs with
suffix “b” have 131072 vertices, and the MPGs with suffix “h” have 262144 vertices.

The results are very clear. On each MPG and number of cores, the runtimes satisfy
MDG < DG < BV, with the exception of lnc01 and sixteen cores, where the first in-
equality is not strict. This clearly suggests that MDG is the best algorithm. In addition
to that, there are several other interesting points.

While on the SPRAND families, BV is worse than MDG only by a factor of 5, on
average, the difference on the TOR families is an order of magnitude, and for lnc01 and
lnc02, even three orders of magnitude. The reason for this is that these MPGs contain
many paths of the same length and similar weight between a lot of pairs of vertices,
which causes a lot of updates in Bellman-Ford used by BV. The additional cycles with
small edge-weights added to the subfamilies (02)-(05) create “shortcuts” in the graphs,
which leads to better runtimes.

The runtimes of MDG and DG are mostly very similar. DG is always worse, but not
more than by a factor of 2 on most MPGs. This is because the recomputations of the
vectors d and mw are usually not frequent. However, on lnc02, pnc01, and pnc02, the
difference is an order of magnitude. Recall that, like BV, DG uses Bellman-Ford and
this is again the reason for the bad runtimes.

608 J. Chaloupka

Table 1. Runtimes for the TOR input families (in seconds)

MPG nc MDG DG BV

sqnc01 1 133 141 3702

2 87 98 2209

4 61 64 985

8 48 50 1003

16 49 55 1094

sqnc02 1 206 230 4363

2 137 164 2256

4 90 116 1123

8 75 88 1064

16 79 96 1180

sqnc03 1 90 96 852

2 63 85 449

4 48 67 237

8 38 53 232

16 39 57 229

sqnc04 1 84 105 683

2 55 76 366

4 40 55 218

8 30 42 177

16 31 45 191

sqnc05 1 49 70 207

2 35 43 125

4 22 31 73

8 16 23 55

16 15 24 52

MPG nc MDG DG BV

lnc01 1 34 35 52633

2 22 23 22511

4 14 17 7683

8 10 12 6952

16 13 13 8507

lnc02 1 29 284 21333

2 20 296 9659

4 15 144 3539

8 10 105 4049

16 13 112 3103

lnc03 1 70 156 879

2 48 136 452

4 35 87 243

8 26 72 215

16 31 81 248

lnc04 1 96 109 1078

2 65 77 534

4 47 57 322

8 36 44 291

16 40 47 309

lnc05 1 43 64 227

2 29 43 133

4 19 30 74

8 15 25 57

16 14 24 61

MPG nc MDG DG BV

pnc01 1 77 611 1743

2 47 352 999

4 32 212 384

8 21 217 333

16 20 242 293

pnc02 1 83 903 10346

2 51 532 5590

4 30 341 1963

8 25 364 1871

16 20 396 1681

pnc03 1 59 90 1388

2 39 55 740

4 23 37 349

8 16 27 271

16 14 27 270

pnc04 1 67 144 1355

2 40 95 748

4 25 61 356

8 19 56 266

16 16 55 277

pnc05 1 73 128 960

2 45 86 458

4 27 52 253

8 21 47 186

16 16 42 190

Table 2. Runtimes for the SPRAND input families (in seconds)

MPG nc MDG DG BV

rand5 1 65 94 260

2 39 61 152

4 23 43 85

8 15 31 64

16 13 26 59

rand5b 1 203 306 808

2 122 195 481

4 75 130 262

8 47 91 175

16 41 86 173

rand5h 1 456 630 2016

2 271 430 1145

4 177 284 655

8 123 187 462

16 96 173 426

MPG nc MDG DG BV

rand10 1 98 145 529

2 55 88 314

4 31 56 174

8 19 41 114

16 15 36 117

rand10b 1 172 299 955

2 101 169 539

4 61 110 308

8 37 91 211

16 30 91 200

rand10h 1 476 857 2932

2 283 489 1709

4 176 364 873

8 97 260 661

16 81 245 597

Parallel Algorithms for Mean-Payoff Games: An Experimental Evaluation 609

TOR SPRAND

1

2

3

4

5

6

7

1 2 4 8 16

sp
ee

du
p

number of cores

MDG
DG
BV

1

2

3

4

5

6

7

1 2 4 8 16

sp
ee

du
p

number of cores

MDG
DG
BV

Fig. 1. Average speedup of the algorithms (relative to one core)

It remains to comment on the scalability of the algorithms. This includes asymptotic
behavior and speedup as more cores are added. As for the asymptotic behavior, Table 2
shows that doubling the number of vertices (and edges) increased the runtime by a
factor of 4, at most. This was also the case for our experiments on the TOR families, the
results of which are not included for space reasons. For the SPRAND families, we also
tried doubling the number of edges only, which resulted in an increase of runtime by a
factor of 2, at most. These experiments suggest that the runtime is roughly proportional
to |V | · |E|, and so the algorithms are able to scale up to very large MPGs.

As for the speedup, all algorithms achieve quite a good speedup up to 4 cores. BV on
some of the TOR generated inputs achieved even a super-linear speedup. The speedup
on 8 cores relative to 4 cores is not so good, and the speedup on 16 cores relative to 8
cores is very poor, sometimes even negative. However, the results can still be considered
satisfactory. We believe that the bad results on 8 and 16 cores are caused by the nature
of the inputs, imperfectness of our implementations and limitations of the hardware, not
by inability of the algorithms to scale up to a larger number of processors.

Figure 1 shows the average speedup relative to one core, separately for the TOR and
the SPRAND families. The behavior of the parallel algorithms on one core is practi-
cally the same as the behavior of the original sequential algorithms, which justifies our
decision not to measure the speedups relative to runtimes of the sequential algorithms.

The speedup of BV on the TOR families is better than that of the other two al-
gorithms. This is because these inputs are “too small” for DG and MDG, and so the
initializations and synchronizations consume a considerable portion of runtime. How-
ever, the speedups achieved by BV are still too small to make it competitive. The best
speedups on the SPRAND families were achieved by MDG, which is the only algorithm
that achieved a decent speedup from 8 to 16 cores.

5 Conclusion

We parallelized all the sequential combinatorial algorithms from [15,2,6,9] to find algo-
rithms for practical solving of large mean-payoff games in parallel. We implemented the
algorithms and carried out an experimental study to evaluate them. Only two of the algo-
rithms turned out to be suitable. Namely, the algorithm of Björklund and Vorobyov [2]

610 J. Chaloupka

(BV), and the algorithm of Dhingra and Gaubert [6] (DG). We designed two parallel
versions of DG, one is more or less a straightforward parallelization of the original al-
gorithm and the other one changes the operation of the algorithm slightly. The latter
version is the clear winner of our experimental study. Its runtime was the best on all
input instances, and for some instances, it was better than all the other algorithms by at
least an order of magnitude.

References

1. Björklund, H., Svensson, O., Vorobyov, S.: Linear complementarity algorithms for mean
payoff games. Technical Report DIMACS-2005-13, DIMACS, New Jersey, USA (2005)

2. Björklund, H., Vorobyov, S.: A combinatorial strongly subexponential strategy improvement
algorithm for mean payoff games. Discrete Applied Math. 155(2), 210–229 (2007)

3. Chakrabarti, A., de Alfaro, L., Henzinger, T., Stoelinga, M.: Resource interfaces. In: Alur, R.,
Lee, I. (eds.) EMSOFT 2003. LNCS, vol. 2855, pp. 117–133. Springer, Heidelberg (2003)

4. Cherkassky, B.V., Goldberg, A.V.: Negative-cycle detection algorithms. Mathematical Pro-
gramming 85, 277–311 (1999)

5. Condon, A.: On algorithms for simple stochastic games. In: Advances in Computational
Complexity Theory. DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, vol. 13, pp. 51–73. American Mathematical Society (1993)

6. Dhingra, V., Gaubert, S.: How to solve large scale deterministic games with mean payoff
by policy iteration. In: Proc. Performance evaluation methodolgies and tools, article no. 12.
ACM, New York (2006)

7. Ehrenfeucht, A., Mycielski, J.: Positional strategies for mean payoff games. International
Journal of Game Theory 8(2), 109–113 (1979)

8. Andrew Goldberg’s network optimization library (June 2009),
http://www.avglab.com/andrew/soft.html

9. Gurvich, V.A., Karzanov, A.V., Khachivan, L.G.: Cyclic games and an algorithm to find
minimax cycle means in directed graphs. USSR Comput. Math. and Math. Phys. 28(5), 85–
91 (1988)

10. Jurdziński, M.: Deciding the winner in parity games is in UP ∩ co-UP. Inf. Process.
Lett. 68(3), 119–124 (1998)

11. Lifshits, Y., Pavlov, D.: Fast exponential deterministic algorithm for mean payoff games.
Zapiski Nauchnyh Seminarov POMI 340, 61–75 (2006)

12. Puri, A.: Theory of hybrid systems and discrete event systems. Phd thesis, EECS University
of Berkeley, Berkeley, CA, USA (1995)

13. Schewe, S.: An optimal strategy improvement algorithm for solving parity and payoff games.
In: Kaminski, M., Martini, S. (eds.) CSL 2008. LNCS, vol. 5213, pp. 369–384. Springer,
Heidelberg (2008)

14. Svensson, O., Vorobyov, S.: Linear programming polytope and algorithm for mean pay-
off games. In: Cheng, S.-W., Poon, C.K. (eds.) AAIM 2006. LNCS, vol. 4041, pp. 64–78.
Springer, Heidelberg (2006)

15. Zwick, U., Paterson, M.S.: The complexity of mean payoff games on graphs. Theoretical
Computer Science 158(1-2), 343–359 (1996)

http://www.avglab.com/andrew/soft.html

Experimental Study of FPT Algorithms for the
Directed Feedback Vertex Set Problem

Rudolf Fleischer, Xi Wu, and Liwei Yuan�

Fudan University; Software School, CSE Department and IIPL; Shanghai, China
{rudolf,wuxi,yuanliwei}@fudan.edu.cn

Abstract. We evaluate the performance of FPT algorithms for the di-
rected feedback vertex set problem (DFVS). We propose several new data
reduction rules for DFVS. which can significantly reduce the search space.
We also propose various heuristics to accelerate the FPT search. Finally,
we demonstrate that DFVS is not more helpful for deadlock recovery (with
mutex locks) than simple cycle detection.

1 Introduction

In the minimum feedback vertex set problem (FVS) we are given a graph G =
(V, E) and we want to find a minimum number of nodes in V whose removal
would make the graph acyclic. The problem is NP-complete on undirected (UFVS)
and directed (DFVS) graphs. Since DFVS has some applications in compiler opti-
mization [14,16] and database deadlock recovery (see [4]), it is important to solve
this problem quickly. Therefore, the parameterized versions of FVS have recently
been studied. In k-DFVS the input is a pair (G, k), where G is the graph and k > 0
is a parameter, and the task is to either find a set of at most k nodes blocking
all cycles or to report that such a set does not exist. A parameterized problem
is fixed parameter tractable (see [6]) if it can be solved in time O(f(k)poly(n)),
where n is the number of nodes of G and f is an arbitrary computable function.
Intuitively, a problem is in the class FPT if it can be solved efficiently for fixed
parameter k. We denote the runtime by O�(f(k)), omitting the less interesting
polynomial dependency on n. Obviously, we do not expect f(k) to be polynomial
for NP-hard problems.

If we can reduce (G, k) in time g(k) to an equivalent parameterized problem
(H, k′), where g is some computable function and k′ only depends on k, such
that the size of H is bounded by some function h(k), then (H, k′) is a kernel of
(G, k). It is known that being in FPT is equivalent to having a kernel [6]. While
a polynomial-size kernel immediately implies the existence of an FPT algorithm
� According to international standard, the authors are listed in alphabetic order; first-

author order would be X. Wu, L. Yuan, and R. Fleischer. This research was sup-
ported by the Shanghai Leading Academic Discipline Project (project number B114),
the Shanghai Committee of Science and Technology of China (nos. 08DZ2271800
and 09DZ2272800), and the Robert Bosch Foundation (Science Bridge China
32.5.8003.0040.0).

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 611–622, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

612 R. Fleischer, X. Wu, and L. Yuan

(reduce the problem to its kernel, then solve the problem on the kernel by brute-
force search), it is not known how to derive a polynomial-size kernel from a given
FPT algorithm.

Wang et al. [16] first observed that DFVS is more difficult than UFVS. Bodlaen-
der showed that UFVS is in FPT [1], and Thomasse recently gave a quadratic
size kernel [15]. For planar graphs, there is even a linear size kernel [2]. On the
other hand, the FPT status of DFVS had been an open problem for fifteen years
[5] until Chen et al. recently proposed an FPT algorithm [4] based on branching.
It is not known whether the problem has a polynomial size kernel.

Our work. We implemented the DFVS algorithm by Chen et al. [4] and tested
it on random graphs with various values for edge density ed and optimum DFVS
size k. Fig. 1(a) shows the runtime of the algorithm for graphs with ed = 2
and k = 2, 4, 6, 8. As expected, the performance degrades dramatically when
the parameter k increases; for k = 8 we often observed a time-out (set to three
hours in our experiments), in particular on low-density graphs. Data reduction
rules are very attractive to speed up FPT algorithms because no branching is
involved and they may sometimes lead to a good kernelization. Inspired by the
recent kernelization techniques for UFVS by Thomasse [15], we propose four new
data reduction (preprocessing) rules for DFVS: Dummy Nodes, Chaining Nodes,
Flower, and Shortcut. We achieved another speed-up by starting Chen’s FPT
search not in an arbitrary initial configuration. We propose three heuristics to
choose a good initial configuration: a simple greedy heuristic based on picking
large-degree nodes, and two more sophisticated heuristics based on computing
good approximations to the optimal DFVS solution [7].

We evaluated the performance of our data reduction rules and heuristics on
randomly generated graphs with varying number of nodes, edge density, and
optimal solution size. In particular, we analyzed the impact of each parameter
and heuristic on the total runtime. We measured runtime, kernel size (since we
do not have a kernelization yet, we actually measure the maximum problem size
sent to standard min cut when solving the skew separator problem, an important
step in Chen’s algorithm [4]), memory usage, and recursion depth. Our data
suggest that Chaining Nodes, Flower, and Shortcut reductions can significantly
reduce the FPT search space enabling us to solve DFVS on graphs that are several
orders of magnitude larger than what Chen’s algorithm can handle (see Fig. 1).
Overall, we think best approach for solving DFVS is to first apply our reduction
rules, then use the Big-Degree heuristic to compute an initial configuration for
Chen’s FPT algorithm, which is then used to solve the problem.

When we started this study, our main goal was actually to evaluate the algo-
rithms on real data from the purported main application of DFVS [4,7], namely
deadlock recovery in multi-thread computing environments. However, due to re-
strictions of the parallel programming model, cycle detection, rather than DFVS
search, is already sufficient for efficient deadlock recovery. For example, it was
reported in a recent paper on deadlock immunity [10] that cycle detection only
incurs a loss of efficiency of 6% in state-of-the-art multi-core systems, so there
is no need to employ complicated FPT algorithms.

Experimental Study of FPT Algorithms for the DFVS 613

Structure of the paper. In Section 2, we give some basic definitions. In Section 3,
we briefly review Chen’s FPT algorithm for DFVS and propose our new reduction
rules and heuristics to speed-up the algorithm. In Section 4 we discuss implemen-
tation details of the algorithms, the random graph generator, and we present and
discuss our experimental data. In Section 5 we discuss the suitability of DFVS for
the deadlock recovery problem for concurrent threads. We conclude the paper
in Section 6 with some thoughts about future work.

2 Preliminaries

Let G = (V, E) be a directed graph with nodes V and edges E. A simple path is a
path with no repeated nodes. Two paths are internally disjoint if no node appears
on both paths except maybe the end nodes. A directed cycle is a path ending at
its start node. Similarly, a simple cycle is cycle in which no node appears twice. A
directed graph is acyclic (DAG) if and only if it contains no directed cycle.

For a node u, a u-flower of order k is a set of k directed cycles that are pairwise
disjoint except for their common node u. We call these cycles petals. To compute u-
flowers in G, we split u into two nodes s and t, with s incident to all outgoing edges
and t to all incoming edges. Then, the maximum flower size at u equals the maxi-
mum number of node disjoint paths from s to t in G, which we can easily compute
using standard min-cut techniques. and Menger’s Theorem for directed graphs [3]
which states that the maximum number of internally disjoint paths from s to t
equals the size of a minimum (s, t) node cut if s is not adjacent to t. In the follow-
ing, we use petal(u) to denote the maximum flower size atu. Note that petal(u) = 1
implies that there exists another node v such that all cycles containing u also con-
tain v (i.e., v dominates u); v is the single cut node between s and t in Menger’s
Theorem.

3 Chen’s Algorithm and Speed-Ups

Chen’s algorithm is based on iterative compression [9]. Given an input (G, k), we
arbitrarily choose an induced (k + 1)-node subgraph H of G and an arbitrary k-
node subset I of the nodes in H . Note that I is a k-node feedback vertex set of
H . Then we repeatedly add another node of G to H and I, until H = G. Note
that whenever we just added a new node, I is a (k + 1)-node feedback vertex set
of H . We then use the subroutine FVS-Reduction to compress I into a k-node
feedback vertex set of H . Eventually, H = G and I is a k-node feedback vertex set
of G. If in some iteration we cannot find a k-node feedback vertex set for H , we
conclude that G does not have a k-node feedback vertex set. We can improve the
runtime in two ways: use data reduction rules, and use heuristics to find a good
initial configuration for the algorithm.

Data reduction rules. We preprocess the given graph by applying different rules
(in arbitrary order and as long as possible) to reduce the size of the graph and
the parameter k. Essentially, this reduces the search space for the FPT algorithm

614 R. Fleischer, X. Wu, and L. Yuan

later, whose runtime is exponential in k. Initially, we set the feedback vertex set
I = ∅.

Rule 1 (Self-Loop). If u has a self-loop, we add u to I, decrease k by 1, and delete
u and adjacent edges from the graph.

Rule 2 (Edge Canonicalization). If there are two nodes u and v with multiple
edges from u to v we remove all but one edge.

Rule 3 (Dummy Nodes). If there is a node u without incoming edges or without
outgoing edges, then we remove u and its incident edges from the graph.

Rule 4 (Chaining-Nodes). If there is a node u such that (v, u) ((u, v)) is the only
incoming (outgoing) edge, then we merge u with v.

It is easy to see that these four rules are safe, i.e., the reduced instance has a solu-
tion if and only if the original problem has a solution. Rule 1 and Rule 2 are already
implicit in Chen’s algorithm. Rule 3 and Rule 4 are the directed versions of similar
rules for the undirected case [15]. The next rules are new.

Rule 5 (Shortcut). If there is a node u with petal(u) = 1, then we delete u and
all incident edges from the graph, but we add all shortcuts bypassing u as new
edges, i.e., for any path v → u → w we add the edge (v, w).

Rule 6 (Flower). If there exists a node u with |petal(u)| > k, we add u to I,
decrease k by 1, and delete u and adjacent edges from the graph.

Rule 5 is safe because any node u with petal(u) = 1 is dominated by another node
(see above). Rule 6 is safe because not choosing u for the feedback vertex set would
imply we must take one node in each of the at least k + 1 disjoint cycles through
u. Note that Rule 4 is actually a special case of Rule 5. However, Rule 4 can be
tested in constant time, while Rule 5 requires a min-cut computation. Therefore,
we list them as two rules. Rule 6 is the directed version of the the undirected flower
reduction proposed by Thomasse [15]. In contrast to the undirected case, this rule
can be tested efficiently using standard min-cut techniques.

Note that we have reduction rules for nodes with small petal size and large petal
size, but no rules for petal size between 2 and k. Such rules might be necessary to
find a true kernelization for DFVS.

Initial Heuristics. It may be helpful to choose the initial subgraph H and its k-
node feedback vertex set I more carefully. This was already suggested by Chen [4].
Assume a heuristic gives us a set F of nodes whose removal makes G acyclic. If
|F | ≤ k, we can choose H = G and I = F and we are done. Otherwise, we pick a
random k-node subset F0 of F and start Chen’s algorithm with H = G− (F −F0)
and I = F0. Clearly, F0 is a feedback vertex set of H , and if F is a good approxi-
mation to the optimal solution, H may be close to G. We propose three heuristics:
Chen et al. had suggested to use [4], which unfortunately exhibited the worst per-
formance in our experiments.

Experimental Study of FPT Algorithms for the DFVS 615

Heuristic 1 (Big Degree). We greedily add nodes of maximum undirected de-
gree (i.e., indegree + outdegree) to F until the graph becomes acyclic.

Heuristic 2 (Fractional Approximation). We first compute a (1 + ε)-approxi-
mation for fractional DFVS [7], then greedily add nodes with heaviest fractional
weight to F until the graph becomes acyclic.

Heuristic 3 (Full Approximation). We compute a DFVS approximation F with
factor O(min{log τ∗ log log τ∗, log n log log n}) [7], where τ∗ is the cost of a
minimum fractional feedback vertex set.

4 Experiments

We used a PC with Intel(R) Xeon(TM) CPU (3.20GHz), 4 processors, 1 core per
processor. The machine had 2 GB main memory (DDR2 SDRAM), 2 MB L2 cache
memory, and an 80GB serial ATA hard drive. We tested the algorithms on random
graphs (see Section 4.1). For each set of parameters we used ten random graphs
and recorded minimum, maximum, and average performance. For all runs of the
algorithms we set a time-out threshold of three hours. We implemented the algo-
rithms in C++ using LEDA-6.2 [12] on the Fedora Core 8 operating system. We
compiled the programs with g++-4.1.2 -O3. We have approximately 4,000 LOC
in total.

For Chen’s algorithm, we found it non-trivial to map some of the basic graph
operations to program code. For example, there is no way for two different graphs
in LEDA to share common nodes, which is required when we want to compute in-
duced graphs. We also found that some key operations common in FPT algorithms
are not well supported by LEDA. For example, FPT algorithms often apply kernel-
ization rules and then use brute-force search on the kernel to solve the problem.
The brute-force search is usually done by iterating over all subsets of size k or each
topological order of the graph. Therefore, we extended LEDA with two interfaces:

– bool foreach subset(list<node> &sub, graph &G,
subset prop func pf, void *pars)

– bool foreach topord(list<node> &sub, graph &G,
topord prop func pf, void *pars)

In the subset enumerator, sub specifies a subset of nodes in G. It comes together
with a property function that tests whether the subset has a certain property. Each
time we generate a new subset, we call the property function with the new subset
and the user-supplied parameters pars. This function will stop and return true
once the property function returns true. If all subsets have been tried, we simply
return false to indicate that for any subset of sub the property cannot be satisfied.

In subsection 4.1, we first briefly discuss how we generated the random graph
instances. Then we present our experimental data in four subsections. Complete
experimental data and the source code of our programs are available online [8]. In

616 R. Fleischer, X. Wu, and L. Yuan

Section 4.2 we present data on the runtime performance and kernel size of Chen’s
original algorithm. In Section 4.3 we show the effectiveness of our new data reduc-
tion rules in improving the FPT search and reducing large input instances. In Sec-
tion 4.4 we evaluate and compare three heuristics to obtain an initial configuration
for Chen’s algorithm. Finally, in Section 4.5 we evaluate the runtime performance
of Chen’s algorithm with respect to different parameters k for a graph with fixed
optimum solution.

4.1 The Random Graph Generator

Our goal was to generate sufficiently difficult ”random” instances while still pre-
cisely controlling three parameters: n, the number of nodes in the graph; k, the
size of the optimum DFVS solution; and ed, the edge density (m = ed ·n). It seems
difficult to generate truly random graphs with these parameters fixed, so we de-
veloped our own methods to generate graphs that seem to be quite random. We
generate the graphs in two stages. First, we generate a random spanning tree [17]
from which we then obtain a random connected DAG [13]. Finally, we add cycles
to the graph, which poses two challenges: how to precisely control the minimum
feedback vertex set size, and how to ensure that the newly generated graph is dif-
ficult to solve. We first randomly choose k nodes as the optimum solution, and
then generate k node-independent cycles passing through each of them. We do
not generate self-loops since they can easily be removed. Note that this method
cannot generate k node-independent cycles for k > n

2 . To create more overlapping
cycles, we randomly fix a topological order for the nodes not in the solution. Each
time we generate a cycle, we first randomly choose a subset A of the solution set
and a subset B of the remaining nodes. We keep the nodes in B in their topological
order when building cycles through these nodes. This ensures that the optimum
solution size cannot exceed k. To ensure that our graphs are difficult to solve, we
randomly add more cycles until we reach the required edge density ed, where the
number of edges in a cycle is within 1

4 of the total edge bound. Also, we try not to
generate cycles that are too big by limiting the cycle size to at most n

4 . Although
we know one optimal solution of the generated graphs, they usually did not have
a unique solution in our experiments.

4.2 Chen’s Algorithm

Since FPT search scales poorly with n and k, we only considered graphs with n =
40, 60, 80, . . . , 200, k = 2, 4, 6, 8, and edge density ed = 2, 3, 3.5, 4. We generated
ten graphs for each triple (n, k, ed). Fig. 1(a) shows the average search time as
a function of n and k for ed = 2.0. For all experiments, the memory usage was
constant with approximately 10MB.

We see from the data that the runtime of the algorithm scales poorly with k,
which is typical for FPT algorithms. For k = 8 and ed = 2.0, the algorithm never
finished within 3 hours. For ed = 3.0 and k = 8, the algorithm showed time-outs
when n was larger than 140.

Experimental Study of FPT Algorithms for the DFVS 617

 0

 100

 200

 300

 400

 500

 600

 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 S
ea

rc
h

T
im

e
(S

ec
on

d)

Number of Nodes

K = 2
K = 4
K = 6
K = 8 Time Out !

(a) No reductions.

 0

 100

 200

 300

 400

 500

 600

 700

 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 S
ea

rc
h

T
im

e
(S

ec
on

d)

Number of Nodes

K = 2
K = 4
K = 6
K = 8

(b) With our new reductions.

Fig. 1. Runtime of Chen’s algorithm, ed = 2.0. Note that the top graph in (a) corre-
sponds to the case k = 6 (because k = 8 never finished within three hours), while the
top graph in (b) is for the case k = 8.

It seems that the runtime is not monotonely increasing in n, probably because
it is dominated by the exponential dependency on k. The high runtime for low
values of n (for example, (40, 8, 2.0)) is due to the fact that these graphs have many
independent cycles, and Chen’s algorithm seems to perform poorly on such graphs.
A possible explanation may be found in the iterative compression technique. If we
have many nodes on a few cycles and must add an additional node which is on a
not yet blocked independent cycle, we must keep the new node and kick out one of
the previously chosen nodes. Identifying such a node might be time-consuming.

Also, the runtime does not increase monotonely in the edge density. The algo-
rithm can still quickly solve all instances with small parameter k when the number
of edges increases significantly. Also, for bigger k, the runtime does not increase
monotonely with the number of edges. For example, for k = 8, the problem be-
comes most difficult for the FPT algorithm when ed = 2. Most graphs time-out
within three hours for this configuration.

As we do not have kernelization rules for DFVS, we evaluated the kernel size by
recording the maximum size of an instance of the standard min cut problem when
solving the skew separator problem (in Chen’s algorithm). However, we found this
size is roughly the same as the size of the original graph (the deviation is usually
two or three nodes).

4.3 Data Reduction Rules

Fig. 1(b) shows the average runtime of Chen’s algorithm after applying the new
reduction rules for the same graphs as in Section 4.2. Now we can solve all the
graphs quickly (the average longest time was 10 minutes, most often even less than
1 minute). However, the runtime is still not monotone with regard to n or ed; it
is actually closely related to the reduced size after preprocessing. For example,
there is a peak in the runtime when ed = 2.0 and n = 100. For this configuration,
some instances got solved directly by preprocessing, while others needed hundreds

618 R. Fleischer, X. Wu, and L. Yuan

 0

 50

 100

 150

 200

 250

 400 600 800 1000 1200 1400 1600 1800 2000

A
ve

ra
ge

 R
ed

uc
ed

 S
iz

e

Number of Nodes

K = 2
K = 4
K = 6
K = 8

(a) Reduced size, small k.

 0

 50

 100

 150

 200

 250

 300

 350

 400 600 800 1000 1200 1400 1600 1800 2000

A
ve

ra
ge

 R
ed

uc
ed

 S
iz

e

Number of Nodes

K = 20
K = 40
K = 60
K = 80

(b) Reduced size, large k.

 0

 5

 10

 15

 20

 400 600 800 1000 1200 1400 1600 1800 2000

P
re

pr
oc

es
si

ng
 T

im
e

(S
ec

on
d)

Number of Nodes

K = 2
K = 4
K = 6
K = 8

(c) Preprocessing time.

Rules k = 4 k = 40
Chain 607 377
Dummy 785 679
Cut 996 1000
Chain+Dummy 522 377
Chain+Cut 366 377
Dummy+Cut 151 377
Dummy+Dummy+Cut 0 377

(d) Reduced size by combining different
rules, n = 1000, ed = 3.0.

Fig. 2. Chen’s algorithm with data reductions, ed = 2.0

of seconds to be solved. In particular, there is one instance with a big kernel (33
nodes) which was only solved after more than 2, 000 seconds.

We designed two more experiments to further test the power of data reductions.
In the first experiment, we kept the small values for k and varied n between 400 and
2, 000, with step length 200. Fig. 2(a) and 2(c) show the average size reductions
and preprocessing times, respectively. Surprisingly, we found that the reduction
rules could directly handle most of the input instances when ed > 2. There are
two possible explanations: The parameter k may be too small, or our “random”
graphs actually have many overlapping cycles. In both cases, the Flower reduction
could reduce the input size considerably. The preprocessing time grows linearly in
n and ed. On the average, it was just 3 minutes for all graphs together.

In the second experiment, we varied k in {20, 40, 60, 80} for the same n as in
the first experiment. Fig. 2(b) shows the average reduced size for these configura-
tions. We observe that for fixed edge density the reduced size scales linearly with
the number of nodes, which indicates that our reduction rules work consistently
for different graph sizes. Also, the reduced size increases with increasing edge den-
sity. This is quite different from the first experiment where the preprocessing could
directly solve almost all graphs when ed is large. The reason is that the Flower re-
duction rule does not work well in these cases if k gets larger. Thus, it would be

Experimental Study of FPT Algorithms for the DFVS 619

 0

 2000

 4000

 6000

 8000

 10000

 40 60

A
ve

ra
ge

 S
ea

rc
h

T
im

e
(S

ec
on

d)

Number of Nodes

NO
Big-Degree
Fractional
Full-Approximation

(a) Heuristics.

 0

 100

 200

 300

 400

 500

 600

 40 60

A
ve

ra
ge

 S
ea

rc
h

T
im

e
(S

ec
on

d)

Number of Nodes

NO
Big-Degree
Fractional
Full-Approximation

(b) Chen’s algorithm after heuristic.

Fig. 3. Runtimes of heuristics for Chen’s algorithm, k = 8 and ed = 3.0

important to devise reduction rules that work well for relatively large parameter
k as well as large edge density.

Individual reduction rules. We tried to find out which rules are more important
than others. We studied two groups of graphs, the first group had parameters
n = 1000, k = 4, ed = 3.0, and the second group had n = 1000, k = 40, ed = 3.0.
We evaluated three types of rules: Chain, Dummy, and Cut. Type Chain rules con-
sisted of the Chaining Nodes and Shortcut rules; Type Dummy rules contained
the Dummy Nodes rule and the reduction that removes all nodes with petal size
0; Type Cut rules were just the Flower rule. Table 2(d) summarizes the average
reduced sizes for these two configurations. We see that the Cut rules do not re-
duce the graph significantly, but they are useful in determining the nodes in the
minimum feedback vertex cover. For example, the Cut rules may reduce a graph
from 1000 to 996 nodes when k = 4, but these 4 nodes are in the feedback vertex
set, so we have already solved the problem even though there are still 996 unpro-
cessed nodes. The Flower rules might help other rules to further reduce the graph.
Our data show that the graphs are reduced significantly when we combine Chain
or Dummy rules with Flower rules. This is because a Flower rule actually selects
a node for the feedback vertex set and then deletes it from the graph, which may
trigger other rules. The Flower rule becomes useless when k grows, because graphs
usually do not have large flowers.

4.4 Heuristics for the Initial Configuration

We evaluated the three heuristics mentioned in Section 4 to find a good initial
configuration for Chen’s algorithm. Since the FPT algorithm does not scale well
with n and k and the approximation algorithms are very slow even on small graphs,
we only considered graphs with n = 20, 25, 30, . . . , 60 nodes, with k ∈ {2, 4, 6, 8}
and ed = 3.0.

Fig. 3 shows the runtimes for k = 8 (including the times for no heuristic). The
graphswould be similar for other values of k. Note thatwe distinguish between run-
time of the heuristic and runtime of Chen’s algorithm afterwards. The heuristics

620 R. Fleischer, X. Wu, and L. Yuan

 0

 50

 100

 150

 200

 250

 300

 350

 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 S
ea

rc
h

T
im

e
(S

ec
on

d)

Number of Nodes

K = 2
K = 4
K = 6
K = 8

Fig. 4. FPT search time with prepro-
cessing and Big-Degree heuristic

 0

 10

 20

 30

 40

 50

 60

 70

 80

 2 8 20 40 60 80 100

A
ve

ra
ge

 S
ea

rc
h

T
im

e
(S

ec
on

d)

Parameter K (Optimum Size = 8)

K = 2

Fig. 5. The FPT search time with re-
spect to different parameter k

seem to become very useful for larger parameters k. On all our graphs, the Big-
Degree heuristic achieved the most significant acceleration (4x to 50x speedup).
Moreover, the Big-Degree heuristic (which usually takes only a few seconds) runs
thousands of times faster than Fractional Approximation and Full-Approximation
(which usually need thousands of seconds). Overall, we conclude that the best ap-
proach for solving DFVS is to first apply our reduction rules, then use Big-Degree to
compute the initial configuration, and then use Chen’s algorithm [4] to solve the
problem. For example, Fig. 4 shows that, with the Big-Degree heuristic, we can
achieve another speed-up of 2−−3x compared to reduction rules without heuris-
tic (Fig. 1(b)).

4.5 The Impact of the Parameter k

Intuitively, we may quickly find a feedback vertex set of size k if k is much larger
than the optimal one. We may also quickly reject the input if k is much smaller
than the optimal parameter. To test this hypothesis, we generated graphs with
100 nodes for k = 8 and ed = 3.0. Then we used Chen’s algorithm to search a
feedback vertex set of size k = 2, 4, 6, 8, 10, . . . , 98. Fig 5 summarizes the average
search times for this experiment. As expected, the runtime reaches its peak when
the parameter k is near the size of the minimum feedback vertex set. The runtime
is quite fast when k is much larger or much smaller than the optimum.

5 Deadlock Detection

Deadlock recovery in concurrent programs has always been considered an
important application of DFVS [4,7]. Indeed, deadlock recovery is a very important
topic in our modern multi-core/many-core computing era. Solving the
concurrency problem has recently seen tremendous research interest in operating
systems, programming languages and computer architecture communities.

Experimental Study of FPT Algorithms for the DFVS 621

For simplicity of analysis we mainly focus on mutex locks in the POSIX Thread
library (Pthread). We will argue that, with the restrictions of the programming
model, DFVS is not more helpful than cycle detection for deadlock recovery. This
proposition is further confirmed by a report on a deadlock immunity system [10]
in a recent systems conference.

In a concurrent program, the nodes of a Resource Allocation Graphs (RAG) are
resources and threads. Resources are simply mutex locks. There are three types of
edges in a RAG: request, grant and own. The request and grant edges are edges from
thread to lock, while the own edges go from lock to thread. request edge means a
thread is requesting a lock, and grant edge means the thread library allows the
thread to wait on the lock (note that the thread may yield its execution to an-
other one before being allowed to wait on the resource). The own edge from lock
to thread means the thread currently owns this resource exclusively. A deadlock
appears as a cycle in the RAG. In such a cycle, all edges are exclusively the grant and
own edges. One lock can be owned by only one thread, even for recursive locks,
though certain threads could acquire the lock multiple times. One thread, at one
time, can be granted to wait on only one lock because threads are executed se-
quentially, and we cannot wait on two resources simultaneously. Thus, we cannot
have overlapping cycles in a RAG, and therefore simple cycle detection suffices to
resolve the deadlocks.

6 Conclusions

We presented a comprehensive experimental study on the feedback vertex set
problem in digraphs. We proposed new data reduction rules to efficiently reduce
the FPT search space. Finally, we demonstrated that DFVS search is not more
helpful than cycle detection in efficient deadlock detection in modern concurrent
systems.

We would like to find better data reduction rules for DFVS, in particular a
polynomial-size kernel. We remark that though UFVS has a small problem kernel,
the parameter k is potentially very large for dense graphs, as in undirected graphs
it is quite easy to have a cycle. We may also study other parameters than “solution
size”, for example, “edge density”. Our reduction rules seem to perform well when
the edge density is low. Better approximation algorithms for DFVSmight also help
to speed up the FPT search. We demonstrated that DFVS is not more helpful than
cycle detection in detecting deadlocks with mutex locks, but there are also other
types of locks, such as read/write locks, that may generate complex overlapping
deadlocks. However,we found that other lock types, for example spin locks, behave
essentially the same as mutex locks. Read/write locks may behave differently. but
most thread libraries (e.g. NPTL (Native POSIX Thread Library) restrict the num-
ber of threads in read mode, and once a thread is waiting in write mode, later read
requests are pending until completion of the write. We are now investigating the
practicability of FPT DFVS algorithms in circuit testing to reduce the hardware
overhead required for “scan registers” [11].

622 R. Fleischer, X. Wu, and L. Yuan

References

1. Bodlaender, H.L.: On linear time minor tests with depth first search. Journal of
Algorithms 14, 1–23 (1993)

2. Bodlaender, H.L., Penninkx, E.: A linear kernel for planar feedback vertex set. In:
Grohe, M., Niedermeier, R. (eds.) IWPEC 2008. LNCS, vol. 5018, pp. 160–171.
Springer, Heidelberg (2008)

3. Chatrand, G., Lesniak, L.: Graphs & Digraphs, 2nd edn. The Wadsworth and
Brooks/Cole Mathematics Series (1986)

4. Chen, J., Liu, Y., Lu, S., Sullivan, B., Razgon, I.: A fixed-parameter algorithm for
the directed feedback vertex set problem. Journal of the ACM 55(5), 1–19 (2008)

5. Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness I: ba-
sic results. SIAM Journal on Computing 24, 873–921 (1995)

6. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg
(1999)

7. Even, G., Naor, J., Schieber, B.: Approximating minimum feedback sets and multi-
cuts in directed graphs. Algorithmica 20, 151–174 (1998)

8. Fleischer, R., Xi, W., Yuan, L.: DFVS Project (2009),
http://www.tcs.fudan.edu.cn/rudolf/Projects/DFVS/dfvs.html

9. Huffner, F., Niedermeier, R., Wernicke, S.: Techniques for practical fixed-parameter
algorithms. The Computer Journal 1(51), 7–25 (2008)

10. Jula, H., Tralamazza, D.M., Zamfir, C., Candea, G.: Deadlock immunity: Enabling
systems to defend against deadlocks. In: Proceedings of the 8th USENIX Symposium
on Operating System Design and Implementation (OSDI 2008), pp. 295–308 (2008)

11. Kunzamann, A., Wunderlich, H.J.: An analytical approach to the partial scan prob-
lem. Journal of Electronic Tesing: Theory and Applications 1(5), 163–1741 (1990)

12. LEDA: A library of the data types and algorithms of combinatorial computing,
http://www.mpi-inf.mpg.de/LEDA/

13. Melancon, G., Dutour, I., Bousquet-Melou, M.: Random generation of directed
acyclic graphs. Technical report, CWI Amsterdam (2006),
http://www.cwi.nl/InfoVisu

14. Seidl, H.: Personal communication (2000)
15. Thomasse, S.: A quadratic kernel for feedback vertex set. In: Proceedings of the 20th

ACM-SIAM Symposium on Discrete Algorithms (SODA 2009), pp. 115–119 (2009)
16. Wang, C.-C., Lloyd, E.L., Soffa, M.L.: Feedback vertex sets and cyclically reducible

graphs. Journal of the ACM 32(2), 2960–2913 (1985)
17. Wilson, D.B.: Generating random spanning trees more quickly than the cover time.

In: Proceedings of the 28th ACM Symposium on the Theory of Computation (STOC
1996), pp. 296–303 (1996)

http://www.tcs.fudan.edu.cn/rudolf/Projects/DFVS/dfvs.html
http://www.mpi-inf.mpg.de/LEDA/
http://www.cwi.nl/InfoVisu

Fast Evaluation of Interlace Polynomials
on Graphs of Bounded Treewidth

Markus Bläser and Christian Hoffmann

Saarland University, Germany

Abstract. We consider the multivariate interlace polynomial introduced by
Courcelle (2008), which generalizes several interlace polynomials defined by Ar-
ratia, Bollobás, and Sorkin (2004) and by Aigner and van der Holst (2004). We
present an algorithm to evaluate the multivariate interlace polynomial of a graph
with n vertices given a tree decomposition of the graph of width k. The best pre-
viously known result (Courcelle 2008) employs a general logical framework and
leads to an algorithm with running time f(k) · n, where f(k) is doubly expo-
nential in k. Analyzing the GF (2)-rank of adjacency matrices in the context of
tree decompositions, we give a faster and more direct algorithm. Our algorithm
uses 23k2+O(k) · n arithmetic operations and can be efficiently implemented in
parallel.

1 Introduction

Inspired by some counting problem arising from DNA sequencing [1], Arratia, Bol-
lobás, and Sorkin defined a graph polynomial which they called interlace polynomial
[2]. It turned out that the interlace polynomial is related [2, Theorem 24] to the Martin
polynomial, which counts the number of edge partitions of a graph into circuits. This
polynomial has been defined in Martin’s thesis from 1977 [3] and generalized by Las
Vergnas [4]. Further work on the Martin polynomial has been pursued [5, 6, 7, 8, 9, 10],
including a generalization to isotropic systems [11, 12, 13, 14]. In particular, the Tutte
polynomial of a planar graph and the Martin polynomial of its medial graph are related.
This implies a connection between the Tutte polynomial and the interlace polynomial
(see [15] for an explanation).

One way to define the interlace polynomial is by a recursion that uses a graph opera-
tion. Arratia et. al. used a pivot operation for edges [2]. This operation is a composition
of local complementations to neighbour vertices (see [16], where the operations are
called switch operations). The orbits of graphs under local complementation are re-
lated to error-correcting codes and quantum states, and so is the interlace polynomial as
well [17].

The interlace polynomial can also be defined by a closed expression using the
GF (2)-rank of adjacency matrices [16, 18, 19]. This linear algebra approach has been
used in several generalizations of the interlace polynomial. In this paper, we consider
the multivariate interlace polynomial C(G) defined by Courcelle [20] (see Definition 1
below) as it subsumes the two-variable interlace polynomial of Arratia, Bollobás, and
Sorkin [21] and the weighted versions of Traldi [22], as well as the interlace polynomi-
als defined by Aigner and van der Holst [16]. Furthermore, the interlace polynomials

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 623–634, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

624 M. Bläser and C. Hoffmann

Q(x, y) and QHN
n , which have emerged from a spectral view on the interlace polyno-

mials [23], are also special cases of Courcelle’s multivariate interlace polynomial.

Results and Related Work. Our aim is to present an algorithm that, given a graph G =
(V, E) and an evaluation point, i.e. a tupel of numbers ((xa)a∈V , (ya)a∈V , u, v), eval-
uates the multivariate interlace polynomial C(G) at ((xa)a∈V , (ya)a∈V , u, v). Whereas
this is a #P-hard problem in general [24], it is fixed parameter tractable with
cliquewidth as parameter [20, Theorem 23, Corollary 33]. This is a consequence of
the fact that the interlace polynomial is a monadic second order logic definable polyno-
mial. Such graph polynomials can be evaluated in time f(k) · n, where n is the number
of vertices of the graph and k is the cliquewidth. The function f(k) can be very large
and is not explicitly stated in most cases. In general, it grows as fast as a tower of expo-
nentials the height of which is proportional to the number of quantifier alternations in
the formula describing the graph polynomial [20, Page 34]. In the case of the interlace
polynomial, this formula involves two quantifier alternations [20, Lemma 24], [25]. If
a graph has tree width k, its cliquewidth is bounded by 2k+1 [26]. Thus, the machinery
of monadic second order logic implies the existence of an algorithm that evaluates the
interlace polynomial of an n-vertex graph in time f(k) · n, where k is the tree width
of the graph and f(k) is at least doubly exponential in k. (In particular, the interlace
polynomial of graphs of treewidth 1, that is, trees, can be evaluated in polynomial time,
which also has been observed by Traldi [22].)

The monadic second order logic approach is very general and can be applied not only
to the interlace polynomial but to a much wider class of graph polynomials [27]. How-
ever, it does not consider characteristic properties of the actual graph polynomial. In
this paper, we restrict ourselves to the interlace polynomial so as to exploit its specific
properties and to gain a more efficient algorithm (Algorithm 1). Our algorithm per-
forms 23k2+O(k)n arithmetic operations to evaluate Courcelle’s multivariate interlace
polynomial (and thus any other version of interlace polynomial mentioned above) on
an n-vertex graph given a tree decomposition of width k (Theorem 13). The algorithm
can be implemented in parallel using depth polylogarithmic in n, see the full version of
this work [28, Section 7]. Apart from evaluating the interlace polynomial, our approach
can also be used to compute coefficients of the interlace polynomial [28, Section 7], for
example so called d-truncations [20, Section 5]. Our approach is not via logic but via
the GF (2)-rank of adjacency matrices, which is specific to the interlace polynomial.

Obstacles. It has been noticed that the Tutte polynomial and the interlace polynomial
are similar in some respect. These similarities suggest that evaluating the interlace poly-
nomial using tree decompositions might work completely analogously to the respective
approaches for the Tutte polynomial [29, 30]. This is not the case because of the fol-
lowing facts that distinguish the interlace polynomial from the Tutte polynomial: First,
the graph operation that is used in the recursive definition of the interlace polynomial
is not compliant with tree decomposition (i.e. can increase the treewidth). Second, the
recurrence for the multivariate interlace polynomial is very complicated. Third, the “be-
haviour” of the rank involved in the definition of the interlace polynomial is not as be-
nign as the rank used for the Tutte polynomial (cf. also the beginning of Sect. 3). We
discuss these issues in more detail in the full version of this work [28].

Fast Evaluation of Interlace Polynomials on Graphs of Bounded Treewidth 625

Outline. Section 2 contains the definition of Courcelle’s multivariate interlace poly-
nomial, which we will consider in this work. We will also fix our notation for tree
decompositions there. In Sect. 3 we give the general idea of our approach. Section 4
and 5 provide technical details, and in Sect. 6 we describe our algorithm. Due to space
limitations we have to omit some details and most of the proofs. These can be found in
the full version of this work [28].

2 Preliminaries

We consider undirected graphs without multiple edges but with self loops allowed. Let
G = (V, E) be such a graph and A ⊆ V . By G[A] we denote the subgraph of G induced
by A, i.e. (A, {e | e ∈ E, e ⊆ A}). G∇A denotes the graph G with self loops in A
toggled, i.e. the graph obtained from G by performing the following operation for each
vertex a ∈ A: if a has a self loop, remove it; if a does not have a self loop, add one.

The adjacency matrix of G is a symmetric square matrix with entries from {0, 1}.
As the matrices that we will consider are adjacency matrices of graphs, we use vertices
as column/row indices. Thus, the adjacency matrix of G is a V × V matrix M =
(muv) over {0, 1} with muv = 1 iff uv ∈ E. Furthermore, we will refer to entries
and submatrices by specifying first the rows and then the columns: the (u, v)-entry of
M = (muv) is muv , the A × B submatrix of M is the submatrix of the entries of M
with row index in A and column index in B. All matrix ranks will be ranks over the
field with two elements, {0, 1} = GF (2), i.e. + is XOR and · is AND. Slightly abusing
notation we write rk(G) for the rank of the adjacency matrix of the graph G. The nullity
(or co-rank) of an n × n matrix M is n(M) = n − rk(M). If G is a graph, we write
n(G) for the nullity of the adjacency matrix of G.

Graph polynomials are, from a formal perspective, mappings of graphs to polynomi-
als that respect graph isomorphism. We will consider a multivariate graph polynomial,
the multivariate interlace polynomial. To define such a polynomial, one has to distin-
guish “ordinary” indeterminates from G-indexed indeterminates. For instance, x being
a G-indexed indeterminate means that for each vertex a of G there is a different inde-
terminate xa. If A ⊆ V , we write xA for

∏
a∈A xa. Also, if S is a set, we write

∑
S

for the sum of all the elements in the set.

Definition 1 (Courcelle [20]). Let G = (V, E) be an undirected graph. The multivari-
ate interlace polynomial is defined as

C(G) =
∑
{xAyBurk((G∇B)[A∪B])vn((G∇B)[A∪B]) | A, B ⊆ V, A ∩B = ∅},

where u, v are called ordinary indeterminates and x, y G-indexed indeterminates.

Tree Decompositions. We borrow most of our notation from Bodlaender and Koster
[31]. A tree decomposition of a graph G = (V, E) is a pair ({Xi | i ∈ I}, T = (I, F))
where T is a tree and each node i ∈ I has a subset of vertices Xi ⊆ V associated to it,
called the bag of i, such that the following holds:

1. Each vertex belongs to at least one bag, that is
⋃

i∈I Xi = V .

626 M. Bläser and C. Hoffmann

2. Each edge is represented by at least one bag, i.e. for all e = vw ∈ E there is an
i ∈ I with v, w ∈ Xi.

3. For all vertices v ∈ V , the set of nodes {i ∈ I | v ∈ Xi} induces a subtree of T .

The width of a tree decomposition ({Xi}, T) is max{|Xi| | i ∈ I} − 1. The treewidth
of a graph G, tw(G), is the minimum width over all tree decompositions of G.

Computing the treewidth of a graph is NP-complete. But given a graph with n ver-
tices, we can compute a tree decomposition of width k (or detect that none exists) using
Bodlaender’s algorithm in time 2O(k3)n [32].

To evaluate the interlace polynomial we will use nice tree decompositions. Note that
our definition slightly deviates from the usual one1. This has no substantial influence on
the running time of the algorithms discussed in this work but it simplifies the presenta-
tion of our algorithm. In a nice tree decomposition ({Xi}, T), one node r with |Xr| = 0
is considered to be the root of T , and each node i of T is of one of the following types:

– Leaf: node i is a leaf of T and |Xi| = 0.
– Join: node i has exactly two children j1 and j2, and Xi = Xj1 = Xj2 .
– Introduce: node i has exactly one child j, and there is a vertex a ∈ V with Xi =

Xj ∪ {a}.
– Forget: node i has exactly one child j, and there is a vertex a ∈ V with Xj =

Xi ∪ {v}.

A tree decomposition of width k with n nodes can be converted into a nice tree de-
composition of width k with O(n) nodes in time O(n) · poly(k) [33, Lemma 13.1.2,
13.1.3].

For a graph G with a nice tree decomposition ({Xi}, T), we define

Vi =
(⋃

{Xj | j is in the subtree of T with root i}
)
\Xi and Gi = G[Vi].

We can think of Gi as the subgraph of G induced by all vertices that have already been
forgotten below node i.

3 Idea

We will now sketch our idea how to evaluate the interlace polynomial. Our approach is
dynamic programming. Let G be a graph for which we want to evaluate the interlace
polynomial and ({Xi}, T) a nice tree decomposition of G. For each node i of the tree
decomposition, we have defined the graph Gi that consists of all vertices in the bags
below i that are not in Xi. We will compute “parts” of the interlace polynomial of Gi.
These parts are essentially defined by the answer to the following question: How does
the rank of the adjacency matrix of some subgraph of Gi increase when we add (some
or all) vertices of Xi? For the leaves these parts are trivial. Our algorithm traverses the
tree decomposition bottom-up. We will show how to compute the parts of an introduce,

1 Usually, there is no special restriction on the bag size of the root node, and the leaf nodes
contain exactly one vertex.

Fast Evaluation of Interlace Polynomials on Graphs of Bounded Treewidth 627

Fig. 1. Rank over GF (2) of the adjacency matrix may
increase by 2 (from 2 to 4, upper half) or by 4 (from 2
to 6, lower half), even if the same extension is used

Fig. 2. Adjacency matrix of G[V ′ ∪ U]
after symmetric Gaussian elimination
using V ′. Empty entries are zero.

forget, or join node from the parts of its child node (children nodes, resp.). At the root
node, there is only one part left. This part is the interlace polynomial of G.

Before we go into details, let us remark that the answer to the above question (“How
does the rank of the adjacency matrix increase when adding some vertices?”) depends
on the internal structure of the graph being extended. Consider the situation in the upper
half of Fig. 1. If we extend the graph by the black vertices, the rank increases by 2. But
in the situation depicted in the lower half of Fig. 1, the same extension causes a rank
increase by 4.2

Let us see how we handle this issue. We start with the following definition.

Definition 2 (Extended graph). Let G = (V, E) be some graph, V ′, U ⊆ V , V ′∩U =
∅. Then we define G[V ′, U] to denote G[V ′ ∪ U] and call G[V ′, U] an extended graph,
the graph obtained by extending G[V ′] by U according to G. We call U the extension
of G[V ′, U].

Let us fix an extension U . We consider all V ′ ⊆ V (G) such that G[V ′] may be extended
by U according to the input graph G. For any such extended graph we ask: “How does
the rank of G[V ′] increase when adding some vertices of U?”. Our key observation is
that the answer to this question can be given without inspecting the actual G if we are
provided with a compact description (of size independent of n = |V (G)|), which we
call the scenario of G[V ′, U].

The scenario of G[V ′, U] (Definition 5) will be constructed in the following way.
Consider M , the adjacency matrix of G[V ′ ∪ U]. Perform symmetric Gaussian elim-
ination on M using only the vertices in V ′ (for the details see Sect. 4). The resulting
matrix M ′ is symmetric again and has the same rank as M . Furthermore, M ′ is of a
form as in Fig. 2: The V ′×V ′ submatrix is a symmetric permutation matrix with some

2 This phenomenon distinguishes the interlace polynomial from the Tutte polynomial. In the
case of the Tutte polynomial, the rank increase would be the same in both situations as it only
depends on the extension and how it is connected to the graph being extended.

628 M. Bläser and C. Hoffmann

additional zero columns/rows. The nonzero entries correspond to edges or self loops
(not of the original graph G but of some modified graph that is obtained from G in a
well-defined way) “ruling” over their respective columns/rows: The edge between v1
and v8 rules over columns and rows v1 and v8. Here, “to rule” means that the only 1s
in these columns and rows are the 1s at (v1, v8) and (v8, v1). Similarly, the self loop at
vertex v5 rules over column and row v5. The columns and rows that are ruled by some
edge or self loop in V ′ are also empty (i.e. entirely zero) in the U × V ′ submatrix of
M ′. Some columns/rows are not ruled by any edge or self loop in V ′, for instance col-
umn/row v4. This is because there is neither a self loop at vertex v4 nor does it have a
neighbor in V ′. However, v4 may have neighbors in U . Thus, column v4 of the U × V ′

submatrix may be any value from {0, 1}U , which is indicated by the question marks.
Also, the contents of the U × U submatrix is not known to us.

Let us choose a basis of the subspace spanned by the nonzero columns of the U ×V ′

submatrix and call it sU×V ′
. Let sU×U be contents of the U × U submatrix. By this

construction, we are able to describe the rank of M ′ as the rank of its V ′×V ′ submatrix
plus a value that can be computed solely from sU×V ′

and sU×U .
This will solve our problem that the rank increase depends on the internal struc-

ture of the graph G[V ′] being extended: all we need to know is the scenario s =
(sU×V ′

, sU×U) of G[V ′, U]. From s, without considering G[V ′], we can compute in
time poly(|U |) how the rank of the adjacency matrix of G[V ′] increases when we add
some vertices from U . This motivates the following definition.

Definition 3 (Scenario). Let U be an extension, i.e. a finite set of vertices. A scenario of
U is a tuple s = (sU×V ′

, sU×U) where sU×V ′
is an ordered set of linear independent

vectors spanning a subspace of {0, 1}U and sU×U is a symmetric (U ×U)-matrix with
entries from {0, 1}. A scenario for k vertices is a scenario of some vertex set U with
|U | = k.

Let us come back to the evaluation of the interlace polynomial of G using a tree decom-
position. Recall that at a node i of the tree decomposition we want to compute “parts”
of the interlace polynomial of G[Vi]. Essentially every scenario s of Xi will define such
a part: The interlace polynomial itself is a sum over all induced subgraphs with self
loops toggled for some vertices. The part of the interlace polynomial corresponding to
scenario s will be the respective sum not over all these graphs but only over the ones
such that s is the scenario of G[Vi, Xi]. This will lead us to (1) in Sect. 6.

The time bound of our algorithm stems from the following observation: The number
of parts managed at a node i of the tree decomposition is essentially bounded by the
number of scenarios of its bag Xi. This number is independent of the size of G and
single exponential in the bag size (and thus single exponential in the treewidth of G):

Lemma 4. Let U be an extension, i.e. a finite set of vertices, |U | = k. There are less
than 2(3k+1)k/2 scenarios of U .

4 Symmetric Gaussian Elimination

We want to convert adjacency matrices into matrices of a form as in Fig. 2 without
touching the rank. In order to achieve this, we introduce a special way of performing

Fast Evaluation of Interlace Polynomials on Graphs of Bounded Treewidth 629

Gaussian elimination that differs from standard Gaussian elimination in the follow-
ing way. First, it is symmetric, as in general every column operation is followed by
a corresponding row operation. In this way, we maintain the correspondence between
rows/columns of the matrix we are manipulating and vertices of a graph. Second, we
adhere to a particular order when deciding which entry to use for the next pivot op-
eration. This order is (partially) fixed by the tree decomposition. It is crucial for our
proofs of the statements in Sect. 5 that the elimination process proceeds according to
this order. Third, we perform symmetric Gaussian elimination using only vertices in a
subset V ′ of the vertices: When seeking a pivot entry in a particular row/column, we do
not consider all entries of the row/column but only the ones that correspond to edges
between vertices in V ′.

Eliminating with a Single Vertex. Assume we are given a graph G, its adjacency matrix
M , and a vertex v. A symmetric Gaussian elimination step on M using v is defined in
the following way:

– If v is an isolated vertex without a self loop, the result of the elimination step is just
M (cf. (1) in Fig. 3).

– If v has a self loop, there is a 1 in the (v, v)-entry of M . We add column v and row
v to the column and row of every neighbor of v. This transfers the matrix in a form
as depicted as (2) in Fig. 3.

– If v is neither isolated nor has a self loop, there is a neighbor u of v. The elimination
step is performed in a similar manner as elimination steps using self loops. The
result is of a form as (3) in Fig. 3. (We do not swap columns/rows, as we must keep
the vertices in a particular order that is determined by the tree decomposition.)

Eliminating with a Set of Vertices. Eliminating with a set of vertices V ′ means that we
perform an elimination step as described above for each vertex v ∈ V ′. But any edge vu
is used for an elimination step only if both, v and u, are in V ′. In the setting of Fig. 2,
this protects us from using the entries of the U × V ′ submatrix for elimination steps.

The order the vertices are processed in is given by a fixed vertex order of the graph
computed in the beginning. Also, if an unlooped vertex v has more than one neighbor
u in V ′, the minimum u with respect to the vertex order is chosen for the elimination
step.

The vertex order we use is obtained in the following way. Let a graph G and a
nice tree decomposition ({Xi}, T) of G be given. We traverse the tree decomposition

Fig. 3. Effect of a symmetric Gaussian elimination step. Adjacency matrix with isolated unlooped
vertex v (1), adjacency matrix after eliminating with a self loop at v (2), adjacency matrix after
eliminating with edge vu (3).

630 M. Bläser and C. Hoffmann

bottom up. Whenever we reach a forget node that forgets vertex v, we assign the next
free position in the vertex order to v. This ensures that for all extended graphs G[Vi, Xi]
the vertices in Xi are greater then the vertices in Vi.

We also order vertex vectors (i.e. elements from {0, 1}U , U some vertex set) and sets
of vertex vectors according to the vertex order (lexicographically). This induced order
is used for choosing a “minimal” basis in the following definition.

Definition 5 (Scenario of an extended graph). Let G[V ′, U] be an extended graph
obtained by extending G[V ′] by U according to graph G = (V, E). Let the vertex order
be such that v′ < u for all v′ ∈ V ′ and u ∈ U . Then the scenario scen(G[V ′, U]) of
G[V ′, U] is defined as follows: Let M be the adjacency matrix of G[V ′ ∪ U]. Perform
symmetric Gaussian elimination on M using V ′ to obtain M ′. Let M ′

UV ′ be the U×V ′

submatrix of M ′. Consider the column space W of M ′
UV ′ . We can choose a basis

of W from the column vectors of M ′
UV ′ . Let sU×V ′

be the minimal such basis. Let
sU×U be the contents of the U × U submatrix of M ′. We define scen(G[V ′, U]) to be
(sU×V ′

, sU×U).

5 Scenarios and Nice Tree Decompositions

In this section we will collect lemmas that allow us to compute the parts of a join, forget,
and introduce node from the parts of its children nodes (child node, resp.).

Lemma 6 (Join). Let G = (V, E) be a graph, U ⊆ V , and s1, s2 two scenarios of
U . Then there is a unique scenario s3 of U such that the following holds: If G[V1]
and G[V2] are disjoint subgraphs of G that may be extended by U according to G,
scen(G[V1, U]) = s1, and scen(G[V2, U]) = s2, then scen(G[V1 ∪ V2, U]) = s3.
Moreover, s3 can be computed from s1, s2 and G[U] within poly(|U |) steps.

Definition 7. In the situation of Lemma 6 we write sjoin(s1, s2, G[U]) for s3.

Lemma 8 (Introduce vertex). Let G = (V, E) be a graph, U ⊆ V , s a scenario of U ,
u ∈ V \ U . Then there is a unique scenario s̃ of Ũ = U ∪ {u} such that the following
holds: If G[V ′] may be extended by Ũ according to G, u is not connected to V ′ in G,
and scen(G[V ′, U]) = s, then scen(G[V ′, Ũ]) = s̃. Moreover, s̃ can be computed from
s and G[Ũ] in poly(|U |) steps.

Definition 9. In the situation of Lemma 8 we write sintroduce(s, u, G[Ũ]) for s̃.

Lemma 10 (Forget vertex). Let G = (V, E) be a graph, u ∈ U ⊆ V , Ũ = U \ {u},
Ṽ = V ′ ∪ {u}, and s a scenario of U . Then there is a unique scenario s̃ of Ũ and
r, n ∈ {0, 1, 2} such that the following holds: If G[V ′] is a subgraph of G that may be
extended by U according to G, u > v′ for all v′ ∈ V ′, and scen(G[V ′, U]) = s, then
scen(G[Ṽ , Ũ]) = s̃ and the rank (nullity) of the adjacency matrix of G[Ṽ] equals the
rank (nullity, resp.) of the adjacency matrix of G[V ′] plus r (n, resp.). Moreover, s̃ and
r can be computed from s and G[U] in poly(|U |) steps, and we have n = 2− r.

Definition 11. In the situation of Lemma 10 we write sforget(s, u, G[U]) for s̃,
Δrforget(s, u, G[U]) for r, and Δnforget(s, u, G[U]) for n.

Fast Evaluation of Interlace Polynomials on Graphs of Bounded Treewidth 631

The operation defined in Definition 11 deletes a vertex u from a scenario in the sense
that u is deleted from the extension but added to the graph being extended. We also
need a notation for deleting a vertex completely from a scenario, i. e. ignoring some
vertex of the extension.

Definition 12. Let s = (sU×V ′
, sU×U) be a scenario of an extension U and u ∈ U .

Then signore(s, u) is the scenario obtained from s in the following way: Delete the u-
components from the elements of sU×V ′

to obtain s1. Choose the minimum (according
to the vertex order) basis s′1 for the span of s1 from the elements of s1 using standard
Gaussian elimination. Delete the u-column and u-row from sU×U to obtain s2. We
define signore(s, u) = (s′1, s2).

6 The Algorithm

Algorithm 1 evaluates the interlace polynomial using a tree decomposition. The input
for the algorithm is G = (V, E), the graph of which we want to evaluate the interlace
polynomial, and a nice tree decomposition ({Xi}I , (I, F)) of G with O(n) nodes, n =
|V |. In Sect. 2 we discussed how to obtain a nice tree decomposition. Let k − 1 be the
width of the tree decomposition, i.e. k is the maximum bag size.

Algorithm 1 essentially traverses the tree decomposition bottom-up and computes
parts S(i, D, s) of the interlace polynomial for each node i. One such part is defined in
the following way:

S(i, D, s) =
∑
{xAyBurk((Gi∇B)[A∪B])vn((Gi∇B)[A∪B]) |
A, B ⊆ Vi, A ∩B = ∅, scen(G′[A ∪B, Xi]) = s,

where G′ = G∇(B ∪D)},
(1)

where D ⊆ Xi and s is a scenario of Xi. Recall that we write
∑
S for the sum of

all the elements in S and that Vi is the set of vertices that have been forgotten below
node i. Thus, S(i, D, s) is the part of the interlace polynomial of G[Vi] correspond-
ing to D and s. Equation (1) shows that S(i, ∅, ((), ())) = 1 for leaves i. The value
S(r, ∅, ((), ())), where r is the root node, is just the interlace polynomial of G.

