
Access and Usage Control
in Grid Systems

Maurizio Colombo, Aliaksandr Lazouski,
Fabio Martinelli, and Paolo Mori

16

Contents

16.1 Background to the Grid 293

16.2 Standard Globus Security Support 294

16.3 Access Control for the Grid 295
16.3.1 Community Authorization Service 295
16.3.2 PERMIS . 296
16.3.3 Akenti . 297
16.3.4 Shibboleth . 297
16.3.5 Virtual Organization Membership

Service . 298
16.3.6 Cardea . 298
16.3.7 PRIMA . 299

16.4 Usage Control Model . 300
16.4.1 Subjects and Objects 300
16.4.2 Attributes . 301
16.4.3 Rights . 301
16.4.4 Authorizations . 301
16.4.5 Conditions . 301
16.4.6 Obligations . 302
16.4.7 Continuous Usage Control 302

16.5 Sandhu’s Approach
for Collaborative Computing Systems 302

16.6 GridTrust Approach for Computational
Services . 303
16.6.1 Policy Specification 303
16.6.2 Architecture . 304

16.7 Conclusion . 305

References . 306

The Authors . 307

This chapter describes some approaches that have
been proposed for access and usage control in grid
systems. The first part of the chapter addresses the

security challenges in grid systems and describes
the standard security infrastructure provided by
the Globus Toolkit, the most used middleware to
establish grids. Since the standard Globus autho-
rization system provides very basic mechanisms
that do not completely fulfill the requirements of
this environment, a short overview of well-known
access control frameworks that have been integrated
in Globus is also given: Community Authorization
Service (CAS), PERMIS, Akenti, Shibboleth, Vir-
tual Organization Membership Service (VOMS),
Cardea, and PRIMA. Then, the chapter describes
the usage control model UCON, a novel model for
authorization, along with an implementation of
UCON in grid systems. The last part of the chapter
describes the authorization model for grid compu-
tational services designed by the GridTrust project.
This authorization model is also based on UCON.

16.1 Background to the Grid

The grid is a distributed computing environment
where each participant allows others to exploit his
local resources [16.1, 2]. This environment is based
on the concept of a virtual organization (VO). A VO
is a set of individuals and/or institutions, e.g., com-
panies, universities, research centers, and industries,
sharing their resources. A grid user exploits this
environment by composing the available grid re-
sources in themost proper way to solve his problem.
These resources are heterogeneous, and could be
computational, storage, software repositories, and so
on. The Open Grid Forum community formulated
capabilities and requirements for grids by presenting

293
© Springer 2010

, Handbook of Information and Communication Security(Eds.)Peter Stavroulakis, Mark Stamp

294 16 Access and Usage Control in Grid Systems

the Open Grid Service Architecture (OGSA) [16.3].
OGSA implies a service-oriented architecturewhere
access to the underlying computational resource is
done through a service interface.

This chapter refers to theGlobusToolkit [16.4–6]
as the most usedmiddleware to set up grids and that
is compliant with the OGSA standard. However, al-
ternative grid environments are available, such as
Gridbus [16.7], Legion [16.8], WebOS [16.9], and
Unicore [16.10].

Security is a very important problem in the grid
because of the collaborative nature of this environ-
ment. In the grid, VO participants belong to distinct
administrative domains that adopt different secu-
rity mechanisms and apply distinct security policies.
Moreover, VO participants are possibly unknown,
and no trust relationships may exist a priori among
them. VOs are dynamic, because new participants
can join the VO, and some participants can leave it
during the life of the VO. Another security-relevant
feature of the grid environment is that accesses to
grid services could be long-lived, i.e., they could last
hours or even days. In this case, the access right that
has been granted to a user at a given time on the basis
of a set of conditions could authorize an access that
lasts even when these conditions do not hold any-
more. Hence, the grid environment features are dif-
ferent from those of a common distributed environ-
ment, and the security requirements of the grid en-
vironment require the adoption of a complex secu-
rity model. Grid security requirements are detailed
in [16.11–13], and they include authentication, dele-
gation, authorization, privacy, message confidential-
ity and integrity, trust, and policy and access control
enforcement.

16.2 Standard Globus Security
Support

The Globus Toolkit is a collection of software com-
ponents that can be used to set up grids. In particu-
lar, the grid security infrastructure is the set of these
components concerning security issues. From ver-
sion 3 on, Globus components exploit the Web ser-
vice technology (Web service components). Hence,
we refer to the security components as security ser-
vices. In particular these services are:

Authentication The standard authentication ser-
vice of Globus exploits a public key infrastructure,

where X.509 end entity certificates (EECs) are used
to identify entities in the grid, such as users and
services. These certificates provide a unique user
identifier, called the distinguished name, and a pub-
lic key to each entity. The user’s private key, in-
stead, is stored in the user’s machine. The X.509
EECs adopted by Globus are consistent with the rel-
evant standards. The X.509 EECs can be issued by
standard certification authorities implemented with
third-party software.

Authorization The standard authorization system
of Globus is based on a simple access control list,
the gridmap file, which pairs a local account with
the distinguished name of each user that is allowed
to access the resource. In this case, the security pol-
icy that is enforced is only the one defined by the
privileges paired with the local account by the op-
erating system running on the underlying resource.
The Globus Toolkit also provides some other sim-
ple authorization mechanisms, which can be con-
figured through the security descriptors of the Web
service deployment descriptor files. These alterna-
tive mechanisms are self, identity, host, userName,
and SAMLCallout. As an example, the host autho-
rization restricts the access only to users that submit
their requests from a given host. Moreover, Globus
allows the integration of third-party authorization
services, exploiting the SAMLCallout authorization
mechanism, which is based on the SAML Autho-
rization Decision protocol [16.14]. In this case, the
SAMLCallout authorization mechanism and the se-
curity descriptors are configured to refer to the ex-
ternal authorization service. The authorization ser-
vice can run on the samemachine of theGlobus con-
tainer, or even on a remote machine. This mecha-
nism has been exploited to integrate in Globus the
well-known authorization systems described in the
rest of this chapter.

Delegation Reduces the number of times the
user must enter his passphrase for the execution
of his request. If a grid computation involves sev-
eral grid resources (each requiring mutual authen-
tication) requesting services on behalf of a user,
the need to reenter the user’s passphrase can be
avoided by creating a proxy certificate.A proxy con-
sists of a new certificate and a private key. The new
certificate contains the owner’s identity, modified
slightly to indicate that it is a proxy, and is signed
by the owner, rather than a certification authority.
The certificate also includes a time after which the

16.3 Access Control for the Grid 295

proxy should no longer be accepted. The interface
to this service is based on WS-Trust [16.15] specifi-
cations.

16.3 Access Control for the Grid

The standard authorization systems provided by the
Globus Toolkit are very coarse grained and static,
and they do not address the real requirement of the
grid. As a matter of fact, the gridmap authorization
system grants or denies access to a grid service sim-
ply by taking into account the distinguished name
of the grid user that requested the access. Instead,
it would be useful to consider other factors to de-
fine an access right. Moreover, once the access to
the resource has been granted, no more controls are
executed. As an example, in the case of computa-
tional resources, once the right to execute an appli-
cation has been granted to the grid user, the applica-
tion is started and no further controls are executed
on the actions that the application performs on the
grid resource. Furthermore, especially in the case of
long-lived accesses, it could be useful to periodically
checkwhether the access right still holds. Even if the
access right heldwhen the accesswas requested, dur-
ing the access time some factors that influence the
access right could have been changed.Then, the on-
going access could be interrupted. Since the Globus
Toolkit allows the adoption of an external autho-
rization system, many solutions have been proposed
by the grid community to improve the authoriza-
tion system, and this section describes the main
ones.

