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Preface

At its core, information security deals with the secure and accurate transfer of information.
While information security has long been important, it was, perhaps, brought more clearly
into mainstream focus with the so-called “Y2K” issue. The Y2K scare was the fear that com-
puter networks and the systems that are controlled or operated by software would fail with
the turn of the millennium, since their clocks could lose synchronization by not recognizing
a number (instruction) with three zeros. A positive outcome of this scare was the creation of
several Computer Emergency Response Teams (CERTSs) around the world that now work co-
operatively to exchange expertise and information, and to coordinate in case major problems
should arise in the modern IT environment.

The terrorist attacks of 11 September 2001 raised security concerns to a new level. The in-
ternational community responded on at least two fronts; one front being the transfer of reliable
information via secure networks and the other being the collection of information about po-
tential terrorists. As a sign of this new emphasis on security, since 2001, all major academic
publishers have started technical journals focused on security, and every major communica-
tions conference (for example, Globecom and ICC) has organized workshops and sessions on
security issues. In addition, the IEEE has created a technical committee on Communication
and Information Security.

The first editor was intimately involved with security for the Athens Olympic Games of 2004.
These games provided a testing ground for much of the existing security technology. One lesson
learned from these games was that security-related technology often cannot be used effectively
without violating the legal framework. This problem is discussed - in the context of the Athens
Olympics - in the final chapter of this handbook.

In this handbook, we have attempted to emphasize the interplay between communications
and the field of information security. Arguably, this is the first time in the security literature
that this duality has been recognized in such an integral and explicit manner.

It is important to realize that information security is a large topic - far too large to cover
exhaustively within a single volume. Consequently, we cannot claim to provide a complete view
of the subject. Instead, we have chosen to include several surveys of some of the most important,
interesting, and timely topics, along with a significant number of research-oriented papers.
Many of the research papers are very much on the cutting edge of the field.

Specifically, this handbook covers some of the latest advances in fundamentals, cryptogra-
phy, intrusion detection, access control, networking (including extensive sections on optics and
wireless systems), software, forensics, and legal issues. The editors’ intention, with respect to the
presentation and sequencing of the chapters, was to create a reasonably natural flow between
the various sub-topics.
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Finally, we believe this handbook will be useful to researchers and graduate students in
academia, as well as being an invaluable resource for university instructors who are searching
for new material to cover in their security courses. In addition, the topics in this volume are
highly relevant to the real world practice of information security, which should make this book
a valuable resource for working IT professionals. In short, we believe that this handbook will
be a valuable resource for a diverse audience for many years to come.

Mark Stamp San Jose
Peter Stavroulakis Chania
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Actors in our general framework for secure systems
can exert four types of control over other actors’ sys-
tems, depending on the temporality (prospective vs.
retrospective) of the control and on the power rela-
tionship (hierarchical vs. peering) between the ac-
tors. We make clear distinctions between security,
functionality, trust, and distrust by identifying two
orthogonal properties: feedback and assessment. We
distinguish four types of system requirements using
two more orthogonal properties: strictness and ac-
tivity. We use our terminology to describe special-
ized types of secure systems such as access control

systems, Clark-Wilson systems, and the Collabora-
tion Oriented Architecture recently proposed by The
Jericho Forum.

1.1 Introduction

There are many competing definitions for the word
“security”, even in the restricted context of comput-
erized systems. We prefer a very broad definition,
saying that a system is secureif its owner ever esti-
mated its probable losses from adverse events, such
as eavesdropping. We say that a system is securedif its
owner modified it, with the intent of reducing the ex-
pected frequency or severity of adverse events. These
definitions are in common use but are easily misin-
terpreted. An unsupported assertion that a system
is secure, or that it has been secured, does not re-
veal anything about its likely behavior. Details of the
estimate of losses and evidence that this estimate is
accurate are necessary for a meaningful assurance
that a system is safe to use. One form of assurance is
a security proof , which is a logical argument demon-
strating that a system can suffer no losses from a spe-
cific range of adverse events if the system is operat-
ing in accordance with the assumptions (axioms) of
the argument.

In this chapter, we propose a conceptual frame-
work for the design and analysis of secure systems.
Our goal is to give theoreticians and practition-
ers a common language in which to express their
own, more specialized, concepts. When used by the-
oreticians, our framework forms a meta-model in
which the axioms of other security models can be ex-
pressed. When used by practitioners, our framework
provides a well-structured language for describing
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the requirements, designs, and evaluations of secure
systems.

The first half of our chapter is devoted to explain-
ing the concepts in our framework, and how they fit
together. We then discuss applications of our frame-
work to existing and future systems. Along the way,
we provide definitions for commonly used terms in
system security.

1.1.1 Systems, Owners, Security,
and Functionality

The fundamental concept in our framework is the
system — a structured entity which interacts with
other systems. We subdivide each interaction into
a series of primitive actions, where each action is
a transmission event of mass, energy, or information
from one system (the provider) that is accompanied
by zero or more reception events at other systems (the
receivers).

Systems are composed of actors. Every system
has a distinguished actor, its constitution. The mini-
mal system is a single, constitutional, actor.

The constitution of a system contains a listing of
its actors and their relationships, a specification of
the interactional behavior of these actors with other
internal actors and with other systems, and a speci-
fication of how the system’s constitution will change
as a result of its interactions.

The listings and specifications in a constitution
need not be complete descriptions of a system’s
structure and input-output behavior. Any insis-
tence on completeness would make it impossible to
model systems with actors having random, partially
unknown, or purposeful behavior. Furthermore, we
can generally prove some useful properties about
a system based on an incomplete, but carefully
chosen, constitution.

Every system has an owner, and every owner is
a system. We use the term subsystem as a synonym
for “owned system”. If a constitutional actor is its
own subsystem, i.e. if it owns itself, we call it a sen-
tient actor. We say that a system is sentient, if it con-
tains at least one sentient actor. If a system is not sen-
tient, we call it an automaton. Only sentient systems
may own other systems. For example, we may have
a three-actor system where one actor is the consti-
tution of the system, and where the other two actors
are owned by the three-actor system. The three-actor
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system is sentient, because one of its actors owns it-
self. The other two systems are automata.

If a real-world actor plays important roles in
multiple systems, then a model of this actor in our
framework will have a different aliased actor for each
of these roles. Only constitutional actors may have
aliases. A constitution may specify how to create, de-
stroy, and change these aliases.

Sentient systems are used to model organizations
containing humans, such as clubs and corporations.
Computers and other inanimate objects are modeled
as automata. Individual humans are modeled as sen-
tient actors.

Our insistence that owners are sentient is a fun-
damental assumption of our framework. The owner
of a system is the ultimate judge, in our framework,
of what the system should and shouldn’t do. The ac-
tual behavior of a system will, in general, diverge
from the owner’s desires and fears about its behavior.
The role of the system analyst, in our framework, is
to provide advice to the owner on these divergences.

We invite the analytically inclined reader to at-
tempt to develop a general framework for secure
systems that is based on some socio-legal construct
other than a property right. If this alternative basis
for a security framework yields any increase in its
analytic power, generality, or clarity, then we would
be interested to hear of it.

Functionality and Security If a system’s owner as-
cribes a net benefit to a collection of transmission
and reception events, we say this collection of events
is functional behavior of the system. If an owner as-
cribes a net loss to a collection of their system’s re-
ception and transmission events, we say this collec-
tion of events is a security fault of the system. An
owner makes judgements about whether any collec-
tion of system events contains one or more faults or
functional behaviors. These judgements may occur
either before or after the event. An owner may re-
frain from judging, and an owner may change their
mind about a prior judgement. Clearly, if an owner is
inconsistent in their judgements, their systems can-
not be consistently secure or functional.

An analyst records the judgements of a system’s
owner in a judgement actor for that system. The
judgement actor need not be distinct from the con-
stitution of the system. When a system’s judgement
actor receives a description of (possible) transmis-
sion and reception events, it either transmits a sum-
mary judgement on these events or else it refrains
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from transmitting anything, i.e. it withholds judge-
ment. The detailed content of a judgement transmis-
sion varies, depending on the system being modeled
and on the analyst’s preferences. A single judgement
transmission may describe multiple security faults
and functional behaviors.

A descriptive and interpretive report of a judge-
ment actor’s responses to a series of system events is
called an analysis of this system. If this report con-
siders only security faults, then it is a security anal-
ysis. If an analysis considers only functional behav-
ior, then it is a functional analysis. A summary of the
rules by which a judgement actor makes judgements
is called a system requirement. A summary of the en-
vironmental conditions that would induce the ana-
lyzed series of events is called the workload of the
analysis. An analysis will generally indicate whether
or not a system meets its requirements under a typ-
ical workload, that is, whether it is likely to have no
security faults and to exhibit all functional behaviors
if it is operated under these environmental condi-
tions. An analysis report is unlikely to be complete,
and it may contain errors. Completeness and accu-
racy are, however, desirable aspects of an analysis.
If no judgements are likely to occur, or if the judge-
ments are uninformative, then the analysis should in-
dicate that the system lacks effective security or func-
tional requirements. If the judgements are inconsis-
tent, the analysis should describe the likely inconsis-
tencies and summarize the judgements that are likely
to be consistent. If a judgement actor or a constitu-
tion can be changed without its owner’s agreement,
the analysis should indicate the extent to which these
changes are likely to affect its security and function-
ality as these were defined by its original judgement
actor and constitution. An analysis may also contain
some suggestions for system improvement.

An analyst may introduce ambiguity into a mo-
del, in order to study cases where no one can ac-
curately predict what an adversary might do and to
study situations about which the analyst has incom-
plete information. For example, an analyst may con-
struct a system with a partially specified number of
sentient actors with partially specified constitutions.
This system may be a subsystem of a complete sys-
tem model, where the other subsystem is the system
under attack.

An attacking subsystem is called a threat model
in the technical literature. After constructing a sys-
tem and a threat model, the analyst may be able
to prove that no collection of attackers of this type

could cause a security fault. An analyst will build
a probabilistic threat model if they want to estimate
a fault rate. An analyst will build a sentient threat
model if they have some knowledge of the attack-
ers’ motivations. To the extent that an analyst can
“think like an attacker”, a war-gaming exercise will
reveal some offensive maneuvers and corresponding
defensive strategies [1.1].

The accuracy of any system analysis will depend
on the accuracy of the assumed workload. The work-
load may change over time, as a result of changes
in the system and its environment. If the environ-
ment is complex, for example if it includes resource-
ful adversaries and allies of the system owner, then
workload changes cannot be predicted with high ac-
curacy.

1.1.2 Qualitative vs. Quantitative
Security

In this section we briefly explore the typical limita-
tions of a system analysis. We start by distinguishing
qualitative analysis from quantitative analysis. The
latter is numerical, requiring an analyst to estimate
the probabilities of relevant classes of events in rel-
evant populations, and also to estimate the owner’s
costs and benefits in relevant contingencies. Quali-
tative analysis, by contrast, is non-numeric. The goal
of a qualitative analysis is to explain, not to mea-
sure. A successful qualitative analysis of a system is
a precondition for its quantitative analysis, for in the
absence of a meaningful explanation, any measure-
ment would be devoid of meaning. We offer the fol-
lowing, qualitative, analysis of some other precondi-
tions of a quantitative measurement of security.

A proposed metric for a security property must
be validated, by the owner of the system, or by their
trusted agent, as being a meaningful and relevant
summary of the security faults in a typical operating
environment for the system. Otherwise there would
be no point in paying the cost of measuring this
property in this environment. The cost of measure-
ment includes the cost of designing and implement-
ing the measurement apparatus. Some preliminary
experimentation with this apparatus is required to
establish the precision (or lack of noise) and accu-
racy (or lack of bias) of a typical measurement with
this apparatus. These quantities are well-defined, in
the scientific sense, only if we have confidence in the
objectivity of an observer, and if we have a sample



population, a sampling procedure, a measurement
procedure, and some assumption about the ground
truth for the value of the measured property in the
sample population. A typical simplifying assump-
tion on ground truth is that the measurement er-
ror is Gaussian with a mean of zero. This assump-
tion is often invalidated by an experimental error
which introduces a large, undetected, bias. Func-
tional aspects of computer systems performance are
routinely defined and measured [1.2], but computer
systems security is more problematic.

Some security-related parameters are estimated
routinely by insurance companies, major software
companies, and major consulting houses using
the methods of actuarial analysis. Such analyses
are based on the premise that the future behavior
of a population will resemble the past behavior of
apopulation. A time-series of a summary statistic on
the past behavior of a collection of similar systems
can, with this premise, be extrapolated to predict
the value of this summary statistic. The precision
of this extrapolation can be easily estimated, based
on its predictive power for prefixes of the known
time series. The accuracy of this extrapolation is
difficult to estimate, for an actuarial model can
be invalidated if the population changes in some
unexpected way. For example, an actuarial model of
a security property of a set of workstations might be
invalidated by a change in their operating system.
However, if the timeseries contains many instances
of change in the operating system, then its actuarial
model can be validated for use on a population with
an unstable operating system. The range of actuar-
ial analysis will extend whenever a population of
similar computer systems becomes sufficiently large
and stable to be predictable, whenever a timeseries
of security-related events is available for this popu-
lation, and whenever there is a profitable market for
the resulting actuarial predictions.

There are a number of methods whereby an un-
validated, but still valuable, estimate of a security
parameter may be made on a system which is not
part of a well-characterized population. Analysts
and owners of novel systems are faced with decision-
theoretic problems akin to those faced by a 16th cen-
tury naval captain in uncharted waters. It is rarely an
appropriate decision to build a highly accurate chart
(a validated model) of the navigational options in
the immediate vicinity of one’s ship, because this will
generally cause dangerous delays in one’s progress
toward an ultimate goal.
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1.1.3 Security Requirements
and Optimal Design

Having briefly surveyed the difficulty of quantitative
analysis, and the prospects for eventual success in
such endeavors, we return to the fundamental prob-
lem of developing a qualitative model of a secure sys-
tem. Any modeler must create a simplified represen-
tation of the most important aspects of this system.
In our experience, the most difficult aspect of qual-
itative system analysis is discovering what its owner
wants it to do, and what they fear it might do. This
is the problem of requirements elicitation, expressed
in emotive terms. Many other expressions are possi-
ble. For example, if the owner is most concerned with
the economic aspects of the system, then their de-
siresand fearsare most naturally expressed as benefits
and costs. Moralistic owners may consider rights and
wrongs. Ifthe ownerisa corporation, then its desires
and fears are naturally expressed as goals and risks.

A functional requirement can take one of two
mathematical forms: an acceptable lower bound or
constraint on positive judgements of system events,
or an optimization criterion in which the number of
positive judgements is maximized. Similarly, there
are two mathematical forms for a security require-
ment: an upper-bounding constraint on negative
judgements, or a minimization criterion on nega-
tive judgements. The analyst should consider both
receptions and transmissions. Constraints involving
only transmissions from the system under analysis
are called behavioral constraints. Constraints involv-
ing only receptions by the system under analysis are
called environmental constraints.

Generally, the owner will have some control over
the behavior of their system. The analyst is thus faced
with the fundamental problem in control theory, of
finding a way to control the system, given whatever
information about the system is observable, such
that it will meet all its constraints and optimize all
its criteria.

Generally, other sentient actors will have con-
trol over aspects of the environment in which the
owner’s system is operating. The analyst is thus faced
with the fundamental problem in game theory, of
finding an optimal strategy for the owner, given
some assumptions about the behavioral possibilities
and motivation of the other actors.

Generally, it is impossible to optimize all crite-
ria while meeting all constraints. The frequency of
occurrence of each type of fault and function might
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be traded against every other type. This problem can
sometimes be finessed, if the owner assigns a mone-
tary value to each fault and function, and if they are
unconcerned about anything other than their final
(expected) cash position. However, in general, own-
ers will also be concerned about capital risk, cash-
flow, and intangibles such as reputation.

In the usual case, the system model has multi-
ple objectives which cannot all be achieved simul-
taneously; the model is inaccurate; and the model,
although inaccurate, is nonetheless so complex that
exact analysis is impossible. Analysts will thus, typi-
cally, recommend suboptimal incremental changes
to its existing design or control procedures. Each
recommended change may offer improvements in
some respects, while decreasing its security or per-
formance in other respects. Each analyst is likely
to recommend a different set of changes. An ana-
lyst may disagree with another analyst’s recommen-
dations and summary findings. We expect the fre-
quency and severity of disagreements among rep-
utable analysts to decrease over time, as the design
and analysis of sentient systems becomes a mature
engineering discipline. Our framework offers a lan-
guage, and a set of concepts, for the development of
this discipline.

1.1.4 Architectural and Economic
Controls; Peerages; Objectivity

We have already discussed the fundamentals of our
framework, noting in particular that the judgement
actor is a representation of the system owner’s de-
sires and fears with respect to their system’s behav-
ior. In this section we complete our framework’s tax-
onomy of relationships between actors. We also start
to define our taxonomy of control.

There are three fundamental types of relation-
ships between the actors in our model. An actor may
be an alias of another actor; an actor may be supe-
rior to another actor; and an actor may be a peer of
another actor. We have already defined the aliasing
relation. Below, we define the superior and peering
relationships.

The superior relationship is a generalization of
the ownership relation we defined in Sect. 1.1. An
actor is the superior of another actor if the former
has some important power or control over the latter,
inferior, actor. In the case that the inferior is a con-
stitutional actor, then the superior is the owner of

the system defined by that constitution. Analysis is
greatly simplified in models where the scope of con-
trol of a constitution is defined by the transitive clo-
sure of its inferiors, for this scoping rule will ensure
that every subsystem is a subset of its owning sys-
tem. This subset relation gives a natural precedence
in cases of constitutional conflict: the constitution of
the owning system has precedence over the consti-
tutions of its subsystems.

Our notion of superiority is extremely broad, en-
compassing any exercise of power that is essentially
unilateral or non-negotiated. To take an extreme ex-
ample, we would model a slave as a sentient actor
with an alias that is inferior to another sentient ac-
tor. A slave is not completely powerless, for they have
at least some observational power over their slave-
holder. If this observational power is important to
the analysis, then the analyst will introduce an alias
of the slaveholder that is inferior to the slave. The
constitutional actor of the slaveholder is a represen-
tation of those aspects of the slaveholder’s behav-
ior which are observable by their slave. The consti-
tutional actor of the slave specifies the behavioral
responses of the slave to their observations of the
slaveholder and to any other reception events.

If an analyst is able to make predictions about
the likely judgements of a system’s judgement actor
under the expected workload presented by its su-
periors, then these superiors are exerting architec-
tural controls in the analyst’s model. Intuitively, ar-
chitectural controls are all of the worldly constraints
that an owner feels to be inescapable - effectively be-
yond their control. Any commonly understood “law
of physics” is an architectural control in any model
which includes a superior actor that enforces this
law. The edicts of sentient superiors, such as reli-
gious, legal, or governmental agencies, are architec-
tural controls on any owner who obeys these edicts
without estimating the costs and benefits of possible
disobedience.

Another type of influence on system require-
ments, called economic controls, result from an
owner’s expectations regarding the costs and bene-
fits from their expectations of functions and faults.
As indicated in the previous section, these costs and
benefits are not necessarily scalars, although they
might be expressed in dollar amounts. Generally,
economic controls are expressed in the optimization
criteria for an analytic model of a system, whereas
architectural controls are expressed in its feasibility
constraints.



Economic controls are exerted by the “invisible
hand” of a marketplace defined and operated by
a peerage. A peerage contains a collection of actors
in a peeringrelationship with each other. Informally,
a peerage is a relationship between equals. Formally,
a peering relationship is any reflexive, symmetric,
and transitive relation between actors.

A peerage is a system; therefore it has a constitu-
tional actor. The constitutional actor of a peerage is
an automaton that is in a superior relationship to the
peers.

A peerage must have a frusted servant which is
inferior to each of the peers. The trusted servant
mediates all discussions and decisions within the
peerage, and it mediates their communications with
any external systems. These external systems may be
peers, inferiors, or superiors of the peerage; if the
peerage has a multiplicity of relations with external
systems then its trusted servant has an alias to han-
dle each of these relations. For example, a regulated
marketplace is modeled as a peerage whose consti-
tutional actor is owned by its regulator. The trusted
servant of the peerage handles the communications
of the peerage with its owner. The peers can commu-
nicate anonymously to the owner, if the trusted ser-
vant does not breach the anonymity through their
communications with the owner, and if the aliases
of peers are not leaking identity information to the
owner. This is not a complete taxonomy of threats,
by the way, for an owner might find a way to sub-
vert the constitution of the peerage, e.g., by installing
a wiretap on the peers’ communication channel. The
general case of a constitutional subversion would be
modeled as an owner-controlled alias that is supe-
rior to the constitutional actor of the peerage. The
primary subversion threat is the replacement of the
trusted servant by an alias of the owner. A lesser
threat is that the owner could add owner-controlled
aliases to the peerage, and thereby “stuff the ballot
box”.

An important element in the constitutional actor
of a peerage is a decision-making procedure such as
a process for forming a ballot, tabulating votes, and
determining an outcome. In an extreme case, a peer-
age may have only two members, where one of these
members can outvote the other. Even in this case,
the minority peer may have some residual control if
it is defined in the constitution, or if it is granted by
the owner (if any) of the peerage. Such imbalanced
peerages are used to express, in our framework, the
essentially economic calculations of a person who
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considers the risks and rewards of disobeying a su-
perior’s edict.

Our simplified pantheon of organizations has
only two members - peerages and hierarchies. In
a hierarchy, every system other than the hierarch has
exactly one superior system; the hierarch is sentient;
and the hierarch is the owner of the hierarchy. The
superior relation in a hierarchy is thus irreflexive,
asymmetric, and intransitive.

We note, in passing, that the relations in our
framework can express more complex organiza-
tional possibilities, such as a peerage that isn’t
owned by its trusted servant, and a hierarchy that
isn’t owned by its hierarch. The advantages and
disadvantages of various hybrid architectures have
been explored by constitutional scholars (e.g., in
the 18th Century Federalist Papers), and by the
designers of autonomous systems.

Example We illustrate the concepts of systems,
actors, relationships, and architectural controls by
considering a five-actor model of an employee’s use
of an outsourced service. The employee is modeled
as two actors, one of which owns itself (represent-
ing their personal capacity) and an alias (represent-
ing their work-related role). The employee alias is in-
ferior to a self-owned actor representing their em-
ployer. The outsourced service is a sentient (self-
owned) actor, with an alias that is inferior to the
employee. This simple model is sufficient to discuss
the fundamental issues of outsourcing in a commer-
cial context. A typical desire of the employer in such
a system is that their business will be more prof-
itable as a result of their employee’s access to the
outsourced service. A typical fear of the employer
is that the outsourcing has exposed them to some
additional security risks. If the employer or ana-
lyst has estimated the business’s exposure to these
additional risks, then their mitigations (if any) can
be classified as architectural or economic controls.
The analyst may use an information-flow method-
ology to consider the possible functions and faults
of each element of the system. When transmission
events from the aliased service to the service ac-
tor are being considered, the analyst will develop
rules for the employer’s judgement actor which will
distinguish functional activity from faulting activ-
ity on this link. This link activity is not directly ob-
servable by the employer, but may be inferred from
events which occur on the employer-employee link.
Alternatively, it may not be inferrable but is still
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feared, for example if an employee’s service request
is a disclosure of company-confidential information,
then the outsourced service provider may be able
to learn this information through their service alias.
The analyst may recommend an architectural con-
trol for this risk, such as an employer-controlled fil-
ter on the link between the employee and the ser-
vice alias. A possible economic control for this dis-
closure risk is a contractual arrangement, whereby
the risk is priced into the service arrangement, re-
ducing its monetary cost to the employer, in which
case it constitutes a form of self-insurance. An ex-
ample of an architectural control is an advise-and-
consent regime for any changes to the service alias.
An analyst for the service provider might suggest an
economic control, such as a self-insurance, to mit-
igate the risk of the employer’s allegation of a dis-
closure. An analyst for the employee might sug-
gest an architectural control, such as avoiding situ-
ations in which they might be accused of improper
disclosures via their service requests. To the extent
that these three analysts agree on a ground truth,
their models of the system will predict similar out-
comes. All analysts should be aware of the possibil-
ity that the behavior of the aliased service, as de-
fined in an inferior-of-an-inferior role in the em-
ployer’s constitution, may differ from its behavior
as defined in an aliased role in the constitution of
the outsourced service provider. This constitutional
conflict is the analysts’ representation of their fun-
damental uncertainty over what will really happen
in the real world scenario they are attempting to
model.

Subjectivity and Objectivity We do not expect an-
alysts to agree, in all respects, with the owner’s eval-
uation of the controls pertaining to their system. We
believe that it is the analyst’s primary task to analyze
a system. This includes an accurate analysis of the
owner’s desires, fears, and likely behavior in foresee-
able scenarios. After the system is analyzed, the ana-
lyst might suggest refinements to the model so that it
conforms more closely to the analyst’s (presumably
expert!) opinion. Curiously, the interaction of an an-
alyst with the owner, and the resulting changes to the
owner’s system, could be modeled within our frame-
work - if the analyst chooses to represent themselves
as a sentient actor within the system model. We
will leave the exploration of such systems to post-
modernists, semioticians, and industrial psycholo-
gists. Our interest and expertise is in the scientific-

engineering domain. The remainder of this chapter
is predicated on an assumption of objectivity: we as-
sume that a system can be analyzed without signifi-
cantly disturbing it.

Our terminology of control is adopted from
Lessig [1.3]. Our primary contributions are to for-
mally state Lessig’s modalities of regulation and to
indicate how these controls can influence system
design and operation.

1.1.5 Legal and Normative Controls

Lessig distinguishes the prospective modalities
of control from the retrospective modalities.
A prospective control is determined and exerted
before the event, and has a clear affect on a system’s
judgement actor or constitution. A retrospective
control is determined and exerted after the event,
by an external party.

Economic and architectural controls are exerted
prospectively, as indicated in the previous section.
The owner is a peer in the marketplace which, col-
lectively, defined the optimization criteria for the
judgement actor in their system. The owner was
compelled to accept all of the architectural con-
straints on their system.

The retrospective counterparts of economic and
architectural control are respectively normal control
and legal control. The former is exerted by a peerage,
and the latter is exerted by a superior. The peerage
or superior makes a retrospective judgement after
obtaining a report of some alleged behavior of the
owner’s system. This judgement is delivered to the
owner’s system by at least one transmission event,
called a control signal, from the controlling system
to the controlled system. The constitution of a sys-
tem determines how it responds when it receives
a control signal. As noted previously, we leave it to
the owner to decide whether any reception event is
desirable, undesirable, or inconsequential; and we
leave it to the analyst to develop a description of the
judgement actor that is predictive of such decisions
by the owner.

Judicial and social institutions, in the real world,
are somewhat predictable in their behavior. The an-
alyst should therefore determine whether an owner
has made any conscious predictions of legal or so-
cial judgements. These predictions should be incor-
porated into the judgement actor of the system, as
architectural constraints or economic criteria.
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1.1.6 Four Types of Security

Having identified four types of control, we are now
able to identify four types of security.

Architectural Security A system is architecturally
secure if the owner has evaluated the likelihood of
a security fault being reported by the system’s judge-
ment actor. The owner may take advice from other
actors when designing their judgement actor, and
when evaluating its likely behavior. Such advice is
called an assurance, as noted in the first paragraph of
this chapter. We make no requirement on the exper-
tise or probity of the assuring actor, although these
are clearly desirable properties.

Economic Security An economically secure system
has an insurance policy consisting of a specification
of the set of adverse events (security faults) which
are covered by the policy, an amount of compensa-
tion to be paid by the insuring party to the owner
following any of these adverse events, and a dispute
mediation procedure in case of a dispute over the
insurance policy. We include self-insurances in this
category. A self-insurance policy needs no dispute
resolution mechanism and consists only of a quanti-
tative risk assessment, the list of adverse events cov-
ered by the policy, the expected cost of each ad-
verse event per occurrence, and the expected fre-
quency of occurrence of each event. In the context
of economic security, security risk has a quantitative
definition: it is the annualized cost of an insurance
policy. Components of risk can be attached to indi-
vidual threats, that is, to specific types of adversar-
ial activity. Economic security is the natural focus
of an actuary or a quantitatively minded business
analyst. Its research frontiers are explored in aca-
demic conferences such as the annual Workshop on
the Economics of Information Security. Practition-
ers of economic security are generally accredited by
a professional organization such as ISACA, and use
a standardized modeling language such as SysML.
There is significant divergence in the terminology
used by practitioners [1.4] and theorists of economic
security. We offer our framework as a discipline-
neutral common language, but we do not expect it to
supplant the specialized terminology that has been
developed for use in specific contexts.

Legal Security A system is legally secure if its
owner believes it to be subject to legal controls. Be-
cause legal control is retrospective, legal security
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cannot be precisely assessed; and to the extent a fu-
ture legal judgement has been precisely assessed, it
forms an architectural control or an economic con-
trol. An owner may take advice from other actors,
when forming their beliefs, regarding the law of con-
tracts, on safe-haven provisions, and on other rele-
vant matters. Legal security is the natural focus of
an executive officer concerned with legal compliance
and legal risks, of a governmental policy maker con-
cerned with the societal risks posed by insecure sys-
tems, and of a parent concerned with the familial
risks posed by their children’s online activity.

Normative Security A system is normatively secure
if its owner knows of any social conventions which
might effectively punish them in their role as the
owner of a purportedly abusive system. As with legal
security, normative security cannot be assessed with
precision. Normative security is the natural province
of ethicists, social scientists, policy makers, devel-
opers of security measures which are actively sup-
ported by legitimate users, and sociologically ori-
ented computer scientists interested in the forma-
tion, maintenance and destruction of virtual com-
munities.

Readers may wonder, at this juncture, how a ser-
vice providing system might be analyzed by a non-
owning user. This analysis will become possible if the
owner has published a model of the behavioral as-
pects of their system. This published model need not
reveal any more detail of the owner’s judgement ac-
tor and constitution than is required to predict their
system’s externally observable behavior. The analyst
should use this published model as an automaton,
add a sentient actor representing the non-owning
user, and then add an alias of that actor represent-
ing their non-owning usage role. This sentient alias
is the combined constitutional and judgement actor
for a subsystem that also includes the service provid-
ing automaton. The non-owning user’s desires and
fears, relative to this service provision, become the
requirements in the judgement actor.

1.1.7 Types of Feedback
and Assessment

In this section we explore the notions of trust and
distrust in our framework. These are generally ac-
cepted as important concepts in secure systems, but
their meanings are contested. We develop a princi-
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pled definition, by identifying another conceptual
dichotomy. Already, we have dichotomized on the
dimensions of temporality (retrospective vs. pro-
spective) and power relationship (hierarchical vs.
peer), in order to distinguish the four types of sys-
tem control and the corresponding four types of sys-
tem security. We have also dichotomized between
function and security, on a conceptual dimension
we call feedback, with opposing poles of positive
feedback for functionality and negative feedback for
security.

Our fourth conceptual dimension is assess-
ment, with three possibilities: cognitive assessment,
optimistic non-assessment, and pessimistic non-
assessment. We draw our inspiration from Luh-
mann [1.5], a prominent social theorist. Luhmann
asserts that modern systems are so complex that
we must use them, or refrain from using them,
without making a complete examination of their
risks, benefits and alternatives.

The distinctive element of trust, in Luhmann’s
definition, is that it is a reliance without a careful ex-
amination. An analyst cannot hope to evaluate trust
with any accuracy by querying the owner, for the
mere posing of a question about trust is likely to trig-
ger an examination and thereby reduce trust dra-
matically. If we had a reliable calculus of decision
making, then we could quantify trust as the irra-
tional portion of an owner’s decision to continue op-
erating a system. The rational portion of this deci-
sion is their security and functional assessment. This
line of thought motivates the following definitions.

To the extent that an owner has not carefully ex-
amined their potential risks and rewards from sys-
tem ownership and operation, but “do it anyway”,
their system is trusted. Functionality and security re-
quirements are the result ofa cognitive assessment,
respectively of a positive and negative feedback to
the user. Trust and distrust are the results of some
other form of assessment or non-assessment which,
for lack of a better word, we might call intuitive. We
realize that this is a gross oversimplification of hu-
man psychology and sociology. Our intent is to cat-
egorize the primary attributes of a secure system,
and this includes giving a precise technical meaning
to the contested terms “trust” and “distrust” within
the context of our framework. We do not expect
that the resulting definitions will interest psychol-
ogists or sociologists; but we do hope to clarify fu-
ture scientific and engineering discourse about se-
cure systems.
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Mistrust is occasionally defined as an absence
of trust, but in our framework we distinguish a dis-
trusting decision from a trusting decision. When
an owner distrusts, they are deciding against tak-
ing an action, even though they haven’t analyzed
the situation carefully. The distrusting owner has
decided that their system is “not good” in some
vaguely apprehended way. By contrast, the trusting
owner thinks or feels, vaguely, that their system is
“not bad”.

The dimensions of temporality and relationship
are as relevant for trust, distrust, and functionality
as they are for security. Binary distinctions on these
two dimensions allow us to distinguish four types of
trust, four types of distrust, and four types of func-
tionality.

We discuss the four types of trust briefly below.
Space restrictions preclude any detailed exploration
of our categories of functionality and distrust:

1. An owner places architectural trust in a system
to the extent they believe it to be lawful, well-
designed, moral, or “good” in any other way that
is referenced to a superior power. Architectural
trust is the natural province of democratic gov-
ernments, religious leaders, and engineers.

2. An owner places economic trust in a system to
the extent they believe its ownership to be a ben-
eficial attribute within their peerage. The stand-
ing of an owner within their peerage may be
measured in any currency, for example dollars,
by which the peerage makes an invidious dis-
tinction. Economic trust is the natural province
of marketers, advertisers, and vendors.

3. An owner places legal trust in a system to the
extent they are optimistic that it will be help-
ful in any future contingencies involving a su-
perior power. Legal trust is the natural province
of lawyers, priests, and repair technicians.

4. An owner places some normative trust in a sys-
tem to the extent they are optimistic it will
be helpful in any future contingencies involv-
ing a peerage. Normative trust is the natural
province of financial advisors, financial regula-
tors, colleagues, friends, and family.

We explore just one example here. In the previous
section we discussed the case of a non-owning user.
The environmental requirements of this actor are
trusted, rather than secured, to the extent that the
non-owning user lacks control over discrepancies
between the behavioral model and the actual be-
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havior of the non-owned system. If the behavioral
model was published within a peerage, then the non-
owning user might place normative trust in the post-
facto judgements of their peerage, and economic
trust in the proposition that their peerage would not
permit a blatantly false model to be published.

1.1.8 Alternatives to Our Classification

We invite our readers to reflect on our categories and
dimensions whenever they encounter alternative
definitions of trust, distrust, functionality, and secu-
rity. There are a bewildering number of alternative
definitions for these terms, and we will not attempt
to survey them. In our experience, the apparent con-
tradiction is usually resolved by analyzing the alter-
native definition along the four axes of assessment,
temporality, power, and feedback. Occasionally, the
alternative definition is based on a dimension that
is orthogonal to any of our four. More often, the
definition is not firmly grounded in any taxonomic
system and is therefore likely to be unclear if used
outside of the context in which it was defined.

Our framework is based firmly on the owner’s
perspective. By contrast, the SQuaRE approach is
user-centric [1.6]. The users of a SQuaRE-standard
software product constitute a market for this prod-
uct, and the SQuaRE metrics are all of the economic
variety. The SQuaRE approach to economic func-
tionality and security is much more detailed than the
framework described here. SQuaRE makes clear dis-
tinctions between the internal, external, and quality-
in-use (QIU) metrics of a software component that is
being produced by a well-controlled process. The in-
ternal metrics are evaluated by white-box testing and
the external metrics are evaluated by black-box test-
ing. In black-box testing, the judgements of a (pos-
sibly simulated) end-user are based solely on the
normal observables of a system, i.e. on its transmis-
sion events as a function of its workload. In white-
box testing, judgements are based on a subset of all
events occurring within the system under test. The
QIU metrics are based on observations and polls
of a population of end-users making normal use of
the system. Curiously, the QIU metrics fall into four
categories, whereas there are six categories of met-
rics in the internal and external quality model of
SQuaRE. Future theorists of economic quality will,
we believe, eventually devise a coherent taxonomic
theory to resolve this apparent disparity. An essen-
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tial requirement of such a theory is a compact de-
scription of an important population (a market) of
end-users which is sufficient to predict the market’s
response to a novel good or service. Our framework
sidesteps this difficulty, by insisting that a market is
a collection of peer systems. Individual systems are
modeled from their owner’s perspective; and mar-
ket behavior is an emergent property of the peered
individuals.

In security analyses, behavioral predictions of
the (likely) attackers are of paramount importance.
Any system that is designed in the absence of knowl-
edge about a marketplace is unlikely to be econom-
ically viable; and any system that is designed in the
absence of knowledge of its future attackers is un-
likely to resist their attacks.

In our framework, system models can be con-
structed either with, or without, an attacking subsys-
tem. In analytic contexts where the attacker is well-
characterized, such as in retrospective analyses of in-
cidents involving legal and normative security, our
framework should be extended to include a logically
coherent and complete offensive taxonomy.

Redwine recently published a coherent, offen-
sively focussed, discussion of secure systems in a hi-
erarchy. His taxonomy has not, as yet, been extended
to cover systems in a peerage; nor does it have a co-
herent and complete coverage of functionality and
reliability; nor does it have a coherent and complete
classification of the attacker’s (presumed) motiva-
tions and powers. Even so, Redwine’s discussion is
valuable, for it clearly identifies important aspects of
a offensively focussed framework. His attackers, de-
fenders, and bystanders are considering their ben-
efits, losses, and uncertainties when planning their
future actions [1.1]. His benefits and losses are con-
gruent with the judgement actors in our framework.
His uncertainties would result in either trust or dis-
trust requirements in our framework, depending on
whether they are optimistically or pessimistically re-
solved by the system owner. The lower levels of Red-
wine’s offensive model involve considerations of an
owner’s purposes, conditions, actions and results.
There is a novel element here: an analyst would fol-
low Redwine’s advice, within our framework, by in-
troducing an automaton to represent the owner’s
strategy and state of knowledge with respect to their
system and its environment. In addition, the judge-
ment actor should be augmented so that increases
in the uncertainty of the strategic actor is a fault,
decreases in its uncertainty are functional behavior,
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its strategic mistakes are faults, and its strategic ad-
vances are functional.

1.2 Applications

We devote the remainder of this chapter to applica-
tions of our model. We focus our attention on sys-
tems of general interest, with the goal of illustrating
the definitional and conceptual support our frame-
work would provide for a broad range of future work
in security.

1.2.1 Trust Boundaries

System security is often explained and analyzed by
identifying a set of trusted subsystems and a set of
untrusted subsystems. The attacker in such models
is presumed to start out in the untrusted portion
of the system, and the attacker’s goal is to become
trusted. Such systems are sometimes illustrated by
drawing a trust boundary between the untrusted and
the trusted portions of the system. An asset, such
as a valuable good or desirable service, is accessi-
ble only to trusted actors. A bank’s vault can thus
be modeled as a trust boundary.

The distinguishing feature of a trust boundary
is that the system’s owner is trusting every system
(sentient or automaton) that lies within the trust
boundary. A prudent owner will secure their trust
boundaries with some architectural, economic, nor-
mative, or legal controls. For example, an owner
might gain architectural security by placing a sen-
tient guard at the trust boundary. If the guard is
bonded, then economic security is increased. To the
extent that any aspect of a trust boundary is not cog-
nitively assessed, it is trusted rather than secured.

Trust boundaries are commonplace in our so-
cial arrangements. Familial relationships are usually
trusting, and thus a family is usually a trusted sub-
system. Marriages, divorces, births, deaths, feuds,
and reconciliations change this trust boundary.

Trust boundaries are also commonplace in our
legal arrangements. For example, a trustee is a per-
son who manages the assets in a legally constituted
trust. We would represent this situation in our
model with an automaton representing the assets
and a constitution representing the trust deed. The
trustee is the trusted owner of this trusted subsys-
tem. Petitioners to the trust are untrusted actors
who may be given access to the assets of the trust
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at the discretion of the trustee. Security theorists
will immediately recognize this as an access control
system; we will investigate these systems more
carefully in the next section.

A distrust boundary separates the distrusted ac-
tors from the remainder of a system. We have never
seen this term used in a security analysis, but it
would be useful when describing prisons and secu-
rity alarm systems. All sentient actors in such sys-
tems have an obligation or prohibition requirement
which, if violated, would cause them to become dis-
trusted. The judgement actor of the attacking sub-
system would require its aliases to violate this obli-
gation or prohibition without becoming distrusted.

A number of trust-management systems have
been proposed and implemented recently. A typ-
ical system of this type will exert some control
on the actions of a trusted employee. Reputation-
management systems are sometimes confused
with trust-management systems but are easily
distinguished in our framework. A reputation-
management system offers its users advice on
whether they should trust or distrust some other
person or system. This advice is based on the repu-
tation of that other person or system, as reported by
the other users of the system. A trust-management
system can be constructed from an employee alias,
a reputation-management system, a constitutional
actor, and a judgement actor able to observe external
accesses to a corporate asset. The judgement actor
reports a security fault if the employee permits an
external actor to access the corporate asset without
taking and following the advice of the reputation
management system. The employee in this system
are architecturally trusted, because they can grant
external access to the corporate asset. A trust-
management system helps a corporation gain legal
security over this trust boundary, by detecting and
retaining evidence of untrustworthy behavior.

Competent security architects are careful when
defining trust boundaries in their system. Systems
are most secure, in the architectural sense, when
there is minimal scope for trusted behavior, that is,
when the number of trusted components and peo-
ple is minimized and when the trusted components
and people have a minimal range of permitted ac-
tivities. However, a sole focus on architectural secu-
rity is inappropriate if an owner is also concerned
about functionality, normative security, economic
security, or legal security. A competent system archi-
tect will consider all relevant security and functional
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requirements before proposing a design. We hope
that our taxonomy will provide a language in which
owners might communicate a full range of their de-
sires and fears to a system architect.

1.2.2 Data Security and Access Control

No analytic power can be gained from constructing
amodel that is as complicated as the situation that is
being modeled. The goal of a system modeler is thus
to suppress unimportant detail while maintaining an
accurate representation of all behavior of interest. In
this section, we explore some of the simplest systems
which exhibit security properties of practical inter-
est. During this exploration, we indicate how the
most commonly used words in security engineering
can be defined within our model.

The simplest automaton has just a single mode of
operation: it holds one bit of information which can
be read. A slightly more complex single-bit automa-
ton can be modified (that is, written) in addition to
being read. An automaton that can only be read or
written is a data element.

The simplest and most studied security system
consists of an automaton (the guard), a single-bit
read-only data element to be protected by the guard,
a collection of actors (users) whom the guard might
allow to read the data, and the sentient owner of the
system. The trusted subsystem consists of the guard,
the owner, and the data. All users are initially un-
trusted. Users are inferior to the guard. The guard is
inferior to the owner.

The guard in this simple access control system has
two primary responsibilities — to permit authorized
reads, and to prohibit unauthorized reads. A guard
who discharges the latter responsibility is protect-
ing the confidentiality of the data. A guard who dis-
charges the former responsibility is protecting the
availability of the data.

Confidentiality and availability are achievable
only if the guard distinguishes authorized actors
from unauthorized ones. Most simply, a requesting
actor may transmit a secret word (an authorization)
known only to the authorized actors. This approach
is problematic if the set of authorized users changes
over time. In any event, the authorized users must be
trusted to keep a secret. The latter issue can be rep-
resented by a model in our framework. A data ele-
ment represents the shared secret, and each user has
a private access control system to protect the con-
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fidentiality of an alias of this secret. User aliases are
inferiors of the guard in the primary access control
system. An adversarial actor has an alias inferior to
the guard in each access control system. The adver-
sary can gain access to the asset of the primary access
control system if it can read the authorizing secret
from any authorized user’s access control system.
An analysis of this system will reveal that the confi-
dentiality of the primary system depends on the con-
fidentiality of the private access control systems. The
owner thus has a trust requirement if any of these
confidentiality requirements is not fully secured.

In the most common implementation of access
control, the guard requires the user to present some
identification, that is, some description of its own-
ing human or its own (possibly aliased) identity. The
guard then consults an access control list (another
data element in the trusted subsystem) to discover
whether this identification corresponds to a cur-
rently authorized actor. A guard who demands iden-
tification will typically also demand authentication,
i.e. some proof of the claimed identity. A typical tax-
onomy of authentication is “what you know” (e.g.,
a password), “what you have” (e.g., a security to-
ken possessed by the human controller of the aliased
user), or “who you are” (a biometric measurement
of the human controller of the aliased user). None
of these authenticators is completely secure, if ad-
versaries can discover secrets held by users (in the
case of what-you-know), steal or reproduce physical
assets held by users (in the case of what-you-have),
or mimic a biometric measurement (in the case of
who-you-are). Furthermore, the guard may not be
fully trustworthy. Access control systems typically
include some additional security controls on their
users, and they may also include some security con-
trols on the guard.

A typical architectural control on a guard in-
volves a trusted recording device (the audit recorder)
whose stored records are periodically reviewed by
another trusted entity (the auditor). Almost two
thousand years ago, the poet Juvenal pointed out an
obvious problem in this design, by asking “quis cus-
todiet ipsos custodes” (who watches the watchers)?
Adding additional watchers, or any other entities to
a trusted subsystem will surely increase the number
of different types of security fault but may nonethe-
less be justified if it offers some overall functional or
security advantage.

Additional threats arise if the owner of a data
system provides any services other than the reading
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of a single bit. An integrity threat exists in any sys-
tem where the owner is exposed to loss from unau-
thorized writes. Such threats are commonly encoun-
tered, for example in systems that are recording bank
balances or contracts.

Complex threats arise in any system that han-
dle multiple bits, especially if the meaning of one
bit is affected by the value of another bit. Such sys-
tems provide meta-data services. Examples of meta-
data include an author’s name, a date of last change,
a directory of available data items, an authorizing
signature, an assertion of accuracy, the identity of
a system’s owner or user, and the identity of a sys-
tem. Meta-data is required to give a context, and
therefore a meaning, to a collection of data bits.
The performance of any service involving meta-data
query may affect the value of a subsequent meta-
data query. Thus any provision of a meta-data ser-
vice, even a meta-data read, may be a security threat.

If we consider all meta-data services to be po-
tential integrity threats, then we have an appealingly
short list of security requirements known as the CIA
triad: confidentiality, integrity, and availability. Any
access control system requires just a few security-
related functions: identification, authentication, au-
thorization, and possibly audit. This range of secu-
rity engineering is called data security. Although it
may seem extremely narrow, it is of great practical
importance. Access control systems can be very pre-
cisely specified (e.g. [1.7]), and many other aspects
have been heavily researched [1.8]. Below, we attempt
only a very rough overview of access control systems.

The Bell-LaPadula (BLP) structure for access
control has roles with strictly increasing levels of
read-authority. Any role with high authority can
read any data that was written by someone with an
authority no higher than themselves. A role with
the highest authority is thus able to read anything,
but their writings are highly classified. A role with
the lowest authority can write freely, but can read
only unclassified material. This is a useful structure
of access control in any organization whose primary
security concern is secrecy. Data flows in the BLP
structure are secured for confidentiality. Any data
flow in the opposite direction (from high to low)
may either be trusted, or it may be secured by some
non-BLP security apparatus [1.9].

The Biba structure is the dual, with respect to
read/write, of the BLP structure. The role with high-
est Biba authority can write anything, but their reads
are highly restricted. The Biba architecture seems to
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be mostly of academic interest. However, it could
be useful in organizations primarily concerned with
publishing documents of record, such as judicial de-
cisions. Such documents should be generally read-
able, but their authorship must be highly restricted.

In some access control systems, the outward-
facing guard is replaced by an inward-facing war-
den, and there are two categories of user. The pris-
oners are users in possession of a secret, and for this
reason they are located in the trusted portion of the
system. The outsiders are users not privy to the se-
cret. The warden’s job is to prevent the secret from
becoming known outside the prison walls, and so
the warden will carefully scrutinize any write oper-
ations that are requested by prisoners. Innocuous-
looking writes may leak data, so a high-security (but
low-functionality) prison is obtained if all prisoner-
writes are prohibited.

The Chinese wall structure is an extension of the
prison, where outsider reads are permitted, but any
outsider who reads the secret becomes a prisoner.
This architecture is used in financial consultancy,
to assure that a consultant who is entrusted with
a client’s sensitive data is not leaking this data to
a competitor who is being assisted by another con-
sultant in the same firm.

1.2.3 Miscellaneous Security
Requirements

The fundamental characteristic of a secure system,
in our definition, is that its owner has cognitively
assessed the risks that will ensue from their sys-
tem. The fundamental characteristic of a functional
system 1is that its owner has cognitively assessed
the benefits that will accrue from their system. We
have already used these characteristics to generate
a broad categorization of requirements as being ei-
ther security, functional or mixed. This categoriza-
tion is too broad to be very descriptive, and addi-
tional terminology is required.

As noted in the previous section, a system’s se-
curity requirements can be sharply defined if it of-
fers a very narrow range of simple services, such as
a single-bit read and write. Data systems which pro-
tect isolated bits have clear requirements for confi-
dentiality, integrity, and availability.

If an audit record is required, we have an au-
ditability requirement. If a user or owner can dele-
gate an access right, then these delegations may be
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secured, in which case the owner would be placing
a delegatibility requirement on their system. When
an owner’s system relies on any external system, and
if these reliances can change over time, then the
owner might introduce a discoverability requirement
to indicate that these reliances must be controlled.
We could continue down this path, but it seems clear
that the number of different requirements will in-
crease whenever we consider a new type of system.

1.2.4 Negotiation of Control

In order to extend our four-way taxonomy of require-
ments in a coherent way, we consider the nature of
the signals that are passed from one actor to another
in a system. In the usual taxonomy of computer sys-
tems analysis, we would distinguish data signals from
control signals. Traditional analyses in data security
are focussed on the properties of data. Our frame-
work is focussed on the properties of control. Data
signals should not be ignored by an analyst, however
we assert that data signals are important in a security
analysis only if they can be interpreted as extensions
or elaborations of a control signal.

Access control, in our framework, is a one-sided
negotiation in which an inferior system petitions
a superior system for permission to access a re-
source. The metaphor of access control might be ex-
tended to cover most security operations in a hierar-
chy, but a more balanced form of intersystem control
occurs in our peerages.

Our approach to control negotiations is very sim-
ple. We distinguish a service provision from a non-
provision of that service. We also distinguish a for-
biddance of either a provision or a non-provision,
from an option allowing a freedom of choice be-
tween provision or a non-provision. These two dis-
tinctions yield four types of negotiated controls. Be-
low, we discuss how these distinctions allow us to
express access control, contracts between peers, and
the other forms of control signals that are transmit-
ted commonly in a hierarchy or a peerage.

An obligation requires a system to provide a ser-
vice to another system. The owner of the first sys-
tem is the debtor; the owner of the second system
is a creditor; and the negotiating systems are autho-
rized to act as agents for the sentient parties who,
ultimately, are contractual parties in the legally or
normatively enforced contract which underlies this
obligation. A single service provision may suffice for

1 A Framework for System Security

a complete discharge of the obligation, or multiple
services may be required.

Formal languages have been proposed for the in-
teractions required to negotiate, commit, and dis-
charge an obligation [1.10-12]. These interactions
are complex and many variations are possible. The
experience of UCITA in the US suggests that it can
be difficult to harmonize jurisdictional differences
in contracts, even within a single country. Clearly,
contractlaw cannot be completely computerized, be-
cause a sentient judiciary is required to resolve some
disputes. However an owner may convert any pre-
dictable aspect of an obligation into an architectural
control. If all owners in a peerage agree to this con-
version, then the peerage can handle its obligations
more efficiently. Obligations most naturally arise in
peerages, but they can also be imposed by a superior
on an inferior. In such cases, the superior can unilat-
erally require the inferior to use a system which treats
arange of obligations as an architectural control.

An exemption is an option for the non-provision
of a service. An obligation is often accompanied
by one or more exemptions indicating the cases in
which this obligation is not enforceable; and an ex-
emption is often accompanied by one or more obli-
gations indicating the cases where the exemption is
not in force. For example, an obligation might have
an exemption clause indicating that the obligation is
lifted if the creditor does not request the specified
service within one year.

Exemptions are diametrically opposed to obliga-
tions on a qualitative dimension which we call strict-
ness. The two poles of this dimension are allowance
and forbiddance. An obligation is a forbiddance of
a non-provision of service, whereas an exemption is
an allowance for a non-provision of service.

