ARCoSS

LNCS 5757

Advanced Research in Computing and Software Science

Amos Fiat
Peter Sanders (Eds.)

Algorithms -
ESA 2009

17th Annual European Symposium
Copenhagen, Denmark, September 2009
Proceedings

o lrle—

- -

Lecture Notes in Computer Science 5757

Commenced Publication in 1973

Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK

Josef Kittler, UK

Alfred Kobsa, USA

John C. Mitchell, USA

Oscar Nierstrasz, Switzerland
Bernhard Steffen, Germany
Demetri Terzopoulos, USA
Gerhard Weikum, Germany

Takeo Kanade, USA

Jon M. Kleinberg, USA
Friedemann Mattern, Switzerland
Moni Naor, Israel

C. Pandu Rangan, India

Madhu Sudan, USA

Doug Tygar, USA

Advanced Research in Computing and Software Science

Subline of Lectures Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, University of Freiburg, Germany

Benjamin C. Pierce, University of Pennsylvania, USA

Bernhard Steffen, University of Dortmund, Germany

Madhu Sudan, Massachusetts Institute of Technology, MA, USA
Deng Xiaotie, City University of Hong Kong

Jeannette M. Wing, Carnegie Mellon University, Pittsburgh, PA, USA

Amos Fiat Peter Sanders (Eds.)

Algorithms -
ESA 2009

17th Annual European Symposium

Copenhagen, Denmark, September 7-9, 2009
Proceedings

@ Springer

Volume Editors

Amos Fiat

Tel Aviv University, School of Computer Science
Tel Aviv, Israel

E-mail: fiat@tau.ac.il

Peter Sanders

Universitit Karlsruhe (TH), Fakultit fiir Informatik
Am Fasanengarten 5, 76131 Karlsruhe, Germany
E-mail: sanders @ira.uka.de

Library of Congress Control Number: 2009933188

CR Subject Classification (1998): F.2, G.1, G.2, .1, E.5, E.1
LNCS Sublibrary: SL 1 — Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-642-04127-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-04127-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12747795 06/3180 543210

Preface

This volume contains the papers presented at ESA 2009: The 17th Annual Eu-
ropean Symposium on Algorithms, September 7-9, 2009. ESA has been held
annually since 1993, and seeks to cover both theoretical and engineering aspects
of algorithms. The authors were asked to classify their paper under one or more
categories as described in Fig. 1.

Since 2001, ESA has been the core of the larger ALGO conference, which
typically includes several satellite conferences. ALGO 2009 was held at the IT
University of Copenhagen, Denmark. The five members of the ALGO 2009 Or-
ganizing Committee were chaired by Thore Husfeldt.

The ESA submission deadline was April 12, Easter Sunday. This was clearly
an error and we offer profuse apologies for this mistake. Albeit no excuse, the
hard constraints we faced were (a) ICALP notification, April 6, and (b) ESA
in Copenhagen, September 7. Between these two endpoints we needed to design
a schedule that allowed modifying ICALP rejections for resubmission (1 week),
Program Committee deliberations (7 weeks), preparing final versions (4 weeks),
and, to prepare, publish, and transport the proceedings (9 weeks).

ESA 2009 had 272 submissions of which 14 were withdrawn over time. Of the
remaining 222 submissions to Track A (Design and Analysis), 56 were accepted.
Of the remaining 36 submissions to Track B (Engineering and Applications), 10
were accepted. This gives an acceptance rate of slightly under 25%.

Authors were affiliated with institutions in 41 countries, to wit: Algeria,
Argentina, Australia, Austria, Bangladesh, Belgium, Brazil, Bulgaria, Canada,
Chile, China, Czech Republic, Denmark, Finland, France, Germany, Greece,
Hong Kong, Hungary, Iceland, India, Ireland, Israel, Italy, Japan, Republic of
Korea, The Netherlands, Norway, Poland, Romania, the Russian Federation,
Singapore, Slovakia, Slovenia, Spain, Sweden, Switzerland, Taiwan — Province
of China, Turkey, the United Kingdom, and the United States. Most successful
were authors affiliated with institutions from Chile, Iceland, and Turkey (100 %
acceptance rate).

The program also included three invited talks, “Some Open Questions Re-
lated to Cuckoo Hashing” by Michael Mitzenmacher, “Algorithms Meet Art,
Puzzles, and Magic” by Eric D. Demaine, and “Google’s Auction for TV Ads”
by Noam Nisan.

Following the lead of Claire Mathieu at SODA 2009, ESA 2009 required that
full proofs be given in the appendix. This proved very useful for the review
process.

The Program Committee for Track A had 19 members, the Track B Program
Committee had 14 members. Every submission not withdrawn had at least 3
reviews by members of the Program Committee, aided by 344 external reviewers
(this may include duplicates), overall — 818 individual reviews.

VI Preface

Category Submitted Accepted % acc.

Machine learning 1 0 0%
Parallel algorithms 1 1 100 %
Quantum computing 2 0 0%
Hierarchical memories 3 0 0%
Databases and information retrieval 4 0 0%
Computational biology 6 1 17 %
Streaming algorithms 7 3 43 %
Distributed computing 8 2 25 %
Pattern matching 9 0 0%
Data compression 9 3 33 %
Mathematical programming 10 3 30 %
Randomized algorithms 20 6 30 %
Algorithmic game theory 22 6 27 %
On-line algorithms 23 5 22 %
Algorithmic aspects of networks 27 9 33 %
Data structures 30 4 13 %
Parameterized complexity 31 9 29 %
Computational geometry 37 10 27 %
Approximation algorithms 57 17 30 %
Combinatorial optimization 73 16 22 %
Graph algorithms 89 27 30 %

Fig. 1. Self characterization of the 272 submissions, a single paper may belong to
multiple categories

We stand amazed at the great work and outstanding volunteer spirit of the
members of both the Program Committees and the many external reviewers.
Infinite thanks are due to them. Six weeks to review 40 papers seems impossible
yet the reviews clearly show that very well thought out reviews can be produced
in such circumstances (with the right Program Committee).

In striking contrast, the great difficulty of getting timely reviews for journal
publication may be strong evidence that a major paradigm shift is in order.
Given that many conference submissions now require full proofs, perhaps this
suggests new directions for scientific publication.

The European association for theoretical computer science, EATCS, sponsors
a best student paper award at ESA and a best paper award at ESA. A submission
was deemed eligible for the best student paper award if all authors were students;
there were 19 such submissions.

The best student paper award went to Heidi Gebauer for her submission
“Disproof of the Neighborhood Conjecture with Implications to SAT.”

The best paper award went to Christoph Diirr, Flavio Guinez and Martin
Matamala for their submission “Reconstructing 3-Colored Grids from Horizontal
and Vertical Projections Is NP-Hard.”

Preface VII

\documentstle{lncs}
\addtolength{\textwidth}{2cm}
\addtolength{\oddsidemargin}{-1cm}
\addtolength{\evensidemargin}{-1cm}
\addtolength{\textheight}{1.5cm}
\addtolength{\topmargin}{-0.5cm}

Fig. 2. Random samples of Latex source from camera-ready ESA 2009 papers

Many thanks to Thore and the Organizing Committee, who were extremely
helpful throughout.

The process of producing a program and the proceedings would have been
infinitely more difficult without the EasyChair system and we greatly appreciate
the very commendable efforts by the system developers and supporters.

We humbly suggest that future versions of EasyChair include antivirus de-
fenses. This feature may be useful to counteract the great ingenuity, persever-
ance, and skill of the authors in getting a 30-page paper to fit in 12 pages of
LNCS style (See Fig. 2).

June 2009 Amos Fiat
Peter Sanders

Conference Organization

Program Committee

Design and Analysis Track

Avrim Blum
Toannis Caragiannis
Debora Donato
Uriel Feige

Michal Feldman
Amos Fiat (Chair)
Pierre Fraigniaud
Klaus Jansen

Rohit Khandekar

Alberto Marchetti-Spaccamela

Adam Meyerson
Seffi Naor
Ely Porat
Piotr Sankowski

Jif{ Sgall

Martin Skutella
Angelika Steger

Uli Wagner
Gerhard Woeginger

Carnegie Mellon University
University of Patras

Yahoo! Research Barcelona

The Weizmann Institute of Science
The Hebrew University of Jerusalem
Tel Aviv University

CNRS and University Paris Diderot
University of Kiel

IBM T.J. Watson Research Center
Sapienza University of Rome
UCLA

Technion

Bar Ilan University

Sapienza University of Rome and University of

Warsaw
Charles University, Prague
TU Berlin
ETH Ziirich
ETH Ziirich
TU Eindhoven

Engineering and Applications Track

Tetsuo Asano
David Bader
Hannah Bast

Siavash Daneshmand
Paolo Ferragina
Giuseppe F. Italiano
Jyrki Katajainen
Juha Kéarkkéinen
Rolf Mdohring
Tomasz Radzik
Abhiram Ranade
Knut Reinert
Kunihiko Sadakane
Peter Sanders (Chair)

JAIST, Kanazawa

Georgia Institute of Technology

MPI for Informatics, Saarbriicken
and Google, Ziirich

University of Mannheim

University of Pisa

University of Rome, Tor Vergata

University of Copenhagen

University of Helsinki

TU Berlin

King’s College, London

IIT Bombay

FU Berlin

National Institute of Informatics, Tokyo

University of Karlsruhe

X Organization

Local Organization

Philip Bille

Technical University of Denmark, Copenhagen
IT University of Copenhagen and Lund

Thore Husfeldt (Chair)

Bengt J. Nilsson
Rasmus Pagh
Nhi Quyen Le

External Reviewers

Scott Aaronson
Eyal Ackerman
Peyman Afshani
Nir Ailon

Ali Akhavi
Susanne Albers
Noga Alon

Ernst Althaus
Amihood Amir
Fabrizio d’Amore
Aris Anagnostopoulos
Alexandr Andoni
Eric Angel

Itai Ashlagi

Konstantin Avrachenkov

Yossi Azar
Yoram Bachrach
Evripidis Bampis
Nikhil Bansal
Gill Barequet
Luca Becchetti
Wolfgang Bein
Pietro Belotti
Andre Berger
Nicla Bernasconi
Nadja Betzler
Vittorio Bilo
Henrik Bjorklund
Andreas Bley
Johannes Blomer
Paolo Boldi
Vincenzo Bonifaci
Ilaria Bordino
Endre Boros

University

Malmo University

IT University of Copenhagen
IT University of Copenhagen

Glencora Borradaile
René Brandenberg
Ulrik Brandes
Andreas Brandstadt
Gunnar Brinkmann
Yves Brise

Gerth Stglting Brodal
Hajo Broersma

Niv Buchbinder
Chris Calabro
Saverio Caminiti
Alberto Caprara
Hamish Carr
Marjan Celikik
Ho-Leung Chan
Jessica Chang
Shuchi Chawla
Frederic Chazal
Panagiotis Cheilaris
Steve Chien

Flavio Chierichetti
Markus Chimani
Janka Chlebikova
Tobias Christ
George Christodoulou
Marek Chrobak
Raphael Clifford
Hagai Cohen
Vincent Conitzer
Jacomo Corbo
Graham Cormode
Derek Corneil

Jose Correa

Aaron Cote

David Coudert
Bruno Courcelle
Maxime Crochemore
Marek Cygan

Peter Damaschke
Mayur Datar
Raghavan Dhandapani
Florian Diedrich
Martin Dietzfelbinger
Shahar Dobzinski
Frederic Dorn
Daniel Dressler
Anne-Katrin Emde
Yuval Emek
Matthias Englert
David Eppstein
Amir Epstein

Leah Epstein
Thomas Erlebach
Bruno Escoffier
Angelo Fanelli
Martin Farach-Colton
Dan Feldman
Michael Fellows
Henning Fernau

Jiri Fiala

Felix Fischer

Lisa Fleischer
Rudolf Fleischer
Fedor Fomin
Dimitris Fotakis
Paolo Franciosa
Satoru Fujishige
Stefan Funke

Bernd Gértner
Iftah Gamzu
Jie Gao
Naveen Garg
Leszek Gasieniec
Michel Goemans
Shayan Oveis Gharan
Arpita Ghosh
Raffaele Giancarlo
Joachim Giesen
Aristides Gionis
Robert Gorke
Paul Goldberg
Elazar Goldenberg
Daniel Golovin
Fabrizio Grandoni
Clemens Gropl
Roberto Grossi
Luca Gugelmann
Antonio Gulli
Jiong Guo
Mohammad Taghi
Hajiaghayi
Magnus M. Halldorsson
Danny Halperin
Dan Halperin
Sariel Har-Peled
Tobias Harks
Avinatan Hassidim
Dan Hefetz
Danny Hermelin
Kirsten Hildrum
Wiebke Hohn
Michael Hoffmann
Andreas Holmsen
Stefan Hougardy
Benot Hudson
Falk Hiiffner
Thore Husfeldt
Nicole Immorlica
Gabor Ivanyos
Satoru Iwata
Martin Jaggi
Vit Jelinek
Charanjit Jutla

P. Kanellopoulos
Haim Kaplan
Alexis Kaporis
George Karakostas
Nikos Karanikolas
Srinivas Kashyap
Gjergji Kasneci
Matthew J. Katz
Michael Kaufmann
Telikepalli Kavitha
Hans Kellerer
Tordanis Kerenidis
Samir Khuller
Christian Knauer
Sigrid Knust
Stephen Kobourov
Stavros Kolliopoulos
Petr Kolman
Jochen Kénemann
Spyros Kontogiannis
Tsvi Kopelowitz
Guy Kortsarz
Toannis Koutis
Miroslaw Kowaluk
Daniel Kral

Jan Kratochvil
Dieter Kratsch
Stefan Kratsch
Robert Krauthgamer
Sven Krumke
Ariel Kulik

Maria Kyropoulou
Stefan Langerman
Luigi Laura

Van Bang Le
Stefano Leonardi
Asaf Levin

Meital Levy
Moshe Lewenstein
Katrina Ligett
Andrzej Lingas
Nelly Litvak
Daniel Lokshtanov
Shachar Lovett
Hannes Luz

Organization XI

Marco Liibbecke
Veli Mékinen

Yury Makarychev
Kazuhisa Makino
David F. Manlove
Martin Mares
Evangelos Markakis
Daniel Marx

Ajith Mascarenhas
Jifi Matousek

Ross McConnell
Andrew McGregor
Aranyak Mehta
Dimitrios Michail
Pauli Miettinen
Vahab Mirrokni
Gianpiero Monaco
Luca Moscardelli
Robin Moser
Hannes Moser
Ahuva Mu’alem
M. Miiller-Hannemann
S. Muthukrishnan
Torsten Miitze

Uri Nadav
Viswanath Nagarajan
Moni Naor

Saketh Nath
Gonzalo Navarro
Guyslain Naves
Hani Neuvirth
Kobbi Nissim
Steve Noble

Igor Nor

Simeon Ntafos
Zeev Nutov

Yoshio Okamoto
Svetlana Olonetsky
Hirotaka Ono
Lorenzo Orecchia
Christina Otte
Steve Oudot
Sang-il Oum
Martin Pal
Alessandro Panconesi

XII Organization

Vinayaka Pandit
Ondrej Pangrac
Gyula Pap
Evi Papaioannou
Srinivasan Parthasarathy
Matthias Peinhardt
Eelko Penninkx
Ulrich Pferschy
Todd Phillips
Marcin Pilipczuk
Sylvain Pion
Benny Porat
Roberto Posenato
Lars Préadel
Ariel Procaccia
Kirk Pruhs
Mathieu Raffinot
Deepak Rajan
Christoforos
Raptopoulos
Pasi Rastas
Tobias Rausch
Andreas Razen
Igor Razgon
Oded Regev
Liam Roditty
Adi Rosen
Giinter Rote
Amir Rothschild
Thomas Rothvof
Alan Roytman
Natan Rubin
Srinivasa Rao Satti
Petr Savicky
Gabriel Scalosub

Guido Schéifer
Michael Schapira
Dominik Scheder
Dennis Schieferdecker
Christiane Schmidt
Warren Schudy
Roy Schwartz
Ulrich Schwarz
Ariel Shiftan
Gennady Shmonin
Anastasios Sidiropoulos
René Sitters
Shakhar Smorodinsky
Roberto Solis-Oba
Mauro Sozio
Bettina Speckmann
Frits Spieksma
Paul Spirakis

Reto Spohel

Milind Sohoni
Anand Srivastav
Rob van Stee
Damien Stehle
Sebastian Stiller
Leen Stougie
Quentin F. Stout
Martin Strauss

S. Sudarshan
Marek Sulovsky
Jukka Suomela
Maxim Sviridenko
Zoya Svitkina

John Talbot
Xuehou Tan
Martin Tancer

Kanat Tangwongsan
Orestis Telelis
Evimaria Terzi
Jukka Teuhola
Torsten Tholey
Henning Thomas
Mikkel Thorup
Jarkko Toivonen
Patrick Traxler
Panayiotis Tsaparas
Dekel Tsur
Torsten Ueckerdt
Antti Ukkonen
Pavel Valtr
Suresh
Venkatasubramanian
Rossano Venturini
Eric Colin de Verdiere
José Verschae
Stefan Vigerske
Jan Vondrak
Tjark Vredeveld
Niko Vuokko
David Weese
Matthias Weller
Matthias Westermann
Ryan Williams
Pawel Winter
Mingyu Xiao
Neal Young
Raphael Yuster
Aviv Zohar
Philipp Zumstein
Uri Zwick

Table of Contents

Invited Talk

Some Open Questions Related to Cuckoo Hashing................. ...
Michael Mitzenmacher

Trees

Efficient Computation of the Characteristic Polynomial of a Tree and
Related Taskso

Martin Firer

Improved Approximation Algorithms for Label Cover Problems
Moses Charikar, MohammadTaghi Hajiaghayi, and Howard Karloff

A Linear Time Algorithm for L(2,1)-Labeling of Trees................
Toru Hasunuma, Toshimasa Ishii, Hirotaka Ono, and Yushi Uno

Geometry I

On Inducing Polygons and Related Problems
Eyal Ackerman, Rom Pinchasi, Ludmila Scharf, and
Marc Scherfenberg

Computing 3D Periodic Triangulations
Manuel Caroli and Monique Teillaud

Cauchy’s Theorem for Orthogonal Polyhedra of Genus 0
Therese Biedl and Burkay Genc

Mathematical Programming

Approximability of Sparse Integer Programs
David Pritchard

Iterative Rounding for Multi-Objective Optimization Problems
Fabrizio Grandoni, R. Ravi, and Mohit Singh

A Global-Optimization Algorithm for Mixed-Integer Nonlinear
Programs Having Separable Non-convexity
Claudia D’Ambrosio, Jon Lee, and Andreas Wichter

11

23

35

47

59

71

83

95

XIV Table of Contents

Geometry 11

Constructing Delaunay Triangulations along Space-Filling Curves
Kevin Buchin

Piercing Translates and Homothets of a Convex Body
Adrian Dumitrescu and Minghui Jiang

Output-Sensitive Algorithms for Enumerating Minimal Transversals for
Some Geometric Hypergraphs
Khaled Elbassioni, Kazuhisa Makino, and Imran Rauf

Algorithmic Game Theory I

On Revenue Maximization in Second-Price Ad Auctions
Yossi Azar, Benjamin Birnbaum, Anna R. Karlin, and
C. Thach Nguyen

Clustering-Based Bidding Languages for Sponsored Search
Mohammad Mahdian and Grant Wang

Altruism in Atomic Congestion Games., ..
Martin Hoefer and Alexander Skopalik

Geometry III

Geometric Spanners for Weighted Point Sets
Mohammad Ali Abam, Mark de Berg, Mohammad Farshi,
Joachim Gudmundsson, and Michiel Smid

k-Outerplanar Graphs, Planar Duality, and Low Stretch Spanning
Trees (Extended Abstract)o
Yuval Emek

Narrow-Shallow-Low-Light Trees with and without Steiner Points
Michael Elkin and Shay Solomon

Algorithmic Game Theory 11

Bounded Budget Betweenness Centrality Game for Strategic Network
Formations.
Xiaohui Bei, Wei Chen, Shang-Hua Teng, Jialin Zhang, and
Jiagie Zhu

Exact and Approximate Equilibria for Optimal Group Network
Formation
Elliot Anshelevich and Bugra Caskurlu

Table of Contents

On the Performance of Approximate Equilibria in Congestion Games . . .
George Christodoulou, Elias Koutsoupias, and Paul G. Spirakis

Navigation and Routing

Optimality and Competitiveness of Exploring Polygons by Mobile
ROboOts .o
Jurek Czyzowicz, Arnaud Labourel, and Andrzej Pelc

Tractable Cases of Facility Location on a Network with a Linear
Reliability Order of Links
Refael Hassin, R. Ravi, and F. Sibel Salman

Dynamic vs. Oblivious Routing in Network Design
Navin Goyal, Neil Olver, and F. Bruce Shepherd

Invited Talk

Algorithms Meet Art, Puzzles, and Magic
Erik D. Demaine

Graphs and Point Sets

Polynomial-Time Algorithm for the Leafage of Chordal Graphs
Michel Habib and Juraj Stacho

Breaking the O(m?n) Barrier for Minimum Cycle Bases
Edoardo Amaldi, Claudio Iuliano, Tomasz Jurkiewicz,
Kurt Mehlhorn, and Romeo Rizzi

Shape Fitting on Point Sets with Probability Distributions
Maarten Loffler and Jeff M. Phillips
Bioinformatics

An Efficient Algorithm for Haplotype Inference on Pedigrees with a
Small Number of Recombinants (Extended Abstract)
Jing Xiao, Tiancheng Lou, and Tao Jiang

Complete Parsimony Haplotype Inference Problem and Algorithms
Gerold Jdger, Sharlee Climer, and Weiriong Zhang

Linear-Time Recognition of Probe Interval Graphs
Ross M. McConnell and Yahav Nussbaum

XV

251

263

275

277

289

290

301

313

325

337

XVI Table of Contents

Wireless Communications

Wireless Scheduling with Power Control 361
Magnis M. Halldorsson

On the Power of Uniform Power: Capacity of Wireless Networks with
Bounded Resources 373
Chen Awvin, Zvi Lotker, and Yvonne-Anne Pignolet

Approximability of OFDMA Scheduling 385
Marcel Ochel and Berthold Vicking

Flows, Matrices, Compression

Maximum Flow in Directed Planar Graphs with Vertex Capacities 397
Haim Kaplan and Yahav Nussbaum

A Fast Output-Sensitive Algorithm for Boolean Matrix
Multiplication 408
Andrzej Lingas

On Optimally Partitioning a Text to Improve Its Compression 420
Paolo Ferragina, Igor Nitto, and Rossano Venturini

Scheduling

An Average-Case Analysis for Rate-Monotonic Multiprocessor
Real-Time Scheduling i 432
Andreas Karrenbauer and Thomas Rothvof

Minimizing Maximum Response Time and Delay Factor in Broadcast
Scheduling 444
Chandra Chekuri, Sungjin Im, and Benjamin Moseley

Preemptive Online Scheduling with Reordering 456
Gyorgy Ddsa and Leah Epstein

Streaming

d-Dimensional Knapsack in the Streaming Model 468
Sumit Ganguly and Christian Sohler

Sparse Cut Projections in Graph Streams 480
Atish Das Sarma, Sreenivas Gollapudi, and Rina Panigrahy

Bipartite Graph Matchings in the Semi-streaming Model
(Extended Abstract) 492
Sebastian Eggert, Lasse Kliemann, and Anand Srivastav

Table of Contents XVII

Online Algorithms

The Oil Searching Problem 504
Andrew McGregor, Krzysztof Onak, and Rina Panigrahy

Hyperbolic Dovetailing i 516
David Kirkpatrick

Bluetooth and Dial a Ride

On the Expansion and Diameter of Bluetooth-Like Topologies 528
Alberto Pettarin, Andrea Pietracaprina, and Geppino Pucci

Minimum Makespan Multi-vehicle Dial-a-Ride 540
Inge Li Gortz, Viswanath Nagarajan, and R. Ravi

Invited Talk
Google’s Auction for TV Ads. ... 553

Noam Nisan

Decomposition and Covering

Inclusion/Exclusion Meets Measure and Conquer: Exact Algorithms for
Counting Dominating Setsc.. i 554
Johan M.M. van Rooij, Jesper Nederlof, and Thomas C. van Dijk

Dynamic Programming on Tree Decompositions Using Generalised Fast
Subset Convolution 566
Johan M.M. van Rooij, Hans L. Bodlaender, and Peter Rossmanith

Counting Paths and Packings in Halves 578
Andreas Bjorklund, Thore Husfeldt, Petteri Kaski, and
Mikko Kowvisto

Algorithm Engineering

Accelerating Multi-modal Route Planning by Access-Nodes............ 587
Daniel Delling, Thomas Pajor, and Dorothea Wagner

Parallel Algorithms for Mean-Payoff Games: An Experimental
Evaluation 599
Jakub Chaloupka

Experimental Study of FPT Algorithms for the Directed Feedback
Vertex Set Problem 611
Rudolf Fleischer, Xi Wu, and Liwei Yuan

XVIII Table of Contents

Parameterized Algorithms I

Fast Evaluation of Interlace Polynomials on Graphs of Bounded
Treewidtho
Markus Bliser and Christian Hoffmann

Kernel Bounds for Disjoint Cycles and Disjoint Paths.................
Hans L. Bodlaender, Stéphan Thomassé, and Anders Yeo

Constant Ratio Fixed-Parameter Approximation of the Edge Multicut
Problem
Daniel Marz and Igor Razgon

Data Structures

Rank-Pairing Heapso
Bernhard Haeupler, Siddhartha Sen, and Robert E. Tarjan

3.5-Way Cuckoo Hashing for the Price of 2-and-a-Bit
Eric Lehman and Rina Panigrahy

Hash, Displace, and Compressouiienininennenanenen.n.
Djamal Belazzougui, Fabiano C. Botelho, and Martin Dietzfelbinger
Parameterized Algorithms II

Solving Dominating Set in Larger Classes of Graphs: FPT Algorithms
and Polynomial Kernels........ i
Geevarghese Philip, Venkatesh Raman, and Somnath Sikdar

Contraction Bidimensionality: The Accurate Picture..................
Fedor V. Fomin, Petr Golovach, and Dimitrios M. Thilikos

Minimizing Movement: Fixed-Parameter Tractability
Erik D. Demaine, MohammadTaght Hajiaghayi, and Daniel Marz
Hashing and Lowest Common Ancestor

Storing a Compressed Function with Constant Time Access
Johannes B. Hreinsson, Morten Krgyer, and Rasmus Pagh

Experimental Variations of a Theoretically Good Retrieval Data
SEruCture
Martin Aumdiiller, Martin Dietzfelbinger, and Michael Rink

Short Labels for Lowest Common Ancestors in Trees
Johannes Fischer

Table of Contents XIX

Best Paper Awards

Disproof of the Neighborhood Conjecture with Implications to SAT 764
Heidi Gebauer

Reconstructing 3-Colored Grids from Horizontal and Vertical
Projections Is NP-hard i 776
Christoph Dirr, Flavio Guinez, and Martin Matamala

Author Index 789

Some Open Questions Related to Cuckoo
Hashing

Michael Mitzenmacher*

School of Engineering and Applied Sciences
Harvard University, Cambridge, MA 02138
michaelm@eecs.harvard.edu

Abstract. The purpose of this brief note is to describe recent work in
the area of cuckoo hashing, including a clear description of several open
problems, with the hope of spurring further research.

1 Introduction

Hash-based data structures and algorithms are currently a booming industry in
the Internet, particularly for applications related to measurement, monitoring,
and security. Hash tables and related structures, such as Bloom filters, dictio-
naries, and their derivatives, are used billions of times a day, and new uses keep
proliferating. Indeed, one of the most remarkable trends of the last five years
has been the growing prevalence of hash-based algorithms and data structures
in networking and other areas. At the same time, the field of hashing, which
has enjoyed a long and rich history in computer science (see e.g., [28]), has also
enjoyed something of a theoretical renaissance. Arguably, this burst of activity
began with the demonstration of the power of multiple choices: by giving each
item multiple possible hash locations, and storing it in the least loaded, remark-
ably balanced loads can be obtained, yielding quite efficient lookup schemes
[4U7123I30038]. An extension of this idea, cuckoo hashing, further allows items
to be moved among its multiple choices to better avoid collisions, improving
memory utilization even further.

In this brief note I plan to describe some recent work in the area of cuckoo
hashing, providing some focus on several remaining open problems, with the
hope of spurring further research. The presentation may admittedly be some-
what biased, focusing on my own recent research in the area; this is hopefully
excused by the fact that this note is written in conjunction with an invited talk
for the 2009 ESA conference in Denmark. The topic seems apropos; the paper
introducing cuckoo hashing by Pagh and Rodler appeared in the 2001 ESA con-
ference, also held in Denmark! [3435] Also for this reason, the focus here will
be primarily on theoretical results and problems. There is of course also recently
a great deal of interesting work in hashing combining theory and practice, as
detailed for example in the survey [27].

* Supported in part by NSF grants CNS-0721491 and research grants from the Cisco
University Research Program, Yahoo! University Research Program, and Google
University Research Program.

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 1{I0] 2009.
(© Springer-Verlag Berlin Heidelberg 2009

2 M. Mitzenmacher

2 Background : Multiple-Choice Hashing and Cuckoo
Hashing

The key result behind multiple choice hashing was presented in a seminal work
by Azar, Broder, Karlin, and Upfal [4], who showed the following: suppose that n
itemd] are hashed sequentially into n buckets by hashing each item d times to ob-
tain d choices of a bucket for each item, and placing each item in the choice with
the smallest current number of items (or load). When d = 1, which is standard
hashing, then the maximum load grows like (14 0(1))(logn/loglogn) with high
probability [22]; when d > 2, the maximum load grows like loglogn/logd+O(1)
with high probability, which even for 2 choices gives a maximum load of 6 in
most practical scenarios. The upshot is that by giving items just a small amount
of choice in where they are placed, the maximum load can be greatly reduced;
the cost is that now d locations have to be checked when trying to look up the
item, which is usually a small price to pay in systems where the d locations can
be looked up in parallel. A variant later introduced by Vocking [38], that we refer
to as d-left hashing, both gives slightly improved performance and is particularly
amenable to parallelization. The hash table is split into d equal-sized subtables;
when inserting an item, one bucket is chosen uniformly and independently from
each subtable as a possible location; the item is placed in the least loaded bucket,
breaking ties to the left. This combination of splitting and tie-breaking reduces
the maximum load to loglogn/d¢g + O(1), where ¢4 is the asymptotic growth
rate of the dth order Fibonacci numbers [38§].

In practice, the loglogn terms are so small in the analysis above that one
can generally assume that a suitably sized bucket will never overflow. As noted
for example in [7], this effectively means that d-left hash tables can provide
an “almost perfect” hash table in many settings, which can then be used to
bootstrap further data structures. The hash table is only almost perfect in that
technically there is some probability of failure, and of course it is not minimal
in terms of size.

Cuckoo hashing [35] is a further variation on multiple choice hashing schemes.
In the original description, an item can be placed in one of two possible buckets.
But if on insertion there is no room for an item at any of its two choices, instead
of this causing an overflow, we consider moving the item in one of those buckets
to the other location consistent with its set of two choices. Such a move may
require the move of yet another element in another bucket to prevent overflow,
and so on until an empty spot for the current item is found (or until sufficiently
many attempts have been made to declare a failure). An excellent picture and
description is available on Wikipedia’s entry for cuckoo hashing, and I encourage
everyone who has not already read this entry to do so now. The name cuckoo
hashing comes from the cuckoo bird in nature, which kick other birds out of their
nest, much like the hashing scheme recursively kicks items out of their location
as needed. Successfully placing an element corresponds to finding an augmenting

! We use the term item for the objects to be hashed, which are generally keys or
key-value pairs; we assume throughout that items are a fixed size.

Some Open Questions Related to Cuckoo Hashing 3

path in the underlying graph where buckets are nodes and elements correspond
to edges between nodes. When there are n items to be placed in 2(1+€)n buckets,
that is when the load of the table is less than 1/2, all such augmenting paths
are O(logn) in length with high probability. A failure occurs if an item can’t be
placed after clogn steps for an appropriately chosen constant c.

Although cuckoo hashing was originally introduced with just two choices per
items and buckets of unit capacity, it was naturally generalized to situations with
more than two choices per bucket and more than one item per bucket [I7J19].
These variations share the properties that they require checking only O(1) mem-
ory locations even in the worst case. Hence, in general, we refer to the entire
range of variations as cuckoo hashing, and clarify in context when necessary.
For cuckoo hashing the case of d = 2 choices with one item per bucket is now
well understood [29]35], the cases with more choices and more items per bucket
have left many remaining open questions [I7I19]. The case of d = 2 is so well
understood because there is a direct correspondence to random graphs. We can
think of buckets as vertices, and items as edges, where the edge for an item con-
nects the two vertices corresponding to its two buckets. The choice of a bucket
by an item corresponds naturally to an orientation of a directed edge. For d > 2,
there is a correspondence to random hypergraphs, which are more technically
challenging, and for more than one item in a bucket, the edge orientation prob-
lems become more technically challenging. The questions that remain for these
variations are both theoretically interesting and potentially important practi-
cally, as these cuckoo hashing variants can allow very high memory utilizations,
significantly higher than previous multiple choice hashing schemes.

3 Insertion Times for Random Walk Cuckoo Hashing

Let us consider the online setting for cuckoo hashing, where new items may
arrive to be inserted and old items may be deleted. Note that this is in contrast
to the offline setting, where all items are initially present and one merely wants
to make a lookup table, without updates to the underlying set. When there are
d > 2 choices or more than one item per bucket, the question of what to do
when inserting a new item is more subtle than in the case with two choices.
One approach is to do a breadth first search to find an augmenting path in the
underlying graph structure, looking at all paths that require one move, then
two moves, and so on. For constant d in both settings it is known that an
insertion only takes constant expected time, although high probability bounds
on the insertion time are generally very weak [IT/T9]. Moreover, both because
of memory and time requirements, this approach does not suitable for many
practical implementations.

Let us describe an alternative approach generally much more amenable to
practical implementation, is to at each step kick out a random item. Specifically
let us consider the case of one item per bucket and d > 2 choices; in this case, we
randomly kick out of the d choices the first time, and of the d—1 “other choices”
after the first time. This avoids the storage required for the breadth first search

4 M. Mitzenmacher

and is usually much faster. This approach gives a random walk on items being
kicked out of their location, until an item that has an empty bucket to be placed
in is found. Intuition suggests that this approach should also find an augmenting
path in O(log n) steps with high probability, since at each step there seems to be
a constant probability of finding an open space. While simulations suggest good,
possibly logarithmic performance, the intuition is quite speculative, as it ignores
dependencies in the placement of items that are troublesome for analysis.

Until recently, there was no proof of even polylogarithmic performance for
the random walk cuckoo hashing approach. A current result of Frieze, Melsted,
and Mitzenmacher shows that in fact with high probability over the choices
of the cuckoo hashing algorithm any insertion will, with high probability, take
polylogarithmic time under suitable loads for large enough numbers of choices
d |2I]. The argument breaks into a pair of steps: first, most buckets have an
augmenting path of length at most O(loglogn) to an empty bucket; and second,
the graph representing the cuckoo hashing process expands sufficiently so that,
regardless of the starting point, the random walk cuckoo hashing process will
find itself at one of these buckets with an augmenting path of length at most
O(loglogn) to an empty bucket after only O(logn) steps. While this represents
a significant step forward, the picture for random walk cucko hashing remains
incomplete.

Open Question 1: Find tight bounds on the performance of random-walk
cuckoo hashing in the online setting, for d > 3 choices and possibly more than
one item per bucket.

4 Threshold Loads for Cuckoo Hashing

Cuckoo hashing schemes appear to have natural load thresholds. As the number
of items approaches some constant ¢ times the number of buckets (where ¢
depends on the variant of cuckoo hashing), the time to find an augmenting path
increases, and as one reaches the threshold collisions become unavoidable. Given
the connection to random graphs, this behavior in unsurprising. Indeed, when
d = 2 and there is just one item per bucket, it is known that cuckoo hash tables
with load less than 1/2 succeed with high probability, but fail when the load
is larger than 1/2. See [29] for more detailed analysis. There is a large jump in
moving to d = 3 choices, where the threshold appears to be around a 91% load
based on experiments.

When d = 2 and there is more than one choice per bucket, results are well
understood for the offline case. Again thinking of buckets as vertices and items as
edges, the problem in the offline case becomes how to orient each edge so that no
vertex has degree more than k. Hence the problem corresponds to the threshold
for k-orientability on random graphs, which provides a framework for finding the
threshold [8JI8]. Because in the offline case there is no moving of items needed,
as items are simply placed, whether these loads can be achieved by a natural
cuckoo hashing variant in the online setting remains open. Specifically, it would
be intereseting to determine if the threshold is the same for random walk cuckoo

Some Open Questions Related to Cuckoo Hashing 5

hashing, or for a different scheme with constant average time and logarithmic
time with high probability per insertion and deletion.

When d > 2 choices (and one item per bucket), the threshold for the of-
fline case is also nearly settled. Upper bounds on the theshold can found by
again viewing the problem as an orientation problem on random hypergraphs,
and while some additional considerations are needed, an upper bound can be
calculated [5]. Lower bounds have been achieved, based on a new approach for
designing dictionary and retrieval structures, based on matrix techniques [15].
(See also [36].) These techniques are quite interesting and highly recommended
but a full description is beyond the scope of this short note; essentially, one
utilizes a full-rank matrix with at most d ones per column derived from a hash
function on the set of keys, and solves for a vector such that the multiplication
of the matrix times the vector yields the value associated with each key. Storing
the vector is then sufficient to generate the value associated with each key, and
further requires just d lookups into the vector. As a specific example, for the im-
portant case of d = 3, there is an upper bound of 0.9183 for the threshold load
[5], and a lower bound of 0.8894 [15]. Again, however, the question of bounds
for efficient algorithms in the online setting remains more open.

Open Question 2: Tighten the bounds on the thresholds on the load capacity
of cuckoo hashing schemes for d > 2 choices and 1 item per bucket for the offline
setting.

Open Question 3: Prove bounds on thresholds for other settings, such as for

cuckoo hashing with d > 2 choices and more than 1 item per bucket (offline or
online), or for specific or general online schemes.

5 Using Stashes and Queues with Cuckoo Hashing

The failure rate of cuckoo hashing is surprisingly high. With standard cuckoo
hashing using d = 2 choices, if n items are placed into 2(1 + €) buckets, the
probability of a failure — that some item can’t be placed or takes too long to
place — is ©(1/n), with the constant factor in the asymptotic notation depending
on € [29]. In theoretical papers the standard suggested response is to rehash
everything in case of such a failure; this does not change the important fact that
the expected average insertion time per item is constant. Rehashing, however, is
unsuitable for many applications. The failure rate is smaller with more choices
of items [19] or more items per bucket [I7], but the high failure probability still
remains a potential problem.

In [26] we show that one needs only a small, constant-sized stash to greatly
reduce the probability of a failure. A stash should be thought of as a small,
fully-associative memory, that allows an arbitrary lookup in a single time step.
In hardware, this can be implemented as a content-addressable memory (CAM),
as long as the size of the stash is small, since CAMs are expensive. In software,
this can be implemented with a small number of dedicated cache lines. We show
a stash of constant size s reduces the probability of any failure to fall from
O(1/n) to ©(1/n*T1) for the case of d = 2 choices. Similar results hold for other

6 M. Mitzenmacher

variants, in that the failure probability provably falls linearly by a factor of the
stash size s in the exponent. Such a reduction is key for scaling to applications
with millions of users. The original motivation was for potential applications to
routers, and applications of this result to devices using history-independent hash
tables have also been suggested [33].

This idea of allowing a small amount of additional space to handle collisions
seems quite powerful, although it is not commonly studied in theoretical work.
(Interestingly, though, one can think of the seminal work on perfect hashing
of Fredman, Komlds, and Szemerédi [20] in this context.) The issue of the right
scale of the additional space seems to be an interesting question. For example, in
other work, we have alternatively suggested using a CAM as a queue for pending
move operations in a cuckoo hash table [24]. The advantage of this approach is it
gives an effective de-amortization of cuckoo hash inserts: by queueing operations,
we can arrange for inserts to have worst-case constant time (corresponding to the
average time for an insert in standard cuckoo hashing). This technique appears
potentially useful as an approach for deamortizing other algorithms or data
structures in hardware. We conjectured in this setting that the CAM size is
required to scale like O(logn), corresponding to a maximum size achieved by a
queue over O(n) steps. For the case of d = 2, this conjecture has recently been
proven in [3] (see also the similar [12]).

Finally, in other work, we have considered variants that allow only one move
of an item in a hash table on each insertion [25]. The motivation for this work
was to consider the benefits of making the minimum possible change to multiple-
choice hashing, which is already being used in some hardware solutions, in order
to convince builders of devices to consider trying systems that allow items to
move within the hash table. Besides showing significant gains, we were able to
analyze several schemes using a fluid limit/differential equations analysis. Here,
we require using a CAM that scales linearly in n. That is, we find such schemes
require a CAM of size en for a very small € chosen by the designer (e.g., 0.2%).
So now we have examples where the natural choice of a stash size is constant,
logarithmic, and linear, depending on our overall goal.

Open Question 4: Extend the de-amortization analysis for cuckoo hashing to
other variants, including the case of d > 2 choices. Can this de-amortization
technique be applied to other related problems as well?

Open Question 5: Develop a more general theory of the power of stashes and
appropriate scalings in the setting of hash tables.

6 Limited Randomness and Cuckoo Hashing

Even from the inception of cuckoo hashing, the question of how much random-
ness is required was considered a worthwhile question. While assuming perfectly
random hash functions is useful for analysis, it is both theoretically and practi-
cally unappealing, since perfectly random hash functions are not readily avail-
able. From the connection with random graphs in the case of d = 2 choices, it

Some Open Questions Related to Cuckoo Hashing 7

is apparent that if each hash function is independently chosen from a clogn-
wise independent family for an appropriate constant ¢, the analysis showing
expected constant time per operation continues to hold. Pagh and Rodler [35]
in fact showed that a hash function family derived from the work of Siegel [37]
with limited independence suffices for cuckoo hashing in the case where d = 2.
However, these hash functions still appear to be too complex to be utilized in
practice. They also experimented with weaker hash functions.

Recent advances in the area include the work of [3], where a result by Braver-
man [6] is used to show that the analysis of cuckoo hashing with a queue holds
even with only polylogarithmically-wise independent hash functions. Cohen and
Kane [T1] demonstrate that 5-independence (which is slightly different than but
close to 5-wise independence) is insufficient for constant amortized cost per op-
eration for cuckoo hashing with d = 2 choices, but also show that only one of
the two hash functions needs to be clogn-wise independent to obtain constant
expected time per operation.

An alternative direction, taken by Mitzenmacher and Vadhan, started with
the question of why simple hash functions work so well in practice [32]. As men-
tioned, when analyzing hash-related data structures such as cuckoo hashing, one
commonly assumes that the underlying hash functions are completely random,
even though this is unrealistic. But in practice, such analysis generally turns out
to be accurate, even when weak hash functions, such as pairwise independent
(or universal) hash functions [9], are used.

The proposed resolution was to model the data as coming from a random source,
where the i’'th item X; has at least some k& bits of entropy (specifically, Renyi en-
tropy) conditioned on the previous items X7, . .., X;_1. Then results from the the-
ory of randomness extraction imply that when a hash function H is chosen from
even a pairwise independent family, the sequence (H(X1), ..., H(Xr)) has small
statistical difference from the distribution obtained if H were a perfect hash func-
tion. That is, a weak hash function is good enough, as long as there is sufficient
randomness in the data. The implications of this model apply to cuckoo hashing
as well as other hashing-based algorithms and data structures. Improvements on
the bounds of [32] are developed in [10].

As shown by Dietzfelbinger and Schellbach, however, one cannot use this in-
sight blindly. They demonstrate that natural families of universal hash functions,
namely multiplicative hash functions and standard linear hash functions over a
prime field, fail even for fully random key sets, when the key set is sufficiently
dense over the universe of keys [16]. In such cases, there is not sufficient entropy
for the results of [32] to hold, so there is no contradiction. The implications
of these results to practical settings certainly appear to be a worthy of further
study.

Open Question 6: Determine better bounds on the amount of randomness
needed for cuckoo hashing to be effective, either in terms of the requirements of
the underlying family of hash functions, the amount of randomness in the data,
or both.

8 M. Mitzenmacher

7 Parallelized Variations of Cuckoo Hashing

As a final area for future work, there appears to be renewed interest in parallel
algorithms for constructing hash tables and related data structures, inspired by
the development of multi-core processors and other mainstream hardware that
allows parallelization, such as graphics processor units (GPUs). In [2], we design
a practical parallel scheme for constructing hash tables on GPUs motivated in
part by cuckoo hashing techniques. The setting is offline, with all items available.
Essentially, items perform the random walk cuckoo hashing approach in parallel:
each item tries to place itself in its first choice; each item that fails to capture
its first choice location tries to place itself it its second choice, and then it third
choice. (Three choices per item were used in this implementation.) Any unplaced
item then tries to kick out the item placed at its first choice, and then its second
choice, and so on. In order to ensure quick convergence, a two-level scheme is
used, where items are first partitioned using a separate hash function, in order
to give with high probability a bounded number of items (in this case 512) per
partition. The parallel cuckoo hashing approach is then run in parallel on each
partition. This random partitioning trades additional space for efficiency. For
details, see [2].

While there is a fair amount of historical work on parallel hashing and load
balancing schemes (see, for example, [IIT3IT423I3TI30]), the significant advances
made in the last decade in terms of analysis and understanding of the power to
move items suggests that we can obtain both stronger results and tighter analyses
in theory for such parallel hashing schemes. Moreover, there may be significant
opportunities for the design of efficient parallel hash table construction schemes
for real hardware systems. Given the inherent potential for parallelization with
multiple-choice hash tables in general and cuckoo hashing in particular, this
appears to be an interesting area for future growth.

Open Question 7: Design and analyze efficient schemes for constructing and
maintaining hash tables in parallel architectures, particularly modern multicore
architectures.

8 Conclusion

This note provides a smattering of open questions related to the theme of cuckoo
hashing. There are certainly others, and more waiting to found. Indeed, at this
very conference, there are a number of papers specifically on the theme of cuckoo
hashing and on the more general themes of dictionary data structures and hash-
based data structures. There remains plenty of interesting work to do in this
area, which offers both rich theory and practical payoff.

Acknowledgments

I thank Martin Dietzfelbinger and Rasmus Pagh for helpful discussions, assis-
tance with references, and comments on an earlier draft of this work.

Some Open Questions Related to Cuckoo Hashing 9

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Adler, M., Chakrabarti, S., Mitzenmacher, M., Rasmussen, L.: Parallel randomized
load balancing. In: Proceedings of the 27th Annual ACM Symposium on the Theory
of Computing, pp. 238-247 (1995)

Alcantara, D., Sharf, A., Abbasinejad, F., Amenta, N., Mitzenmacher, M., Owens,
J., Sengupta, S.: Real-time parallel hashing on the GPU (submitted)

Arbitman, Y., Naor, M., Segev, G.: De-amortized cuckoo hashing: provable worst-
case performance and experimental results. In: Albers, S., Marchetti-Spaccamela,
A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. Part I. LNCS,
vol. 5555, pp. 107-118. Springer, Heidelberg (2009)

Azar, Y., Broder, A., Karlin, A., Upfal, E.: Balanced allocations. STAM Journal of
Computing 29(1), 180-200 (1999)

. Batu, T., Berenbrink, P., Cooper, C.: Balanced allocations: Balls-into-bins revisited

and chains-into-bins. CDAM Research Report LSE-CDAM-2007-34

Braverman, M.: Poly-logarithmic independence fools AC? circuits. To appear in Pro-
ceedings of the 24th Annual IEEE Conference on Computational Complexity (2009)
Broder, A., Mitzenmacher, M.: Using multiple hash functions to improve IP
Lookups. In: Proceedings of IEEE INFOCOM, pp. 1454-1463 (2001)

Cain, J., Sanders, P., Wormald, N.: The random graph threshold for k-orientability
and a fast algorithm for optimal multiple-choice allocation. In: Proceedings of the
Eighteenth Annual ACM-STAM Symposium on Discrete Algorithms, pp. 469-476
(2007)

Carter, J.L., Wegman, M.N.: Universal classes of hash functions. Journal of Com-
puter and System Sciences 18(2), 143-154 (1979)

Chung, K.M., Vadhan, S.: Tight bounds for hashing block sources. In: Goel, A.,
Jansen, K., Rolim, J.D.P., Rubinfeld, R. (eds.) APPROX and RANDOM 2008.
LNCS, vol. 5171, pp. 357-370. Springer, Heidelberg (2008)

Cohen, J., Kane, D.: Bounds on the independence required for cuckoo hashing
(preprint)

Dalal, K., Devroye, L., Malalla, E., McLeish, E.: Two-way chaining with reassign-
ment. STAM Journal on Computing 35, 327-340 (2006)

Dietzfelbinger, M., Meyer auf der Heide, F.: An optimal parallel dictionary. Infor-
mation and Computation 102(2), 196-217 (1993)

Dietzfelbinger, M., Meyer auf der Heide, F.: Simple, efficient shared memory sim-
ulations. In: Proceedings of the Fifth Annual ACM Symposium on Parallel Algo-
rithms and Architectures, pp. 110-119 (1993)

Dietzfelbinger, M., Pagh, R.: Succinct data structures for retrieval and approxi-
mate membership (Extended abstract). In: Aceto, L., Damgard, I., Goldberg, L.A.,
Halld6rsson, M.M., Ingdlfsdéttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I.
LNCS, vol. 5125, pp. 385-396. Springer, Heidelberg (2008)

Dietzfelbinger, M., Schellbach, U.: On risks of using cuckoo hashing with simple
universal hash classes. In: Proceedings of the 20th Annual ACM-SIAM Symposium
on Discrete Algorithms, pp. 795-804 (2009)

Dietzfelbinger, M., Weidling, C.: Balanced allocation and dictionaries with tightly
packed constant size bins. Theoretical Computer Science 380(1-2), 47-68 (2007)
Fernholz, D., Ramachandran, V.: The k-orientability thresholds for G, ,. In: Pro-
ceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 459-468 (2007)

Fotakis, D., Pagh, R., Sanders, P., Spirakis, P.: Space efficient hash tables with worst
case constant access time. Theory of Computing Systems 38(2), 229-248 (2005)

10

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.
36.

37.

38.