16.3.1 Community Authorization
Service

The Community Authorization Service (CAS)
[16.16, 17] is a VO-wide authorization service that
has been developed by the Globus team. The main
aim of the CAS is to simplify the management of
user authorization in the grid, i.e., to relieve the grid
resource providers from the burdens of updating
their environments to enforce the VO authorization
policies. The CAS is a grid service that manages
a database of VO policies, i.e., the policies that
determine what each grid user is allowed to do as
a VOmember with the grid resources. In particular,
the VO policies stored by the CAS consist of:

• The VO’s access policies about the resources:
these policies determinewhich rights are granted
to which users.

• The CAS’s own access control policies, which
determine who can delegate rights or maintain
groups within the VO.

• The list of the VOmembers.
The local policies of the grid resource providers, in-
stead, are stored locally on the grid nodes. Hence,
the CAS can be considered as a trusted intermedi-
ary between the VO users and the grid resources. To
transmit the VO policies to the grid resources where
they should be enforced, theCAS issues to grid users
credentials embedding CAS policy assertions that
specify the users’ rights to the grid resources. CAS
assertions can be expressed in an arbitrary policy
language. The grid user contacts the CAS to obtain
a proper assertion to request a service on a given
resource, and the credentials returned by the CAS
server will be presented by the grid user to the ser-
vice he wants to exploit. This requires that resource
providers participating in a VOwith the CAS deploy
a CAS-enabled service, i.e., services that are able to
understand and enforce the policies in the CAS as-
sertions.

The CAS system works as follows:

1. The user authenticates himself to the CAS
server, using his own proxy credential. The
CAS server establishes the user’s identity and
the rights in this VO using its local database.

2. The CAS server issues a signed policy assertion
containing the user’s identity and rights in the
VO. On the user side, the CAS client generates
a new proxy certificate for the user that embeds
the CAS policy assertion, as a noncritical X.509
extension.This proxy is called a restricted proxy
because it grants only a restricted set of rights to
the user, i.e., the rights that are described in the
CAS assertion it embeds.

3. The user exploits the proxy certificate with the
embedded CAS assertion to authenticate on the
grid resource.TheCAS-enabled service authen-
ticates the user using the normal authentication
system.Then it parses the CAS policy assertion,
and takes several steps to enforce both VO and
local policies:

• Verifies the validity of the CAS credential
(signature, time period, etc.)

• Enforces the site’s policies regarding the VO,
using the VO identity instead of the user one

296 16 Access and Usage Control in Grid Systems

• Enforces the VO’s policies regarding the
user, as expressed in the signed policy
assertion in the CAS credential

• Optionally, enforces any additional policies
concerning the user (e.g., the user could be
in the blacklist of the site).

Hence, the set of rights that are granted to the user is
the intersection of the rights granted by the resource
provider to the VO and the rights granted by the VO
to the user, taking into account also specific restric-
tions applied by the resource provider to the user.

Once the access has been authorized, the grid
user is thenmapped on the local account pairedwith
the CAS. Hence, in the grid resource gridmap file
there is only one entry that pairs the CAS distin-
guished name with the local account used to exe-
cute the jobs on behalf of the grid users. This sim-
plifies the work of the local grid node administrator
because he has to add one local account only for each
CAS, instead of one local account for each grid user.

16.3.2 PERMIS

PERMIS is a policy-based authorization system
proposed by Chadwick et al. [16.18–20] which
implements the role-based access control (RBAC)
paradigm. RBAC is an alternative approach to
access control lists. Instead of assigning certain per-
missions to a specific user directly, roles are created
for various responsibilities and access permissions
are assigned to specific roles possessed by the user.
The assignment of permissions is fine-grained in
comparison with access control lists, and users get
the permissions to perform particular operations
through their assigned role. PERMIS is based on
a distributed architecture that includes the following
entities:

• Sources of authority, which are responsible for
composing the rules for decision making and
credential validation services (CVSs)

• Attribute authorities, which issue the attributes
which determine the role of users

• Users, who are the principals who perform oper-
ations on the resources

• Applications, which provide the users with the
interfaces to access the protected resource.

Obviously, users and resources can belong to dis-
tinct domains. A policy file written in XML contains

the full definition of roles in regard to protected re-
sources and permissions related to a specific role.
The PERMIS toolkit provides a friendly graphical
user interface for managing its policies. The policies
may be digitally signed by their authors and stored
in attribute certificates, to prevent them from being
tampered with. PERMIS is based on the privilege
management infrastructure that usesX.509 attribute
certificates to store the user’s roles. Every attribute
certificate is signed by the trusted attribute authority
that issued it, whereas the root of trust for the priv-
ilege management infrastructure target resource is
called the source of authority. All the attribute cer-
tificates can be stored in one or more Lightweight
Directory Access Protocol (LDAP) directories, thus
making them widely available.

PERMIS also provides the delegation issuing ser-
vice, which allows users to delegate (a subset of)
their privileges to other users in their domain by
giving them a role in this domain, according to the
site’s delegation policy. Since PERMIS is tightly in-
tegrated with the Globus Toolkit, input informa-
tion for access decision consists of the user’s dis-
tinguished name and resource and action request.
For authorization decision making, PERMIS pro-
vides a modular policy decision point (PDP) and
a CVS (or policy information point (PIP) according
to theGlobusmodel). PERMIS implements the hier-
archical RBAC model, which means that user roles
(attributes) with superior roles inherit the permis-
sions of the subordinate ones. The PERMIS policy
comprises two parts, a role assignment policy that
states who is trusted to assign certain attributes to
users, and a target access policy that defines which
attributes are required to accesswhich resources and
under what conditions. The CVS evaluates all cre-
dentials received against the role assignment policy,
rejects untrusted ones, and forwards all validated
attributes to the policy enforcement point (PEP).
The PEP in turn passes these to the PERMIS PDP,
along with the user’s access request, and any envi-
ronmental parameters. The PDP obtains an access
control decision based on the target access policy,
and sends its granted or denied response back to the
PEP. Hence, to gain access to a protected target re-
source, a user has to present his credentials and the
PERMIS decision engine (CVS and PDP) validates
them according to the policy to make an authoriza-
tion decision. The current version of the PERMIS
authorization service supports SAML authorization
callout and provides Java application programming

16.3 Access Control for the Grid 297

interfaces for accessing the PIP and the PDP. Techni-
cal specifications and implementation issues can be
found in [16.21].

16.3.3 Akenti

Theparamount idea of Akenti, proposed byThomp-
son et al. [16.22–24], is to provide a usable autho-
rization system for an environment consisting of
highly distributed resources shared among several
stakeholders. By exploiting fine-grained authoriza-
tion for job execution and management in the grid,
Akenti provides a restricted access to resources us-
ing an access control policy which does not require
a central administrative authority to be expressed
and to be enforced.