The parts of join and forget nodes are computed by Algor. 2 and 3. The parts of an
introduce node can be computed similarly.

Running Time. There are O(n) nodes i in the tree decomposition and for each of it at
most 2k subsets D of Xi. The number of scenarios (Line 2 of Algor. 2, Lines 2 and 6
of Algor. 3) is dominated by the number of pairs of scenarios (Line 8 of Algor. 2). By
Lemma 4, there are at most (2(3k+1)k/2)2 such pairs. Converting the scenarios (Line 9
of Algorithm 2 and Lines 7, 10 and 14 of Algorithm 3) takes time polynomial in k
(Sect. 5). Thus, the running time is at most

O(n) · 2k · 2 · (2(3k+1)k/2)2 · poly(k).

632 M. Bläser and C. Hoffmann

Algorithm 1. Evaluating the interlace polynomial using a tree decomposition.
Input: Graph G, nice tree decomposition ({Xi}i, (I, F)) of G, k such that any bag Xi of the

tree decomposition contains at most k vertices
1: Compute a vertex order as described in Sect. 4
2: for all nodes i of the tree decomposition, in the order they appear in bottom-up traversal do
3: for all D ⊆ Xi do
4: if i is a leaf then
5: S(i, D, ((), ())) ← 1
6: else if i is a join node then
7: JOIN(i, D)
8: else if i is an introduce node then
9: INTRODUCE(i,D)

10: else if i is a forget node then
11: FORGET(i,D)

12: return S(root, ∅, ((), ())) � Xroot = ∅

Algorithm 2. Computing the parts at a join node.
1: procedure JOIN(i, D)
2: for all scenarios s for |Xi| vertices do
3: � i.e., enumerate all pairs s = (sXi×V ′

, sXi×Xi) with sXi×V ′
being a list

4: of linear independent vectors from {0, 1}Xi and sXi×Xi a symmetric
5: Xi × Xi matrix with entries from {0, 1} – cf. Def. 3
6: S(i, D, s) ← 0
7: (j1, j2) ← (left child of i, right child of i)
8: for all scenarios s1, s2 for |Xi| vertices do
9: s ← sjoin(s1, s2, G∇D[Xi]) � Definition 7

10: S(i, D, s) ← S(i, D, s) + S(j1, D, s1) · S(j2, D, s2)

Algorithm 3. Computing the parts at a forget node.
1: procedure FORGET(i, D)
2: for all scenarios s for |Xi| vertices do
3: S(i, D, s) ← 0
4: j ← child of i
5: a ← vertex being forgotten in Xi

6: for all scenarios s′ for |Xj | vertices do
7: s ← signore(s′, a) � Definition 12
8: S(i, D, s) ← S(i, D, s) + S(j, D, s′)
9: G′ ← G∇D[Xj]

10: s ← sforget(s′, a, G′) � Definition 11
11: S(i, D, s) ← S(i, D, s) + xauΔrforget(s

′,a,G′)vΔnforget(s
′,a,G′)S(j, D, s′)

12: D′ ← D ∪ {a}
13: G′ ← G∇D′[Xj]
14: s ← sforget(s′, a, G′)
15: S(i, D, s) ← S(i, D, s) + yauΔrforget(s

′,a,G′)vΔnforget(s
′,a,G′)S(j, D′, s′)

Fast Evaluation of Interlace Polynomials on Graphs of Bounded Treewidth 633

Theorem 13. Let G = (V, E) be a graph with n vertices. Let a nice tree decomposition
of G with O(n) nodes and width k be given, as well as numbers u, v and, for each
a ∈ V , xa, ya. Then Algorithm 1 evaluates the multivariate interlace polynomial C(G)
at ((xa)a∈V , (ya)a∈V , u, v) using 23k2+O(k) · n arithmetic operations. If the bit length
of u, v, and xa, ya, a ∈ V , is at most 	, the operands occurring during the computation
are of bit length O(n).

Proof. The time bound stems from the discussion above. The statement about operand
length follows as the degree of the interlace polynomial is at most n in each variable.

Acknowledgement. We would like to thank Bruno Courcelle and the anonymous refer-
ees for their helpful comments on previous versions of the paper, which led to a reduc-
tion of the running time bound.

References

[1] Arratia, R., Bollobás, B., Coppersmith, D., Sorkin, G.B.: Euler circuits and DNA sequenc-
ing by hybridization. Discrete Appl. Math. 104(1-3), 63–96 (2000)

[2] Arratia, R., Bollobás, B., Sorkin, G.B.: The interlace polynomial of a graph. J. Comb.
Theory Ser. B 92(2), 199–233 (2004)

[3] Martin, P.: Enumérations Eulériennes dans le multigraphes et invariants de Tutte–
Grothendieck. PhD thesis, Grenoble, France (1977)

[4] Las Vergnas, M.: Le polynôme de martin d’un graphe eulerian. Ann. Discrete Math. 17,
397–411 (1983)

[5] Las Vergnas, M.: Eulerian circuits of 4-valent graphs imbedded in surfaces. In: Alge-
braic Methods in Graph Theory, Szeged, Hungary, 1978. Colloq. Math. Soc. János Bolyai,
vol. 25, pp. 451–477. North-Holland, Amsterdam (1981)

[6] Las Vergnas, M.: On the evaluation at (3,3) of the Tutte polynomial of a graph. J. Comb.
Theory Ser. B 45(3), 367–372 (1988)

[7] Jaeger, F.: On Tutte polynomials and cycles of plane graphs. J. Comb. Theory Ser. B 44(2),
127–146 (1988)

[8] Ellis-Monaghan, J.A.: New results for the Martin polynomial. J. Comb. Theory Ser.
B 74(2), 326–352 (1998)

[9] Ellis-Monaghan, J.A.: Martin polynomial miscellanea. In: Proceedings of the 30th South-
eastern International Conference on Combinatorics, Graph Theory, and Computing, Boca
Raton, FL, pp. 19–31 (1999)

[10] Bollobás, B.: Evaluations of the circuit partition polynomial. J. Comb. Theory Ser. B 85(2),
261–268 (2002)

[11] Bouchet, A.: Isotropic systems. Eur. J. Comb. 8(3), 231–244 (1987)
[12] Bouchet, A.: Graphic presentations of isotropic systems. J. Comb. Theory Ser. B 45(1),

58–76 (1988)
[13] Bouchet, A.: Tutte Martin polynomials and orienting vectors of isotropic systems. Graphs

Combin. 7, 235–252 (1991)
[14] Bénard, D., Bouchet, A., Duchamp, A.: On the Martin and Tutte polynomials. Technical

report, Département d’Infornmatique, Université du Maine, Le Mans, France (1997)
[15] Ellis-Monaghan, J.A., Sarmiento, I.: Distance hereditary graphs and the interlace polyno-

mial. Comb. Probab. Comput. 16(6), 947–973 (2007)
[16] Aigner, M., van der Holst, H.: Interlace polynomials. Linear Algebra and its Applica-

tions 377, 11–30 (2004)

634 M. Bläser and C. Hoffmann

[17] Danielsen, L.E., Parker, M.G.: Interlace polynomials: Enumeration, unimodality, and con-
nections to codes (2008) preprint, arXiv:0804.2576v1

[18] Bouchet, A.: Graph polynomials derived from Tutte–Martin polynomials. Discrete Mathe-
matics 302(1-3), 32–38 (2005)

[19] Ellis-Monaghan, J.A., Sarmiento, I.: Isotropic systems and the interlace polynomial (2006)
preprint, arXiv:math/0606641v2

[20] Courcelle, B.: A multivariate interlace polynomial and its computation for graphs of
bounded clique-width. The Electronic Journal of Combinatorics 15(1) (2008)

[21] Arratia, R., Bollobás, B., Sorkin, G.B.: A two-variable interlace polynomial. Combinator-
ica 24(4), 567–584 (2004)

[22] Traldi, L.: Weighted interlace polynomials (2008) preprint, arXiv:0808.1888v1
[23] Riera, C., Parker, M.G.: One and two-variable interlace polynomials: A spectral interpreta-

tion. In: Ytrehus, Ø. (ed.) WCC 2005. LNCS, vol. 3969, pp. 397–411. Springer, Heidelberg
(2006)

[24] Bläser, M., Hoffmann, C.: On the complexity of the interlace polynomial. In: Albers, S.,
Weil, P. (eds.) 25th International Symposium on Theoretical Aspects of Computer Science
(STACS 2008), Dagstuhl, Germany, Internationales Begegnungs- und Forschungszentrum
für Informatik (IBFI), Schloss Dagstuhl, Germany, pp. 97–108 (2008)

[25] Courcelle, B., il Oum, S.: Vertex-minors, monadic second-order logic, and a conjecture by
seese. J. Comb. Theory, Ser. B 97(1), 91–126 (2007)

[26] Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discrete Applied
Mathematics 101(1-3), 77–114 (2000)

[27] Courcelle, B., Makowsky, J.A., Rotics, U.: On the fixed parameter complexity of graph
enumeration problems definable in monadic second-order logic. Discrete Applied Mathe-
matics 108(1-2), 23–52 (2001)

[28] Bläser, M., Hoffmann, C.: Fast computation of interlace polynomials on graphs of bounded
treewidth (2009) preprint, arXiv:0902.1693

[29] Andrzejak, A.: An algorithm for the Tutte polynomials of graphs of bounded treewidth.
Discrete Mathematics 190(1-3), 39–54 (1998)

[30] Noble, S.D.: Evaluating the Tutte polynomial for graphs of bounded tree-width. Combina-
torics, Probability & Computing 7(3), 307–321 (1998)

[31] Bodlaender, H.L., Koster, A.M.C.A.: Combinatorial optimization on graphs of bounded
treewidth. Comput. J. 51(3), 255–269 (2008)

[32] Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM Journal on Computing 25(6), 1305–1317 (1996)

[33] Kloks, T.: Treewidth. Computations and Approximations. LNCS, vol. 842. Springer, Hei-
delberg (1994)

Kernel Bounds for Disjoint Cycles
and Disjoint Paths

Hans L. Bodlaender1, Stéphan Thomassé2, and Anders Yeo3

1 Institute of Information and Computing Sciences, Utrecht University,
Utrecht, the Netherlands

hansb@cs.uu.nl
2 LIRMM-Université Montpellier II, 161 Rue Ada, 34392 Montpellier Cedex, France

thomasse@lirmm.fr
3 Departmente of Computer Science, Royal Holloway University of London, Egham,

Surrey TW20 OEX, United Kingdom
anders@cs.rhul.ac.uk

Abstract. In this paper, we give evidence for the problems Disjoint

Cycles and Disjoint Paths that they cannot be preprocessed in poly-
nomial time such that resulting instances always have a size bounded
by a polynomial in a specified parameter (or, in short: do not have a
polynomial kernel); these results are assuming the validity of certain
complexity theoretic assumptions. We build upon recent results by Bod-
laender et al. [3] and Fortnow and Santhanam [13], that show that NP-
complete problems that are or-compositional do not have polynomial
kernels, unless NP ⊆ coNP/poly. To this machinery, we add a notion
of transformation, and thus obtain that Disjoint Cycles and Disjoint

Paths do not have polynomial kernels, unless NP ⊆ coNP/poly. We
also show that the related Disjoint Cycles Packing problem has a
kernel of size O(k log k).

1 Introduction

In many practical settings, exact solutions to NP-hard problems are needed. A
common approach in such cases is to start with a preprocessing or data reduc-
tion algorithm: before employing a slow exact algorithm (e.g., ILP, branch and
bound), we try to transform the input to an equivalent, smaller input.

Currently, the theory of fixed parameter complexity gives us tools to make a
theoretical analysis of such data reduction or preprocessing algorithms. A ker-
nelisation algorithm is an algorithm, that uses polynomial time, and transforms
an input for a specific problem to an equivalent input whose size is bounded by
some function of a parameter. The resulting instance is also called a kernel. Ques-
tions of both theoretical and practical interests are for a specific problem: does
it have a kernel, and if so, how large can this kernel be? An excellent overview
of much recent work on kernelisation was made by Guo and Niedermeier [15].

For the question, whether a specific (parameterised) problem has a kernel,
the fixed parameter tractability theory introduced by Downey and Fellows gives

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 635–646, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

636 H.L. Bodlaender, S. Thomassé, and A. Yeo

Table 1. Size of kernels and evidence. ETH = Exponential Time Hypothesis. ADC =
And-distillation Conjecture. NP-c = NP-completeness.

size positive evidence negative evidence conjecture
O(1) P-time algorithm NP-hardness P �= NP

polynomial poly-kernel algorithm compositionality & NP-c NP �⊆ coNP/poly, ADC
transformations

any kernel ∈ FPT W [1]-hardness FPT �= W [1]
ETH

good tools to answer these. We say a problem is fixed parameter tractable (in
FPT), if it has an algorithm that runs in time O(ncf(k)), with n the input
size, k the parameter, c a constant, and f any function. It is well known that a
decidable problem is in FPT, if and only if it has a kernel. (See [7].)

Recently, Bodlaender et al. [3] gave a framework to give evidence that prob-
lems (in FPT) do not have a kernel of polynomial size. The framework is
based upon the notion of compositionality. There are actually two forms: and-
compositionality, and or-compositionality. We have a parameterised problem,
whose variant as a decision problem is NP-complete, and it is and-compositional,
then it does not have a kernel whose size is bounded by a polynomial, unless
the and-distillation conjecture does not hold. Similarly for or-compositionality,
and the or-distillation conjecture, but in this case, one can use a result by Fort-
now and Santhanam, and strengthen the conjecture to NP �⊆ coNP/poly [13].
In this paper, we extend the framework by introducing a notion of transforma-
tion. While the main idea parallels classic notions of transformation, we think
that our contribution is a new important tool for the theory of data reduc-
tion/kernelisation.We use our framework to show for the following problems that
they do not have a kernel of polynomial size unless NP ⊆ coNP/poly: Disjoint

Cycles, Disjoint Paths. The result for Disjoint Paths is not so surprising,
given the very complicated FPT algorithms for this problem [19]. The result for
Disjoint Cycles came unexpected to us, also because polynomial kernels are
known for the closely related problems: Feedback Vertex Set (see [21]) and
Disjoint Cycle Packing (see Section 4).

Concerning the size of a kernel of a parameterised problem, we can summarise
the situation in Table 1. Assuming that the problem is decidable, the second and
third column give the main available positive or negative, respectively, evidence
that the problem has a kernel of the size given in the first column. E.g., W [1]-
hardness indicates that a problem is not in FPT; a problem is in FPT, if and
only if it has a kernel of any size (i.e., bounded by a function of k.)

2 Notions

In this section, we give several results, mostly from [3], and introduce some new
notation. We also give some basic notions from fixed parameter tractability, as
introduced by Downey and Fellows, see e.g., [11].

Kernel Bounds for Disjoint Cycles and Disjoint Paths 637

A parameterised problem is a subset of L∗ ×N for some finite alphabet L:
the second part of the input is called the parameter. (We assume here that the
second parameter is an integer. It is not hard to modify the techniques such that
it works with other types of parameters, e.g., pairs of integers.)

A parameterised problem Q ⊆ L∗ ×N is said to belong to the class FPT (to
be fixed parameter tractable), if there is an algorithm A, a polynomial p, and a
function f : N → N, such that A determines for a given pair (x, k) ∈ L∗ ×N
whether (x, k) ∈ Q in time at most p(|x|) · f(k). (|x| is the length of input x).

A kernelisation algorithm for a parameterised problem Q ⊆ L∗×N computes
a function K : L∗ ×N→ L∗ ×N, such that

– For all (x, k) ∈ L∗ ×N, the algorithm takes time polynomial in |x|+ k.
– For all (x, k) ∈ L∗ ×N: (x, k) ∈ Q ⇔ K(x, k) ∈ Q.
– There is a function g : N→ N, such that for all (x, k) ∈ L∗×N: |K(x, k)|+

k ≤ g(k).

We say that Q has a kernel of size g. If g is bounded by a polynomial in k, we
say that Q has a polynomial kernel.

Sometimes, in the literature one requires that the kernelisation algorithm
does not increase the parameter, i.e., when we write K(x, k) = (x′, k′), then
k′ ≤ k. This assumption is not necessary for our results and deleting it slightly
strengthens them. Bodlaender et al. [3] give the following two conjectures.

Conjecture 1 (And-distillation conjecture [3]). Let R be an NP-complete prob-
lem. There is no algorithm D, that gets as input a series of m instances of R,
and outputs one instance of R, such that

– If D has as input m instances, each of size at most n, then D uses time
polynomial in m and n, and its output is bounded by a function that is
polynomial in n.

– If D has as input instances x1, . . . , xm, then D(x1, . . . , xm) ∈ R, if and only
if ∀1≤i≤mxi ∈ R.

Conjecture 2 (Or-distillation conjecture [3]). Let R be an NP-complete problem.
There is no algorithm D, that gets as input a series of m instances of R, and
outputs one instance of R, such that

– If D has as input m instances, each of size at most n, then D uses time
polynomial in m and n, and its output is bounded by a function that is
polynomial in n.

– If D has as input instances x1, . . . , xm, then D(x1, . . . , xm) ∈ R, if and only
if ∃1≤i≤mxi ∈ R.

Note that in these definitions, the output of D cannot be polynomial in m, and
thus the algorithm D should map an input of size O(mn) to an input of size
polynomial in n only.

Theorem 1 (Fortnow and Santhanam [13]). If the or-distillation conjecture
does not hold, then NP ⊆ coNP/poly.

638 H.L. Bodlaender, S. Thomassé, and A. Yeo

There is no equivalent to Theorem 1 known for and-distillation. This is an im-
portant open problem in this area.

The main tool to give evidence for the non-existence of polynomial kernels
for specific parameterised problems from [3] is the notion of compositionality.
Compositionality allows us to build one instance from a collection of instances.
There are two different notions: and-compositionality and or-compositionality.
In the first case, the new instance is a yes-instance, if and only if each instance
in the collection is a yes-instance; in the second case, this happens, if and only
if at least one instance in the collection is a yes-instance.

An and-composition algorithm for a parameterised problem Q ⊆ L∗ × N
is an algorithm, that gets as input a sequence ((x1, k), . . . , (xr, k)), with each
(xi, k) ∈ L∗ ×N, and outputs a pair (x′, k′), such that

– the algorithm uses time polynomial in
∑

1≤i≤r |xi|+ k;
– k′ is bounded by a polynomial in k;
– (x′, k′) ∈ Q, if and only if for all i, 1 ≤ i ≤ r, (xi, k) ∈ Q.

The definition for or-composition is identical, except that the last condition
becomes:

– (x′, k′) ∈ Q, if and only if there exists an i, 1 ≤ i ≤ r, (xi, k) ∈ Q.

Note that we allow the first argument x′ of the output of a composition algorithm
to be polynomial both in r and max1≤i≤r |xi|. A difference with the notion of
distillation is that there, we assume no dependency on the number of inputs.
Indeed, many problems have an and- or or-composition algorithm, but we expect
that there is no distillation algorithm for the derived classic variant.

Many problems have natural composition algorithms. For many graph prob-
lems, the only operation needed is the disjoint union of connected components.
E.g., consider the Longest Cycle problem: does G have a cycle of length at
least k? As a graph has a cycle of length at least k, if and only if at least one of its
connected components has such a cycle, the problem is trivially or-compositional.

We need one further notion: for a parameterised problem, we have the derived
classic problem. Formally, if R ⊆ L∗ ×N is a parameterised problem, we take a
symbol 1 �∈ L, and take as derived classic problem the set {x1k | (x, k) ∈ R}.
Here, we associate in a natural way a classic one-argument input problem with
a parameterised problem; note that we assume that the parameter is given in
unary. For instance, the Disjoint Cycles problem as parameterised problem
belongs to FPT, and its derived classic problem is NP-complete. Often, we use
the same name for the derived classic problem as for the parameterised version.
We now give here some results from [3] and other papers, and introduce some
notation (the classes NPK0

or and NPK0
and) that will be helpful for further

presentation of the results.

Definition 1. The class NPK0
and is the class of parameterised problems, that

are and-compositional and whose derived classical problem is NP-complete.

Definition 2. The class NPK0
or is the class of parameterised problems, that

are or-compositional and whose derived classical problem is NP-complete.

Kernel Bounds for Disjoint Cycles and Disjoint Paths 639

Theorem 2 (Bodlaender et al. [3]).

1. If a problem in the class NPK0
and has a polynomial kernel, then the and-

distillation conjecture does not hold.
2. If a problem in the class NPK0

or has a polynomial kernel, then the or-
distillation conjecture does not hold.

As a corollary of Theorems 2 and Theorem 1, we have

Corollary 1 (Bodlaender et al. [3], Fortnow and Santhanam [13]). If a
problem in the class NPK0

or has a polynomial kernel, then NP ⊆ coNP/poly.

In turn, NP ⊆ coNP/poly would imply a collapse of the polynomial time hier-
archy to the third level. Currently, there is no equivalent result to Theorem 1
known for the and-distillation conjecture.

3 Polynomial Time and Parameter Transformations

We now introduce a notion of transformation, that allows us to prove results for
problems that do not obviously have compositionality.

Definition 3. Let P and Q be parameterised problems. We say that P is poly-
nomial time and parameter reducible to Q, written P ≤Ptp Q, if there exists
a polynomial time computable function f : {0, 1}∗ × N → {0, 1}∗ × N, and a
polynomial p : N→ N, and for all x ∈ {0, 1}∗ and k ∈ N, if f((x, k)) = (x′, k′),
then (x, k) ∈ P , if and only if (x′, k′) ∈ Q, and k′ ≤ p(k). We call f a polynomial
time and parameter transformation from P to Q.

If P and Q are parameterised problems, and P c and Qc are the derived clas-
sical problems, then f can also be used as a polynomial time transformation
(in the usual sense of the theory of NP-completeness) from P c to Qc. As an
additional condition to polynomial time transformations, we have that the size
of the parameter can grow at most polynomially. Note that the fixed parame-
ter reductions by Downey and Fellows (see e.g., [9,10,11]) are similar, but allow
non-polynomial growth of the parameter, and are used for a different purpose:
to show hardness for W [1] or a related class.

Theorem 3. Let P and Q be parameterised problems, and suppose that P c and
Qc are the derived classical problems. Suppose that P c is NP-complete, and Qc ∈
NP . Suppose that f is a polynomial time and parameter transformation from P
to Q. Then, if Q has a polynomial kernel, then P has a polynomial kernel.

Note that the conditions of Theorem 3 imply that Qc is NP-complete, as f is also
a “classic” polynomial time transformation. The proof follows standard lines of
arguments and is omitted here.

Corollary 2. 1. Let P and Q be parameterised problems, and suppose that
P c and Qc are the derived classical problems. Suppose that P c and Qc are
NP-complete, that P is and-compositional, and that P ≤Ptp Q. If Q has a
polynomial kernel, then the and-distillation conjecture does not hold.

640 H.L. Bodlaender, S. Thomassé, and A. Yeo

2. Let P and Q be parameterised problems, and suppose that P c and Qc are the
derived classical problems. Suppose that P c and Qc are NP-complete, that P
is or-compositional, and that P ≤Ptp Q. If Q has a polynomial kernel, then
the or-distillation conjecture does not hold, and thus coNP ⊆ NP/poly, and
thus the polynomial time hierarchy collapses to the third level.

We now define the classes NPKor and NPKand as the closures of NPK0
or and

NPK0
and under polynomial time and parameter transformations. Membership

in these classes gives a strong indication that there is no polynomial kernel for
the problem. We can reformulate the discussion above as (using results from [3]
and [13] and our own observations):

Corollary 3. 1. If parameterised problem P ∈ NPKor, then P has no poly-
nomial kernel, unless coNP ⊆ NP/poly.

2. If parameterised problem P ∈ NPKand, then P has no polynomial kernel,
unless the and-distillation conjecture does not hold.

The polynomial time and parameter transformations thus give us a nice method
to show unlikeliness of the existence of polynomial kernels.

4 A Small Kernel for Disjoint Cycle Packing

We first give a short proof that the Disjoint Cycle Packing problem has
a polynomial kernel. The current proof is due to Saket Saurabh [20]. In the
Disjoint Cycle Packing we are given a graph G = (V, E) with an integer
parameter k, and ask if G contains at least k edge disjoint cycles.

Theorem 4. Disjoint Cycle Packing has a kernel with O(k log k) vertices.

We first reduce the graph, by deleting all vertices of degree 0 and 1, and by
contracting each vertex of degree 2 to a neighbour. Clearly, these operations do
not change the number of edge disjoint cycles in the graph. By Lemma 1, there
is a constant c, such that if the resulting graph (which has minimum degree at
least three) has at least ck log k vertices, we can decide positively.

Lemma 1. Let G be a graph with n vertices with minimum degree at least three.
Then G has Ω(n/ log n) edge disjoint cycles.

Proof. Alon et al. [1] showed that a graph G with average degree d and n vertices
has a cycle of length at most 2(logd−1 n)+2. Now, consider the greedy algorithm,
where we repeatedly choose a minimum length cycle that is edge disjoint from
any other chosen cycle. Run this algorithm while there are at least 4n/3 edges
not on one of these cycles. At each point, the average degree is at least 8/3, and
hence each chosen cycle contains at most O(log n) edges. So we find Ω(n/ log n)
edge disjoint cycles. ��
It is not hard to strengthen the proof slightly, and obtain a kernel with O(k log k)
vertices and O(k log k) edges. A related result is a kernel for the version where
each cycle must be of length exactly three (Edge Disjoint Triangle Pack-

ing) by Mathieson et al. [18].

Kernel Bounds for Disjoint Cycles and Disjoint Paths 641

5 No Polynomial Kernels for Disjoint Cycles and Disjoint
Paths

The Disjoint Cycles problem has as input an undirected graph G = (V, E)
and integer parameter k, and asks if G contains at least k vertex disjoint cycles.
This problem is strongly related to the Feedback Vertex Set problem, which
has a kernel of size O(k2) [21] by Thomassé, who improved upon a kernel of size
O(k3) [2]. Feedback Vertex Set, Disjoint Cycles and Disjoint Cycle

Packing have linear kernels, when restricted to planar graphs, see [17,4,5]. We
also consider the following well known problem, also known as k-Linkage.

Disjoint Paths

Input: Undirected graph G = (V, E), vertices s1, . . . , sk, t1, . . . , tk ∈ V
Parameter: k
Question: Is there a collection of k paths P1, . . . , Pk that are vertex

disjoint, such that Pi is a path from si to ti?

The result that the Disjoint Paths problem is fixed parameter tractable is a
famous result by Robertson and Seymour as part of their fundamental work on
graph minors: in [19], they show that for each fixed k, the problem can be solved
in O(n3) time. It is well known that the derived classic variants of Disjoint

Cycles and Disjoint Paths are NP-complete, see [14,16].
We introduce a new problem, which is used as an intermediate problem: we

show that it is or-compositional and (its derived classic variant) NP-complete,
and then give a polynomial time and parameter transformation to Disjoint

Cycles, respectively Disjoint Paths.
Let Lk be the alphabet consisting of the letters {1, 2, . . . , k}. We denote by

L∗
k the set of words on Lk. A factor of a word w1 · · ·wr ∈ L∗

k is a substring
wi · · ·wj ∈ L∗

k, with 1 ≤ i < j ≤ r, which starts and ends with the same letter,
i.e., the factor has length at least two and wi = wj .

A word W ∈ L∗
k has the disjoint factor property if one can find disjoint factors

F1, . . . , Fk in W such that the factor Fi starts and ends by the letter i. Observe
that the difficulty lies in the fact that the factors Fi do not necessarily appear
in increasing order, otherwise detecting them would be obviously computable in
O(n), where n is the length of W . We now introduce the parameterised problem
Disjoint Factors.

The input of the Disjoint Factors problem is an integer k ≥ 1 and a word
W of L∗

k. The output is true if W has the disjoint factor property, otherwise
false. This problem is clearly FPT since one can try all the k! possible orders of
the Fi’s, and compute each of them linearly. A slightly more involved dynamic
programming algorithm gives an O(nk · 2k) algorithm.

Proposition 1. The Disjoint Factors problem can be solved in O(nk · 2k)
time.

Theorem 5. The Disjoint Factors is NP-complete.

Proof. Clearly, the problem belongs to NP. We show NP-hardness by a trans-
formation from 3-satisfiability. Let F be a 3-SAT formula with c + 1 clauses

642 H.L. Bodlaender, S. Thomassé, and A. Yeo

C0, . . . , Cc. We start our construction of our word W with the prefix 1231231234
56456456 . . . (3c+1)(3c+2)(3c+3)(3c+1)(3c+2)(3c+3)(3c+1)(3c+2)(3c+3).
Here the factor (3i+1)(3i+2)(3i+3)(3i+1)(3i+2)(3i+3)(3i+1)(3i+2)(3i+3)
corresponds to the clause Ci, for all i = 0, . . . , c.

Note that the string 123123123 does not have the disjoint factor property, but
fails it only by one. Indeed, one can find two disjoint factors {F1, F2}, {F1, F3},
or {F2, F3}, but not three disjoint factors F1, F2, F3. Hence, in this prefix of W ,
one can find two disjoint factors for each clause, but not three.

Each variable appearing in F is a letter of our alphabet. In addition to W , we
concatenate for each variable x a factor to W of the form xp1p1p2p2 . . . plplxq1
q1 . . . qmqmx where the pi’s are the position in which x appears as a positive
literal, and the qi’s are the position in which x appears as a negative literal.

We feel that an example will clarify our discourse. To the formula F = (x ∨
y ∨ z) ∧ (y ∨ x ∨ z) ∧ (x ∨ y ∨ z), we associate the word WF

123123123456456456789789789x77x1155xy4488y22yz3399z66z
Observe that the solution x = 1, y = 0, z = 0 which satisfies F corresponds to

the disjoint factors appearing in this order in WF : 1231, 3123, 4564, 5645, 8978,
9789, 77, x1155x, y4488y, 22, z3399z, 66.

Finally, F is satisfiable iff WF has the disjoint factor property. This proves
our result. ��

Lemma 2. Disjoint Factors is or-compositional.

Proof. Suppose a collection of inputs (W1, k), . . . , (Wt, k) for Disjoint Factors

is given.
First we look at the case that t > 2k. In this case, we solve each instance by

the dynamic programming algorithm of Proposition 1. Note that the time to do
this is polynomial in

∑t
1 |Wi|+k, as 2k <

∑t
1 |Wi| here. So, we completely solve

the problem, and can then transform to a trivial O(1)-size yes- or no-instance.
Now, suppose t ≤ 2k. We can assume that t is a power of two, say t = 2�; if

necessary, we add trivial no-instances (k > 0, W the empty string). For 1 ≤ i ≤ t,
0 ≤ j < 	, i + 2j+1 ≤ t + 1, we define the word Wi,j recursively as follows. If
j = 0, Wi,0 is the word (k + 1)Wi(k + 1)Wi+1(k + 1). If j > 0, Wi,j is the word
(k + 1 + j)Wi,j−1(k + 1 + j)Wi+2j ,j−1(k + 1 + j).

Note that Wi,j contains each of the instances Wi, . . . , Wi+2j+1−1 as substrings.
As result of the composition, we take the word W ′ = W1,�−1.

In other words, W ′ is the limit word of

– (k + 1)W1(k + 1)W2(k + 1)
– (k + 2)(k + 1)W1(k + 1)W2(k + 1)(k + 2)(k + 1)W3(k + 1)W4(k + 1)(k + 2)
– (k+3)(k+2)(k+1)W1(k+1)W2(k+1)(k+2)(k+1)W3(k+1)W4(k+1)(k+

2)(k + 3)(k + 2)(k + 1)W5(k + 1)W6(k + 1)(k + 2)(k + 1)W7(k + 1)W8(k +
1)(k + 2)(k + 3) . . .

The resulting instance is (W ′, k +).
By construction, (W ′, k′) has a solution, if and only if at least one of the

(Wi, k) has a solution. Suppose (W ′, k′) has a solution. Then, there are two

Kernel Bounds for Disjoint Cycles and Disjoint Paths 643

possibilities for the factor Fk+�: either it is (k +)W1,�−2(k +), or (k +)
W1+2�−1,�−2(k +). In the first case, it ’shields’ the instances W1, . . . , W2�−1 ;
in the other case, it ’shields’ the instances W1+2�−1, . . . , W2� . No other factors
can be taken in the shielded part. This repeats with the other symbols above k:
Fk+�−1 shields half of what was left by Fk+�, and one can see that there remains
exactly one substring Wi that does not belong to any of the Fi with i > k. In
this substring, we must find the factors F1, . . . , Fk, and thus there is at least one
(Wi, k) which has a solution.

Suppose (Wi, k) has a solution. We take from W ′ the factors F1, . . . , Fk from
Wi. The other factors can be easily chosen: take factors Fk+�, Fk+�−1, etc., in
this order, each time taking the unique possibility which does not overlap already
chosen factors.

Finally, note that k + 	 ≤ 2k, so we have a polynomial time and parameter
transformation. ��
Corollary 4. Disjoint Factors belongs to the class NPK0

or, and thus has no
polynomial kernel, unless NP ⊆ coNP/poly.

We now show that Disjoint Cycles belongs to NPKor (and hence has no
polynomial kernel, unless NP ⊆ coNP/poly), by giving a polynomial time and
parameter transformation from Disjoint Factors to Disjoint Cycles.

Theorem 6. Disjoint Cycles ∈ NPKor, and hence has no polynomial kernel
unless NP ⊆ coNP/poly.

Proof. We use the following polynomial time and parameter transformation from
Disjoint Factors. Given an input (W, k) of Disjoint Factors, with W =
w1 · · ·wn a word in L∗

k, we build a graph G = (V, E) as follows. First, we take
n vertices v1, . . . , vn, and edges {vi, vi+1} for 1 ≤ i < n, i.e., these vertices form
a path of length n. Call this subgraph of G P . Then, for each i ∈ Lk, we add
a vertex xi, and make xi incident to each vertex vj with wj = i, i.e., to each
vertex representing the letter i.

G has k disjoint cycles, if and only if (W, k) has the requested k disjoint factors.
Suppose G has k disjoint cycles c1, . . . , ck. As P is a path, each of these cycles

must contain at least one vertex not on P , i.e., of the form xj , and hence each
of these cycles contains exactly one vertex xj . For 1 ≤ j ≤ k, the cycle cj thus
consists of xj and a subpath of P . This subpath must start and end with a
vertex incident to xj . These both represent letters in W equal to j. Let Fj be
the factor of W corresponding to the vertices on P in cj . Now, F1, . . . , Fk are
disjoint factors, each of length at least two (as the cycles have length at least
three), and Fj starts and ends with j, for all j, 1 ≤ j ≤ k.

Conversely, if we have disjoint factors F1, . . . , Fk with the properties as in
the Disjoint Factors problem, we build k vertex disjoint cycles as follows: for
each j, 1 ≤ j ≤ k, take the cycle consisting of xj and the vertices corresponding
to factor Fj .

As Disjoint Cycles in an NP-complete problem, the transformation just
given and the membership of Disjoint Factors in NPK0

or show that Disjoint

Cycles ∈ NPKor.

644 H.L. Bodlaender, S. Thomassé, and A. Yeo

By Corollary 1, it follows that Disjoint Cycles has no polynomial kernel
unless NP ⊆ coNP/poly. ��

A simple modification of the proof above gives the result for Disjoint Paths.

Theorem 7. Disjoint Paths ∈ NPKor, and hence has no polynomial kernel
unless NP ⊆ coNP/poly.

Proof. Suppose we have input (W, k) for the Disjoint Factors problem, W
a word in L∗

k. Build a graph G as follows. Start with a path P with vertices
v1, . . . , vn (as in the previous proof). For each i ∈ Lk, take a new vertex xi and
a new vertex yi. Make xi incident to each vertex representing the first, third,
fifth, etc., occurrence of the letter i in W , and make yi incident to each vertex
representing the second, fourth, sixth, etc., occurrence of the letter i in W . As
instance of Disjoint Paths we take G with the pairs (xi, yi), i ∈ Lk.

Now, the Disjoint Factors problem has a solution, if and only if it has
a solution where each factor Fi starts and ends with an i but has no other i
(otherwise we can replace the solution by an equivalent one where Fi is shorter),
and hence is between an even and an odd occurrence of the letter i. With a proof,
similar to the proof of Theorem 6, correctness of the construction follows. ��

6 Conclusions

In this paper, we showed that the Disjoint Cycles and Disjoint Paths prob-
lems do not have polynomial kernels, assuming that NP �⊆ coNP/poly. The
result for Disjoint Cycles came unexpected to us, given the similarity of the
problem to Feedback Vertex Set and Disjoint Cycle Packing, which do
have polynomial kernels. Our initial expectation that techniques for these prob-
lems would carry over to Disjoint Cycles proved to be false. Thus, the result
in our paper for e.g. Disjoint Cycles plays the role that it can direct further
research efforts, i.e., it appears not to be useful to aim at finding a polynomial
kernel for the problem; this is somewhat comparable to stating that an NP-
completeness proof directs our research efforts away from finding a polynomial
time algorithm for a problem.

Transformations are a powerful mechanism to derive no-polynomial-kernel
results. In a longer and earlier version of this paper [6], we showed that Hamil-

tonian Path and Hamiltonian Circuit parameterised by treewidth has no
polynomial kernel, unless the AND-distillation conjecture does not hold. Fernau
et al. [12] show that k-Leaf-Out-Branching has no polynomial kernel, un-
less NP ⊆ coNP/poly. A large collection of no-polynomial-kernel results were
obtained by Dom et al. [8], using intricate and clever reductions.

The further development of the theory of kernel sizes is an interesting topic
for further research. An important topic with many recent results (see e.g., the
overview paper by Guo and Niedermeier [15]) is to find kernels of sizes as small
as possible for concrete combinatorial problems. Some questions we want to
add to this are: The theory so far allows to distinguish between constant size,

Kernel Bounds for Disjoint Cycles and Disjoint Paths 645

polynomial size, and any size kernels: can we refine this? Are the classes NPKand

and NPKor the same? (There are some problems that belong to both classes.)
Are there complete or “hardest” problems for these classes? Another still open
problem is whether there exists a result for and-distillation that is similar to
the result of Fortnow and Santhanam for the or-distillation conjecture, i.e., can
we relate the and-distillation conjecture to more widely known and believed
complexity theoretic conjectures?

Finally, we mention a few concrete open problems: does Disjoint Paths have
a polynomial kernel when restricted to planar graphs? Is there a polynomial
kernel for Feedback Arc Set or Directed Feedback Vertex Set? Or,
if not, do these problems have a polynomial kernel when restricted to directed
planar graphs?

Acknowledgement

We thank Saket Saurabh for his proof of the kernel for the Disjoint Cycle

Packing problem, which greatly improved our earlier, larger kernel.

References

1. Alon, N., Hoory, S., Linial, N.: The Moore bound for irregular graphs. Graphs and
Combinatorics 18, 53–57 (2002)

2. Bodlaender, H.L.: A cubic kernel for feedback vertex set. In: Thomas, W., Weil, P.
(eds.) STACS 2007. LNCS, vol. 4393, pp. 320–331. Springer, Heidelberg (2007)

3. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems with-
out polynomial kernels (extended abstract). In: Aceto, L., Damg̊ard, I., Goldberg,
L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part
I. LNCS, vol. 5125, pp. 563–574. Springer, Heidelberg (2008)

4. Bodlaender, H.L., Penninkx, E.: A linear kernel for planar feedback vertex set. In:
Grohe, M., Niedermeier, R. (eds.) IWPEC 2008. LNCS, vol. 5018, pp. 160–171.
Springer, Heidelberg (2008)

5. Bodlaender, H.L., Penninkx, E., Tan, R.B.: A linear kernel for the k-disjoint cycle
problem on planar graphs. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.)
ISAAC 2008. LNCS, vol. 5369, pp. 306–317. Springer, Heidelberg (2008)

6. Bodlaender, H.L., Thomassé, S., Yeo, A.: Analysis of data reduction: Transfor-
mations give evidence for non-existence of polynomial kernels. Technical Report
CS-UU-2008-030, Department of Information and Computer Sciences, Utrecht Uni-
versity, Utrecht, The Netherlands (2008)

7. Cai, L., Chen, J., Downey, R.G., Fellows, M.R.: Advice classes of parameterized
tractability. Annals of Pure and Applied Logic 84, 119–138 (1997)

8. Dom, M., Lokshtanov, D., Saurabh, S.: Incompressibility through colors and IDs.
In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W.
(eds.) ICALP 2009. Part I. LNCS, vol. 5555, pp. 378–389. Springer, Heidelberg
(2009)

9. Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness I:
Basic results. SIAM J. Comput. 24, 873–921 (1995)

646 H.L. Bodlaender, S. Thomassé, and A. Yeo

10. Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness II:
On completeness for W [1]. Theor. Comp. Sc. 141, 109–131 (1995)

11. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg
(1999)

12. Fernau, H., Fomin, F.V., Lokshtanov, D., Raible, D., Saurabh, S., Villanger, Y.:
Kernel(s) for problems with no kernel: On out-trees with many leaves. In: Albers,
S., Marion, J.-Y. (eds.) Proceedings 26th International Symposium on Theoreti-
cal Aspects of Computer Science, STACS 2009, pp. 421–432. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, Germany (2009)

13. Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct
PCPs for NP. In: Proceedings of the 40th Annual Symposium on Theory of Com-
puting, STOC 2008, pp. 133–142. ACM Press, New York (2008)

14. Garey, M.R., Johnson, D.S.: Computers and Intractability, A Guide to the Theory
of NP-Completeness. W.H. Freeman and Company, New York (1979)

15. Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization.
ACM SIGACT News 38, 31–45 (2007)

16. Karp, R.M.: On the complexity of combinatorial problems. Networks 5, 45–68
(1975)

17. Kloks, T., Lee, C.M., Liu, J.: New algorithms for k-face cover, k-feedback vertex
set, and k-disjoint cycles on plane and planar graphs. In: Kučera, L. (ed.) WG
2002. LNCS, vol. 2573, pp. 282–295. Springer, Heidelberg (2002)

18. Mathieson, L., Prieto, E., Shaw, P.: Packing edge disjoint triangles: A parameter-
ized view. In: Downey, R.G., Fellows, M.R., Dehne, F. (eds.) IWPEC 2004. LNCS,
vol. 3162, pp. 127–137. Springer, Heidelberg (2004)

19. Robertson, N., Seymour, P.D.: Graph minors. XIII. The disjoint paths problem. J.
Comb. Theory Series B 63, 65–110 (1995)

20. Saurabh, S.: Personal communication (2009)
21. Thomassé, S.: A quadratic kernel for feedback vertex set. In: Proceedings of the

19th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2009, pp.
115–119 (2009)

Constant Ratio Fixed-Parameter Approximation
of the Edge Multicut Problem

Dániel Marx1,� and Igor Razgon2,��

1 Department of Computer Science and Information Theory,
Budapest University of Technology and Economics

dmarx@cs.bme.hu
2 Cork Constraint Computation Centre, University College Cork

i.razgon@cs.ucc.ie

Abstract. The input of the Edge Multicut problem consists of an undi-
rected graph G and pairs of terminals {s1, t1}, . . . , {sm, tm}; the task is
to remove a minimum set of edges such that si and ti are disconnected
for every 1 ≤ i ≤ m. The parameterized complexity of the problem,
parameterized by the maximum number k of edges that are allowed to
be removed, is currently open. The main result of the paper is a param-
eterized 2-approximation algorithm: in time f(k) · nO(1), we can either
find a solution of size 2k or correctly conclude that there is no solution
of size k.

The proposed algorithm is based on a transformation of the Edge
Multicut problem into a variant of parameterized Max-2-SAT problem,
where the parameter is related to the number of clauses that are not
satisfied. It follows from previous results that the latter problem can
be 2-approximated in a fixed-parameter time; on the other hand, we
show here that it is W[1]-hard. Thus the additional contribution of the
present paper is introducing the first natural W[1]-hard problem that is
constant-ratio fixed-parameter approximable.

1 Introduction

The minimum cut problem and its variants are among the most well-studied
combinatorial optimization problems. The focus of the paper is Edge Multicut:
given a graph G and pairs of vertices {s1, t1}, . . . , {sm, tm}, remove a minimum
set of edges such that si and ti are disconnected for every 1 ≤ i ≤ m. Edge
Multicut generalizes the classical s − t cut problem (disconnect s and t) and
the Multiway Cut problem (disconnect all the terminals from each other). Edge
Multicut can be approximated within a factor of O(log m) in polynomial time
[13] (even in the weighted case where the goal is to minimize the total weight
of the removed edges). However, under the Unique Games Conjecture of Khot
[17], no constant factor approximation is possible for Edge Multicut [5].
� Supported by the Magyary Zoltán Felsőoktatási Közalaṕıtvány and the Hungarian

National Research Fund (OTKA grant 67651).
�� Supported by Science Foundation Ireland (Grant Number 05/IN/I886).

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 647–658, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

648 D. Marx and I. Razgon

Parameterized complexity approaches hard computational problems through
a multivariate analysis of the running time. Instead of expressing the running
time as a function of the input size n only, the running time is expressed as a
function of n and k, where k is a well-defined parameter of the input instance. We
say that a problem (with a particular parameter k) is fixed-parameter tractable
(FPT) if it can be solved in time f(k) · nO(1), where f is an arbitrary function
depending only on k. Thus we relax polynomial time by allowing exponential (or
worse!) dependence on the parameter k. For more background on parameterized
complexity, the reader is referred to the monographs [10,12,22].

Edge Multicut on trees is FPT, parameterized by the maximum number k of
edges that can be deleted [3,15]. The problem and its vertex-cut version were
studied in [14] for other classes of graphs. For general graphs, Edge Multicut is
FPT if both k and m are chosen as parameters (i.e, the problem can be solved in
time f(k, m) ·nO(1)) [19,26]. However, it is an open question whether Edge Mul-
ticut is FPT in general graphs parameterized by k only. Besides the fundamental
nature of the problem, there are other reasons why this question is important. It
has been observed that Edge Multicut is equivalent to Fuzzy Cluster Editing, a
correlation clustering problem [2,8,1]. Furthermore, it seems that cut problems
are important ingredients in the solution of certain parameterized problems. For
example, the fixed-parameter tractability of Directed Feedback Vertex Set [6]
was a longstanding open question and solving a variant of directed multicut was
an important step in its solution.

Recently, it has been proposed that the notion of approximability can be
investigated in the framework of fixed-parameter tractability as well [4,7,9,21].
Here we follow this approach and present a parameterized 2-approximation for
Edge Multicut: the main result of the paper is an algorithm with running time
f(k) ·nO(1) that, given an instance of the Edge Multicut problem and an integer
k, either finds a solution of size 2k or correctly concludes that no solution of size
k exists. As surveyed in [21], so far there are very few natural problems where
a parameterized approximation is possible, but the problem is not known to be
fixed-parameter tractable.

The main idea of our approximation algorithm is to reduce Edge Multicut
to a variant of Almost 2SAT (delete k clauses to make a 2-CNF formula sat-
isfiable). The reduction is nontrivial: it consists of several steps and requires
the use of iterative compression. Almost 2SAT is known to be fixed-parameter
tractable [24] and this immediately implies a parameterized 2-approximation for
the variant we use here. Proving that this variant is FPT would seem an obvious
approach for proving that Edge Multicut is FPT. However, we rule out this pos-
sibility by showing the W[1]-hardness of the Almost 2SAT variant. This might
be of independent interest, as it is the first natural W[1]-hard problem having a
constant-ratio parameterized approximation.

Besides giving an algorithm for a particular problem, the paper has a con-
ceptual contribution as well by introducing a new technique: we demonstrate
that reduction to Almost 2SAT can be a useful approach in the design of fixed-
parameter algorithms. We believe that this technique will find uses for other

Constant Ratio Fixed-Parameter Approximation 649

problems in the future. However, it is not obvious what type of problems can
be handled this way: for example, it was not apparent that Multicut has any
connections with 2SAT.

2 Preliminaries

The objects considered in the present paper are (simple undirected) graphs and
2-cnf formulas. We define the related notation that will be used further in the
paper. For a graph G, we denote by V (G) and E(G) its set of vertices and edges,
respectively. For C such that either C ⊆ V (G) or C ⊆ E(G), G \C is the graph
obtained from G by removal of the elements of C (if C ⊆ V (G) then the edges
incident to C are removed from G as well). For E∗ ⊆ E(G), G[E∗] is a graph
whose set of edges is E∗ and the set of vertices is the set of end points of E∗.

Let us specify two sets {s1, . . . , s�} and {t1, . . . , t�} of vertices of G and call
their union the set of terminal vertices. Let T = {{s1, t1}, . . . , {sl, t�}} and let
C be either a set of non-terminal vertices or a set of edges of G such that G \C
has no path between si and ti for each i from 1 to l. In this case, we say that C
separates T in G. If C is a set of edges, we also say that C is an edge multicut
(emc) of (G,T). Let Y ⊆ V (G). We say that C separates T and Y in G if C
separates T in G and G \C has no path between any two distinct vertices of Y .
If C is a set of edges, we also say that C is an emc of (G,T, Y). Note that in
the Edge Multicut problem we have to find a set of edges that separates a set T
of terminal pairs.

Now we define the central problem considered in the present paper.

The emc problem
Input: A graph G, an integer k, and a set T of pairs of terminal vertices
of G
Parameter: k
Output: An emc of (G,T) of size at most k or ‘NO’ if no such emc

exists.

We will also need the auxiliary problems defined below and referred as aemc1

and aemc2.

The aemc1 problem
Instance: A graph G, an integer k, a set T of pairs of terminal vertices
of G, a set Y of at most 2k + 1 non-terminal vertices separating T in G
Parameter: k
Output: An emc of (G,T, Y) of size at most k or ‘NO’ if no such emc

exists.

The aemc2 problem
Instance: The same as in the aemc1 problem
Parameter: k
Output: An emc of (G,T) of size at most k or ‘NO’ if no such emc

exists.

650 D. Marx and I. Razgon

Finally, we use the following modification of the Almost 2-sat problem [24].
Let F be a 2-cnf formula and let C = (1 ∨ 	2) be a clause of F . A literal l
satisfies C if 	 = 	1 or 	 = 	2. A set L of literals satisfies F or, in other words,
L is a satisfying assignment of F if L does not contain a literal together with
its negation and each clause of F is satisfied by at least one literal of L. Let
L = {	1, . . . , 	r}. We denote the 2-cnf formula

∧r
i=1(i∨ 	i) by

∧
L. The clause

(1 → 	2) is shorthand for (¬	1 ∨ 	2).

Almost 2-sat problem with blocks and fixed literals (2-asat-bfl)
Instance: (F, P, L, k) where

– F is a satisfiable 2-cnf formula with possible repeated occurrences
of clauses;

– P is a family of (not necessarily disjoint) subsets (blocks) of at most
2 clauses covering all the clauses of F ;

– L is a set of literals;
– k is a non-negative integer.

Parameter: k.
Output: A set B of at most k blocks of P such that F ′∧

∧
L is satisfiable

(F ′ is the formula obtained from F as a result of removal of the clauses
of B) or ‘NO’ if no such set of blocks exists.

Let P be a parameterized problem where the parameter k is an integer ap-
pearing in the input and the task is to find some object of size at most k or
report ‘NO’ if no such object exists. Following [7,21], we say that problem P
is fixed-parameter approximable (FPA) with ratio c if there is an f(k) · nO(1)

time algorithm that either returns an object satisfying all output specifications
except that its size is at most ck, or ‘NO’ and in the latter case it is guaranteed
that there is no object of size at most k satisfying the output specifications.

Proposition 1. The 2-asat-bfl problem is FPA with ratio 2 and the approx-
imation can be achieved in time O(25kkm2) where m is the number of clauses
of F .

Proof. Claim 8 in [23] (this is the full version of [24]) states that in time O(5kkm2)
it is possible either to compute a set S of at most k clauses so that F ′ ∧

∧
L is

satisfiable, where F ′ is the formula obtained from F as a result of the removal of S,
or to conclude that no such set of clauses exists. Run this algorithm with parameter
2k (thus raising the exponential part to 25k). Assume that the algorithm returns
a set S of clauses of size at most 2k. Then return an arbitrary minimal set B of
blocks covering these clauses. Otherwise return ‘NO’. Clearly, if a set of blocks B is
returned and F ′ is the formula resulting from removal of the clauses of these blocks
from F then F ′ ∧

∧
L is satisfiable: in particular, all clauses of S are removed. If

the resulting algorithm returns ‘NO’, it follows that removal of 2k clauses cannot
make F satisfiable. Since each block consists of at most 2 clauses, it follows that
removal of k blocks cannot make F satisfiable, implying that the ‘NO’ answer is
correct. ��

Constant Ratio Fixed-Parameter Approximation 651

3 Reduction to Almost 2-Sat

Let (G,T, Y, k) be an instance of the aemc1 problem. We define the instance
(F, P, L, k) of the 2-asat-bfl problem corresponding to (G,T, Y, k). Then we
show that (G,T, Y, k) is a ‘YES’ instance of the aemc1 problem1 if and only if
(F, P, L, k) is a ‘YES’ instance of the 2-asat-bfl problem. The fixed-parameter
approximability of the aemc1 will then follow from Proposition 1.

The set of variables of F is {zu,v|u ∈ V (G), v ∈ Y }. The variable zu,v repre-
sents the truth of the ground statement “u and v belong to the same connected
component”. The clauses of F can be partitioned into the following 3 groups.

Group 1. For each {si, ti} ∈ T and for each v ∈ Y , the group contains 2k + 1
copies of clause (¬zsi,v ∨ ¬zti,v). The purpose of these clauses is to forbid
two terminals to be separated to belong to the same connected component.

Group 2. For each pair {v1, v2} of vertices of Y such that v1 �= v2, and for each
u ∈ V (G) the group contains 2k + 1 copies of clause (¬zu,v1 ∨ ¬zu,v2). The
purpose of these clauses is to forbid two different vertices of Y to belong to
the same connected component.

Group 3. For each {u, v} ∈ E(G) and for each w ∈ Y , the group contains
clause (zu,w → zv,w) and clause (zv,w → zu,w). These clauses show that
vertices u and v belong to the same connected component.

Observe that F is satisfiable, for instance, by an assignment including the neg-
ative literals of all the variables. The set P of blocks is defined as follows. For
each clause of F there is a block containing this clause only. Also for all possible
pairs {(u, w1), (v, w2)} where {u, v} ∈ E(G), w1 ∈ Y , w2 ∈ Y , there is a block
{(zu,w1 → zv,w1), (zv,w2 → zu,w2)}. Finally, L = {zv,v|v ∈ Y }.

Lemma 2. If (G,T, Y, k) is a ‘YES’ instance of the aemc1 problem then
(F, P, L, k) is a ‘YES’ instance of the 2-asat-bfl problem.

Proof. Let C be an emc of (G,T, Y, k) of size at most k. We associate with
each {u, v} ∈ C the block B({u, v}) corresponding to the ‘location’ of u and v.
In particular, if in G \ C there are two different vertices w1 and w2 of Y such
that u belongs to the component of w1 while v belongs to the component of
w2 then B({u, v}) = {(zu,w1 → zv,w1), (zv,w2 → zu,w2)}. Otherwise if exactly
one of {u, v}, say, u belongs to the connected component of some vertex w ∈ Y
while the connected component of v contains no vertex of Y then B({u, v}) =
{(zu,w → zv,w)}. Finally, if neither u nor v belong to the same component with
a vertex of Y then B({u, v}) can be an arbitrarily chosen block.

Let F ′ be a 2-cnf formula obtained from F by removal of the union of all
B({u, v}). We claim that F ′ is satisfiable by an assignment including L as a
subset. In particular, let L∗ be the set of literals of the variables of V created as
follows: zu,w ∈ L∗ whenever u belongs to the same component with w in G \C,
otherwise ¬zu,w ∈ L∗. Clearly, L ⊆ L∗. We claim that L∗ satisfies F ′. Clauses of

1 A ‘YES’ instance is one whose output is not ‘NO’.

652 D. Marx and I. Razgon

Group 1 are satisfied because otherwise there is a pair {si, ti} of terminals that
belong to the same component (with some w ∈ Y) in G \ C in contradiction to
being C an emc of (G,T, Y). Clauses of Group 2 are satisfied because otherwise
there is a vertex of G \ C that belongs to two distinct connected components,
which is absurd. Finally, assume that a clause c = (zu,w → zv,w) is not satisfied
by L∗. It can happen only if u belongs to the same component with w, while v
does not. By description of Group 3, {u, v} ∈ E(G) and, since u and v belong to
different connected components of G \ C, {u, v} ∈ C. Observe that the first or
the second condition of creation of B({u, v}) is satisfied and hence c ∈ B({u, v}),
i.e. c is not a clause of F ′. The proof is now complete. ��

Lemma 3. If (F, P, L, k) is a ‘YES’ instance of the 2-asat-bfl problem then
(G,T, Y, k) is a ‘YES’ instance of the aemc1 problem.

Proof. Let B (|B| ≤ k) be a set of blocks whose removal from F makes the
resulting 2-cnf formula F ′ satisfiable by an assignment L∗ such that L ⊆ L∗.
Observe that it makes no sense to include in B any of the blocks containing only
a single clause from Group 1 or 2: those clauses are present in 2k + 1 copies in
F , hence they have to be satisfied in L∗ as well. Thus we can safely assume that
every block in B contains one or two clauses from Group 3.

By construction, each block of B corresponds to exactly one edge of G. Let
C be the set of all such edges. We claim that C is an emc of (G,T, Y). Assume
first that C does not separate Y , i.e., there are vertices w1 and w2 of Y such
that G \ C has a path p from w1 to w2. If the length of p is 1 then let S =
{(zw1,w1 → zw2,w1)}. Otherwise, let u1, . . . , uq be the intermediate vertices of p
listed in the order of their occurrence when p is traversed from w1 to w2 and let
S = {(zw1,w1 → zu1,w1), (zu1,w1 → zu2,w1), . . . , (zuq−1,w1 → zuq,w1), (zuq,w1 →
zw2,w1)}. Since L ⊆ L∗, zw1,w1 ∈ L∗ as well as zw2,w2 ∈ L∗. If all the clauses
of S are contained in F ′, then zw2,w1 ∈ L∗ would follow from this chain of
implications, contradicting (¬zw2,w1 ∨¬zw2,w2) (that necessarily belongs to F ′).
Hence at least one clause of S belongs to a block of B, implying that at least
one edge of p belongs to C.

Thus, if C is not an emc of (G,T, Y), it remains to assume that C does not
separate T, i.e., there is {s, t} ∈ T such that G \ C has a path p between s
and t. By definition of Y , p contains at least one vertex w ∈ Y .2 If s and w
are adjacent in p then let S = {(zw,w → zs,w)}. Otherwise, let u1, . . . uq be the
intermediate vertices of p occurring in p between w and s listed in the order
they occur if p is traversed from w to s. Then S = {(zw,w → zu1,w), (zu1,w →
zu2,w), . . . , (zuq−1,w → zuq,w), (zuq,w → zs,w)}. Arguing as in the previous case,
we derive that either zs,w ∈ L∗ or one of the edges corresponding to S belongs
to C. Arguing analogously regarding the subpath of p between w and t we derive
that either zt,w ∈ L∗ or at least one edge of this subpath belongs to C. It follows
that if no edge of p belongs to C then both zs,w ∈ L∗ and zt,w ∈ L∗ hold. But

2 Notice that this is the only place where it is essential that Y separates all the pairs
of terminals of T.

Constant Ratio Fixed-Parameter Approximation 653

this is a contradiction since in this case the clause (¬zs,w∨¬zt,w) is not satisfied.
We conclude that C is an emc of (G,T, Y). ��

The following theorem is an immediate consequence of Proposition 1, Lemma 2,
and Lemma 3.

Theorem 4. The aemc1 problem is FPA with ratio 2.

4 Fixed-Parameter Approximability of the Emc Problem

We prove the main result of the paper in this section: emc is fixed-parameter
approximable with ratio 2. First, we reduce the aemc2 problem to the aemc1

problem. The only difference between the two problems is that in the instance
(G,T, Z, k) of the aemc2 problem, the solution does not have to separate Z.
However, the algorithm can be extended by trying all possible ways in which the
solution partitions the set Z.

Lemma 5. The aemc2 problem is FPA with ratio 2.

Proof. Apply the following algorithm. Explore all possible partitions of vertices
of Y into subsets. For the given partition Z = Z1 ∪ · · · ∪Zq, let G∗ be the graph
obtained from G by contracting each Zi into a vertex yi (loops produced by the
contraction are removed, multiple edges are subdivided). Let Y = {y1, . . . , yq}.
Using Theorem 4, we can obtain a 2-approximation for the instance (G∗,T, Y, k)
of the aemc1. If for at least one such instance an emc S of (G∗,T, Y) is returned
then return S. Otherwise, return ‘NO’.

Since the number of partitions of Z depends on |Z| ≤ 2k + 1, the above
algorithm is an FPT algorithm with parameter k. It is easy to see that if the
algorithm returns an emc S of (G∗,T, Y, k), then S is an emc of (G,T) as well.
Conversely, assume that (G,T) has an emc C of size at most k. Let Z1, . . . , Zq

be the partition of Z so that two vertices get into the same partition class if and
only if they belong to the same connected component of G \ C. According to
Theorem 4, being applied to the tuple (G∗,T, Y, k) resulting from this partition,
the above algorithm necessarily produces an emc S of (G∗,T) having size at
most 2k. Consequently, if the above algorithm returns ‘NO’ an emc of (G,T) of
size at most k cannot exist and the answer ‘NO’ is valid. ��

The problem aemc2 is easier than emc, since the input contains more informa-
tion, namely the set Z separating T. We apply a methodology known under the
name ‘iterative compression’ which essentially gives us such a set Z ‘for free.’
Iterative compression was first used by Reed et al. [25] and has become a very
useful technique in the design of parameterized algorithms [6,18,16,20,24].

Theorem 6. The emc problem is FPA with ratio 2.

Proof. Let (G,T, k) be an instance of the emc problem. Let e1, . . . , em be the
edges of G. Let G0, . . . , Gm be the graphs defined as follows. For each Gi,

654 D. Marx and I. Razgon

V (Gi) = V (G). E(G0) = ∅ and for each i > 0, E(Gi) = {e1, . . . , ei}. One
by one, we consider the (Gi,T, k) instances of the emc problem in ascending
order of i, and for each instance we find a 2-approximation. The approximation
for each (Gi,T, k) results in output Si, where Si is either a set of edges or ‘NO’.
In particular, S0 = ∅. Consider computing of Si, i > 0 provided that Si−1 is
already known. If Si−1 = ‘NO’ then Si = ‘NO’, as Si is a supergraph of Si−1.
Otherwise, Si−1 is an emc of size at most 2k for T in Gi−1, hence Si−1 ∪ {ei}
is an emc of size at most 2k + 1 for T in Gi. Subdivide each edge of Si−1 ∪ {ei}
with a new vertex; clearly, subdivisions does not change the existence of an emc.
Let G∗ be the graph obtained this way and let Z be the set of new vertices. It
follows that Z has size at most 2k + 1 and separates T in G∗. Thus we can use
the algorithm for aemc2 on the instance (G∗,T, Z, k). It either returns an emc

of T in G∗ of size at most 2k (which can be modified to obtain a emc Si of T in
G by replacing each subdivided edge by the corresponding edge of Si−1∪{ei}) or
returns ‘NO’, in which case we can set Si = ‘NO’. The validity of the algorithm
is easy to verify by induction on i combined with Lemma 5. ��

We conclude the section with computing the runtime of the algorithm achieving
the ratio 2 approximation of the EMC problem. Denote |V (G)| by n, |E(G)| by m
and |T| by 	. The iterative compression process described in the proof of Theorem
6 takes O(m) iterations of solving the aemc2 problem. The algorithm for the
aemc2 problem takes P (2k + 1, k) iterations of solving the aemc1 problem,
where P (2k + 1, k) is the number of partitions of a 2k + 1-element set into
at most k classes. Finally, in order to solve the aemc1 problem the graph is
transformed into a 2-cnf formula. The number of clauses of this formula is m1 =
O(k2+nk3+mk) = O(nk3+mk) (the term 	k2 corresponding to the number of
clauses of Group 1 is absorbed by nk3). Then the 2-asat-bfl problem is solved
for the obtained formula,which takes O(25kkm2

1) = O(25kk3(n2k4 + m2)). Thus
the overall complexity is O(25kP (2k + 1, k) · k3(n2k4 + m2)).

5 Hardness of the 2-ASAT-BFL Problem

It is easy to see from the above discussion that the fixed-parameter tractability
of the 2-asat-bfl problem would imply the fixed-parameter tractability of the
emc problem. In this section we show that the latter is very unlikely to be derived
in this way because the 2-asat-bfl problem turns out to be W[1]-hard. To the
best of our knowledge, this is the first problem known to be both W[1]-hard and
FPA with a constant ratio.

Theorem 7. 2-asat-bfl problem is W[1]-hard even if the blocks are disjoint.