The second major dimension of a negotiated con-
trol is its activity, with poles of provision and non-
provision. A forbiddance of a provision is prohibi-
tion, and an allowance of a provision is called a per-
mission.

A superior may require their inferior systems
to obey an obligation with possible exemptions, or
a prohibition with possible permissions. An access
control system, in this light, is one in which the su-
perior has given a single permission to its inferiors —
the right to access some resource. An authorization,
in the context of an access control system, is a per-
mission for a specific user or group of users. The pri-
mary purpose of an identification in an access con-
trol system is to allow the guard to retrieve the rele-
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vant permission from the access control list. An au-
thentication, in this context, is a proof that a claimed
permission is valid. In other contexts, authentica-
tion may be used as an architectural control to limit
losses from falsely claimed exemptions, obligations,
and prohibitions.

We associate a class of requirements with each
type of control in our usual fashion, by consider-
ing the owner’s fears and desires. Some owners de-
sire their system to comply in a particular way, some
fear the consequences of a particular form of non-
compliance, some desire a particular form of non-
compliance, and some fear a particular form of non-
compliance. If an owner has feared or desired a con-
tingency, it is a security or functionality require-
ment. Any unconsidered cases should be classified,
by the analyst, as trusted or distrusted gaps in the
system’s specification depending on whether the an-
alyst thinks the owner is optimistic or pessimistic
about them. These gaps could be called the owner’s
assumptions about their system, but for logical co-
herence we will call them requirements.

Below, we name and briefly discuss each of the
four categories of requirements which are induced
by the four types of control signals.

An analyst generates probity requirements by
considering the owner’s fears and desires with
respect to the obligation controls received by their
system. For example, if an owner is worried that
their system might not discharge a specific type of
obligation, this is a security requirement for probity.
If an owner is generally optimistic about the way
their system handles obligations, this is a trust
requirement for probity.

Similarly, an analyst can generates diligence
requirements by considering permissions, efficiency
requirements by considering exemptions, and gui-
juity requirements by considering prohibitions.
Our newly coined word guijuity is an adaptation
of the Mandarin word guiju, and our intended
referent is the Confucian ethic of right action
through the following of rules: “GuiJu FangYuan
ZhiZhiYe”. Guijuity can be understood as the
previously unnamed security property which is
controlled by the X (execute permission) bit in
a Unix directory entry, where the R (read) and
W (write) permission bits are controlling the
narrower, and much more well-explored, prop-
erties of confidentiality and availability. In our
taxonomy, guijuity is a broad concept encom-
passing all prohibitive rules. Confidentiality is

a narrower concept, because it is a prohibition
only of a particular type of action, namely a data-
read.

The confidentiality, integrity, and availability re-
quirements arising in access control systems can be
classified clearly in our framework, if we restrict
our attention to those access control systems which
are implementing data security in a BLP or Biba
model. This restriction is common in most security
research. In this context, confidentiality and avail-
ability are subtypes of guijuity, and availability is
a subtype of efficiency. The confidentiality and in-
tegrity requirements arise because the hierarch has
prohibited anyone from reading or writing a docu-
ment without express authorization. The availability
requirement arises because the hierarch has granted
some authorizations, that is, some exemptions from
their overall prohibitions. No other requirements
arise because the BLP and Biba models cover only
data security, and thus the only possible control sig-
nals are requests for reads or writes.

If a system’s services are not clearly dichotomized
into reads and writes, or if it handles obligations or
exemptions, then the traditional CIA taxonomy of
security requirements is incomplete. Many authors
have proposed minor modifications to the CIA tax-
onomy in order to extend its range of application. For
example, some authors suggest adding authentica-
tion to the CIA triad. This may have the practical ad-
vantage of reminding analysts that an access-control
system is generally required to authenticate its users.
However, the resulting list is neither logically coher-
ent, nor is it a complete list of the requirement types
and required functions in a secured system.

We assert that all requirements can be discovered
from an analysis of a system’s desired and feared
responses to a control signal. For example, a non-
repudiation requirement will arise whenever an
owner fears the prospect that a debtor will refuse to
provide an obligated service. The resulting dispute,
if raised to the notice of a superior or a peerage,
would be judged in favor of the owner if their credit
obligation is non-repudiable. This line of analysis
indicates that a non-repudiation requirement is ul-
timately secured either legally or normally. Subcases
may be transformed into either an architectural or
economic requirement, if the owner is confident
that these subcases would be handled satisfacto-
rily by a non-repudiation protocol with the debtor.
Essentially, such protocols consist of a creditor’s
assertion of an obligation, along with a proof of
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validity sufficient to convince the debtor that it
would be preferable to honor the obligation than to
run the risks of an adverse legal or normal decision.

We offer one more example of the use of our re-
quirements taxonomy, in order to indicate that pro-
bity requirements can arise from a functional anal-
ysis as well as from a security analysis. An owner of
a retailing system might desire it to gain a reputa-
tion for its prompt fulfilment of orders. This desire
can be distinguished from an owner’s fear of gaining
a bad reputation or suffering a legal penalty for be-
ing unacceptably slow when filling orders. The fear
might lead to a security requirement with a long
response time in the worst case. The desire might
lead to a functional requirement for a short response
time on average. A competent analyst would con-
sider both types of requirements when modeling the
judgement actor for this system.

In most cases, an analyst need not worry about
the precise placement of a requirement within our
taxonomy. The resolution of such worries is a prob-
lem for theorists, not for practitioners. Subsequent
theoreticians may explore the implications of our
taxonomy, possibly refining it or revising it. Our
main hope when writing this chapter is that ana-
lysts will be able to develop more complete and accu-
rate lists of requirements by considering the owner’s
fears and desires about their system’s response to
an obligation, exemption, prohibition, or permis-
sion from a superior, inferior, or peer.

1.3 Dynamic, Collaborative,
and Future Secure Systems

The data systems described up to this point in our
exposition have all been essentially static. The pop-
ulation of users is fixed, the owner is fixed, consti-
tutional actors are fixed, and judgement actors are
fixed. The system structure undergoes, at most, mi-
nor changes such as the movement of an actor from
a trusted region to an untrusted region.

Most computerized systems are highly dynamic,
however. Humans take up and abandon aliases.
Aliases are authorized and de-authorized to ac-
cess systems. Systems are created and destroyed.
Sometimes systems undergo uncontrolled change,
for example when authorized users are permitted
to execute arbitrary programs (such as applets
encountered when browsing web-pages) on their
workstations. Any uncontrolled changes to a system
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may invalidate its assessor’s assumptions about
system architecture. Retrospective assessors in legal
and normative systems may be unable to collect the
relevant forensic evidence if an actor raises a com-
plaint or if the audit-recording systems were poorly
designed or implemented. Prospective assessors in
the architectural and economic systems may have
great difficulty predicting what a future adversary
might accomplish easily, and their predictions may
change radically on the receipt of additional infor-
mation about the system, such as a bug report or
news of an exploit.

In the Clark-Wilson model for secure computer
systems, any proposed change to the system as a re-
sult of a program execution must be checked by
a guard before the changes are committed irrevoca-
bly. This seems a very promising approach, but we
are unaware of any full implementations. One ob-
vious difficulty, in practice, will be to specify im-
portant security constraints in such a way that they
can be checked quickly by the guard. Precise secu-
rity constraints are difficult to write even for sim-
ple, static systems. One notable exception is a stan-
dalone database systems with a static data model.
The guard on such a system can feasibly enforce
the ACID properties: atomicity, consistency, isola-
tion, and durability. These properties ensure that the
committed transactions are not at significant risk to
threats involving the loss of power, hardware fail-
ures, or the commitment of any pending transac-
tions. These properties have been partly extended to
distributed databases. There has also been some re-
cent work on defining privacy properties which, if
the database is restricted in its updates, can be ef-
fectively secured against adversaries with restricted
deductive powers or access rights.

Few architectures are rigid enough to prevent
adverse changes by attackers, users, or technicians.
Owners of such systems tend to use a modified
form of the Clark-Wilson model. Changes may
occur without a guard’s inspection. However if any
unacceptable changes have occurred, the system
must be restored (“rolled back”) to a prior un-
tainted state. The system’s environment should also
be rolled back, if this is feasible; alternatively, the
environment might be notified of the rollback. Then
the system’s state, and the state of its environment,
should be rolled forward to the states they “should”
have been in at the time the unacceptable change
was detected. Clearly this is an infeasible require-
ment, in any case where complete states are not
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retained and accurate replays are not possible. Thus
the Clark-Wilson apparatus is typically a combi-
nation of filesystem backups, intrusion detection
systems, incident investigations, periodic inspec-
tions of hardware and software configurations, and
ad-hoc remedial actions by technical staff when-
ever they determine (rightly or wrongly) that the
current system state is corrupt. The design, control,
and assessment of this Clark-Wilson apparatus is
a primary responsibility of the IT departments in
corporations and governmental agencies.

We close this chapter by considering a recent set
of guidelines, from The Jericho Forum, for the de-
sign of computing systems. These guidelines define
a collaboration oriented architecture or COA [1.13].
Explicit management of trusting arrangements are
required, as well as effective security mechanisms,
so that collaboration can be supported over an un-
trusted internet between trusting enterprises and
people. In terms of our model, a COA is a sys-
tem with separately owned subsystems. The sub-
system owners may be corporations, governmental
agencies, or individuals. People who hold an em-
ployee role in one subsystem may have a trusted-
collaborator role in another subsystem, and the pur-
pose of the COA is to extend appropriate privileges
to the trusted collaborators. We envisage a desirable
COA workstation as one which helps its user keep
track of and control the activities of their aliases.
The COA workstation would also help its user make
good decisions regarding the storage, transmission,
and processing of all work-related data.

The COA system must have a service-oriented
architecture as a subsystem, so that its users can
exchange services with collaborators both within
and without their employer’s immediate control.
The collaborators may want to act as peers, setting
up a service for use within their peerage. Thusa COA
must support peer services as well as the traditional,
hierarchical arrangement of client-server comput-
ing. An identity management subsystem is required,
to defend against impersonations and also for the
functionality of making introductions and discover-
ies. The decisions of COA users should be trusted,
within a broad range, but security must be enforced
around this trust boundary.

The security and functionality goals of trustwor-
thy users should be enhanced, not compromised,
by the enforcement of security boundaries on their
trusted behavior. In an automotive metaphor, the
goal is thus to provide air bags rather than seat belts.
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Regrettably, our experience of contemporary com-
puter systems is that they are either very insecure,
with no effective safety measures; or they have intru-
sive architectures, analogous to seat belts, providing
security at significant expense to functionality. We
hope this chapter will help future architects design
computer systems which are functional and trust-
worthy for their owners and authorized users.
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Public-key cryptography ensures both secrecy and
authenticity of communication using public-key
encryption schemes and digital signatures, re-
spectively. Following a brief introduction to the
public-key setting (and a comparison with the clas-
sical symmetric-key setting), we present rigorous
definitions of security for public-key encryption and
digital signature schemes, introduce some number-
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theoretic primitives used in their construction, and
describe various practical instantiations.

2.1 Overview

Public-key cryptography enables parties to commu-
nicate secretly and reliably without having agreed
upon any secret information in advance. Public-key
encryption, one instance of public-key cryptography,
is used millions of times each day whenever a user
sends his credit card number (in a secure fashion)
to an Internet merchant. In this example, the mer-
chant holds a public key, denoted by pk, along with
an associated private key, denoted by sk; as indicated
by the terminology, the public key is truly “public,”
and in particular is assumed to be known to the
user who wants to transmit his credit card informa-
tion to the merchant. (In Sect. 2.2, we briefly discuss
how dissemination of pk might be done in practice.)
Given the public key, the user can encrypt a mes-
sage m (in this case, his credit card number) and
thus obtain a ciphertext ¢ that the user then sends
to the merchant over a public channel. When the
merchant receives ¢, it can decrypt it using the se-
cret key and recover the original message. Roughly
speaking (we will see more formal definitions later),
a “secure” public-key encryption scheme guarantees
that an eavesdropper — even one who knows pk! —
learns no information about the underlying message
m even after observing c.

The example above dealt only with secrecy. Dig-
ital signatures, another type of public-key cryptog-
raphy, can be used to ensure data integrity as in, for
example, the context of software distribution. Here,
we can again imagine a software vendor who has es-
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tablished a public key pk and holds an associated
private key sk; now, however, communication goes
in the other direction, from the vendor to a user.
Specifically, when the vendor wants to send a mes-
sage m (e.g., a software update) in an authenticated
manner to the user, it can first use its secret key to
sign the message and compute a signature o; both
the message and its signature are then transmitted to
the user. Upon obtaining (m, 0), the user can utilize
the vendor’s public key to verify that o is a valid sig-
nature on m. The security requirement here (again,
we will formalize this below) is that no one can gen-
erate a message/signature pair (m’, ¢’) that is valid
with respect to pk, unless the vendor has previously
signed m’ itself.

Itis quite amazing and surprising that public-key
cryptography exists at all! The existence of public-
key encryption means, for example, that two peo-
ple standing on opposite sides of a room, who have
never met before and who can only communicate by
shouting to each other, can talk in such a way that
no one else in the room can learn anything about
what they are saying. (The first person simply an-
nounces his public key, and the second person en-
crypts his message and calls out the result.) Indeed,
public-key cryptography was developed only thou-
sands of years after the introduction of symmetric-

key cryptography.

2.1.1 Public-Key Cryptography
vs. Symmetric-Key Cryptography

Itis useful to compare the public-key setting with the
more traditional symmetric-key setting, and to dis-
cuss the relative merits of each. In the symmetric-
key setting, two users who wish to communicate
must agree upon a random key k in advance; this
key must be kept secret from everyone else. Both en-
cryption and message authentication are possible in
the symmetric-key setting.

One clear difference is that the public-key set-
ting is asymmetric: one party generates (pk,sk)
and stores both these values, and the other party is
only assumed to know the first user’s public key pk.
Communication is also asymmetric: for the case of
public-key encryption, secrecy can only be ensured
for messages being sent fo the owner of the public
key; for the case of digital signatures, integrity is
only guaranteed for messages sent by the owner of
the public key. (This can be addressed in a num-
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ber of ways; the point is that a single invocation
of a public-key scheme imposes a distinction be-
tween senders and receivers.) A consequence is that
public-key cryptography is many-to-one/one-to-
many: a single instance of a public-key encryption
scheme is used by multiple senders to communicate
with a single receiver, and a single instance of a sig-
nature scheme is used by the owner of the public key
to communicate with multiple receivers. In contrast
to the example above, a key k shared between two
parties naturally makes these parties symmetric
with respect to each other (so that either party can
communicate with the other while maintaining
secrecy/integrity), while at the same time forcing
a distinction between these two parties for anyone
else (so that no one else can communicate securely
with these two parties).

Depending on the scenario, it may be more dif-
ficult for two users to establish a shared, secret key
than for one user to distribute its public key to the
other user. The examples provided in the previous
section provide a perfect illustration: it would sim-
ply be infeasible for an Internet merchant to agree on
a shared key with every potential customer. For the
software distribution example, although it might be
possible for the vendor to set up a shared key with
each customer at the time the software is initially
purchased, this would be an organizational night-
mare, as the vendor would then have to manage
millions of secret keys and keep track of the cus-
tomer corresponding to each key. Furthermore, it
would be incredibly inefficient to distribute updates,
as the vendor would need to separately authenticate
the update for each customer using the correct key,
rather than compute a single signature that could be
verified by everyone.

On the basis of the above points, we can ob-
serve the following advantages of public-key crypto-

graphy:

« Distributing a public key can sometimes be easier
than agreement on a shared, secret key.

» A specific case of the above point occursin “open
systems,” where parties (e.g., an Internet mer-
chant) do not know with whom they will be com-
municating in advance. Here, public-key cryp-
tography is essential.

o Public-key cryptography is many-to-one/one-
to-many, which can potentially ease storage
requirements. For example, in a network of n
users, all of whom want to be able to communi-
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cate securely with each other, using symmetric-
key cryptography would require one key per
pair of users for a total of (;) = 0(n?) keys.
More importantly, each user is responsible for
managing and securely storing n — 1 keys. If
a public-key solution is used, however, we re-
quire only n public keys that can be stored in
a public directory, and each user need only store
a single private key securely.

The primary advantage of symmetric-key cryptog-
raphy is its efficiency; roughly speaking, it is 2-3
orders of magnitude faster than public-key cryp-
tography. (Exact comparisons depend on a number
of factors.) Thus, when symmetric-key cryptogra-
phy is applicable, it is preferable to use it. In fact,
symmetric-key techniques are used to improve the
efficiency of public-key encryption; see Sect. 2.3.

2.1.2 Distribution of Public Keys

In the remainder of this chapter, we will simply as-
sume that any user can obtain an authentic copy
of any other user’s public key. In this section, we
comment briefly on how this is actually achieved in
practice.

There are essentially two ways a user (say, Bob)
can learn about another user’s (say, Alice’s) public
key. If Alice knows that Bob wants to communicate
with her, she can at that point generate (pk, sk) (if
she has not done so already) and send her public key
in the clear to Bob. The channel over which the pub-
lic key is transmitted must be authentic (or, equiva-
lently, we must assume a passive eavesdropper), but
can be public.

An example where this option might be applica-
ble is in the context of software distribution. Here,
the vendor can bundle the public key along with the
initial copy of the software, thus ensuring that any-
one purchasing its software also obtains an authentic
copy of its public key.

Alternately, Alice can generate (pk,sk) in ad-
vance, without even knowing that Bob will ever want
to communicate with her. She can then widely dis-
tribute her public key by, say, placing it on her Web
page, putting it on her business cards, or publishing
it in some public directory. Then anyone (Bob in-
cluded) who wishes to communicate with Alice can
look up her public key.

Modern Web browsers do something like this in
practice. A major Internet merchant can arrange to
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have its public key “embedded” in the software for
the Web browser itself. When a user visits the mer-
chant’s Web page, the browser can then arrange to
use the public key corresponding to that merchant
to encrypt any communication. (This is a simplifica-
tion of what is actually done. More commonly what
is done is to embed public keys for certificate author-
ities in the browser software, and these keys are then
used to certify merchants’ public keys. A full dis-
cussion is beyond the scope of this survey, and the
reader is referred to Chap. 11 in [2.1] instead.)

2.1.3 Organization

We divide our treatment in half, focusing first on
public-key encryption and then on digital signa-
tures. We begin with a general treatment of public-
key encryption, without reference to any particu-
lar instantiations. Here, we discuss definitions of
security and “hybrid encryption,” a technique that
achieves the functionality of public-key encryption
with the asymptotic efficiency of symmetric-key en-
cryption. We then consider two popular classes of
encryption schemes (RSA and El Gamal encryption,
and some variants); as part of this, we will develop
some minimal number theory needed for these re-
sults. Following this, we turn to digital signature
schemes. Once again, we begin with a general dis-
cussion before turning to the concrete example of
RSA signatures. We conclude with some recommen-
dations for further reading.

2.2 Public-Key Encryption:
Definitions

Given the informal examples from Sect. 2.1, we jump
right in with a formal definition of the syntax of
a public-key encryption scheme. The only aspect of
this definition not covered previously is the pres-
ence of a security parameter denoted by n. The secu-
rity parameter provides a way to study the asymp-
totic behavior of a scheme. We always require our
algorithms to run in time polynomial in n, and our
schemes offer protection against attacks that can be
implemented in time polynomial in #. We also mea-
sure the success probability of any attack in terms
of n, and will require that any attack (that can be
carried out in polynomial time) be successful with
probability at most negligible in n. (We will define
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“negligible” later.) One can therefore think of the
security parameter as an indication of the “level of
security” offered by a concrete instantiation of the
scheme: as the security parameter increases, the run-
ning time of encryption/decryption goes up but the
success probability of an adversary (who may run for
more time) goes down.

Definition 1. A public-key encryption scheme con-
sists of three probabilistic polynomial-time algo-
rithms (Gen, Enc, Dec) satisfying the following:

1. Gen, the key-generation algorithm, takes as in-
put the security parameter n and outputs a pair
of keys (pk, sk). The first of these is the public
key and the second is the private key.

2. Enc, the encryption algorithm, takes as input
a public key pk and a message m, and outputs
a ciphertext c. We write this as ¢ < Ency(m),
where the “«” highlights that this algorithm
may be randomized.

3. Dec, the deterministic decryption algorithm,
takes as input a private key sk and a ciphertext c,
and outputs a message m or an error symbol L.
We write this as m := Decg(c).

We require that for all n, all (pk,sk) output by
Gen, all messages m, and all ciphertexts ¢ output by
Encpi(m), we have Decy(c) = m. (In fact, in some
schemes presented here this holds except with expo-
nentially small probability; this suffices in practice.)

2.2.1 Indistinguishability

What does it mean for a public-key encryption
scheme to be secure? A minimal requirement would
be that an adversary should be unable to recover m
given both the public key pk (which, being public,
we must assume is known to the attacker) and the
ciphertext Encyx(m). This is actually a very weak
requirement, and would be unsuitable in practice.
For one thing, it does not take into account an
adversary’s possible prior knowledge of m; the
adversary may know, say, that m is one of two pos-
sibilities and so might easily be able to “guess” the
correct m given a ciphertext. Also problematic is
that such a requirement does not take into account
partial information that might be leaked about m:
it may remain hard to determine m even if half of
m is revealed. (And a scheme would not be very
useful if the half of m is revealed is the half we care
about!)

2 Public-Key Cryptography

What we would like instead is a definition along
the lines of the following: a public-key encryption
scheme is secure if pk along with encryption of
m (with respect to pk) together leak no informa-
tion about m. It turns out that this is impossible to
achieve if we interpret “leaking information” strictly.
If, however, we relax this slightly, and require only
that no information about m is leaked to a computa-
tionally bounded eavesdropper except possibly with
very small probability, the resulting definition can be
achieved (under reasonable assumptions). We will
equate “computationally bounded adversaries” with
adversaries running in polynomial time (in #), and
equate “small probability” with negligible, defined as
follows:

Definition 2. A function f:N — [0, 1] is negligible
if for all polynomials p there exists an integer N such
that f(n) <1/p(n) foralln > N.

In other words, a function is negligible if it is
(asymptotically) smaller than any inverse polyno-
mial. We will use negl to denote some arbitrary
negligible function.

Although the notion of not leaking information
to a polynomial-time adversary (except with negli-
gible probability) can be formalized, we will not do
so here. It turns out, anyway, that such a definition is
equivalent to the following definition which is much
simpler to work with. Consider the following “game”
involving an adversary A and parameterized by the
security parameter n:

1. Gen(n) isrun to obtain (pk, sk). The public key
Pk is given to A.

2. A outputs two equal-length messages mo, m,.
3. Arandom bit b is chosen, and m,, is encrypted.
The ciphertext ¢ «< Encyx(m; ) is given to A.

4. Aoutputs a bit b’, and we say that A succeeds if
b =b.

(The restriction that mo, m; have equal length is to
prevent trivial attacks based on the length of the re-
sulting ciphertext.) Letting Pr4[Succ] denote the
probability with which A succeeds in the game de-
scribed above, and noting that it is trivial to succeed
with probability 1, we define the advantage of A in
the game described above as | Pr 4 [Succ] - 1. (Note
that for each fixed value of n we can compute the ad-
vantage of 4; thus, the advantage of A can be viewed
as a function of n.) Then:
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Definition 3. A public-key encryption scheme
(Gen, Enc, Dec) is secure in the sense of indistin-
guishability if for all A running in probabilistic
polynomial time, the advantage of A in the game
described above is negligible (in #).

The game described above, and the resulting defini-
tion, corresponds to an eavesdropper A who knows
the public key, and then observes a ciphertext ¢ that
it knows is an encryption of one of two possible mes-
sages mo, mi1. A scheme is secure if, even in this case,
a polynomial-time adversary cannot guess which of
mo or m; was encrypted with probability signifi-
cantly better than 3.

An important consequence is that encryption
must be randomized if a scheme is to possibly satisfy
the above definition. To see this, note that if encryp-
tion is not randomized, then the adversary A who
computes ¢o := Enc,i(mo) by itself (using its knowl-
edge of the public key), and then outputs 0 if and
only if ¢ = ¢y, will succeed with probability 1 (and
hence have nonnegligible advantage). We stress that
this is not a mere artifact of a theoretical definition;
instead, randomized encryption is essential for
security in practice.

2.2.2 Security for Multiple Encryptions

It is natural to want to use a single public key for the
encryption of multiple messages. By itself, the defi-
nition of the previous section gives no guarantees in
this case. We can easily adapt the definition so that
it does. Consider the following game involving an
adversary A and parameterized by the security pa-
rameter u:

1. Gen(n) isrun to obtain (pk, sk). The public key
Pk is given to A.

2. Arandombit b is chosen, and A repeatedly does
the following as many times as it likes:

« A outputs two equal-length messages
mo, Mj.

o The message m,; is encrypted, and the ci-
phertext ¢ < Ency(m; ) is given to A. (Note
that the same b is used each time.)

3. Aoutputs a bit b’, and we say that A succeeds if
b =b.

Once again, we let Pr 4 [Succ] denote the probability
with which A succeeds in the game described above,
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and define the advantage of A in the game described
above as | Pra[Succ] — 1|. Then:

Definition 4. A public-key encryption scheme
(Gen, Enc, Dec) is secure in the sense of multiple-
message indistinguishability if for all A running in
probabilistic polynomial time, the advantage of A
in the game described above is negligible (in #).

It is easy to see that security in the sense of
multiple-message indistinguishability implies secu-
rity in the sense of indistinguishability. Fortunately,
it turns out that the converse is true as well. A proof
is not trivial and, in fact, the analogous statement is
false in the symmetric-key setting.

Theorem 1. A public-key encryption scheme is secure
in the sense of multiple-message indistinguishability if
and only if it is secure in the sense of indistinguisha-
bility

Given this, it suffices to prove security of a given en-
cryption scheme with respect to the simpler Defini-
tion 3, and we then obtain security with respect to
the more realistic Definition 4 “for free” The result
also implies that any encryption scheme for single-
bit messages can be used to encrypt arbitrary-length
messages in the obvious way: independently encrypt
each bit and concatenate the result. (That is, the
encryption of a message m = my,...,me, where
m; € {0,1}, is given by the ciphertextc = cy,. .., ce,
where ¢; < Enc,i(m;).) We will see a more efficient
way of encrypting long messages in Sect. 2.3.

2.2.3 Security Against
Chosen-Ciphertext Attacks

In our discussion of encryption thus far, we have
only considered a passive adversary who eavesdrops
on the communication between two parties. For
many real-world uses of public-key encryption,
however, one must also be concerned with active
attacks whereby an adversary observes some cipher-
text ¢ and then sends his own ciphertext ¢’ — which
may depend on ¢ - to the recipient, and observes the
effect. This could potentially leak information about
the original message, and security in the sense of
indistinguishability does not guarantee otherwise.
To see a concrete situation where this leads to
a valid attack, consider our running example of
a user transmitting his credit card number to an
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on-line merchant holding public key pk. Assume
further that the encryption scheme being used is
the one discussed at the end of the previous section,
where encryption is done bit by bit. If the underlying
single-bit encryption scheme is secure in the sense
of indistinguishability, then so is the composed
scheme. Now, say an adversary observes a cipher-
text ¢ = ci,...,ce being sent to the merchant, and
then proceeds as follows for arbitrary i € {1,..., ¢}
Compute ¢; < Enc,(0), and forward the ciphertext

7 def

U
C =C1...5Ci-1,€C;5Cit15...,Cp

to the merchant (along with the original user’s
name); then observe whether the merchant accepts
or rejects this credit card number. If the original
credit card number was m, ..., me, then the credit
card number the merchant obtains upon decryption
of ¢’ ismy,...,mi_1,0, Mis1,...,me. So if the mer-
chant accepts this credit card number, the adversary
learns that m; = 0, whereas if the merchant rejects
it, the adversary learns that m; = 1.

The attack described above, and others like it,
are encompassed by a very strong attack termed
a chosen-ciphertext attack. In this attack model, we
assume the adversary is able to request decryptions
of ciphertexts of its choice (subject to a technical
restriction; see below). Formally, we again consider
a game involving an adversary A and parameterized
by the security parameter n:

1. Gen(n) is run to obtain (pk, sk). The public key
pk is given to A.

2. A outputs two equal-length messages mo, m,.
3. Arandom bit b is chosen, and m,, is encrypted.
The ciphertext ¢ < Encyx(m,) is given to A.

4. Ais then allowed to repeatedly request the de-
cryptions of any ciphertexts of its choice except
for c itself. When A requests the decryption of
ciphertext ¢’, it is given m’ := Decg(c).

5. A outputs a bit b’, and we say that A succeeds if
b'=b.

(The above definition is a slight simplification of the
actual definition.) Once again, we let Pr 4 [Succ] de-
note the probability with which A succeeds in the
game described above, and define the advantage of
Ain the game described above as | Pr4 [Succ] — 1|,

Definition 5. A public-key encryption scheme
(Gen, Enc, Dec) is secure against chosen-ciphertext
attacks if for all A running in probabilistic polyno-
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mial time, the advantage of A in the game described
above is negligible (in n).

It is easy to see that the scheme discussed ear-
lier in this section, where encryption is done bit by
bit, is not secure against a chosen-ciphertext attack:
given a ciphertext c (as above), an adversary can re-
quest decryption of the ciphertext ¢’ (constructed as
above) and thus learn all but one of the bits of the
original message m. In fact, is not hard to see that
any scheme for which an attack of the type sketched
earlier succeeds cannot be secure against a chosen-
ciphertext attack. More difficult to see (and we will
not prove it here) is that the converse is also true;
that is, any scheme secure against chosen-ciphertext
attacks is guaranteed to be resistant to any form of
the attack described above.

2.3 Hybrid Encryption

Encryption of a short block of text, say, 128Dbit in
length, is roughly 3 orders of magnitude slower us-
ing public-key encryption than using symmetric-
key encryption. This huge disparity can be mitigated
when encrypting long messages using a technique
known as hybrid encryption. The basic idea is that
to encrypt a (long) message m, the sender does the
following:

1. Choose a short, random key k, and encrypt k
using the public-key scheme.

2. Encrypt m using a symmetric-key scheme and
the key k.

More formally, if we let (Gen, Enc,Dec) denote
apublic-key encryption scheme and let (Enc’, Dec’)
denote a symmetric-key encryption scheme, the
resulting ciphertext is now given by

Encyi (k), Ency(m) .

Decryption can be done by reversing the above
steps: the receiver decrypts the first component of
the ciphertext, using its private key sk, to obtain k;
given k, it can then decrypt the second component
of the ciphertext to recover the message. That is,
given ciphertext ¢ = (c1, ¢2), the recipient computes
k := Decy(c1) and then outputs m := Dec; (c2).
Hybrid encryption is remarkable in that it gives
the functionality of public-key encryption with the
asymptotic efficiency of symmetric-key encryption!
We do not go into a full discussion here (indeed,
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we have not defined notions of security for the
symmetric-key setting) but only state the following:

Theorem 2. If both (Gen,Enc,Dec) and (Enc’,
Dec') are secure in the sense of indistinguishabil-
ity (respectively, secure against chosen-ciphertext
attacks), then the hybrid encryption scheme given
above is also secure in the sense of indistinguisha-
bility (respectively, secure against chosen-ciphertext
attacks).

See Sect. 10.3 in [2.1] for details.

2.4 Examples of Public-Key
Encryption Schemes

In this section we describe two popular public-key
encryption schemes (and some variants thereof):
RSA encryption [2.2] and El Gamal encryp-
tion [2.3]. In each case, we first develop the requisite
number-theoretic background at a superficial level.
For the most part, we state results without proof;
for a thorough exposition with proofs, the reader is
referred to [2.1].

2.4.1 RSA Encryption

The RSA Problem

The factoring assumption can be stated, informally,
as the assumption that there is no polynomial-time
algorithm for finding the factors of a number N that
is a product of two large, randomly chosen primes.
The factoring assumption as stated is not very use-
ful for constructing efficient cryptographic schemes
(though there are problems known to be as hard as
factoring that are well-suited to constructing effi-
cient cryptosystems). What is often done instead is
to consider problems related to factoring. The RSA
problem is one example, and we introduce it now.

Let N be a product of two distinct primes p and
q. Consider the group

* def

Zy={x]|0<x<N, ged(x,N)=1}  (2.1)

with respect to multiplication modulo N. Let

¢(N) &ef (p—1)- (g - 1) and note that ¢(N)

is exactly the number of elements in Zjy. This in
turn implies that, for any integers e,d satisfying
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ed =1 mod ¢(N), and any x € Zy;, we have

(x°)" = x mod N. (2.2)

In an instance of the RSA problem, we are given

N, e, and y def x° mod N for a random x € Zj,
and our goal is to recover x. (Note that there is
a unique solution x satisfying x° = y mod N,
and so the solution x is uniquely determined
given (N, e, y). Throughout, we assume that N
is a product of two distinct primes, and that e is
relatively prime to ¢ (N).) If the factors p, q of N are
also known, then ¢(N) can be calculated; hence,
d = ¢ mod ¢(N) can be computed and we can
recover x using (2.2). If the factorization of N is
not known, though, there is no known efficient
algorithm for computing d of the required form
without first factoring N. In fact, finding such a d
is known to be equivalent to factoring N; under
the assumption that factoring is hard, finding an
appropriate d is therefore hard as well.

Might there be some other efficient algorithm for
computing x from (N, e, y)? The RSA assumption
is that there is not. More formally, let GenRSA be
a probabilistic polynomial-time algorithm that on
input of a security parameter n outputs (N, e,d),
with N a product of two n-bit primes and ed =
1 mod ¢(N). Then the RSA problem is hard rela-
tive to GenRSA if for any probabilistic polynomial-
time algorithm A, the probability that .4 solves the
RSA problem on instance (N,e,y) is negligible.
(The probability is taken over the output (N, e, d) of
GenRSA, as well as random choice of x € Z},, where
y = x° mod N.) Clearly, the RSA assumption im-
plies that factoring is hard (since, as noted earlier,
factoring N allows a solution to the RSA problem to
be computed); the converse is not known to be true.

Textbook RSA Encryption

The discussion in the previous section suggests the
following encryption scheme, called “textbook RSA
encryption,” based on any GenRSA relative to which
the RSA problem is hard:

Textbook RSA Encryption

Gen: Run GenRSA(n) to obtain (N,e,d).
Output pk = (N, e) and sk = (N, d).
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Enc: To encrypt a message m € Zy using the
public key pk = (N, e), compute the cipher-
text ¢ := m® mod N.

Dec: To decrypt a ciphertext ¢ € Zy using the
private key sk = (N, d), compute the message
m :=c“ mod N.

Decryption always succeeds since
d d
c=(m°)" =mmod N,

using (2.2).

Is this scheme secure? It cannot be secure in the
sense of indistinguishability since encryption in this
scheme is deterministic! (See the end of Sect. 2.2.1.)
Moreover, it can be shown that the ciphertext in the
textbook RSA encryption scheme leaks specific bits
of information about the message m. On the posi-
tive side, the RSA assumption is equivalent to saying
that given an encryption of a random message m, it
is hard for an adversary to recover m in its entirety.
But this is a very weak guarantee indeed.

Padded RSA

One simple way to address the deficiencies of the
textbook RSA encryption scheme is to randomly pad
the message before encrypting. Let £ be a function
with (n) < 2n-2,andlet | N | denote the bit-length
of N. Consider the following scheme:

¢-Padded RSA Encryption

Gen: Run GenRSA(n) to obtain (N,e,d).
Output pk = (N, e) and sk = (N, d).

Enc: To encrypt m € {0,1}*™, choose
random r € {0, 1}INI=¢(M=1 and interpret
r|m as an element of Zy in the natural way,
where “||” denotes concatenation. Output ¢ :=
(rm)® mod N.

Dec: To decrypt a ciphertext ¢ € Zjy using
the private key sk = (N, d), compute #i :=
¢? mod N and output the £(n) low-order bits
of m.
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Essentially this approach (up to some technical de-
tails) is used in the RSA Laboratories Public-Key
Cryptography Standard (PKCS) #1 v1.5 [2.4].

What can we prove about this scheme? Unfortu-
nately, the only known results are at the extremes.
Specifically, if € is very large — namely, such that
2n — £(n) = O(logn) - then the scheme is inse-
cure. This is simply because then the random string
r used to pad the message is too short, and can be
found using an exhaustive search through polyno-
mially many possibilities. If € is very small - namely,
¢(n) = O(logn) - then it is possible to prove that
¢-padded RSA encryption is secure in the sense of
indistinguishability as long as the RSA problem is
hard relative to GenRSA. Such a result, though in-
teresting, is not very useful in practice since it gives
a scheme that is too ineflicient. £-padded RSA en-
cryption becomes practical when €(n) = O(n); in
this regime, however, we do not currently have any
proof that the scheme is secure.

Security Against Chosen-Ciphertext Attacks

The textbook RSA encryption scheme is completely
vulnerable to a chosen-ciphertext attack, in the fol-
lowing sense: Given a public key pk = (N, e) and
a ciphertext ¢ = m° mod N for an unknown mes-
sage m, an adversary can choose a random r and
form the ciphertext

=r"-cmod N .

Then, given the decryption m’ of this ciphertext, the
adversary can recover m = m’/r mod N. This suc-
ceeds because

m'[r= () [r=(rm)[r
=r. mEd/r =rm/r=mmodN .
Padded RSA encryption is not as trivially vul-
nerable to a chosen-ciphertext attack. In 1998, how-
ever, a chosen-ciphertext against the PKCS #1 v1.5
standard (which, as we have noted, can be viewed
as a form of padded RSA) was demonstrated [2.5].
This prompted efforts to develop and standardize
a new variant of RSA encryption, which culminated
in the PKCS #1 v2.1 standard [2.6]. This scheme
can be proven secure against chosen-ciphertext at-
tacks based on the RSA assumption [2.7, 8], in the
so-called random oracle model [2.9]. (Proofs in the
random oracle model treat hash functions as being
truly random, something which is not true in reality.
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See Chapt. 13 in [2.1] for further discussion, includ-
ing the pros and cons of proofs in this model.)

2.4.2 El Gamal Encryption

The Discrete Logarithm
and Diffie-Hellman Problems

Let G be a cyclic group of prime order g with gener-
ator g. This means that G = {go,gl, .. ,g‘r1 }, and
so for every element h € G there is a unique integer
x € {0,...,q9 — 1} such that g* = h. We call such
x the discrete logarithm of h with respect to g, and
denote it by x = log, h. In an instance of the discrete
logarithm problem we are given a group G, the group
order ¢, a generator g of G, and an element h € G;
the goal is to compute log, h.

Difficulty of the discrete logarithm problem de-
pends greatly on the specific group G under consid-
eration. For certain groups, the discrete logarithm
problem can be solved in polynomial time. For other
groups, however, no polynomial-time algorithm for
computing discrete logarithms is known. Two spe-
cific examples, used widely in cryptography, include:

1. Let p = ag + 1, where both p and g are prime
and g 1 «. Take G to be the subgroup of order g
in Zj (see (2.1)).

2. Take G to be the group of points on an ellip-
tic curve. Such groups are popular because they
can be chosen such that the best known algo-
rithms for computing discrete logarithms re-
quire exponential time (in the size of the group).
This means that smaller groups can be chosen
while obtaining equivalent security, thus yield-
ing more efficient schemes.

For the remainder of our discussion, we will treat G
generically since nothing we say will depend on the
exact choice of the group.

To formalize the hardness of the discrete loga-
rithm problem, consider a polynomial-time group-
generation algorithm G that on input n outputs
a group G, its order g, and a generator g of G. The
discrete logarithm problem is hard relative to G if
for any probabilistic polynomial-time algorithm A,
the probability that A solves the discrete logarithm
problem on instance (G, g, g, h) is negligible. (The
probability is taken over the output (G, g, g) of G,
as well as random choice of h € G.) The discrete
logarithm assumption is simply the assumption
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that there exists a G relative to which the discrete
logarithm problem is hard.

For applications to encryption, we need to con-
sider stronger assumptions. We first define some no-
tation. Fixing a group G with generator g, for any
hi, hy € G let DHg (hy, hy) € g% M08 That is,
if hy = ¢g* and h; = ¢, then

DHg(hl,hz) :ng = ]’1{ = ]’1;C .

The decisional Diffie-Hellman (DDH) assumption is
that it is infeasible for any polynomial-time algo-
rithm to distinguish DHg(h1, h2) from a random
group element. Formally, the DDH problem is hard
relative to G if for all probabilistic polynomial-time
algorithms A4, the following is negligible:

|Pr[A(G.q.8.¢".¢".8") =1]
-Pr[A(G,q.¢.¢".¢".8") =1]l,

where the probabilities are taken over the output
(G,q,g) of G, and random x, y,z € {0,...,g - 1}.
It is not hard to see that hardness of the DDH prob-
lem implies hardness of the discrete logarithm prob-
lem (as DHg (A1, hy) can be computed easily given
log ; h); the converse is not believed to be true, in
general. For specific groups used in cryptographic
applications, however, the best known algorithms
for solving the DDH problem work by first solving
the discrete logarithm problem.

El Gamal Encryption

Let G be a group-generation algorithm relative to
which the DDH problem is hard. The El Gamal en-
cryption scheme follows:

El Gamal Encryption

Gen: Run G(n) to obtain (G, g, g). Choose
random x € {0, ...,q — 1}, and compute h =
g". Output pk = (G, g, g, h) and sk = x.

Enc: To encrypt a message m € G using the
public key pk = (G, g, g, h), choose random
r € {0,...,q — 1} and output the ciphertext
ci=(g,h"-m).

Dec: To decrypt a ciphertext ¢ = (c1, ¢2) using
the private key sk = x, compute the message
m:=cyfci.
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Decryption always succeeds since

o hW-m h-m h-m _
g @ @y e T
The El Gamal encryption scheme can be shown

to be secure with respect to indistinguishability
whenever the DDH problem is hard relative to G.
Intuitively, this is because (g, 4, g", h") (where the
first two components are from the public key, and
the latter two arise during computation of the ci-
phertext) forms an instance of the DDH problem; if
the DDH problem is hard, then an adversary cannot
distinguish A" from a random group element. But
multiplying the message m by a random group
element hides all information about m.

Theorem 3. Ifthe DDH problem is hard relative to G,
then the El Gamal encryption scheme is secure in the
sense of indistinguishability.

Security Against Chosen-Ciphertext Attacks

As in the case of textbook RSA encryption, the
El Gamal encryption scheme is very susceptible to
chosen-ciphertext attacks. Given a ciphertext ¢ =
(c1, c2) encrypted for a receiver with public key pk =
(G, g, g, h), an adversary can construct the cipher-
text ¢’ = (c1, c2- g) and request decryption; from the
resulting message m’ the adversary can reconstruct
the original message m := m’/g. This works since if
¢ is an encryption of m, then we can write

a=g, co=h-m

for some r; but then ¢, = h" - (mg), and so ¢’ is an
encryption of m’ = mg.

In a breakthrough result, Cramer and
Shoup [2.10] constructed a more complex ver-
sion of El Gamal encryption that can be proven
secure against chosen-ciphertext attacks based
on the Diffie-Hellman assumption. The Cramer-
Shoup encryption scheme is (roughly) only 2-3
times less efficient than El Gamal encryption.

2.5 Digital Signature Schemes:
Definitions

We now turn our attention to the second impor-
tant primitive in the public-key setting: digital signa-
tures. We begin by defining the syntax of a signature
scheme.
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Definition 6. A signature scheme consists of three
probabilistic polynomial-time algorithms (Gen,
Sign, Vrfy) satisfying the following:

1. Gen, the key-generation algorithm, takes as in-
put the security parameter »n and outputs a pair
of keys (pk, sk). The first of these is the public
key and the second is the private key.

2. Sign, the signing algorithm, takes as input a pri-
vate key sk and a message m, and outputs a sig-
nature 0. We write this as 0 < Sign, (m).

3. Vrfy, the deterministic verification algorithm,
takes as input a public key pk, a message m,
and a signature o. It outputs a bit b, with b = 1
denoting “valid” and b = 0 denoting “invalid”
We write this as b := Vrfy, (m, 7).

We require that for all n, all (pk,sk) output by
Gen, all messages m, and all signatures o output
by Signy, (m), we have Vrfy,, (m,0) = 1. (In fact,
in some schemes presented here this holds except
with exponentially small probability; this suffices in
practice.)

As motivated already in Sect. 2.1, the security
definition we desire is that no polynomial-time ad-
versary should be able to generate a valid signature
on any message that was not signed by the legiti-
mate owner of the public key. We consider a very
strong form of this definition, where we require the
stated condition to hold even if the adversary is al-
lowed to request signatures on arbitrary messages of
its choice.

Formally, consider the following game involving
an adversary A and parameterized by the security
parameter n:

1. Gen(n) isrun to obtain (pk, sk). The public key
pk is given to A.

2. A can repeatedly request signatures on mes-
sages my, ... In response to each such request,
A is given g; < Signsk(m;). Let M denote the
set of messages for which A has requested a sig-
nature.

3. A outputs a message/signature pair (m, o).

4. We say that A succeeds if m ¢ M and
Vrfy, (m,0) = 1.

Given this, we have:
Definition 7. Signature scheme (Gen, Sign, Vrfy) is

existentially unforgeable under an adaptive chosen-
message attack (or, simply, secure) if for all A run-
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ning in probabilistic polynomial time, the success
probability of A in the game described above is neg-
ligible (in n).

The definition might at first seem unreasonably
strong in two respects. First, the adversary is allowed
to request signatures on arbitrary messages of its
choice. Second, the adversary succeeds if it can forge
a signature on any (previously unsigned) message,
even if this message is a meaningless one. Although
both of these components of the definition may, at
first sight, seem unrealistic for any “real-world” us-
age of a signature scheme, we argue that this is not
the case. Signature schemes may be used in a va-
riety of contexts, and in several scenarios it may
well be possible for an adversary to obtain signa-
tures on messages of its choice, or may at least have
a great deal of control over what messages get signed.
Moreover, what constitutes a “meaningful” message
is highly application dependent. If we use a signa-
ture scheme satisfying a strong definition of the form
given above, then we can be confident when using
the scheme for any application. In contrast, trying
to tailor the definition to a particular usage scenario
would severely limit its applicability.

2.5.1 Replay Attacks

An important point to stress is that the above defi-
nition of security says nothing about replay attacks,
whereby an adversary resends a message that was
previously signed legitimately. (Going back to the
software distribution example, this would mean
that the adversary replays a previous update while
blocking the latest update.) Although replay attacks
are often a serious threat in cryptographic proto-
cols, there is no way they can be prevented using
a signature scheme alone. Instead, such attacks
must be dealt with at a higher level. This makes
good sense since, indeed, the decision as to whether
a replayed messages should be considered valid or
not is application-dependent.

One standard way of preventing replay attacks
in practice is to use time-stamps. So, for example,
a signer might append the current time to a message
before signing it (and include this time-stamp along
with the message). A recipient would verify the sig-
nature as usual, but could then also check that the
given time-stamp is within some acceptable skew of
its local time.
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As in the case of public-key encryption, computing
a signature on a short block of text can be 2-3 or-
ders of magnitude slower than computing a message
authentication code (the symmetric-key equivalent
of signatures). Fortunately, and in a way analogous
to hybrid encryption, there is a method called the
hash-and-sign paradigm that can be used to sign long
messages at roughly the same cost as short ones. Ap-
plying this approach, we obtain the functionality of
a signature scheme at roughly the asymptotic cost of
a message authentication code.

The underlying primitive used in the hash-and-
sign paradigm is a collision-resistant hash function.
We do not give a formal definition here, but instead
keep our discussion at a relatively informal level.
A hash function H is a function that maps arbitrary-
length inputs to short, fixed-length outputs (in prac-
tice, around 160 bits). A collision in a hash function
H is a pair of distinct inputs x, x" such that H(x) =
H(x"). Collisions certainly exist, since the domain
of H is much larger than its range. We say that H
is collision-resistant if it is hard for any polynomial-
time adversary to find any collision in H.

Collision-resistant hash functions can be con-
structed on the basis of number-theoretic assump-
tions, including the RSA assumption and the dis-
crete logarithm assumption. In practice, however,
hash functions constructed in this manner are con-
sidered too inefficient. SHA-1, a function designed
to be roughly as efficient (per block of input) as
a block cipher, is widely used as a collision-resistant
hash function, though it is likely to be replaced in
the next few years.

We can now describe the hash-and-sign
paradigm. Let (Gen,Sign,Vrfy) be a secure sig-
nature scheme for short messages, and let H be
a collision-resistant hash function. Consider the
following scheme for signing arbitrary-length mes-
sages: the public and private keys are as in the
original scheme. To sign message M, the signer
computes m := H(M) and then outputs the signa-
ture o < Sign, (m). To verify the signature o on the
message M, the receiver recomputes m = H(M)

and then checks whether Vrfy,, (m, o) il
We state the following without proof:

Theorem 4. If (Gen, Sign, Vrfy) is secure and H is
a collision-resistant hash function, then the “hash-
and-sign” scheme described above is also secure.
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Two signature schemes enjoy widespread use: (vari-
ants of) the hashed RSA signature scheme we will
present below, and the Digital Signature Standard
(DSS) [2.11]. Security of DSS is related to the hard-
ness of the discrete logarithm problem, though no
proof of security for DSS (based on any assumption)
is known. Since DSS is also a bit more complicated
to describe, we focus only on RSA-based signatures
here.

2.7.1 Textbook RSA Signatures

It will be instructive to first consider the so-called
textbook RSA signature scheme [2.2]. The scheme
gives an example of how digital signatures might be
constructed based on the RSA problem and, though
it is insecure, the attacks on the scheme are interest-
ing in their own right.

Textbook RSA Signatures

Gen: Run GenRSA(n) to obtain (N,e,d).
Output pk = (N, e) and sk = (N, d).

Sign: To sign a message m € Zy using the pri-
vate key sk = (N, d), compute the signature
0 =m" mod N.

Vrfy: To verify a signature o € Zy on a mes-

sage m € Z, output 1 iff 0° < m mod N.

Verification of a legitimate signature always suc-
ceeds since

o°=(m") =mmod N,

using (2.2).

At first blush, the textbook RSA signature
scheme appears secure as long as the RSA problem
is hard: generating a signature on m requires com-
puting the eth root of m, something we know to be
hard. This intuition is misleading, however, since
a valid attack (cf. Definition 7) does not require
us to forge a valid signature for a given message
m, but only to produce a valid message/signature
pair for any m of our choosing! A little thought
shows that this is easy to do: choose arbitrary ¢ and
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compute m := ¢°; then output ¢ as a forgery on
the message m. It is immediately obvious that this
attack always succeeds.

Although the attack just described shows that
textbook RSA signatures are insecure, it is some-
how not completely satisfying since the adversary
has limited control over the message m whose sig-
nature it is able to forge. By allowing an adversary to
obtain signatures on any two messages of its choice,
though, the adversary can forge a valid signature on
any desired message. Say we want to forge a signa-
ture on the message m. Choose arbitrary r € Zy
(with r # 1) and obtain signature o, on r, and sig-

def
nature ¢’ on m’ = r-m mod N. Then output the
forgery o'/, mod N on the message m. To see that
this attack succeeds, observe that

(0—) =(a) = i mod N .
oy (0r)¢ r

2.7.2 Hashed RSA

Both attacks described in the previous section can
seemingly be foiled by applying a cryptographic
hash to the message before computing a signature
as in the textbook RSA scheme. We refer to the re-
sulting scheme as hashed RSA. In more detail, let H
be a cryptographic hash function. Then signatures
are now computed as ¢ := H(m)Y mod N, and

verification checks whether o = H (m) mod N.
This is exactly the same as would be obtained by
applying the hash-and-sign paradigm to textbook
RSA signatures; here, however, we are not starting
with an underlying signature scheme that is secure,
but are instead relying on the hash function to
“boost” security of the construction. Nevertheless,
we may observe at the outset that a minimal re-
quirement for hashed RSA to be secure is that H be
collision-resistant. Furthermore, we can sign long
messages using hashed RSA “for free”

Does padded RSA eliminate the attacks de-
scribed in the previous section, at least intuitively?
We examine each attack in turn. Considering the
first attack, note that if we pick an arbitrary ¢ and
compute 7 = ¢° mod N then it will, in general,
be difficult to find an “actual” message m for which
H(m) = m. As for the second attack, that attack
relied on the multiplicative property of textbook
RSA signatures; namely, the fact that if o is a valid
signature on m, and ¢’ is a valid signature on m’,
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then ¢ = o -0’ mod N is a valid signature on
m* = m - m' mod N. For padded RSA this is no
longer true, and the attack will not work unless the
adversary is able to find messages m*, m,m’ such
that H(m™) = H(m) - H(m') mod N (something
that, in general, will not be easy to do).

