
Frequent Itemset Mining in Multirelational

Databases

Aı́da Jiménez, Fernando Berzal, and Juan-Carlos Cubero

Dept. Computer Science and Artificial Intelligence,
ETSIIT - University of Granada, 18071, Granada, Spain

{aidajm,jc.cubero,fberzal}@decsai.ugr.es

Abstract. This paper proposes a new approach to mine multirelational
databases. Our approach is based on the representation of a multirela-
tional database as a set of trees. Tree mining techniques can then be
applied to identify frequent patterns in this kind of databases. We pro-
pose two alternative schemes for representing a multirelational database
as a set of trees. The frequent patterns that can be identified in such set
of trees can be used as the basis for other multirelational data mining
techniques, such as association rules, classification, or clustering.

1 Introduction

Data mining techniques have been developed to extract potentially useful infor-
mation from databases. Classification, clustering, and association rules have been
widely used. However, most existing techniques usually require all the interesting
data to be in the same table.

Several alternatives have been proposed in the literature to handle with more
than one table. There are algorithms that have been developed in order to explore
tuples that, albeit in the same table, are somehow related [1] [2]. Other algo-
rithms have been devised to extract information from multirelational databases,
i.e., taking into account not only a single table but also the tables that are re-
lated to it [3]. For instance, these algorithms have been used for classification [4]
and clustering [5] in multirelational databases.

In this paper, we propose two alternative representations for multirelational
databases. Our representation schemes are based on trees, so that we can apply
existing tree mining techniques to identify frequent patterns in multirelational
databases. We also compare the proposed representation schemes in order to
determine which one is better to use depending on the information we want to
obtain from the database.

Our paper is organized as follows. We introduce some standard terms in Sec-
tion 2. Section 3 presents two different schemes for representing multirelational
databases using trees. We explain the kind of patterns that can be identified
in the trees derived from a multirelational database in Section 4. We present
some experimental results in Section 5 and, finally, we end our paper with some
conclusions in Section 6.

J. Rauch et al. (Eds.): ISMIS 2009, LNAI 5722, pp. 15–24, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

16 A. Jiménez, F. Berzal, and J.-C. Cubero

2 Background

We will first review some basic concepts related to labeled trees before we address
our multirelational data mining problem.

A tree is a connected and acyclic graph. A tree is rooted if its edges are
directed and a special node, called root, can then be identified. The root is
the node from which it is possible to reach all the other nodes in the tree. In
contrast, a tree is said to be free if its edges have no direction, that is, when it
is an undirected graph. A free tree, therefore, has no predefined root.

Rooted trees can be classified as ordered trees, when there is a predefined
order within each set of sibling nodes, or unordered trees, when there is not
such a predefined order among sibling nodes. textbfPartially-ordered trees con-
tain both ordered and unordered sets of sibling nodes. They can be useful when
the order within some sets of siblings is important but it is not necessary to
establish an order relationship within all the sets of sibling nodes.

Figure 1 shows an example dataset with different kinds of rooted trees. In this
figure, ordered sibling nodes are joined by an arc, while unordered sets of sibling
nodes do not share an arc.

A

C B

C

B A

C

B A

B C

A

C B

C A

(a) (b) (c) (d)

B A A C

Fig. 1. Example dataset with different kinds of rooted trees (from left to right): (a)
completely-ordered tree, (b) (c) partially-ordered trees, (d) completely-unordered tree

3 Tree-Based Multirelational Database Representation

Multirelational data mining techniques look for patterns that involve multiple
relations (tables) from a relational database [3].

The schema of a multirelational database can be represented using an UML
diagram [6]. Figure 2 shows the UML diagram for a multirelational database as
well as its tables with some example tuples.

We will call target relation (or target table) to the main relation in the multire-
lational database. Let x be a relation, A be an attribute belonging to this relation,
and a the value of the attribute. We will use the notation x.A = a to represent the
node which contains the value a for the attribute A in the relation x.