M. Mitzenmacher

Fredman, M., Komlés, J., Szemerédi, E.: Stoaring a sparse table with O(1) worst
case access time. Journal of the Association of Computing Machinery 31(3), 538-
544 (1984)

Frieze, A., Melsted, P., Mitzenmacher, M.: An analysis of random-walk cuckoo
hashing. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) APPROX 2009 and
RANDOM 2009. LNCS, vol. 5687, pp. 490-503. Springer, Heidelberg (2009)
Gonnet, G.: Expected length of the longest probe sequence in hash code searching.
Journal of the Association for Computing Machinery 28(2), 289-304 (1981)

Karp, R., Luby, M., Meyer, F., Meyer auf der Heide, F.: Efficient PRAM simulation
on a distributed memory machine. Algorithmica 16(4), 517-542 (1996)

Kirsch, A., Mitzenmacher, M.: Using a queue to de-amortize cuckoo hashing in
hardware. In: Proceedings of the Forty-Fifth Annual Allerton Conference on Com-
munication, Control, and Computing (2007)

Kirsch, A., Mitzenmacher, M.: The power of one move: hashing schemes for hard-
ware. In: Proceedings of the 27th IEEE International Conference on Computer
Communications (INFOCOM), pp. 106-110 (2008)

Kirsch, A., Mitzenmacher, M., Wieder, U.: More robust hashing: Cuckoo hashing
with a stash. In: Halperin, D., Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193,
pp. 611-622. Springer, Heidelberg (2008)

Kirsch, A., Mitzenmacher, M., Varghese, G.: Hash-based techniques for high-speed
packet processing. Preprint, to appear in Algorithms for Next Generation Net-
works. Springer, Heidelberg (2009)

Knuth, D.: The Art of Computer Programming, Sorting and Searching, vol. 3.
Addison-Wesley, Reading (1973)

Kutzelnigg, R.: Bipartite random graphs and cuckoo hashing. In: Proceedings of
the Fourth Colloquium on Mathematics and Computer Science (2006)
Mitzenmacher, M., Richa, A., Sitaraman, R.: The power of two choices: a survey of
techniques and results. In: Pardalos, P., Rajasekaran, S., Reif, J., Rolim, J. (eds.)
Handbook of Randomized Computing, pp. 255-312. Kluwer Academic Publishers,
Norwell (2001)

MacKenzie, P., Plaxton, C.G., Rajaraman, R.: On contention resolution protocols
and associated probabilistic phenomena. Journal of the ACM 45(2), 324-378 (1998)
Mitzenmacher, M., Vadhan, S.: Why simple hash functions work: exploiting the
entropy in a data stream. In: Proceedings of the Nineteenth Annual ACM-STAM
Symposium on Discrete Algorithms (SODA), pp. 746755 (2008)

Naor, M., Segev, G., Wieder, U.: History-Independent Cuckoo Hashing. In: Aceto,
L., Damgard, I., Goldberg, L.A., Halldérsson, M.M., Ingélfsdéttir, A., Walukiewicz,
I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 631-642. Springer, Heidelberg
(2008)

Pagh, A., Rodler, F.: Cuckoo hashing. In: Meyer auf der Heide, F. (ed.) ESA 2001.
LNCS, vol. 2161, pp. 121-133. Springer, Heidelberg (2001)

Pagh, A., Rodler, F.: Cuckoo hashing. Journal of Algorithms 51(2), 122-144 (2004)
Porat, E.: An optimal Bloom filter replacement based on matrix solving. Technical
report, arxiv:0804.1845v1 [cs.DS] (April 2008)

Siegel, A.: On universal classes of fast high performance hash functions, their time-
space tradeoff, and their applications. In: Proceedings of the 30th Annual Sympo-
sium on Foundations of Computer Science, pp. 20-25 (1989)

Vécking, B.: How asymmetry helps load balancing. Journal of the ACM 50(4),
568-589 (2003)

1

It is easy to find a maximum independent set or a maximum matching in a tree
in linear time. The size of the latter determines the rank of the adjacency matrix
and therefore the number of trailing zero coefficients of the characteristic poly-
nomial. Still in linear time, one can also compute the number of the maximum
matchings in a tree, and therefore determine the lowest non-trivial coefficient of
the characteristic polynomial. But if the goal is to compute all coefficients of the
characteristic polynomial or count the number of independent sets of size r for
all possible values of r simultaneously, it has been believed that the necessary
time would increase by a factor of n. We show that an increase by a factor of

Efficient Computation of the Characteristic
Polynomial of a Tree and Related Tasks

Martin Flrer*

Department of Computer Science and Engineering
Pennsylvania State University
University Park, PA 16802, USA
Visiting: ALGO EPFL
1015 Lausanne
Switzerland
and
Institut fiir Mathemtik
Universitat Ziirich
CH-8057 Zrich
Switzerland
furer@cse.psu.edu
http://cse.psu.edu/~furer

Abstract. An O(nlog®n) algorithm is presented to compute the char-
acteristic polynomial of a tree on n vertices improving on the previously
best quadratic time. With the same running time, the algorithm can be
generalized in two directions. The algoritm is a counting algorithm, and
the same ideas can be used to count other objects. For example, one can
count the number of independent sets of all possible sizes simultaneously
with the same running time. These counting algorithms not only work
for trees, but can be extended to arbitrary graphs of bounded tree-width.

Keywords: characteristic polynomial, counting matchings, counting in-
dependent sets, bounded tree-width, efficient algorithms.

Introduction

only O(log®n) is sufficient for such tasks.

* Research supported in part by NSF Grant CCF-0728921.

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 11-22] 2009.
(© Springer-Verlag Berlin Heidelberg 2009

http://cse.psu.edu/~furer

12 M. Firer

For any graph with adjacency matrix A, elementary considerations of the
characteristic polynomial

X(A;N) = det(M — A) =) e A" ™

=0

show the well known result that
Cr = Z sgn(o)

where o ranges over all directed cycle packings covering r vertices, i.e., permu-
tations with with exactly n — r fixed points and A;s(;y = 1 whenever i is not a
fixed point of o.

We consider undirected graphs without self-loops. Every single edge {u,v}
represents one directed cycle (u, v), (v, u), while every undirected cycle represents
two directed cycles (one in each direction). Naturally, in a tree the only directed
cycles are those corresponding to single edges. Thus the number of cycle packings
covering 2r vertices in a tree is the number of matchings of size . We call them
r-matchings.

For a tree or forest, the previous observation implies cg,+1 = 0 and

car = (—1)"#r-matchings

(see, e.g., [1, p. 49]).

An early algorithm [2] for the characteristic polynomial of a tree runs in
time O(n®). More complicated algorithms are needed for general graphs, but
the time can even be improved. Computing the characteristic polynomial of
an arbitrary real matrix has actually the same algebraic complexity as matrix
multiplications [3] (see [4, Chap. 16]). Thus, with the fastest known algorithm,
it can be computed in time O(n?37%) [5]. All running times are based on the
algebraic complexity measure where every arithmetic operation counts as one
step.

As adjacency matrices of trees are sparse and have special structural prop-
erties, one could hope for faster algorithms. Indeed, there are algorithms to
compute the determinant of the adjacency matrix of a tree in linear time [6] and
the characteristic polynomial in time O(n?) [7] (also later rediscovered [S]).

A main result of this paper is to improve the running time for the computation
of the characteristic polynomial of a tree to O(nlog®n) using a novel divide
and conquer approach. Computing the characteristic polynomial of a tree is
equivalent to counting the number r-matchings simultaneously for all r. Thus,
it is not astonishing that our new method can be applied to a wider class of
simultaneous counting problems.

Many computational approaches use self-reduction. A problem is solved by solv-
ing a set of smaller problems of the same type. Quite often these smaller problems
are not completely independent, but actually have a fair amount of common sub-
structures. Our novel divide and conquer approach aims at using this similarity and
solving the collection of smaller problems together with significant savings.

Efficient Computation of the Characteristic Polynomial of a Tree 13

Our simultaneous counting method is not restricted to trees, but extends in a
natural way to graphs of bounded tree-width k. For constant k, we obtain several
O(nlog®n) time simultaneous counting algorithms even for problems that are
NP hard without a bound on the tree-width. The time improvement is always a
factor of 2(n/ log? n) compared to algorithms based on traditional techniques.

The area of algorithms has a significant branch dealing with parameterized
complexity. The complexity of problems is not just studied depending on the
size n of an instance, but together with an additional parameter k. The idea is
that even for large n an instance of a difficult problem might still be easy if its
parameter k is small. A problem is fixed-parameter tractable if it can be solved
in time O(f(k)n°®) for an arbitrary function f and a constant ¢. For example, the
NP-complete Independent Set problem is solvable in time O(2*n) for graphs of
tree-width k. Our result implies that with just a factor of O(log? n) more time,
we can simultaneously count the number of independent sets of every size r in
graphs of tree-width k.

2 Computing the Characteristic Polynomial

When we count objects like r-matchings (i.e., matchings of size r) it is convenient
to encode them by a generating polynomial.

Definition 1. With a, being the number of r-matchings

[n/2]
fu(G;x) = Z arx”
r=0

is the matching generating polynomial (see e.g. [9]).

This greatly simplifies the description of the algorithms, as the polynomial mul-
tiplication is actually an important computational step.

Similarly, we could define the generating polynomials for independent sets,
vertex covers, dominating sets, and so on. These polynomials are defined for all
graphs, and some might well be worth studying for their structural properties.

Definition 2. With b, being the number of independent sets of size r
f1(G;x) = ZbrxT
r=0

is the independent set generating polynomial.

For trees (and forests), but not for general graphs, there is a well known strong
relationship between the matching generating polynomial

[n/2]
fm(Giz) = Z arz”
r=0

14 M. Firer

Algorithm Characteristic-Polynomial:
Input: A tree T = (V, E) with |V| =n.
Output: The coefficients co,c1,...,cn of the characteristic polynomial x(4;\) =
det(A] — A) =37 | ;A" where A is the adjacency matrix of 7.
Comment: Use the fact that for trees car41 = 0 and c2, = (—1)"# r-matchings.
(@0, ..., a[n/2)) = Matchings(T')
for r =1 to [n/2] do
Cor—1 = 0
for r =0 to |n/2]| do
cor = (—1)"ar
Return (co,...,cn)

Fig. 1. The algorithm Characteristic-Polynomial

Algorithm Matchings:
Input: A tree T = (V, E) with |V| =n.

Output: The vector (ao,a1,...,a|,/2)) where a, is the number of r-matchings in T'.
(a0 + a1z + -+ + an 2y vt"/?) = Restricted-Matchings(T,)
Return (ao,...,a[n/2))

Fig. 2. The algorithm Matchings

and the characteristic polynomial x(G; A), namely
X(G3) = X" far (G =A72)

This is a direct consequence of the characterization of the coefficients ¢, of the
characteristic polynomial for forests. cor41 = 0 and ca, = (—1)"#r-matchings
(see, e.g., [1, p. 49]).

Thus, we could actually have used the characteristic polynomial directly in
our algorithms. But besides the waste of half the coefficients (being 0), the use
of the matching generating polynomial is more natural. It also emphasizes that
no hidden algebraic properties of the characteristic polynomial are used, and
algorithms immediately generalize to counting other things like independent sets.

We describe the algorithm to compute the characteristic polynomial in detail
using pseudo-code. The algorithm Characteristic-Polynomial (Figure []) inputs
a tree T and just outputs the coefficients of the characteristic polynomial after
receiving the coefficients of the matching generating polynomial fy (T, x) from
the algorithm Matching. The algorithm Matching itself (Figure2]) inputs the tree
T and outputs the coefficients of the matching generating polynomial fas (T, z),
after calling the recursive procedure Restricted-Matchings.

The actual work is done in the recursive procedure Restricted-Matchings (Fig-
ure [3). Besides the tree T, it receives a small subset U of the vertices as input.
Its task is not only to compute the matching generating polynomial for T, but
for the subgraphs of T = (V, E) induced by V \ W for all W C U. Naturally,
these subgraphs of T' are forests.

Efficient Computation of the Characteristic Polynomial of a Tree 15

A minor feature of the procedure Restricted-Matchings (Figure B]) is the use
of approximate sizes of graphs. The approximate size of a graph with n vertices
is defined to be 287} where lg is the logarithm to the base 2. The procedure
Restricted-Matchings repeatedly selects a pair of approximately smallest trees,
i.e., trees of minimal approximate size. Approximately smallest trees are as good
a smallest trees, but there is no need to sort the trees by size. A bucket for each
approximate size is sufficient.

Procedure Restricted-Matchings:

Input: A tree T = (V,E) and a subset U C V.
Output: The function f from the powerset of U into the polynomials Z[z] where for
every subset W C U, f{(W) = al/ +alVz..., a‘ffl/zjxvl/w with @V being the number
of r-matchings in T\ W (the subtree of T" induced by V' \ W).
Comment: This procedure is only called for some sets U whose size is bounded by a
constant.
n=1V|
if n =1 then f(@) = f({U) =1 // In this case U is either) or V.
Return f
else if n = 2 then f(0)=1+=z
for all non-empty sets W do f(W) =1
Return f
v = Select-Root (T, U)
Consider v to be the root of 7', and let d be the degree of v.
Let v1,...,vq be the neighbors of the root v.
Fori=1,...,d, let T; = (V;, E;) be the subgraph of T induced by all the vertices
reachable from v; without going through v as an intermediate vertex.
// Thus the sets F; form a partition of E, the sets V; \ {v} form a partition
/) of V\ {v}, and v € V; for all .
U=UU{v}
fori=1tod do
f; = Restricted-Matchings(T;, V; N U)
S={T1,...,Tq}
while |S| > 1 do
Let T; and T} be two approximately smallest trees in S of sizes n; and n;
respectively.
// Replace T; and T by their union. Call it T%.
ng=n; +nj; —1
S =S\{T3, T3} U {Tx}
for all W C U do

if v € W then
£ (W) = £:(W)f; (W)
else

f,(W) = (W) (W) — (E(W) — (W U {o})) (£ (W) — £;(W U {v}))
Now S is a singleton {7} with T, = T.
Return fy

Fig. 3. The procedure Restricted-Matchings

16 M. Firer

The algorithms are natural, easy to understand and yet efficient. Their cor-
rectness immediately follows from the following principles.

— The well known relationship between numbers of matchings and the coeffi-
cients of the characteristic polynomial of a tree.

— The characteristic polynomial x(G;\) of a union G = (V4 U Va, Ey U Es)
of disjoint graphs G7 = (V4, F1) and Gy = (Va, E2) (with V1 N Vo = 0) is
the product of the characteristic polynomials x(G1; A) and x(Gz; A\). This is
seen immediately from the block structure of the adjacency matrix in the
definition of x(G;) as a determinant.

— Under the same conditions the matching generating polynomials are multi-
plicative too. far(G;z) = far(Gi;x) far(Ge;x). This follows from the fact
that each matching in G; can be combined with each matching in Gs.

— For every vertex v with the set of neighbors {v1,...,v;} in any graph G, the
number match(G,r) of r-matchings in G is decomposed as follows.

k
match(G, r) = match(G \ {v},r) + Z match(G\ {v,v.},r — 1)

r=1

— In a tree, every internal vertex v is an articulation point, meaning that almost
all these graphs obtained by deleting vertices, decompose into connected
components for which the product rule holds.

All these simple properties could be used to design a straightforward algorithm
computing the matching generating polynomial by a simple tree traversal, com-
puting the polynomial for the tree rooted at v recursively from the polynomials
of the subtrees rooted at the children of v. The problem is that this natural
algorithm runs in quadratic time.

On the positive side, this design immediately results in a linear time algorithm
to count the number of maximal independent sets and maximum independent
sets.

When computing the whole matching generating polynomial, we overcome
the quadratic time problem by a cleverer selection of the articulation points v.
The simple idea of splitting as evenly as possible is not enough. We also have
to deal with the vertices of U. We don’t solve just one matching problem, but
one for each possible restriction on the vertices of U. We would also like to
split the set U evenly. The time analysis shows that we can just switch back
and forth as needed between the two objectives of splitting V and splitting U
nicely.

In both cases, we want to select a point v that according to the current
criterion is located in the center of the graph.

Definition 3. For T = (V,E), U CV, and |U| > 2, let Center(T,U) be one of
the nodes v € V' such that every tree in T \ {v} (the subgraph of T induced by
V\ {v}) contains at most |U|/2 points of U.

For U = V, there are either one or two vertices v with this property. In the latter
case, the procedure Center(T,U) in Figure[d picks an arbitrary one of them. For

Efficient Computation of the Characteristic Polynomial of a Tree 17

Procedure Select-Root:

Input: Atree T = (V,E) and a subset U C V.
Output: A vertex v of T" which will be viewed as the root of T
Comment: Let no > 3 be an integer constant. ng is an upper bound on the size of U.
The choice of ng only affects the running time by a constant factor. no = 5 might be
the optimal choice.
if |U| > no then
Return Center(T,U)
else
Return Center(T,V)

Fig. 4. The procedure Select-Root

|E| > 2 and U a set of leaves, the set of vertices with this property consists
of the vertices of a path. If this path has positive length, then the procedure
Center(T,U) picks any vertex of this path. A simple traversal of the tree T
(with counting the number of vertices of U in the subtree of v on post-visiting
v) finds a center in linear time.

An alternative approach is to keep |U| < 2. As before, for |U| < 1 Center(T, V)
is called to pick a vertex minimizing the size of the largest tree in V \ {v}.
Otherwise for U = {u1,us}, Center(T,U) picks a vertex v on the path from wu;
to ug, still minimizing the size of the largest tree in V'\ {v}. This approach seems
somewhat more efficient (by a constant factor), but is not analyzed here.

3 Time Complexity

As the previously cited papers, this paper uses the customary algebraic compu-
tation model. All arithmetic operations, including multiplications are counted
as one step. This is not a serious problem, as all our numbers have at most a
linear length in binary.

Analysing the procedure Restricted-Matchings, we first note that the size of
U is under control as long as it is initially bounded by ng. In the recursive call
for T;, the set U; = V; N U U {v} plays the role of U.

Lemma 1. Let ng > 3 be the constant used in the procedure Select-Root. If the
procedure Restricted-Matchings is called with |U| < ng then all the recursive calls
are with |U;| < ng. Furthermore, if [U| = ng, then all |U;| < ng.

Proof. For |U| < ng the set U; satisfies |U;| < |U| 4+ 1, while for |U| = ng
the algorithm is designed to split U evenly, resulting in the inequality |U;| <
LU]/2]+1 < |no/2] +1 < ny for ng > 3. O

Therefore, as U = () at the beginning, the size of the set U will stay bounded by
ng > 3, and U does not even reach the bound ng twice in a row.

Let m = n — 1 be the number of edges in T'. Assume m > 1, as the one vertex
case is trivial and does not show up during recursive calls.

18 M. Firer

Lemma 2. For m > 1 and suitable constants c, ¢/, and c’, the running time of
the procedure Restricted-Matchings is at most cmlg? m 4 ¢'m for |U| < ng and
at most cmlg®m + ¢ mlgm + 'm for |U| = ng.

Proof. The lemma trivially holds for m = 1. Let m > 2 and assume the lemma
is true for all trees with less than m edges.

Recall that the procedure Restricted-Matchings partitions the tree T edge-
wise into trees T1,...,Ty with T; = (V;, E;), |E;| = my, and for |U| < ng, the
sizes m; are bounded by m/2 for all i. After the recursive calls for these trees T;
with common root v, repeatedly pairs of approximately smallest trees are merged
into single trees until there is just one tree left, i.e., T' has been reassembled.
Obviously, there is at most one tree T’ among the trees T; with |U;| = ng. Let
m' be the number of edges of T”. Let my;, = min; m;.

Claim: If after some sequence of merges of pairs of trees, we have the trees
Ti,...,Ty, then the time spent for the recursive calls and the merges together
has been at most

&

t(d)=c Z m; lg2 m; + ¢ Muin 1g Mumin +0m lgm’ +c'm (1)

i=1
where ¢, ¢ and ¢’ are from the lemma and b is defined by b = ¢’ if the tree T”
(with |U;| = ng) exists and b = 0 otherwise.

For the total time, until all merges have been done, i.e., for d’ = 1, we will
show a different bound ¢’ later.

The proof of the claim is by induction on the number of merges. The base
case (just before any merges) follows immediately from the inductive hypothesis
of the lemma, without any need for the second term ¢ My 1g Mmin. For the
inductive step, we look at the difference t(d') — t(d’ + 1) of the allowed time
after and before the merge of two trees T; and 7} into T},. We show in each case
that this time difference is enough to perform the merge, i.e., to compute the
polynomial for 7}, from the polynomials for 7; and 7}.

First note that none of the four terms in ¢(d’) decreases during a merge (i.e.,
as d’ decreases by 1). The first term always increases by

c(m; +m;) g (m; +m;) — em;lg> m; — emjlg®m; >0

The second term increases when my,;, increases. The last two terms clearly don’t
decrease.

We consider two kind of merges depending on whether the merged trees are
of similar size or not. W.l.o.g., we assume m; < m;.

Case “not similar”: Assume T; and Tj are merged with 1 < mpiyn = m; <
m;/4, and {T;,T;} are approximately minimal, i.e., my; > m;/2 for all £ # i.
Here we do not assume m; < m/2. For |U| = ny, it is possible to have a large
tree with m; very close to m. Now the second term in ¢(d') — ¢t(d’' + 1) increases
by at least

Efficient Computation of the Characteristic Polynomial of a Tree 19

C/ ﬂ;j lg T’;j _Cl Mmin 1g777‘111i11
y Mg mj
1
>cC 4 g 9
ms
> 8J lgm; (as m; >4)

> Cl m; lgmj

First C’ is chosen large enough to make it possible to do the last merge in time
C’"'mjlgm,, i.e., to do the multiplications of O(1) pairs of polynomials of degree
m; and m; respectively using the fast Fourier transformation (FFT). Then we
make sure ¢’ is chosen sufficiently large that the last inequality holds.

Case “similar”: Assume T; and 7} are merged with m; <m; < 4m,;. Now the
first term in ¢(d') — ¢(d’' 4+ 1) increases by

¢ (mq +mj)lg?(m; +my) — emilg® m; — emylg? my
> c¢(m; +my) lg2(imj) —cemilg*my — cmylg® my

= c(m; +m;)((lg § +1gm;)? —lg>m;)

(
=c(m; +m;)(21g § lgm; + 1g?)

> C’mj lgmj

Again C is first chosen large enough to make it possible to do the last merge
in time C'm;lgm,, ie., to do the multiplications of O(1) pairs of polynomials
of degree m; and m; respectively using FFT. Then we make sure c is chosen
sufficiently large that the last inequality holds. This proves the claim.

At this point, we should notice that Claim () is not always strong enough to
show the inductive step in the induction proof of the lemma. Indeed we can do
better during the last merge. We claim a different bound ¢’ instead of just (1)
to hold after the last merge, when we have just one tree T, = T'.

t' =cmlg?m+amlgm +c'm (2)

where a = ¢ if |[U| = ng (where U is the set associated with the tree T'), and
a = 0 otherwise.

The case with |U| = ng and therefore |U;| < ng for all ¢ causes no problem.
Then b = 0, mpin = m, and the first time bound () implies the second (2)).

In the case |U| < ng, the last merge has to be handled separately. We show that
this merge is always balanced and therefore significantly cheaper. We are left with
two trees with m; and m; edges to be merged into a tree of m = my = m; +m;
edges. We assume m; < m;. We claim m; < gm. Otherwise, the large tree with
more than gm edges would have been produced by a merge involving a tree of
size at least gm, omitting a tree of size at most ém, contradicting the rule of
always merging approximately smallest trees.

20 M. Firer

Now the difference of bounds is

t—1(2) = cmlg2 m — c(my lg2 m; +m; lg2 m;) — ¢ Mumin 1g Mmin — bm'lgm’
> cmy(lg? m —1g® m;) + emy(Ig® m —1g® my) — 2dmlgm
> cm(lg?m —1g®m;) — 2dmlgm
> cm(lgm +1gm;)(lgm —lgm;) — 2¢'mlgm
= cmlg(mm;)lg(m/m;) — 2¢'mlgm
> cmlgmlg i —2¢'mlgm
>Cmlgm

Once more, C' has been chosen large enough to make it possible to do the last
merge in time C' mlgm, i.e., to do the multiplications of O(1) pairs of polynomi-
als of degree m; and m; respectively. Then we make sure c is chosen sufficiently
large that the last inequality holds. a

Lemma] immediately implies the desired complexity result for the procedure
Restricted-Matchings and therefore also for the algorithm Matchings.

Theorem 1. For |U| < ng, the running time of the algorithm Matchings is
O(nlog®n).

4 Other Problems

The algorithms and their analysis easily transfer to many other counting prob-
lems, like computing the independent set generating polynomial, the vertex cover
generating polynomial and so on. Another example is computing the number of
3-colorings which color exactly r vertices being colored red, simultaneously for
every r. All these problems can be solved in time O(n log? n) for trees with ba-
sically the same algorithm. All we need is that these are all local properties. If
a set is not independent, then you can put your finger on an edge where both
incident vertices are selected.

Indeed the algorithms for these problems are even slightly easier than com-
puting the matching generating polynomial, because the counted objects are sets
of vertices not sets of edges. Instead of f(W) whose r-th coefficient is the num-
ber of matchings not involving the vertices of W, we would use f(U, W) whose
r-th coefficient is the number of independent sets including all the vertices of
(U\W)NV and excluding all the vertices of W NV, when counting independent
sets. This would change the “if” clause of the procedure Restricted-Matchings
near the end of the procedure to

fk(Ua W) = fz(Ua W) fJ(Ua W)
and the corresponding “else” clause to

fk(Uﬂ W) = fi(U7 W) fj(U7 W)/.T

Efficient Computation of the Characteristic Polynomial of a Tree 21

Note that now in both cases, the number of independent sets is just the product
of the the number of independent sets in the two subtrees. In the second case,
the vertex v is double counted, as it is in the independent sets of both subtrees.
This is corrected by the division by .

This change would be exactly the same, if we wanted to count other locally
testable sets of vertices, like the numbers of vertex covers. But there are ad-
ditional changes of the initialization. These changes are different for different
kinds of polynomials. It would be a bit tedious to describe the complete initial-
ization, because there are so many cases. For example, for n = 2 with one vertex
u € U\ W (ie., u is required in the set), and the other vertex v € V\ U (i.e.,
v is allowed by not required in the set), f(U,W) = z + 22 for Vertex Cover,
but f(U, W) = z for Independent Set, as in both cases {u} is the only allowed
singleton set, while {u, v} is a vertex cover but not an independent set.

5 Graphs of Bounded Tree-Width

Things get much more tedious, but the method clearly carries through graphs
of bounded tree-width. Instead of the recursive calls having to deal with all
ways of handling one additional vertex v of the tree, now recursive calls have the
additional task of dealing with all possible ways of handling all the graph vertices
assigned to the same tree vertex v. Naturally, the running time is exponential in
the tree-width, but that is still just a constant. The dependence on n remains
O(nlog®n).

There is an extensive literature on graph polynomials for graphs of bounded
tree-width. A main focus is on parametrized complexity of counting and evalu-
ation problems on graphs definable in Monadic Second Order Logic [TO/ITII2].
For bounded tree-width these problems are solvable in polynomial time. The
resulting running time is O(f(k)n*) with the dependence on the parameter f(k)
double exponential. When our algorithm is applied to graph polynomials for
graphs of bounded tree width, then f(k) is singly exponential.

There is some confusion caused by a linear time algorithm for the interlace
polynomial for graphs of bounded tree-width [I3]. This is a more complicated
multivariate polynomial. It is important to notice that these authors have a
different notion of computing a polynomial. While they compute one value of a
polynomial in linear time, we compute all the coefficients of our polynomials in
almost linear time.

6 Final Remark

We have presented a simple algorithmic paradigm with very wide applicability
for counting problems in graphs of bounded tree-width. It always saves a factor of
order n/ log? n over previously known methods. A detailed description in general
terms will be quite tedious, even though, there is no principle hurdle.

We have decided to present the method with detailed descriptions and proofs
for the special, but interesting case of computing the characteristic polynomial

22

M. Firer

of a tree. This problem has been investigated before, and it is not astonishing
that previous progress has stopped at the “natural” bound of O(n?).

Only a new multitasking divide and conquer method has allowed to obtain a

significantly more efficient algorithm. The method allows to divide according to
two different natural strategies, taking turns when needed, and basically reaching
both goals.

References

10.

11.

12.

13.

Biggs, N.: Algebraic graph theory, 2nd edn. Cambridge Mathematical Library.
Cambridge University Press, Cambridge (1993)

Tinhofer, G., Schreck, H.: Computing the characteristic polynomial of a tree. Com-
puting 35(2), 113-125 (1985)

Keller-Gehrig, W.: Fast algorithms for the characteristic polynomial. Theor. Com-
put. Sci. 36(2,3), 309-317 (1985)

Biirgisser, P., Clausen, M., Shokrollahi, M.A.: Algebraic complexity theory.
Grundlehren der Mathematischen Wissenschaften or Fundamental Principles of
Mathematical Sciences, vol. 315. Springer, Berlin (1997); With the collaboration
of Thomas Lickteig

Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions.
Journal of Symbolic Computation 9(3), 251-280 (1990)

Fricke, G.H., Hedetniemi, S., Jacobs, D.P., Trevisan, V.: Reducing the adjacency
matrix of a tree. Electron. J. Linear Algebra 1, 34-43 (1996) (electronic)

Mohar, B.: Computing the characteristic polynomial of a tree. J. Math. Chem. 3(4),
403-406 (1989)

. Jacobs, D.P., Machado, C.M.S., Trevison, V.: An O(n?) algorithm for the char-

acteristic polynomial of a tree. J. Combin. Math. Combin. Comput. 54, 213-221
(2005)

. Ellis-Monaghan, J., Merino, C.: Graph polynomials and their applications ii: In-

terrelations and interpretations (2008)

Courcelle, B., Makowsky, J.A., Rotics, U.: On the fixed parameter complexity
of graph enumeration problems definable in monadic second-order logic. Discrete
Appl. Math. 108(1-2), 23-52 (2001)

Makowsky, J., Marino, J.: Farrell polynomials on graphs of bounded tree width.
Advances in Applied Mathematics 30, 160-176 (2003)

Makowsky, J.A.: From a zoo to a zoology: Descriptive complexity for graph poly-
nomials. In: Beckmann, A., Berger, U., Lowe, B., Tucker, J.V. (eds.) CiE 2006.
LNCS, vol. 3988, pp. 330-341. Springer, Heidelberg (2006)

Blaser, M., Hoffmann, C.: Fast computation of interlace polynomials on graphs of
bounded treewidth. CoRR abs/0902.1693 (2009); 35 pages informal publication

Improved Approximation Algorithms for Label
Cover Problems

Moses Charikar'*, MohammadTaghi Hajiaghayi?, and Howard Karloff?

! Department of Computer Science, Princeton University,
Princeton, NJ 08540, USA
moses@cs.princeton.edu

2 AT&T Labs — Research, 180 Park Ave.,
Florham Park, NJ 07932, USA

{hajiagha,howard}@research.att.com

Abstract. In this paper we consider both the maximization variant
MAx REP and the minimization variant MIN REP of the famous LA-
BEL COVER problem, for which, till now, the best approximation ratios
known were O(y/n). In fact, several recent papers reduced LABEL COVER
to other problems, arguing that if better approximation algorithms for
their problems existed, then a o(y/n)-approximation algorithm for LABEL
COVER would exist.

We show, in fact, that there are a O(nl/ 3)-approximation algorithm
for MAX REP and a O(nl/3 log?/3 n)-approximation algorithm for MIN
REP. In addition, we also exhibit a randomized reduction from DENSEST
k-SUBGRAPH to MAX REP, showing that any approximation factor for
Max REP implies the same factor (up to a constant) for DENSEST k-
SUBGRAPH.

1 Introduction

LABEL COVER was first introduced in Arora et al. [2] and is a canonical problem
used to show strong hardness results for many NP-hard problems [12]. It is
known that for LABEL COVER, there is no approximation algorithm achieving
a ratio 21°¢" "1 for any 0 < ¢ < 1, unless NP € DTIME (nPolY108(m)) m17].
LABEL COVER has both maximization and minimization variants for both of
which the above hardness holds. Kortsarz [14] introduced slight variants of these
two problems called MAX REP and MIN REP. (See the end of this section for
formal definitions of both problems.) Indeed MAX REP is equivalent to the
maximization version of LABEL COVER, but MIN REP is slightly different from
the minimization version of LABEL COVER. Kortsarz [14] showed that for both
Max REP and MIN REP, there is the same hardness of glog’ ™ nfor0<e<,
unless NP C DTIME (nPOY108() The simpler definitions of MAX REP and
Min REP make them particularly attractive for use in hardness reductions.

* Supported by NSF ITR grant CCF-0426582, NSF CAREER award CCF-0237113,
MSPA-MCS award 0528414, and NSF expeditions award 0832797.

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 23-[34] 2009.
(© Springer-Verlag Berlin Heidelberg 2009

24 M. Charikar, M. Hajiaghayi, and H. Karloff

For the upper bound, it is known that both MAX REP and MIN REP admit
relatively simple O(/n) approximation algorithms [6/16]. Recently some authors
suggested the possibility that O(y/n) is the best approximation factor for these
two problems. See, e.g., [§], in which the authors write, “This ratio [O(y/n)]
seems hard to improve and better ratio algorithms for LABEL-COVERy,.x are
not known even for very simple versions of the problem (e.g., when the structure
of the graph obeys the rules of the Unique Game Conjecture...). If LABEL-
COVERmax is indeed $2(y/n) hard to approximate, then so is DSF [Directed
Steiner Forest]. Indeed several recent papers reduced MIN REP/MAX REP to
other problems in order to obtain hardness results; therefore studying the ap-
proximability of MIN REP/MAX REP is an important goal. See [§] for DI-
RECTED STEINER FOREST, [I6] for RED-BLUE SET COVER, [4I11] for SET
COVER WITH PAIRS, [3] for SPARSEST k-TRANSITIVE-CLOSURE-SPANNER, [10]
for MIN-POWER k-EDGE-DISJOINT PATHS, [1] for .-ROUND POWER DOMINAT-
ING SET, [5] for TARGET SET SELECTION, [I5] for VERTEX CONNECTIVITY
SURVIVABLE NETWORK DESICN, and [9] for STOCHASTIC STEINER TREE WITH
NON-UNIFORM INFLATION.

In this paper, we refute the possibility of £2(y/n) hardness for both MAx REP
and MIN REP by developing a O(n'/3)-approximation algorithm for MAX REP
and a O(n'/31og?® n)-approximation algorithm for MIN REP. Our result for
MIN REP (see Section[2]) uses a natural LP relaxation for the problem. We round
this LP based on an interesting generalization of the birthday paradox. Our result
for MaxX REP (see Section [3)) uses a direct combinatorial approach. Indeed, we
show that for MAX REP the integrality ratio for a natural LP relaxation is

2(¥™) (in contrast to MIN REP for which the integrality ratio is £2(n!/3=¢), for

Inn

all e > 0.)

Our O(nl/g)— and O(n1/3 logz/3 n)-approximation algorithms for MaxRep and
MinRep might suggest a connection between these problems and the related
well-studied problem DENSEST k-SUBGRAPH, for which the best approximation
factor so far is O(n'/379) [1], for some small fivzed 6 > 0. The current best
inapproximability result only rules out a polynomial time approximation scheme
(PTAS) under the assumption that NP ¢ BPTIME(2"") [13]. We show indeed
that there is a randomized reduction from DENSEST k-SUBGRAPH to MAX REP,
which preserves the approximation factor up to a constant factor (see Section H).

We end this section with exact definitions of MAX REP and MIN REP.

Definition 1. (Max REP)

Instance: A bipartite graph G = (A, B, E), where |A| = |B| = n, and an equitable
partition A of A and B of B into k sets of same size ¢ = | each (assuming that
nmod k=0).

Objective: Choose A’ C A and B' C B with |[A' N A;| = |[B'NBj| =1 for
each 1,7 =1,...,k such that the subgraph induced by A’ U B’ has the maximum
number of edges.

In Definition [I] the bipartite graph and the partition of A and B induce a “su-
pergraph” ‘H in the following way: The vertices of H are the sets A; and B;.

Improved Approximation Algorithms for Label Cover Problems 25

Two sets A; and B; are adjacent by a “superedge” in H if and only if there
exist a; € A; and b; € B; which are adjacent in G. In this case, we say pair
(@i, b;) covers the superedge (A;, Bj). In the MAX REP problem the goal is to
select one element, called a representative, from each A; and each B; such that
the number of covered superedges in ‘H is maximized. Another natural objective
function considered in the literature is as follows:

Definition 2. (MIN REP)

Instance: A bipartite graph G = (A, B, E), where |A| = |B| = n, and equitable
partitions A of A and B of B into k sets of same size ¢ = ..

Objective: Choose A’ C A and B’ C B such that pairs (a,b), a € A" and b € B,
cover all the superedges of H, while minimizing |A’| + |B’|.

2 O(n'/?log®® n)-Approximation Algorithm for MIN REP

There is a trivial k-approximation algorithm for MIN REP, namely, select both
vertices of one edge corresponding to each superedge. (The optimum selects at
least one vertex of each A; (B;) to which there is a superedge attached and
we choose at most k since there are at most k superedges attached to each A;
(Bj).) In this section, we present a O(,/qlogk) approximation algorithm for
the MIN REP problem using a natural LP relaxation and a rounding scheme
whose analysis is based on a generalization of the birthday paradox. By using
the better of these two algorithms, and remembering that ¢ = n/k, we obtain
an O(n1/3 log2/3 n)-approximation algorithm.
First, we start with an LP relaxation as follows:

OPT = minimize Z Du + Z Dy (1)
u€A veEB
subject to
Z fuw =1 Vi, j:(A;, Bj) is a superedge

u€A;,weB; s.b. (u,v)EE(Q)

> fu <pu V1< j<kVue A
vEB; S.t. (u,w)EE(Q)

> Fuw < Do V1 <i,j<kVve B
ucA; s.t. (u,0)EE(G)
fuv >0 Yu € A,v € B s.t. (u,v) € E(G).

In the IP corresponding to LP [p, for x € AU B is a binary variable which
specifies whether vertex x has been chosen or not in our integral solution. (In
the LP, intuitively it specifies the fraction of vertex z that is chosen.) In the IP,
for all 4, j such that (A;, B;) is a superedge, choose u € A;,v € B; such that u,v
are both chosen and set f,, = 1; set f,/,v = 0 for all other v’ € A4;,v" € B;. (In
the LP, f specifies the “flow” from u to v and satisfies capacity constraint p, on
each vertex x € AU B.)

26 M. Charikar, M. Hajiaghayi, and H. Karloff

Our algorithm, called MINREPALG, for rounding LP [is relatively simple,
though its proof is involved and is based on an interesting generalization of the
birthday paradox. The algorithm is as follows.

Find an optimal solution f*,p* to LP [l

For each z € AU B, let p. = min{1, \/qp,}.

Let S; = 0 be the current set of selected elements.

Repeat the following O(log k) times: for each vertex z € (AU B) — Sy, flip
an independent biased coin and put z into S; with probability pl.

o =

Since in MINREPALG, we amplify each (probability) variable p by a factor /q,
the objective function would be at most /¢ times the optimum solution to LP [l
Next, we show that, for each currently-uncovered superedge, the probability that
one iteration will cover that superedge is boundedly away from 0. Since there are
at most k2 such pairs, with high probability after O(log k) iterations of the while
loop, with total cost O(,/qlogk)z} p, we cover all superedges in supergraph H.

Theorem 1. If we choose each verter x € AU B with probability pl, any single
superedge (A;, B;) is covered with constant probability.

The proof of the above theorem uses the following lemma.

Lemma 2. Consider a superedge (A;, B;) for which LP [1 routes one unit of
flow f from wvertices u € A; to v € B; and satisfies capacity constraints with
respect to the p variables. Then there exists a flow f from wertices u € A; to
vertices v € B; that

1. has value at least :1,) and at most 1,
2. that satisfies the capacity constraint p, on each vertex x € A; U Bj, and

3. such that every nonzero fu, is at least 1/(6q).

Proof. We start with a flow f’ = f initially and decrease it in iterations until its
flow from A; to B; becomes at most é We also maintain node capacities p’ = p
initially and reduce them in each iteration maintaining the property that the
modified flow f’ is a feasible flow for the modified node capacities p’. We build a
new flow f = 0 initially and increase it iteratively such that in each iteration, we
increase flow f by at least some o on one edge from A; to B; and simultaneously,
we decrease flow f’ by at most 2a; we will ensure that o > 1/(6¢). We do this
increasing of f and decreasing of f’ in such a manner that flow f’+ f always
satisfies capacity constraints p. Thus when the flow f’ becomes less than é, the

flow f is at least é and we are done.

Now consider f’ whose flow is at least é during the process. Let A, = {z €
A pl < 61q} and B} = {z € Bj,p, < 61q}. First, we show that there is an edge
(u,v) € E(G) with u € A; — A] and v € B; — Bj. If it is not the case, all flow of
f' should pass through either a vertex of A} or a vertex B} and thus its flow is
less than 2q61q = 1, a contradiction. Let a = min{p},, p},} > qu. We now add a

flow « from u to v in f and reduce the flow f’ as follows: Assume without loss of

Improved Approximation Algorithms for Label Cover Problems 27

generality that p), < p!. Then we reduce the flow in f’ along all edges incident
on u to zero. Note that the total flow reduction in this step is at most a. We
also reduce flow arbitrarily along edges incident to v other than (u,v) such that
the total flow on these edges is at most p/, — a. The total flow reduction in this
step is also bounded by «. Finally, we reduce p!, and p! by «. This maintains
the property that flow f’ is feasible for capacities p/, and that f’ + f is feasible
for the original capacities p. In this way, the flow of f’ is decreased by at most
2a, and the flow of f on any one edge has been increased by at least qu. a

We are now ready to prove Theorem [l

Proof. [of Theorem [J Fix i,j such that (A;, B;) is a superedge. First by
Lemma 2] we obtain a flow f from the flow f in LP [and use the properties of f
instead of f in the statement of the lemma in the rest of the proof. Let p, < p,,
for each vertex x € A; U Bj, be the total flow of f passing through vertex x.

If p, > \}q, for x € A; U By, then since \/qp. > \/qp. > 1, vertex z is chosen
in our random selection with probability 1. Without loss of generality, assume
that © € A;. Let N, be the set of all vertices y € B; for which x has positive flow
fmy to y. If there is a y with p, > 1q, then vertex y is also chosen in our random
selection with probability 1. Thus in this case we will satisfy the superedge
(A;, B;) with probability 1 and we are done. If it is not the case, then each vertex
y € N, will be selected in our random process with probability at least |/q fmy
This means that the probability that we do not select in our random process any
vertices in N, is at most yen, (1 — \/quy) < e VIXyen, Jov < V1 Vi = !
(since Zye N, fmy =Py > \}q). Thus with probability at least 1 — i, we select a
vertex in N, and thus satisfy the superedge (4;, B;).

In the rest of the proof, we assume p, < ! for z € A; U B;, and thus

v’
\/qfuv <1forue€ A; and v € Bj.

The outline of the rest of the proof is as follows. Instead of directly analyzing
the probability that the randomized rounding chooses both endpoints of some
edge in G[A; U B,], for a general bipartite graph between A; and B; with ¢ =
|A;| = |Bj|, we first transform the bipartite graph, in a natural way, into a
perfect matching graph. We do this by replacing a vertex v of degree d(v) by
d(v) “clones,” associating a different edge incident to v with each clone, and
keeping the flow values on edges unchanged. We then choose each clone with
probability /¢ times the flow on the incident edge. (Note that the scaling factor
is the square root of g, not the square root of the number of boys or girls in
the perfect matching.) We argue that with at least positive constant probability,
there is an edge e of G[A; U B;] with at least one clone of each endpoint of
e chosen. However, this is not what algorithm MINREPALG does, in fact (it
doesn’t detour through a perfect matching graph), so we then argue that the
probability that algorithm MINREPALG chooses both endpoints of some edge of
G[A; U B,] is at least as high as it is in the perfect matching, and hence at least
a positive constant.

28 M. Charikar, M. Hajiaghayi, and H. Karloff

First, we construct a bipartite graph M = (A’, B’, E'), for the given i, j, in
which for each vertex a € A; (resp., b € Bj), we put r vertices a',a?,... a"
(resp., bt,b2,...,b") in A’ (resp., B') called clones of vertex a (resp., b), where r
is the number of edges incident to a (resp., b) in G[A; U B,] that carry nonzero
flow (and thus a flow of at least 61q) in f. We associate each clone a‘ of a (resp.,

b of b) with a different edge of G incident to a (resp., b). We put edges between
vertices (clones) in E’ corresponding to edges in G[A; U B;] that carry a nonzero
flow in f (and we put this flow as the flow of the new edge). Since each edge
carrying positive flow in the bipartite graph between A; and B; gives rise to one
edge in M whose endpoints have degree 1, M is a bipartite perfect matching,
with |A’| = |B’|, which is at most the number of edges in G[A4; U B;].

We now consider a random process in which we build a set S by selecting each
vertex (clone) ¢ in M independently with probability /g times the f flow of the
unique edge incident to ¢ in M. Let the subset of A;UB; chosen by MINREPALG
be called S;. We will prove two things: (1) first, that the chance that, in the
perfect matching graph M, S contains an edge, is at least 1 — e~1/* > 0, and
(2) second, the chance that S; contains an edge in G is at least as large as the
chance that S contains an edge in the perfect matching graph M.

Now we prove (1), that both endpoints of some edge in M are chosen with
constant probability. Consider one fixed edge d = (ca4, cB) carrying a flow fq. We
select both ca and cp with probability (y/q fd) =q fd Thus with probability

—q fd7 edge d will be not selected. The probability that no edges are selected

then is at most Ilyep (1 — g fg) (We have independence because the graph is
a perfect matching.) Since each edge carries a flow of at least 61q and the total

flow is at most one (by LemmaB), |E’| < 6¢. Hence, since flow of f is at least 3

A 72 _, Caep fa)? (3?2 |
by Lemma, 2] HdeE/(l—qu)gefqzdeE’fd <e 7 i < e 1 60 — e o4,
Thus with constant probability 1 —e™ s > 0 we satisfy any one given superedge.
This completes the proof of (1).

Now we prove (2). Build a new probabilistic process as follows. Define p2,
for z € A; U By, to be the probability that at least one of the clones of x is
chosen to be in S. This is, of course, at most the sum of the probabilities that
each individual clone is chosen to be in S, which is itself at most the probability
that x € S; (since the flow values add). Build a set Sz by choosing each node
x € A; U Bj independently with probability p2. The algorithm, on the other
hand bu1lds S1 using probabilities pL > p2. Tt is a fairly obvious fact that, since
pL > p2, the chance that S; contains an edge is no smaller than the chance that
S5 contains an edge, but we prove it anyway.

Lemma 3. Suppose we are given an r-node graph H and two probabilities p. >
p2 for each vertex x. Consider experiment Ey, for { = 1,2, with probability mea-
sure Py, in which we build set Sy by putting each vertex x into Sy with probability
pt, independently. Then Py[S1 contains an edge] > P2[Sy contains an edge).

Improved Approximation Algorithms for Label Cover Problems 29

Proof. We can pick one sequence of r independent random reals &, in [0, 1] and
put z into Sy if &, < pi. As S5 C 57 always, in every run in which Sy contains
an edge, so does S;. ad

But now we can view the construction of S as putting a node z into Sy if and
only if at least one of its clones is chosen for S. It is clear that S contains an
edge in M implies that Ss contains an edge in G (but not the converse), so that
the chance that S contains an edge is dominated by the chance that Sy contains
an edge, which itself is dominated by the chance that S; contains an edge, and
we are done with the proof of Theorem [l |

2.1 The Integrality Ratio of MIN REP

Next, we show that the integrality ratio of LP Mlis indeed £2(n3~¢) for all € > 0
and thus our algorithm in this section is essentially the best that we can hope
for using the LP.

Theorem 4. The integrality ratio of LP [l for MIN REP is 2(n'/37¢) for any
e >0, for all large enough n.

Proof. Consider an instance of MIN REP with k& = n/q groups of ¢ boys each
and k = n/q groups of ¢ girls each. Between the ith group A; of boys and the
jth group Bj of girls there is a random perfect matching. It is clear that one
can assign f. = 1/q for any edge e and p, = 1/q for any vertex u. This implies
that 23 p < 2n/q. To study the integrality ratio, we look at the smallest feasible
set S (i.e., the smallest set of vertices such that for all 4,j, there is at least
one edge between A; and B; both of whose endpoints are in S). Let S be a
feasible set, s = |S|. The size s of S is the sum of 2n/q terms, one for each
A; and B;. Let a = s/(2n/q) = sq/(2n), the average size of the intersection
of S with some A; or B;. Of the 2n/q terms, whose sum is s, fewer than 1/4
of them (i.e., (1/2)n/q) can exceed 4a = 2sq/n, and hence at least (3/2)n/q of
them are at most 4a. Since at most n/q of them can be intersections with the
n/q A;’s, at least (1/2)n/q of them are intersections with n/q B;’s. Similarly, at
least (1/2)n/q of them are intersections with the n/q A;’s. Hence there are sets
IC{1,2,..,n/q} and J C {1,2,....n/q}, |I|,|J| = (1/2)n/q (provided that n/q
is even), such that |SNA;| < 4a = 2sq/n for alli € I and |[SNB,| < 4a = 2sq¢/n
for all j € J, and such that there is an edge between S N A; and T'N B;. Let
S; be any subset of A; which contains S N A; and which has size exactly 4a.
Analogously, let T; be any subset of B; which contains 7' N B; and which has
size exactly 4a. Clearly there is an edge between S; and Tj.

Fix an s and let @ = sq/(2n). As just shown, the existence of an S, of size s,
for graph G implies the existence of I,J C {1,2,...,n/q}, |I| = |J| = (1/2)n/q,
S; C A, foralliel, and T; C Bj for all j € J, |S;| = |Tj| = 4a, such that for
all i € I,j € J, the perfect matching in G between A; and B; contains an edge
between S; and Tj. (S;, T; have size exactly 4a.) Hence the probability that there
is an S is at most the probability that there exist I, J C {1,2,...,n/q}, both of
size (1/2)n/q, and S; C A;,T; C B, for all i € I,5 € J, with |S;| = |T}| = 4a,

30 M. Charikar, M. Hajiaghayi, and H. Karloff

such that for all ¢+ € I,j € J, the perfect matching in G between A; and B;
contains an edge between S; and T}.