In this model, control is not centralized. There
are several stakeholders (parties with authority to
grant access to the resource), each of which brings
its own set of concerns in resourcemanagement.The
access control policy for a resource is represented as
a set of (possibly) distributed X.509 certificates digi-
tally signed by different stakeholders from unrelated
domains. These certificates are independently cre-
ated by authorized stakeholders and can be stored
remotely or on a known secure host (probably the
resource gateway machine). They are usually self-
signed and express what attributes a user must have
to get specific rights to a resource, who is trusted to
make such use-condition statements, and who can
certify the user’s attributes.TheAkenti policy iswrit-
ten in XML and there exist three possible types of
signed certificates: policy certificates, use-condition
certificates, and attribute certificates. Use-condition
certificates contain the constraints that control ac-
cess to a resource and specify who can confirm the
required user’s attributes and thus whomay sign at-
tribute certificates. Attribute certificates assign at-
tributes to users that are needed to satisfy the usage
constraints. Complete policies on the specification
and language used to express them can be found on
the Akenti Web site [16.22]. When an authorization
decision is required, the resource gatekeeper asks
a trusted Akenti server what access the user has to
the resource. Then the Akenti policy engine gathers
all the relevant certificates for the user and for the
resource from the local file system, LDAP servers,
andWeb servers, verifies and validates them, and re-
sponds with the user’s rights in respect to the re-
quested resource. Akenti assumes a secure SSL/TLS

connection between peers and the resource through
the resource gateway which provides authentication
using anX.509 identity certificate.The authorization
algorithm in the grid using Akenti is very similar to
PERMIS and has the following stages:

1. A resource provider authenticates a user and
validates his identity aswell as possibly some ad-
ditional attributes.

2. The resource provider receives and parses the
user’s request.

3. The resource provider forwards the user’s iden-
tity, attributes, and requests to a trusted Akenti
server to authorize the user (i.e., whether the re-
quest should be granted or denied).

4. Finally, the Akenti server returns a decision to
the resource provider that enforces it.

16.3.4 Shibboleth

Shibboleth [16.25, 26], is an Internet2/MACE pro-
ject implementing cross-domain single sign-on
and attribute-based authorization for systems that
require interinstitutional sharing of Web resources
with preservation of end-user privacy. The main
idea of Shibboleth is that instead of users having to
log-in and be authorized at any restricted site, users
authenticate only once at their local site, which
then forwards the user’s attributes to the restricted
sites without revealing information about the user’s
identity.

The main components of the Shibboleth ar-
chitecture are the Shibbolet handle service (SHS),
which authenticates users in conjunction with a lo-
cal authentication service and issues a handle token;
the attribute service, which receives the handle to-
ken that a user exploited to request the access to the
resource and returns the attributes of the user; the
target resource, which includes Shibboleth-specific
code to determine the user’s home organization
and, consequently, which Shibboleth attribute au-
thority should be contacted for this user. A typical
usage of Shibboleth is as follows:

1. The user authenticates to the SHS.
2. The SHS requests a local organizational authen-

tication service by forwarding user-authentica-
tion information to confirm his identity.

3. The SHS generates a random handle and maps
it to the user’s identity. This temporal handle is
registered at the Shibboleth attribute service.

298 16 Access and Usage Control in Grid Systems

4. Thehandle is returned to the user and the user is
notified that he was successfully authenticated.

5. Then the user sends a request for a target re-
source with the previous handle.

6. The resource provider analyzes the handle to
decide which Shibboleth attribute service may
provide the required user attributes to make an
authorization decision, and contacts it by for-
warding the handle that identifies the user.

7. After validation checks on the handle have been
done and the user’s identity is known, the at-
tribute service exploits the attribute release pol-
icy to determine whether the user’s attributes
can be sent to the resource provider.

8. The Shibboleth attribute authority casts the at-
tributes in the form of SAML attribute asser-
tions and returns these assertions to the target
resource.

9. After receiving the attributes, the target re-
source provider performs an authorization
decision exploiting the user’s request, the user’s
attributes, and the resource access control
policy.

Detailed specification of all Shibboleth’s functional
components, such as identity provider and service
provider and the security protocol used based on
SAML can be found in [16.25]. GridShib [16.27, 28]
is a currently going research project that investigates
and providesmechanisms for integrating Shibboleth
into the Globus Toolkit. The focus of the GridShib
project is to leverage the attribute management in-
frastructure of Shibboleth, by transporting Shibbo-
leth attributes as SAML attribute assertions to any
Globus Toolkit PDP.

16.3.5 Virtual Organization
Membership Service

The Virtual Organization Membership Service
(VOMS) [16.29, 30], is an authorization service
for the grid that has been developed by the EU
projects DataGrid and DataTAG. The VOMS has
a hierarchical structure with groups and subgroups;
a user in a VO is characterized by a set of attributes,
3-tuples of the form group, role, and capability. The
combined values of all these 3-tuples form a unique
attribute, the fully qualified attribute name, that
is paired with the grid user. The VOMS is imple-
mented as a push system, where the grid user first

retrieves from and then sends to the grid service
the credentials embedding the attributes he wants
to exploit for the authorization process. The VOMS
system consists of the following components:

• User server: This is a front end to a database
where the information about the VO users is
kept. It receives requests from the client and re-
turns information about the user.

• User client: This contacts the server presenting
the certificate of a user and obtains the list of
groups, roles, and capabilities of that user.

• Administration client: This is used by the VO
administrators to add users, create new groups,
change roles, and so on.

• Administration server: This accepts the requests
from the client and updates the database.

To retrieve the authorization information the VO
grants him, the grid user exploits the VOMS user
client that contacts the VOMS user server. The
VOMS server returns a data structure, called VOMS
pseudo-certificate or attribute certificate, embed-
ding the user’s roles, groups, and capabilities. The
pseudo-certificate is signed by the VOMS user
server and it has a limited time validity. If necessary,
more than one VOMS user server can be contacted
to retrieve a proper set of credentials for the grid
user. To access a grid service, the user creates a proxy
certificate containing the pseudo-certificates that he
has previously collected from the VOMS servers.

To perform the authorization process, the grid
node extracts the grid user’s information from the
user’s proxy certificate and combines it with the lo-
cal policy. Since when the VOMS is used the grid re-
source is accessed by exploiting the grid user’s name,
i.e., the distinguished name in the user’s certificate,
the user name should be added in the gridmap file of
each grid resource and paired with a local account.
To this aim, the grid resource provider periodically
queries VOMS databases to generate a list of VO
users and to update the gridmap file mapping them
to local accounts.

16.3.6 Cardea

Cardea is a distributed authorization system de-
veloped as part of the NASA Information Power
Grid [16.31]. One of the key features of Cardea is
that it evaluates authorization requests according to
a set of relevant characteristics of the grid resource

16.3 Access Control for the Grid 299

and of the grid user that requested the access, in-
stead of considering the user’s and resource’s identi-
ties. Hence, the access control policies are defined in
terms of relevant characteristics rather than in terms
of identities. In this way, Cardea allows users to ac-
cess grid resources if they do not have existing local
accounts. Moreover, Cardea is a dynamic system,
because the information required to perform the
authorization process is collected during the process
itself. Any characteristic of the grid user or of the
grid resource, as well of the ones of the current envi-
ronment, can be taken into account in the authoriza-
tion process. These characteristics are represented
through SAML assertions, which are exchanged
through the various components of the architecture.

From the architectural point of view, the Cardea
system consists of the following components:
a SAML PDP, one or more attribute authorities, one
or more PEPs, one or more references to an infor-
mation service, an XACML context handler, one
or more XACML policy administration points, and
an XACML PDP. The main component of the sys-
tem is the SAML PDP, which accepts authorization
queries, performs the decision process, and returns
the authorization decision. To exploit Cardea in
the existing grid toolkits, proper connectors, e.g.,
an authorization handler in the case of the Globus
Toolkit, generate the authorization query in the
format accepted by the SAML PDP.The SAML PDP,
depending on the request, determines the XACML
PDP that will evaluate the request. The values of
the attributes involved in the authorization request
are retrieved by querying the appropriate attribute
authorities. Finally, the PEP is the component that
actually enforces the authorization decision, and
could even reside in a remote grid node. Hence, the
final authorization decision is transmitted by the
SAML PDP to the appropriate PEP to be enforced.