Unfortunately, we are currently unable to prove
security of padded RSA signatures based on the RSA
assumption and any reasonable assumption on H.
On the other hand, we do currently have proofs
of security for padded RSA in the random oracle
model [2.12]. (See Chap. 13 in [2.1] for further dis-
cussion of the random oracle model.)

2.8 References and Further Reading

There are a number of excellent sources for the
reader interested in learning more about public-key
cryptography. The textbook by this author and Lin-
dell [2.1] provides a treatment along the lines of
what is given here, and includes proofs of all theo-
rems stated in this survey. A more advanced treat-
ment is given in the books by Goldreich [2.13, 14],
and a slightly different approach to the material is
available in the textbook by Stinson [2.15]. Readers
may also find the on-line notes by Bellare and Rog-
away [2.16] to be useful. Information about applied
aspects of cryptography can be found in the book by
Schneier [2.17] and the Handbook of Applied Cryp-
tography [2.18].

The idea of public-key cryptography was pro-
posed (in the scientific literature) in the seminal pa-
per by Diffie and Hellman [2.19], though they did
not suggest concrete constructions of public-key en-
cryption schemes or digital signatures in their work.
They did, however, show that the hardness of the dis-
crete logarithm problem could have useful conse-
quences for cryptography; their paper also (implic-
itly) introduced the DDH assumption. The first con-
structions of public-key cryptosystems were given
by Rivest etal. [2.2] (in the paper that also intro-
duced the RSA assumption, named after the first ini-
tials of the authors) and Rabin [2.20]. El Gamal en-
cryption [2.3] was not proposed until several years
later, even though (in retrospect) it is quite similar to
the key-exchange protocol that appears in the origi-
nal Diffie-Hellman paper.

Definition 3 originates in the work of Goldwasser
and Micali [2.21], who were the first to propose for-
mal security definitions for public-key encryption
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and to stress the importance of randomized encryp-
tion for satisfying these definitions. Formal defini-
tions of security against chosen-ciphertext attacks
are due to Naor and Yung [2.22] and Rackoff and
Simon [2.23].

A proof of security for hybrid encryption was
first given by Blum and Goldwasser [2.24].

The definition of security for signature schemes
given here is due to Goldwasser et al. [2.25], who
also showed the first probably secure construction
of a digital signature scheme.
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3.1.1 Groups in Cryptography

Recall that a group (G, ") is a set G equipped with
a binary operation satisfying the properties of asso-
ciativity, existence of identity, and existence of in-
verses. Many of the most important cryptographic
protocols are based upon groups, or can be de-
scribed generically in terms of groups. For exam-
ple, the Diffie-Hellman key exchange protocol [3.1],
which was the first public key cryptography protocol
ever published, can be described as follows:

Protocol 1 (Diffie-Hellman key exchange proto-
col). Two parties, named Alice and Bob, wish to es-
tablish a common secret key without making use of
any private communication:

« Alice and Bob agree on a group G, and an ele-
ment g € G.
o Alice selects a secret value a, and sends g* to
Bob.
« Bobselectsa secret value 8, and sends g” to Alice.
« Alice and Bob compute the shared secret g*f =
(8= ("™
In Diffie and Hellman’s original publica-
tion [3.1], the group G is specified to be the multi-
plicative group Zj of nonzero integers modulo p,
and the element g is specified to be a generator of G.
However, it is clear from the above description that
the protocol is not limited to this group, and that
other groups can also be used.

3.1.2 Discrete Logarithms

We wish to quantitatively measure the extent to
which a group G is suitable for use in cryptographic
protocols such as Diffie-Hellman. To do this, we re-
call the definition of discrete logarithms. Given any
two group elements g and h, the discrete logarithm
of h with respect to g, denoted DLOG,(h), is the
smallest nonnegative integer x such that g* = h (if
it exists). An adversary capable of computing dis-
crete logarithms in G can easily break the Diffie-
Hellman protocol. Therefore, for a group to be use-
ful in Diffie-Hellman or in public key cryptography,
the discrete logarithm problem in the group must be
computationally difficult.

It is known that, in any group G with # elements,
the computation of discrete logarithms can be per-
formed probabilistically in expected time at most
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O(\/n), using the Pollard rho algorithm [3.2]. This
figure represents the maximum amount of security
that one can hope for. Most groups, however, fall
short of this theoretical maximum.

For example, consider the multiplicative group
Z, of nonzero integers modulo p, or more gen-
erally the multiplicative group F; of nonzero
elements in any finite field ;. With use of the
index calculus algorithm [3.3], discrete logarithms
in this group can be computed probabilistically
in L,(1/3,(128/9)'/*) expected time in the worst
case, where g is the size of the field. Here L,(a, ¢)
denotes the standard expression

Ly(a, c) = exp((c +0(1))(logq)“ (loglogg)' ™)

interpolating between quantities polynomial inlog g
(when a = 0) and exponential in log g (when a = 1).
Note that the theoretical optimum of O(y/n) =
O(./q) corresponds to L,(1,1/2). Hence, in the
multiplicative group of a finite field, the best known
algorithms for computing discrete logarithms run in
substantially faster than exponential time.

Elliptic curves over a finite field are of interest
in cryptography because in most cases there is no
known algorithm for computing discrete logarithms
on the group of points of such an elliptic curve in
faster than O(+/n) time. In other words, elliptic
curves are conjectured to attain the theoretical max-
imum possible level of security in the public key
cryptography setting.

3.2 Definitions

This section contains the basic definitions for elliptic
curves and related constructions such as the group
law.

3.2.1 Finite Fields

We briefly review the definition of a field, which
plays a crucial role in the theory of elliptic curves.
A field is a set equipped with two binary operations,
+ (addition) and - (multiplication), which admit ad-
ditive and multiplicative inverses, distinct additive
and multiplicative identities, and satisfy the associa-
tive, commutative, and distributive laws. Examples
of fields include Q (rational numbers), R (real num-
bers), C (complex numbers), and Z,, (integers mod-
ulo a prime p).



3.2 Definitions

A finite field is a field with a finite number of ele-
ments. Every finite field has size equal to p™ for some
prime p. For each pair (p, m), there is exactly one
finite field of size ¢ = p™, up to isomorphism, and
we denote this field F,m or IFy. (In the literature, the
field IF, is often called a Galois field, denoted GF(q).
In this chapter, however, we will use the F; notation
throughout.)

When g = p is prime, the field F, is equal to
the field Z, of integers modulo p. When g = p™ is
a prime power, the field F,» can be obtained by tak-
ing the set F,[X] of all polynomials in X with co-
efficients in IF,, modulo any single irreducible poly-
nomial of degree m.

Example 1 (The finite field ). The polynomial X +
1 is irreducible in F3[X] (does not factor into any
product of smaller-degree polynomials). The ele-
ments of [y are given by

Fo={0,1,2,X,X+1,X+2,2X,2X +1,2X + 2} .

Addition and multiplication in Fg are performed
modulo 3 and modulo X? + 1, e.g.,

(X+1)+(X+2)=2X+3=2X,
(X+1)-(X+2)=X"+X+2X +2

=X’ +3X+2
=X +2=(X*+2)-(X*+1)
=1.

The characteristic of a field F, denoted char(F),
is the size of the smallest subfield in the field, or 0 if
this subfield has infinite size. In the case of a finite
field F,m, the characteristic is always equal to p.

3.2.2 Elliptic Curves

Roughly speaking, an elliptic curve is the set of
points over a field satisfying a cubic equation in
two variables x and y. By employing various substi-
tutions, one can reduce the general case to one in
which the y variable has degree 2 and the x vari-
able has degree 3. In addition to the usual points of
the form (x, y), there is an extra point, denoted oo,
which serves as the identity element in the group.
The following is the technical definition of an ellip-
tic curve. Note that Definition 1 is only for fields
of characteristic not equal to 2; the characteristic 2
case is treated separately in Definition 4. Although
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it is possible to give a single definition that covers all
cases, we have elected to use separate definitions for
reasons of clarity.

Definition 1 (Elliptic curves in characteristic # 2).
Let F be a field whose characteristicis not equal to 2.
An elliptic curve E defined over F, denoted E or E/F,
is a set of the form

E = E(F)
={(x,y) € PPy’ =x’+ ayx’ + asx + ag} U {0},

where a5, a4, a¢ are any three elements of F such that
the discriminant a%ai - 4ai - 4a§a6 + 18aza4a¢ —
27a§ of the polynomial x>+ axx® + asx + ag is
nonzero. The points of the form (x, y) are called fi-
nite points of E, and the point oo is called the point
at infinity.

Essentially, an elliptic curve is the set of points (x, y)
lying on a curve f(x, y) = 0, where f(x,y) = y* -
(x3 +arx’ + asx + ae ). This definition is analogous
to the definition of the multiplicative group F* as
the set of points (x, y) satisfying xy = 1. The extra
point oo is not a point in F?; instead it arises from
the mathematical point of view when considering E
as a curve in projective space.

The cubic polynomial X2 +arx* +asx+ag is called
the Weierstrass cubic of E. The condition that the dis-
criminant is nonzero is equivalent to requiring that
the Weierstrass cubic have three distinct roots over
(any algebraic closure of) F. This condition also en-
sures that the partial derivatives % and % are never
both zero on E. The nonvanishing of partial deriva-
tives, in turn, implies that every finite point on E has
aunique tangent line, a fact which is necessary to de-
fine the group law (Definition 2).

If the characteristic of F is not equal to either 2
or 3, then the substitution x <« x — “Tz eliminates
the a, term from the Weierstrass cubic, leaving the
simplified equation y* = x* + ax + b. In this case
the discriminant of the Weierstrass cubic is equal to
—(4a® + 27b%).

Example 2. Consider the elliptic curve E : y* = x> +
x + 6 defined over the finite field [F1; of 11 elements.
The discriminant of the Weierstrass cubic is —(4-1°+
27 - 62) = 3 mod 11, which is nonzero. There are 13
points on the elliptic curve E/F1, as follows:

E(Fy) = {00, (2,4),(2,7), (3,5), (3,6), (5,2),
(5,9), (7,2), (7,9), (8,3), (8,8), (10,2),
(10,9)} .
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One can verify directly that each point lies on E. For
example, 9% = 10°> + 10 + 6 = 4 mod 11, so (10,9) is
onE.

3.2.3 Group Law

We now provide a definition of the group law on
an elliptic curve, valid when F has characteristic not
equal to 2. If the characteristic of F is 2, then a dif-
ferent set of definitions is needed (Sect. 3.2.4).

Definition 2 (Group law - geometric definition).
Let F be a field whose characteristic is not equal to 2.
Let

E:yZ:x3+a2x2+a4x+a6

be an elliptic curve defined over F. For any two
points P and Q in E, the point P + Q is defined as
follows:

e IfQ=o00,thenP+Q=P,
e IfP=o00,thenP+Q=0Q.

In all other cases, let L be the unique line through the
points P and Q. If P = Q, then let L be the unique
tangent line to the curve y2 = x> + axx® + aux + ag
at P:

« If L does not intersect the curve y2 =x> +ax’+
asx + ae at any point other than P or Q, then
define P+ Q = oo.

o Otherwise, the line L intersects the curve y2 =
x>+ axx? + asx + ag at exactly one other point
R=(x,y").

« Define P+ Q = (x,-y"). (See Fig. 3.1.)

Although Definition 2 is of a geometric nature,
using it, one can derive algebraic equations for P+ Q
in terms of P and Q. In this way, we obtain a purely
algebraic definition of the group law:

Definition 3 (Group law - algebraic definition).
Let F be a field whose characteristicis not equal to 2.
Let

2 3 2
E:y"=x"+axx" +asx+as

be an elliptic curve defined over F. For any two
points P and Q in E, the point P + Q is defined as
follows:

e IfQ=00,thenP+Q=P,
e IfP=o00,thenP+Q=0Q.
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P+Q

Fig. 3.1 The group law on an elliptic curve E

In all other cases, we can write P = (x1, y1) and Q =
(%2, y2).Ifx1 = x, and y1 = —y,, then define P+Q =
oo. Otherwise, set

2 — )1 .
r=n. ifP+Q,
X2 — X1
3xf +2ax1 + ay
2)/1
2
X3 =m —X1—X2,

y3=—(m(xs —x1) +y1),
and define P + Q to be the point (x3, y3).

, ifP=Q,

To form a group, the addition operation must be as-
sociative and admit an additive identity and additive
inverses. From the definition, it is easy to see that
the addition operation is commutative, with iden-
tity element co and inverse element —P = (x,-y)
for any point P = (x, y). The associativity property
is much harder to prove. One can show that the op-
eration is associative by calculating the two quan-
tities (P + Q) + R and P + (Q + R) using Defini-
tion 3 under a computer algebra system, but such
a proof is tedious and we therefore omit the proof
here.

Example 3 (Point addition). LetE : y* = x> + x + 6
be the curve given in Example 2, defined over Fi;.
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We have

(2,4) + (2,4) = (5,9)

(2,4) +(5,2) = (2,7)
((2,4) + (2,4)) + (5:2) = (5:9) + (5,:2) =00 ,
(2,4) + ((2,4) + (5,2)) = (2,4) + (2,7) = o0 .

The last two computations illustrate the associativity
property.

3.2.4 Elliptic Curves in Characteristic 2

For implementation purposes, it is often preferable
to work over fields of characteristic 2 to take ad-
vantage of the binary nature of computer architec-
tures. Hence, for completeness, we provide the appli-
cable definitions and formulas in the characteristic 2
case.

Definition 4 (Elliptic curves in characteristic 2).
Let F be a field of characteristic 2. An elliptic curve E
defined over F is a set of the form

E(F)={(x,y) ¢ F2|y2 +aixy+asy

:x3+a2x2+a4x+a6}u{oo},

where either

a1:1
a1=a2=0
az=a4=0 or a0
ag+ 0 3

For any two points P and Q on E, the point P + Q is
defined as follows:

e IfQ=0c0,thenP+Q=P,
e IfP=o00,thenP+Q=0Q.

In all other cases, we can write P = (x1, y1) and Q =
(x2,y2). If x1 = x; and y1 + y2 + a1x1 + a3 = 0, then
define P + Q = oo. Otherwise, set

rzin. ifP+Q,
X2 — X1

") 3% + 2400 + a4 -
X1 azxX1 + a4 — a1y . ifP=Q,

2y1+611X1+613
2
X3=m +aym-—a;—Xx1 —X2,

y3=—(m(x3 —x1) + y1 + a1x3 + a3) ,

and define P + Q to be the point (x3, y3).
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3.3 Implementation Issues

We now provide an overview of various topics re-
lated to implementations of elliptic curve cryptosys-
tems. Because of space limitations, only the most es-
sential material is presented here. More comprehen-
sive and detailed treatments can be found in Han-
kerson et al. [3.4] or Cohen et al. [3.5].

3.3.1 Scalar Multiplication

On an elliptic curve, the group operation is denoted
additively. In such a group, the group exponentia-
tion operation is also written using additive nota-
tion; that is, instead of using g“ to denote the a-fold
product g x g x --- x g for g € G, we use the notation
aP to denote the a-fold sum P+ P +---+ P for P € E.
The process of multiplying a group element P by an
integer « is known as scalar multiplication.

Virtually all cryptographic protocols based on el-
liptic curves, including the Diffie-Hellman proto-
col (Protocol 1) and the protocols in Sect. 3.4, rely
on the ability to perform scalar multiplication effi-
ciently. The standard algorithm for computing aP,
known as double-and-add or square-and-multiply,
is a recursive algorithm which accomplishes this task
using O(loga) group operations. Algorithm 3.3.1
contains an implementation of the double-and-add
algorithm in pseudocode.

Algorithm 3.1 The double-and-add algorithm

Require: P € E, o € N. Output: aP.
1: if a = 0 then
output oo
else if « is even then
pot
Q< pP
output Q + Q
else if « is odd then
B—a-1
9: Q< ppP
10: output Q + P
11: end if

Faster algorithms are available and are often ap-
propriate depending on the situation. On an ellip-
tic curve, computing additive inverses is almost free,
and thus it is possible to speed up scalar multiplica-
tion using nonadjacent form representations [3.6].
Other approaches include the use of double-base
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number systems [3.7], and (in some cases) the use
of special curves such as Edwards curves [3.8] or
curves with additional endomorphisms [3.9].

Example 4 (Certicom elliptic curve cryptography
(ECC) challenge). This example is taken from the
Certicom ECCp-109 challenge [3.10]. Let

p =564,538,252,084,441,556,247,016,902,735,257 ,
a = 321,094,768,129,147,601,892,514,872,825,668 ,
b = 430,782,315,140,218,274,262,276,694,323,197

and consider the elliptic curve E : y* = x> + ax + b
over IF,. Let P be the point

(97,339,010,987,059,066,523,156,133,908,935,
149,670,372,846,169,285,760,682,371,978,898)

on E, and let k = 281,183,840,311,601,949,668,207,
954,530,684. The value of kP is

(44,646,769,697,405,861,057,630,861,884,284,
522,968,098,895,785,888,047,540,374,779,097) .

3.3.2 Curve Selection

Consider an elliptic curve E defined over a finite
field F = F,. The number of points on E is finite,
since, with the exception of oo, the points on E
have the form (x,y) € Fé However, not all of
these curves are equally suitable for cryptography.
For example, in any group having cardinality n
where n is composite, it is possible to compute
discrete logarithms in O(\/p) time, where p is
the largest prime divisor of n, using the Pohlig-
Hellman algorithm [3.11]. Therefore, to be suitable
for cryptographic purposes, the number of points
on a curve should be equal to a prime, or at least
admit a large prime divisor.

One way to find such a curve is to select curves at
random and compute their cardinalities until an ap-
propriate curve is found. A classic result in algebraic
geometry, known as the Hasse-Weil bound, states
that for any elliptic curve E/F, the number of points
#E on E(IF,) lies within the interval

q+1-2/q<#E<q+1+2\/q.

Moreover, Lenstra [3.12] has shown that for any sub-
set consisting of a nonnegligible proportion of num-
bers within this interval, a nonnegligible proportion
of elliptic curves E/F, have cardinality within that
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subset. This result indicates that, in practice, a ran-
domly chosen curve will with high probability have
prime cardinality. To determine the cardinality of
such a curve, it is necessary to employ a fast point
counting algorithm. Examples of such algorithms
include the Schoof-Elkies-Atkin algorithm [3.13-
15] and the Satoh algorithm [3.16].

Use of precomputed curves. An alternative ap-
proach is to use a precomputed elliptic curve which
hasbeen verified ahead of time to possess good cryp-
tographic properties. For example, the NIST FIPS
186-2 standard [3.17] contains 15 different precom-
puted curves, including the curve P-192 given by

p =6,277,101,735,386,680,763,835,789,423,
207,666,416,083,908,700,390,324,961,279 ,

b = 2,455,155,546,008,943,817,740,293,915,
197,451,784,769,108,058,161,191,238,065 ,

E:y’=x"-3x+boverF, .

This curve has cardinality equal to

#E = 6,277,101,735,386,680,763,835,789,423,
176,059,013,767,194,773,182,842,284,081 ,

which is a prime.

3.3.3 Point Representations

As we have seen, a point P on an elliptic curve is
given by a pair of coordinates (x,y). Over a fi-
nite field Fy, each coordinate requires lg(g) bits
for transmission or storage. Hence, the naive rep-
resentation of a point on an elliptic curve requires
21g(q) bits. In many situations, it is desirable for
efficiency reasons to use smaller representations.
One such optimization is to represent a point us-
ing lg(q) + 1 bits by storing only the x-coordinate
and determining y at runtime (e.g., via the formula
¥ =Vx%+ ax? + asx + as when the characteristic
is not 2). Here the x-coordinate requires Ig(q) bits
and the extra bit is used to store the sign of the y-
coordinate. This technique, known as point compres-
sion, is described in ANSI X9.62 [3.18] and in US
Patent 6252960 [3.19].

An alternative technique is to transmit only
the x-coordinate of P with no additional informa-
tion. In this case, the recipient must tolerate some
ambiguity in the value of P, because there are two
possible choices for the y-coordinate. Using the
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wrong value for the y-coordinate corresponds to
using the point —P instead of P. However, in the
vast majority of ECC protocols, the central en-
cryption or decryption operation involves a scalar
multiplication of the form kP for some integer k.
Note that, regardless of whether P or —P is used
in the computation of kP, the x-coordinate of
the result is the same. In particular, this property
holds for the hashed ElGamal and elliptic curve
integrated encryption scheme (ECIES) protocols
described in Sect. 3.4.1, as well as for the BLS
protocol (Sect. 3.5.2). Hence, for these protocols,
one can choose to represent points using only
their x-coordinates without affecting the validity of
the protocols. This technique does not apply to the
elliptic curve digital signature algorithm (ECDSA)
(Protocol 5), since the ECDSA protocol is already
designed to transmit only the x-coordinate.

3.3.4 Generating Points of Prime Order

In most elliptic-curve-based protocols, it is neces-
sary to generate a base point of order n, where n
is a large prime; that is, a point P # oo such that
nP = co. When the cardinality of a curve E is prime,
any nonidentity point is suitable as a base point.
Otherwise, we write the cardinality of E as a prod-
uct of the form #E = hn, where n is the largest
prime factor. The integer h is called the cofactor of E.
Since the cryptographic strength of E depends on n
(cf. Sect. 3.1.2), it is best to maximize n, or in other
words minimize 4. In particular, we assume E is cho-
sen so that i < /. For such values of A, a base
point P on E of order n can be obtained by comput-
ing P = hQ, where Q is any randomly selected point
onE.

3.4 ECC Protocols

In this section we provide some examples of ECC
protocols that have been developed and proposed.
Whenever possible, we give preference to protocols
which have been approved in government or inter-
national standards documents.

3.4.1 Public Key Encryption

Protocol 2 (Textbook ElGamal encryption). The
textbook ElGamal protocol is one of the oldest and
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simplest public key encryption schemes. Here we
give a straightforward adaptation of the classic ElGa-
mal encryption scheme [3.20] to the setting of ellip-
tic curves. We emphasize that this textbook protocol
is for illustration purposes only, is insecure against
active attackers, and should not be used except in
very limited circumstances (see Remark 1).

Public parameters An elliptic curve E defined over
a finite field Fy, and a base point P € E(F,) of large
prime order #.

Key generation Choose a random integer « in the
interval 1 < a < n. The public key is aP. The private
key is a.

Encryption The message space is the set of all points
Q € E(FF,). To encrypt a message M, choose a ran-
dom integer r between 0 and #, and compute

Cler,
Cy=raP+ M.

The ciphertext is (Cy, C2).

Decryption Given a ciphertext (Cy, C,), compute
M =C, - aC

and output the plaintext M.

Remark 1. The textbook ElGamal scheme is mal-
leable [3.21], meaning that given a valid encryption
for M, it is possible to construct valid encryptions
for related messages such as 2M. In rare situations,
such as when electronic voting schemes are being
designed [3.22], this property is desirable, but in
most cases malleability represents a security short-
coming and should be avoided.

Remark 2. In addition to the security shortcomings
mentioned above, one drawback of the textbook El-
Gamal protocol is that it takes some work to trans-
form an arbitrary binary string into an element of
the message space, i.e. a point on the curve. In
hashed ElGamal (Protocol 3) and ECIES (Proto-
col 4), this problem is addressed through the use of
a hybrid public key/symmetric key scheme.

Example 5 (Textbook ElGamal with small parame-
ters). Let p = 2** + 15 = 1,099,511,627,791, a =
-3, and b = 786,089,953,074. Let E be the curve
y” = x" + ax + b defined over F,. Let P be the base
point (39,282,146,988,43,532,161,490) on E.Then
the point P has order 1,099,510,659,307, which is
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a prime. With use of these parameters, a sample en-
cryption and decryption operation illustrated per-
formed below.

Key generation We choose a« = 482,363,949,216
at random, and compute aP = (991,136,913,417,
721,626,930,099). The public key is &P and the pri-
vate key is 482,363,949,216.

Encryption  Suppose our message is M = (556,
486,217,561, 262,617,177,881). We choose r = 843,
685,127,620 at random, and compute

C, =rP =(332,139,500,006, 485,511,205,375) ,
C, =raP + M = (484,509,366,473,
588,381,554,550) .

Decryption One can check that C; — «C; = M for
the above pair (Ci, C,).

Protocol 3 (Hashed ElGamal encryption). The
hashed ElGamal scheme and its variants ap-
pear in [3.23,24] and in the ANSI X9.63 stan-
dard [3.25].This scheme is secure against passive
(eavesdropping) attacks, but depending on the
symmetric key encryption scheme that is used, it
may not be secure against active adversaries who
are capable of obtaining decryptions of related
messages. Compared with the ECIES protocol given
in Protocol 4, the two protocols are identical except
for the addition of a message authentication code in
ECIES, which protects against active adversaries.

Public parameters An elliptic curve E defined over
a finite field F,, a base point P € E(F,) of large
prime order n, a key derivation function H (based
on a hash function), and a symmetric key encryp-
tion scheme (&, D).

Key generation Choose a random integer « in the
interval 1 < a < n. The public key is aP. The private
key is a.

Encryption The message space is the set of all binary
strings. To encrypt a message m, choose a random
integer r between 0 and 7, and compute

Q=rP,
k=H(raP),
c=&(m).

The ciphertextis (Q, ¢).
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Decryption Given a ciphertext (Q, ¢), compute
K = H(aQ),
m' =Dy (c)

and output the plaintext m’.

Protocol 4 (Elliptic curve integrated encryption
scheme (ECIES)). This protocol is the same as the
hashed ElGamal scheme of Protocol 3 except for the
addition of a message authentication code, which af-
fords some protection against active adversaries. It is
part of the ANSI X9.63 standard [3.25].

Public parameters  An elliptic curve E defined
over a finite field IF,, a base point P € E(F;) of
large prime order n, a key derivation function H
which outputs a pair of keys, a message authen-
tication code M, and a symmetric key encryption
scheme (€, D).

Key generation Choose a random integer « in the
interval 1 < a < n. The public key is aP. The private
key is a.

Encryption The message space is the set of all binary
strings. To encrypt a message m, choose a random
integer r between 0 and 7, and compute

Q=rP,
(ki,k2) =H(raP),

c=E&,(m),

d=M(ks,c).

The ciphertextis (Q, ¢, d).
Decryption Given a ciphertext (Q, ¢, d), compute
(ki k) = H(aQ) ,
d' = M(ky,c) .

If aQ = oo or d # d’, output NULL. Otherwise,
compute

m’ =Dk;(f)

and output the plaintext m'.

3.4.2 Digital Signatures

Protocol 5 (Elliptic curve digital signature algo-
rithm (ECDSA)). ECDSA is an adaptation of the
digital signature algorithm [3.26] to the elliptic
curve setting. ECDSA is described in the ANSI
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X9.62 standard [3.18]. In the description below,
the expression x(Q) denotes the x-coordinate of
apoint Q € E.

Public parameters An elliptic curve E defined over
IF,, a base point P € E(F,) of large prime order #,
and a hash function H: {0,1}* — Z,. In the ANSI
X9.62 standard [3.18], the function H is specified to
be SHA-1[3.27].

Key generation Choose a random integer « in the
interval 1 < a < n. The public key is «P and the
private key is a.

Signing The message space is the set of all binary
strings. To sign a message m, choose a random inte-
ger k in the interval 1 < k < n. Compute

r=x(kP),
5=Wmodn

The signature of m is 0 = (r,s).

Verification Check whether0 <r <nand0<s <n.
If so, calculate
x ((571 mod n)(H(m)P +r(aP)))
—x (M .p) _
s

The signature is valid if and only if the above value
equals r.

Example 6 (ECDSA signature generation). Let E be
the curve P-192 given in Sect. 3.3.2. Let P be the point
P =(602,046,282,375,688,656,758,213,480,587,

526,111,916,698,976,636,884,684,818,
174,050,332,293,622,031,404,857,552,280,
219,410,364,023,488,927,386,650,641)
on E. As indicated in Sect. 3.3.2, the point P has or-
der
n =6,277,101,735,386,680,763,835,789,423,176,
059,013,767,194,773,182,842,284,081 ,
which is a prime. We use the hash function SHA-1
for H. Suppose that our private key is
a = 91,124,672,400,575,253,522,313,308,682,248,
091,477,043,617,931,522,927,879

and we wish to sign the ASCII message Hello
world! (with no trailing newline). The SHA-1hash
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of this message is

SHA-1(Hello world!)
= d34862ae9136e7856bc42212385
€a7970944758021¢
=1,206,212,019,512,053,528,979,580,233,526,
017,047,056,064,403,458 .
To sign the message, we choose a random value
k =504,153,231,276,867,485,994,363,332,808,
066,129,287,065,221,360,684,475,461
and compute
r=x(kP)
= 2,657,489,544,731,026,965,723,991,092,274,
654,411,104,210,887,805,224,396,626
oo H(m) + ar
k
=1,131,215,894,271,817,774,617,160,471,390,
853,260,507,893,393,838,210,881,939 .

mod n

The signature is (r,s). Note that even though E is
defined over a field of 192 bit, the signature is 384 bit
long because it consists of two elements mod #.

3.4.3 Public Key Validation

In most cases, achieving optimal security requires
verifying that the points given in the public param-
eters or the public key actually lie within the elliptic
curve in question. Failure to perform public key val-
idation leads to a number of potential avenues for
attack [3.28], which under a worst-case scenario can
reveal the secret key. If we let E, Fy, n, P, and aP
denote the curve, field, order of the base point, base
point, and public key, respectively, then validation in
this context means checking all of the following:

q = p™ is a prime power.

The coefficients of E are in F,.

The discriminant of E is nonzero.

The integer n is prime and sufficiently large

([3.25] recommends n > 2'%7).

5. The point P satisfies the defining equation for E,
and the equations P # oo and nP = oo.

6. The point aP satisfies the defining equation

for E, and the equations aP # oo and naP = oco.

Ll o e

Items 1-5 need to be checked once, and item 6 needs
to be checked once per public key.
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Remark 3. The ANSI X9.62 [3.18] and X9.63 [3.25]
standards also stipulate that the curve E should have
large embedding degree (Definition 8), to avoid the
MOV reduction (Sect. 3.6.2). This requirement is
beneficial in most situations, but it cannot be met
when employing pairing-based cryptography, since
pairing-based cryptography requires small embed-
ding degrees.

3.5 Pairing-Based Cryptography

Initially, elliptic curves were proposed for cryptog-
raphy because of their greater strength in discrete-
logarithm-based protocols, which led to the devel-
opment of shorter, more efficient cryptosystems at
a given security level. However, in recent years, el-
liptic curves have found a major new application
in cryptography thanks to the existence of bilinear
pairings on certain families of elliptic curves. The
use of bilinear pairings allows for the construction of
entirely new categories of protocols, such as identity-
based encryption and short digital signatures. In this
section we define the concept of bilinear pairings,
state some of the key properties and limitations of
pairings, and give an overview of what types of con-
structions are possible with pairings.

3.5.1 Definitions

We begin by presenting the basic definitions of bi-
linear pairings along with some motivating exam-
ples of pairing-based protocols. A priori, there is no
relationship between bilinear pairings and elliptic
curves, but in practice all commonly used pairings
are constructed with elliptic curves (see Sect. 3.7).

Definition 5. A bilinear pairing, cryptographic pair-
ing, or pairing is an efficiently computable group ho-
momorphism

e:G1 XGz —>GT

defined on prime order cyclic groups Gi, G2, Gr,
with the following two properties:

1. Bilinearity Forall P;,P,,P € Gyand Q1,Q2,Q €
Ga,

e(P1 +P2,Q) = e(Pl,Q) . e(Pz,Q) ,
e(P,Q1 + Qz) = e(P, Ql) . e(P, Qz) .
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2. Nondegeneracy Forall Py € Gy and Qo € G2,

e(Po,Q) =1
e(P, Q()) =1

foralQ e G, = Py =idg,
forallP e G = Qo =idg, .

Note that, as a consequence of the definition, the
groups G; and G, have a common order #G, =
#G, = n, and the image of the pairing in G has or-
der n as well. In the literature, it is common to see the
pair of groups (G1, G2 ) referred to as a bilinear group
pair. All known usable examples of bilinear pairings
are derived by taking G, and G, to be subgroups of
an elliptic curve, and Gt to be a multiplicative sub-
group of a finite field. Therefore, we will denote the
group operation in G and G using additive nota-
tion, and Gt using multiplicative notation.

Sometimes a cryptographic protocol will require
a pairing that satisfies some additional properties.
The following classification from [3.29] is used to
distinguish between different types of pairings.

Definition 6. A bilinear pairing e: G1 x G; = Gr is
said to be a:

Type 1 pairing if either G1 = G or there exists
an efficiently computable isomorphism ¢: G; — G»
with efficiently computable inverse gb*l: G, = Gi.
These two formulations are equivalent, since when
G1 # G2, one can always represent an element g € G,

using ¢! (g) € Gi.

Type 2 pairing  if there exists an efficiently com-
putable isomorphism y: G, - Gy, but there does not
exist any efficiently computable isomorphism from
G to Go.

Type 3 pairing if there exist no efficiently comput-
able isomorphisms from G, to G; or from G to G;.

Many pairing-based cryptographic protocols de-
pend on the bilinear Diffie-Hellman (BDH) assump-
tion, which states that the BDH problem defined
below is intractable:

Definition 7. Let e: G x G, — Gr beabilinear pair-
ing. The BDH problem is the following computa-
tional problem: given P, aP, P € G, and Q € G,
compute e(P, Q)*/.

Note that in the special case where e is a type 1 pair-
ing with G1 = G, the BDH problem is equivalent
to the following problem: given P, aP, P, yP € Gy,
compute e(P, P)*#’. This special case is more sym-
metric and easier to remember.
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3.5.2 Pairing-Based Protocols

Protocol 6 (Tripartite one-round key exchange).

The Diffie-Hellman protocol (Protocol 1) allows for
two parties to establish a common shared secret us-
ing only public communications. A variant of this
protocol, discovered by Joux [3.30], allows for three
parties A, B, and C to establish a common shared
secret in one round of public communication. To do
this, the parties make use of a type 1 pairing e with
G1 = G, and a base point P € G;. Each participant
chooses, respectively, a secret integer «, 3, and y, and
broadcasts, respectively, aP, SP, and yP. The quan-
tity

e(P,P)*" = e(aP, BP)’
=e(BP,yP)"
= e(yP,aP)"

can now be calculated by anyone who has knowledge
of the broadcasted information together with at least
one of the secret exponents a, 3, y. An eavesdropper
without access to any secret exponent would have to
solve the BDH problem to learn the common value.

Identity-Based Encryption. The most notable ap-
plication of pairings to date is the seminal con-
struction of an identity based encryption scheme by
Boneh and Franklin [3.31]. An identity based en-
cryption scheme is a public key cryptosystem with
the property that any string constitutes a valid pub-
lic key. Unlike traditional public key encryption,
identity-based encryption requires private keys to be
generated by a trusted third party instead of by indi-
vidual users.

Protocol 7 (Boneh-Franklin identity-based en-
cryption). The Boneh-Franklin identity based
encryption scheme comes in two versions, a basic
version, which is secure against a passive adversary,
and a full version, which is secure against chosen
ciphertext attacks. For both versions, the security
is contingent on the BDH assumption and the
assumption that the hash function H is a random
oracle. We describe here the basic version.

Public parameters A bilinear pairing e: G| x G2 —
Gt between groups of large prime order #, a hash
function H:{0,1}* — G, a base point P € G, and
a point aP € Gy, where a €g Z is a random integer
chosen by the trusted third party. Although the point
aP is made public, the integer « is not made public.
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Key generation Let 6{0,1}" be any binary string,
such as an e-mail address. Compute Q = H(0). The
public key is o and the private key is «Q. The owner
of the public key (e.g., in this case, the owner of the e-
mail address) must obtain the corresponding private
key aQ from the trusted third party, since only the
trusted third party knows a.

Encryption Given a public key ¢ and a message m,
let Q = H(0) € G,. Choose r €g Z at random and
compute ¢ = m @ e(aP,rQ), where & denotes bit-
wise exclusive OR. The ciphertext is the pair (7P, ¢).

Note that encryption of messages can be per-
formed even if the key generation step has not yet
taken place.

Decryption Given a ciphertext (¢, ¢2), compute
m=c® e(c1,aQ)

and output m’ as the plaintext.
For a valid encryption (ci, ¢c2) of m, the decryp-
tion process yields

aoe(c,aQ)=(mae(aP,rQ)) ®e(rP,aQ),
which is equal to m since e(aP,rQ) = e(rP, aQ).

Short Signatures. Using pairing-based cryptog-
raphy, one can construct digital signature schemes
having signature lengths equal to half the length
of ECDSA signatures (Protocol 5), without loss
of security. Whereas ECDSA signatures consist of
two elements, a short signature scheme such as
Boneh-Lynn-Shacham (BLS) (described below)
can sign messages using only one element, provided
that compressed point representations are used
(Sect. 3.3.3).

Protocol 8 (Boneh-Lynn-Shacham (BLS)). The
BLS protocol [3.32] was the first short signature
scheme to be developed. The security of the BLS
signature scheme relies on the random oracle as-
sumption for H and the co-Diffie-Hellman (co-DH)
assumption for the bilinear group pair (Gi,G,).
The co-DH assumption states that given P € G, and
Q,aQ € Gy, it is infeasible to compute aP. When
Gi = G, the co-DH assumption is equivalent to the
standard Diffie-Hellman assumption for G;.

Public parameters A bilinear pairing e: G| x G2 —
Gt between groups of large prime order #, a hash
function H: {0,1}" — G, and a base point Q € G,.
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Key generation Choose a random integer « in the
interval 1 < a < n. The public key is «Q and the
private key is a.

Signing The message space is the set of all binary
strings. To sign a message m, compute H(m) € G;
and o = aH(m). The signature of m is o.

Verification ~ To verify a signature o of a mes-
sage m, compute the two quantities e(H(m),
aQ) and e(0, Q). The signature is valid if and only
if these two values are equal.

For a legitimate signature o of m, we have

e(H(m),aQ) = e(H(m),Q)" = e(aH(m), Q)
=e(0,Q),

so the signature does verify correctly.

3.6 Properties of Pairings

In this section we list some of the main properties
shared by all pairings arising from elliptic curves. Al-
though the properties and limitations listed here are
not necessarily direct consequences of the definition
of pairing, all existing examples of pairings are con-
structed in essentially the same way and therefore
share all of the attributes described herein.

3.6.1 Embedding Degree

We begin with a few general facts about pairings.
All known families of pairings are constructed from
elliptic curves. Let E be an elliptic curve defined
over [F;. Suppose that the group order #E factors as
#E = hn, where n is alarge prime and h is an integer
(called the cofactor). Let G; be a subgroup of E(Fy)
of order n. In most cases (namely, when k { n), there
is only one such subgroup, given by G; = {hP |
P e E(F,)}. Then, for an appropriate choice of inte-
ger k, there exists a pairing e: G1 x G2 — Gr, where
G, c E(Fqk) and G c F;‘k. When e is type 1, the
group G, can be taken to be a subgroup not only of
E(F ), butalso of E(IF,).

Every bilinear pairing is a group homomorphism
in each coordinate, and the multiplicative group F;k
has order ¢* - 1. Hence, a necessary condition for the
existence of a pairing e: G1 x G2 — Gr is that n di-
vides g — 1. One can show that this condition is also
sufficient. These facts motivate the following defini-
tion.
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Definition 8. For any elliptic curve E/F, and any

divisor n of #E(F,), the embedding degree of E

with respect to # is the smallest integer k such that
k

n|q" -1

Example 7 (Type 1 pairing with k = 2). Let p =
76,933,553,304,715,506,523 and let E be the curve
y* = x* + x defined over F,. Then E is a supersingu-
lar curve (Sect. 3.6.3) with cardinality

#E = p+1=76,933,553,304,715,506,523
=4-19,233,388,326,178,876,631 ,

where h = 4 is the cofactor and n = 19,233,388,
326,178,876,631 is prime. The embedding degree
is 2, since 172771 =307,734,213,218,862,026,088 is an
integer. Points in G, can be generated by choosing
any random point in E(F,) and multiplying it by the
cofactor h = 4. One example of such a point is

P =(19,249,681,072,784,673,607,
27,563,138,688,248,568,100).

The modified Weil pairing (Sect. 3.8.1) forms a type 1
pairing e: G| x G; = Gr on Gy, with G = Gy, where
Gr denotes the unique subgroup of ), of order n.
Using the point P above, we have

e(P,P) =58,219,392,405,889,795,452
+671,682,975,778,577,3141,

where i = \/~1is the square root of ~1in F ..

Example 8 (Type 3 pairing with k = 12). Let p =
1,647,649,453 and n = 1,647,609,109. The elliptic
curve E : y* = x* + 11 is a Barreto-Naehrig curve
(Sect. 3.8.2) of embedding degree 12 and cofactor 1.
Let G; = E(F,) and let G, be any subgroup of
E(F,12) of order n. If we construct F 12 as Fp[w],
where w'? + 2 = 0, then the points

P = (1,107,451,886,1,253,137,994) € E(FF,) ,
Q = (79,305,390 w" + 268,184,452 w"",
311,639,750 w” + 1,463,165,539w”) ,
€ E(Fplz)
generate appropriate groups G; and G,. Here the
point Q is obtained from a sextic twist [3.33]. Us-
ing the Tate pairing(Sect. 3.7.3), we obtain a type 3
pairing e:G; x G» — Gr where Gr is the unique

subgroup of '}, of order n. The value of the Tate
pairing at P and Q is
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e(P,Q) = 1,285,419,312 + 881,628,570 w
+ 506,836,791 w” + 155,425,783 w’
+1,374,794,677 w* +1,219,941,843 w°
+ 285,132,062 w® + 1,621,017,742 w’
+ 525,459,081 w® + 1,553,114,915w’
+1,356,557,676 w'® + 175,456,091 w'" ,

where w'? + 2 = 0 as above.

Example 9 (Curve with intractably large embedding
degree). We must emphasize that, as a conse-
quence of a result obtained by Balasubramanian
and Koblitz [3.34], the overwhelming majority of
elliptic curves have extremely large embedding de-
grees, which render the computation of any bilinear
pairings infeasible. In other words, very few elliptic
curves admit a usable pairing.

For example, consider the Certicom ECCp-
109 curve of Example 4. This curve has order
n = 564,538,252,084,441,531,840,258,143,378,149,
which is a prime. The embedding degree of this
curveisequal ton — 1 » 219 Hence, any bilinear
pairing on this curve takes values in the field F 1.
However, the number p"~' is so large that no com-
puter technology now or in the foreseeable future
is or will be capable of implementing a field of this
size.

3.6.2 MOV Reduction

When the embedding degree is small, the existence
of a bilinear pairing can be used to transfer discrete
logarithms on the elliptic curve to the correspond-
ing discrete logarithm problem in a finite field. In
many cases, this reduction negates the increased se-
curity of elliptic curves compared with finite fields
(Sect. 3.1.2). Of course, this concern only applies to
the minority of elliptic curves which admit a bilin-
ear pairing, and oftentimes the extra features pro-
vided by pairings outweigh the security concerns.
Nonetheless, an understanding of this issue is essen-
tial whenever designing or implementing a scheme
using pairings.

The reduction algorithm is known as the MOV
reduction [3.35] or the Frey-Riick reduction [3.36],
and proceeds as follows. Given a bilinear pairing
e:G1 x G2 = Gr, let P and aP be any pair of points
in G1. (The same reduction algorithm also works for
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Table 3.1 Estimates of the optimal embedding degree k
for various curve sizes

Size of E(Fy) Equivalent Optimal
finite field size embedding degree
110 512 4.5
160 1,024 6.5
192 1,536 8
256 3,072 12

G:.) Choose any point Q € G, and compute the
quantities g = e¢(P,Q) and h = e(aP, Q). Then,
by the bilinearity property, we have h = ¢g“. Hence,
the discrete logarithm of h in Gr is equal to the dis-
cretelogarithm of aP in G. Since G is a multiplica-
tive subgroup of a finite field, the index calculus al-
gorithm [3.3] can be used to solve for discrete loga-
rithms in Gr. Depending on the value of the embed-
ding degree, the index calculus algorithm on Gt can
be faster than the Pollard rho algorithm [3.2] on G.

Specifically, let E/F, be an elliptic curve as in
Sect. 3.6.1, with embedding degree k. An instance of
the discrete logarithm problem on G, = E(FF;) can
be solved either directly on G, or indirectly via in-
dex calculuson Gr c F;k. Table 3.1, based on [3.37],
estimates the optimal choice of k for which the index
calculus algorithm on F;k takes the same amount of
time as the Pollard rho algorithm [3.2] on E(F,). Al-
though the comparison in [3.37] is based on integer
factorization, the performance of the index calculus
algorithm is comparable [3.3].

Not all applications require choosing an optimal
embedding degree. For example, in identity-based
encryption, faster performance can be obtained by
using a curve with a 512-bit g and embedding de-
gree 2. However, bandwidth-sensitive applications
such as short signatures require embedding degrees
at least as large as the optimal value to attain the best
possible security.

3.6.3 Overview of Pairing Families

In this section we give a broad overview of the avail-
able families of pairing-based curves. Technical de-
tails are deferred to Sects. 3.7 and 3.8.

Elliptic curves over finite fields come in two
types: supersingular and ordinary. An elliptic curve
E[F,m is defined to be supersingular if p divides
p™ + 1 — #E. All known constructions of type 1
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pairings use supersingular curves [3.38]. Menezes
et al. [3.35] have shown that the maximum possible
embedding degree of a supersingular elliptic curve
is 6. More specifically, over fields of characteristic
p =2,p=3,and p > 3, the maximum embed-
ding degrees are 4, 6, and 3, respectively. Thus,
the maximum achievable embedding degree at
present for a type 1 pairing is 6. Since many pro-
tocols, such as tripartite one-round key exchange
(Protocol 6), require a type 1 pairing, they must
be designed and implemented with this limitation
in mind.

An ordinary elliptic curve is any elliptic curve
which is not supersingular. In the case of ordinary
elliptic curves, the Cocks-Pinch method [3.39,40]
is capable of producing curves having any desired
embedding degree [3.40]. However, the curves ob-
tained via this method do not have prime order. For
prime order elliptic curves, the Barreto-Naehrig
family of curves [3.33], having embedding de-
gree 12, represents the largest embedding degrees
available today, although for performance rea-
sons the Miyaji-Nakabayashi-Takano family of
curves [3.41], having maximum embedding de-
gree 6, is sometimes preferred. Pairings on ordinary
curves can be selected to be either type 2 or type 3
depending on the choice of which subgroup of the
curve is used in the pairing [3.29].

3.7 Implementations of Pairings

This section contains the technical definitions and
concepts required to construct pairings. We also give
proofs of some of the basic properties of pairings,
along with concrete algorithms for implementing
the standard pairings. An alternative approach, for
readers who wish to skip the technical details, is
to use a preexisting implementation, such as Ben
Lynn’s pbc library [3.42], which is published under
the GNU General Public License.

3.7.1 Divisors

All known examples of cryptographic pairings rely
in an essential way on the notion of a divisor on
an elliptic curve. In this section we give a brief self-
contained treatment of the basic facts about divisors.
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We then use this theory to give examples of crypto-
graphic pairings and describe how they can be effi-
ciently computed.

Recall that every nonzero integer (more gener-
ally, every rational number) admits a unique factor-
ization into a product of prime numbers. For exam-
ple,

7/4=7"-27"
1=¢

6=2-3
50=2.5
or, in additive notation,

log(6) =log(2) +log(3)
log(7/4) =1log(7) + (~2)log(2)
log(50) =log(2) + 2log(5)
log(1)=0.

Observe that prime factorizations satisfy the follow-
ing properties:

1. The sum is finite.

2. 'The coefficient of each prime is an integer.

3. Thesum is unique: no two sums are equal unless
all the coefficients are equal.

These properties motivate the definition of divisor
on an elliptic curve:

Definition 9. A divisor on an elliptic curve E is a for-
mal sum Y . ap(P) of points P on the curve such
that:

1. The sum is finite.

2. The coefficient ap of each point P is an integer.

3. The sum is unique: no two sums are equal unless
all the coefficients are equal.

The degree of a divisor D = Y p.p ap(P), denoted
deg(D), is the integer given by the finite sum
2 pe AP

The empty divisor is denoted @&, and its degree by
definition is 0.

Definition 10. Let E : y2 +a\xy+aszy = X Hax’+
asx + ag be an elliptic curve defined over a field F.
A rational function on E is a function f:E — F of
the form

_fixny)
fxy)

where fi(x, y) and f2(x, y) are polynomials in the
two variables x and y.

f(xy)
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Definition 11. Let f(x,y) = ggi;;

rational function on an elliptic curve E. For any
point P € E, the order of f at P, denoted ordp(f),
is defined as follows:

. Iff(P)thandﬁ¢0,thenordp(f)=0.
o Iff(P) =0, thenordp(f) equals the multiplicity
of the root at P of the numerator fi (x, y).

o If ﬁ = 0, then ordp(f) equals the negative of

be a nonzero

the multiplicity of the root at P of the denomina-
tor fo(x, y).

Definition 12. Let f be a nonzero rational function
on an elliptic curve E. The principal divisor generated
by f, denoted div( f), is the divisor

iv(f) = 3 orde() - (P).

which represents the (finite) sum over all the points
P ¢ E at which either the numerator or the denomi-
nator of f is equal to zero.

A divisor D on E is called a principal divisor if
D = div(f) for some rational function f on E.

Note that div(fg) = div(f) + div(g), and
div(1) = @. Hence, div is a homomorphism from
the multiplicative group of nonzero rational func-
tions on E to the additive group of divisors on E.
Accordingly, the image of div is a subgroup of the
group of divisors.

Theorem 1. For any rational function f on E, we
have deg(div(f)) = 0.

Proof. See Proposition I1.3.1 in [3.43]. o

Example 10. Let E be the elliptic curve y* = x° —

x. Let f be the rational function f(x,y) = i

We can calculate div( f) as follows. The numerator
fi(x,y) = x is zero at the point P = (0,0), and
1/fi = 1/x is zero at P = oo. Since the line x = 0
is tangent to the curve E at (0,0), we know that
ord(g,0)(f1) = 2. By Theorem 1, we must also have
that ordes(fi) = —2. Hence, the principal divisor
generated by x is

div(x) =2((0,0)) —2(00) .
A similar calculation yields
div(y) = ((0,0)) + ((0.1)) + ((0,-1)) - 3(s0)
and hence
div (f) = div(x) — div(y)
=((0,0)) = ((0,1)) = ((0,~1)) + (e0) .

49

Definition 13. Two divisors D, and D, are linearly
equivalent (denoted by D, ~ D,) if there exists
a nonzero rational function f such that

D1 - D2 = le(f) .

The relation of linear equivalence between divi-
sors is an equivalence relation. Note that, by Theo-
rem 1, a necessary condition for two divisors to be
equivalent is that they have the same degree.

Lemma 1. For any two points P, Q € E,
(P) = (00) +(Q) = (e0) ~ (P+Q) = (o),

where the addition sign on the right-hand side denotes
geometric addition.

Proof. If either P = oo or Q = oo, then the two sides
are equal, and hence necessarily equivalent. Suppose
now that P + Q = oo. Let x — d = 0 be the vertical
line passing through P and Q. Then, by a calculation
similar to that in Example 10, we find that

div(x—d) = (P) + (Q) —2(o0),

S0 (P) +(Q) ~2(c0) ~ & = (0) = (c0) = (P +
Q) - (00), as desired.

The only remaining case is where P and Q are two
points satisfying P # oo, Q # oo,and P #+ —Q. In this
case, let ax + by + ¢ = 0 be the equation of the line
passing through the points P and Q,and let x—d = 0
be the equation of the vertical line passing through
P+Q. These two lines intersect ata common point R
lying on the elliptic curve.

We have

div(ax +by+¢)=(P) +(Q) + (R) - 3(c0),
div(x—d)=(R) +(P+Q) —2(o0),

div(%by“) =(P)+(Q) - (P+Q) - (c0)

d
=(P) = (00) +(Q) = (0)
- [(P+Q) = ()],

implying that (P) — (c0) + (Q) — (00) = [(P+ Q) -
(o0)] is a principal divisor, as required.