Proof. The proof is by reduction from Multicolored Clique, where given a
graph G, an integer k, and a proper k-coloring of the vertices of G, the task
is to decide whether there is a k-clique in G. (Proper k-coloring is a mapping
from V (G) to {1, . . . , k} such that adjacent vertices have different colors.) Mul-

ticolored Clique is known to be W[1]-hard [11]. We can assume that every

Constant Ratio Fixed-Parameter Approximation 655

c-colored vertex has at least one neighbor from every color class except c: oth-
erwise the vertex cannot be part of a k-clique and can be safely deleted. Let nc

be the number of vertices of color c. Let vc,i (1 ≤ i ≤ nc) be the vertices with
color c. Let d(c, i, c′) ≥ 1 be the number of neighbors of vc,i having color c′. Let
us fix an ordering of these neighbors and let n(c, i, c′, j) be the j-th neighbor of
vc,i having color c′ in this ordering.

Set k′ :=
(
k
2

)
. We construct a satisfiable 2-cnf formula F and a set of literals

L such that deletion of k′ blocks makes F satisfiable by an assignment including
L if and only if G has a multicolored clique of size k. For every 1 ≤ c ≤ k
and 0 ≤ i ≤ nc, we introduce a variable xc,i. For every 1 ≤ c, c′ ≤ k, c �= c′,
1 ≤ i ≤ nc, 0 < j < d(c, i, c′), we introduce a variable yc,i,c′,j . For ease of
notation, we define yc,i,c′,0 := xc,i−1 and yc,i,c′,d(c,i,c′) := xc,i (note that the
second index of xc,i can be 0, while it is at least 1 for yc,i,c′,j).

The clauses of F are the union of the disjoint blocks Be for each edge e
of G. Suppose that edge e connects vc,i and vc′,i′ and n(c, i, c′, j) = vc′,i′ as
well as n(c′, i′, c, j′) = vc,i hold for some j, j′. Block Be consists of the clauses
(yc,i,c′,j−1 → yc,i,c′,j) and (yc′,i′,c,j′−1 → yc′,i′,c,j′). It is easy to see that F is
satisfiable by setting all the variables to 0. The set L of literals is defined as
follows: L = {xc,0|1 ≤ c ≤ k} ∪ {¬xc,nc |1 ≤ c ≤ k}.

Before introducing the formal proof, we give an intuitive explanation. Formula
F can be considered as containing k components, one for each color. The com-
ponent corresponding to a color c consists of nc fragments, one for each vertex
colored in c. The fragment corresponding to vertex vc,i consists of k − 1 sets of
implications one for each c′ �= c, and it is convenient to imagine that each such set
is a sequence of implications of the form yc,i,c′,0 → yc,i,c′,1 → · · · → yc,i,c′,dc,i,c′ .
Due to the settings yc,i,c′,0 := xc,i−1 and yc,i,c′,d(c,i,c′) := xc,i and the literals
of L, F can be made satisfiable if and only if for each component of color c we
identify a fragment corresponding to vertex vc,i and remove a clause from each
sequence of implications of this fragment. That is, to make the formula satisfi-
able, it is necessary and sufficient to remove k(k − 1) clauses. Since we want to
remove only k′ = k(k − 1)/2 blocks, we have to find out such fragments whose
sequences of implications can be partitioned into pairs so that for each pair there
is a block ’covering’ both sequences of this pair. The blocks are designed in such
a way that two fragments can be ’connected’ by at most one block and even
this can happen only in the case when the vertices corresponding to these frag-
ments are adjacent. It follows that removal of k′ blocks can make F ′ satisfiable
if and only if the considered fragments correspond to a set of mutually adjacent
vertices, one for each color, i.e., a multicolored clique.

Now we introduce the formal proof. Suppose that G has a multicolored clique
K of size k; let vc,ic be the vertex of K having color c. For every 1 ≤ c, c′ ≤ k,
c �= c′, there is an integer jc,c′ such that n(c, ic, c′, jc,c′) = vc′,ic′ . Let F ′ be the
formula obtained from F by deleting the blocks corresponding to the edges of K.

Consider a set L∗ of literals of variables yc,i,c′,j (for every 1 ≤ c, c′ ≤ k,
c �= c′, 1 ≤ i ≤ nc, 0 ≤ j ≤ d(c, i, c′)) created as follows: yc,i,c′,j ∈ L∗ if i < ic

656 D. Marx and I. Razgon

(independently of the values of c′ and j), or i = ic, provided that j < jc,c′ .
Otherwise ¬yc,i,c′,j ∈ L∗.

Since L∗ contains literals of all variables yc,i,c′,0 and yc,i,c′,d(c,i,c′), it in fact
contains the literals of all variables xc,i. Let us verify that all variables xc,i

are consistently assigned. In addition, to ensure that L ⊆ L∗, we check that L∗

contains xc,0 and ¬xc,nc for 1 ≤ c ≤ k. Consider first a variable xc,0. By definition
its value equals the value of yc,1,c′,0 for all possible values of c′. If ic > 1 then
yc,1,c′,0 ∈ L∗. Otherwise, ic = 1 and in this case, as jc,c′ ≥ 1, it follows again that
yc,1,c′,0 ∈ L∗. Thus we have verified the validity of assigning xc,0. Now, consider
xc,nc . By definition, xc,nc = yc,nc,c′,d(c,nc,c′) for all possible values of c′. Clearly
nc ≥ ic. If nc > ic then ¬yc,nc,c′,d(c,nc,c′) ∈ L∗. Otherwise, ¬yc,nc,c′,d(c,nc,c′) ∈ L∗

because nc ≥ jc,c′ , implying the validity of assigning xc,nc . Finally, consider xc,i

when 0 < i < nc. The value of xc,i is equal to the value of yc,i,c′,d(c,i,c′) and the
value of yc,i+1,c′,0 for all the values of c′. Using the description of L∗, it is not
hard to verify the consistency of instantiation of xc,i by considering first i < ic
then i = ic and finally i > ic. It remains to verify that each clause of F ′ is
satisfied by L∗. Assume that a clause (yc,i,c′,j−1 → yc,i,c′,j) is not satisfied. This
is only possible if i = ic and j − 1 < jc,c′ and j ≥ jc,c′, i.e., j = jc,c′ , but in that
case the clause was deleted from F ′, a contradiction.

For the other direction of the proof, suppose that it is possible to obtain, by
the deletion of at most k′ blocks, a formula F ′ that has a satisfying assignment
L∗ such that L ⊆ L∗. In particular this means that xc,0 ∈ L∗ and ¬xc,nc ∈ L∗

for every 1 ≤ c ≤ k. Thus for every 1 ≤ c ≤ k, there is a smallest 1 ≤ ic ≤ nc

such that xc,ic−1 ∈ L∗ and ¬xc,ic ∈ L∗. We claim that K := {vc,ic : 1 ≤ c ≤ k}
is a clique of size k. Let E∗ be the set of edges corresponding to the deleted
blocks. We show that for every 1 ≤ c, c′ ≤ k and c �= c′, vc,ic is adjacent to a
c′-colored vertex in G[E∗]. It follows that G[E∗] has k vertices of degree k − 1.
On the other hand |E∗| =

(
k
2

)
. It only possible if G[E∗] is a complete graph and

V (G[E∗]) = K. In other words, K is a clique of size k in G.
Suppose that vc,ic is not adjacent to a c′-colored vertex in G[E∗]. That is,

E∗ does not contain any of the edges {vc,ic , n(c, ic, c′, j)} for 1 ≤ j ≤ d(c, ic, c′).
This means that none of the clauses (yc,ic,c′,j−1 → yc,ic,c′,j) (1 ≤ j ≤ d(c, ic, c′))
are deleted. Since d(c, ic, c′) ≥ 1, these clauses ensure that if yc,ic,c′,0 = 1, then
yc,ic,c′,d(c,ic,c′) = 1 as well. However, by the definition of ic, we have yc,ic,c′,0 =
xc,ic−1 = 1 and yc,ic,c′,d(c,ic,c′) = xc,ic = 0, which gives a contradiction. ��

References

1. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Machine Learning 56(1-
3), 89–113 (2004)

2. Bodlaender, H.L., Fellows, M.R., Heggernes, P., Mancini, F., Papadopoulos, C.,
Rosamond, F.: Clustering with partial information. In: MFCS 2008: Proceedings
of the 33rd international symposium on Mathematical Foundations of Computer
Science, pp. 144–155. Springer, Heidelberg (2008)

Constant Ratio Fixed-Parameter Approximation 657

3. Bousquet, N., Daligault, J., Thomasse, S., Yeo, A.: A polynomial kernel for multicut
in trees. In: Albers, S., Marion, J.-Y. (eds.) 26th International Symposium on
Theoretical Aspects of Computer Science (STACS 2009). Leibniz International
Proceedings in Informatics, vol. 3, pp. 183–194. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, Germany (2009)

4. Cai, L., Huang, X.: Fixed-parameter approximation: conceptual framework and
approximability results. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006.
LNCS, vol. 4169, pp. 96–108. Springer, Heidelberg (2006)

5. Chawla, S., Krauthgamer, R., Kumar, R., Rabani, Y., Sivakumar, D.: On the
hardness of approximating multicut and sparsest-cut. Comput. Complexity 15(2),
94–114 (2006)

6. Chen, J., Liu, Y., Lu, S., O’Sullivan, B., Razgon, I.: A fixed-parameter algorithm
for the directed feedback vertex set problem. J. ACM 55(5) (2008)

7. Chen, Y., Grohe, M., Grüber, M.: On parameterized approximability. In: Bod-
laender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 109–120.
Springer, Heidelberg (2006)

8. Demaine, E.D., Emanuel, D., Fiat, A., Immorlica, N.: Correlation clustering in
general weighted graphs. Theor. Comput. Sci. 361(2-3), 172–187 (2006)

9. Downey, R., Fellows, M., McCartin, C.: Parameterized approximation algorithms.
In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp.
121–129. Springer, Heidelberg (2006)

10. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Com-
puter Science. Springer, New York (1999)

11. Fellows, M.R., Hermelin, D., Rosamond, F.A., Vialette, S.: On the parameterized
complexity of multiple-interval graph problems. Theor. Comput. Sci. 410(1), 53–61
(2009)

12. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Berlin (2006)
13. Garg, N., Vazirani, V.V., Yannakakis, M.: Approximate max-flow min-(multi)cut

theorems and their applications. SIAM J. Comput. 25(2), 235–251 (1996)
14. Guo, J., Hüffner, F., Kenar, E., Niedermeier, R., Uhlmann, J.: Complexity and

exact algorithms for vertex multicut in interval and bounded treewidth graphs.
European J. Oper. Res. 186(2), 542–553 (2008)

15. Guo, J., Niedermeier, R.: Fixed-parameter tractability and data reduction for mul-
ticut in trees. Networks 46(3), 124–135 (2005)

16. Hüffner, F., Niedermeier, R., Wernicke, S.: Techniques for practical fixed-parameter
algorithms. The Computer Journal 51(1), 7–25 (2008)

17. Khot, S.: On the power of unique 2-prover 1-round games. In: Proceedings of the
Thirty-Fourth Annual ACM Symposium on Theory of Computing, pp. 767–775.
ACM, New York (2002) (electronic)

18. Liu, Y., Lu, S., Chen, J., Sze, S.-H.: Greedy localization and color-coding: improved
matching and packing algorithms. In: Bodlaender, H.L., Langston, M.A. (eds.)
IWPEC 2006. LNCS, vol. 4169, pp. 84–95. Springer, Heidelberg (2006)

19. Marx, D.: Parameterized graph separation problems. Theoretical Computer Sci-
ence 351(3), 394–406 (2006)

20. Marx, D.: Chordal deletion is fixed-parameter tractable. To appear in Algorithmica
(2008)

21. Marx, D.: Parameterized complexity and approximation algorithms. The Computer
Journal 51(1), 60–78 (2008)

658 D. Marx and I. Razgon

22. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series
in Mathematics and Its Applications, vol. 31 (2006)

23. Razgon, I., O’Sullivan, B.: Almost 2-sat is fixed-parameter tractable. CoRR,
abs/0801.1300 (2008)

24. Razgon, I., O’Sullivan, B.: Almost 2-sat is fixed-parameter tractable (extended
abstract). In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125,
pp. 551–562. Springer, Heidelberg (2008)

25. Reed, B., Smith, K., Vetta, A.: Finding odd cycle transversals. Operations Research
Letters 32(4), 299–301 (2004)

26. Xiao, M.: Algorithms for multiterminal cuts. In: Hirsch, E.A., Razborov, A.A.,
Semenov, A., Slissenko, A. (eds.) Computer Science – Theory and Applications.
LNCS, vol. 5010, pp. 314–325. Springer, Heidelberg (2008)

Rank-Pairing Heaps

Bernhard Haeupler1, Siddhartha Sen2,�, and Robert E. Tarjan2,3,�

1 Massachusetts Institute of Technology
haeupler@mit.edu
2 Princeton University

{sssix,ret}@cs.princeton.edu
3 HP Laboratories, Palo Alto CA 94304

Abstract. We introduce the rank-pairing heap, a heap (priority queue) imple-
mentation that combines the asymptotic efficiency of Fibonacci heaps with much
of the simplicity of pairing heaps. Unlike all other heap implementations that
match the bounds of Fibonacci heaps, our structure needs only one cut and no
other structural changes per key decrease; the trees representing the heap can
evolve to have arbitrary structure. Our initial experiments indicate that rank-
pairing heaps perform almost as well as pairing heaps on typical input sequences
and better on worst-case sequences.

1 Introduction

A meldable heap (henceforth just a heap) is a data structure consisting of a set of items,
each with a distinct real-valued key, that supports the following operations:

– make-heap: return a new, empty heap.
– insert(x, H): insert item x, with predefined key and currently in no heap, into heap

H .
– find-min(H): return the item in heap H of minimum key.
– delete-min(h): if heap H is not empty, delete from H the item of minimum key.
– meld(H1, H2): return a heap containing all the items in disjoint heaps H1 and H2,

destroying H1 and H2.

Some applications of heaps need either or both of the following additional operations.

– decrease-key(x, Δ, H): decrease the key of item x in heap H by amount Δ > 0.
– delete(x, H): delete item x from heap H .

We break ties between equal keys using any total order of the items. We allow only
binary comparisons of keys, and we study the amortized efficiency [26] of heap oper-
ations. We assign to each configuration of the data structure a non-negative potential,
initially zero. We define the amortized time of an operation to be its actual time plus the

� Research at Princeton University partially supported by NSF grants CCF-0830676 and CCF-
0832797 and US-Israel Binational Science Foundation grant 2006204. The information con-
tained herein does not necessarily reflect the opinion or policy of the federal government and
no official endorsement should be inferred.

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 659–670, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

660 B. Haeupler, S. Sen, and R.E. Tarjan

change in potential it causes. Then for any sequence of operations the sum of the actual
times is at most the sum of the amortized times.

Since a heap can be used to sort n numbers, the classical Ω(n log n) lower bound [19,
p. 183] on comparisons implies that either insertion or minimum deletion must take
Ω(log n) amortized time, where n is the number of items currently in the heap. For
simplicity in stating bounds we assume n ≥ 2. We investigate simple data structures
such that minimum deletion (or deletion of an arbitrary item if this operation is sup-
ported) takes O(log n) amortized time, and each of the other heap operations takes
O(1) amortized time. These bounds match the lower bound.

Many heap implementations have been proposed over the years. See e.g. [17]. We
mention only those directly related to our work. The binomial queue of Vuillemin [28]
supports all the heap operations in O(log n) worst-case time per operation and per-
forms well in practice [2]. Fredman and Tarjan [11,12] invented the Fibonacci heap
specifically to support key decrease operations in O(1) time, which allows efficient
implementation of Dijkstra’s shortest path algorithm [4,12] and several other algo-
rithms [6,12,13]. Fibonacci heaps support deletion of the minimum or of an arbitrary
item in O(log n) amortized time and the other heap operations in O(1) amortized time.

Several years later, Fredman et al. [10] introduced a self-adjusting heap implemen-
tation called the pairing heap that supports all the heap operations in O(log n) amor-
tized time. Fibonacci heaps do not perform well in practice [20,21], but pairing heaps
do [20,21]. Fredman et al. conjectured that pairing heaps have the same amortized
efficiency as Fibonacci heaps, but despite empirical evidence supporting the conjec-
ture [20,25], Fredman [9] showed that it is not true: pairing heaps and related data struc-
tures that do not store subtree size information require Ω(log log n) amortized time per
key decrease. In contrast, the best known upper bound is O(22

√
lg lg n) [24] amortized

time 1.
These results motivated work to improve Fibonacci heaps and pairing heaps. Some

of this work obtained better bounds but only by making the data structure more com-
plicated. In particular, the bounds of Fibonacci heaps can be made worst-case: run-
relaxed heaps [5] and fat heaps [16] achieve the bounds except for melding, which takes
O(log n) time worst-case, and a very complicated data structure of Brodal [1] achieves
all the bounds worst-case. Also, Fredman’s lower bound can be matched: very recently
Elmasry [8] has proposed an alternative to pairing heaps that does not store subtree size
information but takes O(log log n) amortized time for a key decrease.

Working in a different direction, several authors proposed data structures with the
same amortized efficiency as Fibonacci heaps but intended to be simpler. Peterson [23]
gave a structure based on AVL trees. Høyer [14] gave several structures, including ones
based on red-black trees, AVL trees, and a, b-trees. Høyer’s simplest structure is one he
calls a one-step heap. Kaplan and Tarjan [17] filled a lacuna in Høyer’s presentation of
this heap and gave a related structure, the thin heap. Independently of our own work but
concurrently, Elmasry [7] developed violation heaps and Chan [3] quake heaps.

In all these structures, the trees representing the heap satisfy a balance property. As a
result, a key decrease must in general do restructuring to restore balance. Our insight is
that such restructuring is unnecessary: all that is needed is a way to control the size of

1 We denote by lg the base-two logarithm.

Rank-Pairing Heaps 661

3 3

5 25 2

7 1

11 17 130 0 0

3

4 1

80 0

5 25 2

17 07 1

11 0

3 3

8 04 1 8 04 1

13 0

Fig. 1. A half-ordered half tree and the equivalent heap-ordered tree

trees that are combined. Our new data structure, the rank-pairing heap, does (at most)
one cut and no other restructuring per key decrease, allowing trees to evolve to have
arbitrary structure. We store a rank for each node and only combine trees whose roots
have equal rank. After a key decrease, rank changes (decreases) can propagate up the
tree. Rank-pairing heaps have the same amortized efficiency as Fibonacci heaps and are,
at least in our view, the simplest such structure so far proposed. Our initial experiments
suggest that rank-pairing heaps compare well with pairing heaps in practice.

The remainder of our paper has six sections. Section 2 describes a one-pass version of
binomial queues on which we base our data structure. Section 3 extends this version to
obtain two types of rank-pairing heaps, which we analyze in Section 4. Section 5 shows
that some even simpler ways of implementing key decrease have worse amortized effi-
ciency. Section 6 describes our initial experiments comparing rank-pairing heaps with
pairing heaps. Section 7 concludes and mentions some open problems.

2 One-Pass Binomial Queues

We represent a heap by a set of half-ordered half trees [10,18] whose nodes are the items
in the heap. A half tree is a binary tree whose right subtree is missing. A half-ordered
binary tree is a binary tree in which each node has a key, such that the key of a node
is less than that of all nodes in its left subtree. Thus in a half-ordered half tree the root
has minimum key. A half-ordered half tree is just the binary tree representation [18] of
a heap-ordered tree, corresponding to the latter’s implementation. (See Figure 1.)

We represent a half tree by storing with each node x pointers to left(x) and right(x),
its left and right child, respectively. We represent a set of half trees by a singly-linked
circular list of the tree roots, with the root of minimum key first. Access to the list is via
the first root. This representation allows us to find the minimum, insert a new half tree,
or catenate two such lists in O(1) time.

The basic operation on half trees is linking, which combines two half trees into one,
in O(1) time. To link two half trees with roots x and y, compare the keys of x and y.
Assume x has smaller key; the other case is symmetric. Detach the left subtree of x and
make it the right subtree of y. Then make the tree rooted at y the left subtree of x.

To make our data structure efficient, we restrict linking by using ranks. A ranked half
tree is a half tree in which each node has an integer rank. The rank of a half tree is the
rank of its root. We only link half trees of equal rank. After a link, we increase the rank
of the new root by one. (See Figure 2.)

We implement the various heap operations as follows. To find the minimum in a
heap, return the first root. To make a heap, create an empty list of roots. To insert an

662 B. Haeupler, S. Sen, and R.E. Tarjan

x yk

A B

+k - 1 k - 1

A B

xk k + 1

= y k

k - 1 k - 1

AB

Fig. 2. A link of two half trees of rank k. Ranks are to the right of nodes.

item, make it a one-node half-tree of rank zero and insert it into the list of roots, in
first or second position depending on whether it has minimum key or not. To meld two
heaps, catenate their lists of roots, making the root of minimum key first on the new list.
Each of these operations takes O(1) time worst-case.

To delete the minimum, take apart the half tree rooted at the node of minimum key
by deleting this node and walking down the path from its left (only) child through right
children, making each node on the path together with its left subtree into a half tree.
The set of half trees now consists of the original half trees, minus the one disassembled,
plus the new ones formed by the disassembly. Group these half trees into a maximum
number of pairs of equal rank and link the half trees in each pair. To do this, maintain a
set of buckets, one per rank. Process each half tree in turn by putting it into the bucket
for its rank if this bucket is empty; if not, link the half tree with the half tree in the
bucket, and add the root of the new half tree to the list representing the updated heap,
leaving the bucket empty. Once all the half trees have been processed, add the half trees
remaining in buckets to the list of roots, leaving all the buckets empty.

This data structure is a one-pass version of binomial queues. Linking only half trees
of equal rank guarantees that every child has rank exactly one less than that of its parent,
and every half tree is perfect: its left subtree is a perfect binary tree. Thus a half tree of
rank k contains exactly 2k nodes, and the maximum rank is at most lg n.

In the original version of binomial queues, there is never more than one tree per rank.
Maintaining this invariant requires doing links during insertions and melds and doing
additional links during minimum deletions, until no two half trees have equal rank. The
original version has a worst-case time bound of O(1) for make-heap and O(log n) for
the other operations. Since we are interested in amortized efficiency, we prefer to avoid
linking during insertions and melds and to link lazily during minimum deletions; extra
links of equal-rank half trees done during minimum deletions do not affect our bounds.

To analyze one-pass binomial queues, we define the potential of a heap to be the
number of half trees it contains. A make-heap, find-min, or meld operation takes O(1)
time and does not change the potential. An insertion takes O(1) time and increases the
potential by one. Thus each of these operations takes O(1) amortized time. Consider
a minimum deletion. Disassembling the half tree rooted at the node of minimum key
increases the number of trees and thus the potential by at most lg n. Let h be the number
of half trees after the disassembly but before the links. The total time for the minimum
deletion is O(h + 1), including the time to pair the trees by rank. There are at least
(h − lg n − 1)/2 links, reducing the potential by at least this amount. If we scale the
running time so that it is at most h/2 + O(1), then the amortized time of the minimum
deletion is O(log n).

Rank-Pairing Heaps 663

3 Rank-Pairing Heaps

Our main goal is to implement key decrease so that it takes O(1) amortized time. Once
key decrease is supported, one can delete an arbitrary item by decreasing its key to
−∞ and doing a minimum deletion. A parameter of both key decrease and arbitrary
deletion is the heap containing the given item. If the application does not provide this
information and melds occur, one needs a separate disjoint set data structure to maintain
the partition of items into heaps. To find an item’s heap takes ω(1) time [15].

We shall modify one-pass binomial queues to support key decrease, obtaining rank-
pairing heaps, or rp-heaps. We make two changes to the data structure. First, we need
to provide access from each node to its parent as well as to its children. We add parent
pointers, resulting in three pointers per node; this can be reduced to two pointers if we
are willing to trade time for space, as observed by Fredman et al. [10].

Second, we relax the constraint on ranks. Let p(x) and r(x) be the parent and rank of
node x, respectively. If x is a child, the rank difference of x is r(p(x)) − r(x). A node
of rank difference i is an i-child; a node whose children have rank differences i and j is
an i, j-node. The latter definition does not distinguish between left and right children.
We adopt the convention that a missing child has rank -1.

We shall define two types of rank-pairing heaps. In both, every child of a root is a
1-child, and every leaf has rank zero and is thus a 1,1-node. In a type-1 rank-pairing
heap, every child is a 1,1-node or a 0, i-node for some i > 0. We call this the rank rule.
Ranks give a lower bound but not an upper bound on subtree sizes.

Lemma 1. In a type-1 rp-heap, every node of rank k has at least 2k descendants in-
cluding itself, at least 2k+1 − 1 if it is a child.

Proof. The second part of the lemma implies the first part. We prove the second part
by induction on the height of a node. A leaf has rank zero and satisfies the second part.
Consider a non-root x of rank k whose children satisfy the second part. If x is a 0, i-
node, by the induction hypothesis it has at least 2k+1−1 descendants. If x is a 1,1-node,
by the induction hypothesis it has at least 2(2k − 1) + 1 = 2k+1 − 1 descendants. ��

We implement make-heap, find-min, insert, meld, and delete-min exactly as on one-
pass binomial queues. Links preserve the rank rule: if a link makes a root into a child,
the new child is a 1-child and a 1,1-node. (See Figure 2.)

We implement key decrease as follows. (See Figure 3.) To decrease the key of item
x in rp-heap H by Δ, subtract Δ from the key of x. If x is a root, make it first on the
root list if it now has minimum key, and stop. Otherwise, let y = right(x); detach
the subtrees rooted at x and y; reattach the subtree rooted at y in place of the original
subtree rooted at x; add x to the list of roots, making it first if it has minimum key; set
r(x) = r(left(x)) + 1. There may now be a violation of the rank rule at p(y), whose
new child, y, may have lower rank than x, the node it replaces. To restore the rank rule,
let u = p(y) and repeat the following step until it stops:

Decrease rank (type 1): If u is the root, set r(u) = r(left(u)) + 1 and stop. Otherwise,
let v and w be the children of u. Let k equal r(v) if r(v) > r(w), r(w) if r(w) > r(v),
or r(w) + 1 if r(v) = r(w). If k = r(u), stop. Otherwise, let r(u) = k and u = p(u).

664 B. Haeupler, S. Sen, and R.E. Tarjan

x
1

k - 1k - 1
1

k
1

0 6 1 1

0 51 1

u

6 0

0 8

u

0 2

2 0

x

0 8

0 10

y

2 0

y

Fig. 3. Key decrease in a type-1 rp-heap

If u breaks the rank rule, it obeys the rule after its rank decreases, but p(u) may not.
Rank decreases propagate up along a path through the tree until all nodes obey the rule.
Each successive rank decrease is by the same or a smaller amount.

Before analyzing type-1 rp-heaps, we introduce a relaxed version. In a type-2 rank-
pairing heap, every child is a 1,1-node, a 1-2-node, or a 0, i-node for some i > 1. The
implementations of the heap operations are identical to those of type-1 rp-heaps, except
for key decrease, which is the same except that the rank decrease step becomes the
following:

Decrease rank (type 2): If u is the root, set r(u) = r(left(u)) + 1 and stop. Otherwise,
let v and w be the children of u. Let k equal r(v) if r(v) > r(w) + 1, r(w) if r(w) >
r(v) + 1, or max{r(v) + 1, r(w) + 1} otherwise. If k = r(u), stop. Otherwise, let
r(u) = k and u = p(u).

We denote by Fk the kth Fibonacci number, defined by the recurrence F0 = 0, F1 = 1,
Fk = Fk−1 + Fk−2 for k > 1, and by φ = (1 +

√
5)/2 the golden ratio.

Lemma 2. In a type-2 rp-heap, every node of rank k has at least Fk+2 ≥ φk descen-
dants including itself, at least Fk+3 − 1 if it is a child.

Proof. The inequality Fk+2 ≥ φk is well-known [18, p. 18]. The second part of the
lemma implies the first part. We prove the second part by induction on the height of
a node. A leaf has rank zero and satisfies the second part of the lemma. A missing
node also satisfies the second part. Consider a non-root x of rank k whose children
satisfy the second part. If x is a 0, i-node, by the induction hypothesis it has at least
Fk+3 − 1 descendants. If x is a 1,1-node, by the induction hypothesis it has at least
2(Fk+2−1)+1 ≥ Fk+3−1 descendants. If x is a 1,2-node, by the induction hypothesis
it has at least Fk+2 − 1 + Fk+1 − 1 + 1 = Fk+3 − 1 descendants. ��

The worst-case time for a key decrease in an rp-heap of either type is Θ(n), as in
Fibonacci heaps. We can reduce this to O(1) by delaying key decreases until the next
minimum deletion and maintaining the set of nodes that might have minimum key. This
complicates the data structure, however, and may worsen its performance in practice.

Rank-Pairing Heaps 665

4 Amortized Efficiency of Rank-Pairing Heaps

We begin by analyzing type-2 heaps, which is easier than analyzing type-1 heaps. We
define the potential of a node to be the sum of the rank differences of its children, minus
one if it is a 1,2- or 0, i-node, minus two if it is a 1,1-node. That is, its potential is zero
if it is a 1,1-node, one if it is a root, two if it is a 1,2-node, or i − 1 if it is a 0, i-node.
We define the potential of a heap to be the sum of the potentials of its nodes.

Theorem 1. The amortized time for an operation on a type-2 rp-heap is O(1) for a
make-heap, find-min, insert, meld, or decrease-key, and O(log n) for a delete-min.

Proof. A make-heap, find-min, or meld operation takes O(1) actual time and does not
change the potential; an insertion takes O(1) time and increases the potential by one.
Hence each of these operations takes O(1) amortized time. Consider a minimum dele-
tion. The disassembly increases the potential by at most the number of 1,1-nodes that
become roots. By Lemma 2 there are at most logφ n such conversions, so the disassem-
bly increases the potential by at most logφ n. Let h be the number of half trees after the
disassembly. The entire minimum deletion takes O(h + 1) time. Scale this time to be at
most h/2+O(1). Each link after the disassembly converts a root into a 1,1-node, which
reduces the potential by one. At most logφ n + 1 half trees do not participate in a link,
so there are at least (h− logφ n− 1)/2 links. The minimum deletion thus decreases the
potential by at least h/2−O(log n), which implies that its amortized time is O(log n).

The novel part of the analysis is that of key decrease. Consider decreasing the key
of a node x. If x is a root, the key decrease takes O(1) actual time and does not change
the potential. Otherwise, let u0 = left(x), u1 = x, and u2, . . . , uk be the successive
nodes at which rank decrease steps take place, omitting the root if its rank decreases
(uj = p(uj−1) for 2 ≤ j ≤ k). For 1 ≤ j ≤ k let vj be the child of uj other than uj−1.
Let r, r′ denote ranks before and after the key decrease, respectively. The only nodes
whose potential changes as a result of the key decrease are u1, . . . , uk. At most two of
these nodes are 1,1-nodes before the key decrease; if there is a second, it must be uk,
which must become a 1,2-node. The sum of the rank differences of v1, u1, . . . , uk−1
before the key decrease telescopes to r(uk)− r(v1); the sum of the rank differences of
v1, u2, ..., uk−1 after the key decrease telescopes to r′(uk) − r′(v1) ≤ r(uk) − r(v1)
since r′(uk) ≤ r(uk) and r′(v1) = r(v1). The key decrease reduces the rank difference
of each vj , 2 ≤ j < k by at least one. It follows that the key decrease reduces the
potential by at least k − 6; the “−6” accounts for one additional root and up to two
fewer 1,1-nodes. If we scale the time of a rank decrease step so that it is at most one,
the amortized time of the key decrease is O(1). ��

To analyze type-1 rp-heaps, we assign potentials based on the children of a node. We
call a non-leaf node good if it is a root whose left child is a 1,1-node, or it and both of
its children are 1,1-nodes, or it is a 0,1-node whose 0-child is a 1,1-node; otherwise, the
node is bad. We define the potential of a leaf to be zero if it is a non-root or 3/2 if it is a
root. We define the potential of a non-leaf node to be the sum of the rank differences of
its children, plus two if it is a root, minus one if it is good, plus three if it is bad. Thus the
potential of a 0,1-node is zero if it is good or four if it is bad, of a 1,1-node is one if it is
good or five if it is bad, of a root is two if it is good or six if it is bad, and of a 0, i-node

666 B. Haeupler, S. Sen, and R.E. Tarjan

with i > 1 is i + 3. We define the potential of a heap to be the sum of the potentials of
its nodes. If we restrict the links during a minimum deletion to preferentially pair the
half trees produced by the disassembly, the following theorem holds:

Theorem 2. The amortized time for an operation on a type-1 rp-heap is O(1) for a
make-heap, find-min, insert, meld, or decrease-key, and O(log n) for a delete-min.

Proof. A make-heap, find-min, or meld operation takes O(1) actual time and does not
change the potential; an insertion takes O(1) time and increases the potential by 3/2.
Hence each of these operations takes O(1) amortized time.

Our analysis of minimum deletion relies on the fact that for each rank at most one of
the half trees formed by the disassembly is not linked to another such half tree. During
the disassembly, we give each new root of rank one or more a potential of four whether
it is good or bad. We give the correct potential (two if good, six if bad) to each root of
a half tree formed by a link; and, once all half trees formed by the disassembly have
been inserted into buckets, we give the correct potential to the root of each such half
tree remaining in a bucket. This correction increases the potential by two for each such
root that is bad. We charge these two units against the rank of the bad root.

Consider the effect of the disassembly on the potential. Deletion of the root reduces
the potential by at least 3/2. The only nodes whose potential can increase are the new
roots. At most one leaf can become a root, increasing the potential by 3/2. Each bad
node that becomes a root already has the four units of potential it needs as a root.
Consider a good node x that becomes a root. There are three cases. If x is a 1,1-node,
it needs three additional units of potential as a root. We charge these to r(x). If x is a
0,1-node whose right child is a 0-child, we walk down the path of right children from x
until reaching a node y that is either bad or a leaf. Each node along the path must be a
1,1-node. If y is a bad 1,1-node, it has five units of potential, four of which it needs as
a root, leaving one for x. We charge the remaining three needed by x to r(y). If y is a
leaf, it has rank zero; we charge the units needed by x (3/2 or 4) to rank zero. Node y
is reached only from one such node x. If x is a 0,1-node whose left child is a 0-child,
we charge the four units x needs as a root to r(x). In this case x is the last new root of
its rank; since x is good, its rank is not charged two units to correct the rank of a bad
root. Each rank can only be charged once for a new root. The total increase in potential
caused by the disassembly and correction of the potential is thus at most 5 lg n: each
rank up to the maximum rank minus one can be charged two units for a correction and
three for a new root, or zero for a correction and four for a new root.

Each link of two rank-0 roots reduces the potential by one. Each link of two roots of
positive rank converts a root into a 1,1-node and makes the remaining root good. After
the link, these two nodes have total potential at most seven. Before the link, they have
potential at least eight (four plus four or at least two plus six), unless they were both
good before the link, in which case the new 1,1-node is good after the link and the link
reduces the total potential of the two nodes from four to three. Thus each link reduces
the potential by one. Let h be the number of half trees after the disassembly. The entire
minimum deletion takes O(h+1) time. Scale this time to be at most h/2+O(1). At most
lg n+1 half trees do not participate in a link, so there are at least (h− lg n−1)/2 links.
The minimum deletion thus decreases the potential by at least h/2− (11/2) lgn−1/2,
which implies that its amortized time is O(logn).

Rank-Pairing Heaps 667

The analysis of a key decrease at a node x is just like that for type-2 heaps, except we
must show that the key decrease can make only O(1) nodes bad. A good 1,1-node can-
not become bad; it can only become a good 0,1-node. A good 0,1-node cannot decrease
in rank, so if it becomes bad it is the last node at which a rank decrease step occurs.
If x becomes a root, it can only become bad if it was previously a good 0,1-node with
a right 0-child, in which case no ranks decrease and x is the only node that becomes
bad. For the root of the old half tree containing x to become bad, its left child must be
a 1,1-node, and the old root is the only node that becomes bad. We conclude that the
key decrease can make only one node bad, increasing the potential by at most four, and
it can create a new root, increasing the potential by two. An argument like that in the
proof of Theorem 1 shows that if there are k rank decrease steps, the potential drops by
k −O(1). Thus the key decrease takes O(1) amortized time. ��

5 Can Key Decrease Be Made Simpler?

It is natural to ask whether there is an even simpler way to decrease keys while retaining
the amortized efficiency of Fibonacci heaps. We give two answers: “no” and “maybe”.
We answer “no” by describing two possible methods that fail. The first method al-
lows arbitrarily negative but bounded positive rank differences. With such a rank rule,
the rank decrease process need only examine the ancestors of the node whose key de-
creases, not their siblings. This method can take Ω(log n) amortized time per key de-
crease, however. The second, even simpler method spends only O(1) time worst-case
on each key decrease. By doing enough operations, however, one can build a half tree
of each possible rank up to a rank that is ω(log n). Then, repeatedly doing an insertion
of minimum key followed by a minimum deletion will result in each minimum deletion
taking ω(log n) time. We omit the details of these counterexamples.

One limitation of the second construction is that building the initial trees takes a
number of operations exponential in the size of the heap. Thus it is not a counterexample
to the following question: is there a fixed d such that if each key decrease performs at
most d rank decrease steps (say of type 1), then the amortized time is O(1) per insert,
meld, and key decrease, and O(log m) per deletion, where m is the total number of
insertions? A related question is whether Fibonacci heaps without cascading cuts have
these bounds. We conjecture that the answer is yes for some positive d, perhaps even
d = 1. The following counterexample shows the answer is no for d = 0; that is, if
key decrease changes the rank only of the node whose key decreases. For arbitrary k,
build a half tree of each rank from 0 through k, each consisting of a root and a path
of left children, inductively as follows. Given such half trees of ranks 0 through k − 1,
insert an item less than all those in the heap and then do k repetitions of an insertion
of minimum key followed by a minimum deletion. The result will be one half tree of
rank k consisting of the root, a path of left children descending from the root, a path P
of right children descending from the left child of the root, and a path of left children
descending from each node of P ; every child has rank difference 1. (See Figure 4.) Do a
key decrease on each node of P . Now there is a collection of half trees of rank 0 through
k except for k − 1, each a path. Repeat this process on the set of half trees up to rank
k−2, resulting in a set of half trees of ranks 0 through k with k−2 missing. Continue in

668 B. Haeupler, S. Sen, and R.E. Tarjan

3

2

1 11 1

00

4

2

1

P

0 0

1

Fig. 4. A half tree of rank k = 4 buildable in O(k3) operations if key decreases do not change
ranks. Key decreases on the right children detach the circled subtrees.

this way until only rank 0 is missing, and then do a single insertion. Now there is a half
tree of each rank, 0 through k. The total number of heap operations required to increase
the maximum rank from k − 1 to k is O(k2), so in m heap operations one can build
a set of half trees of each possible rank up to a rank that is Ω(m1/3). Each successive
cycle of an insertion followed by a minimum deletion takes Ω(m1/3) time.

6 Experiments

In our preliminary experiments, rank-pairing heaps performed almost as well as pairing
heaps on typical input sequences and faster on worst-case sequences. We compared
rp-heaps to the standard two-pass version of pairing heaps on typical sequences and
to the auxiliary two-pass version [25] on worst-case sequences; Stasko and Vitter [25]
claimed the latter outperforms other versions on the class of worst-case sequences we
used. We compared them to four versions of rp-heaps: type-1 and type-2, performing
as many links as possible during minimum deletion (“multipass”) and performing only
a single pass of links (“one-pass”). All heap implementations were written in C and
compiled with the gcc -O2 option; all tests were performed on a 2.13 Ghz Intel CPU
running Windows Vista.

For typical input sequences, we performed three sets of experiments (Table 1). Our
measure of performance is the total number of field updates performed by each heap im-
plementation. The first set of experiments consists of publicly available heap operation
sequences [27] obtained by running Dijkstra’s shortest paths algorithm [4] on graphs
that maximize heap size and the number of key decreases, respectively; the Nagamochi-
Ibaraki minimum-cut algorithm [22] on a random graph; and heapsort. The second set
consists of heap operation sequences obtained by running two-way Dijkstra between
random pairs of nodes on real road networks. The third set tests key decreases by run-
ning 2n rounds of the following operations on a binomial heap of n nodes: an insertion,
followed by lg n− 1 key decreases, followed by a minimum deletion.

The results in Table 1 show that rp-heaps performed fewer field updates than pairing
heaps on sequences with many key decreases (2,3,7,8), and more updates on sequences
with few key decreases. The multipass versions outperformed the one-pass versions
overall, with an average speedup of over 1.8% versus an average slowdown of under
5% relative to pairing heaps, respectively. The one-pass versions, while benefiting from
smaller trees (and hence fewer rank updates), experienced greater overhead in main-
taining longer lists of half trees during minimum deletions.

Rank-Pairing Heaps 669

Table 1. Performance of pairing heaps versus rp-heaps on typical input sequences. n is the num-
ber of vertices or items in the heap; m is the number of arcs. All results are in millions of updates.

Test Parameters P-heap Type-2 rp-heap Type-1 rp-heap
n m m-pass 1-pass m-pass 1-pass

1. Dijkstra (max heap size) 8388609 25165824 339.40 346.38 323.05 352.59 325.07
2. Dijkstra (max key decreases) 65536 655360 5.06 5.49 4.27 5.66 4.27
3. Nagamochi-Ibaraki 32768 2684272 136.96 96.15 119.66 98.78 121.77
4. Sorting 100000 - 23.65 26.89 30.95 26.89 30.95
5. Two-way Dijkstra, E. USA 3598623 8778114 2371.04 2603.39 2878.15 2611.77 2896.85
6. Two-way Dijkstra, NYC 264346 733846 1070.66 1316.20 1430.82 1314.26 1425.03
7. Key decrease 262144 - 421.30 322.62 390.00 322.04 389.31
8. Key decrease 4096 - 4.32 3.32 3.91 3.40 3.95

To investigate the worst-case behavior of key decreases, we ran Fredman’s [9] ver-
sion of an experiment of Stasko and Vitter [25]. The experiment is identical to the third
set of experiments in Table 1, but uses information-theoretic heuristics in the heap op-
erations. In particular, the winner of a link is always the root of the larger tree, and the
candidates for key decreases are chosen to detach links of high efficiency, where effi-
ciency is defined as the ratio of the child and parent tree sizes prior to linking. (See [9].)
The cost of a round is the number of links performed—plus, for rp-heaps, the number
of rank updates in a key decrease and the number of unpaired half trees in a minimum
deletion—divided by lg n. The round cost for pairing heaps converges to 2.76 and 2.97
for n = 212 and n = 218, respectively, showing positive growth. The round cost for
type-2 multipass rp-heaps converges to 2.36 and 2.32, showing slightly negative growth.

7 Remarks

We have presented a new data structure, the rank-pairing heap, that combines the per-
formance guarantees of Fibonacci heaps with simplicity approaching that of pairing
heaps. Our results build on previous work by Peterson, Høyer, and Kaplan and Tarjan,
and may be the natural conclusion of this work: we have shown that simpler methods of
doing key decreases do not have the desired efficiency. In our preliminary experiments,
rp-heaps are competitive with pairing heaps on typical input sequences and better on
worst-case sequences. Type-1 rp-heaps, although simple, are not simple to analyze.

Several interesting theoretical questions remain. Is there a simpler analysis of type-1
rp-heaps? Do type-1 rp-heaps still have the efficiency of Fibonacci heaps if the restric-
tions on linking in Section 4 are removed? More interestingly, can one obtain an O(1)
amortized time bound for insert, meld, and key decrease and O(log m) for minimum
deletion (where m is the total number of insertions) if only O(1) rank changes are made
after a key decrease? (See Section 5.)

Acknowledgement

We thank Haim Kaplan and Uri Zwick for discussions that helped to clarify the ideas
in this paper, and for pointing out an error in our original analysis of type-1 rp-heaps.

670 B. Haeupler, S. Sen, and R.E. Tarjan

References

1. Brodal, G.: Worst-case efficient priority queues. In: SODA, pp. 52–58 (1996)
2. Brown, M.R.: Implementation and analysis of binomial queue algorithms. SIAM J. Comput.,

298–319 (1978)
3. Chan, T.M.: Quake heaps: a simple alternative to Fibonacci heaps (2009)
4. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1, 269–271

(1959)
5. Driscoll, J.R., Gabow, H.N., Shrairman, R., Tarjan, R.E.: Relaxed heaps: an alternative to

Fibonacci heaps with applications to parallel computation. Comm. ACM 31(11), 1343–1354
(1988)

6. Edmonds, J.: Optimum branchings. J. Res. Nat. Bur. Standards B71, 233–240 (1967)
7. Elmasry, A.: Violation heaps: A better substitute for Fibonacci heaps. CoRR (2008)
8. Elmasry, A.: Pairing heaps with O(log log n) decrease cost. In: SODA, pp. 471–476 (2009)
9. Fredman, M.L.: On the efficiency of pairing heaps and related data structures. J. ACM 46(4),

473–501 (1999)
10. Fredman, M.L., Sedgewick, R., Sleator, D.D., Tarjan, R.E.: The pairing heap: a new form of

self-adjusting heap. Algorithmica 1(1), 111–129 (1986)
11. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network optimiza-

tion algorithms. In: FOCS, pp. 338–346, 24–26 (1984)
12. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network optimiza-

tion algorithms. J. ACM 34(3), 596–615 (1987)
13. Gabow, H.N., Galil, Z., Spencer, T.H., Tarjan, R.E.: Efficient algorithms for finding minimum

spanning trees in undirected and directed graphs. Combinatorica 6(2), 109–122 (1986)
14. Høyer, P.: A general technique for implementation of efficient priority queues. In: ISTCS,

pp. 57–66 (1995)
15. Kaplan, H., Shafrir, N., Tarjan, R.E.: Meldable heaps and boolean union-find. In: STOC, pp.

573–582 (2002)
16. Kaplan, H., Tarjan, R.E.: New heap data structures. Technical Report TR-597-99, Princeton

Univ. (1999)
17. Kaplan, H., Tarjan, R.E.: Thin heaps, thick heaps. ACM Trans. Alg. 4(1), 1–14 (2008)
18. Knuth, D.E.: The Art of Computer Programming. Fundamental Algorithms, vol. 1. Addison-

Wesley, Reading (1973)
19. Knuth, D.E.: The Art of Computer Programming. Sorting and Searching, vol. 3. Addison-

Wesley, Reading (1973)
20. Liao, A.M.: Three priority queue applications revisited. Algorithmica 7, 415–427 (1992)
21. Moret, B., Shapiro, H.: An empirical analysis of algorithms for constructing a minimum

spanning tree. In: Dehne, F., Sack, J.-R., Santoro, N. (eds.) WADS 1991. LNCS, vol. 519,
pp. 400–411. Springer, Heidelberg (1991)

22. Nagamochi, H., Ibaraki, T.: Computing edge-connectivity in multigraphs and capacitated
graphs. J. Disc. Math. 5(1), 54–66 (1992)

23. Peterson, G.L.: A balanced tree scheme for meldable heaps with updates. Technical Report
GIT-ICS-87-23, Georgia Inst. of Tech (1987)

24. Pettie, S.: Towards a final analysis of pairing heaps. In: FOCS, pp. 174–183 (2005)
25. Stasko, J.T., Vitter, J.S.: Pairing heaps: experiments and analysis. Comm. ACM 30(3), 234–

249 (1987)
26. Tarjan, R.E.: Amortized computational complexity. J. Alg. Disc. Methods 6, 306–318 (1985)
27. Various. The Fifth DIMACS Challenge—Priority Queue Tests (1996)
28. Vuillemin, J.: A data structure for manipulating priority queues. Comm. ACM 21(4), 309–

315 (1978)

3.5-Way Cuckoo Hashing for the Price of 2-and-a-Bit

Eric Lehman1 and Rina Panigrahy2

1 Google, Mountain View, CA
elehman@google.com

2 Microsoft Research, Mountain View, CA
rina@microsoft.com

Abstract. The study of hashing is closely related to the analysis of balls and bins;
items are hashed to memory locations much as balls are thrown into bins. In par-
ticular, Azar et. al. [2] considered putting each ball in the less-full of two random
bins. This lowers the probability that a bin exceeds a certain load from exponen-
tially small to doubly exponential, giving maximum load log log n + O(1) with
high probability. Cuckoo hashing [20] draws on this idea. Each item is hashed
to two buckets of capacity k. If both are full, then the insertion procedure moves
previously-inserted items to their alternate buckets to make space for the new
item. In a natural implementation, the buckets are represented by partitioning a
fixed array of memory into non-overlapping blocks of size k. An item is hashed
to two such blocks and may be stored at any location within either one. We ana-
lyze a simple twist in which each item is hashed to two arbitrary size-k memory
blocks. (So consecutive blocks are no longer disjoint, but rather overlap by k − 1
locations.) This twist increases the space utilization from 1 − (2/e + o(1))k to
1 − (1/e + o(1))1.59k in general. For k = 2, the new method improves utiliza-
tion from 89.7% to 96.5%, yet lookups access only two items at each of two
random locations. This result is surprising because the opposite happens in the
non-cuckoo setting; if items are not moved during later insertions, then shifting
from non-overlapping to overlapping blocks makes the distribution less uniform.

1 Introduction

The study of hashing is closely related to the analysis of balls and bins; items are hashed
to memory locations much as balls are thrown into bins. Simple twists on balls and bins
processes have produced surprising observations and led to breakthroughs in hashing
methods.

In particular, it is well-known that if n balls are thrown into n bins independently
and randomly, then the largest bin gets (1+ o(1)) lnn/ ln lnn balls with high probabil-
ity. Azar et. al. [2] showed that assigning each ball to the less-full of two random bins
makes the final distribution far more uniform. In fact, the probability that a bin exceeds
a certain load drops from exponentially small to doubly exponential. This leads to the
concept of two-way hashing, where the most-loaded bucket gets log log n+O(1) items
with high probability. So dramatic is this improvement that it can be used in practice to
efficiently implement hash lookups in packet routing hardware [5]. The lookup opera-
tion must search for an item in two buckets, but these operations can be parallelized in
hardware by placing two different hash tables in separate memory components. More

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 671–681, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

672 E. Lehman and R. Panigrahy

generally, if each item is hashed to d ≥ 2 buckets, then the maximum load improves to
log log n/ log d + O(1).

Cuckoo hashing [20,12] extends two-way hashing by moving previously-inserted
items to their alternate buckets to make space for a new item. Pagh and Rodler [20]
showed that even with buckets of capacity one, moving items during inserts gives a
space utilization of 50% with high probability. Several generalizations of cuckoo hash-
ing perform even better. Fotakis et al [12] suggested hashing each item to d > 2 buck-
ets, and Dietzfelbinger and Weidling [9] suggested using buckets with capacity k > 1.
One appealing choice is to hash items to d = 2 buckets of capacity k = 2, which
gives 89.7% [21,14,6] space utilization. (The latter two references improve upon the
earlier, weaker estimate.) More generally, the analysis of cuckoo hashing is related to
the appearance of dense subgraphs in random graphs. For example, the space utilization
achieved by cuckoo hashing where items are hashed to d = 2 buckets of capacity k is
directly related to the threshold at which a dense subgraph appears in the random graph
G(n, p). The space utilization is precisely p/k where p is the threshold at which a dense
subgraph with ratio of edges to vertices exceeding k appears. Analysis of this threshold
in [14,6] implies a space utilization of about 1− (2/e + o(1))k.

In a natural implementation of two-way cuckoo hashing, the buckets are represented
by partitioning a fixed array of memory into non-overlapping blocks of size k. Each
item is hashed to two such blocks and may be stored at any of the 2k memory locations
within those blocks. This implementation avoids expensive dynamic memory alloca-
tion. Furthermore, a lookup searches just two contiguous memory segments, which is
highly desirable in practice. For example, after an initial read from a random location
in main memory or on a disk, subsequent bytes can often be read orders of magnitude
faster. (This is a heuristic, not a certainty; for example, the extra bytes might lie beyond
a cached portion of memory.) And all 2k memory locations can be probed in parallel in
a hardware implementation.

We suggest another simple twist that significantly improves space utilization while
preserving the desirable property of only two random memory accesses per lookup.
Previously, the hash table memory was partitioned into disjoint blocks of size k. Now,
we regard every set of k consecutive memory locations as a block. So consecutive
blocks are no longer disjoint, but rather overlap by k − 1 memory locations. As be-
fore, each item is hashed to two blocks and may be stored at any memory location
within those blocks. We show that this simple change improves the space utilization
from 1− (2/e + o(1))k to 1− (1/e + o(1))1.59k . Experimentally, we demonstrate that
space utilization improves from 89.7% to 96.5% in the practically-important case where
each item is hashed to two blocks of capacity k = 2. This result is surprising because
the opposite happens in the non-cuckoo setting; if items are not moved during later in-
sertions, then shifting from non-overlapping to overlapping blocks actually makes the
distribution of items less uniform.

2 Related Work

Balls and bins analysis still continues to produce surprising results. Vöcking [24] ob-
served that asymmetry helps in load balancing. If each ball is mapped to d bins with

3.5-Way Cuckoo Hashing for the Price of 2-and-a-Bit 673

equal load, then the ball should be inserted in the leftmost bin. With this simple change,
the maximum load drops to O(log log n/d). He also showed that breaking ties in this
way is the best possible policy to minimize the maximum load.

Berenbrink et al. [4] extended the balls and bins analysis to the case where the
number of balls m is greater than the number of bins n, showing that the difference
in the height of the minimum and maximum bin is independent of m. Precisely, it
is log log n

lnd + O(1). Corresponding results hold when ties are broken asymmetrically.
Balls and bins on graphs has been analyzed in [17]. Weighted analysis of balls and bins
was studied in [23]. Multi-choice hashing with a limited number of moves was studied
in [21]. Extensive work has been done in the area of parallel balls and bins [1] and
the related study of algorithms to emulate shared memory machines (as for example,
PRAMs) on distributed memory machines (DMMs) [8,7,13,22].

More recent works have studied the idea of using a small CAM (content-addressable
memory) in conjunction with cuckoo hashing to lower the insert/delete time [18,19].
Arbitman et al. [25] proved that it is possible to get constant time for all operations
with about 50% space utilization by using a small auxiliary hash table. The appearance
of dense subgraphs in random graphs was studied in [14,6]. These build upon earlier
works that investigate the appearance of a k-core – a subgraph with minimum degree at
least k – in random graphs [3,16].

Other related work includes the first static dictionary data structure with constant
look up time by Fredman, Komlos and Szemeredi [15] that was generalized to a dy-
namic data structure by Dietzfelbinger et al. in [11] and [10]. In practice, however,
these algorithms are more complex to implement than cuckoo hashing.

3 Our Contribution

We propose a new twist on multi-choice hashing that significantly improves memory
utilization, yet accesses only two small regions of memory. Our main theorem compares
this new variation to the algorithm analyzed in [14,6]. In both algorithms, each item is
hashed to two memory blocks of size k. The item may be stored at any location in
either block, and previously-inserted items may be moved to their alternate locations
to make space for the new item. The lookup operation searches the k locations in each
of the two blocks associated with the item sought. The distinction is that the earlier
ALG-DISJOINT-CUCKOO algorithm hashes items to only a restricted set of memory
blocks; specifically, the hash table memory is initially partitioned into disjoint blocks of
size k, and items are hashed only to those blocks. In our new twist, ALG-OVERLAP-
CUCKOO, an item may be hashed to any two size-k memory blocks. Our main result
states that this new algorithm has better space utilization for large k. Let αk denote the
utilization for ALG-CUCKOO-DISJOINT and βk for ALG-CUCKOO-OVERLAP.

Theorem 1. For large k, αk < βk. Specifically,

– αk ≤ 1− (2/e− o(1))k

– βk ≥ 1− (1/e + o(1))(2−γ)k, where γ is the maximum value of the function−x +
x log(2(1 + 1/x)), which is about 0.41.

674 E. Lehman and R. Panigrahy

Experimentally, we show that memory utilization improves significantly for small, prac-
tical values of k as well. For example, α2 = 89.7% while β2 = 96.5%.

This result is surprising, because the opposite effect is observed in the “non-cuckoo”
setting; that is, when previously-inserted items are not allowed to be moved to make
space for a new item. Again, we compare two algorithms. In both cases, there are n balls
and n bins in a line. For each ball, we randomly pick two blocks of k consecutive bins
and throw the ball into the least-loaded bin in the less-loaded block. As before, ALG-
NOMOVE-DISJOINT uses only blocks from an initial, disjoint partition, while ALG-
NOMOVE-OVERLAP uses all blocks. In this case, using overlapping blocks actually
leads to a less uniform distribution:

Theorem 2. [17] For large k,

– with high probability, ALG-NOMOVE-DISJOINT gives a maximum load on a bin
of O(log log n/k) and

– with high probability, ALG-NOMOVE-OVERLAP gives a maximum load on a bin
of Ω(log log n/ log k).

Intuition: Here is a simple intuition as to why overlapping blocks give higher space uti-
lization for cuckoo-hashing than disjoint blocks. Consider the case k = 2 with disjoint
blocks. Note that in cuckoo-hashing, we perform a breadth-first-search for an empty
bin by first looking at the two blocks where a new ball hashes. If these are full, then
we look at the 4 alternate blocks where the 4 balls in those blocks could go. Contin-
uing recursively, we visit 2k blocks at a depth of k. Thus the search tree is binary for
ALG-CUCKOO-DISJOINT. We will argue that this search tree has a slightly higher
degree for ALG-CUCKOO-OVERLAP, which uses overlapping blocks. The faster this
search tree branches, the more likely we are to find an empty bin before getting stuck;
that is, before reaching leaves whose potential children are all already in the tree. In the
ALG-CUCKOO-OVERLAP variant, the two balls in a full block B can potentially be
moved to other bins besides those in their alternate blocks. This happens if one of the
blocks of these balls overlaps partially with B – in this case, such a ball can also be
displaced to the other bin in this partially-overlapping block. Thus the branching factor
of the search tree is slightly more than 2. We will demonstrate this phenomena in the
experiment section.

Our analysis assumes that each item is hashed to two blocks in a single hash table.
But essentially the same analysis applies to the case where an item is hashed to one
block in each of two, separate tables.

4 Theoretical Analysis

We will now prove the main theorem 1. We are comparing two cuckoo-based al-
gorithms that access two random blocks of size k each. Algorithm ALG-CUCKOO-
DISJOINT accesses from a collection of disjoint blocks at offsets that are multiples of
k; whereas ALG-CUCKOO-OVERLAP picks blocks at random offsets. Let us say we
have nk bins and we are adding balls one by one till we overflow.

For any balls and bins process, a configuration of balls and bins can be viewed as a
hypergraph G where each bin is a node and each ball is a hyperedge connecting its bin
choices. The following lemma is well known.

3.5-Way Cuckoo Hashing for the Price of 2-and-a-Bit 675

Lemma 3. For any cuckoo algorithm (ALG-CUCKOO-DISJOINT or ALG-CUCKOO-
OVERLAP) a set of ball insertions succeeds iff there is no subgraph with more hyper-
edges then vertices.

Remark 4. For ALG-CUCKOO-DISJOINT, we can think of a block as a single ver-
tex. Thus αk corresponds to the number of edges in a random graph G(n, p) when a
subgraph with density (ratio of edges to vertices) more than k appears.

Proof. The “only if” part is straightforward. For the “if” part, consider the case when
a ball insertion fails. We will look at another bipartite graph with balls on one side and
bins on another and an edge between them if the ball is allowed to be placed in the bin.
So each ball has degree k. Further, we mark an edge between a ball and a bin red if the
ball actually chooses that bin and blue otherwise. Now, for a new ball insert, if there
is an alternating path of red and blue edges that leads to an empty bin, then we can
successfully insert the ball using a sequence of cuckoo moves. So a ball insert fails iff
all bins reachable through such alternating paths are full. In such a case, look at the set
of bins reachable using such alternating paths from a new ball whose insertion failed.
This set of bins is a subgraph with more balls than bins because all bins have a ball
plus there is the new ball that could not be inserted. This subgraph of the bipartite graph
corresponds to a subgraph in the hypergraph G with more hyperedges than nodes. �

Our main theorem follows from the following two claims. We will sometimes drop the
subscript k for convenience. Let α, β denote 1−α and 1−β respectively. Similarly for
other variables.

Claim. [6,16] αk ≤ 1− (2/e− o(1))k

Proof. Although the exact threshold for αk has been computed before in [6,16], we
present a simpler analysis of the asymptotic formula. For a random graph on n nodes
with k(1−α)n edges, let us find the fraction f of nodes that have degree at most k−1.
This degree distribution of the nodes is given by the Poisson distribution with mean
2k(1− α) and f is at least the fraction of nodes with degree exactly k − 1.

f ≥ e−2k(1−α) (2k(1− α))k−1

(k − 1)!

= e2kα 1
2(1− α)

(1− α)ke−2k (2k)k

k!

= ekα 1
kO(1) e

−2k (2k)k

(k/e)k

= ekαk−O(1)(2/e)k

So if we ignore this f fraction of the nodes, the remaining (1− f)n nodes have at least
k(1− α)n + fn edges; let us check when the density (ratio of edges to vertices) in the
remaining subgraph is more than k. This happens if k(1 − α)n + fn > k(1 − f)n or
(k + 1)f > kα or f > k

k+1α

Plugging in the previous expression for f , we need ekαk−O(1)(2/e)k > k
k+1α or

α < k−O(1)ekα(2/e)k = ekα(2/e + o(1))k

676 E. Lehman and R. Panigrahy

Clearly α = (2/e − o(1))k satisfies this. Note that although we used the expected
value of f , the actual fraction is concentrated close to this with high probability by
Chernoff bounds. �

Next we will show a lower bound for βk. We will make use of the following simple
claims.

Claim. If 0 ≤ p ≤ q ≤ 1 and q is allowed to vary, the function q log(p
q) + (1 −

q) log(1−p
1−q) is decreasing in q.

Proof. Taking derivative with respect to q, we get log(p
q) − log(1−p

1−q) which is
negative. �

Claim. Let γ denote the maximum value of the function g(x) = −x+x log(2(1+1/x))
when x > 0. Then γ ≤ 0.41.

The claim can be verified by a simple plot of the function.

Claim. βk ≥ 1− (1/e + o(1))(2−γ)k

Proof. We need to demonstrate a value of β = (1/e + o(1))(2−γ)k for which there is
almost surely no subgraph in the hypergraph with more edges than vertices. We will
upper bound the probability of finding a subset of bins with more edges than bins and
argue that this is unlikely with high probability. Consider nk nodes (bins) and βnk hy-
peredges (balls) where each hyperedge chooses two sets of k contiguous bins. Although
in our algorithm the bins are arranged in a line, for simplicity of analysis we will think
of them as arranged in a circle. Any subset of bins can be viewed as a union of con-
tiguous regions in this circle. Look at a subset S of nodes, say it consists of r = εn
contiguous regions and suppose t = δnk bins fall outside S. A sequence of k bins can
be viewed as a segment of length k. If this is to lie in S, then both its endpoints must
be in one of the r contiguous regions in S. Of the nk possible segments of length k at
most nk − r(k − 1) − t = nk(1 − δ − ε(1 − 1/k)) lie in S. The probability that a
hyperedge falls in the nodes in S is p = (1 − δ − ε(1 − 1/k))2. For S to have more
edges than nodes, the required fraction of edges to fall in S is at least q = (1 − δ)/β
(note that δ ≥ β). Let x = δ/ε.

First, a simple calculation will show that unless δ = O(1/
√

k) and ε = Ω̃(kβ2),
the probability of finding such a high-density subgraph on S is exponentially small. To
see that, note that the subset of (1 − δ)nk bins in S is expected to get no more than
(1 − δ)2βnk edges. To get (1 − δ)nk edges, it has to get at least factor 1

β(1−δ) ≥
1 + δ + β of the expectation. By Chernoff bounds, the probability this happens it at
most e−Ω(δ+β)2nk. The number of ways of choosing S is at most the number of ways
of choosing the 2εn endpoints of the regions, which is

(
n

2εn

)
≤ (e

2ε)
2εn ≤ e2ε log e

2ε n.

So the total probability is at most en(2ε log e
2ε−kΩ(δ+β)2). This is exponentially small

unless the exponent is nonnegative, which happens when ε log(1/ε) ≥ kΩ(δ + β)2.
Since δ > 0, we get ε > Ω̃(kβ2). Also since ε log(1/ε) < 1, we get kδ2 ≤ O(1) or
δ ≤ O(1/

√
k).

3.5-Way Cuckoo Hashing for the Price of 2-and-a-Bit 677

Next, we will do a more detailed calculation of the probability. The number of ways
of choosing the subset S is at most the number of ways of first choosing the r starting
points of the r regions which is at most

(
nk
εn

)
, and then choosing the r closing points of

the regions so that the total size of the r segments is δnk. This can be done in at most(
δnk
εn

)
ways.