Given fixed I,J,(S;), (T;), what is the probability that the random graph
contains, for each i € I,j € J, an edge whose left endpoint is in S; and whose
right one is in 7;7 The chance that the random graph does not contain both
endpoints of some edge in the random perfect matching between A; and B; is
the chance that all the edges in the (i, j) perfect matching (the one between A;
and B;) emanating from S; end outside T;. There are exactly 4a such edges.
We will prove a lower bound on the probability that a random perfect matching
does not contain both endpoints of some edge whose left endpoint is in S; and
whose right one is in 7. In order for the mate of each vertex in S; to lie outside
of T}, the mate of the first one must be chosen to be one of ¢ — 4a nodes not
in T; among the ¢ vertices in B;, the mate of the second must be chosen to be

one of the remaining ¢ — 4a — 1 nodes not in 7; among the remaining ¢ — 1 ver-
q—4a q—4a—1 g—4a—(4a—1) >
a q-1 g—(4a—1) =

4a 4a
(‘1*8“) =(1- 8q“> . Hence the chance that the (i, j) perfect matching does

tices in Bj, etc. Hence the probability is exactly

q
contain an edge whose left endpoint is in S; and whose right one is in 7 is at most

1 — (1 — 8a/q)**. The chance that the random matching works for all (n/q)?/4
pairs (i,7) with i € I,j € J is at most [1 — (1 — 8a/q)*](™/9*/4, Let A =
2 4] (/0?14
(n7(/2qq)) () 1 [1 - (1 - 8;)] , the first binomial coefficient repre-
senting the choices of I and J, the second representing the subsets S; of A; and Tj
of B;. If A < 1, then there is a fixed graph for which no set S of size s is good. A <
4a] (n/@)?/4
22n/qgtan/q [1 - (1 - 8‘1)] . We choose a = /q/32 so that ¢/(8a) =

a
4a. Note that (1 — 8a/q)** = (1 —1/(¢q/(8a)))®) > 1/4 for q/(8a) = 4a suffi-
ciently large. So [1—(1—8a/q)%]("/9*/4 < [1—(1/4)]("/9*/4 Letting ¢ = n’ for a
fixed §, we have A < 227""° (n®)4an/a(3/4)("/9*/4 Since dan/q = 4n'~%/q/32 =
(1/v/2)n1=%/2 we have A < (3/4)1/Hn* 77920 p3s(1/v2)n' =" e have A <
20,0120 =020+ (15) (6/V2)n' ™" Gince obviously 2(1 — §) > 1 — &, we will
have A < 1, in fact, A — 0, if 2(1 —4§) > 1—§/2,i.e,2—26 > 1—4§/2, ie.,
1> (3/2)d, i.e., § < 2/3. Hence if § < 2/3, then for ¢ = n® and a = 1/q/32, as
specified above, there is an instance for which no set S of size a(2n/q) is feasible.
For this instance, zjp > \/q/32(2n/q). Since z} p < 2n/q, the integrality ratio
exceeds \/q/32, which is 2(n%/?). Since § < 2/3 is arbitrary, for all £ > 0 the
integrality ratio is £2(n'/3-¢). O

1
3 O(n3)-Approximation Algorithm for Max REP

1
In this section, we provide an O(n3)-approximation algorithm for MAx REP.
However, in contrast to Section 2] in which we use a natural LP for the problem,
we can show that the integrality gap of a natural LP for MAX REP is £2(y/n). This

Improved Approximation Algorithms for Label Cover Problems 31

forces us to use a combinatorial approach to obtain a non-trivial approximation

1
factor O(n3).
We consider the best of three algorithms:

1. Matching: Find a maximal matching in the supergraph H. For each edge
(A;, B;) in this matching, pick a; € A; and b; € B; such that (a;,b;) € E(G).

2. Random-Choice: For each Bj, pick b; € B; at random. For each A;, pick
a; € A; that has the maximum number of edges to the set of all selected b;
vertices. Repeat, flipping the roles of A and B.

3. Random-Neighbor: For each a € A, construct a solution in the following
fashion and eventually pick the best such solution: For each B;, pick b; € B;
at random from amongst those vertices that are neighbors of a (if there is
no neighbor of @ in By, pick an arbitrary b; € B;). For each A;, pick a; € A;
that has the maximum number of edges to the selected b; vertices over all
j- Repeat, flipping the roles of A and B.

Theorem 5. The best of these three algorithms is a 2(2n)1/3—appmximation
algorithm.

Proof. Suppose that the maximal matching in H has size £. Renumber the A;’s
and Bj;’s such that the matching has edges (4;, B;),i = 1,..., . There are no
edges between A; and B; for i,j > (. Let A’ = U/_; A;, and B’ = U{_, B;. The
edges in the optimal solution can be decomposed into two groups: those that go
between A’ and B and those that go between A and B’. (Edges between A’ and
B’ appear in both.) Hence the optimal solution restricted to one of these two
groups much contain at least half the number of edges in the optimal solution.
Without loss of generality, assume that the optimal solution restricted to edges
between A and B’ contains at least half the number of edges in the optimal
solution.

We introduce some notation to facilitate the analysis. Let X;; = 1 if there is
an edge in the optimal solution from A; to B; (and 0 otherwise). Let N;; be the
number of edges from the optimal vertex af in A; to the remaining vertices in
Bj, called “nonoptimal” since they’re not in the optimal solution.

Define p and r as follows:

k
Z Z X;j = p(kl) (2)
v

Thus OPT < 22? Ef‘:l Xij = 2pkf and algorithm Matching gives a 2pk ap-
proximation.

Next, we analyze algorithm Random-Choice. The algorithm picks random
vertices in B and picks the best vertices in A for the chosen vertices in B.
In order to obtain a lower bound on the number of superedges covered, we

32 M. Charikar, M. Hajiaghayi, and H. Karloff

compute the expected number of superedges covered if we pick random vertices
in Bj,j =1,...,¢, and instead of the best vertex in A;, we use the vertex a} € A;
which is in the optimal solution.

For a superedge (A4;,B;), i =1,...,k and j = 1,...,¢, the probability that
this edge is covered by Random-Choice is (X;;+ N;;)/(n/k). Hence the expected
number of superedges covered is at least * Zi;l Z§:1(Xij + Nyij) = F(pkt +
Mn%. kItZIence the aprrogcimation ratio of algorithm Random-Choice is at most
ﬁ(pki#»r@n) l;l’ 7?

Finally, we analyze algorithm Random-Neighbor. Suppose the vertex a chosen
by the algorithm in the first step is in, say, Ay, and also is in the optimal solution.
Consider set B; and the vertex b7 € B; in the optimal solution. The number of

edges from a to B; is Xp; + Np;. The algorithm picks a random neighbor of @ in

< min

Bj. Thus the probability that b} is chosen is Xh)ih?vh . As before, instead of pick-
J J

ing the best choice of vertices in A for the chosen vertices in B, we lower bound

the expected number of superedges covered by replacing the vertex a; by the

vertex a; € A; in the optimal solution. If b7 € B is chosen, the number of edges
from the set of a}’s is Zi;l Xi;. Thus the expected number of superedges cov-

ered is at least Zgzl th('c]].vhj (Ele Xi;). In this calculation, we assumed that

a = a; was chosen in the first step. We average over h =1, ..., k. Thus the ex-

pected number of covered edges is at least i 22:1 Ele Xh)-(-l}-ul.\/h- (Zle Xij)-
J J

Let C; = Ele Xi; and let N; = Ele N;;. Then the previous expression

. 1 L k X}L,- k th' 1
is 122105 2 h=1 XNy Note that >, _, Xyt Nny 2 C; " by the

arithmetic-geometric-harmonic means inequality. In order to obtain a lower
3
J
over
+ N;
all choices of C; and Nj subject to the constraint that » . C; and > N; are
fixed. Now let C;, N; be the respective values that minimize this expression.
Cf3 + 093
Cr+(Ny—=z) Cg+ (Ng+)
must be minimized for x = 0. Thus, the derivative of this function at x = 0
must be zero. Hence Cy*/(Cy + Ny)? = C,*/(Cy + N,)?. Hence there is a con-

stant o such that for all indices f, (C; + Nj)? = aCf®. Hence ay 03/2 =
Zj C; + Zj N; = pkl + rfn. Thus the expected number of superedges cov-
s A N O D I el & ,
o =k Yim1 b 2k (;M:_TJM) . Convexity of
J
x) = x%/? shows that this expression is minimized when all C; are equal.
J

Hence a lower bound on the expected number of superedges covered is given

b 1 (e(pk)S/Z)Z _ €2p3]€2
k (pkl+ren) pkl+rin’

2pkl(pke+ren) _ 2(0+(7) %)

bound for this expression, consider the minimum value of Z c
: J

Then for any indices f # g, the function (of x)

. 1 £
ered is at least ; >0,

Thus the approximation ratio of this procedure is at

most 2pk2 »

Improved Approximation Algorithms for Label Cover Problems 33

Thus we have the following upper bounds on the approximation ratio of the

algorithm: 2pk, 27, 27,272/

Case 1: ()} > 1. In this case, the fourth bound is at most 4(;;)) * . The product
of the first, third and fourth bounds is 16pk x ? x '#)*
1/3

. We consider two cases:

= 16n. Hence at least

one upper bound is at most 2(2n)
Case 2: (;)Z < 1. In this case, the fourth bound is at most f}. Now the product
of the first, second and fourth bound is 2pk x Qk" X ;1) = 16n. Hence at least one

upper bound is at most 2(2n)'/3. O

4 Reduction from DENSEST k-SUBGRAPH to MAX REP

In this section, we consider the DENSEST k-SUBGRAPH (DKS) problem, in which
the goal is to find an induced subgraph of order k£ of a given graph with the
maximum number of edges.

Theorem 6. An f(n)-approzimation algorithm for MAX REP implies the exis-
tence of a randomized O(f(n))-approzimation algorithm for DES.

Proof. From an instance of DkS, we produce an instance of MAX REP by ran-
domly dividing vertices of the given graph for DkS into k groups of equal size
s =|7], e.g., by using a random permutation of all vertices, and disregard the
rest of vertices. Next we place |k/2] groups on one side (call this L) and the
other [k/2] groups on the other side (call this R) of the instance for MAX REP.
Any feasible solution to the MAX REP instance obtained directly gives a solution
to the original DkS instance of the same value. Both instances have the same
number n of vertices.

We claim that the expected value of the optimal solution to the MAX REP
instance obtained thus is at least a constant times the optimal value for DKkS.
Consider the optimal solution S of size k& to the DkS instance. We produce a
solution to the MAX REP instance as follows. For every group in the instance,
if the group contains a unique vertex of S, then this unique vertex is picked as
the group representative. If there are zero or at least 2 vertices from S then an
arbitrary vertex is picked as the group representative (and we don’t count edges
incident to that vertex). We show that the expected value of this solution is at
least a constant times the value of the DkS optimal solution. For any vertex
v € S, with constant probability v is placed alone in its group. Furthermore, for
two distinct vertices u,v € S, the probability that w and v are both alone in
their groups, u is in the L side and v is on the R side, is bounded below by a
constant greater than 0. Hence E[2}/,,rep] = C2hys, for a positive constant c.

Now the reduction is apparent. Given an f(n)-approximation algorithm A for
Max REP, take an n-node instance I of DKS, randomly convert it as above
into an m-node instance I’ of MAX REP, use A to generate a solution A(I") of
value at least f(n)2}r,,Rep> and report A(I') as a feasible solution to the DKS
instance. That E[2}/,,rep] = ¢2his implies that the expected size of the DKS
solution returned is at least c¢f(n) - 2},g- O

34

5

M. Charikar, M. Hajiaghayi, and H. Karloff

Conclusion

Obtaining improvements over the approximation guarantees in this paper would
be instructive. Given the reduction demonstrated in Section E] possibly one

can use ideas from the DENSEST k-SUBGRAPH algorithm to build an n

1/3—6_

approximation algorithms for some fixed § > 0. However, the main remaining open
problem is whether, for MAX REP or MIN REP, there is a O(n®)-approximation
algorithm for each € > 0.

References

1.

10.

11.

12.

13.

14.

15.

16.

Aazami, A., Stilp, M.D.: Approximation algorithms and hardness for domination
with propagation. In: Charikar, M., Jansen, K., Reingold, O., Rolim, J.D.P. (eds.)
RANDOM 2007 and APPROX 2007. LNCS, vol. 4627, pp. 1-15. Springer, Heidel-
berg (2007)

. Arora, S., Babai, L., Stern, J., Sweedyk, Z.: The hardness of approximate optima

in lattices, codes, and systems of linear equations. J. Comput. System Sci. 54,
317-331 (1997)

Bhattacharyya, A., Grigorescu, E., Jung, K., Raskhodnikova, S., Woodruff, D.P.:
Transitive-Closure Spanners, ArXiv e-prints (2008)

Breslau, L., Diakonikolas, I., Duffield, N., Gu, Y., Hajiaghayi, M., Johnson, D.,
Karloff, H., Resende, M., Sen, S.: Optimal Node Placement For Path-Disjoint Net-
work Monitoring (manuscript) (2008)

Chen, N.: On the approximability of influence in social networks. In: SODA, pp.
1029-1037 (2008)

Elkin, M., Peleg, D.: The hardness of approximating spanner problems. Theory
Comput. Syst. 41, 691-729 (2007)

Feige, U., Kortsarz, G., Peleg, D.: The dense k-subgraph problem. Algorithmica 29,
410-421 (2001)

Feldman, M., Kortsarz, G., Nutov, Z.: Improved approximation for the directed
steiner forest problem. In: SODA 2009, pp. 922-931 (2009)

Gupta, A., Hajiaghayi, M.T., Kumar, A.: Stochastic steiner tree with non-
uniform inflation. In: Charikar, M., Jansen, K., Reingold, O., Rolim, J.D.P. (eds.)
RANDOM 2007 and APPROX 2007. LNCS, vol. 4627, pp. 134-148. Springer, Hei-
delberg (2007)

Hajiaghayi, M.T., Kortsarz, G., Mirrokni, V.S., Nutov, Z.: Power optimization for
connectivity problems. Math. Program. 110, 195-208 (2007)

Hassin, R., Segev, D.: The set cover with pairs problem. In: Sarukkai, S., Sen, S.
(eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 164-176. Springer, Heidelberg (2005)
Hochbaum, D.S. (ed.): Approximation algorithms for NP-hard problems. PWS
Publishing Co., Boston (1997); see the section written by Arora and Lund

Khot, S.: Ruling out PTAS for graph min-bisection, dense k-subgraph, and bipar-
tite clique. STAM J. Comput. 36, 1025-1071 (2006)

Kortsarz, G.: On the hardness of approximating spanners. Algorithmica 30, 432—
450 (2001)

Kortsarz, G., Krauthgamer, R., Lee, J.R.: Hardness of approximation for vertex-
connectivity network design problems. SIAM Journal on Computing 33, 185-199
2004

](Peleg,) D.: Approximation algorithms for the Label-Covermax and Red-Blue Set
Cover problems. J. Discrete Algorithms 5, 55-64 (2007)

A Linear Time Algorithm for L(2, 1)-Labeling of Trees

Toru Hasunuma!, Toshimasa IshiiZ, Hirotaka Ono?>, and Yushi Uno*

! Department of Mathematical and Natural Sciences,
The University of Tokushima, Tokushima 770-8502, Japan
hasunuma@ias.tokushima-u.ac. jp
2 Department of Information and Management Science,
Otaru University of Commerce, Otaru 047-8501, Japan
ishii@res.otaru-uc.ac.jp
3 Department of Computer Science and Communication Engineering,
Kyushu University, Fukuoka 812-8581, Japan
ono@csce.kyushu-u.ac. jp
4 Department of Mathematics and Information Sciences,
Graduate School of Science, Osaka Prefecture University,
Sakai 599-8531, Japan
uno@mi.s.osakafu-u.ac.jp

Abstract. An L(2, 1)-labeling of a graph G is an assignment f from the vertex
set V(G) to the set of nonnegative integers such that [f(x) — f(y)] > 2 if x and y
are adjacent and |f(x) — f(y)| > 1 if x and y are at distance 2, for all x and y in
V(G). A k-L(2, 1)-labeling is an L(2, 1)-labeling f : V(G) — {0,...,k}, and the
L(2, 1)-labeling problem asks the minimum &, which we denote by A(G), among
all possible assignments. It is known that this problem is NP-hard even for graphs
of treewidth 2, and tree is one of very few classes for which the problem is poly-
nomially solvable. The running time of the best known algorithm for trees had
been O(4*°n) for more than a decade, and an O(min{n'">, 4'n})-time algorithm
has appeared recently, where 4 is the maximum degree of 7" and n = |V(T')|, how-
ever, it has been open if it is solvable in linear time. In this paper, we finally settle
this problem for L(2, 1)-labeling of trees by establishing a linear time algorithm.

1 Introduction

Let G be an undirected graph. An L(2, 1)-labeling of a graph G is an assignment f from
the vertex set V(G) to the set of nonnegative integers such that |f(x) — f(y)| > 2 if x and
y are adjacent and | f(x) — f(y)| > 1 if x and y are at distance 2, for all x and y in V(G). A
k-L(2, 1)-labeling is an L(2, 1)-labeling f : V(G) — {0, ..., k}, and the L(2, 1)-labeling
problem asks the minimum k among all possible assignments. We call this invariant,
the minimum value k, the L(2, 1)-labeling number and is denoted by A(G). Notice that
we can use k + 1 different labels when A(G) = k since we can use 0 as a label for
conventional reasons.

The original notion of L(2, 1)-labeling can be seen in the context of frequency as-
signment, where ‘close’ transmitters must receive different frequencies and ‘very close’
transmitters must receive frequencies that are at least two frequencies apart so that they
can avoid interference. Due to its practical importance, the L(2, 1)-labeling problem has

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 35-46l 2009.
© Springer-Verlag Berlin Heidelberg 2009

36 T. Hasunuma et al.

been widely studied. From the graph theoretical point of view, since this is a kind of
vertex coloring problem, it has attracted a lot of interest [4/10J13016]. In this context,
L(2, 1)-1abeling is generalized into L(p, q)-labeling for arbitrary nonnegative integers p
and g, and in fact, we can see that L(1, 0)-labeling (L(p, 0)-labeling, actually) is equiv-
alent to the classical vertex coloring. We can find a lot of related results on L(p, g)-
labelings in comprehensive surveys by Calamoneri [2]] and by Yeh [17]].

Related Work: There are also a number of studies on the L(2, 1)-labeling problem from
the algorithmic point of view [[1J8/15]]. It is known to be NP-hard for general graphs [10],
and it still remains NP-hard for some restricted classes of graphs, such as planar graphs,
bipartite graphs, chordal graphs [1], and it turned out to be NP-hard even for graphs of
treewidth 2 [5]]. In contrast, only a few graph classes are known to have polynomial
time algorithms for this problem, e.g., we can determine the L(2, 1)-labeling number of
paths, cycles, wheels within polynomial time [[10].

As for trees, Griggs and Yeh [[10] showed that A(T') is either 4 + 1 or 4 + 2 for any
tree T, and also conjectured that determining A(7) is NP-hard, however, Chang and
Kuo [4]] disproved this by presenting a polynomial time algorithm for computing A(T).
Their algorithm exploits the fact that A(T) is either 4 + 1 or 4 + 2 for any tree 7. Its
running time is O(4*°n), where 4 is the maximum degree of a tree T and n = |V(T)|.
This result has a great importance because it initiates to cultivate polynomially solvable
classes of graphs for the L(2, 1)-labeling problem and related problems. For example,
Fiala et al. showed that L(2, 1)-labeling of #-almost trees can be solved in O(A%*4>n)
time for A given as an input, where a t-almost tree is a graph that can be a tree by
eliminating 7 edges [8]]. Also, it was shown that the L(p, 1)-labeling problem for trees
can be solved in O((p + 4)>3n) = O(2>3n) time [3]]. Both results are based on Chang
and Kuo’s algorithm, which is called as a subroutine in the algorithms. Moreover, the
polynomially solvable result for trees holds for more general settings. The notion of
L(p, 1)-labeling is generalized as H(p, 1)-labeling, in which graph H defines the metric
space of distances between two labels, whereas labels in L(p, 1)-labeling (that is, in
L(p, g)-labeling) take nonnegative integers; i.e., it is a special case that H is a path graph.
In [6]], it has been shown that the H(p, 1)-labeling problem of trees for arbitrary graph
H can be solved in polynomial time, which is also based on Chang and Kuo’s idea. In
passing, these results are unfortunately not applicable for L(p, g)-labeling problems for
general p and ¢q. Recently, Fiala et al. [7] showed that the L(p, g)-labeling problem for
trees is NP-hard if ¢ is not a divisor of p, which is contrasting to the positive results
mentioned above.

As for L(2, 1)-labeling of trees again, Chang and Kuo’s O(4*3n) algorithm is the first
polynomial time one. It is based on dynamic programming (DP) approach, and it checks
whether (4 + 1)-L(2, 1)-labeling is possible or not from leaf vertices to a root vertex in
the original tree structure. The principle of optimality requires to solve at each vertex of
the tree the assignments of labels to subtrees, and the assignments are formulated as the
maximum matching in a certain bipartite graph. Recently, an O(min{n'7>, 413n}) time
algorithm has been proposed [[L1]. It is based on the similar DP framework to Chang and
Kuo’s algorithm, but achieves its efficiency by reducing heavy computation of bipartite
matching in Chang and Kuo’s and by using an amortized analysis. We give a concise
review of these two algorithms in Subsection 2.2}

A Linear Time Algorithm for L(2, 1)-Labeling of Trees 37

Our Contributions: Although there have been a few polynomial time algorithms for
L(2, 1)-1abeling of trees, it has been open if it can be improved to linear time [2]. In
this paper, we present a linear time algorithm for L(2, 1)-labeling of trees, which fi-
nally settles this problem. It is based on the similar DP approach to the preceding two
polynomial time algorithms [4J11]. In our new algorithm, besides using their ideas, we
introduce the notion of “label compatibility”, which indicates how we flexibly change
labels with preserving its (4 + 1)-L(2, 1)-labeling. Interestingly, we can show that only
O(log, n) labels are essential for L(2, 1)-labeling in any input tree by using this notion.
By utilizing this fact, we can replace the bipartite matching of graphs with the maximum
flow of much smaller networks as an engine to find the assignments. Consequently, our
algorithm finally achieves its linear running time.

Organization of this Paper: The rest of this paper is organized as follows. Section
gives basic definitions and introduces as a warm-up the ideas of Chang and Kuo’s
O(4*3n) time algorithm and its improvement into O(n'7%) time. Section [3 introduces
the crucial notion of label compatibility that can bundle a set of compatible vertices and
reduce the size of the graph constructed for computing bipartite matchings. Moreover,
this allows to use maximum-flow based computation for them. In Section 4 we give
precise analyses to achieve linear running time. Some parts of the detailed analyses are
omitted due to space limitation. Interested readers can find them in the technical report
version of this paper [12].

2 Preliminaries

2.1 Definitions and Notations

A graph G is an ordered pair of its vertex set V(G) and edge set E(G) and is denoted
by G = (V(G), E(G)). We assume throughout this paper that all graphs are undirected,
simple and connected, unless otherwise stated. Therefore, an edge e € E(G) is an un-
ordered pair of vertices u and v, which are end vertices of e, and we often denote it by
e = (u,v). Two vertices u and v are adjacent if (u,v) € E(G). A graph G = (V(G), E(G))
is called bipartite if the vertex set V(G) can be divided into two disjoint sets V| and V,
such that every edge in E(G) connects a vertex in V| and one in V;; such G is denoted
by (Vi, V2, E).

For a graph G, the (open) neighborhood of a vertex v € V(G) is the set Ng(v) = {u €
V(G) | (u,v) € E(G)}, and the closed neighborhood of v is the set Ng[v] = Ng(v) U {v}.
The degree of a vertex v is |[Ng(v)|, and is denoted by dg(v). We use 4(G) to denote
the maximum degree of a graph G. A vertex whose degree is 4(G) is called major. We
often drop G in these notations if there are no confusions. A vertex whose degree is 1 is
called a leaf vertex, or simply a leaf.

When we describe algorithms, it is convenient to regard the input tree to be rooted
at a leaf vertex r. Then we can define the parent-child relationship on vertices in the
usual way. For a rooted tree, its height is the length of the longest path from the root to
a leaf. For any vertex v, the set of its children is denoted by C(v). For a vertex v, define
d'(v) =|CO)I.

38 T. Hasunuma et al.

2.2 Chang and Kuo’s Algorithm and Its Improvement

Before explaining algorithms, we give some significant properties on L(2, 1)-labeling
of graphs or trees that have been used so far for designing L(2, 1)-labeling algorithms.
We can see that A(G) > 4 + 1 holds for any graph G. Griggs and Yeh [10] observed
that any major vertex in G must be labeled 0 or 4 + 1 when A(G) = 4 + 1, and that
if A(G) = 4 + 1, then Ng[v] contains at most two major vertices for any v € V(G).
Furthermore, they showed that A(T) is either 4 + 1 or 4 + 2 for any tree 7. By using
this fact, Chang and Kuo [4] presented an O(4*%n) time algorithm for computing A(T).

Chang and Kuo’s Algorithm. Now, we first review the idea of Chang and Kuo’s
dynamic programming algorithm (CK algorithm) for the L(2, 1)-labeling problem of
trees, since our linear time algorithm also depends on the same formula of the principle
of optimality. The algorithm determines if A(T) = 4 + 1, and if so, we can easily
construct the labeling with A(T) =4 + 1.

To describe the idea, we introduce some notations. We assume for explanation that
T is rooted at some leaf vertex r. Given a vertex v, we denote the subtree of T rooted at
v by T(v). Let T(u, v) be a tree rooted at u that forms 7'(u,v) = ({u} U V(T (v)), {(u, v)} U
E(T(v))). Note that this u is just a virtual vertex for explanation and 7 (u, v) is uniquely
determined by T'(v). For T'(u, v), we define

1, if AT@,v) | f) =a, f0)=b)<A+1,
0, otherwise,

6((u, v), (a, b)) = {

where A(T'(u,v) | f(u) = a, f(v) = b) denotes the L(2, 1)-labeling number on T (u, v)
under the condition that f(¥) = a and f(v) = b, i.e., the minimum k of k-L(2, 1)-
labelings on T'(u,v) satisfying f(u) = a and f(v) = b. This ¢ function satisfies the
following formula:

1, if there is an injective assignment g: C(v) — {0, 1,...,4+1}—{a,
o((u,v), (a,b))= b —1,b,b + 1} such that 6((v, w), (b, g(w)) = 1 for each w € C(v),
0, otherwise.

The existence of such an injective assignment g is formalized as the maximum matching
problem: For a bipartite graph G(u,v,a,b) = (C(v), X, E(u,v,a, b)), where X = {0, 1,
ood,4+ 1} and E(u,v,a,b) = {(w,c) | 6((v,w),(b,c))=1,c € X —{a},w € C(v)}, we
can see that there is an injective assignment g: C(v) — {0, 1,...,4+1}—{a,b—1,b,b+1}
if there exists a matching of size d’(v) in G(u, v, a, b). Namely, for T (4, v) and two labels
a and b, we can easily (i.e., in polynomial time) determine the value of 6((, v), (a, b))
if the values of ¢ function for T(v,w),w € C(v) and any two pairs of labels are given.
Now let #(v) be the time for calculating 6((u, v), (¥, *)) for vertex v. CK algorithm solves
the bipartite matching problems of O(4) vertices and 0o?) edges O(4?) times for each
v, in order to obtain o-values for all combinations of labels a and b. This amounts
1(v) = O(U*3) x O(4?) = O(4*3), where the first O(4>?) is the time complexity of the
bipartite matching problem [14]. Thus the total running time is Y,y #(v) = O(4*n).

An O(n'7)-time Algorithm. Next, we review the O(n'7%)-time algorithm proposed
in [T1]. The running time O(n'7°) is roughly achieved by two strategies. One is that the

A Linear Time Algorithm for L(2, 1)-Labeling of Trees 39

problem can be solved by a simple linear time algorithm if 4 = ©(+/n), and the other is
that it can be solved in O(4'n) time for any input tree.

The first idea of the speedup is that for computing 6((u, v), (*, b)), the algorithm does
not solve the bipartite matching problems every time from scratch, but reuse the ob-
tained matching structure. More precisely, the bipartite matching problem is solved
for G(u,v,—,b) = (C(v), X, E(u, v, —, b)) instead of G(u, v, a, b) for a specific a, where
E(u,v,—,b) = {(w,c) | 6((v,w),(b,c)) = 1,c € X,w € C(v)}. A maximum matching of
G(u,v,—, b) is observed to satisfy the following properties:

Property 1. If G(u, v, —, b) has no matching of size d’(v), then 8((&, v), (i, b)) = 0 for
any label i. |

Property 2. 6((u,v), (i, b)) = 1 if and only if vertex i can be reached by an M-alternating
path from some vertex in X unmatched by M in G(u, v, —, b), where M denotes a maxi-
mum matching of G(u, v, —, b) (of size d’(v)). O

From these properties, 6((&, v), (*, b)) can be computed by a single bipartite matching
and a single graph search, and its total running time is O(4 Sd'w) + 0U4d' (v) =
O(4"d’ (v)) (for solving the bipartite matching of G(u, v, —, b), which has O(4) vertices
and O(4d’'(v)) edges, and for a single graph search). Since this calculation is done for
all b, we have t(v) = O(4>>d’(v)).

The other technique of the speedup introduced in [11]] is based on preprocessing
operations for amortized analysis. By some preprocessing operations, the shape of input
trees can be restricted while preserving L(2, 1)-labeling number, and the input trees can
be assumed to satisfy the following two properties.

Property 3. All vertices connected to a leaf vertex are major vertices. O
Property 4. The size of any path component of T is at most 3. |
Here, a sequence of vertices vy, vy, ..., v is called a path component if (v;, v;y1) € E for

alli=1,2,...,0—1andd(v;) =2 foralli =1,2,...,¢, and ¢ is called the size of the
path component.

Furthermore, this preprocessing operations enable the following amortized analysis.
Let V; and Vj be the set of leaf vertices and the set of major vertices whose children
are all leaf vertices, respectively. Also, let d’(v) = |C(v) — V.| for v € V. (Note that
d’'v)y=0forveV, U VQ.)

By Property 3] if we go down the resulting tree from a root, then we reach a major
vertex in V. Then, the following facts are observed: (i) for v € Vy 6((u,v), (a, b)) = 1
ifandonlyif b=0or4 + 1 and |a — b| > 2, (ii) |Vy| < n/4. Note that (i) implies that it
is not required to solve the bipartite matching to obtain d-values. Also (ii) and Property
M imply that |V — Vy — V;| = O(n/4) (this can be obtained by pruning leaf vertices
and regarding V vertices as new leaves). Since it is not necessary to compute bipartite
matchings for v € V; U V), and this implies that the total time to obtain ¢-values for all
V'8 8 Yey 1(v) = O(X,ey-v, v, 1(v)), which turned out to be 04?3 Zvev-v,-v, d" (V).
Since Y ey_v,-v, d”’(vV) = [V=VL=Vo|+|Vg| -1 = O(n/4), we obtain ’ cy_v, v, {(v) =
O(4"n). Since we have a linear time algorithm if 4 = Q(+/n) as mentioned above, we
can solve the problem in O(n'?) time in total.

40 T. Hasunuma et al.

3 Label Compatibility and Flow-Based Computation of &

As reviewed in Subsection 2.2] one of keys of an efficient computation of §-values is
reusing the matching structures. In this section, for a further speedup of the computation
of §-values, we introduce a new novel notion, which we call ‘label compatibility’, that
enables to treat several labels equivalently under the computation of -values. Then, the
faster computation of d-values is achieved on a maximum flow algorithm instead of a
maximum matching algorithm. Seemingly, this sounds a bit strange, because the time
complexity of the maximum flow problem is larger than the one of the bipartite match-
ing problem. The trick is that the new flow-based computation uses a smaller network
(graph) by this notion than the graph G(u, v, —, b) used in the bipartite matching.

3.1 Label Compatibility and Neck/Head Levels

LetL, ={h,h+1,...,4—h,4—h+1}. Let T be a tree rooted at v, and u ¢ V(T). We
say that T is head-Ly-compatible if 6((u,v), (a, b)) = 6((u,v), (a’,b)) for all a,a’ € L,
and b € Ly with |[a — b| > 2 and |a’ — b| > 2. Analogously, we say that T is neck-
Ly-compatible if 6((u,v), (a,b)) = 6((u,v),(a,b")) for all a € Ly and b,b’ € L, with
la — b| > 2 and |a — b’| = 2. The neck and head levels of T are defined as follows:

Definition 1. Let T be a tree rooted at v, and u ¢ V(T).

(1) The neck level (resp., head level) of T is O if T is neck-Lo-compatible (resp.,
head-Ly-compatible). (ii) The neck level (resp., head level) of T is h (= 1) if T is
not neck-Ly_1-compatible (resp., head-Ly,_|-compatible) but neck-Ly-compatible (resp.,
head-Ly-compatible).

An intuitive explanation of neck-L;-compatibility (resp., head-L;-compatibility) of T is
that if for 7'(u, v), a label in L, is assigned to v (resp., u) under (4 + 1)-L(2, 1)-labeling
of T(u,v), the label can be replaced with another label in L, without violating a proper
(4 + 1)-L(2, 1)-labeling; labels in L, are compatible. The neck and head levels of T
represent the bounds of Lj,-compatibility of 7. Thus, a trivial bound on neck and head
levelsis (4 +1)/2.

For the relationship between the neck/head levels and the tree size, we can show the
following lemma, whose proof can be found in the technical report version [12]:

Lemma 1. Let T’ be a subtree of T. If [V(T")| < (4 =3 = 2h)""? — 1 and 4 — 2h > 10,
then the head level and neck level of T' are both at most h.

By this lemma, we obtain the following theorem:

Theorem 1. For a tree T, both the head and neck levels of T are O(log |V(T)|/ log4).

3.2 Flow-Based Computation of §

We are ready to explain the faster computation of ¢-values. Recall that 6((u, v), (a, b))
= 1 holds if there exists a matching of G(u, v, a, b) in which all C(v) vertices are just
matched; which vertex is matched to a vertex in X does not matter. From this fact, we
can treat vertices in X corresponding to L, equally in computing d, if T is neck- and
head-L;-compatible. The idea of the fast computation of ¢-values is that, by bundling

A Linear Time Algorithm for L(2, 1)-Labeling of Trees 41

compatible vertices in X of G, we reduce the size of a graph (or a network) to compute
the assignments of labels, which is no longer the maximum matching; the maximum flow.

The algorithm introduced in Subsection 2.2 computes §-values not by solving the
maximum matchings of G(u, v, a, b) for all pairs of a and b but by finding a maximum
matching M of G(u,v,—,b) once and then searching M-alternating paths. In the new
flow-based computation, we adopt the same strategy; for a tree 7'(v) whose head and
neck levels are at most 4(v), we do not prepare a network for a specific pair (a, b), say
N(u,v,a,b), but a general network N(u,v,—,b) = ({s,1} U C(v) U Xpuy, E(v) U Ex U
Es, cap), where Xj) = (Lo — Ligy)) U {h(W)}, E(v) = {(s,w) | w € C(W)}, Ex = {(c, D) |
¢ € Xnwyh Es = {(w,c) | w e C(v), c € Xy}, and cap(e) function is defined as follows:
Ve € E(v), cap(e) = 1, fore = (w,c) € Es, cap(e) = 1 if 5((v,w), (b,c)) =1, cap(e) =0
otherwise, and fore = (c, t) € Ex, cap(e) = 1 if ¢ # h(v), cap(e) = |Lyn)—1{b,b+1,b—1}|
if ¢ = h(v).

For a maximum flow i : ¢ — R*, we define X’ as {c¢ € X}, | cap((c, 1))—¥((c, 1)) = 1}.
By the flow integrality and arguments similarly to Properties[Tland[2] we can obtain the
following properties:

Lemma 2. If N(u,v,—,b) has no flow of size d’(v), then 6((u,v), (i,b)) = 0 for any
label i. a

Lemma 3. 6((u,v), (i, b)) = 1 if and only if vertex i can be reached by a y-alternating
path from some vertex in X' in N(u,v,—, b). O

Here, a y-alternating path is defined as follows: Given a flow ¢, a path in Ej is called
Y-alternating if its edges alternately satisfy cap(e) — y(e) > 1 and ¥(e) > 1. By these
lemmas, we can obtain 6((u, v), (x, b))-values for b by solving the maximum flow of
N(u,v,—, b) once and then applying a single graph search.

The current fastest maximum flow algorithm runs in O(min{m'/2, n*/3} mlog(n?/m)
log U) = O(n**mlognlog U) time, where U, n and m are the maximum capacity of
edges, the number of vertices and edges, respectively [9]. Thus the running time of
calculating 6((, v), (a, b)) for a pair (a, b) is

O((h(v) + d" W) (h(»)d” (v)) log(h(v) + d” (v)) log 4) = OU*(h(v)d" (v)) log* 4),

since h(v) < 4 and d”(v) < 4 (recall that d”’(v) = |C(v) — V.|). By using a similar tech-
nique of updating matching structures introduced in [[11]], we can obtain 6((«, v), (*, b))
in O(4*3(h()d" (v)) log* 4) + O(h(v)d” (v)) = OU**(h(v)d" (v)) log® 4) time. Since the
number of candidates for b is also bounded by k(v) from the neck/head level property,
we have the following lemma.

Lemma 4. 6((u,v), (+, %)) can be computed in O(U*3(h(v))*d" (v) log2 A) time, that is,
1(v) = OU*3(h(v))? d” (v) log* A). o
Combining this with 3 ,cy_y, -y, d”(v)=O(n/4) shown in Subsection2.2] we can show
the total running time for the L(2, 1)-labeling is O(n(max{h(v)})?(4~'/3 long)). By ap-
plying Theorem[Il we have the following theorem:

Theorem 2. For trees, the L(2, 1)-labeling problem can be solved in O(min{n log2 n,
A'3n)) time. Furthermore, if n = O(AP°Y1°¢D) it can be solved in O(n) time. m|

42 T. Hasunuma et al.

Corollary 1. For a vertex v in a tree T, we have 3,y tw) = O(TW))) if IT(v)| =
O(Apoly(logzl)). 0

Only by directly applying Theorem [Tl (actually Lemmal[Il), we obtain much faster run-
ning time than the previous one. In the following section, we present a linear time
algorithm, in which Lemma[Ilis used in a different way.

4 Proof of Linear Running Time

As mentioned in Subsection[2.2] one of keys for achieving the running time O(4'n) =
O(n") is equation 3, .y, d”(v) = O(n/4), where Vj is the set of vertices in which 6-
values should be computed via the matching-based algorithm; since the computation of
S-values for each v is done in O(4>d” (v)) time, it takes DveV; OU*d” (v)) = 0(4'n)
time in total. This equation is derived from the fact that in leaf vertices we do not need
to solve the matching to compute §-values, and any vertex with height 1 has 4—1 leaves
as its children after the preprocessing operation.

In our new algorithm, we generalize this idea: By replacing leaf vertices with sub-
trees with size at least 4* in the above argument, we can obtain 2vev, d’(v) = O(n/4%),
and in total, the running time Y, .y, O(4*°d”(v)) = O(n) is roughly achieved. Actu-
ally, this argument contains a cheating, because a subtree with size at most 4* is not
always connected to a major vertex, whereas a leaf is, which is well utilized to obtain
ey, d’(v) = O(n/4). Also, whereas we can neglect leaves to compute 6-values, we
cannot neglect such subtrees. We resolve these problems by best utilizing the properties
of neck/head levels and the maximum flow techniques introduced in Section

4.1 Efficient Assignment of Labels for Computing 6

In this section, by compiling observations and techniques for assigning labels in the
computation of 6((u, v), (x, %)) for v € V, given in Sections2land[3, we will design an
algorithm to run in linear time within the DP framework. Throughout this section, we
assume that an input tree T satisfies Properties 3] and [Below, we first partition the
vertex set V into five types of subsets defined later, and give a linear time algorithm for
computing the value of ¢ functions, specified for each type.

We here start with defining such five types of subsets V; (i = 1,...,5). Throughout
this section, for a tree 7’, we may denote |V(T")| simply by |T”’|. Let V), be the set of
vertices v € V such that T(v) is a “maximal” subtree of T with [T (v)| < 4°; i.e., for the
parent u of v, |T(u)| > 4°. Divide V) into two sets Vz(\;) =veVullTOW)| = U -19%
and Vz(\i) ={ve Vu | ITW| < (- 19)*} (notice that V; C Usev,, V(T (v))). Define
dw) = 1Cv) = VP (= d'(») = IC(») N V7). Let

Vi = Uper, VT(V),.

Voi={veV-=V|dv) =2}

Vii=(ve V-V dw) =1,C) N (VY - Vy) =0},

Vai= (v e V=(ViuV) [d0) = LZ ccompev, T < 44 - 19),
Vsi= (e V= ViUV [d0) = 1, T, ccqmpiy, T > 44 - 19).

A Linear Time Algorithm for L(2, 1)-Labeling of Trees 43

Fig. 1. Partition of V into V;’s (i = 1,...,5). Bold circles are leaves (V) or pseudo-leaves (Vﬁ) -
V1) with their subtrees, while bold squares are vertices in Vz(wl) with their subtrees.

Notice that V = Vi UV, U V3 U V4U Vs, and V; N V; = 0 for each i, j with i # j (see
Figure).

Here we describe an outline of the algorithm for computing 6((&, v), (*, *)), v € V,
named Compute-6(v) (Algorithm [I)), which can be regarded as a subroutine of the DP
framework. Below, we show that for each V;, 6((&, v), (%, %)), v € V; can be computed in
linear time in total; i.e., O(3,ey, #(v)) = O(n). Namely, we have the following theorem.

Theorem 3. For trees, the L(2, 1)-labeling problem can be solved in linear time.

Algorithm 1. CompUTE-6(V)

1: /** Assume that the head and neck levels of 7' (v) are at most h. **/

2: If v € V; U V,, then for each b € (Ly — L;) U {h}, compute 6((&, v), (*, b)) by the max-flow
computation in the network N(u, v, —, b) defined in Subsection 3.2

3: If v € V3, execute the following procedure for each b € L in the case of C(v) NV, = 0, and
for each b € {0,4 + 1} in the case of C(v) NV # 0.
/** Let w* denote the unique child of v not in Vl(j).**/

3-1: Ifl{c | 6((v, w*), (b,c)) = 1} = 2, then let 6((u, v), (>, b)) := 1.

3-2: If {c | 6((v,w*), (b,c)) = 1} = {c*}, then let 5((u, v), (c*, b)) := 0 and 6((u, v), (a, b)) := 1 for
all other labels a ¢ {b — 1,b,b + 1}.

3-3: Ifl{c | 6((v, w*), (b,c)) = 1}] = 0, then let 6((u, v), (>, b)) := 0.

4: If v € V4 U Vs, then similarly to the case of v € V| U V,, compute §((u,v), (x, %)) by the
max-flow computation in a network such as N (u, v, —, b) specified for this case (details will
be described in Subsection E3).

We first show O(2,ey, #(v)) = O(|V1]). For each v € V), we have O(3,,cv(rq)) tW))
= O(IT(v)]), by Corollary U] and |T(v)| = O(4°). Hence, we have O ey, t(v) =
O(Xrevy Zwevaoy W) = O ey, ITMI) = O(V1)).

The sketch of proofs for V,, V3, V4 and Vs are given in the subsequent subsections,
where some proofs of lemmas are omitted. See [[12] for details.

44 T. Hasunuma et al.

4.2 Computation of 6-Value for V,

By Lemma[] we can see that 3 ey, {(v) = O(3,cy, 4%3d'(0)h? log® 4) = o®? log® 4
Zve\{; d’(v)) (note that h < 4 and d”(v) < d’(v)) Now, we have d’(v) < d(v) + 4
< Ad(v). It follows that Zve% 1(v) = O(4'/3 log 4 Ve, d(v)). Below, in order to show
that 3} .y, #(v) = O(n), we prove that 3¢y, d(v) = O(n/4%).

By definition, there is no vertex whose all children are vertices in Vﬁ), since if there
is such a vertex v, then for each w € C(v), we have |T(w)| < (4 — 19)* and hence
|T(v)| < 4°, which contradicts the maximality of T (w). It follows that in the tree 7’
obtained from T by deleting all vertices in V| — V;é) , each leaf vertex belongs to V;é)

(note that V(T’) = Vz(\;) UV, UV;UV,4U Vs). Hence,

V(T - 1 = |ET")|

3 Sever drr(v)

YAV + Srevaovsuvaons @) + 1) = 1)

= LAV 1+ Doer, (d) + 1) + 21V3] + 2|Val + 2|Vs| = 1)
> DO+ 31Val + (V3] + Vel + | Vs| -

(the last inequality follows from d(v) > 2 for all v € V,). Thus, [V\)| = 1 > |V,].
Therefore, we can observe that 3y, d(v) = |E(T")| | V3| = V4l = |Vs| = V)| +[Val -1 <
2[V{D| = 2 (the first equality follows from |[E(T")| = Yev,ovaovsovs 40) = Soey, dv) +
V3] + |Va| + |Vs] and the second equality follows from |[E(T")| = [V(T")| - 1 = [V{})] +
[Val + V3] + [Val + V5] = 1). It follows by |V{)| = O(n/4*) that 3y, d(v) = O(n/4%).

4.3 Computation of §-Value for V3, V4, and Vs

We sketch proofs for Vi, V4, and Vs. Since Property Blindicates that |T'(w)| > 4 for each
we Vy =V (resp., ZweC(v)m(vj;;)—m |T(w)| > 4(4 — 19)), we have |V4| = O(n/4) (resp.,
[Vs| = O(n/4%)). By Property 4 we can observe that |V3| = O(n/4). Hence, it suffices
to show that for each v € V3 U V4 (resp., Vs), 6((, v), (*, *)) can be computed in O(A)
(resp., O(4?)) time. Now,

the head and neck levels of T (w) are at most 8 for each w € V1(v21) @)

by Lemma[land |T(w)| < (4 — 19)* (note that we assume that 4 > 26, since otherwise
the original CK algorithm is already a linear time algorithm). Let w* be the unique child
of vin C(v) - V7.

First consider the case where v € V3 (i.e., Step 3 in algorithm CompuTE-6(v)). Let b
be a label such that b € Lo if v e V{" := {v € V3 | C») NV, = 0}, and b € {0,4 + 1} if
S V(z) V3 — V(l) Notice thatif v € V(z) (i.e., C(v)NVy # 0), then by Property[3 v is
major and hence 6((u v),(a,b)) =1, a € Ly indicates that b = 0 or b = 4 + 1. Observe
that if there is a label ¢ € Ly — {b — 1, b, b+ 1} such that 5((v, w*), (b, ¢)) = 1, then for all
ac€eLy—{b-1,b,b+1,c}, we have 6((u, v), (a, b)) = 1. It is not difficult to see that this
shows the correctness of the procedure in this case. Obviously, for each v € V3, we can
check which case of 3-1, 3-2, or 3-3 in algorithm CompuTE-6(v) holds, and determine
the values of §((u, v), (x, b)), in O(1) time. Therefore, the values of 6((u, v), (*, *)) can
be determined in O(A) time.

A Linear Time Algorithm for L(2, 1)-Labeling of Trees 45

Next consider the case where v € V4. For a label b, we divide C(v) N (Vﬁ) - V)
into two subsets C1(b) := {w € C() N (VY = Vp) | 8((v,w), (b,c)) = 1 forall ¢ €
Ly — {b— 1,b,b + 1}} and C2(b) := {w € C(v) N (VS = V1) | 6((v,w), (b, ¢)) = O for
all c € Lg —{b - 1,b,b + 1}}. By the following property, we only have to consider the
assignments for {w*} U Cy(b).

Lemma 5. Let v € V4 and a and b be labels with |b — a| > 2 such that b € Ly if
Cv)NVy =0andb € {0,4 + 1} otherwise. Then, 6((u,v), (a,b)) = 1 if and only if
there exists an injective assignment g : {w*}U C(b) = Ly —{a,b—1,b,b + 1} such that
o((v,w), (b, g(w))) = 1 for each w € {w*} U Cr(b).

Below, we will show how to compute 6((u, v), (*, b)) in O(1) time for a fixed b, where
belLyif CvyNVy, =0andb € {0,4 + 1} otherwise. If |Co(b)| > 17, then 6((u, v), (x*,
b)) = 0 because in this case, there exists some w € C,(b) to which no label in Ly — Lg
can be assigned since |Ly — Lg| = 16. Assume that |C,(b)| < 16. There are the following
three possible cases: (Case-1) o((v, w*), (b, c;)) = 1 for at least two labels ¢, ¢, € L,
(Case-2) 6((v,w*), (b, c1)) = 1, for exactly one label c¢; € Lg, and (Case-3) otherwise.

(Case-1) By assumption, for any a, 6((v, w"),(b,c)) = 1 for some ¢ € Lg — {a}.
By Lemma [5l we only have to check whether there exists an injective assignment g :
Cy(b) » Ly — Lg — {a,b — 1,b,b + 1} such that 6((v,w), (b, g(w))) = 1 for each w €
Ca(D). According to Subsection 3.2] this can be done by utilizing the maximum flow
computation on the subgraph N’ of N(u, v, —, b) induced by {s, 1} U C(b) U X’ where
X' ={0,1,...,7,4-6,4-5,...,4+1}. Obviously, the size of N’ is O(1) and it follows
that its time complexity is O(1).

(Case-2) For all a # ¢y, the value of 6((u,v), (a, b)) can be computed similarly to
Case-1. Consider the case where a = c;. In this case, if 6((v, w"), (b,c)) = 1 holds,
then it turns out that ¢ € Ly — Lg. Hence, by Lemma [3] it suffices to check whether
there exists an injective assignment g : {w*} U Co(b) — Ly — Lg — {b — 1,b,b + 1}
such that 6((v, w), (b, g(w))) = 1 for each w € {w*} U C,(b). Similarly to Case-1, this
can be done in O(1) time, by utilizing the subgraph N”” of N(u,v,—, b) induced by
{s,8} U (Ca(b) U {w*}H) UX".

(Case-3) By assumption, if 6((v,w*),(b,c)) = 1 holds, then it turns out that ¢ €
Ly — Lg. Similarly to the case of a = ¢; in Case-2, by using N, we can compute the
values of 6((u, v), (x, b)) in O(1) time.

We analyze the time complexity for computing 6((u, v), (x, *)). It is dominated by
that for computing Cy(b), C2(b), and 5((u, v), (, b)) for each b € Ly. By (), we have
Ci(b) = Ci(b’) for all b,b’ € Lg and i = 1,2. It follows that the computation of C;(b)
and C»(b), b € Ly can be done in O(|C(v) N (VI(;) — Vp)|) time. On the other hand, the
values of 6((u, v), (*, b)) can be computed in constant time in each case of Cases-1, 2
and 3 for a fixed b. Thus, §((u, v), (*, *)) can be computed in O(4) time.

Finally, we consider the case where v € V5. We will prove that the values of 6((u, v),
(*,b)) can be computed in O(4) time for a fixed b. A key is that the children w €
Cvyn V;VZI) of v can be classified into 2!7 (= O(1)) types, depending on its 6-values
O6((v,w), (b, D) | i € (Lo— Lg)U{Cg}) where ¢g is some label in Lg—{b—1, b, b + 1}, since
by @, 6((v, w), (b, ¢)) = 6((v,w), (b, Tg)) forany ¢ € Lg — {b—1,b,b+ 1}. Then, we can
construct in O(d’(v)) time a network N’ (u, v, a, b) with O(1) vertices, O(1) edges, and
O(4) units of capacity from N(u, v, a, b) by letting X, := Xz and replacing C(v) with

46

T. Hasunuma et al.

a set of 2!7 vertices corresponding to types of vertices in C(v) N Vﬁ), and compute in
O(log 4) time the values of d((u, v), (a, b)) by applying the maximum flow techniques to
N'(u,v,a,b) (see [12] for the details about N’ (u, v, a, b)). Furthermore, by the following
lemma, we can see that 6((«, v), (*, b)) can be obtained by checking d((&, v), (a, b)) for
O(1) candidates of a; 6((u, v), (x, b)) can be obtained in O(4) time.