We present two different schemes for representing multirelational databases as
sets of trees. The main idea behind both of them is building a tree from each tuple
in the target table and following the links between tables (i.e. the foreign keys) to
collect all the information related to each tuple in the target table. In both repre-
sentation schemes, the root of all trees will be the name of the target table.

Frequent Itemset Mining in Multirelational Databases 17

1 1

1

 0..*

House

-houseID

-type

-city

Person

-id

-name

-age

Car

-plate

-make

-color

id name age houseID
1 Peter young 5

… … …

houseID type city
5 duplex London

… … …

plate make color ownerID
1234BCD Toyota blue 1

5678JKL Chrysler white 1

… … …

Car

Person

House

Fig. 2. MultiRelational database example

3.1 Key-Based Tree Representation

The key-based tree representation scheme represents all the attribute values
within a tuple as children of its primary key.

As a consequence, the root node of the tree representing a tuple in the tar-
get relation will have, as its unique child, the value of the primary key of the
tuple that the tree represents. The children of this primary key node will be the
remaining attribute values in the tuple.

The tree is then built by exploring the relationships between the target relation
and the others relations in the database. Let x be the target table, person in the
example shown in Figure 2, and x.Kx = k the node that represent the primary
key, i.e. person.id. We can find two possible scenarios:

– When we have a one-to-one or many-to-one relationship between two rela-
tions, x and y, an attribute A of table x will be a foreign key pointing to the
primary key of the table y. The attributes B of table y will be the children
of x.A = a in the tree and they will be represented as x.A.B = b. In our
example, the relationship between Person and House is one-to-one and its
representation is depicted in the Figure 3 a) using nodes with vertical lines
in their background.

– When we have a one-to-many relationship, an attribute B of table y is a
foreign key that refers to the primary key of table x. Many tuples in y may
point to the same tuple in x. In this case, for each tuple in y that points to
the same tuple in x, we create a new child of the x primary key node with the
name of both tables, x and y, the attribute B that points to our target table,
and the primary key of y with its value ky using the notation x.y[B].Ky = ky.
This node will have, as children nodes, the resmaining attributes in y using
the notation x.y[B].C = c. In our example, the one-to-many relationship
between Person and Car is shown in the nodes shaded with horizontal lines
in Figure 3 a).

18 A. Jiménez, F. Berzal, and J.-C. Cubero

person

person.id =1

person.name =Peter

person.age =young

person.car[ownerID].plate=1234BCD person.car[ownerID].plate=5678JKL

person.car[ownerID].make=Toyota

person.car[ownerID].color=Blue

person.car[ownerID].make=Chrysler
person.car[ownerID].ownerID=1

person.car[ownerID].idOwner=1 person.car[ownerID].color=White

person.houseID.type=duplex

person.houseID =5

person.houseID.city=London

a) Key-based tree representation.

person.age =young

person.car[ownerID]

person.car[ownerID]

person

person.car[iownerID].make=Toyota

person.car[ownerID].color=Blue

person.car[ownerID].make=Chrysler

person.car[ownerID].owneIDr=5

person.car[ownerID].ownerID=5

person.car[ownerID].color=White

person.id=5
person.name=Peter

person.car[ownerID].plate=1234BCD

person.car[ownerID].plate=5678JKL

person.houseID

person.houseID.type=duplex person.houseID.city=Londonperson.houseID.id=5

b) Object-based tree representation.

Fig. 3. Tree-based representation alternatives for the multirelational database shown
in Figure 2

Frequent Itemset Mining in Multirelational Databases 19

3.2 Object-Based Tree Representation

The object-based representation uses intermediate nodes as roots of the subtrees
derived from the data in each table. In this representation, all the attribute values
within a tuple will be in the same tree level.

If we have a single table, all the attribute values within the tuple (including
the primary key) will be children of the root node in the tree representing the
tuple.

– The case of one-to-one and many-to-one relationships is now addressed by
adding the attributes of y as children of the node x.A using the notation
x.A.B = b. The nodes shaded with vertical lines illustrate this in Figure 3b).