The components of the Cardea system can be lo-
cated on the same machine, and in this case their
interactions are implemented through local com-
munication paradigms, or they can be distributed
across several machines, and in this case they act as
Web services.

16.3.7 PRIMA

PRIMA (privilege management and authoriza-
tion) [16.32] is focusedonmanagement andenforce-
ment of fine-grained privileges. PRIMA enables the

users of the system to manage access to their priv-
ileges directly without the need for administrative
intervention. The model uses on-demand account
leasing and implements expressive enforcement
mechanisms built on existing low-overheard secu-
rity primitives of the operating systems. PRIMA ad-
dresses the security requirements through a unique
combination of three innovative approaches [16.32]:

• Privileges: unforgeable, self-contained, fine-
grained, time-limited representations of access
rights externalized from the underlying oper-
ating system. Privilege management is pushed
down to the individuals in PRIMA.

• Dynamic policies: a request-specific access con-
trol policy formed from the combination of user-
provided privileges with a resource’s access con-
trol policy.

• Dynamic execution environments: a specifically
provisioned native execution environment lim-
iting the use of a resource to the rights conveyed
by user-supplied privileges.

The PRIMA authorization system can be divided
into two parts [16.32]. The first part is the privilege
management layer, which facilitates the delegation
and selective use of privileges. The second part is
the authorization and enforcement layer.The autho-
rization and enforcement layers have two primary
components.The first component is the PRIMA au-
thorizationmodule.The authorizationmodule plays
the role of the PEP. The second component is the
PRIMA PDP, which, on the basis of policies made
available to it, will respond to authorization requests
from the PRIMA authorization module. These poli-
cies are created using the platform-independent
language XACML. Two other components in the
authorization and enforcement layer are the gate-
keeper and the privilege revocator. The gatekeeper
is a standard Globus Toolkit component for the
management of access to Globus resources. It was
augmented with a modular interface to commu-
nicate with the authorization components. The
JobManager, also a standard component of the
Globus Toolkit, has not been modified from the
original Globus distribution. It is instantiated by the
Globus gatekeeper after successful authorization. It
starts and monitors the execution of a remote user’s
job. The privilege revocator monitors the lifetime
of privileges that were used to configure execution
environments. On privilege expiration, the privilege
revocator removes access rights and deallocates the

300 16 Access and Usage Control in Grid Systems

execution environment automatically. No manual
intervention from system administrators is required.

A typical access request in the PRIMA autho-
rization system is as follows [16.32]. In step 1, the
delegation of privileges and the provision of poli-
cies happens prior to a request is issued. In step 2,
subjects select the subset of privilege attributes
they hold for a specific (set of) grid request(s) and
group these privileges with their short-lived proxy
credential using a proxy creation tool. The result-
ing proxy credential is then used with standard
Globus job submission tools to issue grid service
requests (step 3). Upon receiving a subject’s service
request, the gatekeeper calls the PRIMA authoriza-
tion module (step 4). The PRIMA authorization
module extracts and verifies the privilege attributes
presented to the gatekeeper by the subject. It then
assembles all valid privileges into a dynamic policy.
Dynamic policy denotes the combination of the
user’s privileges with the resource’s security policy
prior to the assessment of the user’s request. To
validate that the privileges were issued by an author-
itative source, the authorization module queries the
privilege management policy via the PRIMA PDP.
Themultiple interactions between the authorization
module and the PDP are depicted in a simplified
form as a single message exchange (step 5 and 6).
Once the privilege’s issuer authority has been
established, the PRIMA authorization module for-
mulates an XACML authorization request based on
the user’s service request and submits the request
to the PDP. The PDP generates an authorization
decision based on the static access control policy of
this resource. The response will state a high-level
permit or deny. In the case of a permit response, the
authorization module interacts with native security
mechanisms to allocate an execution environment
(e.g., a UNIX user account with minimal access
rights) and provides this environment with access
rights based on the dynamic policy rules (step 7).
Once the execution environment has been con-
figured, the PRIMA authorization module returns
the permit response together with a reference to
the allocated execution environment (the user
identifier) to the gatekeeper and exits (step 8). The
following steps are unchanged from the standard
Globusmechanisms.TheGlobus gatekeeper spawns
a JobManager process in the provided execution
environment (step 9). The JobManager instantiates
and manages the requested service (step 10). In the
case of a deny response, the authorization module

returns an error code to the gatekeeper together
with an informative string indicating the reason for
the denied authorization. The gatekeeper in turn
will record this error in its log, return an error code
to the grid user (subject), and end the interaction.
The privilege revocator watches over the validity
period of dynamically allocated user accounts and
all fine-grained access rights, revoking them when
the associated privileges expire (step 11).

In summary, PRIMAmechanisms enable the use
of fine-grained access rights, reduce administrative
costs to resource providers, enable ad hoc and dy-
namic collaboration scenarios, and provide an im-
proved security service to long-lived grid commu-
nities.

16.4 Usage Control Model

TheUCONmodel is a new access control paradigm,
proposed by Sandhu and Park [16.33, 34], that en-
compasses and extends several existingmodels (e.g.,
mandatory access control (MAC), discretionary ac-
cess control (DAC), Bell–LaPadula, RBAC) [16.35,
36]. Its main novelty, in addition to the unifying
view, is based on continuity of usage monitoring
and mutability of attributes of subjects and objects.
Whereas standard access control models are based
on authorizations only, UCON extends them with
another two factors that are evaluated to decide
whether to grant the requested right: obligations and
conditions. Moreover, this model introduces muta-
ble attributes paired with subjects and objects and,
consequently, introduces the continuity of policy en-
forcement. In the following we give a short descrip-
tion of the UCON core components: subjects, ob-
jects, attributes, authorizations, obligations, condi-
tions, and rights.

16.4.1 Subjects and Objects

Thesubject is the entity that exercises rights, i.e., that
executes access operations, on objects. An object, in-
stead, is an entity that is accessed by subjects through
access operations. As an example, a subject could be
a user of an operating system, an object could be
a file of this operating system, and the subject could
access this file by performing a write or read oper-
ation. Both subjects and objects are paired with at-
tributes.

16.4 Usage Control Model 301

16.4.2 Attributes

Attributes are paired with both subjects and objects
and define the subject and the object instances.
Attributes can be mutable and immutable. Im-
mutable attributes typically describe features of
subjects or objects that are rarely updated, and their
update requires an administrative action. Mutable
attributes, instead, are updated as consequence of
the actions performed by the subject on the objects.
The attributes are very important components of
this model, because their values are exploited in
the authorization process. An important subject
attribute is identity. Identity is an immutable at-
tribute, because it does not change as a consequence
of the accesses that this subject performs. A mu-
table attribute paired with a subject could be the
reputation of the subject, because it could change
as a consequence of the accesses performed by the
subject to objects. Attributes are also paired with
objects. Examples of immutable attributes of an
object depend on the resource itself. For a computa-
tional resource, possible attributes are the identifier
of the resource and its physical features, such as the
available memory space, the CPU speed, and the
available disk space.

In the UCON model, mutable attributes can be
updated before (preUpdate), during (onUpdate), or
after (postUpdate) the action is performed. The on-
Going update of attributes is meaningful only for
long-lived actions, when onGoing authorizations or
obligations are adopted. When defining the secu-
rity policy for a resource, one has to chose the most
proper attribute updating mode. As an example as-
sume that the reading of a file requires a payment.
When the application tries to open the file, the secu-
rity policy could state that at first the subject balance
attribute is checked, then the action is executed, and
then the subject balance attribute is updated.