Lemma 6. If 6((u,v), (a1, b)) # 6((u,v), (az, b)) for some ay,ar € Ly —{b — 1,b,b + 1}
(say, 6((u, v), (ai, b)) = 1), then we have 6((v,w*), (b, az)) = 1 and 6((v,w*), (b,a)) =0
for all a € Ly — {ay,b — 1,b,b + 1}, and moreover, 6((u,v),(a,b)) = 1 for all a €
Ls —{a),b—1,b,b+ 1}.

References

1.

2.

11.

12.

13.

14.

15.

16.
17.

Bodlaender, H.L., Kloks, T., Tan, R.B., van Leeuwen, J.: Approximations for A-coloring of
graphs. The Computer Journal 47, 193-204 (2004)

Calamoneri, T.: The L(hk)-labelling problem: A survey and annotated bibliography.
The Computer Journal 49, 585-608 (2006), http://www.dsi.uniromal.it/~calamo/
PDF-FILES/survey.pdf (January 13, 2009)

. Chang, GJ., Ke, W.-T., Kuo, D., Liu, D.D.-F.,, Yeh, R.K.: On L(d, 1)-labeling of graphs.

Discr. Math. 220, 57-66 (2000)

. Chang, G.J., Kuo, D.: The L(2,1)-labeling problem on graphs. SIAM J. Discr. Math. 9, 309—

316 (1996)

. Fiala, J., Golovach, P.A., Kratochvil, J.: Distance constrained labelings of graphs of bounded

treewidth. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP
2005. LNCS, vol. 3580, pp. 360-372. Springer, Heidelberg (2005)

. Fiala, J., Golovach, P.A., Kratochvil, J.: Distance constrained labelings of trees. In: Agrawal,

M., Du, D.-Z., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 125-135. Springer,
Heidelberg (2008)

. Fiala, J., Golovach, P.A., Kratochvil, J.: Computational complexity of the distance con-

strained labeling problem for trees (Extended abstract). In: Aceto, L., Damgéard, I., Gold-
berg, L.A., Halld6rsson, M.M., Ingdlfsdéttir, A., Walukiewicz, 1. (eds.) ICALP 2008, Part L.
LNCS, vol. 5125, pp. 294-305. Springer, Heidelberg (2008)

. Fiala, J., Kloks, T., Kratochvil, J.: Fixed-parameter complexity of A-labelings. Discr. Appl.

Math. 113, 59-72 (2001)

. Goldberg, A.V., Rao, S.: Beyond the flow decomposition barrier. J. ACM 45, 783-797 (1998)
. Griggs, J.R., Yeh, R.K.: Labelling graphs with a condition at distance 2. SIAM J. Disc.

Math. 5, 586-595 (1992)

Hasunuma, T., Ishii, T., Ono, H., Uno, Y.: An O(n'7) algorithm for L(2, 1)-labeling of trees.
In: Gudmundsson, J. (ed.) SWAT 2008. LNCS, vol. 5124, pp. 185-197. Springer, Heidelberg
(2008); Journal version to appear in Theoretical Comp. Sci., doi:10.1016/j.tcs.2009.04.025
Hasunuma, T., Ishii, T., Ono, H., Uno, Y.: A linear time algorithm for L(2,1)-labeling of
trees. CoRR abs/0810.0906 (2008)

Havet, F., Reed, B., Sereni, J.-S.: L(2,1)-labelling of graphs. In: Proc. 19th SIAM-SODA, pp.
621-630 (2008)

Hopcroft, J.E., Karp, R.M.: An n°/? algorithm for maximum matchings in bipartite graphs.
SIAM J. Comput. 2, 225-231 (1973)

Kratochvil, J., Kratsch, D., Liedloff, M.: Exact algorithms for L(2, 1)-labeling of graphs.
In: Kucera, L., Kucera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 513-524. Springer,
Heidelberg (2007)

Wang, W.-EF.: The L(2,1)-labelling of trees. Discr. Appl. Math. 154, 598-603 (2006)

Yeh, R.K.: A survey on labeling graphs with a condition at distance two. Discr. Math. 306,
1217-1231 (2006)

http://www.dsi.uniroma1.it/~calamo/PDF-FILES/survey.pdf
http://www.dsi.uniroma1.it/~calamo/PDF-FILES/survey.pdf

On Inducing Polygons and Related Problems*

Eyal Ackerman'!, Rom Pinchasi?, Ludmila Scharf!, and Marc Scherfenberg!

! Institute of Computer Science, Freie Universitit Berlin, Takustr. 9,
14195 Berlin, Germany
{eyal,scharf,scherfen}@mi.fu-berlin.de
2 Mathematics Department, Technion—Israel Institute of Technology,
Haifa 32000, Israel

room@math.technion.ac.il

Abstract. Bose et al. [I] asked whether for every simple arrangement .4
of n lines in the plane there exists a simple n-gon P that induces A by ex-
tending every edge of P into a line. We prove that such a polygon always
exists and can be found in O(nlogn) time. In fact, we show that every fi-
nite family of curves C such that every two curves intersect at least once
and finitely many times and no three curves intersect at a single point pos-
sesses the following Hamiltonian-type property: the union of the curves in
C contains a simple cycle that visits every curve in C exactly once.

1 Introduction

Arrangements of lines in the plane are among the most studied structures in Com-
binatorial and Computational Geometry (see, e.g., [4l5]). Every set of straight-line
segments S naturally induces an arrangement of lines, simply by extending every
segment in S into a line. Bose et al. [I] asked the following natural question.

Problem 1. Does every simple arrangement A of n lines contain a simple n-gon
that induces A?

An arrangement of lines is simple if every pair of lines intersects, and no three
lines intersect at a single point. A polygon (resp., curve) is simple if it is non-
self-intersecting. Fig. Ila) shows a simple arrangement of six lines and a simple
hexagon that induces this arrangement.

Problem [remained open until now, though a few partial results were ob-
tained. In [I] it was shown that a simple arrangement A of n lines contains a
subarrangement of m > y/n — 1 4+ 1 lines that has an inducing simple m-gon,
and that A always has an inducing simple n-path (a polygonal chain consist-
ing of n line segments), which can be constructed in O(n?) time. Recently, the
third and fourth authors [8] showed that an inducing n-path can be constructed
in O(nlogn) time, and that there always exists an inducing simple O(n)-gon,
which can be found in O(n?) time.

Our main result is an affirmative answer to Problem [I1

* Research by Eyal Ackerman was supported by a fellowship from the Alexander
von Humboldt Foundation. Research by Rom Pinchasi was supported by the Israeli
Science Foundation (grant No. 938/06).

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 47-58] 2009.
(© Springer-Verlag Berlin Heidelberg 2009

48 E. Ackerman et al.

2

b

(a) (b)

Fig. 1. An inducing simple n-gon and n-path

Theorem 1. For every simple arrangement A of n > 2 lines in the plane there
is a simple n-gon that induces A. Given the set of n lines that form A, such a
polygon can be constructed in O(nlogn) time.

We give two different constructive proofs for the existence of an inducing sim-
ple n-gon. The first proof is short and elegant and yields a non-optimal but
polynomial-time algorithm for finding such a polygon. The second proof yields
an O(nlogn)-time algorithm. It is based on a simple idea, however, it involves
several case distinctions and is, thus, quite technical.

During our quest for a solution to Problem [Il we proved the following inter-
esting fact.

Theorem 2. For every simple arrangement A of n non-vertical lines in the
plane there is an x-monotone n-path that induces A.

Note that the first part of Theorem [I] can also be phrased as follows: Every
arrangement of lines contains a simple cycle (i.e., a closed curve) that visits
every line exactly once. To be more precise, we say that a curve x visits another
curve y if their intersection contains a point in which they neither cross nor
touch. A simple curve visits y exactly once if it visits y and their intersection is
connected. The first part of Theorem [l is then equivalent to saying that every
simple line arrangement contains a simple (polygonal) cycle that visits every line
exactly once. We also have the following generalization of Theorem [l

Theorem 3. Let C be a finite family of n > 2 simple curves in R, such that

every pair of curves in C intersects at least once and at most finitely many times,

and no three curves intersect at the same point. Then CUCC contains a simple
€

cycle that visits every curve exactly once.

The rest of this paper is organized as follows. A first proof for the existence of
an inducing simple n-gon is given in Section 2l This proof is then extended in
Section 3] to a proof of Theorem [Bl In Section [we describe a different and more
efficient way of finding an inducing simple n-gon. Due to space limitations, we

On Inducing Polygons and Related Problems 49

only sketch the idea of the proof and omit most of the details, which can be
found in the full version of this paper. Theorem 2l is proved in Section [} while
Section [6] contains some concluding remarks.

2 First Proof of the Existence of an Inducing Simple
n-gon

Let A be a simple arrangement of n lines in the plane. We begin by constructing
a simple path that visits every line in A exactly once. This is done in a way
similar to the construction of an inducing path in [I]. Consider an arbitrary
intersection point of two lines, denote these lines by ¢; and /5. Walk a short
distance on ¢; toward its intersection point with f5. Remove ¢1, and walk on ¢
in a direction that contains at least one intersection point, until reaching the
first intersection point. Let ¢35 be the other line that determines this intersection
point. Remove /5 and repeat the same process for ¢35 and so on and so forth,
until reaching a line that has no additional intersection points. Finally, walk a
short distance on this line in some direction. See Fig. [[[b) for an example.

Since every pair of lines intersects, no line is missed and this process results
in a path that induces every line in A. Denote this path by Q. The lines in A are
denoted by /¢4, /s, ..., £, according to the order they are visited by Q. Denote
by s; the segment of £; on). Assume to the contrary that () is self-intersecting.
Then there are two intersecting segments, s; and s;, such that ¢ < j — 2. But
this is a contradiction to the definition of ¢, as the first line, different from
ly,...,0;, that we encounter while walking along /.

Observe that @ lies in one of the two half-planes determined by ¢,,. Indeed,
otherwise ¢,, would have crossed @, contradicting the definition of ¢,, as the last
line in A we encounter while creating the path). We assume without loss of
generality that ¢, coincides with the z-axis and that @ lies in the half-plane
above £,,. For convenience, denote the line ¢,, by /.

We call a simple inducing n-path of A rooted above ¢ if it lies in the closed half-
plane above ¢ and /¢ includes an extreme segment of the path. As we have just
seen, there is at least one simple inducing n-path rooted above £, namely Q. For
such a path W we denote by ¢1(W),...,q,—1(W) the n — 1 internal vertices of
the path starting from ¢, (W) on £. We denote by (W) the line through g, —1 (W)
that includes the other extreme segment of W. Denote by ¢~ (W) the half-line of
¢(W) that consists of all points with y-coordinates smaller than the y-coordinate
of ¢n—1(W). We denote by ¢, (W) the topmost (also first) intersection point of
0~ (W) with LU [q1(W)g2(W)]U. .. U[gn—2(W)gn—1(W)]. (Here, [ad] denotes the
line segment connecting point a to point b.)

Let z1,. ..,z denote all the intersection points in 4 indexed in any way such
that ¢ < j if the y-coordinate of z; is smaller than the y-coordinate of z;. We
then define for every j, Y(z;) = j.

For a simple inducing n-path W rooted above £, let Y (W) = 37| Y (q;(W)).
Consider the simple inducing n-path W rooted above ¢ such that Y (W) is mini-
mum. If g, (W) lies on ¢, then observe that the vertices ¢1 (W), ..., g,(W) define

50 E. Ackerman et al.

Gi+2(W) Gi2(W)

/

/ ;
s Gi+1 (W)
vy

g1 (W) 0
(W

aW) [o (W)

(a) gn lies on £ (b) qn lies on W (c) W'

Fig. 2. The paths W and W’

a simple inducing closed n-path of A (see Fig. la)). Assume therefore that
qn (W) is the intersection point of ¢(W) with the segment [g;(W)q;+1(W)] for
some 1 < i < n—2 (see Fig.2(b)). Then we define W’ as the path whose internal
vertices are

Q1(W)7 ERRE Qi(W)7 an(W), Qn—l(W) s Qi (W),

and hence ¢(W’) is the line through ¢;+1 (W) and g;42(W). Observe that W’ is a
simple inducing n-path rooted above ¢. We have Y (W) < Y (W) because ¢, (W)
has a smaller y-coordinate than the y-coordinate of ¢;1+1 (W) (see Fig.[2(c)). We
have thus reached a contradiction to the minimality of T . a

Remark. The proof of Theorem [II, presented above, yields an algorithm with
running time polynomial in n. This is because Y (W) is always smaller than n?
and this gives a bound on the number of iterations going from W to W’ required
to find a simple inducing closed n-path for A.

3 Proof of Theorem 3

Let C be a family of n simple curves in R?, such that every pair of curves in

C intersects at least once and at most finitely many times, and no three of the

curves meet at a point. We will show that CUC C contains a simple closed path
€

that visits every curve in C exactly once.

The proof is a modification of the argument in the proof of Theorem [l We
first find a simple path @ that visits every curve in C exactly once, exactly in
the same way that was described in Section 2] applied this time to C. Let ¢ be
a curve in C containing the last segment of @ thus constructed. As we observed
in the case of lines, ¢ does not meet () at any point outside the segment of)
contained in c.

A simple (oriented) path W that visits every curve in C exactly once will be
called rooted in c if c is the first curve visited by W. Clearly, @ is an example
for such a path.

For a path W, as above, we denote by ¢1 (W), ..., ¢,—1(W) the n — 1 internal
vertices of the path starting from ¢; (W) on c. For i = 1,...,n — 2 we denote

On Inducing Polygons and Related Problems 51

by s;(W) the segment of W whose vertices are ¢;(W) and ¢;11(W), these will
be called the internal segments of W. We denote by ¢(W) the curve in C that
passes through ¢,—1(W) and contains the last segment of W.

Let s be a portion of a curve in C. We define |s| as the number of intersection
points of pairs of curves in C that lie on s. Finally, we define

Y(W) = f(Iss(W)],- . [sn—2(W)]),

where f(x1,...,2n_2) is a strictly monotone increasing function of the lexico-
graphic order of (zq,..., CCn_g)

Consider the simple path W that is rooted in ¢ and visits every curve in C
exactly once, such that Y(WW) is minimum. Let p be an intersection point of
c¢(W) and c. Let ¢, (W) be the intersection point of cU sy (W)U ... U sp_o(W)
and the portion of ¢(W) between ¢,_1(W) and p that is closest to g,—1(W)
along the curve c(W).

If ¢, (W) lies on ¢, then observe that the vertices g1 (W), ..., q,(W) define a
simple closed path that visits every curve in C exactly once. Assume therefore
that ¢, (W) is an intersection point of ¢(W) with s;(W) for some 1 < i <n — 2.
Let s’ denote the portion of s;(W) delimited by ¢;(W) and ¢, (W). Let s” denote
the portion of ¢(W) delimited by ¢,(W) and g,—1(W). Then we define W’ as
the path rooted in ¢ whose internal segments are

Sl(W), ey Sifl(W), S/, S//, Sn,Q(W), Sn,:_),(W) ey Si+2(W),

and ¢(WW’) is the curve containing the segment s;1(W).

Observe that W' is a simple path rooted on ¢ that visits every curve in C
exactly once. It immediately follows that Y(W') < Y/(W), because s;(W') =
sj(W) for j = 1,...,4 — 1 while it is easy to see that |s;(W')| < [s;(W)]| as
si(W') = ¢ C (W) and g;+1 (W) is an intersection point in s;(W) \ s;(W").
We have thus reached a contradiction to the minimality of W. a

Remarks. (1) Because Theorem [3] is stated in R3, geometry actually does not
play any role here. We may conclude the same result for “combinatorial curves”
that “intersect” finitely many times, as long as there is a total order on the set
of intersection points in each curve.

(2) The result in Theorem Blis valid also if the curves in C are not simple and
have self-crossings. In this case we repeat the proof and ignore self-intersections
of curves. Finally, when obtaining the resulting closed path we observe that self-
intersections of the closed path result only from loops in the path. These loops
can easily be canceled.

4 Finding an Inducing Simple n-gon Efficiently

Let A be a simple arrangement of n lines in the plane. We incrementally construct
a polygon inducing A by starting with the boundary of a cell of A. In every

! For example, f(11,0,6,...) > £(6,9,5,...) > £(6,9,4,...).

52 E. Ackerman et al.

Fig. 3. Initialize Py to be the boundary of the bounded face of A incident to a critical
point p

construction step the polygon is extended using a part of the boundary of the
cell containing it. We assume that n > 4, since, combinatorially, there is only
one arrangement of size three and one of size four and their inducing polygons
can be easily found.

We start with a so-called critical point p, i.e., p is the first intersection point
on both lines g; and g» containing it. The initial polygon Py is then the boundary
of the only bounded face incident to p, see Fig. [3

Let P; denote the polygon constructed in step 4, and | P;| its number of edges.
Denote by A; the arrangement of all the lines except the ones induced by P;. We
maintain the following invariants throughout the construction of the polygons P;.

Property 1.

1. P; is a simple polygon;

2. P; induces |P;| lines of the arrangement 4; and

3. P; is contained in an unbounded face of the arrangement A;.

The unbounded face of A; containing P; is denoted by C®) and its by R(). Define
the orientation of the two initial lines g; and g- in direction from p towards the
remaining intersection points. Without loss of generality we can assume that all
intersection points of gs lie in the positive half-plane of g1, denoted by H™(g1),
as in Fig. 3

For every construction step we maintain a so-called base line b(*). Intuitively,
the base line will be the line that determines the direction in which P; is extended.

For Py the base line is b(®) = g;. The edges of P; are labeled in the following

way: the edge contained in the base line b is the edge eé) In counter-clockwise

order we enumerate with negative indices the edges contained in the previous
base lines e(_i)l, o e(l) , where e) is contained in the first base line (). These
edges are referred to as base edges. It can be shown that the base edges form a
connected concave chain in P;. The remaining non-base edges are enumerated in

clockwise order with positive indices egi), . 6,21)7 where egi) is incident to eéi)

and e,(:) is incident to e@n.

A line containing an edge egz) is denoted by lj(z) and the intersection point of
two lines l(l) l(Y by :1:(1) We define the orientation of base edges in clockwise
direction and the orlentatlon of non-base edges in counter clockwise direction

On Inducing Polygons and Related Problems 53

(@)
. The part of lgl) \e§l) oriented in positive (negative)
)+

with respect to the polygon P;. For each line [
(@)
direction of lj(-z) is called positive (negative) half-line and is denoted by l§-l

its orientation is defined by the

orientation of the edge e

(lj(-l)_), respectively. For simplicity we will omit the index (¢) if all identifiers
refer to the same step ¢, and will use the index in order to distinguish between
different steps.

We maintain the following properties for base lines, and non-base lines, re-

spectivelyE

Property 2. All intersection points of a base line I;, j < 0, with A; lie in the
positive half-line, ie., [; NA; = () for j < 0. The base edges eg,e_1,...,€_m
form a concave chain in P;, and every non-base edge is contained in the union
of the positive half-planes (i.e., half-planes to the right of the oriented line) of
the base lines lg,l_1,...,1_,,.

Property 3. The intersection of a non-base line [; with a non-base edge ey, is
empty, for k> j + 1.

For the line [; it would be helpful to have an even stronger property:

Property 4. The intersection of [with P; is exactly the edge e;. That is, Iy
supports P;.

The idea of the extension step is to extend the polygon P; in direction of the
base line by modifying the edges ey up to at most es and adding a part of the
boundary R to the new polygon P, ;. In every extension step we remove a
chain of edges from the polygon P;, and attach a simple polygonal chain to the
open ends. Thus, if the added chain does not intersect the unchanged part of P;,
the polygon P, is simple.

Depending on the combinatorial configuration of the lines Iy, 12,3, the chain
of base edges, and the boundary R, one of several extension construction steps
is taken, until all lines of A are induced by P;, for some j. The inducing polygon
for A is then P = P;.

The first case distinction is whether the negative half-line of [; intersects the
boundary R. If it does, Case 1 applies.

Case 1 [17 N R # 0 |: The edge e; is replaced by the part of [; from x7 2 to
its intersection with R. The edge eg is extended until the intersection of b and
R. Finally, we add the segment of R between these two intersection points, see
Fig. B(a). The base line for P;,; remains unchanged p(+1 = p(®),

The next distinction is whether I intersects R:

Case 2 [1; "R =0 and I N R # () J: In this case e; is replaced by the part
of I from z¢ to its intersection with R. The edge e, is extended following the

2 Property Bl can be violated in a special case that is considered in the full version of
the paper.

54 E. Ackerman et al.

pli+1) — ZY')

(a) Case 1 (b) Case 2

Fig.4. Case 1 and 2: The polygon P; is the shaded area. The identifiers refer to P;,
and the new polygon P;4+1 is outlined by the bold black line.

orientation of /5 until the intersection of l;‘ and R. Finally, we add the segment
of R between these two intersection points, see Fig. dl(b). The new base line for
the polygon P;,; is now b(i+1) = lgl).

It is easy to verify that all the above-mentioned properties are maintained
when applying Cases 1 or 2. Due to space limitations we do not include the
remaining and more complicated cases in this extended abstract, and refer the

reader to the full version of the paper for those missing details.

Running Time. In the initialization step we need to find an intersection point of
the arrangement that is the last point on both lines intersecting in it. Ching and
Lee [3] showed that such points are a subset of the intersection points between
two neighboring lines sorted by slope. Thus, the initialization can be performed
in O(nlogn) time by sorting the lines by slope, computing the intersection points
of the neighboring lines and selecting the point with the maximum or minimum
z-coordinate.

For the extension steps we consider the dual points of the lines of the ar-
rangement, where the dual space 7* is defined as in [2]: The dual of a point
p : (a,b) in the primal space is the line p* : f(z) = ax — b in 7*; the dual of a
line I : f(x) = axz + b in the primal space is the point I* : (a, —b) € 7*.

Let A* denote the set of points in 7* dual to the lines of the arrangement
A. We will utilize the following property of the dual points: the points of the
lower /upper convex hull of A* are the duals of the lines in A that form the
boundary of the upper/lower unbounded face of the arrangement.

For that purpose we can rotate the arrangement A such that the initial two
lines g; and g2 have the maximal and the minimal slope, the initial point p =
g1 N go is a vertex of the lower unbounded face, and no line of A is vertical.
Observe that p must be the only vertex of the lower unbounded face.

When the lines g1 and gy are removed from A the point p is contained in the
new lower unbounded face. Similarly, after every extension step the constructed

On Inducing Polygons and Related Problems 55

polygon is contained in the lower unbounded face of the arrangement of the
remaining lines.

In every extension step we need to determine the intersection points of a
constant number of lines with the boundary of the lower unbounded face of the
arrangement of the remaining lines and to update the boundary of the lower
unbounded face after deleting some lines. Updating the boundary of the lower
unbounded face corresponds to updating the upper convex hull of the dual point
set. Using the dynamic convex hull data structure by Hershberger and Suri [6]
updates of the upper convex hull of the point set can be performed in O(logn)
time, that is O(nlogn) time in total.

Intersection points of a line [with the boundary of the lower unbounded face
correspond in dual space to lines through [* that are tangent to the upper convex
hull of the remaining points. These tangent lines can be found in O(logn) time.

Thus the total time complexity of the construction algorithm is O(nlogn).

5 «-Monotone Inducing n-Path: Proof of Theorem

In this section we show that every simple arrangement of n non-vertical lines,
contains an inducing x-monotone n-path. Since the path is z-monotone, it is
clearly simple. Suppose first that n is an even number. We sort the lines according
to their slopes, and denote by A the set of the first n/2 lines in this order, and
by B the rest of the lines. Initially, all the lines are unmarked. Pick the leftmost
intersection point of two unmarked lines, one from A and one from B, then mark
these lines. Continue to pick a total of n/2 points p1,pa,...,pn 2 this way. We
will construct an z-monotone n-path through py, pa,. .., pn/2-

Denote the lines that intersect at p; by a; € Aand b; € B, i = 1,2,...,n/2.
First, pick arbitrarily one of the lines that intersect at p1, say a1, walk a short
distance on a; from a point left of p; to pi, then walk a short distance on by
rightwards. Assume that we have built an z-monotone 2i-path that goes a short
distance rightwards beyond p; and induces the lines ai,...,a; and by,...,b;.
We will show how to extend it into an az-monotone 2(i + 1)-path that goes a
short distance rightwards beyond p;y; and induces the lines aj,...,a;+1 and
bi,...,bit1.

Observation 4 The intersection of a;+1 (resp., biy1) and b; (resp., a;) is to
the right of p;.

Proof. Otherwise this intersection point would be picked instead of p;.

Consider the triangle with a vertex at p;, an edge on the vertical line through
pi+1, an edge e, on a;, and an edge e, on b; (see Fig. [)).

Observation 5 e, (resp., ep) is crossed by a;11 or biy1.

Proof. We consider two cases based on whether p;;1 is inside the wedge deter-
mined by a; and b;. Suppose that it is. Then a;11 (resp., b;11) must cross either

56 E. Ackerman et al.

Qj+1
(a) pi+1 is inside the wedge deter- (b) pit1 is outside the wedge deter-
mined by a; and b;. mined by a; and b;.

Fig. 5. An illustration for the proof of Observation Bl a;t+1 cannot be in the shaded
region.

e« and e,. Suppose, w.l.o.g., that they both cross e, (otherwise, we can reflect
everything with respect to the z-axis). See Fig. Bla). Then a;4; must have a
larger slope than b;, otherwise it will cross b; to the left of p;, contradicting
Observation [This is of course impossible.

Suppose that p;+1 is outside the wedge determined by a; and b;. We can as-
sume, w.l.o.g., that it is below the wedge, for otherwise we can reflect everything
with respect to the z-axis. If a;41 does not cross both e, and ep, then it must
have a larger slope than b;, or cross b; to the left of p;, which is impossible. See
Fig. B(b) for an illustration.

Now, suppose that the path built so far goes a short distance rightwards beyond
p; on e, (resp., ep). Then by Observation [l there is a line £ € {a;41,b; 41} that
crosses e, (resp., e;). Walk on e, (resp., ;) until the intersection point with ¢,
then walk on ¢ until p;11, and finally walk a short distance rightwards on the
other line in {a;y1,b;+1}. The new path is an z-monotone 2(i + 1)-path that
goes a short distance rightwards beyond p;4+; and induces the lines aq, ..., a;4+1
and bl, ey bi+l-

It remains to consider the case that n is an odd number. Let ¢ be the line with
the median slope. Create a new line ¢’ that is a slightly rotated copy of £ such
that its slope is slightly smaller than the slope of ¢, and their intersection point
is the leftmost intersection point in the arrangement .4 U {¢'}. Now continue as
before, while choosing ¢’ as the first induced line. Finally, remove the segment
of ¢ from the constructed path.

Time complezity. An inducing x-monotone n-path can be found in O(n?) time
as follows. First we construct the arrangement of lines. This can be done in
O(n?) time [2]. Then we find the sets A and B in O(nlogn) time. For every line
in A we find its leftmost intersection point with a line from B. The first vertex

On Inducing Polygons and Related Problems 57

/

Fig. 6. n lines with exponentially many inducing simple n-gons. At every “step” of the
“stairs” one can “climb” either from left or from right.

of the path is the leftmost point among these points. The two lines defining this
minimum point are removed from the arrangement while updating the minimum
leftmost points for the other lines. This can be done in O(n) time. The process of
finding the next leftmost intersection point between a line from A and a line from
B (among the remaining lines), removing the corresponding lines, and making
appropriate updates is then repeated O(n) times.

6 Concluding Remarks

We proved in two different ways that every simple arrangement of n lines contains
an inducing simple n-gon. The proof given in Section [2] actually works also for
pseudoline arrangements. A pseudoline arrangement consists of a finite set of
z-monotone curves, unbounded in both directions, such that every two curves
intersect at exactly one point where they properly cross each other. It is enough
to show that there is a partial order of the intersection points that lie above
the pseudoline £,,. Such an order can be derived from orienting every pseudoline
toward its intersection point with ¢,. The proof then shows that there is a
simple cycle that visits every pseudoline exactly once, and that such a cycle can
be found in polynomial time. In fact, the proof also works for pseudo-parabolas
(pseudo-parabolas are defined similarly to pseudolines, except that two curves
cross exactly twice). Here, a partial order of the intersection points can be defined
as in [7.

The second proof, given in Section [yields an O(nlogn)-time algorithm for
finding an inducing simple polygon. We believe that this time complexity is the
best possible, but leave it as an open question.

An inducing simple polygon need not be unique. It would be interesting to
determine the maximum and minimum number of inducing simple n-gons of an
arrangement of n lines. Fig. [6]l shows an arrangement with exponentially many
inducing simple n-gons.

58 E. Ackerman et al.
References
1. Bose, P., Everett, H., Wismath, S.: Properties of arrangement graphs. Int. J. Com-

put. Geom. Appl. 13, 447-462 (2003)
de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry,
3rd edn. Springer, Berlin (2008)

. Ching, Y.T., Lee, D.T.: Finding the diameter of a set of lines. Pattern Recogni-

tion 18(3-4), 249-255 (1985)

Felsner, S.: Geometric Graphs and Arrangements. Some Chapters from Combina-
torial Geometry. Advanced Lectures in Mathematics. Friedr. Vieweg & Sohn, Wies-
baden (2004)

. Griinbaum, B.: Arrangements and spreads. In: Conference Board of the Mathemat-

ical Sciences Regional Conference Series in Mathematics, vol. 10. American Mathe-
matical Society, Providence (1972)

Hershberger, J., Suri, S.: Applications of a semi-dynamic convex hull algorithm.
BIT 32(2), 249-267 (1992)

Perlstein, A.: Problems in Combinatorial Geometry, Ph.D. Thesis, Mathematics
Department, Technion—TIsrael Institute of Technology (2008)

Scharf, L., Scherfenberg, M.: Inducing polygons of line arrangements. In: Hong, S.-
H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 507-519.
Springer, Heidelberg (2008)

Computing 3D Periodic Triangulations*

Manuel Caroli and Monique Teillaud

INRIA Sophia Antipolis — Méditerranée
{Manuel.Caroli,Monique.Teillaud}@sophia.inria.fr

Abstract. This work is motivated by the need for software computing
3D periodic triangulations in numerous domains including astronomy,
material engineering, biomedical computing, fluid dynamics etc. We de-
sign an algorithmic test to check whether a partition of the 3D flat torus
into tetrahedra forms a triangulation (which subsumes that it is a sim-
plicial complex). We propose an incremental algorithm that computes
the Delaunay triangulation of a set of points in the 3D flat torus without
duplicating any point, whenever possible; our algorithmic test detects
when such a duplication can be avoided, which is usually possible in
practical situations. Even in cases where point duplication is necessary,
our algorithm always computes a triangulation that is homeomorpic to
the flat torus. To the best of our knowledge, this is the first algorithm of
this kind whose output is provably correct. The implementation will be
released in CGAL [T7].

1 Introduction

Computing Delaunay triangulations of point sets is a well-studied problem in
Computational Geometry. Several algorithms as well as implementations
[B1I26JT9I382512T] are available. However, these algorithms are mainly restricted
to triangulations in R?. In this paper, we take interest in triangulations of a pe-
riodic space, represented as the so-called flat torus [35].

This research was originally motivated by the needs of astronomers who study
the evolution of the large scale mass distribution in our universe by running dy-
namical simulations on periodic 3D data. In fact there are numerous application
fields that need robust software for geometric problems in periodic spaces. A
small sample of these needs, in fields like astronomy, material engineering for
prostheses, mechanics of granular materials, was presented at the CGAL Prospec-
tive Workshop on Geometric Computing in Periodic Spacesﬂ Many other diverse
application fields could be mentioned, for instance biomedical computing [36],
solid-state chemistry [29], physics of condensed matter [I5], fluid dynamics [10],
this list being far from exhaustive.

* This work was partially supported by the ANR (Agence Nationale de la Recherche)
under the “Triangles” project of the Programme blanc (No BLANOQ07-2 194137)
http://www-sop.inria.fr/geometrica/collaborations/triangles/.

! http://www.cgal.org/Events/PeriodicSpacesWorkshop/

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 59-[70] 2009.
(© Springer-Verlag Berlin Heidelberg 2009

60 M. Caroli and M. Teillaud

So far we are not aware of any robust and efficient algorithm for computing
Delaunay triangulations from a given point set S in a periodic space. In the
literature, proved algorithms usually need to compute with 9 copies of each input
point in the planar case [2317], or with 27 copies in 3D [14], which obviously leads
to a huge slow-down. Additionally, their output is a triangulation in R¢,d = 2, 3,
of the copies of the points, whereas our approach always outputs triangulations
of the flat torus.

In the engineering community, an implementation for computing a periodic
Delaunay “tessellation” was proposed, avoiding duplications of points [34]. How-
ever, the tessellation is not necessarily a simplicial complex. Moreover, the algo-
rithm heavily relies on the assumption that input points are well distributed.

In fact, as shown
in Section E wusing
copies of the input
points may actually
be necessary: in some
cases, the flat torus
may be partitioned
into tetrahedra hav- L
ing the points as ver-
tices and satisfying Fig.1. The partition of the torus (left) and the flat torus
the Delaunay prop- (right) is not a triangulation: All simplices have a unique

erty, but such a parti- vertex

tion does not always form a simplicial complex. Figure[llshows a simple partition
of the 2D torus that is not a triangulation. However, in practice, input data sets
are likely to admit a Delaunay triangulation.

Let us insist here on the fact that computing a “true” triangulation, i.e. a
simplicial complex, is important for several reasons. First, a triangulation is
defined as a simplicial complex in the literature [2I9/T6I20122I33I39]. Moreover,
designing a data structure to efficiently store tetrahedral tessellations that are
non-simplicial complexes (e.g. A-complexes [18]) would be quite involved. The
CcAL 3D triangulation data structure, that we reuse in our implementation,
assumes the structure to be a simplicial complex [24]. Even more importantly,
algorithms using a triangulation as input are heavily relying on the fact that the
triangulation is a simplicial complex; this is the case for instance for meshing
algorithms [27128], as well as algorithms to compute a-shapes, which are actually
needed in the periodic case by several applications mentioned at the beginning
of this introduction. We are planning to use the 3D periodic triangulation as the
fundamental ingredient for computing these structures in the future.

Contributions of the paper

We prove conditions ensuring that the Delaunay triangulation can be computed
without duplicating the input points. To this aim, we design an algorithmic test
for checking whether a set I of simplices in the flat torus forms a simplicial
complex.

Computing 3D Periodic Triangulations 61

We present an adaptation of the well-known incremental algorithm in R3 [3]
that allows to compute three-dimensional Delaunay triangulations in the flat
torus. We focus on the incremental algorithm for several reasons: Its practical
efficiency has been proved in particular by the fully dynamic implementation in
CaAL [25]; moreover, a dynamic algorithm, allowing to freely insert (and remove)
points, is a necessary ingredient for all meshing algorithms and software based
on Delaunay refinement methods (see for instance [32/27]]).

For sets of points that cannot be triangulated in the flat torus, our algorithm
outputs a triangulation of an h-sheeted covering space, where h depends on
some parameters of the flat torus, i.e. a triangulation that is still homeomorphic
to the flat torus and containing h > 1 explicit copies of the input point set.
However, as soon as the above mentioned conditions are fulfilled, the algorithm
switches to a 1-sheeted covering and so does not duplicate points. In this way,
the algorithm always computes a triangulation and is provably correct. It has
optimal randomized worst case complexity.

Our implementation of the algorithm has been accepted for version 3.5 of the
CaAL library [7]. We presented a video demonstration of the software [5].

The paper is organized as follows. In Section[2l we review some general notions
about triangulations and simplicial complexes. In the next section, we adapt
the definition of simplicial complexes to the flat torus. In Section [we give a
criterion to decide whether a point set has a triangulation in the flat torus. We
give a second criterion that is based on the same idea but can be verified easily
by the algorithm that is presented in Section Bl We show the correctness of the
algorithm and finish with its complexity analysis and experimental observations.
Proofs are omitted in this paper due to lack of space. They can be found in [6].

2 Triangulations

Before talking about triangulations we need to recapitulate the well-known no-
tions of simplices and simplicial complexes. A k-simpler o in R? (k < 3) is the
convex hull of k41 affinely independent points P, = {po, p1, ...,k }. A simplex
7 defined by P, C P, is a face of o0 and has o as a coface. This is denoted by
o>7and 7 < o. Note that 0 > o and ¢ < 0.

The following definitions are completely combinatorial. With an appropriate
definition of a simplex, they will remain valid in any topological space X.

There exist several definitions of simplicial complexes in the literature. Often
they restrict to a finite number of simplices [39J30]. In the sequel, we deal with
infinite simplicial complexes, so, we use the definition given in [22]:

Definition 1 (Simplicial complex). A simplicial complex is a set K of sim-
plices such that:

(i) ceK,7<o=71€K
(ii). 0,0/ e K=0No' <o,0
(iii). Every point in a simplex of KX has a neighborhood that intersects at most
finitely many simplices in K (local finiteness).

62 M. Caroli and M. Teillaud

Note that if K is finite, then the third condition is always fulfilled.

A triangulation of a topological space X is a simplicial complex I such that
IK| = U,cx 0 is homeomorphic to X. A triangulation of a point set S is a
triangulation such that the set of vertices of the triangulation is identical to S.

Some more definitions are needed for the following discussion: Let K be a
simplicial complex. If a subset of K is a simplicial complex as well, we call it
subcompler of IC. The star of a subcomplex £ of K consists of the cofaces of
simplices in £: St(£) = {o € K|o > 7 € L}. In the following sections, we will be
interested in the union of simplices in the star of a set £ of simplices, denoted
as [St(L)].

3 The Flat Torus T3

At first we give a precise definition of the space of study T3. Then we review some
of its well-known properties and establish the notations used in the following
discussion. Finally, we give a definition of simplices in T%.

Definition 2 (T?). Let ¢ := (cy,cy,c:) € (R\ {0})® and G be the group
(c*Z3,+), where x denotes coordinate-wise multiplicatiorg, The quotient space

T2 = R3/G is called flat torus [35)]. We denote the quotient map by m: R3 — T3 .

The elements of T3 are the equivalence classes under the equivalence relation
pL ~ P2 & p1 — P2 € cx Z3, for p1,ps € R3. Hence, these equivalence classes
are isomorphic to Z* and T2 x Z3 is isomorphic to R3. We also call the points
of T3 orbits and refer to their elements as representatives. T3 is a metric space
with dr(n(p),n(q)) := mindgr(p’,q’) for p’ ~ p,¢ ~ ¢q. Note that 7 is
continuous.

The space T2 is homeomorphic to the hypersurface of a 4-dimensional torus.
Consider the closed cuboid [u,u + ¢z] X [v,v + ¢y] X [w,w + ¢;]. Identifying the
pairs of opposite sides results in a space homeomorphic to T2. Such a cuboid is
usually called a fundamental domain or a fundamental region. A fundamental
domain contains at least one representative of each orbit. The half-open cuboid

D. = [0,¢z) x [0,¢y) x [0,¢,) contains exactly one representative for each ele-

ment of TS. We call it the original domain. The map

cpc:’DcXZ?’—>R3
(P, Q) > p+ex(

is bijective. The longest diagonal of D, has length ||¢||, which denotes the Lo-
norm of c. We say that two points p1,ps € R? are periodic copies of each other
if they both lie in the same orbit, or equivalently if there is a point p € D, such

that p1,p2 € pe({p} x Z3).

2 Coordinate-wise multiplication: (az, ay, az) * (bz, by, bs) := (azbs, ayby, azb.).

Computing 3D Periodic Triangulations 63

7
N
T
~

Fig. 2. (2D case) The three points p1, p2, and p3 do
not uniquely define a triangle. Intuitively, the off-
set allows to know which way the triangle “wraps

around” the torus.

Now we turn towards the
definition of simplices in T2.
There is no meaningful defini-
tion of a convex hull in T? and a
tetrahedron is not uniquely de-
fined by four points. We attach
with each vertex an integer vec-
tor, named offset, that specifies
one representative out of an or-
bit (see Figure[2). In the above
definition of ., the offsets are
the numbers ¢ € Z3. We can
adapt the definition of a sim-
plex in R? in the following way
to T3 [37]:

Definition 3 (simplex). Let P be a set of k + 1 (k < 3) point offset
pairs (pi,(;) in De x Z3, 0 < i < k. Let Ch(P) denote the convex hull of
e(P)={pi+ec*(|0<i<k} in R3. If the restriction |cnp) of ™ to the
convezr hull of P is a homeomorphism, the image of Ch(P) by m is called a

k-simplex in T2.

In other words, the image under 7 of a
simplex in R? is a simplex in T3 only if it
does not self-intersect or touch. Figure [3]
shows the convex hulls A and B of three
point-offset pairs in [0,1)? x Z?; (p1, (g))
is a representative of the equivalence class
of a vertex of A that lies inside A.

There are infinitely many sets of point-
offset pairs specifying the same sim-
plex. The definition of face and coface is
adapted accordingly: Let o be a k-simplex
defined by a set P, C D, x Z3. A simplex
7 defined by a set P, C D, x Z3 is a
face of o and has o as a coface if and
only if there is some ¢ € Z3 such that

{(i; G +¢) | (pi, i) € Pr} C P

() (®0: (3))
W) ®w.d)

1,
[} [}

(Pu 5

® (12 (3)

: ~La .
W (0. ()
)| @)
[) [)
° ()

(vo- (5))
(1. (3)
)

[]
0
B

)

2
[]

o (n ()

(p:

Fig. 3. (2D case) 7(A) is not a simplex;
however, m(B) is a simplex

4 Delaunay Triangulation in T?

This section is organized as follows: At first we give a definition of the Delaunay
triangulation in T2. We observe that there are point sets in TS whose Delaunay
triangulation is in fact not defined. The second part elaborates on this question,
finally giving a criterion to decide whether or not a point set has a Delaunay

64 M. Caroli and M. Teillaud

triangulation in T2. In the last part we discuss how to deal with point sets that
do not have a Delaunay triangulation in T3.

Let us recall that a triangulation of a point set S in R3 is a Delaunay triangu-
lation iff each tetrahedron satisfies the Delaunay property, i.e. its circumscribing
ball does not contain any point of S in its interior. If the point set is not degen-
erate, i.e. if no five points of S are cospherical, then its Delaunay triangulation
is uniquely defined. Still, even for degenerate point sets, it is possible to spec-
ify a unique Delaunay triangulation, using a symbolic perturbation [13]. In the
sequel we always assume Delaunay triangulations in R3 to be uniquely defined
in that way (see Lemma[2]). Let S now denote a finite point set in D.. We want
to define the Delaunay triangulation of 7(S) in T2. The idea is to use the pro-
jection under 7 of a Delaunay triangulation of the infinite periodic point set

S¢:= (S x Z3) in R3.

Lemma 1. For any finite point set S C D, a set of simplices K in R3 that
fulfills and in Definition [as well as the Delaunay property with respect

to S¢ is a simplicial complex in R3.

Since S€ contains points on an infinite grid, any point p € R? is contained in
some simplex defined by points in §€¢. Together with Lemmalll this implies that
the set of all simplices with points of S€ as vertices and respecting the Delaunay
property is a Delaunay triangulation of R? and we denote it by DTk(S¢). Since
|DTR(S€)| is homeomorphic to R® and is surjective, then m(|DTg(S°)|) is
homeomorphic to T2. So, if 7(DTr(S¢)) is a simplicial complex, it is also a
triangulation of T2. We can now define a Delaunay triangulation in T3:

Definition 4. Let DTR(S¢) be the Delaunay triangulation of the point set S€
in R3. If m(DTR(S)) is a simplicial complez in T2, then we call it the Delaunay
triangulation of S in T2 and denote it by DTr(S).

We show now that Definition @] actu- ‘ ‘
ally makes sense: Lemma [2] is used to | |
prove Theorem [1l which gives a suffi-
cient condition for 7(DTg(S¢)) to be
a simplicial complex.

Lemma 2. If the restriction of m to
any simplex in DIR(S®) is a homeo-

morphism, then conditions and
in Definition [are fulfilled.

Theorem 1. If for all vertices v of
DTr(S€) the restriction of the quo-
tient map 7r|‘St(v)‘ s a homeomor-
phism, then m(DTR(S¢)) forms a sim-
plicial complex.

Fig.4. (2D case) The shaded region is
©e(St(p) x Z*) N De. There are several cy-
cles of length two originating from p.

Computing 3D Periodic Triangulations 65

In the following theorem we give another criterion that is algorithmically easier to
check. Let us recall that the 1-skeleton of a simplicial complex is the subcomplex
that consists of all edges and vertices.

Theorem 2. Assume the restriction of ™ to any simplex in DTr(S€) is a home-
omorphism. If the 1-skeleton of 7(DTgr(S¢)) does not contain any cycle of length
less than or equal to two, then w(DTr(S®)) forms a simplicial complez.

See Figure [for an illustration of Theorems [I] and

In the remaining part of this section, we explain how we can give a finite
representation of the periodic triangulation DTx(S€) that is a simplicial complex,
even if m(DTr(S€)) is not a simplicial complex.

Definition 5. [Z] Let X be a topological space. A map p : X — X is called a
covering map and X is said to be a covering space of X if the following condition
holds: For each point x € X there is an open neighborhood V , and_a decomposition
of p~ (V) as a family {U,} of pairwise disjoint open subsets of X, in such a way
that plu,, is a homeomorphism for each a. Let h, denote the cardinality of the
family {Uy} corresponding to some x € X. If the mazimum h := maxgex hy 18
finite, then X is called an h-sheeted covering space.

R? with the quotient map 7 as covering map is a universal covering of TS, which
means that it is a covering space for all covering spaces of T3 [2].

Let h = (hy,hy,h,) € N3, T3 is a covering space of T2 together with
the covering map pp := 7o, ", where 7, : R® — T}__ denotes the quo-
tient map of T3,.. As p,,'(p) for any p € T2 consists of hy-hy-h, differ-
ent points, Ti*c is a hy - hy - h,-sheeted covering space. The original domain
is Dhse = [0, hypcg) X [0, hycy) X [0, hzcy). If by = hy = h, we use the notation
7, := wp, With h := hy-hy-h;, like for a7 in Theorem Bl below.

Dolbilin and Huson [I4] showed that only the points of S¢ contained in D, and
the 26 copies that surround it can have an influence on the Delaunay property
for simplices that are completely contained in D.. The ideas of their proof can
be used to show the following:

Theorem 3. ma7(DTR(S®)) is always a simplicial complez.

We prefer to use the framework of covering spaces, rather than just talk about
copies of the points as in [14], for several reasons: A major part of the code can
be reused for any finite covering space. Also, the simplicial complex we compute
is actually homeomorphic to T2. So we do not have any artificial boundaries in
the data structure and we get all adjacency relations between simplices.

The algorithm we use to compute triangulations of T3 requires a slightly
stronger result, which we present in the next section.

5 Algorithm

As mentioned in the introduction, there is a strong motivation for reusing the stan-
dard incremental algorithm [3] to compute a periodic Delaunay triangulation.

66 M. Caroli and M. Teillaud

We propose the following algorithm:

— We start computing in some finitely-sheeted covering space T3, . of T2, with
h chosen such that 7 (DTR(S€)) is guaranteed to be a triangulation.

— If the point set is large and reasonably well distributed, it is likely that
after having inserted all the points of a subset &’ C S, all the subsequent
m(DTR(S8"¢)) for 8’ ¢ §” C S are simplicial complexes in T3. In this case,
we discard all periodic copies of simplices of mp(DTr(S’¢)) and switch to
computing 7(DTk(S¢)) in T2 by adding all the points left in S\ S’

In this way, unlike [I4], we avoid du-
plicating points as soon as this is pos-
sible. However, if S is a small and/or
badly distributed point set, the algo-
rithm never enters the second phase
and returns 7, (DTR(S¢)). Note that,
before switching to computing in T?,
it is not sufficient to test whether
m(DTR(S8’¢)) is a simplicial complex.
Indeed, adding a point could create a
cycle of length two (see Figure H). So,
a stronger condition is needed before
the switch.

See Algorithm [for a pseudo-code
listing of the algorithm.

Fig. 5. (2D case) Adding a point in a sim-
plicial complex can create a cycle of length
two

Algorithm 1. Compute Delaunay triangulation of a point set in T

Input: Set S of points in D, ¢ such that D, is a cube with edge length ¢ € R®\ {0}.
Output: DTr(S) if possible, otherwise w27 (DTr(S€))

// can be precomputed

// TRo7 = mar(DTR(S°))

1. §8'<S

2: Pop p from S’

3: S < {p}

4: TR2r < mar(DTr(pc({p} x Z°)))

5: while the longest edge in TRa7 is longer than \}66 do
6: Pop pfrom §’; S « SU{p}

7. forallp’ € {p+cx¢|¢e€{0,1,2}°} do

8: Insert p’ into T'Ra7

9: end for

10: if 8’ = 0 then return T Ry = mar(DTR(S®))

set
11: end while
12: Compute DT7(S) from TRa7

// non-triangulable point

// switch to T2

13: Insert all points remaining in 8" into DTr(S) one by one

14: return DTy (S)

Computing 3D Periodic Triangulations 67

Two central points must be established to show the correctness of the algorithm:

1. After each insertion, TRo7 is a Delaunay triangulation in Tj.. Let us em-
phasize on the fact that Theorem [B] cannot be used here because in the inner
loop (step 8), the set of points present in T'Ro7 does not contain all the pe-
riodic copies of p. Let p be a point in D, and 7, C pc({p} x Z*) N D3, i.e.
7, is a subset of the grid of 27 copies of p that lie within Ds.. Then TRy7 is
always of the form o7 (DTr(S¢ U 7,2¢)) with 7 = 3(7, x Z*). Lemma [3]
shows that this is a triangulation.

2. If all edges in ma7(DTRr(S¢)) are shorter than \}6 ¢, then we can switch to

computing in T3.

Lemma 3. Let S C D, be a finite point set and p € D, a point. If D, is a cube,
then mo7(DTR(S€ U T,2¢)) is a triangulation.

Lemma 4] gives a criterion to decide whether 7w(DTg(S€)) is a simplicial complex
and thus a triangulation in T3.

Lemma 4. If the 1-skeleton of DTr(S€) contains only edges shorter than \}6 c,

where ¢ is the edge length of De, then w(DTR(7T¢)) is a simplicial complex for
any finite T C D, with S C 7.

Note that the criterion in Lemma (] is only sufficient: There are triangulations
without cycles of length two that have edges longer than \}6 c.

Lemmas Bl and (] prove the correctness of Algorithm [I] in the case of a cubic
domain. The above discussion still remains valid if the original domain D, is
a general cuboid, i.e. ¢ = (cg,¢y,c;). Only the constants, like the number of
sheets of the covering space to start with and the edge length threshold need to
be adapted. Analogously, the algorithm can be extended to weighted Delaunay

triangulations. For a more detailed discussion see [6].

6 Theoretical and Practical Analysis

Complexity analysis. Let us first discuss the following two points: (1) How to test
for the length of the longest edge and (2) how to switch from the triangulation
in T3, to the triangulation in T2.