For S to have more edges than nodes, it must get at least qN edges, where N = nβk
is the total number of edges and q ≥ (1 − δ)/β ≥ 1 − δ. The probability L, that a set
S gets qN edges is

(
N
qN

)
pqN (1− p)N(1−q). Taking natural log, we get.:

log L = log
(

N

qN

)
+ qN log p + qN log p

≤ N(−q log q − q log q̄) + qN log p + qN log p

= N(q log(p/q) + q log(p/q))
= βnk(q log(p/q) + q log(p/q))
= βnka

where a = q log(p/q) + q log(p/q). Since, 1 − δ ≤ q ≤ 1, a as a function of q is
maximized when q = 1− δ, so

a ≤ (1− δ) log
(1− δ − ε(1− 1/k))2

1− δ
+ δ log

2(δ + ε)
δ

≤ (1− δ)(−2(δ + ε))− (1− δ) log(1− δ) + δ log
2(δ + ε)

δ

≤ −2(1− δ)(δ + ε) + δ + δ log
2(δ + ε)

δ

≤ (1− δ)(−2ε− 2δ) + (1− δ)(δ + δ log
2(δ + ε)

δ
)

≤ (1− o(1))(−2ε− δ + δ log
2(δ + ε)

δ
)

≤ (1− o(1))ε(−2− x + x log 2(1 + 1/x))

The total log probability of finding some component S that has more edges than vertices
is at most

log[
(

nk

nε

)(
δnk

εn

)
L]

≤ log
(

nk

nε

)
+ log

(
δnk

εn

)
+ nkβa

= nε log
ek

ε
+ nε log

eδk

ε
+ nk(1− o(1))ε(−2− x + x log 2(1 + 1/x))

= nε log
ek

ε
+ nε log ekx + nk(1− o(1))ε(−2− x + x log 2(1 + 1/x))

= nf

where

f = ε(log
ek

ε
+ log(ekx) + k(1− o(1))(−2− x + x log 2(1 + 1/x)))

678 E. Lehman and R. Panigrahy

= ε(log
e2k2

ε
+ k(1− o(1))(o(x) − 2− x + x log 2(1 + 1/x)))

≤ ε(log
e2k2

ε
+ k(1− o(1))(−2 + γ + o(1)))

= ε(log
e2k2

ε
+ k(1− o(1))(−2 + γ)).

Observe that the expression bounding f is independent of n. So if for a given β for all ε
and δ, f is negative and less than some fixed value independent of n, then it means that
the probability that there is a high density set S is exponentially small. Also ε cannot
be arbitrarily small as we know that it is Ω̃(kβ2). Now for f to be non negative we
need log e2k2

ε > (1 − o(1))k(2 − γ) or ε < e−(1−o(1))(2−γ)k. We also need to add the
probability over all possible values of r and t for S but there are only n2 possible values
which cannot compensate for an exponentially decreasing function; so w.h.p. no such
set S exists.

Also from the expression f = ε(log e2k2

ε + k(1− o(1))(o(x)− 2− x + x log 2(1 +
1/x))) ≤ ε(log e2k2

ε +k(1−o(1))(−x+x log 2+x log(1+1/x)) ≤ ε(log e2k2

ε +k(1−
o(1))(−x log e/2+1) it is clear that for f to be non negative x ≤ O(1

k log e2k2

2ε) giving

δ ≤ O(1
k log e2k2

2ε)ε ≤ e−(1−o(1))(2−γ)k. This gives, β ≤ δ < e−(1−o(1))(2−γ)k ≤
(1/e + o(1))(2−γ)k. �

5 Experiments

Experiments suggest that using overlapping blocks improves memory utilization sub-
stantially even for small k. This implies that our twist gives a significant practical im-
provement. The situation is summarized in the figure below:

 88

 90

 92

 94

 96

 98

 100

 2 3 4 5 6

%
 M

em
or

y
U

til
iz

at
io

n

k

Overlapping
Disjoint

For the basic case of buckets with capacity k = 2, memory utilization increases from
89.7% to 96.5% when overlapping is allowed. For larger k, the overlapping scheme
rapidly approaches full memory utilization: 99.44% for k = 3 and 99.90% for k = 4.
Each percentage is from twenty trials using hash tables with an absolute capacity of 220

3.5-Way Cuckoo Hashing for the Price of 2-and-a-Bit 679

items and “random” hash functions based on a cryptographic-quality pseudorandom
number generator. Items were inserted into the hash table one-by-one until some item
could not be added. The results were notably stable. In each case, the standard deviation
was a few hundredths of a percent, so error bars would be invisible in the diagram. Such
strongly-predictable behavior is appealing from a practical standpoint.

Other experimental data gives additional insight into this performance gap. Recall
that the cuckoo insertion algorithm performs a breadth-first search for an empty location
in the hash table. The table below shows the number of search tree nodes at each depth
for a typical insertion using various hashing schemes. The structure of these trees is
random in all cases, but much more noticeably for the new scheme, so three examples
are given for that case:

of Nodes at Depth
Each Item is Hashed to: 1 2 3 4 5 6

3 buckets, capacity 1 3 6 12 24 48 96
4 buckets, capacity 1 4 12 36 108 324 972

2 disjoint buckets, capacity 2 4 8 16 32 64 128
2 overlapping blocks, capacity 2 4 11 24 55 136 330

same as above 4 9 20 49 122 305
same as above 4 10 24 62 150 364

For example, if each item is hashed to 4 buckets of capacity 1, as on the second
line, then the root of the search tree has 4 children. Items occupying the corresponding
locations can each move to 3 other slots, so nodes lower in the search tree have 3
children each. This gives the sequence 4, 12, 36, 108, 324, 972. In contrast, suppose
each item is hashed to two disjoint buckets of capacity k = 2 as on the third line.
Again, the root of the search tree has 4 children. But items in those slots can be moved
to at most two slots not already explored. Thus, lower nodes in the search tree have only
2 children instead of 3.

The last three lines show data for the new scheme introduced here. Once again, the
root has 4 children. But now items occupying those location can be moved to either two
or three other slots with equal probability. Thus, the width of the search tree is greater
than for the disjoint-buckets approach and lies somewhere between the 3- and 4-bucket
schemes shown on the first two lines. Since the new scheme accesses only two small,
contiguous regions of memory, one might regard it as 3.5-way cuckoo hashing for the
price of 2-and-a-bit.

References

1. Adler, M., Chakrabarti, S., Mitzenmacher, M., Rasmussen, L.: Parallel randomized load bal-
ancing. In: Proceedings of the Twenty-Seventh Annual ACM Symposium on the Theory of
Computing, May 1995, pp. 238–247 (1995)

2. Azar, Y., Broder, A.Z., Karlin, A.R., Upfal, E.: Balanced allocations. SIAM Journal on Com-
puting 29, 180–200 (1999); A preliminary version of this paper appeared in Proceedings of
the Twenty-Sixth Annual ACM Symposium on the Theory of Computing (1994)

680 E. Lehman and R. Panigrahy

3. Spencer, S., Pittel, B., Wormald, N.: Sudden emergence of a giant k-core in a random graph.
J. Combin. Theory Ser. B 67(1), 111–151 (1996)

4. Berenbrink, P., Czumaj, A., Steger, A., Vöcking, B.: Balanced allocations: The heavily
loaded case. SIAM J. Comput. 35(6), 1350–1385 (2006)

5. Broder, A., Mitzenmacher, M.: Using multiple hash functions to improve ip lookups. In:
Proceedings of IEEE INFOCOM 2001, pp. 1454–1463 (2001)

6. Cain, J.A., Sanders, P., Wormald, N.: The random graph threshold for k-orientiability and
a fast algorithm for optimal multiple-choice allocation. In: SODA 2007: Proceedings of the
eighteenth annual ACM-SIAM symposium on Discrete algorithms, Philadelphia, PA, USA,
pp. 469–476 (2007)

7. Czumaj, A., Meyer auf der Heide, F., Stemann, V.: Shared memory simulations with triple-
logarithmic delay. LNCS, vol. 979, pp. 46–59. Springer, Heidelberg (1995)

8. Dietzfelbinger, M., Meyer auf der Heide, F.: Simple efficient shared memory simulations. In:
Proc. of the 5th SPAA, pp. 110–119 (1993)

9. Dietzfelbinger, M., Woelfel, P.: Almost random graphs with simple hash functions. In: 35th
STOC, pp. 629–638 (2003)

10. Dietzfelbinger, M., Meyer auf der Heide, F.: A new universal class of hash functions and
dynamic hashing in real time. In: Paterson, M. (ed.) ICALP 1990. LNCS, vol. 443, pp. 6–19.
Springer, Heidelberg (1990)

11. Dietzfelbinger, M., Karlin, A., Mehlhorn, K., Meyer auf der Heide, F., Rohnert, H., Tarjan,
R.E.: Dynamic perfect hashing: Upper and lower bounds. SIAM J. Comput. 23(4), 738–761
(1994)

12. Fotakis, P.S.D., Pagh, R., Spirakis, P.: Space efficient hash tables with worst case con-
stant access time. In: 20th Annual Symposium on Theoretical Aspects of Computer Science
(2003)

13. Scheideler, C., Meyer auf der Heide, F., Stemann, V.: Exploiting storage redundancy to speed
up randomized shared memory simulations. Theoretical Computer Science 162(2), 245–281
(1996); Preliminary version in Proc. of the 12th STACS, pp. 267–278 (1995)

14. Fernholz, D., Ramachandran, V.: The k-orientability thresholds for gn, p. In: SODA 2007:
Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms,
Philadelphia, PA, USA, pp. 459–468. Society for Industrial and Applied Mathematics
(2007)

15. Fredman, M.L., Komlos, J., Szemeredi, E.: Storing a sparse table with o(1) worst case access
time. J. Assoc. Comput. Mach. 31(3), 538–544 (1984)

16. Janson, S., Luczak, M.J.: A simple solution to the k-core problem. Random Struct. Algo-
rithms 30(1-2), 50–62 (2007)

17. Kenthapadi, K., Panigrahy, R.: Balanced allocation on graphs. In: SODA 2006: Proceed-
ings of the seventeenth annual ACM-SIAM symposium on Discrete algorithm, pp. 434–443.
ACM, New York (2006)

18. Kirsch, A., Mitzenmacher, M.: Using a queue to de-amortize cuckoo hashing in hardware.
In: 45th Allerton Conference on Communication, Control, and Computing, pp. 751–758
(2007)

19. Kirsch, A., Mitzenmacher, M., Wieder, U.: More robust hashing: Cuckoo hashing with a
stash. In: Halperin, D., Mehlhorn, K. (eds.) Esa 2008. LNCS, vol. 5193, pp. 611–622.
Springer, Heidelberg (2008)

20. Pagh, R., Rodler, F.: Cuckoo hashing. Journal of Algorithms 51, 122–144 (2004); A pre-
liminary version appeared in proceedings of the 9th Annual European Symposium on Algo-
rithms, pp. 121–133 (2001)

3.5-Way Cuckoo Hashing for the Price of 2-and-a-Bit 681

21. Panigrahy, R.: Efficient hashing with lookups in two memory accesses. In: SODA 2005: Pro-
ceedings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms, Philadel-
phia, PA, USA, pp. 830–839. Society for Industrial and Applied Mathematics (2005)

22. Jan, H., Korst Peter Sanders, M., Egner, S.: Fast concurrent access to parallel disks. Algo-
rithmica 35(1), 21–55 (2003); A Preliminary version appeared in SODA 2000

23. Talwar, K., Wieder, U.: Balanced allocations: the weighted case. In: STOC 2007: Proceedings
of the thirty-ninth annual ACM symposium on Theory of computing, pp. 256–265. ACM,
New York (2007)

24. Vöcking, B.: How asymmetry helps load balancing. J. ACM 50(4), 568–589 (2003)
25. Arbitman, M.N.Y., Segev, G.: De-amortized cuckoo hashing: Provable worst-case perfor-

mance and experimental results (2009)

Hash, Displace, and Compress

Djamal Belazzougui1, Fabiano C. Botelho2,�, and Martin Dietzfelbinger3,��

1 Ecole Nationale Supérieure d’Informatique, ESI Oued Smar, Algiers, Algeria
d belazzougui@esi.dz

2 Department of Computer Engineering, Federal Center for Technological Education
of Minas Gerais, Belo Horizonte, Brazil

fabiano@decom.cefetmg.br
3 Faculty of Computer Science and Automation, Technische Universität Ilmenau,

P.O. Box 100565, 98684 Ilmenau, Germany
martin.dietzfelbinger@tu-ilmenau.de

Abstract. A hash function h, i.e., a function from the set U of all keys
to the range range [m] = {0, . . . , m− 1} is called a perfect hash function
(PHF) for a subset S ⊆ U of size n ≤ m if h is 1–1 on S. The important
performance parameters of a PHF are representation size, evaluation
time and construction time. In this paper, we present an algorithm that
permits to obtain PHFs with expected representation size very close
to optimal while retaining O(n) expected construction time and O(1)
evaluation time in the worst case. For example in the case m = 1.23n
we obtain a PHF that uses space 1.4 bits per key, and for m = 1.01n we
obtain space 1.98 bits per key, which was not achievable with previously
known methods. Our algorithm is inspired by several known algorithms;
the main new feature is that we combine a modification of Pagh’s “hash-
and-displace” approach with data compression on a sequence of hash
function indices. Our algorithm can also be used for k-perfect hashing,
where at most k keys may be mapped to the same value.

1 Introduction

In this paper, we study the problem of providing perfect hash functions, minimal
perfect hash functions, and k-perfect hash functions. In all situations, a “uni-
verse” U , |U | = u, of possible keys is given, and a set S ⊆ U of size n = |S| of
relevant keys is given as input. The range is [m] = {0, 1, . . . , m− 1}.

Definition 1. (a) A function h : U → [m] is called a perfect hash function
(PHF) for S ⊆ U if h is one-to-one on S. (b) A function h : U → [m] is
called a minimal perfect hash function (MPHF) for S ⊆ U if h is a PHF
and m = n = |S|. (c) For integer k ≥ 1, a function h : U → [m] is called a

� Research partially supported by the Brazilian National Institute of Science and Tech-
nology for the Web (grant MCT/CNPq 573871/2008-6), and for the InfoWeb Project
(grant MCT/CNPq/CT-INFO 550874/2007-0).

�� Research partially supported by DFG grant DI 412/10-1.

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 682–693, 2009.
� Springer-Verlag Berlin Heidelberg 2009

Hash, Displace, and Compress 683

k-perfect hash function (k-PHF) for S ⊆ U if for every j ∈ [m] we have
|{x ∈ S | h(x) = j}| ≤ k.

A “hash function construction” is an algorithm that for a given set S construct a
(static) data structure DS such that using DS on input x ∈ U one can calculate
a value h(x) ∈ [m], with the property that h is a PHF (MPHF, k-PHF) for S.
The evaluation time of h should be constant.

Space Lower Bounds. One of the most important metrics regarding PHFs is
the space required to describe such a function. The information theoretic lower
bound to describe a PHF was studied in [10,14]. A simpler proof of such a bound
was later given in [17]. There is an easy way to obtain quite good lower bounds
starting from the simple formulas in [14, Theorem III.2.3.6 (a)]. There it was
noted that the bit length of the description of a perfect hash function for S must
be at least1 log

((
u
n

) / ((
u
m

)n ·
(
m
n

)))
. Using a simple argument that involves

estimating sums of the form
∑

0≤i<n log(1 − i
m) by an integral one obtains the

lower bounds (m − n) log(1 − n
m) − log n − (u − n) log(1 − n

u) (for PHFs) and
−(u− n) log(1− n

u)− log n for MPHFs.
Considering u ' n, for PHFs where m = 1.23n this gives a value of ap-

proximately 0.89n bits per key, and the lower bound for MPHFs (n = m) is
approximately n/ ln 2 ≈ 1.44n bits.

It does not seem to be easy to derive similar bounds for k-perfect hashing
where km = (1 + ε)n and ε ≥ 0. For n = km (corresponding to an MPHF with
k > 1), one can argue similarly as in [14, Theorem III.2.3.6 (a)] to obtain the

space lower bound log
((

u
n

) / (
u/(n/k)

k

)n/k
)

. This can be used to derive the lower

bound −(u−n) log(1− n
u)− logn+(n/k) · log(k!/kk), or, for u ' n and n large,

the lower bound n · (log e + log(k!/kk)/k− o(1)). For example for k = 4 we have
the lower bound n · (log e − 0.854) ≈ 0.59n bits, for k = 8 the bound ≈ 0.36n
bits, and for k = 16 the bound ≈ 0.21n bits.

Known Constructions. Many constructions for PHFs are known. The first
functions that need O(n) bits of space were proposed by Schmidt and Siegel [19].
Hagerup and Tholey [12] gave an asymptotically optimal construction for MPHF,
without assumptions about random hash functions, but the scheme does not
seem to be useful for set sizes n that occur in practice. In 1999, Pagh [16]
suggested an extremely clear suboptimal scheme (using only very simple hash
functions) that needed (2 + ε) log n bits per key (analyzed). In experiments it
was shown that values near 0.35 logn bits per key could be achieved. By splitting
tricks (see e.g. [5]) the space may be reduced to δ log n bits per key, for arbitrary
constant δ > 0. The past five years have seen some surprising new developments.
In [3] it was implicit how simple perfect hash functions can be constructed, and
finally in [2] an explicit construction was given that can construct a PHF with
fewer than 2 bits per key in a very simple and lucid way when m = cn, c > 1.22
and n is large. The last two constructions assume that random hash functions
are given for free.
1 Log stands for log2 throughout the paper.

684 D. Belazzougui, F.C. Botelho, and M. Dietzfelbinger

The Full Randomness Assumption. We assume throughout that for all
ranges [r] that occur in the construction we have access to a family of fully
random hash functions with range [r]. This means that naming r and an index
q ≥ 1, say, there is a hash function hr,q : U → [r] that is fully random on U , and
so that all the hash functions with distinct pairs (r, q) are independent. More-
over, given x ∈ U and r and q, the value hr,q(x) can be found in O(1) time. This
looks like quite a strong assumption, but there are simple ways (the “split-and-
share trick”) to justify such an assumption without wasting more than n1−Ω(1)

(bits of) space. For details, see [5,6].
In our experimental implementations, we did not use split-and-share, but just

used simple indexed families of hash functions that are reported to behave very
well in practice. “Indexed” here means that one can choose new hash functions
whenever they are needed by just switching an index, while not using too much
space. (The hash functions used are described in the full paper [1].) In all our
constructions, success can be checked at runtime. Whenever this is the case one
may try to get by with cheap hash functions for several attempts and switch to
the more sophisticated functions that guarantee the analysis to go through only
if this did not succeed. (No such case occurred in the experiments.)

Our Results.We present an algorithm that, for realistic set sizes n, permits to
obtain PHFs with expected representation size that exceed the optimal value only
by a factor of approximately 1.43 while retaining O(n) expected construction time
and O(1) evaluation time in the worst case. For example, in the case m = 1.23n we
obtain a PHF that uses space 1.4 bits per key, and for m = 1.01n we obtain space
1.98 bits per key, which was not achievable with previously known methods. Our
algorithm is inspired by several known algorithms; the main new feature is that we
combine a modification of Pagh’s “hash-and-displace” approach with data com-
pression on a sequence of hash function indices. In experiments we demonstrate
that our algorithm also generates fairly compact k-perfect hash functions.

2 The Data Structure and Its Construction

We start with the description of the PHF construction. (The MPHF construc-
tion is derived from a PHF with range [(1 + ε)n] by applying some standard
compression tricks on the range, just as in [2].) The data structure consists of
two levels. We choose some size r of an “intermediate” table. A “first level hash
function” g maps U into [r], and thus splits S into r “buckets”

Bi = {x ∈ S | g(x) = i}, 0 ≤ i < r.

For each bucket there is a second hash function fi : U → [m], picked by the
construction algorithm from a sequence (φ1, φ2, φ3, . . .) of independent fully ran-
dom hash functions. To name fi, one only has to know the index σ(i) such that
fi = φσ(i). We want to obtain a mapping h : U → [m] defined by

h(x) = fg(x)(x) = φσ(g(x))(x)

Hash, Displace, and Compress 685

that is perfect for S. Since g and the family (φ1, φ2, φ3, . . .) are assumed to be
given for free, the data structure only has to store the sequence Σ = (σ(i), 0 ≤
i < r), and make sure that σ(i) can be retrieved in O(1) time.

Following Pagh [16], whose construction was based on an idea of Tarjan and
Yao [20], we now sort the buckets in falling order according to their size, and
then find a “displacement value” for the buckets one after the other, in this
order. But while in Pagh’s construction (with n = m) the displacements were
values in [n], and r > n was required for the analysis, we deviate here from his
approach, utilizing the power of fully random functions. For each bucket Bi we
find a suitable index σ(i), in the following manner:

Algorithm 1. Hash, displace, and compress

(1) Split S into buckets Bi = g−1({i}) ∩ S, 0 ≤ i < r = n/λ for λ ≥ 1;
(2) Sort buckets Bi in falling order according to size |Bi| (O(n) time);
(3) Initialize array T[0 . . .m− 1] with 0’s;
(4) for all i ∈ [r], in the order from (2), do
(5) for 	 = 1, 2, . . . repeat forming Ki = {φ�(x) | x ∈ Bi}
(6) until |Ki| = |Bi| and Ki ∩ {j | T[j] = 1} = ∅;
(7) let σ(i) = the successful 	;
(8) for all j ∈ Ki let T[j] = 1;
(9) Transform (σ(i))0≤i<r into compressed form, retaining O(1) access.

(Clearly, if Bi = ∅, then σ(i) = 1.) The output of this procedure is the sequence
Σ = (σ(i), 0 ≤ i < r). By replacing the 0-1-valued array T[0 . . .m − 1] with
an array of counters for counting from 0 to k and the obvious modifications we
obtain an algorithm for constructing a k-perfect hash function.

It can be shown (Theorem 2 below, proof in full paper [1]) that, if m = (1+ε)n
for some constant ε > 0, then computing the sequence Σ will succeed in ex-
pected linear time. Also, from that analysis it follows directly that with high
probability the values σ(i) can be bounded by C log n for some constant C, so
that each number σ(i) can be represented using log log n + O(1) bits. Pack-
ing the numbers σ(i) in fixed size frames of size log log n + O(1) will lead
to space requirements of n(log log n + O(1)) bits, while constant evaluation
time for h is retained. (This idea for obtaining an MPHF, communicated to
the third author by Peter Sanders [18], was explored in the master’s thesis of
Lars Dietzel [4].)

However, we can go one step further. Clearly, for each i the random variable
σ(i) is geometrically distributed. It can be shown (Theorem 2 below) that for
ε > 0 the expectations E(σ(i)) can be bounded by a constant, and hence the
expected construction time is O(n). Moreover we show that the expected sum of
the bit lengths E(

∑
i log(σ(i))) is linear, so that by using a compression scheme

like those in [11] or [9] the whole sequence (σ(i), 0 ≤ i < r) can be coded in O(n)
bits, in a way that random access is possible, and so that the property that h
can be evaluated in O(1) time is retained.

686 D. Belazzougui, F.C. Botelho, and M. Dietzfelbinger

3 Analysis

We show that our scheme has the theoretical potential to approximate the op-
timum space of n · log e bits for an MPHF up to a small constant factor—if
we use sufficiently strong coding schemes. The calculation is carried out under
the assumption that ε = 0. Introducing ε > 0 in the calculations is easy and
only has the effect that the space requirements decrease. (But note that the al-
gorithm cannot simply be used for ε = 0, because then the construction time
is Θ(n log n) (coupon’s collector’s problem!) and we need Θ(n) hash functions.
In order to obtain an MPHF, one has to use ε > 0 and add some compression
method as mentioned in [2] or use ε = 0 and treat buckets of size 1 separately.)—
The following is a special case of Jensen’s inequality (since log x is concave):

Fact 1. E(log(σ(i))) ≤ log(E(σ(i))).

3.1 Heavy Buckets

We first note that keys from heavy buckets are easy to place. Let λ = n/r be
the load factor of the intermediate table. Only for notational convenience we
will assume that λ is an integer. Then the average size of Bi is λ, and |Bi| is
Bi(n, 1/r)-distributed, with expectation λ. Let Poisson(λ) denote the distribution
of a random variable X with Pr(X = t) = e−λ · λt/t!. It is well known that
for n, r → ∞ with n/r = λ the binomial distribution Bi(n, 1/r) converges to
Poisson(λ). We will assume n and r to be large. In this case, for each fixed t and
each i ∈ [r]:

Pr(|Bi| = t) =
e−λ · λt

t!
· (1 + o(1)). (1)

Lemma 1. Pr(X ≥ t) ≤ e−λ(eλ/t)t, for t ≥ λ. (For a proof see [15, p. 97].)

Using (1) and Azuma’s inequality, it is easy to establish the following estimates.

Lemma 2. For each fixed t ≤ 2λ + 2, with high probability (1 − n−c for an
arbitrary c > 0) we have:

a≥(λ, t) = |{i | |Bi| ≥ t}| = r · Poisson(λ,≥ t) · (1 + o(1));
b≥(λ, t) = |{x ∈ S | |Bg(x)| ≥ t}| = n · Poisson(λ,≥ t− 1) · (1 + o(1)).

For simplicity of notation, we omit the factor 1 + o(1) in the following. Assume
t = |Bi| ≥ 2λ + 1. At the moment when the algorithm tries to find a function
fi = φσ(i) for this bucket, at most b≥(λ, t) keys are stored in T[0 . . .m− 1]. By
the remarks above and Lemmas 1 and 2 we have that b≥(λ, t) = n ·Poisson(λ,≥
t− 1) ≤ n · e−λ(eλ/(t− 1))t−1.

This entails that the success probability when we try some φ� is bounded
below by

(
1− e−λ(eλ/(t− 1))t−1

)t. The latter bound is increasing in t, for t ≥
2λ + 1. So the success probability is bounded below by (1 − (e/4)λ)2λ+1. Thus,

Hash, Displace, and Compress 687

E(σ(i)) < (1−(e/4)λ)−(2λ+1), which is bounded by the constant (1−(e/4))−3 <
31. By Fact 1 we conclude E(log(σ(i))) < log(31) < 5. Both the expected time
for finding σ(i) and the space for storing σ(i) for these heavy buckets is bounded
by a≥(λ, t) ·O(1) < r ·Poisson(λ,≥ 2λ) ·O(1) ≤ e−dλ ·n, for some constant d > 0,
which shows that for larger λ the influence of these buckets is negligible.

3.2 Overall Analysis

In the following, we estimate E(
∑

1≤i<r log(σ(i))) under the assumption n = m.
Assuming that g has been applied and the buckets Bi have been formed we
define:

Tt = number of buckets of size t;
L=t = t · Tt = number of keys in buckets of size t;
L≥t = number of keys in buckets of size t or larger;
β=t = L=t/n = fraction of keys in buckets of size t;
β≥t = L≥t/n = fraction of keys in buckets of size t or larger.

Assume in Algorithm 1 s − 1 buckets of size t have been treated already,
and bucket Bi is next. In the table T exactly L≥t+1 + (s − 1)t keys have
been placed. The probability that all keys in Bi hit distinct empty places

in T is at least
(

n−(L≥t+1+(s−1)t+(t−1))
n

)t

=
(
1− β≥t+1 − st−1

n

)t
. Thus,

E(σ(i)) ≤
(
1− β≥t+1 − st−1

n

)−t
. By Fact 1 we conclude E(log(σ(i))) ≤ t ·

log
((

1− β≥t+1 − st−1
n

)−1
)

. By summing over all buckets of size t we get

∑
i : |Bi|=t

E(log(σ(i))) ≤ t ·
∑

1≤s≤Tt

log
(

1
1− β≥t+1 − st−1

n

)
. (2)

The sum in (2) we may estimate by an integral plus a correction term:

t ·
Tt∫
0

log
(

1
1− β≥t+1 − xt−1

n

)
dx + t · (Ct − Ct+1), (3)

where Ct = log(1/(1− β≥t + 1
n)).

To evaluate the integral, we substitute y = 1− β≥t+1 − xt−1
n and obtain

t ·
1−β≥t+1/n∫

1−β≥t+1+1/n

log
(

1
y

)
·
(
−n

t

)
dy = n ·

1−β≥t+1+1/n∫
1−β≥t+1/n

log
(

1
y

)
dy. (4)

Since
∫

log(1/y) dy = −y(log y − log e), we get from (2), (3), and (4) that∑
i : |Bi|=t

E(log(σ(i))) ≤ n · [−y(log y − log e)]1−β≥t+1+1/n

1−β≥t+1/n + t · (Ct − Ct+1). (5)

688 D. Belazzougui, F.C. Botelho, and M. Dietzfelbinger

We sum (5) up to the first t0 with β≥t0+1 = 0, hence Ct0+1 = − log(1 + 1
n), to

obtain ∑
0≤i<r

E(log(σ(i))) ≤ n · [−y(log y − log e)]1+1/n
1/n +

∑
1≤t≤t0+1

Ct. (6)

A little calculation, using (1 + 1
n) ln(1 + 1

n) > 1
n , shows that

n · [−y(log y − log e)]1+1/n
1/n < n log e− log n− 2 log e. (7)

This yields ∑
0≤i<r

E(log(σ(i))) < n log e− log n− 2 log e +
∑

1≤t≤t0+1

Ct. (8)

The Ct-sum depends on the distribution of the sizes of the buckets (and on ε).
For ε = 0, the first summand C1 equals log n, which cancels against the term
− logn in (8). (If ε > 0, it is not hard to verify that all Ct are O(log(1/ε)).)
For estimating

∑
2≤t≤t0+1 Ct we must make an assumption about the sequence

β2, β3, In case of the Poisson distribution we have Ct < log(1/(1 − β≥t)) ≤
log(1/(1− β≥2)) = log(1/e−λ) = λ log e. As seen in Section 3.1, the total contri-
bution of buckets of size 2λ+1 and larger to

∑
0≤i<r E(log(σ(i))) is ≤ e−dλ ·n,

and we may estimate
∑

2≤t≤2λ+1 Ct roughly by O(λ2).
Summing up, we obtain the following result. (The estimate for ε > 0 is derived

in a similar way.)

Theorem 1. In Algorithm 1 we have, for λ = n/r an integer :∑
0≤i<r E(log(σ(i))) ≤ n(log e + e−Ω(λ)) + O(λ2).

The compression scheme from [11] will give an expected space bound of n(log e+
O((log(λ) + 1)/λ)) + O(λ2) (the O-notation refers to growing λ; details in the
full paper [1]). More sophisticated compression schemes for the index table T,
which can reduce the effect of the fact that the code length must be an integer
while log(σ(i)) is not, will be able to better approximate the optimum n log e.

Finally, using arguments similar to those from Section 3.1 one may also obtain
a simpler result that explicitly shows the dependence of construction time on λ
and ε. (Proof in the full paper [1].)

Theorem 2. The algorithm “Hash, displace, and compress”, with m = (1+ε)n,
and λ = n/r an integer, requires expected time O(n · (2λ + (1/ε)λ) and scratch
space O(log(1/ε)n) (no dependence on λ).

4 Experimental Results

The purpose of this section is to evaluate the performance of Algorithm 1, re-
ferred to as “compressed hash-and-displace”, or CHD, from here on. We also
compare CHD with the algorithm proposed by Botelho, Pagh and Ziviani [2],

Hash, Displace, and Compress 689

Table 1. Characteristics of the key sets used for the experiments

Key Set n Shortest Key Largest Key Average Key Length Key Set Size (MB)
AllTheWeb 5,000,000 2 31 17.46 91

URL 20,000,000 8 496 58.77 2,150

which is the main practical (linear time) perfect hashing algorithm we found
in the literature and will be referred to as BPZ algorithm from now on. The
details of the implementation used for the experiments are described in the full
paper [1]. The algorithms were implemented in the C language and are avail-
able at http://cmph.sf.net under the GNU Lesser General Public License
(LGPL). The experiments were carried out on a computer running the Linux
operating system, version 2.6, with a 1.86 gigahertz Intel Core 2 processor with
a 4 megabyte L2 cache and 4 gigabyte of main memory.

To compare the algorithms we used the following metrics: (i) The amount
of time to generate PHFs or MPHFs. (ii) The space requirement for storing
the resulting PHFs or MPHFs. (iii) The amount of time required by a PHF
or an MPHF for each retrieval. All results are averages on 50 trials and were
statistically validated with a confidence level of 95%.

In our experiments we used two key sets: (i) a key set of unique query terms
extracted from the AllTheWeb2 query log, referred to as AllTheWeb key set;
(ii) a key set of unique URLs collected from the Brazilian Web by the TodoBr3

search engine, referred to as URL key set. Table 1 shows the main characteristics
of each key set.

4.1 Comparing the CHD and BPZ Algorithms

In this section we show that the CHD algorithm is very competitive in practice.
It generates in linear time the most compact PHFs and MPHFs we know of and
those functions can also be computed in constant time. We have experimented
with four different values for the load factor: α = 0.81, 0.90, 0.99 and 1.00.
MPHFs are generated when α = 1.00. For each α we vary the average num-
ber of keys per bucket (λ) in order to obtain a tradeoff between generation time
and representation size.

In our implementation we have replaced the family of indexed fully random
hash functions with a pair (f, h) of simpler hash functions, and have used a
linear combination of the two hash functions in order to simulate a family of
indexed random hash functions. The search for suitable displacement values for
buckets makes repeated access to the list of buckets sorted by size and to the
list of keys in each bucket. By reimplementing the buckets and key lists using
arrays instead of linked lists to exploit locality of reference, we have obtained a
speedup of about a factor of 2 in construction time. Finally, for placing buckets
we have used a greedy heuristic for finding the respective displacement values.

2 AllTheWeb (www.alltheweb.com) is a registered trademark.
3 TodoBr (www.todobr.com.br) is a registered trademark.

690 D. Belazzougui, F.C. Botelho, and M. Dietzfelbinger

It improves space by about 5% at the expense of a slightly longer construction
time (see the full paper for a detailed description [1]).

Figure 1 also shows a comparison with the BPZ algorithm [2]. We remark that
the BPZ algorithm can generate PHFs only with α = 0.81 without degrading
its performance at evaluation time, whereas the CHD algorithm can achieve
much higher load factors (α = 0.99), see Figure 1(a),(b),(c). Moreover, the CHD
algorithm is more flexible by offering a full trade-off between space usage and
load factors obtaining 1.4 bits per key for α = 0.81 against 1.98 bits per key
for α = 0.99. To obtain MPHFs with α = 1.00 both algorithms need to use
a succinct data structure that supports rank and select operations, and this
requires a few more bits as shown in Figure 1(d). This figure also shows that for
some parameter settings like λ = 3 the CHD algorithm outperforms the BPZ
algorithm for both generation time and description size of the resulting functions.
Also, with the CHD algorithm it is possible to obtain PHFs and MPHFs that
are only a factor of 1.43 away from the information theoretic lower bound, at
the expense of spending more time to generate those functions. There is no
other algorithm in the perfect hashing literature that can get so close to the
information theoretic lower bound and even so run in linear time.

We now compare the CHD and BPZ algorithms regarding the evaluation
time for 5× 106 keys of the AllTheWeb collection and 2× 107 keys of the URL

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 4 6 8 10 12 14 16 18 20

G
en

er
at

io
n

T
im

e
(s

)

n (millions)

Number of Keys x Generation Time

CHD (λ = 1), 3.03 bits/key
CHD (λ = 2), 1.95 bits/key
CHD (λ = 3), 1.62 bits/key
CHD (λ = 4), 1.47 bits/key
CHD (λ = 5), 1.40 bits/key
BPZ, 1.97 bits/key

(a) α=0.81, Space lower bound=0.88.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 4 6 8 10 12 14 16 18 20

G
en

er
at

io
n

T
im

e
(s

)

n (millions)

Number of Keys x Generation Time

CHD (λ = 1), 3.20 bits/key
CHD (λ = 2), 2.14 bits/key
CHD (λ = 3), 1.83 bits/key
CHD (λ = 4), 1.71 bits/key
CHD (λ = 5), 1.65 bits/key

(b) α=0.90, Space lower bound=1.07.

 0

 50

 100

 150

 200

 250

 300

 4 6 8 10 12 14 16 18 20

G
en

er
at

io
n

T
im

e
(s

)

n (millions)

Number of Keys x Generation Time

CHD (λ = 1), 3.47 bits/key
CHD (λ = 2), 2.45 bits/key
CHD (λ = 3), 2.18 bits/key
CHD (λ = 4), 2.08 bits/key
CHD (λ = 5), 1.98 bits/key

(c) α=0.99, Space lower bound=1.38.

 0

 50

 100

 150

 200

 250

 300

 4 6 8 10 12 14 16 18 20

G
en

er
at

io
n

T
im

e
(s

)

n (millions)

Number of Keys x Generation Time

CHD (λ = 1), 3.56 bits/key
CHD (λ = 2), 2.54 bits/key
CHD (λ = 3), 2.27 bits/key
CHD (λ = 4), 2.17 bits/key
CHD (λ = 5), 2.07 bits/key
BPZ, 2.61 bits/key

(d) α=1.00, Space lower bound=1.44.

Fig. 1. Number of URLs versus generation time for both the CHD algorithm with λ ∈
[1, 5] and α = 0.81, 0.90, 0.99 and 1.00, and the BPZ algorithm with α = 0.81 and 1.00

Hash, Displace, and Compress 691

Table 2. Comparing the CHD and BPZ algorithms considering the time to evaluate
5 × 106 keys of the AllTheWeb collection and 2 × 107 keys of the URL collection

Algorithms λ
AllTheWeb (n = 5 × 106) URL (n = 2 × 107)

Evaluation Time (sec) Evaluation Time (sec)
α = 0.81 α = 0.99 α = 1.0 α = 0.81 α = 0.99 α = 1.0

CHD

1 3.53 3.59 4.14 24.06 24.24 26.99
2 3.41 3.46 4.01 23.24 23.70 26.26
3 3.40 3.49 4.04 22.71 23.47 26.05
4 3.42 3.44 4.01 22.58 23.06 25.65
5 3.43 3.45 4.02 22.41 22.98 25.59

BPZ 1 2.80 – 3.19 19.76 – 22.12

collection. Table 2 shows that the functions generated by the BPZ algorithm
are slightly faster than the ones generated by the CHD algorithm. However, all
functions require less than 0.8 microseconds when their description fits in cache,
which is the case for the AllTheWeb collection, and less than 1.4 microseconds
when their description does not fit in cache, which is the case for the URL
collection. We remark that functions with a larger description size are slightly
slower due to cache effects (more cache misses). The MPHFs are also slightly
slower because of the extra expense for the rank and select operations.

The evaluation time of the PHFs and MPHFs generated by the CHD algo-
rithm depends on the compression technique used. For instance, it is possible to
generate faster functions using the Elias-Fano scheme [21] instead of the one we
used for the experiments [11] at the cost of generating functions with a slightly
larger description size (for example, we obtained PHFs that require 2.08 bits per
key instead of 1.98 bits per key for α = 0.99 and λ = 5).

4.2 Results for k-Perfect Hashing

In this section we present experimental results showing that the CHD algorithm
can generate very compact k-perfect hash functions. Such functions can be used
as an index stored in fast memory for data stored in slow memory. Usually,
memory blocks can contain more than one element. In the case where the number
of elements per block is a small constant k, we can employ a k-perfect hash
function, which uses less space than a perfect hash function. Note that such
functioncs require only a single random access to the slow memory in the worst
case, unlike other schemes like the linear hashing method proposed by Litwin
[13] or bucketed cuckoo hashing [7,8].

Table 3. Generation time and description size of k-perfect hash functions with α = 0.99

k

AllTheWeb (n = 5 × 106) URL (n = 2 × 107)
Generation Time(sec) Space (bits/key) Generation Time(sec) Space (bits/key)
Avg. Bucket Size (γ) Avg. Bucket Size (γ) Avg. Bucket Size (γ) Avg. Bucket Size (γ)

2 4 8 2 4 8 2 4 8 2 4 8
4 4.59 5.30 57.63 1.70 1.20 1.03 26.69 32.72 455.18 1.70 1.20 1.03
8 4.28 4.48 14.51 1.50 0.98 0.77 24.74 26.50 91.56 1.50 0.98 0.77
16 4.14 4.18 6.65 1.37 0.83 0.60 23.79 24.28 37.70 1.37 0.83 0.60

692 D. Belazzougui, F.C. Botelho, and M. Dietzfelbinger

We have only experimented with load factor α = 0.99 as this case is closest
to the situation for which we know at least some lower bounds (Section 1).
Table 3 presents the results for generation time and space usage. We omitted
the evaluation times as these are very similar to the ones presented in Table 2.

5 Conclusions

We presented a novel way of constructing (minimal) perfect hash functions:
“hash, displace, and compress”, modifying Pagh’s method “hash-and-displace”
so as to obtain space bounds of O(n) bits. A partial analysis of the space re-
quirements of the functions is given, leaving open the exact analysis of the loss
created by compression schemes. In experiments, for realistic set sizes the CHD
algorithm generates the most compact PHFs we know of in O(n) expected time.
The time required to evaluate the generated functions is constant in the worst
case (in practice less than 1.4 microseconds). The expected storage space of the
resulting PHFs and MPHFs exceed the information theoretic lower bound by a
constant factor smaller than 1.5. For certain parameter settings the CHD algo-
rithm constructs more compact MPHFs faster than the BPZ algorithm [2] (the
fastest algorithm available in the literature so far). The most impressive charac-
teristic is that CHD has the ability, in principle, to approximate the information
theoretic lower bound while being practical.

Acknowledgements. The third author wishes to thank Peter Sanders for
sharing with him the idea of using random functions for the buckets in Pagh’s
hash-and-displace, which was subsequently explored in Lars Dietzel’s M.Sc. the-
sis [4] at TU Ilmenau, which led to a solution with superlinear space. The authors
are grateful to the reviewers for their careful reading of the manuscript and their
helpful remarks.

References

1. Belazzougui, D., Botelho, F.C., Dietzfelbinger, M.: Hash, displace, and compress.
Computer Research Repository (2009)

2. Botelho, F.C., Pagh, R., Ziviani, N.: Simple and space-efficient minimal perfect
hash functions. In: Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS 2007. LNCS,
vol. 4619, pp. 139–150. Springer, Heidelberg (2007)

3. Chazelle, B., Kilian, J., Rubinfeld, R., Tal, A.: The bloomier filter: An efficient data
structure for static support lookup tables. In: Proc. of the 15th Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 30–39. SIAM, Philadelphia (2004)

4. Dietzel, L.: Speicherplatzeffiziente perfekte Hashfunktionen. Master’s thesis, Tech-
nische Universität Ilmenau (Novmber 2005) (in German)

5. Dietzfelbinger, M.: Design strategies for minimal perfect hash functions. In:
Hromkovič, J., Královič, R., Nunkesser, M., Widmayer, P. (eds.) SAGA 2007.
LNCS, vol. 4665, pp. 2–17. Springer, Heidelberg (2007)

6. Dietzfelbinger, M., Rink, M.: Applications of a splitting trick. In: Proc. of 36th
International Colloquium on Automata, Languages and Programming. Springer,
Heidelberg (to appear, 2009)

Hash, Displace, and Compress 693

7. Dietzfelbinger, M., Weidling, C.: Balanced allocation and dictionaries with tightly
packed constant size bins. Theoretical Computer Science 380(1-2), 47–68 (2007)

8. Erlingsson, U., Manasse, M., McSherry, F.: A cool and practical alternative to
traditional hash tables. In: Proc. of the 7th Workshop on Distributed Data and
Structures, pp. 1–6 (2006)

9. Ferragina, P., Venturini, R.: A simple storage scheme for strings achieving entropy
bounds. Theoretical Computer Science 372(1), 115–121 (2007)

10. Fredman, M.L., Komlós, J.: On the size of separating systems and families of
perfect hashing functions. SIAM Journal on Algebraic and Discrete Methods 5,
61–68 (1984)

11. Fredriksson, K., Nikitin, F.: Simple compression code supporting random access
and fast string matching. In: Demetrescu, C. (ed.) WEA 2007. LNCS, vol. 4525,
pp. 203–216. Springer, Heidelberg (2007)

12. Hagerup, T., Tholey, T.: Efficient minimal perfect hashing in nearly minimal space.
In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 317–326.
Springer, Heidelberg (2001)

13. Litwin, W.: Linear hashing: a new tool for file and table addressing. In: Proc. of
the 6th International Conference on Very Large Data Bases, pp. 212–223. VLDB
Endowment (1980)

14. Mehlhorn, K.: Data Structures and Algorithms 1: Sorting and Searching. Springer,
Heidelberg (1984)

15. Mitzenmacher, M., Upfal, E.: Probability and Computing. Cambridge University
Press, Cambridge (2005)

16. Pagh, R.: Hash and displace: Efficient evaluation of minimal perfect hash functions.
In: Dehne, F., Gupta, A., Sack, J.-R., Tamassia, R. (eds.) WADS 1999. LNCS,
vol. 1663, pp. 49–54. Springer, Heidelberg (1999)

17. Radhakrishnan, J.: Improved bounds for covering complete uniform hypergraphs.
Information Processing Letters 41, 203–207 (1992)

18. Sanders, P.: Personal communication (2004)
19. Schmidt, J.P., Siegel, A.: The spatial complexity of oblivious k-probe hash func-

tions. SIAM Journal on Computing 19(5), 775–786 (1990)
20. Tarjan, R.E., Yao, A.C.C.: Storing a sparse table. Communications of the

ACM 22(11), 606–611 (1979)
21. Vigna, S.: Broadword implementation of rank/select queries. In: Proc. of the 7th

International Workshop on Efficient and Experimental Algorithms, pp. 154–168.
ACM Press, New York (2008)

Solving Dominating Set in Larger Classes of
Graphs: FPT Algorithms and Polynomial

Kernels

Geevarghese Philip, Venkatesh Raman, and Somnath Sikdar

The Institute of Mathematical Sciences, Chennai, India
{gphilip,vraman,somnath}@imsc.res.in

Abstract. We show that the k-Dominating Set problem is fixed pa-
rameter tractable (FPT) and has a polynomial kernel for any class of
graphs that exclude Ki,j as a subgraph, for any fixed i, j ≥ 1. This
strictly includes every class of graphs for which this problem has been
previously shown to have FPT algorithms and/or polynomial kernels. In
particular, our result implies that the problem restricted to bounded-
degenerate graphs has a polynomial kernel, solving an open problem
posed by Alon and Gutner in [3].

1 Introduction

The k-Dominating Set problem asks, for a graph G = (V, E) and a positive
integer k given as inputs, whether there is a vertex-subset S ⊆ V of size at
most k such that every vertex in V \ S is adjacent to some vertex in S. Such
a vertex-subset is called a dominating set of G. This problem is known to be
NP-hard even in very restricted graph classes, such as the class of planar graphs
with maximum degree 3 [14]. In the world of parameterized complexity, this
is one of the most important hard problems: the problem parameterized by k
is the canonical W [2]-hard problem [9]. The problem remains W [2]-hard even
in many restricted classes of graphs — for example, it is W [2]-hard in classes
of graphs with bounded average degree [15]. This latter fact implies that it is
unlikely that the problem has a fixed-parameter-tractable (FPT) algorithm on
graphs with a bounded average degree, that is, an algorithm that runs in time
f(k) ·nc for some computable function f(k) independent of the input size n, and
some constant c independent of k.1

The problem has an FPT algorithm on certain restricted families of graphs,
such as planar graphs [12], graphs of bounded genus [10], Kh-topological-minor-
free graphs, and graphs of bounded degeneracy [2]; these last being, to the best
of our knowledge, the most general graph class previously known to have an FPT
algorithm for this problem. In the current paper, we show that the problem has
an FPT algorithm in a class of graphs that encompasses, and is strictly larger
than, all these classes — namely, the class of Ki,j-free graphs.
1 To know more about the notions of FPT and W -hardness and to see why it is

considered unlikely that a W [2]-hard problem will have an FPT algorithm, see [9].

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 694–705, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Solving Dominating Set in Larger Classes of Graphs 695

Closely related to the notion of an FPT algorithm is the concept of a kernel for
a parameterized problem. For the k-Dominating Set problem parameterized
by k, a kernelization algorithm is a polynomial-time algorithm that takes (G, k)
as input and outputs a graph G′ and a nonnegative integer k′ such that the size of
G′ is bounded by some function g(k) of k alone, k′ ≤ h(k) for some function h(k),
and G has a dominating set of size at most k if and only if G′ has a dominating
set of size at most k′. The resulting instance G′ is called a kernel for the problem.
A parameterized problem has a kernelization algorithm if and only if it has an
FPT algorithm [9], and so it is unlikely that the k-Dominating Set problem on
general graphs or on graphs having a bounded average degree has a kernelization
algorithm. For the same reason, this problem has a kernelization algorithm when
restricted to those graph classes for which it has an FPT algorithm. But the size
of the kernel obtained from such an algorithm could be exponential in k, and
finding if the kernel size can be made smaller — in particular, whether it can be
made polynomial in k — is an important problem in parameterized complexity.

Proving polynomial bounds on the size of the kernel for different parameter-
ized problems has been a significant practical aspect in the study of the param-
eterized complexity of NP-hard problems, and many positive results are known.
See [16] for a survey of kernelization results.

For the k-Dominating Set problem, the first polynomial kernel result was
obtained by Alber et al. [1] in 2004: they showed that the problem has a linear
kernel of at most 335k vertices in planar graphs. This bound for planar graphs
was later improved by Chen et al. [5] to 67k. Fomin and Thilikos [11] showed in
2004 that the same reduction rules as used by Alber et al. give a linear kernel
(linear in k + g) for the problem in graphs of genus g. The next advances in
kernelizing this problem were made by Alon and Gutner in 2008 [3]. They showed
that the problem has a linear kernel in K3,h-topological-minor-free graph classes
(which include, for example, planar graphs), and a polynomial kernel (where the
exponent depends on h) for Kh-topological-minor-free graph classes, these last
being the most general class of graphs for which the problem has been previously
shown to have a polynomial kernel. In the meantime, the same authors had
shown in 2007 that the problem is FPT in (the strictly larger class of) graphs of
bounded degeneracy [2], but had left open the question whether the problem has
a polynomial kernel in such graph classes. In this paper, we answer this question
in the affirmative, and show, in fact, that strictly larger classes of graphs — the
Ki,j-free graph classes — have polynomial kernels for this problem.

See Table 1 for a summary of some FPT and kernelization results for the
k-Dominating Set problem on various classes of graphs.

Our Results. We show that for any fixed i, j ≥ 1, the k-Dominating Set

problem has a polynomial kernel on graphs that do not have Ki,j (a complete
bipartite graph with the two parts having i and j vertices) as a subgraph. For
input graph G and parameter k, the size of the kernel is bounded by kc where c
is a constant that depends only on i and j. A graph G is said to be d-degenerate
if every subgraph of G has a vertex of degree at most d. Since a d-degenerate
graph does not have Kd+1,d+1 as a subgraph, it follows that the k-Dominating

696 G. Philip, V. Raman, and S. Sikdar

Table 1. Some FPT and kernelization results for k-Dominating Set. Results proved
in this paper are marked with a †.

Graph Class FPT Algorithm Running Time Kernel Size

Planar O(k4 + 215.13
√

kk + n3) [12] O(k) [1,5]

Genus-g O((24g2 + 24g + 1)kn2) [10] O(k + g) [11]

Kh-minor-free 2O(
√

k)nc [6],O((log h))hk/2 · n [2] O(kc) [3]

Kh-topological-minor-free (O(h))hk · n [2] O(kc) [3]

d-degenerate kO(dk)n [2] kO(dk) [2],
O(k2(d+1)2)†

Ki,j-free O(ni+O(1))† O(k2i2)†

Set problem has a polynomial kernel on graphs of bounded degeneracy. This
settles a question posed by Alon and Gutner in [3]. We also provide a slightly
simpler and a smaller kernel for the version where we want the k-Dominating

Set to be independent as well.
Note that except for d-degenerate and Ki,j-free graphs, all the other graph

classes in Table 1 are minor-closed (See e.g., [7], Chapter 12, for the definition of
a minor-closed graph class.). This seems to be indicative of the state of the art
— the only other previous FPT or kernelization result for the k-Dominating

Set problem on a non-minor-closed class of graphs that we know of is the O(k3)
kernel and the resulting FPT algorithm for graphs that exclude triangles and
4-cycles [17]. In fact, this result can be modified to obtain similar bounds on
graphs with just no 4-cycles (allowing triangles). Since a 4-cycle is just K2,2,
this result follows from the main result of this paper by setting i = j = 2.

Since a Kh-topological-minor-free graph has bounded degeneracy [3, Proposi-
tion 3.1] (for a constant h), the class of Ki,j-free graphs is more general than the
class of Kh-topological-minor-free graphs. Thus we extend the class of graphs for
which the k-Dominating Set problem is known to have (1) FPT algorithms
and (2) polynomial kernels, to the class of Ki,j-free graphs.

Organization of the rest of the paper. In Section 2, we develop our main algorithm
that runs in O(ni+O(1)) time and constructs a kernel of size O((j + 1)2(i+1)k2i2)
for k-Dominating Set on Ki,j-free graphs, for fixed j ≥ i ≥ 2. As a corollary
we obtain, in Section 3, a polynomial kernel for d-degenerate graphs, with run-
ning time O(nO(d)) and kernel size O((d + 2)2(d+2)k2(d+1)2). In Section 3.1 we
describe an improvement to the above algorithm that applies to d-degenerate in-
put graphs, yields a kernel of the same size as above, and runs in time O(2ddn2).
In Section 4 we describe a modification of the algorithm in Section 2 that

Solving Dominating Set in Larger Classes of Graphs 697

constructs a polynomial kernel for the k-Independent Dominating Set prob-
lem on Ki,j-free graphs. This kernel has O(jki) vertices, and so implies a kernel
of size O((d + 1)kd+1) for this problem on d-degenerate graphs. In Section 5 we
state our conclusions and list some open problems.

Notation. All the graphs in this paper are finite, undirected and simple. In
general we follow the graph terminology of [7]. We let V (G) and E(G) denote,
respectively, the vertex and edge sets of a graph G. The open-neighborhood of a
vertex v in a graph G, denoted N(v), is the set of all vertices that are adjacent
to v in G. A k-dominating set of graph G is a vertex-subset S of size at most
k such that for each u ∈ V (G) \ S there exists v ∈ S such that {u, v} ∈ E(G).
Given a graph G and A, B ⊆ V (G), we say that A dominates B if every vertex
in B \A is adjacent in G to some vertex in A.

2 A Polynomial Kernel for Ki,j-Free Graphs

In this section we consider the parameterized k-Dominating Set problem on
graphs that do not have Ki,j as a subgraph, for fixed j ≥ i ≥ 1. It is easy to see
that the problem has a linear kernel when i = 1, j ≥ i, so we consider the cases
j ≥ i ≥ 2. We solve a more general problem, namely the rwb-Dominating Set

problem, defined as follows: Given a graph G whose vertex set V is partitioned
into RG, WG, and BG (colored red, white, and black, respectively) and a non-
negative integer parameter k, is there a subset S ⊆ V of size at most k such that
RG ⊆ S and S dominates BG? We call such an S an rwb-dominating set of G,
and such a graph an rwb-graph.

Intuitively, the vertices colored red are those that will be picked up by the
reduction rules in the k-dominating set D that we are trying to construct. In
particular, if there is a k-dominating set in the graph, there will be one that
contains all the red vertices. White vertices are those that have been already
dominated. Clearly all neighbors of red vertices are white, but our reduction
rules color some vertices white even if they have no red neighbors (at that point).
These are vertices that will be dominated by one of some constant number of
vertices identified by the reduction rules. See reduction rule 2 for more details.
Black vertices are those that are yet to be dominated. It is easy to see that if
we start with a general graph G and color all its vertices black to obtain an
rwb-graph G′, then G has a dominating set of size at most k if and only if G′

has an rwb-dominating set of size at most k.
We describe an algorithm that takes as input an rwb-graph G on n vertices

and a positive number k, and runs in O(ni+O(1)) time. The algorithm either
finds that G does not have any rwb-dominating set of size at most k, or it
constructs an instance (G′, k′) on O((j + 1)i+1ki2) vertices such that G has an
rwb-dominating set of size at most k if and only if G′ has an rwb-dominating
set of size at most k′.

The algorithm applies a sequence of reduction rules in a specified order. The
input and output of each reduction rule are rwb-graphs.

698 G. Philip, V. Raman, and S. Sikdar

Definition 1. We say that graph G is reduced with respect to a reduction rule
if an application of the rule to G does not change G.

Each reduction rule satisfies the following correctness condition and preserves
the invariants stated below:

Definition 2. (Correctness) A reduction rule R is said to be correct if the
following condition holds: if (G′, k′) is the instance obtained from (G, k) by one
application of rule R then G′ has an rwb-dominating set D′ of size k′ if and only
if G has an rwb-dominating set D of size k.2

Invariants:

1. None of the reduction rules introduces a Ki,j into a graph.
2. In the rwb-graphs constructed by the algorithm, red vertices have all neigh-

bors white.
3. Let R be any reduction rule, and let R′ be a rule that precedes R in the

given order. If G is a graph that is reduced with respect to R′ and G′ is a
graph obtained by applying R to G, then G′ is reduced with respect to R′.

2.1 The Reduction Rules and the Kernelization Algorithm

The kernelization algorithm assumes that the input graph is an rwb-graph. It
applies the following rules exhaustively in the given order. Each rule is repeatedly
applied till it causes no changes to the graph and then the next rule is applied.

To make it easier to present the reduction rules and the arguments of their
correctness, we use a couple of notational conventions in this section. For each
rule below, G denotes the graph on which the rule is applied, and G′ the graph
that results. Further, D and D′ are as in Definition 2: D is an rwb-dominating
set of size k of G, and D′ an rwb-dominating of G′ of size k′. 2

Rule 1. Color all isolated black vertices of G red.

Rule 1 is correct as the only way to dominate isolated black vertices is by picking
them in the proposed rwb-dominating set.

Rule 2. For p = 1, 2, . . . , i − 2, in this order, apply Rule 2.p repeatedly till it
no longer causes any changes in the graph.

Rule 2.p Let b = jk if p = 1, and b = jkp+kp−1+kp−2 · · ·+k if 2 ≤ p ≤ i−2.
If a set of (i− p) vertices U = {u1, u2, . . . , ui−p}, none of which is red, has more
than b common black neighbors, then let B be this set of neighbors.

1. Color all the vertices in B white.
2. Add to the graph (i− p) new (gadget) vertices X = {x1, x2, . . . , xi−p} and

all the edges {u, x}; u ∈ U, x ∈ X , as in Figure 1.
3. Color all the vertices in X black.

2 Note, however, that none of our reduction rules changes the value of k, and so k′ = k
for every one of these rules.

Solving Dominating Set in Larger Classes of Graphs 699

Fig. 1. Rule 2

Claim 1. Consider the application of Rule 2.p, 1 ≤ p ≤ i − 2. If U is a set of
vertices of G that satisfies the condition in Rule 2.p, then at least one vertex in
U must be in any subset of V (G) of size at most k that dominates B.

Proof. For p = 1, suppose that there is a rwb-dominating set D of G of size at
most k that does not contain any vertex of U . Since U has more than b = jk
common black neighbors, there is a vertex in D that dominates at least j + 1
common black neighbors of U (possibly including itself). That vertex along with
U forms a Ki,j in G, contradicting either the property of the input graph or the
first invariant for the rules.

A similar argument works for 1 < p ≤ i − 2, using the fact that Rule 2.p is
applied to a graph that is reduced with respect to Rule 2.(p− 1); the reasoning
is nearly the same as the one in the proof of Claim 2 below.

Lemma 1. Rule 2.p is correct for 1 ≤ p ≤ i− 2.

Proof. If G has an rwb-dominating set D of size k, then D ∩U �= ∅ by Claim 1.
So D′ := D is an rwb-dominating set of G′, since D ∩ U dominates X . For the
other direction, assume that D′ exists. If D′ ∩ U = ∅ then since D′ dominates
X and X is independent, X ⊆ D′, and so set D := D′ \X ∪ U . If D′ ∩X = ∅
then since D′ dominates X , D′ ∩ U �= ∅, and so set D := D′. If D′ ∩ U �= ∅ and
D′ ∩X �= ∅ then pick an arbitrary vertex b ∈ B and set D := D′ \X ∪ {b}. ��

Rule 3. If a black or white vertex u has more than jki−1 + ki−2 + · · ·+ k2 + k
black neighbors, then color u red and color all the black neighbors of u white.

Claim 2. Let G be reduced with respect to Rule 1 and Rules 2.1 to 2.(i− 2). If
a black or white vertex u of G has more than h = jki−1 + ki−2 + · · · + k2 + k
black neighbors (let this set of neighbors be B), then u must be in any subset
of V (G) of size at most k that dominates B.

Proof. Let S ⊆ V (G) be a set of size at most k that dominates B. If S does not
contain u, then there is a v ∈ S that dominates at least (h/k)+1 of the vertices
in B. The vertex v is not red (because of the second invariant), and u, v have
h/k > jki−2 + ki−3 + · · · + 1 common black neighbors, a contradiction to the
fact that G is reduced with respect to Rule 2.(i− 2). ��

This proves the correctness of Rule 3 on graphs reduced with respect to Rule 1
and Rules 2.1 to 2.(i− 2).

700 G. Philip, V. Raman, and S. Sikdar

Rule 4. If a white vertex u is adjacent to at most one black vertex, then delete
u and apply Rule 1.

It is easy to see that Rule 4 is correct, since if u has no black neighbor in G then
u has no role in dominating BG; if u has a single black neighbor v then we can
replace u with v in D′.

Rule 5. If there is a white vertex u and a white or black vertex v such that
N(u) ∩BG ⊆ N(v) ∩BG, then delete u and apply Rule 1.

The correctness of this rule follows from the fact that if D chooses u, then we
can choose v in D′.

Rule 6. If |RG| > k or |BG| > jki + ki−1 + ki−2 + · · ·+ k2 then output “NO”.

The correctness of the rule when |RG| > k is obvious as the proposed dominating
set we construct should contain all of RG. Note that in a graph G reduced with
respect to Rules 1 to 5, no white or black vertex has more than jki−1 + ki−2 +
· · · + k black neighbors, or else Rule 3 would have applied, contradicting the
third invariant. Hence k of these vertices can dominate at most jki + ki−1 +
ki−2 + · · ·+ k2 black vertices and hence if |BG| > jki + ki−1 + ki−2 + · · ·+ k2,
the algorithm is correct in saying “NO”.

2.2 Algorithm Correctness and Kernel Size

The following claim giving the correctness of the kernelization algorithm follows
from the correctness of the reduction rules.

Claim 3. Let G be the input rwb-graph and H the rwb-graph constructed by the
algorithm after applying all the reduction rules. Then G has an rwb-dominating
set of size at most k if and only if there is an rwb-dominating set of size at most
k in H .

Now we move on to prove a polynomial bound on the size of the reduced instance.

Lemma 2. Starting with a Ki,j-free rwb-graph G as input, if the kernelization
algorithm says “NO” then G does not have an rwb-dominating set of size at
most k. Otherwise, if the algorithm outputs the rwb-graph H, then |V (H)| =
O((j + 1)i+1ki2).

Proof. The correctness of Rule 6 establishes the claim if the algorithm says
“NO”. Now suppose the algorithm outputs H without saying “NO”. The same
rule establishes that |RH | ≤ k and b = |BH | ≤ jki + ki−1 + · · · + k ≤ (j +
1)ki. Now we bound |WH |. Note that no two white vertices have identical black
neighborhoods, or else Rule 5 would have applied. Also each white vertex has at
least two black neighbors, or else Rule 4 would have applied. Hence the number
of white vertices that have less than i black neighbors is at most

(
b
2

)
+
(

b
3

)
+ · · ·+(

b
i−1

)
≤ 2bi−1. No set of i black vertices has more than (j − 1) common white

Solving Dominating Set in Larger Classes of Graphs 701

neighbors, or else these form a Ki,j . Hence the number of white vertices that
have i or more black neighbors is at most

(
b
i

)
(j − 1) ≤ (j − 1)bi. The bound in

the lemma follows. ��

The algorithm can be implemented in O(ni+O(1)) time, as the main Rule 2 can
be applied by running through various subsets of V (G) of size p for p ranging
from 1 to i− 2. Thus, we have

Lemma 3. For any fixed j ≥ i ≥ 1, the rwb-Dominating Set problem (with
parameter k) on Ki,j-free graphs has a polynomial kernel with O((j + 1)i+1ki2)
vertices.

To obtain a polynomial kernel for the k-Dominating Set problem on Ki,j-free
graphs, we first color all the vertices black and use Lemma 3 on this rwb-

Dominating Set problem instance. To transform the reduced colored instance
H to an instance of (the uncolored) k-dominating Set, we can start by deleting
all the red vertices, since they have no black neighbors. But we need to capture
the fact that the white vertices need not be dominated. This can be done by, for
example, adding a new vertex vx adjacent to every vertex x in WH of the reduced
graph H , and attaching k + |WH | + 1 separate pendant vertices to each of the
vertices vx. It is easy to see that the new graph does not have a Ki,j , j ≥ i ≥ 2, if
H does not have one and that H has at most k black or white vertices dominating
BH if and only if the resulting (uncolored) graph has a dominating set of size at
most |WH |+k. Thus after reducing to the uncolored version, k becomes k+|WH |
and the number of vertices increases by (k+|WH |+2)·|WH |. Hence by Lemma 3,
we have

Theorem 1. For any fixed j ≥ i ≥ 1, the k-Dominating Set problem on
Ki,j-free graphs has a polynomial kernel with O((j + 1)2(i+1)k2i2) vertices.