16.4.3 Rights

Rights are privileges that subjects can exercise on ob-
jects. Traditional access control systems view rights
as static entities, for instance, represented by the ac-
cess matrix. Instead, UCON determines the exis-
tence of a right dynamically, when the subject tries
to access the object. Hence, if the same subject ac-
cesses the same object two times, the UCONmodel
could grant him different access rights. In UCON,

rights are the result of the usage decision process
that takes into account all the other UCON compo-
nents.

16.4.4 Authorizations

Authorizations are functional predicates that evalu-
ate subject and object attributes and the requested
right according to a set of authorization rules, to
take the usage decision. The authorization process
exploits both the attributes of the subject and the at-
tributes of the object. As an example, an attribute of
a file could be the price to open it, and an attribute
of a user could be the prepaid credit. In this case,
the authorization process checks whether the credit
of the user is enough to perform the open action on
the file. The evaluation of the authorization predi-
cate can be performed before executing the action
(preAuthorization), or while the application is per-
forming the action (onAuthorization). With refer-
ence to the previous example, the preAuthorization
is applied to check the credit of the subject before
the file opening. onAuthorization can be exploited
in the case of long-lived actions. As an example, the
right to execute the application could be paired with
the onAuthorization predicate that is satisfied only
if the reputation attribute of the subject is above
a given threshold. In this case, if during the execu-
tion of the application the value of the reputation at-
tribute goes below the threshold, the subjects’s right
to continue the execution of the application is re-
voked.

16.4.5 Conditions

Conditions are environmental or system-oriented
decision factors, i.e., dynamic factors that do not de-
pend upon subjects or objects. Conditions are eval-
uated at runtime, when the subject attempts to per-
form the access.The evaluation of a condition can be
executed before (preCondition) or during (onCondi-
tion) the action. For instance, if the access to an ob-
ject can be executed during daytime only, a preCon-
dition that is satisfied only if the current time is be-
tween 8:00 am and 8:00 pm can be defined. Ongoing
conditions can be used in the case of long-lived ac-
tions. As an example, if the previous access is a long-
lived one, an onCondition that is satisfied only if the
current time is between 8:00 am and 8:00 pm could

302 16 Access and Usage Control in Grid Systems

be paired with this access too. In this case, if the ac-
cess started at 9:00 am and is still active at 8:00 pm,
the onCondition revokes the subject’s access right.

16.4.6 Obligations

Obligations areUCONdecision factors that are used
to verify whether some mandatory requirements
have been satisfied before performing an action (pre-
Obligation), or whether these requirements are sat-
isfied while the access is in progress (onObligation).
preObligation can be viewed as a kind of history
function to check whether certain activities have
been fulfilled or not before granting a right. As an
example, a policy could require that a user has to
register or to accept a license agreement before ac-
cessing a service.

16.4.7 Continuous Usage Control

The mutability of subject and object attributes in-
troduces the necessity to execute the usage decision
process continuously in time.This is particularly im-
portant in the case of long-lived accesses, i.e., ac-
cesses that last hours or even days. As a matter of
fact, during the access, the conditions and the at-
tribute values that granted the access right to the
subject before the access could have been changed in
a way such that the access right does not hold any-
more. In this case, the access is revoked.

16.5 Sandhu’s Approach
for Collaborative Computing
Systems

The authors of UCON recognized the usefulness
of their model also for collaborative computing
systems, and hence also for grid systems, and re-
ported initial work in this area [16.37, 38]. The
UCON-based authorization framework was de-
signed to protect a shared trusted store for source
code management. The model authorizes a group
of software developers to share and collaboratively
develop application code at different locations.

The architecture of the authorization system
proposed in [16.37, 38] for collaborative comput-
ing systems consists of user platforms, resource

providers, and an attribute repository. The at-
tribute repository is a centralized service that stores
mutable subject and system attributes in a VO.
Consistency among multiple copies of the same
attribute is a problem to be tackled when adopting
a distributed version of the repository for subject-
mutable attributes. Object attributes are stored in
a usage monitor on each resource provider’s side.
A usage session is initialized by a user (subject).The
user submits an access request from its platform to
a resource provider (step 1).Then, persistent subject
attributes are pushed by the requesting subject to the
PDP (step 2). After receiving the request, the PDP
contacts the attribute repository and retrieves the
mutable attributes of the requesting subject (steps 3
and 4) and the object attributes from the usage
monitor (step 5). An interesting evaluation of the
potential models (either push or pull) for the cre-
dential retrieval by the PDP is examined. The result
is that for collaborative systems a hybrid modemust
be considered, push for immutable and pull for mu-
table.This reflects the fact that the usermay have in-
terest in showing a good value for mutable attributes
and the PDP should ensure it always has updated
information. This update scenario is time-sensitive
and can not be accepted for fine-grained real-time
usage control. The attribute repository is trusted by
all entities in a collaborative computing system.

The access control decision according to VO
policies is issued by the PDP after all related in-
formation (subject, object, and system attributes)
has been collected and all relevant policies have
been evaluated. The decision is forwarded to the
PEP and enforced in the execution environment of
the resource provider (step 6). As the side effect of
making a usage decision, attribute updates are per-
formed by the PDP according to the corresponding
security policy. New subject attribute values are sent
back to the attribute repository (step 7), and the up-
dated object attributes are sent to the usage monitor
(step 8). The PDP always checks the attribute repos-
itory and the usage monitor for the latest attribute
values when a new access request is generated. Any
update of subject or object attributes and any change
of system conditions triggers the reevaluation of
the policy by the PDP according to the ongoing
usage session and may result in revocation of the
ongoing usage or updating of attributes if necessary.
The approach supports decision continuity and
attribute mutability of UCON within concurrent
usage sessions.

16.6 GridTrust Approach for Computational Services 303

AUCON protection system was implemented as
a server-side reference monitor (both the PDP and
the PEP were placed on the resource provider side).
A referencemonitor enforced the usage control pol-
icywritten inXACMLpolicy language.TheXACML
security policy is not expressive enough to define
the original UCON model completely. It was noted
in [16.37, 38] that XACML is only capable of speci-
fying attribute requirements before usage and possi-
ble updates after the usage, but not during the usage.
Also, the concept of obligation in XACML does not
mean the same as that in the original UCONmodel.

16.6 GridTrust Approach
for Computational Services

GridTrust is an EU-funded project aimed at devel-
oping the technology to manage trust and security
in the next-generation grid. GridTrust identified the
UCONmodel as a perfect candidate to enhance the
security of grid systems owing to their peculiarities,
and adapted the original UCON model to develop
a full model for usage control of grid computational
services. As a matter of fact, grid computational ser-
vices execute unknown applications on behalf of po-
tentially unknown grid users on the local computa-
tional resources. In this case, the subject that per-
forms the accesses to the object is the application
that is executed on the computational resource on
behalf of the grid user. An initial attempt of provid-
ing continuous usage control for grid computational
services was developed in [16.39], where the neces-
sity of performing continuous and fine-grained au-
thorization with behavioral policies was identified.
Some results also appear in [16.40] that represent an
attempt to exploit credential management to enforce
behavioral policies.This approach is based on a pol-
icy specification language derived froma process de-
scription language, which is suitable to express poli-
cies that implement the original UCON model. Ar-
chitecture for enforcing the usage control policies is
also defined.