Remark 4. Tt is not possible for (P) + (Q) to be
equivalent to (P + Q), since the first divisor has de-
gree 2 and the second divisor has degree 1. Lemmal
says that, after correcting for this discrepancy by
adding oo terms, the divisors become equivalent.
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Proposition 1. Let D = ) ap(P) be any degree-zero
divisor on E. Then

D~ (> apP) - (o),

where the interior sum denotes elliptic curve point ad-
dition.

Proof. Since D has degree zero, the equation

D=3 ap[(P) - (c0)]

PeE

holds. Now apply Lemma 1 repeatedly. m]

The converse of Proposition 1 also holds, and its
proof follows from a well-known result known as the
Riemann-Roch theorem.

Proposition 2. Let D; = Y ap(P) and D, =
Y bp(P) be two degree-zero divisors on E. Then
D, ~ D, if and only if

Z apP = Z bpp.

PeE PeE

Proof. See Proposition I11.3.4 in [3.43]. o

3.7.2 Weil Pairing

The Weil pairing was historically the first example of
a cryptographic pairing to appear in the literature.
In this section we define the Weil pairing and prove
some of its basic properties.

Definition 14. Let E/F be an elliptic curve and let
n > 0 be an integer. The set of n-torsion points of E,
denoted E[n], is given by

E[n]:={PeE(F)|nP=00},

where F denotes the algebraic closure of F. The set
E[n] is always a subgroup of E(F).

Remark 5. If the characteristic of F does not di-
vide n, then the group E[n] is isomorphic as a group
to Z/nZ x Z|nZ.

Definition 15. Let f be a rational function and let
D = Y ap(P) be a degree-zero divisor on E. The
value of f at D, denoted f(D), is the element

fD)=T]f(P)" eF.
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Definition 16. Let E be an elliptic curve over F. Fix
an integer n > 0 such that char(F) { n and E[n] c
E(F). For any two points P, Q € E[n],let Ap be any
divisor linearly equivalent to (P) — (c0) (and sim-
ilarly for Aq). By Proposition 1, the divisor nAp is
linearly equivalent to (nP) — (noo) = &. Hence nAp
is a principal divisor. Let fp be any rational function
having divisor equal to nAp (and similarly for fg).

The Weil pairing of P and Q is given by the
formula
_ fr(40)

fo(Ar)’

valid whenever the expression is defined (i.e., nei-

ther the numerator nor the denominator nor the
overall fraction involves a division by zero).

e(P,Q)

Proposition 3. The Weil pairing is well defined for
any pair of points P, Q € E[n].

Proof. The definition of Weil pairing involves
a choice of divisors Ap, Ag and a choice of rational
functions fp, fq. To prove the proposition, we need
to show that for any two points P, Q there exists
a choice such that e(P, Q) is defined, and that any
other set of choices for which e(P, Q) is defined
leads to the same value.

We will begin by proving the second part. To start
with, the choice of fp does not affect the value of
e(P, Q), since for any other function f» sharing the
same divisor, we have

dv(folfe) =2,

which means fp = cfp for some nonzero constant
¢ € F. It follows then that fp(AQ) = fp(Aq), since
Aq has degree zero, and therefore the factors of ¢
cancel out in the formula of Definition 15.

We now prove that the choice of Ap does not af-
fect the value of e(P, Q); the proof for Aq is simi-
lar. If A p is another divisor linearly equivalent to Ap,
then Ap = Ap +div(g) for some rational function g.
It follows that fp = fp - g" is a rational function
whose divisor is equal to nAp. The value of e(P, Q)
under this choice of divisor is equal to

) fe(A)g(AQ)”
(P Q)= ) T Talhr) faldiv(g))
_ fr(Aq) _g(ndo)
Fo(Ar) Ta(div(g))
i o £¥(0))
=P Q) i e))
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8(div(fq))
fa(div(g))
reciprocity formula, which we will not prove here.

A proof of Weil reciprocity can be found in [3.44,
45].

To complete the proof, we need to show that
there exists a choice of divisors Ap and A for which
the calculation of e(P, Q) does not involve division
by zero. The naive choice of Ap = (P) — (o0), Aq =
(Q)—(c0) does not work whenever Q # oo, because
in this case div(fo) = n(Q) —n(o0), so 1/ fo equals
zero at oo, and consequently

folP)
JalAe) = ooy =

To fix this problem, let R be any point in E(F)
not equal to any of the four points Q, co, —P, and
Q - P. Here T denotes the algebraic closure of F,
over which E has infinitely many points, guarantee-
ing that such an R exists. Set Ap = (P + R) — (R).
Then Ap is linearly equivalent to (P) — (o0), and

_fo(P+R)
JolAn =)

since div(fq) = n(Q) - n(c0), and we have cho-
sen R in such a way that neither R nor P+R coincides
with either Q or co. Similarly, we find that

fr(Q) .
fP(AQ)—f( )

because div(fp) = n(P + R) — n(R), and neither Q
nor oo coincides with R or P + R. m]

The fraction is equal to 1 by the Weil

*
eF",

Theorem 2. The Weil pairing satisfies the following
properties:

o e(P1+P,,Q)=¢e(P1,Q)e(P,Q)ande(P, Qi+
Q2) =e(P, Q1) e(P, Q) (bilinearity).

o e(aP,Q)=e(P,aQ)=e(P,Q)", foralla €Z.

o e(P,o0)=¢(o0,Q)=1.

. e(P,Q)"=1
« e(P,Q) =e(Q,P) " and e(P,P) = 1 (antisym-
metry).

o IfP # oo and F is algebraically closed, there exists
Q € E such that e(P, Q) # 1 (nondegeneracy).

Proof. We begin with bilinearity.
Pi, P, Q € E[n]. Observe that

Apy+p, ~ (P1+ Py) = (00)

~ (Pr) = (00) + (P2) = (o0)
~ APl +Ap2

Suppose
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by Lemma 1. Hence, we may use Ap, + Ap, as our
choice of Ap,+p,. Moreover, if fp, and fp, are ratio-
nal functions having divisor nAp, and nAp,, respec-
tively, then

div(fplfpz) = div(fpl) + diV(sz) =nAp, +nAp,
= nAP1+P2 .

Accordingly, we may take fp +p, to be equal to
fp, fp,. Therefore,

fP1+P2(AQ) (fPlfPZ)(AQ)
e(hi+ P, Q) = o(Apsp,)  fo(Ap, +Ap,)
_ fri(AQ)fr,(Aq)

= FaCAn) fa(Ar,)
=e(P1,Q) e(P2,Q),

as desired. The proof that e(P,Q: + Q.) =
e(P, Q1) e(P, Q) is similar.

The property e(aP, Q) = e(P,aQ) = e(P,Q)"
follows from bilinearity, and e(P, o0) = e(c0, Q) =
1 is a consequence of the definition of the Weil pair-
ing. These two facts together imply that e(P, Q)" =
e(nP,Q) =e(o0,Q) =1.

Antisymmetry follows from the definition of the
Weil pairing, since

fr(AQ) (fQ(AP)
fa(Ar)  \fr(Aq)
We will not prove nondegeneracy, since it can be eas-

ily verified in practice via computation. A proof of
nondegeneracy can be found in [3.44]. ]

e(P,Q) = )_ =e(Q,P)".

3.7.3 Tate Pairing

The Tate pairing is a nondegenerate bilinear pair-
ing which has much in common with the Weil pair-
ing. It is generally preferred over the Weil pairing in
most implementations of cryptographic protocols,
because it can be computed more efficiently.

Definition 17. Let E be an elliptic curve over
afield F. Fix an integer n > 0 for which char(F) t n
and E[n] c E(F). For any two points P, Q € E[n],
the Tate proto-pairing of P and Q, denoted (P, Q),
is given by the formula

(P,Q) = fr(Aq) € F"/F™",

valid whenever the expression fp(Aq) is defined
and nonzero.
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Proposition 4. The value of the Tate proto-pairing is
well defined, independent of the choices of Ap, Aq,
and fp.

Proof. As in the case of the Weil pairing, the choice
of fpisirrelevant once Ap is fixed. We may thus take

= (P) - (c0) and Ag = (Q + R) - (R) where
R # P, 00,-Q, P— Q. For this choice of Ap and A,
the expression fp(Aq) will be a nonzero element
of F.

We now show that (P, Q) takes on the same value
independent of the choice of Ap and Aq. If a differ-
ent value of Aq is chosen, say, Aq = Aq + div(g),
then, using Weil reciprocity, we find that

(P.Q) = fr(Ao) = fr(Aq) fr(div(g))
= fr(Aq) g(div(fr))
= fr(AQ) g(nAr) = fr(Aq) g(Ar)"
The latter value is equal to (P, Q) = fp(Aq) in the
quotient group F*/F*". Likewise, if a different divi-
sor Ap = Ap + div(g) is used, then nAp = div(fp -
g")ss0

(P,Q)

= fr(A0) = fr(Aq)g(AQ)"
Efp(AQ) (mod F*n). m}

Theorem 3. The Tate proto-pairing satisfies the fol-
lowing properties:

o (P1+P, Q) =(P1,Q) (P, Q) and (P, Q1 +Q:) =

P, Q1) (P, Q2) (bilinearity).

aP,Q)=(P,aQ)=(P,Q)" foralla €Z.
)) (00,Q) = 1.

o IfP+ oo, and F is algebraically closed, there exists
Q € E[n] such that (P, Q) # 1 (nondegeneracy).

(
(
<
(P,
(P,

Note that the Tate proto-pairing is not antisym-
metric.

Proof. As in the case of the Weil pairing, we may
take Aq,+q, tobe Aq, +Aq,,and fp,+p, tobe fp, fp,.
In this case,

(Pr+P5,Q) = fri+r,(A) = fri (A) fr,(AQ)
=(P,Q) (P, Q),

= fr(Aq + Aq,) = fr(Aa)) fr(Ae,)
:<P»Q1><P»Q2>-

All of the other properties (except for nondegen-
eracy) follow from bilinearity and the definition

<P:Ql +(22)
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of the pairing. We will not prove nondegeneracy
(see [3.44] for a proof). O

The Tate pairing is obtained from the Tate proto-
pairing by raising the value of the proto-pairing to an
appropriate power. The Tate pairing is only defined
for elliptic curves over finite fields.

Definition 18. Let F = ]Fqk be a finite field. Let n

be an integer dividing ¢* - 1, and fix two points
P,Q € E[n]. The Tate pairing e(P,Q) of P and Q
is the value

(P,Q)"" €Fy.

e(P,Q) =

Theorem 4. The Tate pairing satisfies all the proper-
ties listed in Theorem 3.

k
- gk-1 . . .
Proof. Exponentiation b‘)kf 41— is an isomorphism
g -1
from F;k /F;‘k " to (F;k) ", soall of the properties

in Theorem 3 hold for the Tate pairing. o

3.7.4 Miller’s Algorithm

The calculation of Weil and Tate pairings on the sub-
group of n-torsion points E[n] of an elliptic curve E
can be performed in a number of field operations
polynomial in log(n), thanks to the following algo-
rithm of Miller [3.45], which we present here.

Fix a triple of n-torsion points P, Q,R € E[n].
We assume for simplicity that » is large, since this
is the most interesting case from an implementation
standpoint. For each integer m between 1 and n, let
fm denote a rational function whose divisor has the
form

div(fu) = m(P+R) — m(R) - (mP) + (c0) .

We will first demonstrate an algorithm for calculat-
ing f,(Q), and then show how we can use this algo-
rithm to find e(P, Q).

For any two points P;,P, € E[n], let
gr.p,(x,¥) = ax + by + ¢ be the equation of
the line passing through the two points P; and P;.
In the event that Py = P, we set gp,,p, (X, y) to be
equal to the tangent line at P,. If either P or P, is
equal to oo, then gp, p, is the equation of the vertical
line passing through the other point; and finally, if
P, = P, = oo, then we define gp, p, = 1. In all cases,

div(gp,.p,) = (P1) + (P2) + (=P1 = P;) = 3(0) .
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To calculate f,,(Q) for m = 1,2, ... , n, we proceed
by induction on m. If m = 1, then the function

) = gp+r,—P-r(%, )
fl( »J’) gP,R(x;y)

has divisor equal to (P+ R) — (R) = (P) + (o0). We
can evaluate this function at Q to obtain f;(Q).

For values of m greater than 1, we consider sep-
arately the cases of m even and m odd. If m is even,
say, m = 2k, then

grir(Q)

(@ =fi(@) - B2,

whereas if m is odd we have

g(m—l)P,P(Q)
ng,me(Q) '

Note that every two steps in the induction process
reduces the value of m by a factor of 2 or more.
This feature is the reason why this method suc-
ceeds in calculating f, (Q) even for very large values
of n.

The Tate pairing of two n-torsion points P, Q €
E[n] can now be calculated as follows. Choose two
random points R, R’ € E[n]. Set Ap = (P + R) —
(R)and Aq = (Q + R") — (R"). Using the method
outlined above, find the values of f,(Q + R") and
fa(R"). Since div(fs) = n(P + R) — n(R) — (nP) +
(00) =nA, = div(fp), we find that

f(Q+R) _ fr(Q+R)
@Y S ®)

It is now easy to calculate the Tate pairing e(P, Q) =

fn(Q) = fu1(Q)- A(Q) -

= fr(Aq) -

k

fr (AQ)qu. To find the Weil pairing, simply re-
peat the procedure to find fo (Ap), and divide it into
fr(Aq). Aslong as the integer # is sufficiently large,
it is unlikely that the execution of this algorithm will
yield a division-by-zero error. On the rare occasion
when such an obstacle does arise, repeat the calcu-
lation using a different choice of random points R
and R’. A description of Miller’s algorithm in pseu-
docode can be found in Algorithms 3.2-3.5.

Note that the Tate pairing consists of only one di-
visor evaluation, whereas the Weil pairing requires
two. Since divisor evaluation is the most time con-
suming step in pairing computation, the Tate pair-
ing is superior to the Weil pairing in terms of perfor-
mance. In certain special cases, alternative pairings
are available which are even faster [3.46,47].
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Algorithm 3.2 Computing ¢(E,P,P»,Q) =
ngPz(Q)
Require: E: y2 +aixy+azy= x3 + ax? + agx + as
Require: Py = (x1,y1), P2 = (x2,2), Q = (xq.¥q)
if P; = co and P, = oo then
output 1
else if P; = oo then
output xq — x2
else if P, = oo then
output xq — x
else if P; = P, then
output (3x7 +2axx1 +as—ayy1)(xq —x1) — (2y1 +
a1x1 +a3)(yq = y1)
else
output (xq - x1)(y2 = y1) + (yq = y1)(x1 - x2)
end if

Algorithm 3.3 Computing f(E,Pi,P,,Q,m) =
fm(Q)

Require: E,P1,P,,Q,m

if m = 1 then
E,P +P,,-P, - P,,
output g( L 2 L 2 Q)
¢(E,P1,P,Q)
else if m is even then
ke« —
2

Q.k)? g(E, kP1, kP, Q)

output f(E, Py, P, — _——
g(E,mP;,-mP1,Q)

else if m is odd then
output f(E,P1, P>, Q,m—1)
E, —-1)P, Py,
F(B By Q8L DAL PL Q)
g(E,mP;,-mPy, Q)
end if

Algorithm 3.4 Computing the Weil pairing e(P, Q)
for P,Q € E[n]
Require: E,P,Q,n
Ry «<p E[n]
R2 <R E[i’l]
f(E,Pl,Rl, Q + Rz, t’l)f(E, Q,Rz,Rl, n)
f(E,Pl, Ri, Ry, n)f(E, Q,Rz, P, + Ry, n)

return

Algorithm 3.5 Computing the Tate pairing e(P, Q)
for P,Q € E[n]
Require: E/Fy,P,Q,n

k < embedding degree of E with respect to n

Rl <R E[i’l]

Ry «<p E[n]

k

9 -1
f(E,P1,R1,Q+R2,Vl)) "
f(E,P1,R1,Rz, 1)

return (
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Table 3.2 Supersingular curves, distortion maps, and embedding degrees

Field  Elliptic Distortion
curve map

FP yz = _x3 + ax (x,y) — (,x’ 1}/)
p=3mod4 i2=_1

Fp Y2 =x3+b (x, ) = ({x, )
p=2mod3 8=1

2_ .3

R (o) o (o, 2
p=2mod3 r@p-1)/3" pp-1
b¢F, rZ:h,rEsz

wi=r,we ]Fp5
For i yodyixor (®2) = (x+shyssa+)

s,te]Fzz;m,s4 =5
2

Pry=x>+x+1

m =1mod2 P+t=sC+s

Fym y?*=x>+2xx1 (x,y) > (—x +1,uy)
m = x1 mod 12 ut=-lueFpn
P +2re2=0
I’E]F33m
Fam  y*=x>+2x=+1 (x,9) > (—x +r,uy)
m = +5 mod 12 u* =-l,ueFypn
P +2re2=0
I’E]F33m

Group Embedding
order degree
p+1 2

p+1 2
PP-p+l 3

P e I R

m+1

3m+372 +1 6

3’"¢3mT+1+1 6

3.8 Pairing-Friendly Curves

Asremarked in Sect. 3.6, low embedding degrees are
necessary to construct pairings, and very few elliptic
curves have low embedding degrees. In this section,
we describe some families of elliptic curves having
low embedding degree. Such curves are often called
pairing-friendly curves.

3.8.1 Supersingular Curves

Recall that a supersingular curve is an elliptic curve
E/F,m such that p divides p™ + 1 —#E. All supersin-
gular elliptic curves have embedding degree k < 6
and hence are pairing-friendly. For any supersingu-
lar curve, the Weil or Tate pairing represents a cryp-
tographic pairing on E[n], where n is any prime di-
visor of #E. Moreover, a type 1 pairing é can be ob-
tained on E using the formula

é(P,Q) =e(P,y(Q)),

where e:E[n] x E[n] — F;mk is the usual Weil (or
Tate) pairing, P,Q € E(F,n), and y:E(Fpm) —
E(FF ,mi ) is an algebraic map. Such a map v is called
a distortion map, and the corresponding pairing é
above is known as the modified Weil (or Tate) pair-
ing. All known families of type 1 pairings arise from
this construction, and Verheul [3.48] has shown that
distortion maps do not exist on ordinary elliptic
curves of embedding degree k > 1. Hence, at present
all known families of type 1 pairings require the use
of supersingular curves.

Table 3.2 (an extended version of Fig. 1in [3.38])
lists all the major families of supersingular elliptic
curves together with their corresponding distortion
maps and embedding degrees.

3.8.2 Ordinary Curves

Certain applications such as short signatures require
pairing-friendly elliptic curves of embedding de-
gree larger than 6. In this section we describe two
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such constructions, the Barreto—Naehrig construc-
tion and the Cocks-Pinch method. Both techniques
are capable of producing elliptic curves with em-
bedding degree greater than 6. The Cocks-Pinch
method produces elliptic curves of arbitrary embed-
ding degree, but not of prime order. The Barreto-
Naehrig construction, on the other hand, produces
curves of embedding degree 12 and prime order.

Barreto-Naehrig Curves. The Barreto-Nachrig
family of elliptic curves [3.33] achieves embedding
degree 12 while retaining the property of having
prime order. This embedding degree is currently the
largest available for prime order pairing-friendly el-
liptic curves.

Let N(x) and P(x) denote the polynomials

N(x)=36x"+36x" +18x" +6x+1,
P(x) = 36x* +36x° +24x" + 6x + 1

and choose a value of x for which both n = N(x)
and p = P(x) are prime. (For example, the choice
x = 82 yields the curve in Example 8.) Search for
avalue b € IF, for which b + 1 is a quadratic residue
(i.e., has a square root) in [F,, and the point Q =
(1,v/b + 1) on the elliptic curve E : y* = x° + b sat-
isfies nQ = oo. The search procedure can be as sim-
ple as starting from b = 1 and increasing b gradually
until a suitable value is found. For such a value b,
the curve E/F, given by the equation y* = x* + b
has n points and embedding degree 12, and the point
Q = (1,v/b +1) can be taken as a base point.

Cocks-Pinch Method. The Cocks-Pinch method
[3.39,40] produces ordinary elliptic curves having
arbitrary embedding degree. The disadvantage of
this method is that it cannot produce curves of
prime order.

Fix an embedding degree k > 0 and an integer
D < 0. These integers need to be small; typically, one
chooses k < 50 and D < 10”. The method proceeds
as follows:

1. Let n bea prime such that k divides n — 1 and D
is a quadratic residue modulo .

2. Let{ bea primitive kth root of unity in F;,. Such
a ( exists because k divides n — 1.

3. Lett={+1 (mod n).

4. Lety= % (mod n).

5. Let p= (t* — Dy*)/4.

If p is an integer and prime, then a specialized algo-
rithm known as the complex multiplication method
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will produce an elliptic curve defined over I, hav-
ing embedding degree k with n points. The com-
plex multiplication method requires a discriminant
as part of its input, and in this case the value of
the discriminant is the quantity D. Since the run-
ning time of the complex multiplication method is
roughly cubicin D, it is important to keep the value
of D small. The resulting elliptic curve will not have
prime order, although for certain values of k there
are various optimizations which produce curves of
nearly prime order [3.40], for which the cofactor is
relatively small.

A detailed discussion of the complex multi-
plication method is not possible within the scope
of this work. Annex E of the ANSI X9.62 and
X9.63 standards [3.18,25] contains a complete
implementation-level specification of the algo-
rithm.

3.9 Further Reading

For ECC and pairing-based cryptography, the most
comprehensive sources of mathematical and back-
ground information are the two volumes of Blake
etal. [3.44,49] and the Handbook of Elliptic and
Hyperelliptic Curve Cryptography, ed. by Cohen
and Frey [3.5]. Implementation topics are covered
in [3.5] and in the Guide to Elliptic Curve Cryptog-
raphy by Hankerson et al. [3.4]. The latter work also
contains a detailed treatment of elliptic-curve-based
cryptographic protocols.
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Hash Standard (AHS) which will be referred to as
SHA-3.

This chapter studies hash functions. Several ap-
proaches to design hash functions are discussed. An
overview of the generic attacks and short-cut attacks
on the iterated hash functions is provided. Impor-
tant hash function applications are described. Sev-
eral hash based MACs are reported. The goals of
NIST’s SHA-3 competition and its current progress
are outlined.

4.1 Notation and Definitions

Definition and properties of hash functions along
with some notation is introduced in this section.

4.1.1 Notation

A message consisting of blocks of bits is denoted
with m and the ith block of m is denoted by m;.
When j distinct messages are considered with j > 2,
each message is denoted with m’ and ith block of
m’ is denoted with m{ . Often, two distinct messages
are denoted with m and m™. If a and b are two

strings of bits then a||b represents the concatenation
of a and b.

4.1.2 Hash Functions and Properties

An n-bit hash function, denoted, H:{0,1}* —
{0,1}", processes an arbitrary finite length input
message to a fixed length output, called, hash value
of size n bit. The hash computation on a message m
is mathematically represented by H(m) = y. The
computation of y from m must be easy and fast. The
fundamental security properties of H are defined
below [4.1]:

» Preimage resistance: H is preimage resistant if
for any given hash value y of H, it is “compu-
tationally infeasible” to find a message m such
that H(m) = y. That is, it must be hard to in-
vert H from y to get an m corresponding to y.
This property is also called one-wayness. For an
ideal H, it takes about 2" evaluations of H to find
a preimage.

o Second pre-image resistance: H is second
preimage resistant if for any given message
m, it is “computationally infeasible” to find
another message m” such that m* # m and

4 Cryptographic Hash Functions

H(m) = H(m™). For an ideal H, it takes about
2" evaluations of H to find a second preimage.

« Collision resistance: H is collision resistant if it
is “computationally infeasible” to find any two
messages m and m* such that m # m" and
H(m) = H(m"). Due to the birthday paradox,
for an ideal H, it takes about 2"2 evaluations of
H to find a collision.

A hash function which satisfies the first two
properties is called a one-way hash function
(OWHEF) whereas the one which satisfies all three
properties is called a collision resistant hash func-
tion (CRHF) [4.2]. The problem of finding a colli-
sion for H can be reduced to the problem of finding
a preimage for H provided H is close to uniform
or the algorithm which finds a preimage for H has
a good success probability for every possible input
y €{0,1}" [4.3,4]. While it seems to be impossible
to verify the first assumption for the hash functions
used in practice, the second assumption ignores
the possibility of the existence of preimage finding
algorithms that work on some (but not all) inputs.

Collision resistance has also been referred as
collision freeness [4.5] or strong-collision resis-
tance [4.1], second preimage resistance is called
weak collision resistance and preimage resistance
is referred to as one-wayness [4.1]. This is differ-
ent from the weakly collision resistance property
described in [4.6] in the context of HMAC. Apart
from these properties, it is expected that a good hash
function would satisfy the so-called certificational
properties [4.1]. These properties intuitively appear
desirable, although they cannot be shown to be
a necessary property of a hash function. Two main
certificational properties of a hash function H are:

« Near-collision resistance: H is near-collision re-
sistant if it is difficult to find any two messages
m and m” such that m # m* and H(m) =
T(H(m™)) for some non-trivial function T.

« Partial-preimage resistance: H is partial preim-
age resistant when the difficulty of finding a par-
tial preimage for a given hash value is the same
as that of finding a full preimage using that hash
value. It must also be hard to recover the whole
input even when part of the input is known along
with the hash value.

Violation of near-collision resistance could lead
to finding collisions for the hash functions with
truncated outputs where only part of the output is
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used as the hash value [4.7]. For example, a collision
resistant 256-bit hash function with 32 right most
bits chopped is not near-collision resistant if near-
collisions are found for the 256-bit digest where the
left most 224 bit are equal. Therefore, by truncating
the hash value, one might actually worsen the secu-
rity of the hash function.

4.2 Iterated Hash Functions

Iterated hash functions are commonly used in many
applications for fast information processing. In
this section, the Merkle-Damgard construction,
a widely used framework to design hash functions
is discussed. In the rest of this chapter, unless stated
otherwise, the term “hash function” refers to those
following the Merkle-Damgard construction.

4.2.1 Merkle-Damgdrd Construction

Damgard [4.5] and Merkle [4.8] independently
showed that if there exists a fixed-length in-
put collision resistant compression function
£:{0,1}* x {0,1}" - {0,1}" then one can de-
sign a variable-length input collision resistant hash
function H:{0,1}* — {0,1}" by iterating that
compression function. If one finds a collision in
H then a collision to f would have been obtained
somewhere in its iteration. Hence, if H is vulner-
able to any attack then so is f but the converse of
this result is not true in general [4.2]. From the
performance point of view, the design principle
of H is to iterate f until the whole input message
is processed. From the security point of view, the
design principle of H is if f is collision resistant
then H is also collision resistant.

4.2.2 Merkle-Damgdrd Hash
Functions

An n-bit Merkle-Damgérd H is illustrated in

Fig. 4.1. The specification of H includes the de-
scription of the compression function f:{0,1}" —

DT
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{0,1}", initial value (IV) and a padding pro-
cedure [4.1,2]. Every hash function uses an IV
which is fixed and specifies an upper bound, say
2!~ 1bit, on the size of the input message m to
be processed. The message m is padded with a 1
bit followed by 0bit until the padded message is
I bits short of a full block of bbit. The length of
the original (unpadded) message in a binary en-
coded format is filled in those I bit. This compound
message m is represented in blocks of bbit each
asm = my|mz|...||mi-1|m.. Adding the length
of the message in the last block is called Merkle-
Damgérd strengthening [4.9] (MD strengthening).
Some papers (for example, [4.6,10-12]) have men-
tioned placing the MD strengthening always in
a separate block. However, implementations of
MD4 family place the length encoding in the last
padded block if there is enough space. The analytical
result of the Merkle-Damgérd construction holds
only when the MD strengthening is employed.
Unlike MD4 family of hash functions, Snefru [4.13]
pads the message with 0 bit until the total length of
the message is a multiple of the block size (which
is 384 bit) and does MD strengthening in a separate
final block.

Each block m; of the message m is iterated us-
ing the compression function f computing H; =
f(Hi-1,m;) where i = 1 to L producing the hash
value Hyy (m) = Hy as shown in Fig. 4.1 where Hy is
the IV of H. In this chapter, the hash function repre-
sentation H implicitly has the initial state Hy other-
wise the state will be represented as a subscript to H.
For example, a hash function which starts with some
pseudo state Hy is denoted Hy. The MD strength-
ening prevents trivial attacks on hash functions such
as finding collisions for the messages with different
initial states as given by H(mi[m2) = Hyx(m2)
where Hy = H(my).

By treating the fixed-length input compression
function as a cryptographic primitive, the Merkle-
Damgard construction can be viewed as a mode of
operation for the compression function [4.14]. This
is similar to distinguishing a block cipher primi-
tive used to encrypt fixed-size message blocks by its

}— Hyy (m)=H,

Fig. 4.1 The Merkle-Damgérd

construction
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Table 4.1 MD4 family of hash functions

4 Cryptographic Hash Functions

Hash function Block size Registers Steps
MD4 512 4 48
MD5 512 4 64
RIPEMD 512 2x4 64
RIPEMD-128 512 2x4 2 x 64
RIPEMD-160 512 2x5 2 x 80
RIPEMD-256 512 2x4 2 x 64
RIPEMD-320 512 2x5 2 x 80
SHA-0 512 5 80
SHA-1 512 5 80
SHA-224 512 8 64
SHA-256 512 8 64
SHA-384 1,024 8 80
SHA-512 1,024 8 80

Hash value size

128
128
128
128
160
256
320
160
160
224
256
384
512

modes of operation such as Cipher Block Chaining
(CBC) mode.

The popular MD4 family of hash functions that
include MD4 [4.15, 16], MD5 [4.17], SHA-0 [4.18],
SHA-1, SHA-224/256 and SHA-384/512 in the
FIPS 180-3 (previously FIPS 180-2 [4.19]) Secure
Hash Standard [4.20], RIPEMD-128 [4.21,22] and
RIPEMD-160 [4.21, 22] are designed following the
principles of the Merkle-Damgard construction. In
some parts of the literature [4.23, 24] RIPMED hash
functions are referred to as part of the RIPEMD
family and hash functions SHA-0/1, SHA-224/256
and SHA-384/512 are considered to be part of SHA
family. The block size of the compression function,
number of compression function steps, number of
registers to store the state and the sizes of the hash
values are listed in Table 4.1. Except SHA-384 and
SHA-512, the other functions are optimized to work
on 32-bit processors with the word size of 32 bit.
These compression functions are unbalanced Feistel
networks (UFN) where the left and right half of the
input registers to the Feistel network [4.25] are not
of equal size [4.26].

4.3 Compression Functions
of Hash Functions

Known constructions of compression functions are
based on block ciphers, modular arithmetic or dedi-
cated designs. This section, discusses some details of
the compression function designs.

4.3.1 Compression Functions

Based on Block Ciphers

It is a common practice to design compression
functions using block ciphers. Preneel et al.
(PGV) [4.27] has shown that a block cipher can
be turned into a compression function in sixty-
four ways. This model of PGV uses parameters
k,q,r € {H;_y,m;, Hi-; ® m;,0} and a block cipher
E as shown in Fig. 4.2.

The analysis of PGV shows that twelve out of
sixty-four constructions yield CRHFs. These twelve
compression functions, labeled f fori=1,...,12
are described in Table 4.2. A formal analysis for these
sixty-four PGV compression functions in the ideal
cipher model was given in [4.28].

The Matyas—Meyer-Oseas structure [4.1],
defined by f', has been used in the popular
MDC-2 [4.29-31] and MDC-4 [4.1,32] hash
functions and more recently in the new block cipher

— D f—— 3

Hz'fl

Fig. 4.2 The compression function f based on block ci-
pher
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Table 4.2 Twelve provably secure PGV compression
functions

Compression

function Description

fl Hi:EHi—l(mi)®mi

f? Hi=Ep,_ (mi®H;_1)®m; ®H;_,
1 H;=En,_ (m;)®(m; ®H;_,)

A Hi=Ep,_ (mi®H;1)®&m;

I Hi=Em,(Hi-1) ® Hiy

fe Hi=Em,(Hi-y ®m;) ® (H;i_; ® m;)
f’ Hi=Em,(Hi-1) ® (m; ® Hi_y)

I Hi=Emw,(Hi-y ®m;) ® H;_,

f° H; = En,_ em,(m;) ®m;

e H;=En,_ em,(Hi-1) ® Hi;

™ H; =En,_om (m;) ®H;_,

2 H;=En,_om (Hi-1) ®@m;

based compression functions such as MAME [4.33].
The Miyaguchi-Preneel compression function,
defined by f°, is used in Whirlpool [4.34]. The
Davies-Meyer compression function, defined by
£°, is used in many dedicated designs as shown in
Sect. 4.3.2.

For hash functions based on block ciphers, the
amount of data compressed for each application
of the block cipher is measured by the hash rate.
It is defined as the number of message blocks
processed by one encryption or decryption of the
block cipher [4.35, 36]. If the compression function
£:{0,1}" - {0,1}" requires e calls to either a block
cipher of block size # bits or a smaller compression
function with an #-bit input then the rate r of f is
defined as the ratio r = (b — n)/(e x n) [4.37]. For
example, the compression functions f', f* and f°
have a hash rate of 1.

4.3.2 Dedicated Compression
Functions

Dedicated compression functions are those that
are designed from scratch mainly for the purpose
of hashing instead of using other primitives. MD4
hash function family uses dedicated compression
functions following the Davies—Meyer structure
(f %) [4.38-40]. This design was attributed to Davies
in [4.40,41] and to Meyer by Davies in [4.39].
As pointed out in [4.35], this scheme was never
proposed by Davies and as pointed out in [4.42] it
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was apparently known to Meyer and Matyas. The
secret key input to E is the message block input to
f° and the plaintext input to E is the chaining value
input to f°. This compression function has a fixed
point where a pair (H;_;,m;) can be found such
that Hi-y = f(H;-1,m;) [4.43]. There exists one
and only one fixed point for every message block for
f° which is found easily by choosing any message
block m; and inverting E as shown by E~*(0, m;)
to get a state H;_; such that f(H;_;,m;) = H;_;.
This takes one inverse operation which is equivalent
to the computation of one compression function
operation.

4.3.3 Compression Functions
Based on Modular Arithmetic

Collision resistant compression functions can be
based on the same hardness assumptions as public-
key cryptography such as factoring the large prime
modulus or solving discrete log problem. Existing
software or hardware in the public-key systems
for modular arithmetic can be re-used to design
such compression functions. The drawbacks of
these schemes are their algebraic structure can be
exploited, vulnerable to trapdoors and are much
slower than the dedicated or block cipher compres-
sion functions.

Modular Arithmetic Secure Hash algorithms
(MASH-1 and MASH-2) are the earlier proposals
based on modular arithmetic without any security
proofs. ISO/IEC 10118-4:1998 [4.44] has standard-
ized these algorithms. The MASH-1 compression
function is defined by H; = ((m; & Hi_1) v A)?
(mod N) @ H;_; where N = p - g is RSA-like
modulus where p and g are randomly chosen secret
primes such that factorization of N is intractable,
A = 0xF00.. .00 and the first four bit of every byte
of m; are equal to 1111 and those of the last padded
block contains 1010. The MASH-2 compression
function has 2% + 1 as its exponent instead of 2. The
best known preimage and collision attacks on these
constructions with n-bit RSA modulus require 21/
and 2"/* work.

The recent proposal DAKOTA [4.45] reduces the
problem of constructing a collision resistant com-
pression function to the problem of constructing
a function g such that it is infeasible to find x, %, z
with g(x)/g(%) = +z* mod n, given that factor-
ing the n-bit RSA modulus is infeasible. Hence, n
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must be generated in such a way that nobody knows
its factorization and efficient techniques to do this
are described in [4.46]. Two versions of the g func-
tion were proposed in [4.45]. One version combines
modular arithmetic with symmetric encryption and
the other uses only symmetric key encryption in the
form of AES in the black-box mode. A brief survey
of some other modular arithmetic based hash func-
tions and their comparison with DAKOTA is pro-
vided in [4.45].

4.4 Attacks on Hash Functions

Collision and (second) preimage attacks on H break
the n/2-bit and n-bit security levels of H respec-
tively. These attacks are measured in terms of the
evaluation of H. These attacks are always theoreti-
cally possible on an ideal H using brute-force ap-
proach. Any attack which compromises either the
ideal nature of a hash function property or the stated
security levels of its designer is considered to break
the hash function even if the complexity of such an
attack is computationally infeasible [4.1]. Not all at-
tacks on a hash function H necessarily break it. For
example, attacks on the reduced variants of H or us-
ing different parameters than those in the specifica-
tion of H are not considered as true attacks on H
although they illustrate certain properties of the al-
gorithm that might be useful in carrying out attacks
on the hash function H.

4.4.1 Generic Attacks on the Iterated
Hash Functions

The brute-force collision and (second) preimage at-
tacks on the hash functions are generic as they ap-
ply to any hash function independent of its design.
Such generic attacks depend only on the size of the
hash value. On the other hand, there may be generic
attacks that apply to hash functions of a specific de-
sign, e.g., iterated hash functions.

The following attacks apply to an n-bit Merkle—
Damgard hash function H which uses #-bit com-
pression functions even if the compression func-
tions are ideal:

« 2% collision attack where d > 1: Find a 2“-set of
messages {ml, m*,..., mzd} such that m* = m’
where i # j,and H(m') = ... = H(mzd). This
attack assumes the existence of a collision finding
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algorithm which produces a collision for f with
every call to it [4.47]. When this collision find-
ing algorithm is called with a state H;_;, it re-
turns two message blocks, say m,1 and m?, such
that m; # m7 and fu, | (m}) = fu, ,(m}). Such
a collision finding algorithm can either be due
to a brute force collision attack or a cryptana-
Iytic collision attack. Using a brute force colli-
sion finding algorithm, this attack requires about
log, (2) - 2"/ evaluations of f instead of at least

2@072% 45 on an n-bit ideal hash function.
Long message second preimage attack: A sec-
ond preimage on an n-bit H without MD
strengthening can be found for a given long
target message m of 27 + 1 message blocks by
finding a linking message block myin such that
its hash value fu,(min) matches one of the
intermediate hash values H; of H(m) where
1 < i < 27 [4.48]. The attack requires about
2"77 calls to f. Dean [4.49] and later Kelsey
and Schneier [4.50] have extended this generic
attack to the full H by constructing multicol-
lisions over different length messages, called
expandable messages. An (a,b)-expandable
message is a multicollision between messages
of lengths a and b blocks. These expandable
messages are constructed either by finding fixed
points for the compression functions [4.49] or
in a more generic way using 2“-collision finding
technique [4.50].

When the compression functions have easily
found fixed points, the attacker first finds 22
random fixed points (m;, H;) for f where j =0
to 2"/% — 1. Then he computes random hash
values fiv(m;) fori = 0 to 22 _ 1 and collects
the pairs (m;, fiv(m;)). Finally, the attacker
finds a match between two sets of hash values
Hj and fiv(m;) for some i and j and returns
the colliding messages (1, m|m;). Kelsey and
Schneier [4.50] explained this attack using the
notion of expandable messages where the above
collision pair was termed a (1,2)-expandable
message. Messages of desired length in the mul-
ticollision can be produced by concatenating
m; to mj| m;. For an n-bit H which can process
a maximum of 2¢ blocks, it costs about /241
to construct a (1,2%)-expandable message using
this attack [4.50].

The generalized technique of finding expand-
able messages [4.50] finds for H a colliding pair
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of messages one of one block and the other of
2%7! 4 1 blocks using 2¢-collision finding tech-
nique [4.47]. Using this collided state as the start-
ing state, a collision pair of length either 1 or

2972 4 1 is found and this process is continued
until a collision pair of length 1 or 2 is reached.
Thus, a (d, d +2 - 1)-expandable message for an
n-bit H takes only d x 2"/**!.

Once the expandable messages are found using
one of the above attacks, the second preimage
attack is performed from the end of the ex-
pandable messages. The expandable message can
then be adjusted to the desired length so that
the length of the second message m”* equals the
length of m such that H(m) = H(m" ). Finding
a second preimage for a message of 2¢ + d + 1
blocks requires about d x 2"/2*! 4+ 2"~ ysing
the generic expandable message algorithm and
about 3 x 2"?*! 4 2" using the fixed point
expandable message algorithm [4.50].

o Herding attack: Kelsey and Kohno [4.51] have
shown that an attacker who can find many colli-
sions using the birthday attack on the hash func-
tions, can first commit to the hash value of a mes-
sage and later “herd” a challenged message to
that hash value by choosing an appropriate suffix.
This attack shows that hash functions should sat-
isfy a property called chosen-target forced prefix
(CTFP) preimage resistance. An n-bit H is CTFP
preimage resistant if it takes about 2" evaluations
of H or f to find a message which connectsa par-
ticular forced prefix message to the committed
hash value. The attack which violates this prop-
erty for hash functions is called a herding attack.
In this attack, a tree structure is constructed for
H using 24 random hash values at the leaves, and
the hash value H; at the root. For each node in
the tree, there is a message block which maps the
hash value at that node to the hash value at the
parent. Commit to H;. Later, when some relevant
information m’ is available, construct a message
m using m’, the precomputed tree structure and
some online computations such that H(m) = H,.
It takes about 2"/%*%/%*? evaluations of f to com-
pute the tree structure and 2"~ evaluations of f
to construct m.

o Length extension attack: In this attack, for
a given hash value H(m), a new hash value
H(m|m') for a message m' is easily computed
using only H(m) without the knowledge of m.
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The MD strengthening of H can be defeated by
encoding the length of |m|m’| in the last I bit
of m’. This attack can be used to extend a single
collision on H to many collisions as follows:
Assume two distinct messages m and m” that
collide under H. Now it is possible to append
some equal length message m' to the colliding
hash value, say H(m), to find a new collision
H(m|m') for the pair (m|m’, m|m™*). This
attack also has implications when H is used
in the secret prefix MAC setting as shown in
Sect. 4.8.2.

4.4.2 Attacks on the MD4 Family
of Hash Functions

Differential cryptanalysis [4.52], the tool which has
been extensively used to analyze block ciphers, has
also been employed to carry out collision attacks
in some hash functions, particularly, those of MD4
family. In this method, the input difference to the
message blocks of the compression function are cho-
sen in such a way that the difference in the hash val-
ues is zero. In general, (differential) collision attacks
on the compression functions require a large num-
ber of restrictions to hold for the attack to succeed
depending on the compression function being at-
tacked [4.53].

Dobbertin has shown the first ever collision at-
tack on MD4, Extended MD4 and reduced version
of RIPEMD-0 hash functions [4.54, 55] and pseudo
collision attack on MD5 [4.56]. The details of this at-
tack on MD5 are noted in [4.53]. In these attacks, the
compression functions are described as a system of
equations derived from the round function opera-
tions in the compression functions and the message
expansion. Dobbertin’s attack has used several con-
straints to simplify the system of equations and used
many tricks to solve the system of equations.

Wang et al. [4.57] have improved Dobbertin’s at-
tacks on MD4 and have shown many collisions for
MD4 that can be found by hand. At the current
state of art, MD4 is even weaker than Snefru [4.13]
which is as old as MD4 and on which collision and
second preimage attacks are demonstrated [4.58].
The first ever collisions on MD5 and RIPEMD were
shown by Wang et al. [4.57, 59] and further improve-
ments [4.60,61] have demonstrated collisions for
MDS5 in about 2**. MD4 was also shown to be not
one-way [4.62]. These powerful attacks show that
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MD4 and MD5 must be removed the applications
as CRHFs if they are still in use.

The main alternative to MD5 was the original
Secure Hash Algorithm (SHA) (now known as
SHA-0) proposed by NIST [4.63] after a weak-
nesses in the MD5 compression function was
observed [4.64]. SHA-0 has a greatly improved mes-
sage pre-processing (a task which may be considered
as similar to a key-schedule in a block cipher) than
MD4, RIPEMD and MD5. The methods used to
attack MD4, MD5 and RIPEMD cannot be applied
directly to SHA-0 because of the linear message ex-
pansion of 512-bit input message block to 2560 bit
to achieve large hamming distance between any two
randomly selected input data values.

It is interesting to note that SHA-1 [4.65], the re-
vised version of SHA-0, differs from SHA-0 only in
this linear message expansion where the expanded
message is shifted to the right by 1 bit. The reasons
behind this tiny design alteration from SHA-0 to
SHA-1 by the NIST was never made public. How-
ever, one could imagine that this is due to a col-
lision attack on the compression function of SHA-
0 by Chabaud and Joux [4.66] with a complexity
of 2°' which does not work on SHA-1. The attack
of [4.66] finds collisions for the 35-step SHA-0 com-
pression function in 2'* for messages with specific
differences. A similar attack on SHA-0 was indepen-
dently discovered by Wang in 1997 (for example, see
the reference [4.67]) but published in Chinese. Bi-
ham and Chen [4.68] have improved this attack on
SHA-0 by finding near-collisions on SHA-0 with 18-
bit difference with a complexity of 2* and collisions
for the 65-step SHA-0 in 2%°. Biham et al. [4.69] have
demonstrated the first ever collision attack on SHA-
0, in the form of 4-block collisions with a complexity
of 2°'. Their attack was further improved by Wang
et al. [4.67] using a 2-block collision finding algo-
rithm in 2%,

The first ever collision attack on SHA-1, in
the form of 2-block collisions, was demonstrated
by Wang et al. [4.70] with a complexity of 2%.
Wang et al. have later improved their attack com-
plexity to 2% [4.71]. Although it is clear that the
techniques to find collisions in SHA-1 [4.70, 71] are
viable, Wang et al. only estimated the difficulty of
an attack, rather than showing any real collision.
Notwithstanding this, 2*> hashing operations of
SHA-1 is within the reach of a distributed comput-
ing effort [4.72]. An estimated $ 10 million hardware
architecture consisting of 303 personal computers

4 Cryptographic Hash Functions

with 16 SHA-1 attacking boards each with an USB
interface and 32 chips consisting a total of 9,928,704
SHA-1 macros which can find real collisions for
SHA-1 in 127 days was proposed in [4.73] using
the techniques of [4.70]. A cryptanalytic tool which
automatically tracks flipping bits in the internal
state of SHA-1 during its computations to find sets
of messages that could give a collision was proposed
and demonstrated on the reduced version of SHA-
1 [4.74]. A distributed computing environment
which uses a public BONIC software has recently
been set up [4.75] for this tool to allow computers
connected to the Internet to search a small portion
of the search space for a SHA-1 collision.

RIPEMD-160 [4.56], a 160-bit hash function,
was considered as an alternative to MD5 and
RIPEMD. 1t is a part of ISO/IEC 10118-3 [4.76]
standard of dedicated hash functions. So far, there
are no collision attacks on RIPEMD-160 and
RIPEMD-128 [4.77]. With the emergence of the
Advanced Encryption Standard (AES) [4.78] as
a new secret-key encryption standard with a vari-
able key sizes of 128, 192 or 256bit, the 80-bit
security level offered by the hash functions seems to
be inadequate. This initiated the National Security
Agency (NSA) to develop new hash functions to
match the security levels of AES with different
key sizes and 112-bit key Triple-DES which is also
widely used. These new hash functions, SHA-224,
SHA-256, SHA-384 and SHA-512, share a simi-
lar structure with SHA-1. These four algorithms
along with SHA-1 are included in the secure hash
standard [4.19, 20].

4.5 Other Hash Function Modes

Several variants for the Merkle-Damgérd construc-
tion have been proposed for an additional protec-
tion from the birthday attacks, generic attacks and
cryptanalytic attacks on the compression functions.
Some important constructions and their analysis are
discussed in this section.

4.5.1 Cascaded Hash Functions

If H and G are two n-bit independent hash func-
tions used to hash a message m then the 2n-bit con-
struction H(m)| G(m) is called cascaded construc-
tion [4.2]. Joux [4.47] had shown that by first find-
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ing a 2"/*-collision for H and then searching for
two distinct messages in these 2"/? distinct mes-
sages that also collide in G would give a collision
for H(-)|G(-) in about n/2 x 2"* + 2"* time
instead of 2". Similarly, for a target hash value of
H(m)|G(m), by first finding a 2"-collision for H
and then searching these 2" messages for a preimage
for G(m) would give a preimage for H(-)||G(-) in
n x 2"? + 2" instead of 2". This attack also holds
for finding a second preimage where both m and
H(m)|G(m) are given. These results establish that
the security of the cascaded hash functions is as the
best of the individual construction in the cascade
and no more.

4.5.2 Hash Functions Using Checksums

Checksums have been sought for use in the iter-
ated hash functions aiming to increase the security
of the overall hash function without degrading its
efficiency significantly. In this class of hash func-
tions, a checksum is computed using the message
and/or intermediate hash values and subsequently
appended to the message, which is then processed
using the hash function. A checksum-based hash
construction to process a message m is defined by
H(m|C(-)), where C is the checksum function.
The function C could be as simple as an XOR of its
inputs as in 3C [4.79] and MAELSTROM-0 [4.80],
a modular addition as in GOST [4.81] and in the
proposal of Quisquater and Girault [4.82], a simple
non-linear function as in MD2 [4.83] or some com-
plex one-way function such as SHA-1 compression
function.

A cryptanalytic tool called checksum control
sequence (CCS) has been devised in [4.84] to extend
the generic attacks on H onto H(m|C(-)) when
C(-) is the linear-XOR and additive checksum.
A CCS is a data structure which lets an attacker
control the checksum value of H(m | C(-)) without
altering the rest of the hash computation. A CCS is
constructed using a multicollision of right size. It is
then searched for a right message which is used to
extend the generic attacks on H on to H(m|C(-)).
Specific techniques of constructing and using the
CCS to defeat linear-XOR and additive checksums
are developed in [4.84] which are generalized
in [4.85] to defeat non-linear and even complex
one-way checksums. A checksum-based hash func-
tion can also be viewed as a cascaded construction
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in which the hash values of the hash functions in
the cascade are combined and processed in the
end [4.85]. Hence generic attacks on H(m||C(m))
also work on the construction H(m)|G(m) and
also on the complex looking cascaded constructions
H(m) |G (m| H(m)) [4.47].

4.5.3 Dithered Hash Functions

Rivest [4.86] proposed that the second preimage at-
tack of [4.50] can be foiled by disturbing the hashing
process of Merkle-Damgérd using an additional in-
put to the compression function formed by the con-
secutive elements of a fixed dithering sequence. If A
is a finite alphabet and z is the dithering sequence
which is an infinite word over A, then the compres-
sion function f used in the Merkle-Damgérd is de-
fined by H; = f(H,_1, m;, z;) where z; is the ith el-
ement of z. Andreeva et al. [4.87] proposed a new
technique to find second preimages for the Merkle-
Damgard hash functions by combining the tech-
niques of [4.50,51] which has been applied to the
dithered and other hash functions [4.88, 89]. In the
new approach, a 2 diamond structure is first pre-
computed as in the herding attack which requires
2"/2+/242 computations of the compression func-
tion. Next, a message block which links the end of
the diamond structure to an intermediate hash value
in the given long target message of 2“ blocks is found
in 27" work. Then from the IV of H, a message is
found which connects to a hash value in the dia-
mond structure in 2"~ work. This new attack has
been applied to the dithered Merkle-Damgard ex-
ploiting the fact that the dithering sequences have
many repetitions of some subsequences. For the 16-
bit dithering sequence proposed in [4.86], the attack
requires 2"/2*9/2*2 1 (84+32,768)-2"* +2"~ com-
putations of f to find a second preimage for a target
message of 2“ blocks.

4.5.4 Haifa Hash Function Framework

Biham and Dunkelman [4.90] proposed HAIFA
hash function framework to foil the second preim-
age attack of [4.50]. In this framework, the compres-
sion function f is defined by H; = f(H;_1, mj,c,s)
where c is the number of bits hashed so far (or a block
counter) and s is the salt. The parameter ¢ foils the
attempts to construct expandable messages to carry
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out the second preimage attacks of [4.49,50,87]
because to constructa second preimage, the attacker
has to find a linking message block with a counter
which matches the counter used in the message block
in the target message which produces the same inter-
mediate hash value as that of the linking block. The
parameter s aims to secure digital signatures from
the off-line collision attacks similar to the random-
ized hash functions [4.91]. So far, there are no second
preimage attacks on this framework. Herding attacks
work for an adversary who knows the salt while pre-
computing the diamond structure, otherwise, their
applicability depends on how s is mixed with other
input parameters to the compression function.

4.5.5 Wide-Pipe Hash Function

Lucks [4.14] has shown that larger internal state sizes
for the hash functions quantifiably improve their se-
curity against generic attacks even if the compres-
sion function is not collision resistant. He proposed
an n-bit wide-pipe hash function which follows this
principle using a w-bit internal compression func-
tion where w > n. Double-pipe hash with w = 2n
and an n-bit compression function used twice in
parallel to process each message block is a variant
of the wide-pipe hash function [4.14]. SHA-224 and
SHA-384 are the wide-pipe variants of SHA-256 and
SHA-512 hash functions [4.20].