(1) We maintain an unsorted data structure £ that references all edges that
are longer than the threshold \} o Cmin- As soon as £ is empty, we know that the
longest edge is smaller than the threshold. The total number of edges that are
inserted and removed in £ is proportional to the total number of simplices that
are created and destroyed during the algorithm. We can have direct access from
the simplices to their edges in £. Hence, the maintenance of £ does not change
the algorithm complexity.

(2) To convert the triangulation in T3, to DTr(S) when we switch to T2,
we need to iterate over all cells and all vertices to delete all periodic copies,
keeping only one; furthermore, we need to update the incidence relations of

68 M. Caroli and M. Teillaud

Table 1. Current running times in seconds on a 2.33 GHz Intel Core 2 Duo processor

No. of points T? R3 factor
1000 0.032 0.012 2.65
10000 0.230 0.128 1.79
100000 2.24 1.36 1.65
1000000 23.0 14.2 1.62

those tetrahedra whose neighbors have been deleted. This is linear in the size of
the triangulation and thus dominated by the main loop.

The overall algorithm is incremental and using the Delaunay hierarchy [12]
the following result can be shown:

The randomized complexity of Algorithm [is the same as the complexity of
[12], and thus it has randomized worst-case optimal complezity O(n?).

Ezxperimental observations. Algorithm [Il has been implemented in CGAL, so, it
benefits from some of the optimizations that are already available in the CGAL
Delaunay triangulations in R?® [25], such as the spatial sorting [11].

We tested the implementation on real data from research in cosmology. The
input sets consist of up to several hundreds of thousands of points, and they are
sufficiently well distributed to have triangulations in T3. This property holds for
most of the applications mentioned in the introduction. With these real data,
usually less than 400 points are needed for Algorithm [I] to reach the threshold
on the edge length and switch to computing in T%.

We compared the running time of our implementation for computing De-
launay triangulations in T3 with the running time of computing the Delaunay
triangulation in R? with the CGAL package [25]. Table [l shows for large random
point sets a factor of about 1.6 between the running time of our current imple-
mentation, using the above optimization, and the CGAL implementation for R3.
The timings have been measured for the unit cube D, = [0, 1)? using specialized
predicates; if we allow D, to be any cube, we currently lose about 12%. More
experiments can be found in [6].

7 Conclusion and Future Work

We proposed an algorithm to compute 3D periodic Delaunay triangulations.
The algorithm is guaranteed to produce a correct finite representation of the
periodic triangulation for any given point set. We avoid duplications of points
whenever possible, and if there is no triangulation for some point set in the flat
torus T3, we output a triangulation in a covering space that is homeomorphic
to T2. The algorithm has optimal randomized worst case complexity. Note that
the main parts of the discussion are not bound to three-dimensional space and
will still hold for higher dimensions. The constants in the geometric criteria
and the complexity of the underlying algorithm for computing the Delaunay
triangulation will have to be adapted.

Future work will mainly concentrate on two topics: (1) Extend in a similar
way some meshing and a-shape algorithms based on Delaunay triangulations

Computing 3D Periodic Triangulations 69

so that they can handle periodic data. (2) Extend this work to more general
orbifolds. There is ongoing work to unify our results with the results of [IJ.

Acknowledgments

We are very grateful to Nico Kruithof, who initiated this work and made impor-
tant contributions when he visited INRIA for a short post-doctoral stay in 2006
[4]. We thank Mridul Aanjaneya for fruitful discussions on Section @ and Olivier
Devillers for discussions on his Delaunay hierarchy.

Also, we wish to thank Rien van de Weijgaert for providing us with data sets
from cosmology research projects to test our implementation.

References

1. Aanjaneya, M., Teillaud, M.: Triangulating the real projective plane. In: Mathe-
matical Aspects of Computer and Information Sciences (2007)

2. Armstrong, M.A.: Basic Topology. Springer, Heidelberg (1982)

3. Bowyer, A.: Computing Dirichlet tessellations. The Computer Journal 24, 162—-166
(1981)

4. Caroli, M., Kruithof, N., Teillaud, M.: Decoupling the CGAL 3D triangulations
from the underlying space. In: Workshop on Algorithm Engineering and Experi-
ments, pp. 101-108 (2008)

5. Caroli, M., Teillaud, M.: Video: On the computation of 3D periodic triangula-
tions. In: Proceedings of the twenty-fourth Annual Symposium on Computational
Geometry, pp. 222-223 (2008)

6. Caroli, M., Teillaud, M.: Computing 3D periodic triangulations. Research Report
6823, INRIA (2009), http://hal.inria.fr/inria-00356871

7. Cgal, Computational Geometry Algorithms Library, http://www.cgal.org

8. Cheng, S.-W., Dey, T.K., Levine, J.A.: A practical Delaunay meshing algorithm
for a large class of domains. In: Proceedings of the sixteenth International Meshing
Roundtable, pp. 477-494 (2007)

9. Daverman, R.J., Sher, R.B. (eds.): Handbook of Geometric Topology. Elsevier,
Amsterdam (2002)

10. de Fabritiis, G., Coveney, P.V.: Dynamical geometry for multiscale dissipative par-
ticle dynamics (2003), http://xxx.lanl.gov/abs/cond-mat/0301378v1

11. Delage, C.: Spatial sorting. In: CGAL editorial Board (eds.) CGAL User and Ref-
erence Manual, 3.4 edn. (2008)

12. Devillers, O.: The Delaunay hierarchy. International Journal of Foundations of
Computer Science 13, 163-180 (2002)

13. Devillers, O., Teillaud, M.: Perturbations and vertex removal in a 3D Delaunay tri-
angulation. In: Proceedings of the fourteenth ACM-SIAM Symposium on Discrete
Algorithms, pp. 313-319 (2003)

14. Dolbilin, N.P., Huson, D.H.: Periodic Delone tilings. Periodica Mathematica Hun-
garica 34(1-2), 57-64 (1997)

15. Campayo, D.D.: Sklogwiki - Boundary conditions,
http://www.sklogwiki.org/SklogWiki/index.php/Boundary_conditions

16. Graham, R.L., Grotschel, M., Lovész, L. (eds.): Handbook of Combinatorics. El-
sevier, Amsterdam (1995)

http://hal.inria.fr/inria-00356871
http://www.cgal.org
http://xxx.lanl.gov/abs/cond-mat/0301378v1
http://www.sklogwiki.org/SklogWiki/index.php/Boundary_conditions

70

17.

18.

19.

20.

21.

22.
23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

M. Caroli and M. Teillaud

Grima, C.I., Marquez, A.: Computational Geometry on Surfaces. Kluwer Academic
Publishers, Dordrecht (2001)

Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)
Held, M.: Vroni: An engineering approach to the reliable and efficient computation
of Voronoi diagrams of points and line segments. Computational Geometry: Theory
and Applications 18, 95-123 (2001)

Henle, M.: A Combinatorial Introduction to Topology. Dover publication, New
York (1979)

Hert, S., Seel, M.: dD convex hulls and Delaunay triangulations. In: CGAL Edito-
rial Board (eds.) CGAL User and Reference Manual, 3.4 edn. (2008)

Lee, J.M.: Introduction to Topological Manifolds. Springer, New York (2000)
Mazén, M., Recio, T.: Voronoi diagrams on orbifolds. Computational Geometry:
Theory and Applications 8, 219-230 (1997)

Pion, S., Teillaud, M.: 3D triangulation data structure. In: CGAL Editorial Board
(eds.), CGAL User and Reference Manual. 3.4 edn. (2008)

Pion, S., Teillaud, M.: 3D triangulations. In: CGAL Editorial Board (eds.) CGAL
User and Reference Manual, 3.4 edn. (2008)

Qhull, http://www.ghull.org

Rineau, L., Yvinec, M.: Meshing 3D domains bounded by piecewise smooth sur-
faces. In: Proceedings of the sixteenth International Meshing Roundtable, pp. 443—
460 (2007)

Rineau, L., Yvinec, M.: 3D surface mesh generation. In: CGAL Editorial Board
(eds.) CGAL User and Reference Manual, 3.4 edn. (2008)

Robins, V.: Betti number signatures of homogeneous Poisson point processes. Phys-
ical Review E 74(061107) (2006)

Rote, G., Vegter, G.: Computational topology: An introduction. In: Boissonnat, J.-
D., Teillaud, M. (eds.) Effective Computational Geometry for Curves and Surfaces.
Mathematics and Visualization, pp. 277-312. Springer, Heidelberg (2006)
Shewchuk, J.R.: Triangle: Engineering a 2d quality mesh generator and Delaunay
triangulator. In: First Workshop on Applied Computational Geometry, May 1996.
Association for Computing Machinery (1996)

Shewchuk, J.R.: Tetrahedral mesh generation by Delaunay refinement. In: Pro-
ceedings of the fourteenth Annual Symposium on Computational Geometry, pp.
86-95. ACM Press, New York (1998)

Spanier, E.H.: Algebraic Topology. Springer, New York (1966)

Thompson, K.E.: Fast and robust Delaunay tessellation in periodic domains. In-
ternational Journal for Numerical Methods in Engineering 55, 1345-1366 (2002)
Thurston, W.P.: Three-Dimensional Geometry and Topology. Princeton University
Press, Princeton (1997)

Weiss, D.: How hydrophobic Buckminsterfullerene affects surrounding water struc-
ture. INRIA Geometrica Seminar (March 2008),
http://www-sop.inria.fr/geometrica

Wilson, P.M.H.: Curved Spaces. Cambridge University Press, Cambridge (2008)
Yvinec, M.: 2D triangulations. In: CGAL Editorial Board (eds), CGAL User and
Reference Manual. 3.4 edn. (2008)

Zomorodian, A.: Topology for Computing. Cambridge University Press, Cambridge
(2005)

http://www.qhull.org
http://www-sop.inria.fr/geometrica

Cauchy’s Theorem for Orthogonal Polyhedra
of Genus 0

Therese Biedl"* and Burkay Genc?**

! David R. Cheriton School of Computer Science,
University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
biedl@uwaterloo.ca
2 Izmir University of Economics, Faculty of Computer Science,
Sakarya Cad. No:156, Balcova, lzmir, Turkey
burkaygenc@gmail.com

Abstract. A famous theorem by Cauchy states that the dihedral angles
of a convex polyhedron are determined by the incidence structure and
face-polygons alone. In this paper, we prove the same for orthogonal
polyhedra of genus 0 as long as no face has a hole. Our proof yields a
linear-time algorithm to find the dihedral angles.

1 Introduction

A famous theorem by Cauchy states that for a convex polyhedron, the incidence
structure and the face-polygons determine the polyhedron uniquely. Put differ-
ently, if we are given a graph with a fixed order of edges around each vertex, and
we are given the angles at every vertex-face incidence and edge lengths, then
there can be at most one set of dihedral angles such that graph, facial angles,
edge lengths and dihedral angles are those of a convex polyhedron. Many books
and monographs give this theorem, proofs, and related results [TJI0].

Cauchy’s theorem does not hold for polyhedra that are not convex. An easy
example is a polyhedron where one face has a rectangular “hole” where a small
box can be popped to the “inside” or “outside”. But in fact, there are even so-
called flexible polyhedra where the dihedral angles change continuously (see e.g.
[10].)

We show in this paper that Cauchy’s theorem does hold for orthogonal poly-
hedra of genus 0, as long as we exclude holes in faces. (Rather than defining
holes, we will express this by saying that the graph of the polyhedron must be
connected; see Section 2] for precise definitions.) Thus, while a big cube with a
small cube attached on one face has two possible realizations, this is in essence
the only way in which multiple realizations are possible.

Our proof is algorithmic and yields a linear-time algorithm to find the only
possible set of dihedral angles of a realizing orthogonal polyhedron. This is in

* Supported by NSERC.
** This work was done while the author was a student at University of Waterloo and
supported by NSERC.

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 71-82] 2009.
(© Springer-Verlag Berlin Heidelberg 2009

72 T. Biedl and B. Genc

contrast to convex polyhedra, where determining whether a working set of di-
hedral angles exist is not even known to be in NP; see [4[9] and the references
therein for some recent progress on this tantalizing problem.

1.1 Roadmap

We first briefly outline the approach of this paper. Rather than proving unique-
ness and then deriving an algorithm from the proof, we provide an algorithm
that reconstructs an orthogonal polyhedron. There will never be any choice in
the assignment of dihedral angles, except at one moment when we can choose
one dihedral angle. Hence we obtain two sets of dihedral angles, and can argue
that only one of them could possibly do; this then proves uniqueness.

Our algorithm proceeds in three steps. In the first step in Section [3, we only
identify which dihedral angles must be flat, i.e., have value 180°. We do this
by determining the orientation of each face; the algorithm to do so is simple,
but proving its correctness is not[] Two adjacent faces with the same orientation
must have a flat dihedral angle between them, so this determines all flat dihedral
angles.

The problem hence reduces to reconstructing an orthogonal polyhedron where
all dihedral angles are non-flat. In Section [we show that there are only 7
possible configurations of vertices for such a polyhedron. Moreover, if we fix
one dihedral angle and know all facial angles, this determines all other dihedral
angles at a vertex, and hence with a simple propagation scheme, all dihedral
angles can be computed as long as the graph is connected.

Finally, we study in Section Bl which of the two resulting sets of dihedral angles
can possibly be the correct set of dihedral angles. This is the only part of the
algorithm that uses edge lengths. We conclude with remarks in Section

2 Definitions

A polygonal curve is a simple closed curve in the plane that consists of a finite
number of line segments. A polygon is a set in a plane whose boundary is one
polygonal curve. A polygonal region is an interior connected set in a plane that is
a finite union of polygons. A polyhedral surface is a connected 2-manifold that is
a finite union of polygonal regions. A polyhedron is a set in 3D whose boundary
is a polyhedral surface. Its genus is the genus of the surface that bounds it.

A face of a polyhedron is a maximal polygonal region on the boundary of the
polyhedron. Note that a face need not be a polygon, because its boundary may
be disconnected and/or touch itself and hence not be simple. A vertez is a point
that belongs to at least three faces. An edge is a maximal line segment that
belongs to two faces and contains no vertex other than its endpoints. A facial
angle is the interior angle of a face at a vertex. A dihedral angle is the interior
angle at an edge between two adjacent faces.

1A preliminary version of this algorithm appeared in 2004 [2], but its correctness was
shown only for orthogonally convex polyhedra for which all faces are rectangles.

Cauchy’s Theorem for Orthogonal Polyhedra of Genus 0 73

The incidences between vertices and edges of a polyhedron determine a graph
called the graph of the polyhedron. Looking at the polyhedron from the out-
side fixes a cyclic order of edges around each vertex; this is called the induced
embedding of the graph.

Every polyhedral surface S bounds a polyhedron P, but the polygonal regions
that define S need not be the same as the faces of the polyhedron P: the faces
of P may have been subdivided. For a polyhedral surface S, we can also define
a graph by using as faces of the graph the polygonal regions that defined S, and
then carry over all other definitions (vertex, edge, graph, facial angles, dihedral
angles). The main difference is that in a polyhedral surface, some dihedral angles
may be flat, i.e., have value 180°.

We usually assume that we are given an embedded graph, i.e. a graph with a
fixed cyclic order of edges around each vertex. (Note that “embedded” does not
imply a mapping to coordinates; the embedding is given combinatorially only.)
From the order of edges around vertices we can determine the faces of the graph,
which are the cycles obtained by always taking the next edge in cyclic order.
We also assume that we are given facial angles of the graph, which are values at
each incidence between a vertex and a face of the graph.

Given an embedded graph and facial angles (and sometimes also the lengths
of the edges), we say that a polyhedral surface S realizes the input if its graph
(with the induced embedding) is the given embedded graph, and its facial angles
(and edge lengths, if given) are as prescribed in the input. For a connected graph,
the polyhedral surface has genus 0 if and only if its graph is planar, i.e. it can
be drawn in the plane without crossing.

We will almost only study orthogonal polyhedra of genus 0 in this paper. A
polyhedral surface is orthogonal if all its faces are perpendicular to a coordinate
axis. This implies that all facial angles and all dihedral angles are multiples of
90°, and all edges are parallel to a coordinate axis.

We use the term orientation o € {z,y, z} for any 1-dimensional object that
is parallel to a coordinate axis. Thus an edge of an orthogonal polyhedron is
an o-edge if it is parallel to the o-axis, and a face is said to be an o-face if the
normal of the plane that contains the face has orientation o (for o € {z,y, z}.)

3 Flat Dihedral Angles

In this section, we present an algorithm that, given a connected embedded planar
graph and facial angles that are multiples of 90°, determines which of the edges
of the graph must have a flat dihedral angle in any realization. Since the graph is
planar, any realization must have genus 0. Since the facial angles are multiples of
90°, any face is the union of rectangles. As proved (independently of each other)
in [7] and [8], this implies that any realization must have all dihedral angles that
are multiples of 90°, i.e., it is an orthogonal polyhedral surface after a suitable
rotation.

74 T. Biedl and B. Genc

3.1 Algorithm

For each face of the input graph, the facial angles determine relative orientations
of edges within the face. We write e || ¢’ if e and e’ are edges on one face and
have the same orientation within that face. We can extend || into an equivalence
relation ~ by defining that e ~ €’ if there exists a set of edges e = ey,...,ex =€
with e; || e;41 for 1 < i < k. We define an edge-bundle to be an equivalence
class under equivalence relation ~. The edge-bundles can easily be computed in
linear time from the embedded graph and the facial angles. Directly from the
definition of || and ~, the following holds:

Observation 1. All edges in an edge-bundle must be parallel in any realization.

It hence makes sense to say that an edge-bundle has orientation o (for o €
{z,y,z}.) Two edge-bundles By # By are said to cross if there exists a face
in the graph that contains edges from both. Since B; and By were equivalence
classes, their edges are not parallel to each other, so if B; had orientation o in
some realization then By cannot have orientation o.

This gives rise to a simple greedy-propagation algorithm to determine ori-
entations of edge-bundles. Initally pick two edge-bundles B; and By that cross
and set T'(B1) = {y} and T'(Bs) = {z}. Here, T(B;) is a set of possible orien-
tations of edge-bundle B;; we hence arbitrarily fix one rotation of a realization
(which must be orthogonal as discussed earlier.) For all other bundles, initialize
T(B;) = {z,y,z}. Now propagate orientations by picking any edge-bundle B
with |T(B)| = 1 that has not been identified yet (initially they are all unidenti-
fied.) Mark B as identified and let o be the unique orientation left in 7'(B). For
all edge-bundles B’ that cross B, remove o from T'(B’), because o cannot possibly
be the orientation of B’.

This algorithm, which we refer to as algorithm BUNDLEORIENTATION, stops
if either all edge-bundles are identified, or if there are unidentified edge-bundles,
but none of them has |T'(B)| = 1.

Algorithm BUNDLEORIENTATION can be implemented in linear time if we pre-
compute an auxiliary graph H of edge-bundles, which has a vertex for every edge-
bundle and an edge between two edge-bundles if and only if the edge-bundles
cross. By storing edge-bundles in buckets by the size of |T'(B)|, we can then in
O(1) time find the next edge-bundle B to be identified, and in O(degy(B)) time
update all the edge-bundles that B crosses; this is O(m + n) time overall since
H has size O(m + n).

We will show the following result in the next subsection:

Lemma 1. If an embedded connected planar graph with facial angles has a re-
alization S, then algorithm BUNDLEORIENTATION identifies all edge-bundles.
Moreover, after applying a suitable rotation of S, for all edge-bundles B the
unique value left in T (B) at termination is the orientation of B in S.

Thus algorithm BUNDLEORIENTATION determines all edge orientations, which
in turn determines the face orientations. We cannot determine dihedral angles
directly from this (because there are still two possible directions for each face

Cauchy’s Theorem for Orthogonal Polyhedra of Genus 0 75

normal), but we can determine flat dihedral angles, since for any two adjacent
co-planar faces, the dihedral angles at the edges shared by them must be 180°.

Theorem 1. Given an embedded connected planar graph with facial angles that
are multiples of 90°, we can in O(m + n) time

— report that no polyhedral surface can realize this graph and facial angles, OR
— report all edges of the graph for which the dihedral angle must be 180° in any
polyhedral surface that realizes this graph and facial angles.

3.2 Correctness

In this section, we prove correctness of algorithm BUNDLEORIENTATION, i.e.,
we prove Lemma [Il We assume throughout this section that some orthogonal
polyhedral surface S exists that realizes the given graph and facial angles. We
furthermore assume that S has been rotated such that all edges in edge-bundle
B (the first edge-bundle picked by algorithm BUNDLEORIENTATION) are parallel
to the y-axis, and all edges in edge-bundle By are parallel to the z-axis. Since
we only eliminate orientations that cannot possibly be used in an edge-bundle,
the following observation has a straightforward proof by induction:

Lemma 2. At any time during algorithm BUNDLEORIENTATION, for any edge-
bundle B the orientation of B in S remains in T(B).

So no edge-bundle B will ever have |T(B)| = 0 during algorithm BUNDLEORIEN-
TATION. So if not all edge-bundles are identified, then the algorithm must stop
when some edge-bundles have two or three possible orientations left. We claim
that this cannot happen if the realizing polyhedral surface S has genus 0.

To show that this is non-trivial, observe that it is not true for higher genus.
Fig. [l shows a polyhedral surface of genus 1, where algorithm BUNDLEORIEN-
TATION, for this embedded graph, facial angles and choice of initial edge-bundles
B1 and Ba, does not identify any edge-bundles since none of them crosses both
Bl and BQ.

From now on, assume that the input graph is planar and connected and has
a realization S. We will prove the following;:

Tr,Yy,z T,z

z,Y,z

‘ @,y

z T,z T,Y, 2z

Fig. 1. An example of genus 1 where algorithm BUNDLEORIENTATION fails. We inidi-
cate at selected edges the possible orientations that remain.

76 T. Biedl and B. Genc

Lemma 3. Let B* be an edge-bundle that has been identified by algorithm
BUNDLEORIENTATION. Then all edge-bundles that cross B* will also be iden-
tified by algorithm BUNDLEORIENTATION.

We first argue why it suffices to prove this lemma. When algorithm BUNDLE-
ORIENTATION stops, then there are three possible types of faces: those where 0,
1 or 2 of the two edge-bundles meeting the face have been identified. At least
one face has type 2 (the one where the two initial edge-bundles cross.) No face
has type 1 if Lemma [B] holds. If any face had type 0, then there would be two
adjacent faces where one has type 0 and the other type 2, since the surface is
connected. But then the edge common to the two faces is in an edge-bundle
that is both identified and unidentified, a contradiction. So all faces have type 2
and hence all edge-bundles are identified, which together with Lemma 2] implies
Lemma [T}

Proof. (of Lemma [3) We first give an outline of the proof, which is by contra-
diction. Assume there exists faces which are incident to some of the edges in B*
where the crossing edge-bundle has not been identified. There also exists at least
one edge-bundle that crosses B* and whose orientation has been identified. This
holds if B* is one of the initial two edge-bundles, because they cross each other,
and also holds if B* was identified later, because then |T'(B*)| became 1 due to
some crossing identified edge-bundle.

We can argue that among these identified and unidentified edge-bundles that
cross B*, there exists an identified one B and an unidentified one B’ that “in-
terleave” in the sense that the faces where they cross B* alternate. By genus 0,
interleaving edge-bundles must cross. So there are three edge-bundles B*, B, B’
that pairwise cross and two have been identified. This means that algorithm
BUNDLEORIENTATION will also identify the third, a contradiction.

The difficulty of the proof lies in clarifying what “interleave” means. This
is much easier if every face of the graph has 4 vertices (and hence the realiz-
ing surface S is quadrangulated and has rectangular faces.) Thus, we will prove
Lemma [J first for quadrangulated surfaces, and discuss later why it holds in
general.

If S is quadrangulated, edge-bundles (which were defined as a set of edges)
naturally become a (cyclic) sequence of edges, since every face contains only two
parallel edges, and every edge belongs to two faces. See Fig. Bl It now also makes
sense to speak of a sequence of faces of an edge-bundle B; we call this sequence of
faces a band B (similarly as in [6]). Bands and edge-bundles of a quadrangulated
surface are in 1-to-1 correspondence, and so all terms defined for one (such as
“crossing” and “identified”) will also be applied to the other.

We need some definitions. For the edge-bundle B*, let ¢(B*) be the cycle
on surface S obtained by connecting the midpoints of consecutive edges of B*.
Because S has genus 0, ¢(B*) splits S into two connected regions; arbitrarily pick
one of them and call it the interior of ¢(B*). Let B* be the band corresponding to
edge-bundle B*. For any band B that crosses B*, a chord of B is a subsequence
f1,- .., fr of the faces of B where f; and fi are on B* and fs,..., fx—_1 are not
on B* and in the interior of ¢(B*). See also Fig. Bl Faces f; and fi of a chord

Cauchy’s Theorem for Orthogonal Polyhedra of Genus 0 77

[p— oo E

Fig. 2. Band B* (dark-gray) and one of its chords (light-gray). We do not show all
edges of the quadrangulated polyhedron.

are called the chord-anchors and belong to both B* and B. Since all faces of a
band span the same range in one of the coordinate axis, the two faces that are
chord-anchors span the same range in two of the coordinate axes.

Two chords are said to interleave if their chord-anchors appear alternatingly
in the cyclic sequence of faces B*. By planarity, if two chords interleave, then
the bands that defined the chords must cross (i.e., have a face in common); see
also Fig.

We now consider arestricted version of algorithm BUNDLEORIENTATION, where
we only propagate orientations along interleaving chords; this alone is enough to
identify all bands and hence all edge-bundles. We argued earlier that there exists
an edge-bundle By that crosses B* and was identified. Pick one face common to
their bands By and B*, and let Cjy be the chord that is a subsequence of By start-
ing at this face. Mark all chords that have chord-anchors on B* and can be reached
from Cj via interleaving chords, i.e., mark all chords C' that interleave C°, then
in turn mark all chords that interleave C'!, and so on until no more chords can
be marked. One can easily see that for any marked chord, the edge-bundle that
defined it was identified by algorithm BUNDLEORIENTATION, since interleaving

U1
e
- c(B”)
Uz b Ly ch
C2 -
I :
U1

Fig. 3. Chord ¢; with anchors {u1,v1} interleaves chord ¢z with anchors {uz,v2}

78 T. Biedl and B. Genc

chords means that their edge-bundles cross, and all chords belong to edge-bundles
that cross B*.

Every face f of B* is an anchor of a chord, since there is a band crossing B*
at f, and the part of the band that enters the interior of ¢(B*) forms a chord.
On the other hand, every face of B* belongs to only one chord, since it belongs
to band B* and only one other band. Call a face of B* marked if and only if
the unique chord that contains it is marked. If all faces of B* are marked, then
all edge-bundles that cross B* are identified and Lemma [3 holds as desired. So
assume not all faces of B* are marked, and let U be a maximal contiguous set
of faces of B* that is not marked.

Claim. There exists a chord with anchors {f, f'} such that f € U and f' ¢ U.

Proof. The intersection of U with ¢(B*) forms an open curve in the plane that
contains ¢(B*). By considering the region between the two endpoints of that
open curve, we can find a line ¢ that is parallel to a coordinate axis, does not
intersect an edge, and intersects U an odd number of times. See Fig. [l

Recall that for every face f on B*, there is another face f/ on B* such that
{f, '} are the anchords of a chord. If f is intersected by ¢, then so is f’ since
f and f’ span the same range in two coordinate directions. But ¢ intersects U
an odd number of times, so for at least one face f in U C B*, the face f’ with
which it forms a chord-anchor cannot also be in U. ad

Going in order of faces along band B*, we hence encounter: faces in U (including
f); a set of faces S; which may be marked or not, but the first of them is marked
by definition of U; face f’; and another set of faces Se which may be marked
or not, but the last of them is marked by definition of U. Recall that faces
were marked during propagation along interleaving chords, and consider the
first time when both S; and Sy contained marked faces. The chord that caused
this to happen hence had one anchor in S; and the other in S5. But then this
chord interleaves with the chord anchored at {f, f’}, which means that f and f’
should have been marked as well, a contradiction.

could be marked or unmarked

B*

marked

I

Fig. 4. There must be a horizontal or vertical line ¢ that intersects U an odd number
of times. The picture shows the cross-section with the plane that contains ¢(B*).

Cauchy’s Theorem for Orthogonal Polyhedra of Genus 0 79

This finishes the proof of Lemma [3 for a quadrangulated surface. Now we
briefly discuss the case when the input is not quadrangulated. A simple, but
inefficient, approach would be to subdivide faces until all of them are rectangles.
This is undesirable for two reasons: it uses edge lengths and it increases the time
complexity to quadratic. A better approach is to only use the existence of such
a quadrangulation.

Thus, assume the input can be realized by some polyhedral surface S, let B*
be the edge-bundle of Lemma [l and B any other edge-bundle that crosses it,
say at face f. Let S’ be a quadrangulation of surface S. Let B* and B be bands
in S’ that contain edges (or parts of edges) of f. By the above proof for the
quadrangulated surface S, if B* is identified by BUNDLEORIENTATION, then so
is B. But this implies Lemma [Bl for S as well: If B* is identified, then so is B*,
and so are all other bands that are identified from B* in S’. So in particular, B
(and hence B) are identified.

Note that the quadrangulated surface S’ need not actually be computed; its
existence is used to show that B is reached from B*, but the sequence of edge-
bundles to reach B will be found without knowing S’ by algorithm BUNDLEORI-
ENTATION. a

4 Non-flat Dihedral Angles

If we know all flat dihedral angles, we can delete the corresponding edges in the
graph, and then delete the resulting isolated vertices and contract the resulting
vertices of degree 2 into their neighbours. Doing this merges co-planar faces of
a polyhedral surface S until they become faces of the polyhedron bounded by
S, and the resulting graph is the graph of the polyhedron. In this section, we
are interested in determining the remaining dihedral angles, and we can thus
assume that we are given the graph of the polyhedron.

Let v be a vertex of an orthogonal polyhedron. The incident 8 octants of v
may or may not be occupied by the polyhedron within a small neighbourhood of
v, yielding 28 possible configurations at vertex v. Of those, many cannot occur
in an orthogonal polyhedron, since the resulting surface is not a 2-manifold.
Some more have a flat dihedral angle. Eliminating all these cases and omitting
rotational symmetries, we are left with only 7 vertex configurations, which are
given in Fig.

Each vertex of an orthogonal polyhedron can have three, four or six incident
edges (so it has degree 3, 4 or 6 in the graph.) In Fig. Bl we give the vertex
configurations together with the facial angles and dihedral angles in the graph.
The reader should at this point start to forget the geometry and view this as an
embedded graph with facial angles and labels on all edges.

We group the 7 configurations into four groups; configurations in different
groups have different degrees or different facial angles. Within each group, any
mapping from one configuration to the other that preserves order and facial
angles maps every dihedral angle a to its opposite 360° — «. Since a # 180°,
this implies the following:

80 T. Biedl and B. Genc

‘ o % 270
L 90
Ml %090 5]
o 270 70 4 |
3 9054 o] O
! 70 !
{90 270 |
270 180 99 9o 180 270 |
| 20-1g0™0 997 180~20

7 NN ' ;
U T

T o

Fig. 5. The vertex configurations with facial and dihedral angles

Observation 2. All dihedral angles at a vertex v are determined by the degree
of v, the facial angles at v, and one dihedral angle of an edge incident to v.

If the graph is connected, all dihedral angles can hence be computed if one
initial dihedral angle is fixed, by propagating the information along the edges of
the graph and updating dihedral angles at the other endpoint according to the
appropriate vertex configuration. The running time for this is O(m + n) time.

5 Selecting among Two Sets

At this point, we have computed two possible sets of dihedral angles {d;(e)} and
{d2(e)} (depending on how we fixed the initial dihedral angle), and we now need
to determine which of them is the correct one.

These two sets are in fact opposite to each other, i.e., d;(e) = 360° —da(e) for
all edges e. This clearly holds for the initial edge, and by induction also for the
other edges, since the two configurations within a group in Fig. Bl have opposite
dihedral angles. So if the set {d;(.)} is realized by an orthogonal polyhedron P,
then dy(e) is the outside angle between the faces adjacent to e in P; we could
thus call {da2(.)} the outside dihedral angles.

To determine which of the two sets are the inside and which the outside dihe-
dral angles, we use edge lengths and reconstruct the coordinates of all vertices.
To be precise, pick some vertex of degree 3, assign it to be located at the origin,
and arbitrarily assign three orientations and directions to its three incident edges.
Using the facial angles, edge lengths, and the dihedral angles from {d;(e)}, we
can then easily compute all coordinates of all vertices in O(m + n) time. (If this
assigns two different coordinates to the same vertex, output an error message;
the edge lengths cannot have been correct.)

Cauchy’s Theorem for Orthogonal Polyhedra of Genus 0 81

Now find a vertex v with maximal z-coordinate (breaking ties arbitrarily),
and let f be a face adjacent to v and perpendicular to the z-axis. Since there
are no flat dihedral angles, the edges incident to f must have dihedral angle 90°,
otherwise there would be a vertex with even larger x-coordinate. This decides
which of {d;(.)} and {d2(.)} was correct, and only one of them can be correct.

Putting all three algorithms together, we hence obtain the following;:

Theorem 2. Given an embedded planar graph with facial angles and edge lengths,
we can in O(m +n) time

— find the dihedral angles of any orthogonal polyhedral surface that has this
graph, facial angles and edge lengths, OR

— report that this graph and facial angles can only belong to an orthogonal
polyhedral surface for which the polyhedron bounded by it has a disconnected
graph, OR

— report that mo orthogonal polyhedral surface can realize this graph, facial
angles and edge lengths.

Moreover, if a realizing orthogonal polyhedral surface exists, then it is unique.

6 Remarks

We assumed that we are given a graph, facial angles and edge lengths, and that
the reconstructed orthogonal polyhedron has a connected graph and genus 0.
We now briefly discuss these assumptions.

— Inspection of the proof of Cauchy’s theorem shows that it does not use edge

lengths, so for a convex polyhedron the graph and facial angles determine
the dihedral angles. Our proof also does not use edge lengths, except at the
very last step where we determine which of two possible sets of dihedral
angles is the correct one.
It seems exceedingly likely that this step could be done without using edge
lengths. In particular, in the corresponding 2D problem (given a set of angles,
can this be the set of angles of an orthogonal polygon?) there is a simple
solution: the set of m angles can be realized if and only if it adds up to
180°(n + 2). If any edge-bundle happens to have only two parallel edges
on each face, then the cycle of the edge-bundle (as defined in Section [3)
lies within a plane, and studying the dihedral angles at this cycle tells us
which set is correct. But in general the incidence structure of faces used by
edge-bundles is more complicated. Can we use it somehow to determine the
correct set of dihedral angles without using edge lengths?

— We demanded that the graph of the polyhedron is connected, i.e., no face has
holes. If this condition is dropped, then testing whether a realizing polyhedral
surface exists becomes NP-hard. In fact, the problem is NP-hard in the
strong sense, and holds even for polyhedral surface where every face is a
unit rectangle [3].

82

T. Biedl and B. Genc

— We demanded that the orthogonal polyhedral surface has genus 0, which was

used frequently throughout the proof of correctness of algorithm BUNDLE-
ORIENTATION. The example in Fig. [[lshows that this algorithm can fail for
higher genus. Is there some embedded graph of higher genus (with given
facial angles) where different edge-bundle orientations are in fact possible?
We suspect that this is not true, but this remains open.

The other algorithms work without modification for surfaces of higher genus,
so Cauchy’s theorem holds for higher genus orthogonal polyhedra (not poly-
hedral surfaces, i.e., no flat dihedral angles are allowed), as long as they have
a connected graph.

Our algorithm computes the set of dihedral angles, and as a by-product also
vertex coordinates, but it does not check whether the resulting surface is
indeed a 2-manifold (i.e., that edges are incident to exactly two faces, etc.)
This can be done in polynomial time (see [5]).

References

10.

. Aigner, M., Ziegler, G.: Proofs from THE BOOK, 1st edn. Springer, Heidelberg

(1998); 3rd edn. (2004)

Biedl, T., Genc, B.: When can a graph form an orthogonal polyhedron. In: Cana-
dian Conference on Computational Geometry (CCCG 2004), August 2004, pp.
53-56 (2004)

Biedl, T., Genc, B.: Cauchy’s theorem for orthogonal polyhedra of genus 0. Techni-
cal Report CS-2008-26, University of Waterloo, School of Computer Science (2008)
Biedl, T.C., Lubiw, A., Spriggs, M.J.: Cauchy’s theorem and edge lengths of convex
polyhedra. In: Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS 2007. LNCS, vol. 4619,
pp. 398-409. Springer, Heidelberg (2007)

Biedl, T., Lubiw, A., Sun, J.: When can a net fold to a polyhedron? Computational
Geometry: Theory and Applications 31(3), 207—218 (2005)

Damian, M., Flatland, R., O’Rourke, J.: Unfolding Manhattan towers. Computa-
tional Geometry: Theory and Applications 40, 102-114 (2008)

Dolbilin, N.P., Shtan’ko, M.A., Shtogrin, M.T.: Rigidity of a quadrillage of a torus
by squares. Russian Math. Surveys 54(4), 839-840 (1999)

Donoso, M., O’'Rourke, J.: Nonorthogonal polyhedra built from rectangles. In:
14th Canadian Conference on Computational Geometry (CCCG 2002), pp. 97—
100 (2002)

O’Rourke, J.: Computational geometry column 49. ACM SIGACT News 38(2)
(2007)

Pak, I.: Lectures on Discrete and Polyhedral Geometry. Cambridge Univer-
sity Press, Cambridge (in print, 2009), http://www.math.umn.edu/~pak/book.htm
(last accessed, April 2009)

http://www.math.umn.edu/~pak/book.htm

Approximability of Sparse Integer Programs

David Pritchard

Department of Combinatorics & Optimization, University of Waterloo
dagpritchard@math.uwaterloo.edu

Abstract. The main focus of this paper is a pair of new approxima-
tion algorithms for sparse integer programs. First, for covering inte-
ger programs {mincz : Az > b,0 < x < d} where A has at most k
nonzeroes per row, we give a k-approximation algorithm. (We assume
A,b,c,d are nonnegative.) For any k& > 2 and ¢ > 0, if P # NP this
ratio cannot be improved to kK — 1 — ¢, and under the unique games
conjecture this ratio cannot be improved to k — e. One key idea is
to replace individual constraints by others that have better rounding
properties but the same nonnegative integral solutions; another critical
ingredient is knapsack-cover inequalities. Second, for packing integer pro-
grams {maxcz : Az < b,0 < x < d} where A has at most k nonzeroes
per column, we give a 2°k%-approximation algorithm. This is the first
polynomial-time approximation algorithm for this problem with approx-
imation ratio depending only on k, for any k£ > 1. Our approach starts
from iterated LP relaxation, and then uses probabilistic and greedy meth-
ods to recover a feasible solution.

1 Introduction and Prior Work

In this paper we investigate the following problem: what is the best possible
approximation ratio for integer programs where the constraint matrix is sparse?
To put this in context we recall a famous result of Lenstra [I]: integer programs
with a constant number of variables or a constant number of constraints can be
solved in polynomial time. Our investigations analogously ask what is possible if
the constraints each involve at most k variables, or if the variables each appear
in at most k constraints.

Rather than consider the full class of all integer programs, we consider only
packing and covering problems. One sensible reason for this is that every integer
program can be rewritten (possibly with additional variables) in such a way
that each constraint contains at most 3 variables and each variable appears
in at most 3 constraints, if mixed positive and negative coeflicients are allowed.
Aside from this, packing programs and covering programs represent a substantial
portion of the literature on integer programs; and sparse programs of this type
are interesting in their own right as “multiple-knapsack” problems where each
item affects a bounded number of knapsacks, or each knapsack is affected by a
bounded number of items.

We use CIP (resp. PIP) as short for covering (resp. packing) integer program,
which is any integer program of the form {mincz : Az > 5,0 < x < d} (resp.

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 83]94] 2009.
(© Springer-Verlag Berlin Heidelberg 2009

84 D. Pritchard

{maxcx : Az < b,0 < z < d}) with A, b, ¢, d nonnegative and rational. Note that
CIPs are sometimes called multiset multicover when A and b are integral. We call
constraints « < d multiplicity constraints (also known as capacity constraints).
We allow for entries of d to be infinite, and without loss of generality, all finite
entries of d are integral. An integer program with constraint matrix A is k-row-
sparse, or k-RS, if each row of A has at most k entries; we define k-column-sparse
(k-CS) similarly. As a rule of thumb we ignore the case k = 1, since such problems
trivially admit fully polynomial-time approximation schemes (FPTAS’s) or poly-
time algorithms. The symbol 0 denotes the all-zero vector, and similarly for 1.
For covering problems an a-approximation algorithm is one that always returns a
solution with objective value at most « times optimal; for packing, the objective
value is at least 1/« times optimal. We use n to denote the number of variables
and m the number of constraints (i.e. the number of rows of A).

1.1 k-Row-Sparse Covering IPs: Previous and New Results

The special case of 2-RS CIP where A,b,c¢,d are 0-1 is the same as Min Ver-
tex Cover, which is APX-hard. More generally, 0-1 k-RS CIP is the same as
k-Bounded Hypergraph Min Vertex Cover (a.k.a. Set Cover with maximum fre-
quency k) which is not approximable to k — 1 — ¢ for any fixed € > 0 unless
P=NP [2] (k—e under the unique games conjecture [3]). This special case is known
to admit a matching positive result: set cover with maximum frequency k can be
k-approximated by direct rounding of the naive LP [4] or local ratio/primal-dual
methods [5].

The following results are known for other special cases of k-RS CIP with
multiplicity constraints: Hochbaum [6] gave a k-approximation in the special
case that A is 0-1; Hochbaum et al. [7] and Bar-Yehuda & Rawitz [§] gave
pseudopolynomial 2-approximation algorithms for the case that k = 2 and d is
finite. For the special case d = 1, Carr et al. [0, §2.6] gave a k-approximation, and
Fujito & Yabuta [10] gave a primal-dual k-approximation. Moreover [9I10] claim
a k-approximation for general d, but there seems to have been some oversights
as the papers do not provide full proofs and their methods alone seem to be
insufficient for general d. Our first main result, given in Section 2] is a simple
and correct proof of the same claim.

Theorem 1. There is a polynomial time k-approrimation algorithm for k-RS
CIPs with multiplicity constraints.

Our approach is to first consider the special case that there are no multiplicity
constraints (i.e. d; = 400 for all j); we then extend to the case of finite d via
knapsack-cover inequalities, using linear programming (LP) techniques from Carr
et al. [9]. A (k + 1)-approximation algorithm is relatively easy to obtain using
LP rounding; in order get the tighter ratio k, we replace constraints by other
“Zi-equivalent” constraints (see Definition Bl) with better rounding properties.
The algorithm requires a polynomial-time linear programming subroutine.
Independently of our work, a recent paper of Koufogiannakis & Young [11]
also gives a full and correct proof of Theorem[Il Their primal-iterative approach

Approximability of Sparse Integer Programs 85

works for a broad generalization of k-RS CIPs and runs in low-degree strongly
polynomial time. Our approach has the generic advantage of giving new ideas
that can be used in conjunction with other LP-based methods, and the specific
advantage of giving integrality gap bounds. See the full version [12] for details.

1.2 Ek-Column-Sparse Packing IPs: Previous and New Results

So far, no constant-factor approximation is known for k-CS PIPs, except in
special cases. If every entry of b is {2(logm) then randomized rounding provides
a constant-factor approximation. Demand matching is the special case of 2-CS
PIP where (i) in each column of A all nonzero values in that column are equal
to one another and (ii) no two columns have their nonzeroes in the same two
rows. Shepherd & Vetta [I3] showed demand matching is APX-hard but admits
a (121 — v/b)-approximation algorithm when d = 1; their approach also gives a
g—approximation for 2-CS PIP instances satisfying (i). Results of Chekuri et al.
[14] yield a 11.542k-approximation algorithm for k-CS PIP instances satisfying
(i) and such that the maximum entry of A is less than the minimum entry of b.

The special case of k-CS PIP where A, b are 0-1 is the same as min-weight k-
set packing, hypergraph matching with edges of size < k, and strong independent
sets in hypergraphs with degree at most k. The best approximation ratio known
for this problem is (k + 1)/2 + € [15] for general weights, and k/2 + ¢ when
¢ = 1 [I6]. The best lower bound is due to Hazan et al. [I7], who showed
2(k/ In k)-inapproximability unless P=NP, even for ¢ = 1.

Our second main result, given in Section [3] is the following result.

Theorem 2. There is a polynomial time 2%(k? — 2k + 1) + 1-approzimation
algorithm for k-CS PIPs with multiplicity constraints.

Our methodology begins by using iterated LP relazation [18] to find an inte-
gral solution with super-optimal value, but violating some constraints in an
additively-bounded way. Then we use a combination of probabilistic and greedy
methods to recover a high-weight feasible solution. An extension of this method-
ology gives improved results in two special cases: we get a 4-approximation when
k =2, and we get a (W +k)/(W — k)-approximation when the program’s width,
defined as W := min; ;. 4,0 j:j satisfies W > k. These results also require a
polynomial-time linear programming subroutine.

Subsequent to the initial release of this paper on the arXiv [12], C. Chekuri,
A. Ene and N. Korula (personal communication) have obtained results for k-CS
PIPs: a fairly simple O(k2¥)-approximation algorithm without iterated round-
ing, and a O(k?)-approximation (and integrality gap bound) that builds on our
iterated rounding ideas.

1.3 Other Related Work

Srinivasan [19)20] showed that k-CS CIPs admit a O(log k)-approximation. Kol-
liopoulos and Young [21] extended this result to handle multiplicity constraints.
There is a matching hardness result: it is NP-hard to approximate k-Set Cover,

86 D. Pritchard

Table 1. The landscape of approximability of sparse integer programs. Our main
results are in boldface.

k-Column-Sparse k-Row-Sparse

lower bound upper bound lower bound upper bound
Packing Q2(k/Ink) (k?-2k+1)2%+1 pl—o®W en
Covering Ink — O(InIn k) O(Ink) k—e k

which is the special case where A, b, ¢ are 0-1, better than Ink — O(Inln k) for
any k > 3 [22]. Hence for k-CS CIP the best possible approximation ratio is
O(logk). A (k + ¢)-approximation algorithm can be obtained by separately ap-
plying an approximation scheme to the knapsack problem corresponding to each
constraint. Hochbaum [23] showed 2-CS CIPs are NP-hard to optimize and gave
a bicriteria approximation algorithm. Although 0-1 2-CS CIP is Edge Cover
which lies in P, 2-CS CIP in general is NP-hard to (17/16 — €)-approximate, due
to methods from [24], even if A has 2 equal nonzeroes per column and d is 0-1
or d is all-+oo. See the full version [12] for details.

The special case of 2-RS PIP where A,b, ¢ are 0-1 is the same as Max In-
dependent Set, which is not approximable within n/21°g3/4+6" unless NP C

BPTIME(QIOgO(l)”) [25]. On the other hand, n-approximation of any packing
problem is easy to accomplish by looking at the best singleton-support solution.
A slightly better n/t-approximation, for any fixed ¢, can be accomplished by
exhaustively guessing the ¢ most profitable variables in the optimal solution,
and then solving the resulting ¢-dimensional integer program to optimality via
Lenstra’s result [1].

We remark that integer CIPs and PIPs where A has at most k rows are known
as k-dimensional knapsack problems, and for any fixed k& > 2 they have a PTAS
and pseudopolynomial-time algorithm, but no FPTAS unless P=NP — see [26,
§9.4] for references. In particular, to clarify Lenstra’s result [I], it is NP-hard to
get an FPTAS for PIPs with 2 constraints plus a nonnegativity constraint for
each variable [27].

1.4 Summary

We summarize the existing and new results in Table [Il Note that in all four
cases, the strongest known lower bounds are obtained even in the special case
that A, b, c,d are 0-1.

2 k-Approximation for k-Row-Sparse CIPs

By scaling rows and clipping coefficients that are too high, there is no loss of
generality in the following definition.

Definition 1. A k-RS CIP is an integer program {mincx : Az > 1,0 <z < d}
where A is k-RS and all entries of A are at most 1.

Approximability of Sparse Integer Programs 87

To begin with, we focus on the case d; = +oo for all j, which we will call un-
bounded k-RS CIP, since it already illustrates the essence of our new technique.
Motivated by LP rounding methods, we make the following definition, in which
x is a vector-valued variable and « is a vector of real coefficients. Throughout,
we assume coefficients are nonnegative. When we apply |-] to vectors we mean
the component-wise floor.

Definition 2. A constraint ax > 1 is p-roundable for some p > 1 if for all
nonnegative real x, (ax > 1) implies (a|pz] > 1).

Note that p-roundability implies p’-roundability for p’ > p. The relevance of this
property is explained by the following proposition.

Proposition 3. If every constraint in an unbounded covering integer program
is p-roundable, then there is a p-approximation algorithm for the program.

Proof. Let * be an optimal solution to the program’s linear relaxation. Then
cz* is a lower bound on the cost of any optimal solution. Thus, |pz*] is a feasible
solution with cost at most p times optimal.

Another simple observation helps us get started.
Proposition 4. The constraint cx > 1 is (1+), o;)-roundable.

Proof. Let p= (14, a;). Since [t] > t—1 for any ¢, if ax > 1 for a nonnegative
x, then

alpx] ZZ%‘(P%*U:PZ%‘%*Z% >p-l-(p—-1)=1,

as needed.

Now consider an unbounded k-RS CIP. Since each constraint has at most k
coefficients, each less than 1, it follows from Proposition @] that every constraint
in these programs is (k + 1)-roundable, and so such programs admit a (k + 1)-
approximation algorithm by Proposition Bl It is also clear that we can tighten
the approximation ratio to k for programs where the sum of the coefficients in
every constraint (row) is at most k — 1. What we will now do is show that rows
with sum in (k — 1, k] can be replaced by other rows which are k-roundable.

Definition 5. Two constraints ax > 1 and o’z > 1 are Z,-equivalent if for all
nonnegative integral x, (ax > 1) & (/z > 1).

In other words, ax > 1 and o’z > 1 are Z,-equivalent if ax > 1 is valid for
{z:2>0,0/x>1} and o'z > 1 is valid for {z : z > 0,ax > 1}.

Proposition 6. Every constraint ax > 1 with at most k nonzero coefficients is
Z -equivalent to a k-roundable constraint.

Before proving Proposition [6 let us illustrate its use.

88 D. Pritchard

Theorem 3. There is a polynomial time k-approximation algorithm for un-

bounded k-RS CIPs.

Proof. Using Proposition [6] we replace each constraint with a Z,-equivalent k-
roundable one. The resulting IP has the same set of feasible solutions and the
same objective function. Therefore, Proposition B yields a k-approximately op-
timal solution.

With the framework set up, we begin the technical part: a lemma, then the proof
of Proposition

Lemma 7. For any positive integers k and v, the constraint Zi:ll i+ il’k >1
1s k-roundable.