16.6.1 Policy Specification

The GridTrust [16.41] approach is based on a pol-
icy language that allows one to express usage con-
trol policies by describing the order in which the
security-relevant actions can be performed, which

authorizations, conditions, and obligations must be
satisfied to allow a given action, which authoriza-
tions, conditions, and obligations must hold during
the execution of actions, and which updates must be
performed. The security language adopted is oper-
ational and it is based on process algebra (POLPA,
policy language based on process algebra), which is
suitable for representing a sequence of actions, po-
tentially involving different entities. Hence, a policy
results from the composition of security-relevant ac-
tions, predicates, and variable assignments through
some composition operators; for further details on
POLPA, see [16.42, 43].

The encoding of the UCONmodel follows an ap-
proach similar to the one described in [16.44], and
it models the steps of the usage control process with
the following set of actions:

• tryaccess(s,o,r): performed by subject s whenper-
forming a new access request (s, o, r)

• permitaccess(s,o,r): performed by the system
when granting the access request (s, o, r)

• denyaccess(s,o,r): performed by the system when
rejecting the access request (s, o, r)

• revokeaccess(s,o,r): performed by the system
when revoking an ongoing access (s, o, r)

• endaccess(s,o,r): performed by a subject s when
ending an access (s, o, r)

• update(a,v): performed by the system to update
a subject or an object attribute a with the new
value v.

These actions refer to an access request (s, o, r),
where s is a subject that wants to access an object o
through an operation op that requires the right r.
In particular, the operation op is a system call that
the application executed on behalf of a remote grid
user performs on the local resources provided by the
grid computational service. By combining these ac-
tions, one can encode all the possible UCON mod-
els, also taking into account the mutability of at-
tributes (immutable, preUpdate, onUpdate, postUp-
date). An example of security policy that regulates
the usage of server sockets in grid computational
services is shown in Table 16.1.

The first four lines of the policy allow the appli-
cation to execute a socket system call, i.e., the oper-
ation to open a new communication socket. tryac-
cess(app_id,socket,socket(x1 , x2 , x3 ,sd)) is the action
that is issued when a socket system call has been in-
voked by the application, where app_id is the identi-
fier of the application, socket is the object that is ac-

304 16 Access and Usage Control in Grid Systems

Table 16.1 Example of security policy for computational
services

tryaccess(app_id, socket, socket(x1, x2, x3 , sd)). Line 1
[(x1 =AF_INET),(x2 = STREAM), (x3 = TCP)]. Line 2
permitaccess(app_id, socket,
socket(x1, x2, x3 , sd)). Line 3
endaccess(app_id, socket, socket(x1, x2, x3 , sd)). Line 4
tryaccess(app_id, socket, listen(x5, x6, x7 , x8)). Line 5
[(x5 = sd)]. Line 6
permitaccess(app_id, socket,
listen(x5, x6, x7 , x8)). Line 7
endaccess(app_id, socket, listen(x5, x6, x7 , x8)). Line 8
tryaccess(app_id, socket,
accept(x9, x10, x11, x12)). Line 9
[(x9 = sd), (app_id.reputation � T)]. Line 10
permitaccess(app_id, socket,
accept(x9, x10, x11, x12)). Line 11
(([(app_id.reputation < T)]. Line 12
revokeaccess(app_id, socket,
accept(x9, x10, x11, x12))) Line 13
or Line 14
endaccess(app_id, socket,
accept(x9, x10, x11, x12)) Line 15
); Line 16
. . . Line 17

cessed, and socket(x1 , x2 , x3,sd) represents the socket
system call with its parameters and results.The pred-
icates in the second line represent a preAuthoriza-
tion, because they are evaluated before granting the
right to create the socket (line 3). These predicates
involve the parameters of the socket system call and
specify that only TCP sockets can be opened. Hence,
if these predicates are satisfied, the permitaccess() ac-
tion is issued in line 3 and the socket system call is
executed. The fourth line of the policy concerns the
endaccess() action, which is issued by the PEP when
the socket system call is terminated, before continu-
ing the execution of the application.

The ninth line concerns the execution of an ac-
cept system call, which is issued in case of server
sockets and which waits for an incoming connec-
tion. Line 10 specifies preAuthorization predicates,
which check that the socket descriptor sd is the one
that has been returned by the previous socket system
call, and that the reputation attribute of the subject
that executes the application is equal to or greater
than a given threshold T. This check is executed be-
fore permitting the execution of the system call, i.e.,
before the permitaccess() action in line 11. The ac-
cept system call ends when a remote client requests
a connectionwith the local socket (line 15). Sincewe

cannot predict when a remote host will connectwith
the local socket, we consider this system call a long-
lived action.Hence, the policy includes an onAutho-
rization predicate paired with this system call (line
12).This predicate is evaluated during the execution
of the accept system call, and the execution is inter-
rupted if the value of the reputation attribute of the
subject is lower than T. The interruption of the ex-
ecution of the accept system call is implemented by
the revokeaccess() action (line 13).The reputation of
a subject is a mutable attribute, because it could be
updated as a consequence of the accesses to the grid
resources performedby the subject. Hence, the value
of the reputation could change during the execution
of the accept system call.

16.6.2 Architecture

The architecture to enforce the security policies pre-
viously defined exploits the reference monitormodel,
where the main components are the PEP and the
PDP, as shown in Fig. 16.1 [16.43].

The PEP is integrated into the Globus architec-
ture, and implements the tryaccess(s,o,r) and endac-
cess(s,o,r) operations. In particular, to protect grid
computational services, the PEP is integrated with
theGlobus resource andallocationmanagement ser-
vice, which is the component of the Globus archi-
tecture that provides the environment to execute the
applications on behalf of other grid users. Hence,
the PEP monitors the accesses to local resources
performed by these applications. The tryaccess(s,o,r)
command is transmittedby thePEP to thePDPwhen
the application tries to perform an access, whereas
the endaccess(s,o,r) operation is sent when an access
that has been previously granted is terminated.

The PDP is the component that performs the us-
age decision process. A new PDP instance is created
for a specific job request and is in charge of mon-
itoring the whole execution. At initialization time,
the PDP gets the security policy from a repository,
and it builds its internal data structures for the pol-
icy representation. The policy could be defined by
the owner of the resource (local policy) by the VO
(global policy) or by both. Here we suppose that the
PDP reads the policy resulting from the merging of
local and global policies, i.e., that the merging of the
two policies and the resolution of possible conflicts
has been executed in a previous step. After the ini-
tialization step, the PDPwaits for messages from the

16.7 Conclusion 305

Condition
manager

Attribute
manager

PDP

Obligation
manager

Policy
repository

Globus
container

PEP

GRAM

Grid node

Job request

Job request

get (c)

get (a)/update (a,v) Value

Value

tryaccess (s, o, r)

permitaccess (s, o, r)/denyaccess (s, o, r)

endaccess (s, o, r)
revokeaccess (s, o, r)

get (o)

Value

Fig. 16.1 Architecture of the policy enforcement system. GRAM Globus resource and allocation management, PEP
policy enforcement point, PDP policy decision point

PEP, which invokes the PDP every time that the sub-
ject attempts to access a resource and every time that
an access that was in progress terminates. However,
the PDP instance is always active, because while an
access is in progress it could invoke the PEP to stop
it, depending on the security policy.This is the main
novelty required by the UCON model with respect
to prior access control work, where the PDP is usu-
ally only passive. As soon as a grid user performs an
operation r that attempts to access a resource o that
ismonitored by the PEP, the PEP suspends the access
and issues the tryaccess(s,o,r) action to the PDP.The
PDP, according to the security policy, retrieves the
subject and object attributes required for the usage
decision process from the attribute manager. These
attributes are exploited to evaluate the authorization
predicates. If the policy includes the evaluation of
some conditions, the PDP retrieves the value of these
conditions from the conditionmanager. If all the de-
cision factors are satisfied, the usage decision pro-
cess grants the right r to the user. The preupdates of
the attributes are executed by the attribute manager
invoked by the PDP. Then, the PDP returns the per-
mitaccess(s,o,r) command to the PEP, which, in turn,
resumes the execution of the access (s, o, r) it sus-
pended before.