3 A Polynomial Kernel for d-Degenerate Graphs

A d-degenerate graph does not contain Kd+1,d+1 as a subgraph, and so the
kernelization algorithm of the previous section can be applied to a d-degenerate
graph, setting i = j = d+1. The algorithm runs in time O((d+1)2nd+O(1)) and
constructs a kernel with O((d+2)2(d+2) ·k2(d+1)2) vertices. Since a d-degenerate
graph on v vertices has at most dv edges, we have:

Corollary 1. The k-Dominating Set problem on d-degenerate graphs has a
kernel on O((d + 2)2(d+2) · k2(d+1)2) vertices and edges.

Corollary 1 settles an open problem posed by Alon and Gutner in [3].

3.1 Improving the Running Time

We describe a modification of our algorithm to d-degenerate graphs that makes
use of the following well known property of d-degenerate graphs, to reduce the
running time to O(2d · dn2); the bound on the kernel size remains the same.

702 G. Philip, V. Raman, and S. Sikdar

Algorithm 1. Faster implementation of Rule 2.p in d-degenerate graphs.
for l := 1 to n
do
if vl is black and its degree in G[vl+1, . . . , vn] is at least d − p + 1
then

Find the neighborhood N of vl in G[vl+1, . . . , vn]
for each (d − p + 1)-subset S of N
do
if S has more than (d + 1)kp + kp−1 + · · · + k
common black neighbors in G
then

Apply the three steps of Rule 2.p, taking S as U
endif

done
endif

done

Fact 1. [13, Theorem 2.10] Let G be a d-degenerate graph on n vertices. Then
one can compute, in O(dn) time, an ordering v1, v2, . . . , vn of the vertices of G
such that for 1 ≤ i ≤ n, vi has at most d neighbors in the subgraph of G induced
on {vi+1, . . . , vn}.

The modification to the algorithm pertains to the way rules 2.1 to 2.(d− 1) are
implemented: the rest of the algorithm remains the same.

In implementing Rule 2.p, 1 ≤ p ≤ (d−1), instead of checking each (d−p+1)-
subset of vertices in the graph to see if it satisfies the condition in the rule, we
make use of Fact 1 to quickly find such a set of vertices, if it exists. Let G be the
graph instance on n vertices on which Rule 2.p is to be applied. First we delete,
temporarily, all the red vertices in G. We then find an ordering v1, v2, . . . , vn of
the kind described in the above fact, of all the remaining vertices in G. Let U
and B be as defined in the rule. The first vertex vl in U ∪ B that appears in
the ordering has to be from B, since each vertex in U has degree greater than
d. The vertex vl will then have a neighborhood of size d− p + 1 that in turn has
B as its common neighborhood. We use this fact to look for such a pair (U, B)
and exhaustively apply Rule 2.p to G. See Algorithm 1 for pseudocode of the
algorithm. We then add back the red vertices that we deleted prior to this step,
along with all their edges to the rest of the graph.

As |N | ≤ d, the inner for loop is executed at most
(

d
p−1

)
times for each

iteration of the outer loop. Each of the individual steps in the algorithm can be
done in O(dn) time, and so Rule 2.p can be applied in O(dn

∑n
l=1

(
d

p−1

)
) time. All

the rules 2.p can therefore be applied in O(dn
∑n

l=1
∑d−1

p=1

(
d

p−1

)
) = O(2d · dn2)

time. Thus we have:

Theorem 2. For any fixed d ≥ 1, the k-Dominating Set problem on d-
degenerate graphs has a kernel on O((d+2)2(d+2) ·k(2(d+1))2) vertices and edges,
and this kernel can be found in O(2d ·dn2) time for an input graph on n vertices.

Solving Dominating Set in Larger Classes of Graphs 703

4 A Polynomial Kernel for Independent Dominating Set
on Ki,j-Free Graphs

The k-Independent Dominating Set problem asks, for a graph G and a
positive integer k given as inputs, whether G has a dominating set S of size at
most k such that S is an independent set (i.e. no two vertices in S are adjacent).
This problem is known to be NP-hard for general graphs [14], and the problem
parameterized by k is W [2]-complete [9]. Using a modified version of the set of
reduction rules in Section 2 we show that the k-Independent Dominating

Set has a polynomial kernel in Kij-free graphs for j ≥ i ≥ 1. For i = 1, j ≥ 1
we can easily obtain trivial kernels as before, and for i = 2, j ≥ 2 a simplified
version of the following algorithm gives a kernel of size O(j3k4).

4.1 The Reduction Rules

Rule 1 is the same as for the Dominating Set kernel for Kij-free graphs (Sec-
tion 2.1). Rules 2.1 to 2.(i− 2) and Rule 3 are modified to make use of the fact
that we are looking for a dominating set that is independent. A vertex u that is
made white will never be part of the independent dominating set D that is sought
to be constructed by the algorithm, since u is adjacent to some vertex v ∈ D. So
a vertex can be deleted as soon as it is made white. Also, rules 1, 2.1 . . .2.(i− 2)
and 3 are the only rules. Rules 4 and 5 from that section do not apply, because
of the same reason as above. The modified rules ensure that no vertex is colored
white, and so they work on rb-graphs : graphs whose vertex set is partitioned
into red and black vertices. Using these modified rules, the bounds of |RH | and
|BH | in the proof of Lemma 2, and the fact that there are no white vertices, we
have

Theorem 3. For any fixed j ≥ i ≥ 1, the k-Independent Dominating Set

problem on Ki,j-free graphs has a polynomial kernel with O(jki) vertices.

For d-degenerate graphs, we have i = j = d + 1, and therefore we have:

Corollary 2. For any fixed d ≥ 1, the k-Independent Dominating Set

problem on d-degenerate graphs has a polynomial kernel with O((d + 1)k(d+1))
vertices.

5 Conclusions and Future Work

In this paper, we presented a polynomial kernel for the k-Dominating Set

problem on graphs that do not have Ki,j as a subgraph, for any fixed j ≥ i ≥ 1.
We used this to show that the k-Dominating Set problem has a polynomial
kernel of size O((d+2)2(d+2) ·k2(d+1)2) on graphs of bounded degeneracy, thereby
settling an open problem from [3]. Our algorithm also yielded a slightly simpler
and a smaller kernel for the k-Independent Dominating Set problem on Ki,j-
free and d-degenerate graphs. These algorithms are based on simple reduction
rules that look at the common neighborhoods of sets of vertices.

704 G. Philip, V. Raman, and S. Sikdar

Dom et al. [8] have shown, by extending the kernel lower-bound techniques
of Bodlaender et al. [4], that the k-Dominating Set problem on d-degenerate
graphs does not have a kernel of size polynomial in both d and k unless the
Polynomial Hierarchy collapses to the third level. This shows that the kernel size
that we have obtained for this class of graphs cannot possibly be significantly
improved.

Many interesting classes of graphs are of bounded degeneracy. These include
all nontrivial minor-closed families of graphs such as planar graphs, graphs of
bounded genus, graphs of bounded treewidth, and graphs excluding a fixed
minor, and some non-minor-closed families such as graphs of bounded degree.
Graphs of degeneracy d are Kd+1,d+1-free. Since any Ki,j ; j ≥ i ≥ 2 contains
a 4-cycle, every graph of girth 5 is Ki,j-free. From [18, Theorem 1], there ex-
ist graphs of girth 5 and arbitrarily large degeneracy. Hence Ki,j-free graphs
are strictly more general than graphs of bounded degeneracy. To the best of
our knowledge, Ki,j-free graphs form the largest class of graphs for which FPT
algorithms and polynomial kernels are known for the dominating set problem
variants discussed in this paper.

One interesting direction of future work is to try to demonstrate kernels of
size f (d) ·kc for the k-Dominating Set problem on d-degenerate graphs, where
c is independent of d. Note that the result of Dom et al. mentioned above does
not suggest that such kernels are unlikely. Another challenge is to improve the
running times of the kernelization algorithms: to remove the exponential depen-
dence on d of the running time for d-degenerate graphs, and to get a running
time of the form O(nc) for Ki,j-free graphs where c is independent of i and j.

Acknowledgments. We thank Aravind Natarajan for pointing out the connection
between Ki,j-free and d-degenerate graphs, Saket Saurabh and the other authors
of [8] for sharing with us the lower-bound result mentioned in their paper, and
Shai Gutner for his comments on an earlier draft of this paper.

References

1. Alber, J., Fellows, M.R., Niedermeier, R.: Polynomial-time data reduction for Dom-
inating Set. Journal of the ACM 51(3), 363–384 (2004)

2. Alon, N., Gutner, S.: Linear time algorithms for finding a dominating set of fixed
size in degenerated graphs. In: Lin, G. (ed.) COCOON 2007. LNCS, vol. 4598, pp.
394–405. Springer, Heidelberg (2007)

3. Alon, N., Gutner, S.: Kernels for the dominating set problem on graphs with an
excluded minor. Technical Report TR08-066, The Electronic Colloquium on Com-
putational Complexity (ECCC) (2008)

4. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems with-
out polynomial kernels (Extended abstract). In: Aceto, L., Damg̊ard, I., Goldberg,
L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part
I. LNCS, vol. 5125, pp. 563–574. Springer, Heidelberg (2008)

5. Chen, J., Fernau, H., Kanj, I.A., Xia, G.: Parametric duality and kernelization:
Lower bounds and upper bounds on kernel size. SIAM Journal of Computing 37(4),
1077–1106 (2007)

Solving Dominating Set in Larger Classes of Graphs 705

6. Demaine, E.D., Fomin, F.V., Hajiaghayi, M., Thilikos, D.M.: Subexponential pa-
rameterized algorithms on bounded-genus graphs and H-minor-free graphs. Jour-
nal of the ACM 52(6), 866–893 (2005)

7. Diestel, R.: Graph theory, 3rd edn. Springer, Heidelberg (2005)
8. Dom, M., Lokshtanov, D., Saurabh, S.: Incompressibility through Colors and IDs.

Accepted at ICALP 2009 (2009)
9. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg

(1999)
10. Ellis, J.A., Fan, H., Fellows, M.R.: The Dominating Set problem is fixed parameter

tractable for graphs of bounded genus. Journal of Algorithms 52(2), 152–168 (2004)
11. Fomin, F.V., Thilikos, D.M.: Fast parameterized algorithms for graphs on surfaces:

Linear kernel and exponential speed-up. In: Dı́az, J., Karhumäki, J., Lepistö, A.,
Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 581–592. Springer, Heidel-
berg (2004)

12. Fomin, F.V., Thilikos, D.M.: Dominating sets in planar graphs: Branch-width and
exponential speed-up. SIAM Journal of Computing 36(2), 281–309 (2006)

13. Franceschini, G., Luccio, F., Pagli, L.: Dense trees: a new look at degenerate graphs.
Journal of Discrete Algorithms 4, 455–474 (2006)

14. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP–Completeness. Freeman, San Francisco (1979)

15. Golovach, P.A., Villanger, Y.: Parameterized complexity for domination problems
on degenerate graphs. In: Broersma, H., Erlebach, T., Friedetzky, T., Paulusma,
D. (eds.) WG 2008. LNCS, vol. 5344, Springer, Heidelberg (2008)

16. Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization.
SIGACT News 38(1), 31–45 (2007)

17. Raman, V., Saurabh, S.: Short cycles make W-hard problems hard: FPT algorithms
for W-hard problems in graphs with no short cycles. Algorithmica 52(2), 203–225
(2008)

18. Sachs, H.: Regular graphs with given girth and restricted circuits. Journal of the
London Mathematical Society s1-38(1), 423–429 (1963)

Contraction Bidimensionality: The Accurate
Picture�

Fedor V. Fomin1, Petr Golovach1, and Dimitrios M. Thilikos2

1 Department of Informatics, University of Bergen, N-5020 Bergen, Norway
{fomin,Peter.Golovach}@ii.uib.no

2 Department of Mathematics, University of Athens, Panepistimioupolis, GR15784
Athens, Greece

sedthilk@math.uoa.gr

Abstract. We provide new combinatorial theorems on the structure of
graphs that are contained as contractions in graphs of large treewidth. As
a consequence of our combinatorial results we unify and significantly sim-
plify contraction bidimensionality theory—the meta algorithmic frame-
work to design efficient parameterized and approximation algorithms for
contraction closed parameters.

1 Introduction

The proof of Wagner’s conjecture was the principal goal of the Graph Minors
project of Robertson and Seymour. On the way to this goal, Robertson and
Seymour have developed a powerful theory, which apparently became one of the
most influential achievements in the modern Combinatorics. There are several
very important consequences of Graph Minors theory for Algorithms Theory as
well. In particular, obstruction theorems from Graph Minors give rise to powerful
tools in the design of algorithms. Roughly speaking, such theorems say that ei-
ther some width parameter (like pathwidth, treewidth, branchwidth, rank-width,
etc.) of a graph is small (in which case one can proceed with dynamic program-
ming techniques), or the graph contains some big pattern graph as a minor and
such a graph can certify an answer to the problem. The most celebrated theorem
of this type is the Excluding Grid-minor Theorem [15,13]: “there is a function
f , such that every graph G of treewidth at least f(k) contains a (k × k)-grid as
a minor”. Building on this theorem, Robertson and Seymour obtained their well
known polynomial time algorithm for the disjoint path problems [14]. The bound
in the obstruction theorem was refined by Robertson et al. [18] to f(k) = 202k5

.
It is conjectured by Robertson et al. [18] that this bound is polynomial. For
some classes of graphs like planar, graphs of bounded genus, and more generally,
H-minor-free graphs, it is possible to prove that f(k) = O(k) [4,5,18] and the
� The research of the first two authors was supported by the Norwegian Research

Council. The research of the third author was Supported by the project “Kapodis-
trias” (AΠ 02839/28.07.2008) of the National and Kapodistrian University of Athens
(project code: 70/4/8757).

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 706–717, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Contraction Bidimensionality: The Accurate Picture 707

bidimensionality theory was built on the top of these results. Bidimensionality
provides a meta-algorithmic framework for the design of subexponential param-
eterized algorithms (i.e. the algorithms of running time 2o(k)nO(1), where k is
the parameter and n the length of the input) for wide families of combinatorial
problems. There is also an evidence that such subexponential algorithms are
optimal even for sparse structures such as planar graphs (see surveys [2,9] on
bidimensionality). The applications of this theory are well understood and de-
veloped for minor closed graph optimization problems, i.e. the problems which
only decrease under edge deletions/contractions.

However, many graph optimization problems are closed under edge contrac-
tions but not under edge deletions. Examples include most variants and
extensions of the dominating set problem, connected dominating set, travel-
ling salesman, or various distance modification problems. One of the challenges
in Graph Theory and Algorithms is a possible extension of these results from
graph minors to graph contractions (see [2,7]). The proofs from graph minors are
very nontrivial, and such an extension is a difficult and sometimes an impossible
task. For example, Demaine et al. in [7] disproved the analogue of Wagner’ s
Conjecture for graph contractions. Despite of that, it is possible to extend some
algorithmic graph-minor results to graph contractions. In particular, it is pos-
sible to adapt obstruction theorems from graph minors to graph contractions.
The extension of bidimensionality theory and meta theorems for contraction pa-
rameters was obtained in [3,4,5]. It is based on a modification of the grid-minor
theorem for apex-minor-free graphs (graph class is apex-minor-free if it does not
contain a graph with some fixed apex graph as a minor). An (k× k)-augmented
grid of span s is an (k × k)-grid with some extra edges such that each vertex
is attached to at most s non-boundary vertices of the grid. Fig. 1 provides an
example of an augmented (6 × 6)-grid of span 5. The obstruction theorem for
contractions [3,5] states that for every apex graph H there is a universal con-
stant cH such that every H-minor-free graph of treewidth at least cH · k can be
contracted into a (k×k)-augmented grid of span cH . This combinatorial theorem
is the cornerstone of the meta algorithmic framework in the design of subexpo-
nential parameterized algorithms for contraction-closed parameters on different
classes of sparse graphs. This framework, called contraction bidimensionality,
was developed by Demaine et al. [3] (see also surveys [2,9]). (We postpone the
definitions related to contraction bidimensionality untill Section 5, where we re-
vise it.) Unfortunately, there is a drawback in the bidimensionality framework
which is inherited by the “excluding-grid” theorem for contractions. The prob-
lem is that the number of augmented grids is huge. Even the number of planar
augmented grids, i.e. graphs obtained by triangulating some faces of an (k× k)-
grid, is at least 2(k−1)2 . As a result, to verify if a parameter is apex-contraction
bidimensional, one has to estimate its value on a graph family of exponential size.
In this paper, we eliminate this main inefficiency of the meta algorithmic frame-
work by redefining the notion of apex-contraction bidimensionality in simple and
unifying way. With the new notion, we reduce the verification apex-contraction
bidimensionality to the estimation of the value of the parameter in one specific

708 F.V. Fomin, P. Golovach, and D.M. Thilikos

Fig. 1. An augmented (6 × 6)-grid of span 5 (on the left) and the graph Γ6 (on the
right)

triangulation of the (k × k)-grid. The proof that this simple criterion holds for
apex-contraction bidimensionality is highly nontrivial and requires the identifi-
cation of a single pattern graph to which large-treewidth apex-minor free graphs
can be contracted. This result has its own combinatorial merit as the contraction
counterpart of the Excluding-grid Minor Theorem.

Let Γk be the graph obtained from the (k × k)-grid by triangulating internal
faces of (k × k)-grid such that all internal vertices become of degree 6, all non-
corner external vertices are of degree 4, and then one corner of degree two is
joined by edges with all vertices of the external face. Graph Γ6 is shown in Fig. 1.
The main combinatorial contribution of our work is the following theorem.

Theorem 1. Let H be an apex graph. There is a constant cH such that every
connected graph G excluding H as a minor and of treewidth at least cH · k,
contains Γk as a contraction.

In the conclusion of their survey [2], Demaine and Hajiaghayi mentioned that
contraction bidimensionality is so far undefined for H-minor-free graphs (or gen-
eral graphs). They also wrote that it would be quite interesting to explore an
analogous theory of graph contractions paralleling the Graph Minor Theory. In
this direction, we make a step by extending Theorem 1 for more general graph
classes. We prove that for H-minor free graphs, big treewidth implies the exis-
tence of one two pattern graphs as contractions. In what follows, tw(G) denotes
the treewidth of G.

Theorem 2. Let G be a connected graph excluding a graph H as a minor. Then
there exists some constant cH such that if tw(G) ≥ cH ·k2, then G contains as a
contraction either Γk or Πk, where Πk is the graph obtained from Γk by adding
a vertex adjacent to all vertices of Γk.

We stress that one can (artificially) define contraction-closed parameters whose
value is non-trivial for Πk and, for them, bidimensionality could be defined even
for H-minor free graphs. However, it is interesting to notice that for all known
contraction-closed parameters the value of Πk is independent from k and this

Contraction Bidimensionality: The Accurate Picture 709

indicates that the classic Win/win approach for contraction closed parameters
is structurally confined to apex-minor free graphs.

Finally, we show the following analogue of the Excluding Grid-minor Theorem.
It follows that, instead of a single grid, there are three pattern graphs appearing
as contractions in graphs with big treewidth (for minors, the only such pattern
is the grid).

Theorem 3. For any positive integer k, there is a constant ck such that ev-
ery connected graph G where tw(G) ≥ ck, contains one of Kk, Γk, Πk as a
contraction, where Kk is a complete graph on k vertices.

2 Basic Definitions

We consider finite undirected graphs without loops or multiple edges. The vertex
set of a graph G is denoted by V (G) and its edge set by E(G).

Let G be a graph. For a vertex v, we denote by NG(v) its (open) neighborhood,
i.e. the set of vertices which are adjacent to v. The closed neighborhood of v, i.e.
the set NG(v) ∪ {v}, is denoted by NG[v]. For U ⊆ V (G), we define NG[U] =⋃

v∈U NG[v] (we may omit index if the graph under consideration is clear from
the context). If U ⊆ V (G) (resp. u ∈ V (G) or E ⊂ E(G) or e ∈ E(G)) then
G − U (resp. G − u or G − E or G − e) is the graph obtained from G by the
removal of vertices of U (resp. of vertex u or edges of E or of the edge e).

Surfaces. A surface Σ is a compact 2-manifold without boundary (we always
consider connected surfaces). Whenever we refer to a Σ-embedded graph G we
consider a 2-cell embedding of G in Σ. To simplify notations, we do not distin-
guish between a vertex of G and the point of Σ used in the drawing to represent
the vertex or between an edge and the line representing it. We also consider a
graph G embedded in Σ as the union of the points corresponding to its vertices
and edges. That way, a subgraph H of G can be seen as a graph H , where
H ⊆ G. Recall that Δ ⊆ Σ is an open (resp. closed) disc if it is homeomorphic
to {(x, y) : x2 + y2 < 1} (resp. {(x, y) : x2 + y2 ≤ 1}). The Euler genus of a non-
orientable surface Σ is equal to the non-orientable genus g̃(Σ) (or the crosscap
number). The Euler genus of an orientable surface Σ is 2g(Σ), where g(Σ) is
the orientable genus of Σ. We refer to the book of Mohar and Thomassen [12]
for more details on graphs embeddings.

Contractions and minors. Given an edge e = {x, y} of a graph G, the graph
G/e is obtained from G by contracting the edge e, i.e. the endpoints x and y are
replaced by a new vertex vxy which is adjacent to the old neighbors of x and y
(except from x and y). A graph H obtained by a sequence of edge-contractions
is said to be a contraction of G. In this work we use contraction with different
topological properties, and for this purpose it is convenient to give an alternative
definition of contraction.

Let G and H be graphs and let φ : V (G) → V (H) be a surjective mapping
such that

710 F.V. Fomin, P. Golovach, and D.M. Thilikos

1. for every vertex v ∈ V (H), its codomain φ−1(v) induces connected graph
G[φ−1(v)];
2. for every edge {v, u} ∈ E(H), the graph G[φ−1(v) ∪ φ−1(u)] is connected;
3. for every {v, u} ∈ E(G), either φ(v) = φ(u), or {φ(v), φ(u)} ∈ E(H).
We say that H is a contraction of G via φ, and denote it as H ≤φ

c G. Let us
observe that H is a contraction of G if H ≤φ

c G for some φ : V (G) → V (H). In
this case we simply write H ≤c G. If H ≤φ

c G and v ∈ V (H) then we call the
codomain φ−1(v) by the model of v in G.

Let G be a graph embedded in some surface Σ and let H be a contraction of
G via function φ. We say that H is a surface contraction of G if for each vertex
v ∈ V (H), G[φ−1(v)] is embedded in some open disk in Σ.

Let G0 be a graph embedded in some surface Σ of Euler genus γ and let G+ be
another graph that might share common vertices with G0. We set G = G0∪G+.
Let also H be some graph and let v ∈ V (H). We say that G contains a graph
H as a v-smooth contraction if H ≤φ

c G for some φ : V (G) → V (H) and there
exists an closed disk D in Σ such that all the vertices of G that are outside D
are exactly the model of v, i.e. φ−1(v) = V (G) \ (V (G) ∩D).

A graph H is a minor of a graph G if H is the contraction of some subgraph
of G and we denote it H ≤m G. It is said that H is a surface minor of a graph
G embedded in some surface Σ if H is the surface contraction of some subgraph
of G. It can be easily noted that if H is a surface minor of a graph G embedded
in a surface Σ then it can be assumed that H is embedded in a surface Σ′

homeomorphic to Σ. For simplicity, we assume in such cases that Σ′ and Σ are
the same surface.

We say that a graph G is H-minor-free when it does not contain H as a minor.
We also say that a graph class G is H-minor-free (or, excludes H as a minor)
when all its members are H-minor-free. An apex graph is a graph obtained from
a planar graph G by adding a vertex and making it adjacent to some of the
vertices of G. A graph class G is apex-minor-free if G excludes a fixed apex
graph H as a minor.

Grids and their triangulations. Let k and r be positive integers where k, r ≥
2. The (k × r)-grid is the Cartesian product of two paths of lengths k − 1 and
r − 1 respectively. A vertex of a (k × r)-grid is a corner if it has degree 2. Thus
each (k × r)-grid has 4 corners. A vertex of a (k × r)-grid is called internal if it
has degree 4, otherwise it is called external.

A partial triangulation of a (k × r)-grid is a planar graph obtained from a
(k × r)-grid (we call it the underlying grid) by adding edges. Let us note that
there are many non-isomorphic partial triangulations of on underlying grid. For
each partial triangulation of a (k × r)-grid we use the terms corner, internal
and external referring to the corners, the internal and the external vertices of
the underlying grid.

Let us remind that we define Γk as the following (unique, up to isomorphism)
triangulation of a plane embedding of the (k × k)-grid. Let Γ be a plane em-
bedding of the (k × k)-grid such that all external vertices are on the boundary
of the external face. We triangulate internal faces of the (k × k)-grid such that

Contraction Bidimensionality: The Accurate Picture 711

all the internal vertices have degree 6 in the obtained graph and all non-corner
external vertices have degree 4, and then one corner of degree two is joined by
edges with all vertices of the external face (we call this corner loaded). We also
use notation Γ ∗

k for the graph obtained from Γk if we remove all edges incident
to its loaded vertex that do not exist in its underlying grid. We define the graph
Πk as the graph obtained if we add a new vertex in Γk and connect it with all
vertices of it. Let K be a clique of size 3 in Γ ∗

k . Notice that exactly two of the
edges of Γk[K] are also edges of the underlying (k × k)-grid of Γk. We call the
unique vertex of K that is incident to both these two edges rectangular vertex
of K.

Let G be a partial triangulation of a (k×k)-grid and let m be a positive integer.
Then by Pm(G) we denote the collection of m2 vertex disjoint induced subgraphs
of G where all of them are isomorphic to a (�k/m�× �k/m�)-grid and where the
union of their vertices induce a graph containing (�k/m� ·m × �k/m� ·m)-grid
as a spanning subgraph.

Suppose that G is a connected graph which contains as an induced subgraph
a partially triangulated ((k + 2) × (k + 2))-grid Γ in such a way that internal
vertices of Γ are not adjacent to vertices of V (G)\V (Γ). We define the boundary
contraction of G to Γ as the partially triangulated (k×k)-grid bc(G, Γ) obtained
as follows: let v be a corner of the subgrid of Γ induced by the internal vertices
which has the minimum degree (in this graph), all external vertices of Γ are
contracted to v, and then all vertices of V (G) \ V (Γ) are contracted to v. Note
that if Γ is embedded in a disk of some surface Σ then bc(G, Γ) is a v-smooth
contraction of G.

Treewidth and pathwidth. A tree decomposition of a graph G is a pair (X , T)
where T is a tree and X = {Xi | i ∈ V (T)} is a collection of subsets of V (G)
such that:
1.

⋃
i∈V (T) Xi = V (G),

2. for each edge {x, y} ∈ E(G), {x, y} ⊆ Xi for some i ∈ V (T); and
3. for each x ∈ V (G) the set {i | x ∈ Xi} induces a connected subtree of T .

The width of a tree decomposition ({Xi | i ∈ V (T)}, T) is maxi∈V (T) {|Xi| −
1}. The treewidth of a graph G is the minimum width over all tree decompositions
of G. If, in the above definitions, we restrict the tree T to be a path then we
define the notions of path decomposition and pathwidth. We write tw(G) and
pw(G), respectively, for the treewidth and the pathwidth of a graph G.

Graph minor theorem. The proof of our results is using the Excluded Mi-
nor Theorem from the Graph Minor theory. Before we state it, we need some
definitions.

Definition 1 (Clique-Sums). Let G1 and G2 be two disjoint graphs, and k ≥ 0
an integer. For i = 1, 2, let Wi ⊆ V (Gi), form a clique of size h and let G′

i be
the graph obtained from Gi by removing a set of edges (possibly empty) from the
clique Gi[Wi]. Let F : W1 → W2 be a bijection between W1 and W2. We define
the h-clique-sum of G1 and G2, denoted by G1 ⊕h,F G2, or simply G1 ⊕ G2 if

712 F.V. Fomin, P. Golovach, and D.M. Thilikos

there is no confusion, as the graph obtained by taking the union of G′
1 and G′

2
by identifying w ∈W1 with F (w) ∈ W2, and by removing all the multiple edges.
The image of the vertices of W1 and W2 in G1⊕G2 is called the join of the sum.

Note that some edges of G1 and G2 are not edges of G, since it is possible
that they had edges which were removed by clique-sum operation. Such edges
are called virtual edges of G. We remark that ⊕ is not well defined; different
choices of G′

i and the bijection F could give different clique-sums. A sequence
of h-clique-sums, not necessarily unique, which result in a graph G, is called a
clique-sum decomposition of G.

Definition 2 (h-nearly embeddable graphs). Let Σ be a surface with cycles C1,
. . . , Ch, such that each cycle Ci is the border of an open disc Δi in Σ. A graph
G is h-nearly embeddable in Σ, if G has a subset X of size at most h, called
apices, so that there are (possibly empty) subgraphs G0, . . . , Gh of G \X where

i) G′ = G \X = G0 ∪G1 ∪ · · · ∪Gh (we denote G+ = G1 ∪ . . . ∪Gh),
ii) G0 is embeddable in Σ such that G0∩

⋃
i=1,...,h Δh = ∅, we fix an embedding

of G0,
iii) graphs G1, . . . , Gh (called vortices) are pairwise disjoint,
iv) for 1 ≤ i ≤ h, let Ui := {ui

1, . . . , u
i
mi
} = V (G0) ∩ V (Gi), Gi has a path

decomposition Bi = (Bi
j)1≤j≤mi , of width at most h such that

a) for 1 ≤ j ≤ mi we have ui
j ∈ Bi

j,
b) the vertices (we call them bases of Gi) ui

1, . . . , u
i
mi

appear on Ci in this
order (either if we walk clockwise or anti-clockwise).

The following proposition is known as the Excluded Minor Theorem [17] and is
the cornerstone of Robertson and Seymour’s Graph Minors theory.

Theorem 4 ([17]). For every non-planar graph H, there exists an integer cH ,
depending only on H, such that every graph excluding H as a minor can be
obtained by cH-clique-sums from graphs that can be cH-nearly embedded in a
surface Σ in which H cannot be embedded. Moreover, while applying each of the
clique sums, at most three vertices from each summand other than apices and
vertices in vortices are identified.

Let us remark that by the result of Demaine et al. [6] such a clique-sum decom-
position can be obtained in time O(nc) for some constant c which depends only
from H (see also [1]).

Lemmata on treewidth. We need the following two well known results about
treewidth.

Lemma 1. If G1 and G2 are graphs, then tw(G1⊕G2) ≤ max{tw(G1), tw(G2)}.

Lemma 2. If G is a graph and X ⊆ V (G), then tw(G−X) ≥ tw(G)− |X |.

The following lemma is implicit in the proofs from [5,4].

Lemma 3. Let G be a h-nearly embeddable graph without apices (i.e. where
X = ∅). Then tw(G) ≤ (h + 1) · (tw(G0) + 1)− 1.

Contraction Bidimensionality: The Accurate Picture 713

3 Lemmata on Grids and Their Triangulations

In this section we give a sequence of auxiliary lemmata used to prove Lemma 11,
the most important technical tool in the proofs of Theorems 1 and 2.

It is implicit in the proofs in [4, Theorem 4.12] and [16, (5.1)] that if the
treewidth of a graph embedded in a surface with Euler genus eg(G) is large
enough then this graph contains (r × r)-grid as a surface minor. We state this
with the following lemmata.

Lemma 4. Let G be a graph embedded in a surface Σ of Euler genus γ. If the
treewidth of G is more than 12r(γ + 1), then G has the (r× r)-grid as a surface
minor.

Lemma 5. Let H be a partial triangulation of a ((2k+1)×(2k+1))-grid. Then
H contains Γk as a contraction in a way that all external vertices of H belong
to the model of the loaded corner of Γk.

A basic ingredient of our proofs is a result roughly stating that if a graph G with
a big grid as a minor is embedded on a surface Σ of small genus, then there is a
disc in Σ containing a big enough part of the grid of G. This result is implicit in
the work of Robertson and Seymour and there are simpler alternative proofs by
Mohar and Thomassen [11,19] (see also [4, Lemma 3.3] and [8, Lemma 4.7]). By
using a variant of this result from Geelen et al. [10] together with Lemmata 4
and 5 we prove the following.

Lemma 6. Let G be a graph embedded in a surface of Euler genus γ and let k be
a positive integer. If the treewidth of G is more than 12 · (γ + 1)3/2 · (2k + 4), then
G contains Γk as a v-smooth contraction with v being one of the corners of Γk.

The following is based on Lemma 3 and Lemma 6

Lemma 7. There is a constant c such that if G is a graph h-nearly embedded in a
surface of Euler genus γ without apices, where tw(G) ≥ c · γ3/2 · h3/2 · k, then G
contains as a v-smooth contraction the graph Γk with the loaded corner v.

Let C = {K1, . . . , Kr} be a sequence of (not necessary different) cliques in a
graph G and let E ⊆ E(G[∪i=1,...,rKi]). We define the cl(G, C, E) to be the
graph constructed from G − E by adding for each non-empty Ki a new vertex
z
(i)
new and making it adjacent to all vertices in Ki.
The proof of the following lemma is based on Lemma 5.

Lemma 8. Let G0 be a graph embedded in surface Σ of Euler genus γ and
let G+ be another graph that might share common vertices with G0. We set
G′ = G0 ∪ G+. Let C = {K1, . . . , Kr} be a collection of cliques in G′ such that
each of them shares at most 3 vertices with G0. Let E ⊆ E(G′[∪i=1,...,rKi]) and
let Ĝ′ = cl(G′, C, E). Then, if G′ contains Γ2k+5 with the loaded corner v as a
v-smooth contraction, then Ĝ′ contains Γk as a contraction.

We also need the following two lemmata.

714 F.V. Fomin, P. Golovach, and D.M. Thilikos

Lemma 9. Let G be a graph and let C = {K1, . . . , Kr} be a sequence of cliques
in G, let E ⊆ E(G[∪i=1,...,rKi]) and let Ĝ = cl(G, C, E). Let also G′ = G −X
for some X ⊆ V (G), where |X | ≤ h. We set C′ = {K1 \X, . . . , Kr \X}, E′ be
the edges of E without endpoints in X and let Ĝ′ = cl(G′, C′, E′). Then if Ĝ′ can
be contracted to Γk, then Ĝ can be contracted to a graph H containing a vertex
subset Y , |Y | ≤ h, where H − Y = Γk.

Lemma 10. Let G be a connected graph that obtained from Γ2rk+4(2r−1) by
adding r ≥ 1 new vertices and an arbitrary number of edges incident to these
vertices. Then G can be contracted to an apex graph which contains Γk and at
most one additional vertex which is adjacent to some vertices of Γk.

The following lemma is the most crucial technical result used in the proofs of
Theorems 1 and 2.

Lemma 11. Let G be a connected graph excluding a graph H as a minor. Then
there exists some constant cH such that if tw(G) ≥ cH · k, then G contains as a
contraction a graph where the removal of at most one of its vertices results to Γk.

Proof. Let G be a connected H-minor-free graph. If H is a planar graph then
G has bounded treewidth [13] and the claim of the theorem is trivial. Assume
that H is not planar. By Theorem 4, G can be represented as h-clique-sum
G = G1 ⊕ · · · ⊕ Gm such that each graph Gi can be h-nearly-embedded in
a surface Σ (on which H cannot be embedded) where h is a constant which
depends only on H . Let F = Gi such that tw(F) = maxj=1,...,m tw(Gj). By
Lemma 1,

tw(G) ≤ tw(F). (1)

Assume that F is h-nearly-embedded in Σ and denote by X the set of apices of
F . Recall that |X | ≤ h. Let F ′ = F −X . By Lemma 2,

tw(F)− |X | ≤ tw(F ′). (2)

Observe that F ′ is h-nearly embedded in Σ without apices. Using Lemma 7 and
combining it’s claim with inequalities 1 and 2, we note that there is a constant
cH which depends only on H such that if tw(G) ≥ cH · k then F ′ contains as
a v-smooth contraction the graph Γr where v is the loaded corner of Γr and
r = 2r+1 · k + 8(2r − 1) + 5.

Denote by S1, . . . , St components of the graph G − V (F). For each Si let
Ki be the set of vertices of F which are adjacent to some vertex of Si, and
let C = {K1, . . . , Kt}. By the definition of h-clique-sum each Ki is a clique of
F . Denote by E the set of virtual edges of F . We assume that for any virtual
edge {u, v}, there is a clique Ki ∈ C such that u, v ∈ Ki (otherwise it is easy
to redefine h-clique-sums in the representation of G and exclude such an edge).
For every component Si, all vertices of it are contracted into single vertex z

(i)
new.

Denote by F̂ obtained from G by these contractions. It can be easily seen that F̂
is the graph cl(F, C, E). We set C′ = {K1 \X, . . . , Kt \X}, E′ be the edges of E
without endpoints in X and let F̂ ′ = cl(F ′, C′, E′). Since F ′ can be contracted

Contraction Bidimensionality: The Accurate Picture 715

to Γr, it follows immediately from Lemma 8 that F̂ ′ contains Γs as a contraction
for s = (r−6)/2 = 2r ·k+4(2r−1). Then by Lemma 9, F̂ (and consequently the
graph G) can be contracted to a graph R containing a vertex subset Y, |Y | ≤ h
such that R − Y = Γs. It remains to use Lemma 10 and note that R can be
contracted to an apex graph which consists of Γk and at most one apex vertex
which is adjacent to some vertices of Γk. The graph R is a contraction of G, so
G contains as a contraction a graph which after the removal of at most one of
its vertices results to Γr.

4 Proofs of Theorems

Proof (of Theorem 1). Let H be an apex graph. It was shown by Robertson et
al. [13], that every planar graph on
h/7� vertices is a minor of an (h× h)-grid,
and without loss of generality, we can assume that H is a graph constructed
from a (h × h)-grid by adding one apex vertex adjacent to all vertices of the
grid. By Lemma 11, if tw(G) ≥ cH · k, for some constant cH , then G contains
as a contraction a graph F such that the removal of at most one of its vertices
results in Γ = Γh·(k+2). If F = Γ , then the theorem follows trivially. Thus we
assume that F has an additional vertex u adjacent to some vertices of Γ . We
consider the collection Ph(Γ) of h2 vertex disjoint induced subgraphs of Γ . We
claim that there is a subgraph in Ph(Γ) such that none of its vertices is adjacent
to u. Indeed, if each subgraph in Ph(Γ) contains a vertex adjacent to u, then
Γ contain an (h × h)-grid as a minor such that the nodes of this grid are the
neighbors of u. But this contradicts the assumption that G is H-minor-free.

Thus there is a subgraph Γ ∗
k+2 in Ph(Γ) such that none of the vertices of Γ ∗

k+2
is adjacent to u. The graph Γ ∗

k+2 can be seen as a graph obtained from Γk+2 by
removal all edges adjacent to the loaded corner of Γk+2 that are not the edges
of the underlying grid. Therefore, after applying the boundary contraction of F
to Γ ∗

k+2, the resulting graph bc(F, Γ ′) is Γk.

Proof (of Theorem 2). Let us assume that tw(G) ≥ cH · k2, where cH is the
constant from Lemma 11. By the same lemma, G can be contracted to a graph
H such that by the removal of at most one vertex of H the result is isomorphic
to Γk2 . If H is itself isomorphic to Γk2 then we are done as Γk2 contains Γk as a
contraction. Suppose then that G has an additional vertex x and let S = NG(x).
Let P be a collection of k disjoint copies of Γ ∗

k in Γk2 . In case for some A ∈ P ,
V (A)∩S = ∅, we contract all edges with both endpoints in ∪H∈P\{A}V (H). The
obtained graph is Γ ∗

k with one more vertex adjacent to all its external vertices
and this graph can be further contracted to Γk. Suppose now that each graph in
P intersects some neighbor of x. Then contract all edges of all graphs in P and
the resulting graph is Pk.

Proof (of Theorem 3). Suppose that G does not contain H = Kk as a con-
traction. Then G is an H-minor-free graph. By Theorem 2, there exists some
constant cH such that if tw(G) ≥ cH ·k2, then G contains as a contraction either
Γk or Πk. We put ck = cH · k2, which concludes the proof of the theorem.

716 F.V. Fomin, P. Golovach, and D.M. Thilikos

5 Contraction Bidimensionality Revised

The theory of bidimensionality is a meta algorithmic framework for designing
efficient fixed-parameter algorithms and approximation algorithms for a broad
range of graph problems. Roughly speaking, graph problem is bidimensional
if (a) the solution of the problem on the (k × k)-grid (or some modification
of the grid) is proportional to Ω(k2) (b) the problem is closed under taking
minor/contraction, which means that the solution value can only decrease with
contracting or removing edges in the graph. Many problems are bidimensional.
Classic examples are vertex cover, dominating set, and feedback vertex set.

A parameter P is a function mapping graphs to nonnegative integers. The
decision problem associated with P asks, for a given graph G and nonnegative
integer k, whether P (G) ≤ k. Intuitively, a parameter is bidimensional if its
value depends on the area of a grid and not on its width or height.

For minor-closed parameters, the definition of bidimensionality is easy [3]. A
parameter P is minor bidimensional if (a) P is closed under taking of minors
and (b) for the (k× k)-grid Γ , P (Γ) = Ω(k2). Examples of minor bidimensional
parameters are sizes of a vertex cover, a feedback vertex set, or a minimum
maximal matching in a graph.

For contraction-closed parameters, the definition of bidimensionality is much
more complicated and depends on the class of graphs it is used for. Demaine
et al. [3,4,2,8] defined parameter P as contraction bidimensional if the following
hold: (a) P is closed under taking of contractions and (b) for a “(k × k)-grid-
like graph” Γ , P (Γ) = Ω(k2). Here the property of being “grid-like graph” is
different for different graph classes and is defined as follows.

b1) For planar graphs and single-crossing-minor-free graphs, a “(k×k)-grid-like
graph” is a partially triangulated (k × k)-grid;

b2) For graphs of Euler genus γ, this is a partially triangulated (k × k)-grid
with up to γ additional handles;

b3) For apex-minor-free graphs, this is (k × k)-augmented grid, i.e. partially
triangulated grid augmented with additional edges such that each vertex is
incident to O(1) edges to non-boundary vertices of the grid.

Typical examples of contraction bidimensional parameters are sizes of a domi-
nating, clique-transversal, or edge domination sets.

The main contribution of Theorem 1 to contraction bidimensionality is that
the notions of “grid-like” graphs (b1), (b2), and (b3) can be replaced by the
following one

b′) P (Γk) = Ω(k2).

This is justified by the following theorem, which is the main (meta) algorithmic
contribution of this paper.

Theorem 5. Let P be a graph parameter which satisfies conditions (a) and
(b′). Let G be a n-vertex graph excluding an apex graph H as a minor. Then if
P is computable in time 2O(tw(G)) · nO(1), then deciding P (G) ≤ k can be done
in time 2O(

√
k) · nO(1).

Contraction Bidimensionality: The Accurate Picture 717

References

1. Dawar, A., Grohe, M., Kreutzer, S.: Locally excluding a minor. In: LICS 2007, pp.
270–279. IEEE Computer Society, Los Alamitos (2007)

2. Demaine, E., Hajiaghayi, M.: The bidimensionality theory and its algorithmic ap-
plications. The Computer Journal 51, 292–302 (2007)

3. Demaine, E.D., Fomin, F.V., Hajiaghayi, M., Thilikos, D.M.: Bidimensional pa-
rameters and local treewidth. SIAM J. Discrete Math. 18, 501–511 (2004/2005)

4. Demaine, E.D., Fomin, F.V., Hajiaghayi, M., Thilikos, D.M.: Subexponential pa-
rameterized algorithms on graphs of bounded genus and H-minor-free graphs. J.
ACM 52, 866–893 (2005)

5. Demaine, E.D., Hajiaghayi, M.: Linearity of grid minors in treewidth with appli-
cations through bidimensionality. Combinatorica 28, 19–36 (2008)

6. Demaine, E.D., Hajiaghayi, M., ichi Kawarabayashi, K.: Algorithmic graph minor
theory: Decomposition, approximation, and coloring. In: FOCS 2005, pp. 637–646.
IEEE Computer Society, Los Alamitos (2005)

7. Demaine, E.D., Hajiaghayi, M., ichi Kawarabayashi, K.: Algorithmic graph minor
theory: Improved grid minor bounds and Wagner’s contraction. Algorithmica (to
appear, 2009)

8. Demaine, E.D., Hajiaghayi, M., Thilikos, D.M.: The bidimensional theory of
bounded-genus graphs. SIAM J. Discrete Math. 20, 357–371 (2006) (electronic)

9. Dorn, F., Fomin, F.V., Thilikos, D.M.: Subexponential parameterized algorithms.
Comp. Sci. Rev. 2, 29–39 (2008)

10. Geelen, J.F., Richter, R.B., Salazar, G.: Embedding grids in surfaces. European J.
Combin. 25, 785–792 (2004)

11. Mohar, B.: Combinatorial local planarity and the width of graph embeddings.
Canad. J. Math. 44, 1272–1288 (1992)

12. Mohar, B., Thomassen, C.: Graphs on surfaces. Johns Hopkins University Press,
Baltimore (2001)

13. Robertson, N., Seymour, P., Thomas, R.: Quickly excluding a planar graph. J.
Combin. Theory Ser. B 62, 323–348 (1994)

14. Robertson, N., Seymour, P.D.: Disjoint paths—a survey. SIAM J. Algebraic Dis-
crete Methods 6, 300–305 (1985)

15. Robertson, N., Seymour, P.D.: Graph minors. V. Excluding a planar graph. J.
Comb. Theory Series B 41, 92–114 (1986)

16. Robertson, N., Seymour, P.D.: Graph minors. X. Obstructions to tree-
decomposition. J. Combin. Theory Ser. B 52, 153–190 (1991)

17. Robertson, N., Seymour, P.D.: Graph minors. XVI. Excluding a non-planar graph.
J. Combin. Theory Ser. B 89, 43–76 (2003)

18. Robertson, N., Seymour, P.D., Thomas, R.: Quickly excluding a planar graph. J.
Combin. Theory Ser. B 62, 323–348 (1994)

19. Thomassen, C.: A simpler proof of the excluded minor theorem for higher surfaces.
J. Combin. Theory Ser. B 70, 306–311 (1997)

Minimizing Movement:
Fixed-Parameter Tractability

Erik D. Demaine1, MohammadTaghi Hajiaghayi2, and Dániel Marx3,�

1 MIT Computer Science and Artificial Intelligence Laboratory,
32 Vassar St., Cambridge, MA 02139, USA

edemaine@mit.edu
2 AT&T Labs — Research, 180 Park Ave.,

Florham Park, NJ 07932, USA
hajiagha@research.att.com

3 Department of Computer Science and Information Theory, Budapest University of
Technology and Economics, Budapest H-1521, Hungary

dmarx@cs.bme.hu

Abstract. We study an extensive class of movement minimization prob-
lems which arise from many practical scenarios but so far have little
theoretical study. In general, these problems involve planning the co-
ordinated motion of a collection of agents (representing robots, people,
map labels, network messages, etc.) to achieve a global property in the
network while minimizing the maximum or average movement (expended
energy). The only previous theoretical results about this class of prob-
lems are about approximation, and mainly negative: many movement
problems of interest have polynomial inapproximability. Given that the
number of mobile agents is typically much smaller than the complexity of
the environment, we turn to fixed-parameter tractability. We character-
ize the boundary between tractable and intractable movement problems
in a very general set up: it turns out the complexity of the problem funda-
mentally depends on the treewidth of the minimal configurations. Thus
the complexity of a particular problem can be determined by answering
a purely combinatorial question. Using our general tools, we determine
the complexity of several concrete problems and fortunately show that
many movement problems of interest can be solved efficiently.

1 Introduction

In many applications, we have a relatively small number of mobile agents (e.g., a
team of autonomous robots or people) moving cooperatively in a vast terrain or
complex building to achieve some task. The number of cooperative agents is often
small because of their expense: only small groups of people (e.g., emergency re-
sponse or SWAT teams) can effectively cooperate, and autonomous mobile robots
are currently quite expensive (in contrast to, e.g., immobile sensors). Nonethe-
less, an accurate model of the immense/intricate environment they traverse, and
� Supported by the Magyary Zoltán Felsőoktatási Közalaṕıtvány and the Hungarian

National Research Fund (OTKA grant 67651).

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 718–729, 2009.

Minimizing Movement: Fixed-Parameter Tractability 719

their ability to communicate or otherwise interact (say, by limited-range wire-
less radios or walkie-talkies), is complicated and results in a large problem input.
Thus, to compute the most energy-efficient motion in such a scenario, we allow
the running time to be relatively large (exponential) in the number of agents, but
it must be small (polynomial or even linear) in the complexity of the environ-
ment. This set up motivates the study of fixed-parameter tractability (FPT) [10]
for minimizing movement, with running time f(k) · nO(1) for some function f ,
parameterized by the number k of mobile agents.

A movement minimization problem is defined by a class of target configura-
tions that we wish the mobile agents to form and a movement objective function.
For example, we may wish to move the agents to form a connected network (for
communication), an independent set (either dispersing robots or placing map
labels), or another topology. See Section 5 for more formal examples of problems
and how our theory applies to them.

In the general formulation of the movement problem, we are given an arbi-
trary metric defining feasible motion, a graph defining “connectivity” (possibly
according to the infinite Euclidean plane), and a desired property of the con-
nectivity among the agents defined by a class G of graphs. We view the agents
as “pebbles” located at vertices of the connectivity graph (and we use the two
terms interchangeably). Our goal is to move the agents so that they induce a
subgraph of the connectivity graph that possesses the desired property, that is,
belongs to the class G. There are three natural measures of agent motion that
we might want to minimize: the total amount of motion, the maximum motion
of any agent, and the number of moved agents. To obtain further generality and
to model a wider range of problems, we augment this model with additional
features: the agents have types, desired solutions can require certain types of
agents, multiple agents can be located at the same vertex, and the cost of the
movement can be different (even nonmetric) for the different agents.

To what level of generality can we solve these movement problems? Several
versions have been studied from an approximation algorithms perspective in
SODA 2007 [7] and FOCS 2008 [8], in addition to various specific problems
considered less formally in practical scenarios [2,4,5,9,12,13,14]. Unfortunately,
most forms of the movement problem are NP-complete, and furthermore are
often hard to approximate even within polynomial factors [7]. Nonetheless, the
problems are of significant practical interest, and the motion must be kept small
in order to minimize energy consumption. Fortunately, as motivated above, the
number of mobile agents is often small. Thus we have a natural context for
considering fixed-parameter algorithms, i.e., algorithms with running time f(k) ·
nO(1), where parameter k is the number of mobile agents.

2 Main Results

We develop general efficient fixed-parameter algorithms for a broad family of
movement problems. Furthermore, we show our results are tight by characteriz-
ing, in a very general setting, the line between fixed-parameter tractability and

720 E.D. Demaine, M. Hajiaghayi, and D. Marx

intractability. It turns out that the notion of treewidth plays an important role
in defining this boundary line. Specifically we show that, for problems closed
under edge addition (i.e., adding an edge to the connectivity graph cannot de-
stroy a solution), the complexity of the problem depends solely on whether the
edge-deletion minimal graphs of the property have bounded treewidth. If they all
have bounded treewidth, we show how to solve a very general formulation of the
problem with an efficient fixed-parameter algorithm. If they have unbounded
treewidth, we show that even very simple questions are W[1]-hard, meaning
there is no efficient fixed-parameter algorithm under the standard parameter-
ized complexity assumption FPT �= W[1]. In Section 5, we use these results to
characterize the complexity of several concrete problems.

Our results apply to a more general model of agents, which in particular lets us
capture facility-location types of problems where the number of facilities can be
arbitrary large (not a fixed parameter). Such problems arise, e.g., in organizing
a small team within a large infrastructure of wired network hubs or mobile
satellites. The general model we consider divides the agents into three types—
client, facility, and obnoxious agents—and the parameter is just the number of
clients, which can be much smaller than the total number of agents. The clients
can require collocated or nearby facility agents, among a potentially large set of
facility agents, which themselves are mobile. Intuitively, facilities provide some
service needed by clients. Clients can also require at most a certain number
(e.g., zero) of collocated obnoxious agents (again among a potentially large,
mobile set), which can represent dangerous or undesirable resources. In other
words, adding facility agents or removing obnoxious agents does not affect a
solution. More generally, there can be many different subtypes of client, facility,
and obnoxious agents, and we may require a particular pattern of these types.

Formally, our results are as follows. A movement problem specifies a multicol-
ored graph property: an (infinite) set G of desired configurations, each specifying a
desired subgraph and how that subgraph should be populated by different types
of agents (a multicolored graph). In this way, we can specify different types of
client agents that need to interact in a particular way, or need particular types of
nearby facility agents. The goal of the movement problem is to move the agents
into a configuration containing at most 	 vertices that contain all k client agents
and induce a “good” target pattern: either the induced multicolored graph is in
the set G or it is better than some multicolored graph G ∈ G, i.e., contains more
facility agents and fewer obnoxious agents at each vertex.

A mild technical condition that we require is that the multicolored graph
property G is regular : for every fixed numbers k and 	, there are only finitely
many graphs in G with at most 	 vertices and at most k client agents (as we do
not bound the number of obnoxious and facility agents here, this is a nontrivial
restriction). In other words, there should be only finitely many minimal ways to
satisfy a bounded number of clients in a bounded subgraph. For example, the
propery requiring that the number of facility agents is not less than the number
of obnoxious agents is not a regular property. Note that this restriction does not
say that there is only a finite number of good configurations: as mentioned in the

Minimizing Movement: Fixed-Parameter Tractability 721

previous paragraph, we allow configurations having any number of extra facility
vertices. Furthermore, our main algorithmic result considers properties that are
closed under edge addition; this is certainly true for properties that model some
notion of connectivity.

Theorem 1. If G is a regular multicolored graph property that is closed un-
der edge addition, and if the edge-deletion minimal graphs in G have bounded
treewidth, then the movement problem can be solved in f(k,) · nO(1) time, as-
suming that the movement cost function is the same on any two agents of the
same obnoxious type that are initially located on the same vertex.

Here the movement cost function is an arbitrary (polynomially computable)
function for each agent specifying the nonnegative integer cost of moving that
agent to each vertex in the graph. This definition allows nonmetric terrains,
agents of different speeds, immobile agents, regions impassable by certain agents,
etc. In the movement problem, we are given an initial configuration (a multicol-
ored graph), and we wish to minimize the total cost of all movement subject to
reaching one of the desired target configurations in G with at most 	 vertices,
where both 	 and the number k of client agents are parameters. This problem
in particular captures the variations of minimizing the maximum movement and
minimizing the number of moved agents. For the latter, we simply specify a
movement cost function for each agent of 0 to remain stationary and 1 to make
any move. For the former, we can binary search on the maximum movement cost
τ , and modify the movement cost function to jump to ∞ whenever exceeding τ .

Our main algorithm uses several tools from fixed-parameter tractability, color
coding, and graph structure theory, in particular treewidth. This combination
of techniques seems interesting in its own right.

We prove a matching hardness result for Theorem 1: if the edge-deletion min-
imal graphs in G have unbounded treewidth, then it is hard to answer even some
very simple questions. Thus treewidth plays an essential role in the complexity
of the problem, which is not apparent at first sight.

Theorem 2. If G is any (possibly regular) multicolored graph property that is
closed under edge addition, and for every w ≥ 1, there is an edge-deletion mini-
mal graph Gw ∈ G with treewidth at least w and at least one client agent on each
vertex (but no other type of agent), then the movement problem is W[1]-hard
with the combined parameter (k,), already in the special case where each agent
is allowed to move at most one step.

3 Further Results

In addition to our general classification, we present many additional fixed-
parameter results. These results capture situations where the general classifica-
tion cannot be applied directly, or the general results apply but problem-specific
approaches enable more efficient algorithms. Specifically, we consider situations
where the graphs are more specific (e.g., almost planar), the property is not

722 E.D. Demaine, M. Hajiaghayi, and D. Marx

closed under edge addition, or the number of client agents is not bounded. Our
aim is to demonstrate that there are many problem variants that can be explored
and that there is a vast array of algorithmic techniques that become relevant
when studying movement problems. In particular, the fast set convolution algo-
rithm of Björklund et al., results from algorithmic graph minor theory, Cour-
celle’s Theorem, bidimensionality, Canny’s Roadmap Algorithm, and a result of
Khot and Raman all find uses in this framework.

Planar graphs and H-minor-free graphs. Our general characterization
makes no assumptions on the connectivity structure: it is an arbitrary graph.
However, significantly stronger results can be achieved if we have some restric-
tion on the connectivity graph. For example, many road networks, fiber networks,
and building floorplans can be accurately represented by planar graphs. We show
that, for planar graphs, the fixed-parameter algorithms of Theorem 1 work even
if we remove the requirement that G is closed under edge addition.

In many cases, approximation and fixed-parameter tractability results for pla-
nar graphs generalize to arbitrary surfaces, to bounded local treewidth graphs,
and to H-minor-free graph classes. These generalizations are made possible by
the algorithmic consequences of the Graph Minor Theorem [6]. To obtain max-
imum generality, we state the result on planar graphs generalized to arbitrary
H-minor-free classes:

Theorem 3. If G is a regular multicolored graph property, then for every fixed
graph H, the movement problem can be solved on H-minor-free graphs in f(k,)·
nO(1) time, assuming that the movement cost function is the same on any two
agents of the same obnoxious type that are initially located on the same vertex.

One possible application scenario where these generalizations of planar graphs
play a role is the following. The terrain is a multi-level building, where the con-
nectivity graph is planar on each level, and there are at most d connections
between two adjacent levels. Now the graph is Kd+1-free for d ≥ 4 (as a Kd+1
minor would be contained on one level). Thus, for every fixed value of d, Theo-
rem 3 applies for such connectivity graphs.

We also consider two specific problems in the context of planar graphs.

Bidimensionality. We consider parameterizing by the sum of all movement, in-
stead of the number of pebbles, for the problem of DISPERSION (see Section 5).
This parameterization is likely hard in general, but we show that it becomes
fixed-parameter tractable in planar graphs, even in linear time (for every fixed
maximum sum k). The proof uses a combination of bidimensionality theory,
parameter-treewidth bounds, grid-minor theorems, Courcelle’s Theorem, and
monadic second-order logic.

Planar STEINER CONNECTIVITY. In the STEINER CONNECTIVITY prob-
lem (see Section 5), the goal is to connect one type of agents (“terminals”) using
another type of agents (“connectors”). Our general characterization shows that
this problem is fixed-parameter tractable if the numbers of both types of agents
are bounded. The problem becomes W[1]-hard if only the number of connector

Minimizing Movement: Fixed-Parameter Tractability 723

agents is bounded and the number of terminal pebbles is unbounded. On the
other hand, we show that this version of the problem is fixed-parameter tractable
for planar graphs, using problem-specific techniques.

Geometric graphs. In some of the applications, the environment can be natu-
rally modeled by the infinite geometric graph defined by Euclidean space, where
vertices correspond to points and edges connect two vertices that are within a
fixed distance of each other, say 1. In this case, we develop efficient algorithms
in a very general setting, even though the graph is infinite:

Theorem 4. If G is any regular graph property, then the movement problem
can be solved in Euclidean d-space up to multiplicative error 1 + ε in f(k, d) ·
nO(1) lg(1/ε) time, where k is the total number of agents (including facility and
obnoxious agents).

The main tool for proving this theorem is Canny’s Roadmap Algorithm for
motion planning in Euclidean space [3], which lets us manipulate bounded-size
semi-algebraic sets.

Hereditary properties. In addition to properties closed under edge addition,
we investigate another general class of properties, hereditary properties, where
if some G ∈ G, then every induced subgraph of G is also in the property G. For
example, independence (having no edges) is such a property. We prove another
general hardness result for hereditary properties:

Theorem 5. Let G be a hereditary property where each vertex has exactly one
client pebble and there are no other type of pebbles. If the maximum clique size
is bounded in G, then the movement problem is W[1]-hard with the combined
parameter (k,), already in the special case where each agent is allowed to move
at most one step in the graph.

The proof of Theorem 5 uses a hardness result by Khot and Raman [11] on the
parameterized complexity of finding induced subgraphs with hereditary prop-
erties. The theorem in particular establishes W[1]-hardness of DISPERSION
(moving to an independent set); see Section 5.

Improving CONNECTIVITY with fast subset convolution. Finally,
we optimize one particularly practical problem, CONNECTIVITY: moving the
agents so that they form a connected subgraph. Our general characterization im-
plies that this problem is fixed-parameter tractable. Using the recent algorithm
of Björklund et al. [1] for fast subset convolution in the min-sum semiring, we
design a more efficient algorithm for this problem: the exponential factor of the
running time is only O(2k).

In summary, our results form a systematic study of the movement problem,
using powerful tools to classify the complexity of the different variants. Our
algorithms are general, so may not be optimal for any specific version of the
problem, but they nonetheless characterize which problems are tractable, and
lead the way for future investigation into more efficient algorithms for practical
special cases.

724 E.D. Demaine, M. Hajiaghayi, and D. Marx

4 Model and Definitions

In this section, we make precise the model described in the Introduction and
introduce some additional notation.

Definition 1. We fix three finite sets of colors: Cm (main colors), Cf (facility
colors), Co (obnoxious colors).

Definition 2. A multicolored graph is a graph with a multiset of colored pebbles
assigned to each vertex (a vertex can be assigned multiple pebbles with the same
color). We denote by nG(c, v) the number of pebbles with color c at vertex v in
G. A multicolored graph property is a (possibly infinite) recursively enumerable
set G of multicolored graphs. A graph property G is regular if for every fixed
k, 	 there is only a finite number of graphs in G with at most 	 vertices and at
most k main pebbles and there is an algorithm that, given k and 	, enumerates
these graphs. A graph property G is hereditary if, for every G ∈ G, every induced
subgraph of G is also in G. A graph property G is closed under edge addition if
whenever G is in G and G′ is obtained from G by connecting two nonadjacent
vertices, then G′ is also in G. A graph G ∈ G is edge-deletion minimal if there
is no graph G′ ∈ G that can obtained from G by edge deletions.

Definition 3. Let G1 and G2 be two multicolored graphs whose underlying
graphs are isomorphic. G2 dominates G1 if there is an isomorphism φ : V (G1) →
V (G2) such that, for every v ∈ V (G1),

1. for every c ∈ Cm, vertices v and φ(v) have the same number of pebbles with
color c;

2. for every c ∈ Cf , vertex φ(v) has at least as many pebbles with color c as v;
and

3. for every c ∈ Co, vertex φ(v) has at most as many pebbles with color c as
vertex v.

Definition 4. For every set G of multicolored graphs, the movement problem
has the following inputs:

1. a multicolored graph G(V, E), P is the set of pebbles, k is the number of
main pebbles;

2. a movement cost function cp : V → Z+ for each pebble p ∈ P ;
3. integer 	, the maximum solution size; and
4. integer C, the maximum cost.

The task is to find a movement plan m : P → V such that

1. the total cost
∑

p∈P cp(m(p)) of the moves is at most C; and
2. after the movements, there is a set S of at most 	 vertices such that S

contains all the main pebbles and the multicolored graph G[S] dominates
some graph in G.

Minimizing Movement: Fixed-Parameter Tractability 725

By using different movement cost functions, we can express various goals:

1. if cp(v) is the distance of p from v, then we have to minimize the sum of
movements,

2. if cp(v) = 0 if v is at distance at most d from p and ∞ otherwise, then we
have to find a solution where p moves at most d steps,

3. if cp(v) = 0 if v is the initial location of p and cp(v) = 1 for every other
vertex, then we have to minimize the number of pebbles that move.

Of course, we can express combinations of these goals or the different pebbles
can have different movement graphs, etc. The formulation is very flexible.