4.6 Indifferentiability Analysis
of Hash Functions

The Indifferentiability security notion for hash func-
tions was introduced by Maurer et al. [4.92]. Infor-
mally, under this notion, the task of an adversary is
to distinguish an ideal primitive (compression func-
tion) and a hash function based on it from an ideal
hash function and an efficient simulator of the ideal
primitive. A Random Oracle [4.93] serves as an ideal
hash function. This section provides an overview on
the random oracles and indifferentiability analysis of
iterated hash functions.

4.6.1 Random Oracles

Bellare and Rogaway have introduced random or-
acle model as a paradigm to design efficient pro-
tocols [4.94]. A random oracle is a mathematical
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function or a theoretical black box which takes arbi-
trary length binary input and outputs a random in-
finite string. A random oracle with the output trun-
cated to a fixed number of bits, maps every input
to a truly random output chosen uniformly from its
output domain. A random oracle with a fixed out-
put (or random oracle) is used to model a hash func-
tion in the cryptographic schemes where strong ran-
domness assumptions are needed of the hash value.
A fixed size or finite input length (FIL) random or-
acle [4.95] takes inputs of fixed size and is used to
model a compression function [4.14]. A random or-
acleisalso called ideal hash function and an FIL ran-
dom oracle is an ideal compression function.

4.6.2 Indifferentiability

Let R denotes a random oracle. The instantiations
of any real cryptosystem C(-) with H and R are
denoted by C(H) and C(R) respectively. To prove
the security of C(H), first C(R) would be proved
secure. Next, it will be shown that the security of
C(R) would not be affected if R is replaced with H.
This is done using the notion of indistinguishabil-
ity where the attacker interacts with H directly but
not f. H and R are said to be indistinguishable if
no (efficient) distinguisher algorithm D( - ), which is
connected to either H or R, is able to decide whether
it is interacting with H or R [4.92].

In reality, the distinguisher can access the f func-
tion of H. To allow this ability to the distinguisher,
the notion of indifferentiability has been introduced
by Maurer et al. [4.92]. This notion is stronger than
the indistinguishability notion. In the notion of in-
differentiability, if the component H is indifferen-
tiable from R, then the security of any cryptosystem
C(R) is not affected if one replaces R by H [4.92].
The hash function H with oracle access to an ideal
primitive f is said to be (¢p, fs, g, €)-indifferentiable
from R if there exists a simulator S, such that for
any distinguisher D it holds that: | Pr[DU) = 1] -
Pr[D®®) = 1]| < &. The simulator has oracle ac-
cess to R and runs in time at most ts. The distin-
guisher D runs in time at most ¢p and makes at most
q queries. H is said to be (computationally) indiffer-
entiable from R if ¢ is a negligible function of the
security parameter k.

Coron et al. [4.11] proved that the Merkle-
Damgéard hash function construction is not in-
differentiable from a random oracle when the
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underlying compression function is a FIL random
oracle. In addition, they have shown that chopMD,
prefix-free MD, un-keyed nested MAC (NMAC)
and un-keyed hash based MAC (HMAC) construc-
tions are indifferentiable in O(g?/2") where ¢ is
the total number of messages blocks queried by the
distinguisher, n is the size of the hash value and
also the number of chopped bits. Indifferentiability
analysis of some of these constructions based on
block cipher based compression functions have
been presented in [4.96, 97].

4.7 Applications

The applications of hash functions are abundant and
include non-exhaustively, digital signatures, MACs,
session key establishment in key agreement proto-
cols, management of passwords and commitment
schemes in the cryptographic protocols such as elec-
tronic auctions and electronic voting. This section
focuses on some applications and MACs are consid-
ered in detail in Sect. 4.8.

4.7.1 Digital Signatures

Digital signatures are used to authenticate the sign-
ers of the electronic documents and should be legally
binding in the same way as the hand-written signa-
tures. The notion of digital signatures was first de-
scribed by Diffie and Hellman [4.98]. Digital sig-
nature schemes comprises of two algorithms: one
for signing the messages and the other for verifying
the signatures on the messages. The verification al-
gorithm has to be accessible to all the receivers of
the signatures. Modern signature schemes are de-
veloped using public key cryptosystems and provide
the security services of authenticity, integrity and
non-repudiation. Interested reader can see [4.1,99,
100] for various signature schemes.

Practical signature schemes such as DSS [4.101]
and RSA [4.102] use hash functions for both effi-
ciency and security. Signature algorithms that sign
fixed length messages can be used to sign arbitrary
length messages by processing them using a hash
function and then signing the hash value using
the signature algorithm. Let SIG is the signature
scheme used by a signer to sign a message m. The
signer computes the hash H(m) of m and then
computes the signature s = SIG(H(m)) on H(m)
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using his private key and the signature algorithm
SIG. The signer sends the pair (m, s) to the receiver
who verifies it using the verification algorithm
and the public key of the signer. If the verifica-
tion is valid, the verification algorithm outputs 1
else 0.

The security of hash-then-sign signature algo-
rithms directly depend on the collision resistance
of the hash function. A collision pair (m,m") for
H would lead to SIG(H(m)) = SIG(H(m")) and
the message m™ would be the forgery for m or vice-
versa. Bellovin and Rescorla [4.103] (and indepen-
dently by Hoffman and Schneier [4.104]) have ob-
served that the collision attacks on MD5 and SHA-
1 cannot be translated into demonstrable attacks on
the real-world certificate-based protocols such as
S/MIME, TLS and IPsec. Their analysis shows that
if a new hash function has to be deployed in the
signature algorithm and if these two algorithms are
linked with each other, as DSA is tied to SHA-1,
both the algorithms need to be changed. Anticipat-
ing further improvements to the collision attacks on
MD5 and SHA-1, Michael and Su [4.105] analyzed
the problem of hash function transition in the proto-
cols OpenPGP and SSL/TLS. They have shown that
OpenPGP is flexible enough to accommodate new
strong hash functions which is not the case with SS-
L/TLS protocols.

Davies and Price [4.39, 106] suggested the idea of
randomizing (also called salting) the messages be-
fore hashing and then signing so that the security
of the signature schemes depend on the weaker sec-
ond preimage resistance rather than on collision re-
sistance. Recently, a message randomization algo-
rithm [4.91] was also proposed as a front-end tool
for the signature algorithms that use MD4 family
of hash functions. However, such techniques do not
stop a signer from repudiating his signatures as the
signer can always find two distinct messages that
when randomized with the same chosen salt would
collide and subsequently forge his own signature on
one of the messages [4.107].

4.7.2 Hashing Passwords

Hash functions are used to authenticate the clients of
the computer systems by storing hashes of the pass-
words (together with some salt to complicate dictio-
nary attacks) in a password file on the server [4.108].
When the clients try to authenticate to the system by
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entering their password, the system hashes the pass-
word and compares it with the stored hashes. Since
passwords must be processed using hash function
once per login, its computation time must be small.
In order to recover the password from the hash, the
attacker has to do a preimage attack on the hash
function. This should be difficult even if the attacker
has access to the password file.

4.8 Message Authentication Codes

A message authentication code (MAC) is a crypto-
graphic algorithm used to validate the integrity and
authenticity of the information (communicated over
an insecure channel) using symmetric key crypto-
graphic primitives such as block ciphers, stream ci-
phers and hash functions. A MAC algorithm, repre-
sented as MAC, takes a secret key k and an arbitrary
length message m as inputs and returns a fixed size
output, say n-bit, called authentication tag defined
as MAC(k, m) = MACy(m) = 7. Given a MAC al-
gorithm MAC and the inputs m and k, the computa-
tion and verification of the tag T must be easy. In the
literature [4.109], the acronym MAC has also been
referred to as authentication tag.

4.8.1 Generic Attacks on the MAC
Algorithms

The following generic attacks apply to any MAC
function:

o MAC forgery: Given a MAC function MAG, it
must be hard to determine a message-tag pair
(m, 1) such that MAC,(m) = 7 without the
knowledge of k in less than amin(mlk) Otherwise,
the function MAC is said to be forged [4.110]. An
adversary can use any of the following attacks to
forge the MAC function MACy:

- Known-message attack: In this attack, the
adversary looks at a sequence of messages
mt,m?,...,m" and their corresponding
tags T1,72,...,Tn, communicated between
the legitimate parties in a communication
channel, may be, by intercepting the channel
in a manner uninfluenced by the parties. The
adversary then forges the MAC scheme by
presenting the tag of a new un-seen message
m+=m'.

4 Cryptographic Hash Functions

- Chosen-message attack: In this attack, the
adversary chooses a sequence of messages
m', m%,...,m" and obtain the correspond-
ing tags 71, T2,..., T, from a party possess-
ing the function MACy. The adversary then
forges MACy, by presenting the tag of m # m’
under MAC;.

- Adaptive-chosen message attack: This is a cho-
sen message attack except that the adversary
chooses messages as a function of the previ-
ously obtained tags.

If the adversary forges a MAC scheme with
a message of his choice then that forgery is
called selective forgery [4.110]. The adversary,
may somehow, possibly, by interacting with the
sender or receiver of the messages, determines
the validity of the forged (m, 7) pair. In general,
the adversary cannot verify the forged pairs even
using known message attack without interacting
with at least one of the communication parties.
Key recovery: For an ideal MAC, the complexity
of the key recovery attack must be the same as
exhaustive key search over the entire key space
which is O(2") using a known message-tag pair.
It requires [|k|/n] message-tag pairs to verify
this attack. The key recovery attack allows for the
universal forgery of the MAC function where the
adversary can produce meaningful forgeries for
the messages of his choice at will.

Collision attack: In this attack, the attacker
finds two messages m and m™ such that m + m”
and MAC(m) = MACi(m"). The com-
plexity of this attack on an ideal MAC is
O(Zmi"(‘kl’"/z)) [4.109]. Collisions are either
internal or external [4.110, 111]:

— An internal collision for MAC; is de-
fined as MACy(m) = MAC,(m") and
MAC; (m|m") = MAC,(m*|m") where m’
is any single block (message or key).

- An external collision for MAC; is de-
fined as MACy(m) =+ MAC,(m") and
MAC; (m|m") = MAC,(m™|m").

An internal collision for an iterated MAC func-
tion allows a verifiable MAC forgery based on
the chosen-message attack using a single chosen
message [4.110, 111].

Preimage attack: In this attack, the attacker
is provided with a tag 7 and he finds a mes-
sage m such that MAC,(m) = 7. The com-
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plexity of this attack on an ideal MAC is
o(2mn(mkDy 14.109].

Second preimage attack: In this attack, the
attacker is provided with a message-tag pair
(m, 1) and she finds a message m* such that
m* # m and MACy(m) = MAC(m™). The
complexity of this attack on an ideal MAC is
o(2min(mlkDy 14.109].

4.8.2 MAC Algorithms

Based on Hash Functions

The design and analysis of MAC proposals based
on hash functions proposed in the literature are dis-
cussed below:

Secret prefix MAC: In this MAC, the tag of
a message m is computed using a hash func-
tion H by prepending the secret key k to m
as defined by MACy(m) = H(k|m) [4.110,
112]. This scheme can be easily forged using the
straight-forward length extension attack on H as
the tag H(k|m) of m can be used to compute the
tag of a new message m|m’.

This attack may be prevented by truncating the
output of the MAC function and using only trun-
cated output as the tag [4.110]. It is a well known
practice to use only part of the output of the MAC
function as the tag [4.113-115]. In some cases,
truncation of the output has its disadvantages too
when the size of the tag is short enough for the
attacker to predict its value.

It is recommended that the tag length should not
be less than half the length of the hash value to
match the birthday attack bound. A decade ago,
the hash value must not be less than 80 bit which
was a suitable lower bound on the number of
bits that an attacker must predict [4.115]. Fol-
lowing the recommended security levels for the
secret key of the block ciphers by the AES pro-
cess [4.78], stream ciphers used in the software
applications by the ECRYPT process [4.23] and
the recommended hash value sizes of the hash
function submissions to the NIST’s SHA-3 com-
petition [4.116], now-a-days the recommended
tag value must be at least 256 bit. MACs produc-
ing tags as short as 32 or 64 bit might be accept-
able in some situations though such MACs may
have limited applications.
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Secret suffix MAC: In this method, the tag of
a message m is computed using H by append-
ing the secret key k to the message m as de-
fined by MAC,(m) = H(m|k) [4.110,112].
A collision attack on H can be turned to forge
this MAC scheme. In this attack, two messages
m and m” are found such that m # m* and
H(m) = H(m"). Then the MAC; function
is queried with the message m|y by append-
ing some arbitrary message y to m for the tag
MACy(m|y) = H(m|y| k). Finally, this tag of
m|y is also a tag for the message m™||y due to
the iterative structure of H. An internal collision
for the iterated MAC functions automatically al-
low a verifiable MAC forgery, through a chosen-
message attack requiring a single chosen mes-
sage [4.110,111].

Envelope MAC: The envelope MAC
scheme [4.112] combines the secret prefix
and secret suffix methods and uses two random
and independent secret keys k; and k». The key
ki is prepended to the message m and the other
key k;, is appended to the message m as de-
fined by MACy (m) = H(k,|m|k:). In general,
k1| = |ka| = .

The divide and conquer exhaustive search key
recovery attack [4.6, 110,111, 117] on this MAC
scheme shows that having two separate keys
does not increase the security of the scheme
to the combined length of the keys against
key-recovery attacks. In this attack, a collision
is found to the MAC scheme using 2("*1)/2
equal length chosen (or known) messages. With
a significant probability, this collision would
be an internal collision using which the key
ki is recovered exhaustively which results in
a small set of possible keys for k; and the cor-
rect key k; is then determined using a chosen
message attack with a few chosen messages.
The recovery of the key ki reduces the se-
curity of the envelope scheme to that of the
secret suffix MAC scheme against the forgery
attacks. The key k; is then found exhaustively
in 2/ work. The total attack complexity is
olkil 4 olkal

If the trail secret key k, is split across the
blocks, then the padding procedure of H can
be exploited to recover the key k; in less than
252l using slice-by-slice trail key recovery at-
tack [4.6,110, 111, 117]. This attack uses the fact
that for an n-bit iterated MAC based on the hash
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functions with n-bit chaining state, an internal
collision can be found using \/2/(a + 1) -2"2
known message-tag pairs where a > 0 is the
number of trail blocks in the known messages
with the same substring. Once the key k; is
recovered, the security of the envelope MAC
scheme against forgery attacks reduces to that of
the secret prefix MAC scheme.

Variants of envelope MAC: A variant of the en-
velope MAC scheme defined by MACy(m) =
H(k||m| k), based on the MD5 hash function,
was specified in the standard RFC 1828 [4.118]
where k denotes the completion of the key k to
the block size by appending k with the padding
bits. Another variant, defined as MAC,(m) =
H(k|m|1]00...0||k), with a dedicated padding
procedure to the message m and placing the trail
key k in a separate block has been proven as a se-
cure MAC when the compression function of H
isa PRF [4.119].

MDx-MAC: MDx-MAC has been proposed
in [4.110] to circumvent the attacks on the ear-
lier hash based MACs that use hash function
as a black box. It uses three keys, the first key
replaces the IV of the hash function, the second
key exclusive-ored with some constants is ap-
pended to the message and a third key influences
the internal rounds of the compression function.
These three keys are derived from a single master
key. MDx-MAC does not call hash function as
a black box and requires more changes to the
MD4 family of hash functions. The ISO standard
9797-2 [4.120] contains a variant of MDx-MAC
that s efficient for short messages (up to 256 bit).
So far, there are no attacks on the MDx-MAC
and its variant.

NMAC and HMAC algorithms: The nested
MAC (NMAC) and its practical variant hash
based MAC (HMAC) MAC functions were
proposed by Bellare et al. [4.6]. The design
goal of NMAC is to use the compression func-
tion of the hash function as a black box. If
ki and k, are two independent and random
keys then the NMAC function is defined by
NMAC(m) = Hy, (H,(m)). If the concrete
realization of NMAC uses H for the inner
and outer functions, then the key k, would
be the IV for the inner H and k; would be
the IV for the outer H, which is expected to
call the compression function f only once.
Therefore, the NMAC function can be defined
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as NMAC;(m)
|k1| = |k2| = I’lbitS.
The NMAC scheme has been formally proved as
a secure MAC if H is weakly collision resistant
(collision resistance against an adversary who
does not know the secret keys) and f is a secure
MAC [4.6]. The divide and conquer key recovery
attack on the envelope MAC scheme is also appli-
cable to NMAC and recovers the keys of NMAC
in 2/ 4 2%l However, the double application
of the hash function in NMAC prevents the ap-
plication of the trail key recovery attack. Using
only key k; as secret in NMAC does not protect
it from forgeries as collisions can be found in the
inner hash function. Similarly, using only k, as
secret does not guarantee the security of NMAC
against forgery attacks [4.121].

HMAC is a practical variant of NMAC and
uses H as a black box. HMAC is standard-
ized by the bodies NIST FIPS (FIPS PUB
198) [4.122], IETF (REC 2104) [4.115] and
ANSI X9.71 [4.123]. HMAC implementa-
tions include SSL, SSH, IPSEC and TLS. The
HMAC function is defined by HMACy(m) =
Hiv(k ® opad|Hiv (k @ ipad|m)) where opad
and ipad are the repetitions of the bytes 0x36
and 0x5¢ as many times as needed to get
a b-bit block and k indicates the comple-
tion of the key k to a b-bit block by padding
k with 0bit. HMAC and NMAC are re-
lated by HMACy(m) = fi, (Hy,(m)) where
ki = fiv(k ® opad) and k; = fiv(k @ ipad). The
formal analysis of NMAC also holds for HMAC
under the assumption that the compression
function used to derive the keys k; and k; for
HMAC works as a PRF [4.6]. The best known
key recovery attack on HMAC is the brute-force
key search.

The collision attacks [4.57, 59, 67] on some of the
MD4 family of hash functions show that they are
not weakly collision resistant and hence formal
analysis of NMAC and HMAC [4.6] no longer
holds for their instantiations. Bellare [4.12] has
provided a new security proof for NMAC show-
ing that NMAC is a PRF if the compression func-
tion keyed through its IV is a PRE Similarly,
HMAC [4.12] is a PRF if the compression func-
tion is a PRF when keyed via either the message
block or the chaining input. Since, a PRF is also
a secure MAC [4.93], NMAC and HMAC con-
structions are also MACs.

= fx,(H,(m)). Note that
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However, the distinguishing and forgery attacks
on the NMAC and HMAC instantiations of
MD4, MD5, SHA-0 and reduced SHA-1 [4.124]
show that the new analysis of these MACs does
not hold for their instantiations with these
hash functions. Key recovery attacks have also
been demonstrated on NMAC based on MD5
and NMAC and HMAC based on MD4 and
MD5 [4.125].

HMAC and NMAC algorithms have also been
proved as secure MAC functions assuming
weaker assumptions of non-malleability and
unpredictability of the compression func-
tion [4.126]. A compression function is non-
malleable if knowing the hash values of the
iterated keyed compression function does not
lend any additional power to create another hash
value using the same key. A compression func-
tion is unpredictable if it is infeasible to predict
the output of the iterated keyed compression
function from scratch.

4.9 SHA-3 Hash Function
Competition

Following the collision attacks on SHA-1 as dis-
cussed in Sect. 4.4.2, NIST has declared the with-
drawal of SHA-1 in US Federal Agencies applica-
tions by 2010 and recommended to use SHA-2 fam-
ily of hash functions instead [4.127]. Although the
extension and application of the collision attack on
SHA-1 is not imminent on the SHA-2 family, a suc-
cessful collision attack on the SHA-2 family could
have a disastrous effect on many applications, par-
ticularly digital signatures.

This deficiency for good hash functions has made
NIST to announce in November 2007 an interna-
tional competition on defining a new hash function
standard [4.116] similar to the Advanced Encryp-
tion Standard (AES) quest it had initiated and com-
pleted nearly a decade ago to select the strong block
cipher Rijndael as AES. NIST has decided to aug-
ment and revise its FIPS 180-2 [4.19] with the new
hash function standard referred to as SHA-3, which
is expected to be at least as strong and efficient as
SHA-2 family. NIST intends that SHA-3 will specify
an unclassified, publicly disclosed algorithm and be
available worldwide without royalties or other intel-
lectual property restrictions.
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SHA-3 hash function competition has started
in October 2008 and is expected to complete by
2012. In December 2008 [4.128, 129], NIST has an-
nounced that 51 out of 64 submissions have met
its minimum acceptability requirements [4.116] and
were selected as the first round candidates for a re-
view at the first SHA-3 Candidate Conference to be
held in Leuven, Belgium on February 25-28, 2009.
A collection of 55 (including the accepted 51) out
of 64 submissions to the SHA-3 competition and
their up to date performance and security evalua-
tion is available at [4.128, 130]. During the summer
0f 2009, NIST plans to select about 15 second round
candidates for more focused review at the Second
SHA-3 Candidate Conference, tentatively scheduled
for August, 2010 [4.129]. Following that second con-
ference, NIST expects to select about 5 third round
candidates (or finalists). At the third conference,
NIST will review the finalists and select a winner
shortly thereafter. At each stage of the hash standard
process, NIST intends to do its best to explain their
choices of the algorithms [4.129].

In the next few years, cryptographic community
is expecting some active research in the theory and
practice of hash functions. It is important that the
technology used in any application works in accor-
dance with the application’s overall expectations and
hash functions are no exception. Many applications
that use hash functions, predominantly, digital sig-
natures, will come under scrutiny if the underlying
hash functions are not CRHFs. The significance of
the SHA-3 competition lies in ensuring the industry
to put a strong faith on the SHA-3 hash function for
its wide deployment in the next few decades.
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For much of human history, cryptography has gen-
erally been a stream-based concept: for example,
a general writes down a note, and a soldier encrypts
it letter-by-letter to be sent on. As written language
is based on letters and symbols, it is natural that our
initial designs for encryption and decryption algo-
rithms operate on individual symbols.

However, the advent of digital computers paired
with an increasing desire for sophistication in cryp-
tography developed the science of block ciphers.
Block ciphers are defined by the fact that we desire
to encrypt not single symbols at a time, but larger
groups of them all together. Although forms of block
ciphers have been present for a long time (for ex-
ample, transposition or columnar ciphers work on
blocks of letters at a time), modern block ciphers
have developed into their own science. Examples of
popular block ciphers include DES (the Data En-

cryption Standard) and AES (the Advanced Encryp-
tion Standard).

A primary advantage of this design is that we will
be able to mix all of the information in a single block
together, making it more difficult to obtain meaning
from any single portion of that block’s output. And
by requiring that all of the information be consid-
ered together, we hope to increase the difficulty of
gleaning any information we are trying to protect.

Naturally, then, as we create block cipher codes,
we are conversely interested in breaking them. The
fundamental question of breaking ciphers, or crypt-
analysis, is, can we, by making assumptions and per-
forming statistical analysis, obtain any information
that the cryptography is trying to protect?

In this chapter, we will explore two fundamen-
tal classes of techniques that are often used in break-
ing block ciphers. We will discuss general techniques
that can be used to powerful effect , and the last sec-
tions will cover the principals of differential crypt-
analysis.

5.1 Breaking Ciphers

Before we can discuss how to perform block cipher
cryptanalysis, we need to define what we mean by
“breaking” a cipher? First, consider the simplest at-
tack that will work against a given ciphertext with
any cipher: Try to decrypt every possible key that
could have been used to encrypt it. This won’t tech-
nically always work, as you need to have some idea
of what the initial text looked like; you need some
way to determine if you have found the correct key.
Putting that detail aside for the moment, we must
consider how much work could this entail, then?

Peter Stavroulakis, Mark Stamp (Eds.), Handbook of Information and Communication Security 81

© Springer 2010



82

Let’s consider DES. Since DES uses a 56-bit key,
then there are 2°° = 72,057,594,037,927,936 (about
72 quadrillion) keys to check. Even with modern
computer speeds, this is an incredible number of
keys to try. With more recent ciphers, such as AES
(which uses keys of length 128, 192, or 256 bit), this
number grows to be even more astronomical. For
each additional bit, we have to check twice as many
keys. This means that even with 128-bit AES, the
smallest version, we would have to check 4,722,366,
482,869,645,213,696 times as many keys as DES,
which is 340,282,366,920,938,463,463,374,607,431,
768,211,456 (= 2'**) keys in total.

This is a naive method. Surely there is a better
method? Not necessarily, in general. Each crypto-
graphic algorithm has to be studied to see if its struc-
ture has any particular weakness that might yield
a better answer. This study is cryptanalysis.

The question is then, when do we consider a ci-
pher broken? Technically, we shall consider an #-bit
cipher broken when we can devise an attack that re-
quires less work than checking all 2# keys. Even so,
such a broken cipher may not be practical to break
in reality.

For the sake of simplicity, assume that we can
check one key per operation on a standard, mod-
ern computer that can perform, say, six billion op-
erations per second (perhaps two per clock cycle on
a 3.0 GHz machine). Then, it would still take nearly
139 days to break a single DES message. (And note
that these figures inflate extremely the capabilities of
a standard computer.)

Naturally, we then seek to figure out ways to im-
prove upon this method.

5.1.1 Martin Hellman’s
Time-Space Trade-off

One important idea that can apply generally to many
cryptographic algorithms is the concept of a time-
space trade-off. An updated form of this technique
is more popularly known as the rainbow tables tech-
nique due to the data structures that are required
for it to work. We shall discuss these developments
shortly.

The basic premise is this. It seems ineflicient
when we are given a particular ciphertext message
encrypted using a known algorithm that we should
have to consider every single key that could have
been used to encrypt it. Surely there must be some
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work that can be done ahead of time if we know the
encryption algorithm?

It turns out that there is in some cases, thanks
to Hellman [5.1]. Essentially, we can use the origi-
nal encryption algorithm to generate a particularly
clever data structure that will allow us to find the
encryption key used to encrypt a message. For our
discussion, I will talk about Hellman’s application of
this technique to DES.

The essential condition that Hellman’s algorithm
stipulates is that we have a fixed, known plaintext
that we know will be used with an unknown key, and
that we will have a ciphertext at some point in the
future and will want to recover the key used to gen-
erate it. A popular example of this occurring is with
Microsoft's LAN Manager, which operates by using
a user’s password to construct a key by encrypting
a fixed plaintext (“KGS ! @##$%”) with that key. The
ciphertext is then stored in a database on a computer
and used to authenticate users [5.2].

The concept builds upon the premise that DES’s
key size and block size are similar in size (56 and
64 bit, respectively). To start, we need to define
a simple mapping that takes a 64-bit block of ci-
phertext and produces a key from it, for example,
we can remove the top 8 bit.

The goal here is then to produce a chain of ci-
phertexts that will somehow give us information
about the key used to encrypt the ciphertext that
we are interested in. We will use the mapping con-
structed above to map a ciphertext to a key.

The chain is constructed very simply: We take the
current ciphertext (starting with a ciphertext corre-
sponding to a known key), convert it to a key, and
use that key to encrypt the fixed plaintext. Repeat-
ing this process, we can construct a chain of arbitrary
length.

Co—>Ci > Cy—>Cs > = C,

Now, consider that we have computed such
a chain, and that we have a ciphertext for which
we would like to recover the key. We could simply
look in the chain to see if the ciphertext appears,
and if it does, we could simply look at the ciphertext
immediately proceeding it to obtain the key.

However, in order to guarantee success, we
would need to store a chain that had every pos-
sible ciphertext stored in it. This would require
one ciphertext per possible key, or a total of 2°¢
entries. Having such a structure around would be
prohibitively costly.
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Consider instead that we store only the last en-
try of the chain, C,. We can no longer immediately
tell if a ciphertext is in the chain, but we can com-
pare our desired ciphertext, C, to C,. If they do not
match, then we can map C to a key and use it to en-
crypt the plaintext, obtaining a new ciphertext C..
We can then compare that to C,, and so forth. At
some point, we may find a match, where C; = C,,. If
we do, then since we know how we started the chain,
we can regenerate the chain the appropriate number
of times to find C,_;, whose transform is the correct
key.

Let’s take a simple example with a standard Cae-
sar cipher. Say we know that the plaintext is the char-
acter “Q”. The first step in building a chain is select-
ing a reduction function to change a piece of cipher-
text into a key. In this case, we will do a standard
mapping of letters to numbers: “A” to 0, “B” to 1,
and so forth.

We can compute a chain starting with a letter, say,
“D”. Since “D” maps to 3, we encrypt “Q” with a shift
of 3, obtaining “T”. So, our chain is so far:

D—->T

“T” corresponds to the number 19, and “Q”
shifted by 19 is the letter “J”. So, now our chain
looks like:

D—>T—-J.

Continuing this chain for, say, two more letters,
we would obtain:

D>T—->J—->Z—->P.

Now, let’s store the starting point (“D”) and the
endpoint (“P”) of this chain.

D,P

Let’s assume that we have these two endpoints
stored, and we receive a ciphertext (say, “J”) for
which to find the corresponding key. We can do
a similar computation as above to see if it is con-
tained in our pre-computed chain. After reducing
and encrypting “J”, we would obtain “Z”. Repeat-
ing, we would obtain “P”. Since this matches our
endpoint, we know that the actual key is contained in
the chain. Finding it is simply a matter of recomput-
ing the chain from the starting point until we obtain
the ciphertext and taking the previous point in the
chain as the key. For our example, this would be the
key corresponding to “T”, which is 19.
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With modern ciphers, it is common to use a large
number of distinct chains, with each chain contain-
ing a large number of entries. The key is maintain-
ing a number of chains that aren’t too large, so that
lookup can still be fast, but without the chain length
being too long, as this would require more time to
find and compute the key for a given ciphertext. Re-
gardless of these issues, we can see that this can be
quite powerful when we can use it.

However, we can see some issues from the above
example problem. First, our success rate is com-
pletely determined by what we computed in our
chain. If, for example, the ciphertext “A” had come
along, we would not be able to use the chain to de-
rive it, as it never appeared in a chain.

Second, even if we have multiple chains, they
might collide. For example, if we foolishly generated
two chains with starting points “D” and “T”, then the
chains would contain nearly the same entries, ren-
dering one of them mostly redundant.

Third, computation time for finding the key for
a given ciphertext is about the same as computing
a single chain. As stated above, this implies that we
don’t want our chains to be too long, otherwise we
just make things harder on ourselves later.

Fourth, we might have false alarms. Since we
have 56-bit keys with a 64-bit ciphertext that mul-
tiple ciphertexts might map to the same key. This al-
lows for situations where we will think we have lo-
cated a chain that contains a key, but we will have
not.

Finally, we need to have every possible ciphertext
appear in one of the chains. This means that the ini-
tial work of computing the chains is going to be at
least as much as brute forcing the problem would be
anyway. However, as we shall see, this results in sav-
ings for every individual ciphertext in the future, as-
suming that the ciphertext has the same plaintext as
that used to build the chains.

5.1.2 Sizes

Hellman specifies that to get acceptable perfor-
mance a cipher with block size n, you want to have
2n(/» chains of length 21n%/*) entries. This gives
you nearly complete coverage.

G-/l -l C

G-~ sl
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5.1.3 Improvements on Chains

If you recall from the basic time-space trade-off
chains above, there are essentially only a few oper-
ations that are going on: Choosing starting points,
computing chains, storing end points, taking our
target ciphertext and computing the next one, and
seeing if a ciphertext is the endpoint of one of our
chains.

There have been several improvements on Hell-
man’s basic algorithm that increase either the speed
of the attack, the storage space required, or the suc-
cess rate. We will discuss a few of these now.

The first thing that we might notice as we start
building chains and storing endpoints is that the
endpoints seem to look fairly random, and that there
are a large number of them. Rivest suggested that af-
ter a chain has been computed to some acceptable
length (close to the target length), rather than stor-
ing whatever endpoint the chain was computed to,
we continue the chain until we obtain some pattern,
such as the left 8 bit are all zero [5.3]. The reason for
this is two-fold: We can store the endpoints using
less space (even a savings of 8 of 56 bit is significant
for a large table), and it makes it easier to check if
a particular ciphertext is in the table, as we have an
initial condition to check before doing a possibly ex-
pensive table lookup.

Another benefit to using these so-called distin-
guished endpoints is that they give us a slightly bet-
ter chance to detect table collisions: Two collided
chains might stop at the same distinguished end-
point. If this happens, we should throw away one of
the two of them, and generate another one.

One additional improvement common to com-
bat collisions in chains is to separate out many chains
into separate tables, and have the tables use different
reduction functions. This means that chains in sepa-
rate tables could not possibly collide and provide the
same chain, thereby increasing the overall success

Table 5.1 Tables with different reduction functions

Cg _fo C(l) o ... Sfo C2
Cé _Jo C} Sfo Sh ch
C(Z) AN C% Sho Sh C%
Cg N Cf SN Sh Cz
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rate. Unfortunately, it requires more complex check-
ing to see if we are done, since we must keep track of
multiple reduction function results simultaneously.

Another improvement has gained popularity in
recent years due to its colorful name and higher suc-
cess rate compared the vanilla method above. This
technique is commonly referred to as generating
rainbow tables, and is due to Oechslin [5.2]. This
technique is shown in Table 5.1.

5.1.4 Rainbow Tables

The technique of rainbow tables represents one pri-
mary change to the above time-space trade-off: Ra-
ther than relying on one reduction function per table
to convert a ciphertext into a key, we instead con-
struct one giant table, and use a different reduction
function for each iteration in the chain. This tech-
nique is shown in Table 5.2.
The benefit here is three-fold:

1. It now requires much less work to look some-
thing up in this single table.

2. We have fewer ciphertexts during a lookup.

3. The probability of collisions is much lower, and
therefore the success rate is a bit higher.

However, it is not nearly as common to use a tech-
nique like the distinguished endpoints above, since
loops are virtually impossible with multiple reduc-
tion functions. This, the storage requirements may
be increased slightly.

With this technique, Oechslin was able to achieve
a 7x speedup over the classical method for crack-
ing Windows LAN Manager passwords with a table
size of 38,223,872 columns (and 4,666 rows), with
only the first and last entry in each column is stored.
This produces a table with total size of approximately
1.4 Gb.

For more information on this topic, see [5.2].

Table 5.2 A rainbow table, with different reduction func-
tions for each iteration in the chain

o o o e o
cl o cl . o
o o c? S S c?
Cg Jo Cf S S c
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5.2 Differential Cryptanalysis

The time-space trade-offs of the previous sections
are powerful, generic ways to attack many block
ciphers. However, these techniques ignore any spe-
cific attributes of the cipher that we are trying to
break.

The only limits to breaking any cipher are cre-
ativity and time. Expending enough brain power or
throwing enough computer time at a problem is sure
to eventually break it (at worst, through brute force).

One idea that people have often considered is
differences (or differentials, or sometimes called
derivatives). Consider that you receive a message
from someone that you suspect is using a stan-
dard Caesar cipher, and that message contains the
following words:

FDWV...UDWV .

Furthermore, you know that the message you
intercepted will be dealing with animals, including
cats and rats. Knowing this, you might notice the dif-
ference between these two words is in the first letter,
and that the distance between U and F in the English
alphabet is the same as that between R and C. You
might then conclude that these probably represent
the words “cats” and “rats”, and you can con-
clude that the message was encrypted with a Caesar
cipher with shift +3 (meaning that its key is +3).

This is, essentially, differential cryptanalysis. Ex-
tending this to work on block ciphers is based on
similar principles. By either knowing, forcing, or
finding differences in the plaintexts, we might be
able to deduce information about the key based on
the resulting ciphertexts.

However, ciphers are often designed with de-
fenses against difference attacks in mind. Specifi-
cally, one common security principle states that all
ciphers should diffuse information as much as possi-
ble. By this, we mean that a single input bit should in-
fluence as much of the output as possible. This then
means that any change in an input bit will change
much of the output, and will make it difficult to de-
rive any information from the output.

This is where modern differential cryptanalysis
comes in. Differential cryptanalysis looks at pairs of
plaintexts and ciphertexts with known differences in
the input, and attempts to use differences in the out-
put to derive portions of key, exactly as before. How-
ever, we will not expect to derive clear, perfectly cor-
rect information out of just a few such pairs, due to
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the above principle of diffusion. Differential crypt-
analysis focuses instead on making statistical mea-
surements in large quantities of these texts.

In this chapter, we will study this method and
how it applies to the Data Encryption Standard.

5.2.1 DES

First, let’s quickly review DES’s structure.
DES is a Feistel cipher, meaning that it consists of
many rounds of the following two operations:

Li=R;_1, and
Ri=L;i, @f(Ri—laKi) >

where Lo and Ry are the left and right halves of the
64-bit plaintext, f is the 32-bit DES round function,
and K; is the subkey for round i.

The DES round function consists of three steps:
an expansive permutation of the 32-bit input to
48 bit, 8 S-boxes (substitution boxes, or translation
tables) applied in parallel to the 6-bit pieces to pro-
duce 4-bit outputs, and then a permutation of those
32 bit.

The key to the security then is determined pri-
marily by the round function and the number of
rounds performed. In turn, the round function’s se-
curity relies primarily in the properties of the per-
mutations and S-boxes it uses.

An example of such an S-box could work by sub-
stituting a 6-bit value for a 4-bit value, represented
by the following array:

[14,0,4,15,13,7,1,4,2,14,15,2,11,13,8,1,
3,10, 10,6,6,12,12,11,5,9,9,5,0,3,7,8, 4,
15,1, 12,14, 8,8,2,13,4,6,9, 2,1, 11, 7, 15,
5,12,11,9,3,7, 14, 3, 10, 10, 0, 5, 6, 0, 13] .

Here, the input is used as an array into the list, and
the output is the entry at that location - hence, a sub-
stitution box. This array comes from the first S-box
in DES.

5.2.2 Basic Differential Cryptanalysis

The basic principle of modern differential cryptanal-
ysis is studying each of the sub-components and at-
tempting to locate differential pairs (or derivatives)
“across” them. For DES, the primary pieces we will
examine are the S-boxes of its round function.
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So, what exactly is a differential “across” the S-
box? Well, if we consider the S-box as an actual box
diagram:

Fig.5.1 A simple S-box

We can consider what happens if we take a pair
of plaintexts, Py and P, and construct them so that
Py & P; = 010010 (where @ represents the standard
XOR operation):

Fig.5.2 The inputs to an S-box, with the input difference
highlighted

Now, we will then want to measure how likely
certain outputs are. For example, how often does this
flip only the first and last bits (1001) between the two
output ciphertexts? That is, how often does the fol-
lowing happen “across” it:

Fig. 5.3 The relationship between the input differences
and output differences of an S-box

Differences are often noted using the charac-
ter 2. Hence, we might write the above relationship
as 2(010010) = 1001.
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Luckily, the sizes of the S-boxes are fairly small,
with only a few bits of input and a few bits of out-
put. This allows us to examine every S-box, looking
how every single input difference affects every single
output difference for every single input value pos-
sible. In this case, since we have a 6-bit S-box, this
means 26 x 26 = 4096 results to examine per S-box,
which is a fairly reasonable amount of data to ex-
amine. Moreover, we can have a computer store this
data and only display the “best” differences - that is,
the input difference that yields the most likely output
difference.

Table 5.3 shows such a differential analysis of the
first S-box of DES. Each entry in the table indicates
the number of times that the output difference was
detected for that input difference (over all possible
inputs). What we desire is that a given input dif-
ference is very likely to induce a particular output
difference. In this table, the entries with 12 and 14
differences are highlighted, as they represent where
a given input difference gave a particular output dif-
ference quite often (i.e., for the entry for 16, this
means that 16 of the 64 possible plaintexts that dif-
fered by 0x34 had a difference of exactly 0x2 in
their output).

So, assuming we have such a table of differences,
what can we do with them? Well, if we get lucky, we
might be able to chain several of these differences
across the entire cipher.

For example, let’s consider that we have an in-
put difference of 0x35 across a particular instance
of the above S-box. Then we know with probability
14/64 that the difference of Oxe will occur in its out-
put. Consider the unlikely scenario where this out-
put difference translates directly to an input differ-
ence of the same S-box, as shown in Fig. 5.4.

We can then look in our difference table, and
note that an input difference of Oxe in this S-box has
a probability of 8/64 of giving us an output differ-
ence of 0x2. Now, our total probability of this hap-
pening is approximately 16/64 x 8/64 = 128/4096 =
1/32.

Now, if we start at the beginning of the cipher,
from the actual plaintext, and try to construct such
a difference chain all the way to near the end, we
might be able construct an attack on the cipher. If
we have such a relation that extends that far, we
might have obtained some differential relationship
between the input plaintext, the ciphertext, and a few
bits of key. And this is where the good part comes in:
If the differential relationship relies some, but not all,
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Table 5.3 Difference table for the first S-box of DES

Qy:

Ox:

64

10

0 10 12 4

4

14

0 10 10 o6

6

12

0

12

10

10
12

10
11
12
13
14
15
16
17
18
19
la
1b
lc

6

0 10 10

1d
le

1f
20
21

12

0 12

10

10
10

10

22
23

0

0 14 14 2

2

12

24
25
26
27

4 10 10 10 2

0

0
10
12

28
29

4

0 14 10 2

0

2a

12

2b
2c

2d
2e

2f
30
31

32
33

34
35
36
37

6 10 10

4

38
39

3a

3b
3c

10

3d
3e

3f
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Fig. 5.4 The difference path between the inputs of one
S-box and the inputs of the next

bits of the key, then we might be able to derive the
value of those bits of the key.

What purpose does this serve? Well, with brute
force, we would have to examine 2°° keys in DES in
order to find the correct key. However, if we can con-
struct such a differential attack, we might be able to
determine, say 4 bit of the key. If we can, that means
that there are only 252 total keys left to search over,
which is substantially less than the 2°° keys would
have to consider before.

We can now use the above concepts to take
a quick look at the real-world differential analysis of
DES.

5.2.3 Differential Attack on DES

One of the key driving motivations for the devel-
opment of differential cryptanalysis was to analyze
DES. The first successful differential analysis of DES
was performed by Biham and Shamir in 1990 [5.4].

Lets quickly recall the basic rule used in every
round of DES:

Li = Ri*l >
Ri=L;i, @f(Ri—laKi) .

Where L; and R; represent the left and right
halves of the current intermediated ciphertext (Lo
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and Ry being the plaintext), K; representing the cur-
rent round key, and f is the DES round function.

Let’s consider a difference on the left half of X
(that is, any arbitrary 32-bit amount), and a right-
half difference of 0. Looking at how this difference
affects the above equation:

QL) = Q(Ri-1) =0,
.Q(R,) = .Q(Li_l) + .Q(f(Ri_l,K,')) =X.

The next round’s input difference will then be the
same as this output difference, only swapped so that
X isback on the left half, and 0 on the right, giving us
the same difference as we started with. Furthermore,
this will always occur - there are no probabilities in-
volved in this.

Another interesting situation occurs when the
input difference is 0x60000000 on the right,
and anything on the left (say, X). After processing
through DES’s round function, this results in an
output difference of X + 0x00808200 on the left,
and 0x60000000 on the right. This relationship
happens 14 times out of 64.

Now, carefully choosing the value of X in the left
half (for instance, setting it equal to 0x00808200)
will let us chain these even further. Biham and
Shamir explore several other such characteristics
(called iterative characteristics, since they can be
chained together).

Using these kinds of characteristics, Biham and
Shamir were able to break DES for up to 15 rounds
(meaning, requiring less work than brute force). For
example, if DES were limited to 8 rounds, then only
2'S different plaintext pairs with a chosen difference
are required to derive 42bit of the key. Unfortu-
nately, when DES uses the full 16 rounds, this tech-
nique requires more work than brute force [5.4].

5.3 Conclusions and Further Reading

Modern block cipher cryptanalysis is a rapidly de-
veloping field, often combining mathematics, com-
puter science, programming, and statistics in cre-
ative ways. For a more comprehensive tutorial on
some of these topics and their extensions, see [5.5-
7]. To see and participate in the latest developments,
a good starting point is the CRYPTO and EURO-
CRYPT conferences (and their proceedings), along
with publications like the International Association
for Cryptology’s Journal of Cryptology.
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ble to various cryptanalytic attacks and the security
level of the other is high according to an inventor’s
evaluation. The disadvantages of the algorithms in
question mainly result from the lack of analysis of
their resistance against known conventional crypt-
analytic attacks; too small complexity of a key space
and ciphertext space is another reason. As shown in
Sect. 6.6, knowledge concerning these disadvantages
enables one to modify an algorithm and to improve
its security.

The chaotic stream ciphers and block ciphers
mentioned above are designed on the basis of
discrete-time and continuous-value chaotic sys-
tems. Thus, all computations are done in finite-
precision floating-point arithmetic (see Sect. 6.5.2),
which depends on the implementation. Therefore,
an implementation of chaotic ciphers requires the
use of dedicated floating-point libraries with a per-
formance independent of the arithmetic processor
used. The finite-precision computations generate
another problem - a degradation of the properties
of chaotic maps [6.1,2]; discretized chaotic maps
can become permutations (see also Sect. 6.7.2).
Paradoxically, this degradation can be used for the
design of block ciphers or their components (see
Sect. 6.7.3).

The last section is a conclusion to the chapter and
presents some suggestions for reading on additional
usage of chaotic maps.

6.1 Chaos Versus Cryptography

Chaos is a deterministic process, but its nature
causes it looks like a random one, especially owing
to the strong sensitivity and the dependency on the
initial conditions and control parameters. This is
the reason why it seems to be relevant for the de-
sign of cryptographic algorithms. Determinism of
chaos creates the possibility for encryption, and its
randomness makes chaotic cryptosystems resistant
against attacks.

On the other hand, cryptography is the field of
science considering information security. Mainly,
but not only, it is focused on privacy and confiden-
tiality provision when information is transferred or
during a long-time storage. Conventional cryptog-
raphy is based on some techniques using number
theory and algebraic concepts. Chaos is a promising
paradigm and can be the basis for mechanisms and
techniques used in chaos-based cryptography, also
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known as chaotic cryptography - named so to dis-
tinguish it from conventional cryptography [6.3].

The history of investigations of the determin-
istic chaos phenomenon in cryptographic systems
is relatively short. Research into alternative crypto-
graphic techniques is the result of essential progress
in cryptanalysis of conventional cryptosystems ob-
served recently. Chaotic cryptography is resistant
to some extent against conventional cryptanalysis.
On the other hand, this feature can be a disadvan-
tage, because owing to the high level of cryptanal-
ysis complexity, the security of a cipher cannot be
clearly defined. Another weakness is the low security
level of encryption if a plaintext is very long. Values
generated by chaotic maps implemented in a finite-
precision environment can be reproducible or can
create equivalent sequences for different initial con-
ditions. The next problem is a different representa-
tion of binary-coded decimals on various software
and hardware platforms.

The required features of cipher algorithms can
be obtained with the usage of different techniques,
but practically there are not too many possibilities.
Chaos theory, and chaotic maps particularly, allows
one to look at cipher algorithm design problems
and their resistance against conventional cryptanal-
ysis in quite another way. Such a situation stimu-
lates not only the development of chaotic cryptosys-
tems, but the development of conventional ones as
well. Also the view on conventional cryptanalysis
is changing. Specific features of chaotic cryptosys-
tems require traditional cryptanalytical methods to
be adopted.

The differentiation between conventional and
chaotic cryptography is essential and allows one
to search for bindings of both [6.4,5]. Accord-
ing to Dachselt and Schwarz [6.3]: “conventional
cryptography means cryptosystems which work on
discrete values and in discrete time, while chaotic
cryptography uses continuous-value information
and continuous-value systems which may operate
in continuous or discrete time.”

The conclusion from facts mentioned above is
that the fundamental difference between conven-
tional and chaotic cryptography concerns the do-
mains of the elementary signals used. These domains
are called symbol domains and include the smallest
pieces of information streams [6.3].

Many of the chaotic ciphers invented have been
cryptanalyzed efficiently and substantial flaws in
their security have been indicated. Even though
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considerable advances have been made in the works
concerning this type of cipher, it is impossible to
explain the basic security features for the majority
of the proposed algorithms. Consequently, this
limits their practical usage; they do not guarantee
a sufficient security level or the security level is
undefined.

The main goal of a cipher algorithm is to obtain
a ciphertext statistically indistinguishable from truly
random sequences. Moreover, ciphertext bits have to
be unpredictable for an attacker with limited com-
putational capabilities. Chaos is a deterministic pro-
cess, but its nature causes it to look like a random
one. Those two features — determinism and random-
ness — make chaotic systems useful for the design of
cryptographic algorithms.

In conventional cryptography, discrete signals
are used, i.e., plaintext messages, ciphertexts, and
keys. They belong to finite sets and are represented
in a binary form, as integer numbers, or symbols.
Generally, in the case of discrete-time chaotic cryp-
tography, plaintext messages, ciphertexts, and keys
are real numbers, and the symbol domain is the
set of real numbers or its subset. The problem is
even more complex in the case of continuous-time
chaotic cryptography. Then plaintext messages, ci-
phertexts, and keys are time functions from the rel-
evant function space.

In the case of stream ciphers, chaotic systems
are used for the generation of unpredictable pseu-
dorandom sequences. After additional transforma-
tions, those sequences are combined with plaintext
to obtain ciphertexts.

Block ciphers should have the following basic
features: confusion, diffusion, completeness, and
a strict avalanche effect. They are responsible for the
indistinguishability and unpredictability mentioned
previously. Those features can be ensured with the
usage of chaotic systems, e.g., ergodic and mixing
features of chaotic maps ensure confusion and
diffusion, respectively (see Sect. 6.5.1).

6.2 Paradigms to Design
Chaos-Based Cryptosystems

Signals containing enciphered information can be
sentin an analog or a digital form. The carrier for the
first form is usually radio waves and digital telecom-
munication links are used for the second.
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The analog form is used in the case of continu-
ous-time chaotic cryptography and in the case of
discrete-time chaotic cryptography as well. The sub-
stantial difference between the ciphering techniques
used in both types of cryptography is the necessity of
signal conversion in the case of discrete-time chaotic
cryptography, where signals have to be converted
from a discrete form to an analog one by the sender
and from an analog form to a discrete one by the re-
ceiver.

Both parties, the sender and the receiver, use
structurally similar chaotic systems generating time
sequences of continuous or discrete nature. Those
sequences are of broadband type and look like noise.
Therefore, for communications with both systems
their synchronization is required. A dependency en-
abling two chaotic systems to be synchronized is
called coupling [6.6]. The coupling can be imple-
mented by means of various chaos synchronization
techniques. The most frequently used solution is the
one-direction coupling (master-slave type of cou-
pling) where a slave signal strictly follows a master
signal. The master system is called the transmitter
and the slave system is called the receiver.

The solution of chaos synchronization requires
the definition of the proper relation between the
states of two dynamic systems (the one at the trans-
mitter side and the second at the receiver side of
the system). The problem was treated as a hard
one until 1990 [6.7]. Pecora and Carroll proposed
the drive-response system with the dynamic vari-
able of the driving system used for the response
system synchronization. When all transverse Lya-
punov exponents of the response system are neg-
ative, then it synchronizes asymptotically with the
driving system. This is the so-called natural chaos-
synchronizing coupling that does not require special
synchronization techniques. If this is not the case,
then it is necessary to establish the synchronizing
coupling mentioned above. Practically, the design of
such a synchronizing coupling becomes the design
of a nonlinear observer or an optimal stochastic fil-
ter [6.8-10]. The task for such a synchronizing cou-
pling is to recover unknown states of the chaotic sys-
tem.

In opposition to continuous signals (analog
forms), the transmission of discrete signals (discrete
forms) does not require the transmitter and receiver
chaotic systems to be synchronized. Hence, it does
not need to recover unknown states of the chaotic
system. This is the reason why the principle of the
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construction of discrete signals in chaotic cryptosys-
tems is similar to that in the case of conventional
cryptography.

Both forms of chaotic signals transmission de-
scribed above define two different paradigms for the
design of chaotic cryptosystems. Using the terminol-
ogy introduced by Li [6.2], we call chaotic cryptosys-
tems designed according to the first paradigm (ana-
log signal transmission) analog chaos-based cryp-
tosystems and those designed according to second
one (digital signal transmission) digital chaos-based
cryptosystems.