Now the access is in progress and we have two
possible behaviors.The first possibility is that the ac-
cess operation r is entirely executed and it finishes
normally. In this case, the PEP intercepts the end ac-
cess event and forwards it to the PDP through the
endaccess(s,o,r) action. The other possibility is that

the policy includes an ongoing authorization pred-
icate for the access that is now in progress. In this
case, if the values of the attributes that are evaluated
in the authorization predicate change when the ac-
cess is in progress, i.e., before the endaccess(s,o,r) is
received from the PEP, and the new result of the us-
age decision process does not allow the access any-
more, then the PDP issues a revokeaccess(s,o,r) com-
mand to the PEP. The PEP, in turn, interrupts the
access (s, o, r) to the resource.This requires that the
Globus resource and allocationmanagement service
has been modified to provide a proper interface to
accept the interruption command from the PEP and
to implement it. After the termination or the revoca-
tion of the access, the PDP performs the postupdates
of the attributes through the attribute manager. In
the grid environment, where the attributes may be
represented through credentials issued by many au-
thorities, the update procedure could be very com-
plex (see, e.g,. some discussions in [16.45]).

16.7 Conclusion

In this chapter, we gave a short overview of well-
known access control frameworks that have been
integrated in grid systems and particularly Globus:
CAS, PERMIS, Akenti, Shibboleth, VOMS, Cardea,
and PRIMA. Most of the existing models provide
attribute-based access control and make an access
decision once. After the access to the resource has
been granted, no more controls are executed.

306 16 Access and Usage Control in Grid Systems

UCON is a new access control paradigm, pro-
posed by Sandhu and Park [16.33, 34], and over-
comes some limitations of existing authorization
models. It introduces continuous usage control and
attributes mutability. We described two models for
authorization in the grid based on UCON. Actu-
ally, the models can be improved by presenting, for
example, a unified policy model and more sophis-
ticated mechanisms for continuous policy enforce-
ment.

Acknowledgements Thisworkwas partially supported by
the EU project FP- GridTrust (Trust and Security
for Next Generation Grids), contract no. .

References

16.1. I. Foster, C. Kesselman, J. Nick, S. Tuecke: The
physiology of the grid: An open grid service archi-
tecture for distributed system integration. Globus
Project (2002), http://www.globus.org/research/
papers/ogsa.pdf

16.2. I. Foster, C. Kesselman, S. Tuecke: The anatomy
of the grid: Enabling scalable virtual organizations,
Int. J. Supercomput. Appl. 15(3), 200–222 (2001)

16.3. Open grid forum: http://www.ogf.org/
16.4. The Globus Alliance: Welcome to globus, http://

www.globus.org
16.5. I. Foster: Globus toolkit version 4: Software for

service-oriented systems. In: Proc. IFIP Int. Con-
ference on Network and Parallel Computing, LNCS,
Vol. 3779, ed. by H. Jin, D.A. Reed, W. Jiang
(Springer, 2005) pp. 2–13

16.6. I. Foster, C. Kesselman:The globus project: A status
report, Proc. IPPS/SPDP ’98 Heterogeneous Com-
puting Workshop (1998) pp. 4–18

16.7. M. Baker, R. Buyya, D. Laforenza: Grids and grid
technologies for wide-area distributed computing,
Int. J. Softw. Pract. Exp. 32(15), 1437–1466 (2002)

16.8. S.J. Chapin, D. Katramatos, J. Karpovich,
A. Grimshaw: Resource management in Legion,
Future Gener. Comput. Syst. 15(5/6), 583–594
(1999)

16.9. A. Vahdat, T. Anderson, M. Dahlin, E. Belani,
D. Culler, P. Eastham, C. Yoshikawa: WebOS: Op-
erating system services for wide area applications,
Proc. 7th Symp. on High Performance Distributed
Computing (1998)

16.10. D. Erwin, D. Snelling: UNICORE: A Grid comput-
ing environment. In: EuroPar’2001, Lecture Notes
in Computer Science, Vol. 2150, ed. by R. Sakellar-
iou, J. Keane, J. Gurd, L. Freeman (Springer, 2001)
pp. 825–838

16.11. I. Foster, C. Kesselman, G. Tsudik, S. Tuecke: A se-
curity architecture for computational grids, Proc.
5th ACM Conference on Computer and Commu-
nications Security Conference (1998) pp. 83–92

16.12. M. Humphrey, M.Thompson, K. Jackson: Security
for grids, Proc. IEEE 93(3), 644–652 (2005)

16.13. N. Nagaratnam, P. Janson, J. Dayka, A. Nadalin,
F. Siebenlist, V. Welch, I. Foster, S. Tuecke: Security
architecture for open grid services, Global Grid Fo-
rum Recommendation (2003)

16.14. V. Welch, F. Siebenlist, D. Chadwick, S. Meder,
L. Pearlman: Use of SAML for OGSA authoriza-
tion (2004), https://forge.gridforum.org/projects/
ogsa-authz

16.15. IBM: Web service trust language (WS-Trust),
http://specs.xmlsoap.org/ws///trust/
WS-Trust.pdf

16.16. I. Foster, C. Kesselman, L. Pearlman, S. Tuecke,
V. Welch: A community authorization service
for group collaboration, Proceedings of the 3rd
IEEE International Workshop on Policies for
Distributed Systems and Networks (POLICY’02)
(2002) pp. 50–59

16.17. L. Pearlman, C. Kesselman, V. Welch, I. Foster,
S. Tuecke: The community authorization service:
Status and future. Proceedings of Computing in
High Energy and Nuclear Physics (CHEP03):
ECONF C0303241, TUBT003 (2003)

16.18. D. Chadwick, A. Otenko: The PERMIS x.509 role
based privilege management infrastructure, SAC-
MAT ’02: Proc. 7th ACM symposium on Access
control models and technologies (ACMPress, New
York 2002) pp. 135–140

16.19. D.W. Chadwick, G. Zhao, S. Otenko, R. Laborde,
L. Su, T.A. Nguyen: PERMIS: a modular authoriza-
tion infrastructure, Concurr. Comput. Pract. Exp.
20(11), 1341–1357 (2008), Online, ISSN: 1532-
0634

16.20. A.J. Stell, R.O. Sinnott, J.P.Watt: Comparison of ad-
vanced authorisation infrastructures for grid com-
puting, Proc. High Performance Computing Sys-
tem and Applications 2005, HPCS (2005) pp. 195–
201

16.21. Permis:
http://sec.cs.kent.ac.uk/permis/index.shtml

16.22. Akenti: http://dsd.lbl.gov/security/Akenti/
16.23. M. Thompson, A. Essiari, K. Keahey, V. Welch,

S. Lang, B. Liu: Fine-grained authorization for job
and resource management using akenti and the
globus toolkit, Proc. Computing in High Energy
and Nuclear Physics (CHEP03) (2003)