5 Sample Problems of Interest

To illustrate the generality of our model and characterization, we define several
specific movement problems similar to those mentioned informally in the In-
troduction, and determine their fixed-parameter tractability using Theorems 1
and 2. Using these tools, if a movement problem can be modeled with colored
pebbles and the target patterns are closed under adding edges, then the com-
plexity of the problem can be determined by solving the (sometimes nontrivial)
combinatorial question of whether the minimal configurations have bounded
treewidth. The minimal configurations are those pebbled graphs that are ac-
ceptable solutions, but removing any edge makes them unacceptable.
Example: CONNECTIVITY. Move the pebbles (agents) so that they are
connected and on distinct vertices. The parameter is the number k of pebbles.
Now there is only one, main color of pebbles, and G contains all connected
graphs with exactly one pebble on each vertex. Clearly, G is closed under edge
addition and the edge-deletion minimal graphs are trees. Trees have treewidth 1,
hence by Theorem 1, this movement problem is fixed-parameter tractable for
any movement cost function. The variant of the problem where it is not required
that the pebbles are on distinct vertices is also FPT: in this case, G contains all
connected graphs with at least one pebble on each vertex. �
Example: GRID. Move the k pebbles so that they form a �

√
k� × �

√
k� square

grid. The parameter is the number k of pebbles. Again there is only one, main color
of pebbles, and G contains all graphs containing a spanning square grid subgraph
with exactly one pebble on each vertex.Clearly,G is closedunder edge addition and
the edge-deletion minimal graphs are grids, which have arbitrarily large treewidth.
Thus Theorem 2 implies that it is W[1]-hard, parameterized by (k,), to decide
whether there is a solution where each pebble moves at most one step. �
Example: s-t CONNECTIVITY (few pebbles). Move the pebbles to form
a path of pebbled vertices between fixed vertices s and t. The parameter is the
number k of pebbles. Now there are two main colors of pebbles, call them red and
blue, and G consists of all graphs containing exactly two red pebbles and a path
between them using only vertices with blue pebbles. We reduce s-t CONNECTIV-
ITY to this movement problem by putting red pebbles at s and t, and giving them

726 E.D. Demaine, M. Hajiaghayi, and D. Marx

an infinite movement cost to any other vertices. Clearly, G is closed under edge
addition and the edge-deletion minimal graphs are paths. Paths have treewidth 1,
so by Theorem 1, this problem is fixed-parameter tractable. �
In the next example, we show that a much more general version of s-t CONNEC-
TIVITY is FPT: instead of parameterizing by the number k of pebbles, we can
parameterize by the maximum length L of the path. Thus we can have arbitrarily
many pebbles that might form the path, as long as the formed path itself is small.
Example: s-t CONNECTIVITY (bounded length). Move the pebbles to
form a path of pebbled vertices of length at most L between fixed vertices s
and t. The parameter is the length L. Now we define one main color of pebbles,
red, and one facility color of pebbles, blue, and we define G as in the previous
example. Again by Theorem 1, this problem is fixed-parameter tractable in the
combined parameter (k,); in the example, we have k = 2 and 	 = L + 1. �
Example: STEINER CONNECTIVITY. Connect the red pebbles (rep-
resenting terminals) by moving the blue pebbles to form a Steiner tree. The
parameter is the number of red pebbles plus the number of blue pebbles in the
solution Steiner tree. This is simply a generalization of s-t CONNECTIVITY to
more than two red pebbles. Again by Theorem 1 the problem is fixed-parameter
tractable (the edge-deletion minimal graphs are trees), even when the number
of blue pebbles is very large. �
Example: 2-CONNECTIVITY. Move the pebbles so that they induce a 2-
connected graph and the pebbles are on distinct vertices. The parameter is the
number k of pebbles. Now G contains all 2-connected graphs and clearly G is
closed under edge addition. The edge-deletion minimal graphs have unbounded
treewidth: subdividing every edge of a clique gives an edge-deletion-minimal 2-
connected graph. Thus by Theorem 2, it is W[1]-hard to decide whether there
is a solution where each pebble moves at most one step. �
Example: s-t d-CONNECTIVITY. Move the pebbles so that there are d
vertex-disjoint paths using pebbled vertices between two fixed vertices s and t.
The parameter is the total length L of the solution paths. Now we use one main
color, red, and one facility color, blue, and Gd consists of all graphs containing
two vertices with a red pebble on each, and having d vertex-disjoint paths be-
tween these two vertices, with blue pebbles on each path vertex. In the input
instance, there are red pebbles on s and t, and the cost of moving them is infinite.
Clearly, Gd is closed under edge addition and the edge-deletion minimal graphs
are series-parallel (as they consist of d internally vertex disjoint paths connect-
ing two vertices), which have treewidth 2. Hence, by Theorem 1, this movement
problem is fixed-parameter tractable with respect to L, for every fixed d. Again
the number of blue pebbles can be arbitrarily large. �
The previous example shows that s-t d-CONNECTIVITY is FPT for every fixed
value of d. Furthermore, we can show that the problem remains FPT even if d
appears as part of the input.
Example: s-t d-CONNECTIVITY (unbounded version). Move the peb-
bles so that there are d vertex-disjoint paths using pebbled vertices between two

Minimizing Movement: Fixed-Parameter Tractability 727

fixed vertices s and t, where d is a number given in the input. The parameter is
the total length L of the solution paths. First, if d is larger than the bound on the
total length of the paths, then there is no solution. Otherwise, we can assume d is a
fixed parameter. Now we use two main colors, red and green, and one facility color,
blue. A graph G is in G if the blue pebbles form d vertex-disjoint paths between
two vertices containing red pebbles, where d is the number of green pebbles in G.
Thus we use green pebbles to “label” a graph G in G according to what level of con-
nectivity it attains. Again G is closed under edge addition and the edge-deletion
minimal graphs are series-parallel, which have treewidth 2, so by Theorem 1, the
movement problem is fixed-parameter tractable with respect to k := 2 and 	 := L.
In the initial configuration, we put red pebbles on s and t with infinite movement
cost, and we place d green pebbles arbitrarily in the graph. The target configura-
tion we obtain will have exactly d green pebbles, and thus d vertex-disjoint paths,
because these are main pebbles. �
We can also consider the edge-disjoint version of s-t connectivity. We need the
following combinatorial lemma to characterize the minimal graphs:

Lemma 6. Let G be a connected graph and assume that there are d edge-disjoint
paths between vertices s and t in G, but for any edge e ∈ E(G), there are at most
d − 1 edge-disjoint paths between s and t in G \ e. Then the treewidth of G is at
most O(d2).

Example: s-t d-EDGE-CONNECTIVITY. Move the pebbles so that there
are d edge-disjoint paths of pebbled vertices between s and t. The parameter
is the total length L of the paths. Now we use one main color, red, and one
facility color, blue, and Gd contains all graphs containing two vertices with a
red pebble on each and having d edge-disjoint paths between these two vertices,
with blue pebbles on each path vertex. By Lemma 6, the edge-deletion minimal
graphs have treewidth O(d2). Hence, by Theorem 1, the movement problem is
fixed-parameter tractable with respect to L. �
The previous example shows that s-t d-EDGE-CONNECTIVITY is FPT for
every fixed value of d. Somewhat surprisingly, unlike in the vertex-disjoint case,
the problem becomes hard if d is part of the input:
Example: s-t d-EDGE-CONNECTIVITY (unbounded version). Move
the pebbles so that there are d edge-disjoint paths of pebbled vertices between
s and t, where d is a number given in the input. We use three main colors: red,
green, and blue. A graph G is in G if the blue pebbles form d edge-disjoint paths
between two vertices containing red pebbles, where d is the number of green peb-
bles in G. We show that G contains edge-deletion minimal graphs of arbitrary large
treewidth, so by Theorem 2, it is W[1]-hard to decide whether there is a solution
where each of the k pebbles move at most one step each. Assume d is even and let
G be a graph consisting of vertices s, t, and d vertex-disjoint paths between s and
t such that vertices pi,1, . . . , pi,d are the internal vertices of the ith path. Now for
every odd i and odd j, identify vertices pi,j and pi+1,j , and for every even i < d and
even j, identify pi,j and pi+1,j . There are d edge-disjoint s-t paths in this graph,
but there are at most d−1 such paths after the deletion of every edge. (It is easy to

728 E.D. Demaine, M. Hajiaghayi, and D. Marx

see that every edge is in an s-t cut of exactly d edges.) Thus G is an edge-deletion
minimal member of G. Furthermore, if for every odd i and odd j, we contract the
edge pi,jpi,j+1, then we get a d/2× d/2 grid, so the treewidth is Ω(d). �

Example: FACILITY LOCATION (collocation version). Move client and
facility pebbles so that each client pebble is collocated with at least one facility
pebble and the client pebbles are at distinct locations. The parameter is the num-
ber of client pebbles. We use one main color, red, for the clients, and one facility
color, blue, for the facilities, and G contains all graphs in which every vertex con-
tains exactly one red and one blue pebble. The edge-deletion minimal graphs in
G have no edges, so have treewidth 0. By Theorem 1, the movement problem is
fixed-parameter tractable parameterized by the number of main pebbles, i.e., the
number of clients. The number of facilities can be unbounded, which is useful, e.g.,
to organize a small team within a large infrastructure of wired network hubs or
mobile satellites. �

Example: FACILITY LOCATION (distance-d version). Move client and
facility pebbles so that each client pebble is within distance at most d from at least
one facility pebble and the client pebbles are at distinct locations. Now we use two
main colors, red and green, and one facility color, blue. Let G contain all graphs
that contain some number d of green pebbles and each red pebble is at distance
at most d from some blue pebble. Given a graph with k client (red) pebbles and
some number of facility (blue) pebbles, we add d dummy green pebbles and ask
whether there is a solution on 	 := k(d + 1) + d vertices. If we move the pebbles
so that each red pebble is at distance d from some blue pebble, then there are
k(d + 1) + d vertices that contain all d of the green pebbles and induce a graph in
G. We claim that the edge-deletion minimal graphs in G are forests, and hence have
treewidth 1. Consider an edge-deletion minimal graph G ∈ G, and for each vertex
v without a blue pebble, select an edge uv that goes to a neighbor u that is closer
to some blue pebble than v. If an edge is not selected in this process, then it can be
removed (it does not change the distance to the blue pebbles), so by the minimality
of G, every edge is selected. Each connected component contains at least one blue
pebble. This means that, in each connected component, the number of selected
edges is strictly smaller than the number of vertices, i.e., each component is a tree.
Thus, by Theorem 1, the movement problem is FPT. �
On the other hand, FACILITY LOCATION becomes W[2]-hard if the parameter
is the number of facilities, while the number of clients can be unbounded. We
cannot obtain this result using Theorem 2 because, in this setting, the parameter
is the number of facility pebbles.

Theorem 7. For every fixed d ≥ 0, FACILITY LOCATION (distance d ver-
sion) is W[2]-hard parameterized by the number of facilities, even if each pebble
is allowed to move at most one step in the graph.

Example: MATCHING. Move the pebbles so that the pebbles are on distinct
vertices and there is a perfect matching in the graph induced by the pebbles.
The parameter is the number of pebbles. Now there is just one, main pebble

Minimizing Movement: Fixed-Parameter Tractability 729

color, and G contains all graphs that have a perfect matching. The edge-deletion
minimal graphs are perfect matchings, so they have treewidth 1. By Theorem 1,
the movement problem is FPT. �
Example: SEPARATION. Move client pebbles (say, representing population)
and/or obnoxious pebbles (say, representing power plants) so that each client
pebble is collocated with at most o obnoxious pebbles. The parameter is the
number of client pebbles. Here G contains all graphs with the desired bounds,
so the edge-deletion minimal graphs have no edges, which have treewidth 0. By
Theorem 1, the movement problem is fixed-parameter tractable. As in previous
examples, we can make o an input to the problem. �
Example: DISPERSION. Move the pebbles to distinct vertices and such that
no two pebbles are adjacent. The parameter is the number k of pebbles. Here G
contains all independent sets with exactly one pebble on each vertex. Because
G is hereditary and the maximum clique size is 1, Theorem 5 implies that the
movement problem is W[1]-hard, even in the case when each pebble is allowed
to move at most one step. �

References
1. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Fourier meets Möbius: fast

subset convolution. In: STOC 2007, pp. 67–74 (2007)
2. Bredin, J.L.,Demaine,E.D.,Hajiaghayi,M.,Rus,D.:Deploying sensornetworkswith

guaranteed capacity and fault tolerance. In: MOBIHOC 2005, pp. 309–319 (2005)
3. Canny, J.F.: The Complexity of Robot Motion Planning. MIT Press, Cambridge

(1987)
4. Corke, P., Hrabar, S., Peterson, R., Rus, D., Saripalli, S., Sukhatme, G.: Au-

tonomous deployment of a sensor network using an unmanned aerial vehicle. In:
ICRA 2004, New Orleans, USA (2004)

5. Corke, P., Hrabar, S., Peterson, R., Rus, D., Saripalli, S., Sukhatme, G.: Deploy-
ment and connectivity repair of a sensor net with a flying robot. In: ISER 2004,
Singapore (2004)

6. Demaine,E.D.,Hajiaghayi,M.,Kawarabayashi,K.:Algorithmic graphminor theory:
Decomposition, approximation, and coloring. In: FOCS 2005, pp. 637–646 (2005)

7. Demaine, E.D., Hajiaghayi, M., Mahini, H., Sayedi-Roshkhar, A.S., Oveisgharan,
S., Zadimoghaddam, M.: Minimizing movement. ACM Trans. Algorithms

8. Friggstad, Z., Salavatipour, M.R.: Minimizing movement in mobile facility location
problems. In: FOCS 2008, pp. 357–366 (2008)

9. Hsiang, T.-R., Arkin, E.M., Bender, M.A., Fekete, S.P., Mitchell, J.S.B.: Algo-
rithms for rapidly dispersing robot swarms in unknown environments. In: WAFR
2003, pp. 77–94 (2003)

10. Hüffner, F., Niedermeier, R., Wernicke, S.: Techniques for practical fixed-parameter
algorithms. Comput. J. 51(1), 7–25 (2008)

11. Khot, S., Raman, V.: Parameterized complexity of finding subgraphs with heredi-
tary properties. Theoret. Comput. Sci. 289(2), 997–1008 (2002)

12. LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge (2006)
13. Reif, J.H., Wang, H.: Social potential fields: a distributed behavioral control for

autonomous robots. In: WAFR 2005, pp. 331–345 (2005)
14. Schultz, A.C., Parker, L.E., Schneider, F.E. (eds.): Multi-Robot Systems: From

Swarms to Intelligent Automata. Springer, Heidelberg (2003)

Storing a Compressed Function with Constant
Time Access

Jóhannes B. Hreinsson, Morten Krøyer, and Rasmus Pagh�

IT University of Copenhagen, 2300 København S, Denmark
{johre06,kroyer,pagh}@itu.dk

Abstract. We consider the problem of representing, in a space-efficient
way, a function f : S → Σ such that any function value can be computed
in constant time on a RAM. Specifically, our aim is to achieve space usage
close to the 0th order entropy of the sequence of function values. Our
technique works for any set S of machine words, without storing S, which
is crucial for applications.

Our contribution consists of two new techniques, of independent inter-
est, that we use in combination with an existing result of Dietzfelbinger
and Pagh (ICALP 2008). First of all, we introduce a way to support more
space efficient approximate membership queries (Bloom filter function-
ality) with arbitrary false positive rate. Second, we present a variation of
Huffman coding using approximate membership, providing an alternative
that improves the classical bounds of Gallager (IEEE Trans. Information
Theory, 1978) in some cases. The end result is an entropy-compressed
function supporting constant time random access to values associated
with a given set S. This improves both space and time compared to a
recent result by Talbot and Talbot (ANALCO 2008).

1 Introduction

Compression is an important technique in modern computing systems. Often,
some kind of random access is required, such that a given data item can be de-
compressed without decompressing all data. The standard way of dealing with
this requirement is to split the data into blocks that are compressed and decom-
pressed individually. The end result is a trade-off between compression and access
time: Larger blocks lead to better compression, but slows down decompression.
A recent theoretical breakthrough of Pǎtraşcu [17] shows how to combine opti-
mal (in a certain sense) compression of an array with logarithmic decompression
time. In this paper we are concerned with compression of functions that allows
random access. Like most other compression methods we deal with the static
case, and do not consider efficient updates.

The problem of storing a function f with certain specified values (referred
to as the retrieval problem) has recently received renewed interest [7,9,18]. The

� This work was supported by the Danish National Research Foundation, as part of
the project “Scalable Query Evaluation in Relational Database Systems.”

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 730–741, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Storing a Compressed Function with Constant Time Access 731

main finding is that there exist simple methods that store f in space close to
the space that would be needed to store the (uncompressed) function values,
and provide constant access time. For example, if f maps city names to weather,
and there are two kinds of weather, f can be stored in close to 1 bit per value,
with fast random access to the value for a particular city name. This is of course
much less than the space usage required for also storing the set of city names.
The price paid compared to standard dictionary representations is that the data
structure does not detect when it is used on an input where no function value
has been specified—in this case it will simply return some arbitrary value.

The retrieval problem is relevant in situations where the amount of data as-
sociated with each key is small, and it is either known that queries will only be
asked on keys in a fixed set S, or where the query answers for keys not in S
are insignificant. For example, suppose that we have ranked a collection of web
pages. Then a retrieval data structure would be able to return the ranking of a
given URL, without storing the URL itself. This might allow the ranking infor-
mation to be stored entirely in RAM (e.g., a browser could show highly ranked
links more prominently). Several applications of retrieval structures as building
blocks in other data structures are described in [1,2].

Our starting point is that data values are often skewed (e.g., in some parts
of the world it is sunny much more often than it is rainy), and we may like to
extend the set of possible values (e.g., add more rare weather phenomena such
as thunderstorms) without increasing the number of bits required to represent
each function value. Therefore, it is desirable to have representations where the
space usage is dependent on the entropy of the data values rather than on the
number of possible values.

1.1 Our Results

Let S = {x1, . . . , xn} denote the domain of the function, and let Σ be the
set of possible (or actual) function values. For simplicity we assume that Σ =
{1, . . . , σ} — the general case can be handled by a separate data structure im-
plementing a bijection between Σ and {1, . . . , σ} (e.g. a minimal perfect hash
function [19,12,4] for Σ plus an array of size σ). We describe a new data structure
that represents a function f : S → Σ in space that is close to the (empirical,
0th order) entropy H0 of the sequence f(x1), . . . , f(xn). If p1, p2, . . . are the
frequencies of different characters in the sequence, H0 =

∑
i pi log2(1/pi) is a

lower bound on the number of bits needed per function value, assuming that the
function values are independent of the corresponding input values.

We present our results in the Word RAM model of computation [11] with
word size w. To simplify the presentation we assume that elements of S as well
as values in Σ can be represented in a single word, and specifically that w ≥
2 + log σ. We show the following:

Theorem 1. Let n, w, and σ be positive integers, where w3 < n < 2w and
σ ≤ 2w, let δ > 0 be a constant, and let S = {x1, . . . , xn} ⊆ {0, 1}w be a set of
size n. Given a function f : S → {1, . . . , σ}, let H0 denote the empirical (0th

732 J.B. Hreinsson, M. Krøyer, and R. Pagh

order) entropy of the sequence f(x1), . . . , f(xn), and let p1 denote the frequency
of the most common function value. If n is larger than some constant (depending
on δ) there exists a retrieval data structure for f using space

(1 + δ)H0 + min(p1 + 0.086, 1.82(1− p1)) bits

per function value, plus o(σ) bits to store information about the distribution,
such that a function value can be computed in O(1) time on a Word RAM with
word size w.

Discussion. The term o(σ) is negligible in most cases that are interesting from
a compression point of view, i.e., in cases where the number σ of possible values
is not much larger than the number of values n. Ignoring this term, the number
of bits per character is at most H0 (a lower bound) times 1 + δ, plus a small
additive term. This is similar to the space that would be obtained by Huffman
coding the sequence of function values (with no random access). If p1 is close to
1 the space usage becomes much better than using Huffman coding — in fact,
the space per value can get arbitrarily close to 0, while Huffman coding uses at
least 1 bit per value. An example where this is important is storage of functions
with many undefined/NULL values.

While the algorithm used to construct our data structure is somewhat com-
plex, the algorithm for evaluating f is extremely simple. It consists of looking
up O(1) w-bit strings, performing a bitwise exclusive or, and applying a con-
stant time decoding procedure similar to Huffman decoding. This is illustrated
in Figure 1. Thus, we show how to extend the simplicity of existing retrieval
data structures (with no compression) to the compressed case.

Techniques. Technically, we first show how to extend existing retrieval data
structures to support variable length bit strings as values. The method works
under the condition that the set of possible values is prefix-free, and involves
a nontrivial load balancing idea using slightly correlated hash functions. Com-
bining this with a variation of (length-limited) Huffman coding, and showing
how the decoding can be done in constant time, yields a result that is close to
Theorem 1, but missing the second part of the minimum in the additive term.
To strengthen the result in the important case where the majority of function
values are identical we show how to use an approximate membership data struc-
ture (i.e., a data structure with the same functionality as a Bloom filter [3]) to
decrease the space usage.

To reduce the redundancy as much as possible, we describe a general reduc-
tion that can be used to obtain space-efficient approximate membership data
structures for any false positive rate ε > 0. Previous space-efficient methods
(see [9] for an overview) provided false positive rates that are negative powers
of two. This means that one needs to “pay” (with extra space usage) for a false
positive rate that is up to 50% smaller than desired – our method reduces this
to less than 6%.

Storing a Compressed Function with Constant Time Access 733

Fig. 1. Illustration of how a value f(x) is computed from our data structure

1.2 Related Work

Several previous papers described data structures having two independent func-
tionalities: They support retrieval queries (given x ∈ S, return f(x)), and ap-
proximate membership queries (given x, return “true” if x ∈ S, and return
“false” with probability at least 1− ε if x �∈ S). A data structure with this in-
terface is sometimes referred to as a bloomier filter [8]. In this paper we consider
only the retrieval problem, but note that approximate membership queries can
be added (without loss) by a separate approximate membership data structure.

A faster approach to space-efficient retrieval is through space-efficient minimal
perfect hashing [19,12,4]. For Σ = {0, 1}r, where r ≤ w is a positive integer,
this gives a space usage of nr + O(n) bits and O(1) query time. However, this
approach is rather complicated, and it seems especially complicated to generalize
it to variable-length function values (which would be required for compression).
Also, even without compression the use of minimal perfect hashing is known to
yield a redundancy of at least log2 e ≈ 1.44 bits per element in S, which is more
than we achieve.

Rather than building on minimal perfect hashing, we use as a starting point
the recent retrieval structure described by Dietzfelbinger and Pagh [9], which
gives a very simple query algorithm for function values in Σ = {0, 1}r (with
no compression). Similar techniques have recently been studied in two other
papers [9,18]. The result of Porat [18] is that a space usage of nr + o(n) bits
is possible with O(1) query time. While this is asymptotically superior to [9],
it relies heavily on tabulation and does not seem to admit a similarly efficient
generalization to the compressed case. We refer to the discussion in [9] for a
history of related data structures.

The first paper to consider compressed retrieval was recently published by Tal-
bot and Talbot [20]. The authors consider a relaxation of the retrieval problem,
where a fraction ε of the function values are allowed to be incorrect (“misas-
signments”). Arguably, this makes their data structure unusable for some ap-
plications, but we still find it instructive to compare their result to ours (even
assuming ε is close to 1). Talbot and Talbot show how to obtain two different
trade-offs between compression and query time: Space 1.44H0 +1+ log log σ per

734 J.B. Hreinsson, M. Krøyer, and R. Pagh

value is possible with query time O(log2 σ), or alternatively space 2.88H0 + 2
per value is possible with query time O(log σ). It is also stated (without proof)
that the multiplicative constants can be improved to 1.23 and 2.46, respectively.
The technique used in [20] is essentially adaptive decoding of Huffman encoded
values (one bit at a time). Our data structure performs O(1) non-adaptive mem-
ory accesses, does not have misassignments, and improves time as well as space
of both trade-offs. In addition, the query algorithm is considerably simpler, and
more likely to be of practical use.

Recently, another retrieval data structure that is able to take advantage of
skew in the value distributions, “two-step MWHC”, was described in [2]. While
this method has O(1) query time, its space usage is larger than ours, and cannot
be bounded in terms of the 0th order entropy.

1.3 Preliminaries

Each element in S = {x1, x2, . . . , xn} ⊆ D maps to the value f(xi) from an
the alphabet Σ = {1, . . . , σ}. Let ai denote the ith most frequent value in Σ,
breaking ties arbitrarily. For uniformly random x ∈ S we let pi = Pr{f(x) = ai},
for i = 1, 2, . . . , σ.

Since we build on the data structure of Dietzfelbinger and Pagh [9], we now
briefly describe it. Suppose that k ≥ 3 hash functions h1, . . . , hk are given such
that for any xi ∈ S the set {h1(xi), . . . , hk(xi)} is a random set of size k (no
collisions), and the sets associated with different xi are independent1. The idea
is to set up a vector A of r-bits values, such that f(xi) can be calculated as a
bitwise exclusive-or of k vector entries.

f(xi) =
⊕

j∈{1,...,k}
Ahj(xi). (1)

On inputs x ∈ D \ S, the query algorithm returns an arbitrary value. The
existence of a suitable vector A depends on the hash function values of the keys
in S. It is shown in [9], using results from [5], that for any δ > 0 there exists a
constant k = O(log(1/δ)), such that array size m = (1 + δ)n suffices to ensure
the existence of A with high probability, given that n exceeds some sufficiently
large constant. Specifically, the probability of failure for k ≥ 4 is O(n−5/7) [9].
We observe that a failure is not a serious problem, since we may simply choose
k new hash functions and try again until we succeed. Even a small value of k
allows a very space-efficient data structure, e.g., the redundancy δ for k = 3, 4, 5
is around 12%, 3%, and 1%, respectively.

Computing the entries of vector A requires solving a system of linear equations
over GF(2). At first glance this seems to require Gaussian elimination in time
O(n3), but it is shown in [9] how to set up equation systems that are easier to
solve, and require time O(n1+ε), for any ε > 0, or even linear time (increasing
1 The assumption that fully independent hash functions are available can be justified,

in the sense that there is a simulation of full randomness that makes everything
work. See [9] for details.

Storing a Compressed Function with Constant Time Access 735

k by O(1)). The first technique is based on splitting the set S into buckets of
size nε/2, and this also applies to our setting in a straightforward fashion. This
means we can achieve construction time O(n1+ε), for any ε > 0. Since the details
are very similar to [9] we do not further describe this.

Overview of paper. In section 2 we present an efficient data structure for the
retrieval problem with variable length values from a prefix-free set of bit strings.
Section 3 describes how to combine this with a variation of Huffman coding that
can be decoded in constant time. Finally, in section 5 we show how to improve
the result in the case where some function value is much more frequent than
others, using a result on approximate membership described in section 4.

2 Retrieval with Variable-Length Values

We will use a prefix-free code for values in Σ, so that we get a function f : S →
{0, 1}∗, where the keys are mapped to codewords of various length. We assume
that the longest codeword has length at most w, which will be the case in our
application. Our data structure will represent a similar function, f̂ : S → {0, 1}w,
so that for each key xi ∈ S, f(xi) is a prefix of f̂(xi). Since the values of f are
prefixes of the values of f̂ , and the code is prefix-free, we can use a code tree to
determine the value of f(xi) from f̂(xi), so in effect this gives a representation
of f . Section 3 will describe how to do the decoding efficiently.

The data structure and query algorithm. Our data structure is simply a bit array
A of length m, where m = (1 + δ/3)

∑
i |f(xi)| + O(w), i.e., m is essentially a

factor 1 + δ/3 larger than the total length of all strings in f(S). We round up m
to the nearest multiple of w, and implement “wrap-around” reads by duplicating
the initial word of A after the last word. This means that when we look up w
consecutive bits, the data structure behaves like a cyclic array of m bits.

Let k ≥ 3 be an integer constant, and let h1, . . . , hk be hash functions mapping
each key to k bit positions in A (details below). We arrange the array so that
for any key x ∈ S, we can compute f̂(x) as the bitwise exclusive-or of the k
words starting at the bit positions h1(x), . . . , hk(x). (Note that these words are
not necessarily aligned with the Word RAM machine words.)

Hash functions and construction algorithm. Let h′
1, . . . , h

′
k : S → [m/w] be hash

functions such that for any x, the set {h′
1(x), . . . , h′

k(x)} contains k (distinct)
values, and is uniformly distributed over all such sets. (See [9] for a discussion on
how to construct such hash functions in an efficient way.) Also, let q : S → [w]
be a fully random hash function. We use the k hash functions defined by:

hi(x) = h′
i(x)w + q(x) . (2)

That is, for any x the log w least significant bits of the hash function values
h1(x), . . . , hk(x) are identical, while the
log(m/w)� most significant bits are
distinct.

736 J.B. Hreinsson, M. Krøyer, and R. Pagh

In order to construct A we must solve the following system of linear equations

f(xi)d =
k⊕

j=1

Ah′
j(xi)w+q(xi)+d, for (3)

i = 1, . . . , n, d = 1, . . . , |f(xi)|

where f(xi)d is the dth bit in the codeword associated with the key xi. We
observe that all equations involve only bit positions in A that have the same
residue modulo w. This means that there are in effect w systems of equations
that may be solved individually. In each such system, an equation for f(x)d

involves the k variables at positions {h′
1(x), . . . , h′

k(x)} within the system. This
is exactly the setting of [9], which means that the same construction algorithm
and analysis applies to each system.

2.1 Analysis

Let nd denote the number of equations in the linear system corresponding to bits
in positions with residue d modulo w. Note that nd =

∑
i Xd,i, where Xd,i is

an indicator random variable that is 1 if and only if some equation involving xi

involves bits in position with residue d modulo w. Note that Xd,i depends entirely
on q(xi). For every d, the random variables Xd,i, i = 1, . . . , n, are independent,
so the sum nd is tightly concentrated around the expectation of

∑
i |f(xi)|/w.

By Chernoff bounds (e.g. [16, Theorem 4.1]), and using that n > w3, we have
that Pr[nd > (1 + δ/2)n/w] < 1/(2w) when n is sufficiently large. This means
that with probability at least 1/2 (over the choice of q) the w equation systems
are “well balanced” in the sense that nd ≤ (1 + δ/2)n/w for all d.

Conditioned on nd ≤ (1 + δ/2)n/w we can use Calkin’s bounds [5,9], which
imply that each equation system is solvable with probability 1−O((n/w)−5/7) ≥
1 − o(1/w), where the inequality uses that n ≥ w3. By the union bound this
means that with probability 1 − o(1) all equation systems are simultaneously
solvable, and hence a suitable bit array A exists. In conclusion, the probability
that the randomly chosen hash functions are suitable is bounded away from 0,
so a constant number of trials suffices in expectation to find good hash functions
for a given set S.

3 Constant Time Huffman-Like Decoding

Without loss of generality assume that δ < 1 in the statement of Theorem 1.
We wish to apply the data structure of section 2 with a near-optimal prefix-free
code. One possibility would be a Huffman code [13], but since we are willing to
sacrifice a factor 1+ δ/3 in space usage it is possible to do better, both in terms
of decoding time and in terms of the size of the representation of the code tree.

The first step is to identify the set of values Σ′ for which the number of
occurrences is above n/σ1/(1+δ/3). Observe that |Σ′| ≤ σ1/(1+δ/3). Conceptually,
we substitute all function values in Σ\Σ′ with a new value ⊥, and then consider

Storing a Compressed Function with Constant Time Access 737

a code tree for the values of the resulting function f∗. Length-limited Huffman
codes [14,15] provide codewords of maximum length 	 = log |Σ′|+ O(1), whose
redundancy is within an additive constant of Huffman codes. In fact, the additive
constant can be made arbitrarily small by increasing the O(1) term. Decoding
of length-limited Huffman codes can be done in constant time using a table
indexed by all bit strings of length 	, where an entry contains the value in Σ
corresponding to its prefix. The size of the table is 2� log σ = O(|Σ′| log σ) = o(σ)
bits.

Whenever the value ⊥ is observed in the lookup table, we fall back on a trivial
encoding of the appropriate symbol. We store the codeword for ⊥, and use the
next
log σ� bits to encode the value. Since the frequency of each symbol encoded
in this way is at most σ−1/(1+δ/3), the total length of the resulting n codewords
is at most a factor 1/(1 + δ/3) from the length if an optimal code was used.

In conclusion, we have described a variation of Huffman coding that can be
decoded in constant time, using a table of o(σ) bits, at the expense of increasing
the length of codewords by a factor arbitrarily close to (but bounded away
from) 1. Using this with section 2 we get a result that is very close to Theorem 1,
but where the additive term in the space usage does not decrease with p1.

4 Approximate Membership with Arbitrary Error

As a building block to be used in the next section, we now consider the ap-
proximate membership problem. Using traditional theory on approximate mem-
bership (AM), the theoretical lower limit for the space usage of AM structures
is n log2(1/ε) bits [6]. In known optimal constructions, the limit can only be
reached (or reached within a factor 1 + δ) when ε is a negative power of 2.
We now describe a way to circumvent this limitation that is more efficient than
simply choosing a lower false positive probability.

We describe an AM structure with near optimal space complexity and with
an arbitrary false positive error rate, ε = c 2−i, where c ∈ [1/2; 1], and i is a
positive integer. Let g be a random hash function, g : D → [0; 1] mapping the
keys in S uniformly and independently to [0; 1] (a discrete approximation would
be needed in an implementation, but the analysis would be essentially the same
as in the idealized scenario). Let γ = 2(1 − c) ∈ [0; 1], and divide S into two
subsets, S1 and S2, mapping to values smaller and larger than γ respectively.
Formally

S1 = S ∩ g−1([0; γ])

S2 = S ∩ g−1((γ; 1]).

Note that the expected number of keys in S1 is a fraction 2(1− c) of all the keys
in S.

The AM structure is made up of two ordinary AM structures, each with a
false positive rate that is a negative power of 2: one for S, with false positive rate
ε0 = 2−i, and one for S1, with ε1 = 1/2. A query on a key x is performed by first

738 J.B. Hreinsson, M. Krøyer, and R. Pagh

consulting the larger structure. In case of a negative answer, we know the key is
not present. In case of a positive answer, we calculate g(x). If g(x) indicates that
the key is in S2, we return a positive answer. Otherwise, we consult the smaller
AM structure, and return the answer obtained.

It is easy to analyze the expected false positive rate of the AM structure
described above. Consider the false positives of the structure for S. For a fraction
2(1− c) of those, the hash function g will point to S1 and we therefore consult
the AM structure for S1. This will in turn result in a negative result for half of
the queries, since ε1 = 1/2. That is, a fraction 1− c of the false positives of the
structure for S has been eliminated. Since the structure for S has an error rate
ε0 = 2−i, the error rate of the whole AM structure is ε = c 2−i.

The expected space usage of the AM structure is i+2(1−c) bits per key, which
is close to the optimal log(1/ε) = i − log c bits per key. In fact, the expected
space usage is at most 1 − log2 e + log2 log2 e ≈ 0.086 bits per key from the
optimal value.

5 Improvement for Skewed Distributions

We now provide the last part needed to show Theorem 1. In particular, we focus
on the setting where the probability p1 of the most frequent value is large. The
idea is to use one or more approximate membership data structures as “filters”
that determine a large fraction of values at little cost.

The redundancy of a prefix-free code is the difference between the expected
cost of coding and the theoretical lower limit cost. The lower limit for coding a
sequence of symbols related to n keys (assuming that values and corresponding
keys are independent) is nH0, where H0 is the 0th order entropy of the value
distribution. The redundancy per key is therefore r = E(|u|)−H0.

Gallager [10] established that the redundancy of a Huffman code could be
bounded by

r ≤ p1 + ρ (4)

where p1 is the probability of the most frequent symbol a1 and ρ = 1− log2 e +
log2 log2 e ≈ 0.086. For p1 ≥ 0.5 the bound further reduces to r ≤ p1. Together
with the analysis in section 3 this immediately implies Theorem 1 whenever
p1 < 1/2.

In the following we examine the case where p1 ≥ 0.5, and determine a constant
bound lower than 1, by adding a filter for handling the most frequent symbol.
More specifically, we create an approximate membership structure, using the ap-
proach from the previous section. The structure supports O(1) time membership
queries on n keys, in space

(1 + δ)n(log2(1/ε) + ρ) bits,

where ρ ≈ 0.086 and ε is the false positive rate. Recall that the data structure
returns “true” for any key in the filter, and “false” with probability at least 1−ε
for other keys.

Storing a Compressed Function with Constant Time Access 739

We build an AM structure for the subset S∗ that contains all keys in S
except those mapping to a1. All queries start by consulting this AM structure.
A negative result for a key x ∈ S means that the key with certainty maps
to a1. A positive result, however, means that the key is either in S∗ or is a false
positive (in which case it maps to a1). The remaining task is therefore to store
the restriction of f to the set SAM of keys for which the AM structure returned
“true”. This can be done using the method previously described (base case), or
recursively using the same method — we analyze the former case, where only
one filter is used. The expected number of keys in SAM is (1− p1 + εp1)n.

In terms of our original code tree, this approach corresponds to adding a top
level node, with the old root and a new a1 leaf as children. The new code is one
that allows two codewords for one symbol; one represented by the new leaf, and
another in a modified version of the old tree. The advantage lies in the the low
cost of coding the first bit using an AM structure, analyzed in the following.

5.1 Space Analysis

We now examine the space cost incurred by adding a filter as described. To
simplify the calculations we pretend that Huffman coding is used rather than
the method described in section 3. This means that all space bounds should be
multiplied by a factor 1 + δ/3. The size of the approximate membership data
structure with false positive rate ε is

n(1− p1)(log2(1/ε) + ρ) bits. (5)

If we let α = (1 − p1 + εp1) and assume that a2 is the second most frequent
symbol, with probability p2, Gallager [10] tells us that the space for encoding
the remaining values using a Huffman code can be bounded by

αn(H ′
0 +

p2

α
+ ρ), (6)

bits per value, where H ′
0 is the 0th order entropy of the distribution of values

over keys in SAM. Note that a2 may be identical to a1 if the same value remains
the most frequent.

In order to determine the redundancy of the combined structure, we express
H ′

0 in terms of the original entropy H0, p1, and ε,

H ′
0 =

σ∑
i=2

(
ni

αn
log

αn

ni

)
+

εn1

αn
log

αn

εn1
, (7)

By using

H0 =
σ∑

i=2

(
ni

n
log

n

ni

)
+

n1

n
log

n

n1
, (8)

we may conclude from (7) that

αH ′
0 = H0 + p1 log p1 + (1− p1) log α + εp1 log

(
α

εp1

)
. (9)

740 J.B. Hreinsson, M. Krøyer, and R. Pagh

Summing the space usage from (5) and (6) and subtracting the lower bound H0
we can bound the redundancy per value r by a function of p1, p2, and ε:

r < log p1 + α log
(

α

εp1

)
+ p2 + (1− p1 + α)ρ. (10)

If we choose ε = 1− p1, which is a near-optimal choice, we get α = 1− p2
1, and

using p2 ≤ 1− p1 the redundancy is bounded by

r̂(p1) = log p1 + (1− p2
1) log

(
1 + p1

p1

)
+ (1− p1) + (2− p1 − p2

1)ρ. (11)

The function r̂ is convex, r̂(1) = 0, and du
dt r̂(1) > −1.82. Therefore r̂(p1) ≤

1.82(1 − p1). At the same time, Gallager’s bound means that we should not
use filtering whenever the resulting redundancy is above p1 bits per element
(assuming p1 > 0.5). The crossover happens around p1 = 0.63, meaning that
this is the maximum redundancy.

We have shown the following upper bound for the redundancy of our prefix-
free code:

r < min(p1 + 0.086, 0.63, 1.82(1− p1)) (12)

providing an alternative to Gallager’s [10] bound for Huffman codes. Our bound
is an improvement when there is a significant imbalance in the distribution of
symbols, in the way that one symbol dominates with p1 > 0.63. In the state-
ment of Theorem 1 we have omitted the middle term, which is only a small
improvement for a narrow range of p1 values.

6 Conclusion

We have described a data structure for space efficiently representing a function
with skewed function values. The representation uses space close to the entropy of
the function values, and is independent of the size of the domain of the function.

Our adaptation of [9] to handle variable-length strings is nontrivial in the
sense that the most straightforward generalizations do not seem to work, while
our method of choosing hash functions that are slightly correlated does. In ad-
dition, we have introduced several techniques that may be of independent in-
terest: A general reduction that gives approximate membership data structures
with arbitrary error probability, the use of filtering for efficient compression, and
constant time decoding of a Huffman-like code.

Acknowledgement. We thank the anonymous reviewers for their thorough
comments.

References

1. Belazzougui, D., Boldi, P., Pagh, R., Vigna, S.: Monotone minimal perfect hashing:
Searching a sorted table with O(1) accesses. In: Proceedings of the 20th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA 2009). ACM Press, New
York (2009)

Storing a Compressed Function with Constant Time Access 741

2. Belazzougui, D., Boldi, P., Pagh, R., Vigna, S.: Theory and practise of monotone
minimal perfect hashing. In: Finocchi, I., Hershberger, J. (eds.) ALENEX, pp.
132–144. SIAM, Philadelphia (2009)

3. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commu-
nications of the ACM 13(7), 422–426 (1970)

4. Botelho, F.C., Pagh, R., Ziviani, N.: Simple and space-efficient minimal perfect
hash functions. In: Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS 2007. LNCS,
vol. 4619, pp. 139–150. Springer, Heidelberg (2007)

5. Calkin, N.J.: Dependent sets of constant weight binary vectors. Combinatorics,
Probability & Computing 6(3), 263–271 (1997)

6. Carter, L., Floyd, R., Gill, J., Markowsky, G., Wegman, M.: Exact and approxi-
mate membership testers. In: Proceedings of the 10th Annual ACM Symposium
on Theory of Computing (STOC 1978), pp. 59–65. ACM Press, New York (1978)

7. Charles, D., Chellapilla, K.: Bloomier filters: A second look. In: Halperin, D.,
Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 259–270. Springer, Heidelberg
(2008)

8. Chazelle, B., Kilian, J., Rubinfeld, R., Tal, A.: The Bloomier filter: An efficient
data structure for static support lookup tables. In: Proceedings of the 15th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA 2004), pp. 30–39. ACM
Press, New York (2004)

9. Dietzfelbinger, M., Pagh, R.: Succinct data structures for retrieval and approxi-
mate membership (Extended abstract). In: Aceto, L., Damg̊ard, I., Goldberg, L.A.,
Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I.
LNCS, vol. 5125, pp. 385–396. Springer, Heidelberg (2008)

10. Gallager, R.: Variations on a theme by Huffman. IEEE Transactions on Information
Theory 24(6), 668–674 (1978)

11. Hagerup, T.: Sorting and searching on the word RAM. In: Meinel, C., Morvan, M.
(eds.) STACS 1998. LNCS, vol. 1373, pp. 366–398. Springer, Heidelberg (1998)

12. Hagerup, T., Tholey, T.: Efficient minimal perfect hashing in nearly minimal space.
In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 317–326.
Springer, Heidelberg (2001)

13. Huffman, D.A.: A method for the construction of minimum-redundancy codes.
Proceedings of the Institute of Radio Engineers 40(9), 1098–1101 (1952)

14. Larmore, L.L., Hirschberg, D.S.: A fast algorithm for optimal length-limited Huff-
man codes. Journal of the ACM 37(3), 464–473 (1990)

15. Milidiú, R.L., Laber, E.S.: Bounding the inefficiency of length-restricted prefix
codes. Algorithmica 31(4), 513–529 (2001)

16. Motwani, R., Raghavan, P.: Randomized algorithms. Cambridge University Press,
Cambridge (1995)

17. Pǎtraşcu, M.: Succincter. In: Proceedings of the 49th Annual Symposium on Foun-
dations of Computer Science (FOCS 2008), pp. 305–313 (2008)

18. Porat, E.: An optimal Bloom filter replacement based on matrix solving. CoRR,
abs/0804.1845 (2008)

19. Schmidt, J.P., Siegel, A.: The spatial complexity of oblivious k-probe hash func-
tions. SIAM J. Comput. 19(5), 775–786 (1990)

20. Talbot, D., Talbot, J.M.: Bloom maps. In: Proceedings of the Fourth Workshop on
Analytic Algorithmics and Combinatorics (ANALCO). IEEE, Los Alamitos (2008)

Experimental Variations of a Theoretically Good
Retrieval Data Structure�

Martin Aumüller, Martin Dietzfelbinger, and Michael Rink

Technische Universität Ilmenau, 98693 Ilmenau, Germany
{martin.aumueller,martin.dietzfelbinger,michael.rink}@tu-ilmenau.de

Abstract. A retrieval data structure implements a mapping from a
set S of n keys to range R = {0, 1}r, e.g. given by a list of key-value
pairs (x, v) ∈ S × R, but an element outside S may be mapped to any
value. Asymptotically, minimal perfect hashing allows to build such a
data structure that needs n log2 e + nr + o(n) bits of memory and has
constant evaluation time. Recently, data structures based on other ap-
proaches have been proposed that have linear construction time, constant
evaluation time and space consumption O(nr) bits or even (1+ε)nr bits
for arbitrary ε > 0. This paper explores the practicability of one such
theoretically very good proposal, bridging a gap between theory and real
data structures.

1 Introduction

The retrieval problem is the following elementary task: Let a “universe” U of keys
and a “range” R be given (we always assume R = {0, 1}r for some r ≥ 1). Given
a mapping f : S → R, for a subset S ⊆ U of size n, provide a data structure
that on input x ∈ U will calculate f(x) if x ∈ S and an arbitrary value from R
if x ∈ U − S. For a discussion of the problem and its applications we refer the
reader to [3]. A common way to obtain a retrieval data structure is to use a hash
table with a minimal perfect hash function. Hagerup and Tholey [4] showed
how to obtain such a function with near minimal space needs and constant
evaluation time, leading to a retrieval data structure with asymptotic space usage
of about 1.44n + nr bits. However, that construction is rather of theoretical
interest because it works only for extremely large n (see [1]). A simpler and
more practical approach to construct a minimal perfect hash functions, given by
Botelho, Pagh and Ziviani [1], leeds to a retrieval data structure with constant
evaluation time and space usage of about 2.62n + nr bits.

In this experimental paper we study one algorithm, described in [3], that fol-
lows a different approach, based primarily on known bounds of the probability
that almost square, sparse random binary matrices have full row rank. A retrieval
data structure built by this algorithm will—in theory—have the following prop-
erties: The space needed is (1 + ε) · nr bits, the evaluation time is O(log(1/ε)),
and the construction time is expected linear. The data structure consists of two
� Research supported by DFG, Grant Di 412/10-1.

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 742–751, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Experimental Variations of a Theoretically Good Retrieval Data Structure 743

parts and is constructed as follows. We have an algorithm A from [1] that builds
a retrieval data structure with constant evaluation time and space usage 1.23nr
bits in expected linear time. Furthermore we have an algorithm B from [3] that
succeeds with high probability and if it does not fail constructs a basic retrieval
data structure that has constant evaluation time and space usage (1+ε)·nr bits.
The runtime of algorithm B is at least quadratic, since the construction involves
solving a sparse system of linear equations. In [3] it is shown how to combine
algorithms A and B to get a retrieval data structure with expected linear con-
struction time and asymptotically optimal space usage. For that purpose the
key set S is split by a hash function into subsets of expected size n′ = 1

2

√
log n,

and algorithm B is applied to each of the subsets separately, using the fact that
the linear systems are so small that preprocessed lookup tables can be used for
the linear algebra. For many of the subsets this will be successful. A vanishing
fraction of the keys will be left; they can be accommodated in a “backup data
structure” that is built by algorithm A. A paper with related (theoretical) re-
sults is [5], which also gives very space efficient linear-time constructions for data
structures with the retrieval functionality, where the data structures used there
utilize table lookup also for queries.

In this paper we report on experiments to turn the approach from [3] into an
operational data structure with very small space usage, where we try to uncover
the impact of the constants hidden in the asymptotic notation of the space and
time consumption. Although the space usage of about (1+ε)·nr is asymptotically
not better than the solution obtained by perfect hashing, it can be better at least
for very small r and it is interesting in itself to see how far the approach from
[3] carries. The best known practical retrieval data structure for our problem if
that from [1]. Not only is it elegant but also very easily implemented and it runs
in linear time. It needs space about 1.23nr bits. Thus, this space bound is the
one to beat. Our experiments led to the following results:

(i) A naive implementation of the tabulation method for solving the linear
equation systems hits space limits during construction time already for
very small n′ (around 5).

(ii) Employing tricks for compressing the tables, filtering out redundant infor-
mation (matrices that differ only in a permutation of the rows), raises the
n′ that can be treated to 6. With better compression tricks and very fast
and large machines, a value of n′ = 7 may be achievable, but not beyond.
For the “o(n)” estimate for the space requirements for the tables to take
over, n must be extremely large.

(iii) With n′ ≤ 7, the space needed for the main data structure and the backup
data structure is far above 1.23nr, apart from the space needed in the
construction. This does not contradict the theoretical results, since those
assume that n′ is sufficiently large. The consequence is that the construction
from [3] cannot be used as described there for a very space-efficient data
structure for realistic values of n.

(iv) A realizable construction that makes it possible to compress the space be-
low 1.1nr resulted from using the bucketing idea of the theoretical

744 M. Aumüller, M. Dietzfelbinger, and M. Rink

construction, solving linear systems of, say, n′ a few hundred equations
without using precomputed tables (in expected linear time, for constant
n′). Reducing the space further is possible, but it will increase the constant
factor in the construction time.

2 The Basic Retrieval Data Structure

We briefly recall the basic retrieval data structure from [3] that realizes a function
f : S → {0, 1}r for a key set S = {x0, x1, . . . , xn−1}. Assume we have a function ξ
that maps each x ∈ S to a set Ax, where Ax is a subset of [m] = {0, 1, . . . , m−1}
of size k. Let vx ∈ {0, 1}m be the characteristic vector of Ax, that is, the number
of 1-bits of vx is exactly k. We build an n × m matrix M = (v�

xi
)i∈[n], using

the vectors vx as rows, and a vector u = (u0, u1, . . . , un−1)� ∈ ({0, 1}r)n of
the corresponding function values ui = f(xi). Consider the field F2r of car-
dinality 2r and suppose that rank(M) = n. Then there is a solution a =
(a0, a1, . . . , am−1)� ∈ ({0, 1}r)m of the system of linear equations

M · a = u . (1)

After determining such a solution we can simply retrieve f(x) for each x ∈ S
via:

f(x) =
⊕
i∈Ax

ai, ξ(x) = Ax ⊆ [m], |Ax| = k , (2)

where ⊕ denotes bitwise XOR. In [2] it is shown that if the mapping ξ is fully
random on S, k ≥ 3, n sufficiently large as well as m ≥ (1 + ε) · n then M has
full row rank with high probability. More precisely we must have 1

1+ε < β(k) for
some threshold β(k) with β(k) − (1 − e−k/ ln 2) → 0 as k → ∞, exponentially
fast. Hence to get a retrieval data structure for an arbitrary function f : S →
{0, 1}r with asymptotically optimal space usage (1 + ε) ·nr and evaluation time
O(k) = O(log(1/ε)), we need to construct a matrix M ∈ Fn×m

2 , (1 + ε) · n = m,
solve the linear system (1), which costs time Ω(n2), and store the solution vector
a as well as the function ξ = ξ(k).

3 Strategies for Solving the Linear System

Although there exist several methods for calculating the vector a we mainly
concentrate on the well known Gaussian elimination. In Section 6 we give some
comments on using other methods that utilize the fact that (1) is a sparse linear
equation system.

3.1 Pseudoinverse

For a given key set S we map each key x ∈ S to Ax via k hash functions
hi : U → [m− i], i ∈ [k], where the i-th element of Ax equals the hi(x)-th number

Experimental Variations of a Theoretically Good Retrieval Data Structure 745

of [m] − {h0(x), h1(x), . . . , hi−1(x)}. We build the matrix M ∈ Fn×m
2 from the

index sets Ax and check if M has full row rank using Gaussian elimination. Since
there is a positive probability that rank(M) < n, we provide a constant number
of sets of hash functions Hj = {hj

0, h
j
1, . . . , h

j
k−1}, j ∈ [l], and if M has not full

row rank we simply choose a new set of functions and rebuild M . Note: We need

log l� bits to write down the index j that is used. The probability that we do
not end up with a matrix of full row rank can be made as small as O(n−c) for
an arbitrary constant c > 0. If rank(M) = n, Gaussian elimination yields also
a matrix C ∈ Fn×n

2 coding elementary row transformations (no row exchanges),
such that the n unit vectors are columns of C ·M . Let bi ∈ [m] be the column
number of the i-th unit vector and let u′ = C ·u with u′ = (u′

0, u
′
1, . . . , u

′
n−1)�.

Then a = (ai)i∈[m] with abi = u′
i and ai = 0 for i �∈ {b0, b1, . . . , bn−1} is a

solution of the system

(C ·M) · a = C · u = u′ , (3)

and hence a solution of (1). Since, for constant ε, Gaussian elimination has worst
case runtime T (n) = O(n3), in [3] this approach is modified in order to handle
large key sets.

3.2 Splitting into Tiny Subsets

For large n it is impractical to solve (1) directly. Hence in [3] it is proposed to
reduce the problem of solving a large linear system for S by splitting the key set
in n/n′ subsets Si of size about n′ and solve a smaller system for each Si. The
split is done via a hash function h′ : U → [n/n′] by defining Si := {x | h′(x) = i}.
For each Si we obtain the related |Si|×m′ matrix M i = (v�

x)x∈Si and calculate
the pseudoinverse Ci for the corresponding system

M i · ai = ui . (4)

For possible rebuilds of matrices M i, l sets of k hash functions are provided for
one Si. (We can share these functions among all subsets, so no space problem is
caused.) If a subset Si is too large, that is, |Si| > (1+ε) ·n′ = m′, then no matrix
M i is created and the elements of Si are classified as “special”. Similarly, if all l
attempts at finding a pseudoinverse Ci for M i fail, the keys in Si are declared
“special”. For all special keys together we use the data structure from [1], in the
version of a retrieval structure, as backup data structure. This takes extra space
of about α · 1.23nr, where α denotes the fraction of special keys. The (expected)
runtime for the construction, excluding the time for the backup data structure,
can be simply bounded by O(n/n′ ·T (n′)), where T (n′) depends on the way the
Ci’s are obtained.

In [3] it was suggested that n′ is chosen as 1
2

√
log n and that precomputed

tables of pseudoinverses for the matrices M i are used, because in this way linear
construction time can be obtained while the size of the tables and the number
of special elements are upper bounded by o(n). To anticipate some results of our
experiments, it turned out that the approach with precomputed pseudoinverses

746 M. Aumüller, M. Dietzfelbinger, and M. Rink

is realizable only for very small n′. Even when using mild compression tricks it
was not practical to choose n′ larger than 6. Note: If n′ = 1

2

√
log n = 6, then

we have n = 2144. This experience prompted us to try another solution strategy,
using larger n′ and refraining from precomputation.

4 Implementation Considerations

In this section we describe the framework for our study of the space-time-tradeoff
for the construction of the retrieval data structure with and without using pre-
computed solutions. Our primary goal was to explore what orders of magnitude
of n could be treated in reasonable time to beat the 1.23nr space bound of the
retrieval data structure from [1].

4.1 Small Matrices — Precomputed Solutions

We studied how practical it is to precompute and store (on disc) all pseudoin-
verses for different parameters n′, m′ and k, such that during the construc-
tion of the retrieval data structure we are able to obtain the Ci’s by simple
lookups, that is in time O(1). (Note that the whole matrix fits in O(1) words, if
n′ = 1

2

√
log n.) After creating and storing the tables for the pseudoinverses one

can fix some suitable m′ and k and load tables for parameters n′
1, n

′
2, . . . , n

′
t with

n′
1 < n′

2 < . . . < n′
t ≤ m′. Subsets Si of size n′′ ≤ n′

t, n′′ �∈ {n′
1, . . . , n

′
t}, can be

filled with dummy elements up to the next larger n′
j , j ∈ [t]. For subsets of size

n′
j pseudoinverses are obtained by a lookup if they exist. Subsets for which none

of the hash function sets works or that are larger than n′
t are treated using the

backup data structure. Since the number of n′×m′ binary matrices with k ones
per row is (m′

k)
n′

it seems clear that this approach is worthwhile only for fairly
small matrices, although only a fraction of them has full row rank. Furthermore
a simple estimation of the size of the subsets Si using Poisson distribution (for
small mean n′, under the assumption that the splitting hash function is fully
random) shows that a substantial fraction of the keys will be inserted into the
backup retrieval data structure because they sit in a Si with |Si| > n′

t.

4.2 Large Matrices — No Precomputation

The problem of using precomputed solutions is that even for small n′ the costs
in space (and time) will be too large, such that optimizing ε will be impractical.
So we consider computing the pseudoinverses during the construction of the
retrieval data structure. Using this approach we try to solve the linear systems
for subsets Si up to size m′. Storing already computed solutions to reuse them
for other subsets later in the construction phase does not make sense, since
the probability that the same matrix appears twice is vanishingly small. The
special elements (from overfull subsets and matrices with no pseudoinverse) are
handled like above using the backup data structure. The main problem remains
in finding suitable parameter configurations that optimize the space and time
requirements.

Experimental Variations of a Theoretically Good Retrieval Data Structure 747

4.3 Basic Conditions

For the experiments we use fairly common but weak hash functions for obtaining
the index sets Ax as well as for splitting the key set S. Each hash function
h : U → R is defined as

h(x) = ((a · x + b) mod p) mod |R| , (5)

for a prime number p > |U | and a ∈ [p]−{0}, b ∈ [p] randomly chosen via a stan-
dard pseudo random number generator. We provide one hash function to split
the key set S, as well as l sets of k hash functions Hj = {h0, h1, . . . , hk−1}, j ∈ [l],
to build the M i’s, that is, for each subset Si one tries to find a solution using
consecutively H0, H1, . . . , until one succeeds or H l−1 has been tried without
success. For each Si the “successful index” needs to be stored. In order to ob-
tain a parameter configuration that optimizes the space usage, the fraction α
of elements that have to be inserted into the backup data structure is crucial.
We can estimate the space needed for the data structure by the following simple
formula:

S(n) = n/n′ · (m′r +
log l�) + α · 1.23nr , (6)

ignoring O(l · k · log |U |) bits for the hash functions and other additional space
depending on implementation and used architecture.

4.4 Experimental Setup

The experiments were implemented in C++ (g++ version 4.3.2 with optimiza-
tion flags: -O3 -march=nocona -ffast-math -funsafe-loop-optimizations) on an
Intel(R) Xeon(TM) machine with 3.20GHz CPU and 4 GB RAM under Linux
(kernel 2.6.27), and ran on a single core. Except noted otherwise we used the
universe U =

[
228

]
, and chose the n elements of S as well as the coefficients of the

hash functions via rand(), a standard utility function for generating pseudo ran-
dom numbers using the trinomial x31 + x3 + 1. Since we considered the solution
of (1) via a pseudoinverse, that is only when M i has full row rank, the con-
crete retrieval function f is irrelevant. For testing purposes we used the identity
function. Gaussian elimination and matrix multiplication were realized utilizing
blockwise calculation.

5 Results

5.1 Small Matrices — Precomputed Solutions

We started our tests by calculating the number π of binary n′×m′ matrices with
k ones per row that have a pseudoinverse, for different parameters (n′, m′, k),
as shown in Table 1. Since π becomes quite large even for small n′ we used a
simple compression method to reduce the amount of space for the lookup tables.
Each n′ × m′ matrix M was normalized by sorting the rows lexicographically
in descending order. This reduces the number of distinguishable matrices from

748 M. Aumüller, M. Dietzfelbinger, and M. Rink

Table 1. μ=̂ # (n′, m′, k)-matrices, π=̂ # matrices with pseudoinverses,μnorm=̂ #
normalized matrices, μsav=̂ # saved normalized matrices, SLT=̂ lower bound for the
size of the lookup tables (in bytes)

n′ m′ k μ π π/μ μnorm μsav SLT [B]
5 6 3 3.20 · 106 1.54 · 106 0.482 4.25 · 104 1.29 · 104 1.03 · 105

5 6 4 7.59 · 105 1.81 · 105 0.239 1.16 · 104 1.51 · 103 1.21 · 104

5 7 3 5.25 · 107 3.58 · 107 0.682 5.76 · 105 2.99 · 105 2.69 · 106

5 7 4 5.25 · 107 2.93 · 107 0.557 5.76 · 105 2.44 · 105 2.20 · 106

6 7 3 1.84 · 109 8.78 · 108 0.478 3.84 · 106 1.22 · 106 1.34 · 107

6 7 4 1.84 · 109 4.89 · 108 0.266 3.84 · 106 6.79 · 105 7.47 · 106

6 8 3 3.08 · 1010 2.04 · 1010 0.663 5.55 · 107 2.84 · 107 3.12 · 108

6 8 4 1.18 · 1011 6.54 · 1010 0.556 2.01 · 108 9.09 · 107 9.99 · 108

μ = tn
′
, t =(m′

k), to μnorm =(t−1+n′
n′), the number of normalized matrices. If a

normalized matrix Mnorm had a pseudoinverse C then the tuple (Mnorm, C)
was saved into a file. For the construction of the retrieval data structure the file
was loaded and a lookup hash table (with expected constant access time) was
built using the saved tuples as key-value pairs. So each lookup needs some pre-
and postprocessing, since we have to normalize the key M and do the inverse
transformation on the value C. The space usage SLT for the lookup hash table
is at least (
n′ · m′/8� +
n′ · n′/8�) · μsav bytes, where μsav = π/n′! denotes
the number of saved normalized n′ × m′ matrices and n′ × n′ pseudoinverses,
respectively.

One observes that μsav becomes quite large even
n T̄ (n′)

1 · 106 14.2 s
5 · 106 60.1 s

10 · 106 125 s
20 · 106 252 s

Table 2. Average (15
runs) construction
time T̄ (n′), using pre-
computed tables of
pseudoinverses for pa-
rameters n′ = 5, m′ = 7,
k = 3, l = 4.

for small n′, such that it is not practical to go be-
yond n′ = 6. (With better compression a value of
n′ = 7 may be achievable.) Furthermore the proba-
bility that a random (n′, m′, k)-matrix M has a pseu-
doinverse, varies strongly. This has to be compensated
using an adequate number l of sets of hash functions
for rebuilding M , see Section 4.3. We started to de-
termine the best parameter configuration according to
the average space usage S̄(n) using only one lookup
table, that is all matrices M have the same number
of rows n′. This has the advantage that each solution
vector ai = (a0, a1, . . . , am′−1) has a fixed number of
m′ − n′ zero-entries whose positions can be encoded
with
log(

(
m′
n′
)
)� bits. Hence formula (6) has to be modified as follows:

S̄(n) = n/n′ · (n′r +
log l�+
log(
(

m′
n′
)
)�) + ᾱ · 1.23nr , (7)

to evaluate the average space usage S̄(n), where ᾱ is the mean fraction of ele-
ments which must be inserted into the backup data structure. It turned out that
on the one hand π

μ is a good approximation for the probability that a constructed

Experimental Variations of a Theoretically Good Retrieval Data Structure 749

(m′, n′, k)-matrix has full row rank and on the other hand the Poisson distribu-
tion gives a good approximation for the average fraction of overfull subsets for
n ≥ 105. Hence one can use the following rule of thumb to estimate ᾱ:

ᾱ ≈ 1− e−n′ ·
(∑n′−1

i=0

(n′)i

i!

)
·
(
1−

(
1− π

μ

)l
)

. (8)

According to (7) parameters (n′, m′, k, l) = (5, 7, 3, 4) are a good choice. The
fraction of subsets with size greater than 5 is about 56 percent and setting l = 4
the probability that we get a solution for a subset Si of size ≤ 5 is about 99
percent. Since encoding the index j of the set of hash functions Hj takes 2 and
encoding the zero-entries in the solution vector takes
log(

(7
2

)
)� = 5 bits, we need

space about S̄(n) = 1.69nr + 7/5n bits. One can reduce the space needs slightly
by using a lookup table T ′ for the (6, 7, 3)-matrices in addition to the table T
for the (5, 7, 3)-matrices to handle subsets Si of size up to 5 with table T and
subsets of size 6 with table T ′, see Section 4.1. This reduces the fraction of too
large subsets to about 38 percent and ᾱ to about 40 percent. Solution vectors for
matrices with 5 and 6 rows are handled equally by encoding only one zero-entry.
Therefore we get a space usage of S̄(n) = n/5 ·(6 ·r+5)+ ᾱ ·1.23nr = 1.69nr+n
bits. Only slightly less space would be needed using parameters (6, 8, 3), but this
lookup table has already a size of more than 300 MB. And even with n′ = 7 one
could not beat the 1.23nr space bound. Considering the rapidly growing number
of pseudoinverses one concludes that the approach using precomputed solutions
is limited in its practicability. For completeness we verified that the construction
time for a is linear as expected using parameters (5, 7, 3, 4), see Table 2.

5.2 Large Matrices — No Precomputation

In our experiments with computing pseudoinverses during the construction we
concentrated on parameters n′ from 10 up to 1000 and tried to minimize the
space usage via local linear search in the parameter space. Table 3 shows the
optimal values for m′ according to (6). The results are obtained for parameters
n′ ∈ {10, 20, 35, 50, 100, 200, 350, 500, 750, 1000}, k = 5 and l = 2 via inserting
n = 107 keys 7 times. With n′ ≥ 100 one beats the 1.23nr bound from [1] with
high probability. Growing n′ makes it possible to reduce the space overhead
ε = m′/m′− 1 in the primary structure and simultaneously the mean fraction ᾱ
of special elements.

Remark 1. We verified the results from Table 3 with a more “natural” set of keys
using all article names of the English wikipedia from 24/05/2008 (n = 5.249.107
different keys with an average length of 20 bytes).

For 107 keys and n′ ≤ 250 the construction time is below 20 min, for our refer-
ence value n′ = 100 even below 4 min. But as expected the construction time
is O(n · (n′)2), see Figure 1, and therefore reducing the overall space usage with
growing n′ becomes soon expensive. For completeness we verified that the con-
struction time for fixed bin sizes is linear like expected, see Figure 2.