Proof. Let ax > 1 denote the constraint. If x satisfies the constraint, then the
maximum of 1, T2, ..., Tx_1 and })xk must be at least 1/k. If x; > 1/k for
some i # k then |kz;] > 1 and so a|kx| > 1 as needed. Otherwise xj must be
at least v/k and so |kxy| > v which implies a|kz| > 1 as needed.

Proof of Proposition[@ If the sum of coefficients in the constraint is kK — 1 or
less, we are done by Proposition 4] hence we assume the sum is at greater than
k — 1. Without loss of generality (by renaming) such a constraint is of the form

k
inai Z 1 (1)
i=1

where0<a <1, k—1< Zl a; < k, and the «;’s are nonincreasing in .

Define the support of x to be supp(z) := {i | z; > 0}. Now ap_1 + oy > 1
since k —1 <>, g0 +ag1+ar <ag1+ o+ (k—2). Since the o; are
nonincreasing, a; + o; > 1 for any i« < k,j < k; more generally, any integral
2 > 0 with |supp(x)| > 2 must satisfy ax > 1. To express the set of all feasible
integral solutions, let ¢ = max{0} U {i | o; = 1}, let e; denote the ith unit basis
vector, and let v = [1/ay|. Then it is not hard to see that the nonnegative
integral solution set to constraint () is the disjoint union

{z |z >0,|supp(z)| >2}W{ze; |1 <i<t,z>1}
W{ze; |t <i<k,z>2}wW{zer |2z >0}

(2)

The special case t = k (i.e. a1 = aa = --- = a; = 1) is already k-roundable by
Lemma [7] so assume t < k. Consider the constraint
t k—1
v—1 1
. . > 1.
e 3 s b 0
=1 1=t+1

Every integral > 0 with |supp(x)| > 2 satisfies constraint ([B]). By also con-
sidering the cases |supp(z)| € {0, 1}, it is easy to check that constraint (3] has
precisely Equation (2] as its set of feasible solutions, i.e. constraint @) is Z4-
equivalent to ax > 1. If t < k — 1, the sum of the coefficients of constraint (3] is
k — 1 or less, so it is k-roundable by Proposition @ If ¢t = k — 1, constraint (3]
is k-roundable by Lemma [7l Thus in either case we have what we wanted.

Approximability of Sparse Integer Programs 89

2.1 Multiplicity Constraints

We next obtain approximation guarantee k even with multiplicity constraints
x < d. For this we use knapsack-cover inequalities. These inequalities repre-
sent residual covering problems when a set of variables is taken at maximum
multiplicity. Wolsey [28] studied inequalities like this for 0-1 problems to get a
primal-dual approximation algorithm for submodular set cover. The LP we use
is most like what appears in Carr et al. [9] and Kolliopoulos & Young [21], but
we first replace each row with a k-roundable one.

Specifically, given a CIP {mincz | Az > 1,0 < x < d} with A, d nonnegative,
we now define the knapsack cover LP. Note that we allow d to contain some
entries equal to +oo. For a subset F' of supp(4;) such that E]EF Ai;d; < 1,

define Az(f) =min{A;;,1 - ,cp Aijd;}. Following [9121] we define the knapsack
cover LP for our problem to be

KC-LP = {minc:v :0<z<d;

VZ,\V/F C supp(Ai) s.t. Z Aijdj <1: Z AEJF)I] >1- Z Azjdj}

JEF JEF JEF

Theorem [l There is a polynomial time k-approzimation algorithm for k-RS
CIPs.

Proof. Using Proposition [6] we assume all rows of A are k-roundable. Let 2* be
the optimal solution to KC-LP. Define Z = min{d, |kz*|}, where min denotes
the component-wise minimum. We claim that Z is a feasible solution to the CIP,
which will complete the proof. In other words, we want to show for each row i
that A,z > 1.

Fix any row i and define F' = {j € supp(A;) | 2} > d;/k}, i.e. F'is those
variables in the constraint that were rounded to their maximum multiplicity. If
F = & then, by the k-roundability of A;x > 1, we have that 4,7 = A;|kz*| > 1
as needed. So assume F # &.

If EJEF A;;d; > 1 then the constraint A;Z > 1 is satisfied; consider otherwise.
Since |kz} | > kaj — 1 for j ¢ F, since z* satisfies the knapsack cover constraint

for ¢ and F', and since Agf) <1- ZJEF A;ijd; for each j, we have

Do ATE 2 kY AT - A

J¢F JEF jE€F

> k(l -y Aijdj> - ‘{j 1j € SUPP(Ai)\F}‘ (1 -y Aijdj>'
JEF jJEF

Since F' # @ and [supp(A;)| < k, this gives > . p Ag)@ > 1 =3 cr Aijd;.

Rearranging, and using the facts (Vj : 4;; > Agf)) and (Vj € F : d; =T;), we
deduce A;7 > 1, as needed.

For fixed k, we may solve KC-LP explicitly, since it has polynomially many
constraints. For general k, we follow the ellipsoid algorithm-based approach of

90 D. Pritchard

[021]: rather than solve KC-LP in polynomial time, we obtain a solution z*
which is optimal for a modified KC-LP having not all knapsack-cover constraints,
but at least all those for the the m specific (i, F') pairs (depending on z*) used
in our proof; thus we still get a k-approximation in polynomial time.

3 Column-Sparse Packing Integer Programs

In this section we give an approximation algorithm for k-column-sparse packing
integer programs with approximation ratio 2¥ (k% —2k+1)+ 1, and better results
for k = 2. The results hold even in the presence of multiplicity constraints z < d.
Broadly speaking, our approach is rooted in the demand matching algorithm
of Shepherd & Vetta [13]; their path-augmenting algorithm can be viewed as a
restricted form of iterated relaxation, which is the main tool in our new approach.
Iterated relaxation yields a superoptimal solution that violates some constraints,
and with probabilistic rounding and greedy ideas we are able to obtain a feasible
solution while retaining at least a constant fraction of the weight.

By scaling rows and eliminating variables whose coefficients are too high, there
is no loss of generality in the following definition.

Definition 8. A k-CS PIP is an integer program {maxcz : Ax < 1,0 <z <d}
where A is k-CS and all entries of A are at most 1.

We begin this section by explaining a simpler version of our new mechanism;
this simpler version gives a 2¥(k? — k + 1)-approximation algorithm for k-CS
PIP in the special case d = 1.

By analogy with the demand matching problem and hypergraphic matching,
it is natural to think of the rows of the constraint matrix A as indexed by a vertex
set V and the columns as indexed by a hyperedge set E. Specifically, define a
vertex for each row, let A, denote the entry of A at row v and column e, and
for each column define its corresponding hyperedge e to be {v | A, > 0}; the
resulting hypergraph may not be simple. We define the term endpoint to mean
a pair (v,e) such that A, > 0.

The following intermediate result of iterated rounding is key for our approach.
For a k-CS PIP P let L£(P) denote its linear relaxation {maxcz | Az < 1,0 <
x < d}. Our iterated rounding algorithm computes a set S of special endpoints;
for such a set we let Ag_,o denote the matrix obtained from A by zeroing out
the entries corresponding to each special endpoint.

Lemma 9. Given a k-CS PIP P with d = 1, we can in polynomial time find
y € {0,1}¥ and S such that

(a) cy > OPT(L(P))
(b) Yv €V, we have |{e: (v,e) € S} <k
(C) Asoy < 1.

Proof of Lemmal[d First, we give a sketch. Since P is k-column sparse, every
hyperedge has size at most k. Let * be an extreme optimal solution to L(P).

Approximability of Sparse Integer Programs 91

The crux of our approach deals with the case that x* has no integral values:
then z* is a basic feasible solution all of whose tight constraints correspond to
vertices, so the number of vertices is greater than or equal to the number of
hyperedges. Thus by double-counting the average vertex degree is at most k,
so some vertex has degree at most k. In other words there is some constraint
which contains at most k£ nonzero variables, which allows iterated rounding to
take place.

Since y is a 0-1 vector we can alternatively view it as a subset Y of E. With
this convention, we now give pseudocode for our iterated rounding algorithm,
ITERATEDSOLVER.

ITERATEDSOLVER(A, ¢)
1:Set S=Y=N=9,V =V,E'=F

2: loop
3: Let * be an extreme optimum of
{maxcz |z €[0,1]%; As—ox < 1;Ve €Y 1 ze = 1;Ve € N : z. = 0}
4: For each e € E' with z} = 0, add e to N, delete e from E’
5: For each e € E' with z} =1, add e to Y, delete e from E’
6: If E' = @, terminate and return S and y, the characteristic vector of Y’
7 for each vertex v € V' with degree less than or equal to k in (V', E’) do
8: Mark each endpoint {(v,e) | e € E'} special, delete v from V'

Now we explain the pseudocode. The sets Y, N are disjoint subsets of F,
and E/ = E\Y\N. When e leaves E’, the value of z,. is fixed at 0 or 1. After
deleting a vertex v from V”, it will not be possible to later violate the constraint
corresponding to v. Hence the linear program effectively only has variables for
E’ and constraints for V’. As remarked previously, since z* is a basic feasible
solution the average vertex degree is at most k each time Step [1 is reached, so
|[V’| decreases in each iteration, and the algorithm has polynomial running time.
(In fact, it is not hard to show that there are at most O(klog|V|) iterations.)

The algorithm has the property that cz* does not decrease from one iteration
to the next; since * = y at termination, property (a) holds. Properties (b) and
(c) can be seen immediately from the definition of the algorithm.

Next, we show the kind of rounding which takes the output of ITERATEDSOLVER
to a feasible solution.

Theorem 4. There is a polynomial time 2% (k? — k+1)-approzimation algorithm
for k-CS PIPs with d = 1.

Proof. After running ITERATEDSOLVER, suppose we find a subset Z of Y with
the property that if any e, f € Z intersect at a vertex v, neither (v, e) nor (v, f)
is special. Then from Lemma [0(c) and the fact that entries of A are at most 1,
it follows that Z is a feasible solution to P (the original k-CS PIP). In the rest
of the proof, we show there exists such a set with at least a constant fraction of
Y’s profit.

92 D. Pritchard

To accomplish this we have each vertex v € V independently declare “special”
or “non-special,” each with probability 1/2. We say that the eth column is
accepted if (1) for every endpoint (v, e) € S the vertex v declares special and (2)
for every endpoint (v,e) ¢ S the vertex v declares non-special. It follows from
the k-column-sparseness of A that each column is accepted with probability at
least 1/2F.

Let Y* C Y denote the set of accepted columns, and V* C V denote the set
of vertices that declared special. So E[c(Y®)] > ¢(Y)/2*. We need the following
claim, whose easy proof is in the full version [12].

Claim 10. If Z C Y® has the property that every two hyperedges e1,es in Z
satisfy e; Nes NV = &, then Z is a feasible solution to P.

Another way of stating Claim [10] is that whenever Z is a matching on the in-
duced subhypergraph (V,Y®)[V®], Z is a feasible solution to P. (Note, we do
not discard “empty” hyperedges in this view — hyperedges disjoint from Vj
can be freely added to any matching.) Consider the greedy algorithm for find-
ing such a matching: we iteratively select the maximum-weight hyperedge that
does not intersect any previously selected hyperedges on V*. Since the subhy-
pergraph has hyperedges of size at most k& and degree at most k, it is easy to
see that each chosen hyperedge precludes at most k(k — 1) other hyperedges for
future selection. Thus the greedy algorithm outputs a set Z with cost at least
c(Y*)/(k(k—1)+1), which is at least ¢(Y)/2* (k% — k+1) in expectation. Using
the fact that ¢(Y") > OPT(L(P)) > OPT(P), we are done.

3.1 Strongest Results

Our strongest results are obtained by using a somewhat more refined iterated
rounding algorithm. The details appear are deferred to the full version [12] due
to lack of space; we simply state the results here.

Theorem 2l There is a polynomial time 2¥(k? — 2k + 1) + 1-approzimation
algorithm for k-CS PIPs.

Theorem 5. There is a deterministic polynomial time 4-approximation algo-
rithm for 2-CS PIPs, and a randomized 6 — /5 ~ 3.764-approzimation algorithm
when d =1 and no two columns have the same support.

The width W of an integer program is 1/ (max;; A;;/b;). Note that without loss
of generality, W > 1. If we normalize b = 1 by row scaling as in the rest of this
paper, then a program has width > W iff every entry of A is at most 1/W.

In many settings better approximation can be obtained as W increases. For
example in k-RS CIPs with b = 1, the sum of the entries in each row is at most
k/W, so Propositions[3 and [give a (1 + k/W)-approximation algorithm. Srini-
vasan [19120] gave a (1+1n(1+k) /W)-approximation algorithm for unbounded -
CS CIPs. Using grouping and scaling techniques introduced by Kolliopoulos and
Stein [29], Chekuri et al. [14] showed that no-bottleneck demand multicommodity
flow in a tree admits a (14 O(1/v/W))-approximation algorithm, and gave gen-
eral sufficient conditions for a problem to admit a (14O(1/v/W))-approximation

Approximability of Sparse Integer Programs 93

algorithm. Along the same vein, using iterated rounding, Kénemann et al. [30]
obtained a (1 + O(1/W))-approximation algorithm for ordinary multicommod-
ity flow in a tree, and general sufficient conditions for a problem to admit a
(1+ O(1/W))-approximation algorithm [30]. Using a new technique (iteratively
using an LP to reduce an additively-violating solution to a feasible solution), we
get the following — again see [12] for details.

Theorem 6. There is a polynomial time (1 + k/W)/(1 — k/W)-approzimation
algorithm to solve k-column-sparse PIPs with k/W < 1.

Acknowledgement. We would like to thank Glencora Borradaile, Christina
Boucher, Deeparnab Chakrabarty, Stephane Durocher, Jochen Kénemann and
Christos Koufogiannakis for helpful discussions, and the ESA referees for useful
feedback.

References

1. Lenstra, H.: Integer programming with a fixed number of variables. Math. Oper.
Res. 8, 538-548 (1983)

2. Dinur, I., Guruswami, V., Khot, S., Regev, O.: A new multilayered PCP and the
hardness of hypergraph vertex cover. SIAM J. Comput. 34(5), 1129-1146 (2005);
Preliminary version appeared in Proc. 35th STOC, pp. 595-601 (2003)

3. Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2 —e. J.
Comput. Syst. Sci. 74(3), 335-349 (2008); Preliminary version appeared in Proc.
18th CCC, pp. 379-386 (2003)

4. Hochbaum, D.S.: Approximation algorithms for set covering and vertex cover prob-
lems. SIAM J. Comput. 11, 555-556 (1982)

5. Bar-Yehuda, R., Even, S.: A linear time approximation algorithm for the weighted
vertex cover problem. J. Algorithms 2, 198-203 (1981)

6. Hall, N.G., Hochbaum, D.S.: A fast approximation algorithm for the multicovering
problem. Discrete Appl. Math. 15(1), 3540 (1986)

7. Hochbaum, D.S., Megiddo, N., Naor, J.S., Tamir, A.: Tight bounds and 2-
approximation algorithms for integer programs with two variables per inequality.
Math. Program. 62(1), 69-83 (1993)

8. Bar-Yehuda, R., Rawitz, D.: Efficient algorithms for integer programs with two
variables per constraint. Algorithmica 29(4), 595-609 (2001)

9. Carr, R.D., Fleischer, L., Leung, V.J., Phillips, C.A.: Strengthening integrality
gaps for capacitated network design and covering problems. In: Proc. 11th SODA,
pp. 106-115 (2000)

10. Fujito, T., Yabuta, T.: Submodular integer cover and its application to production
planning. In: Persiano, G., Solis-Oba, R. (eds.) WAOA 2004. LNCS, vol. 3351, pp.
154-166. Springer, Heidelberg (2005)

11. Koufogiannakis, C., Young, N.E.: Greedy degree-approximation algorithm for cov-
ering with arbitrary constraints and submodular cost. In: Albers, S., Marchetti-
Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. Part
I. LNCS, vol. 5555, pp. 634-652. Springer, Heidelberg (2009) arXiv:0807.0644

12. Pritchard, D.: Approximability of sparse integer programs (2009) arXiv:0904.0859

94

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

D. Pritchard

Shepherd, F.B., Vetta, A.: The demand-matching problem. Mathematics of Oper-
ations Research 32(3), 563-578 (2007); Preliminary version appeared in Proc. 9th
IPCO, pp. 457-474, (2002)

Chekuri, C., Mydlarz, M., Shepherd, F.B.: Multicommodity demand flow in a tree
and packing integer programs. ACM Trans. Algorithms 3(3), 27 (2007); Preliminary
version appeared in Proc. 30th ICALP, pp. 410425 (2003)

Berman, P.: A d/2 approximation for maximum weight independent set in d-claw
free graphs. Nordic J. of Computing 7(3), 178-184 (2000); Preliminary version
appeared in Proc. 7th SWAT, pp. 214-219 (2000)

Hurkens, C.A.J., Schrijver, A.: On the size of systems of sets every t of which
have an SDR, with an application to the worst-case ratio of heuristics for packing
problems. STAM J. Discret. Math. 2(1), 68-72 (1989)

Hazan, E., Safra, S., Schwartz, O.: On the complexity of approximating k-set pack-
ing. Comput. Complex. 15(1), 20-39 (2006); Preliminary versions appeared in Proc.
6th APPROX, pp. 83-97 (2003); ECCC-TR03-020 (2003)

Singh, M.: Iterative Methods in Combinatorial Optimization. PhD thesis, Carnegie
Mellon University (2008)

Srinivasan, A.: Improved approximation guarantees for packing and covering in-
teger programs. SIAM J. Comput. 29(2), 648-670 (1999); Preliminary version ap-
peared in Proc. 27th STOC, pp. 268-276 (1995)

Srinivasan, A.: An extension of the Lovédsz Local Lemma, and its applications to
integer programming. STAM J. Comput. 36(3), 609-634 (2006); Preliminary version
appeared in Proc. 7th SODA, pp. 6-15 (1996)

Kolliopoulos, S.G., Young, N.E.: Approximation algorithms for covering/packing
integer programs. J. Comput. Syst. Sci. 71(4), 495-505 (2005)

Trevisan, L.: Non-approximability results for optimization problems on bounded
degree instances. In: Proc. 33rd STOC, pp. 453-461 (2001)

Hochbaum, D.S.: Monotonizing linear programs with up to two nonzeroes per
column. Oper. Res. Lett. 32(1), 49-58 (2004)

Chakrabarty, D., Goel, G.: On the approximability of budgeted allocations and
improved lower bounds for submodular welfare maximization and GAP. In: Proc.
49th FOCS, pp. 687-696 (2008)

Khot, S., Ponnuswami, A.K.: Better inapproximability results for maxClique, chro-
matic number and min-3Lin-deletion. In: Bugliesi, M., Preneel, B., Sassone, V.,
Wegener, 1. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 226-237. Springer, Heidel-
berg (2006)

Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Heidelberg
(2004)

Magazine, M.J., Chern, M.S.: A note on approximation schemes for multidimen-
sional knapsack problems. Math. of Oper. Research 9(2), 244-247 (1984)

Wolsey, L.: An analysis of the greedy algorithm for the submodular set covering
problem. Combinatorica 2(4), 385-393 (1982)

Kolliopoulos, S.G., Stein, C.: Improved approximation algorithms for unsplittable
flow problems. In: Proc. 38th FOCS, pp. 426436 (1997)

Koénemann, J., Parekh, O., Pritchard, D.: Max-weight integral multicommodity
flow in spiders and high-capacity trees. In: Bampis, E., Skutella, M. (eds.) WAOA
2008. LNCS, vol. 5426, pp. 1-14. Springer, Heidelberg (2009)

Iterative Rounding for Multi-Objective
Optimization Problems

Fabrizio Grandoni', R. Ravi?, and Mohit Singh?

! Department of Computer Science, Systems and Production,
University of Rome Tor Vergata
grandoni@disp.uniroma2.it
2 Tepper School of Business, Carnegie Mellon University, Pittsburgh, USA
Supported in part by NSF grant CCF-0728841
ravi@cmu.edu
3 Microsoft Research, New England, Cambridge, USA

mohsingh@microsoft.com

Abstract. In this paper we show that iterative rounding is a powerful
and flexible tool in the design of approximation algorithms for multi-
objective optimization problems. We illustrate that by considering the
multi-objective versions of three basic optimization problems: spanning
tree, matroid basis and matching in bipartite graphs. Here, besides the
standard weight function, we are given k length functions with corre-
sponding budgets. The goal is finding a feasible solution of maximum
weight and such that, for all ¢, the ith length of the solution does not
exceed the ith budget. For these problems we present polynomial-time
approximation schemes that, for any constant ¢ > 0 and k& > 1, compute
a solution violating each budget constraint at most by a factor (1 + ¢).
The weight of the solution is optimal for the first two problems, and
(1 — e)-approximate for the last one.

1 Introduction

Most real-life optimization problems involve finding a feasible solution trading
off many mutually conflicting goals. This is a rich area of study in Operations
Research, Economics and Computer Science in the broad area of Multi-objective
Optimization [10[14126]. A variety of approaches have been employed to formu-
late such problems including Goal Programming [4], Pareto-Optimality [9], and
Multi-objective Approximation Algorithms [26]. We adopt the latter approach
and cast one of the goals as the objective function, and the others as budget con-
straints. More precisely, we are given a (finite) set F of feasible solutions for the
problem; we are also given a weight function w : 7 — R and a set of k length
functions £* : F — R, 1 <i < k, that assign a weight w(.9) and k lengths ¢¢(S),
1 < i < k, to every feasible solution S € F. For each length function ¢¢, we
are also given a non-negative budget L; € R. The multi-objective optimization
problem can then be formulated as followdl.

! With a slight notation abuse, we will use OPT also to denote the actual optimal
solution (besides its weight).

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 95106} 2009.
(© Springer-Verlag Berlin Heidelberg 2009

96 F. Grandoni, R. Ravi, and M. Singh

OPT := maximize w(S) subject to S € F, £/(S)<L; 1<i<k. (1)

In this paper we study the multi-objective version of three fundamental max-
imization problems, namely spanning tree, matroid basis, and matching in bi-
partite graphs.

1. In the MULTI-OBJECTIVE SPANNING TREE problem, we are given an n-node
undirected graph G = (V| E) with edge weights w : E — R, k edge lengths
0 E — Ry, 1<i<Ek, and positive budgets L1, ..., L. The set of all feasible
solutions F is given by the spanning trees of G. Define the weight of T' € F
as w(T) := 3 cpw(e), and its ith-length as ¢*(T) := 3 ., ¢*(e). The goal is
finding T' € F of maximum weight w(T") such that ¢*(T") <L, for each 1 <7 < k.

2. The MULTI-OBJECTIVE BIPARTITE MATCHING problem is defined analogously.
Here the goal is finding a matching M in a bipartite graph of maximum-weight
w(M) such that ¢/(M) < L; forall 1 <i < k.

3. In the MULTI-OBJECTIVE MATROID BASIS problem, we are given a matroid
M = (E,€), £ C 2F, on the ground set E, m = |E| (for basic definitions and
results on matroids, see e.g. [27]). Moreover, we are given element weights w :
E — R, element lengths ¢! : E — R, and budgets L; € Ry, 1 <4 < k. The set
of all feasible solutions F is given by then bases of M. The weight of a basis B € £
is defined as w(B) :=) . w(e), while its ith-length is ¢/(B) := Y . ('(e).
The goal is computing a basis X € F of maximum weight satisfying all the
budget constraints. This naturally generalizes the multi-objective spanning tree
problem which results when we consider a graphic matroid.

All three problems are polynomial-time solvable in their unbudgeted version
(k = 0), but become NP-hard [I6] even for a single budget constraint (k = 1).

Our Results. We give a PTAS for multi-objective spanning trees and generalize
it to multi-objective matroid basis and also give a PTAS for multi-objective
matchings in bipartite graphs. Our results however require that the number of
budget constraints k is fixed.

Theorem 1. For any € > 0, there exists an algorithm for MULTI-OBJECTIVE
SPANNING TREE with k > 1 budget constraints which returns a spanning tree T
of optimal weight and ('(M) < (1 + €)L; for each 1 < i < k. The running time
of the algorithm is O(n°* /o).

Theorem [I] proved in Section [, generalizes the result of Ravi and Goemans [25]
who gave the same guarantees for the special case of a single budget constraint(k =
1), and improves on the (much more involved) algorithm of Papadimitriou and
Yannakakis [22] which returns a suboptimal ((1 — €)-approximate) solution with
a similar (i.e., 1 + ¢) violation of the budget constraints. The latter result of [22]
also holds for our case of many different but fixed number of objectives, and
even in this case, we improve on the approximation factor in the main objective
(with the same violation in the budgets).

Iterative Rounding for Multi-Objective Optimization Problems 97

Theorem 2. For any € > 0, there exists an algorithm for MULTI-OBJECTIVE
MATROID BASIS with k > 1 budget constraints which returns a basis B of optimal
weight and (*(B) < (1 + €)L; for each 1 < i < k. The running time of the
algorithm is O(mo<k2/€)).

Theorem [is discussed in Section 2.1l and generalizes a similar result for the
k =1 case as above in [25].

Theorem 3. . For any € > 0, there exists a deterministic algorithm for MULTI-
OBJECTIVE BIPARTITE MATCHING with k > 1 budget constraints which returns
a matching M of weight w(M) > (1 — €)OPT and length ¢*(M) < (1 + €)L; for
each 1 <i < k. The running time of the algorithm is O(no(kz\/k log;’“/62)).

Theorem [Flis proved in Section[Bl A similar approximation guarantee was known
earlier via the work of [22]. However, their result implies a fully polynomial RNC
scheme rather than a PTAS, and thus Theorem [3] provides the first deterministic
approximation scheme for MULTI-OBJECTIVE BIPARTITE MATCHING. A PTAS,
based on a completely different approach, was known earlier only for the case of
one budget constraint, i.e. k=1 [@].

Our Techniques. Perhaps even more importantly than our specific results,
our main contribution is to demonstrate that the general framework of iterative
techniques can be used to obtain approximation algorithms for various multi-
objective optimization problems. This technique was introduced by Jain [I5] for
approximating survivable network design problems. The basic idea in iterative
rounding for covering problems is as follows: Consider the optimal (fractional)
vertex (or extreme point or basic feasible) solution to a linear programming re-
laxation to the problem, and show that there is a variable with high fractional
value (e.g. at least 0.5) which can be rounded up to an integer without losing too
much (e.g. 2) in the approximation. The method includes this rounded variable
in the integral solution and iterates. Since the basis iterative rounding loses a
constant factor in approximation, we refine the method by replacing the round-
ing step by the following: relax (remove) a constraint that can be ignored without
losing too much in the feasibility and iterate on the residual problem. The re-
sulting iterative relaxzation method has been very successful for approximating
degree-constrained network design problems [T6II7I29].

We now outline how the iterative technique is applied to our problems. The
algorithm for MULTI-OBJECTIVE SPANNING TREE is rather simple; a vertex solu-
tion for the natural LP relaxation of the problem is already sparse: it has about
k edges more than a spanning tree in its support due to the well-known lami-
narity of an independent set of tight spanning tree constraints [27]. We remove
all edges corresponding to variables of value zero, relax (remove) all the bud-
get constraints, and solve optimally the residual problem (which is a standard
spanning tree problem). A preliminary guessing phase ensures that the k edges
not used in the tree do not add much to the approximation bound for any of
the budgets. This approach also gives a very simple proof of the earlier result

98 F. Grandoni, R. Ravi, and M. Singh

for the case k = 1 [25]. An identical approach works also for the more general
MULTI-OBJECTIVE MATROID BASIS problem.

Our algorithm for MULTI-OBJECTIVE BIPARTITE MATCHING is more involved:
after an initial preprocessing phase, where the algorithm removes all edges with
large weight and large length, there is a decomposition phase. In that phase,
we run an iterative relaxation algorithm which uses the optimal solution of the
natural LP formulation to obtain a modified LP solution. The iterative algorithm
ensures that the support of the modified solution is a collection of h < k vertex
disjoint paths. Moreover, each of these paths has small weight and length. In
the final combination phase, we combine the solutions on these paths to return
one feasible matching. Each path can be decomposed in two matchings. The
algorithm picks one matching from each of the paths. While the algorithm is
a brute force enumeration over all choices (which are 2" < 2 in number), a
probabilistic argument is used to show that there exists a choice of a matching
from each path which provides a solution with the desired guarantee.

Related Work. Multi-objective optimization has been studied extensively in
Operations Research, Microeconomics and Computer Science. We refer the reader
to more general sources [4[9IT0IT4], and restrict our attention to work which
closely relates to our problems. There are many examples of single-budget
versions of polynomial-time solvable optimization problems addressed in the lit-
erature. In the constrained shortest path problem the goal is finding a minimum-
weight path in a directed graph between two nodes s and t such that the length
of the path does not exceed a budget L [5]. In the constrained minimum arbores-
cence problem we are given a directed graphs with edge weights and lengths. The
aim is computing an arborescence of minimum weight whose length is below the
input budget [I3]. Previous work on budgeted optimization problems also in-
cludes results on budgeted scheduling [I828] and bicriteria results for several
budgeted network design problems [19].

Jain [I5] introduced the iterative rounding framework and applied it to ap-
proximating general network design problems. Subsequently, it was applied to
various other network design problems [8[T2I20]. The iterative relaxation tech-
nique has recently been successfully applied to degree constrained network design
problems [2IT6IT7I29].

There are few general tools for designing approximation algorithms for bud-
geted problems. One is the Lagrangian relaxation method. The basic idea is
relaxing the budget constraint, and lifting it into the objective function weight-
ing it by a Lagrangian multiplier. Solving the relaxed problem, one obtains two
or more optimal solutions, which are then patched together to get a good solution
for the original problem. Demonstrating this method, Goemans and Ravi [25]
gave the first PTAS for MULTI-OBJECTIVE SPANNING TREE with a single budget
constraint. Using the same approach, but a more involving patching step, Berger,
Bonifaci, Grandoni, and Schéfer [6] obtained a PTAS for the single-budget ver-
sion of the matching problem. This approach does not seem to generalize to the
case of multiple budget constraints.

Iterative Rounding for Multi-Objective Optimization Problems 99

A second general tool, due to Papadimitrou and Yannakakis [22], is based
on the construction of succinct approximation of Pareto curves. In order to ef-
ficiently construct such e-approximate Pareto curves, a sufficient condition is
the existence of a pseudo-polynomial-time algorithm for the exact version of
the problem considered. The task in the exact version of the problem is to re-
turn a feasible solution of exactly some pre-specified value. The existence of
such pseudo-polynomial-time algorithm for the spanning tree problem [3] im-
plies a polynomial-time algorithm which returns a (1 — ¢)-approximate solution
violating all the budget constraints by a factor of (1 + €) for the correspond-
ing multi-objective version. Unfortunately, it is not known whether such an
algorithm exists for matchings in bipartite graphs, while the famous random-
ized algorithm of Mulmuley, Vazirani and Vazirani [21I] can be used to obtain
a polynomial-time randomized approximation scheme for MULTI-OBJECTIVE BI-
PARTITE MATCHING. Their method, however, only approximates the objective
while our algorithm matches the value of the objective function with the optimal
for two out of the three problems addressed here, while for the third we obtain
a deterministic rather than an RNC algorithm.

A third approach is based on parametric search and is advocated in [19]; their
results imply that a p-approximation algorithm for the single objective problem
gives a (k - p)-approximation for each of the budget violations as well as for
the objective in the corresponding k-objective problem. This only gives a much
weaker k-approximation for each objective for the problems considered here.

Other general tools for multi-objective problems such as Matching-Based
Augmentation [24] advocates building the solution iteratively using one (path)
matching at a time controlling the various objectives, and Randomized Round-
ing of fraction LP solutions while bounding all objectives simultaneously [7123].
While these techniques are useful in handling more than one type of objective,
their performance ratios tend to be in the higher logarithmic range.

In the context of these methods, our paper shows that iterative rounding
is a powerful and flexible tool for approximating multi-objective optimization
problems giving even better results than all of the above methods. This was
already the case for degree-constrained spanning trees and survivable network
design problems [I6/29] and directed network design problems [2], and our results
extend these to some more multi-objective problems.

2 Multi-Objective Spanning Tree and Matroid Basis

We formulate the following linear programming relaxation for MULTI-OBJECTIVE
SPANNING TREE which is a standard extension of the linear program for the
maximum spanning tree problem. There is a variable x, for each edge e € F.
For a subset I C E of edges, we denote x(F) =) 7. and for a subset S C V,
we denote E(S) = {e : |en S| = 2} to be the set of edges with both endpoints
in S.

2 The same algorithm works for general graphs also.

100 F. Grandoni, R. Ravi, and M. Singh

(LP-ST) maximize Z w(e) xe

eck
(EWV) =VI-1,
(E(S)) < IS -1, vScVv
> l(e)ze < L, V1<i<k
e€lE
ze > 0, Vee€ FE.

subject to =z
x

The following characterization of any vertex solution of (LP-ST) follows directly
from the uncrossing technique (see [27]).

Lemma 1. Let x be a vertex solution of the linear program (LP-ST) such that
xe > 0 for each edge e and let T = {S CV : 2(E(S)) = |S|— 1} be the set of all
tight subset constraints. Then there exists a laminar family L C T and a subset
JC{1<i<k:Y .gli(e)we =L;} of tight length constraints such that

1. The vectors {x(E(S)) : S € L} are linearly independent.
2. span(L)=span(T)
3. |L[+ [T = |E|

Algorithm for Multi-Objective Spanning Tree

1. Guess all edges in the optimal solution such that £(e) > ¢L;. Include these edges
in the solution and contract them. Delete all other edges with £(e) > i Li from G.
Update L;.

2. Find a vertex solution z of (LP-ST) for the residual problem and remove every
edge e with z. = 0.

3. Pick any maximum-weight spanning tree in the support.

The algorithm for MULTI-OBJECTIVE SPANNING TREE above proceeds in two
phases. The first phase is the pruning step which we describe below. Observe
that no feasible solution can include an edge whose ith-length is more than L;.
We extend this step further and guess all edges in the solution whose ith-length is
at most | L;. For any ¢ there can be at most 1: such edges in the optimal solution.
Hence, trying all such possibilities for inclusion in a partial initial solution takes
time O(m*/€) where m is the number of edges in G. There are k length function
to try which amounts to the total number of choices being at most O(m*/<).
After guessing these edges correctly, we throw away all other edges which have
¢¢ length more than eL; and contract the guessed edges in the optimal solution.
Clearly, the rest of the edges in the optimal solution form a spanning tree in the
contracted graph. Also, now we have an instance where ¢(e) < ¢L; for each e
and ¢. We also update the bound L; by subtracting the lengths of the selected
edges. Let L denote the residual bounds. We solve the linear program (LP-
ST) with updated bounds Lj. Step (3) can be interpreted as removing all the k
constraints bounding the length under the length functions {'...,[*. Removing
these constraints gives us the linear program for the spanning tree problem which
is integral and its optimal solution is a maximum weight spanning tree.

Iterative Rounding for Multi-Objective Optimization Problems 101

Proof. (Theorem[dl) First observe that the support of (LP-ST) on a graph with n
vertices has at most n+k—1 edges. In fact, from Lemmall] we have |E| = |L|+|J].
But |£] < n—1 since L is a laminar family without singletons and |.J| < k proving
the claim.

Observe that the weight of the tree returned by the algorithm is at most the
weight of the LP-solution and hence is optimal for the correct guess of heavy
edges. Now, we show that the ith-length is at most L} + €L;. Observe that any
tree must contain n — 1 edges out of the n + k — 1 edges in the support. Hence,
the maximum 4th-length tree has length no more than k- [L; = €L; more than
the minimum ¢th-length tree. In turn, the tree of minimum ith-length has ith-
length no larger than the ith-length of the optimal fractional solution, which is
at most L} by feasibility. Altogether, the maximum ith-length of the solution
returned is no more than L + €L;. Adding the length of edges guessed in the
first step we obtain that the tree returned by the algorithm has ¢th-length at
most L, +€eL; + L; — L, = (1 + ¢)L;.

2.1 Multi-Objective Matroid Basis

The results on MULTI-OBJECTIVE SPANNING TREE can be naturally generalized
to the case of MULTI-OBJECTIVE MATROID BASIS. Consider the following linear
programming relaxation (LP-MB) for the problem. There is a variable z. for
each element e € E. For any subset S C E, we denote 2(S) = Y g %c. Here 7
denotes the rank function of the matroid M.

(LP-MB) maximize Z w(e) xe
eckE

subject to x(E) =r(E),

z(S) < r(S), VS C
Z(Z(e)meng, V1<i<k
ecE

ze > 0, Veec E

The polynomial time solvability of the linear program (LP-MB) follows from
the polynomial time separation of the rank constraints [11]. Our algorithm for
MULTI-OBJECTIVE MATROID BASIS is described below. Its analysis follows along
the same line as in the case of MULTI-OBJECTIVE SPANNING TREE and is omitted
due to space restrictions.

Algorithm for Multi-Objective Matroid Basis

1. Guess all elements in the optimal solution such that £*(e) > i Li. Include all such
elements in the solution and update the matroid by contracting these elements in
the matroid. Delete all other heavy elements e with £*(e) > i+ L; for any 7 from M.
Update L;.

2. Find a vertex solution z of (LP-MB) for the residual problem and remove every
element e with z. = 0.

3. Pick any maximum weight basis in the support.

102 F. Grandoni, R. Ravi, and M. Singh

3 Multi-Objective Bipartite Matching

In this section we present a polynomial-time approximation scheme for MULTI-
OBJECTIVE BIPARTITE MATCHING and prove Theorem [Bl

We formulate the following linear programming relaxation (LP-BM) for the
problem. We use d(v) to denote the set of edges incident to v € V.

(LP-BM) maximize Z w(e) xe

ecE

subject to Z Te <1, YveV
e€d(v)

> li(e)ze < Li, V1<i<k
ec
ze > 0, Veec E.

Algorithm for Multi-Objective Bipartite Matching

Preprocessing

(a) Let § = €2 / 36k+/2k In(k + 2). Guess all the edges e in OPT such that w(e) >
§OPT or £'(e) > 6 L; for some 4, and add them to the solution. Reduce the problem
consequently.

Decomposition

(b) Compute the optimal fractional vertex solution z® to LP-BM for the reduced
problem. As long as there is an integral variable, reduce the problem appropriately
and iterate.

(c) Remove all the nodes of degree zero and of degree at least 3, and all the edges
incident to the removed nodes. Compute an optimal fractional vertex solution z°¢
to the problem LP-BM in the remaining graph. As long as there is an integral
variable, reduce the problem appropriately and iterate. Finally, remove one edge
from each remaining cycle.

(d) Compute an optimal fractional vertex solution z? to the problem LP-BM in
the remaining graph. As long as there is an integral variable, reduce the problem
appropriately and iterate.

(e) Let v = €/2y/2kIn(k +2). As long as there is a path P = (e1,ez,...,e:)
induced by z? such that w(P) > yw(z?) or ¢/(P) > ~/('(z%) for some 4, find
a minimal subpath P’ = (e1,e2,...,ey) of P satisfying the condition above and
remove ey from the graph.

(f) Compute an optimal fractional vertex solution z' to the problem LP-BM in
the remaining graph. As long as there is an integral variable, reduce the problem
appropriately and iterate.

(g) Let Pi,Ps,..., P, be the set of paths induced by zf. Return the subpaths
S1,S52,...,Sn formed after deleting the internal nodes whose matching constraints
are not tight with respect to z7. Return the solution 29 which is 2 induced on the
edges in S; for each 1 < i < h.

Combination

(h) Let M; and M; be the two matchings partitioning S;. Return the matching
M’ satisfying the following properties: (i) For each Sj, M' N S; € {M;, M;}; (i)
w(M') > (1 —€/2)w(z9) and £/ (M') < (1 4+ €¢/2)¢*(x?) for all 1.

The algorithm for MULTI-OBJECTIVE BIPARTITE MATCHING above works in
three phases.

Iterative Rounding for Multi-Objective Optimization Problems 103

In the Preprocessing Phase, the algorithm guesses all the edges in OPT of
weight at least 6 OPT or ith-length at least dL; for some i. Here 4 is a proper
function of € and k. This guessing can be performed in time polynomial in n
(but exponential in ¢). The algorithm then includes all the guessed edges in
the solution, and deletes the remaining heavy edges. It also reduces the L;’s
accordingly. After this phase w(e) < § OPT and ¢i(e) < §L; for each edge e.

In the Decomposition Phase our algorithm computes over a series of pruning
and iterative steps, a solution to the multi-objective matching problem on a
reduced graph that is eventually a collection of paths. In Step (c), we discard
nodes of degree 0 or of degree 3 or higher so as to leave only paths and cycles;
Finally, one edge from each cycle is removed in this step. In Step (e), we further
break each path into subpaths of bounded total weight and length. This pruning
is useful in the later Combination Phase when we choose one of the two matchings
in each path: the bounded difference ensures that one such combination is near
optimal. The use of vertex solutions in all the residual problems ensures that the
total number of edges thrown away in all the above stages is roughly of the order
of the extra budget constraints in the problem which is O(k/v) for a parameter
v =~ O(e/Vk). Finally, we output a feasible fractional vertex solution z9 to the
LP with the following properties.

(1) The support of 9 is a collection of vertex disjoint paths Si,...,S, where
h <k.

(2) 29 is a (1 + €/4)-approximate solution.

(3) For each S;, the degree constraints of the vertices of S; are tight except for
its endpoints.

(4) For each S;, w-z9(S;) < yOPT and ¢;-29(S;) < «L; for each 1 <14 < k and
1 < j < h where v = ¢/2/2k In(k + 2).

In the final Combination Phase, the paths S1,...,.S5) are used to compute an
approximate feasible (integral) solution. The algorithm enumerates over all the
2" matchings which are obtained by taking, for each S;, one of the two matchings
which partition S;. This enumeration takes polynomial time since h < k = O(1).
A probabilistic argument is used to show that one of these matchings satisfies
the claimed approximation guarantee of the algorithm.

Analysis. We now analyze the three phases of the algorithm, bounding the
corresponding approximation guarantee and running time. Consider first the
Preprocessing Phase. In order to implement Step (a), we have to consider all the
possible choices, and run the algorithm for each choice. Observe that there are at
most (k+ 1)/ such heavy edges in the optimal solution, and hence the number
of possibilities is O(m*+1)/9) = O(mO**Vklogk/e)) The algorithm generates
a different subproblem for each possible guess of the edges. In the following we
will focus on the run of the algorithm where the guessed edges correspond to an
optimal solution to the multi-objective problem.

Consider now the Decomposition Phase. We prove that the output of this
phase satisfies the four properties stated above. Observe that by construction
the algorithm returns a collection of edge disjoint paths whose interior vertices

104 F. Grandoni, R. Ravi, and M. Singh

have tight degree constraints. Properties (3) and (4) follow by construction. We
now argue that the number of paths is bounded by k, proving Property (1).

Lemma 2. The number h of subpaths in Step (g) is upper bounded by k.

Proof. Consider the solution z/. The number of variables |E| = >°7_, |P;| is up-
per bounded by the number of tight constraints. Let ¢’ be the number of internal
nodes whose matching constraint is not tight in 7. Note that the matching con-
straints at the endpoints of each path are not tight. Hence the number of tight
constraints is at most Y7, (|P;|—1)—¢ +k = |E|—¢—¢ +k > |E|, from which
g+ ¢ < k. Observe that, by definition, the number h of subpaths is exactly
g+ ¢ (we start with ¢ subpaths, and create a new subpath for each internal
node whose matching constraint is not tight). The claim follows.

Clearly, solution z9 satisfies all the constraints. We next argue that the weight
of a9 is nearly optimal. In Steps (c), (e) and (g) we remove a subset of edges
whose optimal fractional value is larger than zero in the step considered. In the
following lemma, whose proof is omitted for lack of space, we bound the number
of edges removed. Due to the Preprocessing Phase, the weight of these edges
is negligible, which implies that the consequent worsening of the approximation
factor is sufficiently small. This proves Property (2).

Lemma 3. The algorithm removes at most Tk, (k+1)/7, and 2k edges in Steps
(c), (e), and (g), respectively.

Each of the steps (b) to (g) is run polynomially many times and takes polynomial
time. Hence the overall running time of the Decomposition Phase is polynomial.

Consider eventually the Combination Phase. As described earlier, the running
time of this phase is bounded by O(2¥n°(M). The following lemma, which is the
heart of our analysis, shows that a subset M’ satisfying Properties (i) and (ii)
always exists. Henceforth the algorithm always returns a solution. Although we
use a randomized argument to prove the lemma, the algorithm is completely
deterministic and enumerates over all solutions. Recall that M; and M; are the
two matchings which partition subpath S;.

Lemma 4. In Step (h) there is always a set of edges M' satisfying Properties

(i) and (ii).
Proof. Consider the following packing problem

h
(PACK) maximize Z(yj w(M;) + (1= y;) w(M;))
j=1
h])
subject to Z(yj C(M)+ (1 —y;) (M) <L;, V1I<i<k
j=1

yj€{071}7 Vi<j<h

Iterative Rounding for Multi-Objective Optimization Problems 105

We can interpret the variables y; in the following way: M’ N.S; = M; if y; =
1, and M’' N S; = M; otherwise. Given a (possibly fractional and infeasible)

solution y to PACK, we use w(y) and ¢i(y) as shortcuts for Z?:l (y; w(M;) +

(1 — ;) w(M;)) and 35, (y; £1(M;) + (1 — y;) £(M;)), respectively.

Observe that z¢ induces a feasible fractional solution y9 to the linear relax-
ation of PACK. In fact, consider each subpath S;. By definition, each matching
constraint at an internal node of S; is tight. This implies that all the edges e
of M; (resp., M;) have the same value 29 =: y9 (resp., 2 =: 1 — y9). Thus,
we have w(y9) = w(z?). Now, we construct a (near) feasible integral solution y’
to PACK which satisfies (i) and (ii). Independently, for each path S;, select M;
with probability y¢ and M; with probability 1 —y?. Note that E[w(y")] = w(y?)
and E[l'(y")] = ¢1(y9) < L; for all i.

By Step (e), switching one variable of ' from 1 to 0 or vice versa can change
the cost and ith-length of ¥ at most by v w(x9) and ~ £!(29), respectively. The
proof of the lemma now follows directly from the following proposition, which
derives from Chernoff’s bounds.

Proposition 1. With positive probability, w(y') > (1 —¢/2)w(x9) and I'(y") <
(1+€/2)l'(z9) for all i.

Proof. (Theorem [3) Tt is easy to see that the solution returned is a matching.
Moreover a solution is always returned by Lemma [l The approximation guar-
antee of the algorithm follow from the properties of the Decomposition step and
Lemma [The running time of each step is polynomial (for fixed k and €) thus
proving Theorem [3l

Acknowledgement. We thank an anonymous referee for suggesting improvements
in Section Blin an earlier draft of the paper.

References

1. Aggarwal, V., Aneja, Y.P., Nair, K.P.K.: Minimal spanning tree subject to a side
constraint. Computers & Operations Research 9, 287-296 (1982)

2. Bansal, N., Khandekar, R., Nagarajan, V.: Additive Guarantees for Degree
Bounded Directed Network Design. In: STOC, pp. 769778 (2008)

3. Barahona, F., Pulleyblank, W.R.: Exact arborescences, matchings and cycles. Dis-
crete Applied Mathematics 16(2), 91-99 (1987)

4. Barichard, V., Ehrgott, M., Gandibleux, X., T’Kindt, V. (eds.): Multiobjective
Programming and Goal Programming: Theoretical Results and Practical Applica-
tions. Lecture Notes in Economics and Mathematical Systems, vol. 618. Springer,
Heidelberg (2009)

5. Beasley, J.E., Christofides, N.: An algorithm for the resource constrained shortest
path problem. Networks 19, 379-394 (1989)

6. Berger, A., Bonifaci, V., Grandoni, F'., Schéfer, G.: Budgeted matching and budgeted
matroid intersection via the gasoline puzzle. In: Lodi, A., Panconesi, A., Rinaldi, G.
(eds.) IPCO 2008. LNCS, vol. 5035, pp. 273-287. Springer, Heidelberg (2008)

7. Bilo, V., Goyal, V., Ravi, R., Singh, M.: On the Crossing Spanning Tree Problem.
In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D. (eds.) RANDOM 2004 and
APPROX 2004. LNCS, vol. 3122, pp. 51-64. Springer, Heidelberg (2004)

106

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

F. Grandoni, R. Ravi, and M. Singh

Cheriyan, J., Vempala, S., Vetta, A.: Network design via iterative rounding of
setpair relaxations. Combinatorica 26(3), 255-275 (2006)

Chinchuluun, A., Pardalos, P.M., Migdalas, A., Pitsoulis, L. (eds.): Pareto Opti-
mality, Game Theory and Equilibria. Optimization and Its Applications, vol. 17
(2008)

Climacao, J.: Multicriteria Analysis. Springer, Heidelberg (1997)

Cunningham, W.H.: Testing Membership in Matroid Polyhedra. Journal of Com-
binatorial Theory B 36(2), 161-188 (1984)

Fleischer, L., Jain, K., Williamson, D.P.: Iterative rounding 2-approximation algo-
rithms for minimum-cost vertex connectivity problems. Journal of Computer and
System Sciences 72(5), 838-867 (2006)

Guignard, M., Rosenwein, M.B.: An application of Lagrangean decomposition to
the resource-constrained minimum weighted arborescence problem. Networks 20,
345-359 (1990)

Hartley, R.: Survey of Algorithms for Vector Optimization Problems. In: French,
S., Hartley, R., Thomas, L.C., White, D.J. (eds.) Multiobjective Decision Making,
pp. 1-34. Academic Press, London (1983)

Jain, K.: A factor 2 approximation algorithm for the generalized steiner network
problem. Combinatorica 21, 39-60 (2001)

Lau, L.C., Naor, S., Salavatipour, M., Singh, M.: Survivable network design with
degree or order constraints. In: STOC, pp. 651-660 (2007)

Lau, L.C., Singh, M.: Additive approximation for bounded degree survivable net-
work design. In: STOC, pp. 759-768 (2008)

Levin, A., Woeginger, G.J.: The constrained minimum weight sum of job comple-
tion times. Mathematical Programming 108, 115-126 (2006)

Marathe, M.V., Ravi, R., Sundaram, R., Ravi, S.S., Rosenkrantz, D.J., Hunt III,
H.B.: Bicriteria network design problems. In: Fiilép, Z., Gecseg, F. (eds.) ICALP
1995. LNCS, vol. 944, pp. 487-498. Springer, Heidelberg (1995)

Melkonian, V., Tardos, E.: Algorithms for a Network Design Problem with Crossing
Supermodular Demands. Networks 43, 4 (2004)

Mulmuley, K., Vazirani, U., Vazirani, V.: Matching is as Easy as Matrix Inversion.
Combinatorica 7(1), 101-104 (1987)

Papadimitriou, C.H., Yannakakis, M.: On the approximability of trade-offs and
optimal access of Web sources. In: FOCS, pp. 86-92 (2000)

Ravi, R.: Rapid rumor ramification: Approximating the minimum broadcast time.
In: FOCS, pp. 202-213 (1994)

Ravi, R.: Matching Based Augmentations for Approximating Connectivity Prob-
lems. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887,
pp. 13-24. Springer, Heidelberg (2006)

Ravi, R., Goemans, M.X.: The constrained minimum spanning tree problem (ex-
tended abstract). In: Karlsson, R., Lingas, A. (eds.) SWAT 1996. LNCS, vol. 1097,
pp. 66-75. Springer, Heidelberg (1996)

Ravi, R., Marathe, M.V.; Ravi, S.S., Rosenkrantz, D.J., Hunt, H.B.: Many Birds
with One Stone: Multi-objective Approximation Algorithms. In: STOC, pp. 438—
447 (1993)

Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Algorithms
and Combinatorics, vol. 24. Springer, Berlin (2003)

Shmoys, D.B., Tardos, E.: Scheduling unrelated machines with costs. In: SODA,
pp. 448-454 (1993)

Singh, M., Lau, L.C.: Approximating minimum bounded degree spanning trees to
within one of optimal. In: STOC, pp. 661-670 (2007)

A Global-Optimization Algorithm for
Mixed-Integer Nonlinear Programs Having
Separable Non-convexity

Claudia D’Ambrosio!, Jon Lee?, and Andreas Wichter?