16.24. M. Thompson, A. Essiari, S. Mudumbai:
Certificate-based authorization policy in a PKI
environment, ACM Trans. Inf. Syst. Secur. 6(4),
566–588 (2003)

16.25. Shibboleth project:
http://shibboleth.internet.edu/

16.26. V. Welch, T. Barton, K. Keahey: Attributes,
anonymity, and access: Shibboleth and globus
integration to facilitate grid collaboration, Proc.
4th Annual PKI R&DWorkshop Multiple Paths to
Trust (2005)

The Authors 307

16.27. Gridshib project: http://grid.ncsa.uiuc.edu/
GridShib

16.28. D. Chadwick, A. Novikov, A. Otenko: Gridshib and
permis integration, http://www.terena.org/events/
tnc/programme/presentations/show.php?
pres_id=

16.29. Datagrid security design: Deliverable 7.6 DataGrid
Project (2003)

16.30. R. Alfieri, R. Cecchini, V. Ciaschini, L. dell Agnello,
A. Frohner, A. Gianoli, K. Lorentey, F. Spataro:
VOMS: An authorisation system for virtual orga-
nizations, Proc. 1st European Across Grid Confer-
ence (2003)

16.31. R. Lepro: Cardea: Dynamic access control in dis-
tributed systems, Tech. Rep. NAS Technical Re-
port NAS-03-020, NASA Advanced Supercomput-
ing (NAS) Division (2003)

16.32. M. Lorch, D.B. Adams, D. Kafura, M.S.R. Koneni,
A. Rathi, S. Shah: The prima system for privilege
management, authorization and enforcement in
grid environments, GRID ’03: Proc. 4th Int. Work-
shop on Grid Computing (IEEEComputer Society,
Washington 2003) pp. 109–

16.33. R. Sandhu, J. Park: Usage control: A vision for next
generation access control. In:Workshop on Mathe-
maticalMethods,Models andArchitectures forCom-
puter Networks Security MMM03, LNCS, Vol. 2776,
ed. by V. Gorodetsky, L. Popyack, V. Skormin
(Springer, 2003) pp. 17–31

16.34. R. Sandhu, J. Park:The UCON_ABC usage control
model, ACM Trans. Inf. Syst. Secur. 7(1), 128–174
(2004)

16.35. D. Bell, L. LaPadula: Secure computer systems:
MITRE Report, MTR 2547, v2 (1973)

16.36. R. Sandhu, E. Coyne, H. Feinstein, C. Youman:
Role-based access control models, IEEE Comput.
9(2), 38–47 (1996)

16.37. X. Zhang, M. Nakae, M. Covington, R. Sandhu:
A usage-based authorization framework for collab-
orative computing systems, Proc. 11th ACM Sym-
posium on Access Control Models and Technolo-
gies (SACMAT’06) (ACM Press, 2006)

16.38. X. Zhang, M. Nakae, M.J. Covington, R. Sandhu:
Toward a usage-based security framework for col-
laborative computing systems, ACM Trans. Inf.
Syst. Secur. 11(1), 1–36 (2008)

16.39. F. Martinelli, P. Mori, A. Vaccarelli: Towards con-
tinuous usage control on grid computational ser-
vices, Proc. of Int. Conference on Autonomic and
Autonomous Systems and International Confer-
ence onNetworking and Services 2005 (IEEECom-
puter Society, 2005) p. 82

16.40. H. Koshutanski, F. Martinelli, P. Mori, A. Vac-
carelli: Fine-grained and history-based access con-
trol with trust management for autonomic grid ser-
vices, Proc. of Int. Conference on Autonomic and
Autonomous Systems (2006)

16.41. GridTrust project: http://www.gridtrust.eu/
16.42. F.Martinelli, P.Mori, A. Vaccarelli: Fine grained ac-

cess control for computational services. Tech. Rep.
TR-06/2006, Istituto di Informatica e Telematica,
Consiglio Nazionale delle Ricerche, Pisa (2006)

16.43. F. Martinelli, P. Mori: A model for usage control in
grid systems, Proc. 1st Int. Workshop on Security,
Trust and Privacy in Grid Systems (GRID-STP07)
(2007)

16.44. X. Zhang, F. Parisi-Presicce, R. Sandhu, J. Park: For-
mal model and policy specification of usage con-
trol, ACM Trans. Inf. Syst. Secur. 8(4), 351–387
(2005)

16.45. X. Zhang, M. Nakae, M. Covington, J.R. Sandhu:
A usage-based authorization framework for col-
laborative computing systems, SACMAT (2006)
pp. 180–189

The Authors

Maurizio Colombo received his bachelor degree from the University of Genoa in 2003 and
his master degree in Internet technologies from the University of Pisa in 2005. Currently
he collaborates with the Information Security Group of Istituto di Informatica e Telematica,
Consiglio Nazionale delle Ricerche on the study and development of mechanisms for access
and usage control in SOA environments. He has almost 2 years’ experience in the Security
Laboratory of BritishTelecomResearchCentre (Ipswich, UK).Hewas involved in EUprojects
such as TrustCom, BeinGrid, and GridTrust.

Maurizio Colombo
Istituto di Informatica e Telematica
Consiglio Nazionale delle Ricerche
Via. G. Moruzzi 1, Pisa, Italy
maurizio.colombo@iit.cnr.it

308 16 Access and Usage Control in Grid Systems

Aliaksandr Lazouski received hisMSc degree in electronics from the Belarusian State Univer-
sity in 2006. He is currently a PhD student in the Computer Science Department at the Uni-
versity of Pisa in collaboration with Istituto di Informatica e Telematica, Consiglio Nazionale
delle Ricerche. His research interests include access control models, trust management, usage
control, and digital rights management.

Aliaksandr Lazouski
Dipartimento di Informatica
Università di Pisa
Largo B. Pontecorvo 3, Pisa, Italy
lazouski@di.unipi.it

Fabio Martinelli (MSc 1994, PhD 1999) is a senior researcher at Istituto di Informatica e
Telematica, Consiglio Nazionale delle Ricerche. He is a coauthor of more than 80 publica-
tions. His main research interests involve security and privacy in distributed and mobile sys-
tems and foundations of security and trust.He is the coinitiator of the InternationalWorkshop
on Formal Aspects in Security and Trust (FAST). He serves as a scientific codirector of the
International Research School on Foundations of Security Analysis and Design (FOSAD).
He chairs the working group on security and trust management of the European Research
Consortium in Informatics and Mathematics (ERCIM).

Fabio Martinelli
Istituto di Informatica e Telematica
Consiglio Nazionale delle Ricerche
Via. G. Moruzzi 1, Pisa, Italy
fabio.martinelli@iit.cnr.it

PaoloMori (MSc 1998, PhD 2003) is a researcher at Istituto di Informatica e Telematica, Con-
siglio Nazionale delle Ricerche. He is an author or a coauthor of more than 20 publications.
His main research interests involve high-performance computing and security in distributed
andmobile systems.He is involved in several EUprojects on information and communication
security (S3MS, GridTRUST).

Paolo Mori
Istituto di Informatica e Telematica
Consiglio Nazionale delle Ricerche
Via. G. Moruzzi 1, Pisa, Italy
paolo.mori@iit.cnr.it

	16 Access and Usage Control in Grid Systems
	16.1 Background to the Grid
	16.2 Standard Globus Security Support
	16.3 Access Control for the Grid
	16.4 Usage Control Model
	16.5 Sandhu's Approach for Collaborative Computing Systems
	16.6 GridTrust Approach for Computational Services
	16.7 Conclusion
	References
	The Authors

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