750 M. Aumüller, M. Dietzfelbinger, and M. Rink

Table 3. values of m′ optimizing average space usage S̄, ᾱ=̂ mean, s(α)=̂ standard
deviation

n′ m′ ᾱ s(α) S̄/(nr) n′ m′ ᾱ s(α) S̄/(nr)
10 14 0.178 0.017 1.62 200 230 0.012 0.011 1.16
20 26 0.153 0.029 1.49 350 379 0.027 0.017 1.11
35 45 0.075 0.021 1.38 500 540 0.017 0.014 1.10
50 61 0.082 0.043 1.32 750 796 0.017 0.014 1.08

100 119 0.023 0.014 1.22 1000 1057 0.011 0.014 1.07

Fig. 1. average construction time (7 runs)
for parameters n = 107 and n′, m′ from
Table 3

Fig. 2. average construction time (7 runs)
for fixed n′ = 100, m′ = 119 and n ∈ {5 ·
105, 106, 3 · 106, 5 · 106, 7 · 106, 107}

6 Conclusion and Outlook

In this paper we have studied how to transfer the theoretical good retrieval data
structure from [3] into an operational “real world” data structure and beat the
1.23nr space bound from [1]. We showed that the construction from [3] using
precomputed pseudoinverses cannot be used for a very space-efficient data struc-
ture since relevant parts of the actual complexity are hidden in the asymptotic
estimates, and real input data and real machines are not large enough to make
these estimates valid. In consequence we modified the theoretical construction
in a straightforward way, using the same idea of “splitting the key set”, but solv-
ing the linear equation systems of a few hundred equations one after the other
without precomputation. This modification makes it possible to actually build
retrieval structures with fewer than, say, 1.1nr bits of space, and expected linear
construction time (for constant n′) for realistic key set sizes.

Since our experiments showed that we can beat the 1.23nr space bound only
via solving relatively large linear equation systems, it seems worthwhile to con-
sider solution methods that utilize the sparse structure of the M i’s better than
Gaussian elimination. We started tests with the conjugate gradient method and

Experimental Variations of a Theoretically Good Retrieval Data Structure 751

Lanczos algorithm which can be applied to the system M�
i ·M i ·ai = M�

i ·ui

and have runtime O(n′ · Δ + (n′)2), where Δ denotes the number of non-zero
entries of M i. The problem is that over finite fields these algorithms fail (even if
a solution exists) when they encounter a non-zero vector which is self-orthogonal
or self-orthogonal with respect to the inner product defined by M�

i ·M i. First
tests, using parameters n′ and m′ from Table 3 (starting with n′ = 200), showed
that this the case for more than half of the matrices, such that we find an ex-
isting solution in only 2/3 of the cases if we use l = 2 trials per subset Si.
Possibly techniques from [6] can be used to overcome this problem, but we
haven’t yet checked this. Furthermore we started investigating the suitability
of Wiedemann’s method [7]. Our first simple implementation using the deter-
ministic variant of the algorithm (based on column elimination), which must be
called O(εn′) times in the worst case, beats Gaussian elimination at least for
fairly large matrices with small ε, e.g. n′ = 1500, m′ = 1575, ε = 0.05. All in all
it seems promising that one can achieve shorter runtime starting from the range
n′ = 1000 using sparse linear system solvers, which would make the approach
“large matrices and no precomputation” even more practicable.

References

1. Botelho, F.C., Pagh, R., Ziviani, N.: Simple and space-efficient minimal perfect hash
functions. In: Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS 2007. LNCS, vol. 4619,
pp. 139–150. Springer, Heidelberg (2007)

2. Calkin, N.J.: Dependent sets of constant weight binary vectors. Combinatorics,
Probability & Computing 6(3), 263–271 (1997)

3. Dietzfelbinger, M., Pagh, R.: Succinct data structures for retrieval and approxi-
mate membership (extended abstract). In: Aceto, L., Damgård, I., Goldberg, L.A.,
Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I.
LNCS, vol. 5125, pp. 385–396. Springer, Heidelberg (2008)

4. Hagerup, T., Tholey, T.: Efficient minimal perfect hashing in nearly minimal space.
In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 317–326.
Springer, Heidelberg (2001)

5. Porat, E.: An optimal Bloom filter replacement based on matrix solving. CoRR,
abs/0804.1845 (2008)

6. Teitelbaum, J.: Euclid’s algorithm and the Lanczos method over finite fields. Math.
Comput. 67(224), 1665–1678 (1998)

7. Wiedemann, D.H.: Solving sparse linear equations over finite fields. IEEE Trans.
Inf. Theor. 32(1), 54–62 (1986)

Short Labels
for Lowest Common Ancestors in Trees

Johannes Fischer

Universität Tübingen, Center for Bioinformatics (ZBIT), Sand 14, D-72076 Tübingen
fischer@informatik.uni-tuebingen.de

Abstract. We evaluate the practical performance of labeling schemes
for lowest common ancestors in trees. We develop different variants for
encoding the labels. We then perform a thorough experimental evaluation
of these schemes on a variety of tree shapes and sizes. We find that in
general non-prefix-free codes lead to shorter labels than those that are
prefix-free, while having roughly the same query time.

1 Introduction

In distributed environments, it is often desirable to compute certain functions on
data without consulting global lookup tables. This may be, for example, because
not all peers in a network can perform simultaneous reads in a global structure,
and because it would be too costly (in terms of time, bandwidth, and/or space)
to distribute these tables to all peers.

One particularly important instance of such distributed data structures are
labeling schemes for trees or graphs with n nodes, where the aim is to assign
a short (bit-)label to every node such that certain queries (aka functions) on
the nodes can be computed solely by looking at the labels of the query nodes.
Examples of such queries include node adjacency [1], ancestry [2,3], and distances
[4, 5, 6]. In all of these examples, it has been shown that O(log n)-size bit-labels
suffice to compute the functions in O(1) time.

Computing nearest or lowest common ancestors (LCAs) of two nodes in a tree
is arguably more difficult than the examples mentioned above, in the sense that
this problem is non-trivial already in a non-distributed setting [7]. The LCA of
nodes u and v is defined as the deepest node 	 that is an ancestor of both u
and v. This definition shows a further complication for this type of query: the
answer is not simply binary (e.g., yes/no to an “is-ancestor” query) or a natural
number (e.g., a distance), but a node label itself (the one of node). Given
these complications, it is perhaps surprising that Alstrup et al. have shown that
O(log n)-bit-labels suffice to answer LCA-queries in constant time [8]. Such a
scheme must exploit the freedom to choose the node identifiers, for Peleg shows
that if one further requires the answer 	 to be a predetermined identifier of size
O(log n) bits, a lower bound of O(log2 n) bits exists on the label lengths [9]. In
the same article, Peleg also gives a labeling scheme that achieves this bound.
For the significance of LCA-queries in distributed environments, we refer to the
excellent survey by Alstrup et al. [8].

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 752–763, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Short Labels for LCAs in Trees 753

Despite of the significance of labeling schemes for LCAs, not much research
has been done on their practical performance, although there is a thorough
experimental study of labeling schemes for ancestor queries [3]. In last year’s
ESA, Caminiti et al. [10] compared the performance of labelling schemes for
LCAs in trees. However, they only focused on the case where we require the
query to return a predetermined node identifier (Peleg’s scenario above), and
hence considered only O(log2 n) labeling schemes. Given this, Caminiti et al.
experimented mainly on different options for decomposing the tree into disjoint
paths1, a key technique for most labeling schemes: decomposing by large child,
maximum child, and by rank (see Sect. 2 for more details on tree decomposition).
To summarize their contribution, tree-decomposition based on the largest child
is shown to be always best in practice.

The aim of this article is to evaluate the practical performance of the O(log n)-
bit labeling scheme for LCAs due to Alstrup et a. [8], by experimenting on differ-
ent codes used for constructing the node labels. Alstrup et al. themselves [8] give
a code that achieves O(log n) label lengths, but there is certainly room for ex-
periments. And improvements, as we shall see! Here, we rely on the experiments
conducted before [10], and take it as granted that the largest-child decomposition
is always best in practice. Interestingly, this is also the decomposition proposed
in the original algorithm [8].

2 Labeling Trees for Lowest Common Ancestors

We describe a simplified version of the labeling scheme due to Alstrup et al. [8]
for LCA-queries in a rooted tree T . Let n = |T | denote the number of nodes in T ,
Parent(v) the parent node of node v, and Children(v) the set of v’s children.
Let Tv denote T ’s subtree that is rooted at v. We classify the nodes in T into heavy
and light nodes as follows: The root of T is called light. For every internal node v,
exactly one child u ∈ Children(v) with |Tu| = max{|Tw| : w ∈ Children(v)}
called heavy, whereas the other children are called light. The heavy nodes divide T
into disjoint heavy paths ; a heavy path 〈v〉k = 〈v1, v2, . . . , vk〉 is defined recursively
by following the heavy children v2, . . . , vk, starting at a light node v1. Node v1 is
called the apex of all nodes vi on 〈v〉k, denoted byApex(vi) (note thatApex(v1) =
v1 for light nodes v1). For example, in the tree on the left side of Fig. 1, we have
Apex(A) = Apex(C) = · · · = Apex(L) = A.

We now assign a heavy label hl(v) to every node v. The constraint on the
heavy labels is that for a heavy path 〈v〉k and two given nodes vi and vj on 〈v〉k,
1 ≤ i, j ≤ k, we can decide from hl(vi) and hl(vj) alone which of the nodes vi

and vj is an ancestor of the other. In other words, we need to decide whether
i < j solely by looking at hl(vi) and hl(vj).

We also assign a light label ll(v) to each light node v, subject to the constraint
that light nodes with the same parent get assigned different labels. The root gets
assigned the empty string as a light label. Now, the label of node v is given by
1 The authors [10] also consider a variation of Peleg’s original scheme [9] called CFP,

but it also uses O(log2 n)-bit-labels.

754 J. Fischer

4A

B

ED

C

F G

K

ML

2

11

3

1

1

1

2

2

1 1

1J

IH

0 1

0 1

1

C

A

F

H

K

L

codes 〈c〉k
node actual stored
A 0 1
C ε 0
F 10 11
H 1 00
K 11 000
L 111 0000

Fig. 1. Left: A tree T with the light size drawn next to each node. Heavy paths are de-
picted by thicker edges. Middle: FLBST B for the heavy path 〈v〉k = 〈A, C, F, H,K, L〉
in T , with light sizes 〈y〉k = 〈4, 3, 1, 2, 2, 1〉. Right: Assigned heavy labels to nodes before
(left) and after (right) adding the artificial ’1’ (needed to avoid the empty label).

l(v) = l(Parent(Apex(v)))·ll(Apex(v))·hl(v), where “·” denotes concatenation
of strings. It follows from this definition that l(v) is a concatenation of alternating
heavy and light labels, l(v) = h0 · l1 · h1 · · · lt · ht.

To see how these labels help for computing the label of 	 = Lca(u, v) [8,
Lemma 5], first assume that l(u) = h0 · l1 · h1 · · ·hi−1 · li · α, and l(v) = h0 · l1 ·
h1 · · ·hi−1 · l′i · α′, with li �= l′i. Then u and v are in different subtrees Tx and Ty

for two different light children x and y of 	; hence, l() = h′
0 · l′1 ·h′

1 · · ·h′
i−1. The

same is true if li ·α or l′i ·α′ is empty, in which case one of u and v is an ancestor
of the other.

If, on the other hand, l(u) = h0 · l1 ·h1 · · · li ·hi · · · , and l(v) = h0 · l1 ·h1 · · · li ·
h′

i · · · , with hi �= h′
i, then 	 must be on the deepest heavy path 〈v〉k that is

common to all paths from the root down to u and v. Heavy label hi is a heavy
label of some node vx on 〈v〉k, and h′

i is a heavy label of some node vy on 〈v〉k.
Thus, if x < y, l() = h′

0 · l′1 · h′
1 · · · li · hi, due to the constraints on heavy labels.

Otherwise, l() = h′
0 · l′1 · h′

1 · · · li · h′
i.

Apart from finding longest common prefixes, the query algorithm needs to (1)
find the beginning and end of a heavy/light label hi/li in l(v), given a position
j within hi/li, (2) determine whether position j occurs in a heavy or light label
in l(u), and (3) decide whether i < j by looking at hl(vi) and hl(vj) for nodes
vi, vj on a heavy path 〈v〉k.

The third point above will be discussed separately in Sect. 3 for each different
coding algorithm. Concerning the first two points, one possibility is to use an
additional bitstring k(v) of length |l(v)|, which we call the helper label of v,
where k(v) has a ’1’ at position j iff j within a heavy label, and a ’0’ otherwise.
Then point (2) above becomes trivial, and point (1) amounts to finding the
preceding/succeeding occurrence of a ’0’ or ’1’ bit before/after position j. This
can be done with standard bit-manipulating techniques.

The label l(v) of a heavy node v will be repeated in all labels l(w) for w being
a node in a subtree rooted at one of v’s light children. In order to ensure that
the label lengths are all within O(log n), we require the heavy labels 〈hl(v)〉k of
a heavy path 〈v〉k satisfy |ci| ≤ log

∑
j �=i yj + O(1). Here, yi = |Tvi | − |Tvi+1 | is

called vi’s light size for 1 ≤ i < k (define yk = 1).

Short Labels for LCAs in Trees 755

3 Coding Algorithms

In this section, we review different coding algorithms used in our experiments.
Let 〈v〉k be the sequence of nodes that we want to encode into a sequence 〈c〉k,
and 〈y〉k be the sequence of light sizes of the node sequence 〈v〉k (if needed).

3.1 Non-Self-Delimiting Codes

We first discuss codes that need a helper label (as discussed in Sect. 2) for
extracting an individual label in a juxtaposition of alternating heavy and light
labels. Remember that helper labels double the total label size.

Canonical Coding. The canonical code is given by setting ci to the i’th entry in
the canonical ordering 0, 1, 00, 01, 10, 11, 000, 001, . . . of all bit-strings [11]. Given
ci and cj , checking whether i < j is done by first checking whether |ci| < |cj |,
and, in case of equality, checking if ci < cj (numerically).

Hu-Tucker Coding. The problem of constructing an optimal alphabetic search
tree [12] for 〈y〉k is to construct a binary tree B, where the i’th leftmost leaf is
labeled with vi, such that

∑
yidi is minimal. Here, di denotes the depth of leaf i.

Hu and Tucker [13] showed how to construct such a tree in O(k log k) time. The
general idea of this algorithm is to first construct a Huffman-like binary tree,
where the leaves are labeled with the vi’s, but not necessarily increasingly, and
then rearrange this tree to get an increasing labeling. Although an exact linear
time algorithm for our setting exists [14], we implemented an O(k log k)-time
approximation algorithm [15].

The code ci for vi is obtained by following the path from B’s root down to
the i’th leaf, reading a left child as a ’0’, and a right child as a ’1’. This gives a
prefix-free code (no code is a prefix of other codes), although this property would
not be necessary for our scheme. Checking whether i < j for given ci and cj is
done by a simple lexicographic comparison: first align ci and cj by shifting the
shorter to the left, and then do a standard integer comparison on the resulting
words. In case of equality, check if |ci| < |cj |.

Alstrup et al.’s Coding. Alstrup et al. themselves [8, p. OF9] propose an
interesting code by dividing the interval [0,

∑
i≤k yi) into k sub-intervals Ii of

length yi, and then locating an integer zi in Ii which has �log yi� trailing 0s. The
code ci is obtained from zi by chopping off these trailing 0s, i.e., taking only the

log

∑
i≤k yi� − �log yi� most significant bits of zi.

Checking whether i < j for given ci and cj is done by lexicographic compari-
son, as in the Hu-Tucker coding.

Mehlhorn’s Coding. Alstrup et al. [8, p. OF10] already hint at the fact that
Mehlhorn’s linear-time method [15] for approximating optimal binary search
trees [16] can be used to construct prefix-free codes (what they call alpha-
betic codes). However, we found that Mehlhorn’s algorithm can also be used to

756 J. Fischer

construct much shorter (non-prefix-free) codes that are suitable for our setting,
as explained next.

We define a fully labeled binary search tree (FLBST) for 〈v〉k as a binary
search tree with k nodes, such that the i’th node in symmetric order (i.e., in-
order) is labeled by vi. In accordance with alphabetic search trees (see above),
an optimum FLBST is one where

∑
yidi is minimal (di is the depth of the node

with in-order i). Computing an optimum FLBST could be done with Knuth’s
O(k2)-time-and-space-algorithm for optimum binary search trees [16], but this
would be too costly. Instead, we use Mehlhorn’s linear-time algorithm [15] for
approximating an optimum FLBST B. It is based on recursively bisecting the
interval [0,

∑
i≤k yi) such that the “weights” of the subtrees are roughly equal-

ized, and shown to be very close to the optimum solution. We implemented this
scheme in O(k log k) time instead of optimal linear time.

The code ci for vi is obtained by following the path from B’s root down to
the node with inorder i, again reading a left child as a ’0’, and a right child as
a ’1’. A technical detail is how to avoid the empty label at the root, because
empty labels are not permitted in our setting. We overcome this by artificially
adding 1 (arithmetically!) to each of the ci’s, increasing the length of the label
in case of an overflow. These steps need to be undone when decoding the label.
See Fig. 1 for examples.

Deciding whether i < j from ci and cj alone is more complicated in this case.
We first align ci and cj by shifting the shorter one to the left, and then set the
lower max(|ci|, |cj |) −min(|ci|, |cj |) bits in the shorter label to the complement
of the corresponding bits in the longer label; let the results be c′i and c′j , respec-
tively. We then compute d as the leftmost (most significant) position in which c′i
and c′j disagree. Note that the bit-sequence (c′i)1 . . . (c′i)d−1 is a code itself and
corresponds to a node v in the FLBST B (in fact their LCA!). If the d’th bit is
0 in c′i, and 1 in c′j , we know that label ci is found in v’s left subtree (or at v
itself if ci is a prefix of cj), whereas cj is found in v’s right subtree. Hence, i < j
in this case. The other case is symmetric.

As an example, look at the codes ci = 10 and cj = 111 in Fig. 1, corresponding
to nodes F and L, respectively, in the FLBST B in the middle. Aligning and
complementing yields c′i = 100 and c′j = 111, and the leftmost bit d where they
differ is the middle one. We have that (c′i)1 . . . (c′i)d−1 = 1, corresponding to
node H in B. Because c′i continues with a 0 and c′j with a 1, we see that F is in
H’s left subtree, whereas L is in the right one. We conclude that F is above L in
the original tree T .

3.2 Self-delimiting Codes

We call a code self-delimiting if in a juxtaposition C of m encoded words, the
following operations can be computed in constant time (assuming C fits into a
constant number of computer words):

– LocateC(j): locate the j’th encoded word for 1 ≤ j ≤ m.
– CountC(j): compute the number of encoded words before position j ≤ |C|.

Short Labels for LCAs in Trees 757

As a simple example, encoding an integer x ≥ 0 in unary as 0x1 yields a self-
delimiting code, as the locate- end count-operations above reduce to the well-
known rank- and select-queries on binary sequences [17]. Because the unary
code is obviously too long for our purposes, below we introduce two other self-
delimiting codes.

Self-delimiting codes are relevant for our labeling scheme for the following
reason. Assume we encode heavy and light labels with the same self-delimiting
code, and concatenate the resulting bit-strings to obtain a node label l(v) for
node v. Then given a position j in l(v), we can decide in O(1) time if j occurs
in a heavy or light label by deciding whether x = Countl(v)(j) is even or
odd. Finding the beginning and end of the heavy/light label can be done by a
subsequent Locatel(v)(x). Hence, a helper label is not necessary in this case.

Fibonacci Coding. Every yi can be written uniquely as a sum yi = Fk1 +
Fk2 + · · · + Fkr with kj+1 < kj + 1 for all 1 < j < r and Fkr > 0, where Fj is
the j’th Fibonacci number, defined here F1 = 1, F2 = 2, and Fj+1 = Fj + Fj−1
for j > 2. Hence, vi can be encoded by a bit-vector ci of length k1, where a
’1’ at position j in ci indicates that Fj is part of the sum (kx = j for some x).
The property kj+1 < kj + 1 guarantees that no ’11’-pair is present in ci; thus,
prepending a ’1’ to ci implies that the only ’11’-pair appears at the beginning
of an encoded word. To support the Countl(v)(j)-operation, simply count the
number of ’11’-pairs up to position j in the sequence l(v) of encoded labels. For
the Locatel(v)(j)-operation, find the j’th and the (j − 1)’th ’11’-pair in l(v).
We use a combination of bit-tricks (“broadword-computing”) and table-lookups
to support these two operations [18].

Deciding whether i < j from ci and cj is simple: first check if |ci| < |cj |, and,
in case of equality, perform a standard integer comparison on ci and cj.

Ternary Coding. Writing each yi in ternary, then substituting a ’0’ by binary
’00’, a ’1’ by ’01’, and a ’2’ by ’10’, and finally prepending a ’11’-pair to the
resulting sequence, gives codewords ci that are asymptotically even shorter than
the Fibonacci-codes [19]. Now the two operations Count(·) and Locate(·) re-
duce to counting/locating the ’11’-pairs at even positions, which can be done
again by bit-tricks and table-lookups [18].

Deciding whether i < j is similar to Fibonacci Coding.

3.3 Best Possible Heuristic for Light Labels

In the presence of a helper label, we can use different codings for the heavy
and light labels. Thus, when using a helper label, it always makes sense to use
the Canonical Coding for the light labels, because it is obviously the one that
produces shortest codes. Since every light node v is the apex of a heavy path,
ll(v) will be repeated for all nodes w in Tv. Therefore, we assign shorter labels
to nodes v with larger |Tv|. This rule produces the best possible light labels.

758 J. Fischer

Table 1. Implemented and tested schemes

name heavy labels light labels O(log n)-bit-labels? helper label?
H Hu-Tucker [20] Canonical yes yes
A Alstrup et al. [8] Canonical yes yes
M Mehlhorn [15] Canonical yes yes
C Canonical Canonical no yes
F Fibonacci Fibonacci no no
T Ternary Ternary no no

3.4 Implemented Labeling Schemes

The implemented labeling schemes are summarized in Tbl. 1. Because this is
a practical paper, we also look at labelings that do not guarantee that the
theoretical label length is O(log n).

4 Experiments

All schemes from Tbl. 1 were implemented in C++ and are available at http://
www-ab.informatik.uni-tuebingen.de/people/fischer/lca-labeling.zip.
All tests were run on a 64-bitmachine with one Athlon DualCore 2.2GHz processor
and with 16GB of RAM, using ScientificLinux 4.7, and GCC 4.1.2 with the same
compiler options (-O3 -fomit-frame-pointer -funroll-loops) for all methods. All fig-
ures shown are averages over 10 different executions of the algorithms.

4.1 Performance Indicators

Average label length. As the average label length is directly correlated to the total
size of the scheme, this is probably the most important measure.

Maximum label length. The length of the longest label plays a central role in the
worst-case performance of the query algorithm.

Construction time. Construction time of the labels should not be over-estimatedas
aperformance indicator (because it isdoneonlyonce),but is certainlyan interesting
measure.

Query time. The average query time is especially important in a distributed setting,
where new queries keep arriving at a high rate. More complicated codes could result
in a higher query time.

4.2 Test Data

Random trees. We generated random trees with the method due to Rémy [21]. It
is originally devised for binary trees, but using the natural isomorphism between
binary and arbitrary ordered trees, it can also be used to produce random ordered

http:// www-ab.informatik.uni-tuebingen.de/people/fischer/lca-labeling.zip
http:// www-ab.informatik.uni-tuebingen.de/people/fischer/lca-labeling.zip

Short Labels for LCAs in Trees 759

trees. The advantage of this approach is that it does not produce “balanced” trees
of height O(log n), but rather of height O(

√
n).

Skewed trees: path. A simple path of length n. This tree constitutes a test on the
worst-case performance of the coder used for the heavy labels.

Skewed trees: star. A root node with n− 1 leaves attached to it. This constitutes a
test on the worst-case behavior of the construction of light labels.

Perfect binary trees. A tree of height O(log n), where each internal node has exactly
two children.

4.3 Experimental Results: Label Length

Average Label Length. The results for the average label lengths can be seen in
Fig. 2. Let us first look at (a), where random trees are examined. We can see that
coding scheme M is always best. The other coding schemes are roughly equal, with
one exception: scheme C is almost competitive to M for small trees (up to 104), but
becomes the worst scheme of all for large trees (starting roughly at 106). Also, for
small inputs, the schemes that do not need a helper label (F & T) are better than H
& A, but this changes for growing tree size.

Regarding the skewed trees (b and c), we see that schemes F & T are alwaysbest,
with slight advantages for T. For single paths (b), we further see that M & C are
better than H & A. It is interesting to note that M & C are equal; the reason for

 20

 40

 60

 80

 100

 120

 140

 160

 1000 10000 100000 1e+06 1e+07 1e+08

si
ze

 (
bi

ts
)

number of nodes

H
A
M
C
F
T

(a) Random tree.

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1000 10000 100000 1e+06 1e+07

si
ze

 (
bi

ts
)

number of nodes

H
A
M
C
F
T

(b) Path (H & A and M & C overlap).

 30

 40

 50

 60

 70

 80

 90

 100

 1000 10000 100000 1e+06 1e+07

si
ze

 (
bi

ts
)

number of nodes

H
A
M
C
F
T

(c) Star (all curves except F & T overlap).

 40

 60

 80

 100

 120

 140

 160

 1000 10000 100000 1e+06 1e+07 1e+08

si
ze

 (
bi

ts
)

number of nodes

H
A
M
C
F
T

(d) Binary tree (A & M overlap).

Fig. 2. Average label lengths for different coding methods and varying tree sizes

760 J. Fischer

this “artifact” can be seen as follows. On a single path, all nodes have a light size
of 0; hence, the “symbols” to be encoded with Mehlhorn’s method are all equally
likely. In this case,Mehlhorn’smethod just constructs the shortest (non-prefix-free)
binary strings, which coincide with Canonical Codes in this case.

In (d), where complete binary trees are examined, we see a somehow reverse or-
dering comparedwith (a).This is interesting, because the label lengths for complete
binary trees can be seen as the “overhead”of our coding scheme: the aim of the tree
decomposition into heavy paths is to create “flat” trees of height O(log n); this is
pointless in the case of binary trees, which already have the desired height. In this
light, it is not surprising that scheme C is best (no overheaddue to shortest possible
codes), whereas the other schemes have an overhead that is inversely proportional
to the performance of the scheme in the “average” case.

Maximum Label Length. Let us now turn our attention to the maximum label
lengths.Again,Fig. 3 shows the results forvarying tree shapesandsizes.For random
trees (a), we have roughly the same picture as for the average label length, with the
difference that the gap between the theoretically non-optimal coding methods (C,
F, and T) and the optimal ones (H, A, and M) becomes larger. This underlines the
fact that the whole machinery forO(log n)-labeling schemes is primarily divised for
avoiding the worst case.

 0

 50

 100

 150

 200

 250

 300

 1000 10000 100000 1e+06 1e+07 1e+08

si
ze

 (
bi

ts
)

number of nodes

H
A
M
C
F
T

(a) Random tree.

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1000 10000 100000 1e+06 1e+07

si
ze

 (
bi

ts
)

number of nodes

H
A
M
C
F
T

(b) Path (curves for H, A & C overlap).

 30

 40

 50

 60

 70

 80

 90

 100

 1000 10000 100000 1e+06 1e+07

si
ze

 (
bi

ts
)

number of nodes

H
A
M
C
F
T

(c) Star (all curves except F & T overlap).

 80

 100

 120

 140

 160

 180

 200

 220

 1000 10000 100000 1e+06 1e+07 1e+08

si
ze

 (
bi

ts
)

number of nodes

H
A
M
C
F
T

(d) Binary tree (all curves overlap).

Fig. 3. Maximum label lengths for different coding methods and varying tree sizes

Short Labels for LCAs in Trees 761

Table 2. Construction times of the different coding schemes

nodes H A M C F T
262,144 0.174 0.164 0.18 0.111 0.0943 0.0943
524,288 0.361 0.334 0.369 0.229 0.194 0.191

1,048,576 0.744 0.693 0.759 0.476 0.403 0.397
2,097,152 1.56 1.43 1.57 1.02 0.859 0.851
4,194,304 3.2 2.95 3.25 2.15 1.81 1.82
8,388,608 6.52 6.01 6.62 4.48 3.77 3.75

16,777,216 13.2 12.2 13.4 9.16 7.72 7.66
33,554,432 24.5 24.5 26.5 18.5 15.5 15.5

 1e-07

 2e-07

 3e-07

 4e-07

 5e-07

 6e-07

 7e-07

 8e-07

 9e-07

 1e-06

 1.1e-06

 1000 10000 100000 1e+06 1e+07 1e+08

tim
e

(s
ec

on
ds

)

number of nodes

H
A
M
C
F
T

(a) Random tree.

 0

 2e-07

 4e-07

 6e-07

 8e-07

 1e-06

 1.2e-06

 1.4e-06

 1000 10000 100000 1e+06 1e+07 1e+08

tim
e

(s
ec

on
ds

)

number of nodes

H
A
M
C
F
T

(b) Complete binary tree.

Fig. 4. Query times — all data points are averages over 1,000,000 queries

Also, for the pathological trees (b and c), the results do not deviate too much
from the ones for average label lengths. Note, however, that in the case of a simple
path (b), all three scheme H, A, and C produce equal-sized maximum labels.

4.4 Experimental Results: Construction Time

The construction times for random trees are shown in Tbl. 2 (including times for
finding heavy paths). The times for the other tree types (path, star, and complete)
do not deviate much from the random tree, hence we do not display them here. The
first thing to note is that all coding schemes exhibit a nice linear-time construction,
even those which are implemented in O(n log n) time.

It is not surprising that the non-optimal coding schemes C, F, and T are faster
than the optimal ones (H, A, and M), by a factor of roughly 2. Among the optimal
ones, little if no differences can be observed, maybe a slight advantage for A, and a
slight disadvantage for M, mirroring their different degree of complexity.

4.5 Experimental Results: Query Time

Finally,we lookatquery times (including times for the retrieval of labels).Weposed
1,000,000 randomqueries toeachcombinationof tree type, size,andcodingmethod.

762 J. Fischer

The results for the different tree types show little variation; we therefore just show
the graphs for random trees (Fig. 4(a)) and complete binary trees (b).

First, note that none of the methods exhibits its theoretical O(1) worst-case
query time in practice. This is not surprising, as the label lengths increase with
growing tree size, implying that longer bit-vectors have to be handled by the query
algorithm for larger trees.

We do not have an explanation for the “saddle-points” between 105 and 106 in
both (a) and (b), but we stress that a similar phenomenon has been observed in
practical tests of range minimum queries [22].

Last, we comment on the difference in query time between the coding schemes.
Themost interesting point is that no big differences canbe observed at all; although
we have seen earlier that the label sizes differ significantly, and that the decoding
algorithms have a different degree of complexity. From this, we draw the conclu-
sion that the most time-consuming part of the query procedures is to perform the
bit-manipulations needed to extract the heavy/light labels, which is common to all
methods. The time for the arithmetic operations needed to compare labels seems
to be negligible.

Acknowledgments. We wish to thank RossanoVenturini for bringing our atten-
tiontotheHu-Tuckeralgorithm.Further thanksgotoSimonGogforhisbroadword-
implementation of the Fibonacci- and Ternary Coding.

References

1. Kannan, S., Naor, M., Rudich, S.: Implicit representation of graphs. SIAMJ. Discrete
Math. 5(4), 596–603 (1992)

2. Abiteboul, S., Alstrup, S., Kaplan, H., Milo, T., Rauhe, T.: Compact labeling scheme
for ancestor queries. SIAM J. Comput. 35(6), 1295–1309 (2006)

3. Kaplan, H., Milo, T., Shabo, R.: Compact labeling scheme for xml ancestor queries.
Theory Comput. Syst. 40(1), 55–99 (2007)

4. Alstrup, S., Bille, P., Rauhe, T.: Labeling schemes for small distances in trees. SIAM
J. Discrete Math. 19(2), 448–462 (2005)

5. Gavoille, C., Peleg, D., Pérennes, S., Raz, R.: Distance labeling in graphs. J. Algo-
rithms 53(1), 85–112 (2004)

6. Cohen, E., Halperin, E., Kaplan, H., Zwick, U.: Reachability and distance queries via
2-hop labels. SIAM J. Comput. 32(5), 1338–1355 (2003)

7. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors. SIAM
J. Comput. 13(2), 338–355 (1984)

8. Alstrup, S.,Gavoille, C., Kaplan, H., Rauhe,T.: Nearest common ancestors: A survey
and a new algorithm for a distributed environment. Theory Comput. Syst. 37, 441–
456 (2004)

9. Peleg, D.: Informative labeling schemes for graphs. Theor. Comput. Sci. 340(3), 577–
593 (2005)

10. Caminiti, S., Finocchi, I., Petreschi, R.: Engineering tree labeling schemes: A case
study on least common ancestors. In: Halperin, D., Mehlhorn, K. (eds.) ESA 2008.
LNCS, vol. 5193, pp. 234–245. Springer, Heidelberg (2008)

11. Ferragina, P., Venturini, R.: A simple storage scheme for strings achieving entropy
bounds. Theor. Comput. Sci. 372(1), 115–121 (2007)

Short Labels for LCAs in Trees 763

12. Gilbert,E.N.,Moore,E.F.:Variable length binary encodings.Bell SystemTech. J. 38,
933–968 (1959)

13. Hu, T.C., Tucker, A.C.: Optimum computer search trees. SIAM J. Appl. Math. 21,
514–532 (1971)

14. Hu, T.C., Larmore, L.L., Morgenthaler, J.D.: Optimal integer alphabetic trees in lin-
ear time. In:Brodal,G.S.,Leonardi, S. (eds.)ESA2005.LNCS,vol. 3669,pp. 226–237.
Springer, Heidelberg (2005)

15. Mehlhorn, K.: The best possible bound for the weighted path length of binary search
trees. SIAM J. Comput. 6(2), 235–239 (1977)

16. Knuth, D.E.: Optimum binary search trees. Act Informatica 1, 14–25 (1971)
17. Munro, J.I.:Tables. In:Chandru,V.,Vinay,V. (eds.)FSTTCS1996.LNCS,vol. 1180,

pp. 37–42. Springer, Heidelberg (1996)
18. Gog,S.:Broadword computingandFibonacci code speedupcompressed suffixarrays.

In:Vahrenhold,J. (ed.)SEA2009.LNCS,vol. 5526,pp.161–172.Springer,Heidelberg
(2009)

19. Witten, I.H., Moffat, A., Bell, T.C.: Managing Gigabytes: Compressing and Indexing
Documents and Images, 2nd edn. Morgan Kaufmann, San Francisco (1999)

20. Garsia, A.M., Wachs, M.L.: A new algorithm for minimum cost binary trees. SIAM
J. Comput. 6(4), 622–642 (1977)

21. Rémy, J.L.: Un procédé itératif de dénombrement d’arbres binaires et son application
a leur génération aléatoire. Informatique Théorique et Applications 19(2), 179–195
(1985)

22. Fischer, J., Heun, V.: Theoretical and practical improvements on the RMQ-problem,
with applications toLCAandLCE. In: Lewenstein,M.,Valiente,G. (eds.)CPM2006.
LNCS, vol. 4009, pp. 36–48. Springer, Heidelberg (2006)

Disproof of the Neighborhood Conjecture
with Implications to SAT

Heidi Gebauer�

Institute of Theoretical Computer Science, ETH Zurich, CH-8092 Switzerland
gebauerh@inf.ethz.ch

Abstract. We study a special class of binary trees. Our results have
implications on Maker/Breaker games and SAT: We disprove a conjec-
ture of Beck on positional games and construct an unsatisfiable k-CNF
formula with few occurrences per variable, thereby improving a previous
result by Hoory and Szeider and showing that the bound obtained from
the Lovász Local Lemma is tight up to a constant factor.

A (k, s)-CNF formula is a boolean formula in conjunctive normal
form where every clause contains exactly k literals and every variable
occurs in at most s clauses. The (k, s)-SAT problem is the satisfiabil-
ity problem restricted to (k, s)-CNF formulas. Kratochv́ıl, Savický and
Tuza showed that for every k ≥ 3 there is an integer f(k) such that
every (k, f(k))-formula is satisfiable, but (k, f(k) + 1)-SAT is already
NP-complete (it is not known whether f(k) is computable). Kratochv́ıl,
Savický and Tuza also gave the best known lower bound f(k) = Ω

(
2k

k

)
,

which is a consequence of the Lovász Local Lemma. We prove that,
in fact, f(k) = Θ

(
2k

k

)
, improving upon the best known upper bound

O
(
(log k) · 2k

k

)
by Hoory and Szeider.

Finally we establish a connection between the class of trees we con-
sider and a certain family of positional games. The Maker/Breaker game
we study is as follows. Maker and Breaker take turns in choosing vertices
from a given n-uniform hypergraph F , with Maker going first. Maker’s
goal is to completely occupy a hyperedge and Breaker tries to prevent
this. Beck conjectures that if the maximum neighborhood size of F is
smaller than 2n−1 − 1 then Breaker has a winning strategy. We disprove
this conjecture by establishing an n-uniform hypergraph with maximum
neighborhood size 3 · 2n−3 where Maker has a winning strategy. More-
over, we show how to construct an n-uniform hypergraph with maximum
degree 2n−1

n
where Maker has a winning strategy.

In addition we show that each n-uniform hypergraph with maximum
degree at most 2n−2

en
has a proper halving 2-coloring, which solves another

open problem posed by Beck related to the Neighborhood Conjecture.

� Research is supported by the SNF Grant 200021-118001/1.

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 764–775, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Disproof of the Neighborhood Conjecture with Implications to SAT 765

1 Introduction

1.1 Trees

We first consider a special class of trees, which connect both to Maker/Breaker
games and SAT. We regard binary trees where every node has either two or no
children. In such a binary tree we say that a leaf v is l-close to a node w if w
is an ancestor of v, at distance at most l from v. For positive integers k and d,
we call a binary tree T a (k, d)-tree if (i) every leaf has depth at least k− 1 and
(ii) for every node u of T there are at most d leaves (k − 1)-close to u. Clearly,
every binary tree with all leaves at depth at least k − 1 is a (k, 2k−1)-tree. The
following lemma will be the main ingredient in proving some new results on
Maker/Breaker games and SAT.

Lemma 1. (i) A (k, � 2k

k �)-tree exists for every sufficiently large k.
(ii) If k is a sufficiently large power of 2 then a (k, 2k−1

k)-tree exists.
(iii) Let c = 63

64 . For every sufficiently large k with k
c being a power of 2 there is

a (k, c 2k−1

k)-tree.

1.2 SAT

Lemma 1 has implications on SAT. Following the standard notation we denote
by (k, s)-CNF the set of boolean formulas F in conjunctive normal form where
every clause of F has exactly k distinct literals and each variable occurs in at
most s clauses of F . Moreover, we denote by (k, s)-SAT the satisfiability problem
restricted to formulas in (k, s)-CNF. Tovey [17] proved that every (3,3)-CNF
formula is satisfiable. For k a positive integer let f(k) be defined as the largest
integer, so that every (k, f(k))-CNF formula is satisfiable. Tovey also showed that
f(3) = 3 and that, moreover, (3, 4)-SAT is NP-complete. Kratochv́ıl, Savický and
Tuza [11] generalized this result by showing that for every k ≥ 3 (k, f(k) + 1)-
SAT is already NP-complete. This phenomenon, that (k, f(k))-SAT is trivial
while (k, f(k) + 1)-SAT is already NP-hard, is often referred to as complexity
jump.

The best known lower bound for f(k), a consequence of Lovász Local Lemma,
is due to Kratochv́ıl, Savický and Tuza [11].

Theorem 1. (Kratochv́ıl, Savický and Tuza [11]) f(k) ≥ � 2k

ek �

From the other side Savický and Sgall [14] showed that f(k) = O(k(1−α) · 2k

k)
where α = log3 4 − 1 ≈ 0.26. This was improved by Hoory and Szeider [8] who
proved that f(k) = O((log k) · 2k

k), which is the best known upper bound. We
close the gap between upper and lower bound up to a constant factor by showing
that f(k) = Θ(2k

k).

Theorem 2. For a large enough integer k,

f(k) <
2k+1

k
.

766 H. Gebauer

If k is a large enough power of 2 we have f(k) < 2k

k . This bound is not tight
since f(k) < 63

64
2k

k for infinitely many k.

Hence the lower bound in Theorem 1 is best possible up to a factor slightly less
than e.

Recently Moser [13] showed that for s ≤ 2k−6

k not only every (k, s)-CNF
has a satisfying assignment but there is also an algorithm computing such an
assignment efficiently. Theorem 2 proves that this bound is asymptotically tight.
Indeed, for some (k, 2k

k)-CNF formulas we can not find a satisfying assignment
efficiently, simply because there is none.

A special class of unsatisfiable formulas. The class MU(1) of minimal unsatisfi-
able CNF-formulas F where m(F)−n(F) = 1 with m(F) denoting the number
of clauses of F and n(F) denoting the number of variables of F has been widely
studied (see, e.g., [1], [5], [10], [12], [16]). While it is not known whether f(k)
is computable Hoory and Szeider investigated f1(k), the largest integer such
that every (k, f1(k))-CNF in MU(1) is satisfiable. They showed that f1(k) is
computable. With f(k) ≤ f1(k) this allowed them to derive the best known
upper bounds for f(k) for small k: f(5) ≤ 7, f(6) ≤ 11, f(7) ≤ 17, f(8) ≤ 29,
f(9) ≤ 51.

While the derivation of the previous bound of f(k) = O((log k) · 2k

k) by Hoory
and Szeider did not go via an MU(1) formula the constructions for proving
Theorem 2 reside in MU(1).

Corollary 1. For large enough k we have f1(k) < 2 · 2k

k , implying that f(k) =
Θ(2k

k) and f1(k) = Θ(2k

k). Moreover, for infinitely many k we have f1(k) < 2k

k .

It is an open question whether f(k) = f1(k), i.e., whether the unsatisfiable CNF-
formulas with the smallest possible number of occurrences per variable (i.e. the
unsatisfiable (k, f(k) + 1)-CNF formulas) are members of MU(1). Scheder [15]
showed that for almost disjoint k-CNF formulas (i.e. CNF-formulas where any
two clauses have at most one variable in common) this is not true, i.e., no almost
disjoint unsatisfiable (k, f̃(k)+1)-CNF formula is in MU(1), with f̃(k) denoting
the maximum s such that every almost disjoint (k, s)-CNF formula is satisfiable.

Bounded neighborhood size. The neighborhood Γ (C) of a clause C in a CNF
formula F is the set of clauses in F that share variables with C. Analogously
to f(k) let l(k) denote the largest integer d such that every k-CNF formula
for which |Γ (C)| ≤ d for every clause C of F is satisfiable. In fact, the proof
of Theorem 1 shows that every k-CNF formula F with |Γ (C)| ≤ 2k

e − 1 for
all clauses C of F is satisfiable. (Note that Theorem 1 is a direct consequence
of this; for, if in a k-CNF formula every variable occurs at most � 2k

ek � times
then no clause can collect more than k(� 2k

ek � − 1) ≤ 2k

e − 1 neighbors.) Thus
l(k) ≥ 2k

e − 1. This bound is asymptotically tight. The most simple reason is
that the complete formula consisting of all 2k clauses of size k over k variables

Disproof of the Neighborhood Conjecture with Implications to SAT 767

is clearly unsatisfiable and has neighborhoods of size 2k − 1 at each clause. The
constructions for proving Theorem 2 further tighten the constant gap between
the known lower and upper bounds.

Theorem 3. (Lower bound in [11]) Let c = 63
64 . For infinitely many k,

�2
k

e
� − 1 ≤ l(k) < c · 2k−1

Connection to (k, d)-trees. Theorem 2, Corollary 1 and the upper bound in
Theorem 3 are a direct consequence of the following lemma, which establishes a
connection between SAT and the (k, d)-trees described above.

Lemma 2. Let T be a (k, d)-tree, k and d positive integers. Then there is an
unsatisfiable k-CNF formula F = F(T) with the following properties.
(a) Every literal occurs in at most d clauses of F .
(b) For every two distinct clauses C, D having a variable in common there is a
variable that appears in C and D with opposite signs.
(c) If T is minimum with respect to the number of leaves then F belongs to
MU(1).
(d) |Γ (C)| ≤ kd for all clauses C in F .

In particular, f(k) ≤ 2d− 1 and l(k) ≤ kd− 1.

Note that Theorem 2, Corollary 1 and the upper bound in Theorem 3 follow
directly from Lemma 2 and Lemma 1.

Implications on (k, d)-trees. By Theorem 3 and Lemma 2 we obtain the following.

Observation 1. There is no (k, d)-tree for d ≤ 2k

ek − 1.

1.3 Maker/Breaker Games

A hypergraph is a pair (V, E), where V is a finite set whose elements are called
vertices and E is a family of subsets of V , called hyperedges. A hypergraph is
n-uniform if every hyperedge contains exactly n vertices. We study the following
Maker/Breaker game. Maker and Breaker take turns in claiming one previously
unclaimed vertex of a given n-uniform hypergraph F , with Maker going first.
Maker wins if he claims all vertices of some hyperedge of F , otherwise Breaker
wins. We say that Maker uses a pairing strategy if, after claiming his first vertex,
he divides all but at most one of the remaining vertices of F into pairs and
whenever Breaker claims one vertex of a pair he takes the other one.

Let F be an n-uniform hypergraph. The degree d(v) of a vertex v is the number
of hyperedges containing v and the maximum degree Δ(F) of a hypergraph F
is the maximum degree of its vertices. The neighborhood N(e) of a hyperedge
e is the set of hyperedges of F which intersect e, excluding e itself, and the

768 H. Gebauer

maximum neighborhood size of F is the maximum of |N(e)| where e runs over
all hyperedges of F .

The famous Erdős-Selfridge Theorem [6] states that for each n-uniform hy-
pergraph F with less than 2n−1 hyperedges Breaker has a winning strategy. This
upper bound on the number of hyperedges is best possible as the following exam-
ple shows. Let T be a rooted binary tree with n levels and let G be the hypergraph
whose hyperedges are exactly the sets {v0, . . . vn−1} such that v0, v1, . . . , vn−1 is
a path from the root to a leaf. Note that the number of hyperedges of G is 2n−1.
To win the game on G, Maker can use the following strategy. In his first move
he claims the root m1 of T . Let b1 denote the vertex occupied by Breaker in
his subsequent move. In his second move Maker claims the child m2 of m1 such
that m2 lies in the subtree of m1 not containing b1. More generally, in his ith
move Maker selects the child mi of his previously occupied node mi−1 such that
the subtree rooted at mi contains no Breaker’s node. Note that such a child mi

always exists since the vertex previously claimed by Breaker is either in the left
or in the right subtree of mi−1 (but not in both!). Using this strategy Maker can
achieve to own some set {v0, . . . , vn−1} of vertices such that v0, v1, . . . , vn−1 is a
path from the root to a leaf, which corresponds to some hyperedge of G. Hence
Maker has a winning strategy on G.

In this game Maker even has a winning pairing strategy. Indeed, by first
claiming the root and then pairing every vertex with its sibling (i.e. the vertex
having the same parent) he can achieve a path from the root to a leaf, which
contains a hyperedge.

Note that the maximum degree of G is 2n−1, thus equally large as the number
of hyperedges of G. This provides some evidence that in order to be a Maker’s
win a hypergraph must have largely overlapping hyperedges. Moreover, Beck [3]
conjectured that the main criterion for whether a hypergraph is a Breaker’s win
is not the cardinality of the hyperedge set but rather the maximum neighbor-
hood size, i.e. the actual reason why each hypergraph H with less than 2n−1

edges is a Breaker’s win is that the maximum neighborhood size of H is smaller
than 2n−1 − 1.

Neighborhood Conjecture. (Open Problem 9.1(a), [3]) Assume that F is
an n-uniform hypergraph, and its maximum neighborhood size is smaller than
2n−1 − 1. Is it true that by playing on F Breaker has a winning strategy?

Further motivation for the Neighborhood Conjecture is the well-known Erdős-
Lovász 2-coloring Theorem – a direct consequence of the famous Lovász Local
Lemma – which states that every n-uniform hypergraph with maximum neigh-
borhood size at most 2n−1

e − 1 has a proper 2-coloring. An interesting feature
of this theorem is that the board size does not matter. We can prove by also
applying the Lovász Local Lemma that every n-uniform hypergraph with maxi-
mum degree at most 2n−2

en has a so called proper halving 2-coloring, i.e., a proper
2-coloring in which the number of red vertices and the number of blue vertices
differ by at most 1 (see Theorem 6 for details). This guarantees the existence
of a course of the game such that at the end Breaker owns at least one vertex

Disproof of the Neighborhood Conjecture with Implications to SAT 769

of each hyperedge and thus is the winner. Hence it is a priori not completely
impossible that Breaker has a winning strategy.

In our first theorem we prove that the Neighborhood Conjecture, in this
strongest of its forms, is not true, even if we require Maker to use a pairing
strategy.

Theorem 4. There is an n-uniform hypergraph H with maximum neighborhood
size 2n−2 + 2n−3 where Maker has a winning pairing strategy.

In his book [3] Beck also poses the following weakening of the Neighborhood
Conjecture.

Open Problem 1. (Open Problem 9.1(b), [3]) If the Neighborhood Conjecture
is too difficult (or false) then how about if the upper bound on the maximum
neighborhood size is replaced by an upper bound 2n−c

n on the maximum degree
where c is a sufficiently large constant?

In the hypergraphH we will construct to prove Theorem 4 one vertex has degree
2n−2 + 1, which is still high. However, the existence of vertices with high degree
is not crucial. We also establish a hypergraph with maximum degree 2n−1

n on
which Maker has a winning strategy.

Theorem 5. If n is a sufficiently large power of 2 there is an n-uniform hyper-
graph with maximum degree 2n−1

n where Maker has a winning pairing strategy.

The hypergraph of Theorem 5 has maximum neighborhood size at most 2n−1−n,
which is weaker than Theorem 4 but also disproves the Neighborhood Conjec-
ture.

In his book [3] Beck also poses several further weakenings of the Neighborhood
Conjecture. The last one is as follows.

Open Problem 2. (Open Problem 9.1(f), [3]) How about if we just want a
proper halving 2-coloring?

It is already known that the answer to Open Problem 2 is positive if the max-
imum degree is at most

(3
2 − o(1)

)n. According to Beck [3] the real question is
whether or not 3

2 can be replaced by 2. We prove that the answer is yes.

Theorem 6. For every n-uniform hypergraph F with maximum degree at most
2n−2

en there is a proper halving 2-coloring.

Connection to trees. Let T be a binary tree where every leaf has depth at
least n − 1. Then we define HT = HT (n) as the n-uniform hypergraph whose
hyperedges are the paths of length n− 1 in T ending at a leaf.

Lemma 3. Let T be a binary tree where every leaf has depth at least n−1. Then
Maker has a winning pairing strategy on HT .

So in order to prove Theorem 4 it suffices to show the next lemma.

770 H. Gebauer

Lemma 4. There is a binary tree T where every leaf has depth at least n − 1
such that HT has maximum neighborhood size 2n−2 + 2n−3.

By the construction ofHT and Lemma 3 we can immediately connect (k, d)-trees
to the game we study.

Observation 2. Let T be an (n, d)-tree. Then (i) Maker has a winning pairing
strategy on HT and (ii) every vertex of HT occurs in at most d hyperedges.

Theorem 5 is then a direct consequence of Observation 2 and Lemma 1.

Notation. Ceiling and floor signs are routinely omitted whenever they are not
crucial for clarity. Throughout this paper log stands for the binary logarithm.
Let T be a rooted binary tree. A path of T is a sequence of vertices v1, v2, . . . , vj

of T where vk is a child of vk−1 for every k = 2, . . . , j. Depending on the context
we consider a hyperedge e of a hypergraph HT either as a set or as a path in T .
So we will sometimes speak of the start or end node of a hyperedge.

Organization of this paper. In Sect. 2 we establish a connection between the trees
we study and SAT by proving Lemma 2. In Sect. 3 we show Lemma 3, which
connects trees to the Maker/Breaker game we consider, and prove Lemma 4
refuting the Neighborhood Conjecture in the strongest of its forms.

In Sect. 4 we finally construct suitable (k, d)-trees, show a slightly weaker
version of Lemma 1 and give a proof sketch of Lemma 1.(i)-(ii).

The proofs of Theorem 6 and Lemma 1 will appear in the full version.

2 Constructing Unsatisfiable k-CNF Formulas
with Small Neighborhood

Proof of Lemma 2. Let m denote the number of leaves of T . We move to a binary
tree T̂ by attaching the roots of two copies of T as the two children of a new root
r. This yields a (k, d)-tree (actually, with all leaves of depth at least k). It has
2m leaves and 4m − 1 nodes altogether. Two nodes are called siblings, if they
share the same parent. The 4m− 2 non-root nodes of T̂ can be partitioned into
2m− 1 sibling pairs.

For some set V of 2m − 1 boolean variables, we label the nodes of T̂ other
than the root by literals in V ∪ V so that every literal appears exactly once and
siblings get complementary literals. With every leaf v we associate a clause Cv

by walking along a path of length k − 1 from v towards the root and collecting
all labels encountered on this path (i.e. the labels of all nodes to which v is
(k − 1)-close). The set of clauses Cv, over all leaves v of T̂ , constitutes F .
F is unsatisfiable, for if an assignment α over V is given, it defines a path

from the root to a leaf, say v, by always proceeding to the unique child whose
label is mapped to 0 by α; thus Cv is violated by α.

The defining property of (k, d)-trees guarantees that no label is collected more
than d times (hence (a)). We now settle (b). Let Cu, Cv be two clauses sharing

Disproof of the Neighborhood Conjecture with Implications to SAT 771

at least one variable and let w denote the lowest common ancestor of u and
v (i.e. the node of maximum depth that appears on both paths from u and v,
respectively, to the root). Then one child of w occurs in Cu whereas the other
child occurs in Cv. Since siblings have complementary literals (b) is shown.

Next we prove (c). Davydov, Davydova, and Kleine Büning [5] established
the following characterization for MU(1)-formulas. (vbl(F) denotes the set of
variables which occur in the formula F .)

Lemma 5. (Davydov, Davydova, and Kleine Büning [5]) F ∈ MU(1) if
and only if either F = {∅} or F is the disjoint union of formulas F ′

1, F
′
2 such

that for a variable x we have

– vbl(F ′
1) ∩ vbl(F ′

2) = {x} and {x, x̄} ⊆
⋃

C∈F C;
– F1 := {C\{x} : C ∈ F ′

1} ∈ MU(1);
– F2 := {C\{x̄} : C ∈ F ′

2} ∈ MU(1).

Note that due to our choice of T , every node u of T has one leaf descendant
at distance at most k − 1. Indeed, if some node u has distance at least k to all
its leaf descendants then the subtree of T rooted at a child of u is a (k, d)-tree
with fewer leaves than T . So by construction F has the properties stated in
Lemma 5.

(d) follows from (a) and (b): Indeed, if we define occ(u) as the number
of clauses of F containing a literal u, then (b) allows us to write |Γ (C)| as∑

u: C contains u occ(u), which is at most kd for every clause C of F . ��

3 Counterexample to the Neighborhood Conjecture

Proof of Lemma 3. The set of non-root nodes of T can be divided into pairs
of siblings. By first claiming the root of T and then pairing every node with
its sibling Maker can finally achieve a path from the root to a leaf, which by
assumption contains a hyperedge. ��

Proof of Lemma 4. Let T ′ be a full binary tree with n − 1 levels. For each
leaf u of T ′ we proceed as follows: We add two children v, w to u and let v be a
leaf. Then we attach a full binary tree S with n− 2 levels to w (such that w is
the root of S). For each leaf u′ of S we add two children v′, w′ to u′ and let v′

be a leaf. Note that the hyperedge ending at v′ starts at u. Finally, we attach a
full binary S′ with n− 1 levels to w′ (such that w′ is the root of S′), see Fig. 1.
Let T denote the resulting tree.

Clearly, every leaf of T has depth at least n− 1. It remains to show that the
maximum neighborhood of HT is at most 2n−2 + 2n−3.

Claim. Every hyperedge e of HT intersects at most 2n−2 + 2n−3 other hyper-
edges.

In order to prove this claim, we fix six vertices u, u′, v, v′, w, w′ according to the
above description, i.e., u is a node on level n−2 whose children are v and w, u′ is

772 H. Gebauer

u

v w

u′

v′ w′

n− 1

n− 2

n− 1

n− 1

Fig. 1. An illustration of HT . The marked paths represent exemplary hyperedges.

a descendant of w on level 2n−4 whose children are v′ and w′. Let e be a hyper-
edge of HT . Note that the start node of e is either the root r of T , a node on the
same level as u or a node on the same level as u′. We now distinguish these cases.

(a) The start node of e is r. By symmetry we assume that e ends at v. Ac-
cording to the construction of T the hyperedge e intersects the 2n−2 − 1 other
hyperedges starting at r and the 2n−3 hyperedges starting at u. So altogether e
intersects 2n−2 + 2n−3 − 1 hyperedges, as claimed.

(b) The start node of e is on the same level as u. By symmetry we suppose
that e starts at u and ends at v′. The hyperedges intersecting e can be divided
into the following three categories.

– The hyperedge starting at r and ending at v,
– the 2n−3 − 1 hyperedges different from e starting at u, and
– the 2n−2 hyperedges starting at u′,

implying that e intersects at most 2n−2 + 2n−3 hyperedges in total.

(c) The start node of e is on the same level as u′. By symmetry we assume
that e starts at u′. Then e intersects the 2n−2 − 1 other hyperedges starting

Disproof of the Neighborhood Conjecture with Implications to SAT 773

at u′ and the hyperedge starting at u and ending at v′, thus 2n−2 hyperedges
altogether. ��

4 Constructing Suitable (k, d)-Trees

We need some notation first. Let T be a binary tree (not necessarily with all
leaves having depth at least k − 1) and let v be a vertex of T . In the following
we denote by the degree d(v) of v the number of leaf descendants which have
distance at most k− 1 from v. The proof of Lemma 1 is tedious and too long for
this extended abstract. In order to show one of the main ideas of our proof we
first prove a weaker claim.

Proposition 1. A (k, � 2k+2

k �)-tree exists for every sufficiently large k.

Proof. Let s = 2k+1

2�log k� and note that s ≤ 2k+2

k . Let T ′ be a full binary tree

of height k − 1. We subdivide its leaves into intervals of length 2�log k�
2 . Let

{v0, . . . , v 2�log k�
2 −1

} be such an interval. Then we attach a full binary subtree of
height i to vi. Let T denote the resulting tree. It suffices to prove the following.

Proposition 2. Let v be a vertex of T . Then d(v) ≤ s.

Proof. We apply induction on the depth i of v. For i = 0 the claim is clearly
true. Indeed, the degree of the root is 2k−1

2�log k�
2

= 2k

2�log k� = s
2 . Now suppose that v

has depth i ∈ {1, . . . , 2�log k�
2 − 1}. Note that the set of descendants of v on level

k − 1 can be subdivided into 2k−1−i

2�log k�
2

≥ 1 intervals. Let v′ denote the parent of

v. By construction the number of leaf descendants which have distance at most
k− 2 from v equals d(v′)

2 . Moreover, every interval {v0, . . . , v 2�log k�
2 −1

} gives rise

to 2i leaves on level k − 1 + i, implying that the number of leaf descendants of
v which have distance exactly k − 1 from v equals 2k−1−i

2�log k�
2

· 2i = 2k

2�log k� = s
2 . So

altogether d(v) ≤ d(v′)
2 + s

2 ≤ s. It remains to consider the case where v has depth
at least 2�log k�

2 . By construction no leaf of T has depth larger than 2�log k�
2 +k−2,

implying that the degree of v is at most the degree of its parent. ��

4.1 Proof Sketch of Lemma 1.(i) and 1.(ii):

Let s = 2k−1

2�log k� . It suffices to show that there is a (k, s)-tree. We need some
notation first. To every node w of a binary tree T we assign a distance-sequence
Dw = (x0, x1, . . . , xk−1) where xi · s

2i+1 is the number of leaf descendants of w
which have distance k − 1 − i from w. This notation encodes the degree of w
in a weighted fashion, which allows us to describe our most frequent operations
in a more compact way. Note that d(w) =

∑k−1
i=0 xi · s

2i+1 . If, for a sequence
(y0, y1, . . . , yk−1), we have that xi ≤ yi for every i, i = 1, . . . , k−1 then we write
Dw ≤ (y0, y1, . . . , yk−1).

774 H. Gebauer

Observation 3. We have

(i) Let T, T ′ be binary trees whose roots have distance sequence (x0, . . . , xk−1)
and (x′

0, . . . , x
′
k−1), respectively. Let v be a vertex with left subtree T and

right subtree T ′. Then
Dv = (x1+x′

1
2 , . . . ,

xk−1+x′
k−1

2 , 0).
(ii) Let T ′ be a binary tree whose root has distance sequence (x0, . . . , xk−1) and

let T be a full binary tree of height h ≤ k − 1. By attaching a copy of
T ′ to every leaf l of T (such that l is the root of T ′) we obtain Dv =
(xh, . . . , xk−1, 0, . . . , 0) for the root v of T .

We need some more notation. Let x0, . . . , xk−1 ∈ N. An (x0, x1, . . . , xk−1)-tree
is a nonempty binary tree where (i) every node has degree at most s and (ii) for
the root r, Dr ≤ (x0, x1, . . . , xk−1) and (iii)

∑k−1
i=0 xi · s

2i+1 ≤ s. To prove Lemma
1.(i) and (ii) it suffices to show the following.

Lemma 6. There is an (x0, 0, 0, . . . , 0)-tree for some x0 ≥ 0.

Lemma 6 guarantees that there is a nonempty binary tree where every vertex has
degree at most s and every leaf has depth at least k − 1, which implies Lemma
1.(i) and (ii). ��

Proof sketch of Lemma 6. We divide the proof of Lemma 6 into three propo-
sitions. Let r = � log s

2 � − 1.

Proposition 3. There is a (0, 2, . . . , 2︸ ︷︷ ︸
� r

2 �

, 0, 4, . . . , 4︸ ︷︷ ︸
� r

2 �

, 0, . . . 0)-tree.

Proposition 4. Let j ≤ � r
2� − 1.

If there is a (0, 2, . . . , 2︸ ︷︷ ︸
r−j−1

, 0, 4, . . . , 4︸ ︷︷ ︸
j+1

, 0, . . . 0)-tree then

there is a (0, 2, . . . , 2︸ ︷︷ ︸
r−j

, 0, 4, . . . , 4︸ ︷︷ ︸
j

, 0, . . . 0)-tree.

Proposition 5. Let i ≤ r − 1.
If there is a (0, 2, 2, . . . , 2︸ ︷︷ ︸

i+1

, 0, . . . , 0)-tree then there is a (0, 2, . . . , 2︸ ︷︷ ︸
i

, 0, . . . , 0)-tree.

Note that Proposition 3 - 5 together imply Lemma 6 (with x0 = 0). The proofs
of Proposition 3 - 5 will appear in the full version.

Acknowledgment. We would like to thank Tibor Szabó for the intensive sup-
port and the many fruitful discussions, which significantly simplified the expo-
sition of the proofs.

We are grateful to Emo Welzl for the numerous helpful remarks both on the
content and the structure of this paper, in particular for the formulation of
Lemma 2.

We are also indebted to Eoin P. Long for pointing out an inaccuracy in an
earlier version of this paper.

Disproof of the Neighborhood Conjecture with Implications to SAT 775

References

1. Aharoni, R., Linial, N.: Minimal non-two-colorable hypergraphs and minimal un-
satisfiable formulas. J. Combin. Theory Ser. A 43, 196–204 (1986)

2. Alon, N., Spencer, J.H.: The Probabilistic Method. John Wiley & Sons, Chichester
(2002)

3. Beck, J.: Combinatorial Games: Tic Tac Toe Theory. Encyclopedia of Mathematics
and Its Applications 114 (2008)

4. Beck, J.: Remarks on positional games. Acta Math. Acad. Sci. Hungar. 40, 65–71
(1982)

5. Davydov, G., Davydova, I., Kleine Büning, H.: An efficient algorithm for the mini-
mal unsatisfiability problem for a subclass of CNF. Artif. Intell. 23, 229–245 (1998)

6. Erdős, P., Selfridge, J.L.: On a combinatorial game. J. Combinatorial Theory Ser.
A 14, 298–301 (1973)

7. Erdős, P., Spencer, J.: Lopsided Lovász local lemma and Latin transversals. Dis-
crete Appl. Math. 30, 151–154 (1991)

8. Hoory, S., Szeider, S.: A note on unsatisfiable k-CNF formulas with few occurrences
per variable. SIAM J. Discrete Math. 20(2), 523–528 (2006)

9. Hoory, S., Szeider, S.: Computing Unsatisfiable k-SAT Instances with Few Occur-
rences per Variable. Theoretical Computer Science 337(1-3), 347–359 (2005)

10. Kleine Büning, H., Zhao, X.: On the structure of some classes of minimal unsatis-
fiable formulas. Discr. Appl. Math. 130(2), 185–207 (2003)

11. Kratochv́ıl, J., Savický, P., Tuza, Z.: One more occurrence of variables makes sat-
isfiability jump from trivial to NP-complete. SIAM J. Comput. 22(1), 203–210
(1993)

12. Kullmann, O.: An application of matroid theory to the SAT problem. In: Fifteenth
Annual IEEE Conference on Computational Complexity, pp. 116–124 (2000)

13. Moser, R.: A constructive proof of the Lovasz Local Lemma, Eprint,
arXiv:0810.4812v2 (2008)

14. Savický, P., Sgall, J.: DNF tautologies with a limited number of occurrences of
every variable. Theoret. Comput. Sci. 238(1-2), 495–498 (2000)

15. Scheder, D.: Existence, Size, and Resolution Complexity of Almost Disjoint CNF
Formulas (submitted)

16. Szeider, S.: Homomorphisms of conjunctive normal forms. Discr. Appl.
Math. 130(2), 351–365 (2003)

17. Tovey, C.A.: A simplified NP-complete satisfiability problem. Discr. Appl.
Math. 8(1), 85–89 (1984)

Reconstructing 3-Colored Grids from
Horizontal and Vertical Projections Is NP-hard

Christoph Dürr1, Flavio Guiñez2, and Mart́ın Matamala3

1 CNRS, LIX (UMR 7161), Ecole Polytechnique, 91128 Palaiseau, France
2 DIM, Universidad de Chile, Casilla 170-3, Correo 3, Santiago, Chile

3 DIM and CMM (UMI 2807, CNRS), Universidad de Chile,
Casilla 170-3, Correo 3, Santiago, Chile

Abstract. We consider the problem of coloring a grid using k colors with
the restriction that in each row and each column has an specific number
of cells of each color. In an already classical result, Ryser obtained a
necessary and sufficient condition for the existence of such a coloring
when two colors are considered. This characterization yields a linear time
algorithm for constructing such a coloring when it exists. Gardner et al.
showed that for k ≥ 7 the problem is NP-hard. Afterward Chrobak and
Dürr improved this result, by proving that it remains NP-hard for k ≥ 4.
We solve the gap by showing that for 3 colors the problem is already NP-
hard. Besides we also give some results on tiling tomography.