Generally it is considered [6.2] that analog
chaos-based cryptosystems are designed mainly
for the purpose of the secure transmission of in-
formation in noisy communication channels, and
that they cannot be used directly for the design
of digital chaos-based cryptosystems. This type
of system is designed rather for implementation
of steganographic systems rather than for crypto-
graphic ones [6.11]. Moreover, many cryptologists
claim that the security of information transmission
by means of analog chaos-based cryptosystems is
doubtful. The basic objection is that on the basis of
intercepted signals and synchronization couplings it
is possible to extract some information concerning
the parameters of chaotic systems [6.12-14] and
even their identification by means of identification
methods relevant for dynamic systems [6.15-17].

6.3 Analog Chaos-Based
Cryptosystems

The principle of enciphering in analog chaos-based
cryptosystems is to combine the message m; with
the chaotic signal generated by the chaotic system in
such a manner that even after the interception of that
signal by an attacker it is impossible to recover that
message or protected chaotic system parameters.

The transmitter chaotic system can be described
by the following general discrete time-dynamic sys-
tem (in this chapter continuous-time models are
omitted) [6.4]:

Xk+1 :f(xk,ﬂ, [mk,. ]) 5
v, = h(x, 0, [my,...]) + v,
where x; and f(-) = [fi(+),..., fu(+)] are the

n-dimensional discrete state vector and the n-
dimensional vector of chaotic maps (see Sect. 6.4.2),

(6.1)

6 Chaos-Based Information Security

respectively, @ = [01,...,0.] is the L-dimensional
system parameter vector, 1y is the the transmitted
message, ... are other system parameters, y, and
h(-) =[hi(-),...,hm(-)] are the m-dimensional
input signal sent to the receiver (m < n) and the
m-dimensional output function vector for chosen
or all components of state vector xy, and v are the
transmission channel noises. The symbol ( - ) means
optional parameters of f and h functions.

The chaotic system of the receiver has to be syn-
chronized with the system of the transmitter. There-
fore, the model of the receiver should ensure one
can recover unknown components of the transmit-
ter state vector. Its general form is given below:

Zeo = fGo 0,y ]) s
Yo =h(3:,0,]...]),

where & and f(-) = [fi(+),..., fu(-)] are the n-
dimensional recovered discrete state vector and the
n-dimensional vector of chaotic maps (an approx-
imation of the transmitter behavior), respectively,
0= [él, e, GL] is the L-dimensional receiver’s sys-
tem parameter vector, [.. .| are other system param-
eters, y, and R(-) = [h(+)s..., hm(-)] are the
m-dimensional recovered input signal of the trans-
mitter and the m-dimensional output function vec-
tor for chosen or all components of state vector xy.
In practice the transmitter’s parameter vector 6 is
the secret enciphering key. Usually it is assumed that
0=9.

The task of the receiver system is to reconstruct
the message transmitted by the transmitter, i.e., to
achieve such a state of X that sty = my. Usually this
task is put into practice in two steps.

The first step is the synchronization of the trans-
mitter and the receiver. The goal is to estimate (at the
receiver side) the transmitter’s state vector x; on the
basis of the output information y, obtained. For the
purpose of estimation of the system state (6.1) it is
required to choose synchronizing parameters of the
transmitter (6.2) in such a manner that the following
criterion is met:

(6.2)

klirn E{||xx — %¢||} - min, (6.3)
where E{ -} is the average value. It is a typical task
of a nonlinear optimal filtering [6.18], and the solu-
tion is the nonlinear optimal Kalman filter or some
extension of it.

The conclusion from (6.3) is that when there
are noises in communications lines, then it is im-
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possible to synchronize perfectly the receiver and
the transmitter. If it is assumed that the noises
are deterministic (or that there are no noises at
all), then the criterion (6.3) is simplified to the
form limj_eo [xx —Xx| = 0. The solution for
this problem is the full-state or reduced-order
observer [6.19].

In the second step the message value my is esti-
mated. The basic data for this estimation are the re-
covered state X and the output signal y, .

Some typical techniques for hiding the message
in interchanged signals are presented below [6.4].
They are especially interesting, because — after the
elimination of chaos synchronization mechanisms -
they can be used in stream ciphers from the family of
digital chaos-based cryptosystems. Additionally, for
the sake of simplicity, transmission channel noises
are neglected.

6.3.1 Additive Chaos Masking

The scheme of an additive chaos masking is pre-
sented in Fig. 6.1. It can be seen that the hiding
of the message my is obtained simply by the addi-
tion of that message to the chaotic system output.
The observer built in the receiver’s chaotic system
tries to recover the corresponding state vector x of
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the transmitter’s system. The message m plays the
role of an unknown transmission channel noise in
the system; therefore, it is hard to build an observer
that is able to recover the state properly. As a conse-
quence, iy * Mmy.

6.3.2 Chaotic Switching

This is the one of mostly used techniques in an ana-
log transmission of confidential information. Alter-
natively this technique is called chaotic modulation
or chaos shift keying.

The principle of the cryptosystem based on
chaotic switching is as follows: at the transmitter
side every message my ¢ {ml, m:, ..., mN} is
assigned to another signal, and each of them is
generated by an appropriate set of chaotic maps and
output functions relevant for ;.

The scheme of the chaotic switching operation is
presented in Fig. 6.2, where i(m)) means the de-
pendency of the index i on the message my. De-
pending on the current value of my, where k =
jK, the receiver is switched periodically (switching
is performed every K samples) and it is assumed
that the message m is constant in the time interval

[iK, (j+ DK - 1]).

Y =Prrmy
my
Xg1 = Fxp, 0) + K1 = f:(fk, 0,5 . -
$i= h) o= (i R o
= hlxi > Pi=h(k, 0) —
+ T + Fig. 6.1 Additive chaos mask-
Transmitter Receiver ing
Transmitter 1 my Receiver 1
X = £y, 0) l Fua1 =1 0, ) o
yi=h"(x, 0) Fi= ', 0) -
Yk T tig
. . . . R . . . . S ——
Xy = V(. 6) o =F NG, 6, [yy) X
yi=HN"(x;, 0) Fi= VG, 6,)

Transmitter N

Fig. 6.2 Chaotic switching

Receiver N Detection block
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The signal from the receiver is transferred to the
set of N receivers (usually there are N observers),
and each of them reproduces the state vector of the
transmitter. During the recovery process, a coherent
or an incoherent detection method can be used [6.4].
It is obvious that only one receiver from the set of
N receivers should synchronize with the transmit-
ter. The detection of the receiver in question is per-
formed in the detection block on the basis of re-
mainder values ri = h'") (x,0) — k' (%,0) (i =
I,...,N).

The chaos modulation on the basis of chaotic
switching as the method of message hiding is very at-
tractive and resistant against attacks. The disadvan-
tages are the large number of transmitters and re-
ceivers (especially for large N) and the low capacity
of the communications channel (only one message
for K time samples).

6.3.3 Parameter Modulation

There are two types of parameter modulation: a dis-
crete modulation and a continuous one. The scheme
of chaotic cryptosystem operation with the discrete
parameter modulation is presented in Fig. 6.3. In
the case of that system, the principle of operation
is similar to that of chaotic modulation cryptosys-
tems (Sect. 6.3.2). However, the transmitter’s struc-
ture does not change and only its parameters A are
modulated (depending on the current value of mes-
sage my). Modulated parameters A(my) have the
values from the finite set {)Ll, AN }, according
to defined rules, and they are constant during the
whole time interval [jK, (j + 1)K - 1].

One of the receivers from the N receivers should
synchronize with the transmitter. The detection of
the receiver in question is performed in the detec-

Receiver 1
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tion block on the basis of remainder values ri =
ALl
W (x,0) - b (,0) (i=1,...,N).
The parameter modulation method has the same
advantages and disadvantages as chaos modulation
based on chaotic switching.

6.3.4 Hybrid Message-Embedding

The dynamics of the transmitter with an embed-
ded message can be described using two equation
classes. The form of the first equation class is

Xk = f(x,0,ur) ,

¥, = h(x,0,u;), (6.4)
up =ve(xg, my) .
The second one is described as below:
Xe = f(x5, 0, uk)
y, = h(x1,0), (6.5)

up = ve(xy, my) .

Systems (6.4) and (6.5) have different relativity de-
grees. Millérioux et al. [6.4] defined that term as fol-
lows:

Definition 1. The relative degree of a system with re-
spect to the quantity uy is the required number r of
iterations of the output y, so that y,, depends on
uy, which actually appears explicitly in the expres-
sionof y, .

The conclusion from the above definition is that
the relative degree r of system (6.4) is 0, whereas the
relative degree of system (6.5) is greater than 0. This
is due to the fact that after r iterations of the state
vector x; we obtain

Vi = H(f (x5, 0,u1)) (6.6)

K1 :fAAl("‘k) 0, )
Fi= (& 0)
Yk T

X1 = PO (x,, 6)
V= h)\(mk)(xk’ 0)

>

far= £V (G 0,30
Fi= B3, 0)

Transmitter 1

Receiver N

Detection block Fig. 6.3 Parameter modulation
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with the following constraints:

fi(xx, 0,u)
fori=0,

Xk >
- {f(fil(xk;e;uk))a)ukﬂ'l) , Vix>1.
(6.7)

Two methods are used for the recovery of mes-
sage my at the receiver side: the inverse system ap-
proach [6.20] and the unknown input observer ap-
proach [6.8, 19]. In both methods the receiver has to
extract the message on the basis of output signals y,
only (eventually taking into consideration the num-
ber r of iterations).

The inverse system approach is used for the syn-
chronization of nonautonomous systems. In that ap-
proach the receiver system is inverse to the transmit-
ter system. This means that when the initial condi-
tions in both systems are the same, then the output
of the receiver system follows precisely the output of
the transmitter. Usually in practice the initial condi-
tions of the transmitter system are unknown and the
transmitted signal is biased by noise. Therefore, the
synchronization of both systems occurs if all condi-
tional Lyapunov exponents of the receiver system are
negative [6.7].

If the receiver system is unstable and requires
chaos synchronization, then the unknown input ob-
server is used; this is nothing more than the system
inverse to the transmitter with additional elements
ensuring the convergence of receiver and transmit-
ter output signals.

Equation (6.6) is the general equation for the de-
scription of the inverse system or the unknown in-
put observer for the transmitter, relevant for (6.4)
or (6.5), respectively.

frn = F(0 0,y ¥00) »
it = g(3i 0, 7,,,) » 6.8)
g = va(Xp, k) »
where the g function is such that
i =g(%,0,y,,,)=ux Yig=x, (69)

and the vq function has to be selected according
to (6.10):

Vfck :xkAitk:uk .
(6.10)

g = va(Xg, fix) = my

Because in the case of system (6.8) the chaos syn-
chronization does not depend on the rate with which
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my changes, message-embedded systems guarantee
significantly better capacities than the systems men-
tioned above.

The security level of this type of cryptosystem de-
pends on the dynamic nature of system (6.4) and on
the type of function ve(xy, my). In a specific case,
when uy = ve(xg, my) = my and the dynamics of
system (6.8) has polynomial nonlinearities, the com-
munication system based on message-embedding is
not resistant against algebraic attacks [6.4]. There-
fore, if the strong nonlinear (not polynomial) func-
tion ve(x, my ) is introduced into system (6.4), then
the system is more resistant against that form of
attack.

Systems designed on the basis of the hybrid
message-embedding approach are free of the secu-
rity flaws mentioned above.

6.4 Digital Chaos-Based
Cryptosystems

As mentioned above, it is not necessary to design
and to implement chaos synchronization mecha-
nisms in digital chaos-based cryptosystems. The
lack of this mechanism enables one to increase
the efficiency of the encryption process. Moreover,
this situation eliminates security threats resulting
from the need for reconstruction of the transmitter
state (Sect. 6.2), and allows one to use many design
approaches that are typical for digital chaos-based
cryptosystems (e.g., the inverse system approach).

Digital chaos-based cryptosystems based on
classes of discrete chaotic systems are very inter-
esting and promising alternatives to conventional
cryptosystems based on number theory or algebraic
geometry, for example. There are two basic cipher
types in conventional cryptography: block ciphers
and stream ciphers. The block cipher maps plaintext
blocks into ciphertext blocks. From the point of
view of the nonlinear system dynamics, the block
cipher can be considered as the static linear map-
ping [6.21]. Next, the stream cipher processes the
plaintext data sequence into the associated cipher-
text sequence; for that purpose, dynamic systems
are used.

Both approaches to the cipher design can be used
in digital chaos-based cryptography. In the chaotic
block cipher, the plaintext can be an initial condi-
tion for chaotic maps, their control parameter, or the
number of mapping iterations required to create the
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ciphertext [6.2]. In the chaotic stream cipher, chaotic
maps are used for the pseudorandom keystream
generator; that keystream masks the plaintext.

Many of existing chaotic ciphers have been
cryptanalyzed successfully. The cryptanalysis
demonstrated substantial flaws in the security
of those ciphers. Although noticeable progress
in works considering this type of cryptosystem
has been achieved, the majority of the proposed
algorithms do not enable one to explain many of
their properties important for the security, e.g.,
implementation details, the rate of enciphering/
deciphering, the cryptographic key definition, key
characteristics and the key generation, and the proof
of security or at least the resistance against known
attacks. As a consequence, the proposed algorithms
are not used in practice. They do not guarantee
the relevant security level or the security level is
unknown.

The common disadvantage of chaotic cipher de-
signs is that only design principles are given and the
details remain unknown (e.g., recommended key
sizes or key generation procedures). It is difficult for
those who are not algorithm inventors to implement
such a cipher. There is not a systematic approach to
the design of chaotic ciphers and their security level
definition [6.22].

6.4.1 State of the Art

Recently many new approaches to the design
of digital-based cryptosystems using chaotic
maps [6.23-25] have been proposed. The first
works considering chaotic cryptosystems are from
the 1990s. The majority of the results obtained have
been published in physics and technical science
journals; therefore, usually they have remained
unknown to cryptographers. On the other hand, the
vulnerability of chaotic algorithms and the mech-
anisms presented in conference proceedings or
cryptography journals were relatively easy to reveal
by means of typical attacks (e.g., the proposal of
Habutsu et al. [6.26] and its cryptanalysis presented
by Biham [6.27]).

One of the first stream ciphers constructed on
the basis of chaos theory was the algorithm invented
in 1998 by Baptista [6.23]. Baptista’s algorithm used
the ergodicity of the chaotic system in an encryption
process - the ciphertext was the number of itera-
tions required to reach the interval of an attractor
(represented by a plaintext symbol) by the chaotic
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orbit. The algorithm was firstly cryptanalyzed by
Jakimoski and Kocarev [6.28]; however, the low
effectiveness of this attack was noticed in [6.29].
Alvarez [6.30] presented the next cryptanalysis
using Grey codes. His method had some limitations
and concerned the simplified version of the cipher.
The cryptanalysis with Grey codes, but with fewer
limitations, was presented in [6.31]. Cryptanalytic
approaches to Baptista’s cipher are also presented
in [6.32]. The works presented in [6.33, 34] concern
those problems of the original cipher that result
in cryptanalysis vulnerability; there you can find
various improvement methods for the algorithm
in question. Many analogous algorithms [6.35-39]
have been developed on that basis and all of them
are called “Baptista-type” ciphers. Some of them
have been cryptanalyzed successfully [6.40, 41].

Alvarez et al. [6.42] presented an enciphering al-
gorithm with d-dimensional chaotic maps. The tent
map was proposed for a designed chaotic system.
The main goal of the encipher process is the search of
the plaintext block in the pseudorandom sequence
generated. The length of the plaintext block is vari-
able - if it is not found in the keystream, then
the block is shortened or the parameter driving the
binary pseudorandom generator is modified. The
cryptanalysis of this cipher is presented in [6.28, 43].
Methods for improvement of the security Alvarez’s
cipher are included in [6.44].

The chaotic stream cipher with two combined
chaotic orbits (cipher states) using the “xor” opera-
tor for the purpose of the keystream creation is pre-
sented in [6.45]. The plaintext is “xor”-ed with the
keystream, and then the ciphertext modulates (us-
ing the xor operation) the value of one chaotic sys-
tem’s orbit. That solution was cryptanalyzed effec-
tively [6.46] by means of an overrunning of the value
of one chaotic system to obtain the orbit’s value and
the key of the system as well (i.e., initial values and
the control parameter value of the chaotic system).

Pareek et al. [6.25] presented an enciphering al-
gorithm with the initial value and the control param-
eter independent of the enciphering key - there an
external key was used. Therefore, the dynamics of
the chaotic system could be anticipated effectively.
Moreover, the chaotic function used reached the ar-
eas with negative Lyapunov exponent values, which
made the cryptanalysis described in [6.47] possi-
ble. A version of PareeK’s cipher extended to involve
many chaotic systems was presented in [6.48], and
its cryptanalysis can be found in [6.49].



6.4 Digital Chaos-Based Cryptosystems

Growth in the interest in chaotic cryptosystem
can be observed from the end of the 1990s to this
date. First of all, this is the result of observations of
many interesting features of chaotic systems that are
strictly bound with requirements for cryptographic
techniques (e.g., initial conditions and control pa-
rameter sensitivity, ergodic and mixing properties).
Nowadays, the designers of enciphering algorithms
based on chaotic systems are mainly focused on the
usage of iterative discrete chaotic maps [6.23,42].
Those algorithms use one or more chaotic maps
for which initial values and information parameters
(control parameters) play the role of cryptographic
keys.

After 2000 a few algorithms were invented for
the purpose mainly of image enciphering [6.50-
55]. The general description of an enciphering algo-
rithm (without implementation details) is presented
in [6.56]. An innovative approach to the discretiza-
tion of two-dimensional chaotic maps in crypto-
graphic application is presented in [6.11].

6.4.2 Notes About the Key

The properly designed enciphering algorithm is as
secure as the key. The selection of a weak key or
a small key space results in an algorithm being eas-
ily broken. In many chaotic ciphers it is not clearly
stated what the key itself is, the range of its allow-
able values, or the key precision. This information
should be precisely defined [6.57]. Then the precise
study of the key space should be performed. The
strengths of chaotic algorithm keys are not the same.
On the basis of the bifurcation diagram (see Fig. 6.4)
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it is possible to conclude which one of the key sub-
spaces is relevant to ensure the dynamic system re-
mains in the chaotic area. The usage of few key pa-
rameters makes the matter more complex. In such
a case it is necessary to define the multidimensional
space of allowable values. It is possible to determine
the key space using the Lyapunov exponent. How-
ever, there is a common problem of how to deter-
mine the boundaries of that area unambiguously.
The perfect dynamic system is chaotic for any key
value. The key space should be sufficiently large to
be resistant against a brute force attack (i.e., an ex-
haustive key search). Very often it is hard to define
such a space because a given ciphertext can be de-
ciphered with a few keys or chaotic areas are not
regular. If the key consists of few components, then
fixing of one parameter will not enable one to esti-
mate the other parameters, nor any part of the plain-
text. The key generation schedule should be strictly
defined.

Let us consider the chaotic system given by the
formula x,41 = f(xu,a), where xo is the initial
state value and a is the control parameter or the
set of control parameters. The control parameter
should be secret to make the dynamics of the chaotic
system unpredictable (i.e., it should be part of the
cipher key). The value of the control parameter
should be selected carefully owing to its influence
on the dynamics of the system. In the case of the
logistic map f(x,b) = bx(1 — x), the system works
in the chaotic area for control parameter values
b € (so0,4], where seo ~ 3.57 - Feigenbaum’s con-
stant (see Fig. 6.4). If this is not the case, then the
logistic map has a negative Lyapunov exponent value
and the system does not reveal chaotic behavior.

0.5

(==}

Fig. 6.4 Bifurcation diagram of
alogistic map
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However, even for b € (se0, 4] the Lyapunov expo-
nent value can be negative (see Fig. 6.5), which
can lead to a cryptanalytical vulnerability of the ci-
pher [6.47]. The chaotic system implementation on
computers causes some meaningful changes in the
dynamics of the chaotic system. Round-oft errors
and finite-precision errors are the main reasons. It
can occur that the Lyapunov exponent value is dif-
ferent from theoretical expectations. To ensure the
security of the cipher, the Lyapunov exponent value
should always be always when the control parame-
ter value is changed. If it is negative, then a new value
should be chosen.

6.5 Introduction to Chaos Theory

In this section the key problems for understanding
chaos-based cryptosystems are presented. For more
details concerning chaos phenomena, see [6.58-63].

6.5.1 Basic Information
for Dynamic Systems

A discrete-time dynamic system is an iterated map-
ping. The iteration number ¢ from the set of integers
Z can be assigned to the subsequent iterations. Let X
be any metric space. Then the following definitions

apply:

the logistic map

Definition 2. The pair (X, f), where X denotes the
metric space and f: X — X denotes the mapping de-
termining the state of the dynamic system at discrete
time ¢, where ¢ is a natural number, is called the cas-
cade or the discrete-time dynamic system. Then for
everyx € X;n,m=0,1,2,...:

1. f°(x) = x; is the identity function.
2. f1(x) = f(x).
3. f" = fofo-- o f;means the composition of n
mappings f.
From the above, f"(f"(x)) = f"*" (x).

Definition 3. The sequence {f"(x)} for n = 0,
1,2,... is called the trajectory or the orbit for the
point x.

Definition 4. If there exists such a natural number
p > 1 and the point xo, for which xo = f7(x0)
and xo # fk(xo), where 0 < k < p, then
xo is called the periodic point with period p.
The periodic point trajectory is the periodic se-
quence, and the subsequence with p elements
{xo,f(xo),fz(xo),...,fpfl(xo)} is called the
periodic orbit of the point xo. Every point belonging
to that orbit is the periodic point with period p. If
x0 = f(x0), then xo is called the fixed point.

The chaotic property is the substantial feature
of the dynamic system making it useful for crypto-
graphic purposes. The dynamic system is chaotic if
the following conditions are met:
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1. System trajectories are exponentially sensitive
to initial condition changes.

2. The system has a continuous spectral concen-
tration in a given interval of frequencies.

3. The system exponentially loses the information
concerning its initial value.

The definition stated above is hard to use in prac-
tice. Therefore, usually other equivalent conditions
are used to guarantee the chaoticity of the system.
One of the basic chaoticity metrics is the Lyapunov
exponent value:

Definition 5. The Lyapunov exponent is the value of
the following function:

dx,
X0
dx, dx,.1 dx

’ d.xn_z dX()

A= lim lln

n—oco N

= lim lln

n—oco N

dxp (6.11)

dxk
dxey

1 n
= lim — Zln
n—oo 1 =1

which can be rewritten simply as

1 n
A=lim — > In[f'(x)], (6.12)
n—oo N k=1
where dx; is the increment of the function f in the
kth iteration, and f’(x) is the derivative of the func-
tion f.

The Lyapunov exponent value is a measure of
the rate of divergence of two different orbits, assum-
ing they are close at time fy. A dynamic system is
chaotic when A > 0. It can be stated, using the term
of the Lyapunov exponent, that the dynamic system
is chaotic in some area if for almost all points in that
area the value of the Lyapunov exponent is positive.
The chaos of the dynamic system means that sys-
tem trajectories are sensitive to even small changes
of the initial state. This means that when the system
starts from two close initial points, then its trajecto-
ries repeatedly diverge with the rate determined by
the value A.

Definition 6. The subset I c X is called an invariant
set of the cascade (X, f) when f(I) = 1.

Definition 7. The closed and limited invariant set
A c X is called the attractor of the dynamic system
(X, f) when there is such a surrounding U (A) of the
set A that for any x € U(A) the trajectory {f"(x)}
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remains in U(A) and tends to A with n - oo.
The set of all such points x, for which the sequence
{f"(x)} tends to 4, is called the set of attraction for
the attractor A (the attraction basin).

The attractor has to be the minimal set; this
means it does not include another attractor. Attrac-
tors with positive Lyapunov exponents are called
chaotic attractors.

Other features required to make the dynamic
system useful for the purposes of a cryptographic al-
gorithm design are the mixing and the ergodicity.

Definition 8. The system (X, f) has the mixing
property if f:X — X is the measure preserving
mapping, and for each pair of sets A,B € S with
nonzero measure y the following equation is met:

lim (A0 f7(B) = u(A)u(B),  (613)

where § ¢ X is any subset from the space X and
f7"(B) is a preimage of a set B in the nth iteration
of a mapping f. The mixing means that starting from
any initial point, it is possible to reach any subset of
the state space with probability proportional to the
size of that subset in the state space.

Definition 9. The system (X, f) is ergodic when for
any invariant set f(I) = I the measure y(I) = 0 or

(1) = p(X).

In the case of ergodicity, the trajectory starting
from any point is never bounded in some subset of
the space. This means that the analysis of such a sys-
tem cannot be limited to sets smaller than the whole
space itself.

Comment 1. An ergodicity versus a mixing: from
mixing features

VA,BeS: lim u(An f"(B)) = u(A)u(B)

(6.14)

for any invariant B = f"(B) particularly
VAeS: u(AnB)=u(A)u(B). (6.15)
If it is assumed that A = B = f"(B), then y(B) =
¢(B)u(B). That equation has two solutions, y(B) =
0 and u(B) = 1 = u(X), under the assumption the
metric of the space X is normalized previously, i.e.,
p(X) = 1.1t is the condition for the ergodicity of
the mapping (X, f). It results from the above that

the ergodicity is the special case of the mixing prop-
erty.
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6.5.2 Some Examples of Chaotic Maps

Many chaotic maps are well known in the literature.
Some of them are briefly presented next.

General Symmetric Maps

One-dimensional symmetric maps [6.64] with ex-
actly two preimages can be described in the follow-
ing general form:

flx,a)=1-]2x+1]", (6.16)

where a € (0.5, 00). There is no chaos for « < 0.5.
For a = 1 the mapping is the tent function, and for
a = 2 the mapping is the logistic map.

Quadratic Maps
A quadratic (logistic) map is given by (6.17):

f(x,b) =bx(1-x).

The logistic map is often used in cryptography be-
cause its chaotic orbit x, € (0,1) when the initial
point xo € (0,1) and the control parameter value
b € (0,4]. For b > soo the logistic map has a positive
Lyapunov exponent and its “behavior” is chaotic.

The generalization of the function (6.17) is the
function generating the recursive sequence in such
amanner that each element from sequence elements
Xy can be created from k different elements (preim-
ages) x,1 [6.65]. That sequence can be generated ac-
cording to the following formula:

(6.17)

Xn+1 = sinz(k -arcsin(x,)), keZ. (6.18)

When k = p/q for p,q € Z, then the return map
for such a map is a Lissajous curve [6.65,66]. If k is
an irrational number, then the attractor has a much
more complex structure [6.67].

Piecewise Linear Maps

Piecewise linear functions are usually used in the fol-
lowing forms:

1. “Bernoulli’s shift” map

F(x)=2x (mod 1.0). (6.19)
2. Atentmap,a € (0.5,1)
F(x,a)=a(1-|2x-0.5]) . (6.20)
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3. A “skew tent” map, a € (0,1)

x
-, O<x<a,
a
F(x,a)= l—x (6.21)
, a<x<l1.
1-a
4. Zhou’s map [6.68], a € (0,0.5)
Z, 0<x<a,
a
F(x,a) = x—a’ a<x<0.5,
0.5-a
F(1-x,a), 05<x<1.
(6.22)

A general form of a tent map (for a = 1) is the map
given by the following formula:

F(x, k) = %arccos(cos(knx)) . (6.23)

It generates the recursive sequence x,+1 = F(xn, k),
for which every point x,, has k preimages, i.e., it is
valid for k different x,_; values.

Comment 2. Quadratic maps and piecewise lin-
ear maps are the fastest chaotic maps (there are
only a few arithmetic operations and/or com-
parisons). The piecewise functions are usually
proposed as being relevant for cryptographic appli-
cations [6.1, 69-71].

Skew Maps

A skew map used in cryptography is usually applied
in the form of the linear skew map [6.26, 33, 44, 57,
72] and the skew map for the quadratic function.
The linear skew map (“tent map”) is given by (6.21).
The control parameter of the skew map has an effect
on the angle of inclination of chaotic function sec-
tions. The cryptographic features of such maps are
better than in the case of logistic maps, for example,
because skew systems have positive Lyapunov expo-
nent values in the whole domain of the control pa-
rameter.

The skew map for the quadratic function was pre-
sented by Hiraoka [6.71]. That map is given by the
following formula:

(x+l—a)( x+l—a)
4{—— ) a—— |,
a-2 2—-a

F(x,a) = af2<x<1,

0O<x<al2.

(6.24)
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6.5.3 Applying Chaotic Systems
to the Environment
of Finite-Precision Computations

Computations performed in a typical computing en-
vironment, where mathematical packets with imple-
mented floating-point arithmetic are used, are bi-
ased with round-off errors. However, there are some
dependencies between the precise analytic iteration
of dynamic systems and approximate computations
in the environment of finite-precision computations
or in the disturbed environment. It is said the real
chaotic system orbit is shadowed by the disturbed
one when they are close together during a certain
time period.

Definition 10. The sequence of points {x;},i € Z is
an e-pseudo orbit of a map f when

VieZ: d(f(x,-),x,-+1) <¢g, (625)

where d: X x X — R is the metric of the space X.

Lemma 1 (shadowing lemma). Let A be the com-
pact invariant set. There exist for any small § > 0 such
a unique y € A and e > 0 that d(f'(y),x1) < 8
Vi € Z. Then the sequence {x;} is called a §-shadow

of the orbit {f'(y)}.

Figure 6.6 presents an e-pseudo orbit for a map-
ping f, which is (as an example) a computer realiza-
tion of some theoretical orbit { f*(x0)}, and Fig. 6.7
presents the 8-shadow of an orbit {f'(y)}. This
means that e-pseudo orbit {x;} is chaotic itself, as
arbitrarily close to some chaotic orbit { f(y)}; it is
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the essential fact confirming the efficiency of com-
putations of chaotic systems in the environment of
finite-precision computations.

6.6 Chaos-Based Stream Ciphers

The principle of a stream cipher operation is to
transform symbols from the plaintext alphabet by
means of a transformation variable in time. The
strength of stream cipher algorithms results from
the complexity and unpredictability of enciphering
and deciphering transformations. The security of
stream ciphers greatly depends on statistical features
of the keystream; a mathematical analysis of stream
ciphers is easier than in the case of block ciphers.

Two problems are the most substantial in the de-
sign of any stream cipher algorithm [6.73]: (1) how
to define the next-state function and (2) how to com-
bine the plaintext with the keystream. To generate
the keystream, the result of the next-state function is
processed by means of the filter function [6.74]; the
keystream is combined with the plaintext usually by
means of a “xor” operation [6.73-75].

Stream ciphers based on chaos theory are
usually used for the purpose of an unpredictable
pseudorandom sequence generation. Relevant
enciphering algorithms using operate in a floating-
point arithmetic domain. This invokes additional
problems [6.57]: (1) a proper selection of the repre-
sentation of floating-point numbers, (2) round-up
errors and finite-precision computation errors, and
(3) an equivalence of many keys. For the purpose of
analysis of chaos-based cryptographic algorithms it
is convenient to use the general model of the cipher.

f(xl)

Fig. 6.6 ¢-pseudo orbit

Fig. 6.7 §-shadow of an orbit
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The general model of a stream cipher is presented
in [6.74]. The following section presents its mod-
ification adopted for the purpose of chaos-based
stream ciphers.

6.6.1 A Model of Chaos-Based Stream
Cipher

It is recommended to start the design from the de-
composition of a cipher algorithm into components
performing particular tasks. The scheme of a chaos-
based stream cipher can be presented as the exten-
sion of the stream cipher scheme given in [6.74].
The additional components are the feedback func-
tion and mapping transformations. The chaotic sys-
tem plays the role of the next-state function. The
feedback function is used in some enciphering al-
gorithms to modify the cipher’s internal state [6.45].
Mapping transformations are used for transforma-
tion of plaintext symbols to the values relevant for
the cipher in question (e.g., to define the part of an
attractor assigned to given plaintext symbol [6.23]
or the relevant value of a chaotic orbit [6.26]). The
functions of chaos-based stream ciphers can be de-
fined as follows (see Fig. 6.8):

. {f(ail; t1(k)) or
S o (k). j(h(zics 2 (mic)))

(6.26)

_J&(ai)or
“ {g(m, t1(k)), (6.27)
ci = ts(h(zi, t2(my))) , (6.28)
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where: k is the key, m is the plaintext, ¢ is the ci-
phertext, z is the keystream, o; is the cipher inter-
nal state, h is the output function, g is the keystream
generation function (the filter function), ¢, 2, and
t3 are the mapping transformations, j is the feedback
function, and f is the chaotic system (the next-state
function).

The Key

The revealing of a cipher algorithm structure can
make easier neither key compromise nor plaintext
recovery without knowledge of the key. The security
of the cipher has to depend on the security of the key
only. The rule was formulated by August Kerckhoffs
in the 19th century. The time required for checking
of all possible keys grows exponentially with the key
length.

Key components significantly depend on the de-
tails of the chaos-based stream cipher design. Usu-
ally the following parameters are used:

1. Initial condition of chaotic systems

2. Dynamic systems’ control parameters

3. Mappings (i.e., bindings) between plaintext
symbols and values used in chaotic system
iterations.

If the initial value is used as the key, then some prob-
lems arise: the system does not operate chaotically
for some values of parameters or equivalent initial
values occur for the nth iteration. A unimodal map-
ping f and a relevant inverse mapping f~' have the
following properties:

O

Fig.6.8 Model ofa chaos-based
stream cipher
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1. fisa2-1 (two-to-one) mapping.

2. f7'is 1-2 (one-to-two) mapping.

3. The nth iteration of f (i.e., f") is a 2"-1 map-
ping.

4. The nth iteration of ' (i, f™") is a 1-2"
mapping.

5. VneZ,xeX=(0,1),x=f"(f"(x)).

Comment 3. From the above properties it can be
concluded that for the nth iteration of a chaotic
system the orbit point x, can be reached from 2"
different initial values. This is impossible in a typ-
ical computing environment: 32, 64, or 80 bit are
usual binary representations of floating-point num-
bers and do not cover the range of values for a typi-
cal chaotic system, i.e., an interval (0, 1). Round-off
errors cause the real reverse orbit to be a cyclic or
a a fixed-point orbit. Moreover, condition 5 is not
valid owing to different round-off errors in f and
f7! computations. Algorithm 6.1 enables one to de-
termine the reverse orbit properly (operator (int)
means that the binary representation of the floating-
point number is processed as an integer; operator
(double) means that the integer value is interpreted
as an internal form of floating-point numbers).

The strength of the key can be evaluated by a cal-
culation of the Lyapunov exponent value during the
cipher initiation process (Algorithm 6.2. Using that
procedure it is possible to find out the usage of an
improper value and to hide the initial value after an
appropriate number of iterations.

Control parameters of the system should be the
part of the key. In another case, the dynamics of the

Algorithm 6.1 Determination of a proper set of pre-
vious orbit points

Input: x; - ith orbit point,

f - achaotic map,

71~ areverse map for f
Output: X;_; - aset of proper i — 1th orbit points
Parameters: ¢ — a window for proper orbit search,

e.g., =100
: x;{_l e f_l(xi)
xﬁl < (int) x_,
forall j=-¢,...,-1,0,1,... ,edo
x/”J « (double) (x/1 +j)

if f (x;?i") = x; then

X:?i] € X,‘
end if
: end for all

: return X; ;

WRN D U2
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system is known and the algorithm is not resistant
against some attacks, e.g., a slide attack. An initial-
ization phase gives information on whether the con-
trol parameter value invokes a nonchaotic operation
of the chaotic system.

The chaotic map should not depend on the key.
According to the Kerckhoffs principle, the strength
of the cipher cannot depend on the algorithm’s con-
cealment. The distribution of such a key component
is problematic. The chaotic map controlled by means
of the control parameter vector can be the solution of
that problem. The space of vector values (those gen-
erating positive Lyapunov exponents) should have at
least 2'*® elements.

Cipher Initialization and Input
and Output Transformations

A random ciphertext based on the same plaintext
instances is the required property of every stream
cipher. In enciphering algorithms it is obtained by

Algorithm 6.2 Lyapunov exponent calculation

Input: x - an initial value of the chaotic system,
a - a control parameter vector,
f(x, a) - a chaotic map
Output: a chaotic orbit value after INIT + ITER iterations
or an error (an assertion) in the case of negative Lya-
punov exponent
Parameters: Parameters: § - a small value for which
a moving away of orbits is calculated, e.g., § = 1075,
INIT - a number of “idle” iterations, e.g., INIT = 102,
ITER - a number of iteration for which an exponent
value is calculated, e.g., ITER = 10°
Ib<0
ct< 0
: for (i < 0;i <INIT;i < i+ 1) do
%« f(x.a)
end for
X5 < X
: for (i < 0;i < ITER;i « i + 1) do
y < f(x+6.a)
9:  x<« f(x,a)
10: assert (x # x;, “a cyclic orbit”)
11:  if (x # oo and y # co) then
12: Ib < 1b+log|(x —y)/d|
13: ct<ct+1
14:  endif
15: end for
16: print (ct # 0, “an orbit out of the allowable range”)
17: A < Ib/ct
18: print (A >0)
19: return x

A o
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means of an additional random initial value (an
initialization vector). That value can be transferred
openly to the receiver. The usage of randomization
techniques makes any cipher more secure; the fol-
lowing cipher properties are obtained [6.76]:

o A diffusion of a priori statistics of cipher input
data

o A resistance against the chosen plaintext attack

o An increase of the plaintext space visible to an
attacker.

Usually the cipher initialization procedure consists
of two stages:

1. A key value initialization
2. An initialization vector initialization.

Some “idle” iterations of the chaotic system result in
a hiding of used initial values. At the same time, it is
possible to compute the Lyapunov exponent value.
That value can be used to check whether the system
is really chaotic for selected parameter values. The
initialization vector value can be associated with an
initial value or a number of iterations to make the
system more resistant against attacks on an output
function.

Another method to avoid the same ciphertexts
for the same key and plaintext requires one to en-
crypt a random number as the first block (SALT
value), and to mask plaintext symbols by “xor”-ing
with the SALT value. During the deciphering pro-
cess the first block should be processed at the be-
ginning, then this value should be “xor”-ed with the
next deciphered blocks.

Input and output functions should be designed
in such a manner that the key and the data to be en-
ciphered can be read from and written on the data
carrier correctly. If the key is binary, then it is neces-
sary to determine accurately the precision and for-
mat for floating-point numbers. Even small key in-
accuracies can lead to an erroneous chaotic system
operation after a few iterations. The cipher initializa-
tion procedure with some “idle” iterations causes the
enciphered data to be faulty from the first symbol.

Next-State Function

The next-state function in chaos-based stream ci-
phers is a chaotic map. The dynamics of the chaotic
system depends merely on the chaotic map chosen.
Good chaotic and statistical properties are essen-
tial to make it resistant against any cryptanalysis. In
conventional stream ciphers, linear and nonlinear
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shift registers are used [6.74], and their composition
is crucial for the security of the cipher.

Knowledge of the dynamics of the chaotic sys-
tem enables one to analyze the cipher (its internal
state especially). At the beginning, the precision and
the format of floating-point numbers have to be de-
fined. This is very important owing to the sensitivity
of the chaotic system. A chaotic map cannot be used
in a nonchaotic area. If this is the case, then an or-
bit tends to a fixed point or a few-points attractor.
Therefore, the analysis of attraction basins used for
chaotic maps is substantial. An attraction pool can
be an irregular area and for selected control param-
eter values the calculation of the Lyapunov exponent
value is required. This can be done during a cipher
initialization process.

A probability distribution of the chaotic maps
used is important. If it is nonuniform, then the trans-
formation of the orbit value (used in the enciphering
process) can be compromised. Unfortunately, a uni-
form probability distribution occurs for piecewise
linear maps only [6.77]. When it is not hidden by the
filter function, then the map with a nearly-uniform
probability distribution can be used or the attractor’s
part with similar properties should be applied.

The dynamics of the system should not be re-
vealed. The lack of detailed knowledge concerning
the dynamics makes the recovery of an internal state
or control parameters impossible (the dynamics is
exponentially sensitive to the initial conditions and
the control parameters). The return map reveals the
type of chaotic map. Therefore, it is recommended to
make chaotic maps dependent on many control pa-
rameters. This is the way to hide the map’s dynamics.

Keystream Function (a Filter)

The main task of the filter is to process the inner
state to make the keystream indistinguishable from
a random sequence. Practically it is hard to ob-
tain truly random data when the amount of data
is great and they should be generated continuously.
Coin tossing is an example: when the coin comes
down heads, then a zero-value is generated, and
when it comes down tails, the binary value 1 is
generated. The other random data sources useful
for cryptographic purposes are the time elapsed be-
tween keystrokes or mouse movements, and hard
disk read-out and write-in times. All those sources
of random sequences have weaknesses, because an
adversary can modify a generator environment par-
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tially and the source itself can be vulnerable and pre-
dictable [6.78].

In the case of stream ciphers, the usage of true
random sequences as keystreams results in addi-
tional problems: the same binary sequence has to
be generated at the receiver side (true random data
have to be transferred from the ciphering party).
In fact there is no a deterministic algorithm able to
generate true random sequences. In spite of this, al-
gorithms generating pseudorandom sequences are
used. A pseudorandom bit generator is a determin-
istic algorithm which after receiving the true ran-
dom binary sequence of k bit returns the binary se-
quence of [ > kbit, and that binary output “looks
like” a random one. The input of the pseudorandom
bit generator is called a seed, and the output is called
a pseudorandom binary sequence [6.74].

Cryptographic pseudorandom bit generators are
based on the generator’s internal state. When this
state is revealed, then it is possible to recover the
next generated values, but it would not be possible
to recover the inner state from the sequence of out-
put bits [6.74, 78, 79].

Statistical Properties

There are 16 various randomness tests presented
in the NIST 800-22 specification [6.80] and all of
them provide the proof of the randomness of the
sequences tested. For the purpose of the tests, the
length of the sequence tested should be at least
10°bit. Each test gives some function of a set of
pseudorandom bits. The result is a p value defin-
ing the strength of Hy-hypothesis correctness (Ho
means a sequence is random, H4 means a sequence
is not random). If the p value is less than a signifi-
cance level a, then the hypothesis Hy is discarded.
It is assumed as the standard that the value of « is
the reciprocal of the number of the samples tested,
e.g., for 100 samples, « = 0.01.

A factor of proportionality is defined for the pur-
pose of the verification of the correctness of the re-
sults of statistical tests [6.80]. It is the number of se-
quences for which p value is greater than the signifi-
cance level a divided by the number of bit sequences
tested. Every generator is tested with the usage of
m sequences; each of them consists of nbit. The
range of approved proportions is defined in [6.80]
by (6.29):

pE3VP(L-p)/m, p=1-a.

(6.29)
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The second indicator for the correctness of the tests
is a uniformity factor for the distribution of the
p values obtained [6.80]. A histogram should be
made to determine this factor. For each test that his-
togram consists of ten intervals with information on
how many times the p value falls within that interval;
the width of any interval is 0.1. The following value
should be computed to check whether the distribu-
tion of p values is uniform:

10

X =2 (Ci~5/10)°/(s/10) ,

i=1

(6.30)

where C; is the number of p values from the interval
[(i-1)/10,i/10),i = 1,2,...,10,and s is the sample
size. Then pr should be determined on the basis of
the p values obtained from the tests; that value is cal-
culated according to the formula pr = P(9/2, x*/2),
where P(a, x) is an incomplete gamma function. If
pr > 0.0001, then it is assumed that the distribution
of p values in histogram’s intervals is uniform.

A keystream generation function (a filter)
should generate such a sequence of pseudorandom
bits which does not reveal an inner state of the
cipher (a value of the chaotic orbit). There cannot
be an orbit value in the keystream. It is possible to
recover a control parameter value on the basis of
subsequent orbit values and the kind of mapping.
Moreover, any information concerning x, (nth
point of an orbit) can reveal the range of possible
xo values. Even residual information about an orbit
value can cause the key value to be compromised.

The value of the generated sequence should be
unpredictable and meaningfully dependent on the
key value. If that condition is not fulfilled, then it is
possible to attack the cipher using the predictabil-
ity of the keystream. A generated pseudorandom se-
quence should be indistinguishable from any ran-
dom sequence because of the distinguishing attack
possibility. If an attacker cannot distinguish a gener-
ated bit sequence from a random value, then he/she
can be convinced that Vernam’s cipher is the cipher
in question (the only cipher with a provable secu-
rity [6.81]).

Output Function

An output function combines a plaintext with
a keystream. That function has to be reversible to
make the deciphering process possible. The idea of
stream ciphers is an extension of Vernam’s cipher,
when a random key is mixed with a plaintext by
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means of the “xor” operator. The total security of
this cipher depends on the security of the key - it
has to be used once and be random.

To present the particular proposal for an out-
put function is particularly hard for chaos-based ci-
phers. It is the most meaningful cipher’s compo-
nent used to distinguish the type of the cipher. For
that purpose “xor” operation is mostly used in con-
ventional ciphers. Such a solution is called an ad-
ditive binary stream cipher [6.74]. Many cipher de-
signs use binary “xor”-ing, e.g., [6.82-86]. “Xor”-ing
is also a mixing operation in block ciphers oper-
ating in Cipher Block Chaining (CBC), Counter
(CTR), Output Feedback (OFB), and Cipher Feed-
back (CFB) modes (see [6.74]). The reason is its high
efficiency. Another advantage is its very high pro-
cessing rate by most processors and the fact that the
reverse operation is “xor”-ing itself.

A combining operation (binding a keystream
with a plaintext) is sometimes neglected in a ci-
pher design. The design is usually focused on
investigations concerning keystream generation,
key selection, etc. [6.87,88]. The type of opera-
tion used should be decided on with respect to
keystream and plaintext alphabet properties. The
usage of “xor” operation has some disadvantages.
It is possible to recover a keystream when a great
number of plaintext-ciphertext pairs are collected.
Therefore, it is important not to reveal information
concerning an enciphering key by means of a filter
function [6.75]. Additionally, to disable attacks with
a recovered keystream, randomizing techniques are
used (e.g., for an initial vector value) to generate
different keystreams for every plaintext.

A “xor” operation is also used as an output
function for chaos-based ciphers [6.45,89]. Other
useful operations are an addition over a finite
field [6.25,48,56] and an addition in the real-
number domain [6.90]. There are also chaotic enci-
phering algorithms using a nonstandard approach
to select an output function. Examples are looking
for plaintext sequences in a keystream [6.42], deter-
mining the number of iterations required to reach
an appropriate attractor interval [6.23], and their
modifications, e.g., [6.35-39, 89].

A substantial problem for synchronous stream
ciphers is multiple usage of the same keystream. This
is similar to the case of repeated usage of the same
key for one-time pads. It is well known that the key
of the one-time pad can be revealed by means of
the following computations: k; = ¢; xor m;. This is
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why the key should be different for each enciphered
plaintext. Chaos-based enciphering algorithms use
diversified output functions; therefore, a keystream
recovery is not so simple as in the case of “xor” op-
eration, but it is usually possible. For that reason
a generated keystream should be different in each
case. This can be ensured during a cipher initial-
ization process: in the case of stream ciphers with
a keystream depending on an initial seed, a diversity
of keystreams can be ensured by means of random
initial vector values used in an initialization process.
The value of the initial vector can be then sent via
a public channel, as the first ciphertext block, for ex-
ample.

Feedback Function

A feedback function is used in self-synchronizing
stream ciphers. When it is used, then the keystream
depends on a specified number of bits from pre-
viously enciphered plaintext symbols. The main
design problem for that type of cipher is to design
the keystream considering the feedback function
in a proper way [6.75]. The standard for self-
synchronizing stream cipher design is to use one-bit
CFB mode in a block cipher. Then the next-state
function depends not only on the key and the
previous state, but on the feedback as well. That
property causes the security of the cipher to depend
significantly on the proper design of the feedback
function.

In conventional stream ciphers a feedback func-
tion is usually realized by means of feedback shift
registers. A feedback results in some resistance
against transmission errors. When only one cipher-
text bit is erroneous, then only one plaintext bit is
disturbed. However, the removal of one bit from
the ciphertext causes error propagation through all
the next plaintext bits. Feedback shift registers are
not used in chaos-based ciphers; e.g., a feedback
function is used for a nonlinear modification of
a chaotic system orbit [6.45] or to determine an
initial value and/or the number of iterations [6.25].

In the literature, synchronous stream ciphers
are presented significantly more often them self-
synchronizing ones [6.73,75]; therefore, only
a few examples of the second type of ciphers have
been presented, and most of them have been bro-
ken [6.82]. For example, weak points have been
found in all stream cipher proposals sent for verifi-
cation in the New European Schemes for Signatures,
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Integrity, and Encryption (NESSIE) project [6.91].
In practice, the only one stream cipher used is CFB
mode of block ciphers. The main disadvantage of
this solution is a low enciphering efficiency.

A feedback function has an influence on an in-
ternal state of a cipher. Owing to that property, an
attacker has an opportunity to control an internal
state, and consequently the dynamics of the chaotic
system used. It can reveal the internal state of the
chaotic maps used, and control parameter values as
well. Chaotic systems operate on orbits within some
specific interval, e.g., (0, 1). When an orbit exceeds
an assumed interval, then it is possible that a system
will start to generate infinite orbit values (oo or —oo)
very soon.

A good idea seems to be to separate binary and
floating-point operations in the design of chaos-
based ciphers (to avoid an inner-state excitation).
One approach is to use floating-point operations
modulo 1.0. The probability that a so-modified inner
state value still belongs to some chaotic orbit is great
because a chaotic system has an ergodicity property.

6.6.2 Analysis of Selected
Chaos-Based Stream Ciphers

This section presents operation principles for se-
lected chaotic enciphering algorithms. These are the
ciphers with different design approaches and vari-
ous chaotic properties applied, e.g., ergodicity, sen-
sitivity to initial values, and the usage of pseudoran-
dom number generators (PRNGs). Such an attempt
enables one to have an overview of different aspects
concerning cryptographic and chaotic properties of
ciphers.

Baptista’s Cipher

Baptista [6.23] presented a chaotic cipher based on
the ergodicity property of a logistic mapping. An al-
phabet with cardinality S (originally S = 256 sym-
bols) divides part of an attractor (or the whole) on
S e-intervals. Additional parameters Xmin and Xmax
mean lower and upper boundaries of the attractor
used. It is also possible to use the whole range of the
attractor. An enciphering key is a mapping of all the
alphabet symbols to e-interval numbers, an initial
value x¢, and a control parameter b.

A ciphertext is the number of iterations required
to reach the e-interval for a given plaintext symbol.
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Hence, as the result of enciphering, a number of lo-
gistic function iterations are assigned to every sym-
bol of the plaintext alphabet. The iteration starts with
xo. For the next symbol, as an initial value x5, the
value f 1 (x0) is taken, where C; is the number of it-
erations for the first symbol. Analogously, as xg , the
value £ (xo) = £°%(xg) is taken, etc.

The number of required iterations is from 250
to 65,532. Therefore, a ciphertext is twice as long as
a plaintext (a 16-bit number is required to represent
the maximal number, i.e., 65,532). The cardinality S
of an alphabet is 256, so an 8-bit word is required
to represent a plaintext element. Additionally, the
ciphertext depends on two parameters: a transient
time Ny and a probability factor #.

Owing to the ergodicity, any e-interval can be
reached by a infinite number of orbits with differ-
ent lengths. Hence, for every symbol of the plaintext
alphabet, the number of possible iterations required
to reach the relevant e-interval is greater than one.
The value of # determines which possible iteration
should be chosen and sent to the receiver. For # =0
the first value found is chosen. If 4 # 0, then a num-
ber x € (0,1) is taken from the PRNG. If ¥ > 7,
then as a ciphertext the current number of iterations
is sent; otherwise the logistic function’s iteration is
continued.

The parameter Ny means the minimal number of
iterations before the start of e-interval searching. It is
introduced owing to the fact that knowledge of map-
ping of plaintext symbols to e-intervals without re-
vealing b or xo is not enough to break the encipher-
ing algorithm. The reason is its sensitivity to the ini-
tial conditions. An attacker does not know the exact
value of f°, even if he/she knows f "° for large No.