– When another table y has a foreign key B that refers to the target table x, a
new node is built for each tuple in y that points to the same tuple in x. This
node is labeled with the name of both tables and the attribute B involved in
the relation, i.e. x.y[B]. Its children are all the attribute values of the tuple
in y, i.e. x.y[B].C = c. The nodes with horizontal lines in Figure 3b) show
an example of this kind of relationship.

It should be noted that the object-based tree representation generates trees with
more nodes than the key-based one. However, the tree depth is typically lower
in the object-based tree representation than in the key-based one.

3.3 Deriving Trees from a Multirelational Database

Once we have presented two alternative schemes for the tree-based represen-
tation of multirelational databases, we have to establish how we traverse the
relationships between the relations in our database to build the tree. In particu-
lar, we have to consider if it is interesting to go back through using a relationship
that we have already represented in the tree.

In Figure 3, when we have represented the information about Peter and his
cars, it is not necessary to go back through the person-car relationship because
we would again obtain the information we already have in the tree.

However, if the target table were car, we would first represent the information
of the Toyota car. Next, we would traverse the car-person relationship to obtain
the information about the owner of the car (Peter). Finally, we would go back
through the person-car relationship to represent all the cars that Peter owns.

Therefore, if we go through a one-to-many relationship from the relation with
single cardinality, it is not necessary to go back. However, if we start from the
table with multiple cardinality, we can go back through the same relationship to
obtain more information.

4 Identifying Frequent Patterns in Multirelational
Databases

The use of a tree-based representation for multirelational databases lets us apply
tree mining techniques to identify the frequent patterns that are present in the

20 A. Jiménez, F. Berzal, and J.-C. Cubero

multirelational database. Several algorithms have been devised to identify tree
patterns, including TreeMiner [7], SLEUTH [8], and POTMiner [9].

Different kinds of subtrees can be defined depending on the way we define
the matching function between the pattern and the tree it derives from [10] (see
Figure 4):

person

person.id =5 person.houseID

person.idhouse.type=duplex

person

person.age =young person.houseID.type=duplex person.houseID.city=London

Fig. 4. An induced subtree (left) and an embedded subtree (right) from the tree shown
in Figure 3 (b)

– A bottom-up subtree T ′ of T (with root v) can be obtained by taking one
vertex v from T with all its descendants and their corresponding edges.

– An induced subtree T ′ can be obtained from a tree T by repeatedly re-
moving leaf nodes from a bottom-up subtree of T .

– An embedded subtree T ′ can be obtained from a tree T by repeatedly
removing nodes, provided that ancestor relationships among the vertices of
T are not broken.

4.1 Induced and Embedded Patterns

Induced and embedded patterns give us different information about the multire-
lational database.

Induced patterns preserve the relationships among the nodes in the tree-based
representation of the multirelational database. Induced patterns describe the
database in great detail, in the sense that the patterns preserve the structure
of the original trees in the database. However, identifying large patterns is of-
ten necessary to obtain useful information from the multirelational database.
Unfortunately, this might involve a heavy computational effort.

If we use embedded patterns, some of the relationships among the nodes in the
original trees are not preserved. In other words, we could obtain the same pattern
from different tree-structures in the database. On the other hand, embedded
patterns are typically smaller than the induced patterns required to represent
the same information.

For example, Figure 5 shows some patterns identified from the object-based
tree representation of the multirelational database in Figure 2. The induced
pattern shown on the left tells us that some people in our database have a
Toyota and a white car, while the induced pattern on the right of the Figure
tells us that people in our database have a Toyota that is also white. In the case
of the embedded pattern shown in the same Figure illustrates that some people

Frequent Itemset Mining in Multirelational Databases 21

person.car[ownerID]person.car[ownerID]

person

person.car[ownerID].make=Toyota person.car[ownerID].color=White

person.car[ownerID]

person

person.car[ownerID].make=Toyota person.car[ownerID].color=White

Induced patterns

person

person.car[ownerID].make=Toyota person.car[ownerID].color=White

Embedded pattern

Fig. 5. Embedded and induced patterns identified in the object-based tree representa-
tion of the multirelational database in Figure 2

have a Toyota car and a white car, but we do not know if it is the same car (a
white Toyota) of they own two cars (a Toyota and a white car).