! Dept. of ECSS, University of Bologna, Italy
c.dambrosio@unibo.it
2 IBM T.J. Watson Research Center, NY, U.S.A.

{jonlee,andreasw}@us.ibm.com

Abstract. We present a global optimization algorithm for MINLPs (mix-
ed-integer nonlinear programs) where any non-convexity is manifested as
sums of non-convex univariate functions. The algorithm is implemented
at the level of a modeling language, and we have had substantial success
in our preliminary computational experiments.

1 Introduction

The global solution of practical instances of Mixed-Integer NonLinear Program-
ming (MINLP) problems has been considered for some decades. Over a consid-
erable period of time, technology for the global optimization of convex MINLP
(i.e., the continuous relaxation of the problem is a convex program) had matured
(see, for example, [TUT3I8I3]), and recently there has been considerable success
in the realm of global optimization of non-convex MINLP (see, for example,
[TAT2TT2]).

Global optimization algorithms, e.g., spatial branch-and-bound approaches
like those implemented in codes like BARON [14] and COUENNE [2], have had sub-
stantial success in tackling complicated, but generally small scale, non-convex
MINLPs (i.e., mixed-integer nonlinear programs having non-convex continuous
relaxations). Because they are aimed at a rather general class of problems, the
possibility remains that larger instances from a simpler class may be amenable
to a simpler approach.

We focus on MINLPs for which the non-convexity in the objective and con-
straint functions is manifested as the sum of non-convex univariate functions.
There are many problems that are already in such a form, or can be brought into
such a form via some simple substitutions. In fact, the first step in spatial branch-
and-bound is to bring problems into nearly such a form. For our purposes, we
shift that burden back to the modeler. We have developed a simple algorithm,
implemented at the level of a modeling language (in our case AMPL, see [9]), to
attack such separable problems. First, we identify subintervals of convexity and
concavity for the univariate functions using external calls to MATLAB. With such
an identification at hand, we develop a convex MINLP relaxation of the problem.

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 107-[I18] 2009.
(© Springer-Verlag Berlin Heidelberg 2009

108 C. D’Ambrosio, J. Lee, and A. Wachter

Our convex MINLP relaxation differs from those typically employed in spatial
branch-and-bound; rather than relaxing the graph of a univariate function on
an interval to an enclosing polygon, we work on each subinterval of convexity
and concavity separately, using linear relaxation on only the “concave side” of
each function on the subintervals. The subintervals are glued together using bi-
nary variables. Next, we employ ideas of spatial branch-and-bound, but rather
than branching, we repeatedly refine our convex MINLP relaxation by modify-
ing it at the modeling level. We attack our convex MINLP relaxation, to get
lower bounds on the global minimum, using the code BONMIN [3l4] as a black-
box convex MINLP solver. Next, by fixing the integer variables in the original
non-convex MINLP, and then locally solving the associated non-convex NLP re-
striction, we get an upper bound on the global minimum, using the code IPOPT
[15]. We use the solutions found by BONMIN and IPOPT to guide our choice of
further refinements.

We implemented our framework using the modeling language AMPL. In order to
obtain all of the information necessary for the execution of the algorithm, exter-
nal software, specifically the tool for high-level computational analysis MATLAB, the
convex MINLP solver BONMIN, and the NLP solver IPOPT, are called directly from
the AMPL environment. A detailed description of the entire algorithmic framework,
together with a statement of its convergence properties, is provided in §2

We present computational results in §3l Some of the instances arise from spe-
cific applications; in particular, Uncapacitated Facility Location problems, Hydro
Unit Commitment and Scheduling problems, and Nonlinear Continuous Knapsack
problems. We made further computational tests on selected instances of GLOBAL-
Lib and MINLPLib and those results can be found in an extended version of this
paper. We have had significant success in our preliminary computational experi-
ments. In particular, we see very few major iterations occurring, with most of the
time being spent in the solution of a small number of convex MINLPs. As we had
hoped, our method does particularly well on problems for which the non-convexity
is naturally separable. An advantage of our approach is that it can be implemented
easily using existing software components and that further advances in technology
for convex MINLP will immediately give us a proportional benefit.

2 Owur Algorithmic Framework

We focus now on MINLPs, where the non-convexity in the objective and con-
straint functions is manifested as the sum of non-convex univariate functions.
Without loss of generality, we take them to be of the form

min ZjeN Cjx;
subject to
flz) <0; P)
7i(®) + Ppen 9ie(@e) <0, Vie M;
Li<z2; <U;, VjeN;
x; integer, Vj € I,

A Global-Optimization Algorithm for MINLPs 109

where N := {1,2,...,n}, f: R* - RP and r; : R® — R Vi € M, are convex
functions, H(i) C N Vi € M , the g;;, : R — R are non-convex univariate function
Vie M, and I C N. Letting H := U;ep H (%), we can take each L; and U; to be
finite or infinite for j € N\ H, but for j € H we assume that these are finite
bounds.

We assume that the problem functions are sufficiently smooth (e.g., twice
continuously differentiable) with the exception that we allow the univariate g;
to be continuous functions defined piecewise by sufficiently smooth functions
over a finite set of subintervals of [Ly, Ux]. Without loss of generality, we have
taken the objective function as linear and all of the constraints to be inequalities,
and further of the less-then-or-equal variety. Linear equality constraints could be
included directly in this formulation, while we assume that nonlinear equalities
have been split into two inequality constraints.

Our approach is an iterative technique based on three fundamental ingredi-
ents:

— A reformulation method with which we obtain a convex MINLP relaxation
Q of the original problem P. Solving the convex MINLP relaxation Q, we
obtain a lower bound of our original problem P ;

— A non-convex NLP restriction R of the original MINLP problem P obtained
by fixing the variables within the set {z; : j € I'}. Locally solving the non-
convex NLP restriction R, we obtain an upper bound of our original problem
P

— A refinement technique aimed at improving, at each iteration, the quality of
the lower bound obtained by solving the convex MINLP relaxation Q.

The main idea of our algorithmic framework is to iteratively solve a lower-
bounding relaxation @ and an upper-bounding restriction R so that, in case the
value of the upper and the lower bound are the same, the global optimality of the
solution found is proven; otherwise we make a refinement to the lower-bounding
relaxation Q. At each iteration, we seek to decrease the gap between the lower
and the upper bound, and hopefully, before too long, the gap will be within
a tolerance value, or the lower bounding solution is deemed to be sufficiently
feasible for the original problem. In this case, or in the case a time/iteration
limit is reached, the algorithm stops. If the gap is closed, we have found a global
optimum, otherwise we have a heuristic solution (provided that the upper bound
is not +00). The lower-bounding relaxation Q is a convex relaxation of the orig-
inal non-convex MINLP problem, obtained by approximating the concave part
of the non-convex univariate functions using piecewise linear approximation.
The novelty in this part of the algorithmic framework is the new formulation
of the convex relaxation: The function is approximated only where it is con-
cave, while the convex parts of the functions are not approximated, but taken
as they are. The convex relaxation proposed is described in details in §2.11 The
upper-bounding restriction R, described in §2.2 is obtained simply by fixing
the variables with integrality constraints. The refinement technique consists of
adding one or more breakpoints where needed, i.e., where the approximation

110 C. D’Ambrosio, J. Lee, and A. Wachter

of the non-convex function is bad and the solution of the lower-bounding prob-
lem lies. Refinement strategies are described in §2.3] and once the ingredients
of the algorithmic framework are described in detail, we give a pseudo-code de-
scription of our algorithmic framework (see §2.4)). Here, we also discuss some
considerations about the general framework and the similarities and differences
with popular global optimization methods. Theoretical convergence guarantees
are discussed in §2.5 In §3] computational experiments are presented, detailing
the performance of the algorithm and comparing the approach to other methods.

2.1 The Lower-Bounding Convex MINLP Relaxation Q

To obtain our convex MINLP relaxation Q of the MINLP problem P, we need
to locate the subintervals of the domain of each univariate function g; for which
the function is uniformly convex or concave. For simplicity of notation, rather
than refer to the constraint r;(x) + ZkeH(i) gik(xr) < 0, we consider a term of
the form g(zy) := gix(zx), where g : R — R is a univariate non-convex function
of xy , for some k (1 < k < n).

We want to explicitly view each such g as a piecewise-defined function, where
on each piece the function is either convex or concave. This feature also allows
us to handle functions that are already piecewise defined by the modeler. In
practice, for each non-convex function g, we compute the points at which the
convexity /concavity may change, i.e., the zeros of the second derivative of ¢, us-
ing MATLAB. In case a function g is naturally piecewise defined, we are essentially
refining the piecewise definition of it in such a way that the convexity/concavity
is uniform on each piece.

Now, on each concave piece we can use a secant approximation to give a
piecewise-convex lower approximation of g. We can obtain a better lower bound
by refining the piecewise-linear lower approximation on the concave pieces. We
let

Ly=FPy< P, <"'<Pp:=Uk

be the ordered breakpoints at which the convexity/concavity of g changes, in-
cluding, in the case of piecewise definition of g, the points at which the definition
g changes. We define:

[Py—1, P] := the p-th subinterval of the domain of g (p € {1...p});
H := the set of indices of subintervals on which ¢ is convex;

H := the set of indices of subintervals on which g is concave.

On the concave intervals, we will allow further breakpoints. We let B, be the
ordered set of breakpoints for the concave interval indexed by p € H. We denote
these breakpoints as

Py = Xp1 < Xpo <o <Xy g, =D,

A Global-Optimization Algorithm for MINLPs 111

and in our relaxation we will view g as lower bounded by the piecewise-linear
function that has value g(X, ;) at the breakpoints X, ; , and is otherwise linear
between these breakpoints.

Next, we define further variables to manage our convexification of g on its
domain:

zp := a binary variable indicating if 2, > P, (p=1,...,p—1);
Jdp := a continuous variable assuming a positive value iff v, > P,_1 (p =1, ...,p);
ap b = weight of breakpoint b in the piecewise-linear approximation of the in-

terval indexed by p (p € H, b e B,).
In the convex relaxation of the original MINLP P, we substitute each univariate
non-convex term g(xy) with

-1
EpGH 9(Pp—1+6p) + Zpeﬁ ZbeBp 9(Xpp) app — 22:1 9(Fp), (1)
and we include the following set of new constraints:

P0+Z§:15p—xk=();

6y — (P, — Py1)z, >0, Ypec HUH;
6p— (Py— Py 1)z, 1 <0, ¥pe HUH;
Poo1+0p =D pep, Xpb opp =0, Vp € H;
ZbeBp app =1, VpeH;

{app:be By} :=85082, Vpe H:

with two dummy variables zg := 1 and z, := 0.
Constraints (2H4) together with the integrality of the z variables ensure that,
given an xj, value, say zj, € [Pp«_1, Pp-]:

Pp*prlv lflﬁpﬁp**la
dp=1Qx; —P,_1, ifp=p*;

0, otherwise.

Constraints (BHT) ensure that, for each concave interval, the convex combination
of the breakpoints is correctly computed. Finally, (Il) approximates the original
non-convex univariate function g(xy).

Constraints (7)) define |H| Special Ordered Sets of Type 2 (SOS2), i.e., ordered
sets of positive variables among which at most 2 can assume a non-zero value,
and, in this case, they must be consecutive (Beale and Tomlin [I]). Unfortunately,
at the moment, convex MINLP solvers do not typically handle SOS2 like most
MILP solvers do (also defining special-purpose branching strategies). For this
reason, we substitute constraints (@), Vp € H , with new binary variables y,,
with b € {1,...,|Bp| — 1}, and constraints:

Apb < Ypp—1+ Ypp Vb € By @a)

112 C. D’Ambrosio, J. Lee, and A. Wachter

wn s =1, @b)
with dummy values y, 0 = ¥y, |5,| = 0. In the future, when convex MINLP solvers
will handle the definition of SOS2, variables y and constraints (@la—b) would be
not necessary.

It is important to note that if we utilized a very large number of breakpoints
at the start, solving the resulting convex MINLP Q would mean essentially
solving globally the original MINLP P up to some pre-determined tolerance
related to the density of the breakpoints. But of course such a convex MINLP
Q@ would be too hard to be solved in practice. With our algorithmic framework,
we dynamically seek a significantly smaller convex MINLP Q. thus generally
more easily solvable, which we can use to guide the non-convex NLP restriction
R to a good local solution, eventually settling on and proving global optimality
of such a solution to the original MINLP P.

2.2 The Upper-Bounding Non-convex NLP Restriction R

Given a solution x of the convex MINLP relaxation Q, the upper-bounding
restriction R is defined as the non-convex NLP:

min ZjeN Cjx;
subject to
f(z) <0;
ri(z) + ZkeH(i) gik(zr) <0, Vie M,
Lj<z; <Uj, VjeN;
zj=uw;, VjEI.

A solution of this non-convex NLP R is a heuristic solution of the non-convex
MINLP problem P for two reasons: (i) the integer variables z;, j € I, might
not be fixed to globally optimal values; (ii) the NLP R is non-convex, and so
even if the integer variables z;, j € I, are fixed to globally optimal values, the
NLP solver may only find a local optimum of the non-convex NLP R or even
fail to find a feasible point. This consideration emphasizes the importance of the
lower-bounding relaxation Q for the guarantee of global optimality. The upper-
bounding problem resolution could be seen as a “verification phase” in which
a solution of the convex MINLP relaxation @ is tested to be really feasible for
the non-convex MINLP P . To emphasis this, the NLP solver for R is given the
solution of the convex MINLP relaxation as starting point.

2.3 The Refinement Technique

At the end of each iteration, we have two solutions: x, the solution of the
lower-bounding convex MINLP relaxation Q, and z, the solution of the upper-
bounding non-convex NLP restriction R ; in case we cannot find a solution of R ,
e.g., if R is infeasible, then no z is available. If .y Cjz; = 37, v Cjz; within
a certain tolerance, or if z is sufficiently feasible for the original constraints,

A Global-Optimization Algorithm for MINLPs 113

we return to the user as solution the point x or z, respectively. Otherwise, in
order to continue, we want to refine the approximation of the lower-bounding
convex MINLP relaxation Q by adding further breakpoints. We employed two
strategies:

— Based on the lower-bounding problem solution x: For each i € M and k €

H(i), if x;, lies in a concave interval of g, add x;, as a breakpoint for the
relaxation of g .
This procedure drives the convergence of the overall method since it makes
sure that the lower bounding problem becomes eventually a sufficiently ac-
curate approximation of the original problem in the neighborhood of the
global solution. Since adding a breakpoint increases the size of the convex
MINLP relaxation, in practice we do not add such a new breakpoint if it
would be within some small tolerance of an existing breakpoint for g; .

— Based on the upper-bounding problem solution x: For each i € M and k €

H(i), if xy lies in a concave interval of g, add xy, as a breakpoint for the
relaxation of gy .
The motivation behind this option is to accelerate the convergence of the
method. If the solution found by the upper-bounding problem is indeed
the global solution, the relaxation should eventually be exact at this point
to prove its optimality. Again, to keep the size of the relaxation MINLP
manageable, breakpoints are only added if they are not too close to existing
ones.

We found that these strategies work well together. Hence, at each major iter-
ation, we add a breakpoint in each concave interval where x lies in order to
converge and one where x lies to speed up the convergence.

2.4 The Algorithmic Framework

Algorithm [details our SC-MINLP (Sequential Convex MINLP) Algorithm.

At each iteration, the lower-bounding MINLP relaxation Q and the upper-
bounding NLP restriction R are redefined: What changes in Q are the sets of
breakpoints that refine the piecewise-linear approximation of concave parts of
the non-convex functions. At each iteration, the number of breakpoints used
increases, and so does the accuracy of the approximation. What may change in
R are the values of the fixed integer variables z; , j € I. Moreover, what changes
is the starting point given to the NLP solver, derived from an optimal solution
of the lower-bounding MINLP relaxation Q.

Our algorithmic framework bears comparison with spatial branch-and-bound,
a successful technique in global optimization. In particular:

— during the refining phase, the parts in which the approximation is bad are
discovered and the approximation is improved there, but we do it by adding
one or more breakpoints instead of branching on a continuous variable as in
spatial branch-and-bound;

— like spatial branch-and-bound, our approach is a rigorous global-optimization
algorithm rather than a heuristic;

114

C. D’Ambrosio, J. Lee, and A. Wachter

Algorithm 1. SC-MINLP (Sequential Convex MINLP) Algorithm

Choose tolserancgs €, Efeas > 0; initialize LB := —00; UB := 4o0;
Find P}, H', H', X}, (Vi€ M,p€ {1...p'},b € B}).
repeat

Solve the convex MINLP relaxation Q of the original problem P to obtain z;
if (val(Q) > LB) then

LB := val(Q);

if (x is feasible for the original problem P (within tolerance efeas)) then

return

end if
end if
Solve the non-convex NLP restriction R of the original problem P to obtain z;
if (solution z could be computed and val(R) < UB) then

UB:=val(R); zup :=
end if
if (UB — LB > ¢) then

Update B;, ;b;
end if

until (UB — LB < ¢) or (time or iteration limited exceeded))
return the current best solution zyp

2.5
For

unlike spatial branch-and-bound, our approach does not utilize an expression
tree; it works directly on the broad class of separable non-convex MINLPs
of the form P, and of course problems that can be put in such a form,;
unlike standard implementations of spatial branch-and-bound methods, we
can directly keep multivariate convex functions in our relaxation instead of
using linear approximations;

unlike spatial branch-and-bound, our method can be effectively implemented
at the modeling-language level.

Convergence Analysis

the theoretical convergence analysis of Algorithm [[l we make the following

assumptions, denoting by [the iteration counter for the repeat loop.

Al

A2.

A3.

Ad.

We

. The functions f(x) and r;(x) are continuous, and the univariate functions

gi in (P) are uniformly Lipschitz-continuous with a bounded Lipschitz
constant L.

The problem P has a feasible point. Hence, for each I, the relaxation Q' is
feasible, and we assume its (globally) optimal solution z! is computed.
The refinement technique described in Section adds a breakpoint for
every lower-bounding problem solution !, even if it is very close to an
existing breakpoint.

The feasibility tolerance efe,s and the optimality gap tolerance e are both
chosen to be zero, and no iteration limit is set.

have the following result (the proof will appear in an extended version of

this paper).

A Global-Optimization Algorithm for MINLPs 115

Theorem 1. Under assumptions A1-A4, Algorithm [0 either terminates at a
global solution of the original problem P, or each limit point of the sequence
{xl}?il is a global solution of P.

3 Computational Results

We implemented our algorithmic framework as an AMPL script, and we used
MATLAB as a tool for numerical convexity analysis, BONMIN as our convex MINLP
solver, and IPOPT as our NLP solver.

We used MATLAB to detect the subintervals of convexity and concavity for
the non-convex univariate functions in the model. In particular, MATLAB reads a
text file generated by the AMPL script, containing the constraints with univariate
non-convex functions, together with the names and bounds of the independent
variables. With this information, using the Symbolic Math Toolbox, MATLAB first
computes the formula for the second derivative of each univariate non-convex
function, and then computes its zeros to split the function into subintervals of
convexity and concavity. The zeros are computed in the following manner. On
points of a rather fine uniform discretization, we evaluate the second derivative.
Then, between pairs of adjacent points for which the second derivative changes
sign, we compute precisely the associated zero using the MATLAB function “fzero”.
For each univariate non-convex function, we use MATLAB to return the number of
subintervals, the breakpoints, and associated function values in a text file which
is read by the AMPL script.

In this section we present computational results for three problem categories.
Details of the problem categories and test instances are presented in the extended
version of this paper. The tests were executed on a single processor of an Intel
Core2 CPU 6600, 2.40 GHz with 1.94 GB of RAM, using a time limit of 2 hours
per instance. The relative optimality gap and feasibility tolerance used for all
the experiments is 10~%, and we do not add a breakpoint if it would be within
107° of an existing breakpoint.

Two tables with computational results exhibit the behavior of our algorithm
on some instances of each problem class. Table [Il presents the iterations of our
SC-MINLP Algorithm, with the columns labeled as follows:

— instance: the instance name;

— var/int/cons: the total number of variables, the number of integer variables,
and the number of constraints in the convex relaxation Q;

— iter #: the iteration count;

— LB: the value of the lower bound,;

— UB: the value of the upper bound;

— int change: indicated whether the integer variables in the lower bounding
solution x are different compared to the previous iteration;

— time MINLP: the CPU time needed to solve the convex MINLP relaxation
Q to optimality (in seconds);

— # br added: the number of breakpoints added at the end of the previous
iteration.

116 C. D’Ambrosio, J. Lee, and A. Wachter

Table [presents comparisons of our SC-MINLP Algorithm with COUENNE and
BONMIN. COUENNE is an open-source Branch-and-Bound algorithm aimed at the
global solution of MINLP problems [2/6]. It is an exact method for the prob-
lems we address in this paper. BONMIN is an open-source code for solving general
MINLP problems [3l4], but it is an exact method only for convex MINLPs. Here,
BONMIN’s nonlinear branch-and-bound option was chosen. When used for solv-
ing non-convex MINLPs, the solution returned is not guaranteed to be a global
optimum. However, a few heuristic options are available in BONMIN, specifically
designed to treat non-convex MINLPs. Here, we use the option that allows solv-
ing the root node with a user-specified number of different randomly-chosen
starting points, continuing with the best solution found. This heuristic use of
BONMIN is in contrast to its use in SC-MINLP, where BONMIN is employed only for
the solution of the conver MINLP relaxation Q.
The columns in Table 2] have the following meaning:

— instance: the instance name;
— var/int/cons: the total number of variables, the number of integer variables,
and the number of constraints;
— for each approach, in particular SC-MINLP, COUENNE, BONMIN 1, BONMIN 50,
we report:
e time (LB): the CPU time (or the value of the lower bound (in parenthe-
ses) if the time limit is reached);
e UB: the value of the upper bound.

BONMIN 1 and BONMIN 50 both refer to the use of BONMIN, but they differ in the
number of multiple solutions of the root node; in the first case, the root node
is solved just once, while in the second case, 50 randomly-generated starting
points are given to the root-node NLP solver. If BONMIN reached the time limit,
we do not report the lower bound because BONMIN cannot determine a valid lower
bound for a non-convex problem.

The first category of problems are Uncapacitated Facility Location (UFL)
problems (see [I0]). In the first section of Table [I the performance of SC-MINLP
is shown. For the first instance, the global optimum is found at the first itera-
tion, but 4 more iteration are needed to prove global optimality. In the second
instance, only one iteration is needed. In the third instance, the first feasible solu-
tion found is not the global optimum which is found at the third (and last) itera-
tion. In the first section of Table 2ldemonstrates good performance of SC-MINLP.
In particular, instance ufl 1 is solved in about 117 seconds compared to 530
seconds needed by COUENNE, instance ufl 2 in less than 18 seconds compared to
233 seconds. In instance ufl 3, COUENNE performs better than SC-MINLP, but this
instance is really quite easy for both algorithms. BONMIN 1 finds solutions to all
three instances very quickly, and these solutions turn out to be globally optimal
(but note that BONMIN 1 is a heuristic with no guarantee of global optimality).
BONMIN 50 also finds the global optima, but in non-negligible time.

The second set of test instances are Hydro Unit Commitment and Schedul-
ing problems (see [0]). Univariate non-convexity in the model arises due to the
dependence of the power produced by each turbine on the water flow passing

instance
ufl 1
ufl 2
ufl 3

hydro 1
hydro 2
hydro 3

nck 20 100
nck 20 200
nck 20 450
nck 50 400
nck 100 35
nck 100 80

instance
ufl 1

ufl 2
ufl 3

hydro 1

hydro 2

hydro 3

nck 20 100

nck 20 200

nck 20 450

nck 50 400

nck 100 35

nck 100 80

var/int/cons
original
45/3/48
45/3/48
32/2/36
124/62/165
124/62/165
124/62/165
40/0/21
40/0/21
40/0/21
100/0/51
200/0/101
200/0/101

A Global-Optimization Algorithm for MINLPs

Table 1. Behavior of SC-MINLP

iter

var/int/cons #
153/39/228 1
2

3

4
205/65/254 5
189/57/264 1
79/21/101 1
2
87/25/105 3
324/142/445 1
332/146/449 2
324/142/445 1
2

3
336/148/451 4
324/142/445 1
2
336/148/451 3
144/32/205 1
146/33/206 2
144/32/205 1
2

3

4

5

6
156/38/211 7
144/32/205 1
146/32/206 2
356/78/507 1
2

3

4
372/86/515 5
734/167/1035 1
2

3
744/172/1040 4
734/167/1035 1
2
742/171/1039 3

LB UB
4,122.000 4,330.400
4,324.780 4,330.400
4,327.724 4,330.400
4,328.993 4,330.400
4,330.070 4,330.400
27,516.600 27,516.569
1,947.883 2,756.890
2,064.267 2,756.890
2,292,743 2,292.777

-10,231.039 -10,140.763
-10,140.760 -10,140.763
-3,950.697 -3,891.224
-3,950.583 -3,891.224
-3,950.583 -3,891.224
-3,932.182 -3,932.182
-4,753.849 -4,634.409
-4,719.927 -4,660.189
-4,710.734 -4,710.734

-162.444 -159.444
-159.444 -159.444
-244.015 -238.053
-241.805 -238.053
-241.348 -238.053
-240.518 -238.053
-239.865 -238.053
-239.744 -238.053
-239.125 -239.125
-391.499 -391.337
-391.364 -391.337
-518.121 -516.947
-518.057 -516.947
-517.837 -516.947
-517.054 -516.947
-516.947 -516.947
-83.580 -79.060
-82.126 -81.638
-82.077 -81.638
-81.638 -81.638
-174.841 -171.024
-173.586 -172.631
-172.632 -172.632

int

no
no
no
no
no
no

time

1
11.
19.
30.
45.

4.

2.

2.

3.

18.
23.
21.
21
27.
38.
59.
96.

-
o
et

POORHRERHOOOO

24.
12.

Table 2. Comparison of solvers

SC-MINLP
time
(LB) UB
116.47 4,330.400
17.83 27,516.569
8.44 2,292.777

107.77 -10,140.763
211.79 -3,932.182
337.77 -4,710.734

15.76 -159.444
23.76 -239.125
15.52 -391.337
134.25 -516.947
110.25 -81.638
109.22 -172.632

COUENNE
time
(LB) UB
529.49 4,330.400
232.85 27,516.569
0.73 2,292.775

(-11,229.80) -10,140.763
(-12,104.40) -2,910.910
(-12,104.40) -3,703.070

3.29 -159.444
(-352.86) -238.053
(-474.606) -383.149
(-1020.73) -497.665
90.32 -81.638
(-450.779) -172.632

COoo00O Mha WOO

BONMIN 1

84
17
75
42
47
25
75
06
02
62
73

.34

86
20
33
93

.57

49
94
67
83
16

56
68
81
79
87

.51

94

.75
5.07
.73
.72
.70
.45
.19
.25

71
85

UB

4,330.400
27,516.569
2,292.777

-10,140.763
-3,928.139
-4,131.095

-159.444
-238.053
-348.460
-438.664

-79.060
-159.462

br
change MINLP added
.35

oo D

S

NA T NN R

(SR = CN VI C I U U U R R E R TRy

BONMIN 50

time
369.85
144.06
3.13

5.75
7.02
13.76

1.10
0.97
0.84
2.49
16.37
15.97

UB
4,330.39
27,516.569
2,292.775

-7,620.435
-3,201.780
-3,951.199

-159.444
-239.125
-385.546
-512.442

-79.060
-171.024

117

through the turbine. Our computational results are reported in the second sec-
tions of Tables [l and 2] We observe good performance of SC-MINLP. It is able
to find the global optimum of the three instances within the time limit, but
COUENNE does not solve to global optimality any of the instances. Also, BONMIN
1 and BONMIN 50 show good performance. In particular, often a good solution
is found in few seconds, and BONMIN 1 finds the global optimum in one case.
Our third set of test instances are Nonlinear (purely) Continuous Knapsack
problems. Our computational results are reported in the third sections of Tables
[and @l SC-MINLP finds the global optimum for all the 6 instances in less than

118 C. D’Ambrosio, J. Lee, and A. Wachter

3 minutes. COUENNE is able to close the gap for only 2 instances within the time
limit. BONMIN 1 and BONMIN 50 terminate quickly, but the global optimum is
found only for 1 instance for BONMIN 1 and 2 instances for BONMIN 50.

Overall, we have had substantial success in our preliminary computational
experiments. In particular, we see very few major iterations occurring, so most
of the time is spent in the solution of a small number of convex MINLPs.

References

1. Beale, E., Tomlin, J.: Special facilities in a general mathematical programming
system for non-convex problems using ordered sets of variables. In: Lawrence, J.
(ed.) Proc. of the 5" Int. Conf. on Operations Research, pp. 447-454 (1970)

2. Belotti, P., Lee, J., Liberti, L., Margot, F., Wachter, A.: Branching and bounds
tightening techniques for non-convex MINLP, IBM Research Report RC24620
(2008); to appear in: Optimization Methods and Software

3. Bonami, P., Biegler, L., Conn, A., Cornuéjols, G., Grossmann, 1., Laird, C., Lee,
J., Lodi, A., Margot, F., Sawaya, N., Wachter, A.: An algorithmic framework for
convex mixed integer nonlinear programs. Discrete Optimization 5, 186-204 (2008)

4. BONMIN. projects.coin-or.org/Bonmin (v. 1.0)

5. Borghetti, A., D’Ambrosio, C., Lodi, A., Martello, S.: An MILP approach for short-
term hydro scheduling and unit commitment with head-dependent reservoir. IEEE
Transactions on Power Systems 23(3), 1115-1124 (2008)

6. COUENNE. projects.coin-or.org/Couenne (v. 0.1)

7. Duran, M., Grossmann, I.: An outer-approximation algorithm for a class of mixed-
integer nonlinear programs. Mathematical Programming 36(3), 307-339 (1986)

8. Fletcher, R., Leyffer, S.: Solving mixed integer nonlinear programs by outer ap-
proximation. Mathematical Programming 66(1), 327-349 (1994)

9. Fourer, R., Gay, D., Kernighan, B.: AMPL: A Modeling Language for Mathematical
Programming. 2nd edn. Duxbury Press/Brooks/Cole Publishing Co. (2003)

10. Giinliik, O., Lee, J., Weismantel, R.: MINLP strengthening for separable convex
quadratic transportation-cost UFL, IBM Research Report RC24213 (2007)

11. Liberti, L.: Writing global optimization software. In: Liberti, L., Maculan, N. (eds.)
Global Optimization: From Theory to Implementation, pp. 211-262. Springer, Hei-
delberg (2006)

12. Nowak, I., Alperin, H., Vigerske, S.: LaGO — an object oriented library for solving
MINLPs. In: Bliek, C., Jermann, C., Neumaier, A. (eds.) COCOS 2002. LNCS,
vol. 2861, pp. 32—42. Springer, Heidelberg (2003)

13. Quesada, 1., Grossmann, I.: An LP/NLP based branch and bound algorithm for
convex MINLP optimization problems. Comp. & Chem. Eng. 16, 937-947 (1992)

14. Sahinidis, N.: BARON: A general purpose global optimization software package.
J. Global Opt. 8, 201-205 (1996)

15. Wiéchter, A., Biegler, L.T.: On the implementation of a primal-dual interior point
filter line search algorithm for large-scale nonlinear programming. Mathematical
Programming 106(1), 25-57 (2006)

Constructing Delaunay Triangulations along
Space-Filling Curves*

Kevin Buchin

Department of Mathematics and Computer Science, TU Eindhoven
k.a.buchin@tue.nl

Abstract. Incremental construction con BRIO using a space-filling curve
order for insertion is a popular algorithm for constructing Delaunay tri-
angulations. So far, it has only been analyzed for the case that a worst-
case optimal point location data structure is used which is often avoided
in implementations. In this paper, we analyze its running time for the
more typical case that points are located by walking. We show that in
the worst-case the algorithm needs quadratic time, but that this can
only happen in degenerate cases. We show that the algorithm runs in
O(nlogn) time under realistic assumptions. Furthermore, we show that
it runs in expected linear time for many random point distributions.

1 Introduction

Delaunay triangulations (DTs) and their dual Voronoi diagrams are frequently
used in many application areas, such as surface reconstruction, molecular mod-
eling, and geographical information systems. They have been extensively stud-
ied in computational geometry and many different construction algorithms have
been devised. Since its introduction in 2003 Incremental Construction con BRIO
(biased randomized insertion order) [I] has been one of the favorite algorithms
for constructing DTs. Points are inserted in rounds of increasing size which
avoids full randomization. In a round the insertion order can be chosen, for
which mostly space-filling curve (SFC) orders are used (see Fig. [[(d) for such
an order). Already considered in the original article [I] (see also [20]), these or-
ders have been popularized by Liu and Snoeyink [I5] who used them in their
program for constructing DTs of finite-precision input points. A variant of the
algorithm is available as package in the Computational Geometry Algorithms
Libraryf]l (CGAL) 1.

In the incremental construction, to insert a point it first has to be located
in the current DT. When inserting points along a SFC order, this is typically
done without an additional point location data structure. Using the spatial co-
herence of the order, a new point is located by walking from the previous point

* This research was supported by the Deutsche Forschungsgemeinschaft within the Eu-
ropean graduate program ’Combinatorics, Geometry, and Computation’ (No. GRK
588/2) and by the Netherlands’ Organisation for Scientific Research (NWO) under
BRICKS/FOCUS grant number 642.065.503 and project no. 639.022.707.

! http://www.cgal.org/

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 119-{I30} 2009.
(© Springer-Verlag Berlin Heidelberg 2009

120 K. Buchin

in the order, i.e., by traversing the triangulation data structure starting at this
point. Incremental construction con BRIO with SFC orders have been tested
thoroughly, and their running time on surface, protein, terrain and random data
is linear or near-linear in experiments [I/4IT520]. The algorithm can be made
asymptotically optimal by using a point location data structure like the conflict
graph, but this not only requires additional space but also does not make use
of the spatial coherence of the order. Without such a data structure non-trivial
bounds on the running time were not known so far.

Most commonly the running time of DT algorithms is analyzed with respect
to the worst-case point distribution. The drawback of such an analysis is that
worst-case point sets might be degenerate and that the worst-case bound might
not represent the running time on typical points well. On the other extreme,
some DT algorithms have been analyzed with respect to the average-case run-
ning time on points drawn independently and uniformly from a unit square, or
in higher dimensions from the unit d-cube [SJQITO/T3IT6ITI]. This is an insightful
alternative to the worst-case analysis, although such an input might be rather
unlikely. Such an analysis can be strengthened by extending it to further ran-
dom point distributions. However, except for trivial extensions to nearly uniform
points, this has not been done for DT algorithms.

An alternative to the traditional worst- and average-case analysis are realistic
input models. A global parameter for point sets which can often be bounded (in
the size of the set) is its spread, i.e., the quotient between the largest and the
smallest point to point distance. Frequently bounds on the spread result from
minimum separation distances between the points and limited precision. In many
cases the spread can be assumed to be polynomially bounded in the number
of points. A further reason why the spread can be expected to be bounded,
in particular when the points come from measurements, is noise in the data.
Smoothed analysis [BU18] models this by allowing arbitrary input point sets, but
by performing an average-case analysis with the points perturbed by random
noise. In the case of surface reconstruction a realistic assumption is that the
surface is well-sampled, i.e., every surface point has one (but not too many)
sample point close to it. So far, realistic input models have to the best of our
knowledge not been used explicitly for analyzing DT algorithms. They have been
used to bound the complexity of DTs in R3. Although most three-dimensional
point sets occurring seem to have DT's of linear size, their worst-case complexity
is quadratic. Point sets in R? with spread @ may induce DTs with complexity
O(®%) [11], but for many suitably sampled surfaces the complexity is linear or
near-linear (see e.g. [2]).

Our results. Our aim is to give a theoretical explanation for the linear or near-
linear running time in experiments of incremental construction con BRIO with
SEC orders. As we will show, the worst-case running time is quadratic. We
therefore turn to realistic and probabilistic models. We prove that the running
time is O(N log @) for an N-point set in the plane with spread ¢. This bound is
tight for worst-case point sets as long as the spread is at least w(\/ N) (and at
most exponential). Thus, if the spread is polynomially bounded then the running

Constructing Delaunay Triangulations along Space-Filling Curves 121

time is in O(N log N). This directly implies a similar bound for the smoothed
complexity and can be easily extended to a bound for well-sampled surfaces.
The bound also holds for points drawn from any typical random distribution,
but for this case we even show a stronger bound. For independent identically
distributed points we provide a condition on the distribution function, under
which a variant of the algorithm runs in linear expected time after computing a
SFC order (which can be computed in linear expected time in a suitable model
of computation). We give the explicit analysis for uniformly and for normally
distributed points. Our results extend to higher dimensions, in which case the
running time depends on the structural change of the incremental construction.

This is the first analysis of a DT algorithm for realistic input models. It is
also the first probabilistic analysis of a DT algorithm that goes beyond uniformly
distributed points. Besides the analysis of incremental search [10] it is the only
probabilistic analysis for DT of points in higher dimensions. Proving linear ex-
pected running time for this algorithm also solves an open problem posed in
the original con BRIO paper [I]. It is especially surprising that the algorithm
achieves these running times without a point location data structure. So far, the
fastest incremental construction algorithm without point location data structure
was the jump & walk algorithm [J/I6] which runs in O(n®/?) expected time for
uniformly distributed points in a square (and close to O(n4/ 3) expected time in
a 3-cube), with no worst-case guarantee except for the straightforward O(n?)
bound. In addition to analyzing incremental construction con BRIO with SFC
orders, we also present a generalized analysis of incremental constructions con
BRIO which also applies to settings other than DTs.

2 Algorithm

Consider the following construction of a map from the unit interval to the unit
square: Divide the unit interval into four intervals, divide the unit square into
four squares, and assign each interval to one of the squares (see Fig.[I{a)). This
process can be continued recursively and furthermore it can be done in such
a way that neighboring intervals are assigned to neighboring squares. The first
three steps of this construction are shown in Fig. [[l(a-c). In the limit this yields
a surjective, continuous map from the unit interval to the unit square. By its
recursive construction the Hilbert curve maps an interval to a region with an area
equal to the length of the interval. This is a property shared by many space-filling
curves referred to as bi-measure-preserving property. Another property shared by
many space-filling curves including the Hilbert curve is that they are Hélder-1/d
continuous. This means for a space-filling curve v: [0,1] — [0, 1]¢ that there is
a constant C' such that [[¢(s) — ¥ (t)|| < Cls — t|'/¢ for all 5,t € [0,1].

The algorithm combines a biased randomized insertion order (BRIO) [I] and
space-filling curve (SFC) orders (see Algorithm 1). In a BRIO points are grouped
into rounds. Each point is independently assigned to the last round with prob-
ability 1/2. Points not assigned to the last round are assigned to the next to
last round with the probability of 1/2 and so on [I]. After a logarithmic number

122 K. Buchin

Algorithm 1. Incremental Construction along Space-Filling Curves

Input: Point set in R¢
Output: Delaunay triangulation of the point set

1 Compute BRIO with SFC in rounds:
1.1 Sample points to rounds (using coin flips with sampling ratio 1/2),
1.2 Order points in a round using a space-filling curve order,
for every other round use reversed order (see Remark [I]).
2 Incrementally construct Delaunay triangulation using order from Step 1:
In each step do
2.1 Locate new point from the previously inserted point by walking,
2.2 Update Delaunay triangulation.

of rounds an expected constant number of points remain, and we can therefore
stop the sampling and assign the remaining points to the first round. If p € S;
denotes that the point p is inserted in round ¢ or before (i > 1) then the assign-
ment can be described in terms of probabilities as P [p € S; |p € Si1] = 5 for
1<i<logg N]+1andP [p € S<log, NHI] = 1. In the analysis we will use
the fact that the expected structural change, i.e., the total number of simplices
created and deleted, using a BRIO is asymptotically bounded by the expected
structural change using a randomized order (see Sect. B.TI).

Within a round we sort points along a space-filling curve. A SFC maps a 1-
dimensional space onto a higher-dimensional space, e.g., the unit interval onto
the unit square. We will use SFCs in the form of the SFC heuristic for the
Euclidean traveling salesperson problem [17]. We demonstrate the SFC heuristic
for this task by the example of the two-dimensional Hilbert curve [12].

For our purposes it suffices to repeat the subdivision process until there is
only one point per square of the subdivision. In this example, for one of the
squares one more subdivision step is necessary. Fig. [[d) shows the resulting
order. We call this order of the points a space-filling curve order. We will call
the graph obtained by connecting the points in this order space-filling curve
tour. To efficiently compute the SFC order of a point set in RY, we do logya N
subdivision steps at once. This results in ©(N) cells in the subdivision. The
order of the cells and the orientation of the curve in a cell can be stored in a

| | Ml

2 3 NN P TSP

I LJ Lj !’J L—\ FJ

2 ‘FJ [| Lj‘

1 4 ! ‘3 ’77 LJT !’] [—\ —LJ
[l]

—h | U | s

(a) (b) () (d)

Fig. 1. Hilbert curve and order

Constructing Delaunay Triangulations along Space-Filling Curves 123

look-up table and the sorting can then be done efficiently with radix sort. If the
spread of a point set is polynomially bounded, a constant number of such rounds
suffices.

Remark 1. Using a floor function restricted to log N bits, a SFC order of a point
set of size N with polynomially bounded spread can be computed in linear time.
In particular this yields a linear expected time for the random distributions we
consider. Restricting the floor function avoids issues about creating an unrea-
sonably powerful model of computation. Without the restricted floor function
we get an additional factor log V. Since we are interested in the point location
cost of the DT construction, we will assume in the rest of the paper that the
points are already given in a SFC order.

After computing the insertion order, we incrementally construct the Delaunay
triangulation (DT) using the order. A point is located by a straight line walk from
the previously inserted point, i.e, we trace the line segment from the previous
point to the new point in the DT data structure. In our experiments (see [4]
Section 4.5]) the computation of the SFC order made up about 10% of the
running time in two dimensions and less in three dimensions. The experiments
also confirm that a sampling ratio smaller than 1/2 (in two dimensions between
1/10 and 1/4) speeds up the algorithm as has been already observed in earlier
experiments [I5J20]. Our analysis easily generalizes to other sampling ratios.

3 General Analysis

3.1 Incremental Construction con BRIO Revisited

Amenta, Choi, and Rote [I] introduced biased randomized insertion orders in the
context of Delaunay triangulations of points sampled from a surface in R?. They
consider point sets for which the expected complexity of the DT of a random
sample of the point set is linear in the size of the sample. They prove for this
case that the expected total update and point location cost with a history are for
BRIOs asymptotically the same as for random orders. For our analysis we need
to generalize their result to points in any dimension. We simplify their analysis
by directly linking the costs for a construction with biased randomized insertion
order to the costs for a randomized construction.

For a d-simplex with vertices in P and with s conflicting points in P let pp(s)
and pr(s) denote the probabilities that the simplex occurs in an incremental
construction with biased randomized insertion order and with randomized inser-
tion order, respectively. For simplicity we assume that the sampling to rounds is
not stopped after log(n) steps, but when no points remain (see [4, Proposition
3.7] for an analysis without this assumption). We bound pp(s) in terms of pr(s).
This directly yields bounds for the costs determining the expected run-time of
the construction, i.e., the expected structural change >, _, kspp(s) and the ex-
pected conflict change >, _, skspp(s), where kg denotes the total number of
d-simplices with s conflicts. Note that the following lemma directly generalizes
to arbitrary degree bounded configuration spaces and sampling ratios 1/a by
replacing (in the lemma and its proof) d + 1 by the degree bound and 2 by «.

124 K. Buchin
Lemma 1. For d > 1 it holds in RY that pp(s) < 2¢*1pg(s). [4, Lemma 3.5]

3.2 Counting Intersections

In the following we develop a general scheme to count the number of intersections
of a space-filling curve tour with a possibly changing Delaunay triangulation.
Viewing this number as a double sum over the simplices of the DT and the
line segments of the tour, there are two natural ways to count the intersections.
In this section we will count for each simplex the number of line segments it
intersects. More specifically, we will bound for each vertex of the DT the number
of line segments of the SFC tour that might be intersected by a simplex with
this vertex as a corner. This analysis allows us to focus on the structure of the
tour. Alternatively, we could count for each line segment of the tour the number
of simplices it intersects, which shifts the focus of the analysis to the structure
of the DT. We will follow this alternative approach later (Theorem [l).

Setup. Let xq,...,x, and y1,...,ym be points in R%. Assume that we want to
insert y1,...,Ym into the Delaunay triangulation DT(z1,...,z,) of the points
Z1,...,Tn. We insert yi,...,ym along a space-filling curve tour denoted by
T(y1,...,Ym) which is given by a permutation w: {1,...,m} — {1,...,m}.
Let f(xz,DT) denote the number of d-dimensional faces incident to x in the De-
launay triangulation DT, e.g., in the plane the number of triangles incident to x.
Let F(DT) denote the total number of d-dimensional faces of DT and C'(DT, T)
the structural change when inserting the points of the tour T into DT in the or-
der given by the tour. Let By, ,. denote the ball with the line segment (y;,y;) as

. —1 .
a diameter. Furthermore, let b(x, T(y1,...,¥m)) == > g 1s,,,,,,(¥), ie., the
number of balls around tour segments in which x lies. In a probabilistic setting
we denote the random variables corresponding to z1,...,x, and yi,...,yn as

X1,..., X, and Yy, ...,Y,,, respectively.

Counting Scheme. For points in general position the faces of the DT intersected
by tour segments are (d — 1)-dimensional or d-dimensional with these two cases
alternating along the tour segment. Of these, we will count the d-dimensional
faces.

Let I be the number of intersections between d-simplices of the current DT
and line segments of the SFC tour. We will consider two scenarios: In the first, we
directly insert a new point after we located it. This corresponds to the situation
in Algorithm [Il For the line segment y(;)¥r(i+1) we count the number of inter-
sections with DT(z1,...,Zn, Yr(1), - - - ¥=@i)) (1 <@ < m). In a second scenario,
we will simply count the number of intersections between DT(x1,...,x,) and
T(y1,---,Ym). Most of the analysis will handle both scenarios simultaneously.

We split the number of intersections into I = I; + Iy where

— I is the number of intersections where the d-simplex is in conflict with one
of the endpoints of the tour segment,

— I is the number of intersections where the d-simplex is not in conflict with
the endpoints of the tour segment.

Constructing Delaunay Triangulations along Space-Filling Curves 125

Bounding I,. A Delaunay face in conflict with a vertex of the tour needs to
be counted at most once for each tour segment adjacent to the vertex, i.e.,
at most twice for the vertex. In the first scenario it is actually only counted
once, since it is no longer in the DT after the insertion of the vertex. We
can bound the cost induced by these faces by the structural change, i.e., I €

O(C(DT(x1,.,Zn), T(Y1y -+, Ym)))-

Bounding I>. Consider a fixed line segment (Y (;), Y=(i+1)) on the SFC tour. By
the following lemma any d-face of the DT intersecting this segment and not in
conflict with one of the endpoints of the tour segment must have one vertex in
the ball with the tour segment as diameter.

Lemma 2. Let A be a d-simplex and s a line segment intersecting A. If the
endpoints of s lie outside of the circumsphere of A then the ball with s as diameter
contains a vertex of A. [4, Lemma 4.1]

Thus, for any intersection counted in I the corresponding Delaunay simplex
has a vertex in the ball with the corresponding tour segment as a diameter. We
bound I3 by counting for each vertex of the DT in a ball of a tour segment the
total number of d-simplices at this vertex. In the first scenario, i.e., if we insert
points while traversing the tour, we have

m—1 n
I < Z Z]-Byﬂ_(i),yﬂ_(“rl) (xj)f(zjv DT(xla s Ty Yr()s - 7y7'r(i)))
i=1 j=1
m—1i—1
+ 1By7r(i)’y7r(i+1) (yﬂ'(j))f(x]ﬂ DT((E17 <oy Ty yﬂ'(l)a s Jyﬂ'(l))) .
j=1

=

—

In the second scenario this bound is simply

1p () f(zj, DT (z1,...,20)).

m—1 n
Yr(i) Ym(i+1)
=1

IQSZ

=13

Proposition 1. If points are inserted directly (scenario 1) then
I, <bp(d+ 1) (F(DT(x1,...,20)) + C(DT(z1, ... 20), T(WY1,---sym))) ,
where by, := max.ep b(z, T(Y1,- -, Ym))-

Proof. Any vertex is covered by at most b, balls of the tour. Counting a simplex
by, times for each incident vertex counts it b, (d + 1) times. Thus, we can bound
Iy by by, (d + 1) times the total number of simplices occurring. The number of
simplices is bounded by F(DT(z1,...,2n))+C(DT (21, ..., 2n), T (Y1, -, Ym))-

O

126 K. Buchin

Proposition [l gives a worst-case bound on I5. The straightforward generalization
of the proposition to a probabilistic setting, would replace b, by the ezpected
mazimum coverage. In the following we show that if we turn to the second
scenario, i.e., do not insert points directly, we can replace expected maximum
coverage by the typically smaller mazimum expected coverage instead.