An Attack on Baptista’s Cipher

The way to recover a keystream is presented
in [6.30]. For the sake of simplicity it is as-
sumed the plaintext alphabet consists of two
symbols only: S, = {si,s;}. Additionally, it is
assumed that No = 0, 4 = 0, xo = 0.232323,
b = 3.78 and the range of the attractor used
is [0.2,0.8]. An encryption of some plaintext
P = {s1, s1, s1, s1, ...} gives some ciphertext,
eg, C={5322,23232232...}. This
is the way to recover some part of the keystream:
k = {x,x,x,x,x,51,%,x,51,%,51, ... }. Notice that
elements s; are located in positions which are
achieved after C, iterations. In the next step we
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Fig.6.9 Model of Baptista’s cipher. The meaning of particular blocks is as follows: k1 is the logistic map’s control parame-
ter and the initial value, k> is a mapping between the e-interval number and the plaintext symbol, t; is a function mapping
binary representations of floating-point numbers to values relevant to a selected implementation of the representation of
floating-point numbers, ¢, is a function mapping the ith plaintext symbol to the e-interval number according to the key
ka, f is a a logistic map, o, is the nth value of a chaotic orbit, g is a function mapping an orbit value to the e-interval
number, A is a function computing how many times the e-interval should be reached for a given plaintext symbol, m is

a plaintext, ¢ is a ciphertext, and 3 is an identity mapping

consider another plaintext, e.g., P ={sz,$2,...},
and encrypt it. In this case a different ciphertext
sequence is obtained, eg.,C= {1, 2,3,9,57,51,1,
1,...}. The revealed part of the keystream is k = {x,
$2, X, S2, X, S1, S2, X, S1, X, S1, } The positions
in a keystream which are not filled are forbidden
attractor areas resulting from values used for xmin
and Xmax.

The analysis presented above is based on a “cho-
sen ciphertext” attack. To perform a “known plain-
text” or “chosen plaintext” attack requires collect-
ing an appropriate number of “plaintext-ciphertext”
pairs. This collection is the basis for a cryptanalysis.
The amount of data required increases if Ny > 0 or
n > 0 are used.

Alvarez’s Cipher

A cipher algorithm using the d-dimensional chaotic
map Xp41 = f(Xn,Xn-15...,Xy_gs1) is presented
in [6.42]. This iterated map generates a real-number
sequence. Then, on the basis of a chosen threshold
Ui, a sequence C; is constructed. Its elements are
from the set {0,1}; if x, < Uy, then 0 is generated,
otherwise 1 is generated. As an example of a func-
tion f, using of a tent map (given by (6.31)) with

a control parameter r is suggested.

f(x) = { ’

ifx<0.5,

6.31
ifx>0.5. (631

r(l-x),

A sequence of length by, corresponding to a part
of a plaintext, is searched in the generated sequence
C. If that sequence (beginning with x,,) is found,
then a set (Uy, x41, b1) is sent to the receiver; other-
wise the sequence of length b, — 1 is searched ( a re-
duction is continued until the required sequence is
found). The enciphering of subsequent symbols re-
quires one to construct subsequent sequences C, to
choose new thresholds Uy, and to search the next
parts of the plaintext in a new generated binary se-
quence. During deciphering a function f is iterated
by times, beginning with x,4i. The threshold Uy is
the basis for revealing a plaintext sequence.

An Attack on Alvarez’s Cipher

An attack enabling one to recover a control param-
eter value r is presented in [6.43]. The attack con-
sists in the prediction of few initial states of the
chaotic map (particularly it is important to check
whether an orbit generated by that function exceeds
the threshold U). An output sequence of a deci-
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Fig. 6.10 Model of Alvarez’s cipher. The meaning of particular blocks is as follows: k; is a control parameter of a tent
function, #; is a a function mapping binary representations of floating-point numbers to values relevant to a selected
implementation of the representation of floating-point numbers, ¢, is a function mapping a plaintext symbol to a binary
sequence, f is a tent function, 0, is the nth value of a chaotic orbit, g is a function generating a keystream on the basis of
an orbit value and threshold U, h is a function searching for a binary plaintext value in a keystream, m is a plaintext, c is
a ciphertext, and ¢3 is a mapping generating triple (U, b, x4 ) as a ciphertext

phering process depends on subsequent values of
that orbit (if they are greater or less than a given
threshold U;). When the threshold is set on the
value 0.5 (i.e., that value with which an orbit value is
compared), then a deciphered plaintext directly re-
sponds to the selected part of (6.31) (if for subse-
quent orbit values the condition stated in the for-
mula is met or not). For example, the recovered
sequence {0,0,0} means that every time the or-
bit value has been less than 0.5. The maximal ini-
tial value for which a threshold of a tent map is
not exceeded during i iterations is given by xp =
1/(2r'™"). Tt is possible to perform the following at-
tack based on that condition:

1. Choose a ciphertext (0.5, b, xo ) with xo » 0.

2. Decipher a ciphertext.

3. Check the result: if there are “zeros” only, then
slightly increase x, otherwise decrease xo.

4. Repeat the above steps until a sufficient accu-
racy of xo is obtained.

5. Calculate r = *3/1/(2x,).

Pareek’s Cipher

A chaotic cipher based on the logistic map is pre-
sented in [6.25]. The length of the key for that cipher
is 128 bit. The key consists of 16 blocks, 8 bit each.

The following initial values for the cipher are calcu-
lated: the value used for calculation of an initial value
for the chaotic system

XSZ(Kl@Kz@"‘@Km)/256, (632)

and the value used for calculation of the initial num-
ber of iterations

=(K1+K2+"'+K15) mod 256 . (633)

Then a session key K is chosen (r = 1,2,...,16).
One of private key blocks is selected randomly. The
seed of the PRNG used for the selection of K, has to
be dependent on the key (to make a deciphering pos-
sible). Then the initial values X for the logistic map
and the number of iterations N are calculated (those
values depend on the selected session key K ):

X =(X;+K,/256) mod 1,
N=N;+K,.

(6.34)
(6.35)

A logistic function’s control parameter A; is defined
as follows (under the assumption that a = 16, ¢ = 7,

m = 81,and Y; = 0):
Ai = ((aY; + ¢) mod m)/200 + 3.57 , (6.36)
Y;=(aYi-1 +c¢) mod m . (6.37)

The logistic map is iterated N times, starting from
the initial value X and using the control parameter
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Fig.6.11 Model of PareeK’s cipher. The meaning of particular blocks is as follows: k1 is a key determining the number
of iterations and the initial value, t1, 2, and t3 are identity mappings, f is a logistic map, o, is the nth value of a chaotic
orbit, g is a function generating a keystream as an integer number on the basis of a chaotic orbit value, h is a function
mixing a keystream with a plaintext (using an addition modulo 256), j is a a feedback function determining the number
of iterations and the initial value of the orbit (firstly from a key), m is a plaintext,and c is a ciphertext

Ai. Thelast value, denoted Xpew, is used for encipher-
ing and deciphering purposes. The following formu-
las are used: respectively):

Ci = (M; + |Xnew - 256]) mod 256, (6.38)
M,- = (C, + 256 — |Xnew . 256|) mod 256 . (639)

The subsequent plaintext symbol is enciphered using
initial values X,ew for Xy and C;_; for N;.

An Attack on Pareek’s Cipher

A cryptanalysis vulnerability of PareeK’s cipher is
presented in [6.47]. The conclusion from an analy-
sis of the cipher algorithm is that a key decomposi-
tion algorithm based on a congruent PRNG is used.
A chaotic system control parameter is the key but
four control parameters of the PRNG (i.e., a, ¢, m,
and Y, parameters) are not confidential, i.e., they are
known to an attacker. Hence, the decomposition of
the key is deterministic and it does not depend on
the main key of the cipher, nor a plaintext nor a ci-
phertext . The key decomposition algorithm gener-
ates m = 81 different values. Hence, there are 81 dif-
ferent control parameter values and the distance be-
tween them is (4.0 — 3.57)/81 ~ 0.005. The value
Amin = 3.57 was chosen owing to the fact that the lo-
gistic system has positive Lyapunov exponent values
for A > seo ~ 3.57.

For the logistic map it is possible to obtain peri-
odic nonchaotic orbits for control parameter values

A > $e. In the algorithm in question, some values of
A belong to nonchaotic areas; this can be checked by
computing the Lyapunov exponent values for each of
the 81 control parameter values. There are eight neg-
ative Lyapunov exponent values in the set of possible
control parameter values; this is shown on Fig. 6.12.

The negative Lyapunov exponent values occur
for the following control parameter values (for first
1,000 iterations):

o Vie {21,102, 183, 264, 345, 426, 507, 588, 669,
750, 831,912,993}, 4; = 3.63

o Vie {28,109, 190, 271, 352, 433, 514, 595, 676,
757,838,919, 1000}, A; = 3.739

o Vie {73,154, 235, 316, 397, 478, 559, 640, 721,
802, 883,964}, 1; = 3.83

o Vie {17,98, 179, 260, 341, 422, 503, 584, 665,
746,827,908, 989}, A; = 3.835

o Vie {54,135,216, 297, 378, 459, 540, 621, 702,
783,864,945}, 1; = 3.84

o Vie {67,148, 229,310, 391, 472, 553, 634, 715,
796,877,958}, A; = 3.844

o Vie {20,101, 182, 263, 344, 425, 506, 587, 668,
749, 830,911, 992}, A; = 3.849

o Vie {39,120,201, 282, 363, 444, 525, 606, 687,
768, 849, 930}, A; = 3.855.

The existence of a short-period orbit (in the win-
dow A € (3.828, 3.841) particularly) can be used for
the attack revealing the value of the key. As stated
earlier, a dynamic system remains in the area of peri-
odic orbits for A € [3.82,3.84]. A three- or six-point
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Fig.6.12 Nonchaotic areas for a logistic map. Black circles denote negative Lyapunov exponent values

attractor is there. It is possible to perform a “known
plaintext attack” with the usage of A; parameters,
where i € {17,73,98,154,... } (i belongs to the set
of controls parameter indexes invoking periodic or-
bits). Owing to the usage of a “known plaintext at-
tack,” a cryptanalyst knows plaintext values P; and
respective ciphertexts C; as well. It is known that
Xnew can be one of three or six orbit values. It is pos-
sible, knowing the set of possible Xy and C;, to de-
termine and to check all 256 possible values of K15
required to encipher Pis; there is only one key value
enciphering Pys to Cis - it corresponds to K15 ex-
actly. Then the next Xy.w values are determined to
reveal K19, and the key recovery process continues.
That process should be repeated as many times as the
period of an orbit is (three or six times) because it is
not known which value is the proper one. If a peri-
odic orbit is not obtained for a given A;, then the next
i value (invoking a periodic orbit) should be used.

6.7 Chaos-Based Block Ciphers

In block ciphers a plaintext m is partitioned to m;
blocks (usually they are greater than in the case of
stream ciphers) and then enciphered. Therefore, ev-
ery plaintext can be considered as an ordered se-
quence of blocks m = {mi,m,,...,my}, where
N is the number of blocks the message consists of.
The binary length is the same for all blocks - let us
denote it as I,. Hence, the length |m;| = I, bit for
i =1,2,...,N (usually that length is a multiple of
8 bit). If the last block is shorter than I, then this
is padded with appropriate bits (e.g., with “ones”) to

the full length of the block. Added bits form a so-
called padding string, and an appropriate process —
the padding process [6.78,79].

Blocks m; of the plaintext message m belong to
some set of plaintext blocks M, i.e., m; € M. Each
plaintext block m; € M consists of elements (sym-
bols) from the alphabet Ap. The set M forms the
space of all plaintext blocks. An encryption function
E. transforms plaintext blocks to ciphertext blocks
belonging to the ciphertext space C:

EcMxK—C, (6.40)

where K is the key space (e € K). Any element ¢ € C
(a binary string of length 1,,) is called a ciphertext
(a cryptogram) and consists of elements (symbols)
from the alphabet Ac. Particularly, where Ay = Ac,
the cipher is called an endomorphic cipher.

A transformation inverse to the encryption func-
tion E. is called a decryption function and it is de-
noted as D, (see (6.41)). This function has to be a bi-
jection from C to M:

D:CxK—-> M. (6.41)

Hence, the decryption function D. is the inverse
function of the encryption function E, i.e.,

De(Ee(mi)) =m; (642)

for any block m; € M and key k € K.

Block ciphers defined by a mapping pair (E., D)
can be considered as static nonlinear transforma-
tions. This means that invertible chaotic maps are re-
quired for the design of chaos-based block ciphers.
A general inverse chaotic system approach is ap-
plied for the selection of maps [6.20]. In most cases,
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chaotic maps are noninvertible; therefore, it is nec-
essary to use discretization methods to ensure such
a type of invertibility (see Sect. 6.7.2).

6.7.1 A Model of a Chaos-Based Block
Cipher

A properly designed block cipher algorithm pro-
duces ciphertexts statistically indistinguishable from
true random sequences. Ciphertext bits should be
unpredictable for an attacker with limited compu-
tational capabilities. These conditions should be met
in the case of conventional cryptosystems, and in the
case of chaos-based cryptosystems as well. More pre-
cisely, the required basic properties of well-designed
block ciphers are [6.74]: (a) confusion and diffusion
and (b) completeness and avalanche effect.

When a cipher algorithm has the confusion
property, then plaintext bits are randomly and
uniformly distributed over the ciphertext (i.e., sta-
tistical relations of plaintext and ciphertext bits
are too complex to be useful for an attacker). On
the other hand, the diffusion property guarantees
that each plaintext and key bit has an influence on
many ciphertext bits. Quantitative measures of both
properties mentioned above can be, for example,
a differential approximation probability (DP) and
a linear approximation probability (LP) [6.92].

The diffusion property should result in complete-
ness and an avalanche effect. The measure of the
avalanche property is a number of changed cipher-
text bits after the change of a single input bit (for
good ciphers it is expected that about half the cipher-
text bits are changed). The completeness ensures that
each output bit is a complex function of all input bits.
Consequently, there is always such a state of an in-
put block that the change of any selected input bit
causes a change of the indicated output bit. There are
quantitative measures for the completeness, and for
the avalanche effect as well [6.93]. They are some of
the most important design criteria to be considered
in the case of block ciphers; therefore, they are pre-
sented below [6.93].

Definition 11 (avalanche effect property). It is said
that a function f: Z; — Z;" has the avalanche prop-
erty if and only if

> wt(f(x) eaf(xea cf"))) =m2""" (6.43)

n
x€Zj
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for each i (1 < i < n), where ZI (¢ = n or m)
denotes the g-dimensional space over a finite field
GF(2), @ is a binary “xor” operation, wt is a Ham-
ming weight function (the number ones in a binary
representation of an integer or in a binary sequence),
and cf") € Zj is an n-dimensional unitary vector
with a ~ 1in the ith coordinate and zeros elsewhere.

It results from the above that a change of a sin-
gle bit of an argument of a function should invoke
changes of approximately half of a function value’s
bits (i.e., in its binary representation).

Definition 12 (completeness property). It is said
that a function f:Z; — Z;" has the completeness
property if and only if

S fx)ef(xec™)>0

n
xezy

(6.44)

foreachi (1 <i <n), where0=(0,0,...,0) € Z7".

This means that each bit of a function value de-
pends on each bit of an argument of that function.
Hence, if a function f is complete and it is possible
to find a Boolean logical expression binding an argu-
ment’s bits, then each such expression has to depend
on each bit of an argument.

To obtain the properties of a block cipher stated
above an approach proposed by Shannon [6.94] is
used. It consists in the usage of simple elements
(components) performing substitutions, permuta-
tions, and modular arithmetic operations in an ap-
propriate order. Those functions are combined and
performed in so-called rounds; there can be a few or
several dozen such rounds.

A general scheme of such a type of a block ci-
pher (a so-called iterated block cipher) is presented
in Fig. 6.13. It consists of two basic components:
around function f and a round key generation block
Kgrg. The round function is based on substitution—
permutation (S-P) networks, which are the com-
bination of two basic cryptographic primitives: S-
boxes and P-boxes. The S-box ensures a substitution
of an input binary string by another binary string.
The P-box reorders input bits (performs their per-
mutation).

Each round consists of one P-box and a layer of
S-boxes. Many rounds form an S-P network, and an
example is presented in Fig. 6.14.

Owing to the fact that S-boxes ensure the con-
fusion property and P-boxes ensure the diffusion
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Kra

Fig.6.13 General scheme of a block cipher. m; is a plain-
text block, c; is a ciphertext block, f is a round function, k
is an enciphering key, k; (i = 1,...,r) is a round key, and
r is the number of rounds

property, it is generally assumed that a skillful com-
bination of those two cryptographic primitives en-
ables one to obtain a block cipher with a higher se-
curity level than for each primitive itself; particu-
larly it concerns the completeness property and the
avalanche effect.

Considering that ergodicity and mixing prop-
erties of chaotic maps ensure confusion and diffu-
sion, respectively [6.22], it is obvious for many re-
searchers to use them to design a round function f
(this concerns also chaotic S-P networks). Conven-
tional round functions are defined on finite data sets
and depend on an enciphering key k. The design of
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asimilar round function on the basis of chaotic maps
requires them to be made discrete. It is necessary to
replace continuous variables of the map (elements of
the set of real numbers) and appropriate operations
by a finite set of integer numbers and respective op-
erations [6.24].

6.7.2 Discretization of Chaotic Maps
to Invertible Maps

A discrete dynamic chaotic system is a parameter-
ized map fy of elements from the n-dimensional
phase space to elements from the same space; the
map is defined by means of (6.45). Generally, sets Y;
(i =1,...,n) are the sets of real numbers R, and in
some specific cases it can be assumed that they are
unit intervals on the real number axis R o I = (0, 1].

forYixYox--xY, =Y xYax...xY,.
(6.45)

Let us assume that we have the sets X; =
0,1,...,n; = 1) for i = 1,...,n, and the map
Fy such that

Fo: Xy xXox---xX, > X1 xXox...xX,.
(6.46)

Then the following definition can be formulated.

Definition 13. A discretization of chaotic maps is
a replacement process in which a map fj is substi-
tuted by a map Fp; the second one has to be a bijec-
tion and should have a permutation property.

0 P P P P - 1
0 S » S S S —m» 1
0 0
0 - 0
0 S S S S —» 1
0 i |
0 — 1
11— S ) S S 0
0 — 1
0 — 1
0 S S S S 0
0 — 1
0 — 1
0 S S S S 0
0 0

Fig. 6.14 Example of a four-round substitution-permutation network. S substitution, P permutation
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The discretization process can be performed by
different means and therefore it is not unique [6.11,
21]. That property is the result of the fact that the sets
Y; can be partitioned into subsets in a different man-
ner. General methods of discretization of chaotic
maps and some examples of its cryptographic appli-
cation are presented in [6.11, 95].

Example 1 (logistic map). Let us consider the logistic
map in the form f,(x) = bx(1 - x), where b = 4.0
and x € (0, 1]. Let us assume such a map F, (xq) is
searched, which reflects the discretized logistic map,
and is defined for each x4 € X = (0,1,...,M - 1).

One of the possible representations of a map
F,(x4) can be constructed in three steps [6.24].
Firstly, the chaotic equation should be scaled in such
a manner that argument values and function values
belong to the set X. The second step consists in the
discretization of the rescaled map. After those two
steps, the form of the map is as follows:

ifxqg <M,

ifxqg=M,

4xd(fod)J
M >

Xd »
M-1,

Fb(xd)={

where %4 = l (6.47)
where | y| denotes the floor of y. But this map is not
a bijection because it is not a “one-to-one” map. For
example, the function Fj,(xq) reaches the value 135
for two arguments 40 and 216, and 17 is the num-
ber of arguments mapped to 255. Therefore, in the
third step an algorithm proposed by Kocarev and
Jakimoski [6.24] should be used to avoid this prob-
lem. That algorithm enables one to construct lookup

Table 6.1 Function F,(xq) for A=4and M = 2°
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tables for the function Fj (xq); this is the reason why
it should be used for rather small M values only.

Example 2 (skew tent map). Let us consider a skew
tent type map in the form

(6.48)

where 0 < a < 1 and x € (0,1]. Proceeding
similarly as in Example 1, we obtain the discretized
map F,(xq) described by (6.49), where [ y| denotes
the ceiling of , 0 < A < Mand x4 € X =
0,1,...,M-1).

[W]q, 0<xg<A,

Fa(xd) =
[M(M‘—xd‘l)J  A<x<M-1.

M-A
(6.49)

It can be shown that (6.49) is a bijection for each
value of M and A (see the example in Table 6.1)
Therefore, it is also the map invertible for each of
these values.

It is worth noting that calculating a discretized
chaotic function n times (for any value x4 € X =
(0,1,..., M - 1)) gives a value belonging to one of
M! permutations; this value does not necessary di-
rectly depend on the value of parameter A. Table 6.2
presents an example of such a type of permutation.
It is obtained for the function in Table 6.1 that was
iterated n times for each value x4 € X.

Table 6.2 Function FZ(xq) = Fa(Fa(...Fa(xq)...))
for A=4,M =2%and n=10

0 1 2 3 4 5 6 7

15 31 47 63 62 61 60 59
58 57 56 55 54 53 52 51
50 49 48 46 45 44 43 42
41 40 39 38 37 36 35 34
33 32 30 29 28 27 26 25
24 23 22 21 20 19 18 17
16 14 13 12 11 10 09 08
07 06 05 04 03 02 01 00

NG R W~ O

0 1 2 3 4 5 6 7

63 38 05 60 37 08 57 36
11 54 35 14 51 34 17 00
01 02 04 07 10 13 16 18
19 20 21 22 23 24 25 26
32 33 39 40 41 42 43 44
45 46 48 50 53 56 59 61
62 47 31 15 49 30 12 52
29 09 55 28 06 58 27 03

NG R W~ O

Column numbers correspond to the values of the three
least significant bits of an argument of the function, and
row numbers correspond to the values of the three most
significant bits.

Column numbers correspond to the values of the three
least significant bits of an argument of the function, and
row numbers correspond to the values of the three most
significant bits.
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The examples presented above are evidence that
the discretization enables one to obtain maps in-
verse to chaotic maps, and therefore they are use-
ful as static components (e.g., nonlinear functions,
S-box and P-box components) for the block cipher
design. The following sections present some exam-
ples of the usage of those components for building
iterated block ciphers.

6.7.3 Analysis of Selected
Chaos-Based Block Ciphers

The chaos-based block ciphers presented below are
based on inverse chaotic maps constructed by means
of reverse propagation techniques (reverse map iter-
ations) or discretization of chaotic maps. These tech-
niques enable one to design ciphers with a struc-
ture similar to that of conventional block ciphers
(see Fig. 6.13). Iteration techniques of chaotic maps
are used to combine these maps and obtain diffu-
sion and confusion properties of a cipher. On the
other hand, discretized chaotic maps can be used for
a round function design (see Fig. 6.13).

Habutsu’s Cipher

One of the first block ciphers based on discrete-time
chaotic systems was the cipher proposed by Habutsu
et al. [6.26] in 1991. That cipher (called further
HNSM) is an example of a chaotic cryptographic al-
gorithm based on the skew tent map with the con-
tinuous parameter and discrete time (see (6.48)).
In that encryption algorithm equations (6.50) in-
verse to (6.48) are used randomly (i.e., depending
on a randomly chosen value of b-bit); therefore,
the map (6.48) does not need to be discretized and
transformed to the form (6.49), for example,

b=0,
b=1.

ax,

- (1), (6.50)

fil(x) = {
The algorithm uses multiple reverse iterations for
enciphering and forward iterations for deciphering.
Piecewise linear chaotic maps of the “skew tent” type
are used with a control parameter b € (0.4,0.6). The
control parameter plays the role of the key.

The principle of HNSM cipher operation is very
simple. An arbitrary value p; € (0, 1] is associated
with a given plaintext block m;. There are differ-
ent ways in which this association can be done.
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For example, it can be assumed that an encrypted
block is a single symbol from an alphabet Ay or
a sequence of symbols. It is obvious that the asso-
ciation has to be known for both communicating
parties. That value is an input value for the encryp-
don map £(p) = £ (i (oo f(pi) )
It can be noticed that this map is the sequence
of n reverse map (6.50) computations with an
initial value x = p;; in each iteration the output
value depends on a random value of b-bit. The
deciphering process ¢; = f;"(pi) to reveal the
plaintext requires one to compute the decipher-
ing function f'(c;) = fi(fi(...fi(pi)...))
which requires n computations of the chaotic
map f. (pi) (see (6.48)) for a given cipher-
text c;.

The HNSM algorithm is vulnerable to a chosen
ciphertext attack and to a known plaintext attack as
well [6.27]. Both attacks have been performed under
the assumption (according to the recommendations
of the inventors) that a plaintext of binary length 64
is transformed (after 75 iterations) to a ciphertext
with about 147 bit.

The “chosen ciphertext attack” is very simple and
requires one to choose any ciphertext ¢; < 27'%. It
results from the fact that each ciphertext ¢; € [0, a75]
after setting in each enciphering iteration (6.50) the
bit value b = 0, where 27'%° < 47> < 27°°, Moreover,
each ciphertext responds to a plaintext with the form
pi = ci/a”. Hence, for p; € (0,1] and any control
parameter value b € (0.4,0.6), the obtained cipher-
text ¢; < 2719 If an attacker selects such a value of
a ciphertext ¢; that ¢; < 2719 and then enciphers it,
he/she recovers a plaintext value p; from the equa-
tiona’”> = ci/ pi-

The “chosen plaintext attack” is more complex.
Biham noticed that a random selection of bits b in
the ith iteration (i.e., the selection of b; ) enables one
to determine linear relations between the plaintext
pi and the ciphertext c;:

Ci=Cppi + db N (651)

where

75
Cp = H (a - b,) 5
= (6.52)
75 -1
dy=2 b [J(a=b)).
1

1
=1 j=

Let us assume that we have two pairs of values
(pi1>ci1) and (piz, ciz) corresponding to the differ-
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ent “plaintext—ciphertext” pairs, and both of them
are obtained for the same distribution of bits for
b; (i = 1,...,75). Then the value of ¢, is the
same, and it is possible (see (6.51)) to compute ¢, =
(¢i2 = ¢i1)/(pi2 = pi1). Assuming that no bits in
the distribution of b; stated above are zeros, one
can restore (on the basis of (6.52)) the value ¢, =
a™(a-1)""",ng € {0,...,75}. For 38 even ny,
the value of ¢, is positive, and for 38 odd ny it is neg-
ative. Knowing ¢y, one can easily compute the value
of a from the formula ¢, = a™ (a—1)77"0; it re-
quires one to verify 38 possible selections of #,.

The “chosen plaintext attack” requires about 2°*
“plaintext—ciphertext” pairs. This means that in the
worst case the complexity of the attack is 2°°.

Despite its disadvantages, the HNSM algorithm
was modified many times to make it resistant
against cryptanalytic attacks. Among others, on the
basis of this cipher, Kotulski proposed the DCC
algorithm [6.90]; in its simplest version it enables
one to compute an image of a given plaintext
pi» ie, ¢ = f,"(pi), and then to add it mod-
ulo 1.0 to an enciphering key k. Other examples
of HNSM algorithm modifications can be found
in [6.96,97].

Lian, Sun, and Wang’s Cipher

The cipher invented by Lian et al. [6.53] (called fur-
ther LSW) is an interesting combination of discrete
chaotic systems and conventional cryptography. It
is based on standard chaotic maps used for the de-
sign of the components responsible for a confusion
process, diffusion function, and key generation. The
structure of the LSW cipher is presented in Fig 6.16
and is consistent with a general block cipher struc-
ture (see Fig. 6.13).

A round function f consists of an iterated per-
mutation function C(...) repeated n times and
a diffusion function D(...). The permutation func-
tion Ce(...) is a discretized standard chaotic map
given by (6.53); it is performed for each pixel of an
image. That function is a bijection and has the per-
mutation property (see Sect. 6.7.2). The cipher has
r rounds, ie., the round function f is performed
r times, and its parameters depend on the round
number.

Originally the LSW algorithm was designed
mainly for the purpose of an image encryption;
therefore Lian et al. [6.53] proposed using the
discretized version of the standard map as the
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permutation:

X1 =(xi +rx+yi+1ry) mod N,
ir1N
Yiel = (y,— + 1y + Ksin —x’; ) mod N,
s
(6.53)

where x;,y; € [0,N — 1] define the position of
a pixel, K € [0, N 2!] is a control parameter, and
and r, are random values used for the shifting of an
image initial point (i.e., the point (0, 0)). It is easy to
notice that each pair (ry, ;) is taken from the set of
N? pairs.

A symmetric encryption key K; = (ki, kg,
k2, ki, ks, kg) of the user consists of three parts:
(ki,kg), (k2,kg), and (ks, kg). Those pairs are
the input parameters for three different skew tent
chaotic maps (6.48); the first element of each pair is
a control parameter, and the second one is the initial
value of the map. For each of r rounds new round
keys are generated from the key K, i.e., a confusion
key kj, a random-scan key k;°, and a diffusion key
K G=1,...,7).

Parameters r, and r, from (6.53) are used to
shift the whole image by the vector (rx, r,) from the
origin of the image. Then three image areas (I, II,
and III), lying outside the primary image boundaries
(Fig. 6.15), are placed back in the primary image in
three relevant areas (I, II, and III).

An encryption operation in the LSW algorithm
is performed as follows (see also Fig. 6.16):

Ci = De (Mi, k,d)
=D, (C: (Pi»kf) ,k?) > pr=m;,
pPit1 =¢€i i=1,...,r.
(6.54)
The initial values for the cipher (6.54) are an im-
age m; (its size is N x N pixels) and a user key K.

(0, N-1)
11
11 v i
(N-1, N-1)
111 I

Fig.6.15 Random scan order in a square image
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Plaintext: p=my Key:q k1 k(c) | kz k65 | k3 kg D
round r . s d
) Jio (k) Jie (ko) S (k)
k¢ T
Celpr k) =
— S
M, N, \{
— Xp
D, (M, k) ul round
k) .
B
Pr==¢r _1 _l _1
round r i
f S (k7 Ji(K7) Ji(kP)
Clpn k) (]
M. N Fig. 6.16 General structure
! 9 of the chaotic Lian-Sun-Wang
D, (M, k) ) kfl round (LSW) cipher in encryption
. ke mode. m; is a plaintext block,
4 ¢; is a ciphertext, f is a round
function, key is an encryption
key, k{ and kf (i=1,...,r)are
Ciphertext Pri1=6 round keys, and r is the number
of rounds

The decryption function in the LSW algorithm is
an inverse map of (6.54), and its form is as follows:

pi:cg (thf)
=Cy (Dd (Ci,kf),kﬁ) , C1=¢cr, (6.55)
Ci+1=p,‘, i=1,...,1’.

The decryption permutation function Cy(...) is
based on an inverse map of a discretized equa-
tion (6.53). That equation has the form

xi 1N

yi=yi+1—(ry+Ksin )modN,
(6.56)

Xi =%Xiy1 — (ry + yi +r,) mod N .

Two other components of the LSW cipher, i.e.,
the diffusion function and the process of round key
generation, are presented below.

The diffusion function is defined as follows:

{d-l =k,

di = pix;, ® |2" fa(dir) |,

where pix, is the kth pixel of an intermediate text
M;, L is the amplitude of each pixel, and fi(...) is
a logistic function given by the equation fi(dyx_;) =
4di1 (1 - diy).

The inverse diffusion function can be easy deter-
mined from (6.57); its form is as follows:

d =k,
pix, = d ® |2 fi(di-r)| -

A round key generator is composed of three
“skew tent” chaotic maps (see (6.48)). The way of
binding each chaotic map output for the ith round
is presented in Fig. 6.16 (for that purpose an addi-
tion modulo 1 is used). Those outputs are input ar-

(6.57)

(6.58)
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guments for the same functions in the (i+1)th round
and are computed as follows:

ki = (fi (Ki-1) + fis (k1)) mod 1.0,
ki = (fio (kiZy) + fi, (ki_y)) mod 1.0,
ki = (fio (kiL1) + fio (Ki%1)) mod 1.0,

i=1,...,r. (6.59)

Security Analysis

The authors of the LSW cipher investigated three
security aspects of the cipher: a key space size, the
resistance against statistical attacks, and sensitivity-
based attacks.

The size of the key space can be eval-
uated directly or indirectly. The wuser keys
K, = (kl,ké,kz,kgs,k3,kg), being input values
for the block of round key generation, are con-
sidered in the direct evaluation. Let us assume
that each component of the key K (originally
a floating-point number) is represented by an 80-bit
double-precision extended format (see Fig. 6.17).

Because each floating-point number, expressed
in a double extended-precision format, has a 64-bit
mantissa, it can be assumed that only 30 bits of each
key component are significant (this is a greatly un-
derestimated value). Then the size of the direct key
space (K%) is at the level 2'%.

The indirect evaluation of the key space requires
one to determine the total size of all round keys and
the associated parameters dependent on them. The
need for such an evaluation results from the fact
that an attacker, instead of guessing the user key
K, can try to compromise a control parameter K
from (6.53), values of an image shift (r,r,), and
a diffusion function parameter k?. Thus, for an im-
age (a plaintext) sized N x N, the cardinality of the
permutation space is N*! (it is the size of the control
parameter K in (6.53)), the number of possible pairs
(rx, ry) is N x N, and the number of possible diffu-
sion values is L (it is the number of grayness levels
for every pixel). Totally, after r rounds, the size of
the intermediate key space (K% is (N*IN2L)". As
an example, for L = 64, r = 4, and N = 128 it gives

+ Sign
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a value greatly exceeding 2'®*. This leads to the fol-
lowing conclusions: the real size of key space K, €
[K%, KL ] (under the assumption that computations
are performed in a double extended-precision for-
mat) and the direct attack on the user key K is more
effective.

The statistical properties of the LSW algorithm
are good, i.e., testing of it by means of statistical
methods does not reveal statistical properties differ-
ent from binary noise. This is due to the usage of
a chaotic standard map to permute an input plain-
text. The confusion process is realized by means of
a permutation function C(...), which is iterated n
times. It ensures a very low correlation between ad-
jacent pixels.

Statistical relations between pixels are elimin-
ated also owing to the usage of a diffusion function
De(...). That function is based on a one-dimen-
sional skew tent chaotic map, which randomly dis-
tributes pixels inside an enciphered image.

Four chaotic maps are used: a chaotic standard
map to permute an input plaintext and three skew
tent chaotic maps for key generation (i.e., for a con-
fusion key k{, a random-scan key k;°, and a dif-
fusion key k¢). These maps are very sensitive to
changes of a plaintext, and changes of an encryp-
tion key Kj, respectively. Practically, it makes differ-
ential attacks impossible, since even the least change
of akey and/or a plaintext invokes very large changes
in a ciphertext [6.53].

LSW Algorithm Modification

The confusion and diffusion functions used in the
LSW cipher enable one to modify the algorithm in
such a manner that N-bit blocks are encrypted, par-
titioned into n;, subblocks with length of L bit each
(Figure 6.17). To achieve this goal, the following
changes are introduced:

1. Let us assume that the permutation function
Ce(...) and its inverse function Cq4(...) are
based on a discretized skew tent chaotic func-
tion Fu(...) (see (6.49)) with a control param-
eter A. The value of this parameter is changed

Double Extended-Precision Floating-Point

Fraction

[~

| | Exponent

7978 64 63 62

Integer

o Fig. 6.17 Example of the
floating-point format [6.98]
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round by round within the range 0 < A < M <
2N As it can be noticed, in each round M - 1
parameter values are possible for A, what en-
ables one to obtain M — 1 different permutation
functions for a binary sequence of length M. It
is assumed that M = 27, where m p is a divider
of N. The value of control parameter A is com-
puted for the ith round from the confusion key
kit A=[(M-1)kj| + 1.

2. All input text bits, before their transformation
by the permutation function, are bitwise shifted
with carry (a bit removed from the least sig-
nificant position is shifted to the most signifi-
cant position). The value of the shift is calcu-
lated for each round on the basis of the random-
shift key k;° appropriate for the ith round: r, =
[(N - DK?.

3. The right-rotated text is partitioned into n, =
N /M subblocks, each of length M bit. The sub-
blocks obtained are permuted by the same func-
tion F,(...) and iterated » times.

4. The diffusion function is defined in the same
manner as in the case of the original LSW al-
gorithm:

dy =k, (6.60)
dy = pe @ [2 fu(din)| - '

This time py is the kth part (with the length of
L bits) of the intermediate text M;, where k =
1, e Ny

5. The key generation for the ith round is per-
formed according to (6.59). The round keys k;°
and k¢ are used for calculation of the value of r,
and the value of the diffusion function, respec-
tively (according to (6.60)). Then the round key
k{ is used for computation of the control param-
eter A = | Mk;|.

The modifications to the LSW algorithm intro-
duced above have a significant influence on the size
of the key space. Of course, the size of the direct key
space (K2) is the same as in the original LSW al-
gorithm, because the structure of the user key K is
also the same. However, the size of the intermediate
key space (K') changes; it depends on the number
of possible rotations of the text (N), the number of
permutation functions (M — 1), and the number of
all diffusion values in a single round (n »25). The fi-
nal size of the intermediate key space (KL, after all
r rounds is (N (M — 1)n25)".
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Example 3. Let us take M = 22 L =8, r =10,
and N = 128. The number of subblocks n; is 16;
thus K/, ~ 2%°. Thus, the intermediate key space
size comparable with the direct key space can be ob-
tained, for example, with the following parameters:
L=8M=2%r=6,and N=1280rL =16, M = 25,
r=>5,and N = 128.

The introduction of a discretized skew tent
chaotic map into the LSW algorithm is similar to
the usage of a function F4(...) in the Kocarev and
Jakimoski (KJ) algorithm (see below). However, the
function F4(...) in the KJ algorithm is a static one,
the same in each round and independent of the key.
In the modified LSW cipher an iterated function
F,(...) is used n times, and it changes dynamically
round by round, depending on the value of the key.
That mechanism disables differential attacks.

Kocarev and Jakimoski’s Cipher

In contrast to the LSW cipher, the K] cipher [6.24] is
based on a discretized chaotic map only. Although
such discretized maps are permutations and thus
cannot be chaotic, they share some quasi-chaotic
properties with their continuous counterpart
as long as the number of iterations is not too
large [6.11].

The KJ cipher is a product cipher with a struc-
ture similar to that of a general block cipher (see
Fig. 6.13). It is designed to encrypt plaintext blocks
with a length of 64 bit using 128 bit of an encryption
key.

Let us assume that po = m; is an input plain-
text block with length of 64 bit. This block is parti-
tioned into eight subblocks, each consisting of 8 B
(see Fig. 6.18, where N = 64, L = 8, and n;, = 8).
That partition is repeated every rth round. Let the
jth subblock of the ith round be denoted further as
pij (i=0,...,7’— 1;j= 1,...,8).

The encryption map is shown in Algorithm 6.3.

Maps ensuring the confusion and diffusion are
used in this algorithm. The map F4(...) is respon-

Subblock | Subblock ( Subblock

Fig. 6.18 n-bit text block partitioned into #;, subblocks
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Algorithm 6.3 Encryption map of the Kocarev and Jakimoski (KJ) algorithm

Input: po = m; - 64 bit of a plaintext block, ko — an encryption key with length of 128 bit

Output: p, = ¢; - 64bit of a ciphertext
Parameters: r — the number of rounds
1: for (i < L;i<ri<i+1)do
2: P < pii-1)1 D Zio
© Pis < Peicny2 ® Fa(piiony1 ®zin)
Pia < P(i-1)3 ® Fa(p(i-1)1 ® P(i-1)2 ® Zi2)

3
4
5:
6:
7.
8
9
0:

10: end for

Pis < P(i—1)4 ® Fa(p(i1)1 ® P(i—1)2 ® P(i-1)3 ® 2i3)

Pis < P(i—1)5 ® Fa(p(i—1)1 @ P(i—1)2 ® P(i-1)3 D P(i—1)4 B Zi4)

Pi7 < P(i-1)6 ® Fa(P(i-1)1 ® P(i—1)2 ® P(i-1)3 ® P(i—1)a ® P(i-1)5 © Zis)

Pio < P(i—1)7 @ Fa(p(i—1)1 @ P(i—1)2 ® P(i-1)3 D P(i—1)4 ® P(i-1)5 D P(i-1)6 @ Zis)

Pi1 < P(i-1)0 ® Fa(P(i=1)1 ® P(i=1)2 ® P(i-1)3 ® P(i-1)4 D P(i-1)5 ® P(i-1)6 ® P(i-1)7 © Zi7)

Table 6.3 Mapping F4(...) in Kocarev and Jakimoski’s cipher

0 1 2 3 4 5 6 7

0 60 c4 56 52 88 17 82 ac
1 92 83 bc a7 b2 9a ee 70
2 b7 7d 2f 24 c7 7e c5 c8
3 76 2¢ 12 11 2a 29 a8 b8
4 e0 3¢ 69 ce 05 d4 cd fa
5 of 41 3 6f ea d2 a2 65
6 a9 b0 1f 7 34 43 1b 08
7 c2 dé 53 48 18 27 8f 5b
8 4e 97 79 bb 13 b6 5e 8b
9 3f 95 ad e7 e8 87 8c 51
a of 46 f1 1c 71 e3 09 A5
b a6 42 d1 ed d7 fe 16 9b
[¢ 01 54 07 920 38 21 62 3d
d od c9 2 2e b9 59 6¢ 66
e 3a 2d db 6e 9 la c6 06
f be Oe 85 5¢ 33 7a cl 4d

8 9 a b c d 3 f

28 96 4f 4a ff 20 b5 6a
35 el 25 61 9d a4 9¢ 47
77 14 8d cc fd 8a ef 36
22 84 c3 e9 e6 e2 15 57
30 8 dd 75 cf a0 Oc 55
23 89 81 39 e4 93 ba 6b
04 fc 0b aa 73 94 eb 8e
5d do ec f4 f5 31 4b ab
10 50 49 1d f6 29 00 68
64 le d9 e5 5a da de o
Dc e bf 40 80 3b 45 02
63 72 c0 78 b4 67 26 03
d8 ca 7f bl 0Oa d5 44 al
b3 74 32 bd df 58 6d 37
5f a3 2b 19 7c b 7b af
cb 86 91 4c d3 ae 3e 98

Column numbers correspond to the values of the four least significant bits of an argument of the function, and row
numbers correspond to the values of the four most significant bits, e.g., f4(7d) = 31 hex

sible for the confusion; it play the role of the S-box
(Table 6.3). The S-box is determined on the basis of
the logistic map with b = 4 by means of the proce-
dure ensuring that the map is a bijection (see also
Sect. 6.7.2).

Notice that in each round the S-box attributes de-
pend on 64-bit round key z;. That round key is de-
rived from an encryption key ko consisting of 128
bits. The procedure of round key generation is struc-
turally similar to the KJ cipher structure (see Algo-
rithm 6.3).

Let usdenote as k;j (i = 1,...,r;j = 1,...,16)
the value of the jth byte of the key k; derived in the
ith round. Subsequent values of key bytes are com-

puted according to (6.61):

ki((ji+1ymod16) = K(i-1)(jmod16) ® Fa(k¢imiy1 @ ...
® k(i—1y(j-1) ® Cj-1) >
(6.61)

where for j =1, F4(...) = co, and ¢o, c1, . .., €15 de-
note subsequent bytes of the hexadecimally coded
constant ¢ = 4583 fdle 01a6 3809 9c1d 2f74 ae61.

The value of the subkey for the ith round z; =
RH(k;), where the function RH assigns the 64-bit
right half of the key k; to the round subkey z;.

The structure of the decryption map (see Algo-
rithm 6.4) is a simple usage of properties of a binary
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Algorithm 6.4 Decryption map of the KJ algorithm

Input: po = ¢; - 64 bit of a ciphertext, ko — an encryption key with length of 128 bit

Output: m, = m; — 64 bit of a deciphered plaintext block
Parameters: r - the number of rounds
1: for (i < ri<l;i<i—1)do
20 Py < P2 ®zZio
P(i-1)2 < Pis ® Fa(p(i—1y1 ®zi1)
P(i-1)3 < Pia ® Fa(p(i—1)1 @ P(i—1)2 ® Zi2)

NN AW

Pi-1)a < Pis ® Fa(pi1)1 © P(i—1)2 ® P(i-1)3 ® 2i3)

P(i-1)s < Pis ® Fa(p(i—1)1 ® P(i—1)2 ® P(i-1)3 ® P(i—1)4 ® Zi4)

P(i-1y6 < Pi7 ® Fa(p(i—1)1 ® P(i—1)2 ® P(i-1)3 ® P(i=1)a ® P(i-1)5 © Zis)

P(i-1)7 < Pio ® Fa(p(i—1)1 @ P(i—1)2 ® P(i-1)3 D P(i—1)4 ® P(i-1)5 D P(i-1)6 ® Zis)

9: pri—1yo < Pit ® Fa(pi—1y1 ® P(i—1)2 ® P(i=1)3 ® P(i-1)4 ® P(i-1)5 ® P(i-1)6 D P(i=1)7 ® Zi7)

10: end for

“xor” operation, where round subkeys z; are applied
in the reverse order in comparison with the encryp-
tion map.

Security Analysis

The confusion and diffusion characteristics of the
KJ algorithm (expressed in terms of DP and LP
measures — see Sect. 6.7.1) are very good; there-
fore, its resistance against differential and linear at-
tacks is meaningful. Notice that low values of DP
result in the resistance of a cipher against differen-
tial attacks, whereas low values of LP make greater
the complexity of linear attacks (in other words,
a cipher is more nonlinear). Kocarev and Jakimoski
proved [6.99,100] that for r = 18 DP can be evalu-
ated according to the following inequality

DP < (274678)27 N2 12 (6.62)
and the form of LP is as follows:
LP< (27 ~27'%. (6.63)

Both values indicate that effective attacks on the KJ
algorithm are impossible.

6.8 Conclusions and Further Reading

The security criteria used for the design of chaotic
ciphers are intuitive. This is the reason why their for-
malization [6.22,57] is substantial from the point
of view of conventional cryptanalysis, and typical
chaotic cryptosystem attacks as well. Owing to such
a formalization, it was proved in many cases that if
the probability of dissipation of differences between

any ciphertexts is independent of differences in rel-
evant plaintexts, then linear and differential crypt-
analysis (generally, statistical attack methods) are in-
effective [6.53,101].

Many types of chaotic maps are used for the
design of chaotic stream and block ciphers. Some
of them were discussed above, the other propos-
als can be found in the references in the reference
list [6.2, 54]. There are many various chaotic maps
that give a relatively high degree of freedom for the
design of chaos-based ciphers, but on the other hand
this makes their cryptanalysis and security evalua-
tion harder.

Another interesting group of chaos-based ci-
phers are those based on one-way coupled map
lattices (OCML). The usage of OCML makes
a system’s dynamics more complex, and therefore
makes compromising attacks harder as well. There
are many works concerning this type of cipher,
e.g., [6.102-104]. It is possible in the case of OCML
to use additional coupling parameters as an encryp-
tion key. Many initial iterations are made before
an appropriate enciphering process to ensure good
cryptographic properties of a cipher (e.g., mixing,
sensitivity to initial conditions). An additional ad-
vantage of the application of such a type pf system
is the possibility of an error function attack analy-
sis [6.105,106], which is an additional method to
evaluate the security of this class of ciphers. The
analysis of OCML, from the point of view of the
symbolic dynamics [6.107] and chaotic properties
can be found in [6.108, 109], for example.

Applications of chaotic maps are not limited to
the design of stream and block ciphers. They are
used for the design of static and dynamic S-boxes,
cryptographic hash functions, asymmetric algo-
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rithms (including key agreement and authentication
protocols), and chaotic PRNGs.

Firstly, dynamic S-boxes based on chaotic maps
were mentioned by Lia et al. [6.51] and statical
ones were mentioned in works by Jakimoski and
Kocarev [6.24,100]. Since that time many works
concerning this problem have been published, e.g.,
Chen, et al. [6.110] and Tang, et al. [6.101,111].
Algorithms used for S-box generation are based on
(a) one-to-one discretized chaotic maps (see also
Sect. 6.7.2) and (b) an iterated chaotic map used to
generate a shuffled sequence of 2" integers [6.2]. An
example of the first approach is the S-box design
method proposed by Tang and Liao [6.111]. That
method is based on a discretized chaotic map given
by (6.49), and it consists of three steps. First, an in-
teger sequence that can be regarded as secret key K,
K =X, ={1,2,...,2"}, is obtained in an arbitrary
way. Second, for a given M = 2" and A, iterating
the chaotic map (6.49) more than k times with the
initial value Xy, one can obtain a permuted integer
sequence {X}. Finally, by translating the {X} to
a 2% x 2"/* table, we obtain the S-box we need.
The design of hash functions is another promising
area of the usage of chaotic properties. Wong [6.26]
developed a combined encryption and hashing
scheme which is based on the iteration of a logistic
map and the dynamic update of a lookup table. But
this scheme was broken by Alvarez et al. [6.41].
Xiao et al. [6.112] proposed the algorithm for a hash
function based on a piecewise linear chaotic map
with a changeable parameter. Yi [6.113] proposed
a hash function algorithm based on tent maps.

Even though chaotic symmetric key cryptosys-
tems have been investigated for many years, there
are only a few works concerning chaotic public key
cryptosystems; moreover, the results are not sat-
isfactory. Tenny et al. [6.114] proposed a chaotic
public-key cryptosystem using attractors. Kocarev et
al. [6.115,116] proposed very original and practi-
cal encryption schemes based on Chebyshev maps.
The same type of maps were used to design a key
agreement protocol and a deniable authentication
in e-commerce [6.117]. It was proved in 2005 that
Kocarev’s encryption scheme and Xiao’s key agree-
ment protocol and deniable authentication protocol
are not safe [6.118, 119]. Xiao et al. [6.120] proposed
a modification of their original key agreement pro-
tocol and presented a completely new scheme for
that protocol. In both cases they proved the proto-
cols are safe.

6 Chaos-Based Information Security

The usage of chaotic systems in pseudorandom
number generation enables one to transfer their nat-
ural properties to the domain of random sequences.
Various implementations of PRNGs are presented
in the literature. In [6.121] the influence of the Lya-
punov exponent on statistical properties of PRNGs
is presented. In [6.122] a PRNG using the logistic
equation is proposed. Number sequences with pa-
rameterized length are generated from the chaotic
orbit according to the formula R, = Ax, (mod S).
In [6.123] the Mmohocc cipher algorithm is pre-
sented; there a chaotic system is used as a keystream
generator. The generation of the keystream requires
a real number to be converted to an integer and
a “xor” operation to be performed on selected bits of
the number obtained. The PRNGs mentioned above
use only one chaotic system with discrete or contin-
uous time. In [6.70] another approach is presented -
there are two chaotic systems generating pseudo-
random binary sequences. Two chaotic orbits are
checked: x, and y,. When x, > yn, then “1” is gen-
erated, otherwise “0” is generated. The usage of two
discrete chaotic systems with a finite precision of
computations requires the usage of additional per-
turbation systems; otherwise the sequence gener-
ated is predictable. The special rotating algorithm is
used to increase the number of output bits in a single
iteration [6.70].
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Cryptography is the backbone upon which mod-
ern security has been established. For authentica-
tion, conventional cryptography depends on either
secret knowledge such as passwords or possession
of tokens. The fundamental problem of such mecha-

Peter Stavroulakis, Mark Stamp (Eds.), Handbook of Information and Communication Security

© Springer 2010

nisms is that they cannot authenticate genuine users.
Biometrics such as fingerprints, faces, irises, etc.,
are considered as uniquely linked to individuals and
hence are powerful in authenticating people. How-
ever, biometric systems themselves are not attack-
proof and are vulnerable against several types of
attacks. An emerging solution is to integrate the
authentication feature of biometrics and the core
function of conventional cryptography, called bio-
cryptography. This chapter is designed to provide
a comprehensive reference for this topic. The work is
based on many publications which includes our own
work in this field. This chapter also provides suitable
background knowledge so that it is not only suit-
able for a research reference but also for a textbook
targeting senior undergraduates and postgraduates
with a major in security.

The organization of this chapter is as follows.
Section 7.1 provides background materials on cryp-
tography. Section 7.2 introduces the concept of bio-
metrics technology and its applications. Section 7.3
discusses the issue of protecting biometric systems
using bio-cryptography techniques. Section 7.4 is
dedicated to conclusions.

7.1 Cryptography

Cryptography is the practice and study of protect-
ing information by data encoding and transforma-
tion techniques. The word cryptography originated
from the ancient Greek words kryptos (hidden) and
graphia (writing) [7.1]. At the very beginning, cryp-
tography referred solely to information confidential-
ity (i.e., encryption) but recently the field of cryp-
tography has expanded beyond confidentiality con-
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cerns to techniques such as information integrity
checking, user identity authentication, digital signa-
tures, and so on.

7.1.1 Overview of Cryptography

In cryptography, the process of encryption provides
information security by transforming the original
message into a form that renders it unreadable by
anyone other than a legitimate user. The original
message prior to encryption is called plaintext
while the scrambled plaintext after encryption is
called ciphertext. The encryption process requires
an encryption algorithm and a cryptographic key
(secret key). The encrypted message, i.e., ciphertext
can be transformed back to its original form by
authorized users using the cryptographic key. This
process is called decryption or deciphering. The
schemes used for encryption are called crypto-
graphic systems or cryptosystems. Techniques for
decrypting a ciphertext without any knowledge of
the encryption is the area known as cryptanalysis.
The areas of cryptography and cryptanalysis are
known as cryptology [7.2].