4.2 Key-Based and Object-Based Patterns

The key-based and the object-based tree representation schemes for multirela-
tional databases also provide us different kinds of patterns.

Since intermediate primary key nodes from the target relation are not frequent
in the tree database and induced patterns preserve all the nodes as in the original
tree, no induced patterns starting at, or including, a primary key node from
the target relation will be identified using the key-based representation scheme.
However, it is possible to identify induced patterns starting at other key nodes
because they may be frequent in the database.

When we use the object-based representation, induced patterns can be ob-
tained with information about the target table. Therefore, the object-based rep-
resentation is our only choice if we are interested in patterns that preserve the
original structure of the trees in the database, i.e. induced patterns.

On the contrary, using the object-based representation to discover embedded
patterns is useful only if we are interested in patterns like the one shown in
Figure 6. That pattern indicates that Londoners with two cars are frequent,
without any references to the car features. It should be noted that this kind
of pattern cannot be identified using the key-based representation, since they
always involve attribute values. In the object-based representation, however,
the presence of intermediate nodes increases the number of identified patterns.
Therefore, we should only resort to the object-based representation when we
are interested in patterns like the one in Figure 6. Otherwise, the key-based
representation provides faster results.

22 A. Jiménez, F. Berzal, and J.-C. Cubero

person.houseID.city =Londonperson.car[ownerID]person.car[ownerID]

person

Fig. 6. An embedded subtree from the object-based tree in Figure 3(b)

5 Experimental Results

Once we have described our two tree representation schemes for multirelational
databases, we discuss the experimental results we have obtained using both rep-
resentation schemes. We have used the POTMiner algorithm [9] to identify in-
duced and embedded subtrees from the trees representing the mutagenesis mul-
tirelational database, which can be downloaded from:
http://www.ews.uiuc.edu/∼xyin1/files/crossmine.html.

Representation Patterns Time(ms) Patterns Time(ms) Patterns Time(ms)
Key-based 29 3040 29 3096 63 4315
Object-Based 4308 314378 6891 531263 14363 797126

Representation Patterns Time(ms) Patterns Time(ms) Patterns Time(ms)
Key-based 4886 131185 8159 190484 16950 280758
Object-Based 19862 1783031 31143 1749505 63915 3034299

Embedded Subtrees
Support = 20% Support = 10% Support = 5%

Induced Subtrees
Support = 20% Support = 10% Support = 5%

Fig. 7. Number of patterns and POTMiner execution time corresponding to the identi-
fication of induced and embedded patterns in the mutagenesis multirelational database
using different minimum support thresholds

In our experiments, we have identified induced and embedded patterns in-
cluding up to four nodes, i.e. MaxSize=4.

Figure 7 shows the number of discovered patterns and POTMiner execution
time using different minimum support thresholds for the mutagenesis dataset,
for both the key-based and the object-based tree representation schemes.

The number of discovered patterns using the object-based tree representation
is larger than the number of identified patterns using the key-based represen-
tation. This is mainly due to the use of intermediate nodes, which are usually
frequent, to represent objects.

It should also be noted that the number of induced patterns obtained from
the key-based representation of the database is very small. This is due to the
use of primary keys as internal nodes within the trees.

Figure 8 shows a comparison of the time required to identify induced and
embedded patterns using both the key-based and the object-based representation
schemes.

Frequent Itemset Mining in Multirelational Databases 23

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

20% 10% 5%
Support

Ti
m

e(
s)

Key-based Object-Based

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

20% 10% 5%
Support

Ti
m

e(
s)

Key-based Object-Based

Fig. 8. POTMiner execution times when identifying induced patterns (left) and em-
bedded patterns (right) in the mutagenesis database

Our algorithm execution time is proportional to the number of considered
patterns. The execution time for discovering induced patterns is lower than the
time needed to discover embedded patterns because a lower number of induced
patterns are identified. Likewise, the object-based representation requires more
execution time because a greater number of patterns are considered.