1 Introduction

Tomography consists of reconstructing spatial objects from lower dimensional
projections, and has medical applications as well as non-destructive quality con-
trol. In the discrete variant, the objects to be reconstructed are discrete, as
for example atoms in a crystaline structure, see [1]. One of the first studied
problem in discrete tomography involves the coloring of a grid using a fixed
number of colors with the requirement that each row and each column has a
specific total number of entries of each color. More formally we are given a
set of colors C, and an m × n matrix M , whose items are elements of C. The
projection of M is a sequence of vectors rc ∈ Nm, sc ∈ Nn, for c ∈ C, where
rc
i = |{j : Mij = c}| and sc

j |{i : Mij = c}|. In the reconstruction problem, we
are given only a sequence of vectors satisfying: (1) for 1 ≤ i ≤ m, 1 ≤ j ≤ n,
c ∈ C,

∑
c rc

i = n,
∑

c sc
j = m,

∑
i rc

i =
∑

j sc
j . The goal is to compute a matrix

M that has the given projections. If there are k = |C| colors, we call it the
k-color Tomography Problem.1 It was known since long time, that for 2
colors, the problem can be solved in polynomial time [8]. Ten years ago it was
shown that the problem is NP-hard for 7 colors [5]. By NP-hardness, we mean
that the decision variant — deciding whether a given instance is feasible, i.e.
admits a solution — is NP-hard. Shortly after this proof was improved to show
1 As the projection of one of the colors is redundant by (1), some earlier papers [2,5]

refered to this problem as the k′
-Atoms Consistency Problem for k′ = k − 1.

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 776–787, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Reconstructing 3-Colored Grids from Horizontal and Vertical Projections 777

NP-hardness for 4 colors, leaving open the case when |C| = 3 [2]. This paper
closes the gap, by showing that for 3 colors already the problem is NP-hard.
Just to fix the notation, for |C| = 2 we denote the colors as black and white, and
use symbols B, W . For |C| = 3 we denote the colors as red, green and yellow and
use symbols R, G, Y . Notice that we can think white and yellow as ground colors
in the 2 and 3−color problem, respectively. Thus when we denote the instance
of the tomography problem, we sometimes omit the white or yellow projections
as they are redundant. In addition for a 2-color instance (rB , sB) we omit the
superscript when the context permits it. First we recall some well known facts
about the 2-color tomography problem.

Lemma 1 ([8]). Let (r, s) be a feasible instance of the 2-color tomography prob-
lem. Let I be some set of rows, and J be some set of columns. If

∑
i∈I ri −∑

j �∈J sj = |I × J |, then any solution to the instance will be all black in I × J

and all white in I × J .

Proof: The sets I,J divide the grid into four parts, A = I × J , B = I × J ,
C = I ×J and D = I ×J . The value

∑
i∈I ri equals the number of black cells in

A and B, and
∑

j �∈J sj the number of black cells in B and D. So the difference
is the number of black cells in A minus the number of black cells in D. So when∑

i∈I ri −
∑

j �∈J sj = |A|, A must be all black and D all white. �

Before stating the next lemma, we need to introduce some notation about vec-
tors. The conjugate of a vector s ∈ {0, 1, . . . , m}n is defined as the vector
s∗ ∈ {0, 1, . . . , n}m where s∗i = |{j : sj ≥ i}|. There is a very simple graphi-
cal interpretation of this. Let be an m×n matrix M , such in column j, the first
sj cells are colored black and the others are colored white. Then the conjugate
of s is just the row projection of M . Note that s∗ is always a non-increasing
vector. If in addition s is non-increasing we have that (s∗)∗ = s since in this case
s∗i = max{j : sj ≥ i} and s∗i ≥ j if and only if sj ≥ i. For every s, t ∈ Nn we say
that s dominates t, denoted s * t, if

∑�
j=1 sj ≥

∑�
j=1 tj for every 1 ≤ 	 ≤ n.

For any 0 ≤ k ≤ n we define the set Xn,k := {x ∈ {0, 1}n :
∑

xi = k}. Clearly
* defines a partial order on Xn,k, and we show now that it has a small depth.

Lemma 2 ([2]). Let n, k be two integers with 0 ≤ k ≤ n. Let b0 ≺ b1 ≺ . . . ≺ bq,
be a strictly increasing sequence of vectors from Xn,k. Then q ≤ k(n− k).

Proof: For each vector α ∈ Xn,k we associate the number ϕ(α) defined by ϕ(α) =∑n
�=1

∑�
i=1 αi. If α ≺ β then

∑�
j=1 αj ≤

∑�
j=1 βj for every 1 ≤ 	 ≤ n and the

inequality is strict for at least one 	. We conclude that α ≺ β implies ϕ(α) <
ϕ(β). Then the vectors with extreme values for ϕ are α = (0, . . . , 0, 1, . . . , 1) and
β = (1, . . . , 1, 0, . . . , 0). Since ϕ(α) = k(k−1)/2 and ϕ(β) = k(k−1)/2+k(n−k),
this concludes the proof. �

A well-known characterization of the feasible instances of the 2-color tomog-

raphy problem can be expressed using dominance.

Lemma 3 ([8]). Let (r, s) be an instance of the 2-color tomography problem,
such that r is non-increasing. Then (r, s) is feasible if and only if r + s∗.

778 C. Dürr, F. Guiñez, and M. Matamala

Moreover if r = s∗, then there is a single solution, namely the realization having
the first sj cells of column j colored black, and the others white.

There is a very simple graphical interpretation of this. Again let M be a matrix
where in column j the first sj cells are colored black and the remaining cells
white. Then the row projection of M is s∗, and if s∗ = r we are done. Now if
s∗ �= r, then some of the black cells in M have to be exchanged with some white
cells in the same column but a lower row. These operations transform the matrix
in such a way, that the new row projection is dominated by s∗. So if s∗ does not
dominate r, then there is no solution to the instance.

2 The Gadget

The gadget depends on some integers n, k, u, v with 1 ≤ k, u, v ≤ n and u �= v
as well as on two vectors α, β ∈ Xn,k. It is defined as the instance of n rows,
and 2n + 2 columns with the following projections for 1 ≤ i, j ≤ n. If i ∈ {u, v},
then rR

i = i + 1 and rG
i = i. Otherwise, rR

i = i and rG
i = i + 1. sR

j = n− j + αj ,
sR

n+1 = 1, sR
n+2 = n − k + 1 and sR

n+2+j = 0, and sG
j = 0, sG

n+1 = n − 1,
sG

n+2 = k − 1, sG
n+2+j = n− j + 1− βj .

Lemma 4. If the instance above is feasible then α + β. Moreover, if α = β then
the instance is feasible if and only if αu + αv ≥ 1.

Proof: Assume the instance is feasible, we will show that this implies α + β.
Consider the yellow projection vectors rY = 2n+2−rR−rG and sY = n−sR−sG.
We have that rY

i = 2(n− i) + 1 for 1 ≤ i ≤ n. Note that rY is a non-increasing
vector. Similarly, we obtain that sY

j = j − αj and sY
n+2+j = j − 1 + βj , for

1 ≤ j ≤ n, and sY
n+1 = sY

n+2 = 0. The conjugate of the column yellow projections
is a vector (sY)∗ with (sY)∗i = 2(n− i)+ 1−αi + βi. Then clearly rY + (sY)∗ if
and only if α + β. By assumption the 3-color instance (rR, rG, rY , sR, sG, sY) is
feasible, therefore the 2-color instance (rY , sY) is feasible as well — where yellow
is renamed as black — which by Lemma 3 implies rY + (sY)∗ and therefore also
α + β. This shows the first part of the lemma. Now assume that the instance
has a solution, and α = β. The n × (2n + 2) grid is divided into 3 parts (see
figure 1): into an n×n block (called RY-block), a n×2 rectangle (called 2-column
translator) and another n×n block (called GY-block). Again every block is sub-
divided into an upper triangle, a diagonal and a lower triangle. Since α = β, we
have rY = (sY)∗. So by Lemma 3 any solution must color in yellow the sY

j first
cells in every column j, and no other cell. In particular it means that the lower
triangle of the RY-block must be red, the lower triangle of the GY-block must be
green, and both upper triangles have to be yellow. Also on the first diagonal, the
cell (i, i) has to be red if αi = 1 and yellow otherwise. On the second diagonal,
the cell (n + 2 + i, i) must be yellow if αi = 1 and green otherwise. What
can we say about the colors of the translator? If αu = αv = 0, then the cells
(n + 1, u), (n + 2, u), (n + 1, v), (n + 2, v) have to be all red to satisfy the row
projections. This contradicts the column projection sR

n+1 = 1, and hence the

Reconstructing 3-Colored Grids from Horizontal and Vertical Projections 779

2
co

lu
m

n
tr

an
sl

at
or

GY−block

RY−block

u:

v:

Fig. 1. The structure of the gadget (left) and a realization (right) for n = 7, k = 3,
u = 2, v = 5 and α = β = (0, 0, 1, 0, 1, 1, 0)

instance is not feasible. Conversely, assume αu + αv ≥ 1. We will color the cells
of the translator in a manner that respects the required projections. If i �∈ {u, v}
and αi = 1 — that is (i, i) is red — we color the cells (n + 1, i), (n + 2, i) in
green. If i �∈ {u, v} and αi = 0, we color the cell (n + 1, i) in green and (n + 2, i)
in red. Without loss of generality assume that αu = 1. Hence (u, u) is red and
we color (n + 1, u) in green and (n + 2, u) in red. We color (n + 1, v) in red.
In addition we color (n + 2, v) in red if αv = 0 and in green otherwise. It can
be verified that the coloring defined above is a solution to the instance, which
concludes the proof of the lemma. �

3 The Reduction

In this section we will construct a reduction from Vertex Cover to 3-color

tomography. We basically use the same approach than in [2], but with a
different gadget. Vertex Cover is a well known intractable problem, indeed
one of the first 21 problems shown to be NP-hard by Karp [6]. Its input is a
graph G = (V, E) and an integer k and its output is a set S ⊆ V of size |S| = k
such that ∀(u, v) ∈ E, u ∈ S or v ∈ S.

Given an instance (G, k) of Vertex Cover, we construct an instance of the
3-color tomography problem which is feasible if and only if the former
instance has a solution. Without loss of generality we assume that k ≤ n − 2.
Let be n = |V |, m = |E|, and N = k(n − k)(m − 1) + 1. We denote the m
edges as E = {e0, e1, . . . , em−1}, and the n vertices as V = {1, 2, . . . , n}. We
define an instance with N(n + 1) + 1 rows and N(n + 2) + n columns. For row
p = 1, . . . , N(n+1)+1, let x = �(p−1)/(n+1)� and i = (p−1) mod (n+1). We
think the set of rows as divided into N blocks of n+1 rows each, and a last block
with a single row. We have x as the block index and i the row index relative to
the block, with 0 ≤ i ≤ n. Let t = x mod m and consider the edge et = (u, v).
We define the projections rR

p = x(n + 2)+ zR
p and rG

p = (N − x− 1)(n + 2)+ zG
p

where zR and zG are vectors defined by

zR
p =

⎧⎪⎪⎨⎪⎪⎩
n− k if x < N and i = 0
0 if x = N and i = 0
i + 1 if i ∈ {u, v}
i if i ∈ {1, . . . , n} \ {u, v}

zG
p =

⎧⎪⎪⎨⎪⎪⎩
n + 2 if x = 0 and i = 0
n + 2 + k if x > 0 and i = 0
i if i ∈ {u, v}
i + 1 if i ∈ {1, . . . , n}\{u,v}.

780 C. Dürr, F. Guiñez, and M. Matamala

x−th r−translator

RY−block GY−block

c−
tr

an
sl

at
or

RY−block GY−block

c−
tr

an
sl

at
or

RY−block GY−block

c−
tr

an
sl

at
or

source

sink

y−th c−block

x−
th

 r
−

bl
oc

k

R−frame

G−frame

r−translator

Fig. 2. The general structure of our reduction

In the same manner, for column q = 1, . . . , N(n+2)+n, let y = �(q−1)/(n+2)�
and j = ((q − 1) mod (n + 2)) + 1. The reason for defining j this way, is that if
cell (p, q) is part of an RY-block or an GY-block, then (i, j) will be the relative
position inside the block with ranges 1 ≤ i, j ≤ n. Similarly as for the rows, we
think the set of columns as divided into N blocks with n + 2 columns each and
a last block with only n columns.

Again, we have y as the block index, and j as the column index relative to
a block with 1 ≤ j ≤ n + 2. For y = N we set sR

q = 0, for each j = 1, . . . , n.
Similarly, for y = 0 the green column projections are: sG

q = 0 if j ∈ {1, . . . , n},
sG

q = n if j = n+1 and sG
q = k if j = n+2. For block 1 ≤ y ≤ N we define the red

column projections as sR
q = (y−1)(n+1)+1+wR

q and sG
q = (y−1)(n+1)+1+wG

q ,
where wR and wG are given by:

wR
q =

⎧⎨⎩
n− j + 1 if j ∈ {1, . . . , n}
1 if j = n + 1
n− k + 1 if j = n + 2,

wG
q =

⎧⎨⎩
j if j ∈ {1, . . . , n}
n− 1 if j = n + 1
k − 1 if j = n + 2.

As this is a polynomial time reduction, it only remains to show the following.

Theorem 1. The 3-color tomography instance is feasible if and only if the vertex
cover instance is feasible.

Proof: For one direction of the statement, assume that the vertex cover instance
is feasible, and let b ∈ Xn,k be the characteristic vector of a vertex cover of size
k, i.e. bi = 1 if and only if i belongs to the vertex cover. We construct now a
solution to the tomography instance. Consider the partitioning of the grid, as in

Reconstructing 3-Colored Grids from Horizontal and Vertical Projections 781

figure 2. For convenience we refer to the source also as the 0-th row translator
and to the sink as the (N + 1)-th row translator. The j-th cell of the x-th row
translator is defined as (x(n + 1) + 1, x(n + 2) + j). We color the R-frame in
red and the G-frame in green. Let be any 1 ≤ j ≤ n. We color the j-th cell of
the source in yellow if bj = 1 and in red otherwise. For x = 1, . . . , N − 1 we
color the j-cell of the x-th row translator in green if bj = 1 and in red otherwise.
In the sink we color the j-th cell in green if bj = 1 and in yellow otherwise.
Now for block x = 0, . . . , N − 1, consider the instance to the gadget defined by
α = β = b, and u, v such that (u, v) = ex mod m. By Lemma 4 it is feasible, since
b is a vertex cover and hence bu + bv ≥ 1. Then we color the (n + 1)× (2n + 2)
cells starting at ((x− 1)(n + 2) + 1, (x− 1)(n + 1)+ 1) exactly as in the solution
to the gadget. It is straightforward to check that this grid satisfies the required
projections, and therefore the tomography instance is feasible. For the converse,
assume that the tomography instance has a solution. For every x = 1, . . . , N we
apply Lemma 1 for the red color and intervals I = [x(n + 1) + 1, N(n + 1) + 1]
and J = [1, x(n + 2)]. We deduce that in the solution the R-frame must be all
red, and all GY-blocks (and also the G-frame) must be free of any red. Similarly,
we show that the G-frame must be all green, and all RY-blocks must be free of
any green. This implies that in the source, k cells are yellow, and n− k are red,
in the row translators k cells are green and n− k red, and in the sink k cells are
green and n − k yellow. We define the vectors b0, b1, . . . , bN ∈ Xn,k, such that
for all 1 ≤ j ≤ n we have (i) b0

j = 1 iff the j-th cell in the source is yellow, (ii)
bx
j = 1 iff the j-th cell in the x-th row translator is green, for all 1 ≤ x ≤ N . For

x = 0, . . . , N , consider the part P of the solution that is the intersection of rows
[x(n + 1) + 2, x(n + 1) + n + 1] and columns [x(n + 2) + 1, x(n + 2) + 2n + 2].
We number the rows of P from 1 to n and the columns from 1 to 2n + 2. Let
(u, v) = ex mod m. By subtracting from the row projections the number of red
and green cells in the frames, we deduce that row 1 ≤ i ≤ n in P contains i + 1
red cells and i green cells if i ∈ {u, v} and i red cells and i + 1 green cells if
i �∈ {u, v}. We proceed similarly for the columns n+1 and n+2. By subtracting
from the column projections the quantities that are in the frames, we deduce
that column n + 1 of P contains one red cell, and n− 1 green cells, and column
n + 2 contains n − k + 1 red cells and k − 1 green cells. Column x(n + 2) + j
for 1 ≤ j ≤ n contains n − j + 1 red cells that are not in the R-frame. Since
GY-blocks are free of red, these cells must either be in the x-th row translator
or in column j of P . Note that the j-cell of the x-th row translator is red iff
bx
j = 0. Then column j of P contains n − j + bx

j red cells and no green cell.
Similarly column n + 2 + j of P contains n − j + 1 − bx+1

j green cells and no
red cell. This implies that P is the solution to the gadget defined by u, v, α, β
with α = bx and β = bx+1. Then by Lemma 4 we obtain that bx + bx+1 and in
general b0 + b1 + . . . + bN . By the choice of N and Lemma 2 there exists an
	 such that b� = b�+1 = . . . = b�+m. By Lemma 4, we have b�

u + b�
v ≥ 1 for all

(u, v) ∈ {e�, e�+1 mod m, . . . , e�+m−1 mod m} = E. Then b� encodes a vertex cover
of size k, and this completes the proof. �

782 C. Dürr, F. Guiñez, and M. Matamala

4 Related Problems

4.1 Edge-Colored Graphs with Prescribed Degrees

In the Edge-decomposition with Prescribed degrees problem (EPD), a set of
two colors {R, G}, a vertex set V and prescribed degrees dR, dG : V → N are
given, and we have to find two disjoint edge sets ER, EG ⊆ V 2 such that the
graph G(V, ER ∪ EG) has the required degrees, i.e. for all v ∈ V , dR(v) = |{u :
(u, v) ∈ ER}| and dG(v) = |{u : (u, v) ∈ EG}|. Finding an uncolored graph with
given degree sequences can be solved in polynomial time, see for example [7]. In
constrast, we can reduce the 3-color tomography problem to EPD.

Lemma 5. The problem EPD is NP-hard.

Proof: We reduce from the 3-color tomography problem. Let (rR, rG, sR, sG)
be an m × n-instance of the 3-color tomography problem. We set k = n + m,
V = {1, . . . , k}, and the following degrees, for 1 ≤ i ≤ n and 1 ≤ j ≤ m,
dR(i) = rR

i + n− 1, dG(i) = rG
i , dR(n + j) = sR

j , and dG(n + j) = sG
j + m− 1.

Now we show that the instance (rR, rG, sR, sG) is feasible if and only if the
instance (dR, dG) is feasible. For one direction, assume that there is a solution
M to the 3-color tomography instance. We construct a solution ER, EG to the
graph problem as follows. For any 1 ≤ i ≤ n and 1 ≤ j ≤ m, if Mij = R, then
(i, n + j) ∈ ER, if Mij = G, then (i, n + j) ∈ EG. Also for any 1 ≤ i < i′ ≤ n,
we have (i, i′) ∈ ER and for any 1 ≤ j < j′ ≤ m, we have (n + j, n + j′) ∈ EG.
Now clearly ER, EG satisfy the required degrees. For the converse, we define
the quantity Φ =

∑n
i=1 dR(i)−

∑m
j=1 dR(n + j). By assumption (1) this value is

n(n−1). Since this value equals also |ER∩{1, . . . , n}2|−|ER∩{n+1, . . . , n+m}2|,
there is a red edge between every pair of vertices (i, i′) with 1 ≤ i < i′ < n, and
no edge between every pair of vertices (n + j, n + j′) with 1 ≤ j < j′ ≤ m.
Similarly we can show that there is a green edge between every pair of vertices
(n+ j, n+ j′) with 1 ≤ j < j′ ≤ m. Now let M be the m×n grid, with cell (i, j)
colored in red if (i, n + j) ∈ ER, and in green if (i, n + j) ∈ EG. By the degree
requirements, M is a solution to the 3-color tomography instance. �

4.2 Tiling Tomography

Tiling tomography was introduced in [3], and it consists of constructing a tiling
that satisfies some given row and column projections for each type of tiles we ad-
mit. Formally a tile is a finite set T of cells of the grid N×N, that are 4-connected,
in the sense that the graph G(T, E) is connected for E = {((i, j), (i′, j′)) :
|i− i′|+ |j − j′| = 1}. By T + (i′, j′) = {(i + i′, j + j′) : (i, j) ∈ T } we denote a
copy of T that is shifted i′ units down and j′ units to the right. We say that a
set of tiles is feasible if they do not intersect. In addition we say that it tiles the
m × n grid if its (disjoint) union equals the set of all grid cells, and we refer it
as a tiling. In the Tiling Tomography Problem, denoted by TTP in the sequel,
we are given a finite set of tiles T = {T1, . . . , Tk}, and vectors rd ∈ Nm, sd ∈ Nn

for 1 ≤ d ≤ k. The goal is to compute a matrix M ∈ {0, 1, . . . , k} such that

Reconstructing 3-Colored Grids from Horizontal and Vertical Projections 783

the set {TMij + (i, j) : 1 ≤ i ≤ n, 1 ≤ j ≤ m} is a tiling of the m × n grid,
with the projections rd

i = |{j : Mij = d}| and sd
j = |{i : Mij = d}|. By width

and height of a tile T we understand the size of the smallest intervals I, J such
that T ⊆ I × J . This definition extends to set of tiles. A tile T is said to be
rectangle-like if for every (i′, j′) such that {T, T + (i′, j′)} is feasible, we have
that the width of {T, T + (i′, j′)} is at least twice the width of T or the height
of the set is at least twice the height of T . It was conjectured in [3], that for T1
being a single cell and T2 a tile which is not rectangle-like, the {T1, T2}-tiling
tomography problem is NP-hard. This question is still open and intriguing.

4.3 Rectangular Tiles

Consider two rectangular tiles, T1 being a p1 × q1 rectangle and T2 a p2 × q2
rectangle, i.e. Tc = {0, . . . , pc − 1} × {0, . . . , qc − 1}, for c ∈ {1, 2}. What can
be said about the complexity of the {T1, T2}-TTP? If gcd(p1, p2) = d > 1, then
clearly any solution M̄ ∈ {0, 1, 2}m×n to a {T1, T2}-tiling tomography instance
(rc, sc), must satisfy that if M̄ij �= 0, then i mod d = 1. Then the {T1, T2}-TTP
can be reduced to the {T ′

1, T
′
2}-TTP, with T ′

1 being a (p1/d)×q1 rectangle, and T ′
2

a (p2/d)× q2 rectangle. We omit the formal reduction, which is straightforward.
From now on suppose that gcd(p1, p2) = gcd(q1, q2) = 1. We distinguish the
following cases, up to row-column symmetry: If p1 = p2 = 1, that is the tiles
are two horizontal bars of length q1 and q2, then the problem can be solved in
polynomial time (Theorem 2). We use an idea already present in [4], where it
is proven for q1 = 1; If p1 = q2 = 1 and p2 = q1 = 2, then the tiles are called
dominoes, and again the problem can be solved in polynomial time, although
with a more involved algorithm [9]; If p1 = q2 = 1, p2 ≥ 2 and q1 ≥ 3 then
the problem is open. The first author conjectures that the problem is NP-hard,
while the other two conjecture that it could be solved in polynomial time with a
similar approach as in [9]; If p1, q1 ≥ 2, then the problem is NP-hard (Theorem
3). In [3] the special case p1 = q1 = 2, p2 = q2 = 1 was related to the 3-
color tomography problem, and it is therefore also NP-hard. We generalize this
reduction in section 4.6; If there is a third rectangular tile T3, then for the tile
set {T1, T2, T3} the problem is NP-hard, see section 4.7.

4.4 An Algorithm for Vertical Bars

Theorem 2. The TTP can be solved in polynomial time for two rectangular
tiles of dimensions p1 × 1 and p2 × 1.

Proof: The algorithm is the simple greedy algorithm, as the one used in [4]. It
iteratively stacks bars in the matrix. Formally the algorithm is defined like this.
We construct a matrix A ∈ {0, 1, 2}m×n with the required projections. Initially
A is all 0. We maintain a vector v such that vj is the minimal i such that
Ai,j �= 0, and vj = m + 1 if column j of A is all zero. Initially vj = m + 1
for all 1 ≤ j ≤ n. We also maintain vectors r̄1, r̄2, s̄1, s̄2, which represent the
remaining projections. Initially they equal the given projections of the instance.

784 C. Dürr, F. Guiñez, and M. Matamala

The vectors (v, r̄1, r̄2, s̄1, s̄2) define a more general tiling problem, where in every
column j, only the first vj − 1 cells have to be tiled.

The algorithm: Let i = max vj . If i = 1 we are done, and return A, if all
vectors r̄1, r̄2, s̄1, s̄2 are zero, and return “no solution” otherwise.
If i > 1, let i1 = i − p1 and i2 = i− p2. If r̄1

i1
= r̄2

i2
= 0, abort and return “no

solution”. Otherwise let c ∈ {1, 2} such that r̄c
ic

> 0. Let j be a column with
vj = i that maximizes s̄c

j . Then drop the bar pc×1 in column j, i.e. set Aic,j = c,
and decrease r̄c

ic
and s̄c

j . Repeat the whole step.
Clearly, if this algorithm produces a matrix, then it defines a valid tiling with

the required projections. We have to show that if the instance has a solution,
then the algorithm will actually find one. For this purpose, suppose that some
intermediate instance I := (v, r̄1, r̄2, s̄1, s̄2) is feasible. We show that an iteration
of the algorithm preserves feasibility. Let i = max vj . If i = 1, then r̄1, . . . , s̄2 are
all zero, since the instance is feasible. Let i1 = i− p1 and i2 = i− p2. We have
that either Mi1,j = 1 or Mi2,j = 2 for every column j satisfying vj = i, since M
is a valid tiling. Then some of r̄1

i1
, r̄2

i2
must be non zero. Let c, j be the values

the algorithm chooses. Let I′ be the instance obtained after the iteration of the
algorithm, that is r̄c

ic
, s̄c

j are decreased by 1 and vj by pc. If Mic,j = c, then M ′

which equals M except for Mic,j = 0 is a solution to I ′. If Mic,j �= c, then by
the projections, there must be a another column k with vk = i and Mic,k = c.
We will now transform M such that Mic,j = c. Then we are in the case above
and done. By the choice of the algorithm we have s̄c

k ≤ s̄c
j . By this inequality,

there exists i0 such that the total number of c’s below the row i0 is the same
in both column j and column k. Take i0 being the largest one satisfying that.
By the choice of i0 we have that Mi0,k = c and Mi0,j �= c. Since M is a valid
tiling, then the restriction to cells below i0 in column k is also a tiling and then
Mi0,j �= 0. We conclude that between i0 and i the number of 1’s and 2’s in
column j is the same as in column k. Then exchanging the parts of columns j
and k in M between i0 and i, does not change the projections of M , and we
obtain the required property Mic,j = c. �

4.5 A General NP-Hardness Proof Structure

In the next section we will reduce the 3-color tomography problem to the TTP
for some fixed set of tiles T . The proof uses a particular structure that we
explain now. Let (rR, rG, rY , sR, sG, sY) be an instance to the 3-color tomog-
raphy problem for an m × n grid. In the reduction we will choose constant
size grid 	 × k — that we call a block — and three T -tilings of it, that we
denote M̄R, M̄G, M̄Y . Let r̄c,d, s̄c,d be the Td-projections of the tiling M̄ c for
c ∈ {R, G, Y } and d ∈ {1, 2}. There will be two requirements: The first re-
quirement is that the vectors {r̄R,1, r̄G,1, r̄Y,1} are affine linear independent.
The same requirement holds for the column projections {s̄R,1, s̄G,1, s̄Y,1}. This
implies that every vector r spanned by r̄R,1, r̄G,1, r̄Y,1, has a unique decompo-
sition into r = nRr̄R + nGr̄G + nY r̄Y for nR + nG + nY = n. The reduction,
consists of an m	×nk grid, and the projections 1 ≤ i ≤ 	, 1 ≤ j ≤ k, 1 ≤ x ≤ m,

Reconstructing 3-Colored Grids from Horizontal and Vertical Projections 785

1 ≤ y ≤ n, d ∈ {1, 2}, rd
x�−�+i =

∑
c rc

x · r̄
c,d
i and sd

yk−k+j =
∑

c sc
y · s̄

c,d
j . The idea

is that the m	×nk is partitioned into mn blocks of dimension 	×k. The second
requirement is that in every solution M̄ to the tiling instance, all blocks of M̄ ,
are either M̄R, M̄G, M̄Y or blocks that have equivalent projections.

Lemma 6. The instance to the T -tiling problem has a solution if and only if
the instance to the 3-color tomography problem has a solution.

Proof: Let M ∈ {R, G, Y }m×n be a solution to the 3-color tomography problem.
We transform it into a matrix M̄ ∈ {0, 1, 2}m�×nk by replacing each cell (i, j) of
M by the 	×k matrix M̄ c for c = Mij . By construction, this is a solution to the
tiling problem. For the converse, suppose that there is a solution M̄ to the tiling
problem. By the second requirement, every block of M̄ can be associated to one
of the colors {R, G, Y }. We construct a matrix M ∈ {R, G, Y }m×n such that
Mxy = c if the block (x, y) of M̄ is M̄ c, or something projection equivalent. Fix
some arbitrary 1 ≤ x ≤ m. By the first requirement, the projections of the rows
x	 − 	 + 1, . . . , x	 have a unique decomposition into nRrR,1 + nGrG,1 + nY rY,1

with nR + nG + nY = n. By the definitions of the projections nR = rR
x , nG =

rG
x , nY = rY

x , and then row x of M has the required projections. We proceed in
the same manner for the columns and show that M is a solution to the 3-color
tomography instance. �

4.6 An NP-Hardness Proof for Two Rectangular Tiles

Theorem 3. The TTP is NP-hard for two rectangular tiles of dimensions p1×q1
and p2 × q2 with gcd(p1, p2) = gcd(q1, q2) = 1 and p1, q1 ≥ 2.

Proof: We apply Lemma 6 for 	 = 2p1p2 and k = 2q1q2. The 3 tilings of the
	 × k grid are defined formally as follows. Let us denote by ||a, b|| the set of
integers {a, a+1, . . . , b}. The rows I = {1, . . . , 	} and the columns J = {1, . . . , k}
are partitioned into sets I1, I2, I3, I4 and J1, J2, J3, J4 defined as I1 = ||1, p2||,
J1 = ||1, q2||, I2 = ||p2 +1, p1p2||, J2 = ||q2 +1, q1q2||, I3 = ||p1p2 +1, p1p2 +p2||,
J3 = ||q1q2+1, q1q2+q2||, I4 = ||p1p2+p2+1, 2p1p2||, J4 = ||q1q2+q2+1, 2q1q2||.
Then M̄R is defined as the block tiling that covers (I1∪I4)×(J3∪J4) with T2 and
the rest with T1, M̄G is defined as the block tiling that covers (I3∪I4)×(J1∪J4)
with T2 and the rest with T1, while M̄Y is defined as a tiling using only T1. These
tilings are uniquely defined. Clearly the row T1-projections of the 3 tilings are
affine linear independent, so the first requirement of the construction is satisfied.
The second requirement follows from a sequence of observations. Let M̄ be the
solution to the tiling instance, obtained by reduction from a 3-color instance
(rR, rG, rY , sR, sG, sY). First note that in the tilings M̄R, M̄G, M̄Y , every tile
is completely contained in the 	 × k block. Then the tiling instance has zero
projections for T1 at rows x with (x−1) mod 	 > 	−p1+2. A similar observation
holds for tile T2 and for the column projections. As a result in M̄ every tile is
completely contained in some 	 × k block, and in other words every block of
M̄ is {T1, T2}-tiled. What can we say about the possible tilings? Again note

786 C. Dürr, F. Guiñez, and M. Matamala

that in the tilings M̄R, M̄G, M̄Y , every row in I2 is completely covered by T1-
tiles. Then by the projections, this holds also for every block in M̄ . The same
observation can be done about columns in J2. Note that if ap1+bp2 = 2p1p2, then
(a, b) ∈ {(0, 2p1), (2p2, 0), (p2, p1)}. This is simply because by gcd(p1, p2) = 1, in
any solution to ap1 = p2(2p1 − b), a must be a multiple of p2. Together with
the previous observation, this implies that every column of a block is either
covered completely by T1-tiles or covered half by T1-tiles and half by T2-tiles.
The same observation holds for the rows. The trickiest observation of this proof
is that in every block of M̄ , the region I1 × J1 is covered by T1. For a proof
by contradiction, suppose it is covered by T2, in fact by a single tile T2 since
|I1 × J1| = |T2|. But since I2 × J is covered with T2, and by gcd(q1, q2) = 1, it
must be that the cell (p2 + 1, q2 + 1) is covered by a tile T2 + (p2 + 1, j) for some
column j ≤ q2. By the same argument, the cell (p2 + 1, q2 + 1) is also covered
by a tile T2 + (q2 + 1, i) for some row i ≤ p2. Then these two tiles overlap in
(p2 + 1, q2 + 1), which contradicts that M is a (valid) tiling. Now fix a block of
M̄ . If row 1 is partly covered by T2, then T2−tiles must cover the half columns
in J . Hence in the row 1 they cover exactly the columns in J3 ∪ J4. The same
argument shows that every column j ∈ J3 ∪ J4 is then half covered by T2−tiles.
Previous observation state that I2×{j} is covered by T1. But the length of I2 is
a not a multiple of p1. Then (p1p2 + 1, j) must then also be covered by T1 and
hence (I2 ∪ I3) ∪ {j} is covered by T1−tiles. Then (I1 ∪ I4) × {j} is covered by
T2. The choice of j was arbitrary, and therefore the block-tiling is exactly M̄R.
Similarly we deduce that if column 1 is covered partly by T2, then the block-tiling
is exactly M̄G. Now if row 1 and column 1 are completely covered by T1, then
(I1∪I2)×J and I× (J1∪J2) are completely covered by T2−tiles. As a result the
block-tiling only contains in (I3∪I4)× (J3∪J4) either T1−tiles or T2−tiles, that
correspond with the M̄Y tiling and another we call the bad tiling, respectively.
We will show that no bad tiling appears in M̄ . Let NR be the number of blocks
in M̄ that are M̄R. Similarly, let NB be number of bad block-tilings in M̄ . Note
that the row projection of a bad tiling equal the row projections of M̄G and that
the column projections equal the projections of M̄R. Then by the projections we
have the equalities NR =

∑
i rR

i and NR + NB =
∑

j sR
j . Since by assumption∑

i rR
i =

∑
j sR

j , we have NB = 0. This shows the second requirement of our
construction, and by Lemma 6 completes the proof. �

4.7 An NP-Hardness Proof for Three Rectangular Tiles

Theorem 4. The TTP is NP-hard for any 3 rectangular tiles.

Proof:[sketch] The idea of the construction is that we apply the general proof
scheme from section 4.5 with 3 tilings M̄R, M̄G, M̄Y , such that M̄R contains
tile T1 in position (0, 0), M̄G contains T2 and M̄Y contains T3 in position (0, 0).
Moreover each of the 3 tiling minimizes lexicographically n1, n2, n3, where nc is
the number of tiles Tc in the tiling. �

Reconstructing 3-Colored Grids from Horizontal and Vertical Projections 787

Acknowledgement

We thank Christophe Picouleau and Dominique de Werra for correcting an ear-
lier version of this manuscript. This work is partially supported by the FONDAP
and BASAL-CMM projects.

References

1. Alpers, A., Rodek, L., Poulsen, H.F., Knudsen, E., Herman, G.T.: Discrete To-
mography for Generating Grain Maps of Polycrystals. In: Advances in Discrete
Tomography and Its Applications, pp. 271–301. Birkhäuser, Basel (2007)

2. Chrobak, M., Dürr, C.: Reconstructing polyatomic structures from discrete X-rays:
NP-completeness proof for three atoms. Theoretical Computer Science 259, 81–98
(2001)

3. Chrobak, M., Couperus, P., Dürr, C., Woeginger, G.: On tiling under tomographic
constraints. Theoret. Comput. Sci. 290(3), 2125–2136 (2003)

4. Dürr, C., Goles, E., Rapaport, I., Rémila, E.: Tiling with bars under tomographic
constraints. Theoret. Comput. Sci. 290(3), 1317–1329 (2003)

5. Gardner, R., Gritzmann, P., Prangenberg, D.: On the computational complexity of
determining polyatomic structures by X-rays. Theoretical Computer Science 233,
91–106 (2000)

6. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H.Freeman and Co., New York (1979)

7. Kuba, A., Herman, G.T.: Discrete tomography: A Historical Overview. In: Discrete
tomography: Foundations, Algorithms and Applications. Birkhäuser, Basel (1999)

8. Ryser, H.J.: Matrices of zeros and ones. Bull. Am. Math. Soc. 66, 442–464 (1960)
9. Thiant, N.: Constructions et reconstructions de pavages de dominos. PhD thesis,

Université Paris 6 (2006)

Author Index

Ackerman, Eyal 47
Ali Abam, Mohammad 190
Amaldi, Edoardo 301
Anshelevich, Elliot 239
Aumüller, Martin 742
Avin, Chen 373
Azar, Yossi 155

Bei, Xiaohui 227
Belazzougui, Djamal 682
Biedl, Therese 71
Birnbaum, Benjamin 155
Björklund, Andreas 578
Bläser, Markus 623
Bodlaender, Hans L. 566, 635
Botelho, Fabiano C. 682
Buchin, Kevin 119

Caroli, Manuel 59
Caskurlu, Bugra 239
Chaloupka, Jakub 599
Charikar, Moses 23
Chekuri, Chandra 444
Chen, Wei 227
Christodoulou, George 251
Climer, Sharlee 337
Czyzowicz, Jurek 263

D’Ambrosio, Claudia 107
Das Sarma, Atish 480
de Berg, Mark 190
Delling, Daniel 587
Demaine, Erik D. 289, 718
Dietzfelbinger, Martin 682, 742
Dósa, György 456
Dumitrescu, Adrian 131
Dürr, Christoph 776

Eggert, Sebastian 492
Elbassioni, Khaled 143
Elkin, Michael 215
Emek, Yuval 203
Epstein, Leah 456

Farshi, Mohammad 190
Ferragina, Paolo 420
Fischer, Johannes 752
Fleischer, Rudolf 611
Fomin, Fedor V. 706
Fürer, Martin 11

Ganguly, Sumit 468
Gebauer, Heidi 764
Genc, Burkay 71
Gollapudi, Sreenivas 480
Golovach, Petr 706
Gørtz, Inge Li 540
Goyal, Navin 277
Grandoni, Fabrizio 95
Gudmundsson, Joachim 190
Guiñez, Flavio 776

Habib, Michel 290
Haeupler, Bernhard 659
Hajiaghayi, MohammadTaghi 23, 718
Halldórsson, Magnús M. 361
Hassin, Refael 275
Hasunuma, Toru 35
Hoefer, Martin 179
Hoffmann, Christian 623
Hreinsson, Jóhannes B. 730
Husfeldt, Thore 578

Im, Sungjin 444
Ishii, Toshimasa 35
Iuliano, Claudio 301

Jäger, Gerold 337
Jiang, Minghui 131
Jiang, Tao 325
Jurkiewicz, Tomasz 301

Kaplan, Haim 397
Karlin, Anna R. 155
Karloff, Howard 23
Karrenbauer, Andreas 432
Kaski, Petteri 578
Kirkpatrick, David 516
Kliemann, Lasse 492

790 Author Index

Koivisto, Mikko 578
Koutsoupias, Elias 251
Krøyer, Morten 730

Labourel, Arnaud 263
Lee, Jon 107
Lehman, Eric 671
Lingas, Andrzej 408
Löffler, Maarten 313
Lotker, Zvi 373
Lou, Tiancheng 325

Mahdian, Mohammad 167
Makino, Kazuhisa 143
Marx, Dániel 647, 718
Matamala, Mart́ın 776
McConnell, Ross M. 349
McGregor, Andrew 504
Mehlhorn, Kurt 301
Mitzenmacher, Michael 1
Moseley, Benjamin 444

Nagarajan, Viswanath 540
Nederlof, Jesper 554
Nguyen, C. Thach 155
Nisan, Noam 553
Nitto, Igor 420
Nussbaum, Yahav 349, 397

Ochel, Marcel 385
Olver, Neil 277
Onak, Krzysztof 504
Ono, Hirotaka 35

Pagh, Rasmus 730
Pajor, Thomas 587
Panigrahy, Rina 480, 504, 671
Pelc, Andrzej 263
Pettarin, Alberto 528
Philip, Geevarghese 694
Phillips, Jeff M. 313
Pietracaprina, Andrea 528
Pignolet, Yvonne-Anne 373
Pinchasi, Rom 47
Pritchard, David 83
Pucci, Geppino 528

Raman, Venkatesh 694
Rauf, Imran 143

Ravi, R. 95, 275, 540
Razgon, Igor 647
Rink, Michael 742
Rizzi, Romeo 301
Rossmanith, Peter 566
Rothvoß, Thomas 432

Salman, F. Sibel 275
Scharf, Ludmila 47
Scherfenberg, Marc 47
Sen, Siddhartha 659
Shepherd, F. Bruce 277
Sikdar, Somnath 694
Singh, Mohit 95
Skopalik, Alexander 179
Smid, Michiel 190
Sohler, Christian 468
Solomon, Shay 215
Spirakis, Paul G. 251
Srivastav, Anand 492
Stacho, Juraj 290

Tarjan, Robert E. 659
Teillaud, Monique 59
Teng, Shang-Hua 227
Thilikos, Dimitrios M. 706
Thomassé, Stéphan 635

Uno, Yushi 35

van Dijk, Thomas C. 554
van Rooij, Johan M.M. 554, 566
Venturini, Rossano 420
Vöcking, Berthold 385

Wächter, Andreas 107
Wagner, Dorothea 587
Wang, Grant 167
Wu, Xi 611

Xiao, Jing 325

Yeo, Anders 635
Yuan, Liwei 611

Zhang, Jialin 227
Zhang, Weixiong 337
Zhu, Jiajie 227

	5757 Algorithms - ESA 2009
	Preface
	Organization
	Table of Contents
	Invited Talk
	Some Open Questions Related to Cuckoo Hashing
	Introduction
	Background : Multiple-Choice Hashing and Cuckoo Hashing
	Insertion Times for Random Walk Cuckoo Hashing
	Threshold Loads for Cuckoo Hashing
	Using Stashes and Queues with Cuckoo Hashing
	Limited Randomness and Cuckoo Hashing
	Parallelized Variations of Cuckoo Hashing
	Conclusion

	Trees
	Efficient Computation of the Characteristic Polynomial of a Tree and Related Tasks
	Introduction
	Computing the Characteristic Polynomial
	Time Complexity
	Other Problems
	Graphs of Bounded Tree-Width
	Final Remark

	Improved Approximation Algorithms for Label Cover Problems
	Introduction
	O(n1/3log2/3 n)-Approximation Algorithm for Min Rep
	The Integrality Ratio of Min Rep

	O(n13)-Approximation Algorithm for Max Rep
	Reduction from Densest k-Subgraph to Max Rep
	Conclusion

	A Linear Time Algorithm for L(2,1)-Labeling of Trees
	Introduction
	Preliminaries
	Definitions and Notations
	Chang and Kuo's Algorithm and Its Improvement

	Label Compatibility and Flow-Based Computation of
	Label Compatibility and Neck/Head Levels
	Flow-Based Computation of

	Proof of Linear Running Time
	Efficient Assignment of Labels for Computing
	Computation of -Value for V2
	Computation of -Value for V3, V4, and V5

	Geometry I
	On Inducing Polygons and Related Problems
	Introduction
	First Proof of the Existence of an Inducing Simple n-gon
	Proof of Theorem 3
	Finding an Inducing Simple n-gon Efficiently
	x-Monotone Inducing n-Path: Proof of Theorem 2
	Concluding Remarks

	Computing 3D Periodic Triangulations
	Introduction
	Triangulations
	The Flat Torus Tbold0mu mumu ccRawcccc3
	Delaunay Triangulation in Tbold0mu mumu ccRawcccc3
	Algorithm
	Theoretical and Practical Analysis
	Conclusion and Future Work

	Cauchy's Theorem for Orthogonal Polyhedra of Genus 0
	Introduction
	Roadmap

	Definitions
	Flat Dihedral Angles
	Algorithm
	Correctness

	Non-flat Dihedral Angles
	Selecting among Two Sets
	Remarks

	Mathematical Programming
	Approximability of Sparse Integer Programs
	Introduction and Prior Work
	k-Row-Sparse Covering IPs: Previous and New Results
	k-Column-Sparse Packing IPs: Previous and New Results
	Other Related Work
	Summary

	k-Approximation for k-Row-Sparse CIPs
	Multiplicity Constraints

	Column-Sparse Packing Integer Programs
	Strongest Results

	References

	Iterative Rounding for Multi-Objective Optimization Problems
	Introduction
	Multi-Objective Spanning Tree and Matroid Basis
	Multi-Objective Matroid Basis

	Multi-Objective Bipartite Matching

	A Global-Optimization Algorithm for Mixed-Integer Nonlinear Programs Having Separable Non-convexity
	Introduction
	Our Algorithmic Framework
	The Lower-Bounding Convex MINLP Relaxation Q
	The Upper-Bounding Non-convex NLP Restriction R
	The Refinement Technique
	The Algorithmic Framework
	Convergence Analysis

	Computational Results

	Geometry II
	Constructing Delaunay Triangulations along Space-Filling Curves
	Introduction
	Algorithm
	General Analysis
	Incremental Construction con BRIO Revisited
	Counting Intersections

	Analysis for Bounded Spread
	Lower Bound
	Upper Bound

	Average-Case Analysis
	Structure of Random Space-Filling Curves

	Piercing Translates and Homothets of a Convex Body
	Introduction
	Upper Bound for Translates of an Arbitrary Convex Body in ${\mathcal {R}}^d$
	Upper Bound for Translates of a Centrally Symmetric Convex Body in
	Upper Bounds by Greedy Decomposition
	Concluding Remarks
	References

	Output-Sensitive Algorithms for Enumerating Minimal Transversals for Some Geometric Hypergraphs
	Introduction
	A Framework for Computing Transversal Hypergraphs
	Points and Hyper-rectangles in Rd
	Minimal Hitting Sets
	Minimal Covers

	Stabbing Connected Objects in Rd
	Minimal Stabbing Sets
	Minimal Covers

	Hitting and Covering with Half-Planes
	Minimal Hitting Sets
	Backtracking Method
	Solving the Special Instance
	Minimal Covers

	Algorithmic Game Theory I
	On Revenue Maximization in Second-Price Ad Auctions
	Introduction
	Our Results
	Related Work

	Model and Notation
	Hardness of Approximation of 2PAA
	Offline Second-Price Matching
	Hardness of Approximation
	A 2-Approximation Algorithm

	Online Second-Price Matching
	Lower Bounds
	A Randomized Competitive Algorithm

	Clustering-Based Bidding Languages for Sponsored Search
	Introduction
	The Model
	Non-existence of Broad-Match Equilibria
	The Clustering Problem
	A (1-1/e)-Approximation Algorithm for Deterministic Clustering
	An Approximation Algorithm for Stochastic Clustering

	Experimental Results
	Dataset
	Experiments

	Discussion

	Altruism in Atomic Congestion Games
	Introduction
	Model and Initial Results
	Singleton Congestion Games
	General Games
	Stabilization Methods

	Geometry III
	Geometric Spanners for Weighted Point Sets
	Introduction
	A Spanner Construction Based on Clustering
	An Additively Weighted (2+)-Spanner

	k-Outerplanar Graphs, Planar Duality, and Low Stretch Spanning Trees
	Introduction
	Preliminaries
	The Algorithm — Peeling an Onion
	Replicated-Halin Graphs
	Conclusions

	Narrow-Shallow-Low-Light Trees with and without Steiner Points
	Introduction
	Narrow-Shallow-Low Trees (NSLoTs)
	Narrow-Shallow-Low-Light Trees

	Algorithmic Game Theory II
	Bounded Budget Betweenness Centrality Game for Strategic Network Formations
	Introduction
	Problem Definition
	Determining Nash Equilibria in Nonuniform Games
	Nonexistence of Maximal Nash Equilibria
	Hardness of Determining the Existence of Maximal Nash Equilibria

	Complexity of Computing Best Responses
	Nash Equilibria in Uniform Games
	Construction of Nash Equilibria via Shift Graphs
	Properties of Nash Equilibria

	Future Work

	Exact and Approximate Equilibria for Optimal Group Network Formation
	Introduction
	Properties of the Socially Optimal Network
	When All Nodes Are Terminals
	Good Equilibria in the General Game
	Inapproximability Results and Terminal Backup

	On the Performance of Approximate Equilibria in Congestion Games
	Introduction
	Our Contribution and Related Work

	Definitions
	Non-atomic PoA
	Non-atomic PoS
	Conclusions
	References

	Navigation and Routing
	Optimality and Competitiveness of Exploring Polygons by Mobile Robots
	Introduction
	Definitions and Preliminary Results
	Optimality
	The Optimal Boundary Exploration Algorithm
	Negative Results

	Competitiveness
	Conclusion

	Tractable Cases of Facility Location on a Network with a Linear Reliability Order of Links
	Dynamic vs. Oblivious Routing in Network Design
	Introduction
	A Gap Example
	A Robust Network Design Instance
	A Solution for the Dynamic Routing Model
	Rent-or-Buy: Lower Bounds for spr Oblivious Routing Solutions
	Buy-and-Rent: An (logn) Gap between fr and mpr

	Single Path Routing vs. Tree Routing
	Conclusions

	Invited Talk
	Algorithms Meet Art, Puzzles, and Magic

	Graphs and Point Sets
	Polynomial-Time Algorithm for the Leafage of Chordal Graphs
	Introduction
	Basic Concepts
	Minimal Separator Graphs
	Structure of Clique Trees

	Degrees and Tokens
	Alternation and Augmentation
	Realizable Arcs
	Sequences
	Paths

	Algorithm
	Conclusions

	Breaking the O(m2 n) Barrier for Minimum Cycle Bases
	Introduction
	Structural Results
	Improved Algorithms for General Graphs
	Planar Graphs
	Conclusion

	Shape Fitting on Point Sets with Probability Distributions
	Introduction
	Problem Statement
	Contributions
	Preliminaries: -Samples and -Kernels

	Randomized Algorithm for -Quantizations
	Algorithm for -Quantizations
	(, ,)-Kernels
	Shape Inclusion Probabilities

	Measuring the Error
	Compressing -Quantizations
	(\epsilon,\delta,\alpha)-Kernels versus ϵ-Quantizations

	Bioinformatics
	An Efficient Algorithm for Haplotype Inference on Pedigrees with a Small Number of Recombinants (Extended Abstract)
	Introduction
	An Integer Linear Program for k-RHC
	Some Graph Structures and a Compact ILP in h-Variables
	The Pedigree Graph and Locus Graphs
	Linear Equality Constraints on the h-Variables

	AnO(mnlog^{k+1} n) Time Algorithm for k-RHC on Tree Pedigrees
	Determining h-Variables on Non-founder Edges
	Determining h-Variables on Founder Edges
	Locating Recombinants in the Interior Locus Segments
	Locating Recombinants in the Boundary Locus Segments

	References

	Complete Parsimony Haplotype Inference Problem and Algorithms
	Introduction
	Complete Haplotype Inference by Pure Parsimony
	CHIPP Algorithm Based on Integer Linear Programming
	CHIPP Algorithm Based on Branch-and-Bound

	Features of CHIPP and Optimization Techniques
	Backbones
	Equal Column Technique
	Decomposability
	Omitting Explaining Haplotype Pairs

	Experimental Analysis
	Summary

	Linear-Time Recognition ofProbe Interval Graphs
	Introduction
	Preliminaries
	Extension of the Clique Matrix
	Non-probe - Clique Constraints
	Non-probe - Probe Binding Constraints
	Probe - Probe Binding Constraints
	Additional Segments

	Constructing an Interval Model
	Consecutive-Ones Probe Matrices
	Determining Whether a Model Is Uniquely Constrained

	Wireless Communications
	Wireless Scheduling with Power Control
	Introduction
	Our Contributions
	Related Work
	Notation and Preliminaries

	Uniform Power Assignment
	Nearly Equal Linklengths
	Unit Disc Graphs and SINR Scheduling

	Oblivious Power Assignments
	Bidirectional Scheduling

	On the Power of Uniform Power:Capacity of Wireless Networks with Bounded Resources
	Introduction
	Problem Statement and Overview of Our Results

	Related Work
	Model and Preliminaries
	One Dimension: Length Constraint
	Power Restriction
	Conclusion

	Approximability of OFDMA Scheduling
	Introduction
	Hardness of Approximation
	A PTAS for Max-Rate OFDMA
	PTAS for Santa Claus Scheduling
	PTAS for Max-Rate OFDMA with Uniform Demands

	A 1/2-Approximation-Algorithm for OFDMA with Non-uniform Demands
	Discussion

	Flows, Matrices, Compression
	Maximum Flow in Directed Planar Graphswith Vertex Capacities
	Introduction
	Preliminaries
	Residual Cycles

	Minimum Cut
	The Extended Graph
	Reduction from the Extended Graph to the Original Graph
	The Algorithm

	A Fast Output-Sensitive Algorithm for Boolean Matrix Multiplication
	Introduction
	Other Related Results
	Organization

	The Output-Sensitive Algorithm for Boolean Product
	Partial Derandomization
	Rectangular Boolean Matrix Multiplication
	Applications
	Conclusions and Extensions

	On Optimally Partitioning a Text to Improve Its Compression
	Introduction
	Notation
	The Problem and Our Solution
	A Pruning Strategy
	Space and Time Efficient Algorithms for Generating G(T)

	On Zero-th Order Compressors
	On k-th Order Compressors
	On BWT-based Compressors

	Scheduling
	An Average-Case Analysis for Rate-Monotonic Multiprocessor Real-Time Scheduling
	Introduction
	Preliminaries
	The Result of Shor
	An Auxiliary Algorithm
	An Upper Bound for FFMP*
	Experimental Results

	Minimizing Maximum Response Time and Delay Factor in Broadcast Scheduling
	Introduction
	Minimizing the Maximum Response Time
	Minimizing Maximum Delay Factor and Weighted Response Time
	Unit Sized Pages
	Weighted Response Time and Weighed Delay Factor

	Lower Bound for a Natural Greedy Algorithm LF
	Conclusion
	References

	Preemptive Online Scheduling with Reordering
	Introduction
	Algorithms
	The Master Algorithm
	General Inputs
	Non-increasing Job Sizes

	Lower Bounds
	Conclusion

	Streaming
	d-Dimensional Knapsack in the Streaming Model
	Introduction
	Compressed Representation
	Conflict Hypergraph and Its Coloring
	Lower Bounds: Space versus Approximation Ratio

	Sparse Cut Projections in Graph Streams
	Introduction
	Contributions of This Study
	Related Work

	Cuts from Approximate Probability Distributions of Random Walks
	Estimating Probability Distribution pi on a Small Set of Nodes
	Finding Sparse Cut Projections on a Small Set of Nodes
	Conclusions

	Bipartite Graph Matchingsin the Semi-streaming Model (Extended Abstract)
	Introduction
	Preliminaries
	McGregor’s Algorithm
	Our Matching Algorithm
	Analysis – Approximation
	Analysis – Running Time and Space Requirements
	Open Questions
	References

	Online Algorithms
	The Oil Searching Problem
	Introduction
	Warm-Up: Finding a Single Oil Source
	Multiple Sources When Depths Are Chosen from a Distribution
	Adversary's Strategy When Distribution Is Known
	Extending to an Algorithm When Distribution Is Unknown

	Generalizing to an Arbitrary Set of Depths
	Adversary's Strategy When Set of Depths Is Known
	Extending to an Algorithm That Does Not Know the Set of Depths

	Hyperbolic Dovetailing
	Introduction
	Dovetailed Execution of Multiply-Viable Process Sets
	Multi-list and Cow-Path Traversal Problems
	Competitive Analysis

	Multi-list Traversal Strategies
	Intrinsic Maximum-Traversal-Cost and Average-Traversal-Cost
	Competitive Ratio of Conventional Dovetailing Strategies
	Hyperbolic Dovetailing
	Worst-Case Competitive Case Analysis of Hyperbolic Traversal
	Average and Expected Case Competitive Analysis of Hyperbolic Traversal

	Applications of Hyperbolic Dovetailing
	Generalized Cow-Path Search and Hybrid Algorithm Synthesis
	Input-Thrifty Algorithms

	Bluetooth and Dial a Ride
	On the Expansion and Diameter of Bluetooth-Like Topologies
	Introduction
	Preliminaries
	Expansion of BT(r(n),c(n))
	Lower Bound
	Upper Bound

	Diameter of BT(r(n),c(n))
	Conclusions

	Minimum Makespan Multi-vehicle Dial-a-Ride
	Introduction
	Uncapacitated Preemptive mDaR
	Preemptive Multi-vehicle Dial-a-Ride
	Capacitated Vehicle Routing with Bounded Delay
	Algorithm for Preemptive mDaR

	Invited Talk
	Google's Auction for TV Ads

	Decomposition and Covering
	Inclusion/Exclusion MeetsMeasure and Conquer
	Introduction
	Preliminaries
	Inclusion/Exclusion Based Branching
	An Algorithm for Counting Dominating Sets
	Dominating Set Restricted to Some Graph Classes
	Further Applications
	Conclusion

	Dynamic Programming on Tree Decompositions Using Generalised Fast Subset Convolution
	Introduction
	Preliminaries
	Switching between State Representations
	Minimum Dominating Set
	Counting the Number of Perfect Matchings
	[,]-Domination Problems
	Conclusion

	Counting Paths and Packings in Halves
	Introduction
	Related Work and Discussion

	The Disjoint Sum Problem
	Paths
	Set Packing

	Algorithm Engineering
	Accelerating Multi-modal Route Planning by Access-Nodes
	Introduction
	Preliminaries
	Models and Basic Algorithms
	Models
	The Label-Constrained Shortest Path Problem

	Access-Node Routing
	Access-Nodes
	Computing Access-Nodes
	Query
	Core Access-Node Routing
	Comparison to Transit-Node Routing

	Experiments
	Conclusion

	Parallel Algorithms for Mean-Payoff Games: An Experimental Evaluation
	Introduction
	Algorithms
	Zwick-Paterson (ZP)
	Gurvich-Karzanov-Khachivan (GKK)
	Björklund-Vorobyov (BV)
	Dhingra-Gaubert (DG)

	Parallelization
	ZP.
	GKK.
	BV.
	DG.

	Experimental Evaluation
	Input MPGs
	Results

	Conclusion

	Experimental Study of FPT Algorithms for the Directed Feedback Vertex Set Problem
	Introduction
	Preliminaries
	Chen's Algorithm and Speed-Ups
	Experiments
	The Random Graph Generator
	Chen's Algorithm
	Data Reduction Rules
	Heuristics for the Initial Configuration
	The Impact of the Parameter k

	Deadlock Detection
	Conclusions

	Parameterized Algorithms I
	Fast Evaluation of Interlace Polynomials on Graphs of Bounded Treewidth
	Introduction
	Preliminaries
	Idea
	Symmetric Gaussian Elimination
	Scenarios and Nice Tree Decompositions
	The Algorithm

	Kernel Bounds for Disjoint Cycles and Disjoint Paths
	Introduction
	Notions
	Polynomial Time and Parameter Transformations
	A Small Kernel for Disjoint Cycle Packing
	No Polynomial Kernels for Disjoint Cycles and Disjoint Paths
	Conclusions

	Constant Ratio Fixed-Parameter Approximation of the Edge Multicut Problem
	Introduction
	Preliminaries
	Reduction to Almost 2-Sat
	Fixed-Parameter Approximability of the Emc Problem
	Hardness of the 2-ASAT-BFL Problem

	Data Structures
	Rank-Pairing Heaps
	Introduction
	One-Pass Binomial Queues
	Rank-Pairing Heaps
	Amortized Efficiency of Rank-Pairing Heaps
	Can Key Decrease Be Made Simpler?
	Experiments
	Remarks

	3.5-Way Cuckoo Hashing for the Price of 2-and-a-Bit
	Introduction
	Related Work
	Our Contribution
	Theoretical Analysis
	Experiments

	Hash, Displace, and Compress
	Introduction
	The Data Structure and Its Construction
	Analysis
	Heavy Buckets
	Overall Analysis

	Experimental Results
	Comparing the CHD and BPZ Algorithms
	Results for k-Perfect Hashing

	Conclusions

	Parameterized Algorithms II
	Solving Dominating Set in Larger Classes of Graphs: FPT Algorithms and Polynomial Kernels
	Introduction
	 A Polynomial Kernel for Ki,j-Free Graphs
	The Reduction Rules and the Kernelization Algorithm
	Algorithm Correctness and Kernel Size

	A Polynomial Kernel for d-Degenerate Graphs
	Improving the Running Time

	A Polynomial Kernel for Independent Dominating Set on Ki,j-Free Graphs
	The Reduction Rules

	Conclusions and Future Work

	Contraction Bidimensionality: The Accurate Picture
	Introduction
	Basic Definitions
	Lemmata on Grids and Their Triangulations
	Proofs of Theorems
	Contraction Bidimensionality Revised

	Minimizing Movement: Fixed-Parameter Tractability
	Introduction
	Main Results
	Further Results
	Model and Definitions
	Sample Problems of Interest

	Hashing and Lowest Common Ancestor
	Storing a Compressed Function with Constant Time Access
	Introduction
	Our Results
	Related Work
	Preliminaries

	Retrieval with Variable-Length Values
	Analysis

	Constant Time Huffman-Like Decoding
	Approximate Membership with Arbitrary Error
	Improvement for Skewed Distributions
	Space Analysis

	Conclusion

	Experimental Variations of a Theoretically Good Retrieval Data Structure
	Introduction
	The Basic Retrieval Data Structure
	Strategies for Solving the Linear System
	Pseudoinverse
	Splitting into Tiny Subsets

	Implementation Considerations
	Small Matrices — Precomputed Solutions
	Large Matrices — No Precomputation
	Basic Conditions
	Experimental Setup

	Results
	Small Matrices — Precomputed Solutions
	Large Matrices — No Precomputation

	Conclusion and Outlook
	References

	Short Labelsfor Lowest Common Ancestors in Trees
	Introduction
	Labeling Trees for Lowest Common Ancestors
	Coding Algorithms
	Non-Self-Delimiting Codes
	Self-delimiting Codes
	Best Possible Heuristic for Light Labels
	Implemented Labeling Schemes

	Experiments
	Performance Indicators
	Test Data
	Experimental Results: Label Length
	Experimental Results: Construction Time
	Experimental Results: Query Time

	Best Paper Awards
	Disproof of the Neighborhood Conjecture with Implications to SAT
	Introduction
	Trees
	SAT
	Maker/Breaker Games

	Constructing Unsatisfiable k-CNF Formulas with Small Neighborhood
	Counterexample to the Neighborhood Conjecture
	Constructing Suitable (k,d)-Trees
	Proof Sketch of Lemma 1.(i) and 1.(ii):

	Reconstructing 3-Colored Grids from Horizontal and Vertical Projections Is NP-hard
	Introduction
	The Gadget
	The Reduction
	Related Problems
	Edge-Colored Graphs with Prescribed Degrees
	Tiling Tomography
	Rectangular Tiles
	An Algorithm for Vertical Bars
	A General NP-Hardness Proof Structure
	An NP-Hardness Proof for Two Rectangular Tiles
	An NP-Hardness Proof for Three Rectangular Tiles

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