The encryption procedure can be simply de-
scribed in Fig. 7.1.

Cryptography concerns itself with the following
four goals:

1. Confidentiality: The information cannot be
understood by unauthorized users.

2. Integrity: Maintaining data consistency. Data
should not be modified without authorization

ral
L]

Decryption
Algorithm

Fig. 7.2 Work flow of
symmetric-key cryptosystem

Plaintext

in either storage or transit between sender and
intended receiver.

3. Nonrepudiation: Both the sender and the re-
ceiver of a transmission cannot deny previous
commitments or actions.

4. Authentication: The act of verifying a claim of
identity. The sender and receiver can confirm
each other’s identity and data origin.

Encryption provides the ability to securely and con-
fidentially exchange messages between the sender
and receiver. Encryption is extremely important if
the data should not be revealed to any third party. In-
tegrity can be guaranteed by using the hash function
with the encryption/decryption. Authentication and
nonrepudiation can also be achieved using digital
signatures.

7.1.2 Symmetric-Key Cryptography

Symmetric-key cryptography (SKE), also called
conventional encryption, secret-key, shared-key,
or single-key encryption is one of the most widely
used encryption mechanism. This cryptosystem
uses a secret sequence of characters or secret key
to encrypt a plaintext into a unique ciphertext.
The plaintext can be recovered by using the same
algorithm with the same key on the ciphertext.
There are two types of symmetric-key cryptogra-

phy:
1. Stream cipher: Converts plaintext to ciphertext
one bit at a time.
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2. Block cipher: Block ciphers take a number of
bits (called the block size) and encrypt them to
generate the same amount of ciphertext. If the
total length of the plaintext is not a multiple of
the block size, then padding data may be used
to make up the difference on the last block of
plaintext.

A typical SKE, depicted in Fig. 7.2, consists of the
following five elements [7.2]:

1. Plaintext: The original data/message prior to
encryption. It is the input of an encryption al-
gorithm.

2. Ciphertext: The scrambled and unreadable
data/message which is the output of the en-
cryption process. It changes determined by
different encryption algorithms and different
secret keys.

3. Encryption algorithm: Transforms plaintext
into ciphertext by performing substitutions and
transformations on the plaintext.

4. Decryption algorithm: Reverse version of an
encryption algorithm. It transforms ciphertext
back into plaintext.

5. Cryptographic key: Input of the encryption
and decryption algorithm. For plaintext, differ-
ent keys will make an encryption algorithm to
generate different ciphertext.

In a symmetric-key cryptosystem, the encryption al-
gorithm should be strong. There is no need to keep
the encryption algorithm secret. On the contrary,
the cryptographic key should be shared and kept in
a secure way. If someone knows the algorithm and
possesses the key, then original plaintext can be ob-
tained.

Figure 7.2 demonstrates how the symmetric-key
cryptosystem works.

A message generator produces a message in
plaintext format where the message is denoted as P,
P = [P, Ps,...,Pyu], where P, can be letters or

Table 7.1 Caesar cipher mapping
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binary bits (0 or 1). To encrypt the message P, we
need both encryption algorithm E; and crypto-
graphic key k. The key can be generated from the
source message or released and delivered by a trust-
worthy third party in a secure way. With plaintext
as input of the algorithm, an encoded message
(ciphertext) is obtained. The encryption procedure
can be described as:

C = Ex(P,k) . (71)

On the receiver side, the intended receiver who has
the key k can extract the original message P. If the
decryption algorithm is Dy, the decryption proce-
dure can be described as:

P=Di(C,k) . (72)

7.1.3 Substitution and Transposition
Techniques

Substitution and transposition ciphers are two ba-
sic encryption methods used in cryptography. They
are different in how portions of the message are han-
dled during the encryption process. A substitution
cipher is one in which the letters of plaintext are re-
placed by other letters or by numbers or symbols.

Substitution

The earliest and simplest substitution method was
the Caesar cipher [7.2], which was proposed by
Julius Caesar. In this cipher, each letter of the al-
phabet is replaced by a letter three places down the
alphabet. Therefore, A becomes D, B becomes E,
etc. (see the mapping table shown in Table 7.1).

When encrypting, we find each letter of the orig-
inal message in the “plaintext” line and write down
the corresponding letter in the “ciphertext” line. For
an example see Table 7.2.

Plaintextt A B C D E F G H I J] KL MNOUPQRST UV WXYZ
Ciphertext D E F G H I J] KL MNOZP QR STUVWIXYZ ABTC
Table 7.2 Corresponding ciphertext of “welcometomycountry”

Plaintet W E L C O M E T O MY C O UNT R Y

Ciphertextt Z H O F R P H W R P B F R X Q W U B
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Table 7.3 Mapping letters to numbers
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The encryption can also be represented using
modular arithmetic by first transforming the letters
into numbers (Table 7.3), according to the scheme,
A=0,B=1,...,72=25[73].

Then the encryption algorithm of a letter p can
be described mathematically as:

C =Ey(P)(P +3) mod26 . (73)
Similarly, the decryption algorithm can be described
as:
P =Di(C) = (C-3)mod26. (74)
For a shift of k places, the general Caesar cipher al-
gorithm is:

C=Ex(P)=(P+k)mod26. (75)
The corresponding decryption algorithm is:
P=D(C) =(C-k)mod26, (7.6)

where k = [0, 25].

WOWOZENAR—=—=IOMEHUOUOEPEPNRKNXS <CH®®v
PHOTWOZEN A= I OMHOO®E> NK XS <CAH
HLo WO TWOZZEEN A= =T OMHUO®® N XS <Clc
CHLOROTROZECDARAR =T OMHmUIORE > N XS <<
<CHLROTWOZECEAR——~TOTMmHmUO®E» N XIS

S<CHLFIOTWOZECA—=—~TZTOmMEIO®E >N < X[

Fig. 7.3 The Vigenere
tableau [7.2]

XELCHOLBOTWOZECN AR = I OMEHIO®» N K
~HRET<L<CHLIOTOZZEON A= —~TOTMIHUO® > NN

It is clear that the Caesar cipher only has 26 keys
which make it far from secure and extremely easy to
be broken using a brute force attack. Attackers only
need to try all 26 possible k from 0 to 25.

Another method was later proposed known as
a monoalphabetic substitution cipher in which
the “cipher” line can be any permutation of the
26 alphabetic characters [7.2]. The total number
of possible keys is very large (26!, around 88 bit).
However, this cipher is not very strong either. It
can be broken by using frequency analysis. An
attacker can guess the probable meaning of the most
common symbols by analyzing the relative frequen-
cies of the letters in the ciphertext. In some cases,
underlying words can also be determined from the
pattern of their letters; for example, attract, osseous,
and words with those two letters as the root are
the only common English words with the pattern
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ABBCADB [7.4]. Besides a monoalphabetic substi-
tution cipher, a polyalphabetic substitution cipher
is another method, using multiple cipher alphabets
asan improvement. Examples of such ciphers are the
Vigenere cipher, and ciphers implemented by rotor
machines, such as Enigma [7.5]. In the Vigenere
cipher, all alphabets are usually written out in
a 26 x 26 matrix, called a Vigenere tableau (see
Fig. 7.3) [7.2]. It consists of the alphabet written
out 26 times in different rows, each alphabet shifted
cyclically to the left compared to the previous al-
phabet, corresponding to the 26 possible Caesar
ciphers. For a plaintext letter p with the key letter k,
the ciphertext letter is at the intersection of the row
labeled k and the column labeled p.

For example, suppose that the plaintext to be en-
crypted is:

TODAYISMONDAY

The person wants to send the message encrypted by
a keyword “JAMES”. The cryptographic key should
be as long as the message. Therefore, the keyword
JAMES will be repeated to encrypt the message as
shown below:

Plaintextt TODAYISMONDAY
Key: JAMESJAMES J AM
Ciphertext:t COP EQRSY SFMAK

To decrypt a ciphertext, the key letter is used to
find the corresponding row. The column is deter-
mined by the ciphertext letter. The next step is then
to go straight up from the ciphertextletter to the first
row, where the plaintext letter is found.

Transposition

The transposition cipher is a method of performing
a certain permutation on the plaintext letters. That
means, the order of characters changed. Mathemat-
ically, a bijective function is used on the characters’
positions for encryption and an inverse function for
decryption. One of the simplest transposition tech-
niques is the rail fence cipher where one reorganizes
the plaintext as a sequence of diagonals and then
takes each row to form the ciphertext. The following
is an example of a transposition cipher [7.6].
The plaintext:

Two tires fly. Two wail.
A bamboo grove, all chopped down
From it, warring songs.
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The encryption step:

TTELWAAMOOACPDWRIAISG
WISYOIBBGVLHPDNOTRNOS
ORFTWLAORELOEOFMWRGN

The ciphertext:

TTELW AAMOO ACPDW RIAIS GWISY
OIBBG VLHPD NOTRN OSORF TWLAO
RELOE OFMWR GN

7.1.4 Data Encryption Standard (DES)

The Data Encryption Standard (DES) is the most
widely used cipher, and was chosen as an official
Federal Information Processing Standard (FIPS) for
the United States in 1976. It is of the highest im-
portance, although it has been replaced by other
encryption standards such as Advanced Encryption
Standard (AES). The structure of DES is based on
a symmetric-key algorithm which uses a 56-bit key.
Due to the short key length, DES is considered to
be insecure. In January 1999, distributed.net and the
Electronic Frontier Foundation collaborated to pub-
licly break a DES key in 22 h and 15 min.

A simplified version of DES (S-DES), proposed
by Schadfer for educational purpose, can help us un-
derstand the mechanism of DES [7.7]. The S-DES
algorithm can be decomposed into a few subfunc-
tions:

1. Initial permutation (IP): Performs both substi-
tution and permutation operation based on the
key input.

2. Final permutation (IP™! or FP): Inverse of IP.

3. Feistel cipher (fy): Complex function, which
consists of bit-shuffling, nonlinear functions,
and linear mixing (in the sense of modular al-
gebra) using the XOR operation.

4. Simple permutation function (SW).

The encryption procedure can be simply ex-
pressed as:

ciphertext = FP( fi, (SW (fi, (IP(plaintext))))) .
(77)

Decryption is the reverse procedure of encryption
as:

plaintext = FP(fi, (SW (fx, (IP(ciphertext))))) .
(7.8)
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Since the key length of DES is not long enough to
guard against brute force attacks, a variation, called
Triple DES (3DES or TDES), has been proposed to
overcome the vulnerability to such attacks. The un-
derlying encryption algorithm of 3DES is the same
as DES and the improvement is that 3DES applies
DES operations three times with one, two, or three
keys. 3DES increases key length to 168 bit, which
is adequately secure against brute force attacks. The
main drawback of 3DES is its slow performance in
software [7.7]. DES was originally designed to be im-
plemented on hardware. 3DES performs lots of bit
operations in substitution and permutation boxes.
For example, switching bit 30 with 16 is much sim-
pler in hardware than software. Ultimately, 3DES
will be replaced by AES which tends to be around
six times faster than 3DES.

7.1.5 Advanced Encryption Standard
(AES)

The Advanced Encryption Standard (AES) was an-
nounced by the National Institute of Standards and
Technology (NIST) as the new encryption standard.
In order to select the most suitable algorithm for
AES, NIST conducted an open competition in 1997.
AES candidates were evaluated for their suitability
according to three main criteria:
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1. Security. Candidate algorithm should be equal
to or better than 3DES in terms of security
strength. It should use a large block size and
work with a long key.

2. Cost. It should have computational efficiency in
both hardware and software.

3. Algorithm and implementation characteris-
tics. Flexibility and algorithm simplicity.

The competition started with 15 algorithms and then
was reduced to five in the second round. Finally, the
algorithm selected by NIST was “Rijndael” because
ithad the best combination of security, performance,
efficiency, implementability, and flexibility.

AES has a block length of 128 bit, and key lengths
0f 128, 192, or 256 bit. All operations in AES are byte-
oriented operations. Theblocksizeis 16 B(1 B = 8 B).
AES operates on a 4x4 array called a state. A byte is
represented by two hexadecimal digits.

In AES, both encryption and decryption have ten
rounds. Four different transformations are used, one
of permutation and three of substitution [7.8]:

1) Substitute Bytes A transformation that is a non-
linear byte substitution. Each byte is replaced with
another using the substitution box (see Fig. 7.4)
[7.2]. This is ensured by requirements such as hav-
ing a low correlation between input bits and output
bits and the fact that the output cannot be described
as a simple mathematical function of the input.

hex J
0 1 2 3 4 5 6 7 8 9 a b C d e f
0| 63 7c 77 7b 2 6b 6f c5 30 01 67 2b fe d7 ab 76
1| ca 82 c9 7d fa 59 47 fo ad | d4 a2 af 9c ad 72 c0
2| b7 fd 93 26 36 3f 7 cc 34 a5 e5 f1 71 ds 31 15
3 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75
4 09 83 2c la 1b 6e 5a a0 52 3b dé b3 29 e3 2f 84
51| 53 dl1 00 ed 20 fc bl 5b 6a cb be 39 4a 4c 58 cf
6 | do ef aa b 43 4d 33 85 45 9 02 7f 50 3c 9f a8
x 7 51 a3 40 8f 92 9d 38 5 bc b6 da 21 10 ff 3 d2
8 | cd 0Oc 13 ec 5f 97 | 44 17 c4 a7 7e 3d 64 | 5d 19 73
9 60 81 4f dc 22 2a 920 88 46 ee b8 14 de 5e 0b db
a | el 32 3a Oa 49 06 24 5¢ c2 d3 ac 62 91 95 e4 79
b | e7 c8 37 | 6d | 8d | d5 | 4e a9 6¢c | 56 4 ea 65 7a ae 08
c | ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b | bd 8b 8a
d| 70 3e b5 66 48 03 f6 Oe 61 35 57 b9 86 cl 1d 9e
e el 8 98 11 69 d9 8e 94 9b le 87 e9 ce 55 28 df
f 8¢ al 89 0od bf e6 42 68 41 99 2d of b0 54 bb 16

Fig. 7.4 Substitution box [7.2]
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Fig.7.5 Work flow of AES algorithm

An example is given in the following:

19 (a0 | 9a [ e9 d4|e0 | b8 | 1e
3d|f4 |c6 |8 27 | bf | b4 |41
E3|e2|8d|48]| [11[98[5d[52
Be|2b|2a |08 ae |f1 |24 30

2) Shift Rows A permutation step where each row
of the state is shifted cyclically over different steps
such as:

1(5( 9|13(17]21 1| 5] 9]13|17|21
2|16(10]14 1822 6(10]14(18|22] 2
3(7[11]15[19(23| [11]15[19]23] 3] 7
418(12]16(20|24 16|120|24| 4| 8|12

3) Mix Columns A substitution operation which
operates on the columns. Each column is multiplied
by the matrix

2311
1231
1123
3112

The multiplication is done over GE(2%), which
means bytes are treated as polynomials rather than
numbers.

4) Add Round Key Apply a round key to the state
using a simple bitwise XOR. Each round key is de-
rived from the cipher key using a key schedule.

The encryption process begin with an Add
Round Key transformation stage, followed by nine
rounds consisting of all four transformations. The
last round consists of Substitute Bytes, Shift Rows
and Add Round Key, excluding Mix Columns
(Fig. 7.5).

Each transformation stage is reversible. Decryp-
tion is done by performing a sequence of inverse op-
erations in the same order of encryption.

7.1.6 Public-Key Encryption

The main challenge of conventional symmetric-
key cryptography is the key management problem,
which refers to generation, transmission and storage
of cipher keys. In a symmetric-key cryptosystem,
the sender and receiver use the same cipher key,
where they should make sure that the transmission
medium such as a phone line or computer network
are secure enough without anyone else overhearing
or intercepting the key. It is difficult to provide
a secure key management strategy in open systems
with a large number of users.

In order to solve the key management prob-
lem, another type of cryptography technique,
named public-key cryptography (also known as
asymmetric-key cryptography), was introduced by
Diffie and Hellman in 1976. Public-key cryptogra-
phy is based on the idea of separating the key for
encrypting plaintext at the sender side from the
key for decrypting the ciphertext at the receiver
end. Public-key encryption involves a pair of keys:
a public key and a private key. The public and pri-
vate keys are generated at the same time. The public
key can be publicly available while the private key
needs to be kept secret. Here is one example: Alice
has a private key, and Bob has her public key. Bob
can encrypt a message using Alice’s public key, but
only Alice, the intended receiver who possesses the
private key, can successfully decrypt the message.
Figure 7.6 depicts the flow of this process.

An analogy for public-key cryptography is
a locked mailbox with a mail slot. The mail slot is
exposed and accessible to the public. The public
key can be imagined as the address of the mailbox.
Everyone who knows the address can drop a mail
through the slot. However, only the owner who has
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the key of this mailbox can open it and access these
mails.

Digital Signature

In practice, public-key algorithms are not only used
to ensure confidentiality (exchange of a key), but
also used to ensure authentication and data integra-
tion. One example is the digital signature technique.
A digital signature scheme is an application based on
public-key cryptography, which can help the receiver
to judge whether the message sent through an inse-
cure channel comes from the claimed sender or not.

By using the digital signature technique, Alice
can apply a hash function to the message to gener-
ate a message digest. The hash function makes sure it
is infeasible to invert the corresponding message di-
gest back into its original message without knowing
the key being used. Also slightly different messages
will produce entirely different message digests. Then,
Alice generates the digital signature by encrypting
the message digest with her private key. Finally, Al-
ice appends the digital signature to the original mes-
sage and receives the digitally signed data. To au-
thenticate Alice as the sender, Bob tried to decrypt
the digital signature back into a message digest M
using Alice’s public key. Then, Bob hashes the mes-
sage into a message digest My. If M, is the same
as M, Bob knows this message is truly from Alice,
without any alerting by an unauthorized third party
(see Fig. 7.7).

Key Exchange

Public-key cryptography also provides an excellent
solution to problems other than the key distribu-
tion problem. However, public-key cryptography is
much more computationally intensive than symme-

key cryptosystem

tric-key cryptography. This disadvantage makes it
unsuitable for large message encryption. In practice,
we usually combine both the public key and pri-
vate key: use public-key cryptography to encrypt the
symmetric key and then use symmetric cryptogra-
phy for securing the message.

Suppose Alice uses a symmetric key (AES key) to
encrypt her message. The receiver Bob has to obtain
this AES key for deciphering. How can Alice transfer
the AES key to Bob in a secure way? She can encrypt
the AES key using Bob’s public key, and sends both
the encrypted key and encrypted message to Bob.

Bob uses his private key to recover Alice’s AES
key. He then uses the AES key to obtain the plaintext
message.

Public-Key Infrastructure

A public-key infrastructure (PKI) framework en-
ables and supports the secured exchange of data
through the use of a public and a private crypto-
graphic key pair that is obtained and shared through
a trusted authority. A trusted third party which can
issue digital certificates is a certificate authority
(CA). A digital certificate contains a public key and
the identity of the owner. Another significant com-
ponent in PKI is registration authority (RA), which
verifies CA before it issues a digital certificate to a re-
quester.

In a PKI system, entities that are unknown to
one another must first establish a trust relationship
with a CA. CA performs some level of entity au-
thentication and then issues each individual a dig-
ital certificate. Individuals can now use their certifi-
cates to establish trust between each other because
they trust the CA. A major benefit of a PKI is the es-
tablishment of a trust hierarchy because this scales
well in heterogeneous network environments. CA
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generates a public and private key simultaneously
using the same algorithm. The private key is given
only to the requesting party while the public key is
made publicly accessible. Then public-key encryp-
tion/decryption and digital signature can be imple-
mented. If Alice wants to send a message to Bob,
she can obtain Bob’s public key from his digital cer-
tificate which is issued by CA. Bob can decrypt the
ciphertext using his private key which comes from
CA. A major benefit of a PKI is the establishment of
a trust hierarchy because this scales well in hetero-
geneous network environments [7.9].

7.1.7 RSA Algorithm

RSA is a public-key encryption algorithm that was
first proposed by Rivest, Shamir, and Adleman at
MIT in 1977. The letters in the name “RSA” are the
initials of their surnames. This algorithm has been

used to protect the nuclear codes of both US and
Russian armies [7.10].

The RSA algorithm consists of three procedures:
key generation, encryption, and decryption [7.2].

Key Generation

1. Randomly select two prime numbers p and g
where p # q.

2. Calculaten = p x q.

3. Calculate totient p(n) = (p—1) x (g —1). The
totient function ¢(n) is used to calculate the
number of positive integers less than or equal
to a positive integer n that are coprime to n. For
example, ¢(9) = 6 since the six numbers 1, 2, 4,
5,7 and 8 are coprime to 9.

4. Selectan integer e suchthat1 < e < ¢(n),ande
is relatively prime to ¢(n).

5. Calculate d to satisfy the congruence relation
d x e =1(mod¢(n)).
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The public key is the doublet (#, ¢), which consists
of the modulus # and the public (or encryption) ex-
ponent e. The private key consists of the modulus n
and the private (or decryption) exponent d, which
should be kept secret.

Encryption

If M is the message to be sent, M needs to be turned
into a number m where m < n. Then compute ci-
phertext ¢ such that:

c=m"(modn) . (79)

Decryption

At the receiver side, m can be recovered by the fol-
lowing computation:

m = c*(modn) . (710)

Then original plaintext M can be obtained from m.
A concrete example is shown below:

1. Choose two prime numbers, p = 13 and g = 23.

2. Computen = px q=13x23=299.

3. Compute the totient ¢(n) = (p - 1) = (13 -
1) x (23— 1) = 264.

4. Choose e > 1 coprime to 264. Let e = 17.

5. Compute d such that d x e = 1(mod264).d =
233 since 233 x 17 = 15 x 264 + 1.

The public key is (n = 299, e = 17) and the private
key is (n =299,d =233).

The encryption function is ¢ = m°modn =
m'” mod 299.
The decryption function is m = c¢?modn =

¢*** mod 299.

For example, to encrypt plaintext m = 66, we cal-
culate c = m® mod n = 66'7 mod 299 = 53, where c is
the ciphertext. To decrypt ciphertext ¢, we calculate
m = ¢ mod n = 53%*° mod 299 = 66.

Security strength of RSA encryption is based on
a factoring problem: it is difficult to find two prime
factors of a very large number. Cryptanalysis can
be the task of finding the secret exponent d from
apublickey (n, e), then decrypt c using the standard
procedure. To accomplish this, an attacker factors n
into p and ¢, and computes (p — 1)(gq — 1) which
allows the determination of d from e. As of 2008,
the largest number factored by a general-purpose
factoring algorithm was 663-bit long (see RSA-200),
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using a state-of-the-art distributed implementation.
The next record is probably going to be a 768-bit
modulus [7.11].

The RSA algorithm is much slower than the sym-
metric cipher since it needs much more computing
power. Thus, in practice we combine symmetric ci-
pher and RSA. Instead of encrypting a message, RSA
is usually employed in key transport to protect (en-
crypt/decrypt) the symmetric key during the data
transmission process.

7.2 Overview of Biometrics

A recent report has shown that fraudulent iden-
tity thefts cost businesses and individuals at least
$56.6 billion in the US alone [7.12]. A reliable iden-
tity management system is urgently needed to meet
the high and increasing demand of secure applica-
tions like:

1. Homeland Security (including national border
control, airport security, travel documents,
visas, etc.)

2. Enterprise-wide security infrastructures (se-
cure electronic banking, health and social
service)

3. Personal security (ID card, driver’s license, ap-
plication logon, data protection).

As a promising technology, biometrics provides
a good solution for verifying a person in an auto-
mated manner and shows many advantages over
conventional techniques. In this section, an over-
view of biometric technology is provided.

7.2.1 Introduction to Biometrics

Currently, most security applications are designed
based on knowledge or token. Knowledge-based
applications authenticate an identity by checking
“something you know” such as a PIN, password,
and so on. Token-based applications check “some-
thing you carry” such as a key or card. There are
fundamental flaws with these two types of secu-
rity mechanisms. Knowledge such as passwords
and PINs can also be easily forgotten or guessed
using social engineering [7.13] or dictionary at-
tacks [7.14]. Similarly, tokens like key or cards can
be stolen or misplaced.
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Table 7.4 Comparison of various biometric techniques
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Biometrics:  Universality Uniqueness Permanence Collectability Performance Acceptability Circumvention
Fingerprint ~ Medium High High Medium High Medium High
Face High Low Medium High Low High Low
Hand

geometry Medium Medium Medium High Medium Medium Medium
Keystrokes ~ Low Low Low Medium Low Medium Medium
Hand veins ~ Medium Medium Medium Medium Medium Medium High
Iris High High High Medium High Low High
Retinal scan  High High Medium Low High Low High
Signature Low Low Low High Low High Low
Voice Medium Low Low Medium Low High Low
Facial

thermograph High High Low High Medium High High
Odor High High High Low Low Medium Low
DNA High High High Low High Low Low
Gait Medium Low Low High Low High Medium
Ear canal Medium Medium High Medium Medium High Medium

Biometrics technology provides a more feasible
and reliable mechanism based on “who you are”.
It identifies people by their physical personal traits,
which inherently requires the person to be present
at the point of identification. Biometrics refers to
the statistical study of biological phenomena, such
as the physiological features and behavioral traits of
human beings [7.15]. The physiological features can
be fingerprint, hand geometry, palm print, face, iris,
ear, signature, speech, keystroke dynamics, etc. The
behavioral characteristics include handwritings, sig-
natures, voiceprints and keystroke patterns.

Generally speaking, biometric traits have three
main characteristics:

1. Universality. Every person possesses the bio-
metric features.

2. Uniqueness. It is unique from person to person.

3. Performance stability. Its properties remain sta-
ble during one’s lifetime.

Besides this, to evaluate and compare different types
of biometric features, another four factors should be
considered:

4. Collectability. Ease of acquisition for measure-
ment.

5. Performance. Verification accuracy, error rate,
computing speed, and robustness.

6. Acceptability. Degree of approval of a technol-
ogy.

7. Circumvention. Ease of use of a substitute.

A comparison [7.15] of different biometric tech-
niques based on these seven factors is shown in Ta-
ble 7.4.

The use of physiological features has been more
successful than that of behavioral ones [7.16]. This
is because the physiological features are relatively
more stable and do not vary much. Some behav-
ioral features, such ashandwriting patterns, may vary
dynamically depending on one’s emotion, different
writing tools (pen) and writing media (paper).

Each existingbiometric technique mentioned has
its own merits and drawbacks. None of them is the
dominant technique that can replace others. The usa-
bility of a biometric technique depends on appli-
cation. For instance, the iris-based technique has
a much higher verification accuracy than the signa-
ture-based one. However, for the purpose of credit
card validation, it is infeasible to install expensive
iris scanners as well as matching equipment on ev-
ery check out counter in a supermarket. Further-
more, forcing each customer to undergo an eye scan
would be extremely annoying. In this scenario, an
automatic signature verification system is more de-
sirable because this technique can be integrated into
current credit card checking systems in a seamless,
low-cost, and user-friendly way.

7.2.2 Biometric Systems

A biometric system is one kind of security system
which recognizes a person based on his/her biomet-
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ric characteristics. Applications include computer
and network logon, physical access, mobile device
security, government IDs, transport systems, medi-
cal records, etc.

Typically, a biometric system consists of five
main modules:

1) Biometric sensor module A biometric sen-
sor is used for obtaining identifying information
from users. The sensor module usually encapsulates
a quality checking module. A quality estimation is
performed to ensure that the acquired biometric can
be reliably processed by a feature extractor. When
the input sample does not meet the quality criteria,
this module will ask the user to try again.

2) Feature extractor module This module ex-
tracts a set of salient features from the acquired bio-
metric data. The feature set is a new representation
of the original biometric data. It will be stored in
the system as a biometric template for future ver-
ification. The template is expected to be capable
of tolerating intra-user variability and be discrim-
inatory against inter-user similarity. For example,
in minutiae-based ﬁngerprint verification, minutiae
information (x, y coordinates and orientation angle)
will be extracted to form a feature set (template). The
fingerprint can be represented by this feature set.

3) Matching module This module compares the
biometric sample, called a query or test, with the pre-
stored template. The output is a matching score (de-
gree of similarity) between query and template. For
example, in minutiae-based fingerprint verification,
the matching score is the matched minutiae between
the query and the template fingerprint.

4) Decision-making module This module decides
on the identity of the user based on the matching
score.

5) System database The database is used for stor-
ing user templates captured during the enrollment

Claimed
| identity
Name (PIN)
Feature Matcher
k> extractor (1 match)
User interface i
Verification True/false
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stage. The scale of database depends on the applica-
tion. For example, in a forensic-oriented fingerprint
indexing system, a biometric database is usually in-
stalled in the central server, storing millions of tem-
plates. For smartcard protection, only the one tem-
plate is recorded on the user’s smartcard.

Biometric systems can be categorized into verifi-
cation systems and identification systems.

Verification System

This system verifies a person’s identity to determine
whether the person is who he/she claims to be (Am
I the right person?). In the verification procedure,
a user first claims his/her identity via traditional
ways such as smart card or username. The system
asks the person to supply his/her biometric charac-
teristic and then conduct a one-to-one comparison
between query identity and the template stored in
the database. If the query feature matched the tem-
plate, the person will be considered as a genuine user
and be accepted. Otherwise, the system will consider
the user as an imposter and reject the request. Iden-
tity verification is typically used for positive recog-
nition, where the aim is to prevent multiple peo-
ple from using the same identity [7.17]. The system
structure is shown in Fig. 7.8 [7.15].

Identification System

This system identifies a person by searching all stored
templates in the database (Who am I?). When receiv-
ing a query biometric feature, the system will con-
ducta one-to-many comparison where the query will
be compared with the templates of all enrolled users
in the database. System output can be a list of can-
didates whose templates have a high degree of simi-
larity with the query feature. Identification is a crit-
ical component in negative recognition applications
where the system establishes whether the person is

One

template  System DB

Fig. 7.8 Verification system
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who he/she (implicitly or explicitly) denies to be. The
purpose of negative recognition is to prevent a sin-
gle person from using multiple identities [7.17]. The
system structure is shown in Fig. 7.9 [7.15].

7.2.3 Evaluation of Biometric Systems

Two samples of the same biometric feature from
a person are rarely identical, even though they are
likely to be similar. This intra-class variance is due
to many external factors. Take fingerprints for exam-
ple, factors such as placement of finger on the sen-
sor, applied finger pressure, skin condition and fea-
ture extraction errors lead to large intra-user varia-
tions [7.15].

On the other hand, different individuals may
have extremely similar biometric features. This is
called inter-class similarity. For instance, twins usu-
ally exhibit quite identical facial appearances since
they have the same genes.

A biometric system makes two types of errors:

False acceptance refers to allowing unauthorized
users (imposters) to access the system. The false ac-
ceptance rate (FAR) is stated as the ratio of num-
ber of accepted imposters’ requests divided by to-
tal number of the imposters’ requests. The occur-
rence of false acceptance is mainly due to inter-class
similarity. A system may mistake a query sample
with high inter-class similarity from an unautho-
rized user to be from a pre-stored person. False ac-
ceptance is considered the most serious of security
errors as it gives illegal users access permission as
well as the chance to enter into the system.

False rejection refers to rejecting a genuine user’s
request. The false rejection rate (FRR) is defined as
the ratio of the number of false rejections divided
by the number of identification attempts. The main
reason why false rejection happens is that biometric
systems are not able to distinguish intra-class vari-

template
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Fig. 7.9 Identification system

ance from error. Biometric feature sets coming from
a genuine person with a certain intra-class variance
may be incorrectly considered as an imposter. How-
ever, FRR is not the main measurement to judge
whether flaws exist in the biometric system.

In a biometric system, both FAR and FRR are
not fixed. They vary with the change of a pre-set
match score threshold in a system. Thus, FAR can be
described as the proportion of imposter tests, each
with a match score S greater than or equal to n. Sim-
ilarly, FRR can be defined as the proportion of gen-
uine users’ tests, each with a match sore Sless than A.

Generally, it is impossible to reduce both FRR and
FAR simultaneously. The reason is obvious. When we
raise the match score threshold #, the system tends
to be “stricter,” FAR increases and FRR will decrease,
and vice versa. Therefore there should be a trade-off
between FAR and FRR. The receiver operating char-
acteristic (ROC) curve is a curve in which the FRR
is plotted against the FAR for different match score
thresholds # (as shown in Fig. 7.10) [7.18,19]. The

FRR

W EER,

.~ EER,

FAR 1

Fig.7.10 ROC curve
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curve provides a collection of all possible FAR-FRR
pairs for evaluating the performance of a biometric
system.

From the ROC curve, we can obtain another
system performance metric, equal error rate (EER),
which refers to the common value of FAR and FRR
when FAR and FRR are equal. In practice, the EER
value is used to evaluate a system. A lower EER value
indicates better performance.

Figure 7.10 shows two ROC curves for system
A and system B where EER5 < EERg. Therefore, gen-
erally speaking, system A has better system accuracy
than system B.

7.2.4 Introduction to Fingerprints

Fingerprints are the most widely used biometric fea-
tures because of their easier accessibility, distinc-
tiveness, persistence, and low-cost properties [7.15].
Fingerprints have been routinely used in the foren-
sics community for over one hundred years.

Modern automatic fingerprint identification sys-
tems were first installed almost fifty years ago. Early
fingerprint identification was done using inked fin-
gerprints. Nowadays, live-scan fingerprint sensors
are more often used to acquire immediate digital
images for access control and other fingerprint
processing-based applications. Today, most finger-
print systems are designed for personal use beyond
the criminal domain, in areas such as e-commerce.

A fingerprint is the reproduction of a fingertip
epidermis, produced when a finger is pressed against
a smooth surface. The most evident structural char-
acteristic of a fingerprint is a pattern of interleaved
ridges and valleys (see Fig. 7.11 [7.20]). Ridges are
the white parts of a fingerprint while valleys are the
black ones.

In fingerprint-based recognition systems, ridge-
valley features provide significant information that
can be used to identify a person.

7 Bio-Cryptography

Fig. 7.11 Fingerprint ridge
characteristics

Generally, ridges and valleys are parallel but
sometimes there are some ridge endings and ridge
bifurcations named minutiae [7.15]. Minutiae
points, also called “Galton details”, were first found
and defined by Sir Francis Galton (1822-1911). They
are the special ridge characteristics that are generally
stable during a person’s lifetime. According to the
FBI minutiae-coordinate model, minutiae have two

types:
1. Ridge termination
2. Ridge bifurcation (as shown in Fig. 7.12 [7.20]).

Other important global features for the fingerprint
include singular point, core, and delta (Fig. 7.11).
The singular point area can be defined as a region
where the ridge curvature is higher than nor-
mal and where the direction of the ridge changes
rapidly [7.21].

Generally, a fingerprint database contains a large
amount of fingerprint templates, so searching and
matching a certain person’s identity becomes a very
time-consuming task. Fingerprint classification
technique is used to reduce the search and compu-
tational time and complexity. An input fingerprint
image is first classified to a pre-specified subtype
and then compared with the subset of the database.
Instead of using fingerprint local features such as
minutiae, fingerprint classification focuses mainly

- ]
Ridge bifurcation

o —ye— —

e —
Ridge ending

Fig.7.12 Minutiae in fingerprints
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Fig.7.13 Galton-Henry classification of ridge characteristics

on the global features such as global ridge struc-
tures and singularities. In the year 1823, Purkinje
proposed the classification rules which defined nine
subcategories, and Galton divided the fingerprint
into three main classes that are arch, loop, and
whorl:

In 1902, Henry improved Galton’s idea and di-
vided the fingerprint into five main classes. This
scheme, known as the Galton-Henry classification,
as shown in Fig. 7.13 [7.20], includes features such
as arch, tented arch, left loop, right loop, and whorl.

Arch Ridges of the fingerprint go from one side
to the other, with a small bump. Another important
feature is that arch does not have loops or deltas.

Tented arch This is similar to arch, but there should
be at least one ridge that has a high curvature.

Another difference from arch is that tented arch
has one loop and one delta.

Leftloop This has atleast one ridge that enters from
the left side and exits out the left side. In addition,
aloop and a delta singularity are located at the south
of the loop.

Right loop Similar to a left loop but the ridges en-
ter from the right side and back to the right. A delta
singularity is also located at the south of the loop.

Whorl One or more ridges make a 360 ° path around
the center of the fingerprint.

There should be two loops and two deltas. Often,
whorl fingerprints can be further classified into two
subcategories: plain whorl and double loop.

Fingerprint classification is a difficult task not
only because of the small inter-class variability and
the large intra-class variability but also because sam-
pled fingerprints always contain noise [7.15, 22, 23].
Therefore, during the last 30 years, a great degree of
research has been focused on the fingerprint classi-
fication problem. Almost all the solutions are based

on the following features: singular points, orienta-
tion image, and ridge line flow.

7.2.5 Fingerprint Matching

The fingerprint matching technique is the core of
both the fingerprint identification and fingerprint
verification systems. It compares the test fingerprint
with the template fingerprint and outputs a match-
ing score for decision making. Fingerprint matching
is a very tough task, due to the following two rea-
sons. Firstly, there is inter-class variance and inter-
class similarity. The fingerprints from the same fin-
ger of the same person may appear quite different
while the fingerprints from different people could be
extremely similar. Secondly, there are disturbances
such as image distortion, different skin condition,
partial overlap, noisy and low-quality image sam-
pling. These negative factors combine to increase er-
ror rates and degrade system matching performance.

Generally there are two types of fingerprint
matching techniques: minutiae-based and correla-
tion-based [7.15].

Minutiae-Based Matching

Minutiae-based matching algorithms are certainly
the most well-known and widely used fingerprint
matching techniques. They compare a query finger-
print with a template based on the correspondence
of their minutiae. One classical example is the algo-
rithm proposed in [7.24]. Other algorithms found
in [7.25-27] also belong to the minutiae-based tech-
nique.

Correlation-Based Matching

Correlation-based matching algorithms focus on the
global pattern of ridges and valleys of a fingerprint.
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It uses the gray-level information directly. Some al-
gorithms are similar to those found in [7.28, 29].

In minutiae-based matching, typically the proce-
dure of aligning the test print with the template is
an essential step which will eliminate image rotation,
translation and distortion. Alignment is conducted
before the matching process. Reference points such
as core points [7.30-34], reference minutiae [7.35],
or high curvature points [7.36, 37] play vital roles in
alignment procedure.

The recognition performance of minutiae-based
matching relies strongly on the accuracy of reference
point detection. However, reference point detection
is known to be nontrivial and unreliable for poor-
quality images.

Correlation-based fingerprint matching tech-
niques are able to handle low-quality images with
missed and spurious minutiae. Another advantage
is that it does not require pre-processing and image
alignment because the test print is compared with
the template globally. However, since the technique
examines the fingerprint image from the angle of
pixel or signal level features rather than biological
features, the performance is highly affected by noise
and nonlinear distortion [7.38].

7.2.6 Challenges of the Biometric
System

Though biometric techniques have been successfully
applied in a large number of real-world applications,
designing a good biometric system is still a challeng-
ing issue. There are four main factors that increase
the complexity and difficulties of system design:

1. Accuracy

2. Scalability

3. Security

4. Privacy [7.39, 40].

Accuracy

An ideal biometric system should make the cor-
rect judgment on every test sample. However, due
to factors such as inter-class variance, intra-class
similarity, different representation, noise and poor
sampling quality, practical biometric systems cannot
make correct decision sometimes. System errors of
false acceptance and false rejection affects the recog-
nition accuracy. System accuracy can be improved
by finding an invariance, descriptive, discriminatory
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and distortion tolerate features/model to represent
the biometric trait.

Scalability

Scalability refers to the size of the biometric
database. For the fingerprint verification sys-
tem, only a very limited amount of user information
should be stored. Hence, scalability is not a big issue.
Scalability engages attention in large scale identifi-
cation systems with large numbers of enrolled users.
For instance, to identify one query user in a system
which stores 10 million templates, it is infeasible and
inefficient to match this query with all templates.
Usually, technology such as indexing [7.30] and
filtering can be employed to reduce the searching
range in a large scale database.

Security

The problem of ensuring the security and integrity
of the biometric data is critical and unsolved. There
are two main defects of biometric technology:

1. Biometric features are not revocable. For in-
stance, if a person’s biometric information (fin-
gerprint image) has been stolen, it is impossible
to replace it like replacing a stolen smart card,
ID, or reset a password. Therefore, establishing
the authenticity and integrity of biometric data
itself becomes an emerging research topic.

2. Biometric data only provides uniqueness with-
out providing secrecy. For instance, a person
leaves fingerprints on every surface he touches.
Face images can be observed anywhere by any-
one.

Ratha et al. [7.41] identify eight basic attacks that
are possible in a generic biometric system and prove
biometric systems are vulnerable to attacks. The fact
that biometric data is public and not replaceable,
combined with the existence of several types of at-
tacks that are possible in a biometric system, make
the issue of security/integrity of biometric data ex-
tremely important.

Privacy

Biometric data can be abused for an unintended
purpose easily. For example, your fingerprint record
stored in the database of national police system may
be used later for gaining access to your laptop com-
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puter with the embedded fingerprint reader. Possible
solutions have been proposed in [7.42, 43]. However,
there are no satisfactory solutions on the horizon for
the fundamental privacy problem [7.40].

7.3 Bio-Cryptography

Although biometric techniques show many advan-
tages over conventional security techniques, bio-
metric systems themselves are vulnerable against
attacks. Biometric system protection schemes are
in high demand. Bio-cryptography is an emerging
technology which combines biometrics with cryp-
tography. It inherits the advantages of both and pro-
vides a strong means to protect against biometric
system attacks.

7.3.1 Biometric System Attacks

The main possible attacks against biometric systems
were reviewed by Ratha et al. [7.41]. Attacks can be
categorized into eight types:

1. Fake biometric: Present a fake reproduction of
biometric features such as plastic fingerprints,
or a face mask to the sensor.

2. Replay attack: A previous biometric signal is
used. Examples can be a copy of a fingerprint/
face image or recorded audio signal.

3. Override feature extractor: The feature extrac-
tor could be compromised using a Trojan horse
program. Feature extracting process can be con-
trolled by attackers.

4. Modify feature representation: Attacker can re-
place the genuine feature sets with different syn-
thesized feature sets.

5. Override matcher: Attackers can compromise
the matching module to generate a fake match
score.

6. Modify stored template: Attackers can modify
enrolled biometric templates stored locally or
remotely so systems will authorize illegal users
incorrectly.

7. Channel attack between database and the
matcher: Modifies templates when they are be-
ing transferred in transmission channel, which
links the database with the matcher.

8. Decision override: Attackers can override the fi-
nal decision ignoring the system matching per-
formance.
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Among them, the attack against biometric templates
is causes the most damage and can be hard to de-
tect. Attackers can replace the genuine template with
a fake one to gain unauthorized access. Addition-
ally, stolen templates can be illegally replayed or used
for cross-matching across different systems without
user consent. In [7.44-46], the authors describe an
attack using a physical spoof created from the tem-
plate to gain unauthorized access.

7.3.2 Existing Approaches
of Template Protection

A practical biometric system should store the en-
crypted/transformed version of a template instead of
in raw/plaintext format to ensure template security.
User privacy can be achieved by using fool-proof
techniques on the templates. Both symmetric-key
ciphers like AES and public-key ciphers like RSA are
commonly used for template encryption.

Suppose we encrypt a plaintext biometric tem-
plate T using the secret key K. The encrypted ver-
sion is:

C =Ex(T,Kg) . (711)
To decrypt E, a decryption key Kp is needed:
T = Dy(C,Kp) . (712)

However, standard encryption techniques are not
a good solution for securing biometric templates.
The reason is that the encryption algorithm is not
a smooth function. Even a small variance in a bio-
metric feature set will result in a completely different
encrypted feature set. For this reason, performing
feature matching in the encryption domain is infea-
sible. However, it is not secure to conduct the match-
ing process using a decrypted query feature and de-
crypted template. Hence, standard encryption has
defects and some other intra-class variance tolerate
schemes are desired.

There are two main methods for protecting the
template:

1. Feature transform
2. Bio-cryptography [7.39].

In the feature transform approach, the biometric
template (T) will be converted into a transformed
template F(T,K) using a transformation func-
tion F. The system only stores transformed tem-
plates. K can be either a secret key or a password.
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In the matching process, the same transformation
function F will be applied to query features (Q)
and then the transformed query (F(Q;K)) will be
matched with the transformed template (F(T;K))
in the transformed domain. One advantage is that
once the transformed biometric template has been
compromised, it cannot be linked to the raw bio-
metrics. Another transformed template can be
issued as a replacement. When F is a one-way
function [7.31,47], meaning the original template
cannot be recovered from the transformed template,
these transform schemes can be called noninvertible
transforms. If F is invertible, these transforms can
be called salting transforms. Salting approaches
have been proposed in [7.48-50].

Bio-cryptography techniques protect a secret
key using biometric features or by generating a key
from biometric features. In such systems, some
public information is stored. Both the secret key
and biometric template are hidden in the public
information. However, it is computationally impos-
sible to extract the key or template from the public
information directly. There are two subcategories
of bio-cryptography techniques: key binding and
key generating. If public information is derived
from binding the secret key and biometric tem-
plate, it is key binding. Examples include fuzzy
commitment [7.51] and fuzzy vault [7.52]. If pub-
lic information is generated from the biometric
template only while the secret key comes from the
public information and the query biometric fea-
tures, it is key generation. Key generation schemes
have been proposed in [7.53-55].

7.3.3 Fingerprint Fuzzy Vault

Juels and Sudan [7.52] proposed a cryptographic
construction called the fuzzy vault construct. The
security strength of the fuzzy vault is based on the
infeasibility of the polynomial reconstruction prob-
lem. In [7.56], the authors presented its application
for a fingerprint-based security system. The main
purpose of the fuzzy fingerprint vault is to bind fin-
gerprint features with a secret to prevent the leakage
of the stored fingerprint information.

In fingerprint fuzzy vault, suppose a user needs
to protect an encryption key k and his fingerprint
template that has n minutiae. Firstly, k will be
encoded as the coefficients of a D-order polyno-
mial p(x). The term p(x) is evaluated on template
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minutiae to obtain a genuine point set G, where
G = {(a,p(a1)), (a2, p(az)),... (an, p(an))}-
The second point set, chaff set C, is generated to
secure the template. The chaff point is (b, ¢;),
where ¢; = p(b;). G and C will be combined to
a new point set, denoted as V'. Finally, V' will be
passed through a list scrambler to reset the order of
its points. The scrambled V', denoted as V, is the
final fuzzy vault stored in the system. Figure 7.14
describes the encoding procedure of a fuzzy vault.

During the decoding phase, a query minutiae set
is obtained from a user. Corresponding points are
found for unlocking by comparing with abscissa val-
ues of points in the vault. In order to reconstruct
a D-order polynomial, the points should be pro-
vided. When the points are obtained, Lagrange in-
terpolation can be used to reconstruct the polyno-
mial. Then, the coefficients are obtained and the en-
cryption key is retrieved. Figure 7.15 describes the
decoding procedure of a fuzzy vault.

7.3.4 Existing Fuzzy Vault Algorithm
and Implementation

Several modified fuzzy fingerprint vault algorithms
and implementations have been proposed in the lit-
erature. Clancy et al. [7.57] initially implemented
Juels and Sudan’s fuzzy vault [7.52]. They bound
the private key with fingerprint information stored
on the smartcard. Their experiment was based on
an assumption that template and query minutiae
sets were pre-aligned. The genuine acceptance rate
(GAR) was around 70 - 80%. Yang et al. [7.35]
added an automated align approach to the classical
fuzzy vault algorithm. They combined multiple fin-
gerprint impressions to extract a reference minutia
used for alignment during both vault encoding and
decoding. Their experimental evaluation was con-
ducted on a nonpublic domain database which con-
sisted of 100 fingerprint images (10 fingerprints per
finger from 10 different fingers) with a final GAR
of 83%.

Lee et al. [7.58,59] also proposed an approach
of automated fingerprint alignment by using the
geometric hashing technique in [7.60]. Experimen-
tal results based on the domestic ETRI Fingerprint
Database [7.59] show a GAR of 90.9% with FAR
of 0.1%. However, they did not provide evaluation
results based on common public domain finger-
print databases. A large storage size of the hash
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table will restrict their scheme to being imple-
mented in resource-constrained devices like mobile
phones and smartcards. Uludag et al. [7.36] pro-
posed a modified fuzzy vault scheme that employs
orientation field-based helper data, called high cur-
vature points, to assist in alignment. Nandakumar et

al. [7.37] extended this idea and provided a full im-
plementation. Evaluations on a public domain fin-
gerprint database (FVC2002-DB2) showed a GAR
of 91% with FAR of 0.01%, and a GAR of 86%
with zero FAR when matching a single query with
a single template.
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7.3.5 Composite Feature-Based
Fingerprint Fuzzy Vault
Algorithm

Composite Feature for Fuzzy Vault

The performance of the fuzzy vault algorithm is de-
cided by the accuracy of its underlying matching al-
gorithm. Hence, there are two ways to improve the
fuzzy vault performance:

1. Find a stable, distortion tolerate feature.
2. Design an algorithm with high verification ac-
curacy.

Most existing implementations of fuzzy fingerprint
vault use minutiae location (x, y coordinates) for en-
coding and decoding. System performance is greatly
affected by the accuracy of reference point detec-
tion. Minutiae coordinates vary when there is er-
ror in locating these reference points, such as core
points [7.30, 31], reference minutiae [7.35], or high
curvature points [7.36,37]. In the fuzzy vault sys-
tem, it is extremely difficult to accurately locate and
align the reference points since the vault only stores
a transformed version of the fingerprint template.

We consider using a translation and rotation in-
variant composite feature instead of using minutiae
location coordinates. Therefore, we are using a com-
posite feature-based representation. The concept of
composite features was firstly proposed in [7.61]
where the authors used it for fingerprint image reg-
istration. Inspired by this, we improved it and pro-
posed our new rotation-free and translation invari-
ant composite feature.

Consider two minutiae, a minutia M; and its
neighbor minutia M;. Figure 7.16a describes the
definition of composite features. We depict them in
a triplet form as (d;_j, ¢i_j, 0i_j), where d;_j is the

M,

(di 2 91201 2)
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length of I;_;j connecting M; and Mj, ¢;_j is the dif-
ference between the orientation angle of M; and M;,
and ¢, ; € [0,7). The term 6;_; is the counter-
clockwise angle between the orientation of M; and
direction from M; to M, where ¢;_; € [0,27) [7.62,
63]. M; can be further represented by its local struc-
ture: a set of composite features. The composite fea-
ture set of M;, denoted as C, is defined as:

(di71»¢i71»6i71)

Cy = (di_2: (Pi:_2: 9:‘_2)

i

(713)
(diim» (piim» Giim)

where m is the number of neighbor minutiae
around M; and it varies when a different number of
neighbors are selected. Figure 7.16b shows a con-
crete example of composite features. Suppose M;
has four neighbor minutiae (m = 4). Based on the
definition 7.13, M, can be represented as:

(dlfz, P12, 9172)
(dl_S» P13, 91_3)
(d174, P1_4, 9174)
(dlj; P15, 9175)

Different from the minutiae location feature, com-
posite feature is capable of addressing geometrical
transformation problems like shift and rotation due
to the fact that it uses relative distance and rela-
tive angle. Moreover, intra-class variation and dis-
tortion can be handled by employing different toler-
ance limits of (d, ¢, 6).

Cu, = (7.14)

Dual Layer Structure Check (DLSC) Verification
Scheme Designed for Fuzzy Vault

Each fuzzy vault scheme should have an underlay
biometric verification (matching) algorithm that vi-
tally determines the overall system performance.
However, most existing minutiae matching algo-

(d1_5 915 01 5)
Ms;
(d1_4’ P14 91_4)

Fig.7.16 (a) Composite feature

of M;. (b) Composite feature-
based structure of M;
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(dy 2 91201 2)
(d)_5 915 01 5)
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a template while M| and M} are from a query fingerprint

rithms do not suit fuzzy vault. The reason is that for
fuzzy vault all matching will be conducted in a bio-
crypto domain. The fuzzy vault-oriented verification
algorithm should be:

1. Simple: Can migrate from the biometric domain
to bio-crypto domain easily.

2. Computationally efficient: Should av