Albeit not shown in the Figure, it should also be noted that our algorithm is
also linear with respect to the number of trees in the database.

6 Conclusions

This paper proposes a new approach to mine multirelational databases. Our ap-
proach is based on trees and we have designed two alternative tree representation
schemes for multirelational databases. The main idea behind both of them is to
build a tree representing each tuple in the target table by following the existing
foreign keys that connect tables in the multirelational database.

The key-based representation scheme uses primary keys as intermediate nodes
in the trees representing each tuple in the target relation. In contrast, the object-
based representation scheme uses generic references as intermediate nodes to
include new tuples in the trees.

We have identified frequent patterns in the trees representing the multirela-
tional databased and we have studied the differences that result from identifying
induced or embedded patterns in the key-based or in the object-based represen-
tation scheme. These frequent patterns can be used to extract association rules
from the multirelational database, build multirelational classification models, or
develop multirelational clustering techniques.

Our experiments with an actual database show that our approach is feasible
in practise. The discovery of induced patterns combined with the object-based
representation scheme is often enough to describe a multirelational database in
great detail. Embedded patterns, when used with the key-based representation
scheme, let us reach data that is farther from the target table, although they
might not preserve the structure of the original database trees.

24 A. Jiménez, F. Berzal, and J.-C. Cubero

Acknowledgements

Work partially supported by research project TIN2006-07262.

References

1. Tung, A.K.H., Lu, H., Han, J., Feng, L.: Efficient mining of intertransaction asso-
ciation rules. IEEE Transaction on Knowlegde and Data Engeneering 15(1), 43–56
(2003)

2. Lee, A.J.T., Wang, C.S.: An efficient algorithm for mining frequent inter-
transaction patterns. Inf. Sci. 177(17), 3453–3476 (2007)

3. Džeroski, S.: Multi-relational data mining: An introduction. SIGKDD Explorations
Newsletter 5(1), 1–16 (2003)

4. Yin, X., Han, J., Yang, J., Yu, P.S.: CrossMine: efficient classification across mul-
tiple database relations. In: International Conference on Data Engineering, pp.
399–410 (2004)

5. Yin, X., Han, J., Yu, P.S.: Cross-relational clustering with user’s guidance. In:
Knowledge Discovery and Data Mining, pp. 344–353 (2005)

6. Booch, G., Rumbaugh, J., Jacobson, I.: Unified Modeling Language User Guide,
2nd edn. The Addison-Wesley Object Technology Series. Addison-Wesley Profes-
sional, Reading (2005)

7. Zaki, M.J.: Efficiently mining frequent trees in a forest: Algorithms and applica-
tions. IEEE Transactions on Knowledge and Data Engineering 17(8), 1021–1035
(2005)

8. Zaki, M.J.: Efficiently mining frequent embedded unordered trees. Fundamenta
Informaticae 66(1-2), 33–52 (2005)

9. Jimenez, A., Berzal, F., Cubero, J.C.: Mining induced and embedded subtrees in
ordered, unordered, and partially-ordered trees. In: An, A., Matwin, S., Raś, Z.W.,
Śl ↪ezak, D. (eds.) Foundations of Intelligent Systems. LNCS (LNAI), vol. 4994, pp.
111–120. Springer, Heidelberg (2008)

10. Chi, Y., Muntz, R.R., Nijssen, S., Kok, J.N.: Frequent subtree mining - an overview.
Fundamenta Informaticae 66(1-2), 161–198 (2005)

	Frequent Itemset Mining in Multirelational Databases
	Introduction
	Background
	 Tree-Based Multirelational Database Representation
	Key-Based Tree Representation
	Object-Based Tree Representation
	Deriving Trees from a Multirelational Database

	Identifying Frequent Patterns in Multirelational Databases
	Induced and Embedded Patterns
	Key-Based and Object-Based Patterns

	Experimental Results
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