Proposition 2. Let X1,...,X,,Y1,...,Y,, € D C R? be independent random
variables. If points are located without directly inserting them (scenario 2) then
E[lL] < (d+ l)b/\m F,, where by, = sup,ep Eb(x, T(Y1,...,Yn))] and F,, =
E[F(DT(X41,...,X,))]. [4, Proposition 4.2]

4 Analysis for Bounded Spread

4.1 Lower Bound

In this section we will focus on DT's in the plane. In two dimensions the running
time of Algorithm 1 is trivially in O(n?), since the time needed to locate one
point is at most linear. Unfortunately, for worst-case point sets the algorithm
indeed needs quadratic time, as we show next. We construct a point set for the
Hilbert curve. Fig. shows the point set for N = 9. The first point is placed

t (0,0). All further points are placed on the line y = 2/3 — z. Note that by
adding a small offset to the points, they can be placed in strictly convex position
instead. The z-coordinates of these N — 1 = 2K points are 1/8,1/4 + 1/(4 -
8),..., K 1/4i41/(4K-1.8) and 2/3—1/8,2/3 — (1/44+1/(4-8)),...,2/3 —
(Zfi;l 1/4% + 1/(4%=1 . 8)). The points are chosen such that the SFC tour
first traverses the points closest to the diagonal (0,0), (1, 1), going outward from
there. This can be seen from the self-similar structure of the point set, i.e., the
situation in a sub-square is essentially the same as in the original square (with
two points less). Now we pair up the points on the line by their distance to the
diagonal. Any such pair has probability 1/4 to be inserted in the last round, and

. level 2

level 1

[

level 2

(a) Points with £2(n?) running (b) Levels of tour segments
time

Fig. 2. Lower and upper bound constructions

Constructing Delaunay Triangulations along Space-Filling Curves 127

the ith pair intersects 2(i — 1) lines. Thus the expected number of intersections
is 2(n?) which dominates the running time.

Our worst-case example is highly degenerate. Most notably it has exponential
spread. We therefore study how the running time parameterizes in terms of the
spread. Adapting the worst-case above yields the following bound.

Theorem 1. For &(N) € w(v/N)N2°W) there are point sets of size N for which
the spread is at most ®(N) and the running time of the incremental construction
along space-filling curves (Algorithm[) is in 2(N log ®(N)).

Proof. We place instances of the construction above with k = log(®(N)VN)
points on a \/N/k x \/N/k grid. The total number of intersections occuring in

the last round is in 2(Nk) = 2(N log ®(N)), since ¢(N) € w(v/'N). O

While Theorem [0 shows that Algorithm 1 needs super-linear time on certain
inputs, it does not show that the DT cannot be computed in linear time from
a SFC order. Indeed the DT can be computed in linear time from a quadtree
(which is closely related to SFCs) [5].

4.2 Upper Bound
In the following we show an upper bound matching the lower bound.

Theorem 2. The incremental construction along space-filling curves runs in
O(|P|log ®(P)) time in the plane.

Proof. We assign a level to each edge of T(y1,...,ym) according to the highest
subdivision level (counting from coarse to fine) for which the edge is still con-
tained in a single cell (see Fig. for an example). Any point can be in the
ball of at most a constant number of edges per level, for instance the point in the
upper right of Fig. cannot be in a ball corresponding to a level-2-edge with
vertices in the lower left square. Further, the number of levels is in O(log &(N)),
which yields the claimed running time using Proposition [I} ad

Many point sets have polynomially bounded spread, in which case our bound
implies that the algorithm runs in O(N log N) time. In higher dimensions the
complexity of the DT is not necessarily linear, so we get as bound on the run-
ning time O(C(P)log ®(P)), where C'(P) denotes the structural change. In a
smoothed analysis the noise added (as long as it is not exponentially small) will
bound the expected smallest point-to-point distance and therefore the expected
spread, if the largest point-to-point distance is bounded. Thus, we again obtain
a O(N log N) running time. For well-sampled domains we can typically restrict
the number of levels we need to consider.

5 Average-Case Analysis

5.1 Structure of Random Space-Filling Curves

In the previous section we obtained a running time of O(Nlog N) for typical
inputs. To prove even stronger bounds we turn to an average-case analysis. For

128 K. Buchin

this we will use Proposition[2] which only holds if we do not insert points directly.
We therefore consider the following variant of Algorithm 1: The point location of
a round is done in two steps. First, points are located in the DT of the points of
the previous rounds by a walk along the SFC order. Second, points are located
from the location found by the walk using the history. Note that for this we only
need to maintain the history of the current round. We have the choice of inserting
the points in a random order or in the order given by the space-filling curve. In
the first case we directly obtain an expected constant point location cost [§], but
the same can be obtained in the second case [4, Theorem 3.9, Corollary 3.10].
Let Br be a ball chosen uniformly at random from the balls along the tour
with m vertices. To prove E [I3] € O(n) it suffices to prove that for all x € D it
holds that P [z € Br] € O(1/m), where D is the domain from which the X; are
drawn (1 < i < n). Now, P [z € Br| does not depend on properties of the DT,
thus we have reduced the problem to a problem on properties of the tour. To
bound P [z € Br] we will now use the Holder-continuity of space-filling curves.
First it is important to consider how the SFC was computed. If the points come
from a certain region we can simply compute the space-filling curve based on a
subdivision of this region. But for points from an unbounded region, like in the
case of the normal distribution, the bounding cube for the SFC depends on the
actual points. For simplicity we will assume that the bounding cube is chosen as
[—u,u]? where u is the largest occurring coordinate, i.e., the largest L..-norm
of a point. For a space-filling curve +: [0,1] — [0,1]¢ we denote by E [0,1] —
[—u,u]? the scaled space-filling curve. The mapping v is Holder continuous with
exponent 1/d and Hélder constant c; = 2u - ¢y , ie., for t1,t> € [0,1] we have
<

Hd;(tl) ﬂz}(tg)‘ < cgllts —t2]] . We denote by ¢*: [~u,ul? — [0,1] the

selection of preimages according to ¥*. The following lemma provides a bound
on the length of a tour edge in this setting.

Lemma 3. Let Yi,...,Y,, be independent identically distributed random vari-
ables in R? with Lebesque density function gy,. Let ¢ : [0,1] — [0, 1] be a Hélder
continuous and bi-measure preserving space-filling curve with Hélder constant cy.
Let L be a random tour segment of a space-filling curve tour through Y1,...,Ym
based on . Then for all £ >0, P[|L| > €] is at most

m—1
d 1.
/ 9 (y) <1 d/ s min {gv, (') | [ly — ¥/l <s}d5> d\(y) .
Rd [0,4]

“p
[4] Lemma 4.3]
Using Lemma [3 we can bound P [z € Br] by

m—1

d 1.

/ 9v. (y) (1 4 / s min {gy, (y) | ly —¥'ll < S}d8> dx(y) .
Rd Cy J10,llz—yll]

Two examples for distributions handled by Lemma [3] are uniformly distributed

points in [0, 1]% and normally distributed points in the plane. For normally dis-

tributed points we apply the lemma to all points except a few (an expected

Constructing Delaunay Triangulations along Space-Filling Curves 129

logarithmic number of points) far away from the center of the distribution. To
handle the remaining points we assume in the analysis that an additional point
location structure like Kirkpatrick’s point location hierarchy [14] is used.

Theorem 3. The incremental construction along space-filling curves (using the
history of a round) computes the Delaunay triangulation of points drawn inde-
pendently and uniformly from a d-cube in linear expected time. [4, Theorem 4.4]

Theorem 4. The incremental construction along space-filling curves (using the
history of a round and an O(logn) point location data structure) computes the
Delaunay triangulation of independent, identically normally distributed points in
the plane in linear expected time. [4, Theorem 4.5]

For points drawn independently and uniformly from a bounded convex region
in the plane, we next give an alternative analysis, which yields a linear bound
on the expected running time, even for the case that points are inserted directly
during the walk. It suffices to analyze the run-time of the last round. We assume
that at the beginning of the last round n points have already been inserted into
the DT, while the m points from the last round are to be inserted. The points
are located by traversing the DT along a SFC order. Therefore, the time for
locating the points is proportional to the number of intersections between the
order and the DT. Let L be a line segment that is not too close (no closer than
c\/ logn/n for a suitable constant ¢) to the boundary of the bounded convex
region and that is independent from the points of the DT. Then the expected
number of intersections between L and the DT is in O(1 + +/n|L]|) [9]. Now, the
SFC order of m points in a bounded region in the plane yields a walk through
the points of length O(y/m) [I7]. This yields an expected number of intersections
in O(m—++/nm), but there are two pieces missing in this argument. First, points
close to the boundary are not handled. Second, points are inserted during the
walk. Therefore the DT changes and depends on the points to be inserted and
their insertion order. Both of these problems can be overcome [4, Sect. 3.4].

Theorem 5. The incremental construction along space-filling curves (with no
additional point location data structure) computes the Delaunay triangulation
independent, uniformly distributed points in a bounded convexr region in linear
expected time. [4, Theorem 3.27)

Acknowledgments. The author would like to thank Gilinter Rote and Scot Drys-
dale and Maike Buchin for many helpful ideas.

References

1. Amenta, N., Choi, S., Rote, G.: Incremental constructions con BRIO. In: Proc.
19th Annu. ACM Sympos. Comput. Geom., pp. 211-219. ACM Press, New York
(2003)

2. Attali, D., Boissonnat, J.-D.: A linear bound on the complexity of the Delaunay
triangulation of points on polyhedral surfaces. Discrete Comput. Geom. 31(3),
369-384 (2004)

130

3.

4.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

K. Buchin

Bentley, J.L., Weide, B.W., Yao, A.C.: Optimal expected-time algorithms for
closest-point problems. ACM Trans. Math. Softw. 6, 563-580 (1980)

Buchin, K.: Organizing Point Sets: Space-Filling Curves, Delaunay Tessellations
of Random Point Sets, and Flow Complexes. PhD thesis, Free University Berlin
(2007),
http://www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000003494

. Buchin, K., Mulzer, W.: Delaunay triangulations in O(sort(n)) and other transdi-

chotomous and hereditary algorithms in computational geometry. In: Proc. 50th
Annu. IEEE Sympos. Found. Comput. Sci. (to appear, 2009)

. Damerow, V., Meyer auf der Heide, F., Récke, H., Scheideler, C., Sohler, C.:

Smoothed motion complexity. In: Di Battista, G., Zwick, U. (eds.) ESA 2003.
LNCS, vol. 2832, pp. 161-171. Springer, Heidelberg (2003)

. Delage, C.: Spatial sorting. In: CGAL Editorial Board (eds), CGAL User and

Reference Manual (2007)

. Devillers, O.: Randomization yields simple O(n log>k n) algorithms for difficult

Omega(n) problems. Int. J. Comput. Geometry Appl. 2(1), 97-111 (1992)

. Devroye, L., Miicke, E., Zhu, B.: A note on point location in Delaunay triangula-

tions of random points. Algorithmica 22, 477-482 (1998)

Dwyer, R.A.: Higher-dimensional Voronoi diagrams in linear expected time. Dis-
crete Comput. Geom. 6(4), 343-367 (1991)

Erickson, J.: Dense point sets have sparse Delaunay triangulations: or but not too
nasty. In: Proc. 13th Annu. ACM-SIAM Sympos. Discrete Algorithms, pp. 125-134
(2002)

Hilbert, D.: Ueber die stetige Abbildung einer Linie auf ein Fléchenstiick. Math.
Ann. 38, 459-460 (1891)

Katajainen, J., Koppinen, M.: Constructing Delaunay triangulations by merging
buckets in quadtree order. Fundam. Inform. 11, 275-288 (1988)

Kirkpatrick, D.G.: Optimal search in planar subdivisions. STAM J. Comput. 12(1),
28-35 (1983)

Liu, Y., Snoeyink, J.: A comparison of five implementations of 3d Delaunay tesse-
lation. In: Goodman, J.E., Pach, J., Welzl, E. (eds.) Combinatorial and Computa-
tional Geometry. MSRI Publications, vol. 52, pp. 439-458. Cambridge University
Press, Cambridge (2005)

Miicke, E.P., Saias, 1., Zhu, B.: Fast randomized point location without prepro-
cessing in two- and three-dimensional Delaunay triangulations. Comput. Geom.
Theory Appl. 12(1-2), 63-83 (1999)

Platzman, L.K., Bartholdi III, J.J.: Spacefilling curves and the planar travelling
salesman problem. J. ACM 36(4), 719-737 (1989)

Spielman, D.A., Teng, S.-H.: Smoothed analysis of algorithms: Why the simplex
algorithm usually takes polynomial time. J. ACM 51(3), 385-463 (2004)

Su, P., Drysdale, R.: A comparison of sequential Delaunay triangulation algorithms.
Comput. Geom. Theory Appl. 7, 361-386 (1997)

Zhou, S., Jones, C.B.: HCPO: an efficient insertion order for incremental Delaunay
triangulation. Inf. Process. Lett. 93(1), 37—42 (2005)

http://www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000003494

Piercing Translates and Homothets of a Convex Body

Adrian Dumitrescu®* and Minghui Jiang?**

! Department of Computer Science, University of Wisconsin-Milwaukee, W1 53201-0784, USA
ad@cs.uwm. edu
2 Department of Computer Science, Utah State University, Logan, UT 84322-4205, USA
mjiang@cc.usu.edu

Abstract. According to a classical result of Griinbaum, the transversal number
7(F) of any family F of pairwise-intersecting translates or homothets of a con-
vex body C'in R? is bounded by a function of d. Denote by a(C) (resp. 5(C))
the supremum of the ratio of the transversal number 7(F) to the packing number
v(F) over all families F of translates (resp. homothets) of a convex body C' in
R<. Kim et al. recently showed that a(C) is bounded by a function of d for any
convex body C' in R?, and gave the first bounds on a(C) for convex bodies C
in R? and on 3(C) for convex bodies C' in the plane. In this paper, we show
that 3(C) is also bounded by a function of d for any convex body C' in R¥, and
present new or improved bounds on both «(C') and 3(C') for various convex bod-
ies C'in R? for all dimensions d. Our techniques explore interesting inequalities
linking the covering and packing densities of a convex body. Our methods for
obtaining upper bounds are constructive and lead to efficient constant-factor ap-
proximation algorithms for finding a minimum-cardinality point set that pierces
a set of translates or homothets of a convex body.

1 Introduction

A convex body is a compact convex set in R? with nonempty interior. Let F be a family
of convex bodies. The packing number v(F) is the maximum cardinality of a set of
pairwise-disjoint convex bodies in F, and the transversal number T(F) is the minimum
cardinality of a set of points that intersects every convex body in F.

Let G be the intersection graph of F with one vertex for each convex body in F
and with an edge between two vertices if and only if the two corresponding convex
bodies intersect. The independence number o(G) is the maximum cardinality of an
independent set in G. The clique partition number 9(G) is the minimum number of
classes in a partition of the vertices of G into cliques. Since a set of pairwise-disjoint
convex bodies in F corresponds to an independent set in G, we have v(F) = a(G).
Also, since any subset of convex bodies in F that share a common point corresponds
to a clique in G, we have 7(F) > ¥(G). For the special case that F is a family of
axis-parallel boxes in RY, we indeed have 7(F) = 9(G) since any subset of pairwise-
intersecting boxes share a common point. In general, we clearly have the inequality
Y(G) > a(Q), thus also 7(F) > v(F). But what else can be said about the relation
between 7(F) and v(F)?

* Supported in part by NSF CAREER grant CCF-0444188.
** Supported in part by NSF grant DBI-0743670.

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 131 20009.
© Springer-Verlag Berlin Heidelberg 2009

132 A. Dumitrescu and M. Jiang

Fig. 1. Piercing a family F of axis-parallel unit squares. Left: all squares that intersect the highest
(shaded) square contain one of its two lower vertices. Right: five squares form a 5-cycle.

For example, let 7 be any family of axis-parallel unit squares in the plane, and refer
to Figure[Il One can obtain a subset of pairwise-disjoint squares by repeatedly selecting
the highest square that does not intersect the previously selected squares. Then F is
pierced by the set of points consisting of the two lower vertices of each square in the
subset. This implies that 7(F) < 2 - v(F). The factor of 2 cannot be improved below
3 since 7(F) = 3 and v(F) = 2 for a family F of five squares arranged into a 5-
cycle [[11].

For a convex body C in R?, d > 2, define

_ oy T _ oy T(FR)
alC) = s;l__tp o(F) and B(C) = s;_lf (F)’

where F; ranges over all families of translates of C, and F;, ranges over all families of
(positive) homothets of C'. In the definitions of a and /3, both the convexity of C' and the
homothety of F; and F}, are necessary for the values o(C') and §(C) to be bounded.
Our previous discussion (Figure[I) yields the bounds g < a(C) < 2 for any square C.

Define a1 (C) (resp. 51(C)) as the smallest number & such that for any family F of
pairwise-intersecting translates (resp. homothets) of a convex body C, there exists a set
of k points that intersects every member of F. Note that o and (3 generalize a; and ;.
For any convex body C, the four numbers a(C), 5(C), a1 (C'), and B (C) are invariant
under any non-singular affine transformation of C, and we have the four inequalities
a1(C) < a(C), Ai(C) < B(C). a1(C) < B1(C), and a(C) < B(C).

Griinbaum [[10] showed that, for any convex body C' in R?, both a1 (C) and 31 (C)
are bounded by functions of d. Deriving bounds on a1 (C') and 3, (C) for various types
of convex bodies C'in R is typical of classic Gallai-type problems [[7/17], and has been
extensively studied. For example, a result by Karasev [[12] states that o1 (C') < 3 for any
convex body C' in the plane, i.e., for any family of pairwise-intersecting translates of a
convex body in the plane, there always exists a set of three points that intersects every
member of the family. It is folklore that oy (C') = 81 (C') = 1 for any parallelogram C;
see [L0] and the references therein. Also, a1 (C) = 2 for any affinely regular hexagon
C [10], a1 (C) = p1(C) = 3 for any triangle C' [4]], a1 (C) = 3 < 4 = 31(C) for any
(circular) disk C [10l6], and 8 (C') < 7 for any centrally symmetric convex body C' in
the plane [[10]. Perhaps the most celebrated recent result on point transversals of convex

Piercing Translates and Homothets of a Convex Body 133

sets is Alon and Kleitman’s solution to the Hadwiger-Debrunner (p, ¢)-problem [1]]. We
refer to the two surveys [7, pp. 142—-150] and [17, pp. 77-78] for more related results.

The two numbers a; (C') and 31 (C') bound the values of 7(F) for special families
F of translates and homothets of a convex body C' with v(F) = 1. It is thus natural to
study the general case v(F) > 1, and to obtain estimates on «(C') and 3(C). Despite
the many previous bounds on «;(C) and (31 (C) [717], first estimates on a(C) and
B(C) have been only obtained recently by Kim et al. [14], who showed that a(C) is
bounded by a function of d for any convex body C in R¢, and gave the first bounds on
a(C) for convex bodies C in R? and on 3(C) for convex bodies C'in the plane. In this
paper, we show that 5(C') is also bounded by a function of d for any convex body C' in
R, and present new or improved bounds on both a(C) and 3(C') for various types of
convex bodies C' in R? for all dimensions d.

Definitions. For a convex body C in R?, denote by |C| the Lebesgue measure of C,
i.e., the area in the plane, or the volume in d-space for d > 3. For a family F of convex
bodies in R, denote by |F| the Lebesgue measure of the union of the convex bodies in
Foie, |Ucer Cl

For two convex bodies A and B in R?, denote by A+B = {a+b|a € A,b € B} the
Minkowski sum of A and B. For a convex body C'in R¢, denote by \C = {\c | c € C}
the scaled copy of C by a factor of A € R, denote by —C = {—c | ¢ € C} the reflexion
of C' about the origin, and denote by C' + a = {c¢+ a | ¢ € C} the translate of C by
the vector from the origin to a. Write C' — C for C' + (—C).

For two parallelepipeds P and () in R? that are parallel to each other (but are not
necessarily axis-parallel), denote by A; (P, @), 1 < i < d, the length ratios of the edges
of @ to the corresponding parallel edges of P. Then, for a convex body C' in R¢, define

d—1
7(C) = min (muzcm 1o+ ﬂ) 7

’ i=1

where P and @ range over all pairs of parallelepipeds in R that are parallel to each
other, such that P C C' C Q. Note that in this case \;(P, Q) > 1for1 <i <d.

For a convex body C' in R, denote by §(C), 67(C), and &1 (C), respectively, the
packing density, the translative packing density, and the lattice packing density of C,
that is, the maximum densities of a packing in R? with congruent copies of C, trans-
lates of C', and translates of C' by vectors of a lattice, respectively. Similarly, denote
by 6(C), 67 (C), and 01 (C), respectively, the covering density, the translative cover-
ing density, and the lattice covering density of C. See [3, Chapter 1]. Note that the
four densities 67(C), 01(C), é7(C), and 61 (C') are invariant under any non-singular
affine transformation of C. For any convex body C in R¢, we have the inequalities
I (C) <op(C) <6(C) <1<H(C) <0r(C) <0.(0).

For two convex bodies A and B in RY, denote by (A, B) the smallest number
such that A can be covered by « translates of B.

Main results. Kim et al. [14] proved that, for any family F of translates of a convex
body in R%, 7(F) < 29714 . y(F), in particular 7(F) < 108 - v(F) when d = 3,

134 A. Dumitrescu and M. Jiang

and moreover 7(F) < 8 - v(F) — 5 when d = 2. We improve these bounds for all
dimensions d in the following theorem:

Theorem 1. For any family F of translates of a convex body C' in R?,
7(F) <~(C) - v(F), wherey(C) < d(d+ 1)1 (1
In particular, 7(F) < 48 - v(F) when d = 3, and 7(F) < 6 - v(F) when d = 2.

For any parallelepiped C' in R?, we can choose two parallelepipeds P and () such that
P=Q=Chence PC C CQ.Then \;(P,Q) =1for1<i<d,and~(C)=2%""1
This implies the following corollary:

Corollary 1. For any family F of translates of a parallelepiped in R?, T(F) < 24-1.
v(F).

In contrast, for a family F of (not necessarily congruent or similar) axis-parallel paral-
lelepipeds (boxes) in R4, the current best upper bound [8]] (see also [13]]) is

T(F) < v(F) logd_2 v(F)(logv(F) —1/2) + d.

Kim et al. [14] also proved that, for any family F of translates of a centrally symmetric
convex body in the plane, 7(F) < 6 - v(F) — 3. The following theorem gives a general
bound for any centrally symmetric convex body in R? and an improved bound for any
centrally symmetric convex body in the plane:

Theorem 2. For any family F of translates of a centrally symmetric convex body S in
RY,
0L(S)
T(F) <2t -v(F). 2
(<2t e uE) @
Moreover, 7(F) < 24 - v(F) when d = 3, and 7(F) < 'Y - v(F) when d = 2.

For special types of convex bodies in the plane, the following theorem gives sharper
bounds than the bounds implied by Theorem [Tl and Theorem 2] Also, as we will show
later, (3) may give a better asymptotic bound than (I)) and () for high dimensions.

Theorem 3. Let F be a family of translates of a convex body C' in R%. Then
T(F) < mLin k((C-C)NL,C)-v(F), 3)

where L ranges over all closed half spaces bounded by hyperplanes through the center
of C — C. In particular, 7(F) < 5 - v(F) if C is a centrally symmetric convex body
in the plane. Moreover, (i) if C' is a square, then 7(F) < 2-v(F) =1, (i) if C is a
triangle, then T(F) < 5 - v(F) — 2, (iii) if C is a disk, then 7(F) <5 - v(F) — 2.

Having presented our bounds for families of translates, we now turn to families of
homothets. Kim et al. [[14] proved that, for any family F of homothets of a convex body
C in the plane, 7(F) < 16 - v(F) and, if C is centrally symmetric, 7(F) < 9 - v(F).
The following theorem gives a general bound for any convex body in R?, an improved
bound for any centrally symmetric convex body in the plane, and additional bounds for
special types of convex bodies in the plane:

Piercing Translates and Homothets of a Convex Body 135

Theorem 4. Let F be a family of homothets of a convex body C' in R%. Then
T(F) < k(C-C,C)-v(F). 4

In particular, 7(F) < 7-v(F) if C is a centrally symmetric convex body in the plane.
Moreover, (i) if C is a square, then 7(F) < 4 - v(F) — 3, (i) if C is a triangle, then
T(F) <12-v(F) =9, (iii) if C is a disk, then 7(F) < 7-v(F) — 3.

For any parallelepiped C in R?, C' — (' is a translate of 2C and can be covered by 2¢
translates of C, thus x(C — C,C) < 2%. This implies the following corollary:

Corollary 2. For any family F of homothets of a parallelepiped in R?, 7(F) < 24 .
v(F).

Both Theorem [3] and Theorem [M] are obtained by a simple greedy method, used also
previously by Kim et al. [14]]. Although we have improved their bounds using new
techniques in Theorem[I]and Theorem 2] we show that a refined analysis of the simple
greedy method yields even better asymptotic bounds for high dimensions in Theorem[3]
and Theorem 4l We will use the following lemma by Chakerian and Stein [4] in our
analysis:

Lemma 1. (Chakerian and Stein [4]]). For every convex body C' in R? there exist two
parallelepipeds P and @ such that P C C C Q, where P and Q) are homothetic with
ratio at most d.

For any convex body C in R, let P and Q be the two parallelepipeds in Lemma [Il
Since C — C C Q — Q and P C C, it follows that k(C — C,C) < k(Q — Q, P) =
k(2Q, P) < (2d)%; see also [14, Lemma 4]. The classic survey by Danzer, Griinbaum,
and Klee [/, pp. 146—147] lists several other upper bounds due to Rogers and Danzer:

() k(C - C,0) < d2:1 34+107(C) for any convex body C' in R4, (i) k(C — C,C) <
5 and k(C — C,C) < 397 (C) for any centrally symmetric convex body C' in R9.
Note that 67(C') < dlnd + dlnlnd + 5d = O(dlogd) for any convex body C in
R?, according to a result of Rogers [[15]]. The following lemma summarizes the upper

bounds on x(C — C, C):
Lemma 2. For any convex body C in R?,

K(C — C,C) < min{(2d)%, 2 3%107(C)} = O(6% log d).

Moreover, if C'is centrally symmetric, then
k(C — C,C) < min {57, 3%07(C)} = O(3%dlog d).

From Lemma [2] and Theorem [] it follows that 3(C) is bounded by a function of d,
namely by O(6% log d), for any convex body C in R%. Since miny, x((C'—C)NL,C) <
k(C = C,C), Lemma [l also provides upper bounds on miny, x((C — C) N L,C) in
Theorem 3l As a result, (3) implies an upper bound 7(F) < O(6%logd) - v(F) for
any family F of translates of a convex body in R?, which is better than the upper bound

136 A. Dumitrescu and M. Jiang

Table 1. Upper bounds on a(C) and 3(C) for a convex body C in R?. "By Theorem B and
LemmaD} for d = 3, (2d)¢ = 216 and 5% = 125.

Convex body C' in R? a(C') upper

arbitrary d=26 Tl
centr.symm. d=25 13|
arbitrary d=348 Tl
centr. symm. d =3 24 g1
arbitrary d>3min{d(d+1)%1, 2 3M97(C)} T TEHD
centr. symm. d > 3 min{d(d + 1)*7*, 2¢ gﬁg;, 5%, 3%07(C)} TR TELD]
parallelepiped d > 2 2971 dan
Convex body C' inR? B(C') upper

arbitrary d=216 [14]
centr. symm. d=27

arbitrary d=3216 2131y
centr. symm. d = 3125 TR
arbitrary d>3min{(2d)?, 2 3916r(C)} T2
centr. symm. d > 3 min{5%, 3%6r(C)} T2
parallelepiped d > 2 2¢ al

7(F) < d(d+1)*1-v(F) in (1) when d is sufficiently large. Also, (3) implies an upper
bound 7(F) < 3907(S) - v(F) for any family F of translates of a centrally symmetric
convex body S in R%. Schmidt [16] showed that, for any centrally symmetric convex
body S, 01,(S) = £2(d/2%); hence @) implies the bound 7(F) < O(44/d)0L(S) - v(F).
Note that 607(S) < 0.(S). So (B) may be also better than) for high dimensions.
Table [Il summarizes the current best upper bounds on a(C') and 3(C) (obtained by us
and by others) for various types of convex bodies C' in R:

A natural question is whether «(C) or G(C') need to be exponential in d. The fol-
lowing theorem gives a positive answer:
Theorem 5. For any convex body C in RY, 3(C) > a(C) > g;ggg In particular, if C
is the unit ball B% in R%, then 3(C) > a(C) > 2(0:599F0()d 45 q — oo,

Kim et al. [[14] asked whether the upper bound 7(F) < 3 - v(F) holds for any family
F of translates of a centrally symmetric convex body in the plane. This upper bound, if
true, is best possible because there exists a family F of congruent disks (i.e., translates
of a disk) such that 7(F) = 3 - v(F) for any v(F) > 1 [10]; see also [14], Example 10].
On the other hand, Karasev [12] proved that 7(F) < 3 - v(F) = 3 for any family F of
pairwise-intersecting translates of a convex body in the plane. Also, for any family F of
congruent disks such that v(F) = 2, Kim et al. [14] confirmed that 7(F) < 3-v(F) =
6. Our Corollary [[l confirms that 7(F) < 2 - v(F) for any family F of translates of a
parallelogram. The following theorem confirms the upper bound 7(F) < 3 - v(F) for
another special case:

Theorem 6. For any family F of translates of a centrally symmetric convex hexagon,
T(F) < 3-v(F). Moreover, if v(F) = 1, then 7(F) < 2.

Piercing Translates and Homothets of a Convex Body 137

Table 2. Lower and upper bounds on o(C') and 3(C) for special convex bodies C' in the plane

Special convex body C in the plane «(C') lower a(C) upper 3(C) lower 3(C') upper

centrally symmetric convex hexagon 2 [10] 3 T8 2 [10] 7 T4
square 5 [11] 2 35 [11] 4 T4
triangle 3 [4] 5 313 [4] 12 T4
disk 3 [10] 5 34 [10] 7 T4

Griinbaum [10] showed that o1 (C') = 2 for any affinely regular hexagon C'. Theorem[@l
implies a stronger and more general result that 2 = o;(C) < a(C) < 3 for any
centrally symmetric convex hexagon C. The example in Figure [l gives the bound g <
a(C) < 2 for any square C. For any triangle or disk C, it follows by Theorem [3] (ii)
and (iii) that a(C') < 5, and we have the lower bound a(C) > «4(C) = 3 [4l10].
Theorem H] (i), (ii), and (iii) imply that 5(C) < 4 for any square C, 3(C) < 12 for
any triangle C, and 3(C') < 7 for any disk C. We also have the lower bounds 3(C) >
a(C) > 3 for any square C, 3(C) > 31(C) = 3 for any triangle C [4], and 3(C) >
B1(C) = 4 for any disk C [10]. Table 2] summarizes the current best bounds on «(C)
and B(C') for some special convex bodies C' in the plane:

2 Upper Bound for Translates of an Arbitrary Convex Body in R<¢

In this section we prove Theorem[Il Let F be a family of translates of a convex body
C in RY. Let P and Q be any two parallelepipeds in R that are parallel to each other,
such that P C C' C Q. Since the two values 7(F) and v(F) are invariant under any
non-singular affine transformation of C, we can assume that P and () are axis-parallel
and have edge lengths 1 and e;, respectively, along the axis z;, 1 <1 < d.

We first show that 7(7) < [eq] - ¥(7) for any family 7 of C-translates whose
corresponding P-translates intersect a common line ¢ parallel to the axis z4. Define
the x4-coordinate of a C-translate as the smallest z4-coordinate of a point in the cor-
responding P-translate. Set 7; = 7, let C be the C-translate in 7; with the smallest
x4-coordinate, and let S; be the subfamily of C-translates in 7; that intersect C; (S;
includes C itself). Then, for increasing values of ¢, while 7; = 7T \ U;:; S; is not
empty, let C; be the C-translate in 7; with the smallest z4-coordinate, and let S; be
the subfamily of C-translates in 7; that intersect C;. The iterative process ends with a
partition 7 = |J;*; S;, where m < v/(7).

Denote by ¢; the x4-coordinate of C;. Then each C-translate in the subfamily S;,
which is contained in a Q)-translate of edge length e; along the axis x4, has an z4-
coordinate of at least ¢; and at most ¢; + e4, and the corresponding P-translate, whose
edge length along the axis x4 is 1, contains at least one of the [e,] points on ¢ with x4-
coordinates ¢; + 1,...,¢; + [eq]. These [eq] points form a piercing set for S;, hence
7(S;) < Jeq]. It follows that

m

T(T) <> 7(S) < [ea] - m < [ea] - v(T).)

i=1

138 A. Dumitrescu and M. Jiang

For (a1,...,aq_1) € R471, denote by £(ay,...,aq_1) the following line in R? that is
parallel to the axis x4:

{(x1,...,2q) | (1, ,24-1) = (a1,...,a4-1) }.

Now consider the following (infinite) set £ of parallel lines:
{LGr+ b1, Jar 4+ ba1) | (G1,- - sdar) € Z7Y,

where (b1,...,b4—1) € R4-1 is chosen such that no line in £ is tangent to the P-
translate of any C-translate in . Recall that P and () are axis-parallel and have edge
lengths 1 and e;, respectively, along the axis x;, 1 < i < d. So we have the following
two properties:

1. For any C-translate in F, the corresponding P-translate intersects exactly one line
in L.

2. For any two C-translates in F, if the two corresponding P-translates intersect two
different lines in £ of distance at least e; + 1 along some axis z;, 1 < ¢ < d — 1,
then the two C-translates are disjoint.

Partition F into subfamilies F(j1,. .., jd—1) of C-translates whose corresponding P-
translates intersect a common line £(j1 + b1, ..., ja—1 + ba—1). Let F'(k1,..., kq—1)
be the union of the families F(j1,...,jq—1) such that j; mod [e; + 1] = k; for
1 < i < d— 1. It follows from (@) that the transversal number of each subfamily

F'(ki,...,kq—1) is at most [e,] times its packing number. Therefore we have
TF)< Y. T (Flha. k) <Teal D> v(F(ki,. .. ki)
(k1,eka—1) (k1seka—1)
d—1
< ([eﬂ [Ire: + 11) W(F).©)
i=1

Since (@) holds for any pair of parallelepipeds P and () in R? that are parallel to each
other and satisfy P C C C (), it follows by the definition of v(C) that 7(F) <
~(C) - v(F). By Lemmall] there indeed exist two such parallelepipeds P and @ with
length ratios \; (P, Q) = d for 1 < i < d. It then follows that v(C) < d(d + 1)4~* for
any convex body C in R?. This completes the proof of Theorem [Tl

3 Upper Bound for Translates of a Centrally Symmetric Convex
Body in R¢

In this section we prove Theorem[2] Recall that |C| is the Lebesgue measure of a convex
body C in R?, and that | 7| is the Lebesgue measure of the union of a family F of convex
bodies in R%. To establish the desired bound on 7(F) in terms of v/(F) for any family
F of translates of a centrally symmetric convex body S in R?, we link both 7(F) and
v(F) to the ratio |F|/|S|. We first prove a lemma that links the transversal number
7(F) to the ratio | F|/|S| via the lattice covering density of .S"

Piercing Translates and Homothets of a Convex Body 139

Lemma 3. Let F be a family of translates of a centrally symmetric convex body S in
R, If there is a lattice covering of R? with translates of S whose covering density is 0,
0> 1, thenT(F) <0-|F|/|S]

Proof. Denote by S, a translate of the convex body S centered at a point p. Since S'is
centrally symmetric, for any two points p and g, p intersects S, if and only if ¢ intersects
S,. Given a lattice covering of R? with translates of S, every point p € R? is contained
in some translate S, in the lattice covering, hence every translate S, contains some
lattice point q.

Let A be a lattice such that the corresponding lattice covering with translates of S
has a covering density of #. Divide the union of the convex bodies in F into pieces
by the cells of the lattice A, then translate all cells (and the pieces) to a particular cell,
say o. By the pigeonhole principle, there exists a point in o, say p, that is covered at
most || F|/|o]|| times by the overlapping pieces of the union. Let % be the number of
times that p is covered by the pieces. Now fix F but translate the lattice A to A’ until
p becomes a lattice point of A’. Then exactly k lattice points of A’ are covered by the
S-translates in F. Since every S-translate in JF contains some lattice point of A’, we
have obtained a transversal of F consisting of k < ||F|/|o]|] lattice points of A’. Note
that = |.S|/|o|, and the proof is complete. O

The following lemmd] is a dual of the previous lemma, and links the packing number
v(F) to the ratio |F|/|S] via the lattice packing density of S:

Lemma 4. Let F be a family of translates of a centrally symmetric convex body S in
R, If there is a lattice packing in R? with translates of S whose packing density is 6,
§ < 1, thenv(F) > 2 - |F|/|S].

Proof. Let S’ be a homothet of S scaled up by a factor of 2. Since S is centrally sym-
metric, an S-translate is contained by an S’-translate if and only if the S-translate con-
tains the center of the S’-translate. Given a lattice packing in R¢ with translates of
S’, two S’-translates centered at two different lattice points are disjoint, hence two S-
translates containing two different lattice points are disjoint.

Let /A be a lattice such that the corresponding lattice packing with translates of S” has
a packing density of § (such a lattice exists because .S is homothetic to S). Divide the
union of the convex bodies in F into pieces by the cells of the lattice A, then translate
all cells (and the pieces) to a particular cell, say o. By the pigeonhole principle, there
exists a point in o, say p, that is covered at least [|F|/|o|] times by the overlapping
pieces of the union. Let k be the number of times that p is covered by the pieces. Now
fix F but translate the lattice A to A’ until p becomes a lattice point of A’. Then exactly
k lattice points of A’ are covered by the S-translates in F. Choose k translates in F,
each containing a distinct lattice point of A’. Since any two S-translates containing two
different lattice points of A’ are disjoint, we have obtained a subset of k& > [|F|/|o]]
pairwise-disjoint S-translates in . Note that § = |S’|/|o| = 2¢|S|/|o|, and the proof
is complete. a

Lemma[3land Lemmal] are then connected by the following “sandwich” lemma:

! The planar case of this lemma is implied by a recent result [2, Theorem 5].

140 A. Dumitrescu and M. Jiang

Lemma 5. Let F be a family of translates of a (not necessarily centrally symmetric)
convex body C in R, Let A and B be two centrally symmetric convex bodies in R?
such that A C C C B. Then

Bl 60(4)
4] 6.(B)

Proof. Since A C C, it follows by Lemma[3] that

T(F) < 2. v(F).

]:
T(F) < 0L(A) - ||A||
Since C' C B, it follows by Lemma [] that
5L(B) |7
> . .
AT

Putting these together yields

FI _ga 1Bl 00(4) 6n(B) |F| _,a [Bl 60(4)

VSO =) 2 B S Al)

v(F).

O

By setting A = B = C in Lemmal3] we obtain () in Theorem 2] For the planar case,
the following lemma is now folklore 3, Theorems 2.5 and 2.8]:

Lemma 6. For any centrally symmetric convex body S in the plane, there are two cen-
trally symmetric convex hexagons H and H' such that H C S C H' and |H|/|H'| >
3/4.

Note that 6;,(H) = 6,(H) = 1 for a centrally symmetric convex hexagon H. Set
A= H, B= H',and C = S in the previous two lemmas, and we have, for any family
F of translates of a centrally symmetric convex body in the plane,

4 1 16

7(F) < 22 v(F) = 3

<2t
This completes the proof of Theorem 21

-v(F).

4 Upper Bounds by Greedy Decomposition

In this section we sketch the proofs of Theorems [3] and [4] (the discussion of the spe-
cial cases is omitted). First let F be a family of translates of a convex body C in
R<. Without loss of generality, assume that x((C — C) N L,C) is minimized when
L = {(z1,...,24) | 4 > 0}. Perform a greedy decomposition as follows. For
i=1,2,...,while 7; = F\ U;;ll S; is not empty, let C; be the translate of C'in 7; that
contains a point of the largest x4-coordinate, and let S; be the subfamily of translates
in 7; that intersect C; (S; includes Cj itself). The iterative process ends with a partition
F =", S;, where m < v(F). We next show that 7(S;) < x((C — C)N L, C).

Piercing Translates and Homothets of a Convex Body 141

Choose any point in C' as a reference point. We have the following lemma:

Lemma 7. Let A and B be two translates of C with reference points a and b, respec-
tively. (i) A contains b if and only if —(B — b) + b contains a. (ii) If A intersects B, then
a is contained in a translate of C' — C' centered at b.

By Lemma [7] (ii), the reference point of each translate of C' in S; is contained in a
translate of C' — C' centered at the reference point of C;. Since the translate of C' — C
is covered by x(C' — C,—C) translates of —C, it follows by Lemma [7] (i) that each
translate of C'in S; contains one of the x(C — C, —C') corresponding reference points.
Therefore,

7(S) < k(C—-C,-C)=kr(C—-C,C). @)
The stronger bound 7(S;) < x((C — C) N L, C) follows by our choice of C;. We have
<> (s (C=C)NL,C)-m < k((C—C)NL,C) - v(F).

i=1

In the special case that C' is a centrally symmetric convex body in the plane, C' — C
is a translate of 2C'. Assume without loss of generality that C' is centered at the origin.
Then C'— C' = 2C. We have the following lemma on covering 2C' with translates of C,
which is implicit in a result by Griinbaum [[10, Theorem 4]:

Lemma 8. (Griinbaum [10]). Let C be a centrally symmetric convex body in the plane.
Then 2C' can be covered by seven translates of C, including one translate concentric
with 2C' and six others centered at the six vertices, respectively, of an affinely regular
hexagon H¢ concentric with 2C.

Choose the halfplane L through the center of 2C' and any two opposite vertices of the
hexagon H¢ in Lemmalf8] Then «((C'—C)NL, C) < 5. It follows that 7(F) < 5-v(F)
for any family F of translates of a centrally symmetric convex body in the plane.

Next let F be a family of homothets of a convex body C in R%. We again use greedy
decomposition. The only difference in the algorithm is that C; is now chosen as the
smallest homothet of C' in 7;. By our choice of C;, each homothet in S; contains a
translate of C; that intersects C;. Hence the bound 7(S;) < x(C — C, C) follows in a
similar way as the derivation of (@). It then follows that 7(F) < x(C — C,C) - v(F).
By Lemmal8l x(C' — C, C) < 7if C is a centrally symmetric convex body in the plane.

5 Concluding Remarks

A computational problem related to the results in this paper is finding a minimum-
cardinality point set that pierces a given set of geometric objects. This problem is NP-
hard even for the special case of axis-parallel unit squares in the plane [9], and it admits
a polynomial-time approximation scheme for the general case of fat objects in R? [3].
The approximation scheme has a very high time complexity of n®(1/ <)), and hence is
impractical. Our methods for obtaining the upper bounds in Theorems[Il 2] Bl and [are
constructive and lead to efficient constant-factor approximation algorithms for piercing

142 A. Dumitrescu and M. Jiang

a set of translates or homothets of a convex body. The approximation factors, which
depend on the dimension d, are the multiplicative factors in the respective bounds on
7(F) in terms of v(F) in the theorems, see also Table [Tl and Table 2] For instance,
Theorem [yields a factor-6 approximation algorithm for piercing translates of a con-
vex body in the plane, and Theorem Hlyields a factor-216 approximation algorithm for
piercing homothets of a convex body in 3-space.

References

1. Alon, N., Kleitman, D.J.: Piercing convex sets and the Hadwiger-Debrunner (p, ¢)-problem.
Advances in Mathematics 96, 103—-112 (1992)

2. Bereg, S., Dumitrescu, A., Jiang, M.: On covering problems of Rado. Algorithmica,
doi:10.1007/s00453-009-9298-z (to appear); A preliminary version in: Proceedings of the
11th Scandinavian Workshop on Algorithm Theory, pp. 294-305 (2008)

3. BraB, P.,, Moser, W., Pach, J.: Research Problems in Discrete Geometry. Springer, New York
(2005)

4. Chakerian, G.D., Stein, S.K.: Some intersection properties of convex bodies. Proceedings of
the American Mathematical Society 18, 109-112 (1967)

5. Chan, T.: Polynomial-time approximation schemes for packing and piercing fat objects. Jour-
nal of Algorithms 46, 178-189 (2003)

6. Danzer, L.: Zur Losung des Gallaischen Problems iiber Kreisscheiben in der Euklidischen
Ebene. Studia Scientiarum Mathematicarum Hungarica 21, 111-134 (1986)

7. Danzer, L., Griinbaum, B., Klee, V.: Helly’s theorem and its relatives. In: Proceedings of
Symposia in Pure Mathematics., vol. 7, pp. 101-181. American Mathematical Society (1963)

8. Fon-Der-Flaass, D.G., Kostochka, A.V.: Covering boxes by points. Discrete Mathemat-
ics 120, 269-275 (1993)

9. Fowler, R.J., Paterson, M.S., Tanimoto, S.L.: Optimal packing and covering in the plane are
NP-complete. Information Processing Letters 12, 133—-137 (1981)

10. Griinbaum, B.: On intersections of similar sets. Portugaliae Mathematica 18, 155-164 (1959)

11. Gyarfés, A., Lehel, J.: Covering and coloring problems for relatives of intervals. Discrete
Mathematics 55, 167-180 (1985)

12. Karasev, R.N.: Transversals for families of translates of a two-dimensional convex compact
set. Discrete and Computational Geometry 24, 345-353 (2000)

13. Karolyi, G.: On point covers of parallel rectangles. Periodica Mathematica Hungarica 23,
105-107 (1991)

14. Kim, S.-J., Nakprasit, K., Pelsmajer, M.J., Skokan, J.: Transversal numbers of translates of a
convex body. Discrete Mathematics 306, 2166-2173 (2006)

15. Rogers, C.A.: A note on coverings. Mathematika 4, 1-6 (1957)

16. Schmidt, W.M.: On the Minkowski-Hlawka theorem. Illinois Journal of Mathematics 7, 18—
23 (1963)

17. Wenger, R.: Helly-type theorems and geometric transversals. In: Handbook of Discrete and
Computational Geometry, 2nd edn., pp. 73-96. CRC Press, Boca Raton (2004)

Output-Sensitive Algorithms for Enumerating
Minimal Transversals for Some (Geometric
Hypergraphs

Khaled Elbassioni!, Kazuhisa Makino?, and Imran Rauf!

! Max-Planck-Institut fiir Informatik, Saarbriicken, Germany
{elbassio,irauf }@mpi-inf .mpg.de
2 Graduate School of Information Science and Technology,
University of Tokyo, Tokyo, Japan
makino@mist.i.u-tokyo.ac.jp

Abstract. We give a general framework for the problem of finding all
minimal hitting sets of a family of objects in R? by another. We apply
this framework to the following problems: (i) hitting hyper-rectangles by
points in R%; (ii) stabbing connected objects by axis-parallel hyperplanes
in R?; and (iii) hitting half-planes by points. For both the covering and
hitting set versions, we obtain incremental polynomial-time algorithms,
provided that the dimension d is fixed.

1 Introduction

Let V and F be two finite sets of geometric objects in RZ. A subset of objects
X C V is said to be a hitting set (or transversal or cover) for F if for every
O € F, there exists an O’ € X such that O N O’ # 0. A hitting set is minimal if
none of its proper subsets is also a hitting set.

In this paper, we are interested in finding all minimal hitting sets of one
family of objects by another. For such generation problems, we measure the
time complexity in terms of both input and output length. An algorithm is said
to run in incremental polynomial-time, if the time required to find & minimal
transversals is polynomial in |V|, |F|, and k.

When V is a finite set of points and each object in F is an arbitrary finite
subset of V, we obtain the well-known hypergraph transversal or dualization prob-
lem [2], which calls for finding all minimal hitting sets for a given hypergraph
G C 2V, defined on a finite set of vertices V. Denote by Tr(G) the set of all mini-
mal hitting sets of G, also known as the transversal hypergraph of G. The problem
of finding Tr(G) has received considerable attention in the literature (see, e.g.,
BIT2IT3IT9/29/31]), since it is known to be polynomially or quasi-polynomially
equivalent with many problems in various areas, such as artificial intelligence
(e.g., [12124]), database theory (e.g., [30]), distributed systems (e.g., [23]), ma-
chine learning and data mining (e.g., [II7J20]), mathematical programming (e.g.,
[5l25]), matroid theory (e.g., [26]), and reliability theory (e.g., [9]).

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 143-[I54] 2009.
(© Springer-Verlag Berlin Heidelberg 2009

144 K. Elbassioni, K. Makino, and I. Rauf

The currently fastest known algorithm [I7] for solving the hypergraph trans-
versal problem runs in quasi-polynomial time [V |N°(°8N) where N is the com-
bined input and output size N = |G| + | Tr(G)|. Several quasi-polynomial time
algorithms with some other desirable properties also exist [SITGIT8I33]. While it
is still open whether the problem can be solved in polynomial time for arbi-
trary hypergraphs, polynomial time algorithms exist for several classes of hyper-
graphs, e.g. hypergraphs of bounded edge-size [4I12], of bounded-degree [TTIT3],
of bounded-edge intersections [4], of bounded conformality [4], of bounded
treewidth [I3], and read-once (exact) hypergraphs [15].

Almost all previously known polynomial-time algorithms for the the hyper-
graph transversal problem assume that at least one of the hypergraphs G or
Tr(G) either (i) has bounded size min{|G|,| Tr(G)|} < k, (ii) is k-conformall, or
(iii) is k—degenerate@, for a constant k. One can verify that all the special classes
mentioned above belong to one of these categories.

In this paper, we shall extend these polynomially solvable classes to include
hypergraphs arising in geometry. More precisely, we consider the following prob-
lems HIT(V, F):

— Hitting hyper-rectangles by points: Given a finite set of points V C
R? and a finite collection F of axis-parallel hyper-rectangles (also called
orthotopes or boxes) in R?, find all minimal sets of points from V' that hit
every hyper-rectangle in F;

— Hitting (Stabbing) connected objects by axis-parallel hyperplanes:
Given a finite set of axis-parallel hyperplanes ¥V C R? and a finite collection
F of connected objects in R, find all minimal sets of hyperplanes from V
that stab every object in F;

— Hitting half-spaces by points: Given a finite set of points V C R? and a
finite collection F of half-spaces in R?, find all minimal sets of points from
V that hit every half-space in F.

We show that the first two problems can be solved in incremental polynomial
time, if the dimension d of the underlying space is bounded, and that the last
problem can be solved in incremental polynomial time, if d = 2.

To construct efficient algorithms for the above problems, we first propose a
general framework to solve the hypergraph transversal problem, which can be
regarded as a generalization of the algorithms given in [13128], and apply it to the
above problems. We remark that when we apply the framework to the problem
of hitting half-planes by points, we need to run a backtracking algorithm at
the base level of the recursion in the framework. While such an algorithm is
inefficient in general, as it requires solving an NP-hard problem as a subroutine,
we exploit the geometry to show that it can be made to work in the case of
hitting half-planes by points.

! A hypergraph is said to be k-conformal [Z] if any set X C V is contained in a
hyperedge of G whenever each subset of X of cardinality at most k is contained in
a hyperedge of G.

2 A hypergraph G is said to be k-degenerate [I3] if for every set X C V, the minimum
degree of a vertex in the induced hypergraph Gx on X is at most k.

Output-Sensitive Algorithms for Enumerating Minimal Transversals 145

We also consider the covering versions COVER(V, F) (= HIT(F,V)) of the
above problems. For example, we consider the problem of finding all minimal
sets of hyper-rectangles from F that hit all points in V. We propose incremen-
tal polynomial-time algorithms for finding all minimal covers for the first two
problems, by exploiting the fact that the geometric hypergraphs arising in the
first two problems have the bounded Helly property [2], and show that minimal
covers for the last problem can be generated in incremental polynomial time, by
using geomet